

1 SETS AND ALGORITHMS AN INTRODUCTION

(v) j-:lyu) -+ P(u), -f(~)= ~c.
(vi) j’:P(U) + P(U), f(A)= @.

12. If j’:D -+ D, then we can also define ~3 = ~ (f2) = ~ ~~ (~ ~~ f) and fq =
.f “ (./’3) = j’ J [~ J (~ ~~ j’)]. Determine ,f3 and j_4 for each of the functions
in Exercise 11.

13. If~:D + D, we define j“, where n is a positive integer, by fl = f, f2 = f J f,
and, in general, j’” = ~ ~~ (f”- 1). For each of the functions in Exercise 11 find
an expression for ~n in terms of n.

14. Let A = {al, a2,. . . . a.} and form the Cartesian product ~ x ~. Define two
projection functions, PI and P2: A x A + A by Pl(ui, aj) = ai and P2(~i, ~j) =
aj. Is either of these functions one-to-one or onto’?

15. Suppose that we define a function b:.4 ~ A x A by b(ai) = (ai, a ~). Then is
b the inverse of either of the projection functions P ~ or P2? 1s either P ~ or
P2 the inverse of b?

16. Show by example that Theorem 9.1 is false if D is not finite.

17. Suppose that j’ and g are functions such that f: D + 7’, g: T + D, a n d
j’ ~~ g = i. Prove that j’ is onto.

18. Suppose that ~: D + T is a one-to-one function and its domain D is tinite.
Then prove that there is a function g that is ~’s inverse.

19. For each of the following, find the inverse off. Let Z stand for the integers,
N the nonnegative integers, R the real numbers, and U = {al, a2, an}.

(i) /’:2 -+ Z,~(x.) = x + 1.

(ii) f:l? – {0} -+ R,./”(x)= ~.

(iii) f: N + R, f(x)= J~.

(iv) f: U + N, f(ai) = i.
(V) f:U + U, f(Ui) = U“-,.

20. Suppose that j’:D + T, where IDI > ITI. Can you conclude any of the follow-
ing? Explain.
(a) There are at least two elements t ~ and t2 of T that are each the image of

two or more domain elements.
(b) Every r in T is the image of at least two domain elements.
(c) There is an element t in T and three distinct elements dl, d2, and d3 in D

such that ,f(dl) = f(d2) = f(d3) = t.

21. Explain why a set of 16 numbers selected from {2,. . . . 50} must contain two
with a common divisor greater than one.

22. Explain why a subset of 51 numbers taken from ~ 1,2,. ... 100} must contain
two numbers. where one is a divisor of the other.

50

2 ARITHMETIC

We have proved the following theorem using the Principle of Induction.

Theorem 4.1. If .4 is a set containing n objects, then ,4 has 2“ subsets.

The proof of Theorem 4.1 suggests an algorithm for listing all subsets of a
given set. Suppose that we want to list all subsets of the set .4 = [al, a2,. . . . t~lo}.
Then the idea is, picking x = Ulo, to list all subsets of B = {Ul, u2,. ~,%] ~nd then
to repeat each subset with element a ~ ~ odded in. How do we get all subsets of B?
We could list all of the subsets of [al.. . . . ~s) and Woit a minute. Let’s W
forward rather than backward. We know that the set {a 1 } has two subsets, the

‘. From these subsets we can get all subsets of {a ~, a2} byempty subset md {a 1,
repeating those just listed and adding U2 to get the additional sets [UZ] and {a 1, a~].
This procedure should sound familiar. Reread algorithm SUBSET in Chapter 1
and see that the algorithm uses exactly this idea of adding in elements ~j to
previously formed subsets.

QUESTION 4.1. A set is said to be even if it has an even number of elements.
Note that the empty set has zero elements and is thus an even set. If .4 is a set
with n elements, guess a formula for the number of even subsets of A. Prove your
formula by induction. (Hint: How many odd subsets does A have’?)

Example 4.2. We now return to the algorithm presented at the beginning of
Section 2 and use induction to prove that the algorithm does compute x“. Here
is the algorithm listed again with a comment between step 5 and step 6. (To avoid
two different uses of the integer n the algorithm now calculates x’.)

Algorithm EXPONENT

S TEP 1. Input x, r [r a natural number]
STEP2. i:=(),ans:=l
S TEP 3. While i < r d o

Begin
S TEP 4. ans : = ans * x
STEP5. i:=i+l
{Comment: Right now ans has the value x’.]
End ~ step 3}

S TEP 6. Output ans and stop.

This example is more complicated than previc)us ones because the proposition
we need to verify, the P., is not explicitly presented. What we will do is use
induction to show that the comment inserted between step 5 and step 6 is true.

Before we do this, note that if the comment is always true, then it will he true
the last time it is encountered. The variable i is assigned the value O at step 2, und

4

\
\

NUMBER THEORY

4:1 GREATEST COMMON DIVISORS

In this chapter seemingly elementary questions from integer arithmetic lead to
surprising and elegant ‘mathematics. We shall look at divisibility properties of
integers, the greatest common divisor of two integers, and the Fibonacci numbers.
These topics have aesthetic appeal and are applicable, as ‘we shall see, in crypto-
graphy.

Here are two problems on which we spent many (dull?) hours in elementary
school. Recall that a fraction a/b is simplified (or reduced) if a. and b have no
common factor greater than 1.

Problem 1. Is the fraction a/b simplified? If not, simplify it.

Problem 2. Compute a/b + c/d and leave the answer simplified.

34567 Add andQuestion 1.1. Simplify, if possible, th: following A, %1, %, S9 i,o I I.
simplify the following $ + ~, * + ~, D + 615.

You might wonder why we did these exercises in elementary school as well
as how we did them. Probably being dutiful and bright students, we just did them.
But why bother? Certainly, calculators remove the need to simplify fractions.

Try an experiment. Add ~ to itseff three times on a calculator. You might get
1 or you might get ,99999999 (depending on your calculator). In either case sub-
tract 1 from your total. Surprisingly enough you won’t get zero (unless your cal-
culator is fancy or broken). There are instances (you will see one in Section 7)

181

4 NUMBER THEORY

when we know quantities to be integers and want to retain the accuracy and
precision of integer arithmetic. Most computer languages give us the option of
exact arithmetic with integers, provided that the integers are not too large.

How did we do Problems 1 and 2? To find the sum of two fractions, most of
US would compute

ad + bc
;+;=

bd

and then simplify this fraction. Both problems require the ability to simplify frac-
tions. As a practical technique, most people would simplify the fraction a/b by
searching for integers that are divisors of both a and b. When such an integer, say
c, is found, they cancel c from both the numerator and the denominator to obtain
the smaller problem of reducing (a/c) /(b/c). This is fine if the numbers a and b
are smail or have common divisors that are easy to find, for instance, if both a
and b are even or both end in O or 5.

A slightly more sophisticated approach is to look for common divisors among
the primes, for if two numbers have a common divisor, then they have a common
prime divisor. An even better description of how to proceed is to find the greatest
common divisor of a and b and then cancel that number. Although this is better
as a description, if the numbers a and b are at ail large, we might be at a loss in
finding the greatest common divisor or, for that matter, any common divisor.

Question 1.2. Find the greatest common divisor of the pairs (a) (65, 130),
(b) (48, 88), and (c) (34567, 89101 1).

In this section we work out a straightforward, although slow, procedure for
finding the greatest common divisor of two integers. A more efficient algorithm
will be presented in a later section.

We begin with some precise definitions pertaining to integer arithmetic. If b
and c are integers, we say that b divides c (b is a divisor of c, and c is a multiple
of b) if c/b is an integer. Then as the name implies, the greatest common divisor
of two positive integers b and c is the largest integer that is a divisor of both b
and c. We denote the greatest common divisor of b and c by gcd (b, c).

Does every pair have a greatest common divisor? Any pair of positive integers
has 1 as a common divisor, and the largest number that could possibly be a
common divisor of b and c is the minimum of b and c. Thus the greatest common
divisor always exists and lies somewhere between 1 and the minimum of b and c.

Question 1.3. Find b and c (with b < c) such that (i) gcd (b, c) = 1, (ii) 1<
gcd (b, c) c b, and (iii) gcd (b, c) = b. Why is it impossible for gcd (b, c) to be larger
than the minimum of b and c?

182

4:1 GREATEST COMMON DIVISORS

Our first gcd algorithm, a brute force search, looks for gcd (b, c) starting with
the largest possibility, the minimum of b and C, and then checks each smaller
integer in turn until a common divisor is found. The first common divisor found
will be the greatest. The algorithm must stop, since 1 is a common divisor.

Algorithm GCD1

STEP 1. Input b, G set g := minimum of b and c
STEP 2. While g >1 do

Begin
STEP 3. If b/g and c/g are both integers, then output g and stop.
STEP4. Setg:=g–1
End

STEP 5. Output gcd = 1 and stop.

Question 1.4. Carry out GCD1 on the pairs (3,4), (3, 12), and (6, 20)

We judge the efficiency of this algorithm by the number of divisions (which
occur only in step 3). The exact number will depend upon b and c, and so we
carry out a worst-case analysis to obtain an upper bound. Our input to GCD 1 is
two integers b and c; suppose that b < c. We measure the size of the input by c
and let the complexity function ~(c) count the maximum number of divisions car-
ried out for any pair of numbers b < c. Two divisions are performed every time
step 3 is encountered. Step 3 will be executed with g = b, then g = (b – 1), then
g = (b – 2), and so on, until g has decreased down to the real gtd. Thus step 3
will happen most often when the gcd is 1. In this event we would encounter step
3 a total of b – 1 times, performing 2(b – 1) divisions. Then

f(C) < 2(b – 1)< 2(c – 1)< 2C so f(c) = o(c).

We see that the number of divisions in GCD1 is linear in the size of the input,
and thus it seems to be an efficient algorithm.

Question 1.5. Find two positive integers b and c such that when GCD1 is applied
to them we find the following.
(a) The number of divisions is exactly 2(b – 1).
(b) The number of divisions is less than 2(b – 1).
(c) The number of divisions is as small as possible.

With GCD1 we can respond precisely to Problems 1 and 2. With a more
efficient gcd algorithm, we could upgrade our responses by replacing GCD 1. Here
is a solution to Problem L

183

4 NUMBER THEORY

Algorithm SIMPLIFY

STEP 1. Input a and b {The fraction a/b is to be simplified.}

STEP 2. Use GCD1 and set g:= gcd (a, b)

STEP 3. Set a’ := a/g and b’ := b/g

STEP 4. Output the fraction a’/b’ and stop.

Question 1.6. Write an algorithm ADDFRACT1 that solves Problem 2. Upon
the input of fractions a/b and c/d, it should calculate their sum and output that
sum as a simplified fraction. You may use the algorithm SIMPLIFY within
ADDFRACT1.

Question 1.7. Count the number of multiplications and divisions performed by
SIMPLIFY and by ADDFRACT1, including those in GCD1.

Previously, we have called linear algorithms fast and claimed that they were
more efficient than, say, quadratic algorithms. Although GCD 1 performs at most
O(c) divisions, it seems slow and inefficient on hand calculations. In fact, it is not
the approach that many humans would take to find the gcd of two integers, and
it doesn’t use any properties of integers that might speed up the process. In the next
sections we shall reexamine the complexit y of GCD 1 and the way we perform com-
plexity analyses. We shall find that GCD 1 is not an efficient algorithm, but we shall
develop a good gcd algorithm, one that performs O(log (c)) divisions in the worst
case upon input of integers b and c with b < c.

EXERCISES FOR SECTION 1

L Simplify the following fractions: (a) ~, (b) %, (c) ~, and (d) ~.

2. Combine the following into one simplified fractiom (a) & – ~ and
(b) & +&.

3. If both a/b and cjd are simplified, is (ad + bc)/(bd) simplified?

4. If a/b is simplified, is a2/b2 simplified?

5. If a2/b2 is simplified, is a/b simplified?

6. Suppose that we find the lowest common denominator of a/b + cjd to be e,
and with this denominator we get a/b + c/d = f/e for some integer f. Is f/e
always a simplified fraction?

7. Trace GCDI on the following pairs: (a) (4, 7), (b) (4, 6), (c) (8, 10), (d) (8, 12),
(e) (15,35), and (j) (18,42).

184

4:1 GREATEST COMMON DIVISORS

8. Algorithm GCD 1 begins with g equal to the minimum of b and c and then
decreases g, searching for a common divisor of b and c. Design an algorithm
that instead begins with g = 1 and then increases g until the gcd is found. How
does the efficiency of this algorithm compare with that of GCD1?

9. Suppose that a, b, and c are three positive integers with a < b < c. We de-
fine gcd (a, b, c) to be the largest integer that divides all three numbers, a, b,
and c. Explain why gcd (a, b, c) < a. Design an algorithm that upon the input
of a, b, and c finds gcd (a, b, c). Find gcd (24, 68, 128), gcd (28,70, 98), and
gcd (1 12,148, 192).

10. Find pairs (b, c) such that when GCD1 is applied, the number of divisions is
exactIy (a) 12, (b) 16, and (c) b/2.

11. Given two integers b and c, the least common multiple of b and c, denoted by
Icm (b, c), is the smallest integer that is a multiple of both b and c. Find a pair
of integers b and c with b < c such that (i) lcm (b, c) = bc and (ii) lcm (b, c) = c.
Then explain why in all cases c < lcm (h, c) < bc.

12. Find the following Icm (2, 3), lcm (3,4), and lcm (6, 8). Then add and simplify
the fractions: $ + ~, ~ + ~, and $ + ~.

13. Calculate the following
(u) gcd(5, 7) and Icm (5, 7).
(b) gcd (4,9) and Icm (4, 9).
(c) gcd (6, 10) and lcm (6, 10).
(d) gcd (6,9) and lcm (6, 9).
(e) gcd (8, 12) and lcm (8, 12).
(~) gcd(5, 10) and lcm(5, 10).

14. Here is a proof that lcm (b, c). gcd (b, c) = bc. Give reasons for each step. {Let
g = gcd (b, c), b’ = b/g, c’ = c/g, and m = lcm (b, c).}
1. be/g is a multiple of b and a multiple of c
2. lcm (b, c) < be/g
3. gcd (b, c) ~ lcm (b, c) < bc
4. be/m divides both b and c
5. gcd (b, c) > be/m
6. gcd (b, c)” Icm (b, c) > bc
7. gcd (b, c) ~ Icm (b, c) = bc.

15. Given the following pairs of integers b and c, find g = gcd (b, c), b’ = b/g, c’ =
c/g, and lcm (b, c). Then check that lcm (b, c) = b’c’g. (a) 3 and 4, (b) 6 and 8,
(c) 4 and 6, (d) 3 and 9, and (e) 8 and 20.

16. Prove that lcm (b, c) = b’c’g, where b’, c’, and g are as defined in Exercise 15.
17. Find pairs (b, c) such that gcd (b, c) equals (a) 3, (b) 8, (c) b/2, (d) b/3, and

(e) V. Find pairs (b, c) such that lcm (b, c) equals (a) 14, (b) 29, (c) 2b, (d) 3b,
and (e) bz.

185

4 NUMBER THEORY

18. What can be said about the relation between gcd (a, b) and gcd (at, bt) where t
is any positive integer?

19. Prove that if a and b are positive integers and x and y are nonzero integers
such that ax + by = 1, then

gcd (a, b) = gcd (a, y) = gcd (x, b) = gcd (x, y) = 1.

Show that exactly one of the numbers x and y must be negative. [We can
define gcd (c, d), where one or both of c and d are negative with exactly the
same definition as for positive integers.]

20. If a, b, x, and y are nonzero integers such that ax + by = 2, is it true that
gcd (a, b) = 2?

21. Prove that if gcd (a, b) = 1 and if c divides b, then gcd (a, c) = 1.

22. Suppose that a = qb + r, where a, b, q, and r are integers. Is it true that
gcd (a, b) = gcd (a, r)? Is gcd (a, r) = gcd (b, r)? Explain your answers.

23. Here is the idea for another algorithm to add the fractions a/b and c/d. Set
g:= gcd (b, d), b’:= b/g, d’ := d/g, and m:= lcm (b, d). First calculate m by
m = bd[g. Then a/b = ad’[m and c/d = cb’/m (Why?) and a/b + c/d =
(ad’ + cb’)/m. Finally, simplify this last fraction. Implement these ideas as an
algorithm ADDFRACT2. How many variables does ADDFRACT2 use?
Count the number of multiplications and divisions performed, including those
of GCD 1.

24. Compare the algorithms ADDFRACT1 and ADDFRACT2 with respect to
number of variables used and number of multiplications and divisions per-
formed. Which uses less space and which is quicker?

4:2 ANOTHER LOOK AT COMPLEXITIES

We want to reexamine the complexity of algorithms, especially those from number
theory. In a formal analysis of an algorithm the size of the input should be mea-
sured by the number of bits (zeros and ones) needed to represent the input. For
number theory algorithms whose input is typicaily one or more positive integers,
the size of the input should be the total number of zeros and ones needed to
represent the input integers in binary notation. As before, we count the number
of time-consuming operations performed in the worst case of the algorithm (usually
multiplications and divisions for number theory algorithms) and express the result-
ing upper bound as a function of the number of input bits. In this section we
discuss the effects of this change of perspective on complexity analysis.

186

4:2 ANOTHER LOOK AT COMPLEXITIES

Why the change? There is a certain (bureaucratic-style) inefficiency built into
our previous approach to the analysis of algorithms. We measured how efficient
an algorithm was by estimating the number of steps it required as a function of
the input size. The problem with this is that if we are careless about measuring
the size of the input, that is, if we let it be artificially large, then the algorithm
might appear to take a correspondingly small number of steps. This is just what
happened in our study of GCD1 and the exponentiation algorithms of Chapter 2.
Measuring input size in terms of bits leads to complexities that reflect actual
running times.

Changing the input measure, to bit size, is not hard. Suppose that an integer
n is the input to an algorithm. As we saw in Section 2.6 the number of bits needed
to represent n is precisely

B = Llog(n)j + 1.

This formula gives the translation from n to B, and it implies the following useful
relationships.

log (n) < B < log(n)+ 1

<2 log(n) for n >2. (1)

Example 2.1. Suppose that algorithm A performs at most Clog(n) time-consum-
ing operations upon input of an integer n for some constant C. Then what can
be said about the complexity function as a function of B, the number of bits needed
to represent n? By (1)

Clog (n) < CB = O(B).

Thus in terms of the variable B, the number of time-consuming operations is a
linear function.

Look back in Section 2.6 at the complexity analysis of FASTEXP. There we
found that no more than 3 log(n) + 3 multiplications and divisions are needed to
compute x“. Using (1), we see that

310g(n)+3 <3B+3 = O(B).

In terms of input bits FASTEXP is a linear algorithm and so deserving of its name.

Question 2.1. Suppose that algorithms R, S, and T each have an integer n as
input, and their complexity functions are, respectively, (log (n))2, log (n2), and
log (log (n)). Find an upper bound on their complexity functions in terms of B, the
number of bits needed to represent n.

187

4 NUMBER THEORY

Example 2.2. Suppose that algorithm A performs at most C n time-consuming
operations upon input of an integer n for some constant C. Then what can be said
about the complexity function as a function of B, the number of bits needed to
represent n?

C n = C 210g ‘n) by properties of log

<C2B using (1)

= 0(29.

Thus in terms of the variable B, the number of time-consuming operations is big
oh of an exponential function. Furthermore, if there are instances when .4’ uses
all C n operations, then

C n = C 2i0g ‘n) by properties of log

> c 2@/2) using (1)

= C(J)B

> C(l.414)J3.

Thus A’ is an exponential algorithm.

The analysis in Example 2.2 shows why both the algorithms GCD 1 and
EXPONENT of Chapter 2 are bad algorithms. Since GCD1 has integers b and c
input, the number of bits needed to express b and c in binary is given by

log (c) < B = Llog (b)] + 1 + Llog(c)] + 1

<2 log (b) + 2 log (C) forb>2

<4 log (c). (2)

We know that GCD1 performs at most 2C divisions. From Example 2.2 we know
that 2C < 2(2B), giving an exponential upper bound. In addition, when b = c – 1,
gcd (b, c) = 1 (see Exercise 2). In that case GCD1 performs exactly 2(b – 1)= 2C – 4
divisions.

2C – 4 = 2(21”g@) – 4 by properties of log

> 2(2@/4) – 2) from (2)
~ 2(2(W – I)) when B z 8
—— 2(*/A)

= (2(1/A))~

> (1.189)B.

188

4:2 ANOTHER LOOK AT COMPLEXITIES

Thus in the worst case GCD1 performs an exponential number of divisions in
terms of the input bit size.

Question 2.2. In Section 2.5 it was observed that EXPONENT always performs
n multiplications. If B is the number of bits needed to represent n in binary, explain
why EXPONENT is an exponential algorithm.

Since GCD 1 is now recognized to be bad, it is clear why we continue to
search for a faster algorithm. From now on we shall measure the input size by
the number of bits needed. This approach is standard in the study of algorithms
using Turing Machines.

EXERCISES FOR SECTION 2

1.

2.

3.

4.

Comment on the following statement: “Most of the time Llog(n)j =
[log(n)l -1.”

Explain why gcd (c – 1, c) = 1 for all integers c > 1.

Let B = Llog (n)j + 1. For each function ~ listed in the table find the smallest
function g such that f(n) < g(n).

f(n) g(B)

210g(n) – n

&m)
$&?))’ + 2 log(n)+ 1

Jog (.)

Jn
3n+3
n log(n)
n 2

n3—n
2“

@
B
2B
B2
10B2

&B
2B

2(B+3)

B(2B)
22B
~B

~B

2(B2)

2(2B)

Let the input to algorithm A be an integer n. Thus the number of bits needed
is B = Llog(n)J + 1. Suppose that the complexity function for algorithm A is
a(n) = g(B).

189

4 NUMBER THEORY

(a) Show that if g(B)= O(p(B)), then a(n)= O(p(n)).
(b) Show that if a(n) # O(p(n)) for any polynomial p, then g(l?) # O(q(B)) for any

polynomial q.
(c) If a(n)= O(p(n)) for some polynomial p, is it true that g(n) = O(q(B)) for some

polynomial q?

5. In the algorithms SUBSET, JSET, and PERM we measured the input by the
integer variable n. If we translate now to the number of bits input, B =
Llog(n)j + 1, do these algorithms remain exponential in the variable B using
the worst-case analysis? (See Exercise 4.)

6. Suppose that the input to an algorithm A is an integer n and suppose the size
of the input is measured by the number of decimal digits needed to express n.
Would this change of measure of input size change whether or not A is a good
algorithm?

4:3 THE EUCLIDEAN ALGORITHM

We have developed the simplistic (but bad) algorithm GCD1 to determine gcd (b, c).
Fortunately, there is a much more efficient algorithm that appeared in 300 B.C. in
Euclid’s Elements. This Euclidean algorithm is probably the oldest algorithm still
in use today. The Babylonians wrote down some precise arithmetic procedures
about 1500 years before Euclid, but these have all been replaced by more efficient
methods. The amazing fact about the Euclidean algorithm is that, except for
minor variations, it is the best (most efficient) aigorithm for calculating the greatest
common divisor of two integers. In this section we’ll learn the algorithm and in
subsequent sections the mathematics needed to determine its complexity.

Here is the idea behind the aigorithm. Suppose that we are given positive
integers b < c and want to calculate gcd (b, c). If d divides both b and c [i.e., d is
a candidate for gcd (b, c)], then d divides c – b. Indeed if d divides c – b and b,
then it divides c also. What is the advantage of working with b and c – b instead
of b and c? Very simply, c – b is smaller than c.

Question 3.1. Find gcd (18, 30), gcd (18, 48), and gcd (18, 66).

If c – b is better than c, then c – 2b should be better still. While we’re at it, there
is c – 3b, c – 4b, and so on, to consider. Indeed why not subtract off as many bs
as possible subject to the condition that the remaining value is not negative?

Question 3.2. For each pair (b, c), find the maximum integer q such that c – qb >0.
(a) (24, 36), (b) (36, 120), and (c) (34, 170).

This question illustrates the general rule that the right number of bs to sub-
tract from c is the floor function of the quotient c/b. Thus we divide c by b to

190

4:3 THE EUCLIDEAN ALGORITHM

obtain an integer quotient ql and a remainder rl, where

11

c
91= ; and

i
=91+;.

We rewrite the previous equation in the form

c = qlb + r l, (A)

and note that the remainder r ~ must satisfy O < rl < b. We call ql the quotient
and r ~ the remainder of the division c/b.

Here is an important fact about the numbers in (A).

Lemma 3.1. If b, c, q, and r are integers such that c = @ + r, then gcd (b, c) =
gcd (b, r).

Proof. Since an integer that divides b and c also divides b and r, gcd (b, c) divides
both b and r and so is at most gcd (b, r). Thus

gcd (b, c) < gcd (b, r).

An integer that divides b and r also divides c. Thus

gcd (b, r) < gcd (b, c),

and the lemma follows. c1

Applying the lemma to line (A) @ves gcd (b, c) = gcd (rl, b).

Question 3.3. For each of the following pairs of numbers, determine q ~ and rl.
Check that (A) holds and that O < rl < b. Finally, compute gcd (b, c) and gcd (rl, b).
(a) (3, 12), (b) (13, 121), (c) (233, 377), and (d) (34567, 891011).

Notice that if in (A) rl = O, then c = qlb and gcd (b, c) = b. But if rl >0, then
we don’t have the gcd at our fingertips and consequently must do more work.
The problem is simpler now because we have smaller numbers. This technique of
replacing c by a smaller number, the remainder, worked once. Let’s do it again.
Thus we divide b by rl, a number smaller than b, to obtain a new integer quotient
qz and a new remainder rz:

b = q2rl + rz with O < r2 < rl.

191

4 NUMBER THEORY

If rz = O, then rl divides b and so rl = gcd (rl, b) = gcd (b, C) by Lemma 3.1. More
generally (even when r2 # O), we have by Lemma 3.1 that

gcd (b, c) = gcd (rl, b) = gcd(rz, rl).

Next we divide rl by rz, then i-z by r~, and keep dividing each remainder by the
next until we reach a remainder of zero. Here is the sequence of divisions spelled
out precisely; for future reference we call these the Euclidean equations. Note that
every variable assumes only integer values.

The Euclidean Equations

c=qlb+rl with O<rl<b

b = qzrl + rz with O < r2 < rl

rl = q3r2 + r3 with O < r3 < r2

. . .

ri_2 ‘qiri–~ +ri with O<ri<ri–l
. . .

r~-~ ‘q~-~r~_z +rk_~ with O < rk-~ < rk_~

rk–z ‘q#k_~ +0 with rk = O.

The claim made by Euclid is that rk _ ~, the last nonzero remainder, equals
gcd @, c). Before we verify this, how do we know that this algorithm stops? That is,
how do we know that eventually we shall find a remainder of zero? Notice that
the remainders satisfy

b>rl>r2> r3>”. >ri_l>ri> .“>r k-l,

and all the remainders are nonnegative integers. Eventually, a remainder must
equal zero, certainly after no more than b remainders.

Example 3.1. Let’s carry out the Euclidean algorithm on the numbers 26 and 32:

32=1.26+6

26=4.6+2

6=3” 2+0.

We know that gcd (26, 32)= 2, the last nonzero remainder.

192

4:3 THE EUCLIDEAN ALGORITHM

Next we try 233 and 377:

377 = 1 “ 233 + 144

233=1.144+89

144=1.89+55

89=1” 55+34

55=1” 34+21

34=1” 21+13

21=113+8

13=18+5

8=1” 5+3

5=1” 3+2

3=1”2+1

2=2” 1+0

(That took a while!) This calculation implies that gcd (233, 377)= 1. To check this,
note that 233 is a prime while 377 = 13.29.

Question 3.4. Use the Euclidean algorithm to calculate the following (a)
gcd (12, 20), (b) gcd (5, 15), (c) gcd (377,610), and (d) gcd (34567,89101 1). Check
that the gcd divides each remainder in the Euclidean equations. In each instance
count the number of divisions needed to find the gtd.

In our development of the Euclidean algorithm the concurrent explanation
can readily be turned into a proof that the algorithm is correct. We now give such
a proof.

Theorem 3.2. Given positive integers b and c, the last nonzero remainder pro-
duced by the Euclidean algorithm equals gcd (b, c).

Proof. Suppose that b and c produce the Euclidean equations as listed above.
We must prove that rk - ~ = gcd (b, c). The last equation tells us that rk - ~ is a
divisor of rk _ ~, since rk _ Jrk - ~ is the integer qk. Thus

rk_l = gcd(rk-z,rk–~). (B)

Applying Lemma 3.1 to the next to last equation, we get

gcd(rk_~,rk–~)= gcd(rk-~,rk-1) = rk-1 by (B).

193

4 NUMBER THEORY

Continuing and repeatedly applying Lemma 3.1, we get

gcd (b, C) = gcd (b, rl)

= gcd (rl , rJ

= gcd(rz, r3)
. . .

= gcd(rk-2, rk_J

= rk_l by (B). ❑

Corollary 3.3. If g = gcd (b, c), then there are integers x and y such that g =
xb + YC.

Proof. Look at the Euclidean equations. Notice that rl can be expressed as
rl = c — qlb. If g = rl, then we have demonstrated this result. If not, we can use
the second Euclidean equation to express

r2 = b — q2r1

= b – q2(c – qlb) by substitution

=(1 + ~lgJb – qzc simplifying and factoring.

We continue this process until we reach

g=rk_l= rk_3–qk_1rk_2

and can substitute in expressions for rk _ ~ and rk _ ~ found earlier, to express
g = rk _ ~ in the form xb + yc. ❑

We say that the resulting equation expresses the gcd as a Iinear combination
of b and c. This result will be useful in Section 7; other applications are explored
in the exercises.

Example 3.1 (continued). We found that gcd (26, 32) = 2. Now we use the
Euclidean equations to express 2 as a linear combination of 26 and 32. From
the first Euclidean equation we have

6=1”32– 1.26.

From the second equation

2=1”26–4”6.

194

4:3 THE EUCLIDEAN ALGORITHM

We substitute the first equation into the second to get

2=1.26 –4(1”32– 126)= 5” 26-4 32.

The same procedure applied to 233 and 377 yields

1 =(–144)” 233 + 89.377,

but we spare you the 11 equations needed to derive this. Notice that once derived,
it is easy to check that the values of x and y work.

Now we write the Euclidean algorithm in pseudocode. Note that the Euclidean
equations all are in the same form.

Algorithm EUCLID

STEP1. Input band c{O<b<c}; set r:= b
STEP 2. While r >0 do

Begin
STEP 3. Set q : = Lc/bJ
STEP4. Setr:=c–q*b
STEP 5. If r = O, then output gcd = b

else
setc:=bandb:=r

End {step 2}
STEP 6. Stop.

Question 3.5. Run EUCLID on the following pairs of integers and express the
gcd as a linear combination of the pair of numbers. (a) (6,20), (b) (3, 4), and
(C) (55, 89).

What can we say about the complexity of EUCLID? We begin as we did
with GCD1. Let e(c) count the maximum number of divisions and multiplica-
tions performed in the algorithm upon input of numbers b < c. Not surprisingly,
there are lots of these operations. One division occurs in step 3 and one multiplica-
tion in step 4. Every time we execute step 3 we immediately execute step 4. Thus
e(c) = 2m, where m is the number of times that step 3 is executed. Another way
to count this is to notice that e(c) equals twice the number of Euclidean equations
needed to caicuiate gcd @, c). This is so, since we do one division to get the quotient
and one multiplication to get the remainder in each new equation.

Thus e(c) = 2k, where k is the number of Euclidean equations used upon the
pair b and c. We search for an upper bound on k that will give us an upper bound
on e(c). Since the remainders in the equations decrease, we know that in the
worst case we can have no more than b equations. For this to occur, the remainders

195

4 NUMBER THEORY

must be precisely (b – 1), @ – 2),. . . . 1, and O. Then

e(c) < 2b < 2C = O(c),

a complexity result no better than that of GCD 1.
We shall see in the next sections that the remainders cannot behave in such

a perverse manner and that EUCLID is considerably more efficient than GCD 1.
In fact, we shall see that as a function of the size of the bit input, EUCLID is a
linear algorithm.

EXERCISES FOR SECTION 3

1. Use EUCLID to find the gcd of the following pairs: (a) (10, 14), (b) (14, 35),
(c) (24, 42), (d) (128, 232), (e) (98, 210).

2. For each of the pairs in Exercise 1, express the greatest common divisor as a
linear combination of the given numbers.

3. Suppose that you EUCLID the pair (b, c) and then the pair (tb, m) for some
integer constant t. What is the relationship between the two sets of Euclidean
equations? What is the relationship between the pairs of integers x and y that
express b and c and tb and tc as linear combinations of their gcd’s?

4. Suppose that u = bc + d. Which of the following are true and which false?
Explain.

(i) If e divides a and b, then e divides d.
(ii) If e divides a and c, then e divides d.

(iii) If e divides a and d, then e divides b.
(iv) If e divides c and d, then e divides a.
(v) If e divides b and d, then e divides a.

(vi) If e divides b and c, then e divides a.
(vii) gcd (a, c) = gcd (c, d).

(viii) gcd (a, c) = gcd (b, d).
(ix) gcd(a, b) = gcd (b, d).
(X) gcd(a, C) = gcd(b, C) .

5. Find a number c such that with b = 3< c, the remainders in the Euclidean
equations are precisely the numbers 2, 1, and O. Is there a number c such that
with b = 4< c the remainders are (all) the numbers 3, 2, 1, and O? Can you
find a pair of numbers b and c with 4< b < c such that the remainders in the
Euclidean algorithm are all the numbers (b – 1), (b – 2),. .. ,1, and O?

6. Suppose that d divides b and c – sb, wheres is an integer such that c – sb <0.
Is it still true that d divides c?

7. What is the maximum number of Euclidean equations you can have if (a) b =
4, (b) b = 5, and (c) b = 6?

196

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

4:4 FIBONACCI NUMBERS

What is the maximum number of Euclidean equations you can have if (a) c = 7,
(b) c =9, and (c)c= 10?

Rewrite the Euclidean algorithm so that all qs and rs are stored in arrays
as they are calculated. Then extend this algorithm so that it also calculates x
and y such that g = xb + yc.

Construct a modified Euclidean algorithm incorporating the following idea.
Given the Euclidean equation c = qb + r, if r < b/2, set c: = b – r and b:= r.
Otherwise, set c:= r and b : = b – r. Show that the gcd of the new b and c is
equal to the gcd of the old b and c. Call the resulting algorithm MODEUCLID.

Use MODEUCLID to find the gcd of the following pairs: (a) (42, 136),
(b) (18, 324), (c) (148,268), (d) (233, 377), and (e) (324,432).

Discuss the efficiency of MODEUCLID.

For each pair (b, c) below characterize IC(b, c), the set of integer combinations
of b and c, defined by

IC(b, c) = {mb + nc: m, n are integers}.

In each case determine the smallest positive integer in lC(b, c). [Note that in
the definition of IC(b, c) m and n do not have to be positive integers.]
(a) (2, 4) (b) (6, 8) (C) (6, 9) (d) (12, 15)
(e) (9, 14) (f) (59 7) (g) (13, 18) (h) (21, 54).

What is the relationship between the Euclidean equations with input (b, c) and
those with input (c – b, c)?

Prove that given integers b and c, there are integers x and y such that 1 =
xb + yc if and only if gcd (b, c) = 1.

Find integers a and b such that gcd (a, b) = 3. Then explain why for these
values of a and b there are no integers x and y such that 2 = ax + by. Com-
ment on the following statement: “If h # gcd (a, b), then there are no integers x
and y such that h = ax + by.”

Is the following true or false? Given integers b and c, there are integers x and
y such that d = xb + yc if and only if gcd (b, c) = d. Explain your answer.

Write a formal induction proof of Corollary 3.3.

4:4 FIBONACCI NUMBERS

We digress to a seemingly unrelated topic, the Fibonacci numbers, because the
mathematics associated with them is interesting and because (surprisingly) they
are intimately related with the complexity analysis of the Euclidean algorithm.

197

4 NUMBER THEORY

Here are the first 16 Fibonacci numbers:

0 1 1 2 3 5 8 1 3 2 1 3 4 5 5 8 9 1 4 4 2 3 3 3 7 7 6 1 0 .

The convention is to start numbering at zero, so that we have listed the Oth, the
Ist, ..., and the 15th Fibonacci number. We denote the nth Fibonacci number by
Fn for each nonnegative integer n.

Question 4.1. Compute F.-l + F.-2 for n = 2, 3,4, 5, 6, 11, and 13.

Your answer to the previous question should suggest that there is an easy method
for obtaining the Fibonacci numbers. First, F. = O, F1 = 1, and then for all n >2,

In fact, this is an inductive sort of a definition. Once you know the two base cases,
F. and Fl, then you can find all the others, one at a time, by adding successive
values.

Question 4.2. Calculate FI~,FI~,F18, F19, and F20. Then compare F“ with 2“.
Which seems to be (or is) larger? I

Since the nth Fibonacci number is defined in terms of smaller Fibonacci num-
bers, it is natural to try to build proofs about these numbers using induction.
However, the nth Fibonacci number is not defined solely in terms of its immediate
predecessor, but rather in terms of two predecessors. Consequently, we need a
strengthening of our induction machine.

Mathematical Induction Revisited. First we repeat the form of induction that we
have used so far.

Algorithm INDUCTION

STEP 1. Verify the base case.

STEP 2. Assume that Pk is true for an arbitrary value of k.

STEP 3. Verify that P~ + ~ is true, using the assumption that Pk is true.

Sometimes the truth of P~ + ~ depends on the truth of more than one of the pre-
ceding Pj’s or depends on the truth of Pj, where j < k. There is still hope for the
method of induction if we use the following principle, which is known as Complete
Induction.

198

4:4 FIBONACCI NUMBERS

The Principle of Complete Induction. Suppose that Pn is a proposition that de-
pends upon the positive integer n. Then Pn is true for all n > N, (where N is some
fixed integer) provided that

(i) P~ is true,
and

(ii) if P~, P~+l,. ... and P~ are all true, then so is P~ + ~.

There are two changes here. First we’ve introduced an unspecified constant
N. In the original version of induction we always mentioned the base case PI
although we admitted that the base case might start off at Po. Lemma 7.1 from
Chapter 2 was only true for n > 5; we used this to show that J is bigger than
log (n) if n is bigger than 64. For situations like this we would like to have the
flexibility to begin proofs by induction at different starting points. The variable
N allows us this flexibility and tells us what the starting point for the proposition
P. should be. It also tells us the first value of n for which we should check the
base case, namely n = N.

The second difference between induction and complete induction is in the
inductive hypothesis. In this second version we assume that PN, P~ + ~,. . ., and P~
are all true. Since we assume more, it should be easier to use this form.

Question 4.3. Look back at the informal explanation of the Principle of Induc-
tion in Section 2.3. Write out a similar argument to explain why the Principle of
Complete Induction is valid.

Here is the algorithmic version of complete induction.

Algorithm INDUCTION

STEP 1. (The base cases). Verify that P~, P~ + ~,. . . . l’N + j are valid for some
constants N and j (depending upon the problem).

SmP 2. (The inductive hypothesis). Assume that PN, P~ + ~,. . . . and P~ are
all true for an arbitrary value of k.

SmP 3. (The inductive step). Verify that P~ + ~ is true, using the inductive
hypothesis.

There is one more change, introduced in this algorithm, namely the constant
j in Step 1. At times we shall need to check more than one base case, depending
on the proof we construct, to show that pk + ~ is true. The value of j depends upon
the number of P~,P~+ ~,. . . . P~ that we refer back to in our verification of l’k + ~.

199

4 NUMBER THEORY

We shall point out explicitly the values of j in each case, but as a rule of thumb
you should get in the habit of checking at least two base cases.

Here is an initial example of the use of complete induction.

Example 4.1. Theorem. Every integer n >1 has a prime divisor.

Proof. The statement gives the starting point of the proposition N = 2. This
statement is true for n = 2, since 2 is a prime number and divides itself. Similarly,
the statement is valid for n = 3, since 3 is a prime. We check that it is also true
fern =4=22.

The inductive hypothesis tells us to assume the truth of the statement for
n = 2,3, ..., k, for some arbitrary value of k. To accomplish the inductive step, we
must prove the result that the integer (k + 1) has a prime divisor. Now either
(k + 1) is a prime or it isn’t. If (k + 1) is a prime, then it has itself as a prime divi-
sor. If (k + 1) is not a prime, then k + 1 = bc, where b and c satisfy 1< b < (k + 1)
and 1 < c < (k + 1). Consider b. By the inductive hypothesis, since 1< b < (k + 1),
we may assume that b has a prime divisor, say p. Then

k+l bc ~c== .
PPP

We see that (k + 1)/p is an integer, since it is expressed as the product of two
integers. This means that p is a divisor of (k + 1) and so (k + 1) has a prime divisor,
namely p. ❑

Note that we could not have used the standard form of induction in this
problem because the truth of the assertion P~ + ~ depends not on the truth of Pk,
but on the truth of Pb, where b is less than k. Since our proof depends upon only
one earlier case, P~ with 1 < b < (k + 1), our base case needed only one value,
namely N = 2 and j = O, although to get a feel for the problem we checked three
base cases.

We now use complete induction to establish some facts about the Fibonacci
numbers.

Example 4.2. From the examples calculated in Question 4.2, the following was
observed. Theorem. F. < 2“.

We prove this for all nonnegative integers n using complete induction. For the
base cases we notice that F. = O <1 = 2°, and that F1 = 1<2 = 21. We require
base cases with two consecutive integers because in our proof we use the fact that
F~ + ~ can be written in terms of its two immediate predecessors. (Thus j = 1 in
this example). We shall use complete induction and so assume that Fi < 2i for all

k + I But we know exactly what ‘k+ 10 s i < k. Then we must prove that Fk+ ~ <2 .

200

4:4 FIBONACCI NUMBERS

equals:

F~+~=F~+F~.~ by definition

<2k+2k-1 by the inductive hypothesis
. 2k-1. .2+2k-l by algebra
=Zk-l.(z+l) by factoring

<2k-14 since (2 + 1) <4
—— .2k-l. z2

=Zk+l by laws of exponents. ❑

Example 4.2 might cause us to ask whether F. = O(p) for some polynomial ~
however, this is not the case. The result of the next question shows that the Fibonacci
numbers grow exponentially.

Question 4.4. Find an integer N such that F~ > (~)N. Prove by induction that
F. > ($)” for all n > N.

Before we do more magic, rabbit-out-of-the-hat tricks with the Fibonacci
numbers, let’s learn where they come from and why. The Fibonacci numbers first
appeared in the book Liber Abaci published in 1202 by Leonardo of Piss (also
known as Leonardo Fibonacci, since he was the son of Bonacci). Although Leo-
nardo was mainly interested in their mathematical properties, he also noted the
following application.

Example 4.3. A pair of rabbits requires one month to mature to the age when
it can reproduce. Suppose that the rabbits then mate and produce another pair
in every subsequent month, and that the pair of offspring is always conveniently
one male and one female, who then form a new breeding pair. If in the first month
we have one pair of rabbits, how many pairs do we have at the beginning of the
nth month? For simplicity, we assume no death or loss of fertility. We call the
resulting number R..

At the beginning of the first month we have one pair, so RI = 1. At the
beginning of the second month we still have one pair, but during the second month
they produce a pair of bunnies. Thus Rz = 1 and R3 = 2. During the third month
the original pair produces another pair of bunnies, but the new pair of bunnies
doesn’t reproduce yet. So R4 = 3. Then R5 = 5.

We might as well argue the general case That is, let’s determine R. in terms
of previous values of R. At the beginning of the nth month we have all the rabbit
pairs that we had at the beginning of the (n – l)st month, R.-~, plus some new
bunny pairs. The number of new bunny pairs is the number of rabbit pairs that
are at least one month old. The rabbit pairs that are this old are precisely those

201

4 NUMBER THEORY

that were around in the (n – 2)nd month, R._ ~. In symbols then

Now we see that the R. are exactly the same as the Fibonacci numbers and that
R. = F. for all positive n.

Fibonacci numbers arise in other natural settings. For example, the spacing
of leaves on some plants and some arrangements of flower petals and seeds are
closely related to the Fibonacci numbers. Mollusk shells spiral in curves derived
from Fibonacci numbers. Ratios of successive Fibonacci numbers, like ~, ~, and
& are considered aesthetically pleasing. The squares in Figure 4.1 each have sides
equal to a Fibonacci number. They combine to make rectangles with sides in
ratios of 34 to 21, 21 to 13, 13 to 8, 8 to 5, 5 to 3, 3 to 2, and 2 to 1.

In fact, for large values of n, F./Fn _ ~ gets arbitrarily close to a constant

~=l+fi
2 ’

known as the golden ratio; @ is approximately equal to 1.618. The Fibonacci
numbers are even thought to be useful in predicting highs and lows on the stock
market. These numbers have so many interesting and varied properties that there
is a mathematics research journal, the Fdxmacci Quarterly, dedicated to results—
about Fibonacci numbers.

Fibonacci Squares

5

8

lJ_
3 2

21

13

34

Figure 4.1.

202

4:4 FIBONACCI NUMBERS

The defining property is useful for proving results about Fibonacci numbers
by induction. But one thing seems missing from our knowledge. Is there a formula
for F.? Or to calculate, say, F1 ~ must we determine all the smaller Fibonacci num-
bers? Yes and maybe no, respectively. We shall write down a formula for F., but
we stress that in most situations the inductive definition that F. = F.-~ + F._ ~
is the most helpful fact to know. In Chapter 7 we shall do a more systematic study
of sequences of numbers and their formulas.

Question 4.5. Show that ~ = (1 + ~)/2 has the property that its reciprocal is itself
minus one. Find all solutions to the equation x – 1 = l/x.

The two solutions to the equation in Question 4.5 are @ = (1 + ~)/2 and the
closely related @’ = (1 – &)/2. These can be found by rewriting x — 1 = I/x as
x’ - x — 1 = O and then solving using the quadratic formula. The relationship
between @ and ~’ and the Fibonacci numbers is given in our next result.

Theorem 4.1. For nonnegative integers n, F.= (~” – @’n)/$.

ProoJ The proof will be by complete induction. First we check the base cases.
As above we need to verify the truth of the theorem for two consecutive integers,
since we shall use the crucial fact that F~ + ~ = Fk + Fk _ ~. First we substitute
n = O, to obtain

4°-@O=l-l=o=F
$ 3 0“

Next, for n = 1 we get

q5’-@’=(l +ti)/2-(l -fi)/2=1=F

& 8
1.

Using complete induction, we assume that the given formula is correct for Fo, Fl,
. . . . Fk _ ~ and Fk. We IIIUSt prove that the fOHINda k correct for Fk + ~. we write
‘k+ I using smaller values:

Fk+l=Fk+Fk_l

=~k–$’k+~k-’_ #k-’

$ &

= f#-1(~ + 1) @’k-l (#’ + 1)

d-a”

203

4 NUMBER THEORY

Since @ is a root of the equation X2 —x–l=O, wegetq52 =@+ l. Simi-
Iarly, ~’2 = @ + 1. We substitute these into the equation above to get

and that’s exactly what we wanted to show.

Question 4.6. Check the formula for F2 given in Theorem 4.1.

Corollary 4.2. F. is approximately equal to @n/fi. Specifically,

$ -1< F”<5+1
Proof We begin by noting that ~’ is approximately equal to – 0.618. What we
need is not its exact value but the fact that its absolute value is less than 1. Con-
sequently, & will be less than 1 in absolute value for all positive integers n and

0’”/$ will be less than 1 in absolute value for all nonnegative integers n. Thus

The other inequality is proved similarly; see Exercise 17.
We now have two ways to calculate F. for any fixed n. One involves many

additions:

F2=F1+FO=1+O=1

F3=F~+F1=l+l=2
. . .

F“=Fn_l +F. -2.

Thus F. could be calculated with (n – ,1) additions.

Question 4.7. To calculate F. by adding as shown above appears to require that
we store all of FO, Fl,. . . . F._ ~. Is it possible to calculate F. by addition without
storing all the previous values in n different memory locations? What is the mini-
mum number of memory locations that you need to calculate F. in this way?

204

4:4 FIBONACCI NUMBERS

The second way we now have to calculate F. is using the formula proved in
Theorem 4.1. This requires two exponentiations, one division and one subtraction
as well as an approximation of the square root of 5. There are a variety of addi-
tional methods known for calculating F., including an addition method that is
analogous to the FASTEXP algorithm developed in Chapter 2, that is, one that
does not require the determination of ail intermediate Fibonacci numbers. (See
Exercises 13 and 14.)

For years applications of Fibonacci numbers have been found throughout
mathematics. For example, a very famous open problem posed by David Hilbert
in 1900, known as Hilbert’s tenth problem, was finally solved in 1970 when the
mathematicians Martin Davis, Yuri Matiasevic, Hilary Putnam, and Julia Robin-
son thought to examine the Fibonacci numbers carefully. Applications of Fibonacci
numbers are also pervasive in computer science. Efficient ways to approximate the
local maximum and the local minimum of a function or to merge files can use
Fibonacci numbers. In Chapter 8 we shall study problems concerning shortest
paths. Recent results have shown “Fibonacci heaps” and “Fibonacci trees” (what-
ever they are!) to be crucial in developing fast algorithms to solve these problems.

Our interest is to turn now to the complexity analysis of the Euclidean algo-
rithm, where we shall encounter Fibonacci numbers.

EXERCISES FOR SECTION 4

1. Find a sequence of numbers G, that satisfies the equation G. = G._ ~ + Gn

. ~
for all n but differs from the sequence of Fibonacci numbers.

2. Let HO = Oand Hl = l.Fern >1 define H. byH. = H.-l + 2Hn-’2. List the
first 11 terms of the H sequence. What happens to the quotient HJH. - ~ as
n gets big? Prove that Hn = [2” + (– 1)”- lj/3.

3. Show that Fl+F2+”””+F”=F. +2 –1.

4. Show that F1 +F3 +“. ” +F2n_1 =Fz..

5. Show that FO+F2+’ .”+ F2. =F2”+l –1.

6. Show that every positive integer can be written as the sum of distinct, positive
Fibonacci numbers. Is the choice of numbers for a given sum unique?

7. Suppose that GO = O, GI = 1, and for all n >2, G. = 2GH_ ~ + G._z. Find
G2, G3,. . . . G8. Determine which of the following assertions are true.
(a) G.= 0(n2).
(b) G“ > 2“- 1 if n is large enough.
(c) G.< 3“ if n is large enough.
(d) Gn is even if and only if n is even.

8. Knowing FO and Fl, one might believe for consistency’s sake that F- ~ should
be that number with the property that F_ ~ + F. = F1. Since FO = O and

205

4 NUMBER THEORY

F’l = 1, I’_l ought to equal 1. Determine F_2, F_3,. . . ,F_7. What is F_.
in terms of F.?

9. Show that F.+ ~Fn_ ~ – F; = (– 1)”.

10. Show that F1F2 + F2F3 + “ ~ . + F2n_1F2. = Fin.

11. Show that F1F2 + F2F3 + “ “ “ + F2.F2.+1 = F~n+l – 1.

12. Find all natural numbers n such that F. = n. Prove that you have found all
such numbers.

13. (a) Show that F2. = Fn(FH + 2F, _ J.
(b) Find a similar formula for Fzn + ~ in terms of Fn + ~ and smaller Fibonacci

numbers.

14. Using the results of Exercise 13, design an algorithm to determine Fn. Then
count the number of multiplications and additions needed in this approach
and compare with those discussed at the end of this section.

15. In Example 4.2 and Question 4.4, induction was used to show that (~~ <
F“ < 2“ provided that n is large enough.
(a) Find a number b <2 so that a similar argument will show that F. < b“

provided that n is large enough. What is the smallest b your argument
will support?

(h) Find a number c > ~ so that Cn <F. provided that n is large enough.
What is the largest c your argument will support?

16. Are the following equations true or false?

F“ = rqb”/~1.

F. = LqY’/fiJ.

17. Finish the proof of Corollary 4.2 by showing that F. > @/~ – 1.

18. Find all pairs of numbers (x, y) such that x + y = 1 and xy = – 1.

4:5 THE COMPLEXITY OF THE
EUCLIDEAN ALGORITHM

The question before us is to determine the complexity of the Euclidean algorithm
when, given b < c, it computes gcd (b, c). To begin with, we let e(c) denote the max-
imum number of multiplications and divisions performed in EUCLID when c is
the larger of the two input integers. Later we shall convert e(c) to a function of
the number of bits needed to represent b and c in binary. We shall show that
e(c) = O(log (c)); that is, for all pairs of integers b < c, the Euclidean algorithm
requires at most O(log (c)) divisions and multiplications. Consequently, if B denotes

206

4:5 THE COMPLEXITY OF THE EUCLIDEAN ALGORITHM

the number of bits of input needed to encode the integers b and c, then EUCLID
will be linear in B.

Look back in Section 3 and notice that we determined that e(c) = 2k, where
k is the number of Euclidean equations produced by b and c. Thus we shall search
for an upper bound fork in terms of b and c. Before we find such an upper bound,
we investigate some pairs for which EUCLID seems to take a long time. Example
3.1, Question 3.4, and some of the exercises point toward the Fibonacci numbers.
So let’s see what happens if we let b and c be consecutive Fibonacci numbers.

Lemma 5.1. In the Euclidean equations if c = Fn and b = Fu _ ~ with n 24, then
rl =F”_2.

Proof. The defining relation for the nth Fibonacci number is

Since O s F._ ~ < F.-~ for n >4, this gives the first Euclidean equation with
ql = 1. Thus rl = F,_z. ❑

Theorem 5.2. If EUCLID is run with c = F~ + ~ and b = Fk + ~ with k >1, then
there are exactly k Euclidean equations.

Proof. The proof is by (ordinary) induction on k. If k = 1, then c = F~ + ~ = F3 = 2
and b = F~+ ~ = F2 = 1. Given c = 2 and b = 1, EUCLID produces just one
equation, specifically,

2=2” 1+0.

Now we assume that if c = F~ + ~ and b = F~ + ~ with k >1, then there are exactly
k equations, and try to show that if c = F~ + ~ and b = Fk + z, then there are exactly
(k+ 1) equations. Now, if c = F~+ ~ and b = Fk+2, k + 3>4 and by Lemma 5.1
our first Euclidean equation is

Fk+3 ‘Fk+2 +Fk+l. (A)

Next we divide F~ + z by F~ + ~, but this is the same as if we began the Euclidean
algorithm with c = F~ + z and b = Fk + ~. By the inductive hypothesis we get k
Euclidean equations from this starting point. Hence, in total, (A) is the first of
(k + 1) Euclidean equations. ❑

Question 5.1. Construct the Euclidean equations for (i) c = F8 and b = F, and
(ii) c = Flo and b = F9.

207

4 NUMBER THEORY

Question 5.2. For O < b < c s 5, what is the maximum number of equations and
for what integers does that maximum occur?

What we have done is analyze the complexity of EUCLID for a restricted
set of inputs. Specifically, if b = F~ + ~ and c = F~ + ~, then e(c) = 2k. Indeed a much
stronger statement is true. The smallest integer c that produces as many as k
Euclidean equations is c = F~ + ~ and given this c, the only integer b that will
(together with c) produce as many as k Euclidean equations is b = F~ + ~. So the
Fibonacci numbers provide the worst possible input to EUCLID. We shall not
prove this theorem, due to Lame in about 1845 (but you may prove it in Supple-
mentary Exercise 14). However, we shall show that the worst-case behavior is of
the same order of magnitude as that on the Fibonacci numbers.

We begin by investigating the relationship between c = F~ + ~ and k, where
k z 1. Thus c >2. Corollary 4.2 and some algebra imply that

(7Y+2) < (c + 1)$.

Taking logs (and noting that V < 4), we see that

(k+ 2)log(~) < log(c + 1)+ log($)< log(c + 1)+2.

Next we solve for k by dividing by log(@) and subtracting 2 to get

~<_2+log(c+l)+2
l o g (~)

If we estimate log (~) by log (1.618) > ~ we get

k<–2+2(log(c +l)+2)=210g(c+l)+2

<2 log (2C) + 2 since c >2

=210g(c)+4<610g(c) since c >2.

In short, we have that when c = F~ + z and b = Fk + ~, the number of Euclidean
equations that occur, k, is O(log (c)). In Exercise 11 we ask you to use Corollary
4.2 to bound k from below.

We shall now show that for any inputs b and c, the number of Euclidean
equations is no larger than logarithmic in c. To accomplish this, we need a closer
look at the Euclidean equations.

Theorem 5.3. If e(c) counts the maximum number of multiplications and divisions
in the Euclidean algorithm with input b s c, then

e(c) = O(log (c)).

4:5 THE COMPLEXITY OF THE EUCLIDEAN ALGORITHM

Proof. Suppose that we consider the first two Euclidean equations

C=qlb+rl
and

b = q2r1 + r2.

We know that b > rl > r2. From these inequalities r2 might be as large as b – 2.
In fact, we shall obtain the much better estimate that r2 < b/2. This estimate is
better in the sense that it allows us to conclude that r2 is smaller than we otherwise
knew. If r2 is smaller, then we expect to use fewer Euclidean equations.

Example 5.1. In the Euclidean equations of Example 3.1,

b = 233 and r2 = 89< b/2,
rh = 34< r2/2,
r~ = 13< rJ2,
r8 = 5 < r6/2,

rlo = 2 < r8/2,
and r12 = O < rlo/2.

Question 5.3. Show that the Euclidean equations with b = 77 and c = 185 have
rz < ~.

To show that r2 is less than b/2 in general, we look first at rl. If rl s b/2,
then r2 < rl implies that r2 < b/2. If, on the other hand, rl > b/2, then 2r1 > b.
Thus in the second Euclidean equation q2 = 1 and we have that

b=r1+r2.

By solving for r2, we get

rz=b —rl

<b_~=~ b
2 2

since rl > –.
2

So in either case we have r2 less than b/2. By doing the same thing to the next
two Euclidean equations, we can show that

r2 b
‘4< T<Z”

209

4 NUMBER THEORY

Let’s be careful at this next step so that the pattern becomes clear. As above we
argue that

Thus, in general, we have

How long can this go on? If b/(2t) <1, then by the preceding equation the remain-
der rz, equals zero. But b/(2t) <1 implies that log(b) < t. Thus once t 2 log(b) or
equivalently once t = (log (b)l, then

and from (B) we get r21 = O. Thus k, the number of Euclidean equations, is at
most 2t, where t = [log (b)l. Thus

e(c) = 2ks 2(2t) = 2(2(log (b)l)s 4rlog (c)l = O(log (c)).

Question 5.4. Look at the Euclidean equations from Example 3.1. For each integer
t compute r2t + 2/r2t.

In conclusion we have that the Euclidean algorithm is a good algorithm. Look
back in Section 2 at the inequalities of line (2):

log (c) < B = Llog(b)j + 1 + Llog(c)j +.1.

Since it requires B bits to input b and c in binary, the number of muhiplications
and divisions is bounded by

e(c) = O(log (c)) = O(B).

Thus EUCLID is a linear algorithm.

EXERCISES FOR SECTION 5

1. Show that if c = F~ + z and b > F~ + ~ in the Euclidean equations, then
rl < F~.

210

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

I

2. In the Euclidean equations, if c = F~ + ~ and b < F~ + ~, is rl < Fk?

3. Construct the Euclidean equations if c = Fg and b = F,.

4. If c = Fk + ~ and b = F~ + ~, what can you say about the number of Euclidean
equations?

5. Suppose that GO = 4, GI = 7, and for n >1, Gn = G._ ~ + G.. ~. Exhibit Gn

fern= 2,3, . . . ,8.

6. Exhibit the Euclidean equations with c = G8 and b = G7. (G. is defined in
Exercise 5.)

7. How many Euclidean equations are there if c = G~ + ~ and b = G~ + ~? (Gn is
defined as above.)

8. In the Euclidean equations we know that rb < b/4. Is r~ < b/4?

9. Choose a value oft so that in the Euclidean equations r8 < rJt. 0
10. Suppose that C. is a sequence of nonnegative integers with the property that

C, < C.- ~/4. If Cl = M, for what value z can you guarantee that C= = O?

11. Use Corollary 4.2 to find a constant D such that if c = F~ + ~, then k > D log(c).

12. The complexity of EUCLID was shown to be O(B), where B equals the number
of bits needed to represent the integers b and c. Thus the number of multi-
plications and divisions performed is at most SB + t for some integers s and
t. Find integers s and t that give an upper bound on the number of these
arithmetic operations that is as small as possible based on the analysis in this
section.

4:6 CONGRUENCES AND
EQUIVALENCE RELATIONS

Integer arithmetic is fundamental to the mathematical field of number theory and
to the computer science field of cryptography. The particular kind of arithmetic
used in these fields is known as modular or congruence arithmetic. In this section
we introduce the basics of arithmetic modulo n and develop simultaneously the
concept of an equivalence relation. In the next section we apply this work to en-
cryption schemes.

Definition. If n is a positive integer and a and b any two integers, we define

a = b (mod n)

(read “a is congruent to b modulo n“) if (a – b) is divisible by n. We let [a] denote
the set of all integers congruent to a modulo n,

[a] = {x: a a x (mod n)}.

211

4 NUMBER THEORY

This is called the equivalence class containing a.

Example 6.1. Let n = 12. Then 1-13 (mod 12), 1 =25 (mod 12),13 -25 (mod 12),
1- –11 (mod 12), and

[1] ={..., –23, –11,1,13,25,. ..}

= {1 + 12k: k an integer}.

If “#” means “not congruent to,” then 1 #O(mod 12), 1 E 1 (mod 12), 1 # 2
(mod 12), and 1 # i(mod 12) for i =3, 4,...,12.

We are used to working “modulo 12,” since that is how our clocks and some
of our measurements work, If it is 11 A.M. and I have an appointment in 3 hours,
then since 11 + 3 = 14 = 2 (mod 12), the appointment is for 2 P.M.

Question 6.1, Determine which of the following are true and which false: (a) 2 s
3 (mod 12), (b) 2 = 4 (mod 12), (c) 2-10 (mod 12), (d) 2 s 14 (mod 12), (e) 2 s
– 10 (mod 12), and (f) – 10- – 22 (mod 12). Describe all integers x that are con-
gruent modulo 2 to O. Working modulo 3, list six elements of [1] and then describe
the entire set precisely.

Question 6.2. Let n be a positive integer and i an integer such that O s i < n.
What is the least integer j > i such that i = j (mod n)? What is the largest negative
number m such that i - m (mod n)?

Congruences modulo n behave like equalities.

Lemma 6.1. Let n be a positive integer and a, b, and c arbitrary integers. Then
(i) a a a (mod n),
(ii) If a z b (mod n), then b = a (mod n), and
(iii) If a = b (mod n) and b - c (mod n), then a a c (mod n).

Proof. We prove part (iii). If a - b (mod n), then n divides (a – b) and so there
is an integer i such that a – b = in. If b = c (mod n), then there is an integer j such
that b – c = jn. Thus

a–c=(a– b)+(b–c)=in+jn =(i+j)n,

and (a – c) is divisible by n, that is, a = c (mod n). G

Question 6.3. Prove parts (i) and (ii) of Lemma 6.1.

Here’s a vocabulary to highlight the similarities between relationships like
= (mod n),” and others. We say that a relation “ -” is defined on a set S.’ _,,”_— ,

212

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

(finite or infinite) if for each pair of elements (a, b) in S, a - h is either true or
false. Colloquially, if a - b is true, then we say a is related to b. A more formal
way to describe a relation on S is to say that N corresponds to a function

T: S x S + {True, False}

such that T(a, b) = True if and only if a - b is true (or equivalently a is related
to b).

Example 6.2. Let S be the set Z of all integers. Then equality gives us a relation
on Z by defining i - j to be true for integers i and j if and only if i = j. Simi-
larly, for a fixed positive integer n, congruence modulo n is a relation on Z if we
define i - j to mean that i = j (mod n).

Question 6.4. Which of the following defines a relation on the given set S?
(a) S = Z and - stands for <; (b) S = all subsets of Z and w stands for s; and
(c) S = all real numbers and r w s means that (r – s) is even.

Definition. A relation N defined on a set S is said to be an equivalence rela-
tion if it satisfies the following three properties. If a, b, and c are arbitrary ele-
ments of S, then
(i)a~a (reflexive property)
(ii) If a N b, then b N a (symmetric property)

(iii) If a -band b-c, then a-c (transitive property).

Lemma 6.1. says that the relation “congruence modulo n“ defined on Z is an
equivalence relation.

Example 6.3. Let U = {1, 2,. ... n} and let P be the set of all subsets of U. If
A, B, C s U, then (i) A G A is true for every subset A, and (iii) if A ~ B and B ~ C,
then A = C, but it is not true that (ii) if A G B, then B ~ A. Thus the relation of
containment is not an equivalence relation on P.

Example 6.1 (continued). Working modulo 12, we saw that 1 is not congruent
modulo 12 to 0,2,3,. ... or 11. Let us look at the equivalence classes [0], [1],
[2], . . . [11].

[0]={ . . . –24, –12,0, 12,24,36.. }
[1]={ . . . –23, –11,1,13,25,37.. }
[2]= {... –22, -10,2,14,26,38 ...}

. . .

[11] ={... –25,–13,–1,11,23,35...}.

213

4 NUMBER THEORY

Notice that no two of these sets intersect and that every integer is in precisely one
of these sets.

Definition. If w is an equivalence relation on the set S, then we define for a in
S, the equivalence class containing a to be

[a] = {x in S: u w x}.

Then just as in the case of congruence of integers modulo n, the collection of all
distinct equivalence classes of S divides up S into disjoint subsets. Such a division
is called a partition of S.

Lemma 6.2. If w is an equivalence relation on a set S, then
(i) a is in [a] for alla in S,

(ii) [a] = [b] if and only if a N b, and
(iii) if [a] # [b], then [a] n [b]= 0.

Proof. (i) a is in [a], since a - u by the reflexive property of equivalence
relations.

(ii) If [a] = [b], then a in [a] implies that a is in [b] and so b w a by definition.
By the symmetric property, a w b. Conversely, suppose that a N b and let x be in
[a]. Then a - .x and x w a, and by the transitive property x = b and so b - x. Thus
x is in [b] and [u] G [b]. The proof that [b] ~ [a] is carried out in the same way.

(iii) Suppose that [a] n [b] # 0 so that there is an element x in [a] n [b].
Then a-xand b-x. By the symmetric property x - b and by the transitive
property a - b. Using part (ii), we have that [a] = [b]. We have proved the con-
trapositive of (iii). D

Fix a positive integer n. When working with the integers modulo n, there are
many ways to express the same equivalence class. For example, [0] = [n] =
[– n] = [17n]. It is often convenient to represent an equivalence class [i] using
the least nonnegative integer to which i is congruent modulo n. We can find that
integer by dividing i by n:

i=qn+r with OSi-<n

and so [i] = [r].

Definition. If i = qn + r with O s r < n, then r is called the least nonnegative
residue of i modulo n.

This process also shows that every integer i is in one of the classes [0], [1],. . . .
[n – 1] modulo n. Furthermore, no two of the equivalence classes [0], [1],...,

214

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

[n – 1] are equal, for if [i]= [j], then i -j (mod n) by Lemma 6.2 (part ii). But
since O < i, j < n, then n cannot divide (i — j) unless i = j. Thus it is not the case
that [i] = [j] when O < i <j < n. The equivalence classes [0], [1],. . . . [n – 1]
are a complete (and useful) set of equivalence classes of the integers modulo n.

Example 6.1 (continued). When working modulo 12, we use the equivalence
classes [0], [1],. . . . [11].

We can also do arithmetic with the equivalence classes modulo n: addition,
subtraction, multiplication, exponentiation, and sometimes division.

Definition. The equivalence classes {[0], [1],. . . . [n – 1]} are called the integers
modulo n and are denoted by Z..

Lemma 6.3. If a a b (mod n) and c - d (mod n), then
(i) a+c=b+d(modn),
(ii) a – c = b – d (mod n), and

(iii) ac - bd (mod n).

Proof. We prove part (iii). Since a - b (mod n), there is an integer i such that
a — b = in or equivalently a = b + in. Since c = d (mod n), there is an integer j
such that c = d + jn. Thus

uc = (b + in)(d + jn)

– bd + bjn + din + ijnz—

= bd + (bj + di + ijn)n.

Thus (ac – bd) is divisible by n, and ac a bd (mod n).

Question 6.5. Verify the first two parts of Lemma 6.3.

Thus we can define arithmetic modulo n on equivalence classes as follows.

[a] + [b]= [a + b], [a] - [b]= [a - b],

[a] ~ [b] = [ah], and [a]k = [ak] fork a positive integer.

These definitions look sensible, but there are some important points to be
checked. We must check that addition and multiplication are “well defined by
these equations. (Subtraction is just addition of negative numbers, and exponen-
tiation is just repeated multiplication, so we concentrate on the other two opera-
tions.) What this means is that if x is any element of [a] and y is any element of

215

4 NUMBER THEORY

[b], then

[x+y]=[a+b] and [xy] = [ah].

We now show that addition of equivalence classes modulo n is well defined. If x
is in [a] and y is in [b], then

a - x (mod n) and b = y (mod n).

By Lemma 6.3

a+ b-x+y (modn) and [x+y]=[a+b].

Question 6.6. Show that multiplication of equivalence classes is well defined.

Example 6.1 (once more). Working with the integers modulo 12, we want to add
and multiply in the following way:

[1] + [1]= [2], [1]+ [2]= [3], [8]+ [9]= [17]= [5],

[-5] + [10]= [5], [3] ~ [0] = [0], and [5]. [6]= [30]= [6].

But is this consistent? We know that [1] = [25], since 1 = 25 (mod 12). Thus it
should be the case that

[1] + [25]= [1]+ [1]= [2],

Fortunately, [1] + [25] = [26] = [2], since 2 = 26 (mod 12). Similarly, [17] = [5]
and [– 6] = [6]. Thus

[17] . [-6]= [-102]= [6]= [5] ~ [6].

When can we do division or cancel modulo n?

Lemma 6.4. If ab s cd (mod n) and a = c (mod n), then b s d (mod n) provided
that gcd (a, n) = 1.

Proof. By assumption there are integers i and j such that

ab—cd=in and a—c=jn,

Substituting c = a – jn in the first equation yields

ab – (a – jn)d = in.

216

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

Thus

ab—ad=in–jdn

and

a(b – d) = (i –jd)n. (A)

Since n divides the right-hand side of (A), n also divides the left-hand side, a(b – d).
Since a and n have gcd 1 and thus no factors in common, n must divide (b – d).
Thus b R d (mod n). ❑

Question 6.7. Pick five distinct integers a, b, c, d, and n such that gcd (a, n) = 1,
a = c (mod n), and ab - cd (mod n). Verify that b = d (mod n). Then find integers
a, b, c, d, and n such that gcd (a, n) # 1, a - c (mod n), ab E cd (mod n), but
b # d (mod n).

Now what would it mean to say that we can do division with the integers
modulo n? Division by a number x is the same as multiplying by l/x, and I/x has
the property that x(l/x) = 1.

Definition. Given [a] in the integers modulo n, we say that [a] has a multiplica-
tive inverse if there is another equivalence class [b] such that

[a] . [b]= [1].

Thus [b] is playing the role of” l/[a]” and is called the multiplicative inverse of
[a]. If [a] “ [b] = [1], then [b] “ [a] = [1] and so [a] is also the multiplicative
inverse of [b].

Similarly, if a and b are two integers with O < a, b < n such that ab -1 (mod n),
then we say that a and b are each other’s multiplicative inverses.

Corollary 6.5. Let n be a positive integer. Then the equivalence class [a] has a
multiplicative inverse if and only if gcd (a, n) = 1.

Pmo~. If 1 = gcd (a, n), Corollary 3.3 says there are integers x and y such that

l=xa+yn.

Thus

1 = xa (mod n),

217

4 NUMBER THEORY

and so

[1] = [xa] = [x] ~ [a].

Thus [x] is the multiplicative inverse of [a].
Conversely, if

[a] . [x]= 1,

then

ax=l+kn for some integer k.

Thus any common divisor of a and n must also divide 1, and so gcd (a, n) = 1.
❑

Two integers a and b are said to be relatively prime if gcd (a, b) = 1. Thus an
integer a has a multiplicative inverse modulo n if and only if a and n are relatively
prime.

Example 6.1 (again). In ZI ~, only 1, 5, 7, and 11 are relatively prime to 12. Here
are their multiplicative inverses:

[1] . [1]= [1], [5] ~ [5] = [25]= [1],

[7] . [7]= [49]= [1], and [11]. [11]= [121]= [1].

In other words, each of 1, 5, 7, and 11 is its own multiplicative inverse. Here
is a brute force check that [2] does not have a multiplicative inverse:

[2] . [0]= [0], [2] ~ [1]= [2], [2] . [2]= [4],

[2] ~ [3]= [6], [2] . [4]= [8], [2] . [5]= [10],

[2] . [6]= [0], [2] . [7]= [2], [2] ~ [8]= [4],

[2] ~ [9]= [6], [2] . [10]= [8], [2] o [11]= [10].

Question 6.8. Find multiplicative inverses for all elements of 25 and of 210 that
have inverses. Which elements of ZI ~ have multiplicative inverses?

Finding inverses will be important in the application presented in Section 7,
as will a variation on the next theorem, known as Fermat’s little theorem. This
one he really did prove.

218

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

Theorem 6.6. If p is a prime number and gcd (a, p) = 1, then

a‘-1 = 1 (modp).

Proof. Notice that for any integer i, gcd (i, p) is either 1 or p, the only divisors
of p. Thus gcd (i, p) = 1 if and only if p does not divide i, that is, if and only if
i # O (mod p). Thus by assumption a # O (mod p). Consider the equivalence classes

[a], [2a], [3a],. . . . [(p - l)a]. (B)

We claim that none of these is [0] and that no two of them are equal.
First if it were the case that

[is] = [0] where 1 s i < p,

then

ia = O (mod p).

Thus p divides ia, and since gcd (a, p) = 1, p divides i, a contradiction, since 1 s
i < (p – 1). Thus none of the equivalence classes in (B) equals [0].

Next suppose that

[is] = [ja] where 1 < i, j < p.

Then

ia - ja (mod p) by Lemma 6.2 (part ii), and

i a j (mod p) by Lemma 6.4,

a contradiction, since both i and j are positive integers less than p. Thus the (p – 1)
equivalence classes listed in (B) are the same as the equivalence classes [1], [2],
[3] ,..., [p – 1], although probably listed in a different order. Then ~

[a] ~ [2a] . ~ ~ [(p- l)a]=[l][2]- [p-1]
[a(2a) . ~ . ((p - l)a)] = [(p - l)!] multiplying equivalence

classes

a(2a) ~ ~ ~ ((p – l)a) -(p – 1)! (mod p) by Lemma 6.2 (part ii)
UP- ‘(P – 1)! z (p – 1)! (mod P) simplifying

up-l = 1 (modp) by Lemma 6.4

since gcd (p, (p – l)!) = 1. D

219

4 NUMBER THEORY

Question 6.9. Pick a prime p and an integer b such that gcd (b, p) = 1, write down
the equivalence classes [b], [2b] ,..., [(P – l)b] modulo p, and verify that they are
the same as the classes [1], [2],. . . . [p – 1]. Check that bp -1 e 1 (mod p). Find
c, an integer with gcd (c, p) # 1, and show that Cp – 1 # 1 (mod p).

This has been a brief introduction to arithmetic modulo n and to the ideas
of equivalence relations. We shall use this in an application to cryptography (the
art of secret messages) in the next section.

EXERCISES FOR SECTION 6

1. In each of the following find the least nonnegative integer i such that
(a) 430- i (mod 19).
(b) 23’- i (mod 377).
(c) 2’ E 1 (mod 17).
(d) 2“3’3 E i(mod7).
(Hint: After each multiplication replace the result by its least nonnegative
residue modulo n.)

2. Explain why it is always true that n5 - n (mod 10) or, in other words, why
n5 and n always have the same last digit.

3. Prove that for every integer n, either nz = O (mod 4) or n2 = 1 (mod 4). Use
this to show that there are no integers x and y such that X2 + y2 = 1987.

4. The set {0, 1,. . . , n — 1} is called a complete residue system modulo n because
every integer is congruent modulo n to exactly one of these numbers.
(a) Find a complete residue system modulo n in which all numbers are

negative.
(b) Find a complete residue system modulo n in which all numbers have

absolute value at most n/2.

5. Is either the relation “<” or “s” an equivalence relation on the integers?

6. Which of the following define an equivalence relation on the integers? Explain
your answer.
(a) a N b if a divides b.
(b)a-bifu <b.
(c) a - b if Ial < Ibl.
(d) a - b if a and b begin with the same (decimal) digit.
(e) a - b if when a and b are expressed as a = 2is and b = 2jt with i and j

nonnegative integers and s and t odd integers, then s = t.
U) a w b if when a and b are expressed as in part (e), then i = j.

220

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

7. Prove that the following is an equivalence relation defined on the integers:
a N b if a and b have the same number of prime divisors, counting multi-
plicity (e.g., 18 = 2 “ 32 has three prime divisors). For this equivalence relation
are addition and multiplication of equivalence classes well defined by
[a] + [b] = [a+ b] and [a] ~ [b] = [ah]? Explain.

8. Give an example of a relation on a set that has the following properties.
(a) Reflexive and symmetric, but not transitive.
(b) Reflexive and transitive, but not symmetric.
(c) Symmetric and transitive, but not reflexive.

9. (a) Write down the elements of 22. Then write down an addition and multi-
plication table for 22; that is, write down all possible sums [a] + [b] and all
possible products [u] ~ [b].

(b) Do the same for 23.
(c) Do the same for 24.

10, Rewrite the Euclidean equations using congruences.

11. Prove that if [i] and [j] are equivalence classes modulo n such that [i] = [j],
then gcd (i, n) = gcd (j, n).

12. A relation w on a set S is called a total (or linear) ordering if
(i) for all a and b in S, exactly one of the following holds:

a- b,a=b, or b-a, and
(ii) for elements a, b, and c in S, if a - b, and b N c, then a = c.
Do either < or s define a total ordering on the integers? Explain.

13. Give an example of an equivalence relation on the integers that is not a total
ordering. Explain which properties of a total order hold for your example
and which don’t.

14. Explain why, in general, if - is a total ordering on a set S, then - is not an
equivalence relation on S. Conversely, explain why if - is an equivalence re-
lation on S, then - is not a total ordering.

15. Prove that if p is a prime number, then for every integer n,
np = n (mod p).

16. Investigate whether or not the following is true: If gcd (u, n) = 1, then
a“-1 -1 (modn).

17. Suppose that p is a prime number and gcd (a, p) = 1. Then explain why [up- 2]

is the multiplicative inverse of [a] modulo p. For each i = 2, 3, ..., p – 1,
find an expression for the multiplicative inverse of [ai] modulo p.

18. We define an equivalence relation on ordered pairs of integers, Z x (Z – {O}),
(i.e., on all ordered pairs with the second entry nonzero) by (a, b) - (c, d) if
ad = be.

221

4 NUMBER THEORY

(i) Prove that this is an equivalence relation.
(ii) Describe the equivalence classes [(1, 2)], [(1, l)], [(4, 2)], and [(2, 3)].

(iii) In generaI, describe [(r, s)] and compare this with the rational number r/s.
(iv) Which equivalence classes [(i-, s)] have multiplicative inverses? If [(r, s)]

has a multiplicative inverse, what is it?

4:7 AN APPLICATION PUBLIC KEY
ENCRYPTION SCHEMES

Although our discussion of the greatest common divisor problem has been couched
in modern terminology, most of what we have presented in this chapter is ancient.
It was developed without any thought of computing machines like those we now
possess and with no anticipation of future applications. It is a truism in mathe-
matics that the purest (i.e., most theoretical and seemingly least applicable) ideas
from one generation of mathematicians frequently become indispensable took of
the applied mathematicians of subsequent generations. The application of the
Euclidean algorithm and related number theory that we are about to present
exemplifies this phenomenon.

The problem that we confront is that Bob wants to send Alice a message, the
content of which is to remain a secret from Eve. The message will be a sequence
of integers, M1, M2,. . . . Mk with O< Mi<N for i=l,2,. ... k, where N is a
number chosen with which to work modulo N. We’ll see how Alice chooses N
later. Such a representation of a message by numbers is no restriction. For exampie,
this book has been prepared electronically, and each character of the keyboard
of the computer terminal has associated with it a unique decimal number, in this
instance called its ASCII code. For use in this chapter we include the ASCII code
for capital letters in Table 4.1.

Table 4.1

Lettec A, B, C, D, E, F, G, H, I, J, K, L, M, N O, P,
code 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Q, R, S, T, U, V, W, X, Y, Z, blank
81 82 83 84 85 86 87 88 89 90 32

Thus the assumption that Bob’s message is a sequence of decimal numbers is
not restrictive. Sending a message might be by telephone or electronic mail or
ahnost anything else. Crucial to the model is that Eve has the technology to inter-
cept the message. This turns out to be surprisingly realistic. Thus if Bob just sends
Alice the ASCII code of the real message, we assume that Eve can intercept and
correctly interpret its content.

222

4:7 AN APPLICATION PUBLIC KEY ENCRYPTION SCHEMES

So what can Bob do? Very simply he must devise a way to disguise his message,
to encrypt it so that after Eve, or anyone else, intercepts the disguised message,
she will not be able to figure it out. Of course, if Bob does too good a job en-
crypting the message, maybe Alice won’t be able to figure it out either. So Bob
and Alice agree on an encryption scheme. When Bob has a message to send Alice,
he pulls out his encryption book (or maybe calls his encryption computer pro-
gram) and encrypts his message. Alice, having the appropriate decryption book
(or computer program), can unscramble or decrypt the message. This is fine unless
Eve obtains a copy of Bob’s encryption procedure. Then it may be that the message
is no longer secure. (If Eve obtains Alice’s decrypting procedure, presumably Eve
can decrypt any message that Alice can decrypt.) We shall describe here a method
that will tell Bob exactly how to encrypt his message. It will tell Alice exactly how
to decrypt the received message. Finally, (and this is truly magical), even if Eve
knows Bob’s method of encryption, Eve will not be able to decipher the message.

There is a family of related methods that will accomplish the above goals.
These are known as public key encryption schemes, and they use so-called trapdoor
functions. (The analogy is that encrypting information like opening a trapdoor from
above is easy, but decrypting like opening a trapdoor from below when one is
stuck in the trap is hard.) The scheme we present uses the Euclidean algorithm
and modular arithmetic and is known as the RSA scheme for Rivest, Shamir, and
Adleman, the inventors of the scheme. There are other schemes based on a wide
variety of mathematical ideas, and there is a great deal of research being done
on the question of just how secure these trapdoor schemes are.

Suppose that Bob wants to send a message with j letters, including blanks
between words. Using Table 4.1, this becomes a decimal number with 2j digits
when we replace each letter by the corresponding two digits of the ASCII code.
If Bob simply transmits the ASCII code equivalent, Eve will be able to look up
the ASCII code in a table and understand the message.

Example 7.1. The message “HELLO” becomes 7269767679.

Question 7.1. Translate the message “HOWDY” into its ASCII code equivalent.
Decipher the message 83858270327383328580.

Actually, most messages, like those just medtioned, will turn into numbers that
are far too large to work with. Thus we agree in advance to break the 2j digits of
the message up into blocks of length B and then send k messages M 1, Afz,. . . . Mk,
each of length at most B.

Example 7.1 (continued). Let B = 4. Then we send the encryption of HELLO as
three messages: 7269, 7676, and 7932, with a blank added at the end to fill out
the last block.

223

4 NUMBER THEORY

Question 7.2. With B = 4, the largest code that can be sent using capital letters
is 9090. What letters produce this code? What is the smallest possible decimal
number that we can transmit with B = 4?

Now it’s time for Alice to get sneaky. She picks an integer N and announces
that all work will be done modulo N. In particular, the transmitted messages will
lie between O and N. (Then a convenient choice of block length B is one less than
the number of decimal digits in N.) The sneaky part is that Alice picks N to be
the product of two nearby, large prime numbers P and q. SO N = pq with P # q.
Now it is easy and quick to multiply two prime numbers or any two numbers,
even if they are very large. What is very difficult to do, given an integer N, is to
determine its prime factors.

(Note: All steps in this process are summarized at the end of the section in the
algorithm RSA.)

Exercise 14 gives a simple algorithm DIVISORSEARCH that searches for the
divisors of an integer N. (A more sophisticated algorithm for finding prime divisors
is presented in Supplementary Exercise 4.) DIVISORSEARCH finds divisors by
checking whether the integers 2,3,. ... up to ~ divide N. If N = pq, then either p
or q must be at most LfiJ. If, say, p is discovered to be a divisor, then q is found
as N/p.

So why not use this algorithm? DIVISORSEARCH is slow. (In Exercise 15
you are asked to verify that DIVISORSEARCH is exponential.) Faster ones have
been derived, using very deep mathematics, but all the known algorithms for fac-
toring a number have nonpolynomial running time. For example, whereas we can
easily multiply together two 30-digit numbers to get a 60-digit number, if we are
given N with 60 digits it takes much longer to unscramble it into its prime factors.
If N is either a prime or the product of two large primes that are near one another,
then an algorithm as in Supplementary Exercise 4 would have to run about a year
before this fact is discovered. That’s no problem for this application Alice will
choose new values of p and q with N = pq every 6 months before Eve is abie to
find (or to run a computer program to find) the factors of N.

Question 7.3. Each of the following are of the form pq for primes p and q. Try to
factor each 323,4087, and 8633.

However, Alice has more tricks up her sleeve. After selecting N = pq,
she selects an integer e >1, known as the exponent, with the property that
gcd (e, (p – l)(q – 1)) = 1. Remember that the gcd of two numbers is easy and
quick to calculate. Alice can just try random numbers between O and N and run
the Euclidean algorithm on them to find an e relatively prime to (p – l)(q – 1).

Question 7.4. Let N = 7 11 = 77. Then search through 2,3,4,. . . to find four
numbers e that are relatively prime to 6 ~ 10 = 60.

224

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

Example 7.2. Suppose that N = 9991 = 97 ~ 103, where 97 and 103 are both
prime. (These are not particularly large prime numbers but will keep us occupied
with calculations by hand.) Let us check that e = 11 meets the requirements for
an exponent by calculating gcd (1 I, 96. 102) = gcd(11, 9792).

9792 =890 ”11+2

11=5” 2+1

2=2” 1+0.

Once Alice has determined e, she will perform one more calculation, described
later, but then she may destroy the factors of N or else she must guard them
closely as they are the key to the security of this system.

However, Alice can be quite open with the numbers e and N. In fact, she
sends them to Bob without any secrecy. Maybe she even lists them in a phone
book or publishes them in the newspaper. These numbers will tell Bob (and for
that matter anyone who cares to send a message to Alice) how to securely encrypt
their message. The procedure goes as follows.

Here’s what Bob does to encrypt the message. First the original message is
turned into ASCII code using Table 4.1 and then the resulting huge number is
broken into blocks of length B. Each block is one of the messages M 1, M2,. . . . M~
to be sent. Next Bob must check that each message M i, for i = 1,2,. ... k, is
relatively prime to N. If not, in the gcd calculation he will discover that their
common divisor is either p or q. In that case he announces to Alice and to the
world that he has found a factor of N and it is time to change their protocol (i.e.,
to change the values of e and N). However, most messages and numbers are
relatively prime to N as shown in Exercise 9.

Then for each message Mi, i = 1,2,. ... k, Bob calculates Ri, where

Ri = M; (mod N) and O< Ri <N.

Precisely, he can divide by N and find the remainder Ri

M~=QN+Ri with O < Ri < N.

Then he will transmit the encrypted message R 1, R2,. . . . Rk.
Now My will often be a large number, but one that can be determined quickly

using FASTEXP however, there are additional ways in modular arithmetic to
keep the numbers relatively small. Recall that by Lemma 6.3, if a - b (mod N),
then ae = be (mod N). Thus when we need Mi, M?, M:, and so on for FASTEXP,
we can repeatedly replace the numbers by their least nonnegative residues modulo
N, as shown in the next example. This replacing process is also known as reducing
modulo N.

225

4 NUMBER THEORY

Examples 7.1 and 7.2 (continued). With N = 9991 and e = 11, we begin the
encryption of the message “HELLO” from its ASCII code 726976767932:

Ml = 7269 M2 = 7676 M3 = 7932.

First we check that gcd (7269, 9991) = 1. Then since M ~ 1 = MYM~M1,
we calculate

M; -52838361-5953 (mod 9991)

M; = (5953)2 (mod 9991)

-35438209 (mod 9991)

= 132 (mod 9991)

My = (132)2 (mod 9991)

e 17424 (mod 9991)

= 7433 (mod 9991).

Thus the first message RI that we want to send is

M~l -7433 ~ 5953 “ 7269 (mod9991)

a 44248649 “ 7269 (mod 9991)

-8501 “ 7269 (mod 9991)

-61793769 (mod 9991)

-9425 (mod 9991).

Question 7.5. Show that M2 = 7676 and M3 = 7932 are relatively prime to
9991 and then determine either R2 or R3 for these messages.

This procedure to encrypt a message could be implemented easily in a com-
puter program; see algorithm RSA.

There are two questions that require an answer. First, how is Alice to recover
the content of the original message? Second, assuming that Eve receives the
encrypted message and possesses the numbers e and N, why can’t she discover
the hidden message?

We answer the second question first. We assume that Eve intercepts the
message RI, R2, R~ with O < Ri < N for i = 1,2, . . . ,k. How might she find
M~, M2,. ... M~? Why can’t she just take the eth root of Ri to get Mi? Or why
not try all possible messages M, raise each to the eth power and reduce modulo N
until the correct messages are found?

Examples 7.1 and 7.2 (continued). The 1 lth root of 9425 is 2.2977 ..., and so
this is not much help. The problem is that we took the 1 lth power of 7269 modulo
9991 and now we would need the 1 lth root modulo 9991, whatever that means.

226 .“

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

The straightforward approach of trying everything would tell us to calculate
I’(mod 9991), 2e(mod 9991), 3e(mod 9991), and so on. But checking with the
ASCII code Table 4.1 we can be more clever. The encrypted word is a four-digit
number of the form:

3232, 32WZ (65 < WZ < 90), WZ32 (65 s WZ < 90),

or

UUWZ (65 S UU, WZ < 90),

a total of 729 possible ASCII codes. Now for any integer i, ill requires five multi-
plications: three to form i2, i4, and i8, and two more to combine these into il 1.
If at each stage one reduces modulo 9991, then five more divisions and five more
multiplications are needed. Thus in the worst case, after 10,935 multiplications
and divisions Eve can uncover which message &fi produced the transmitted
message Ri. In Chapter 2, Table 2.9, we assumed that a personal computer can
perform 17,800 single-digit multiplications or divisions in a minute. Since multi-
plying two 4-digit numbers requires at most 16 single-digit multiplications (plus
some additions), it will take Eve 10,935” 16/17,800 or about 10 minutes to recover
the messages (once she’s written the appropriate computer program on her PC).
That’s not so bad, but as we mentioned eadier, in this example we are really
working with small numbers compared with those used in real life.

More generally, one block of a transmitted message may have B < N decimal
digits, not just 4. Let’s figure out how long it will take Eve to decrypt a B-digit
number if she tries all possibilities. If we allow the ASCII code for all charac-
ters, not just for capital letters, then the B-digit number will lie between O and
10B+ 1 – 1. Suppose that the modulus N is roughly 10B + 1 and so exponentiation
by e, where 1< e < N, might use as many as O(log(N)) multiplications and divi-
sions. Thus a systematic search will invoive

o(log(lo~+ 1)1 OB+ 1) = O((B + l)lOB+ 1)

operations, clearly an exponential amount of work for Eve.

Question 7.6. Suppose that the modulus is N = 10B + 1 and the B-digit numbers
can be any number between O and N and also e = 11. Then using the figures
from Examples 7.1 and 7.2, find the minimum value of B such that Eve must cal-
culate for a month before she can figure out all possible messages.

There is an interesting sidelight to the above phenomenon. When we say that
Eve has an exponential amount of work to do, in general, we are stating an
empirical fact about the worst-case scenario. At present there is no theorem that

227

4 NUMBER THEORY

says that Eve will need to examine all or even a large fraction of all numbers.
Thus it is conceivable that a clever idea would enable Eve to break this encryp-
tion scheme with an efficient decryption scheme. There are other variations on this
scheme with the same uncertainty, namely that there is no theorem that says de-
cryption must be exponential in the worst case, and yet no one has determined
how to “crack” these schemes with polynomial-time algorithms. This state of un-
certainty has prompted a great deal of research on the mathematics behind public
key encryption. The state of the art seems to be that encryptors have the upper
hand at the moment; however, the decrypters have made some progress that has
resulted in the encryptors having to work harder.

If Eve has such a difficult time decrypting the message, then how can Alice
successfully decrypt the message? Remember that Alice calculated one additional
piece of information about e and N = pq before she destroyed or hid the values
of p and q. Since e and (p – l)(q – 1) have gcd one, she used Corollaries 6.5
and 3.3 and secretly found the multiplicative inverse d of e modulo (p – l)(q – 1),
that is,

ed -1 (mod(p – I)(q – 1)) with O < d < (p – l)(q – 1).

The pair (d, N) is called the decrypting key.

Example 7.1 and 7.2 (yet again). With e = 11 and N = 9991, we find the multi-
plicative inverse d using the Euclidean algorithm. In one part of Example 7.2 we
checked that gcd (11, 9792) = 1 and we use these Euclidean equations as in Corol-
lary 3.3:

1=11–5”2

=11–5(9792-890” 11)

=4451 ” 11 -59792 .

Thus 4451 is the multiplicative inverse of 11 modulo 9991.

Decryption now is easy for Alice because she knows a theorem that implies
that

fori= 1,2,. ... k. Thus all she has to do is to calculate R:, replace it by the least
nonnegative residue modulo N and that’s the message Ali. And again she pulls out
a computer program that can quickly perform this exponentiation.

Examples 7.1 and 7.2 (concluded). The message 7269 was encrypted as 9425. Here
is a summary of the calculation of (9425)4451:

9425 4451 = 942540969425 2569425 649425 329425 29425.

228

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

With 12 multiplications we find

94252 -644 (mod 9991)

9 4 2 53 2 = 1975 (mod 9991)

942564 -4135 (mod9991)

9425 256 G 5202 (mod 9991)

94254096-1225 (mod 9991).

Then with 5 more multiplications we find

94254451-1225 ~ 5202.4135 ~ 1975.644”9425 (mod9991)

= 7269 (mod 9991),

just as we claimed.

Question 7.7. Suppose that N = 15 = 3 ~ 5 and let e = 7. Find d such that ed s
1 (mod 2” 4). Then encrypt each of the messages 2 and 7 using the exponent e and
then decrypt them using d.

Why does Alice’s decryption scheme work? The reason is the following theo-
rem, notice its similarity with Fermat’s little theorem, Theorem 6.6. They are both
cases of a more general result due to EuleL see Supplementary Exercises 23 and 24.

Theorem 7.1. If p and q are distinct primes, n = pq, and gcd (a, n) = 1, then

a(p-l)(’-l) -1 (modn).

Why does this explain Alice’s decryption procedure? Alice knows that

R i - My (mod N).

Thus

R: E (M~)d (mod N)
= M;d (mod N)

= Mj+’(’-’)l)-l) (modN)

for some integer k, since ed = 1 (mod (p – l)(q – 1))

= Mi(M~p - ‘)(’- ‘))’ (mod N)

- Milk (mod N)

229

4 NUMBER THEORY

by Theorem 7.1, since gcd (Mi, N) = 1

= Mi.

Remember that Bob checked that gcd (Mi, N) = 1 for i = 1,2,. ... k and if not,
announced the need for a change of modulus N and exponent e. Now we see
that it is vital that Mi and N be relatively prime for the decryption scheme to work.

Proof of Theorem 7.1. (Notice the similarities between this proof and that of
Theorem 6.6.) Let Z. be the integers modulo n:

Z. = {[0], [1], [2],. . . ,[n – 1]}

and let A be the subset defined by

A = {[x] in 2“: gcd(x, n) = 1}.

First we count the number of elements in A by specifying and counting the
elements in Zn – A. Now for any [i] in 2., gcd (i, n) is 1, p, q, or pg. The only
element [x] for which gcd (x, n) = pq is x = O. Which elements [x] have gcd (x, n) =
p? Exactly x = p, 2p,. ... (q – l)P, and that’s all since n = pq. Which ones have
gcd (x, n) = q? Exactly x = q, 2q,. . . . (p – l)q. Notice that no two of these numbers
x are equal. For example, if ip = jq with 1 < i < (q – 1), 1 < j < (p – 1), then
p divides jq. Since p and q are distinct primes, p divides j, a contradiction since
j<(p– 1).

Thus the equivalence classes [p],. . . . [(q – l)p], [q],..., [(p – I)q] are all
distinct, and so there are 1 + (q – 1) + (p – 1) elements in Zn – A. Then A
contains

n–l–(p- 1)-(q-l)=pq-p– q+l=~–l)(q–1)

elements. We list the elements of A as

A = {[rI], [rJ.. ., [r.]},
where 0<rl<r2 <””” <r, <n, s=(p–l)(q– 1).

Lemma 7.2. If gcd (a, n) = gcd (b, n) = 1, then gcd (ah, n) = 1.

Proof (of lemma). We prove the contrapositive. Suppose that

gcd(ab, n) = d >1.

230

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

By Example 4.1, d has a prime divisor, say p. Thus p divides both n and ab and
thus at least one of a and b. So either a or b share a common prime divisor with
n contradicting our hypothesis. n

We now use this lemma. Take any number a such that gcd (a, n) = 1 and look
at the equivalence classes

S = {[arl], [arz], [ar,]}.

By Lemma 7.2 gcd (ari, n) = 1 for i = 1,2,. . . ,s. In addition,

gcd(r1r2. . . r,, n) = 1. (*)

We claim that the equivalence classes of S are the same as those of A, only
perhaps listed in a different order. Since gcd (ari, n) = 1, [ari] is in ,4 and so [ari] =
[rj] for some value of j. Furthermore, no two of the classes in S are equal if

[LVJ = [ar,]

for some values of i and k with ri # r~, then

a ri a ark (mod n)

r i z r~ (mod n) by Lemma 6.4

r i = rk since ri, rk < n,

a contradiction. Thus S = A, and

since multiplication is well defined. Thus,

rlrz” “ “r~ G ar1ar2” “ “ar~ (mod n) by Lemma 6.2

z asrlrz. “ “r~ (mod n)

1 = c? (mod n) by Lemma 6.4 and (*)

= a(p- 1)(’- 1) (mod n). n

Why can’t Eve find the decrypting pair (d, N)? Precisely because d is the multi-
plicative inverse of e modulo (p – l)(q – 1), and she doesn’t know the values of
p and q. As we saw before, factoring N to obtain p and q would require an ex-
ponential amount of work for her, unless she can think of something new and
clever. Perhaps Eve’s best bet is to study number theory and cryptography and
to search for an efficient decrypting algorithm. However, she should be aware that

231

4 NUMBER THEORY

Alice could do the same. Alice might even someday come up with a provably
secure system, that is, a system for which one can prove there is no polynomial-
time algorithm to decrypt messages.

Question 7.8. For either R2 or R3, calculated in Question 7.5, check that
R4451 = Mi.t

We conclude with a summary of the steps needed in the RSA encryption and
decryption scheme.

Algorithm RSA

STEP 1. (Numerical calculations by receiver)
(a) Pick primes p and q, and let N = pq.
(b) Find e such that gcd(e, (p – l)(q – 1)) = 1.
(c) Find d such that ed = 1 (mod (p – l)(q – 1)) with

O<d<(p–l)(q– 1).
(d) Throw away p and q.
(e) Announce N and e to the world.

STEP 2. (Encryption)
(a) Translate the message into ASCII code using Table 4.1.
(b) Pick an integer B less than the number of digits in N.
(c) Break the ASCII coded message into blocks of B digits each;

call these MI, M2, . . . ,Mk.
(d) For i = 1,2,. ... k make sure that gcd (Mi, N) = 1; if not, announce

that the code is “broken” and return to step 1.
(e) Fori=l,2, . . . , k let Ri - M: (mod N) with O < Ri < N.
(f) Transmit the encrypted messages Rl, R2,. . . . R~.

STEP 3. (Decryption)
(a) For i = 1,2,..., k calculate M i a R! (mod N) with 0< M i <N.
(b) Fori=l,2,..., k translate Mi from ASCII code using Table 4.1.

EXERCISES FOR SECTION 7

1. Using Table 4.1 give the ASCII code for the following: (a) RIGHT ON, (b)
THE TRUTH, (c) ENCRYPT ME, and (d) FOREVER.

2. What do the following ASCII codes stand for in English?
(a) 7279 3272 8577.
(b) 7079 8287 6582 6832.
(C) 7879 3287 6589.
(d) 8479 3266 6932 7982 3278 7984 3284 7932 6669,

232

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

3. Determine which of the following are the product of two distinct primes:
(a) 801, (b) 803, (c) 807, (d) 809, (e) 161, (~) 1631, and (g) 17,947.

4. For each of the following values of N = pq (from Question 7.3), find an integer
e such that gcd (e, (p — l)(q — 1)) = 1 and find the multiplicative inverse of e
(a) 323, (b) 4087, and (c) 8633.

5. If N = 77, e = 7, and B = 4, explain why Bob cannot send the message
PEACE to Alice.

6. Using blocks of four digits (B = 4), N = 8633 = 89.97, and e = 5 encrypt the
message CHEERS.

7. Using N = 95 and e = 29, decrypt the message (with B = 2)

53 29 02 51 29.

8. Let p be an odd prime and e an integer such that gcd (e, p – 1) = 1. Suppose
that a message M is encrypted as C, where

C E Me (mod p) where O s C < p.

If d is the multiplicative inverse of e modulo p, then prove that

Cd E M (mod p).

9. Show that the number of numbers i such that O s i < n = pq and gcd (i, n) #
1 is q + p – 1. Then deduce that the probability of picking such an i is

1 1
–+––~.
P q u?

30 then show that the probability of choosing, at random, anIfp, q>10 ,
integer not relatively prime to n is less than 10 – 29.

10. Write down in pseudocode an algorithm ENCRYPT that upon input of a
message MI, M2, Mk and N and e, encrypts the message using the RSA
scheme.

11. Write down in pseudocode an algorithm DECRYPT that upon input of a
received message Rl, R2,. . . . Rk, two primes p and q (where N = pq) and the
exponent e, decrypts this message.

12. Determine the number of multiplications and divisions performed in the worst
case of ENCRYPT and DECRYPT. (You may count each multiplication and
division as one, regardless of the number of digits.)

13. Prove the converse of Lemma 7.2.

14. Here is an algorithm to find divisors of an integer N.

233

4 NUMBER THEORY

Algorithm DIVISORSEARCH

STEP 1. Input N
STEP 2. For i:= 2 to L@J do

STEP 3. If i divides N, then output “i is a divisor of N“
STEP 4. If no divisors have been output, then output “N is a prime”
STEP 5. Stop.

Explain why this algorithm correctly determines when N is a prime. Ex-
plain why, if N is not a prime, this algorithm finds all, except possibly one,
prime divisors of N.

15. Explain why, in the worst case, there is a number r >1 such that the algorithm
DIVISORSEARCH performs at least r~ divisions, where D equals the number
of bits needed to express N in binary. Find as large a value of r as is possible
with your argument.

16. Modify the algorithm DIVISORSEARCH so that its output includes all prime
divisors of N. How many divisions does this perform in the worst case?

4:8 THE DIVIDENDS

The overall aim of this chapter has been to introduce the counting and algorithmic
ideas of discrete mathematics within number theory. In addition, this chapter
introduced specific results from number theory with indications of their applica-
bility in mathematics and computer science.

The chapter has focused on algorithms to determine the greatest common
divisor of two integers. In the text and exercises we found straightforward algo-
rithms to solve the gcd problem and then developed the less obvious Euclidean
algorithm. From the point of view of bit input, the straightforward algorithms are
bad and exponential, but EUCLID is a good and linear algorithm. The worst-case
complexity analysis of the latter algorithm is different from that of previous algo-
rithms in that it comes in two stages. First we show that if we use the Euclidean
algorithm on two successive Fibonacci numbers, then the number of multiplica-
tions and divisions is logarithmic in the input numbers. Next we show that in the
worst case of the Euclidean algorithm with arbitrary input b s c, O(log (c)) opera-
tions are performed. Thus the Fibonacci numbers exhibit this worst-case behavior
and so the worst-case analysis really does reflect what may happen. What is also
true, but we do not prove it, is that the Fibonacci numbers are actually the worst-
case input for the Euclidean algorithm. In conclusion, we observe that O(log (c)) =
O(B), where B is the number of bits needed for the input.

Two important general ideas were introduced in this chapter. The first is
Complete Induction, which gives us more flexibility at the cost of more checking

234

4:8 THE DIVIDENDS

of base cases. Also we presented the idea that the size of the input to an algorithm
ought to be measured in terms of bits. Thus an integer n requires B [roughly
log (n)] bits, and it is in terms of this parameter B that we should be determining
and analyzing the complexity functions of algorithms. With this perspective we
look back to EXPONENT and FASTEXP of Chapter 2 and see that they are
exponential and linear algorithms, respectively.

A substantial amount of elementary number theory appears in Section 6.
Modular arithmetic and equivalence relations are central to much of mathematics
and computer science. For example, the theory of groups and rings involves
generalizations of Zn, the integers modulo n. Many computer languages come
with the ability to do arithmetic modulo n; this arithmetic is important in, for
instance, random number generation. Equivalence relations will be crucial in fur-
ther courses in theoretical computer science and mathematics. Thus the lemmas,
theorems, and corollaries of Section 6 are worth studying because they will come
up again both in applications and in other branches of mathematics and computer
science.

There is a variety of different encryption schemes in use today; each uses
different aspects of number theory. The approach we pursue relies on the Euclidean
algorithm and Fermat’s little theorem, but its effectiveness comes from the fact
that it is apparently difficult to factor a number into its prime factors. In fact, it
has recently been shown that the difficulty of “cracking” a variation of the RSA
scheme is computationally equivalent to factoring a number n into two primes.
However, there is no known theorem that says it is hard to decrypt a message
sent using the RSA scheme or that it is hard to factor a number. A closely related
algorithmic problem is that of determining whether a given number is prime. Re-
cent fast, so-called random algorithms have been developed that can test whether
“most” numbers are prime, and there is a primality-testing algorithm that has been
shown to run in polynomial time on all integers, provided that a famous open
problem, the extended Riemann hypothesis, is true. No one has proved the latter
result, but most mathematicians believe it is true. Thus if you are tempted to set
up an encryption service along the lines of this chapter, take heed. It may be that
soon a mathematical or algorithmic breakthrough will occur and destroy the effec-
tiveness of the RSA encryption scheme.

Number theory is an excellent training ground for logical analysis and deduc-
tion. It is accessible: Small examples can be explored numerically, general patterns
deduced, and proofs constructed by induction and contradiction. The Fibonacci
numbers are a sample of the kinds of intriguing problems in the field. Others
include prime numbers, modular arithmetic, and solutions of equations. Number
theory also gives an introduction to the mathematical discipline of abstract algebra
and the computer science discipline of arithmetic and algebraic computations.
Especially if the ideas in this chapter interest you, these are fields worthy of
further study.

235

4 NUMBER THEORY

SUPPLEMENTARY EXERCISES FOR CHAPTER 4
1. Design a gcd algorithm called GCD2 that is based on the following idea. If

2 divides b and c, then 2 is a factor of gcd (b, c). Furthermore, we may carry
out the division and consider the smaller problem of finding the gcd (b/2, c/2).
If 2 does not divide b or c, try 3, try j. Note that the maximum value
ofj that you need to check is no more than b or &. Why?

2. Use GCD2 to find the gcd of the following pairs: (a) (8, 12), (b) (24, 32), and
(C) (72, 96).

3. In the worst case how many divisions will GCD2 need?

4. Design an algorithm that upon input m will find all prime numbers between
1 and m. (Hint: Use the idea behind GCD2. This idea is attributed to the
Greek mathematician Eratosthenes of the third century B.C. The method is
known as the Sieve of Eratosthenes: First cross out all multiples of 2 except
for 2 itself. Next cross out all multiples of 3 except for 3 itself, and so
on. How far do you have to keep going with this crossing out process?)

5. Use your Sieve of Eratosthenes algorithm to find all prime numbers between
1 and 200.

6. Let U be the set of positive integers less than 49. Set A = {x e U: x is divisible
by 2}, B = {x= U: x is divisible by 3}, and C = {x= U: x is divisible by 5}.
Find IAI, IBI, and ICI. Find 1A u B u Cl. (Hint: Look at PIE from Chapter 1.)
Use the results of this problem to calculate the number of primes less than 50.

7. Two couples are camping in Hawaii with a pet parrot. They collect a pile
of macadamia nuts, but during the night one woman gets up, divides the pile
of nuts into four equal piles and finds one nut left over, which she gives to
the parrot to keep it quiet. She hides one pile, combines the other three piles
into one, and goes back to sleep. Then her husband wakes up, looks suspi-
ciously at the pile, divides the (remaining) nuts equally into four with one extra
nut for the parrot, hides one pile, and goes back to sleep. The same thing
happens two more timey each time the remaining nuts divide evenly into four
equal piles with one nut left over, which is given to the parrot, and one pile
is hidden. In the morning the four graciously divide the remaining nuts into
four equal piies and find they have one macadamia nut left over for the parrot.
What is the minimum number of nuts that they could have had at the start
of the evening’?

8. Look back at the definition of IC(b, c) in Exercise 3.13. Prove that gcd (b, c) =
min {lC(b, c)}.

9. Design an algorithm EXTENDEDEUCLID that first finds the gcd of b and
c as in the algorithm E~CLID and then expresses the gcd as a linear combina-
tion of b and c. The algorithm should use only a constant number of variables,
say 10 at most.

236

SUPPLEMENTARY EXERCISES FOR CHAPTER 4

10. (a) Suppose that n is even. Then the following sum equals a Fibonacci num-
ber. Which one is it?

(J+(n~1)+(n~2)+ (n~3)+””+(2)
(b) Find a similar sum of binomial coefficients that equals a Fibonacci num-

ber when n is odd.

11. Prove the results you obtained in Exercise 10. Hint: Use induction and the
fact that

(n~k)=((n-n+r-: =~-?
12. If the Euclidean algorithm is applied to c = F~ + ~ and b = Fk + ~, what can

you say about the number of Euclidean equations?

13. Suppose that the algorithm EUCLID is modified so that in step 3 the vari-
able q is set equal to the nearest integer to c/b. Run some examples of this
algorithm, including some Fibonacci numbers. Then anaiyze the complexity
of the algorithm in terms of c. Is this version more efficient than EUCLID?

14. Prove Lam&s Theorem: In the Euclidean algorithm the smallest values of c
that produces k Euclidean equations is c = Fk + ~.

15. Prove that if as -1 (mod n) and a’ E 1 (mod n), then agcd(s”) - 1 (mod n).

16. For ordinary integers, xy = O if and only if either x or y equals O. Give
examples to show that this is false in Z., that is, for equivalence classes modulo
n it is not true that

[x] [y]= [0] if and only if [x] = [0] or [Y] = [01.

17. Prove the following about equivalence classes modulo n. Given [x] # [0],
there is a [y] # [0] such that [x] “ [y] = [0] if and only if gcd (x, n) # 1.

18. Consider Z., the integers modulo n, where n = s t with gcd (s, t) = 1. Show
that there are at least four different equivalence classes [i] modulo n such
that [i]2 = [i]. For example, [0]2 = [02] = [0].

19. If n = pq, then explain why the following are true:

p+q=n–(p–l)(q– 1)+1

P–q=/(p+q)2–4n.

Suppose that an algorithm were discovered that given an integer n = pq, a
product of two primes, could quickly calculate (p – l)(q – 1). Then use the

237

4 NUMBER THEORY

facts that

P=*((P+d+(P-d)

9=+((P+9)–(P– 9))

and the results of the previous equations to argue that there would be a fast
algorithm to factor n into its two prime divisors.

20. We define @(m) to be the number of integers i in {1, 2,. ... m} such that
gcd (i, m) = 1. Determine ~(6), 4(7), @(9), 4(10), d(p), and @(p2), where p is a
prime, and ~(pq), where p and q are distinct primes.

21. Prove Wilson’s theorem: If p is a prime, then p divides ((p – 1)! + 1). [Hint:
Show that (p – 2)! -1 (mod p) by pairing numbers with their multiplicative
inverses.]

22. Here are some ideas for an alternative proof of Fermat’s little theorem, which
states that bp – 1 z 1 (mod p) if gcd (b, p) = 1. First show that if strings of beads
of Iength p are formed using b different colors of beads, then the number of
such strings that are not all one color is bp — b. (You should assume that
there is an unlimited supply of beads of each color.) If the ends of each string
are tied together to form a bracelet, explain why the number of different
colored braceIets is (bp – b)/p. (For example, the string of red, blue, and green
beads forms the same bracelet as the string of blue, green, and red beads.)

23. A theorem due to Euler states that if gcd (u, m) = 1, then

s o(m) = 1 (mod m),

where the function q5 is defined in Exercise 20. Verify that this theorem is true
for m a prime or a product of two primes.

24. Prove Euler’s theorem (of Exercise 23) using the following hints: Let A =
{[sl], [s~],. . . . [s@(~)]}, where the ~i are all the integers in {1,2,..., m} that
are relatively prime to m. Let S = {[as 1], [asZ],. . . . [aso(~)]}. Then proceed
as in the proof of Theorem 7.1.

238

SEARCHING AND SORTING

6:1 INTRODUCTION RECORD KEEPING

A college’s financial aid office has just created the job of Director of Student
Employment. The responsibilities of this position include the organization of stu-
dent employment information. Until now this information has been kept in the
following fashion. Each student employee has been assigned a record card on
which is written payroll information, including the student’s social security num-
ber. These record cards are organized in a file drawer arranged in alphabetical
order of the students’ last names. Each time the treasurer’s office issues a payroll
check the director receives a memo containing the payee’s social security number,
the total amount of the check, and the amount withheld for various taxes. Of
course, she wishes that these memos also contained the payee’s name; however,
the particular computer program that the treasurer’s office uses to cut checks
doesn’t have that capability. When a payroll memo arrives, the director examines
each record card in turn to determine if the social security number on the card is
identical to the number on the memo.

Question 1.1. Suppose that there were 20 cards in the director’s file drawer.
(a) When a payroll memo arrives, what is the minimum number of cards that the
director might have to check? (b) What is the maximum number 6f cards that the
director might have to check? (c) About how many cards (on average) would you
expect the director to have to check?

Question 1.2. Suppose that each of the 20 students whose cards are in the file
drawer receives exactly one payroll check each week. (a) What is the total number
of social security number comparisons that the director will have to make to

283

6 SEARCHING AND SORTING

record all of the payroll transactions? (b) If it takes 2 seconds to make a com-
parison and lminute torecord alltheinformation onafile card, will the director
spend more time making comparisons or recording information?

Now let’s answer the previous questions if there are n record cards in the
director’s drawer. The minimum possible number of comparisons occurs when the
payee happens to be the individual whose card is first in the file, the one whose
name is alphabetical] y first. In this instance there is just one comparison to make.
The largest number of comparisons occurs when the payee is the individual whose
card is last in the file. In this case there would be n comparisons to make. R is
plausible to think that the average number of comparisons should be the average
of the smallest number and the largest number. Here that number would be
(n + 1)/2. In fact, this is correct as we see by the following explicit computation.

If every individual in the file is paid exactly once, we can count the total num-
ber of comparisons in the following manner. First, note that the payee who is
listed first alphabetically will require just one comparison to locate. We don’t
know which memo corresponds to this first payee, but whichever one it is, it will
still take just one comparison. Similarly, the payee who is listed second alphabet-
ically will take exactly two comparisons to locate. In general, the payee who is
listed kth alphabetically will take exactly k comparisons to locate (regardless of
when this memo is processed). Thus the total number of comparisons will be

n(n + 1)
l+2+3+””+k+””+n= z .

Since the total number of comparisons needed is n(n + 1)/2, the average number
of comparisons needed will be this total divided by the number of payees. This
yields (n + 1)/2 comparisons on average. The total time needed for comparisons
will be n(n + 1) seconds while the time required to record the payroll information
will be 60n seconds. Thus if n >60, more time will be spent finding the correct
file than writing information to it.

Let’s formalize the director’s task.

Problem. Given an array A = (al, a2,. . . . an) and an object S, determine S’s posi-
tion in A, that is, find an index i such that ai = S (if such an i exists).

Algorithm SEQSEARCH

STEP 1. Input A and S.
STEP 2. For i = 1 to n do

STEP 3. If ai = S, then output i and stop.
STEP 4. Output “S not in A“ and stop.

2$4

6:1 INTRODUCTION RECORD KEEPING

If we count the comparisons in step 3, then the worst case will occur either
if S is not in A or if S = an. In this instance SEQSEARCH requires n comparisons.
Thus the complexity of this algorithm is O(n). Note that in our particular example
with social security numbers, S and the elements in the array A are numbers;
however, all that is required for this algorithm to work is that we can determine
whether ai = S. Thus SEQSEARCH would work equally well when the entries of
A are words.

The director decides that record keeping would be more efficient if the record
cards were kept in order of their social security numbers. The director begins the
sorting process by finding the card with the smallest social security number. She
does this by comparing the number on the first card with the number on the
second. She keeps the smaller of the two and then compares it with the number
on the third card. She picks the smaller and now has the smallest number from
the first three cards.

Question 1.3. In a drawer of 20 record cards, how many comparisons would be
required to be certain of finding the card with the smallest social security number?

We formalize the problem and the response.

Problem. Given an array of numbers A = (al, az,. . . . an), sort these numbers
into increasing order, that is, arrange the numbers within the array so that a 1 <
a25a3s”””<an.

Algorithm SELECTSORT

STEP 1. Input A, an array of n numbers
STEP 2. For i = 1 to n – 1 do {Find the correct ith number.]

Begin
STEP 3. Set TN:= ai {TN = temporary number}
S T E P4. Forj=i+l tondo

STEP 5. If aj < TN, switch aj and TN
STEP 6. Set ai := TN
End {Step 2}

STEP 7. Output A and stop.

Example 1.1. Table 6.1 gives a trace of SELECTSORT applied to the array A =
(4, 7,3). Notice that all the action occurs at step 5.

Since the smallest remaining element is repeatedly selected, this method is
called Selection sort. See Exercises 11 to 13 for a comparison with the sorting
algorithm known as Bubblesort.

285

6 SEARCHING AND SORTING

Table 6.1

Step No. i j at a2 a3 TN

3 1 ? 4 7 3 4
5 1 2 4 7 3 4
5 1 3 4 7 4 3
6 1 3 3 7 4 3
3 2 3 3 7 4 7
5 2 3 3 7 7 4
6 2 3 3 4 7 4

Question 1.4. Apply SELECTSORT to the array A = (6,4,2, 3). Exhibit the
values assigned to i, j, TN, and each location in A after every execution of step 5.

Theorem 1.1. SELECTSORT is a 0(n2) algorithm.

Proof. We count the comparisons, which only occur in step 5. When i is assigned
the value 1, j varies from 2 to n. Thus there are n – 1 different values assigned to
j and n – 1 comparisons when i = 1. When i is assigned the value 2, j varies from
3 to n. Thus there are n – 2 comparisons. For general i, j varies from i + 1 to n.
In this case there are (n – (i + 1) + 1) = n – i comparisons. Hence the total number
of comparisons equals

(n–l)+(n –2)+”+(n-i)++ l=n(n J 1)= O(n2). •1
L

A bit analysis of SELECTSORT would begin by noting that each of the n
numbers in the input array could be represented by M bits. Thus the total input
size would be nlkf. Every comparison of two M bit numbers would require, in the
worst case, M bit comparisons. Thus the total number of bit comparisons would
be Mn(n – 1)/2. If M is constant, then SELECTSORT is quadratic in the bit
analysis also.

Notice that SELECTSORT could work equally well on arrays of words using
alphabetical ordering. In a subsequent section we shall see that SELECTSORT
can operate on sets with more general orderings. We’ll also find that there are
more efficient algorithms to perform sorting as well as searching however, for
small arrays SEQSEARCH and SELECTSORT are worth using, in part because
they are so simple.

Here is the terminology we shall use throughout the rest of the chapter. Each
unit of information to be sorted is called a record. The set of records is called a
file. The element in the record with which the sorting is done is called the key.

286

6:1 INTRODUCTION RECORD KEEPING

Thus in the employment director’s office, her drawer contains the file. Each card
in the file is a record and the key is the social security number on the card. To
keep numerical examples simple, we shall often consider a record that consists
only of the key, but in applications the record will contain more information.
Consequently, interchanging two records in a file will be a more time-consuming
process than that of switching two numbers. If the records are stored in computer
memory and accessed by a language that admits the use of pointers, then the
pointers will be changed rather than the records.

EXERCISES FOR SECTION 1

1. Apply SEQSEARCH to the following arrays and objects $ record the output
of the algorithm.
(a) A=(1,2,3,...,17),S= 15.
(b) A = (1,2,3,... ,17), S = 12.5.
(c) A = <apple, banana, cantaloupe, kiwi, mango, papaya), S = strawberry.
(d) A=(a, b,c,.. .,z), S=h.
(e) A=(a, b,c,.. .,z), S=&.
U) A= (1,2,3, a,b, c, #,$, %A), S=$.

(Note: In Exercises 2 to 7 we assume that, as in Questions 1.1 to 1.3, the record
cards are listed alphabetically and the payroll memos come identified by social
security number.)

2. Suppose that there are 40 student employees who each receive 2 checks per
month. How many comparisons does the director make in a month using
SEQSEARCH? If it takes 2 seconds to make a comparison and 1 minute to
record the payroll information, which requires more time, comparing or re-
cording information?

3. Suppose that there are 20 student employees and exactly 10 receive a check
in any given week. What is the minimum and maximum number of compari-
sons that the director might make in a week?

4. Suppose that there are n student employees who each receive k checks per
month. How many comparisons will the director make in one month?

5. Suppose that there are 2n student employees and that exactly n of these
students receive a check in a given week. What is the minimum and maximum
number of comparisons that might be performed? What can be said about
the average number of comparisons that will be made?

6. Suppose that there are n student employees who each receive one check per
week. If it takes 3 seconds to make a comparison and 30 seconds to record the

287

6 SEARCHING AND SORTING

salary information, for what values of n is more time spent on comparisons
than on recording?

7. Suppose that there are n student employees who each receive one check per
week. If it takes x seconds to make a comparison and y seconds to record
information, then for what values of x and y do comparing and recording
take the same amount of time? For what values of x and y does comparing
take more time than recording?

8. Apply SELECTSORT to the arrays (1,2, 3), <3,2,1), and (3, 1,2, 1). Trace
out the values assigned to i,j, TN, and every location in A after each execution
of step 5.

9. Write an algorithm that, given an array of numbers, (a) selects the largest
number and places it in the last position, (b) selects the next largest number
and places it in the next to last position, and (c), in general, finds the largest
remaining number and places it in the last unfilled position. Analyze the com-
plexity of your algorithm.

10. Write an algorithm that finds the largest and the smallest entry in A =
(al, az,. . . , an), an array of real numbers. Count the number of comparisons
made in the worst case.

11. Look back at the algorithm BUBBLES, Exercise 2.4.13. Recall that this algo-
rithm found the largest entry in an array of n elements and placed it in the
last location. BUBBLES can be readily transformed into a procedure that can
be repeatedly called to sort the entire array. Here is an algorithm that does
just this.

Algorithm BUBBLESORT

STEP 1. Input m, a positive integer, and the array X = (Xl,. . ., XJ
STEP 2. For n = m down to 2 do

STEP 3. Call BUBBLES (n, xl,. . . . Xn)
STEP 4. Output <xl, X2,. ... XJ and stop.

Apply BUBBLESORT to the following arrays, exhibiting the values of
the array, n and j (the index in BUBBLES) throughout.
(a) ‘4= (4, 7, 3).
(b) B = (2, 1,4,3,6, 5).
(C) C = (4,3,2, 1).

12. Count the number of comparisons made by BUBBLESORT. Compare the
number of comparisons made in BUBBLESORT and SELECTSORT. Is one
algorithm more efficient than the other?

13. How might you modify BUBBLESORT to recognize when the array X was
already in order?

288

6:1 INTRODUCTION: RECORD KEEPING

14. One way a record can contain more than the key, is using a 2-dimensional
array A=(ui,j: i=l,. ... nZ, j= 1,. . ., n). This can be pictured as a matrix
with m rows and n columns:

al,l a1,2 “ “ . al,j . . . al,n

a2,1 a 2 , 2 “ . . a2,j . . . a2,n

. . .

Ui, ~ ai,z ““” ,Uij ““’ Ui,n

. . .

Each row might represent the record of one student, and different columns
contain different types of information. Suppose that the key for each record
is stored in the first column so that the key for ith record is the entry ai, ~ for
i= 1,2,. ... m Use the idea of SELECTSORT to design an algorithm to sort
the array A so that the rows of A are rearranged to have their first entries
(the keys) listed in increasing order al,l < a2,1 s . “ “ < a~,l. How many com-
parisons does the algorithm use? In the worst case how many assignment
statements are there? Your answers will depend on n and m.

15. Write an algorithm that finds the second smallest entry in an array A =
(al, az,. . . . a.) of real numbers. Count the number of comparisons made.

16. Here is the idea for an algorithm to find the kth smallest entry in an array
A of n numbers: Find the smallest entry of A, then find the second smallest
entry, and so on, until the kth smallest entry is found. Write an algorithm
that implements this idea and count the number of comparisons; your answer
will be in terms of n and k.

17. Here is another algorithmic solution to the problem of finding the kth smallest
entry in an array A (see Exercise 16) First order the array using SELECT-
SORT and then find the kth entry of the sorted array. Compare the number
of comparisons made by this algorithm with that of Exercise 16, which is
more efficient?

18. Suppose that you have a balance scale with which you can determine which
(if either) of a pair of given coins is lighter in weight. Given n supposedly
identical coins, but such that one weighs less than the others, give a technique
suggested by SELECTSORT to find the light coin. How many comparisons
will your technique require in the worst case?

19. Suppose that you have 16 supposedly identical coins, exactly one of which
weighs less. Using a balance scale, each pan of which can hold as many coins
as you like, how can you find the light coin with only 4 weighings?

289

6 SEARCHING AND SORTING

6:2 SEARCHING A SORTED FILE

We return to the employment director’s problem of transcribing payroll informa-
tion. We assume that there are n employees whose record cards are filed now in
the order of increasing social security number. When a memo arrives from the
payroll office, the director searches for the record whose social security number
is the same as the one on the memo. Suppose she selects the rnth record from
the file, or drawer, and compares the two social security numbers. If the two
numbers are equal, then the director writes the information on the selected record.
If the number on the memo is less than the number on the mth record, then the
correct record must be located in the front portion of the file. Otherwise, the
correct record must be located behind the mth record.

Of course, the director hopes to pick the correct record on the first try. How-
ever, she does not believe in her own good luck. Furthermore (with a touch of
pessimism), the director believes that when she picks a record to compare with the
payroll memo, the record she really wants will be in the larger part of the re-
maining records. Thus the director wants to choose a record in the mth position
so that there are about as many records in front of the mth record as there are
behind the mth record. If the drawer has n records, the director picks the record
roughly in the middle, the record in the rnth position, where m = L(n + 1)/2J. The
director has, of course, assumed a worst-case scenario.

Question 2.1. Find m = L(n + 1)/2] if n = 136, 68, 34, 17, 9, 5, and 3.

Question 2.2. If the drawer contains n records and the mth record is selected,
where m = L(n + 1)/2], when is it the case that there are exactly the same number
of records before and after the mth record? When these two numbers differ, by
how much do they differ? After examining this mth record, what is the largest
number of records that still must be searched?

Let’s assume for the moment that the director has selected m and the number
on the memo is less than the number on the mth record. Then she begins the
search all over again, confining her attention to that portion of the file that is in
front of the mth record. In pseudocode she sets n : = m – 1 and then chooses m
to be (as before) L(n + 1)/2]. On the other hand, if the number on the memo is
greater than the number on the mth record, then the correct record must be in
position j, where (m + 1) <j s n. As above she begins the search all over again,
concentrating on the records in positions m + 1,. ... n. The next record to select
is the one that, as nearly as possible, divides the remaining records into equal
piles.

Question 2.3. For the following pairs (i,j) find the number that will be the index
of the entry that, as nearly as possible, divides (ai,. . . . aj) into two equal pieces:
(6, 8), (10, 17), (18, 33), (35,67), and (69, 136).

290

6:2 SEARCHING A SORTED FILE

In general, as the director progresses, she narrows down the possible records
that might correspond with the memo to a subarray (ai, ui + 1,. ... aj) of the
original array A. She wants to select the “middle” record of this subarray. The
index of the “middle” record is essentially the average of the indices of the end
records. We say essentially because the average might not be an integer. How-
ever, a record that, as nearly as possible, divides the subarray into two equal
pieces has index m = L(i + j)/2J. With this insight we can now formulate the
director’s algorithm.

Problem. Given an array A = (al, a2,. . . . a.) whose elements are numbers listed
in increasing order and a number S, determine S’s position in A, that is, find an
index i (if it exists) such that ai = S.

Algorithm BINAR YSEARCH

STEP 1.
STEP 2.
STEP 3.

STEP 7.

Input A, an array of n numbers in increasing order, and a number S
Set first:= 1, last:= n
While first s last do
Begin
STEP 4. Set mid:= L(first + last)/2]
STEP 5. If S = a~i~, then output “found S at location mid and

stop.
STEP 6. If S K a~i~, then set last : = mid – 1,

Else set first : = mid + 1
End {Step 3}
Output “S is not in A“ and stop.

Note that in step 6 exactly one of two assignment statements is executed, de-
pending on the result of the comparison in that step.

Example 2.1. Table 6.2 is a trace of BINARYSEARCH, where A= (3,4,6,7,9,11)
and S = 9. We begin after the first encounter with step 4.

Table 6.2

Step No. jhst last mid amid

4 1 6 3 6
5 1 6 3 6
6 4 6 3 6
4 4 6 5 9
5 4 6 5 9

Question 2.4. Trace BINARYSEARCH if A consists of the first eight primes in
increasing order and (a) S = 5, (b) S = 10, and (c) S = 17. In each case how many
elements in the array do you examine?

291

6 SEARCHING AND SORTING

BINARYSEARCH can find S without examining all the entries in A because
the elements of A are numbers listed in increasing order. Actually, this algorithm
will work on any set that is totally ordered. See Exercises 4.6.12 to 4.6.14. Since
A is totally ordered, either S z a~i~ or amid < S. Consequently, the value of
(last-first) decreases with each loop and so BINARYSEARCH must terminate.
Furthermore, the transitive property allows the algorithm to check S against amid
and discard about half of the ordered list at each pass through the loop. Exer-
cise 6 asks you to modify BINARYSEARCH so that it works on the set of all
English words in alphabetical order.

Theorem 2.1. BINARYSEARCH requires at most 3 hog (n)J + 4 comparisons to
search an ordered array of n numbers.

Proof. First note that each of steps 3, 5, and 6 requires exactly one comparison.
Thus each time we execute the loop beginning at step 3, we use no more than
three comparisons. The proof will be by induction on the number of elements in
the array. We begin with the base case n = 1. Given the array A = <al), the
algorithm uses two comparisons if S = al. If S # al, then the algorithm cycles
through the loop once and executes step 3 one additional time. Thus a total of
four comparisons is needed in this case.

The inductive hypothesis will be that BINARYSEARCH can search any
ordered array oft elements with at most 3L10g (t)J + 4 comparisons for any t z n.
We suppose that A is an ordered array with n elements. If we find equality the
first time at step 5, we are done, using 2 comparisons. Otherwise, we return to
step 3 with a smaller array, having performed three comparisons. The new array
contains no more than half of the elements of the original array. (See Question 2.2.)
By the inductive hypothesis it takes at most 3Llog (n/2)] + 4 comparisons to search
the new array. Thus the total number of comparisons needed to search the original
array is at most

3 +(3 l_log (n/2)J +4)= 7 + 3Llog (n) – 1]

= 4 -t 3Llog (n)J. ❑

Question 2.5. For each of n = 2, 3, and 4 find two examples of arrays and a num-
ber S, one that requires a full 3Llog (n)J + 4 comparisons and one that requires
fewer.

Question 2.6. Suppose that the director’s file has 1000 records in it. In the worst
case, how many comparisons will it take to find a record with a particular social
security number on it if (a) SEQSEARCH is used and (b) BINARYSEARCH is
used?

How did we originally find the bound 3Llog (n)] + 4 of Theorem 2.1? This ex-
pression works in the inductive proof, but why? Suppose that B(n) denotes the

292

6:2 SEARCHING A SORTED FILE

maximum number of comparisons made by BINARYSEARCH on an array of n
elements. Then in the worst case we perform three comparisons (in steps 3, 5, and
6) and then face a smaller array with Ln/2J elements in which to search for S. B(Ln/2J
denotes the maximum number of comparisons needed to search this smaller array
and so

B(n) = 3 + B(Ln/2J) and B(l) = 4. (*)

This fact doesn’t solve the problem immediately but can lead to a solution as out-
lined in Exercises 13 to 15. In Chapter 7 we pursue a systematic study of how,
given an equation like that of line (*), we can find an expression for the number
of comparisons (or other significant operations) performed in the worst case of an
algorithm.

From Theorem 2.1 we can get an estimate of the amount of work the director
must do each week. If each week one memo arrives for each of the n student em-
ployees, then the next result gives an upper bound on the number of comparisons
necessary.

Corollary 2.2. BINARYSEARCH requires at most

3n[log (n)] + 4n = O(n log(n))

comparisons to search an ordered array for each of the n files located in it.

This result is an immediate consequence of Theorem 2.1; however,
3nLlog (n)~ + 4n is really an overestimate. A tighter upper bound on the number
of comparisons, but one that is still O(n log(n)), is derived in Exercises 9 to 11. In
any case the worst-case behavior of BINARYSEARCH is significantly better than
that of SEQSEARCH. Indeed the worst-case performance of BINARYSEARCH
is better than the average-case performance of SEQSEARCH. The average-case
performance of BINARYSEARCH is analyzed in Exercise 12. In its defense it
should be emphasized that SEQSEARCH will work on any set in an array A re-
gardless of whether or not the elements of A form a totally ordered set.

In the next section we use the ideas of binary search to construct a more
efficient sorting algorithm.

EXERCISES FOR SECTION 2

1.

2.

Let A=(l,2,. . .,7), B = (2,4,6,. ... 16), and C = <1,3,7, 15,31,63). Trace
BINARYSEARCH to find (a) S = 3 in A, (b) S = 8 in A, (c) S = 6 in B,
(d) S=7in B,(e) S=31in C,and(~)S= 14in C.

Suppose that the number on the director’s memo is less than that on the
L(n + 1)/2Jnd record. What is the index of the next record she consults? Express

293

6 SEARCHING AND SORTING

this as a function of n. If the number is greater than that on the L(n + 1)/2Jnd
record, what is the index of the next record she consults?

3. Find all values of n for which SEQSEARCH uses fewer comparisons in the
worst case than 131NARYSEARCH,

4. Find a value of N such that SEQSEARCH uses at least twice as many com-
parisons in the worst case as BINARYSEARCH. Show that for every n > N
SEQSEARCH will always use at least twice as many comparisons in the worst
case as BINARYSEARCH.

5. In the worst case, how many subintervals of the form (afir~t,. . . . ala~t) does
BINARYSEARCH examine in an array with n entries?

6. Suppose that A is an array containing n words, where each word is a (finite)
sequence of letters taken from the English alphabet. Suppose further that your
computer can answer the following questions:

given words w and w’, does w = w’?
does w precede w’ alphabetically?

Write a version of BINARYSEARCH that upon input of ,4, an array of words
listed in alphabetical order, and a word w, searches for w in ,4.

7. Suppose that we are searching an ordered array of n elements for an element
that is in position k (but we don’t know that). For what values of k will
SEQSEARCH use fewer comparisons than BINARYSEARCH?

8. Modify BINARYSEARCH so that, given an array A with entries in increasing
order (al s . . “ s an) and a number S, it finds all indices i such that ai = S.

9. Let n = 2k – 1. Suppose that payroll memos for n students come into the
financial aid office in random order and that records for these n students
are arranged by increasing social security number. For each memo BINARY-
SEARCH is used to locate the appropriate record. At some point, the memo
for the L(n + 1)/2Jnd student arrives and requires only two comparisons to
find the correct record. Memos for two other students will require exactly five
comparisons.
(a) Which numbered students are these?
(b) How many memos require exactly eight comparisons to locate their

records?
(c) What is the next smallest number of comparisons needed and how many

students need this many?
(d) For each possible value of i, determine the number of memos that re-

quire exactly i comparisons.

10. Prove that

1“2+2”5+4” 8+””. +2i–l(3i –1)+””-+2~-l(3k–1) =(3k–4)2k +4.

294

6:3 SORTING A FILE

11. Suppose that n = 2k – 1. Then explain why using BINARYSEARCH to search
an ordered array for each of n records requires

(3k – 4)2’ + 4 = 3nLlog(n)J – n + 3Llog(n)j + 3

= O(n log(n))

comparisons. Is this bound on the number of comparisons better than that
given in Corollary 2.2?

12. Use the results of the preceding exercises to obtain the average number of
comparisons used per record in BINARY SEARCH in the case n = 2k – 1.
Compare this average with that of SEQSEARCH.

13. Suppose that

B(n) = B(Ln/2J) + 3 for n >1, (*)
and

B(1) =4.

Determine the value of B(n) for n = 2, 3,4, 5, 8, and 16.

14. Suppose that n = 2k. Use (*) repeatedly to determine a formula for B(n). Prove
your formula correct by using induction and the equation in (*).

15. Verify that f(n) = 3Llog (n)] + 4 gives the same values as those obtained for
B(n) in Exercise 14. Then prove by induction that B(n) = f(n) satisfies the
equation in (*).

6:3 SORTING A FILE

We have seen that searching for one record in an unsorted file with n records in
it requires O(n) comparisons in the worst case. This contrasts with a worst case of
O(log (n)) comparisons in searching a sorted file. A natural question to ask is
whether or not it’s better to sort before searching or not. For the moment let’s
return to the problem of searching the file for each of the n records during every
payroll period. If there are t payroll periods and the file remains unsorted, the
total number of comparisons required will be 0(tn2). On the other hand, if the
director uses SELECTSORT to place the file in order, then the total number of
comparisons will be

O(FF) + O(tn log (n)). (A)

If, for example, there were n payroll periods (so t = n), then the number of
comparisons would be 0(n3) without sorting and 0(n2 log(n)) with sorting. Thus,
if the number of payroll periods is large, sorting before searching pays off. Sup-
pose, for contrast, that the number of payroll periods is a small constant. Is it

295

6 SEARCHING AND SORTING

better to sort before searching or not? If the only sorting algorithm available were
SELECTSORT, then both solutions be 0(n2). However, if there were a better
sorting algorithm, then one could expect sorting before searching to be faster.

SEQSEARCH requires, on average (n + 1)/2 comparisons to position a record
correctly within a file containing n records. To sort more economically, we need
a way to position a record correctly using fewer comparisons. BINARYSEARCH
provides just such a mechanism.

Problem. Given an ordered array of numbers A = (al, a2,. . . . a,) with al <
azs.. “ s a, and a number D, insert D in the ordered list.

We develop the procedure BININSERT that will insert a number D into its
correct position in an ordered array. The parameters of the procedure are
(r, al,..., ar,a,+l). We assume that upon calling the procedure the r numbers
al, ..., ar are in order and that ar + ~ equals D. Upon return al, ar + ~ should
be in order. Within the procedure we repeatedly compare D with the midpoint of
a subarray in order to find its correct location. Once D’s correct location is deter-
mined, the elements that should follow it are shifted over one space in order to
make room for D. We make this algorithm a procedure, since we shall use it within
BINARYSORT, which will be our first efficient sorting routine.

Procedure BININSERT(r, al,. . . . a,, a, + ~)

{The initial segment of the procedure finds the correct location for a,+,.]

STEP 1. Set first : = 1, last := r
STEP 2. While first s last do

Begin
STEP 3. Set mid:= L(first + last)/2]
STEP 4. If ar + I z amid> then set last:= mid — I,

Else set first : = mid + 1
End {Step 2}

{At this point first equals last +1, and first gives the correct position for ar+l.
The next segment creates a space for and inserts a,+ ~.}

STEP 5. If first = r + 1, then Return. {a,+ ~’s place is correct.}
STEP 6. Set temp: = a,+ ~ {save a,+ ~}
STEP 7. Forj = r + 1 down to (first + 1) do

S TEP 8. aj := aj_l
STEP 9. Set afi~,~ : = temp
STEP 10. Return.

Example 3.1. Table 6.3 is a trace of the procedure BININSERT given the
array A = (3,5,8, 10, 14), r = 5, and D = 11.

296

6:3 SORTING A FILE

Table 6.3

Step No. jirst last mid amid j A

3
4
3
4
3
4
8
9

1
4
4
5
5
5
5
5

5 3 8 (3,5,8, 10,14, 11)
5 3 8
5 4 10
5 4 10
5 5 14
4

6 (3, 5,8,10,14, 14)
6 (3, 5,8,10,11, 14)

Question 3.1. Trace BININSERT if A = (2,5,7,9, 13,15, 19) and D = (a) 1, (b) 4,
(c) 14, and (d) 23.

Notice the similarity between BINARYSEARCH and BININSERT. The test
for equality has been eliminated because if ar + 1 = amid, this procedure correctlY
inserts a,+ ~ in position mid + 1 or higher. Exercise 12 outlines a proof that
BININSERT works correctly.

Question 3.2. If.4 = <2,5,7,9,13,15, 19), trace BINARYSEARCH and BININ-
SERT with S = D = 16. Compare the two algorithms.

Before discussing the complexity of BININSERT, we use this procedure to
develop an algorithm to totally order an array.

Problem. Given an array of n numbers (al, a2,. . . . a.), place them in increasing
order.

Algorithm BINAR YSORT

SmP 1. Input n and an array (al,. . . ,a.)
STEP 2. For m = 2 to n do {insert mth item}

SmP 3. Call BININSERT ((m – 1), al,. . . . am)
STEP 4. stop.

Question 3.3. Given the array (13, 23,17,19,18, 28) trace out the algorithm
BINARYSORT.

Once we determine the complexity of the procedure BININSERT, the com-
plexity of algorithm BINARYSORT will be easy to analyze, since BININSERT
is used n — 1 times in BINARYSORT. The steps in BININSERT are either as-
signments or comparisons. We count the latter.

297

6 SEARCHING AND SORTING

Theorem 3.1. BININSERT requires at most 2Llog (r)j + 4 comparisons to insert
the (r + l)st term into an already sorted list of r items.

Proof. The only steps containing comparisons are steps 2, 4, and 5, and each of
these executes exactly one comparison. We proceed by induction. If r = 1, then
after the first execution of step 4, either first = 1 and last = O or first = 2 and
last = 1, depending on whether az is less than al or not. Step 2 is repeated to check
this. Step 5 is required to rearrange the array. Thus four comparisons are used
in total.

The induction hypothesis will be that for t K r BININSERT requires at most
2Llog (t)j + 4 comparisons to insert the (t + l)st item into any already sorted list
with t items.

We suppose that A is an ordered array with r elements and a,+ ~ = D is to be
inserted. It takes two comparisons to execute through step 4 the first time. After
the first execution of step 4, if a, + ~ K a~i~ then last is assigned the value mid – 1.
Thus we restrict our attention to (al,. . . . amid_ ~, a, + ~). There are mid – 1
ordered values in this array. Now

‘id-l= l:l-l=l=l<~

After the first execution of step 4 if a,+ ~ > amid, then first is assigned the value
mid + 1. Thus we restrict our attention to (amid+ 1, . . . , a,, a,+ ~). The number
of elements in this smaller ordered array is (r – (mid + 1) + 1) = r – mid. Now if
r = 2j,

r—mid=r —

=2j–

On the other hand, if r = 2j + 1,

r— mid = 2j

l+r
2.–1

Hl+2j
=2j–j=j=~.

2

+ 1 — 11+:+11
=2j+l–(j+l)=j K~.

Thus in either case the smaller ordered array has no more than r/2 entries. By
the inductive hypothesis we can insert D into the new array using at most
2110g(r/2)j + 4 comparisons. Thus the total number of comparisons required will

298

6:3 SORTING A FILE

be at most

2 + (2Llog (7-/2)J +4) = 2Llog (r) – lj + 6 ‘

= 2Llog (r)] + 4. ❑

Question 3.4. For each of the examples in Question 3.1 count the number of
comparisons and verify that these are each no more than 2Llog (7)J + 4.

The formula 2Llog (n)] + 4 in the preceding complexity analysis appears out
of the blue. That BININSERT and BINARYSEARCH have similar complexity
analyses is not surprising. To motivate the particular formula we obtain, we
examine the proof of Theorem 3.1. If C(n) denotes the maximum number of com-
parisons made when BININSERT inserts a number into a sorted array of length
n, then

c(n) = C(Ln/2J) + 2,

since two comparisons are performed, and then the algorithm proceeds to work
on an array containing at most Ln/2J entries. This equation for C(n) is like that of
line (*) of Section 6.2 and can be used to derive the formula C(n) = 2Llog (n)] + 4.
This derivation will be discussed in depth in Chapter 7.

Theorem 3.2. The number of comparisons required by BINARYSORT to order
an array of n numbers is O(n log(n)).

Proof. The only comparisons in BINARYSORT are performed within the
BININSERT procedure. BININSERT is called n – 1 times. The number of com-
parisons in each call is at most 2Llog (n – l)j + 4. Thus the total number of
comparisons will be no more than

(n - 1)(21-log(n – 1)] +4) K n {2(log (n)) + 4}
s 6n log(n). ❑

BINARYSORT is thus considerably more efficient than SELECTSORT, a O(n2)
algorithm.

Question 3.5. Count the number of comparisons made in Question 3.3 and com-
pare this number with (n – l)(2Llog (n – 1)] + 4) for n = 6.

It is instructive to contrast the analyses presented in Theorems 3.1 and 3.2.
We showed that BININSERT required at most 2Llog (n)] + 4 comparisons to
insert the (n + l)st item into an already sorted array. In Exercises 9 and 10 you

299

6 SEARCHING AND SORTING

will see that this bound is sharp. We mean that there are problem instances where
2Llog (n)J + 4 comparisons are, in fact, required. Thus there can be no upper
bound for the number of comparisons that is always better than the one given in
Theorem 3.1.

Notice that our analysis of BINARYSORT was not so sharp. In particular,
we assumed that each call to BININSERT needed the full 2Llog (n – l)J + 4 com-
parisons whereas we really need only 2Llog (l)] + 4 comparisons for the first in-
sertion, 2Llog (2)] + 4 comparisons for the second, and, in general, 2 Llog (i)] +.4
comparisons for the ith insertion. Thus the total number of comparisons we per-
form is at most

(2 Llog(l)J + 4) + -.. + (2L10g(n – 1)] + 4)

<(210g(l) +4)+ ”””+ (210g(n–1) +4)

=4(n– l)+2{log(l)+ ““” +log(n– 1)}

= 4(n – 1) + 210g((n – l)!). (B)

Exercise 13 asks you to use equation (B) to provide a smaller upper bound
than the one obtained so far for BINARYSORT. However, no analysis of the com-
plexity of BINARYSORT can demonstrate that it is more efficient than O(n log (n)).
The goal of Section 5 is to show that SELECTSORT, BINARYSORT, and every
sorting method that uses comparisons must perform at least a constant times
n log(n) comparisons in the worst case. Before we get to that, we shall see in the
next section that trees provide an illustrative model of these searching and sorting
algorithms.

What effect does BINARYSORT have on the employment director’s work
load, as presented in the first paragraph of this section? If she first sorts the
employment file using BINARYSORT, using O(n log(n)) comparisons, and then
during t time periods processes information using BINARYSEARCH with
O(tn log(n)) comparisons, then the total number of comparisons is

O(n log(n)) + O(tn log(n)) = O(tn log(n)). (c)

Comparing the results of (C) with those of (A), we see that the latter process is at
least as efficient as the former and for some values of t is more efficient.

EXERCISES FOR SECTION 3

1. Trace BININSERT on the following data:
(a) A = (1,2,3), D = 2.5.
(ZJ) A= (1,2,3), D=0.
(C) A = <1,2,4), D = 2 .
(d) A = (2,3,5,7, 11,13,17, 19), D = 12.
(e) A = (2,4,6,8, 10), D = 5.

300

6:3 SORTING A FILE

2. Count the number of comparisons made in each part of Exercise 1. Compare
this number with 2Llog (r)] + 4 for the appropriate values of r.

3. Here is another algorithm to search for D in an array A:

STEP O. Input A = (al, a2,. . .,a,), set ar+l := D
STEP 1. Set first := 1, last := r
STEP 2. While first z last do

Begin
STEP 3. Set mid:= L(first + last)/2J
STEP 4. If a,+ ~ s amid, then set last : = mid

Else set first: = mid + 1
End

STEP 5. If afi,~, = a,+ ~, then output “found D at location first” and stop.
Else output “D is not in A“ and stop.

Run this algorithm and BINARYSEARCH on A = <1,2,3,4,5,6,7) with
D = 1.5, 2, and 2.5.

4. Compare the algorithm BINARYSEARCH and that given in the preceding
exercise. Determine which one performs fewer comparisons.

5. Suppose that the employment director uses SEQSEARCH on an unsorted
file of n records to register n students’ payroll data during t time periods,
making f(n, t) comparisons as described in the first paragraph of this section.
Let g(n, t) denote the number of comparisons made if the file is first sorted
using SELECTSORT and then the same recordings are made using BINA-
RYSEARCH [see line (A) in text]. Find the smallest value of t such that
g(n, t) K f(n, t).

6. Let g(n, t) be as defined in the preceding problem and let h(n, t) be the number
of comparisons made if the file is first sorted using BINARYSORT and then
the memos are recorded for n students on n records in t time periods using
BINARYSEARCH. Compare g(n, t) and h(n, t).

7. Run BINARYSORT on each of the following (a) A = (1,2, 3), (b) A =
(2,1,3), (c) A = (3, 1,2), and (d) A = <3,2, 1).

8. Count the number of comparisons made in the preceding exercise and com-
pare this number with (n – l)(2Llog (n – 1)] + 4) for the appropriate value
of n.

9. For an n of your choice find an example of an array A of n numbers and
a number D on which BININSERT performs exactly 2Llog (n)] + 4 com-
parisons.

10. Let n = 2k with k an arbitrary positive number. Describe an array A of n
numbers and another number D on which BININSERT performs exactly
2Llog (n)J + 4 = 2k + 4 comparisons.

301

6 SEARCHING AND SORTING

11.

12.

13.

14.

Explain why BINARYSORT will always perform fewer than 6n log(n) com-
parisons when sorting an array of length n. Will BINARYSORT perform
fewer than (n – l)(2Llog (n – l)J +4) comparisons on any or all arrays of
length n?

Prove that BININSERT works correctly by proving each of the following
statements.
(a) While first s last, a,+, should be stored in one of the entries afi,,t,

Ufirst+l, . . . , or al~~t + ~. In particular, check that this is so when ar + 1 =
amid.

(b) Eventually either last equals first or first+ 1.
(c) If last equals first or first+ 1, then BININSERT places a,+ ~ in the

correct position.

Stirling’s formula, discussed in Chapter 3, implies that

(())
n

n!= O&~ .

Use this result together with equation (B) to derive an upper bound on the
number of comparisons made in BINARYSORT. How does this upper bound
compare with the upper bound derived in the text?

Suppose that A is an array of n elements that is already sorted (but we may
no; ‘know that in advance). Which algorithm works faster on A, SELECT--
SORT or BINARYSORT? Explain.

6:4 SEARCH TREES

Suppose that we search an ordered array A = <a ~, az,. . . . a~) for a particular
object S. BINARYSEARCH would have us first compare S with a~. There are
three possible outcomes of such a comparison. If S = a~, we’re done. If S K a~
and S is in A, then it must be one of al, az, or as. Finally, if S > ag and S is in
A, then it must be one of as, a~, or a,. In this section we show how to use a tree
structure to illuminate these logical alternatives.

Recall from Chapter 5 that we can think of a graph as a set of points in the
plane and a set of line segments or arcs joining pairs of these points. A graph that
is both connected and acyclic is called a tree.

Here is how BINARYSEARCH as applied to the seven-element set A = (al,
az, ..., a~) can be modeled by a path within a tree of seven vertices. Begin with
a single vertex labeled a~. Think of two edges coming out of a~, one labeled by
“K” and the other labeled by “ > .“ (See Figure 6.1.) The K edge joins a~ with az
and the > edge joins a~ with a~. In terms of BINARYSEARCH if S equals a~,
we stay at the vertex labeled al and we are done. If S < a~ we proceed along the

302

6:4 SEARCH TREES

a4

<

a2

<

al a3 a5 a7

Figure 6.1

edge labeled z to the vertex labeled Uz. If S > a~ we proceed along the edge
labeled > to the vertex labeled a~. The vertices Uz and a~ each have two additional
edges coming out of them labeled with K and >. The new edge from az labeled
< terminates at a ~ while the new edge from az labeled > terminates at as. Simi-
larly, the new edges from a~ terminate at as and a7. For example, if S = a5,
BINARYSEARCH would examine a~, followed by a6 and then’ a5. If S is not
present in A, we should also perform comparisons, for example, with a4, ab, and
a ~ and then deduce that S was not in A. In all cases these comparisons correspond
to a path within the so-called search tree shown in Figure 6.1.

Question 4.1. Draw a search tree to illustrate a binary search of an array of 15
elements.

Recall that within a graph the degree of a vertex is the number of edges
incident with that vertex. In a tree or forest a vertex of degree 1 is called a leaf.

Definition. A tree is called binary if

(1) it possesses a distinguished vertex called the root whose degree is either 2
or O, and

(2) every vertex of the tree other than the root has degree either 3 or 1.

Note that the tree in Figure 6.1 is binary. It is customary to draw a binary tree
“upside down” with the root at the top, as in Figure 6.1. From the root (if its
degree is not O) there is a left edge down and a right edge down. Similarly, every
other vertex that is not a leaf has a left and a right edge down. One of the nice prop-
erties that binary trees with three or more vertices have is that if the root and
its incident edges of a binary tree are erased, then two smaller binary trees are
formed. These are called the left and right subtrees of the original tree.

Example 4.1. Figure 6.2 exhibits a binary tree with five vertices.

303

6 SEARCHING AND SORTING

root

Figure 6.2

Question 4.2. (a) Draw all binary trees with fewer than eight vertices; (b) draw all
binary trees with two, three or four leaves.

Question 4.3. Draw the left and right subtrees that are formed when the root and
its two incident edges are deleted from (a) the tree in Figure 6.1; (b) the tree in
Figure 6.2; and (c) every tree with two or three leaves (see Question 4.2).

Definition. In any tree with a designated root the depth or level of a vertex x is
the number of edges in the unique path from x to the root. The depth of the tree
is the maximum depth of any vertex in the tree. Alternatively, it is the length of
a longest path from the root.

In the tree shown in Figure 6.1, aq, the root, is at level Q a2 and U6 are at
level 1; and al, as, as, and a7 are all at level 2. Thus the tree has depth 2.

Question 4.4. If T is a binary tree of depth d >0 and T’ is the left subtree of T,
what can you say about the depth of T’?

Theorem 4.1. A binary tree has at most 2d vertices at depth d.

Proof. The proof is by induction on d. The root is the only vertex at level O. By
definition there are either two or zero vertices adjacent to the root, and these
vertices are at level 1. We assume that there are no more than 2k vertices at level k
in a binary tree. Consider level k + 1. Every vertex at this level must be adjacent
to exactly one vertex at level k by the definition of tree (see Exercise 1). Since each
vertex at level k has degree 1 or 3, it is adjacent to either zero or two vertices at
level k + 1. Thus the number of vertices at level k + 1 can be no more than twice
the number of vertices at level k. If N~ denotes the number of vertices at level k,
we have

‘k+l ~ zNk < 2(2k) = 2k+l. ❑

304

6:4 SEARCH TREES

Corollary 4.2. A binary tree of depth d contains at most 2d + 1 – 1 vertices.

Proof. A binary tree of depth d has vertices at levels 0,1,. ... d. By the preceding
theorem there are at most 2k vertices at level k. Thus the total number of vertices
in the tree is at most

~_2d+l

1+2+4 +.+2k+”. ”+2d= ~_2 by Question 2.3.3

=2d+l_l ❑

A binary tree of depth d with 2d~ 1 – 1 vertices is called a full binary tree.

Question 4.5. Determine the depth and the number of vertices in the smallest
full binary tree that has n or more leaves.

Now we specify the connection between binary trees and our problem of
searching a sorted array. Suppose that the array A contains n = 2k — 1 elements
in order. Then the corresponding binary tree will be a full binary tree of depth
k – 1 with n vertices. In BINARYSEARCH the first element of the array ,4 with
which we compare S is the element a~i~. Note that mid = 2k -1. The element a~i~
will label the root of the binary tree that we are about to search. If we find that
S = a~i~ (in step 5), then the algorithm stops. We can similarly stop searching the
tree. If S < a~i~, we set

last: =mid–1=2k-1–1

and

‘id:= P~1ast)l=2k-2
This corresponds with traversing the edge from the root of the binary tree

down to the root of the left subtree; this vertex is labeled with the new a~id =
azk-2. Similarly, if S > amid, we traverse an edge to the right subtree. If we have
not found S, we repeat this process. Each time we examine a new amid it will be
the root of a subtree of the original binary tree. Each such subtree will contain
2j – 1 vertices for some j. In the end either we find S and terminate our path
down from the root of the tree or we reach a leaf without finding S and stop. The
number of comparisons made in BINARYSEARCH is the same as the number
of vertices visited on the corresponding path in the tree.

More generally, if A contains n elements where

2k-1<n<2k,

305

6 SEARCHING AND SORTING

then

k– 1 <log(n) <k,

and

k – 1 = Llog (n)].

Set

n’=2k —l.

We model the search of A by a search of the full binary tree of depth k – 1
containing n’ vertices, labeled as before. If n’ > n, some of the labels of vertices,
namely an+ l,. . ., a.,, do not correspond with array elements.

Question 4.6. Compute n’ if n = 15, 26, and 31. Show that, in general, n’ > n.

Question 4.7. Draw and label the tree that corresponds with a binary search of a
23-element ordered array.

One advantage of the binary tree model of BINARYSEARCH is that it sup-
ports a simple complexity analysis. Suppose that we are searching an ordered

d – 1 < n < 2d, then the elements of the array correspondarray of n elements. If 2 –
with some of the vertices of a full binary tree of depth d – 1. Comparing S with
array elements corresponds with visiting vertices in the tree. Since each time we
traverse an edge to the root of a new subtree, the depth of the visited vertex in-
creases, we shall in the worst case visit vertices at depth O, 1, and (d – 1).
Correspondingly, we need to compare S with no more than d elements of the array.
Since a search tree with n vertices has depth Llog (n)J, we can determine whether S
is present in an ordered array of n elements by examining no more than Llog (n)J
elements of the array. If it takes just a constant number of steps for each such
examination, then it is immediate that BINARYSEARCH is O(log (n)). In contrast
in Exercise 15 we explore how SEQSEARCH can be modeled by searching a graph
that is just a path.

It is possible to think of a binary tree model of the first four steps of
BININSERT in much the same way. Recall that these steps determine the location
of the next element to be inserted. Continuing the model is awkward because the
insertion of a single element can cause a radical change in the binary tree. Exer-
cise 13 illustrates this.

Although it is difficult to use trees to model BINARYSORT, there is an ele-
gant sorting method called TREESORT that is based on binary trees. Suppose
that we want to sort A = <al,. . . , an), where the entries of A are distinct. (See
Exercise 20 for the case of repeated elements.)

306

6:4 SEARCH TREES

7 13 41 20 16 9 M M

Figure 6.3

Algorithm TREESOR T

STEP 1. Set k = [log (n)l and construct the full binary tree of depth k. {As
you saw in Question 4.5, this tree has at least n leaves.} Assign each
element in the array to a leaf. Pick a number M that is greater than
any element in the array and assign M to every blank leaf.

Example 4.2. Given A = (7, 13,41,20, 16,9), k = [log (6)] = 3. Figure 6.3 exhibits
the full binary tree of depth 3 with its leaves labeled.

STEP2. Forj=k–1 down toO do
Assign to each vertex at level j the minimum of the two values as-
signed to its neighbors at level j + 1.

Example 4.2 (continued). We show in Figure 6.4 the full binary tree after step 2.
(At this stage the minimum value in the array is assigned to the root of the binary
tree.)

STEP 3.
STEP 4.

STEP 9.

Set b ~ : = value assigned to the root
For i =
Begin
STEP 5.
STEP 6.
STEP 7.

STEP 8.
End
stop.

2 tondo

Erase every occurrence of bi _ ~ from nodes of the tree.
Assign M to the leaf that originally was labeled with bi - ~
Forj=k–ldown toO do
Assign to the vertex at level j that used to be labeled bi _ ~
the minimum of the two values assigned to its neighbors at
level j + 1
Set bi : = value assigned to the root

Example 4.2 (continued again). We exhibit in Figure 6.5 the labeled tree after the
first execution of step 7; ~1 = 7.

307

6 SEARCHING AND SORTING

7

Figure 6.4

9

Figure 6.5

After the execution of step 7 the ith smallest value in the array is assigned to
the root and thus in step 8 is assigned to bi.

Question 4.8. Complete this execution of TREESORT.

Exercises 17 to 19 ask you to show that TREESORT is a O(n log (n)) algorithm.
Binary trees are useful models for many topics in combinatorics and computer

science, for example, see Exercises 5 and 6. We shall use binary trees again in the
following sections and in Chapter 8.

EXERCISES FOR SECTION 4

1.

2.

In the proof of Theorem 4.1 we claimed that every vertex at level k + 1 is
adjacent to exactly one vertex at level k. Why is this so?

If x is a vertex in a rooted tree, let l(x) denote the level of x, Show that if u is
adjacent to u’, then 1(u) = l(u’) + 1 or l(v) = l(u’) — 1. Give a proof or a counter-
example to the converse of this statement.

308

6:4 SEARCH TREES

3. If T is a binary tree of depth d, what is the smallest number of vertices that T
might have at level k (for k = 1,. ... d)?

4. What is the smallest number of vertices that a binary tree of depth d might
have?

5. For what integers n is there no binary tree with exactly n vertices? For what
integers n is there no binary tree with exactly n leaves? Prove your answers
by induction.

6. We can also represent the subsets of a set (al, U2,. . . . u.) with a full binary
tree. Suppose that we label the root of the tree with @, the empty set. Then
the left subtree will correspond with subsets not containing al and the right
subtree subsets containing al. Similarly, the left subtree within the left subtree
will correspond with subsets containing neither al nor a2, whereas its right
subtree will correspond with subsets containing az but not al. Each node can
be labeled with a subset, representing the choices of elements made along the
path from the root to that node. Using this idea, construct the binary tree
associated with all subsets of a 3-set and of a 4-set.

7. In a full binary tree there are 2k vertices at level k. Find a correspondence
between the subsets of a k-set and the vertices at the kth level of a full binary
tree.

8. Prove Theorem 4.1 by “erasing the root.”

9. Prove Corollary 4.2 by “erasing the root.”

10. Suppose that n = 2k – 1 and consider a full binary tree with vertices labeled
with the elements of an array A = <al, . . , an) corresponding with BINARY-
SEARCH. Which elements label vertices at depth 1? At depth 2? What are
the labels of the leaves?

11. Repeat Exercise 10 in the case of arbitrary n. How can you tell from i and j
if ai and aj label vertices at the same level?

12. Trace out the path corresponding to BINARYSEARCH when this algorithm
is applied to the following arrays, modeled by binary trees, and elements S:
(a) A as in Figure 6.1, S = al.
(b) A as in Figure 6.1, as K S K aq.
(c) A as in Question 4.7, S = al~.
(d) A as in Question 4.7, S = a23.
(e) A as in Question 4.7, al~ z S z al~.

13. Suppose that you want to insert D = 31 into the sorted array .4 =
(3, 6,9,12,15,18,21,24,27, 30,33, 36). Construct a binary tree to model the
sorted array A both before and after the insertion of D. In how many locations
do these two trees differ?

14. If T is a binary tree with q leaves, how many vertices of degree 3 does T have?

309

6 SEARCHING AND SORTING

15. Explain how the algorithm SEQSEARCH can be modeled by traversing a
graph that is a path.

16. Run TREESORT on the following arrays, showing the binary tree and its
node values at the end of each execution of steps 3 and 8: (a) A = <1,2, 3);
(b) A = (2, 1,3); and (c)A= (1,5,2,6,3,4).

17. How many comparisons are performed in step 2 of TREESORT?

18. In TREESORT how may bi _ ~’s get erased the ith time through the loop?
How many comparisons will you need to relabel the tree?

19. Show that TREESORT is a O(n log(n)) algorithm.

20. Rewrite TREESORT so that it sorts arrays with repeated entries.

6:5 LOWER BOUNDS ON SORTING

A new employment director wants to improve the efficiency of the student employ-
ment office. After conversations with the previous director, the new director is
convinced that she should sort her payroll drawer at the beginning of the year.
She learns that the previous director originally used the quadratic algorithm
SELECTSORT and then switched to the n log(n) algorithm BINARYSORT, but
the new director does not want to keep switching algorithms each year when the
local algorithm experts come up with new and faster (and possibly more complex)
sorting algorithms. She decides she would like once and for all to find a fastest
sorting algorithm and guesses that there must be a linear algorithm, one that runs
in O(n)-time on an array of n elements. So she calls her friends taking the computer
science course on algorithms and asks for such a linear-time sorting algorithm.

The algorithm students report that they haven’t learned about such an algo-
rithm yet, but maybe they will later in the semester. In the meantime they suggest
that the director might like to try Treesort, Shakersort, or Mergesort. These are
all n log(n) algorithms. The director rejects these offers. She is trying to run an
efficient office and is not interested in becoming an algorithmic specialist herself.
However, she decides that she will, on her own, search for a linear-time sorting
algorithm or else prove that there is no such algorithm.

The new director has studied some discrete mathematics and begins with small
examples of arrays. If she has an array like <al, az, a3), then in how many different
orders might the array appear? For example, the array might be “in order” so that
al s az < as or “out of order” with al s as < a2 or a 2 s as s al, and so on.
How many comparisons must be made to sort these elements into increasing
order? The element a 1 can be compared with az and with a3, and the eiements
az and a3 can be compared with each other. Are all these comparisons necessary?

Question 5.1. For n = 3, 4, and 5, given an array of n distinct items A =
(al, a2,. . . . an) decide in how many different possible orderings these elements

310

6:5 LOWER BOUNDS ON SORTING

might appear. Then determine the total number of pairwise comparisons that can
be made among the members of the set.

Proposition 5.1. There are at most n! different possible orderings of an array of n
elements. In such an array there are n(rz – 1)/2 distinct pairs of items that might
be compared.

Proof. If the array entries are distinct, there are the same number of orderings as
permutations of an n-set. If the entries are not distinct, the number of different
orderings is less than n!, since some permutations produce the same ordering. (See
also Exercises 2 and 3.) In either case the number of possible comparisons between
pairs is the same as the number of 2-subsets of an n-set or (equivalently) the number
of edges in an n-clique. ❑

Proposition 5.1 tells us (and the employment director) that if we make all possible
comparisons, we have a O(n2) algorithm, an algorithm as slow as SELECTSORT.
We know we can use cn log(n) comparisons for some constant c, but can we use
even fewer than this?

Any sorting algorithm that uses comparisons contains a sequence of com-
parisons, say Cl, C2,. . . . C~. Regardless of the particular sorting algorithm used,
what can we say about the value of k, the number of comparisons, in the worst
case? We model the problem with a binary search tree.

Example 5.1. Given three distinct objects, say al, az, and aq, we make a binary
search tree labeled with possible comparisons and possible outcomes. Suppose that
we begin by comparing a ~ and a2. There are two possible outcomes, either a 1 s
a2 or al > az. We label the root of the binary tree with (a ~: a.J for this comparison;
the edge from the root to the left subtree is labeled”s” to denote the first possible
outcome and the edge to the right subtree is labeled “>” for the second outcome.
See Figure 6.6. Suppose that we next compare al with as and label the two nodes
on level 1 with (a 1: a3) and their left edges with”s” and their right edges with”> .“
Notice that in two of the four possibilities we know the correct ordering and have
written that in as a leaf of the tree, but in the remaining two cases we need to
make the additional comparison of az with a3.

The results of Example 5.1 show that at least with this order of comparisons
three comparisons are needed in the worst case.

Question 5.2. As in Example 5.1 construct and label a binary search tree when
comparisons are made in the following ordec
(a) al with az, a2 with a3, al with a3.
(b) al with as, al with a2, az with a3.

311

6 SEARCHING AND SORTING

al: a2

alGag Ga3 a1<a3<a2 a2<a3<a1 a3<a2Ca,

Figure 6.6

The results of Example 5.1 and Question 5.2 convince the employment director
that three comparisons are needed to sort a three-element array. This finding is
inconclusive from the complexity point of view, since all possible comparisons are
needed in the worst case. On the other hand, three comparisons for a three-element
array might indicate the possibility of a linear-time algorithm.

Example 5.2. Suppose that we sort A = <al, a2, a3, aJ. Here is part of the search
tree (Figure 6.7). Notice that once it is known that as z al < aJ, then it is imPos-

a3<a1Ga2<a4

Figure 6.7

312

6:5 LOWER BOUNDS ON SORTING

sible to have az < as. The path corresponding to this impossibility terminates with
a leaf labeled with the empty set.

The director also realizes that she can analyze any sorting algorithm using the
binary tree structure. If any algorithm makes comparisons Cl, C2,. . . . Ck in that
order, then we represent this algorithm as a binary search tree of depth k. The
root is labeled c 1, the two nodes at depth 1 are labeled C2, and, in general, the
nonleaf nodes at depth i are labeled Ci + 1 for i = O,. . . . k — 1. The leaves are
each labeled with either the empty set or with one of the n! possible orderings of
the array. The label on a leaf at the end of a path from the root is the ordering
specified by the series of s and >s on that path; as in Example 5.2 there may be
no such ordering. If k comparisons are made in the worst case, then the binary
tree representing these comparisons has depth k. By Theorem 4.1 there are at most
2k leaves in such a tree. Thus we must have

2 k > n!, or k > log(n!). ❑

We have proved the following theorem.

Theorem 5.2. It requires at least log (n!) comparisons to sort an n-element set
in the worst case.

Another approach to the proof of this theorem, using a game and binary
numbers, is given in Exercises 16 and 17.

The director realizes now that an algorithm that performs sorting by com-
parisons must in the worst case do at least log (n!) comparisons. Her next goal is
to determine the size of log (n!) or at least a lower bound on log (n!). The next
arithmetic lemma will lead to a lower bound on log (n!).

Lemma 5.3. If n > i >1, then i(n + 1 – i) > n.

Proof. Since n > i and (i – 1) >0, we have

(i – l)n > (i – l)i.

Adding n to both sides and subtracting (i – l)i yields

in–i(i —l)>n,

which simplifies to

i(n —i+l)>n. ❑

313

6 SEARCHING AND SORTING

We now use the lemma to estimate log (n!).

log(n!) =log(n(n– 1)... .3 .2.1)

= log {[(n) l][(n – l)2][(n – 2)3] “ ~ “ [(n – i + l)i] “ . “}

by regrouping factors

=log[(n)l] +log[(n –l)2]+”””+log[(rl –i+l)i] +””” (A)

by the additive property of logs

>log(n) +log(n) +””” + log(n)+”” (B)

by Lemma 5.3.
Note that if n is even, the sum in (A) ends with log [((n/2) + l)(n/2)]. Hence

there are n/2 terms and so (B) equals (n/2) log(n). Thus

()log (n!) > ~ log(n).

(For the case of n odd, see Exercise 9.)

Corollary 5.4. If S(n) is defined to be the number of comparisons needed in the
worst case to sort a file with n items using comparisons, then

S(n) > log(n!) and n log(n) = O(S(n)).

Corollary 5.4 is often referred to as the information theoretic lower bound on
sorting. What it means is that there cannot be a sorting method based on pairwise
comparisons whose complexity is of order less than n log (n). In other words, every
such sorting algorithm will be big oh of some function in the functional hierarchy
(as developed in Chapter 2) that is at least as big as n log (n). So far, we have seen
three sorting procedures, one that is O(n2) and two that are O(n log(n)).

Example 5.3. Suppose that we want to sort A = (al, az, as, a~}. As we have
already seen, three elements in an array can be sorted with three or fewer com-
parisons. Suppose that we find that al < az s as and we want to find the position
of a~. We could compare a~ with each of the first three to find its position or we
could use the idea of BINARYSORT. Then we would compare a~ with a2. If
a4 < a2, we compare a4 with al. If aa > a2, then we compare a4 with aj and so
determine the final order. In total, five comparisons have been made in the worst
case. Since [log (4!)1 = 5, Corollary 5.4 tells us that a file with four items cannot
be sorted using fewer than five comparisons.

314

6:5 LOWER BOUNDS ON SORTING

Question 5.3. Draw the binary search tree for a four-element array when the
comparisons are made as suggested in Example 5.3. Count the number of com-
parisons in the worst case. (Note that to parallel Example 5.3 we allow different
nodes on the same level of the binary tree to receive different comparison labels.)

Notice that we talk repeatedly about “sorting by comparisons.” How else
might a sorting algorithm proceed? In fact, in some special cases comparisons
are not necessary these ideas are explored in Section 8 and in Supplementary
Exercises 29 to 32. For example, the algorithm BUCKETSORT is a linear-time
sorting algorithm but is of limited applicability because of its excessive storage
requirements.

The director is now convinced that there is no algorithm that uses com-
parisons and is essentially better than BINARYSORT, and so she decides to stick
with this n log(n) algorithm. However, due to increased tuition and decreased
financial aid the number of student employees doubles and then grows to triple
the original number of students.

Question 5.4. Suppose that the number of student employees increases from
600 to 1200. If the employment director first sorts her file with n log(n) com-
parisons and then performs n log(n) more comparisons for each of the four payroll
periods in one semester, how many comparisons are performed for 600 and for
1200 students? And for 1800 students?

The employment director finds she can’t keep up with the explosion of work
in her office as the number of employees doubles and then triples. She petitions
the president’s office for an assistant. The petition is granted, and the president
even offers, if need be, to provide a second assistant. The next sections will present
ways in which the director can use her assistants effectively.

EXERCISES FOR SECTION 5

1. Given an array of n distinct elements, we have said that there are n! possible
initial orderings of the n elements. For n = 3 and n = 4, give examples of n!
arrays, one corresponding to each of the possible orderings.

2. Suppose that in the array A = (al, az, as, aq) it is known that as = aq. Then
how many different possible (unsorted) orderings are there?

3. Suppose that it is known that in the array A = (al, az,. . . . an) two elements
are the same but otherwise the elements are distinct. How many different
(unsorted) orderings are there?

4. Suppose that we have an array (al, az, aq) and ask the questions

“Is a~ < az? and Is a2 < al?’

315

6 SEARCHING AND SORTING

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Give an example of values for al, a2, and a3 for which the answers to these
two questions do determine the order correctly. Then give an example of
values for which the answers are not sufficient to determine the order
correctly.

Suppose that we have an array (al, az, a~, aJ. Find four questions that
sometimes do and sometimes do not determine the correct order.

If an algorithm makes k comparisons, explain why the corresponding binary
tree has depth k.

Given an array containing n elements, is it ever possible to ask n – 2 or
fewer questions of the form “ls ai s aj?” and from the answers to learn the
correct order? Explain.

Suppose you have an n-element array and ask the n – 1 questions “Is
al s az?,” “1S a2 s as?,” “Is a._ ~ s a.?.” If it is possible to determine
the order of the array from the answers to these questions, what can you say
about the entries in the array?

Find a lower bound for log (n!) in the case that n is odd, similar to the one
found in the text when n is even.

Stirling’s formula from Chapter 3 tells us that

Use this to obtain a lower bound on log (n!). Does this lead to a better (larger)
lower bound than that derived in the text?

Draw a binary tree for sorting A = (al, az, as, a~) that begins by comparing
al with az, then a~ with a3, and a3 with a4, and that has depth as small as
possible. (As in Question 5.3 you may make different comparisons at different
nodes on the same level.)

Suppose that a binary search tree for A = (al,. . . . as) begins with the com-
parisons al with a2, then al with a3, then al with a~ and al with as. How
many leaves are there at depth 4? Give an example of a leaf at depth 5. Give
an example of a leaf at depth 6 or more.

Suppose that m log(n) comparisons are made on records for n student em-
ployees during t time periods. If n is doubled to 2n, does the number of
comparisons double? Does it triple? Suppose that the number of students
triples from n to 3n? How many times the original number of comparisons is
the new number of comparisons?

If J(n) = n log(n), find k such that for n sufficiently large

kn log(n) s 2n log (2n) s (k + l)n log(n).

316

6:6 RECURSION

15. Corollary 5.4 says that a file with five items in it cannot be sorted with fewer
than [log (5!)1 = 7 comparisons. If one sorts a file with five records by first
sorting four records and then inserting the fifth record, it takes a total of eight
comparisons. First five comparisons are needed to correctly sort four records
and then three more to insert the fifth item into the ordered list of four items.
Decide whether the minimum number of comparisons that will necessarily
sort a file with five items is seven or eight.

16. Here is a sorting game, played by two players on an array .4 = (al,. . . . an).
Player 1 picks two elements ai and aj and asks player 2 to compare these
values and to say which is smaller. Player 2 then assigns values to ai and aj

in any way and answers, for example, that ai s aj. Player 1 next picks another
pair to compare, and player 2 again assigns values and reports the answer.
(Once player 2 has picked and used a value for some a i, the value cannot be
changed, but values do not need to be selected until player 1 brings them up.)
Player 1‘s goal is to determine the order as quickly as possible; player 2’s goal
is to keep the order obscure as long as possible. Play the sorting game for
both n = 4 and n = 5. How many comparisons can player 2 force player 1 to
make?

17. In the sorting game if player 1 asks for the results of k comparisons, then
player 2 must give k different pieces of information, in this case either “<”
or “ > .“ There are 2k different patterns of answers that player 1 may receive
from player 2. Use this to explain why to sort a set of n objects with k com-
parisons, it must be the case that 2k > n!.

6:6 RECURSION

The director of the student employment office hopes that with an assistant she
can delegate more of the routine work. For example, at the beginning of the year
she might sort half of the student records, give the other half to an assistant and
then merge the two sorted files into one.

To train an assistant with an easy comparison task, the director begins with
the job of finding the minimum entry of A = (a ~, az, an), an array of real num-
bers. She asks the assistant to find the minimum entry of A’ = (al, az,. . . . an _ ~)
because she knows she can compare the assistant’s minimum with a. to find the
overall minimum of A. Now the assistant catches on quickly and realizes that he
can use another assistant to find the minimum of A“ = (al, az,. . ., an – z) and
then compare that minimum with an_ ~ to find the minimum of A’. If each of the
assistants has an assistant (or a friend to help with the work), each assistant can
pawn off the work of finding the minimum of a smaller array. Eventually, the
array under consideration will have just one entry, which will be the minimum
value of that array. This minimum value will be passed up and probably changed
until the director receives the correct minimum of A’ and then with one comparison
finds the minimum of A.

317

6 SEARCHING AND SORTING

This fanciful idea is an example of what is known as a recursive algorithm or
recursive procedure. The word recur means to show up again, and that’s exactly
what happens in a recursive procedure: The procedure shows up again, or is used,
within itself.

We now formalize a recursive procedure that carries out the idea described
above. The procedure MIN will find the minimum entry in an array A. The input
to MIN is A and n, the length of A, and the output from A is k, the value of the
index of the minimum entry of A.

Procedure MIN(A, n, k)

STEP 1. Ifn= l, then set k:= 1
Else
Begin
STEp2. n:=n–1
STEP 3. Procedure MIN(A, n, k)
S~p4. Ifan+l KUk, then k:=n+l
End {step 1}

STEP 5. Return.

In step 3 we call the procedure MIN, but on an array of smaller size. This
is the essence of a recursive procedure. We repeatedly call MIN until n = 1. When
n = 1, the array has one element and we actually find the minimum, successfully
completing step 3. Every time step 3 is completed, we proceed to step 4 with the
value of k just received and with the value of n equal to what it was when that
instance of the procedure MIN was called.

Example 6.1. Table 6.4 is a trace of MIN with A = (4.2, 2.1, 3.5,0.9),

When n = 1, we set k:= 1 and return to (C)to complete steps 4 and 5. Notice
that when we then return to @), n is reset to 2, its value at the time of this
execution of step 3.

Question 6.1. Trace the procedure MIN on the array (4,3,2,1, 5).

There are two properties essential for a recursive procedure to be correct.
These are dictated by the requirement that an algorithm must terminate after a
finite number of steps. At each call of the procedure within the procedure, the value
assigned to some variable, say P (P = n = number of elements in the array in
Example 6.1) must decrease. When the value assigned to this variable is sufficiently
small, there must be a “termination condition” that instructs the procedure what
to do in this final case. It is common to think of a recursive procedure as operating
on different levels. If the procedure begins with the parameter P initially assigned
the value q, one might think of beginning at the qth story of a building. With

318

6:6 RECURSION

TabIe 6.4

Step No. n k ak an+l

1.
2.
3.
1.
2.
3.
1.
2.
3.
1.
5.

4.

4

{Call ~IN((4.2,2.1, 3.5), 3,k)}
3

{Call ;IN((4.2,2.1),2, k)}
2

{Call ~IN((4.2), 1, k)}

{Retur~ to (C);
1 1 4.2
1 2

5. {Return to (B)}
2 2 2.1

4.
5 . {Retu; to (,4)?

3 2 2.1
4.
5. {Retur; with k4= 4}.

(A)

(B)

(c)

2.1

3.5

0.9

each call the value assigned to P is decreased, and one descends to a lower story
until, say, P is assigned the value 1. On the first floor some real calculation or
comparison is performed and the message is sent back up through the floors to
the qth story, where the final answer is assembled.

A recursive program is also analogous to an induction proof. The “termination
condition” corresponds to checking the base case. The call of tlie procedure within
itself corresponds to using the inductive hypothesis.

Example 6.2. Here is an example of a recursive procedure that calculates the nth
Fibonacci number (see Section 4.4).

Procedure FIB(n, F) {This procedure has n as input and F as output.}

STEP 1.

STEP 7,

Ifnsl, then F:=n
Else
Begin
STEP 2. Procedure FIB(n – 1, F’)
STEP 3. Procedure FIB(n – 2, F“)
S T E P4. F:= F+F’
End {step 1}
Return.

319

6 SEARCHING AND SORTING

In step 1 we use the fact that FO = O and F’l = 1. Notice that we can call FIB
with input n — 1 or n – 2; the parameter n does not have to be decreased before the
call, as was done in MIN. And the answers will be stored in F’ and F“ as directed.

Another classic example of the use of recursive procedures is in calculating
the greatest common divisor of two integers (see Algorithm EUCLID from
Chapter 4). The next procedure is based on the fact that gcd (b, c) = gcd (r, b), where
r = c – Lc/bjb. The procedure takes b and c as input and produces g = gcd (b, c)
as output.

Procedure GCD(b, c, g)

S TEP 1. If b= O,theng:=c
Else
Begin
STEP2. r:=c– Lc/bJ*b
STEP 3. Procedure GCD(r, b, g)
End {step 1}

STEP 4. Return.

COMMENT. The values of b and c used in computing r in step 2 come from the
input parameters of the procedure. They equal the original b and c only in the first
execution of step 2.

Question 6.2. Trace GCD with b = 13 and c = 21. How many recursive calls does
it make?

In the exercises you will see examples and problems on recursive procedures
for the algorithms SUBSET, JSET, PERM, BtoD, among others. Some of these
will be more efficient than before, others no more so.

We conclude with a recursive version of SELECTSORT based on an exten-
sion of MIN. The plan is to use basically the same ideas as in SELECTSORT,
only to allow a director-sorter to delegate work to assistants. First we rewrite
MIN so that upon input of an array A and two integers start s finish, it
proceeds recursively to find the index k of the minimum entry in the subarray
(a,,a,,,a,,a,,+ I,..., afi~i,~).

Procedure MIN(A, start,jinish, k)

STEP 1. If start = finish, then k:= start
Else
Begin
STEP 2. Procedure MIN(A, start, finish – 1, k)
STEP 3. If afini,~ K a~, then k : = finish
End {step 1}

STEP 4. Return.

320

6:6 RECURSION

Question 6.3. Trace MIN on A = (– 1,0.333,5.2, – 10,6.001, 17) for:
(a) start =2, finish = 3; (b) start = 3, finish = 6; and (c) start= 1, finish = 6.

Algorithm R-SELECTSORT

STEP 1.
STEP 2.

STEP 5.

Input an array A and its length n
For start:= 1 ton– 1 do
Begin
STEP 3. Procedure MIN(A, start, n, k)
STEP 4. If k # start, then switch the values of a,,.,, and ak

End {step 2}
stop.

We don’t claim that R-SELECTSORT is an improvement over SELECT-
SORT, but it is good training for the recursive sorting algorithm in the next
section. In fact, R-SELECTSORT performs about twice as many comparisons as
SELECTSORT as we shall see in the following discussion.

First we count the number of comparisons performed by MIN on an array
of n elements, that is, when n = finish – start + 1; denote this number by M(n).
Then M(l) = 1. For n >1, first one comparison is performed in step 1, then MIN
is applied to an array with one fewer entry, and finally one additional comparison
is made in step 3. Thus

M(n) = M(n – 1) +2. (D)

In other words, each additional array entry requires two more comparisons. Thus

M(2) = M(l) + 2 = 3, M(3) = M(2) + 2 = 5,

and apparently M(n) = 2n – 1. To be sure, we prove that this formula is correct
by induction. Since M(l) = 1, the base case is cdrrect. Then

M(n) = A4(n – 1) + 2 by (D)

=2(n–1)– 1+2 by the inductive hypothesis

=2n–1.

Complexity results for recursive procedures are often similarly established using
induction.

Now in R-SELECTSORT we call the procedure MIN(A, start, n, k) for
start= 1,. ... n — 1. Thus the total number of comparisons performed is

(2n–l)+ (2n–3)+ ”+3=n2-l=O(n2),

(see Exercise 14), giving the same big oh complexity as for SELECTSORT. Com-
paring the more precise count of comparisons (see Theorem 1.1) shows the re-
cursive version to be less efficient.

321

6 SEARCHING AND SORTING

EXERCISES FOR SECTION 6

1. Trace (the second version) of MIN(A, 1, n, k) if
(a) A=<–3, –2, –l), n=3.
(h) A=(–lO,lO, –3,3), n=4.
(c) A = (1,2,3,5,7), n = 5.

2. Trace GCD if
(a) b=3, c=5.
(b) b=l, c= 10.
(c) b=o, c=5.
(d) b=3, c= 14.

3. (a) Write a recursive procedure MINMAX(A, n, rein, max) to find the mini-
mum and maximum entry of an array of n numbers.

(b) Determine the number of comparisons made in the worst case.

4. Using the fact that n! = n(n – 1)! write a recursive procedure FACT(n, F) that
upon input of a nonnegative integer n, calculates F = n!. Trace the procedure
for n =4.

5. What do the following recursive procedures compute?
(a) Procedure NUMl(n, ans)

SmP 1. If n = O, then ans := O
Else
Begin
SmP 2. Procedure NUMl(n + 1, ans)
Smx 3. ans := ans – (n + 1)
End

SmP 4. Return.

(b) Procedure ZVUM2(n, ans)

SmP 1. If n = O, then ans:= O
Else
Begin
SmP 2. Procedure NUM2(n – 1, ans)
Smm 3. ans := ans + n
End

SmP 4. Return.

(c) Procedure NUM3(n, ans)

SmP 1. If n = O, then ans := O
Else Procedure NUM3(n – 2, ans)

SmP 2. Return.

322

6:6 RECURSION

6.

7.

8.

9.

10.

11.

12.

,\ (oand(ws’Find an equation relating the two binomial coefficients

()nthis to write a recursive procedure that calculates , . What is the termina-
.,

tion condition?

Here is the classic relation between binomial coefficients:

c)=(n~’)+(~=:)

()Use this to write a recursive procedure to calculate ~ ; you may need to

use more than one termination condition.

Compare the algorithms in Exercises 6 and 7 by counting multiplications,
divisions, additions, and the number of calls to the procedure. Which is more
eficient?

Trace FIB with n = 5. Count the number of recursive calls. Comment on the
efficiency of this method of calculating Fibonacci numbers as compared with
methods learned in Chapter 4.

Suppose that A(n) equals the number of additions performed in FIB(n, F).
Then A(O) = A(l) = O and A(2) = 1.
(a) Show that A(n) = A(n – 1)+ A(n – 2) + 1.
(b) Compute A(n) for n =3,4,5,6,7,8.
(c) Compare these values with the nth Fibonacci numbers for n = 2,3,...,8.
(d) Determine a formula for A(n) and then prove that FIB(n, F) performs this

many additions.
(e) Is FIB a polynomial algorithm?

Suppose that we define l’~ = O, F~ = 1
F“ _ ~ + F’n - ~ + F._ ~. Write a recursive
lates F: and stores it in F #.

and F? = 1, and for n >2, F; =
procedure FIB #(n, F #) that calcu-

Here is an attempt to improve the efficiency of the procedure FIB; to deter-
mine the nth Fibonacci number the numbers n, s = O, and t = 1 should be
input and F will be the output, containing the nth Fibonacci number.

Procedure FlB2(n, s, t, F)

STEP1. Ifn=O, then F:=.s
Else Procedure FIB2(n – 1, t,s + t, F)

STEP 2. Return.

Run this procedure with n = 1,2,3,4,5. Then explain why FIB2(n, 0,1, F)
correctly returns F as the nth Fibonacci number.

323

6 SEARCHING AND SORTING

13. Compare the number of recursive procedure calls made by FIB2 and by FIB.

14. Prove that (2n–l)+(2n–3)+. ”+3 =n2–1.

15. Prove that the number of multiplications and divisions performed by the re-
cursive version of GCD on b and c is at most 4Llog (b)J. (Hint: Reread the
complexity analysis of the algorithm EUCLID given in Chapter 4.)

16. Here is a recursive procedure to form a list L of all subsets of an n-set ,4,

Procedure R-S UBSET(A, n, L)

STEP 1. If n = O, then L := {0}
Else
Begin
Procedure R-SUBSET(A, n – 1, L)
STEP 2. For each set S in L, add S u {a(n)} to L
End

STEP 3. Return.

(a) Trace this algorithm on A = (1, 2,..., n) for n = 2,3, and 4.
(b) Explain why the algorithm works correctly.
(c) If a step is considered to be the formation of a set, prove by induction

that R-SUBSET(A, n, L) performs 2* steps.

17. Here is a recursive version of the algorithm JSET, presented in Chapter 3.
This procedure receives n and j and then stores all j-subsets of the n-set
{1,2,..., n} in the list L.

Procedure R-,JSET(n,j, L)

STEP 1. Ifj = O, then L := {@}
Else ifj = n, then L:= {{1,2,. . . ,n}}
Else
Begin
STEP 2. Procedure R-JSET(n – l,j, Ll)
STEP 3. Procedure R-JSET(n – l,j – 1, L2)
STEP 4. For each set S in L2,

set S:= Su {n}
S T E P5. L:=LI UL2

End
STEP 6. Return.

Run R-JSET on the following data: (a) n = 2, j = 1; (b) n = 3, j = 1;
(c)n= 3,j=2; (d)n=4, j=2; and(e)n= 5,j=3.

18. What is the mathematical idea behind R-JSET that makes it work correctly?
Count the number of assignment statements made in R-JSET. Is it a good
algorithm?

19. Write a recursive version of TREESORT.

324

6:7 MERGESORT

6:7 MERGESORT

In this section we present an efficient, recursive sorting algorithm, known as
MERGESORT. This algorithm is particularly well suited to the situation when
a set of records must be added to a large already sorted set of records. It has the
disadvantage that to sort an array of n elements an additional array of size n is
used to keep the programming simple and the element shuffling to a minimum.

Here is the idea of MERGESORT from the point of view of the employment
director. Suppose that there is now enough work to employ two assistants. At the
beginning of the semester the director receives a large file from the payroll office,
containing one card for each student employee, listed in alphabetical order. She
wants to sort these by social security number. To divide up the work, she splits
the file, giving half to each assistant to sort. The director will then merge the two
smaller sorted files into one large sorted file.

Algorithms that proceed by dividing the problem in half, working on one or
both halves, and then constructing the final solution from the solutions to the
smaller problems are known as divide-and-conquer algorithms. The algorithms
BINARYSEARCH and BININSERT also follow this approach.

Back in the employment office, the assistants remember the principle of re-
cursion. If they each have two assistants or friends, they will give half of their file
to each for sorting and then merge the resulting sorted files. The halves or pieces
to be sorted will get smaller until an array of one element is reached, say <ai),
and this array is sorted as it is. Notice that this process can be modeled by a
binary tree with the root labeled with the director, the roots of the left and right
subtrees labeled with the assistants, and so on.

Question 7.1. Let A be an array containing eight numbers. Using the ideas of
the preceding paragraphs, draw the corresponding binary tree for this case. What
is the depth of the tree? How many vertices does it contain? In total, how many
assistants are employed in the task?

This approach will be good, provided that we can efficiently merge two sorted
files into one sorted file. We shall see that such a merger can be performed in time
linear in the total number of elements to be merged.

Here specifically is how to merge two sorted files. Assume that we have an
array C such that c 1,. . . , c~id is in sorted order as is c~id + 1, ..., Cn. (If we had
two separate, sorted arrays A and B, we could place them in C with A listed before
B.) The goal is to rearrange C so that it becomes a sorted array. We use an auxil-
iary array D into which we sort the elements of C; in the end we transfer the sorted
D back into C.

First we compare the first entries in the sorted subarrays, c1 and c~id + ~, and
place the smaller in dl. Next, depending on the outcome of the first comparison,
we compare Cz with c~id + ~ or c1 with c~id + z, placing the Smaller h d2. We COn-

tinue until either the first subarray or the second has been entirely placed in D.

325

6 SEARCHING AND SORTING

Then we fill up D with the remaining elements of the other subarray and finally
copy D into C.

Procedure MERGE (C, start, mid, jnish) {C is an array with entries %,t,
cstart + ~,. . ., Cmid in increasing order and entrieS c~id + 1,. . ., cfini~h also in increas-
ing order.}

STEP 1. Set i : = start and j : = mid + 1 {i and j index the entries of C being
compared}
Set k:= start {k indexes the entry of D being filled}

STEP 2. While (i s mid) and (j < finish) do
STEP 3. If ci < cj, then do

Begin
S~~P 4. dk ; = ci

S T E PS. i:=i+l
S T E P6. k:=k+l
End
Else
Begin
Sl13P 7. dk := cj
S T E P8. j:=j+l
S T E P9. k:=k+l
End

{Right now one of the subarrays is in D}
STEP 10. If i > mid, then do {Transfer remaining entries into D}

For index : = j to finish do
Begin
STEP 11. dk : = cind~x
STEP 12. k:=k+l
End
Else
For index := i to mid do
Begin
f3TEP 13. d~ : = cindex
STEP 14. k:=k+l
End

STEP 15. For index := start to finish do {transfer D to C}
dCi n d e x : = i n d e x

STEP 16. Return.

Example 7.1. Table 6.5 is a trace of MERGE run on the array C = (1,2,3,4,
– 2,0,2,4, 6) with start = 1, mid = 4, and finish = 9. We show the array D after
the completion of each execution of step 3.

326

6:7 MERGESORT

Table 6.5

Step No. i j k D

1 1 5 1
3 1 6 2

1 7 3
2 7 4
3 7 5
3 8 6
4 8 7
5 8 8

10
15 c=<–2,0,1,2,2> 3,4>4>6).

(–2, . . .
<–2,0,...
(–2,0,1,...
(–2,0,1,2,...
(–2,0,1,2,2,...
(–2,0,1,2,2,3,...
(–2,0,1,2,2,3,4,...
<–2,0,1,2,2,3,4,4>6)

Notice that when equal entries occur, the entry of the first half is inserted in D first.

Question 7.2. Trace MERGE on C = (0.1, 0.2,0.3,0,0.09, 0.19,0.29,0.39,0.49).

How eilicient is MERGE? Three comparisons occur at every execution of steps
2 and 3, except for the final time when only the two comparisons in step 2 occur.
These steps happen at most n times, where n is the length of the array. Then count-
ing the additional comparison of step 10, at most 3n = O(n) comparisons are
performed in total. MERGE is a linear algorithm.

With MERGE and the assurance of its efficiency, we plan MERGESORT.
We begin with an unsorted array C of length n. We divide C at roughly the
midpoint, setting mid equal to Ln/2j. We sort the first half of C recursively and
the second half of C recursively and then use MERGE to combine them in sorted
order. This will be accomplished by calling the recursive procedure below with
start = 1 and finish = n.

Procedure MERGESORT(C, start, jinish)

STEP 1. If start = finish, then Return.
Else
Begin
STEP 2. Set mid:= L(start + finish)/2]
STEP 3. Procedure MERGESORT (C, start, mid)
STEP 4. Procedure MERGESORT (C, mid + 1, finish)
STEP 5. Procedure MERGE (C, start, mid, finish)
End {step 1]

STEP 6. Return.

The main trick in tracing a procedure like this is to remember where to return
upon the completion of a procedure and what the values assigned to the variables

327

6 SEARCHING AND SORTING

are at the return. For example, if we call MERGESORT(C, i,j) in step 3, the
procedure receives as input whatever subarray is currently stored in entries i
through j of C, sorts it and returns it at the end of step 3 to the same subarray
of C. All this bookkeeping is done for us in a programming language like Pascal.

Example 7,2. Table 6.6 is a trace of MERGESORT on C = (0.3,0.1, 0.2). The
results of the procedure MERGE are just written under the call statement, since
we have seen how this works before.

Procedure MERGESOR7’((0.3, 0.1,0.2), 1, 3)

Table 6.6

Step No. c start mid jinish

1,2 (0.3,0.1,0.2) 1 2 3
3 {Call MERGESORT(C, 1, 2)} (A)
1,2 (0.3,0.1) 1 1 2
3 {Call MERGESORT(C, 1, 1)} (B)
1 (0.3) 1 1

Return to (B) 1 1 2
4 {Call MERGESORT(C, 2, 2)} (c)
1 <0.1) 2 2

Return to (C) 1 1 2
5 {Call MERGE(C, 1,1, 2)}

(0.1,0.3)
Return to (A)
(0.1,0.3, 0.2) 1 2 3

4 {Call MERGESORT(C, 3, 3)} (D)
1 <0.2) 3 3

Return to (D) 1 2 3
5 {Call MERGE(C, 1,2, 3)}

(0.1, 0.2, 0.3)
6 Ret urn.

Question 7.3. Trace MERGESORT on
(a) C = <1, O) with start= 1 and finish= 2.
(b) C = (22,24, 23) with start = 1 and finish= 3.
(c) C = <1.1, 3.3,2.2,4.4) with start= 1 and finish= 4.

We now verify the efficiency of MERGESORT. The origins of this complexity
bound are explored in Exercise 7.

Theorem 7.1. MERGESORT is a O(n log(n)) algorithm.

328

6:7 MERGESORT

Proof. We begin by proving that if n = 2k, then the number of comparisons
executed by MERGESORT is 3n log(n) + 2n — 1. The proof is by induction on k.
If k = O, then C contains one entry and with one comparison in step 1 the proce-
dure is finished. Since 1 = 3 ~ 1 log(1) + 2”1 – 1, the base case is established.

We assume that the result holds for all exponents less than k and consider
an array C with 2k entries. Then initially mid equals 2k -1, and in steps 3 and
4 MERGESORT is called on arrays of n’ = 2k -1 entries each. By the inductive
hypothesis MERGESORT performs

3n’log(n’)+2n’– 1 = 3“2 k–llog(zk–l)+z.zk-l–l

. 3.2k-l(k _l)+2.2k-l_l

—— 2k-1(3k– 1)– 1

comparisons on each smaller array. The total number of comparisons is 1 (from
step 1) plus the number performed on the first half of C plus the number per-
formed on the second half of C plus 3n, the number of comparisons used by
MERGE, or

2(2k-l(3k –l)–l)+ 3n+l=2k(3k–1) +3”2k–1
—— 2k3k+22k-l-

= 3nlog(n) + 2n – 1.

Now suppose that C is an array of n elements, where n is not necessarily
a power of 2. Set r == (log (n)l and m = 2’. We know

n<rn=2r <2’0g(”)+1=2n.

Create C, an array of m elements by appending m – n new elements to the end
of C. Suppose that all these elements are assigned a very large value, a number
larger than all entries in C. When MERGESORT is applied to C we know that the
number of comparisons is at most

3mlog(nz) + 2rn – 1<3 .(2n)log(2n) + 2. (2n) – 1 = 6n(log(n) + 1) + 4n – 1

= 6nlog(n) -t- 10n – 1

s 16n log(n) = O(n log (n)).

Now C’ and C have been sorted with O(n log(n)) comparisons; had we applied
MERGESORT to C alone, perhaps fewer comparisons would have been per-
formed. ❑

329

6 SEARCHING AND SORTING

An alternative, tighter upper bound on the number of comparisons in
MERGESORT is outlined in Supplementary Exercises 27 and 28.

Question 7.4. Look at Question 7.3(a) and (c) and verify that exactly 3n log(n) +
2n – 1 comparisons were performed.

Question 7.5. Verify that the number of comparisons MERGESORT performs
on an array of size 3 is 20. Is this number less than 3n log (n) + 2n – 1 with
n = 3? Show that this number is less than 6n log(n) + 10n — 1 when n = 3.

EXERCISES FOR SECTION 7

1. Trace MERGE on the following data. In each case count the number of com-
parisons made and compare with 3n, where n is the length of the array.
(a) C = (1,1,3, 5), start= 1, mid= 1 and finish= 4.
(b) C = (0.1, 0.2,0.3,0,0.2, 0.4,0.6), start= 1, mid= 3 and finish= 7.
(c) C = (1,2, 3,4,1,2, 3,4), start= 1, mid= 4 and finish= 8.
(d) C = (5, 1,2,3,4), start= 1, mid= 1 and finish= 5.
(e) C = (1,2,3,4, 5), start= 1, mid= 4 and finish= 5.
(~) C = (1,2, 3,4,0), start = 1, mid = 4 and finish = 5.

2. What happens if you run MERGE with the subarray c1,. . . . c~i~ not sorted?

3. Trace MERGESORT on each of the following arrays:
(a) A = (2,4, 6,8, 10).
(Z)) A = (10,8,6,4,2).
(C) A = (2,6,4, 10, 8).
(d) A = <1,3, 1,5,4,5).
(e) A = (2,2, 2,2,2).

4. Draw a binary tree that corresponds to the divisions into subarrays in Ex-
ample 7.2 and Question 7.3. In general, for what arrays of length n is the cor-
responding tree a full binary tree?

5. Count the number of comparisons made in each case of Exercise 3. Com-
pare these numbers with 3n log(n) + 2n – 1 and with 6n log(n) + 10n – 1 for
appropriate values of n.

6. From the numerical evidence of Questions 7.4 and 7.5 and Exercise 3, con-
jecture whether the following is true or false: MERGESORT performs at most
3n[10g (n)l + 2n – 1 comparisons to sort an array of n elements. (See also
Supplementary Exercises 27 and 28.)

7. Let M(n) denote the maximum number of comparisons made in MER-
GESORT, applied to an array of n elements, and suppose that n = 2k. Then
M(l) = 1 and for n >1 MERGESORT proceeds by calling itself on two arrays

330

6:8 SORTING IT ALL OUT

of size nf2 = 2k -1 and then MERGE-ing the two sorted arrays with 3n ad-
ditional comparisons. Thus

M(n) = 2A4(n/2) + 3n + 1.

Use this relation to determine M(n) for n = 2,4,8, and 16.
Then find an expression for ‘M(n) in terms of &f(n/4) and in terms of

A4(n/8). Explain why this leads to the formula

M(n) = 2~M(l) + k3n + n – 1

= 3nlog(n)+2n– 1 (still assuming that n = 2’).

8. Suppose that A is an array containing 2n numbers. If the array is divided
in half for each of two assistants to sort and if they each divide their half
in half for two additional assistants to sort, and so on, until finally the assis-
tants receive arrays of length one, then how many assistants in all are used?
How many levels of assistants are used?

9. Answer the same question as in Exercise 8 when the array contains m numbers,
where 2n s m K 2“ + 1 for some integer n.

10. Write a procedure that inputs an array A = <al, a2,. . . . an) (not necessarily
sorted) and rearranges A so that if mid = L(l + n)/2] and S = a~i~, then all
entries preceding S are less than or equal to S and all entries following S
are greater than or equal to it. (Note that S may need to be moved to a dif-
ferent position.)

11. Write a sorting algorithm that splits the input array A using the preceding
exercise and then recursively sorts the parts preceding and following S.

12. Write an algorithm 4-MERGE that takes four sorted arrays and merges them
into one sorted array. Compare the complexity of your algorithm with that of
using MERGE three times to combine these four arrays into one.

6:8 SORTING IT ALL OUT

The art of searching and sorting is an extremely important and highly developed
one in computer science and applications. These are processes used in almost all
record-keeping tasks. Not only do telephone companies, banks, the IRS, and so
forth, perform these tasks repeatedly, but now even writers find these tasks in-
dispensable in their word processing programs. For example, searching was done
repeatedly in the preparation of this text. Every time a theorem, a question, an
example, or an exercise was renumbered, a search was run to find all occurrences
of the changed number. A spelling checker program also searches for spelling

331

6 SEARCHING AND SORTING

errors and is equally useful because it picks up most typing mistakes. Sorting is
also important, for example, in alphabetizing the index of a book.

One important theme of this chapter is the difference between O(n2) and
O(n log(n)) algorithms. Both kinds are good algorithms, but the latter are notice-
ably more efficient. Except for cases with small data sets (small like most that
we’ve considered in examples and exercises), the faster algorithms make a signifi-
cant difference in general real-life applications. Of course, there are exceptions to
every rule, and two such exceptions are BUBBLESORT (Exercises 1.11 to 1.13)
and INSERTIONSORT (Supplementary Exercise 7). In the worst case these are
O(n2) algorithms, but when given a nearly sorted array, they can run in linear
time. For example, when an array is nearly sorted except that some adjacent pairs
of elements are transposed, both BUBBLESORT and INSERTIONSORT are
able to benefit from the nearly sorted arrangement. In contrast an algorithm like
BINARYSORT will perform the same number of comparisons on a nearly sorted
array as on a randomly ordered array.

Another theme of this chapter is the difference between algorithms with the
same big oh complexity. When sorting files with large individual records, algo-
rithms should be used that minimize record transfers; for example, SELECTSORT
would be perferred to BUBBLESORT if a 0(n2) algorithm were being used.
MERGESORT should be avoided if the file length is so long or the records so
large that there is not room for a duplicate array. However, MERGESORT is a
good choice when two smaller sorted files are to be sorted into one. No algorithm
using comparisons can be faster than O(n log(n)), and the number of different
n log(n) algorithms confirms that these must have been designed for varying needs.
TREESORT uses the most sophisticated data structure among the algorithms
we’ve seen. This algorithm and algorithms based on storing data in tree structures
have wide applicability in these and other combinatorial settings.

We have alluded to the existence of a linear-time sorting algorithm, known
as BUCKETSORT or “distribution counting.” If we want to sort an array of n
elements whose entries are integers from O to M for some small number M, like
M = O(n), then we can make one pass through the array and can store the record
with key ai in the aith entry of a new array. (More picturesquely, we think of
tossing the record in the aith “bucket.”) Then in one additional sweep through
the new array, we can pick up the elements in order. We have performed n + M
assignments and no comparisons. This algorithm has limited applicability; for ex-
ample, using this algorithm the employment director would store the record cards
of, say, 600 students in a new array of length 999,999,999, since there are this
many possible social security numbers. This approach would necessitate an inap-
propriately large array. More sophisticated versions of such an algorithm are
known as hashing.

Finally, the concept of recursive procedures is an important one. This is the
computer scientists’ analogue of induction. In Chapter 7 we shall study solutions
of recurrence relations and counting problems that arise from recursive procedures.

332

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

This chapter has been only an introduction to a deep and well-understood theory,
which merits further study. 1

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

1. Devise an algorithm TRISECTSEARCH that upon input of an array A of n
numbers in increasing order and a number S, searches by thirds of A for S.
Specifically, first the algorithm should see whether S equals the L(n + 1)/3jrd
entry in A. If not and S is smaller, then it begins again with the first third of A.
If S is larger than this entry, it compares S with the L2(n + 1)/3Jrd entry. If S
is smaller, it proceeds with the middle third of .4; if S is larger, it proceeds with
the last third of A. Determine the worst-case complexity of your algorithm.

2. Write an algorithm that upon input of an ordered array A of n numbers and
a number S, searches for S and if found, deletes it. Determine the worst-case
complexity of your algorithm.

3. Write an aigorithm that upon input of an ordered array A of n numbers and
a number S, searches for S and if it is not found, inserts it in the correct order.
Determine the worst-case complexity of your algorithm.

4. Rewrite a version of BININSERT, called BININSERT2, that tests whether
a,+ ~ = amid after step 3, and if so, immediately inserts a,+ ~ at the (mid)th
entry of the array. Are there arrays on which BININSERT2 will run faster
than BININSERT? Are there arrays on which BININSERT2 will run slower
than on BININSERT? Determine the worst-case complexity of BININSERT2.

5. Use BININSERT2 to form a new version of BINARYSORT, called
BINARYSORT2. Run both BINARYSORT and BINARYSORT2 on
<1,5,1, 1,1) and compare the efficiency of these algorithms on this array.

6. In this exercise you are asked to compare the number of assignment statements
in SELECTSORT and in BINARYSORT. The significant assignment state-
ments are those involving array elements, not just index counters in loops.
(a) Rewrite SELECTSORT so that step 5 is expanded and actually carries

out the details of switching aj and TN. Call this X-SELECTSORT.
(b) Count the number of assignments of elements ai and TN in the worst

case in X-SELECTSORT.
(c) In the procedure BININSERT with r = 1,2,3, and 4 find examples in

which r + 2 assignments of elements ai and temp are made.
(d) Explain why the maximum number of assignments of elements a i and

temp in BININSERT is r + 2.

1 A good next source is a large book on the subject D, E. Knuth, Sorting and ,Searclring, Volume 3
of The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1973.

333

6 SEARCHING AND SORTING

(e) Use the result of part (d) to determine the maximum number of assign-
ment statements performed in BINARYSORT.

(j) ~~w} of X-SELECTSORT and BINARYSORT performs more assign-

7. INSERTIONSORT is another sorting algorithm; it is based on the idea of how
one often sorts a hand of playing cards: with the left end of the hand sorted,
the remaining cards are inserted in order, one at a time.
(a) Write a procedure INSERT(r, al,. . . . a,, a,+ 1) that has a sorted array of

length r, (al, az,. . . , ar), and an element ar + 1 as input and that outputs
the array (al,. . . . a,+ ~) in sorted order. The procedure should search
through the input array sequentially until the position for inserting a,+ 1
is found; then a,+ ~ should be inserted there.

(b) Here is the algorithm INSERTIONSORT:

Algorithm INSERTIONSORT

STEP 1. Input n and an array (al, az,. . . ,an)
STEP 2. For m = 2 to n do {insert mth entry}

STEP 3. Procedure INSERT ((m – 1), al,. . . . aJ
STEP 4. Stop.

Trace this on (1,3,2,5,4, 6).
(c) Compare this sorting algorithm with SELECTSORT and BINARY-

SORT. Describe arrays on which INSERTIONSORT works more eiTi-
ciently than the others and arrays on which it is less efficient.

(d) Determine the complexity of INSERTIONSORT.

8. A sorting algorithm is said to be stable if whenever a i = aj for some indices
i z j, then in the sorted array ai precedes aj. Is either SELECTSORT or
BINARYSORT stable? Explain. If not, can they be rewritten (easily) so that
they are stabie?

9. Is INSERTIONSORT a stable sorting algorithm?

10. Suppose that A is a sorted array of n elements. How does the speed of
INSERTIONSORT on A compare with the speed of SELECTSORT and
BINARYSORT?

11. Suppose that you have an (unsorted) array with n items and another item
D. What is the minimum number of comparisons necessary to determine
whether D is contained in the array or not?

12. Looking up a telephone number in a directory is an example of a typical
search through a large ordered list. If the name you are looking for is, say,
Smith, you wouldn’t turn to the exact middle of the directory despite the high
quality of BINARYSEARCH. The reason is that you have some knowledge
concerning how the names in the directory are distributed. If you are Iooking

334

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

for the name Smith, you will look more toward the back of the book because
you expect that more names come before Smith than after it. You might use
a strategy like the following: Since S is the 19th letter of the alphabet, you
might look at the page numbered m, where m = ~19n/26J and n is the total
number of pages in the directory. Develop an algorithm, called weighted binary
search, that exploits this idea. When should you use weighted binary search
and when should you definitely avoid it? (This kind of approach is also known
as interpolated search.)

13. Here is a recursive version of the algorithm DtoB from Chapter 1 that upon
input of a nonnegative integer m determines its binary expansion s.

Procedure R-DtoB(m, s)

STEP 1. If m s 1, then set s := m
Else
Begin
STEP 2. Procedure R-DtoB(Lm/2], s)
STEP 3. If m is even, then sets equal to s with a O added at the end,

Else set s equal to s with a 1 added at the end
STEP 4. Return.

(a) Trace this algorithm for m = 1,3,6,8.
(b) Show that this algorithm is correct.
(c) Prove by induction that the number of divisions in R-DtoB is at most

log (m).

14. Reread the algorithm EXPONENT in Chapter 2. Then use the fact that
x“ = x ~ x“ -1 to write a recursive version of EXPONENT. Compare the
number of multiplications in EXPONENT and the recursive version.

15. Write a recursive version of FASTEXP, called R-FASTEXP(X, n, ans) that
upon input of x and n will calculate Xn and store it in ans. Is this version
faster or slower than FASTEXP?

16. Look back in Chapter 3 at the algorithm PERM. Write a recursive version
of this algorithm.

17. Does the following correctly compute the greatest common divisor of b and c?
Explain.

Procedure GCD3(b, c, g)

STEP1. If b=c, then g:=b
Else if b s c – b, then Procedure GCD3(b, c – b, g)
Else Procedure GCD3(C – b, b, g)

STEP 2. Return.

335

6 SEARCHING AND SORTING

18. Here is an idea for a recursive version of BINARYSEARCH: Given an array
(ai,. . . . aj) of numbers and a number S, determine whether S is less than
the middle entry of the array and, if so, search the first half. If not, search
the second half. Write a recursive version of BINARYSORT.

19. Suppose that we have a sorted array A of length n and an unsorted array
B of length m that we wish to merge into A to form a final sorted array A
of length n + tn. Here are some different approaches:
(a) Add B to the end of the array A and then use BINARYSORT on this

array.
(b) Add B to the end of the array A and then use MERGESORT on this

array.
(c) Add B to the end of the array A and then use INSERTIONSORT (see

Exercise 7), replacing step 2 with “For m = n + 1 to n + m do.”
(d) Use MERGESORT on B and then use MERGE on A and B.
Comment on the pros and cons of these approaches. In particular, decide
which one you would pick for best efficiency.

20. Compare the efficiency (i.e., number of comparisons performed) of SELECT-
SORT, BINARYSORT, and MERGESORT on the following types of arrays:
(a) A sorted array.
(b) An array listed in reverse order.
(c) An array that is nearly sorted except for the interchange of some adjacent

pairs of numbers (like (1,3,2,5,4, 6)).
(d) An array with many repeated numbers.
(e) An array with its first half sorted and its second half sorted.

21. Is MERGESORT a stable sorting algorithm? (See Exercise 8.)

22. Develop the following idea into an algorithm to sort A = (al, az,. . . . a.).
(1) Find the least integer i such that <al,..., ai) is sorted, but (al,..., % ai+ 1)

is not.
(2) Find the next least integer j such that (aj ~ ~,. . . . aj) is sorted, but

<ai+l,. ... (.Zj, Uj+ ~) is not.
(3) Merge (al,. . . . ai) and (ai+ ~,. . . ,aj).
(4) Set i:= j and if j K n, go to line 2.
Implement this as an algorithm and run it on the following data:
(a) A = (1, 3,2,5,4,6>.
(b) A = (1,2,3, 5,4,6).
(c) A = (2,4,6,3,5, 7).
(d) A = (1,2,3,4,5,6).
(e) A = (6,5,4, 3,2, 1).
Determine the worst-case complexity of your algorithm.

23. Here is an alleged sorting algorithm that is supposed to take an array of
length n with start = 1 and finish = n and to rearrange A in increasing order:

336

24.

25.

26.

27,

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

Procedure M YSTER Y(A, start, jinish)

S~E~ 1.

STEP 13.

Run this

If start < finish, then
Begin
STEP 2. test : = a,ta,t
S’TE~ 3. i:= start+ 1
STEP 4. j : = finish
STEP 5. Repeat

Begin
S T E P6. While test <aj, setj:=j–l
STEP7. While test >aiandizfinish, set i:=i+ 1
STEP 8. Switch a i and aj

Until j s i {end of step 5}
STEP 9. Switch ai and aj {undoing the last switch}
STEP 10. Switch a,t,,t and aj

STEP 11. Procedure MYSTERY(A, start,j – 1)
STEP 12. Procedure MYSTERY(A,j + 1, finish)
End {step 1}
Return.

algorithm on a variety of arrays and then answer the following
equations:
(a) MYSTERY finds an index j, places some entry in it, and then recursively

goes to work on the array in front of j and behind j. What value of j does
it determine and what entry is placed in aj?

(b) Describe in words how MYSTERY works.
(c) Determine the worst-case complexity of MYSTERY.

Why does BINARYSEARCH require more comparisons than BININSERT
in the worst case?

Rewrite BINARYSEARCH so that the maximum number of comparisons it
performs in searching an array of n items is 2 log(n) + c, where c is a constant.

In the complexity analysis of BINARYSORT we proved that the maximum
number of comparisons performed on an array of n elements is 4(n – 1) +
210g((n – l)!). First prove that for i = 1,. . . ,n – 1,

i(n+l-i)<(~;l)’

Then use this to derive an upper bound on log ((n – l)!) that is O(n log(n)).

Let T(n) denote the maximum number of comparisons performed by MERGE-
SORT on an array of n entries. Then explain why

T(n) = T(ln/2]) + 7’([n/21) + 3n + 1 forn>l

337

6 SEARCHING AND SORTING

and

T(1) = 1.

Calculate T(i) for i s 8 and compare these results with those of Questions 7.4
and 7.5 and Exercise 7.5.

28. Use the results of the previous exercise to prove that

T(n) s 3n[log (n)l + 2n – 1.

29. Suppose that a file of n records is to be sorted and the keys of these records
are known to be precisely the numbers 1,2,. ... n. Here is an algorithm to
accomplish a sort on the keys a i:

Algorithm BUCKETSORT

STEP 1. Input A = <al, uz,. . . . an) containing distinct entries from 1,2,. ... n
ST E P2. For i:= 1 to n d o

STEP 3. B(ai) : = ai

S T E P4. Fori:=l ton do
STEP 5. ai : = B(i)

STEP 6. Output (al, az,. . . . a.).

Run a trace on this algorithm with input A = (2,1,5,4,3,6, 7).

30. Count the number of assignment statements made in BUCKETSORT when
run on an array of size w in this algorithm these are the most time-consuming
statements.

31. Write an algorithm BUCKETSORT2 that has as input an array A of n distinct
numbers whose entries lie between O and some constant M. The algorithm
should first do a “bucketsort” of A into an array B of length M and then
transfer the sorted elements back into A. Count the number of assignment
statements made in BUCKETSORT2.

32. Suppose that a comparison takes twice as long as an assignment statement.
Compare the time needed to run BUCKETSORT2 when M = 2n, kn for some
constant k, n log(n), and n2 with the time needed for BINARYSORT.

33. The Pancake Problem asks the following Given a stack of pancakes of varying
diameters, rearrange them into a stack with decreasing diameter (as you move
up the stack) using only “spatula flips.” With a spatuia flip you insert the
spatula and invert the (sub)stack of pancakes above the spatula. Design an
algorithm that correctly solves the pancake problem for a stack of n pan-
cakes with at most 2n flips. Count exactly how many flips your algorithm uses
in the worst case.

338

SOLUTIONS TO QUESTIONS
IN CHAPTER 1

SECTION 1

1.1 The only number that appears on .4, C, and D but not on B is 11. This can
be verified by trial and error for each of 0,1,2,3,4,...,15.

1.2 This trick will always work if no two numbers appear on exactly the same set
of cards. For example, if both 11 and 5 appeared on cards A, C, and D but
not on B, then player 1 could not know which answer, 11 or 5, was correct.

1.3 There is more than one way to design such a pair of cards. Two (of many)
examples follow

Two cards cannot be used to distinguish the numbers 0,1,2,3, and 4. The
reasoning is as follows: Write down all possible yes/no responses to a set of
two cards:

Card I Card 2

no no
no yes
yes no
yes yes

451

SOLUTIONS TO QUESTIONS IN CHAPTER 1

1.4

1.5

To make the trick work, we must assign to each of these four responses one
of the numbers O, 1,2,3, and 4. There are five numbers to assign to four
responses, and so two numbers will elicit the same response.

10,000. There are 4 digits to be assigned with 10 choices for each digit
(0,1,..., 9). We apply the Multiplication Principle: There are 10 ~ 10 = 100
choices for the first two digits. Regardless of these choices there are 100
choices for the last two digits. Using the Multiplication Principle a second
time, there are 100 100 = 10,000 choices for all 4 digits.

Responses
Player 2‘s Number Card A Card B Card C Card D

o no no no no
1 no no no yes
2 no no yes no
3 no no yes yes
4 no yes no no
5 no yes no yes
6 no yes yes no
7 no yes yes yes
8 yes no no no
9 yes no no yes

10 yes no yes no
11 yes no yes yes
12 yes yes no no
13 yes yes no yes
14 yes yes yes no
15 yes yes yes yes

SECTION 2

2.1 (a) 10101 = 1 + 4 + 16 = 21. (h) 100101 = 1 + 4 + 32 = 37, and
(c) 11010 = 2 -t- 8 + 16= 26. An even number expressed in binary ends with
a O and an odd number ends with a 1.

452

SOLUTIONS TO QUESTIONS IN CHAPTER 1

2.2 Decimal Number Binary Representation

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

If we make each of the binary representations four digits long by adding
0s to the left and replace each O with a “no” and each 1 with a “yes,” then
this table would become the same as that in Question 1.5.

2.3 4(=100),5 (=101),6(=110),7(=111), 12(=1100),13(=1101), 14(=1110),
and 15 (=1111).

2.4 Decimai Number Arithmetic Binary Representation

6 2+4 110
19 1 + 2 + 1 6 10011
52 4 + 1 6 + 3 2 110100
84 4+16+64 1010100

232 8+32+64+128 11101000

453

SOLUTIONS TO QUESTIONS IN CHAPTER 1

SECTION 3

3.1 Step 1. Place one cup of water in the bottom of a double boiler.
Step 2. Place one cup of water in the top of a double boiler.
Step 3. Place one cup of quick oatmeal in the top of the double boiler.
Step 4. Turn on stove burner to medium.
Step 5. Place double boiler on burner and heat for 10 minutes.
Step 6. Remove pot.
Step 7. Turn off burner.

3.2 The successive values assigned to z follow.
(a) 1. (b) 20, 10,5, 16,8,4,2, 1.
(C) 7,22,11,34,17,52,26, 13,40,20,10,5,16,8,4,2, 1.

SECTION 4

4.1 (a) Algorithm BtoD run on s = 10101.

Is there a jth 1,s thejth entry
Step No. j m entry in s? equal to 1?

1 o—
2 0 0
3 0 0 yes
4 0 1 yes
5 1 1
3 1 1 yes
4 1 1 no
5 2 1
3 2 1 yes
4 2 5 yes
5 3 5
3 3 5 yes
4 3 5 no
5 4 5
3 4 5 yes
4 4 21 yes
5 5 21
3 5 21 no STOP

Result: m = 21.

454

SOLUTIONS TO QUESTIONS IN CHAPTER 1

(b) Algorithm BtoD run on s = 11010.

Is there a jth Is the jth entry Step
Step No. j m entry ins? equal to 1?

1
2
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3

0
0 0
0 0
0 0
1 0
1 0
1 2
2 2
2 2
2 2
3 2
3 2
3 10
4 10
4 10
4 26
5 26
5 26

yes
no

yes
yes

yes
no

yes
yes

yes
yes

no STOP

ResulC m = 26.

455

SOLUTIONS TO QUESTIONS IN CHAPTER 1

(c) Algorithm BtoD run on s = 100101.

Is there a jth Is the jth entry
Step No. j m entry ins? equal to 1?

1
2
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3

o—
0 0
0 0
0 1
1 1
1 1
1 1
2 1
2 1
2 5
3 5
3 5
3 5
4 5
4 5
4 5
5 5
5 5
5 37
6 37
6 37

yes
yes

yes
no

yes
yes

yes
no

yes
no

yes
yes

no STOP

4.2

4.3

4.4

ResulL m = 37. These are the same answers as those of Question 2.1.

Response 1 is not an algorithm because the instruction to stop might not
be reached in a finite number of steps, since the binary representation of m
might never be written down in step 1.

Response 2 is an algorithm because (a) the instructions are clear; (b) after
performing an instruction, there is no ambiguity about which instruction is
to be performed next; and (c) the instruction to stop will be reached after
a finite number of instructions. Unlike Response 1, Response 2 finds binary
numbers in increasing order (as opposed to at random) so that the mth binary
number produced will be the binary representation of the decimal number m.
The algorithm is slow because it will consider all n-bit binary numbers, n <5,
before concluding that 10011 is 19 in binary.

The algorithm must stop because eventually m must equal zero. Response
3 run on m = 182:

SOLUTIONS TO QUESTIONS IN CHAPTER 1

Largest power of Is m
Step No. m 2 that is s m r equal to O? Result

1 182
2 54
1 54
2 22
1 22
2 6
1 6
2 2
1 2
2 STOP O

27 = 128 7 1
no

25 = 32 5 l–l—
no

2 4= 16 4 l_ll———
no

22=4 2 1–11-1—
no

‘21=’2 1 lL1l-l L
yes 10110110

4.5 The algorithm must stop because it repeatedly decreases the value of m.
Therefore, the value of m must eventually be O.
Here is algorithm DtoB run on m = 395; the values shown are those assigned
to the variables after the execution of the given step:

Step No. j m q r Answer

1 0 395 — — .
2 0 395 197 1 1
4,5 1 197 197 1
2 1 197 98 1 11
4,5 2 98 98 1
2 2 98 49 0 011
4,5 3 49 49 0
2 3 49 24 1 1011
4,5 4 24 24 1
2 4 24 12 0 01011
4,5 5 12 12 0
2 5 12 6 0 001011
4,5 6 6 6 0
2 6 6 3 0 0001011
4,5 7 3 3 0
2 7 3 1 1 10001011
4, 5 8 1 1 1
2 8 1 0 1 11 OOO1O11
3 STOP o

Result: The binary representation of m = 395 is 110001011. Response 4
(DtoB) is easier to use than Response 3 because the user does less and easier
arithmetic.

457

SOLUTIONS TO QUESTIONS IN CHAPTER 1

SECTION 5

5.1

5.2

5.3

5.4

(a) A = {1,4,6, 8,9,10,12,14,15,16, 18,20,21,22,24,25,26,27,28},
(b) B = {1,4,9, 16,25}, and (c) C = {4,8,9, 12,16, 18,20,24,25,27,28}.

(a) A’= {2,3, 5,7,11,13,17, 19,23,29}
(b) B’= {2,3,5,6,7,8, 10,11,12,13,14,15,17, 18, 19,20,21,22,23,24,26,27,

28, 29}
(C) CC= {1,2,3,5,6,7,10, 11,13,14,15,17, 19,21,22,23,26,29}

Every set is a subset of itself. In addition B G A, C G A, A’ G B’, A’ q Cc.

Since BqA, AwB=Aand An B= B. Simdarly, A u C = A a n d A n C =
C. B u C = {1,4,8,9, 12,16, 18,20,24,25,27,28} and B n C = {4,9, 16,25}.

SECTION 6

6.1 (a) (b)

(c)

(a)

(d)

(b)

(c)

458

(d)

SOLUTIONS TO QUESTIONS IN CHAPTER 1

(e)

6.2 (i)

(e)

(Au B)c=Acn Bc

(f)

(f)

Prooj_. Let x be in (A u B)c. Then by the definition of complement, x is not
in A u B. Thus x is not in A and x is not in 1?. If x is not in A, then x is in A’.
Similarly, if x is not in B, then x is in F. Consequently, x is in A’ n F.

Conversely, if x is in xl’ n B’, then x is in A’ and x is in l?’. In other
words, x is not in A and x is not in B. Thus x is not in A u B. Consequently,
x is in (A u B)c.

We have shown that (A u By G A’ n B’, and that A’ n F G (A u B)c.
Thus (A u B)c = A’ n B’, as desired. ❑

(ii) (A n B)c = A’ u B’

Proof. Let x be in (A n B)c. Then x is not in A n B, which means that x is
not in A or x is not in B (or both). Then x is in A’ or x is in B’ (or both). Thus
x is in A’ u B’.

Conversely, let x be in A’ u B’. Then x is not in A or x is not in B (or
both), which means that x is not in A n B. Thus x is in (A n B)c.

We have shown that (A n BY G A’ u E. and that A’ u F G (A n B)c.
Thus (A n B)c = A’ u F, as desired. ‘

SECTION 7

7.1 ~, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, and {a, b,c}.

7.2 Algorithm SUBSET run on A = {a ~, a2, a3} with

‘o

n = 3 .

459

SOLUTIONS TO QUESTIONS IN CHAPTER 1

Step No. j List of Subsets

7.3

7.4

7.5

1 @
2 1
3 1 {a,}
4 2
3 2 {az}, {al, az}
4 3
3 3 {as}, {al,a~}, {az,a~}, {al, a2,a3}
5 3 STOP

A x A = {(O, O), (O, 1),. ... (O, 9), (1, O),. ... (9,9)}. We can associate each of
these ordered pairs with a unique decimal integer from O to 99. Similarly,
with each element of A x A x A we can associate the decimal numbers from
O to 999. In general, the set An is the set of all ordered n-tuples with entries
from A= {0,1,2,.. ., 9}. Each element corresponds with a unique number
from O to 10” – 1.

(a) A x A = {(a, a), (a, b), (a, c),@, a), (b, b),@, c), (c, a), (c, b), (c, c)}, (b) r2,
(c) r3, and (d) r n.

(a) The bit vector of T is 110010, since the elements of T are the first, second,
arid fifth elements in the list of S, (b) 101001 and 000111, (c) z is the sixth
element in the list of S, and (d) {y} and {u, v, w, x}.

SECTION 8

8.1

8.2

8.3

8.4

lAu Cl=17and]Bu C\= 13.
The cardinality of each union of two cards is 12.

(a) 1A u Ill never equals 4, since A ~ A u R For b) to e) set A =
{1,2,3,4,5} and (b) B= {1,2,3}, (c) B= {1,2,6}, (d) B= {1,6,7}, and
(e) B = {6,7, 8}. (f) 1A u BI never equals 9, since 1A u BI is the largest when
A and B are disjoint and then IA u B\ = IAI + IBI = 8.

Let A = {students enrolled in Discrete Mathematics} and B = {students
enrolled in Computer Science}. We are given IAI = 146, IBI = 205, and
IA u B[= 232. From Theorem 8.1

lAn Bl=lAl+lB1-/Au B[

= 146 + 205 – 232

= 119 students in both courses.

460

SOLUTIONS TO QUESTIONS IN CHAPTER I

SECTION 9

9.1

9.2

9.3

9.4

9.5

9.6

The range of b is all of B because if q is any binary number and t its decimal
equivalent, then b(t) = q.

The map jl is not a function from N to B because its range is not contained
in B. The map ~z i: a function, since a binary number is either even or odd
but never both. The range of ~z is {O, 1}. The map ~~ is a function, since for
each natural number r there is precisely one string with r 1s. The range of
~~ is all binary numbers that contain no zero. The map ~~ is not a function,
since, for example, ~4(6) should equal O because 2 divides 6, and yet jJ6)
should equal 1 because 3 divides 6.

The function b k onto, since the range of b k all of B (see Question 9.1). The
function ~z is not onto, since {0,1} does not include all binary numbers. The
function ~~ is not onto, since the range does not include binary numbers
containing zeros.

The function b k one-to-one because if n # n’ are two different numbers, then
their binary representations differ and so b(n) # b(n’). The function fz is not
one-to-one because, for example, ~2(2) = ~2(4) = O. The function ~~ is
one-to-one because if r # r’, then ~~(r) and ~~(r-’) are strings of ones of different
length.

Yes, since A #A’ implies that c(A) # c(A’).

If X is in P(U), then c o c(X) = c(X7 = (Xc)c = X. Thus c 0 c = i and c is its
own inverse.

SECTION 10

10.1 (a) x y Xvy -(xvy) - x - Y (- x) A(-y)

o 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

(b) Note that (x A -v) A z = 1 if and ordy if all of x, y, and z equal 1. Simi-
larly, x A (y A z) = 1 if and only if all of x, y, and J equal 1.

461

SOLUTIONS TO QUESTIONS IN CHAPTER 1

10.2 x y x@Y X v y -(XAY) (xvy)A(-(x Ay)) (x A ‘ y) V(-XAy)

0 0 0 0 1 0 0
0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 0 0 0

10.3 (a) x A y = 1 if and only if both x and y equal 1 if and only if y A x = 1.
(b) (xv y) v z = O if and only if all of x, y, and z equal O if and only
ifxv(yvz)=O.

10.4 None.

10.5 (a) is a contradiction while both (b) and (c) are tautologies.

462

SOLUTIONS TO QUESTIONS
IN CHAPTER 2

SECTION 1

1.1 Value Value Value Value
Assigned Assigned Assigned Assigned

to x to y to xold to yoid

Before step 1 5 2 ? ?
After step 1 5 2 5 ?
After step 2 5 2 5 2
After step 3 5 5 5 2
After step 4 2 5 5 2

SECTION 2

2.1 Algorithm EXPONENT run with x = 3, n = 4.

Step No. i ans

2 0 1
4 0 3
5 1 3
4 1 9
5 2 9
4 2 27
5 3 27
4 3 81
5 4 81
6 STOP 4 81

463

SOLUTIONS TO QUESTIONS IN CHAPTER 2

SECTION 3

3.1 P.:2 +4+” + 2n = n(n + 1) for all positive integers n. Proof by induction
on n.

Step 1 (the base case): PI is the statement 2 “ 1 = 2 = 1 (1 + 1).

Step 2 (the inductive hypothesis): Assume that Pk is true. Pk is the statement
2+4+. ”.+2k=k(k+ l).

Step 3 (the inductive step): Verify that Pk + ~ is true. Pk + ~ is the statement
2 +4+... + 2 k + 2 (k + l) = (k + l) (k + 2) .

2+4+” +2k+2(k+l)

=(2++ 2k)+2(k+l) by associativity

=k(k+l)+2(k+l) by inductive hypothesis

= (k + l)(k + 2) by factoring.

Therefore, Pk + ~ is true, and Pn is true for all positive n. ❑

3.2 Suppose that n = 2. If x = –1, then 1 – x +X2 = 3. If x # –1, then

~_x+x2= (l–x+x2)(l +x)
1 + X

1 + X3

——
1+X”

Suppose that n = 3. If x = – 1, then 1 – x + X2 – X3 = 4. If x # –1, then

1–X+X2–X3=
(1–X+X2–X3)(1+X)

1+X

1 – X4

——
1+X”

{

(1 – x“+’)/(l – x)
3 . 3 Pn:l+x+x2+”””+xn= n+l

ifx#l
ifx=l

First notice that when x = 1, the left-hand side of the equation of Pn is the
sum of (n + 1) terms, each equal to 1, and so the equation is valid. Now we
focus on the case when x # 1. Proof by induction on n.

Step 1 (the base case):

P. is the statement 1 =
l–xO+l l – x

l – x ‘ l – x
which is true, since x # 1.

464

SOLUTIONS TO QUESTIONS IN CHAPTER 2

PI is the statement 1 + x = ~
l – x ”

This statement is also true since

1 – X2 (1 – X)(l +x)— .
l – x l – x

– 1 + X ,— for x # 1.

Step 2 (the inductive hypothesis) Assume that Pk is true. Pk is the statement

l–xk+l
l+x+x2+”. ”+xk= ~_x ifx # l .

Step 3 (the inductive step) Show that Pk + ~ is true. pk + ~ is the statement

1 –xk+2
l+x+x2+ .””+xk+xk+l= ~_x ifx #l ,

l+x+. ..+xk+xk+l

=(l+”””+xk)+xk+’ by associativit y

l–xk+l k+l
= l–x ‘x

by inductive hypothesis

l–xk+l + (1 – x)xk+l.
l – x

with common denominator

l–xk+l+xk+l–xxk+l—— by algebra
l – x

l–xk+2——
l – x

by more algebra.

Hence Pk + ~ is true, and Pn is true for all positive integers n.

SECTION 4

@

4.1 If A contains one element, then it has one even subset, the empty set. If A

contains two elements, then it has two even subsets, the empty set and the
whole set ,4. You should check that a 3-set has four even subsets. Thus it
seems as if whenever ,4 is a set with n elements, then the number of even
subsets of A is 2“ – 1. We prove this by induction on n.

465

SOLUTIONS TO QUESTIONS [N CHAPTER 2

Step 1 (the base case) PI is the statement that a set A with one element
has exactly 21-1 = 2° = 1 even subset. We just checked that this is true.

Step 2 (the inductive hypothesis) We assume that Pk is true. Pk is the statement
that a set A with k elements has exactly 2k -1 even subsets.

Step 3 (the inductive step): We must verify that pk + ~ is true. Pk + ~ is the
statement that a set A with k + 1 elements has exactly 2k + 1-1 = 2k even
subsets.

Consider a set A with k + 1 elements. We must show that A has exactly
2k even subsets. Let x be an element in A and define B to be A – {x}. By
Example 4.1 we know that B has exactly 2k subsets. We build upon these
subsets to obtain all even subsets of A. Namely, let S be an even subset of
A. If S does not contain x, then S is an even subset of B. If S does contain
x, then S — {x} is an odd subset of B, where by an odd subset we mean one
containing an odd number of elements. Furthermore, every subset of B is
either even or odd. An even subset of B is aIso an even subset of A, and an
odd subset T of B turns into an even subset of A by forming T u {x}. The
number of even subsets of B is 2k – 1 by the inductive hypothesis. The number
of odd subsets of B is the total number of subsets (2k) minus the number

k – 1 Thus the number of odd subsets of B isof even subsets (2k - 1), or 2k – 2 .

zk _ Zk-1 = 2k-1(2 – 1)

= Zk-1

Thus #(even subsets of A) = #(even subsets not containing x)

+ #(even subsets containing x)
. #(even subsets of B) + #(odd subsets of B)
=~k-l+zk-l by inductive hypothesis and

the argument given above
=2.2k-~

. Zk,

Thus pk + ~ is established, and Pn is true for every positive integer n. C

4.2 Pn is the proposition that the nth time the comment in algorithm SUM is
encountered, it is correct. The last time the comment is encountered j will
have the value r, and if the comment is correct, then ans will have the value
r(r + 1)/2 and the output will be as claimed.

Step 1 (the base case): We check PI. The variable ans is initially equal to O,
but the first time the comment is encountered, ans has been incremented by
j = 1 so ans equals 1. The comment asserts that the value of ans is 1 ~ 2/2 = 1
and so the comment is correct. You might check also that Pz is valid.

466

SOLUTIONS TO QUESTIONS IN CHAPTER 2

Step 2 (the inductive hypothesis): We assume P~, which states that the kth
time the comment is encountered, it is true.

Step 3 (the inductive step): We must prove P~ + ~, which states that the
(k+ l)st time the comment is encountered it is valid. Now the kth time that
the comment is reached j has the value of k and by the inductive hypothesis
the value in ans is k(k + 1)/2. The next time j has the value (k + 1) and ans
has been increased by this value of j:

ans {after k + 1 encounters} = j + ans {after k encounters}

k(k + 1)
=(k+ l)+ z

= (k + 1)(1 + k/2)

(k+ l)(k + 2).
2 ’

which is the assertion of P~ + ~. Thus P~ is true for all positive n. ❑

4.3 (a) 4, (b) 3, (c) 4, and (d) 3. The binary representation of 14 can be
obtained from that of 7 by adding a O at the right. The binary representation
of 13 can be obtained from that of 6 by adding a 1 at the right.

SECTION 5

5.1 n = 7: four multiplications, since x’ = (x4)(x2)x.
n = 11: five multiplications, since xl 1 = (x8)(x2)x
n = 12: four multiplications, since xl 2 = X8

X
4

n = 16: four multiplications, since xl 6 = (X
8)(X

8)

5.2 Revised Algorithm DtoB used to find X37:

No. Multiplications
Variables I m 4 r x ans and Divisions

Values o 37 18 1 .x .x ~
After 1 18 9 0 x ~

Step 2.5 2 9 4 1 x: ;’ 3
3 4 ~ o X8 X5 ~
4 2 1 0 ~16

X5 ~

5 1 0 1 X32 X37 3
Total No. 14

467

SOLUTIONS TO QUESTIONS IN CHAPTER 2

Revised Algorithm DtoB used to find X52.

No. Multiplications
Variables j m q r x ans and Divisions

Values o 52 26 o x 1, I
After 1 26 13 0 X2 2

Step 2.S 2 13 6 1 x4 ;4 3
3 6 3 0 X8 X 4 2
4 3 1 1 x 1 6

x
2 0 3

5 1 0 1 X32 x
52 3

Total No. ~

SECTION 6

6.1 Steps 1 and 5 were bookkeeping steps in DtoB and are not needed in
FASTEXP because of step 2.5.

6.2 log(22) = log (4)=2 log (23) = log (8)= 3
log(25) = log (32)= 5 log(210) = 10
‘21W2) = 21 = ‘2 ‘21OE(4) = ‘y = 4
2@(@ = 22.58A. . . = ? (Do the next question and then return to finish this.)
21w (s) —— 2 3 = 8

63 By the definition of logarithm if log (29 = h, then 2b = 2P. This implies that
h = p. Thus log (2P) = p. If log(q) = t, then by definition 2’ = q and by sub-
stitution 210s ‘~) = 21 = q.

6.4 L&J = 5, [~1 =4, L10g(8)] = 3, [log (13)l =4, L –*J = –2, [log (25)1 = 5,
and ilog(13.73)J = 3.

SECTION 7

7.1 N = 17: fi = 4.1231...>4.0874. . . = log (17). This does not contradict
Theorem 7.2, but says that more is true than is stated in the theorem. Namely,
it is true that if n >17 (see Exercise 7.5), then& > log(n). (The bound n >64
was used for ease of calculation and proof argument.)

468

SOLUTIONS TO QUESTIONS IN CHAPTER 2

SECTION 8

8.1 Note that j(n) = 12n2 – 11< 12n2, since subtraction makes things smaller.
Thus letting C = 12, we have ~(n) = O(n2). Similarly,

h(n) =3r12+4n+ll

< 3n2 + 4n2 + lln2, since n < n2 and 1 < n2

= 18n2.

Thus letting C = 18, we have h(n)= 0(n2).

8.2 An algorithm will be called cubic if there is a function, say f(n), that counts
the number of operations given a problem of size n and f(n) = 0(n3). Both L
and C ought to take about 16 minutes to solve a problem of size 200. On a
problem of size 1000, L should take about 80 minutes and C should take
about 2000 minutes.

8.3 f(n) = 2n7 – 6n5 + 10n2 – 5

< 2n 7 + 6 n5 + 10n2 + 5

< 2n7 + 6n7 + 10n7 + 5n7 = 2 3 n7.

Thus with C = 23, ~(n) = 0(n7).

8.4 By Theorem 8.1 J = 0(n5) and g = 0(n4). Thus by Theorem 8.2

f + g = 0(n5 + n’)= O(n’),

and

f . g = 0(n5n4) = O(n’).

SECTION 9

9.1 (a) 353 is a prime number, (b) 238 is not an even integer (or 238 is an odd
integer).

9.2 (a) There exists an integer greater than one that does not have a prime divisor.
(b) There exists an integer of the form 4n + 1 that is not a prime. (c) There
exists a prime greater than 2 that is not odd.

9.3 (a) For every integer n, 3n + 1 is not a prime number. (b) For every integer
n, log(n) < n. (c) For every integer n, n2 s 2“.

469

SOLUTIONS “rO QUESTIONS IN CHAPTER 2

9.4

9.5

(a) The hypothesis is that n is even; the conclusion is that n2 + n + 1 is
prime. The negation is that there is some even integer n such that n2 + n + 1
is not prime.
(b) The hypothesis is that nz + n + 1 is prime; the conclusion is that n is
even. The negation is that there exists an integer n such that n2 + n + 1 is
prime and n is not even.
(c) The hypothesis is that n is divisible by 6; the conclusion is that n2 is di-
visible by 4. The negation is that there is an integer n that is divisible by 6
but n2 is not divisible by 4.

(a) The converse of 9.4(a) is 9.4(b). The contrapositive of 9.4(a) is that if
n2 + n + 1 is not prime, then n is not even.
(b) The converse of 9.4(b) is 9.4(a). The contrapositive of 9.4(b) is that if n is
not even, then n2 + n + 1 is not prime.
(c) The converse of 9.4(c) is that if n2 is divisible by 4, then n is divisible by
6. The contrapositive of 9.4(c) is that if n2 is not divisible by 4, then n is not
divisible by 6.
(d) The converse of Lemma 7.1 is that if 2’> (r + 1)2, then r is greater than
5. The contrapositive of Lemma 7.1 is that if 2’ <(r + 1)2, then r is no
greater than 5.
(e) The converse of Theorem 7.2 is that if ~~ > log (n), then n >64. The
contrapositive of Theorem 7.2 is that if J < log(n), then n <64.

470

SOLUTIONS TO QUESTIONS
IN CHAPTER 3

SECTION 1

1.1 (1) There are 10 such paths:

● ☛☛

T P

M

.** 1P

4.0
M

● ☛☛ 1P

I A
● O*A

T-1
● ** P

● *

d.
M

● ☛

F
P

● ●

d..
M

‘Tp
1 . . .
M

J
● * P8* ●

●

M

-r● P

● ● 0

● *

M

“ l--p
!- ● *
A.m.

M

I ● **
● . .

M

471

SOLUTIONS TO QUESTIONS IN CHAPTER 3

1.2

1.3

(2) There are 4 such paths:

n5
P

M

(3) There are no such paths.

r2_l
P

M

m

P

M

To get outside the rectangle of Figure 3.1 would require either more than
5 Ns or more than 6 Es (or both). Since P is 6 units to the right of M and
5 units above M, any sequence of 6 Es and 5 Ns will correspond with a path
from M to P. Any sequence consisting of exactly 3 Es and 2 Ns corresponds
with a trip from M to P in Figure 3.2 and any such trip corresponds with
such a sequence.

Read on to learn the true answer.

SECTION 2

2.1 (a)

f(o, 2) = 1:
T

1
f(l, z) = 3:

_l
●

●

.

f●

f(2,0). 1: —

472

SOLUTIONS TO QUESTIONS IN CHAPTER 3

f(z, 1)= 3:

.9 I ● T T

f(2, 2) = 6:
● ☛ T

. . 1

f● ☛

-r●

● ●

●

1.0

(b) j(O, 3) = I = ~(3,0), f(l, 3) = 4 = j(3, 1), and ~(2, 3) = 10 = ~(3, 2).
2.2 There is just one shortest path from (O, O) to (i, O), a straight line consisting

of a path of i Es. Thus ~(i, O) = 1. Similarly, j(O,j) = 1.

23 Use the fact that ~(i,j) = ~(i – 1, j) + ~(i, j – 1):

~(3, 3) =~(2,3) + ~(3,2) = 10+ 10= 20.

j(4,2) = ~(3,2) + ~(4, 1) = 10+ j“(4, 1)

=lo+f(3,1) +f(4,0)=lo+4+l= 15.

2.4 The fifth row: 1 5 10 10 5 1. The coordinates of all points that end up on
the fifth row of Pascal’s triangle is {(i, j) i + j = 5}. The ~ values of these
points are exactly the corresponding entries of Pascal’s triangle.

2.5 4! = 24, 5! = 120, 6! = ‘720, 7! = 5040, and 8! = 40,320. The first n such that
n! > 1,000,000 is n = 10. This can be determined by continuing to calculate
9! = 362,880 and 10! = 3,628,800>1,000,000. Any value greater than 10
would also do.

2-6 (~)=(:) =1y(:)=(~)=3c)and(;)turnOuttObe`hef 0urthand
fifth row of Pascal’s triangle; see Figure 3.7.

()2.7 Use the definition of ~ :

0k k! ~=l=kJ= k !

()

k

o
= o!(k _ o)! = k! k! k!(k – k)! = k “

473

SOLUTIONS TO QUESTIONS IN CHAPTER 3

Similarly,

()k k! k!
= k =

()

k

k – 1 = (k – l)!(k – (k – l))! l!(k _ 1)! = 1 “

2.8 We use the fact that X2 is the sum of the two numbers above:

() ()kk k! =k+k(k–l) k(k+l)

()

k+lX2 =
1 ‘ 2

= k + 2!(k _ 2)! 2 = 2 = 2

() (4+ 3)!
2,9 Use the formula ~(P) = m ~ n = ~ = & = 35.

SECTION 3

3.1 The fifteen 4-subsets of A are

{al, az, a~, al} {al, a2, a3, a,} {al, a2, a3, a6}
{al, az, a~, a,} {al, az, aa, aG} {a~,a~,as,~G}
{al, a3, a4, a,} {al, as, aA, aG} {a1,a3, a5,aJ
{al,a~,as,a(j} {Uz,as,a’t,as} {az,a~,a~,a~}
{U29%,%,U6) {a2, a4, a5, a6} {a3,a4,a5,a6}

Note that

()6 6!

4
— = 15,= 4!2!

The six 5-stibsets of A are

{a,, a2,a3,a4,a5 } {a,,a2,a3,a4,a6}
{al, a2, a3, a5, %j} {a1,a2,fz4,a5,a6}
{al, a3, a4, a5, a6} {a2~a3~a4~a5~a6}

Note that

()6 6!

5
— - = 6 .= 5!1!

474

SOLUTIONS TO QUESTIONS IN CHAPTER 3

3.2 3-subsets of A containing afj
{a~,a~,aG}
{a~,a~,aG}
{a,, a@a(j}
{a~,a~,aG}
{a~,a~,~(j}
{az, U4, a~}
{az,a~,ab}
{a~,aq,aG}
{a~, a,, a~}
{a~, a~, afj}

Remaining 3-subsets of A
{a,, a2, u3}
{al, a2, a4}
{al, a2, a,}
{al, a~, az}

{al, a3, a5}
{al, a~, a,}
{az, a,, aA}
{a,, a~, a,}
{az, a~, a,}
{a,, a~, a,}

()63.3 (a) ~
()

11= 6!/(3!3!) =20 (b) ~ = 11!/(5!6!) = 462

()(c) 1: = 17!/(9!8!) = 24,310.

()11
3.4 There are 3 = 1651 l-letter sequences of Ns and ES with exactly 3 Es.

()11
There are 4 = 3301 l-letter sequences of Ns and Es with exactly 4 Es.

‘ndthere:rw=c) = 330 1 l-letter sequences of Ns and Es with

exactly 7 Es. There are 211 = 2048 sequences of Es and Ns containing 11
letters.

3.5 We can transform a j-subset of A to a j-subset of 1. by renaming each element
ai of A as the integer i. Similarly, we can transform a j-subset of 1. to a
j-subset of A by renaming the element i of 1“ as ai. The 4-subset of 1. that
corresponds with {al, az, aq, a“ _ ~} is {1,2,4, n – 1}. The 5-subset of A that

}corresponds with {1,2,3,5, 8} is {al, a2, a3, a5, a8 .
3.6 {1, 3,4,7}, {1,3, 5,6}, {2, 3,4,7}, {2,3, 5,6}, {3,6, 7, 8}, {4,6,7,8} . .
3.7 {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}, {1,3,5}, {1,3,6}, {1,4,5}, {1,4,6},

{1, 5,6}, {2, 3,4}, {2, 3,5}, {2,3,6}, {2,4,5}, {2,4, 6}, {2, 5, 6}, {3,4,5}, {3,4,6},
{3, 5,6}, {4, 5,6}.

3.8 {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,2,7}, {1,3,4}, {1,3,5}, {1,3,6}, {1,3,7},
{1,4,5}, {1,4,6}, {1,4,7}, {1,5,6}, {1,5,7}, {1,6,7}, {2,3,4}, {2,3,5}, {2,3,6},
{2, 3,7}, {2,4,5}, {2,4,6}, {2,4,7}, {2,5,6}, {2, 5, 7}, {2,6, 7}, {3,4, 5}, {3,4,6},
{3,4,7}, {3, 5,6}, {3, 5,7}, {3,6, 7}, {4, 5,6}, {4, 5,7}, {4, 6, 7}, {5,6,7}.

475

SOLUTIONS TO QUESTIONS IN CHAPTER 3

3.9 Algorithm JSET run on j = 4 and n = 6 :

Step No. h bh n+h —j FOUND k b~ SUBSET

2
3
4,5,6
8
9-12
3
4,5,6
8
9-12
3
4,5,6

8
9, 10
11, 12
3
4,5,6
8
9–12
3
4, 5,6

8
9, 10
11, 12
3
4,5,6

8
9, 10

11, 12
3
4,5,6
8
9-12
3
4, 5,6

8
9-12

5
4
4

5
4
4

5
4
3
3

5
4
4

5
4
3
3

5
4
3
2
2

5
4
4

5
4
3
3

4
5

5
6

6
3
4

5
6

6
5
5

6
5
2
3

5
6

6
4
5

6

6

6
5

6

6
5

6
5
4

6

6
5

false
true

false
true

false
false
true

false
true

false
false
true

false
false
false
true

false

true

false
false
true

5

5

4

5

4

3
4

5

4

{1,2,3,4}

{1,2,3,5}

{1,2,3,6}

5
{1,2,4,5}

{1,2,4,6}

6
{1,2,5,6}

4
5

{1,3,4,5}

{1,3,4,6}

6 {1,3,5,6}

476

SOLUTIONS TO QUESTIONS IN CHAPTER 3

3.9 (continued)

Step No. h bh n+h —j FOUND k b~ SUBSET

3
4, 5,6

8
9-12
3
4, 5,6

8
9-12
3
4, 5,6
8
9-12
3
4, 5,6

8
9-12
3
4,5,6

8
9-12
3
4,5,6

8
9-12
3
4,5,6

7

5
4
3
2
2

5
4
3
2
1
1

5
4
4

5
4
3
3

5
4
3
2
2

5
4
3
2
1
1

5
4
3
2
1

6
5
3
4

6
5
4
1
2

5
6

6
4
5

6
5
3
4

6
5
4
2
3

6
5
4
3

6
5
4

6
5
4
3

6

6
5

6
5
4

6
5
4
3

6
5
4
3

false
false
false

true

false
false
false
false
true

false
true

false
false
true

fake
fake
false
true

false
false
false
fake
true

false
false
false
false
false
false

3

2

5

4

3

2

STOP

5

3

6

5

4

{1,4,5,6}

{2, 3,4, 5}

{2,3,4,6}

{2,3, 5,6}

{2, 4,5, 6}

{3,4, 5,6}

477

SOLUTIONS TO QUESTIONS IN CHAPTER 3

()3.10 The algorithm JSET produces ~ = n(n – l)(n – 2)/6 = 0(n3) subsets when

j=3.

()

3.11 Note n =
n(n–l)(n –2)”(n-j +l)<~=O(nj)

1 j! ‘j! “

SECTION 4

4.1 The 4! permutations of the set {1,2,3,4} are
(1 2 3 4) , (1 2 4 3) , (1 4 2 3) , < 4 1 2 3) , < 1 3 2 4) ,
(1 3 4 2) , (1 4 3 2) , (4 1 3 2) , (3 1 2 4) , (3 1 4 2) ,
(3 4 1 2) , (4 3 1 2) , (2 1 3 4) , (2 1 4 3) , (2 4 1 3) ,
(4 2 1 3) , (2 3 1 4) , (2 3 4 1) , < 2 4 3 1) , (4 2 3 1) ,
(3 2 1 4) , (3 2 4 1) , (3 4 2 1) , (4 3 2 1) .

4.2 A 3-subset can be formed by filling in the three blanks {_, _,_} with dis-
tinct elements of the n-set. There are n choices for the first blank, n – 1 choices
for the second blank, and n – 2 choices for the third blank. By the Multip-
lication Principle, there are a total of n(n – l)(n – 2) ways to fill in the blanks.
However, once a subset is “filled in,” then every permutation of the elements
in that set will produce the same set. There are 3! permutations of each set and
so in the total of n(n — l)(n — 2), each set is listed 3! times. Thus there are
n(n – l)(n — 2)/6 different 3-subsets of an n-set.

43 Trace of algorithm PERM run on S = {1,2,3,4}:

Values ofj Permutations

1 (1)
~ <1 2) <2 1)
3 (1 2 3) (1 3 2) (3 1 2)

(2 1 3) (2 3 1) (3 2 1)
4 (1 2 3 4) (1 2 4 3) (1 4 2 3) (4 1 2 3)

(1 3 2 4) (1 3 4 2) (1 4 3 2) (4 1 3 2)
(3 1 2 4 > (3 1 4 2) (3 4 1 2) < 4 3 1 2)
(2 1 3 4) (2 1 4 3) < 2 4 1 3) (4 2 1 3)
(2 3 1 4) (2 3 4 1) < 2 4 3 1) (4 2 3 1)
(3 2 1 4) (3 2 4 1) (3 4 2 1) (4 3 2 1)

478

SOLUTIONS TO QUESTIONS IN CHAPTER 3

4.4 To find an integer N so that for n > N, n! >10” 2n, proceed as in the
proof of Theorem 4.2: Suppose that N = Crr = 10”22 = 40. Then for
n >40, we know that n! > 10 2“.

SECTION 5

5.1 The four colors of the code are r, y, b, and w. It is not possible to determine
their order.

5.2 We may assume, by Question 5.1, that the colors in the code are r, y, b, and
w. The secret code can be determined from the guesses given in Example 5.1
by the following reasoning

Guesses and
Deduction Deductions Used

1. r and y are not in the first and second positions, Guess 2
respectively

2. Either b is in the third position or w is in the fourth Guess 1 and Guess 2
position (but not both)

3. Either w is in the second position or y is in the third Guess 2 and Guess 3
position (but not both)

4. w is in the second position Deduction 3 and Guess 4
5. b is in the third position Deductions 2 and 4
6. r is in the fourth position Deductions 1,4, and 5
7. y is in the first position Deductions 1,4, 5, and 6

Resulti Code = y w b r

Note that this reasoning is only one of many ways to arrive at the above
result.

5.3 Left to the reader.

5.4 The number of codes is 4! = 24. Use PERM or the results of Question 4.3.

5 . 5 g g b p g g p b g b g p g pgbgpbggbpg

bggppggbpgbgbgpgp bggbpgg

5.6 We have seen that if the code has 4 colors, then there are 24 possible codes,
and if the code has 3 colors, there are 12 codes (see Question 5.5). If there
are just 2 colors, there are 4 ways to have 3 of one color and 1 of the other

()4color, and there are = 6 ways to have 2 colors occurring twice each.
2

If there is one color, there is only one possible code. Thus the maximum

479

,.

+

II

II l-
.

+ u + ? s + . w II E II

0 I 0 + U I F II 0

I
I

+
+

I
I

SOLUTIONS TO QUESTIONS
IN CHAPTER 4

SECTION 1

1.1

1.2

1.3

1.4

&= *,*IS simplified, & = ~, and ~394i~06171 is simplified. ~ + ~ = &
14+$=&, and&+ &=~.

(a) 65, (b) 8, and (c) 1.

(a) gcd(5, 7) = 1, (b) gcd(4, 6) = 2, and (c) gcd (5, 10)=5. Since gcd(b, c)
must divide both b and c, it cannot be larger than either.

Algorithm GCD1 run on the pair (3,4):

Are both b/g
Step No. b c and c/g integers? 9 gcd

1 3 4 3
3,4 3 4 no 2
3,4 3 4 no 1
5 STOP 3 4 1

481

SOLUTIONS TO QUESTIONS IN CHAPTER 4

Algorithm GCD1 run on the pair (3, 12)

Are both b/g
Step No. b c and clg integers? c1 gcci

1 3 12 3
3 STOP 3 12 yes 3 3

Algorithm GCD1 run on the pair (6, 20):

Are both b/g
Step No. b c and cJg integers? 9 gcd

1 6 20 6
3,4 6 20 no 5
3,4 6 20 no 4
3,4 6 20 no 3
3,4 6 m no 2
3 STOP 6 20 yes 2

1.5

1.6

1.7

482

(a) (5, 7) or any pair for which gcd = 1, (b) (4,6) or any pair with 1< gcd,
and (c) (4, 12) or any pair where gcd = b.

Algorithm ADDFRACTI

STEP 1.

STEP 2.

STEP 3.

STEP 4.

Input a, b, c, d {The sum a/b + c/d is to be calculated and output
as a simplified fraction. }

Setnumer:= a*d+b*c; setdenom :=b*d

Use SIMPLIFY on the pair (numer, denom)

Output the result of step 3 and stop.

Let m = minimum {a, b}. Then upon input of a and h, the algorithm
SIMPLIFY performs (at most) 2(tn – 1) divisions (in GCD1) plus two divi-
sions (in step 3). Let m’ = minimum [(ad — be), bd}. AD DFRACT1 performs
three multiplications ,in step 2 for a total of 2m’ + 3 multiplications and
divisions.

SOLUTIONS TO QUESTIONS IN CHAPTER 4

SECTION 2

2.1 Using log (n) < B, (a) (log (n))z < B2, (b) log (n2) = 2 log(n) <25 and
(c) log (log(n)) < log(B).

2.2 Since by (l), log(n) > B/2, n = 210g(n) a 2B/2 = ~~.

SECTION 3

3.1 gcd(18, 30)= gcd(12, 18) = gcd(6, 12)= gcd(O, 6) = 6; gcd(18,48) =
gcd(18, 30)= 6; and gcd(18, 66) = gcd(18,48) = 6.

3.2 (a) 1, (b) 3, and (c) 5.

3.3 (a) ql = 4, rl = O, and gcd(3, 12) = gcd(O, 3) = 3. (b) ql = 9, rl = 4, and
gcd(13, 121)= gcd(4, 13) = 1. (c) ql = 1, rl = 144, and gcd(233,377) =
gcd (144,233) = 1. (d) ql = 25, rl = 26,836, and gcd (34,567; 891,011)=
gcd (26,836; 34,567)= 1. (See solution to Question 3.4(d).)

3.4 (a) (12,20) 20 = 1 “ 12 + 8

12=1” 8+4

8=2”4+0 SO gcd (12, 20) = 4.

It took three divisions to find that gcd (12, 20) = 4.

(b) (5,15): 15=3 ”5+0 SO gcd (5, 15) = 5.

It took one division to find that gcd (5, 15) = 5.

(C) (377,610) 610 = 1 377+ 233

377=1233+144

The remaining equations are identical to those in the second part of
Example 3.1, so gcd (377, 610) = 1. It took 13 divisions to find that
gcd (377, 610) = 1.

483

SOLUTIONS TO QUESTIONS IN CHAPTER 4

(d) (34,567; 891,01 1): 891,011 =25 34,567 + 26,836

34,567 = 1 ~ 26,836 + 7731

26,836 = 3 ~ 7731 + 3643

7731 = 2 ~ 3643 + 445

3643=8445+83

445=5.83+30

83=2” 30+23

30=1” 23+7

23=3” 7+2

7=32+1

2=2’ 1+0 SO gcd (34,567; 891,011) = 1.

It took 11 divisions to find that gcd (34,567; 891,011) = 1.

3.5 (q) Algorithm EUCLID run on the pair (6, 20)

Step No. b c q r gcd

1 6 20 6
3,4 3 2
5 2 6
3,4 3 0
5 ~

6 STOP

The Euclidean equations are 20 = 3.6 + 2 and 6 = 3 2 + O. Using the
first equation, we obtain 2 = – 3 ~ 6 + 1 ~ 20.
(h) Algorithm EUCLID run on the pair (3,4):

Step No. b c q r gcd

1 3 4 3
3,4 1 1
5 1 3
3,4 3 0
5 1
6 STOP

484

SOLUTIONS TO QUESTIONS IN CHAPTER 4

The Euclidean equations are 4 = 1 ~ 3 + 1 and 3 = 3 1 + O. Using the
first equation, we obtain 1 = – 1 ~ 3 + 1 ~ 4.

(c) Algorithm EUCLID run on the pair (55, 89):

Step No. b c q r gcd

1
3,4
5
3,4
5
3,4
5
3,4
5
3,4
5
3,4
5
3,4
5
3,4
5
3,4
5
6 STOP

55 89 55
1 34

34 55
1 21

21 34
1 13

13 21
1 8

8 13
1 5

5 8
1 3

3 5
1 2

2 3
1 1

1 2
2 0

1

The Euclidean equations are
1.89=155+34
2.55=134+21
3.34= 1” 21+13
4.21=113+8
5.13= 1” 8+5
6 . 8=15+3
7 . 5=13+2
8 . 3=12+1
9 . 2=2” 1+0.

485

SOLUTIONS TO QUESTIONS IN CHAPTER 4

We must start with equation 8 and work our way backward to express
the gcd as a linear combination of 55 and 89:

1=–1”2+ 1.3= –l. (–l .3+15) +1.3 using equation 7

=23- 1” 5=2.(-1.5+1.8)-1.5 using equation 6
=–35+2.8=-3.(-1.8+1.13) +28 using equation 5

=58-3.13=5.(-113+1.21)- 313 using equation 4

=–8” 13+521=-8.(-121+1.34) +521 using equation 3
=13. ~1–8.34= 13. (_l .34+1.55)_ 8.34 using equation 2
=–21.34+1355=-21.(-1.55 +1.89) +13. 55usingequationl

– 34.55 – 21.89.—

SECTION 4

4.1

4.2

4.3

4.4

n 2 3 4 5 6 11 13
Fn_2 O 1 1 2 3 34 89
Fn_l 1 1 2 3 5 55 144
sum 1 2 3 5 8 8 9 233

n 16 17 18 19 20
Fn_2 377 610 987 1,597 2,584
Fn_l 610 987 1,597 2,584 4,181
sum = F. 987 1,597 2,584 4,181 6,765
2n 65,536 131,072 262,144 524,288 1,048,576

In each case listed above, F“ < 2“.

We claim that the Principle of Complete Induction is valid, by which we
mean that if assertions (i) and (ii) are both verified, then the proposition P“
is proved for all n 2 N: Suppose that we verify (by hand) that P~, P~ + ~,. . .,
and P~ + ~ are all true. Then setting k = N + i in (ii) shows that Pk + ~ =
P~ + i + ~ is true. Then we can repeat (ii) with k = N + i + 1. Since we’ve just
demonstrated that Piv,. . . . PN + ~ + I = all true> we get that ‘ N + ~ + z is true,

and so on. In general, we can work our way up to the truth of P. for any
integer n > N.

Using a calculator, one can check that

Flo = 55< (~)l” < (~)11 < Fll = 89 .

We must prove for n >11 that Fn > (;)”: For the base cases we notice that

Fll=89> (;)ll =86.4...

486

SOLUTIONS TO QUESTIONS IN CHAPTER 4

and

F12 = 144> (2)12 = 129.7

As in Example 4.2 we require base cases with two consecutive integers
(or j = 1) because the proof uses the fact that F~ + ~ = F~ + F~ _ ~. We use
complete induction and so assume that PI ~, PI ~,. . . . Pk are all true for some
arbitrary value of k. That is, Fi > (~)i for all 11 s i s k. Notice that i > 11,
since otherwise the claim that F i > (~)i is not true. We must prove that
F~+l > (~)k+l.

Fk+l = Fk + Fk-1 > (;)k +(;)k-l by inductive hypothesis

= (;)k-’(; + 1)> ($)k-’ “ (:) = (:)k+’.

Thus F. > (~)” for all n >11.

4.5 We begin with the equation x – 1 = l/x and multiply both sides by x to
obtain X2 – x = 1 or X2 – x – 1 = O. Using the quadratic formula, we find
the roots to be (1 + &)/2 = @ and (1 – fi)/2 = ~’. Since these are not zero,
they are also solutions to the original equation. Alternatively,

1 2 2(1 –&)

T=l+J3=(l+~)(l–~)

=2(1–&l–& –l+fi_— .
1 – 5 – 2 2

_l+~— —–1=~–l.
2

46 42+2= ((1 + fi)/2)’ – ((1 – @2)2
.

d &
_(l+2fi+ 5)/4-(1-2&+5)/4—

4
4&/4. —=1=F2.
4

4.7 The algorithm segment

Set C:=A+B

Set B:=A

Set A:=C

487

SOLUTIONS TO QUESTIONS IN CHAPTER 4

placed inside the appropriate loop will calculate Fibonacci numbers if A and
B are initially assigned the values FI and FO, respectively. This uses three
memory locations. It is possible to use only two memory locations with the
segment

Set B:=A+B

Set A:=A+B

placed inside the appropriate loop.

SECTION 5

5 .1 (i)c=F8= 21andb=FT =13

21=1” 13+8, ql=l, rl=8

13=1.8+5, q2=l, r2=5

8=1” 5+3, q3=l, r3=3

5=1.3+2, q4=l, r4=2

3=1,2+1, q5=l, r5=l

2=2” 1+0, q6=2, r6=0

(ii) c= F10=55andb=F9 =34

55=1” 34+21, ql=l, rl =21

34=1.21+13, q2=l, r2 =13
21=1.13+8, q3=l, r3=8

. . . as in the preceding part.

5.2 The maximum number of Euclidean equations occurs when b = 3 and c = 5,
and this number is three.

5.3 If b = 77 and c = 185, the first two Euclidean equations are
1.185 =2” 77+31, ql=2, rl =31
2 . 77=2” 31+15, q2=2, rz =15

5.4 (When b = 26 and c = 32. there is no value Of t such that rlt + z and r~t are
defined.) When b = 233 and c = 377, the largest integer t for which r2t + z is
defined is t = 5. Thus we compute the quantity rzt + JrZ, for t = L 2,3.4.5:
r4/r2 = ~, r6/r4 = ~, r8/r6 = ~, rlo/r8 = ~, and r12/rlo = O. These frac-
tions are all less than ~.

488

SOLUTIONS TO QUESTIONS IN CHAPTER 4

SECTION 6

6.1 (a) False, (b) False, (c) False, (d) True, (e) True, and ($) True.
An integer is congruent to O modulo 2 if and only if it is even.
[1] = {1,4, –2, 7, –5, 10,...} = {1 + 3k: k is an integer}.

6.2 (a) n+ i, (b) –n+ i.

6.3 (i) a - a (mod n):

Proof. a – a = O = O” n. Since a – a is divisible by n, we have a = a (mod n).
n

(ii) If a - b (mod n), then b = a (mod n)

Proof. If a - b (mod n), then there is an integer i such that (a – b) = in. But
then (b – a) = – in, which implies that b – u is divisible by n. Thus
b - a (mod n). ❑

6.4 Both s and ~ are relations on Z and on all subsets of Z, respectively. If
two numbers are called related when their difference is even, then this gives
a relation on Z, but not on R, since we do not know what it means for an
arbitrary real number to be even.

6.5 (i) Given that a E c (mod n) and b - d (mod n), we know that there exist
integers i and j such that a = c + in and b = d + jn. Thus

a+ b=c+d+in+jn=c+d+ (i+j)n.

Thus a + b – (c + d) is divisible by n and so a + b E c + d (modn).
(ii) Proceedings in(i) we have a – b = c – d + in – jn. Thus a – c – (b – ~
is divisible by n and so a – c - b – d (mod n). El

6.6 If x is in [a] and y is in [b], then

aax (modn)_ and b = y (mod n).

By Lemma 6.3, part (iii)

ab = xy (mod n)

Thus multiplication is well defined.

6 . 7 (i)a=3, b=4, c=8, d=9, a n d

and [ah] = [xY].

n = 5 . Note that a’b =34=12-
2“(mod 5) and that c. d = 8 ~ 9 = 72-2 (mod 5). Further, 3 = 8 (mod 5) and
gcd (3,5) = 1. Finally, 4-9 (mod 5).
(ii) u=3, b=4, c= 15, d = 8 , a n d n= 12. Note that a b = 3 . 4 -
0 (mod 12) and that c” d = 15.8 = 120= O (mod 12). Further, gcd (3, 12) = 3.
and 4 # 8 (mod 12).

489

SOLUTIONS TO QUESTIONS IN CHAPTER 4

6.8

6.9

(a) All nonzero elements of Z, have multiplicative inverses: [1][1] = [I],
[2][3] = [3][2] = [6] = [1], and [4][4] = [16] = [I]. (b) Since 10 is not
a prime number, only numbers relatively prime to 10 have multiplicative
inverses, namely 1,3,7,9: [1][1] = [1], [33[7] = [7][3] = [21] = [1], and
[9][9] = [81] = [I]. (c) The elements of 21 ~ that have inverses are the
numbers relatively prime to 18: [1], [5], [7], [11], [13], [17].

If p = 11 and b =4, the equivalence classes (mod 11) are r41, r2 .41 =
[8], [3 ~ 4] = [12] = [1], [4 ~ 4] = [16] = [5], [5 ~ 4] = [20] =-[9], 16. 4j =
[24] = [2], [7 ~ 4] = [28] = [6], [8 ~ 4] = [32] = [10], [9 ~ 4] = [36] = [3],
[10 ~ 4] = [40]= [7]. We also note that

411-1 = 410 = 1,048,576= 1 + 95,325.11 = 1 (mod 11).

Finally, if c = 11, 1110 a O (mod 11).

SECTION 7

7.1

7.2

7.3

7.4

7.5

7.6

490

In ASCII “HOWDY” = 7279876889. The message 83858270327383328580
represents “SURF IS UP.”

ZZ produces 9090. With B = 4 the smallest number is 3232.

(a) 323 = 17 “ 19, (b) 4087=61 “ 67, and (c) 8633=89 “ 97.

Here are all numbers between 2 and 76 that are relatively prime to 607,11,
13,17,19,23,29,31,37,41,43,47,49, 53,59,61,67,71,73.

We know that 9991 = 97 “ 103. To show that gcd (7676, 9991) = 1 and that
gcd (7932, 9991) = 1 we check that neither 97 nor 103 divides 7676 or 7932.
Next we calculate R2 and R3:

R2 = M~l - M2M~M~ (mod 9991).

M: s 76762 G 58920976 = 4049
M: ~ 40492-16394401-9161

M; z 91612 = 83923921 = 9512

Thus R2 a 7676 “ 4049-9512 = 9884 (mod9991).

R3 s M\l z M3M$M~ (mod 9991).

M; E 79322 G 62916624 s 3297

(mod 9991).

(mod 9991).

(mod 9991).

(mod 9991).

M: a 32972 = 10870209 = 1 (mod 9991).

M: =12=1 (mod 9991).

Thus R3 = 7932 ~ 3297 “ 1-5357 (mod9991).

Assume that there are 30 days = 30.24.60 = 43,200 minutes in a month.
Then to check all N B digit numbers from O to N with e = 11 requires roughly

SOLUTIONS TO QUESTIONS IN CHAPTER 4

N15B2 = 10B + 115B2 single-digit operations. The problem can be restated
as follows: For what value of B is 10B + 1 15B2/17,800 > 43,200? The answer
is B >6. Thus in order to keep Eve calculating for a month, the value of N
must be at least 107.

7.7 The multiplicative inverse (mod 8) of e = 7 is d = 7. The encryption of 2:
27 = 128 s 8 (mod 15). The decryption of 8:87 = 2097152-2 (mod 15). The
encryption of 7: 77 = 823543 s 13 (mod 15). The decryption of 13: 137 =
62748517 = 7 (mod 15).

7.8 First we show that R~45 1 - M2:

R~51 - (9884 4096) (9884256)(988464)(988432)(98842)(9884)

With a total of 12 multiplications we find

98842 = 97693456-1458 (mod9991)

98~44 = 14582 (mod 9991)

-2125764 (mod 9991) -7672 (mod 9991)

9884 8 = ?6722 (mod 9991)

= 58859584 (mod 9991) -2603 (mod 9991)

9884 16-26032 (mod 9991)

a 6775609 (mod 9991) = 1711 (mod 9991)

9 8 8 432 ~ 1711 2 (mod9991)
s ~927521 (mod 9991) ~ 158 (mod 9991)

988464 a 1582 (mod 9991)

= 24964 (mod 9991) -4982 (mod 9991)

9 8 8 4128 e 49822 (mod9991)

= 24820324 (mod 9991) -2680 (mod 9991)

9 8 8 4256-2680

2 (mod 9991)

= 7182400 (mod 9991) -8862 (mod 9991)

9884 512-8862 2 (mod 9991)

= 78535044 (mod 9991) -5784 (mod 9991)

98841024 = 57842 (mod 9991)

= 33454656 (mod 9991)= 4788 (mod 9991)

98842048 a 47882 (mod 9991)

R 22924944 (mod 9991) E 5590 (mod 9991)

9 8 8 44096- 5 59

02 (mod 9991)

a 31248100 (mod 9991)= 6243 (mod 9991)

491

SOLUTIONS TO QUESTIONS IN CHAPTER 4

With five more multiplications we find

9884 4451 ~ 6243 “ 8862 “ 4982.158 “ 1458 9884 (mod 999I)

= (6243 ~ 8862) ~ (4982 ~ 158) ~ (1458 ~ 9884) (mod 9991)

= 5299 “ 7858 “ 3850 (mod 9991)

= (5299 ~ 7858) .3850 (mod 9991)

= 7045 “ 3850 (mod 9991)

= 27123250 (mod 9991)

= 7676 (mod 9991)

= M2.

Next we show that R~451 z M3:

Rf451 = (53574096)(5357 256)(5357 64)(5357 32)(5357 2)(5357)

With a total of two multiplications we find that

53572 = 28697449 = 3297 (mod 9991)

53574 a 32972 (mod 9991)

a 10870209 (mod 9991)= 1 (mod 9991)

All of the remaining powers of 5357 will equal 1 modulo 9991. Then with
one more multiplication we find that

451 _R: = 5357 445’ (mod 9991)

= 1 ~ 1 1.1.3297.5357 (mod9991)—

= 17662029 (mod 9991)

= 7932 (mod 9991)

= M3.

492

SOLUTIONS TO QUESTIONS
IN CHAPTER 5

SECTION 1

1.1 There are
()

4
= 6 pairs of possible direct connections among the four build-

2
ings A, C, M, and S. At-least three direct connections are needed so that
communication is possibIe between every pair of buildings. Not every set of
three direct connections will ensure tha~ each pair of buildings can communi-
cate. See the following illustrations.

S c

I
MA

.

Sc

L
o

M A

There are
()

5
= 10 pairs of possible direct connections among five build-

2
ings. At least four direct connections are required to ensure communications
among every pair of buildings. Not every set of four direct connections will
guarantee communications between each pair of buildings. See the following
illustrations.

493

SOLUTIONS TO QIJESTIONS IN CHAPTER 5

s c s c’

M A M A

1.2 There are 16 possible LAN configurations. Four of these have one building
directly linked to each of the other three buildings. In the remaining 12 the
buildings are linked in a path of three cables. By checking all possibilities,
one can determine that joining Stoddard with each of the other three buildings
has a minimum total cost of $148,000. Note that the total cost with Stoddard
is less than the cost without it.

SECTION 2

2.1 Here are three graphs with V = 4 and E = 3.

LI kc
2.2 We display the graph in Figure 5.4 with each vertex labeled with its degree:

V = 8, E = 10, and the sum of the degrees of all the vertices is 20.

1 3 4 3 2
0

2 2

2.3 From Theorem 2.1 the sum of all of the degrees is an even number. The con-
tribution to this sum made by the vertices of even degree is even. Therefore
the contribution to this sum made by the vertices of odd degree also must
be even. The only way this can occur is if the number of odd vertices is even.

494

SOLUTIONS TO QUESTIONS IN CHAPTER 5

2.4 The 11 different graphs on 4 vertices are as follows. (Note that in the solution
to Question 2.1 we listed all different graphs with V = 4 and E = 3.)

HL III

2.5 We show the graphs, G and H, from Figure 5.7 with each vertex labeled,
and then ------2 Al- -- -J:------- ,. —-..---,

2t1~ UIIKX1 L.

1 2

“(2’3 ‘Qc
5 4

G

e d

H

If ~ were an isomorphism from G to H, it would satisfy the relation
deg (x, G) = deg (jlx), H) for each vertex x of G. Thus we must have that
~(l) = g or c and J(5) = c or g. Without loss of generality, we choose ~(l) = g
and j“(5) = c. The question is, what is ~(6)? (This is where we get stuck and
can conclude that G and H are not isomorphic.) In order to preserve ad-
jacency, ~ must map the vertex 6 to a vertex in H that is adjacent to both

495

SOLUTIONS TO QUESTIONS IN CHAPTER 5

2.6

2.7

~(l) = g and ~(5)= c. But there is no vertex in H that is adjacent to both
g and c. Thus we cannot find f: V(G) ~ V(H) that satisfies property (ii) of
the definition of isomorphic. Therefore, G is not isomorphic to H.

From Theorem 2.2, K, contains 7(7 – 1)/2 = 21 edges.

The graph shown in (a) is bipartite. The vertices are labeled with R and B.
To see why the graph in (b) is not bipartite, attempt to label the vertices with
R and B. There is essentially only one way of doing this, by alternating R
with B around the outside cycle. When we do this, we see that some Rs are
adjacent to other Rs.

(a) Bipartite (b) Not bipartite

SECTION 3

3.1 A path of length 5 from a to b is given by <a, x, r, e, w, b). A path of length
3 from z to r is given by (z, a, x, r). A 4-cycle ‘through b is given by
(b, w,c, z, b).

3.2 The three different trees on five vertices are

D -L-u
3.3 A tree on six vertices must contain five edges, regardless of the particular

tree. (Move on to Theorem 3.1 for a proof of this fact.)

3.4 A set of 40 buildings with every pair connected by coaxial cable can be
thought of as a 40-clique. From Theorem 2.2, a 40-clique contains
40(40 – 1)/2 = 780 edges, or in this case, cables. A good guess as to the
minimum number of cables needed to connect 40 buildings is 39. The rea-
soning behind this guess is as follows: A graph that models the LAN (i) should
be connected (since every pair of buildings must be able to communicate),
and (ii) should not contain any cycles (since these introduce unnecessary

496

SOLUTIONS TO QUESTIONS IN CHAPTER 5

connections). Thus the model for the LAN that uses the fewest number of
edges is a tree with 40 vertices, which necessarily has 39 edges.

3.5 (a) The forest in Figure 5.15 contains 5 components, 14 vertices and 9
edges. Thus E = V – C. (b) Let the component trees be labeled Tl,
T2,. ... Tc with the number of vertices and edges of each component given
by Vl, V2,. ... Vcand El, E2,. ... Ec, respectively. Then, in total, E = El +
Ez+”” .+ Ecand V= Vl+V2+” “ + Vc. Since each component is a tree,
we know that Ei = Jj – 1 for i = 1,2,. ... C. Our goal is to compute E, the
total number of edges in the forest F, and we hope the result will be that
E = V – C :

E= EI+E2 +”” +EC=(V1– 1)+(V2–l)+””+(VC –1)

=V1+V2+ ..”+ VC–(l+l+””” +1) =V–c.

3.6 We shall show that after the removal of edge e, every pair of vertices in
the graph G – e is still connected by some path, and thus the graph G – e
is connected.

Proof. Suppose that e is an edge of the cycle C. Pick two vertices, say z
and w in V(G). Since G is connected, there is a path P = P(z, w) from z to
w. If P does not include e, then there is a path from z to w in G — e.
Otherwise, P uses e and thus intersects with C. Suppose that u is the first
vertex of P that is a vertex of C and u is the last vertex of P that is a
vertex of C. Thus P consists of three segments, P(z, u) from z to u, P(u, u)
from u to U, and P(LI, w) from v to w. If u = o, then we can construct a new
path P’ consisting of P(z, u) followed by P(v, w). P’ is a path from z to w in
G – e. If u # v, then within C there is a path P x that joins u with v but
does not contain the edge e. Let P’ consist of P(z, u) followed by P# followed
by P(IJ, w). P’ is a path from z to w in G – e. Thus G – e is connected. ❑

3.7 A connected graph with V vertices and V – 1 edges is a tree.

Proof. If G is acyclic, then by definition, G is a tree. If G contains a cycle,
by the preceding question it is possible to remove an edge from G, leaving
a connected graph. Continue removing edges from cycles until you are left
with a connected, acyclic graph. Such a graph has V — 1 edges, the original
number of edges. Thus no edges were removed, there can be no cycle in G,
and G is a tree. ❑

3.8 One possible spanning tree of the graph in Figure 5.19 is as follows.

497

SOLUTIONS TO QUESTIONS IN CHAPTER 5

3.9 All spanning trees of the graph shown in Figure 5.21, along with the weight
of each, are as follows.

,~~’: ,1 , ,[LO

wt=20 wt.23

‘u
wt.24

‘Lu’!l
wt.26

?
3 3 4

0
/’ ? 1

0

5

3.10

/7

L 8 /
wt=23

5

8
0 i

wt=21

6

f!
vh=18

Algorithm BADMINTREE run on the graph in Figure 5.22:
Steps 2 and 3. A list of all subsets of the edges of the graph in Figure 5.22

498

SOLUTIONS TO QUESTIONS IN CHAPTER j

with exactly three edges follows. For those graphs that are trees, we give the
total weight:

N T1 ‘u’ ‘c 34
wt=13 wt=l.2 Wt=lo

‘m’ ‘hi’ i Y’ ‘N
wt =13 wt.15 Wt.11 rit=12 Wt=l’

Step 4. The spanning tree of minimum weight is the tree shown above whose
weight is 10.

3.11 J“ = 3: (3@::12)=(;3=3

V=4: (4(:::/2)=(:)=20

V=5: (5(;::2)=(:)=2,0

v=,: ~:y2)=(y)=3003

v=~: (7(;~~12)=(;)=54,(j4

SECTION 4

4.1 (a) The result of running KRUSKAL on the first graph in Figure 5.24,

499

SOLUTIONS TO QUESTIONS IN CHAPTER 5

4.2

4.3

4.4

4.5

500

(b) The result of running KRUSKAL on the second graph in Figure 5.24
is a spanning forest. KRUSKAL reports failure, since the graph is not con-
nected.

,~:] or ~-;

3 3

We show TI and T2 labeled with c and d, respectively, and then we exhibit
the graph T2 + c – d. (Note that this is only one of several ways of choosing
c and d.)

ZOLZ
TI Tz T2+c–d

Since E = O(V2), 0(E2) + O(E V) = O((V2)2) + O(V2V) = 0(V4) +
O(V3) = O(V4). Similarly, O(E log(E)) = O(V2 log(V2)) = O(V2 log(k’)).

[1
(a) 011 O (b)

1 0 0 1

1 0 0 0

0 1 0 0

(a)

0 1 0 1 1 0 07

1 0 1 1 0 1 0

0 1 0 0 0 1 1

1 1 0 0 1 1 0

1 0 0 1 0 0 0

0 1 1 1 0 0 1

0 0 1 0 0 1 0

d5

4 3
(b)

4.6 If j“(n) = O(nk), there

SECTION 5

SOLUTIONS TO QUESTIONS IN CHAPTER 5

are constants C and N such that

~(n) S Cnk for all n > N
= C(BUz)k since B = n2

—— C(Bk12)

. 0(Bk12).

5.1 Algorithm GREED YMAX

STEP 1.

STEP 2.
STEP 3.

STEP 4.

STEP 7.

Order the objects of E in order of decreasing weight assume E
contains m objects el,. . . . em
Set j:= 1 {j will index the objects.}
Set T to be empty {T will contain the desirable subset being
created.}
Repeat
Begin
STEP 5. If T + ej is desirable, set T : = T + ej

S T E P6. j:=j+l
End
Until j > m
Output T and stop.

If E is the set of weighted edges in a graph and desirability is defined as
being acyclic, then the ~gorithm- GREEDYMAX adds the heaviest weight
edges to T unless a cycle is formed. Thus at the end T contains a maximum
weight spanning forest.

5.2 Algorithm GREED YCYCLE

STEP 1.
STEP 2.

STEP 5.

STEP 6.

Set C to be empt~ set j: = O
Repeat
Begin
STEP 3. Find the lightest edge e such that C + e is a path; set

C:=C+e
S’rEp4. Setj:=j+l
End
Until j=V–1
Set C : = C + (x, y), where x and y are the end vertices of the path
of c
Output C and stop.

501

SOLUTIONS TO QUESTIONS IN CHAPTER 5

An example of a weighted K4 followed by the result of running
GREEDYCYCLE on this K4 with V = 4 is shown in the following figure.
The final graph shown is the true minimum weight 4-cycle.

lx!’ X c!’
K4 Result of True minimum-

GREEDYCYCLE weight 4-cycle

502

SOLUTIONS TO QUESTIONS
IN CHAPTER 6

SECTION 1

1.1 (a) 1, the social security number might be first in the card file. (b) 20, the
social security number might be last in the card file. (c) On average you
might expect the director to check about one-half or (1 + 20)/2 = 10.5 cards.

1.2 (a) To find the card with the social security number that is alphabetically
first in the card file, the director must make one comparison. To find the
card with the social security number that is alphabetically second in the card
file, the director must make two comparisons. In general, to find the card
that is alphabetically in the ith position in the card file, the director must
make i comparisons. In total, the director must make

20(20 + 1)
1+2+ 3+”” .+19+20= z =210 c o m p a r i s o n s .

(b) It takes 420 seconds = 7 minutes to make all the comparisons. It takes
20 minutes to record all the information. Thus the director spends more time
recording than comparing.

1.3 The director will have to examine all cards to be certain of finding the one
with the smallest social security number. Thus it will require 19 comparisons
if she compares the first card with the second, the smaller with the third, the
smallest with the fourth, and so o-n.

503

SOLUTIONS TO QUESTIONS IN CHAPTER 6

1.4 Trace of Algorithm SELECTSORT run on {6,4,2, 3):

Step No. i j al a2 a3 a4 TN

4
5
4
5
4
5
6
2, 3, 4
5
4
5
6
2, 3, 4
5
6
7 STOP

1 2 6
1 2 6
1 3 6
1 3 6
1 4 6
1 4 6
1 4 2
2 3 2
~ 3 2
2 4 2
2 4 2
~ 4 ~

3 4 2
3 4 2
3 4 ~

4 2 3
6 2, 3
6 2 3
6 4 3
6 4 3
6 4 3
6 4 3
6 4 3
6 6 3
6 6 3
6 6 4
3 6 4
3 6 4
3 6 6
3 4 6

6
4
4
2
2
2
2
6
4
4
3
3
6
4
4

SECTION 2

2.1 n= 136 68 34 17 9 5 3

L(n+l)/2J =68 34 17 9 5 3 2

2.2 If n is odd, then there are exactly (n – 1)/2 records before and after the mth
record. Otherwise, if n is even, there are n,i2 – 1 records before the rnth record
and n/2 after it. The largest number of records that still must be searched is
no more than n/2.

2.3 pair = (6,8) (lo, 17) (18,33) (35,67) (69, 136)

mid = 7 13 25 51 102

504

SOLUTIONS TO QUESTIONS IN CHAPTER 6

2.4 A = (2,3,5,7,11,13, 17,19)

(a) Trace of algorithm BINARYSEARCH run with S = 5:

Step No. jirst last mid amid

4 1 8 4 7
5 1 8 4 7
6 1 3 4 7
4,5 1 3 ~ 3
6 3 3 2 3
4 3 3 3 5
5 Found S at location 3 and STOP.

We examined and compared S with three entries of A.
(h) With S = 10:

Step No. jirst last mid amid

4, 5 1 8 4 7
6 5 8 4 7
4,5 5 8 6 13
6 5 5 6 13
4, 5 5 5 5 11
6 5 4 5 11
7 S is not in A and STOP.

We examined three elements in A.
(c) With S = 17:

Step No. jirst last mid amid

4,5 1 8 4 7
6 5 8 4 7
4,5 5 8 6 13
6 7 8 6 13
4 7 8 ‘i’ 17
5 Found S at location 7 and STOP.

We compared S with three entries of A.

505

SOLUTIONS TO QUESTIONS IN CHAPTER 6

2.5 n S 3Llog (n)] + 4 Array No. of Comparisons Required

2 3 7 <1,2) 7
2 1 7 (1,2) 2
3 4 7 (1,2,3) 7
3 ~ 7 (1,2,3) 2
4 5 10 (1,2,3,4) 10
4 2 10 (1,2,3,4) 2

2.6 (a) Because SEQSEARCH sequentially searches the card file, 1000 compari-
sons are required in the worst case, the case where the card being searched
for is last in the file. (b) From Theorem 2.1, BINARYSEARCH requires at
most 3Llog (1000)] + 4 = 31 comparisons.

SECTION 3

3.1 Trace of algorithm BININSERT run on A = (2,5,7,9, 13,15, 19)
(a) With D = 1

Step No. jirst last mid amid A

1
3
4
3
4
3
4
8
9

1
1
1
1
1
1
1
1
1

7 ? ? (2,5,7,9,13,15,19,1)
7 4 9
3 4 9
3 ~ 5
1 2 5
1 1 2
0 1 2

(2,2,5,7,9, 13,15, 19)
(1,2,5,7,9, 13, 15,19)

(b) With D = 4

Step No. jirst last mid %id A

1
3
4
3
4
3
4
8
9

7 ? ? (2,5,7,9, 13,15, 19,4)

7 4 9
3 4 9
3 ~ 5
1 2 5
1 1 2
1 1 ~

(2, 5,5.7,9,13,15. 19)
<2,4,5,7,9,13,15, 19)

506

SOLUTIONS TO QUESTIONS IN CHAPTER 6

(c) With D = 14

Step No. jirst last mid amid A

1
3
4
3
4
3
4
8
9

1
1
5
5
5
5
6
6
6

7 ? ? (2, 5,7,9,13,15,19, 14)
7 4 9
7 4 9
7 6 15
5 6 15
5 5 13
5 5 13

(2,5,7,9, 13,15,15, 19)
(2,5,7,9, 13,14,15, 19)

(d) With D =23

Step No. jirst last mid amid A

1
3
4
3
4
3
4
5

1
1
5
5
7
7
8
8

7 ? ? (2, 5,7,9,13,15, 19,23)
7 4 9
7 4 9
7 6 15
7 6 15
7 7 19
7 7 19

(2,5,7,9, 13,15,19,23>

3.2 Trace of BININSERT with A = (2,5,9, 13,15,19, 16):

Step No. first last mid amid A

1
3
4
3
4
3
4
8
9

1
1
5
5
7
7
7
7
7

7 ? ‘J (2,5,7,9, 13,15,19, 16)
7 4 9
7 4 9
7 6 15
‘7 6 15
7 7 19
6 7 19

(2,5,7,9, 13,15,19, 19)
(2,5,7,9,13,15,16,19)

507

SOLUTIONS TO QUESTIONS IN CHAPTER 6

3.3

3.4

Trace of BINARYSEARCH with A = (2,5,7,9, 13,15, 19) and S = 16:

Step No. jirst last mid amid

4,5 1 7 4 9
6 5 7 4 9
4,5 5 7 6 15
6 7 7 6 13
4,5 7 7 7 19
6 7 6 7 19
7 Sisnot inA

The algorithm BININSERT is an extended version of BINARY-
SEARCH. The variables in the algorithm take on exactly the same values
and similar comparisons of elements are made. However, instead of just
announcing that “S is not in A,” BININSERT continues by shifting part of
A and inserting S into the array A.

Trace of BINARYSORT with A = (13, 23,17,19,18, 28):

Step No. m n A

1
2
3
2
3
2
3
2
3
~
3

? 6 <13,23,17,19, 18,28)
2

(13,23, 17,19, 18,28)
3

(13,17,23,19,18,28)
4

(13, 17,19,23, 18,28)
5

(13, 17,18, 19,23,28)
6

(13, 17,18, 19,23,28)

In BININSERT every execution of step 2, except for the final one, forces an
execution of step 4. Steps 2 and 4 each require one comparison. The final
execution of step 2 requires one additional comparison and step 5 requires
one additional comparison. In total then, BININSERT requires 2(the number
of executions of step 4) + 2. In each part of Question 3.1, step 4 is executed
three times. Thus the total number of comparisons is 2 ~ 3 + 2 = 8. Further,

8~2[log(7)] +4=2.2+4=8.

508

SOLUTIONS TO QUESTIONS IN CHAPTER 6

3.5 In Question 3.3, BINARYSORT is performed on an array of size 6. Within
BINARYSORT, the procedure BININSERT is called five times on arrays of
sizes 2,3,4,5 and 6, respectively. From Theorem 3.1 we have that BININSERT
requires at most 2110g(r)] + 4 comparisons to insert the (r + 1)st item into
a sorted array of r items. Thus the total number of comparisons in Question
3.3 is given by

(2 Llog(1)J + 4) + (2 Llog(2)j + 4) + (2 Llog(3)J + 4)

+(2110g (4)J-t- 4)+(2 Llog(5)] +4)=4+6+6+8+8=32.

Note that when n = 6, (n – l)(2L10g (n – 1)] +4)= 5(2 Llog(5)] +4) = 40.

SECTION 4

4.1 A search tree illustrating a binary search of an array of 15 elements follows.

a8

4.2 (a) O

‘P’(X

(b) There is one binary tree with two leaves: the one above with three vertices.
There are two binary trees with three leaves: These are the binary trees with

509

SOLUTIONS TO QUESTIONS IN CHAPTER 6

five vertices. There are five binary trees with four leaves: These are the binary
trees with seven vertices.

4.3 (a) Left subtree

al a3

(b) Left subtree

(C) Left subtree
0

(d) Left subtree

(e) Left subtree
0

Right subtree

a5 a7

Right subtree
o

Right subtree
o

Right subtree
o

Right subtree

A

4.4 The depth of the left subtree is d – 1 or less.

4.5 From Theorem 4.1, a full binary tree has 2k vertices at depth k. In particular,
a full binary tree with H or more leaves and depth k must have n < 2k or
log (n) s [log (n)l = k. Thus a full binary tree of depth [log (n)l will have n or
more leaves and by Corollary 4.2 will contain exactly 2r10g ‘n)’+ 1 – 1 vertices.

4.6 n k = Llog(n)j + 1 n’=j-j

15 Llog(15)J + 1 = 4 24–1=15
26 Liog(26)J + 1 = 5 25–1=31
31 L10g(31)J + 1 = 5 25 –-1=31

We must show in general that n’ > n. We know that n < 2k, or

510

4.7

SOLUTIONS TO QUESTIONS IN CHAPTER 6

For convenience, we replace the label q with i. A binary search tree for a
23-element array follows. Note that the tree must have 31 vertices (see Ques-
tion 4.6).

4.8 Labeled tree after the second execution of step 7:

13

Labeled tree after the third execution of step 7:

16

511

SOLUTIONS TO QUESTIONS IN CHAPTER 6

Labeled tree after the fourth execution of step 7:

20

M M M M

Labeled tree after the fifth execution of step 7:

41

41

M

M M 41 M M M M M

Result: B = (bl, b2, b3, b4, b5, b6) = (7,9, 13, 16,20,41).

SECTION 5

5.1 There are 3! = 6 orderings of the array A = ((J ~, a2, U3), one for each per-

()

3
mutation on three elements, and = 3 possible pairwise comparisons.

2
For an array with four distinct elements, there are 4! = 24 possible orderings

()

4
with = 6 possible pairwise comparisons. Finally, an array with five

2

0

5
distinct elements can be ordered in 5! = 120 different ways with ~ = 10

possible pairwise comparisons.

512

5.2 (a)

SOLUTIONS TO QUESTIONS IN CHAPTER 6

al : ap

(b)

(a)

(b)

5.3 The graph shows a subtree of the binary search tree for a four-element
array as specified by Example 5.3. ln particular, the root of the subtree is
labeled with a4: a2 and we have assumed that al < a2 < a3. If the whole
binary search tree were drawn, it would look like the tree in Figure 6.6,
only this subtree would be hanging in place of the leaf labeled “al < a2 <
a3 .“ And a similar subtree would be hanging under every other leaf. In the
worst case five comparisons will be made.

a4: a2

513

SOLUTIONS TO QUESTIONS IN CHAPTER 6

5.4 A total of 5n log(n) comparisons are made or roughly 27,000 comparisons
when n = 600, roughly 61,000 comparisons with n = 1200, and roughly
97,000 comparisons with n = 1800.

SECTION 6

6.1 Trace of procedure MIN on the array <4,3,2,1, 5):

Step No. n k a k
%+1

1 5
2
3 {Call MIN((;, 3,2, l),4,k)}
1 4
2
3 {Call MIN((;, 3,2), 3,k)}
1 3
2
3 {Call MIN((;, 3),2,/c)}
1 2
2
3 {Call MIN((;), l,k)}
1
5 {Return to (D;}

1
4
5 {Return to (C;}

2
4
5 {Return to (B;}

3
4
5 {Return to (A;}

4
4
5 {Return with; =4}

1

1 4
2

3 2
4

4 1
4

(A)

(B)

(c)

(D)

3

2

1

5

514

SOLUTIONS TO QUESTIONS IN CHAPTER 6

6.2 Trace of procedure GCD run on b = 13 and c = 21:

Step No. b c r 9

1 13 21 ? ?
2 13 21 x
3 {Call GCD(8, 13,g)}
2 8

(A)
13

3
5

{Call GCD (5,8, g)}
2

(B)
8

3
3

{Call GC;(3, 5,9)}
2

(c)
5

3
2

{Call GC;(2, 3, g)}
2 2

(D)
3 1

3 {Call GCD(l, 2,9)} - -

2
(E)

2
3

0
{Call GC;(O, 1, 9)}

1
(F)

1
{Return to (F)}

1
{Return to (E)}

1
{Return to (D)}

1
{Return to (C)}

1
{Return to (B)}

1
{Return to (A)}

1

Result: gcd(13, 21) = 1. Note that the procedure GCD is called six times.

515

SOLUTIONS TO QUESTIONS IN CHAPTER 6

6.3 Trace of MIN on the array .4 = (– 1,0.333,5.2, – 10,6.001, 17)
(a) With start =2, finish = 3

Step No. start finish Ufinish k ak

1 3
2 {Call MI;(A. 2,2, k)} (A)
1 2 2
4 {Return to2(A)}

2 3 5.2 2 0.333
3 3 5.2 ~ 0.333
4 {Return w?th k = 2}

Result: The index of the smallest entry in <a2, a~) is 2.
(b) With start =3, finish =6, A = (– 1,0.333,5.2, – 10,6.001, 17)

Step No. start jinish afini~h k ‘k

1
2
1
2
1
2
1
4

3
4

3
4

3
4

{Call MI;(,4, 3, 5,k)}

{Call MI;(A, 3,4, k)}

{Call MI;(,4, 3, 3,k)}

{Return to3(C)}
3

{Return to3(B)}
3
3

{Return to (A)}
3

{Return w?th k = 4}

6
(A)

5
(B)

4

3

4
4

5
5

6
6

(c)
3

– 10 3 5.2
– 10 4 – 10

6.001 4 – to
6.001 4 – 10

17 4 – 10
17 4 – l o

ResulC The index of the smallest entry in (as, al, as, a~) is 4,

516

SOLUTIONS TO QUESTIONS IN CHAPTER 6

(c) With start = 1, finish = 6

Step No. start finish ‘ f i n i sh k a k

1
2
1
2
1
2
1
2
1
2
1
4

1
{Call MIN (A, 1,5, k)}

1
{Call MIN (A, 1,4, k)}

{Call MI;(,4, 1,3, k)}

{Call MI;(,4, l,2,k)}

{Call MIN1(.4, 1, l,k)}

{Return tol(E)}

6
(A)

(B)

(c)

(D)

(E)

– 1
– 1

– 1
– 1

– 1
– 10

– 10
– 10

– 10
– 10

5

4

3

2

1 1

2
2

0.333
0.333

1
1

1

1
{Return to (D)]

3
4

3
3

5.2
5,2

1
1

1

{Return tol(C)}
1

{Return tol(B)}
1
1

{Return to (A)}
1

3
4

4
4

– l o
– 10

1
43

4
5
5

6.001
6.001

4
43

4
6
6

17
17

4
43

4 {Return w;th k = 4}

Result: The index of the smallest entry in the array ,4 is 4.

517

SOLUTIONS TO QUESTIONS IN CHAPTER 6

SECTION 7

7.1 Each vertex of the following tree is labeled with the subarray of A to be sorted
at that vertex.

Director
<a~,a~, . . . ,a*>

<al, q, u3, a4> <a5, a6, a7, a8>

<al, a2>

<al> <a2> <a~> <a4> < a 5 > <at> <a7> <ag>

The tree above has depth 3 and 15 vertices. Every vertex except the root
corresponds with one assistant.

7.2 Trace of MERGE run on C = (0.1, 0.2,0.3,0,0.09,0.19, 0.29,0.39, 0.49) with
start = 1, mid = 3, and finish = 9.

Step No. i j k D

1 1 4 1
3 1 5 ~ (0,...

1 6 3 (o, 0.09,...
2 6 4 <0,0.09,0.1,...
2 7 5 <0,0.09,0.1,0.19,..,
3 7 6 (0,0.09, 0.1,0.19,0.2,...
3 8 7 <(), 0.09,0.1,0.19,0.2,0.29, .
4 8 8 (O, 0.09,0.1,0.19,0.2,0.29, 0.3,...

10 (o, 0.09,0.1,0.19,0.2,0.29, 0.3,0.39, 0.49)
15 C = (0,0.09,0 .t, 0.19,0.2,0.29,0 .3,0.39,0.49).

518

SOLUTIONS TO QUESTIONS IN CHAPTER 6

7.3 (a) Trace of procedure MERGESORT run on the array C = (1, O) with
start = 1 and finish = 2:

Step No. c start mid jinish

1, ~ (1,0) 1 1 2
3 {Call MERGESORT(C, 1, 1)) (A)
1,2 (1) 1 1

{Return to (A)} 1 1 ~
4 {Call MERGESORT(C,2, 2)} (B)
1,2 (o) 2 2

{Return to (B)} 1 1 2
5 {Call MERGE (C, 1, 1,2)} 1 1 2

(o, 1)
6 Return.

(b) Trace of procedure MERGESORT run on the array C = (22,24, 23)
with start = 1 and finish = 3:

Step No. c start mid jnish

1,2
3
1,2
3
1,2

4
1,2

5

4
1,2

5

6

<22,24, 23)
{CaIl MERGESORT(C, 1, 2)
(22, 24)
{Call MERGESORT(C, 1, 1)}
(22)
{Return to (B)}
{Call MERGESORT(C,2,2)}
<24)
{Return to (C)}
{Call MERGE (C, 1,1, 2)}
(22, 24)
{Return to (,4)}
{Call MERGESORT (C, 3, 3)}
(23)
{Return to (D)}
{Call MERGE (C, 1,2, 3)}
(22, 23, 24)
Return.

1

1

1
1

1
1
3
1
1

2

1

1

1
1

‘-i.

2
3
3 (D)
3
3
~

519

SOLUTIONS TO QUESTIONS IN CHAPTER 6

(c) Trace of procedure MERGESORT run on the array C =
(1.1, 3.3,2.2, 4.4) with start = 1 and finish= 4:

Step No. c start mid jinish

1,2
3
1,2
3
1,2

4
1,2

5

4
1,2
3
1,2

4
1,2

5

5

6

(1.1,3.3,2.2,4.4)
{Call MERGESORT(C, 1,2)}
<1.1,3.3)
{Call MERGESORT (C, 1, 1)}
<1.1)
{Return to (B)}
{Call MERGESORT(C,2,2)}
(3.3)
{Return to (C)}
{Call MERGE(C, 1, 1,2)}
(1.1,3.3)
{Return to (A)}
{Call MERGESORT(C, 3,4)}
(2.2, 4.4)
{Call MERGESORT(C, 3, 3)}
(2.2)
{Return to (E)}
{Call MERGESORT (C, 4, 4)}
(4.4)
{Return to (F)}
{Call MERGE (C, 3, 3,4)}
(2.2, 4.4)
{Return to (D)}
{Call MERGE (C, 1,2, 4)}
<1.1,2.2,3.3,4.4)
Return.

1

1

1
1
1
2
1
1

1

3

3
3

4
3
3

1
1

1
1

1
1

~

3

3

4
(A)

2
(B)

1
2
2 (c)
2
2
2

4
(D)

4
(E)

3
4

(F)
4
4
4

4
4

7.4 (a) Since Mergesort was called three times and Merge once on an array of size -

2, 3 + 3 ~ 2 = 9 comparisons were performed. 9 = 3 “ 2 “ log(2) + 2 “ 2 – 1.
(c) Since Mergesort was called seven times and Merge three times on arrays
of sizes 2, 2, and 4, 7 + 3(2 + 2 + 4) = 31 comparisons were performed.
31=3” 4.10g(4) +24-1.

7.5 As in Question 7.3 (b) Mergesort is called five times and Merge is called twice
on arrays of sizes 2 and 3. Thus 5 + 3(2 + 3) = 20 comparisons are performed.
3“3”log(3) +2.3–1< 20<63. log(3) +103-1.

520

SOLUTIONS TO QUESTIONS
IN CHAPTER 7

SECTION 1

1.1

1.2

1.3

1.4

1.5

(a) 64, (b) 21, (c) 13, (d) 217, (e) 17.

(a) S4:fn = n!,
()

(b) S5:gn = ; (c) s~:hn =2”– 1,

[

n+l ifl SnS2
2 n – 1

(d) ~7:L = Zn + ~
if3snS4
if5sns6

2n+3 ifn=7

is one of many “creative” solutions to the problem of finding a function that
generates the first seven prime numbers. (e) S8: kn = n2,
u) %:rnn =(–1)’-’3”-1
The functions ~~ = 2“ + 1 + 1 and g. = 2n2 – 2n + 5 are two of many that
produce the values fl = gl = 5, f2 = g2 = 9 and f3 = g3 = 17.

Sl:an=a, _l+l with al = 1

S2:an = 2an_l with al = 2

n= 1234 5 6 7 8

au=O 1 3 6 10 15

h’ffn=l 2 2 3 3 3 3 4

521

SOLUTIONS TO QUESTIONS IN CHAPTER 7

1.6 n=l 2 3 4 5

Hn=l~+$~++f

H;=l$++~*

Weseethat forn=l,2,. ..,5, NH= W;.

1.7 n= 1 2 3 4 5

Cn=l 1 2 5 14

SECTION 2

2.1

2.2

2.3

2.4

S6 satisfies an = 2an _ ~ + 1 as does 9, 19, 39, 79, 159, S9 satisfies
a. = (–3)an_l as does –6, 18, –54, 162, –486,

If one of al and aq is unspecified, then as and all subsequent “odd entries
of the sequence will be undefined. Similarly, if one of a2 and ab is unspecified,
then ab and all subsequent “even” entries will be undefined.

n=12345678!3 10
“’an = 1 1 1 1 2 2 3 3 5 5

The sequence listed above can be obtained from the Fibonacci sequence
by listing each term twice. Since, by Theorem 4.3.1,

~=+”-w
n fi”

where

1+J5
4=7

1–$
and q!i = —-----,

% =F,n,2, = #’”’’’;@’’”/:,

(i) 2, (ii) 3, and (iii) 1.

(i) a. = nan_l =n(n - l)an_2 =n(n– l)(n–2)a~_3 = .

=n(n–l)(n –2). .(n- (n- 2))al=n(n –l)(n —2) ...2 .l= n!.

522

SOLUTIONS TO QUESTIONS IN CHAPTER 7

(ii) bn=bn-l+ 2= bn-2+2+2=bn-~+2 +2+2=”

=bn-(n-l) +2+2+ ”””+2 {n -1 2 s }

=bl+(n– l)2=l+2n–2=2n–1.

2.5 (i) For the base case we have al = 1! = 1. Then

ak+l =(It+ I)ak

= (k + l)k! by the inductive hypothesis

= (k + l)!, as desired.

(ii) For the base case we have bl = 2.1 – 1 = 1. Then

bk+l=bk+2

=(2k– 1)+2 by the inductive hypothesis

=2k+l=2(k+l)–1, as desired.

2.6 The relations an = na~- ~, a. = an_ ~ + a._ ~, a. = 2aLH,21, and an = nan _ ~
are all homogeneous, since each is satisfied by the sequence that is identically
O. The relation bn = bn _ ~ + 2 is inhomogeneous, since when we replace each
bj with O, the result, O = O + 2, is not valid.

SECTION 3

3.1 (i) Not: inhomogeneous; (ii) not: not linear and (iii) not inhomogeneous.

3.2 (i) The characteristic equation is x – 2 = 0’ and the characteristic root is
q ~ = 2. (ii) The characteristic equation is X2 – x – 6 = O and the charac-
teristic roots are q ~ = 3 and qz = – 2. (iii) The characteristic equation is
X2 – 2x + 1 = O and the characteristic root is ql = 1.

3.3 The base cases are al = 21 – 1 = 1 and U2 = 22 – 1 = 3. The inductive hy-
pothesis is that ak = 2k – 1. We substitute this in the given recurrence relation

ak+l = 3a~—2a~_l
—— 3(2~ – 1) – 2(2~-1 – 1)
—— 3.2k–3–2k+2
—— 2k(3 – 1) – 1
. 2k+l_~

, as desired.

3.4 (i) a. = O, (ii) a. = 1, and (iii) a. = O.

523

SOLUTIONS TO QUESTIONS IN CHAPTER 7

3.5 (i) From Question 3.2 the characteristic equation for an = an-~ + 6aH _ ~ is
X2 — x – 6 = O with characteristic roots ql = 3 and qz = –2. Thus the gen-
eral formula that solves this recurrence relation is given by an = c3* + d(– 2)”
for some constants
initial conditions:

c and d. We determine the constants c and d from the

2=ao=c30+ d(–2)0=c+d

1 =al =c31 +d(–2)1 =3c–2d.

Adding twice the first equation to the second, we obtain 5C = 5. Thus c = 1
and then d = 1 by substitution. Thus a. = 3* + (– 2)”.

(ii) We have accomplished most of the work for this part of the problem
abovq the only difference is in the initial conditions. Hence we have

l=ao=c30+ d(–2)0=c+d

3 =al =C31 +d(–2)1 = 3c–2d.

Again adding twice the first equation to the second we obtain 5C = 5. Thus
c=landd =0. Thusan=3n.

(iii) From Question 3.2, the characteristic equation for an = 2a~ _ ~ – a._ ~ is
X2 — 2X + 1 = O, which has a root of multiplicity 2.

SECTION 4

4.1 For the base cases we have b ~ =

b~+l=2bk–bk-l

=2k–(k–1)

=k+l,

1 and bz = 2. Then

the given recurrence

by the inductive hypothesis

as desired.

4.2 For p(x) = X2 – 2x + 1, we construct II(x) as follows

~–2x+l–(q~–2q+l)
D(x) = x

x - q

_(x2–q2) –2(x–q)+(l–1)— by regrouping
x — q

_(x–q)(x+q)–2(x–q)— by algebra
x — q

=x+q —2 by division.

524

SOLUTIONS TO QUESTIONS IN CHAPTER 7

4.3 The characteristic equation of b. = 4b.. ~ – 4b. - ~ is X2 – 4x + 4 = O and
its characteristic root is ql = 2. lf bk = 2k, then

4bn-1–4b. _2=4”2n-1–42 n-2
. 2n+l–2” =2n(2–l)=2n= b..

If bk = k2k, then

4bu_l – 4b”_2 = 4(n – 1)2”-1 –4(n– 2)2n-2

= 2“[2(n – 1) – (n – 2)] = n2n = b..

4.4 The characteristic equation of C. = – 3c. _ ~ – 3CR _ z – c._ 3 is

X3+3X2+3X+1=(X+1)3=0

and the characteristic root is q 1 = – 1 which has multiplicity y 3.
If c~ = (– l)k, then

–Jcn-l– JCn-2– C”.3= –3(_l)n-l_J(_l)”-2_(_l)n-3

=(_ly-3[–3(- 1)2- 3(–1)-1]

=(–1)”-3[-3+3-1]

=(–ly-s(–l) =(–1)”-z=(–ly=c”.

If ck = k(– I)k, then

–3cu_l – 3C._Z ‘ e n - 3

= –3(?I– 1)(–1)”-1 –3(n–2)(– 1)’’ -(rlrl– 3)(–1)”-3
=(–l)n-3[–3(n– 1)(-1)2 –3(n - 2)(-1)-(n– 3)]

=(–1)”-3[–3n +3+3n–6–n+3]

=(–l)n-3[–n] =n(–1)”-2 = n(–l)”=cu.

Finally, if ck = kz(– l)k, then

–3cn-~–3cn_2–c”-3

= –3(n – 1)2(– 1) ’ -1 – 3(n – 2)2(–1)”-2 –(n – 3)2(– 1) ”- 3

=(–l)n”3[–3(n2 –2n+l)+ 3(n2–4n +4)–(n2–6n +9)]

=(–1)”-3[– 3n2+6n– 3+3n2–12n +12–n2+6n–9]

=(–1)”-’[–n2] =(–1)”-%2 = n2(–ly=cn.

525

SOLUTIONS TO QUESTIONS IN CHAPTER 7

4.5 From Theorem 4.2, a solution of the recurrence relation given in Question
4.3 is of the form

a. = Cl(–l)n + czn(– 1)” + c3n2(–l)n.

With the initial conditions a. = 1, al = – 2 and az = 1, we can solve for the
constants cl, C2, and C3:

l=tZ~=C~+OCz+OC3

–2=al=–cl–c2–c3

l=a2=cl+2c2+4c3

The solution to this system of equations is c1 = 1, C2 = 2, and C3 = – 1.
Thus a solution to the recurrence relation with the given initial conditions
is a. =(–1)” + 2n(–1)” – n2(–l)n.

SECTION 5

5.1 Reread Section 6.2.

n = 2 3 4 5

Bn=7 7 10 10

We note for n = 2, 3, 4, and 5 that B. = 3Llog (n)j + 4.

5.2 Reread Exercise 7 in Chapter 6, Section 7.

n=2 4 8

Mn = 9 31 87

3nlog(n)+2n– 1 =9 31 87

5 . 3 (a)k=l, d=2, c= Oande =3. (b)k=l, d=2, c= Oande =2.
(c)k= 2,d=2, c=3ande=l.

5.4 1 initial condition. If a. = 1, then

n= 1234567
an=2 2 3 3 3 3 3

5.5 The proof is by induction on i, where n = 2i. The base case is i = (1 a20 =
al + Iog(l)c = al + O = al. Assuming the result for i = k, let i = k + 1.

526

5.6

5.7

SOLUTIONS TO QUESTIONS IN CHAPTER 7

an=a~k+l sincen = 2i= 2k+1
= a[n/2] +C by the recurrence relation

‘a~k+c since n/2 = 2k

= al + log(2k)c + c by the inductive hypothesis

=al+kc+c=al+(k+l)c

= al + log(2k+’)c by properties of log

– al + log(n)c.—

With c = 2, Theorem 5.1 implies that C. s 2Llog (n)] + 4. This is the same
result as Theorem 3.1 from Chapter 6.

Mzk ~ 2M[2q,2 + 4 “ 2k by (C)

= 2M2jc., + 2kh2.

s 2(2M2k-z + 2k+l) + 2k+2
. 22 M2k-, + 2k~2 + 2k+2
. 22 M2, -2+2 .2k~2

. . .

~ 2iM2k-, + i2kh2
. . .

S zk&f2k-k i- k2kf2
. 2kMl + 4(2k)k

Since log (2k) = k and n = 2k, the previous expression can be rewritten
as nM 1 + 4n log(n). Next we verify this formula by induction on k, where
tl = 2k. That is, if n = 2k and M. satisfies (C’), then we must show that
M. < 4n log(n) + Ml n. For the base case k
A41s4”l ”O+M1.l= A41. We assume
n = Zk+l.

M. = Mz,. i

<2M2k+4”2k+l by (C’)

<2(4” 2kk+M12k)+4.2k+l
—— 4.7k~lk+M12k~~+4.~k~~
—— 4.2k+l(k+ 1)+ A412k~l

= 4nlog(n) + Min.

=Oandn= 2°=l. Then Mn=.
the result for n = 2k and check

by the inductive hypothesis

527

SOLUTIONS TO QUESTIONS
IN CHAPTER 8

SECTION 1

1.1 The union of shortest paths forms a minimum-distance spanning tree, shown
in (a). With the root specified to be 5, we obtain the different tree shown in (b).

‘b/I ‘u
3 4 5 3 4 5 = root

(a) (b)

1.2 Here is a trace of DIJKSTRA on the weighted graph from Figure 8.4.

528

SOLUTIONS TO QUESTIONS IN CHAPTER 8

Step No. j z V(T) E(T)

2
4
5
4
5
4
5
4
5
4
5
4
5
4
5

~ ?
It
It
2 b
2 b
3 s
3 s
4 C
4C
5 a
5 a
6 q
6 q
7 p
7 p

{r}
{r, t}

{r, t, b}

{r, t, b,s}

{r, t, b,s, c}

{r, t, b,s, c, a}

{r, t, b, S,C, a,q]

{r, t, b,s,c, a, q, p}

D

{(r, t)}

{(r, t), (r, b)}

{(r, t), (r, b), (t, s)}

{(r, t), (r, b), (t, s), (r, c)}

{(r, t), (r, b), (t,s), (r, c), (b, a)}

{(r, t), (r, b), (t,s), (r, c), (b,a), (a, q)}

{(r, t), (r, b), (t, s), (r, c), (b, a), (a, q), (q, p)}

1.3 If G is not connected, then step 4 cannot be executed V – 1 times as required.
If some edge weights were negative, then the minimum distance from the
root to the first attached vertex x might be less than the weight of the first
edge e = (r, x). Thus the tree T in the base case might not have a shortest
path in it. Later in the proof, when we add the edge (u, x), we claim that x is
closer to the root than U. This would not be true if the weight of (u, x) were
negative. If DIJKSTRA is run on the graph in Figure 8.5, then the distance
from the root to any of the other vertices is not well defined, since every time
you traverse a cycle around the triangle you add a total of – 1 to your path
length.

SECTION 2

2.1 The graph shown in (a) is the only Eulerian graph with four vertices. The
graph in (b) has an Euierian path from x to y but is not Eulerian. The simplest
such graph would just be a path with eight vertices.

D ‘my T
(a) (b) (d

529

SOLUTIONS TO QUESTIONS IN CHAPTER 8

2.2

2.3

,

The first and last graphs are Eulerian (See Theorem 2.1). The second and
fourth contain Eulerian paths but not Eulerian cycles.

A graph with four vertices all of whose degrees are even must have every
degree either O or 2. To be connected there cannot be any vertices of degree
O. There is only one graph, the 4-cycle, which is Eulerian. Similarly, a graph
with five vertices must have every degree either 2 or 4.
with one Eulerian cycle.

L 2 1 2 1 2 3

<1,2, 4, 5, 3, 1, <1,2,4,3,5, 1> <1,2, 3, 5, 2,4, 1>
4,3,2,5, 1>

2.4

2.5

7 6 5 4
0 0 0

A G’

o OCLJ
8,23

The vertices 3 and 4 have odd degree. To construct
adjacent to 3 and 4 as shown in the following figure.

r 1 2

3 5

6 7

We list them together

1 2

Bid
3 4 5

<1,3,2,4, 1, 5,2, 1>

G’ we create vertex r .

(4, r, 3,6,7,5,2,1,5,4,7,3, 1, 4) is an Eulerian cycle in G’. Removing r and its
incident edges produces an Euierian path from 3 to 4.

530

SOLUTIONS TO QUESTIONS IN CHAPTER 8

2.7

2.6 For convenience we label the graph.

L

4 1
6 (1,2,3, 1,4,6,7,8, 1) <1>2>3>L4,6,7,8,1)
3 2
4 2
6 (2, 4,8, 6,2)(1,2,4,8,6,2,3 >1,4,6,7>8>1)
3 3
4
6 (3, 5,7, 3)(1,2,4,8> 6,2,3,5,7,3,1,4,6,7,8,1)

(1, 2,4, 3,1) is an Eulerian cycle in the first graph. The second graph does not
contain an Eulerian path or cycle. (2,3, 1,2,4,3) is an Euletian path in the
third graph as is (2,4,3, 1,2, 3). The fourth graph contains lots of Eulerian
cycles, for example, (1, 2,1,3,4,2,4,3,1).

SECTION 3

3.1 The first and third do; (1, 4, Z 3,1) and (1,2,3,4,5,1), respectively.

3.2

m

531

SOLUTIONS TO QUESTIONS IN CHAPTER 8

3.3

3.4

Step No. ~ P c

2 0
4 x {X, 1, t, W, y)

5 (x, v, t, w, y, x)
4 u {u, v, t, w, y,x)
5 {u, L w, y>% V,u)

First graph

Step No. J K T E(T)

1 1
3 1

4–6 2
3 2

4-6 3
3 3

4-6 4
3 4
7 3
3 3
7 ~
3 2

4-6 5
9 STOP

‘z

2 {1,2} {(1,2)}
3
3 {1,2,3} {(1,2), (2, 3)}
4

{1,2,3,4} {(1,2), (2, 3), (3,4)}
{no4K}

{no K}

5
5 {1,2,3,4,5} {(1, 2), (2, 3), (3, 4), (2, 5)}

Second graph

Step No. J K T E(T)

1 1
3 1

4-6 2
3 ~

4-6 6
3 6
7 2
3 ~

7 1
3 1
8 STOP

{1} %
2,

? {1,2} {(1,2)}
i
6 {~,2,6} {(L ~)> (2, 6))

{no K}

[no K}
{1.2,6} {(1,2), (2,6)}

532

SOLUTIONS TO QUESTIONS IN CHAPTER 8

3.5 First graph

Step No. J K FOR WARD PATH

Main 1 2
Build 1 2

3-5 3
Build 1 3

3-5 4
Build 1,2 4
Main 4, 5 3
Build 1 3

3–5 4
Build 1, 2 4
Main 4, 5 3
Build 1, 2 3
Main 4, 5 2
Build 1 ~

3–5 3
Build 1 3

3-5 4
Build 1 4

3-5 5
Main 7, 8
Main 9 STOP

2
2
3

{no3K}

4
4

{no K}

3
3
2
~
4
4

TRUE

TRUE

TRUE
FALSE

TRUE
FALSE

FALSE

TRUE

TRUE

TRUE

(1,0,0,0,0)

(1,2,3,0,0)

(1,2,3,0,0)

(l~,4,(),o)

(1,3,0,0,0)

<1,3,2,0,0)

(1,3,2,4,0)
(1,3,2,4,1)

Second graph

Step No. J K FOR WARD PATH

Main 1
Build 1

3-5
Build 1

3–5
Build 1,2
Main 4, 5
Build 1

3-5
Build 1, 2
Main 4, 5
Build 1,2
.Main 4, 5

2
2
3
3
4
4
3
3
4
4
3
3
~

4
4

{no K}

TRUE (1.0,0,0,0)

TRUE (l, ~,(), ()q())

TRUE (1,2,3,0,0)
FALSE

(1,2,3,0.0)

TRUE <1,2,4,0,0)
FALSE

(1, ~,4, (),())
FALSE

(1,2,0,0,0)

continued

533

SOLUTIONS TO QUESTIONS IN CHAPTER 8

Second graph (continued)

Step No. J K FOR WARD PATH

Build 1 2 4
3-5 3 4

Build 1 3 2
3-5 4 ~

Build 1 4 3
3-4 5 3

Main 7, 8
Main 4, 5 4
Build 1,2 4 {no K}
Main 4, 5 3
Build 1,2 3 {no K}
Main 4, 5 2
Build 1, 2 2 {noK}
Main 4, 5 1
Main 6 NO HAM CYCLE, STOP

TRUE <1,4,0,0,0)

TRUE (1,4,2,0,0)

TRUE <1,4,2,3,0)
FALSE

(1,4,2,3,0)
FALSE

(1,4,2,0,0)
FALSE

<1,4,0,0,0)
FALSE

(1,0,0,0,0)

SECTION 4

4.1 Denote the locations by O = (0, O), P = (1, O), Q = (O, 1), and R = (1, 1). Since
the drill must start and end at O, there are 3! = 6 possible drilling sequences:
OPRQ and OQRP have total distance 4, OPQR and ORQP have total dis-
tance 2 + 2* as do ORPQ and OQPR. Note that the second sequence of each
of the preceding pairs is the reverse of the first.

4.2 (-1, 1) (–1, 1)

~:, ~(:: ‘~](:1)

(-1, -1) ‘ (–1,–1) ‘ (-1, -1) ‘

T(G) P (G) H(G)
4 V’7 4+2v~ 6+2V5

534

SOLUTIONS TO QUESTIONS IN CHAPTER 8

4.3 D might consist of (0, P, O, Q, O, S, O, R, 0).

P Q

D(T) z

x

o

R s

4.4 The Hamiltonian cycle C produced from D is <0, P, Q, S, R, O).
W(c) = 6 + 24= w(H(G)).

SECTION 5

5.1

5.2

5.3

5.4

5.5

See Figure 8.26: Each interfering pair of variables is represented by an edge
of this graph. Sets of four mutually interfering variables: {L, W, Wt, A},
{Wt, Vol, A, Cl}, {Ht, A, Cl, Vol}, {Wt, Vol, Cl, C2}. There is no set of five
mutually interfering variables.
Length Height

lx!) Volume

Width Area

Adding edges may increase the chromatic numbe~ If x and y are not adjacent
in H, but are adjacent in G, then a coloring of H is a coloring of G unless
x and y are assigned the same color. In that case, an additional color may
be needed to color G. If the compiler assigns k = x(G) memory locations to a
program based on a coloring of G, then no two variables, joined by an edge
in G, receive the same color and so are not assigned to the same memory
location. Edges join every pair of “truly” interfering variables and maybe
more.

(i) 2(G) = cl (G) =2; (ii) x(G)= c1 (G) = 3; (iii) Z(G)= c1 (G) =3; (iv) Z(G)= 3,
cl (G) = 2; and (v) X(G) = cl (G) = 4.

A graph is 1-colorable if and only if it does not contain an edge. An aigorithm
to l-color could check that the graph contains no edges and then assign the
color 1 to every vertex.

535

SOLUTIONS TO QUESTIONS IN CHAPTER 8

5.6 (a) Step No. I C[J Lj

5
7
7
7
5
7
7
5
7
7
5
7
7
5
7
7
5
7
5

1 1
1 ~
1 6
1 7
‘) ~
2 3
2 7
3 1
3 4
3 7
4 2
4 5
4 7
5 1
5 6
5 7
6 2
6 7
7 3

(~)

(2, 3,4, 5,6)
<2,3,4,5,6, 7)

(1,3)
<3,4,5,6, 7)

(2,3,4)
(3,4, 5,6, 7)

(1,3,4,5)
(3,4,5,6,7)

(2, 3,4, 5,6)
(3,4> 5,6,7)

(3,4,5,6,7)

(b) Step No. I c, J LJ

5
7
7
7
5
7
7
7
7
7
5
7
7
5
7
5
5
7
5

1 1
1 ~
1 5
1 6
?2 ~
2 3
2 4
2 5
2 6
2 7
3 1
3 4
3 7
4 3
4 5
5 4
6 3
6 7
7 4

(2)

(2, 3,4, 5)
<2,3,4, 5,6)

(1,3)
<1,3,4)
(3,4,5)
(3,4, 5,6)
<1,3,4,5,6,7)

(3, 4)
(3,4,5,6,7)

<4, 5)

<4,5,6, 7)

536

SOLUTIONS TO QUESTIONS IN CHAPTER 8

5.7 Here is a trace of BACKTRACKCOLOR applied to K4 with N = 3. Let the
vertices be x ~, .X2, X3, and X4.

Step No. J K FOR WARD C[l, 2, 3,4]

Main 1 ~ TRUE [1,0,0,0]
Color 1 7 7

3–5 i; TRUE [1,2,0,0]
Color 1 3 3

3-5 4 3 TRUE [1,2,3,0]
Color 1 4 4

6 4 4 FALSE
Main 4,5 3 [1, 2, 3,0]
Color 1 3 4

6 3 4 FALSE
Main 4,5 2 [1,2,0,0]
Color 1 2 3

3-5 3 3 TRUE [1,3,0,0]
Color 1 3 2

3-5 4 2 TRUE [1,3,2,0]
Color 1 4 4

6 4 4 FALSE
Main 4,5 3 [1,3,2,0]
Color 1 3 4

6 3 4 FALSE
Main 4,5 2 [1,3,0,0]
Color 1 ~ 4

6 ~ 4 FALSE
Main 4,5 1 [1,0,0,0]

6 THERE IS NO 3-COLORING OF G, STOP

537

INDEX

Acyclic graph, 253
Adjacency matrix, 268
Adjacent transportation, 160
Adjacent vertices, 242
Algorithm, 8. See afso Algorithms and

Procedures following Index.
approximation, 389
bad, 120
complexity, 119, 186–187
correct, 12
cubic, 104, 469
divide-and-conquer, 325
efficient, 118
exponential, 120
good, 11-12, 120
greedy, 273
input to, 11
linear, 95, 104
logarithmic, 95, 108
output, 11
polynomial. 120
quadratic, 104
recursive, 318
relative efficiency, 119

All Pairs Problem, 399
Arithmetic:

congruence, 211
modular, 211
modulo n, 211

Arithmetic progression, 124

Array, 33
2-dimensional, 289

ASCII code, 222

Backtracking, 439
Bad algorithm, 120
Ballot problem, 387
Base case of proof by induction, 72
Basic solution of recurrence relation, 356
Base 3 representation, 20
Bernoulli numbers, 345, 386-387
“Big oh” notation:

definition 1, 103
definition 2, 108

Binary:
coded decimal, 61
fraction, 8, 20
notation, 6
number, 6
tree, 303

full, 305
Binomial coefficient, 134
Binomial theorem, 169
Bipartite graph, 247

complete, 247
Bit (binary digit), 17

vector, 33
Boolean function, 51

AND, 51
associative law, 54

538

INDEX

commutative law, 54
distributive law, 54
NOT, 51
OR, 51
satisfiable, 56
variable, 148
XOR (exclusive or), 52

Breadth-first-search, 395, 436
spanning tree, 395

Busy Beaver N-game, 63

Cartesian product, 31
Catalan numbers, 342, 387-388
Ceiling function, 94
Center of a tree, 272
Characteristic equation, 355
Characteristic function, 33, 49
Characteristic polynomial, 355
Characteristic root, 355
Chromatic number of graph, 434
Clause, 55
Clique:

in graph, 246
number of graph, 434

CoIlatz problem, 11
Complement of graph, 277
Complete bipartite graph, 247
Complete graph, 246
Complete residue system, 220
Complexity of algorithm, 119, 186-187
Component of graph, 251, 253
Composite number, 140
Composition of functions, 45
Conclusion, 112
Congruent numbers, 211
Conjunctive normal form (CNF), 55
Connected directed graph, 410

strongly, 410
weakly, 410

Connected graph, 251, 253
Contradiction, 56
Contrapositive, 115
Converse, 116
Cube, generalized, 251
Cycle, 252

in directed graph, 406

Decimal number, 6
Decrypting key, 228
Decryption, 223
Degree of vertex, 243
De Morgan’s laws, 52

Depth:
of tree, 304
of vertex, 304

Depth-first search, 414
spanning tree, 415

Diameter of graph, 277
Difference quotient, 366
Directed graph, 406
Disjoint union, 28
Disjunctive normrd form (DNF), 58
Distance:

in graph, 253
in weighted graph, 272

Divisor, 182
Do 100P, 83

nested, 145
Domain of function, 40
Dual graph, 446

Eccentricity of vertex, 272
Edge of graph, 241
Encryption, 223
Equivalence class:

of equivalence relation, 214
modulo n, 211–212

Equivalence relation, 213
Euclidean algorithm, 190-193, 223
Euclidean equations, 192
Eulerian cycle, 400

in directed graph, 406, 426
Eulerian graph, 400

arbitrarily traceable, 407
Eulerian path:

in directed graph, 406
Euler phi function, 238
Euler’s formula, 446
Euler’s theorem, 238, 401
Exclusive or (XOR), 52
Exponent of encryption scheme, 224
Exponential algorithm, 120
Exponentiation, 68

Factorial function, 134
Factorial representation, 140
Fermat’s last theorem, 71-72
Fermat’s little theorem, 218-219, 238
Fibonacci numbers, 198, 360

and complexity of Euclidean algorithm, 206-
210

File, 286
Floor function, 94
For do loop, 83

539

INDEX

For down to do, 156
Forest, 253
Four Color Problem, 433
Function(s), 40

characteristic, 33, 49
domain, 40
equal, 42
image, 40
inverse, 46
one-to-one (or l-l), 43
onto, 42
range, 40
target, 40

Generating function, 174
Geometric series, 74

alternating, 74
Good algorithm, 11-12, 120
Graph, 241

connected, 251, 253
directed, 406
Eulerian, 406
grid, 242
Hamiltonian, 411
isomorphism, 244
k-colorable, 434
k-colored, 434
perfect, 443
planar, 446
regular, 249
2-colorable, 247, 435

Greatest common divisor (gcd), 182, 185
Grid:

graph, 242
rectangular, 129

Hamiltonian cycle, 411
minimum-weight, 425

Hamiltonian graph, 411
Hamiltonian path, 411
Harmonic numbers, 342
Hereditary property, 273
Hierarchy of functions, 108
Hilbert’s tenth problem, 205
Hypothesis, 112

i (~), 358
Identity map (or permutation), 45
If and only if, 59, 116
Incident vertex and edge, 242
Independence number, 280
Independent set of vertices, 280
Induced subgraph, 262

Induction, 72
complete, 198

Inductive hypothesis, 73
Inductive step, 73
Information theoretic bound (on sorting), 314
Integers modulo n, 215
Interference graph, 433
Intractable problem, 120
Inverse function, 46
Isomorphic graphs, 244
Isomorphism:

of graphs, 244
of labeled graphs, 278

Iteration, 348

j-subset, 30

Key, 286
Kruskal’s algorithm, 264, 426

LamL’s theorem, 208
Leaf (in a tree), 272
Least common multiple (lcm), 185
Level of vertex, 304
Lexicographic ordering, 145-148
LHRRWCC (linear homogeneous recurrence

relation with constant coefficients), 353
Linear combination, 194, 357
Linear ordering, 221
Line graph, 424
Literal, 55
Local area network (LAN), 239
Logarithm (to the base 2), 92
Logically equivalent, 115
Loglog(rz), 102
Loop, 9

do, 83
nested, 145

for do, 83
down to, 156

repeat . until, 164
while do, 69

Lucas numbers. 364

Magic trick, 1
Mastermind, 161
Mathematical induction, 72

complete, 198
Matrix, 268
Maximal subset, 273
Mhrimum-distance spanning tree, 390
Minimum-weight matching problem, 405
Minimum-weight spanning tree, 258, 264

540

INDEx

Modular arithmetic, 211
Modulo n, 211
Multigraph, 408
Multiple:

of an integer, 182
root, 358

Multiplication principle, 2
generalization, 87

Multiplicative inverse modulo n, 217
Multiplicity of root, 358
Mrdtiset, 35, 164

Natural numbers, 21
Negation, 111
NP-Complete problem, 420
n-set, 29
n-tuple, 32
Null set, 21

One-to-one function, 43
Onto function, 42
Ordered pair, triple, 32

Pancake problem, 338
Partition, 28, 214
Pascal’s triangle, 133-134
Path, 252

in directed graph, 406
length, 252, 390

Permutation(s), 44, 153
distance between, 160
and English change ringing, 159– 160
even, 160
identity, 45
inversions, 180
odd, 160

Pigeonhole principle, 44
Polynomial algorithm, 120
Polynomird identity, 74
Prime number, 21
Principle of inclusion and exclusion, 38
Procedure, 296
Proof by contradiction, 110
Public key encryption scheme, 223

Quadratic formula, 362
Quotient, 191

Radius of graph, 398
Range of function, 40
Record, 286
Recurrence relation, 346

constant coefficient, 353

divide-and-conquer, 373
homogeneous, 349
inhomogeneous, 349
initial conditions, 347
linear, 353
order, 353

Recursive algorithm, procedure, 318
Reducing modulo n, 225
Reflexive property of relation, 213
Relation, 212-213

graph of symmetric, 245
Relatively prime integers, 218
Remainder, 191
Repeat . . . until, 164
Residue, least nonnegative, 214
Root of tree, 303
RSA scheme. 223

Satisfiability problem, 57, 122
Search tree, 303

binary, 311
Sequence, 339

integer, 339
nth term, 340
symmetric, 140
unimodal, 140

Set(s), 21
cardinality, 35
complement, 22
difference, 25
disjoint, 25
element, 21
empty, 21
equality, 21
finite, 35
intersection, 22
null, 21
relative complement, 25
subset(s), 21

number, 80
number of j-subsets of n-set, 142

union, 22
Sieve of Eratosthenes, 236
Simplified fraction, 181
Spanning forest, 257
Spanning-in-tree, 410
Spanning subgraph, 256
Spanning tree, 256
Stable sorting algorithm, 334
Stirling’s formula, 158
Storage allocation scheme, 432-433
Subgraph, 256

induced, 262

541

INDEX

Subtrees (left and right), 303
Symmetric property of relation, 213

Target of function, 40
Tautology, 56
Ternary representation, 20
Total ordering, 221
Towers of Hanoi. 382
Trace of an algorithm, 17
Transitive closure of a graph, 282
Transitive property of a relation, 213
Trapdoor function, 223
Traveling Salesrepresentative Problem, 274
Tree, 253

binary, 303
planted planar, 388
search, 303

Trivial programming language, 62–63

Universe, 20

Variables:
Boolean, 148
interfering, 432
noninterfering, 432

Vector, 33
Venn diagram, 26
Vertex of a graph, 241

Weighted graph, 257
Well defined operation, 215
While do, 69
Wilson’s theorem, 238
Worst-case analysis, 92

542

ALGORITHMS AND
PROCEDURES

ADDRACT1 , 482
APPROXHAM, 428

BACKTRACKCOLOR, 440-441
BADMINTREE, 258
BINARYSEARCH, 291
BINARYSORT, 297
BININSERT, 296
Borihka’s algorithm, 280
BREADTHFIRSTSEARCH (BFS), 395
BtoD, 16
BUBBLES, 87
BUBBLESORT, 288
BUCKETSORT, 332, 338

COLLATZ, 11

DEPTHFIRSTSEARCH (DFS), 415
DFS-HAMCYCLE, 418-419
DIJKSTRA, 392
DIJKSTRA2, 398-399
DIVISORSEARCH, 234
DtoB, 18, 84, 89

EUCLID, 195
EULER, 408-409
EXPONENT, 68, 82, 188-189

FASTEXP, 91, 187
FIB, 319

FIB2, 323
FOURSUM, 85
FUN, 15

GCD, 320
GCD1 , 183, 187-188
GCD3, 335
GREEDYCYCLE, 501
GREEDYMAX, 501
GREEDYMIN, 273

HAMCYCLE, 413
HAMCYCLE2, 422-423

IND, 281
INDUCTION, 73
INDUCTION, 199
INSERTIONSORT, 334

JSET, 148

KRUSKAL, 264, 426

LABGPHISO, 278

MAX, S6
MERGE, 326
MERGESORT, 327

543

ALGORITHMS AND PROCEDURES

MIN, 318, 320
MYSTERY, 337

ODDSUM, 85

PAIR, 145
PERM, 156
POSTAGE, 432
Prim’s, 280

R-DEPTHFIRSTSEARCH, 417-418
R-DtoB, 335
R-JSET, 324
RSA, 232

R-SELECTSORT, 321
R-SUBSET, 324

SELECTSORT, 285
SEQSEARCH. 284
SEQUENTIALCOLOR, 436-437
SIMPLIFY, 184-.
SPEEDY, 118
SPTREE, 262-263
SQUARESUM, 86
SUBSET, 30-31
SUM, 83

TREESORT, 307

VOLUME, 431

544

NOTATIONS

❑ end of proof, 27-28

Algorithmic:
: = assignment statement, 15
* multiplication symbol, 15
/ division symbol, 15

Set theory:
A x A, An A x B Cartesian product, 31-

33
~ containment, 21
A’ the complement of A, 22
{...} curly brace notation for sets, 21
A–B difference, 25
e element of, 21
@ empty set, null set, 21
n intersection, 22
(a1,a2,. . . ,an) n-tuple, 31
(a,b) ordered pair, 31
(a,b,c) ordered triple, 31
(...) permutation, 153

array, 284
u union, 22

Functions:
(!) binomial coefficient. 135

Boolean functions:
A AND, 51
v OR, 51

- NOT, 51
@ XOR, 53
[] ceiling function, 94
x, characteristic function, 49
(g 0 ~) composition of functions, 45

f’,f’, f”, 49-50
~! factorial function, 134

(J floor function, 94
log(n) logarithm to the base, 2, 92
log,(n) logarithms to the base d, 124, 376
O(g) big oh of g, 103, 108

Number theory:
~ ~ b (mod n) equivalence modrdo n, Z I I
[x] equivalence class modulo n, 211
F, kth Flbonacci number, 198
gcd(b,c) greatest common divisor, 182

gcd(a, b,c), 185
Icm(b,c) least common multiple, 185
6 phi, 202
+, ~03
6(M) Euler phi function. 238
- relation, 212–213
Z. integers modulo n. 215

Graph theory:
a(G) independence number of G, 280
A(G) adjacency matrix, 268
C, k-cycle, 253
x(G) chromatic number of G, 434

545

NOTATIONS

Graph theory (Continued)
cl(G) clique number of G, 434
deg(x), deg(x, G) degree of vertex x, 243
d(G) diameter of the graph G, 398
d(x,y) distance from x toy, 253, 272
E(G) the set of edges of the graph G, 242
G’ the complement of G, 277
K. the complete graph on r vertices, 246
K ~,~ the complete bipartite graph, 247

L(G) line graph of G, 424
Nbor(u) neighbor of the vertex u, 408
P, k-path, 253
Q. generalized cube or n-cube, 251
r(G) radius of G, 398
V(G) the set of vertices of the graph G,

242
w(e) weight of an edge e, 257
w(T) weight of a tree T, 257

546

