
Springer Monographs in Mathematics

For further volumes:
www.springer.com/series/3733

http://www.springer.com/series/3733

Jørgen Bang-Jensen � Gregory Z. Gutin

Digraphs

Theory, Algorithms and Applications

Second edition

Prof. Jørgen Bang-Jensen
University of Southern Denmark
Dept. Mathematics & Computer Science
Campusvej 55
5230 Odense
Denmark
jbj@imada.sdu.dk

Prof. Gregory Z. Gutin
Royal Holloway Univ. London
Dept. Computer Science
Egham Hill
Egham, Surrey
United Kingdom TW20 0EX
gutin@cs.rhul.ac.uk

ISSN 1439-7382
ISBN 978-1-84800-997-4 (hardcover)
ISBN 978-0-85729-041-0 (softcover)

e-ISBN 978-1-84800-998-1

DOI 10.1007/978-1-84800-998-1
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008939033

Mathematics Subject Classification (2000): 05C20, 05C38, 05C40, 05C45, 05C70, 05C85, 05C90, 05C99,
68R10, 68Q25, 68W05, 68W40, 90B06, 90B70, 90C35, 94C15

© Springer-Verlag London Limited 2001, 2009, First softcover printing 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:jbj@imada.sdu.dk
mailto:gutin@cs.rhul.ac.uk
http://www.springer.com

To Lene and Irina

Preface to the Second Edition

The theory of graphs can be roughly partitioned into two branches: the areas
of undirected graphs and directed graphs (digraphs). While there are many
books on undirected graphs with new ones coming out regularly, the first
edition of Digraphs, which was published in 2000, is the only modern book
on graph theory covering more than a small fraction of the theory of directed
graphs.

Since we wrote the first edition, the theory of directed graphs has contin-
ued to evolve at a high speed; many important results, including some of the
conjectures from the first edition, have been proved and new methods were
developed. Hence a new completely revised version became necessary. Instead
of merely adding some new results and deleting a number of old ones, we took
the opportunity to reorganize the book and increase the number of chapters
from 12 to 18. This allows us to treat, in separate chapters, important topics
such as branchings, feedback arc and vertex sets, connectivity augmenta-
tions, sparse subdigraphs with prescribed connectivity, applications, as well
as packing, covering and decompositions of digraphs. We have added a large
number of open problems to the second edition and the book now contains
more than 150 open problems and conjectures, almost twice as many as the
first edition. In order to avoid the book becoming unacceptably long, we had
to remove a significant portion of material from the first edition. We have
tried to do this as carefully as possible so that most of the information in the
first edition is still available, along with a very large number of new results.

Even though this book should not be seen as an encyclopedia on directed
graphs, we included as many important results as possible. The book con-
tains a considerable number of proofs, illustrating various approaches and
techniques used in digraph theory and algorithms.

One of the main features of this book is the strong emphasis on algorithms.
This is something which is regrettably omitted in many books on graphs.
Algorithms on (directed) graphs often play an important role in problems
arising in several areas, including computer science and operations research.
Secondly, many problems on (directed) graphs are inherently algorithmic.
Hence, whenever possible we give constructive proofs of the results in the
book. From these proofs one can very often extract an efficient algorithm
for the problem studied. Even though we describe many algorithms, partly

vii

viii Preface

due to space limitations, we do not supply all the details necessary in order
to implement these algorithms. The latter (often highly nontrivial step) is
a science in itself and we refer the reader to books on data structures and
algorithms.

Another important feature is the large number of exercises which not
only helps the reader to improve his or her understanding of the material,
but also complements the results introduced in the text by covering even
more material. Attempting these exercises will help the reader to master the
subject and its main techniques.

Through its broad coverage and the exercises, stretching from easy to
quite difficult, the book will be useful for courses on subjects such as (di)graph
theory, combinatorial optimization and graph algorithms. Furthermore, it
can be used for more focused courses on topics such as flows, cycles and
connectivity. The book contains a large number of illustrations. This will
help the reader to understand otherwise difficult concepts and proofs.

To facilitate the use of this book as a reference book and as a graduate
textbook, we have added comprehensive symbol and subject indexes. It is
our hope that the organization of the book, as well as detailed subject index,
will help many readers to find what they are looking for without having to
read through whole chapters. Due to our experience, we think that the book
will be a useful teaching and reference resource for several decades to come.

Highlights

We cover the majority of important topics on digraphs ranging from quite
elementary to very advanced ones. One of the main features of the second
edition is the focus on open problems and the book contains more than 150
open problems or conjectures, thus making it a rich source for future research.
By organizing the book so as to single out important areas, we hope to make
it easy for the readers to find results and problems of their interest.

Below we give a brief outline of some of the main highlights of this book.
Readers who are looking for more detailed information are advised to consult
the list of contents or the subject index at the end of the book.

Chapter 1 contains most of the terminology and notation used in this
book as well as several basic results. These are not only used frequently in
other chapters, but also serve as illustrations of digraph concepts.

Chapter 2 is devoted to describing several important classes of directed
graphs, such as line digraphs, the de Bruijn and Kautz digraphs, digraphs
of bounded tree-width, digraphs of bounded directed widths, planar di-
graphs and generalizations of tournaments. We concentrate on characteri-
zation, recognition and decomposition of these classes. Many properties of
these classes are studied in more detail in the rest of the book.

Chapters 3 and 4 cover distances and flows in networks. Although the
basic concepts of these two topics are elementary, both theoretical and al-

Preface ix

gorithmic aspects of distances in digraphs as well as flows in networks are
of great importance, due to their high applicability to other problems on di-
graphs and large number of practical applications, in particular, as a powerful
modelling tool.

The main part of Chapter 3 is devoted to minimization and maximization
of distance parameters in digraphs. In the self-contained Chapter 4, which
may be used for a course on flows in networks, we cover basic topics on flows
in networks, including a number of important applications to other (di)graph
problems. Although there are several comprehensive books on flows, we be-
lieve that our fairly short and yet quite detailed account of the topic will
give the majority of readers sufficient knowledge of the area. The reader who
masters the techniques described in this chapter will be well equipped for
solving many problems arising in practice.

Connectivity in (di)graphs is a very important topic. It contains numerous
deep and beautiful results and has applications to other areas of graph theory
and mathematics in general. It has various applications to other areas of
research as well. We give a comprehensive account of connectivity topics and
devote Chapters 5, 10, 12, 14 and parts of Chapter 11 to different aspects of
connectivity.

Chapter 5 contains basic topics such as ear-decompositions, Menger’s the-
orem, algorithms for determining the connectivity of a digraph as well as
advanced topics such as properties of minimally k-(arc)-strong digraphs and
critically k-strong digraphs.

Chapter 10 deals with problems concerning (arc-)disjoint linkings with
prescribed initial and terminal vertices in digraphs. We prove that the 2-
linkage problem is NP-complete for arbitrary digraphs, but polynomially
solvable for acyclic digraphs. Results on linkings in planar digraphs, eulerian
digraphs as well as several generalizations of tournaments are discussed.

In Chapter 12 we study the problem of finding, in a k-(arc)-strong digraph,
a small set of arcs (called a certificate) so that these arcs alone show that the
digraph has the claimed connectivity. These problems are generally NP-hard,
so we give various approximation algorithms as well as polynomial algorithms
for special classes of digraphs. We illustrate an application due to Cheriyan
and Thurimella of Mader’s results on minimally k-(arc)-strong digraphs to the
problem of finding a small certificate for k-(arc)-strong connectivity. Finally,
we also discuss recent results due to Gabow et al. on directed multigraphs.

In Chapter 14 we describe the splitting technique due to Mader and
Lovász and illustrate its usefulness by giving an algorithm, due to Frank,
for finding a minimum cardinality set of new arcs whose addition to a di-
graph D increases its arc-strong connectivity to a prescribed number. We
also discuss a number of results related to increasing the connectivity by
reversing arcs.

In Chapter 11 the famous theorem by Nash-Williams on orientations pre-
serving a high degree of local arc-strong connectivity is described and the

x Preface

weak version dealing with uniform arc-strong connectivities is proved using
splitting techniques. We also discuss extensions of these results, including
recent ones by Király and Szigeti. We give a proof a Jordán’s result that
every 18-connected graph has a 2-strong orientation. Submodular flows form
a powerful generalization of circulations in networks. We introduce submod-
ular flows and illustrate how to use this tool to obtain (algorithmic) proofs
of many important results in graph theory. Finally we describe in detail an
application, due to Frank, of submodular flows to the problem of orienting a
mixed graph in order to maintain a prescribed degree of arc-strong connec-
tivity.

In Chapter 6 we give a detailed account of results concerning the ex-
istence of hamiltonian paths and cycles in digraphs. Many results of this
chapter deal with generalizations of tournaments. The reader will see that
several of these much larger classes of digraphs share various nice properties
with tournaments. In particular the hamiltonian path and cycle problems are
polynomially solvable for most of these classes. The chapter illustrates various
methods (such as the multi-insertion technique) for proving hamiltonicity.

In Chapter 7 we describe a number of interesting topics related to re-
stricted hamiltonian paths and cycles. These include hamiltonian paths with
prescribed end-vertices and orientations of hamiltonian paths and cycles in
tournaments. We cover one of the main ingredients in the proof by Havet and
Thomassé of Rosenfeld’s conjecture on orientations of hamiltonian paths in
tournaments.

Chapter 8 describes results on (generally) non-hamiltonian cycles in di-
graphs. We cover pancyclicity and the colour-coding technique by Alon,
Yuster and Zwick and its application to yield polynomial algorithms for find-
ing paths and cycles of ‘logarithmic’ length. We discuss the even cycle prob-
lem, including Thomassen’s even cycle theorem. We also cover short cycles in
multipartite tournaments, the girth of a digraph, chords of cycles and Ádám’s
conjecture. The chapter features various proof techniques including several
algebraic, algorithmic, combinatorial and probabilistic methods.

Chapter 9 is devoted to branchings, a very important structure general-
izing spanning trees in graphs. Branchings are not only of interest by them-
selves, they also play an important role in many proofs on digraphs. We prove
Tutte’s Matrix-Tree theorem on the number of distinct out-branchings in a
digraph. We give a number of recent results on branchings with bounds on
the degrees or extremal number of leaves. Edmonds’ theorem on arc-disjoint
branchings is proved and several applications of this important result are de-
scribed. The problem of finding a minimum cost out-branching in a weighted
digraph generalizes the minimum spanning tree problem. We describe algo-
rithms for finding such a branching.

Chapter 13 covers a number of very important results related to packing,
covering and decompositions of digraphs. We prove the Lucchesi-Younger
theorem on arc-disjoint directed cuts, and give a number of results on arc-

Preface xi

disjoint hamiltonian paths and cycles. We discuss results on decomposing
highly connected tournaments into many spanning strong subdigraphs, in-
cluding a conjecture which generalizes the famous Kelly conjecture. We give
a number of results on cycle factors with a prescribed number of cycles. Fi-
nally, we give a full proof, due to Bessy and Thomassé, of Gallai’s conjecture
on the minimum number of cycles needed to cover all vertices in a strong
digraph.

Chapter 15 deals with another very important topic, namely, how to de-
stroy all cycles in a digraph by removing as few vertices or arcs as possible.
One of the main results in the chapter is that the feedback arc set problem is
NP-hard already for tournaments. This was conjectured by Bang-Jensen and
Thomassen in 1992, but was proved only recently by three different sets of
authors. Another major result is the proof by Chen, Liu, Lu, O’Sullivan and
Razgon and that the feedback arc set problem and the feedback vertex set
problems are both fixed-parameter tractable. We also include a scheme of a
solution of Younger’s conjecture, by Reed, Robertson, Seymour and Thomas,
on the relation between the number of disjoint cycles and the size of a mini-
mum feedback vertex set in a digraph.

Chapter 16 deals with edge-coloured graphs, a topic which has a strong
relation to directed graphs. Alternating cycles in 2-edge-coloured graphs gen-
eralize the concept of cycles in digraphs. Certain results on cycles in bipartite
digraphs, such as the characterization of hamiltonian bipartite tournaments,
are special cases of results for edge-coloured complete graphs. There are use-
ful implications in the other direction as well. In particular, using results on
hamiltonian cycles in bipartite tournaments, we prove a characterization of
those 2-edge-coloured complete graphs which have an alternating hamilto-
nian cycle. We briefly describe one important recent addition to the topic,
i.e., a characterization by Feng, Giesen, Guo, Gutin, Jensen and Rafiey of
edge-coloured complete multigraphs containing properly coloured Hamilton
paths. This characterization was conjectured in the first edition.

Chapter 17 describes a number of different applications of directed and
edge-coloured graphs. Through the topics treated we illustrate the diversity
of the applications including some in quantum mechanics, bioinformatics,
embedded computing and the traveling salesman problem.

Chapter 18 is included to make the book self-contained, by giving the
reader a collection of the most relevant definitions and methods on algorithms
and related areas.

Technical Remarks

We have tried to rank exercises according to their expected difficulty. Marks
range from (−) to (++) in order of increasing difficulty. The majority of
exercises have no mark, indicating that they are of moderate difficulty. An
exercise marked (−) requires not much more than the understanding of the

xii Preface

main definitions and results. A (+) exercise requires a non-trivial idea, or
involves substantial work. Finally, the few exercises which are ranked (++)
require several deep ideas. Inevitably, this labelling is subjective and some
readers may not agree with this ranking in certain cases. Some exercises have
a header in boldface, which means that they cover an important or useful
result not discussed in the text in detail.

We use the symbol �� to denote the end of a proof, or to indicate that
either no proof will be given or the assertion is left as an exercise.

A few sections of the book require some basic knowledge of linear pro-
gramming, while a few others require basic knowledge of probability theory.

We would be grateful to receive comments on the book. They may be sent
to us by email to jbj@imada.sdu.dk or gutin@cs.rhul.ac.uk. We plan to have
a web page containing information about misprints and other information
about the book; see http://www.cs.rhul.ac.uk/books/dbook/

Acknowledgments

We wish to thank the following colleagues for helpful assistance and sugges-
tions regarding various versions of the first edition: Noga Alon, Alex Berg,
Thomas Böhme, Adrian Bondy, Jens Clausen, Samvel Darbinyan, Charles
Delorme, Reinhard Diestel, Odile Favaron, Herbert Fleischner, András Frank,
Yubao Guo, Vladimir Gurvich, Frédéric Havet, Jing Huang, Alice Hubenko,
Bill Jackson, Tommy Jensen, Thor Johnson, Tibor Jordán, Ilia Krasikov,
Hao Li, Martin Loebl, Gary MacGillivray, Wolfgang Mader, Crispin Nash-
Williams, Jarik Nešetřil, Steven Noble, Erich Prisner, Gert Sabidussi, Lex
Schrijver, Paul Seymour, Eng Guan Tay, Meike Tewes, Stéphan Thomassé,
Carsten Thomassen, Bjarne Toft, Lutz Volkmann, Anders Yeo and Ke-Min
Zhang.
For help on the second edition we wish to thank the following colleagues:
Stephanne Bessy, Paulo Feofiloff, Frédéric Havet, Tibor Jordán, Eun Jung
Kim, Paul Medvedev, Morten Hegner Nielsen, Anders Sune Pedersen, Zoltán
Szigeti and Anders Yeo.

We are very grateful to Karen Borthwick of Springer-Verlag, London for
her help and encouragement and to David Bahr who did excellent work copy-
editing the book. We also thank the anonymous reviewers used by Springer
for providing us with encouragement and very useful feedback.

Last, but most importantly, we wish to thank our families, in particular
our wives Lene and Irina, without whose constant support we would never
have succeeded in completing this project.

Odense, Denmark Jørgen Bang-Jensen
London, UK Gregory Gutin
September 2008

Contents

1. Basic Terminology, Notation and Results 1
1.1 Sets, Matrices and Vectors . 1
1.2 Digraphs, Subdigraphs, Neighbours, Degrees 2
1.3 Isomorphism and Basic Operations on Digraphs 6
1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs . . . 11
1.5 Strong and Unilateral Connectivity . 15
1.6 Undirected Graphs, Biorientations and Orientations 18
1.7 Trees and Euler Trails in Digraphs . 21
1.8 Mixed Graphs, Orientations of Digraphs, and Hypergraphs . . 24
1.9 Depth-First Search . 26
1.10 Exercises . 29

2. Classes of Digraphs . 31
2.1 Acyclic Digraphs . 32
2.2 Multipartite Digraphs and Extended Digraphs 34
2.3 Transitive Digraphs, Transitive Closures and Reductions 36
2.4 Line Digraphs . 39
2.5 The de Bruijn and Kautz Digraphs . 44
2.6 Series-Parallel Digraphs . 47
2.7 Quasi-Transitive Digraphs . 52
2.8 Path-Mergeable Digraphs . 55
2.9 Locally In/Out-Semicomplete Digraphs 57
2.10 Locally Semicomplete Digraphs . 59

2.10.1 Round Digraphs . 60
2.10.2 Non-Strong Locally Semicomplete Digraphs 61
2.10.3 Strong Round Decomposable Locally Semicomplete

Digraphs . 63
2.10.4 Classification of Locally Semicomplete Digraphs 66

2.11 Totally Φ-Decomposable Digraphs . 69
2.12 Planar Digraphs . 71
2.13 Digraphs of Bounded Width . 73

2.13.1 Digraphs of Bounded Tree-Width 74
2.13.2 Digraphs of Bounded Directed Widths 78

2.14 Other Families of Digraphs . 80

xiii

xiv Contents

2.14.1 Circulant Digraphs . 80
2.14.2 Arc-Locally Semicomplete Digraphs 81
2.14.3 Intersection Digraphs . 82

2.15 Exercises . 84

3. Distances . 87
3.1 Terminology and Notation on Distances 87
3.2 Structure of Shortest Paths . 89
3.3 Algorithms for Finding Distances in Digraphs 91

3.3.1 Breadth-First Search (BFS) . 92
3.3.2 Acyclic Digraphs . 93
3.3.3 Dijkstra’s Algorithm . 94
3.3.4 The Bellman-Ford-Moore Algorithm 97
3.3.5 The Floyd-Warshall Algorithm . 99

3.4 Inequalities on Diameter . 100
3.5 Minimum Diameter of Orientations of Multigraphs 103
3.6 Minimum Diameter Orientations of Some Graphs and

Digraphs . 108
3.6.1 Generalizations of Tournaments 108
3.6.2 Extended Digraphs . 111
3.6.3 Cartesian Products of Graphs . 113
3.6.4 Chordal Graphs . 114

3.7 Kings in Digraphs . 115
3.7.1 2-Kings in Tournaments . 115
3.7.2 Kings in Semicomplete Multipartite Digraphs 116
3.7.3 Kings in Generalizations of Tournaments 118

3.8 (k, l)-Kernels . 119
3.8.1 Kernels . 119
3.8.2 Quasi-Kernels . 122

3.9 Exercises . 123

4. Flows in Networks . 127
4.1 Definitions and Basic Properties . 127

4.1.1 Flows and Their Balance Vectors 128
4.1.2 The Residual Network . 130

4.2 Reductions Among Different Flow Models 131
4.2.1 Eliminating Lower Bounds . 131
4.2.2 Flows with One Source and One Sink 132
4.2.3 Circulations . 133
4.2.4 Networks with Bounds and Costs on the Vertices 134

4.3 Flow Decompositions . 136
4.4 Working with the Residual Network . 137
4.5 The Maximum Flow Problem. 140

4.5.1 The Ford-Fulkerson Algorithm . 142
4.5.2 Maximum Flows and Linear Programming 145

Contents xv

4.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow . . 146
4.6.1 Augmenting Along Shortest Augmenting Paths 147
4.6.2 Maximal Flows in Layered Networks 148
4.6.3 The Push-Relabel Algorithm . 149

4.7 Unit Capacity Networks and Simple Networks 153
4.7.1 Unit Capacity Networks . 153
4.7.2 Simple Networks . 155

4.8 Circulations and Feasible Flows . 156
4.9 Minimum Value Feasible (s, t)-Flows . 158
4.10 Minimum Cost Flows . 160

4.10.1 Characterizing Minimum Cost Flows 162
4.10.2 Building up an Optimal Solution 166
4.10.3 The Assignment and the Transportation Problem . . . 169

4.11 Applications of Flows . 170
4.11.1 Maximum Matchings in Bipartite Graphs 170
4.11.2 The Directed Chinese Postman Problem 174
4.11.3 Finding Subdigraphs with Prescribed Degrees 176
4.11.4 Path-Cycle Factors in Directed Multigraphs 177

4.12 Exercises . 179

5. Connectivity of Digraphs . 191
5.1 Additional Notation and Preliminaries . 192

5.1.1 The Network Representation of a Directed
Multigraph . 194

5.2 Finding the Strong Components of a Digraph 195
5.3 Ear Decompositions . 198
5.4 Menger’s Theorem . 201
5.5 Determining Arc- and Vertex-Strong Connectivity 204
5.6 Minimally k-(Arc)-Strong Directed Multigraphs 207

5.6.1 Minimally k-Arc-Strong Directed Multigraphs 207
5.6.2 Minimally k-Strong Digraphs . 213

5.7 Critically k-Strong Digraphs . 218
5.8 Connectivity Properties of Special Classes of Digraphs 220
5.9 Disjoint X-Paths in Digraphs . 223
5.10 Exercises . 223

6. Hamiltonian, Longest and Vertex-Cheapest Paths
and Cycles . 227
6.1 Complexity . 228
6.2 Hamilton Paths and Cycles in Path-Mergeable Digraphs 230
6.3 Hamilton Paths and Cycles in Locally In-Semicomplete

Digraphs . 231
6.4 Hamilton Cycles and Paths in Degree-Constrained Digraphs . 233

6.4.1 Sufficient Conditions . 233
6.4.2 The Multi-Insertion Technique . 239

xvi Contents

6.4.3 Proofs of Theorems 6.4.1 and 6.4.5 240
6.5 Longest Paths and Cycles in Degree-Constrained Oriented

Graphs . 243
6.6 Longest Paths and Cycles in Semicomplete Multipartite

Digraphs . 244
6.6.1 Basic Results . 245
6.6.2 The Good Cycle Factor Theorem 247
6.6.3 Consequences of Lemma 6.6.12 . 250
6.6.4 Yeo’s Irreducible Cycle Subdigraph Theorem and Its

Applications . 253
6.7 Hamilton Paths and Cycles in Quasi-Transitive Digraphs . . . 256
6.8 Vertex-Cheapest Paths and Cycles . 260

6.8.1 Vertex-Cheapest Paths and Cycles in Quasi-Transitive
Digraphs . 260

6.8.2 Minimum Cost k-Path-Cycle Subdigraphs 261
6.8.3 Cheapest i-Path Subdigraphs in Quasi-Transitive

Digraphs . 263
6.8.4 Finding a Cheapest Cycle in a Quasi-Transitive

Digraph . 265
6.9 Hamilton Paths and Cycles in Various Classes of Digraphs . . 265
6.10 Exercises . 271

7. Restricted Hamiltonian Paths and Cycles 275
7.1 Hamiltonian Paths with a Prescribed End-Vertex 275
7.2 Weakly Hamiltonian-Connected Digraphs 277

7.2.1 Results for Extended Tournaments 277
7.2.2 Results for Locally Semicomplete Digraphs 283

7.3 Hamiltonian-Connected Digraphs . 286
7.4 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs . 289

7.4.1 Hamiltonian Cycles Containing Prescribed Arcs 290
7.4.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle . 292
7.4.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles 295

7.5 Arc-Traceable Digraphs . 296
7.6 Oriented Hamiltonian Paths and Cycles 297
7.7 Exercises . 303

8. Paths and Cycles of Prescribed Lengths 307
8.1 Pancyclicity of Digraphs . 307

8.1.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs 308
8.1.2 Pancyclicity in Extended Semicomplete and Quasi-

Transitive Digraphs . 309
8.1.3 Pancyclic and Vertex-Pancyclic Locally Semicomplete

Digraphs . 312
8.1.4 Further Pancyclicity Results . 315
8.1.5 Cycle Extendability in Digraphs 317

Contents xvii

8.1.6 Arc-Pancyclicity . 318
8.2 Colour Coding: Efficient Algorithms for Paths and Cycles . . . 320
8.3 Cycles of Length k Modulo p . 324

8.3.1 Complexity of the Existence of Cycles of Length k
Modulo p Problems . 324

8.3.2 Sufficient Conditions for the Existence of Cycles of
Length k Modulo p . 326

8.4 Girth . 329
8.5 Short Cycles in Semicomplete Multipartite Digraphs 332
8.6 Exercises . 336

9. Branchings . 339
9.1 Tutte’s Matrix Tree Theorem . 339
9.2 Optimum Branchings . 342

9.2.1 Matroid Intersection Formulation 343
9.2.2 A Simple Algorithm for Finding a Minimum Cost

Out-Branching . 344
9.3 Arc-Disjoint Branchings . 345
9.4 Implications of Edmonds’ Branching Theorem 348
9.5 Out-Branchings with Degree Bounds . 351
9.6 Arc-Disjoint In- and Out-Branchings . 354
9.7 Out-Branchings with Extremal Number of Leaves 358

9.7.1 Minimum Leaf Out-Branchings 359
9.7.2 Maximum Leaf Out-Branchings 361

9.8 The Source Location Problem . 363
9.9 Miscellaneous Topics . 365

9.9.1 Edge-Disjoint Mixed Branchings 365
9.9.2 The Minimum Covering Out-Tree Problem 366
9.9.3 Minimum Cost Arc-Disjoint Branchings with

Bandwidth Constraints . 367
9.9.4 Out-Forests . 368
9.9.5 The Maximum Weight Out-Forest Problem 368
9.9.6 Branchings and Edge-Disjoint Trees 370

9.10 Exercises . 370

10. Linkages in Digraphs . 373
10.1 Additional Definitions and Preliminaries 373
10.2 The Complexity of the k-Linkage Problem 375
10.3 Sufficient Conditions for a Digraph to Be k-Linked 379
10.4 The k-Linkage Problem for Acyclic Digraphs 382
10.5 Linkages in (Generalizations of) Tournaments 385

10.5.1 Sufficient Conditions in Terms of
(Local-)Connectivity . 385

10.5.2 The 2-Linkage Problem for Semicomplete Digraphs . . 389

xviii Contents

10.5.3 The 2-Linkage Problem for Generalizations of
Tournaments . 391

10.6 Linkages in Planar Digraphs . 394
10.7 Weak Linkages . 398

10.7.1 Weak Linkages in Acyclic Directed Multigraphs 400
10.7.2 Weak Linkages in Eulerian Directed Multigraphs 401
10.7.3 Weak Linkages in Tournaments and Generalizations

of Tournaments . 407
10.8 Linkages in Digraphs with Large Minimum Out-Degree 410

10.8.1 Subdivisions of Transitive Tournaments in Digraphs
of Large Out-Degree . 411

10.9 Miscellaneous Topics . 412
10.9.1 Universal Arcs in 2-Cyclic Digraphs 412
10.9.2 Integer Multicommodity Flows . 413

10.10 Exercises . 414

11. Orientations of Graphs and Digraphs . 417
11.1 Underlying Graphs of Various Classes of Digraphs 417

11.1.1 Underlying Graphs of Transitive and Quasi-Transitive
Digraphs . 418

11.1.2 Underlying Graphs of Locally Semicomplete Digraphs 421
11.1.3 Local Tournament Orientations of Proper Circular

Arc Graphs . 423
11.1.4 Underlying Graphs of Locally In-Semicomplete

Digraphs . 426
11.2 Orientations with No Even Cycles . 428
11.3 Colourings and Orientations of Graphs 431
11.4 Orientations and Nowhere-Zero Integer Flows 435
11.5 Orientations Achieving High Arc-Strong Connectivity 441

11.5.1 k-Arc-Strong Orientations . 441
11.5.2 Well-Balanced and Best-Balanced Orientations 443
11.5.3 Simultaneous Best-Balanced Orientations 444
11.5.4 Best-Balanced Orientations of Eulerian Multigraphs . 445

11.6 k-Strong Orientations . 446
11.7 Orientations Respecting Degree Constraints 448

11.7.1 Orientations with Prescribed Degree Sequences 448
11.7.2 Restrictions on Subsets of Vertices 452

11.8 Submodular Flows . 453
11.8.1 Submodular Flow Models . 454
11.8.2 Existence of Feasible Submodular Flows 455
11.8.3 Minimum Cost Submodular Flows 458
11.8.4 Applications of Submodular Flows 459

11.9 Orientations of Mixed Multigraphs . 461
11.10 k-(Arc)-Strong Orientations of Digraphs 466
11.11 Miscellaneous Topics . 470

Contents xix

11.11.1 Another Measure of Well-Balancedness 470
11.11.2 Orienting to Preserve Reachability for Prescribed

Pairs . 470
11.12 Exercises . 472

12. Sparse Subdigraphs with Prescribed Connectivity 479
12.1 Minimum Strong Spanning Subdigraphs 480

12.1.1 Digraphs with High Minimum Degree 482
12.2 Polynomially Solvable Cases of the MSSS Problem 483

12.2.1 The MSSS Problem for Extended Semicomplete
Digraphs . 484

12.2.2 The MSSS Problem for Quasi-Transitive Digraphs . . . 485
12.3 Approximation Algorithms for the MSSS Problem 487

12.3.1 A Simple 7
4 -Approximation Algorithm 487

12.3.2 Better Approximation Algorithms 488
12.4 Small Certificates for k-(Arc)-Strong Connectivity 489

12.4.1 Small Certificates for k-Strong Connectivity 490
12.4.2 Small Certificates for k-Arc-Strong Connectivity 491
12.4.3 Certificates for Directed Multigraphs 494

12.5 Minimum Weight Strong Spanning Subdigraphs 497
12.6 Directed Steiner Problems . 498
12.7 Miscellaneous Topics . 501

12.7.1 The Directed Spanning Cactus Problem 501
12.7.2 An FTP Algorithm for the MSSS Problem 501
12.7.3 Minimum Cost Strong Subdigraphs 502

12.8 Exercises . 503

13. Packings, Coverings and Decompositions 505
13.1 Packing Directed Cuts: The Lucchesi-Younger Theorem. 505
13.2 Packing Dijoins: Woodall’s Conjecture . 511
13.3 Packing Cycles . 512
13.4 Arc-Disjoint Hamiltonian Paths and Cycles 515
13.5 Path Factors . 519
13.6 Cycle Factors with the Minimum Number of Cycles 521
13.7 Cycle Factors with a Fixed Number of Cycles 525
13.8 Cycle Subdigraphs Covering Specified Vertices 528
13.9 Proof of Gallai’s Conjecture . 529
13.10 Decomposing a Tournament into Strong Spanning

Subdigraphs . 536
13.11 The Directed Path-Partition Conjecture 542
13.12 Miscellaneous Topics . 546

13.12.1 Maximum One-Way Cuts and Covering by One-Way
Cuts . 546

13.12.2 Acyclic Decompositions of Digraphs 548

xx Contents

13.12.3 Decomposing Tournaments into Strong
Subtournaments . 548

13.12.4 Decomposing Digraphs under Degree Constraints . . . 549
13.13 Exercises . 550

14. Increasing Connectivity . 553
14.1 The Splitting Off Operation . 553
14.2 Increasing the Arc-Strong Connectivity Optimally 557
14.3 Increasing the Vertex-Strong Connectivity Optimally 562

14.3.1 One-Way Pairs . 563
14.3.2 Optimal k-Strong Augmentation 565
14.3.3 Special Classes of Digraphs . 566

14.4 Arc Reversals and Vertex-Strong Connectivity 568
14.5 Arc-Reversals and Arc-Strong Connectivity 570

14.5.1 Determining rdeg
k (D) Efficiently 571

14.5.2 Reversals of Arcs to Achieve High Arc-Strong
Connectivity in Tournaments . 572

14.6 Increasing Connectivity by Deorienting Arcs 573
14.7 Miscellaneous Topics . 576

14.7.1 Increasing Arc-Strong Connectivity of a Bipartite
Digraph . 576

14.7.2 Augmenting Arc-Strong Connectivity in Directed
Hypergraphs . 577

14.7.3 Weighted Versions of Local Arc-Connectivity
Problems . 578

14.8 Exercises . 580

15. Feedback Sets and Vertex Orderings . 583
15.1 Two Conjectures on Feedback Arc Sets 584
15.2 Optimal Orderings in Tournaments . 585
15.3 Complexity of the Feedback Set Problems 586

15.3.1 NP-Completeness Results . 587
15.3.2 FAS for Planar Digraphs . 590
15.3.3 Approximation Algorithms . 591
15.3.4 Fixed-Parameter Tractability Results 593

15.4 Disjoint Cycles Versus Feedback Sets . 596
15.4.1 Relations Between Parameters νi and τi 596
15.4.2 Solution of Younger’s Conjecture 598

15.5 Optimal Orderings and Seymour’s Second Neighbourhood
Conjecture . 600

15.6 Ádám’s Conjecture . 603
15.7 Exercises . 605

Contents xxi

16. Generalizations of Digraphs: Edge-Coloured Multigraphs . 607
16.1 Terminology, Notation and Initial Observations 608
16.2 Properly Coloured Euler Trails . 610
16.3 Properly Coloured Cycles . 613
16.4 Gadget Graphs and Shortest PC Cycles and (s, t)-Paths 617

16.4.1 P-Gadgets . 617
16.4.2 P-Gadget Graphs . 618

16.5 Long PC Cycles and Paths . 621
16.6 Connectivity of Edge-Coloured Multigraphs 622
16.7 Alternating Cycles in 2-Edge-Coloured Bipartite Multigraphs 625
16.8 Paths and Cycles in 2-Edge-Coloured Complete Multigraphs 628
16.9 PC Paths and Cycles in c-Edge-Coloured Complete Graphs,

c ≥ 3 . 635
16.10 Exercises . 640

17. Applications of Digraphs and Edge-Coloured Graphs 643
17.1 A Digraph Model in Quantum Mechanics 643

17.1.1 Lower Bound for μ(n) . 644
17.1.2 Families of Sets and μ(n) . 644
17.1.3 Upper Bounds for μ(n) . 646
17.1.4 When μ(n) > f(n) . 647
17.1.5 Mediated Digraphs in Quantum Mechanics 647

17.2 Embedded Computing and Convex Sets in Acyclic Digraphs . 649
17.2.1 Embedded Computing Systems and Convex Sets 649
17.2.2 Bounds for the Number of Convex Sets 650
17.2.3 Algorithms for Generating Convex and Connected

Convex Sets . 652
17.3 When Greedy-Like Algorithms Fail . 655

17.3.1 Greedy Algorithm . 656
17.3.2 Max-Regret Algorithms . 659

17.4 Domination Analysis of ATSP Heuristics 660
17.4.1 ATSP Heuristics with Factorial Domination Numbers 662
17.4.2 Upper Bounds on Domination Numbers 664

17.5 Solving the 2-Satisfiability Problem . 666
17.6 Alternating Hamilton Cycles in Genetics 670

17.6.1 Proof of Theorem 17.6.1 . 672
17.6.2 Proof of Theorem 17.6.2 . 673

17.7 Gaussian Elimination . 674
17.8 Markov Chains . 677
17.9 List Edge-Colourings . 679
17.10 Digraph Models of Bartering . 683
17.11 PERT/CPM in Project Scheduling . 685
17.12 Finite Automata . 687
17.13 Puzzles and Digraphs . 689
17.14 Gossip Problems . 690

xxii Contents

17.15 Deadlocks of Computer Processes . 692
17.16 Exercises . 694

18. Algorithms and Their Complexity . 695
18.1 Combinatorial Algorithms . 696
18.2 NP-Complete and NP-Hard Problems 700
18.3 The Satisfiability Problem . 702
18.4 Fixed-Parameter Tractability and Intractability 703
18.5 Exponential Algorithms . 705
18.6 Approximation Algorithms . 706
18.7 Heuristics and Metaheuristics . 707
18.8 Matroids . 711

18.8.1 The Dual of a Matroid . 714
18.8.2 The Greedy Algorithm for Matroids 714
18.8.3 Independence Oracles . 715
18.8.4 Union of Matroids . 715
18.8.5 Intersection of Two Matroids . 716
18.8.6 Intersections of Three or More Matroids 717

18.9 Exercises . 718

References . 721

Symbol Index . 761

Author Index . 767

Subject Index . 777

1. Basic Terminology, Notation and Results

In this chapter we will provide most of the terminology and notation used
in this book. Various examples, figures and results should help the reader to
better understand the notions introduced in the chapter. The results covered
in this chapter constitute a collection of simple yet important facts on di-
graphs. Most of our terminology and notation are standard. Therefore, some
readers may proceed to other chapters after a quick look through this chapter
(unfamiliar terminology and notation can be clarified later by consulting the
indices supplied at the end of this book).

In Section 1.1 we provide basic terminology and notation on sets and ma-
trices. Digraphs, directed pseudographs, subdigraphs, weighted directed pseu-
dographs, neighbourhoods, semi-degrees and other basic concepts of directed
graph theory are introduced in Section 1.2. Isomorphism and basic operations
on digraphs are considered in Section 1.3. In Section 1.4, we introduce walks,
trails, paths and cycles, and study some properties of tournaments and acyclic
digraphs. Basic notions and results on strong and unilateral connectivity are
considered in Section 1.5. Undirected graphs, biorientations and orientations
of graphs are considered in Section 1.6. In Section 1.7, we give character-
izations of eulerian directed multigraphs and digraphs with out-branchings
(in-branchings). Mixed graphs, orientations of digraphs, and hypergraphs are
discussed in Section 1.8. Finally, in Section 1.9 we will introduce a simple,
yet very important, technique in algorithmic graph theory called depth-first
search (DFS).

1.1 Sets, Matrices and Vectors

For the sets of real numbers, rational numbers and integers we will use R, Q

and Z, respectively. Also, let Z+ = {z ∈ Z : z > 0} and Z0 = {z ∈ Z : z ≥
0}. The sets R+, R0, Q+ and Q0 are defined similarly. For an integer n, [n]
will denote the set {1, 2, . . . , n}.

The main aim of this section is to establish some notation and terminology
on finite sets used in this book. We assume that the reader is familiar with
the following basic operations for a pair A, B of sets: the intersection A∩B,
the union A ∪ B (if A ∩ B = ∅, then we will often write A + B instead of

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 1,
© Springer-Verlag London Limited 2010

1

http://dx.doi.org/10.1007/978-1-84800-998-1_1

2 1. Basic Terminology, Notation and Results

A∪B) and the difference A\B (often denoted by A−B). Sets A and B are
disjoint if A ∩B = ∅.

Often we will not distinguish between a single element set (singleton) {x}
and the element x itself. For example, we may write A∪ b instead of A∪{b}.
The Cartesian product of sets X1, X2, . . . , Xp is X1 × X2 × . . . × Xp =
{(x1, x2, . . . , xp) : xi ∈ Xi, 1 ≤ i ≤ p}.

For sets A, B, A ⊆ B means that A is a subset of B; A ⊂ B stands for
A ⊆ B and A �= B. A set B is a proper subset of a set A if B ⊂ A and
B �= ∅. A collection S1, S2, . . . , St of (not necessarily non-empty) subsets of a
set S is a subpartition of S if Si∩Sj = ∅ for all 1 ≤ i �= j ≤ t. A subpartition
S1, S2, . . . , St is a partition of S if ∪t

i=1Si = S. We will often use the name
family for a collection of sets. A family F = {X1, X2, . . . , Xn} of sets is
covered by a set S if S ∩Xi �= ∅ for every i ∈ [n]. We say that S is a cover
of F . For a finite set X, the number of elements in X (i.e., its cardinality)
is denoted by |X|. We also say that X is an |X|-element set (or just an
|X|-set). A set S satisfying a property P is a maximum (maximal) set
with property P if there is no set S′ satisfying P and |S′| > |S| (S ⊂ S′).
Similarly, one can define minimum (minimal) sets satisfying a property P.

In this book, we will also use multisets which, unlike sets, are allowed
to have repeated (multiple) elements. The cardinality |S| of a multiset M
is the total number of elements in S (including repetitions). Often, we will
use the words ‘family’ and ‘collection’ instead of ‘multiset’.

For an m × n matrix S = [sij] the transposed matrix (of S) is the
n × m matrix ST = [tkl] such that tji = sij for every i ∈ [m] and j ∈ [n].
Unless otherwise specified, the vectors that we use are column-vectors. The
operation of transposition is used to obtain row-vectors.

1.2 Digraphs, Subdigraphs, Neighbours, Degrees

A directed graph (or just digraph) D consists of a non-empty finite set
V (D) of elements called vertices and a finite set A(D) of ordered pairs of
distinct vertices called arcs. We call V (D) the vertex set and A(D) the
arc set of D. We will often write D = (V, A) which means that V and A
are the vertex set and arc set of D, respectively. The order (size) of D is
the number of vertices (arcs) in D; the order of D will sometimes be denoted
by |D|. For example, the digraph D in Figure 1.1 is of order and size 6;
V (D) = {u, v, w, x, y, z}, A(D) = {(u, v), (u, w), (w, u), (z, u), (x, z), (y, z)}.
Often the order (size, respectively) of the digraph under consideration is
denoted by n (m, respectively).

For an arc (u, v) the first vertex u is its tail and the second vertex v is its
head. We also say that the arc (u, v) leaves u and enters v. The head and
tail of an arc are its end-vertices; we say that the end-vertices are adjacent,

1.2 Digraphs, Subdigraphs, Neighbours, Degrees 3

uz

w

vx

y

Figure 1.1 A digraph D.

i.e., u is adjacent to1 v and v is adjacent to u. If (u, v) is an arc, we also say
that u dominates v (v is dominated by u) and denote it by u→v. We say
that a vertex u is incident to an arc a if u is the head or tail of a. We will
often denote an arc (x, y) by xy.

For a pair X, Y of vertex sets of a digraph D, we define

(X, Y)D = {xy ∈ A(D) : x ∈ X, y ∈ Y },

i.e., (X, Y)D is the set of arcs with tail in X and head in Y . For example, for
the digraph H in Figure 1.2, ({u, v}, {w, z})H = {uw}, ({w, z}, {u, v})H =
{wv} and ({u, v}, {u, v})H = {uv, vu}.

u w

zv

u

v

w

H ′H

z

Figure 1.2 A digraph H and a directed pseudograph H ′.

For disjoint subsets X and Y of V (D), X→Y means that every vertex
of X dominates every vertex of Y , X⇒Y stands for (Y, X)D = ∅ and X �→Y
means that both X→Y and X⇒Y hold. For example, in the digraph D of
Figure 1.1, u→{v, w}, {x, y, z}⇒{u, v, w} and {x, y}�→z.

The above definition of a digraph implies that we allow a digraph to have
arcs with the same end-vertices (for example, uv and vu in the digraph H
in Figure 1.2), but we do not allow it to contain parallel (also called mul-
tiple) arcs, that is, pairs of arcs with the same tail and the same head, or
1 Some authors use the convention that x is adjacent to y to mean that there is

an arc from x to y, rather than just that there is an arc xy or yx in D, as we
will do in this book.

4 1. Basic Terminology, Notation and Results

loops (i.e., arcs whose head and tail coincide). When parallel arcs and loops
are admissible we speak of directed pseudographs; directed pseudographs
without loops are directed multigraphs. In Figure 1.2 the directed pseu-
dograph H ′ is obtained from H by appending a loop zz and two parallel arcs
from u to w. Clearly, for a directed pseudograph D, A(D) and (X, Y)D (for
every pair X, Y of vertex sets of D) are multisets (parallel arcs provide re-
peated elements). We use the symbol μD(x, y) to denote the number of arcs
from a vertex x to a vertex y in a directed pseudograph D. In particular,
μD(x, y) = 0 means that there is no arc from x to y.

We will sometimes give terminology and notation for digraphs only, but we
will provide necessary remarks on their extension to directed pseudographs,
unless this is trivial.

Below, unless otherwise specified, D = (V, A) is a directed pseudograph.
For a vertex v in D, we use the following notation:

N+
D (v) = {u ∈ V − v : vu ∈ A}, N−

D (v) = {w ∈ V − v : wv ∈ A)}.

The sets N+
D (v), N−

D (v) and ND(v) = N+
D (v) ∪ N−

D (v) are called the
out-neighbourhood, in-neighbourhood and neighbourhood of v. We
call the vertices in N+

D (v), N−
D (v) and ND(v) the out-neighbours, in-

neighbours and neighbours of v. In Figure 1.2, N+
H(u) = {v, w}, N−

H (u) =
{v}, NH(u) = {v, w}, N+

H′(w) = {v, z}, N−
H′(w) = {u, z}, N+

H′(z) = {w}. For
a set W ⊆ V , we let

N+
D (W) =

⋃

w∈W

N+
D (w) −W, N−

D (W) =
⋃

w∈W

N−
D (w) −W.

That is, N+
D (W) consists of those vertices from V − W which are out-

neighbours of at least one vertex from W . In Figure 1.2, N+
H ({w, z}) = {v}

and N−
H ({w, z}) = {u}.

For a set W ⊆ V , the out-degree of W (denoted by d+
D(W)) is the num-

ber of arcs in D whose tails are in W and heads are in V −W , i.e., d+
D(W) =

|(W, V −W)D|. The in-degree of W , d−D(W) = |(V −W, W)D|. In particular,
for a vertex v, the out-degree is the number of arcs, except for loops, with tail
v. If D is a digraph (that is, it has no loops or multiple arcs), then the out-
degree of a vertex equals the number of out-neighbours of this vertex . We call
out-degree and in-degree of a set its semi-degrees. The degree of W is the
sum of its semi-degrees, i.e., the number dD(W) = d+

D(W) + d−D(W). For ex-
ample, in Figure 1.2, d+

H(u) = 2, d−H(u) = 1, dH(u) = 3, d+
H′(w) = 2, d−H′(w) =

4, d+
H′(z) = d−H′(z) = 1, d+

H({u, v, w}) = d−H({u, v, w}) = 1. Sometimes, it is
useful to count loops in the semi-degrees: the out-pseudodegree of a vertex
v of a directed pseudograph D is the number of all arcs with tail v. Simi-
larly, one can define the in-pseudodegree of a vertex. In Figure 1.2, both
in-pseudodegree and out-pseudodegree of z in H ′ are equal to 2. A vertex
v of a directed pseudograph D is called a sink (source) if it does not have
out-neighbours (in-neighbours).

1.2 Digraphs, Subdigraphs, Neighbours, Degrees 5

The minimum out-degree (minimum in-degree) of D is

δ+(D) = min{d+
D(x) : x ∈ V (D)} (δ−(D) = min{d−D(x) : x ∈ V (D)}).

The minimum semi-degree of D is

δ0(D) = min{δ+(D), δ−(D)}.

Similarly, one can define the maximum out-degree of D, Δ+(D), and the
maximum in-degree, Δ−(D). The maximum semi-degree of D is

Δ0(D) = max{Δ+(D), Δ−(D)}.

We say that D is regular if δ0(D) = Δ0(D). In this case, D is also called
δ0(D)-regular.

For degrees, semi-degrees as well as for other parameters and sets of di-
graphs, we will usually omit the subscript for the digraph when it is clear
which digraph is meant.

Since the number of arcs in a directed multigraph equals the number of
their tails (or their heads) we obtain the following very basic result.

Proposition 1.2.1 For every directed multigraph D we have

∑
x∈V (D) d−(x) =

∑
x∈V (D) d+(x) = |A(D)|.

��

Clearly, this proposition is valid for directed pseudographs if in-degrees
and out-degrees are replaced by in-pseudodegrees and out-pseudodegrees.

A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D), A(H) ⊆
A(D) and every arc in A(H) has both end-vertices in V (H). If V (H) =
V (D), we say that H is a spanning subdigraph (or a factor) of D. The
digraph L with vertex set {u, v, w, z} and arc set {uv, uw, wz} is a spanning
subdigraph of H in Figure 1.2. If every arc of A(D) with both end-vertices
in V (H) is in A(H), we say that H is induced by X = V (H) (we write
H = D〈X〉) and call H an induced subdigraph of D. The digraph G with
vertex set {u, v, w} and arc set {uw, wv, vu} is a subdigraph of the digraph H
in Figure 1.2; G is neither a spanning subdigraph nor an induced subdigraph
of H. The digraph G along with the arc uv is an induced subdigraph of H.
For a subset A′ ⊆ A(D) the subdigraph arc-induced by A′ is the digraph
D〈A′〉 = (V ′, A′), where V ′ is the set of vertices in V which are incident with
at least one arc from A′. For example, in Figure 1.2, H〈{zw, uw}〉 has vertex
set {u, w, z} and arc set {zw, uw}. If H is a subdigraph of D, then we say
that D is a superdigraph of H.

It is trivial to extend the above definitions of subdigraphs to directed
pseudographs. To avoid lengthy terminology, we call the ‘parts’ of directed
pseudographs just subdigraphs (instead of, say, directed subpseudographs).

6 1. Basic Terminology, Notation and Results

For vertex-disjoint subdigraphs H, L of a digraph D, we will often
use the shorthand notation (H, L)D, H→L, H⇒L and H �→L instead of
(V (H), V (L))D, V (H)→V (L), V (H)⇒V (L) and V (H)�→V (L).

A weighted directed pseudograph is a directed pseudograph D along
with a mapping c : A(D)→R. Thus, a weighted directed pseudograph is
a triple D = (V (D), A(D), c). We will also consider vertex-weighted di-
rected pseudographs, i.e., directed pseudographs D along with a mapping
c : V (D)→R. (See Figure 1.3.) If a is an element (i.e., a vertex or an arc)
of a weighted directed pseudograph D = (V (D), A(D), c), then c(a) is called
the weight or the cost of a. An (unweighted) directed pseudograph can be
viewed as a (vertex-)weighted directed pseudograph whose elements are all of
weight 1. For a set B of arcs of a weighted directed pseudograph D = (V, A, c),
we define the weight of B as follows: c(B) =

∑
a∈B c(a). Similarly, one can

define the weight of a set of vertices in a vertex-weighted directed pseudo-
graph. The weight of a subdigraph H of a weighted (vertex-weighted)
directed pseudograph D is the sum of the weights of the arcs in H (vertices
in H). For example, in the weighted directed pseudograph D in Figure 1.3
the set of arcs {xy, yz, zx} has weight 9.5 (here we have assumed that we
used the arc zx of weight 1). In the directed pseudograph H in Figure 1.3
the subdigraph U = ({u, x, z}, {xz, zu}) has weight 5.

3.5

0.3

5

y

z

x(2) z(0) u(3)

y(2.5)

1

x

2

D H

Figure 1.3 Weighted and vertex-weighted directed pseudographs (the vertex
weights are given in brackets).

1.3 Isomorphism and Basic Operations on Digraphs

Suppose D = (V, A) is a directed multigraph. A directed multigraph obtained
from D by deleting multiple arcs is a digraph H = (V, A′) where xy ∈ A′

if and only if μD(x, y) ≥ 1. Let xy be an arc of D. By reversing the
arc xy, we mean that we replace the arc xy by the arc yx. That is, in

1.3 Isomorphism and Basic Operations on Digraphs 7

the resulting directed multigraph D′ we have μD′(x, y) = μD(x, y) − 1 and
μD′(y, x) = μD(y, x) + 1.

A pair of (unweighted) directed pseudographs D and H are isomorphic
(denoted by D ∼= H) if there exists a bijection φ : V (D)→V (H) such that
μD(x, y) = μH(φ(x), φ(y)) for every ordered pair x, y of vertices in D. The
mapping φ is an isomorphism. Quite often, we will not distinguish between
isomorphic digraphs or directed pseudographs. For example, we may say that
there is only one digraph on a single vertex and there are exactly three
digraphs with two vertices. Also, there is only one digraph of order 2 and size
2, but there are two directed multigraphs and six directed pseudographs of
order and size 2. For a set Ψ of directed pseudographs, we say that a directed
pseudograph D belongs to Ψ or is a member of Ψ (denoted D ∈ Ψ) if
D is isomorphic to a directed pseudograph in Ψ . Since we usually do not
distinguish between isomorphic directed pseudographs, we will often write
D = H instead of D ∼= H for isomorphic D and H.

In case we do want to distinguish between isomorphic digraphs, we speak
of labeled digraphs. In this case, a pair of digraphs D and H is indistin-
guishable if and only if they completely coincide (i.e., V (D) = V (H) and
A(D) = A(H)). In particular, there are four labeled digraphs with vertex set
{1, 2}. Indeed, the labeled digraphs ({1, 2}, {(1, 2)}) and ({1, 2}, {(2, 1)}) are
distinct, even though they are isomorphic.

The converse of a directed multigraph D is the directed multigraph H
which one obtains from D by reversing all arcs. It is easy to verify, using
only the definitions of isomorphism and converse, that a pair of directed
multigraphs are isomorphic if and only if their converses are isomorphic.
To obtain subdigraphs, we use the following operations of deletion. For a
directed multigraph D and a set B ⊆ A(D), the directed multigraph D − B
is the spanning subdigraph of D with arc set A(D) − B. If X ⊆ V (D), the
directed multigraph D − X is the subdigraph induced by V (D) − X, i.e.,
D − X = D〈V (D) − X〉. For a subdigraph H of D, we define D − H =
D−V (H). Since we do not distinguish between a single element set {x} and
the element x itself, we will often write D − x rather than D − {x}. If H is
a non-induced subdigraph of D and xy ∈ A(D) − A(H) with x, y ∈ V (H),
we can construct another subdigraph H ′ of D by adding the arc xy of H;
H ′ = H + xy.

Let G be a subdigraph of a directed multigraph D. The contraction of
G in D is a directed multigraph D/G with V (D/G) = {g}∪ (V (D)−V (G)),
where g is a ‘new’ vertex not in D, and μD/G(x, y) = μD(x, y), and for all
distinct vertices x, y ∈ V (D) − V (G) we have

μD/G(x, g) =
∑

v∈V (G)

μD(x, v), μD/G(g, y) =
∑

v∈V (G)

μD(v, y).

(Note that there is no loop in D/G.) Let G1, G2, . . . , Gt be vertex-disjoint
subdigraphs of D. Then

8 1. Basic Terminology, Notation and Results

D/{G1, G2, . . . , Gt} = (. . . ((D/G1)/G2) . . .)/Gt.

Clearly, the resulting directed multigraph D/{G1, G2, . . . , Gt} does not de-
pend on the order of G1, G2, . . . , Gt. Contraction can be defined for sets of
vertices, rather than subdigraphs. It suffices to view a set of vertices X as a
subdigraph with vertex set X and no arcs. Figure 1.4 depicts a digraph H
and the contraction H/L, where L is the subdigraph of H induced by the
vertices y and z.

x

y

v

z

�

x

v

H T = H/L, L = H〈{y, z}〉

Figure 1.4 Contraction.

We will often use the following variation of the operation of contraction.
This operation is called path-contraction and is defined as follows. Let P be
an (x, y)-path in a directed multigraph D = (V, A). Then D//P stands for the
directed multigraph with vertex set V (D//P) = V ∪{z}−V (P), where z /∈ V ,
and μD//P (uv) = μD(uv), μD//P (uz) = μD(ux), μD//P (zv) = μD(yv) for all
distinct u, v ∈ V −V (P). In other words, D//P is obtained from D by deleting
all vertices of P and adding a new vertex z such that every arc with head x
(tail y) and tail (head) in V − V (P) becomes an arc with head (tail) z and
the same tail (head). Observe that a path-contraction in a digraph results in
a digraph (no parallel arcs arise). We will often consider path-contractions of
paths of length one, i.e., arcs e. Clearly, a directed multigraph D has a k-cycle
(k ≥ 3) through an arc e if and only if D//e has a cycle through z. Observe
that the obvious analogue of path-contraction for undirected multigraphs
does not have this nice property which is of use in this section. The difference
between (ordinary) contraction (which is also called set-contraction) and
path-contraction is reflected in Figure 1.5.

As for set-contraction, for vertex-disjoint paths P1, P2, . . . , Pt in D, the
path-contraction D//{P1, . . . , Pt} is defined as the directed multigraph
(. . . ((D//P1)//P2) . . .)//Pt; clearly, the result does not depend on the order
of P1, P2, . . . , Pt.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the
following operation called composition. Let D be a digraph with vertex set

1.3 Isomorphism and Basic Operations on Digraphs 9

a

b
x u v y

d

c

a

b

c

d b

a

d

c

2

3

2 2

z z

D

D/{x, u, v, y} D//P, P = xuvy

Figure 1.5 The two different kinds of contraction, set-contraction and path-
contraction. The integers 2 and 3 indicate the number of corresponding parallel
arcs.

{vi : i ∈ [n]}, and let G1, G2, . . . , Gn be digraphs which are pairwise vertex-
disjoint. The composition D[G1, G2, . . . , Gn] is the digraph L with vertex set
V (G1)∪V (G2)∪. . .∪V (Gn) and arc set (∪n

i=1A(Gi))∪{gigj : gi ∈ V (Gi), gj ∈
V (Gj), vivj ∈ A(D)}. Figure 1.6 shows the composition T [Gx, Gl, Gv], where
Gx consists of a pair of vertices and an arc between them, Gl has a single
vertex, Gv consists of a pair of vertices and the pair of mutually opposite
arcs between them, and the digraph T is from Figure 1.4.

Gx

G�

Gv

Figure 1.6 T [Gx, G�, Gv].

Let Φ be a set of digraphs. A digraph D is Φ-decomposable if D is a
member of Φ or D = H[S1, . . . , Sh] for some H ∈ Φ with h = |V (H)| ≥ 2
and some choice of digraphs S1, S2, . . . , Sh (we call this decomposition a Φ-

10 1. Basic Terminology, Notation and Results

decomposition). A digraph D is called totally Φ-decomposable if either
D ∈ Φ or there is a Φ-decomposition D = H[S1, . . . , Sh] such that h ≥ 2, and
each Si is totally Φ-decomposable. In this case, if D /∈ Φ, a Φ-decomposition
of D, Φ-decompositions Si = Hi[Si1, . . . , Sihi] of all Si which are not in Φ, Φ-
decompositions of those of Sij which are not in Φ, and so on, form a sequence
of decompositions which will be called a total Φ-decomposition of D. If
D ∈ Φ, we assume that the (unique) total Φ-decomposition of D consists of
itself.

To illustrate the last paragraph of definitions, consider Ψ = {
↔
K1,

↔
K2, D2},

where
↔
K1 is the digraph with a single vertex,

↔
K2 is the (complete) digraph

with two vertices and two arcs, and D2 has two vertices {1, 2} and the arc
(1, 2). Construct the digraph D by deleting from the digraph in Figure 1.6 the
pair of arcs going from G� to Gx. The digraph D is totally Ψ -decomposable.
Indeed, D = D2[D2, Q] is a Ψ -decomposition of D, where Q is the sub-
digraph of D induced by V (G�) ∪ V (Gv). Moreover, Q = D2[

↔
K1,

↔
K2] is

a Ψ -decomposition of Q. The above two decompositions form a total Φ-
decomposition of D.

If D = H[S1, . . . , Sh] and none of the digraphs S1, . . . , Sh has an arc, then
D is an extension of H. Distinct vertices x, y are similar if x, y have the
same in- and out-neighbours in D. For every i ∈ [h], the vertices of Si are
similar in D. For any set Φ of digraphs, Φext denotes the (infinite) set of all
extensions of digraphs in Φ, which are called extended Φ-digraphs. We say
that Φ is extension-closed if Φ = Φext.

The Cartesian product of a family of digraphs D1, D2, . . . , Dn, denoted
by D1 × D2 × . . .×Dn or

∏n
i=1 Di, where n ≥ 2, is the digraph D having

V (D) = V (D1)× V (D2)× . . .× V (Dn)
= {(w1, w2, . . . , wn) : wi ∈ V (Di), i ∈ [n]}

and a vertex (u1, u2, . . . , un) dominates a vertex (v1, v2, . . . , vn) of D if and
only if there exists an r ∈ [n] such that urvr ∈ A(Dr) and ui = vi for all
i ∈ [n] \ {r}. (See Figure 1.7.)

The operation of splitting a vertex v of a directed multigraph D consists
of replacing v by two (new) vertices u, w so that uw is an arc, all arcs of the
form xv by arcs xu and all arcs of the form vy by wy. The subdivision of
an arc uv of D consists of replacing uv by two arcs uw, wv, where w is a
new vertex. If H can be obtained from D by subdividing one or more arcs
(here we allow subdividing arcs that are already subdivided), then H is a
subdivision of D. For a positive integer p and a digraph D, the pth power
Dp of D is defined as follows: V (Dp) = V (D), x→y in Dp if x �= y and
there are k ≤ p − 1 vertices z1, z2, . . . , zk such that x→z1→z2→ . . .→zk→y
in D. According to this definition D1 = D. For example, for the digraph
Hn = ([n], {(i, i + 1) : i ∈ [n − 1]}), we have H2

n = ([n], {(i, j) : 1 ≤ i < j ≤
i + 2 ≤ n} ∪ {(n − 1, n)}). See Figure 1.8 for the second power of a digraph.

1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs 11

1

2

3

(2, a)

(3, b)

(2, b)

(1, a) (3, a)

(1, b)
b

a

D ×HHD

Figure 1.7 The Cartesian product of two digraphs.

D D2

Figure 1.8 A digraph D and its second power D2.

Let H and L be a pair of directed pseudographs. The union H ∪L of H
and L is the directed pseudograph D such that V (D) = V (H) ∪ V (L) and
μD(x, y) = μH(x, y) + μL(x, y) for every pair x, y of vertices in V (D). Here
we assume that the function μH is naturally extended, i.e., μH(x, y) = 0 if at
least one of x, y is not in V (H) (and similarly for μL). Figure 1.9 illustrates
this definition.

1.4 Walks, Trails, Paths, Cycles and Path-Cycle
Subdigraphs

In the following, D is always a directed pseudograph, unless otherwise speci-
fied. A walk in D is an alternating sequence W = x1a1x2a2x3 . . . xk−1ak−1xk

of vertices xi and arcs aj from D such that the tail of ai is xi and the head
of ai is xi+1 for every i ∈ [k − 1]. A walk W is closed if x1 = xk, and open
otherwise. The set of vertices {xi : i ∈ [k]} is denoted by V (W); the set of
arcs {aj : j ∈ [k − 1]} is denoted by A(W). We say that W is a walk from
x1 to xk or an (x1, xk)-walk. If W is open, then we say that the vertex x1

12 1. Basic Terminology, Notation and Results

c

d

b

c

d

e

f

g

ca

d

b
e

f

g

a

b

H L H ∪ L

Figure 1.9 The union D = H ∪ L of the directed pseudographs H and L.

is the initial vertex of W , the vertex xk is the terminal vertex of W , and
x1 and xk are end-vertices of W . The length of a walk is the number of
its arcs. Hence the walk W above has length k − 1. A walk is even (odd) if
its length is even (odd). When the arcs of W are defined from the context or
simply unimportant, we will denote W by x1x2 . . . xk.

A trail is a walk in which all arcs are distinct. Sometimes, we identify
a trail W with the directed pseudograph (V (W), A(W)), which is a subdi-
graph of D. If the vertices of W are distinct, W is a path. If the vertices
x1, x2, . . . , xk−1 are distinct, k ≥ 3 and x1 = xk, W is a cycle. Since paths
and cycles are special cases of walks, the length of a path and a cycle is
already defined. The same remark is valid for other parameters and notions,
e.g., an (x, y)-path. A path P is an [x, y]-path if P is a path between x
and y, e.g., P is either an (x, y)-path or a (y, x)-path. A longest path (cycle)
in D is a path (cycle) of maximum length in D.

When W is a cycle and x is a vertex of W , we say that W is a cycle
through x. In a directed pseudograph D, a loop is also considered a cycle
(of length one). A k-cycle is a cycle of length k. The minimum integer k for
which D has a k-cycle is the girth of D; denoted by g(D). If D does not
have a cycle, we define g(D) = ∞. If g(D) is finite, then we call a cycle of
length g(D) a shortest cycle in D.

For subsets X, Y of V (D), an (x, y)-path P is an (X, Y)-path if x ∈ X,
y ∈ Y and V (P) ∩ (X ∪ Y) = {x, y}. Note that if X ∩ Y �= ∅, then a vertex
x ∈ X ∩ Y forms an (X, Y)-path by itself. Sometimes we will talk about
an (H, H ′)-path when H and H ′ are subdigraphs of D. By this we mean a
(V (H), V (H ′))-path in D.

For a cycle C = x1x2 . . . xpx1, the subscripts are considered modulo p,
i.e., xs = xi for every s and i such that i ≡ s mod p. As pointed out above
(for trails), we will often view paths and cycles as subdigraphs. We can also
consider paths and cycles as digraphs themselves. Let �Pn (�Cn) denote a
path (a cycle) with n vertices, i.e., 	Pn = ([n], {(1, 2), (2, 3), . . . , (n − 1, n)})
and 	Cn = 	Pn + (n, 1).

1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs 13

A walk (path, cycle) W is a Hamilton (or hamiltonian) walk (path, cy-
cle) if V (W) = V (D). A digraph D is hamiltonian if D contains a Hamilton
cycle; D is traceable if D possesses a Hamilton path. A trail W = x1x2 . . . xk

is an Euler (or eulerian) trail if A(W) = A(D), V (W) = V (D) and x1 = xk;
a directed multigraph D is eulerian if it has an Euler trail.

To illustrate these definitions, consider Figure 1.10.

x2

x1 x3

x4x5

x6

x7

Figure 1.10 A directed graph H.

The walk x1x2x6x3x4x6x7x4x5x1 is a hamiltonian walk in D. The path
x5x1x2x3x4x6x7 is hamiltonian path in D. The path x1x2x3x4x6 is an
(x1, x6)-path and x2x3x4x6x3 is an (x2, x3)-trail. The cycle x1x2x3x4x5x1

is a 5-cycle in D. The girth of D is 3 and the longest cycle in D has length 6.
Let W = x1x2 . . . xk, Q = y1y2 . . . yt be a pair of walks in a digraph D.

The walks W and Q are disjoint if V (W) ∩ V (Q) = ∅ and arc-disjoint if
A(W) ∩ A(Q) = ∅. If W and Q are open walks, they are called internally
disjoint if {x2, x3, . . . , xk−1}∩V (Q) = ∅ and V (W)∩{y2, y3, . . . , yt−1} = ∅.

We will use the following notation for a path or a cycle W = x1x2 . . . xk

(recall that x1 = xk if W is a cycle):

W [xi, xj] = xixi+1 . . . xj .

It is easy to see that W [xi, xj] is a path for xi �= xj ; we call it the subpath
of W from xi to xj . If 1 < i ≤ k, then the predecessor of xi on W is the
vertex xi−1 and is also denoted by x−

i . If 1 ≤ i < k, then the successor of xi

on W is the vertex xi+1 and is also denoted by x+
i . Similarly, one can define

x++
i = (x+

i)+ and x−−
i = (x−

i)−, when these exist (which they always do if
W is a cycle).

Also, for a set X ⊆ V (W), we set X+ = {x+ : x ∈ X}, X− = {x− : x ∈
X}, X++ = (X+)+, etc. We will normally use such notation when a vertex
x under consideration belongs to a unique walk W , otherwise W is given as
a subscript, for example, x+

W .

Proposition 1.4.1 Let D be a digraph and let x, y be a pair of distinct
vertices in D. If D has an (x, y)-walk W , then D contains an (x, y)-path P

14 1. Basic Terminology, Notation and Results

such that A(P) ⊆ A(W). If D has a closed (x, x)-walk W , then D contains
a cycle C through x such that A(C) ⊆ A(W).

Proof: Consider a walk P from x to y of minimum length among all (x, y)-
walks whose arcs belong to A(W). We show that P is a path. Let P =
x1x2 . . . xk, where x = x1 and y = xk. If xi = xj for some 1 ≤ i < j ≤ k,
then the walk P [x1, xi]P [xj+1, xk] is shorter than P ; a contradiction. Thus,
all vertices of P are distinct, so P is a path with A(P) ⊆ A(W).

Let W = z1z2 . . . zk be a walk from x = z1 to itself (x = zk). Since D
has no loop, zk−1 �= zk. Let y1y2 . . . yt be a shortest walk from y1 = z1 to
yt = zk−1. We have proved above that y1y2 . . . yt is a path. Thus, y1y2 . . . yty1

is a cycle through y1 = x. ��
An oriented graph is a digraph with no cycle of length two. A tourna-

ment is an oriented graph where every pair of distinct vertices are adjacent.
In other words, a digraph T with vertex set {vi : i ∈ [n]} is a tournament if
exactly one of the arcs vivj and vjvi is in T for every i �= j ∈ [n]. In Figure
1.11, one can see a pair of tournaments. It is an easy exercise to verify that
each of them contains a Hamilton path. Actually, this is no coincidence by
the following theorem of Rédei [768]. (In fact, Rédei proved a stronger result:
every tournament contains an odd number of Hamilton paths.)

Figure 1.11 Tournaments.

Theorem 1.4.2 Every tournament is traceable.

Proof: Let T be a tournament with vertex set {vi : i ∈ [n]}. Suppose that
the vertices of T are labelled in such a way that the number of backward
arcs, i.e., arcs of the form vjvi, j > i, is minimum. Then, v1v2 . . . vn is a
Hamilton path in T . Indeed, if this is not the case, there exists a subscript
i < n such that vivi+1 /∈ A(T). Thus, vi+1vi ∈ A(T). However, in this case we
can switch the vertices vi and vi+1 in the labelling and decrease the number
of backward arcs; a contradiction. ��

A q-path-cycle subdigraph F of a digraph D is a collection of q paths
P1,. . . , Pq and t cycles C1,. . . ,Ct such that all of P1, . . . , Pq, C1, . . . , Ct are
pairwise disjoint (possibly, q = 0 or t = 0). We will denote F by F =
P1 ∪ . . . ∪ Pq ∪ C1 ∪ . . . ∪ Ct (the paths always being listed first). Quite

1.5 Strong and Unilateral Connectivity 15

often, we will consider q-path-cycle factors, i.e., spanning q-path-cycle
subdigraphs. If t = 0, F is a q-path subdigraph and it is a q-path factor
(or just a path-factor) if it is spanning. If q = 0, we say that F is a t-cycle
subdigraph (or just a cycle subdigraph) and it is a t-cycle factor (or
just a cycle factor) if it is spanning. In Figure 1.12, abc∪ defd is a 1-path-
cycle factor, and abcea ∪ dfd is a cycle factor (or, more precisely, a 2-cycle
factor).

a

b

c

d

e

f

H

Figure 1.12 A digraph H.

The path covering number pc(D) of D is the minimum positive integer
k such that D contains a k-path factor. In particular, pc(D) = 1 if and only if
D is traceable. The path-cycle covering number pcc(D) of D is the min-
imum positive integer k such that D contains a k-path-cycle factor. Clearly,
pcc(D) ≤ pc(D). The proof of the following simple yet helpful assertion on
the path covering number is left as an easy exercise to the reader (Exercise
1.11).

Proposition 1.4.3 Let D be a digraph, and let k be a positive integer. Then
the following statements are equivalent:

1. pc(D) = k.
2. There are k − 1 (new) arcs e1, . . . , ek−1 such that D + {e1, . . . , ek−1} is

traceable, but there is no set of k − 2 arcs with this property.
3. k − 1 is the minimum integer s such that addition of s new vertices to

D together with all possible arcs between V (D) and these new vertices
results in a traceable digraph. ��

1.5 Strong and Unilateral Connectivity

In a digraph D a vertex y is reachable from a vertex x if D has an (x, y)-
walk. In particular, a vertex is reachable from itself. By Proposition 1.4.1,
y is reachable from x if and only if D contains an (x, y)-path. A digraph D

16 1. Basic Terminology, Notation and Results

is strongly connected (or, just, strong) if, for every pair x, y of distinct
vertices in D, there exists an (x, y)-walk and a (y, x)-walk. In other words,
D is strong if every vertex of D is reachable from every other vertex of D.
We define a digraph with one vertex to be strongly connected. It is easy to
see that D is strong if and only if it has a closed Hamilton walk (Exercise
1.29). As 	Cn is strong, every hamiltonian digraph is strong. The following
basic result on tournaments is due to Moon [703]. A digraph D is vertex-
pancyclic if for every x ∈ V (D) and every integer k ∈ {3, 4, . . . , n}, there
exists a k-cycle through x in D.

Theorem 1.5.1 (Moon’s theorem) [703] Every strong tournament is
vertex-pancyclic.

Proof: Let x be a vertex in a strong tournament T on n ≥ 3 vertices.
The theorem is shown by induction on k. We first prove that T has a 3-
cycle through x. Since T is strong, both O = N+(x) and I = N−(x) are
non-empty. Moreover, (O, I) is non-empty; let yz ∈ (O, I). Then, xyzx is a
3-cycle through x. Let C = x0x1 . . . xt be a cycle in T with x = x0 = xt and
t ∈ {3, 4, . . . , n− 1}. We prove that T has a (t + 1)-cycle through x.

If there is a vertex y ∈ V (T) − V (C) which dominates a vertex in C
and is dominated by a vertex in C, then it is easy to see that there exists
an index i such that xi→y and y→xi+1. Therefore, C[x0, xi]yC[xi+1, xt] is a
(t + 1)-cycle through x. Thus, we may assume that every vertex outside of
C either dominates every vertex in C or is dominated by every vertex in C.
The vertices from V (T)−V (C) that dominate all vertices from V (C) form a
set R; the rest of the vertices in V (T)−V (C) form a set S. Since T is strong,
both S and R are non-empty and the set (S, R) is non-empty. Hence taking
sr ∈ (S, R) we see that x0srC[x2, x0] is a (t + 1)-cycle through x = x0. ��

Corollary 1.5.2 (Camion’s theorem) [192] Every strong tournament is
hamiltonian. ��

In fact, Moon’s theorem can be extended to semicomplete digraphs. A
digraph D is semicomplete if there is an arc between every pair of vertices
in D. The next result follows from Moon’s theorem due to Theorem 1.6.1.

Theorem 1.5.3 Every strong semicomplete digraph is vertex-pancyclic. ��

A digraph D is complete if, for every pair x, y of distinct vertices of
D, both xy and yx are in D. The complete digraph on n vertices will be
denoted by

↔
Kn. For a strong digraph D = (V, A), a set S ⊂ V is a separator

(or a separating set) if D − S is not strong. A digraph D is k-strongly
connected (or k-strong) if |V | ≥ k + 1 and D has no separator with less
than k vertices. It follows from the definition of strong connectivity that
a complete digraph with n vertices is (n − 1)-strong, but is not n-strong.

1.5 Strong and Unilateral Connectivity 17

The largest integer k such that D is k-strongly connected is the vertex-
strong connectivity of D (denoted by κ(D)). If a digraph D is not strong,
we set κ(D) = 0. For a pair s, t of distinct vertices of a digraph D, a set
S ⊆ V (D) − {s, t} is an (s, t)-separator if D − S has no (s, t)-paths. For
a strong digraph D = (V, A), a set of arcs W ⊆ A is a cut (or a cutset)
if D − A is not strong. A digraph D is k-arc-strong (or k-arc-strongly
connected) if D has no cut with less than k arcs. The largest integer k such
that D is k-arc-strongly connected is the arc-strong connectivity of D
(denoted by λ(D)). If D is not strong, we set λ(D) = 0. Note that λ(D) ≥ k
if and only if d+(X), d−(X) ≥ k for all proper subsets X of V.

A strong component of a digraph D is a maximal induced subdigraph
of D which is strong. If D1,. . . ,Dt are the strong components of D, then
clearly V (D1) ∪ . . . ∪ V (Dt) = V (D) (recall that a digraph with only one
vertex is strong). Moreover, we must have V (Di)∩V (Dj) = ∅ for every i �= j
as otherwise all the vertices V (Di) ∪ V (Dj) are reachable from each other,
implying that the vertices of V (Di)∪ V (Dj) belong to the same strong com-
ponent of D. We call V (D1) ∪ . . . ∪ V (Dt) the strong decomposition of
D. The strong component digraph SC(D) of D is obtained by contract-
ing strong components of D and deleting any parallel arcs obtained in this
process. In other words, if D1,. . . ,Dt are the strong components of D, then
V (SC(D)) = {vi : i ∈ [t]} and A(SC(D)) = {vivj : (V (Di), V (Dj))D �= ∅}.
The subdigraph of D induced by the vertices of a cycle in D is strong, i.e., is
contained in a strong component of D. Thus, SC(D) is acyclic. By Proposi-
tion 2.1.3, the vertices of SC(D) have an acyclic ordering. This implies that
the strong components of D can be labelled D1,. . . ,Dt such that there is no
arc from Dj to Di unless j < i. We call such an ordering an acyclic ordering
of the strong components of D . The strong components of D corresponding
to the vertices of SC(D) of in-degree (out-degree) zero are the initial (ter-
minal) strong components of D. The remaining strong components of D
are called intermediate strong components of D. Figure 1.13 shows a
digraph D and its strong component digraph SC(D).

It is easy to see that the strong component digraph of a tournament T is
an acyclic tournament. Thus, there is a unique acyclic ordering of the strong
components of T , namely, T1,. . . ,Tt such that Ti→Tj for every i < j. Clearly,
every tournament has only one initial (terminal) strong component.

A digraph D is unilateral if, for every pair x, y of vertices of D, either x
is reachable from y or y is reachable from x (or both). Clearly, every strong
digraph is unilateral. A path 	Pn is unilateral; hence, being unilateral is a
necessary condition for traceability of digraphs. The following is a character-
ization of unilateral digraphs.

Proposition 1.5.4 A digraph D is unilateral if and only if there is a
unique acyclic ordering D1, D2, . . . , Dt of the strong components of D and
(V (Di), V (Di+1)) �= ∅ for every i ∈ [t− 1].

18 1. Basic Terminology, Notation and Results

s1

s2

s3

s4

s5

b

c d

f

g

h

i
j

k

a

e

l

n

m

D SC(D)

Figure 1.13 A digraph D and its strong component digraph SC(D). The vertices
s1, s2, s3, s4, s5 are obtained by contracting the sets {a, b}, {c, d, e}, {f, g, h, i}, {j, k}
and {l, m, n} which correspond to the strong components of D. The digraph D has
two initial components, D1, D2 with V (D1) = {a, b} and V (D2) = {c, d, e}. It has
one terminal component D5 with vertices V (D5) = {l, m, n} and two intermediate
components D3, D4 with vertices V (D3) = {f, g, h, i} and V (D4) = {j, k}.

Proof: The sufficiency is trivial. To see the necessity, observe that if
(V (Di), V (Di+1)) = ∅, then no vertex of V (Di+1) is reachable from any ver-
tex of V (Di) and vice versa. Finally, observe that if (V (Di), V (Di+1)) �= ∅
for every i ∈ [t − 1], then D1, D2, . . . , Dt is the unique acyclic ordering of
the strong components of D, because SC(D) has a hamiltonian path (see
Exercise 2.1). ��

1.6 Undirected Graphs, Biorientations and Orientations

An undirected graph (or a graph) G = (V, E) consists of a non-empty
finite set V = V (G) of elements called vertices and a finite set E = E(G) of
unordered pairs of distinct vertices called edges. We call V (G) the vertex
set and E(G) the edge set of G. In other words, an edge {x, y} is a 2-
element subset of V (G). We will often denote {x, y} just by xy. If xy ∈ E(G),
we say that the vertices x and y are adjacent. Notice that, in the above
definition of a graph, we do not allow loops (i.e., pairs consisting of the same
vertex) or parallel edges (i.e., multiple pairs with the same end-vertices). The
complement G of a graph G is the graph with vertex set V (G) in which
two vertices are adjacent if and only if they are not adjacent in G.

When parallel edges and loops are admissible we speak of pseudographs;
pseudographs with no loops are multigraphs. For a pair u, v of vertices in
a pseudograph G, μG(u, v) denotes the number of edges between u and v. In
particular, μG(u, u) is the number of loops at u.

1.6 Undirected Graphs, Biorientations and Orientations 19

A multigraph G is complete if every pair of distinct vertices in G are
adjacent. We will denote the complete graph on n vertices (which is unique
up to isomorphism) by Kn. Its complement Kn has no edge.

A multigraph H is p-partite if there exists a partition V1, V2, . . . , Vp of
V (H) into p partite sets (i.e., V (H) = V1 ∪ . . . ∪ Vp, Vi ∩ Vj = ∅ for every
i �= j) such that every edge of H has its end-vertices in different partite
sets. The special case of a p-partite graph when p = 2 is called a bipartite
graph. We often denote a bipartite graph B by B = (V1, V2; E). A p-partite
multigraph H is complete p-partite if, for every pair x ∈ Vi, y ∈ Vj (i �= j),
an edge xy is in H. A complete graph on n vertices is clearly a complete
n-partite graph for which every partite set is a singleton. We denote the
complete p-partite graph with partite sets of cardinalities n1, n2, . . . , np by
Kn1,n2,...,np . Complete p-partite graphs for p ≥ 2 are also called complete
multipartite graphs.

To obtain short proofs of various results on subdigraphs of a directed
multigraph D = (V, A) the following transformation to the class of bipartite
(undirected) multigraphs is extremely useful. Let BG(D) = (V ′, V ′′; E) de-
note the bipartite multigraph with partite sets V ′ = {v′ : v ∈ V }, V ′′ =
{v′′ : v ∈ V } such that μBG(D)(u′w′′) = μD(uw) for every pair u, w of ver-
tices in D. We call BG(D) the bipartite representation of D; see Figure
1.14.

1

2

3

4

1′

2′

3′

4′

5′

1′′

2′′

3′′

4′′

5′′

5

D BG(D)

Figure 1.14 A directed multigraph and its bipartite representation.

For a pseudograph G, a directed pseudograph D is called a biorientation
of G if D is obtained from G by replacing each edge {x, y} of G by either
xy or yx or the pair xy and yx (except for a loop xx which is replaced by a
(directed) loop at x). Note that different copies of the edge xy in G may be
replaced by different arcs in D. Thus if μG(x, y) = 3, then we may replace
one edge {x, y} by the arc xy, another by the arc yx and the third by the pair

20 1. Basic Terminology, Notation and Results

of arcs xy and yx. An orientation of a graph G is a biorientation of G which
is an oriented graph (i.e., digraph having no 2-cycle and no loops). Clearly,
every digraph is a biorientation and every oriented graph an orientation of
some undirected graph. The underlying graph UG(D) of a digraph D is
the unique graph G such that D is a biorientation of G. The underlying
multigraph UMG(D) of a directed multigraph D is a multigraph obtained
from D by replacing every arc xy with the edge {x, y}. For example, for
a digraph H with vertices u, v and arcs uv, vu, UG(H) has one edge and
UMG(H) has two parallel edges.

For a graph G, the complete biorientation of G (denoted by
↔
G) is a

biorientation D of G such that xy ∈ A(D) implies yx ∈ A(D). A digraph
D = (V, A) is symmetric if xy ∈ A implies yx ∈ A. Clearly, D is symmetric
if and only if D is the complete biorientation of some graph. An oriented
path (cycle) is an orientation of a path (cycle).

A pseudograph G is connected if its complete biorientation
↔
G is strongly

connected. Similarly, G is k-connected if
↔
G is k-strong. Strong components

in
↔
G are connected components, or just components in G. A bridge

in a connected pseudograph G is an edge whose deletion from G makes G
disconnected. A pseudograph G is k-edge-connected if the graph obtained
from G after deletion of at most k − 1 edges is connected. Clearly, a con-
nected pseudograph is bridgeless if and only if it is 2-edge-connected. The
neighbourhood NG(x) of a vertex x in G is the set of vertices adjacent to
x. The degree d(x) of a vertex x is the number of edges except loops having
x as an end-vertex. The minimum (maximum) degree of G is

δ(G) = min{d(x) : x ∈ V (G)} (Δ(G) = max{d(x) : x ∈ V (G)}).

We say that G is regular (or δ(G)-regular) if δ(G) = Δ(G). A pair of
graphs G and H is isomorphic if

↔
G and

↔
H are isomorphic.

A digraph is connected if its underlying graph is connected. The follow-
ing well-known theorem is due to Robbins.

Theorem 1.6.1 (Robbins’ theorem) [780] A connected graph G has a
strongly connected orientation if and only if G has no bridge.

Proof: Clearly, if G has a bridge, G has no strong orientation. So assume
that G is bridgeless. Then every edge uv is contained in some cycle (see
Exercise 1.21). Choose a cycle C in G. Orient C as a directed cycle T1.
Suppose that T1, T2, . . . , Tk are chosen and oriented in such a way that every
Ti+1 (1 ≤ i < k) is either a cycle having only one vertex in common with
T i = T1 ∪ T2 ∪ . . . ∪ Ti or a path with only initial and terminal vertices in
common with T i. If UG(T k) = G, then we are done as a simple induction
shows that T k is strong. Otherwise, there is an edge xy which is not in
UG(T k) such that x is in UG(T k). Let C be a cycle containing xy. Orient
C to obtain a (directed) cycle Z. Let z be a vertex in UG(T k) which is first

1.7 Trees and Euler Trails in Digraphs 21

encountered while traversing Z (after leaving x). Then, set Tk+1 = Z[x, z].
The path (or cycle) Tk+1 satisfies the above-mentioned properties. Since E(G)
is finite, after a certain number of iterations � ≤ m−1 we have UG(T �) = G.

��
The notions of walks, trails, paths and cycles in undirected pseudographs

are analogous to those for directed pseudographs (we merely disregard ori-
entations). An xy-path in an undirected pseudograph is a path whose end-
vertices are x and y. When we consider a digraph and its underlying graph
UG(D), we will often call walks of D directed (to distinguish between them
and those in UG(D)). In particular, we will speak of directed paths, cycles
and trails. An undirected graph is a forest if it has no cycle. A connected for-
est is a tree. It is easy to see (Exercise 1.24) that every connected undirected
graph has a spanning tree, i.e., a spanning subgraph, which is a tree.

A matching M in a directed (an undirected) pseudograph G is a set of
arcs (edges) with no common end-vertices. We also require that no element
of M is a loop. If M is a matching, then we say that the edges (arcs) of
M are independent. A matching M in G is maximum if M contains the
maximum possible number of edges. A maximum matching is perfect if it
has n/2 edges, where n is the order of G. A set Q of vertices in a directed
or undirected pseudograph H is independent if the graph H〈Q〉 has no
edges (arcs). The independence number, α(H), of H is the maximum
integer k such that H has an independent set of cardinality k. A (proper)
colouring of a directed or undirected graph H is a partition of V (H) into
(disjoint) independent sets. The minimum number, χ(H), of independent sets
in a proper colouring of H is the chromatic number of H.

In Section 1.3, the operation of composition of digraphs was introduced.
Considering complete biorientations of undirected graphs, one can easily de-
fine the operation of composition of undirected graphs. Let H be a graph
with vertex set {vi : i ∈ [n]}, and let G1, G2, . . . , Gn be graphs which are
pairwise vertex-disjoint. The composition H[G1, G2, . . . , Gn] is the graph L
with vertex set V (G1) ∪ V (G2) ∪ . . . ∪ V (Gn) and edge set

∪n
i=1E(Gi) ∪ {gigj : gi ∈ V (Gi), gj ∈ V (Gj), vivj ∈ E(H)}.

If none of the graphs G1, . . . , Gn in this definition of H[G1, . . . , Gn] have
edges, then H[G1, . . . , Gn] is an extension of H.

1.7 Trees and Euler Trails in Digraphs

A digraph D is an oriented forest (tree) if D is an orientation of a forest
(tree). A digraph T is an out-tree (an in-tree) if T is an oriented tree with
just one vertex s of in-degree zero (out-degree zero). The vertex s is the root
of T . If an out-tree (in-tree) T is a spanning subdigraph of D, T is called an
out-branching (an in-branching). (See Figure 1.15.) We will often use the

22 1. Basic Terminology, Notation and Results

notation B+
s (B−

s) to denote an out-branching (in-branching) rooted at s in
the digraph in question.

D H L

r

s

Figure 1.15 The digraph D has an out-branching with root r (shown in bold);
H contains an in-branching with root s (shown in bold); L possesses neither an
out-branching nor an in-branching.

Since each spanning oriented tree R of a connected digraph is acyclic as
an undirected graph, R has at least one vertex of out-degree zero and at
least one vertex of in-degree zero (see Proposition 2.1.1). Hence, the out-
branchings and in-branchings capture the important cases of uniqueness of
the corresponding vertices. The following is a characterization of digraphs
with in-branchings (out-branchings).

Proposition 1.7.1 A connected digraph D contains an out-branching (in-
branching) if and only if D has only one initial (terminal) strong component.

Proof: We prove this characterization only for out-branchings since the sec-
ond claim follows from the first one by considering the converse of D.

Assume that D contains at least two initial strong components and sup-
pose that D has an out-branching T . Observe that the root r of T is an initial
strong component of D. Let x be a vertex in another initial strong component
of D. Since r is the root of T , there is a path from r to x in T and, thus, in
D, which is a contradiction to the assumption that r and x are in different
initial strong components of D.

Now we assume that D contains only one initial strong component D1,
and r is an arbitrary vertex of D1. We prove that D has an out-branching
rooted at r. In SC(D), the vertex x corresponding to D1 is the only vertex
of in-degree zero and, hence, by Proposition 2.1.2, every vertex of SC(D) is
reachable from x. Thus, every vertex of D is reachable from r. We construct
an oriented tree T as follows. In the first step T consists of r. In Step i ≥ 2,
for every vertex y appended to T in the previous step, we add to T a vertex
z, such that y→z and z �∈ V (T), together with the arc yz. We stop when no
vertex can be included in T . Since every vertex of D is reachable from r, T
is spanning. Clearly, r is the only vertex of in-degree zero in T . Hence, T is
an out-branching. ��

1.7 Trees and Euler Trails in Digraphs 23

The oriented tree T constructed in the proof of Proposition 1.7.1 is a
so-called BFS tree of D (see Chapter 3).

We formulate and prove the following well-known characterization of eu-
lerian directed multigraphs (clearly, the deletion of loops in a directed pseu-
dograph D does not change the property of D of being eulerian or otherwise).
The ‘undirected’ version of this theorem marks the beginning of graph theory
[303] (see the book [320] by Fleischner for a reprint of Euler’s original paper
and a translation into English, and see the book [160] by Biggs, Lloyd and
Wilson or Wilson’s paper [904] for a discussion of the historical record).

Theorem 1.7.2 (Euler’s theorem2) A directed multigraph D is eulerian
if and only if D is connected and d+(x) = d−(x) for every vertex x in D.

Proof: Clearly, both conditions are necessary. We give a constructive proof
of sufficiency by building an Euler trail T . Let T be initially empty and we
may assume that D has at least two vertices. Choose an arbitrary vertex x
in D. Since D is connected, there is a vertex y ∈ N+(x). Append x to T
as well as an arc from x to y. Since d−(y) = d+(y), there is an arc yz with
tail y. Add both y and yz to T . We proceed similarly: after an arc uv is
included in T , we append v to T together with an arc a /∈ T whose tail is v.
Due to the condition d+(w) = d−(w) for every vertex w, the above process
can terminate only if the last arc appended to T is an arc whose head is the
vertex x and the arcs of D with tail x are already in T . If all arcs of D are in
T , we are done. Assume it is not so. Since D is connected, this means that
T contains a vertex p which is a tail of an arc pq not in T . ‘Shift’ cyclically
the vertices and arcs of T such that T starts and terminates at p. Add the
arc pq to T and apply the process described above. This can terminate only
when the last appended arc’s tail is p and all arcs leaving p are already in T .
Again, either we are done (all arcs are already in T) or we can find a new
vertex to restart the above process. Since V (D) is finite, after several steps
all arcs of D will be included in T . ��

The algorithm described in this proof can be implemented to run in
O(|V (D)| + |A(D)|) time (see Exercise 18.3). A generalization of the last
theorem is given in Theorem 16.2.1. For eulerian directed multigraphs, the
following stronger condition on out-degrees and in-degrees holds.

Corollary 1.7.3 Let D be an eulerian directed multigraph and let ∅ �= W ⊂
V (D). Then, d+(W) = d−(W).

Proof: Observe that
∑

w∈W

d+(w) = |(W, W)|+ d+(W),
∑

w∈W

d−(w) = |(W, W)|+ d−(W). (1.1)

2 Euler’s original paper [303] only dealt with undirected graphs, but it is easy to
see that the directed case generalizes the undirected case (see also Exercise 1.27).

24 1. Basic Terminology, Notation and Results

By Theorem 1.7.2,
∑

w∈W d+(w) =
∑

w∈W d−(w). The corollary follows from
this equality and (1.1). ��

1.8 Mixed Graphs, Orientations of Digraphs, and
Hypergraphs

Mixed graphs are useful by themselves as a common generalization of undi-
rected and directed graphs. Moreover, mixed graphs are helpful in several
proofs on biorientations of graphs.

A mixed graph M = (V, A, E) contains both arcs (ordered pairs of
vertices in A) and edges (unordered pairs of vertices in E). We do not allow
loops or parallel arcs and edges, but M may have an edge and an arc with the
same end-vertices. For simplicity, both edges and arcs of a mixed graph are
called edges. Thus, an arc is viewed as an oriented edge (and an unoriented
edge as an edge in the usual sense). A biorientation of a mixed graph
M = (V, A, E) is obtained from M by replacing every unoriented edge xy
of E by the arc xy, the arc yx or the pair xy, yx of arcs. If no unoriented
edge is replaced by a pair of arcs, we speak of an orientation of a mixed
graph3. The complete biorientation of a mixed graph M = (V, A, E) is a
biorientation

↔
M of M such that every unoriented edge xy ∈ E is replaced

in
↔
M by the pair xy, yx of arcs. Using the complete biorientation of a mixed

graph M , one can easily give the definitions of a walk, trail, path and cycle
in M . The only extra condition is that every pair of arcs in

↔
M obtained in

replacement of an edge in M has to be treated as two appearances of one
thing. For example, if one of the arcs in such a pair appears in a trail T , then
the second one cannot be in T . A mixed graph M is strong if

↔
M is strong.

Similarly, one can give the definition of strong components. A mixed graph
M is connected if

↔
M is connected. An edge � in a connected mixed graph

M is a bridge if M − � is not connected.
Figure 1.16 illustrates the notion of a mixed graph. The mixed graph

M depicted in Figure 1.16 is strong; u, (u, v), v, {v, u}, u is a cycle in M ;
M − x has two strong components: one consists of the vertex y, the other is
M ′ = M〈{u, v, w}〉; the edge {v, w} is a bridge in M ′, the arc (u, v) and the
edge {u, v} are not bridges in M ′; M is bridgeless.

Theorem 1.8.1 below is due to Boesch and Tindell [162]. This result is
an extension of Theorem 1.6.1. We give a short proof obtained by Volkmann
[889]. (Another proof which leads to a linear time algorithm is obtained by
Chung, Garey and Tarjan [218].)

3 Note that a mixed graph M = (V, A, E) may have a directed 2-cycle in which
case no orientation of M is an oriented graph (because some 2-cycles remain).

1.8 Mixed Graphs, Orientations of Digraphs, and Hypergraphs 25

u

v w

x

y

Figure 1.16 A mixed graph.

Theorem 1.8.1 Let e be an unoriented edge in a strong mixed graph M .
The edge e can be replaced by an arc (with the same end-vertices) such that
the resulting mixed graph M ′ is strong if and only if e is not a bridge.

Proof: If e is a bridge, then clearly there is no orientation of e that results
in a strong mixed graph. Assume that e is not a bridge. Let M ′ = M − e.
If M ′ is strong, then any orientation of e leads to a strong mixed graph;
thus, assume that M ′ is not strong. Since e is not a bridge, M ′ is connected.
Let L1, L2, . . . , Lk be strong components of M ′. Since M is strong, there
is only one initial strong component, say L1, and only one terminal strong
component, say Lk. Let u (v) be the end-vertex of e belonging to L1 (Lk).
By strong connectivity of L1, L2, . . . , Lk and Proposition 2.1.2 (applied to

the strong component digraph of
↔
M ′), M ′ + (v, u) is strong. ��

An orientation of a digraph D is a subdigraph of D obtained from D
by deleting exactly one arc between x and y for every pair x �= y of vertices
such that both xy and yx are in D. See Figure 1.17 for an illustration of this
definition.

D H H ′ H ′′

Figure 1.17 A digraph D and subdigraphs H, H ′ and H ′′ of D. The digraph H is
an orientation of D but neither of H ′, H ′′ is an orientation of D.

26 1. Basic Terminology, Notation and Results

Since we may transform a digraph to a mixed graph by replacing every
2-cycle with an undirected edge, we obtain the following reformulation of
Theorem 1.8.1.

Corollary 1.8.2 A strong digraph D has a strong orientation if and only if
UG(D) has no bridge. ��

A hypergraph is an ordered set H = (V, E) such that V is a set (of
vertices of H) and E is a family of subsets of V (called edges of H).
The rank of H is the cardinality of the largest edge of H. For example,
H0 = ({1, 2, 3, 4}, {{1, 2, 3}, {2, 3}, {1, 2, 4}}) is a hypergraph. The rank of
H0 is three. The number of vertices in H is its order. We say that H is
2-colourable if there is a function f : V→{0, 1} such that, for every edge
E ∈ E , there exist a pair of vertices x, y ∈ E such that f(x) �= f(y). The
function f is called a 2-colouring of H. It is easy to verify that H0 is 2-
colourable. In particular, f(1) = f(2) = 0, f(3) = f(4) = 1 is a 2-colouring
of H0. A hypergraph is uniform if all its edges have the same cardinality.
Thus an undirected graph is a 2-uniform hypergraph.

1.9 Depth-First Search

In this section we will introduce a simple, yet very important, technique in
algorithmic graph theory called depth-first search. While depth-first search
(DFS) has certain similarities with BFS (see Section 3.3.1), DFS and BFS
are quite different procedures, each with its own features.

Let D = (V, A) be a digraph. In DFS, we start from an arbitrary vertex of
D. At every stage of DFS, we visit some vertex x of D. If x has an unvisited
out-neighbour y, we visit the vertex y4. We call the arc xy a tree arc. If x has
no unvisited out-neighbour, we call x explored and return to the predecessor
pred(x) of x (the vertex from which we have moved to x) . If x does not have
a predecessor, we find an unvisited vertex to ‘restart’ the above procedure.
If such a vertex does not exist, we stop.

In our formal description of DFS, each vertex x of D gets two time-stamps:
tvisit(x) once x is visited and texpl(x) once x is declared explored.

DFS
Input: A digraph D = (V, A).
Output: pred(v), tvisit(v) and texpl(v) for every v ∈ V.

1. For each v ∈ V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. Set time := 0.
3. For each vertex v ∈ V do: if tvisit(v) = 0 then perform DFS-PROC(v).

4 If x has more than one unvisited out-neighbour, we choose y as an arbitrary
unvisited out-neighbour.

1.9 Depth-First Search 27

DFS-PROC(v)

1. Set time := time + 1, tvisit(v) := time.
2. For each u ∈ N+(v) do: if tvisit(u) = 0 then pred(u) := v and perform

DFS-PROC(u).
3. Set time := time + 1, texpl(v) := time.

Clearly, the main body of the algorithm takes O(n) time. The total time
for executing the different calls of the procedure DFS-PROC is O(m) (as∑

x∈V d+(x) = m by Proposition 1.2.1). As a result, the time complexity of
DFS is O(n + m).

Since each component of UG(F) is a tree, F is a forest. We call F a DFS
forest; a tree in F is a DFS tree; the root of a DFS tree is some vertex
v used in Step 3 of the main body of DFS to initiate DFS-PROC. Clearly,
the root r of a DFS tree T is the only vertex of T whose in-degree is zero.
According to the above description of DFS every vertex in T can be reached
from r by a path (hence T is an out-branching rooted at r in the subdigraph
induced by V (T)). We say that a vertex x in T is a descendant of another
vertex y in T (denoted by x � y) if y lies on the (r, x)-path in T . In this case,
y is an ancestor of x. Note that in general there may be many different DFS
forests for a given digraph D.

It is convenient to classify the non-tree arcs of a digraph D = (V, A) with
respect to a given DFS forest of D as follows. An arc xy is a forward arc
if y is a descendant of x; xy is a backward arc if y is an ancestor of x. All
other non-tree arcs are called cross arcs.

We illustrate the DFS algorithm and the above classification of arcs in
Figure 1.18. The tree arcs are in bold. The non-tree arcs are labelled B,C
or F depending on whether they are backward, cross or forward arcs. Every
vertex u is time-stamped by tvisit(u)/texpl(u) if one or both of them have
been changed from the initial value of zero.

Observe that, for every vertex v ∈ V , we have tvisit(v) < texpl(v). There
is no pair u, v of vertices such that tvisit(u) = tvisit(v) or tvisit(u) = texpl(v)
or texpl(u) = texpl(v) due to the fact that before assigning any time to
tvisit(. . .) or texpl(. . .) the value of time is increased. We consider some
additional simple properties of DFS. We denote the interval from time t to
time t′ > t by [t, t′] and write I ⊆ I ′ if the interval I is contained in the
interval I ′.

Proposition 1.9.1 Let D = (V, A) and let the numbers tvisit(v), texpl(v),
v ∈ V , be calculated using DFS. For every pair of vertices u and v, one of
the assertions below holds:

(1) The intervals [tvisit(u), texpl(u)] and [tvisit(v), texpl(v)] are disjoint;
(2) [tvisit(u), texpl(u)] ⊆ [tvisit(v), texpl(v)];
(3) [tvisit(v), texpl(v)] ⊆ [tvisit(u), texpl(u)].

28 1. Basic Terminology, Notation and Results

1/

v w

y

z

s

q

x

1/

1/

v

vv

v

w

ww

x

xx

x

y

y y

y

z

zz

w z

s

ss

s

q

q

q

2/

4/ 3/

2/7

4/5 3/6

1/8 2/7

4/5 3/6

9/

10/

1/8 2/7 9/14

4/5 3/6 10/13

11/12

(a) time = 1 (b) time = 4

(c) time = 7 (d) time = 10

(e) time = 14

B
F

B C

F B C

B

Figure 1.18 Some steps of DFS on a digraph starting from the vertex v.

Proof: Without loss of generality, we may assume that tvisit(u) < tvisit(v).
If texpl(u) < tvisit(v), then the first assertion is valid. So, assume that
texpl(u) > tvisit(v). This means that v was visited when u has been al-
ready visited but u was not explored yet. Thus, there is a directed path from
u to v in the DFS forest, implying that v � u. Since u cannot become ex-
plored when v is still unexplored, texpl(v) < texpl(u). This implies the third
assertion. ��

This proposition implies immediately the following.

Corollary 1.9.2 For a pair x, y of distinct vertices of D, we have y � x if
and only if tvisit(x) < tvisit(y) < texpl(y) < texpl(x). ��

Proposition 1.9.3 Let F be a DFS forest of a digraph D = (V, A) and let
x, y be vertices in the same DFS tree T of F . Then y � x if and only if,
at the time tvisit(x), the vertex y can be reached from x along a path all of
whose internal vertices are unvisited.

Proof: Assume that y � x. Let z be an internal vertex of the (x, y)-path in
T . Thus, z � x. By Corollary 1.9.2, tvisit(x) < tvisit(z). Hence, z is unvisited
at time tvisit(x).

Suppose that y is reachable from x along a path P of unvisited vertices
at time tvisit(x), but y �� x. We may assume that z = y−

P (the predecessor

1.10 Exercises 29

of y on P) is a descendant of x in T , that is, z � x holds. By Corollary 1.9.2,
texpl(z) < texpl(x). Since y is an out-neighbour of z, y is visited before z is
explored. Hence, tvisit(y) < texpl(z). Clearly, tvisit(x) < tvisit(y). Therefore,
tvisit(x) < tvisit(y) < texpl(x). By Proposition 1.9.1, it means that the
interval [tvisit(y), texpl(y)] is contained in the interval [tvisit(x), texpl(x)].
By Corollary 1.9.2, we conclude that y � x; a contradiction. ��

1.10 Exercises

1.1. Let X and Y be finite sets. Show that |X ∪ Y |+ |X ∩ Y | = |X|+ |Y |.

1.2. Let X and Y be finite sets. Show that |X ∪ Y |2 + |X ∩ Y |2 ≥ |X|2 + |Y |2.

1.3. (−) Prove that every tournament on n ≥ 2k + 2 vertices has a vertex of
out-degree at least k + 1.

1.4. (−) Transitivity of paths. Let D be a digraph and let x, y, z be vertices
in D, x �= z. Prove that if D has an (x, y)-path and a (y, z)-path, then it
contains an (x, z)-path as well.

1.5. (−) Decomposing a closed walk into cycles. Prove that every closed
walk can be decomposed into a collection of (not necessarily disjoint) cycles.

1.6. Open walk decomposition. Prove that every open walk can be decom-
posed into a path and some cycles (not necessarily disjoint).

1.7. (−) Prove that if the in-degree of every vertex in a digraph D is positive,
then D has a cycle.

1.8. (−) Show that every digraph D contains a path of length at least δ0(D).

1.9. Prove Proposition 1.4.3.

1.10. Show that a digraph D has a cycle factor if and only if its bipartite repre-
sentation BG(D) contains a perfect matching.

1.11. Prove Proposition 1.4.3.

1.12. Show that every oriented graph D on n vertices and with δ0(D) ≥ �(n−1)/4	
is strong. Show that this is best possible in terms of δ0(D).

1.13. Let T = (V, A) be a tournament such that every vertex is on a cycle. Prove
that for every a ∈ A the digraph T − a is unilateral.

1.14. Prove that if a tournament T has a cycle, then it has two hamiltonian paths.

1.15. Let G be an undirected graph. Prove that either G or its complement G is
connected.

30 1. Basic Terminology, Notation and Results

1.16. Prove that every strong tournament T on at least four vertices has two dis-
tinct vertices x, y such that T − x and T − y are both strong.

1.17. Strong connectivity is equivalent to cyclic connectivity in digraphs.
A digraph is cyclically connected if for every pair x, y of distinct vertices
of D there is a sequence of cycles C1, . . . , Ck such that x is in C1, y is in Ck

and Ci and Ci+1 have at least one common vertex for every i ∈ [k−1]. Prove
that a digraph D is strong if and only if it is cyclically connected.

1.18. Prove that a connected digraph is strong if and only if every arc is contained
in a cycle. Hint: use the result of Exercise 1.17.

1.19. (+) Preserving cycle subdigraphs. Let D be a strong digraph with the
property that, for every pair x, y of vertices, the deletion of all arcs between
x and y results in a connected digraph. Let F = C1 ∪ C2 ∪ . . . ∪ Ct be a
cycle subdigraph in D such that every cycle Ci has length at least three.
Prove that D has a strong spanning oriented subgraph containing F . Hint:
use Corollary 1.8.2 (Volkmann [889]).

1.20. Prove that the number of vertices of odd degree in an undirected graph is
even.

1.21. Prove that every edge of a 2-edge-connected graph belongs to a cycle.

1.22. (−) Prove that an undirected tree of order n has n− 1 edges.

1.23. Prove that every undirected tree has a vertex of degree one.

1.24. Prove that every connected undirected graph G has a spanning tree.

1.25. Using the results of the last two exercises, prove that every connected undi-
rected graph G has a vertex x such that G− x is connected.

1.26. An undirected multigraph G is eulerian if it contains a closed trail T such
that E(T) = E(G). Prove without using Theorem 1.7.2 that G is eulerian if
and only if G is connected and d(x) is even for every vertex x of G.

1.27. Almost balanced orientation. Prove that every undirected graph G =
(V, E) has an orientation D = (V, A) such that |d+

D(v) − d−
D(v)| ≤ 1 for all

v ∈ V . Hint: use Exercises 1.20 and 1.26.

1.28. Let G = (V, E) be an eulerian graph. Using Exercise 1.26 and Corollary 1.7.3,
prove that d(W) is even for every proper subset W of V .

1.29. Prove that a digraph is strong if and only if it has a Hamilton closed walk.

1.30. Prove that every strong digraph H has an extension D = H[Kn1 , . . . , Knh],
h = |V (H)|, such that D is hamiltonian. Hint: consider a hamiltonian closed
walk in H.

1.31. A transitive triple in a digraph D is a set of three vertices x, y, z such that
xy, xz and yz are arcs of D. Prove that if a 2-strong digraph D contains a
transitive triple, then D has two cycles whose length differ by one.

1.32. Let D = �Cr[Kn1 , . . . , Knr] be an extension of a cycle. Prove that κ(D) =
min{ni : i ∈ [r]}.

2. Classes of Digraphs

In this chapter we introduce several classes of digraphs. We study these classes
with respect to their properties, characterization, recognition and decompo-
sition. Further properties of the classes are studied in the following chapters
of this book.

In Section 2.1 we study basic properties of acyclic digraphs. Acyclic di-
graphs form a very important family of digraphs and the reader will often
encounter them in this book. Multipartite digraphs and extended digraphs are
introduced in Section 2.2. These digraphs are studied in many other sections
of our book. In Section 2.3, we introduce and study the transitive closure and
a transitive reduction of a digraph. We use the notion of transitive reduction
already in Section 2.6.

Several characterizations and a recognition algorithm for line digraphs are
given in Section 2.4. We investigate basic properties of de Bruijn and Kautz
digraphs and their generalizations in Section 2.5. These digraphs are extreme
or almost extreme with respect to their diameter and vertex-strong connectiv-
ity. Series-parallel digraphs are introduced and studied in Section 2.6. These
digraphs are of interest due to various applications such as scheduling. In the
study of series-parallel digraphs we use notions and results of Sections 2.3
and 2.4.

An interesting generalization of transitive digraphs, the class of quasi-
transitive digraphs, is considered in Section 2.7. The path-merging property
of digraphs which is quite important for investigation of some classes of di-
graphs including tournaments is introduced and studied in Section 2.8. Two
classes of path-mergeable digraphs, locally in-semicomplete and locally out-
semicomplete digraphs, both generalizing the class of tournaments, are de-
fined and investigated with respect to their basic properties in Section 2.9.
The intersection of these two classes forms the class of locally semicomplete
digraphs, which are studied in Section 2.10. There we give a very useful clas-
sification of locally semicomplete digraphs, which is applied in several proofs
in other chapters. A characterization of a special subclass of locally semicom-
plete digraphs, called round digraphs, is also proved.

In Section 2.11, we study three classes of totally decomposable digraphs
forming important generalizations of quasi-transitive digraphs as well as some
other classes of digraphs. The aim of Section 2.11 is to investigate recognition

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 2,
© Springer-Verlag London Limited 2010

31

http://dx.doi.org/10.1007/978-1-84800-998-1_2

32 2. Classes of Digraphs

of these three classes. Planar digraphs are discussed in Section 2.12. Digraphs
of restricted tree-width are considered in Section 2.13. We show the useful-
ness of this class of graphs in designing polynomial algorithms and proving
fixed-parameter tractability for some problems on digraphs. In Section 2.13,
we also introduce and study directed tree-width, directed path-width and
DAG-width. The last section is devoted to digraphs of three classes: circu-
lant digraphs, arc-locally semicomplete digraphs and intersection digraphs.

2.1 Acyclic Digraphs

A digraph D is acyclic if it has no cycle. Acyclic digraphs form a well-
studied family of digraphs of great interest in graph theory, algorithms and
applications (see, e.g., Sections 2.3, 2.6, 3.3.2, 7.3, 10.4, 10.7, 17.2, 17.11,
17.15).

Recall that a vertex x in a digraph is sink (source) if d+(x) = 0 (d−(x) =
0).

Proposition 2.1.1 Every acyclic digraph has a source and a sink.

Proof: Let D be a digraph in which all vertices have positive out-degrees.
We show that D has a cycle. Choose a vertex v1 in D. Since d+(v1) > 0, there
is a vertex v2 such that v1→v2. As d+(v2) > 0, v2 dominates some vertex v3.
Proceeding in this manner, we obtain walks of the form v1v2 . . . vk. As V (D)
is finite, there exists the least k > 2 such that vk = vi for some 1 ≤ i < k.
Clearly, vivi+1 . . . vk is a cycle.

Thus, an acyclic digraph D has a sink. Since the converse H of D is also
acyclic, H has a sink v. Clearly, v has a source in D. ��

Proposition 2.1.1 allows one to check whether a digraph D is acyclic: if D
has a vertex of out-degree zero, then delete this vertex from D and consider
the resulting digraph; otherwise, D contains a cycle. In the end of this section,
we give another algorithm for verifying whether a digraph is acyclic.

Proposition 2.1.2 Let D be an acyclic digraph with precisely one source x
and one sink y in D. Then for every vertex v ∈ V (D) there is an (x, v)-path
and a (v, y)-path in D.

Proof: A longest path starting at v (terminating at v) is certainly a (v, y)-
path (an (x, v)-path). ��

Let D be a digraph and let x1, x2, . . . , xn be an ordering of its vertices.
We call this ordering an acyclic ordering1 if, for every arc xixj in D, we

1 Notice that in a majority of the literature an acyclic ordering is called a topo-
logical sorting. We feel that the name acyclic ordering is more appropriate, since
no topology is involved.

2.1 Acyclic Digraphs 33

have i < j. Clearly, an acyclic ordering of D induces an acyclic ordering of
every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph
with a cycle has an acyclic ordering. On the other hand, the following holds:

Proposition 2.1.3 Every acyclic digraph has an acyclic ordering of its ver-
tices.

Proof: We give a constructive proof by describing a procedure that generates
an acyclic ordering of the vertices in an acyclic digraph D. At the first step,
we choose a vertex v with in-degree zero. (Such a vertex exists by Proposition
2.1.1.) Set x1 = v and delete x1 from D. At the ith step, we find a vertex u
of in-degree zero in the remaining acyclic digraph, set xi = u and delete xi

from the remaining acyclic digraph. The procedure has |V (D)| steps.
Suppose that xi→xj in D, but i > j. As xj was chosen before xi, it

means that xj was not of in-degree zero at the jth step of the procedure; a
contradiction. ��

Knuth [602] was the first to give a linear time algorithm for finding an
acyclic ordering. Now we will show how to find an acyclic ordering in linear
time using DFS described in the previous chapter. Below we assume that the
input to the DFS algorithm is an acyclic digraph D = (V, A). In the formal
description of DFS let us add the following: i := n + 1 in line 2 of the main
body of DFS and i := i−1, vi := v in the last line of DFS-PROC. We obtain
the following algorithm which we denote by DFSA:

DFSA(D)
Input: A digraph D = (V, A).
Output: An acyclic ordering v1, . . . , vn of D.

1. For each v ∈ V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. Set time := 0, i := n + 1.
3. For each vertex v ∈ V do: if tvisit(v) = 0 then perform DFSA-PROC(v).

DFSA-PROC(v)

1. Set time := time + 1, tvisit(v) := time.
2. For each u ∈ N+(v) do: if tvisit(u) = 0 then pred(u) := v and perform

DFSA-PROC(u).
3. Set time := time + 1, texpl(v) := time, i := i− 1, vi := v.

Theorem 2.1.4 The algorithm DFSA correctly determines an acyclic order-
ing of any acyclic digraph in time O(n + m).

Proof: Since the algorithm is clearly linear (as DFS is linear), it suffices to
show that the ordering v1, v2, . . . , vn is acyclic. Observe that according to our
algorithm

texpl(vi) > texpl(vj) if and only if i < j. (2.1)

34 2. Classes of Digraphs

Assume that D has an arc vkvs such that k > s. Hence, texpl(vs) > texpl(vk).
The arc vkvs is not a cross arc, because if it were, then by Proposition 1.9.1
and Corollary 1.9.2, the intervals for vk and vs would not intersect, i.e., vk

would be visited and explored before vs would be visited; this and (2.1) make
the existence of vkvs impossible. The arc vkvs is not a forward arc, because if
it were, texpl(vs) would be smaller than texpl(vk). Therefore, vkvs must be
a backward arc, i.e., vk � vs. Thus, there is a (vs, vk)-path in D. This path
and the arc vkvs form a cycle, a contradiction. ��

Figure 2.1 illustrates the result of applying DFSA to an acyclic digraph.
The resulting acyclic ordering is z, w, u, y, x, v.

x

y

z

u

v

w

1/4

5/6

7/12 2/3

10/118/9

Figure 2.1 The result of applying DFSA to an acyclic digraph.

In Section 5.2 we apply DFSA to an arbitrary not necessarily acyclic
digraph and see that the ordering v1, v2, . . . , vn obtained by DFSA is very
useful to determine the strong components of a digraph. DFSA allows us to
check, in time O(n + m), whether a digraph D is acyclic: we run DFSA and
then verify whether the obtained ordering of the vertices is acyclic. Thus, we
have the following:

Proposition 2.1.5 One can check whether a digraph is acyclic in time O(n+
m). ��

2.2 Multipartite Digraphs and Extended Digraphs

A p-partite digraph is a biorientation of a p-partite graph; see Figure
2.2(b). Bipartite (i.e., 2-partite) digraphs are of special interest. It is well-
known (and was proved already by König [618]) that an undirected graph is
bipartite if and only if it has no cycle of odd length. The obvious extension
of this statement to cycles in digraphs is not valid (the non-bipartite digraph

2.2 Multipartite Digraphs and Extended Digraphs 35

with vertex set {x, y, z} and arc set {xy, xz, yz} is such an example that can
easily be generalized). However, the obvious extension does hold for strong
bipartite digraphs. Theorem 2.2.1 can be traced back to the book [503] by
Harary, Norman and Cartwright.

Theorem 2.2.1 A strongly connected digraph is bipartite if and only if it
has no cycle of odd length.

Proof: If D is bipartite, then it is easy to see that D cannot have an odd
cycle. To prove sufficiency suppose that D has no odd cycle. Fix an arbitrary
vertex x in D. We claim that for every vertex y ∈ V (D)−x and every choice
of an (x, y)-path P and a (y, x)-path Q, the length of P and Q are equal
modulo 2.

Suppose this is not the case for some choice of y, P and Q. Then choose y,
P and Q such that the parity of the lengths of P and Q differ and |V (P)|+
|V (Q)| is minimum among all such pairs of (x, y)- and (y, x)-paths whose
lengths differ in parity. If V (P) ∩ V (Q) = {x, y}, then PQ is an odd cycle,
contradicting the assumption. Hence there is a vertex z /∈ {x, y} in V (P) ∩
V (Q). Let z be chosen as the first such vertex that we meet when we traverse
Q from y towards x. Then P [z, y]Q[y+

Q, z] is a cycle and it is even by our
assumption. But now it is easy to see that the parity of the paths P [x, z]
and Q[z, x] are different and we get a contradiction to the choice of y, P
and Q. This proves the claim and, in particular, it follows that for every
y ∈ V (D) − x, the lengths of all paths from x to y have the same parity.

Now let U = {y : the length of every (x, y)-path is even} and U ′ = {y :
the length of every (x, y)-path is odd}. This is a bipartition of V (D) and

neither U nor U ′ contains two vertices which are joined by an arc, since that
would imply that some vertex had paths of two different parities from x. ��

An extension of this theorem to digraphs whose cycles are all of length 0
modulo k ≥ 2 is given in Theorem 17.8.1.

Recall that tournaments are orientations of complete graphs. Recall that
a semicomplete digraph is a biorientation of a complete graph (see Figure
2.2(a)) and a tournament is an orientation of a complete digraph. The
complete biorientation of a complete graph is a complete digraph (denoted
by

↔
Kn). The notion of semicomplete digraphs and their special subclass,

tournaments, can be extended in various ways. A biorientation of a complete
p-partite (multipartite) graph is a semicomplete p-partite (multipartite)
digraph; see Figure 2.2(c). A multipartite tournament is an orientation
of a complete multipartite graph. A semicomplete 2-partite digraph is also
called a semicomplete bipartite digraph. A bipartite tournament is a
semicomplete bipartite digraph with no 2-cycles.

One can use the operation of extension introduced in Section 1.3 to de-
fine ‘extensions’ of the above classes of digraphs. We will speak of extended
semicomplete digraphs (i.e., extensions of semicomplete digraphs), ex-
tended locally in-semicomplete digraphs, extended locally semi-

36 2. Classes of Digraphs

(a) K4 and a semicomplete digraph of order four.

(b) A 3-partite graph G and a biorientation of G.

(c) The complete 3-partite graph K2,1,2 and
a semicomplete 3-partite digraph D.

Figure 2.2 Multipartite digraphs.

complete digraphs, etc. Clearly, every extended semicomplete digraph is
a semicomplete multipartite digraph, which is not necessarily semicomplete,
and every extended semicomplete multipartite digraph is still a semicom-
plete multipartite digraph. Therefore, the class of semicomplete multipartite
digraphs is extension-closed, and the class of semicomplete digraphs is not.

2.3 Transitive Digraphs, Transitive Closures and
Reductions

A digraph D is transitive if, for every pair xy and yz of arcs in D with
x �= z, the arc xz is also in D. Transitive digraphs form the underlying

2.3 Transitive Digraphs, Transitive Closures and Reductions 37

graph-theoretical model in a number of applications. For example, transitive
oriented graphs correspond very naturally to partial orders (see Section 13.5
for some terminology on partial orders, the correspondence between transitive
oriented graphs and partial orders and some basic results). The aim of this
section is to give a brief overview of some properties of transitive digraphs as
well as transitive closures and reductions of digraphs.

It is easy to show that a tournament is transitive if and only it is acyclic
(see Exercise 2.3) and a strong digraph D is transitive if and only if D is com-
plete2. We have the following simple characterization of transitive digraphs;
its proof is left as Exercise 2.4.

Proposition 2.3.1 Let D be a digraph with an acyclic ordering D1, D2, . . . ,
Dp of its strong components. The digraph D is transitive if and only if each of
Di is complete, the digraph H obtained from D by contraction of D1, . . . , Dp

followed by deletion of multiple arcs is a transitive oriented graph, and D =
H[D1, D2, . . . , Dp], where p = |V (H)|. ��

The transitive closure TC(D) of a digraph D is a digraph with
V (TC(D)) = V (D) and, for distinct vertices u, v, the arc uv ∈ A(TC(D))
if and only if D has a (u, v)-path. Clearly, if D is strong, then TC(D) is
a complete digraph. The uniqueness of the transitive closure of an arbitrary
digraph is obvious. To compute the transitive closure of a digraph one can ob-
viously apply the Floyd-Warshall algorithm in Chapter 3. To obtain a faster
algorithm for the problem one can use the fact discovered by a number of re-
searchers (see, e.g., the paper [318] by Fisher and Meyer, or [370] by Furman)
that the transitive closure problem and the matrix multiplication problem
are closely related: there exists an O(na)-algorithm, with a ≥ 2, to compute
the transitive closure of a digraph of order n if and only if the product of
two boolean n × n matrices can be computed in O(na) time. Coppersmith
and Winograd [230] showed that there exists an O(n2.376)-algorithm for the
matrix multiplication. Goralcikova and Koubek [423] designed an O(nmred)-
algorithm to find the transitive closure of an acyclic digraph D with n vertices
and mred arcs in the transitive reduction of D (the notion of transitive re-
duction is introduced below). This algorithm was also studied and improved
by Mehlhorn [691] and Simon [820].

An arc uv in a digraph D is redundant if there is a (u, v)-path in D
which does not contain the arc uv. A transitive reduction of a digraph
D is a spanning subdigraph H of D with no redundant arc such that the
transitive closures of D and H coincide. Not every digraph D has a unique
transitive reduction. Indeed, if D has a pair of hamiltonian cycles, then each
of these cycles is a transitive reduction of D. Below we show that a transitive
reduction of an acyclic digraph is unique, i.e., we may speak of the transitive
2 By the definition of a transitive digraph, a 2-cycle xyx does not force a loop at

x and y.

38 2. Classes of Digraphs

reduction of an acyclic digraph. The intersection of digraphs D1, . . . , Dk

with the same vertex set V is the digraph H with vertex set V and arc set
A(D1) ∩ . . . ∩ A(Dk). Similarly one can define the union of digraphs with
the same vertex sets (see Section 1.3). Let S(D) be the set of all spanning
subdigraphs L of D for which TC(L) = TC(D).

Theorem 2.3.2 [10] For an acyclic digraph D, there exists a unique digraph
D′ with the property that TC(D′) = TC(D) and every proper subdigraph H of
D′ satisfies TC(H) �= TC(D′). The digraph D′ is the intersection of digraphs
in S(D).

The proof of this theorem, which is due to Aho, Garey and Ullman, follows
from Lemmas 2.3.3 and 2.3.4.

Lemma 2.3.3 Let D and H be a pair of acyclic digraphs on the same vertex
set such that TC(D) = TC(H) and A(D) − A(H) �= ∅. Then, for every
e ∈ A(D) −A(H), we have TC(D − e) = TC(D).

Proof: Let e = xy ∈ A(D)−A(H). Since e �∈ A(H), H must have an (x, y)-
path passing through some other vertex, say z. Hence, D has an (x, z)-path
Pxz and a (z, y)-path Pzy. If Pxz contains e, then D has a (y, z)-path. The
existence of this path contradicts the existence of Pzy and the hypothesis that
D is acyclic. Similarly, one can show that Pzy does not contain e. Therefore,
D − e has an (x, y)-path. Hence, TC(D − e) = TC(D). ��

Lemma 2.3.4 Let D be an acyclic digraph. Then the set S(D) is closed
under union and intersection.

Proof: Let G, H be a pair of digraphs in S(D). Since TC(G) = TC(H) =
TC(D), G ∪ H is a subdigraph of TC(D). The transitivity of TC(D) now
implies that TC(G ∪H) is a subdigraph of TC(D). Since G is a subdigraph
of G ∪H, we have TC(D) (= TC(G)) is a subdigraph of TC(G ∪H). Thus,
we conclude that TC(G ∪H) = TC(D) and G ∪H ∈ S(D).

Now let e1, . . . , ep be the arcs of G−A(G ∩H). By repeated application
of Lemma 2.3.3, we obtain TC(G− e1 − e2 − . . .− ep) = TC(G). This means
that TC(G ∩H) = TC(G) = TC(D), hence G ∩H ∈ S(D). ��

Aho, Garey and Ullman [10] proved that there exists an O(na)-algorithm,
with a ≥ 2, to compute the transitive closure of an arbitrary digraph D of
order n if and only if a transitive reduction of D can be constructed in time
O(na). Therefore, we have

Proposition 2.3.5 For an arbitrary digraph D, the transitive closure and a
transitive reduction can be computed in time O(n2.376). ��

Simon [821] described an O(n+m)-algorithm to find a transitive reduction
of a strong digraph D. The algorithm uses DFS and two digraph transforma-
tions preserving TC(D). This means that to have a linear time algorithm for

2.4 Line Digraphs 39

finding transitive reductions of digraphs from a certain class D, it suffices to
design a linear time algorithm for the transitive reduction of strong compo-
nent digraphs of digraphs in D. (Recall that the strong component digraph
SC(D) of a digraph D is obtained by contracting every strong component
of D to a vertex followed by deletion of parallel arcs.) Such algorithms are
considered, e.g., in the paper [485] by Habib, Morvan and Rampon.

While Simon’s linear time algorithm in [821] finds a minimal subdigraph
D′ of a strong digraph D such that TC(D′) = TC(D), no polynomial algo-
rithm is known to find a subdigraph D′′ of a strong digraph D with minimum
number of arcs such that TC(D′′) = TC(D). This is not surprising due to the
fact that the corresponding optimization problem is NP-hard. Indeed, the
problem to verify whether a strong digraph D of order n has a subdigraph
D′′ of size n such that TC(D′′) = TC(D) is equivalent to the hamiltonian
cycle problem, which is NP-complete by Theorem 6.1.1.

A subdigraph D′′ of a digraph D with minimum number of arcs such
that TC(D′′) = TC(D) is sometimes called a minimum equivalent sub-
digraph of D. By the above discussion, we see that a minimum equivalent
subdigraph of an acyclic digraph is unique and can be found in polynomial
time. This means that the main difficulty of finding a minimum equivalent
subdigraph of an arbitrary digraph D lies in finding such subdigraphs for
the strong components of D. This issue is addressed in Section 12.2 for some
classes of digraphs studied in this chapter. For the classes in Section 12.2,
the minimum equivalent subdigraph problem is polynomial time solvable.

2.4 Line Digraphs

For a directed pseudograph D, the line digraph Q = L(D) has vertex set
V (Q) = A(D) and arc set

A(Q) = {ab : a, b ∈ V (Q), the head of a coincides with the tail of b}.

A directed pseudograph H is a line digraph if there is a directed pseudo-
graph D such that H = L(D). See Figure 2.3. Clearly, line digraphs do not
have parallel arcs; moreover, the line digraph L(D) has a loop at a vertex
a ∈ A(D) if and only if a is a loop in D.

The following theorem provides a number of equivalent characterizations
of line digraphs. Of these characterizations, (ii) is due to Harary and Nor-
man [502], (iii) to Heuchenne [522] and (iv) and (v) to Richards [777]; condi-
tions (ii) and (iii) have each been rediscovered several times, see the survey
[516] by Hemminger and Beineke. The proof presented here is adapted from
[516]. For an n × n-matrix M = [mik], a row i is orthogonal to a row j if∑n

k=1 mikmjk = 0. One can give a similar definition of orthogonal columns.

Theorem 2.4.1 Let D be a directed pseudograph with vertex set {1, 2, . . . , n}
and with no parallel arcs and let M = [mij] be its adjacency matrix (i.e., the

40 2. Classes of Digraphs

1 2

3

5

4

23

12

H Q

25

34

45

54

Figure 2.3 A digraph H and its line digraph Q = L(H).

n×n-matrix such that mij = 1, if ij ∈ A(D), and mij = 0, otherwise). Then
the following assertions are equivalent:

(i) D is a line digraph;
(ii) there exist two partitions {Ai}i∈I and {Bi}i∈I of V (D) such that

A(D) = ∪i∈IAi ×Bi;

(iii) if vw, uw and ux are arcs of D, then so is vx;
(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We show the following implications and equivalences: (i) ⇔ (ii), (ii)
⇒ (iii), (iii) ⇒ (iv), (iv) ⇔ (v), (iv) ⇒ (ii).

(i) ⇒ (ii). Let D = L(H). For each vi ∈ V (H), let Ai and Bi be the sets
of in-coming and out-going arcs at vi, respectively. Then the arc set of the
subdigraph of D induced by Ai ∪Bi equals Ai ×Bi. If ab ∈ A(D), then there
is an i such that a = vjvi and b = vivk. Hence, ab ∈ Ai × Bi. The result
follows.

(ii) ⇒ (i). Let Q be the directed pseudograph with ordered pairs (Ai, Bi)
as vertices, and with |Aj ∩ Bi| arcs from (Ai, Bi) to (Aj , Bj) for each i and
j (including i = j). Let σij be a bijection from Aj ∩ Bi to this set of arcs
(from (Ai, Bi) to (Aj , Bj)) of Q. Then the function σ defined on V (D) by
taking σ to be σij on Aj∩Bi is a well-defined function of V (D) into V (L(Q)),
since {Aj ∩ Bi}i,j∈I is a partition of V (D). Moreover, σ is a bijection since
every σij is a bijection. Furthermore, it is not difficult to see that σ is an
isomorphism from D to L(Q) (this is left as Exercise 2.6).

(ii) ⇒ (iii). If vw, uw and ux are arcs of D, then there exist i, j such that
{u, v} ⊆ Ai and {w, x} ⊆ Bj . Hence, (v, x) ∈ Ai × Bj and vx ∈ D.

(iii) ⇒ (iv). Assume that (iv) does not hold. This means that some rows,
say i and j, are neither identical nor orthogonal. Then there exist k, h such
that mik = mjk = 1 and mih = 1, mjh = 0 (or vice versa). Hence, ik, jk, ih
are in A(D) but jh is not. This contradicts (iii).

2.4 Line Digraphs 41

(iv) ⇔ (v). Both (iv) and (v) are equivalent to the statement:

for all i, j, h, k, if mih = mik = mjk = 1, then mjh = 1.

(iv) ⇒ (ii). For each i and j with mij = 1, let Aij = {h : mhj = 1} and
Bij = {k : mik = 1}. Then, by (iv), Aij is the set of vertices in D whose
row vectors in M are identical to the ith row vector, whereas Bij is the set
of vertices in D whose column vectors in M are identical to the jth column
vector (we use the previously proved fact that (iv) and (v) are equivalent).
Thus, Aij ×Bij ⊆ A(D), and moreover A(D) = ∪{Aij ×Bij : mij = 1}. By
the orthogonality condition, Aij and Ahk are either equal or disjoint, as are
Bij and Bhk. For zero row vector i in M , let Aij be the set of vertices whose
row vector in M is the zero vector, and let Bij = ∅. Doing the same with the
zero column vectors of M completes the partition as in (ii). ��

The characterizations (ii)-(v) all imply polynomial algorithms to verify
whether a given directed pseudograph is a line digraph. This fact is obvious
regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to
construct a very effective polynomial algorithm. We actually design such an
algorithm for acyclic digraphs (as a pair of procedures illustrated by an exam-
ple) just after Proposition 2.4.3. The criterion (iii) also provides the following
characterization of line digraphs in terms of forbidden induced subdigraphs.
Its proof is left as Exercise 2.7.

Corollary 2.4.2 A directed pseudograph D is a line digraph if and only if D
does not contain, as an induced subdigraph, any directed pseudograph that can
be obtained from one of the directed pseudographs in Figure 2.4 (dotted arcs
are missing) by adding zero or more arcs (other than the dotted ones). ��

Observe that the digraph of order 4 in Figure 2.4 corresponds to the
case of distinct vertices in Part (iii) of Theorem 2.4.1, and the two directed
pseudographs of order 2 correspond to the cases x = u �= v = w and u = w �=
v = x, respectively.

Clearly, Theorem 2.4.1 implies a set of characterizations of the line di-
graphs of digraphs (without parallel arcs and loops). This can be found in
[516]. Several characterizations of special classes of line digraphs and iterated
line digraphs can be found in surveys by Hemminger and Beineke [516] and
Prisner [755].

Many applications of line digraphs deal with the line digraphs of special
families of digraphs, for example regular digraphs, in general, and complete
digraphs, in particular, see, e.g., the papers [279] by Du, Lyuu and Hsu
and [316] by Fiol, Yebra and Alegre. In Section 2.6, we need the following
characterization, due to Harary and Norman, of the line digraphs of acyclic
directed multigraphs. It is a specialization of Parts (i) and (ii) of Theorem
2.4.1. The proof is left as (an easy) Exercise 2.8.

42 2. Classes of Digraphs

Figure 2.4 Forbidden directed pseudographs.

Proposition 2.4.3 [502] A digraph D is the line digraph of an acyclic di-
rected multigraph if and only if D is acyclic and there exist two partitions
{Ai}i∈I and {Bi}i∈I of V (D) such that A(D) = ∪i∈IAi ×Bi. ��

We will now show how Proposition 2.4.3 can be used to recognize very
effectively whether a given acyclic digraph R is the line digraph of another
acyclic directed multigraph H, i.e., R = L(H). The two procedures, which
we construct and illustrate by Figure 2.7, can actually be used to recognize
and represent (that is, to construct H such that R = L(H)) arbitrary line
digraphs (see Theorem 2.4.1(i) and (ii)).

We first use Proposition 2.4.3 to check whether H above exists. The follow-
ing procedure Check-H can be applied. Initially, all arcs and vertices of R are
not marked. At every iteration, we choose an arc uv in R, which is not marked
yet, and mark all vertices in N+(u) by ‘B’, all vertices in N−(v) by ‘A’ and all
arcs in (N−(v), N+(u))R by ‘C’. If (N−(v), N+(u))R �= N−(v)×N+(u) or if
we mark a certain vertex or arc twice (starting from another arc u′v′) by the
same symbol, then this procedure stops as there is no H such that L(H) = R.
(We call these conditions obstructions.) If this procedure is performed to
the end (i.e., every vertex and arc received a mark), then such H exists. It
is not difficult to see, using Proposition 2.4.3, that Check-H correctly verifies
whether H exists or not.

To illustrate Check-H, consider the digraph R0 of Figure 2.7(a). Suppose
that we choose the arc ab first. Then ab is marked, at the first iteration,
together with the arcs af and ag. The vertex a receives ‘A’, the vertices
b, f, g get ‘B’. Suppose that fi is chosen at the second iteration. Then the
arcs fh, fi, gh, gi are all marked at this iteration. The vertices f, g receive

2.4 Line Digraphs 43

‘A’, the vertices h, i ‘B’. Suppose that bc is chosen at the third iteration.
We see that this arc is the only arc marked at this iteration. The vertex b
receives ‘A’, the vertex c ‘B’. Finally, say, ce is chosen. Then both cd and ce
are marked. The vertex c gets ‘A’, the vertices d, e receive ‘B’. Thus, all arcs
have been marked and no obstruction has taken place. This means that there
exists a digraph H0 such that H0 = L(R0).

Suppose now that H does exist. The following procedure Build-H con-
structs such a directed multigraph H. By Proposition 2.4.3, if H exists,
then all arcs of R can be partitioned into arc sets of bipartite tournaments
with partite sets Ai and Bi and arc sets Ai × Bi. Let us denote these di-
graphs by T1, . . . , Tk. (They can be computed by Check-H if we mark every
(N−(v), N+(u))R not only by ‘C’ but also by a second mark ‘i’ starting from
1 and increasing by 1 at each iteration of the procedure.) We construct H
as follows. The vertex set of H is {t0, t1, . . . , tk, tk+1}. The arcs of H are
obtained by the following procedure. For each vertex v of R, we append one
arc av to H according to the rules below:

(a) If dR(v) = 0, then av := (t0, tk+1);
(b) If d+

R(v) > 0, d−R(v) = 0, then av := (t0, ti), where i is the index of Ti

such that v ∈ Ai;
(c) If d+

R(v) = 0, d−R(v) > 0, then av := (tj , tk+1), where j is the index of Tj

such that v ∈ Bj ;
(d) If d+

R(v) > 0, d−R(v) > 0, then av := (ti, tj), where i and j are the indices
of Ti and Tj such that v ∈ Aj ∩Bi.

It is straightforward to verify that R = L(H). Note that Build-H always
constructs H with only one vertex of in-degree zero and only one vertex of
out-degree zero.

To illustrate Build-H, consider R0 of Figure 2.7 once again. Earlier we
showed that there exists H0 such that R0 = L(H0). Now we will con-
struct H0. The previous procedure applied to verify the existence of H0

has implicitly constructed the digraphs T1 = ({a, b, f, g}, {ab, af, ag}), T2 =
({f, g, h, i}, {fh, fi, gh, gi}), T3 = ({b, c}, {bc}), T4 = ({c, d, e}, {cd, ce}).
Thus, H0 has vertices t0, . . . , t5. Considering the vertices of R0 in the lex-
icographic order, we obtain the following arcs of H0 (in this order):

t0t1, t1t3, t3t4, t4t5, t4t5, t1t2, t1t2, t2t5, t2t5.

The directed multigraph H0 is depicted in Figure 2.7(c). It is easy to check
that R0 = L(H0).

The iterated line digraphs are defined recursively: L1(D) = L(D),
Lk+1(D) = L(Lk(D)), k ≥ 1. It is not difficult to prove by induction (Ex-
ercise 2.10) that Lk(D) is isomorphic to the digraph H, whose vertex set
consists of walks of D of length k and a vertex v0v1 . . . vk (which is a walk
in D) dominates the vertex v1v2 . . . vkvk+1 for every vk+1 ∈ V (D) such that

44 2. Classes of Digraphs

vkvk+1 ∈ A(D). New characterizations of line digraphs and iterated line di-
graphs are given by Liu and West [648].

The following proposition can be proved by induction on k ≥ 1 (Exercise
2.12).

Proposition 2.4.4 Let D be a strong d-regular digraph (d > 1) of order n
and diameter t. Then Lk(D) is of order dkn and diameter t + k. ��

Bermond, Munos and Marchetti-Spaccamela [150] proposed broadcasting
algorithms for line digraphs in the telephone mode. The protocols of [150] use
a broadcasting protocol for a digraph D to obtain a broadcasting protocol
for iterated line digraphs of D. As a consequence, improved bounds for the
broadcasting time in de Bruijn and Kautz digraphs were obtained.

2.5 The de Bruijn and Kautz Digraphs

The following problem is of importance in network design. Given positive in-
tegers n and d, construct a digraph D of order n and maximum out-degree at
most d such that diam(D) is as small as possible and the vertex-strong con-
nectivity κ(D) is as large as possible. So we have a 2-objective optimization
problem. For such a problem, in general, no solution can maximize/minimize
both objective functions. However, for this specific problem, there are solu-
tions, which (almost) maximize/minimize both objective functions. The aim
of this section is to introduce these solutions, the de Bruijn and Kautz di-
graphs, as well as some of their generalizations. For more information on the
above classes of digraphs, the reader may consult the survey [276] by Du, Cao
and Hsu. For applications of these digraphs in design of parallel architectures
and large packet radio networks, see e.g. the papers [149] by Bermond and
Hell, [151] by Bermond and Peyrat and [792] by Samatan and Pradhan.

Let V be the set of vectors with t coordinates, t ≥ 2, each taken from
{0, 1, . . . d−1}, d ≥ 2. The de Bruijn digraph DB(d, t) is the directed pseu-
dograph with vertex set V such that (x1, x2, . . . , xt) dominates (y1, y2, . . . , yt)
if and only if x2 = y1, x3 = y2, . . . , xt = yt−1. See Figure 2.5(a). Let DB(d, 1)
be the complete digraph of order d with loop at every vertex.

These directed pseudographs are named after de Bruijn who was the
first to consider them in [252]. Clearly, DB(d, t) has dt vertices and the
out-pseudodegree and in-pseudodegree of every vertex of DB(d, t) equal d.
This directed pseudograph has no parallel arcs and contains a loop at every
vertex for which all coordinates are the same. It is natural to call DB(d, t)
d-pseudoregular (recall that in the definition of semi-degrees we do not
count loops).

Since DB(d, t) has loops at some vertices, the vertex-strong connectivity
of DB(d, t) is at most d − 1 (indeed, the loops can be deleted without the
vertex-strong connectivity being changed). Imase, Soneoka and Okada [550]

2.5 The de Bruijn and Kautz Digraphs 45

00

01

11

10

(a)

12

21

2001

02

10

(b)

Figure 2.5 (a) The de Bruijn digraph DB(2, 2); (b) the Kautz digraph DK(2, 2).

proved that DB(d, t) is (d − 1)-strong, and moreover, for every pair x �= y
of vertices there exist d − 1 internally disjoint (x, y)-paths of length at most
t + 1. To prove this result we will use the following two lemmas. The proof
of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 2.13.

Lemma 2.5.1 [316] For t ≥ 2, DB(d, t) is the line digraph of DB(d, t − 1).
��

Lemma 2.5.2 Let x, y be distinct vertices of DB(d, t) such that x→y. Then,
there are d−2 internally disjoint (x, y)-paths different from xy, each of length
at most t + 1.

Proof: Let x = (x1, x2, . . . , xt) and y = (x2, . . . , xt, yt). Consider the
walk Wk given by Wk = (x1, x2, . . . , xt), (x2, . . . , xt, k), (x3, . . . , xt, k, x2), . . . ,
(k, x2, . . . , xt), (x2, . . . , xt, yt), where k �= x1, yt. For each k, every internal ver-
tex of Wk has coordinates forming the same multiset Mk = {x2, . . . , xt, k}.
Since for different k, the multisets Mk are different, the walks Wk are inter-
nally disjoint. Each of these walks is of length t + 1. Therefore, by Propo-
sition 1.4.1, DB(d, t) contains d − 2 internally disjoint (x, y)-paths Pk with
A(Pk) ⊆ A(Wk). Since k �= x1, yt, we may form the paths Pk such that none
of them coincides with xy. ��

Theorem 2.5.3 [550] For every pair x, y of distinct vertices of DB(d, t),
there exist d − 1 internally disjoint (x, y)-paths, one of length at most t and
the others of length at most t + 1.

Proof: By induction on t ≥ 1. Clearly, the claim holds for t = 1 since
DB(d, 1) contains, as spanning subdigraph,

↔
Kd. For t ≥ 2, by Lemma 2.5.1,

we have that
DB(d, t) = L(DB(d, t − 1)). (2.2)

46 2. Classes of Digraphs

Let x, y be a pair of distinct vertices in DB(d, t) and let ex, ey be the arcs
of DB(d, t− 1) corresponding to vertices x, y due to (2.2). Let u be the head
of ex and let v be the tail of ey.

If u �= v, by the induction hypothesis, DB(d, t − 1) has d − 1 internally
disjoint (u, v)-paths, one of length at most t − 1 and the others of length at
most t. The arcs of these paths together with arcs ex and ey correspond to
d− 1 internally disjoint (x, y)-paths in DB(d, t), one of length at most t and
the others of length at most t + 1.

If u = v, we have x→y in DB(d, t − 1). It suffices to apply Lemma 2.5.2
to see that there are d − 1 internally disjoint (x, y)-paths in DB(d, t), one of
length one and the others of length at most t + 1. ��

By this theorem and Corollary 5.4.2, we conclude that κ(DB(d, t)) =
d− 1. From Theorem 2.5.3 and Proposition 3.4.3, we obtain immediately the
following simple, yet important property.

Proposition 2.5.4 The de Bruijn digraph DB(d, t) achieves the minimum
value t of diameter for directed pseudographs of order dt and maximum out-
degree at most d. ��

For t ≥ 2, the Kautz digraph DK(d, t) is obtained from DB(d + 1, t)
by deletion of all vertices of the form (x1, x2, . . . , xt) such that xi = xi+1

for some i. See Figure 2.5(b). Define DK(d, 1) :=
↔
Kd+1. Clearly, DK(d, t)

has no loops and is a d-regular digraph. Since we have d + 1 choices for the
first coordinate of a vertex in DK(d, t) and d choices for each of the other
coordinates, the order of DK(d, t) is (d + 1)dt−1 = dt + dt−1. It is easy to see
that Proposition 2.5.4 holds for the Kautz digraphs as well.

The following lemmas are analogous to Lemmas 2.5.1 and 2.5.2. Their
proofs are left as Exercises 2.14 and 2.15.

Lemma 2.5.5 For t ≥ 2, the Kautz digraph DK(d, t) is the line digraph of
DK(d, t − 1). ��

Lemma 2.5.6 Let xy be an arc in DK(d, t). There are d− 1 internally dis-
joint (x, y)-paths different from xy, one of length at most t+2 and the others
of length at most t + 1. ��

The following result due to Du, Cao and Hsu [276] shows that the Kautz
digraphs are better, in a sense, than de Bruijn digraphs from the local vertex-
strong connectivity point of view. This theorem can be proved similarly to
Theorem 2.5.3 and is left as Exercise 2.16.

Theorem 2.5.7 [276] Let x, y be distinct vertices of DK(d, t). Then there
are d internally disjoint (x, y)-paths in DK(d, t), one of length at most t, one
of length at most t + 2 and the others of length at most t + 1. ��

2.6 Series-Parallel Digraphs 47

This theorem implies that DK(d, t) is d-strong.

The de Bruijn digraphs were generalized independently by Imase and
Itoh [547] and Reddy, Pradhan and Kuhl [767] in the following way. We
can transform every vector (x1, x2, . . . , xt) with coordinates from Zd =
{0, 1, . . . , d− 1} into an integer from Zdt = {0, 1, . . . , dt − 1} using the poly-
nomial P (x1, x2, . . . , xt) = x1d

t−1 + x2d
t−2 + . . . + xt. It is easy to see that

this polynomial provides a bijection from Zt
d to Zdt . Moreover, for i, j ∈ Zdt ,

i→j in DB(d, t) if and only if j ≡ di + k (mod dt) for some k ∈ Zd.
Let d, n be two natural numbers such that d < n. The generalized de

Bruijn digraph DG(d, n) is a directed pseudograph with vertex set Zn and
arc set

{(i, di + k (mod n)) : i, k ∈ Zd}.
For example, V (DG(2, 5)) = {0, 1, 2, 3, 4} and A(DG(2, 5)) = {(0, 0), (0, 1),
(1, 2), (1, 3), (2, 4), (2, 0), (3, 1), (3, 2), (4, 3), (4, 4)}.

Clearly, DG(d, n) is d-pseudoregular. It is not difficult to show that
diam(DG(d, n)) ≤ �logd n�. By Proposition 3.4.3, a digraph of maximum out-
degree at most d ≥ 2 and order n has a diameter at least �logd n(d− 1) + 1�.
Thus, the generalized de Bruijn digraphs are of optimal or almost optimal
diameter. It was proved, by Imase, Soneoka and Okada [549], that DG(d, n)
is (d− 1)-strong. It follows from these results that the generalized de Bruijn
digraphs have almost minimum diameter and almost maximum vertex-strong
connectivity.

The Kautz digraphs were generalized by Imase and Itoh [548]. Let n, d
be two natural numbers such that d < n. The Imase-Itoh digraph DI(d, n)
is the digraph with vertex set {0, 1, . . . , n − 1} such that i→j if and only if
j ≡ −d(i + 1) + k (mod n) for some k ∈ {0, 1, . . . , d− 1}. It has been shown
(for a brief account, see the paper [276]) by Du, Cao and Hsu, that DI(d, n)
are of (almost) optimal diameter and vertex-strong connectivity.

Du, Hsu and Hwang [278] suggested a concept of digraphs extending both
the generalized de Bruijn digraphs and the Imase-Ito digraphs. Let d, n be two
natural numbers such that d < n. Given q ∈ [n−1] and r ∈ {0, 1, . . . , n−1}, a
consecutive-d digraph D(d, n, q, r) is the directed pseudograph with vertex
set {0, 1, . . . , n − 1} such that i→j if and only if j ≡ qi + r + k (mod n) for
some k ∈ {0, 1, . . . , d−1}. Several results on diameter, vertex- and arc-strong
connectivity and other properties of consecutive-d digraphs are given in [276].
In Section 6.9, we provide results on hamiltonicity of consecutive-d digraphs.

2.6 Series-Parallel Digraphs

In this section we study vertex series-parallel digraphs and arc series-parallel
directed multigraphs. Vertex series-parallel digraphs were introduced by
Lawler [637] and Monma and Sidney [701] as a model for scheduling prob-
lems. While vertex series-parallel digraphs continue to play an important role

48 2. Classes of Digraphs

for the design of efficient algorithms in scheduling and sequencing problems,
they have been extensively studied in their own right as well as in relations
to other optimization problems (cf. the papers [55] by Baffi and Petreschi,
[153] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [776] by Rendl
and [832] by Steiner). Arc series-parallel directed multigraphs were intro-
duced even earlier (than vertex series-parallel digraphs) by Duffin [281] as a
mathematical model of electrical networks.

For an acyclic digraph D, let FD (ID) be the set of vertices of D of
out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first
introduce minimal vertex series-parallel (MVSP) digraphs recursively.

The digraph of order one with no arc is an MVSP digraph. If D = (V, A),
H = (U, B) is a pair of MVSP digraphs (U ∩ V = ∅), so are the acyclic
digraphs constructed by each of the following operations (see Figure 2.6):

(a) Parallel composition: P = (V ∪ U, A ∪B);
(b) Series composition: S = (V ∪ U, A ∪B ∪ (FD × IH)).

It is interesting to note that we can embed every MVSP digraph D into
the Cartesian plane such that if vertices u, v have coordinates (xu, yu) and
(xv, yv), respectively, then there is a (u, v)-path in D if and only if xu ≤ xv

and yu ≤ yv. The proof of this non-difficult fact is given in the paper [883]
by Valdes, Tarjan and Lawler; see Exercise 2.17. See also Figure 2.8.

An acyclic digraph D is a vertex series-parallel (VSP) digraph if
the transitive reduction of D is an MVSP digraph (see Section 2.3 for the
definition of the transitive reduction). See Figure 2.7.

The following class of acyclic directed multigraphs, arc series-parallel
(ASP) directed multigraphs, is related to VSP digraphs. The digraph 	P2

is an ASP directed multigraph. If D1, D2 is a pair of ASP directed multi-
graphs with V (D1) ∩ V (D2) = ∅, then so are acyclic directed multigraphs
constructed by each of the following operations (see Figure 2.9):

(a) Two-terminal parallel composition: Choose a vertex ui of out-degree
zero in Di and a vertex vi of in-degree zero in Di for i = 1, 2. Identify u1

with u2 and v1 with v2;
(b) Two-terminal series composition: Choose u ∈ FD1 and v ∈ ID2 and

identify u with v.

Observe that every ASP directed multigraph has a unique vertex of out-
degree zero and a unique vertex of in-degree zero. We refer the reader to the
book [127] by Battista, Eades, Tamassia and Tollis for several algorithms for
drawing graphs nicely, in particular drawing of ASP digraphs.

The next result shows a relation between the classes of digraphs intro-
duced above.

2.6 Series-Parallel Digraphs 49

b c

d

e

f

g

h

i

f

d

e

e

b

ff

i

i

h

c

d

e

i

d

e

e

d

i

a

f h

g

a

b c

c

c

d

f

g

g h

g

f h

b

Figure 2.6 (De)construction of an MVSP digraph R0 by series and parallel
(de)compositions.

Theorem 2.6.1 An acyclic directed multigraph D with a unique vertex of
out-degree zero and a unique vertex of in-degree zero is ASP if and only if
L(D) is an MVSP digraph.

Proof: This can be proved easily by induction on |A(D)| using the following
two facts:

(i) L(P2) = 	P1, which is an MVSP digraph;

50 2. Classes of Digraphs

a

b c

d

e

f

g

h

i

a

b c

d

e

f f
h

g
i

1

2

3
4

5

8

9

6

7

(c)(b)(a)

Figure 2.7 Series-parallel directed multigraphs: (a) an MVSP digraph R0, (b) a
VSP digraph R1, (c) an ASP directed multigraph H0.

a

b

c

d

e

f

g

h

i

y

x

Figure 2.8 The MVSP digraph R0 of Figure 2.6 embedded into the Cartesian
plane such that for every (u, v)-path in R0 we have xu ≤ xv and yu ≤ yv (and vice
versa).

(ii) The line digraph of the two-terminal series (parallel) composition of D1

and D2 is the series (parallel) composition of L(D1) and L(D2). ��

It is easy to check that L(H0) = R0 for directed multigraphs H0 and R0

depicted in Figure 2.7. The following operations in a directed multigraph D
are called reductions:

(a) Series reduction: Replace a path uvw, where d+
D(v) = d−D(v) = 1 by

the arc uw;
(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just

one arc from u to v.

2.6 Series-Parallel Digraphs 51

1
2

3
4

7 9

2

3
4

2

3
4

7 9

6

7 9

6 8

64

5

6 7 8 9

1

5

5

5

86

8

2

3

3

4

5

7 9

8

54

Figure 2.9 (De)construction of an ASP directed multigraph H0 by two-terminal
series and parallel (de)compositions.

The following proposition due to Duffin (see also the paper [883] by
Valdes, Tarjan and Lawler) gives a characterization of ASP directed multi-
graphs. Its proof is left as Exercise 2.18.

Proposition 2.6.2 [281] A directed multigraph is ASP if and only if it can
be reduced to 	P2 by a sequence of series and parallel reductions. ��

The reader is advised to apply a sequence of series and parallel reductions
to the directed multigraph H0 of Figure 2.7 to obtain a digraph isomorphic to
	P2. From the algorithmic point of view, it is important that every sequence of
series and parallel reductions transforms a directed multigraph to the same
digraph. Indeed, this implies an obvious polynomial algorithm to verify if a
given directed multigraph is ASP. The proof of the following result, due to
Harary, Krarup and Schwenk, is left as Exercise 2.19.

Proposition 2.6.3 [500] For every acyclic directed multigraph D, the result
of application of series and parallel reductions until one can apply such re-
ductions is a unique digraph H. ��

52 2. Classes of Digraphs

In [883], Valdes, Tarjan and Lawler showed how to construct a linear-
time algorithm to recognize ASP directed multigraphs, which is based on
Propositions 2.6.2 and 2.6.3. They also presented a more complicated linear-
time algorithm to recognize VSP digraphs. Since we are limited in space,
we will not discuss the details of the linear-time algorithms. Instead, we
will consider the following simplified polynomial algorithm to recognize VSP
digraphs.

VSP recognition algorithm
Input: An acyclic digraph D.
Output: YES if D is VSP and NO, otherwise.

1. Compute the transitive reduction R of D.
2. Try to compute an acyclic directed multigraph H with |IH | = |FH | = 1

such that L(H) = R. If there is no such H, then output NO.
3. Verify whether H is an ASP directed multigraph. If it is so, then YES,

otherwise, NO.

We prove first the correctness of this algorithm. If the output is YES,
then, by Theorem 2.6.1, R is MVSP and thus D is VSP. If H in Step 2 is not
found, then, by Theorem 2.6.1, R is not MVSP implying that D is not VSP.
If H is not ASP, then R is not MVSP by the same theorem.

Now we prove that the algorithm is polynomial. Step 1 can be performed
in polynomial time by Proposition 2.3.5. Step 2 can be implemented using
Procedure Build-H described at the end of Section 2.4. This procedure implies
that if there is an H such that L(H) = R, then there is such an H with
additional property that |IH | = |FH | = 1. The procedure is polynomial.
Finally, Step 3 is polynomial by the remark after Proposition 2.6.2.

2.7 Quasi-Transitive Digraphs

A digraph D is quasi-transitive if, for every triple x, y, z of distinct vertices
of D such that xy and yz are arcs of D, there is at least one arc between x and
z. Clearly, a semicomplete digraph is quasi-transitive. Note that if there is
only one arc between x and z, it can have any direction; hence quasi-transitive
digraphs are generally not transitive.

The aim of this section is to derive a recursive characterization of quasi-
transitive digraphs which allows one to show that a number of problems for
quasi-transitive digraphs including the longest path and cycle problems are
polynomial time solvable (see Sections 6.7 and 6.8). The characterization im-
plies that every quasi-transitive digraph is totally Ψ -decomposable, where Ψ
is the union of all transitive digraphs and all extended semicomplete digraphs.
Our presentation is based on the paper [103] by Bang-Jensen and Huang.

2.7 Quasi-Transitive Digraphs 53

T Q

Figure 2.10 A transitive digraph T and a quasi-transitive digraph Q.

An (x1, xn)-path P = x1x2 . . . xn is minimal if, for every (x1, xn)-path
Q, either V (P) = V (Q) or Q has a vertex not in V (P).

Proposition 2.7.1 Let D be a quasi-transitive digraph. Suppose that P =
x1x2 . . . xk is a minimal (x1, xk)-path. Then the subdigraph induced by V (P)
is a semicomplete digraph and xj→xi for every 2 ≤ i + 1 < j ≤ k, unless
k = 4, in which case the arc between x1 and xk may be absent.

Proof: The cases k = 2, 3, 4, 5 are easily verified. As an example, let us
consider the case k = 5. If xi and xj are adjacent and 2 ≤ i + 1 < j ≤ 5,
then xj→xi since P is minimal. Since D is quasi-transitive, xi and xi+2

are adjacent for i = 1, 2, 3. This and the minimality of P imply that
x3→x1, x4→x2 and x5→x3. From these arcs and the minimality of P we
conclude that x5→x1. Now the arcs x4x5 and x5x1 imply that x4→x1. Sim-
ilarly, x5→x1→x2 implies x5→x2.

The proof for the case k ≥ 6 is by induction on k with the case k = 5 as the
basis. By induction, each of D〈{x1, x2, . . . , xk−1}〉 and D〈{x2, x3, . . . , xk}〉 is
a semicomplete digraph and xj→xi for any 1 < j − i ≤ k − 2. Hence x3

dominates x1 and xk dominates x3 and the minimality of P implies that xk

dominates x1. ��

Corollary 2.7.2 If a quasi-transitive digraph D has an (x, y)-path but x does
not dominate y, then either y→x, or there exist vertices u, v ∈ V (D)−{x, y}
such that x→u→v→y and y→u→v→x.

Proof: This is easy to deduce by considering a minimal (x, y)-path and
applying Proposition 2.7.1. ��

Lemma 2.7.3 Suppose that A and B are distinct strong components of a
quasi-transitive digraph D with at least one arc from A to B. Then A�→B.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then for every choice of x ∈ A and y ∈ B there
exists a path from x to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 2.7.2 can hold and hence x→y. ��

54 2. Classes of Digraphs

Lemma 2.7.4 [103] Let D be a strong quasi-transitive digraph on at least
two vertices. Then the following holds:

(a) UG(D) is disconnected;
(b) If S and S′ are two subdigraphs of D such that UG(S) and UG(S′) are

distinct connected components of UG(D), then either S �→S′ or S′ �→S,
or both S→S′ and S′→S in which case |V (S)| = |V (S′)| = 1.

Proof: The statement (b) can be easily verified from the definition of a
quasi-transitive digraph and the fact that S and S′ are completely adjacent
in D (Exercise 2.20). We prove (a) by induction on |V (D)|. Statement (a) is
trivially true when |V (D)| = 2 or 3. Assume that it holds when |V (D)| < n
where n > 3.

Suppose that there is a vertex z such that D−z is not strong. Then there
is an arc from (to) every terminal (initial) component of D − z to (from)
z. Since D is quasi-transitive, the last fact and Lemma 2.7.3 imply that
X→Y for every initial (terminal) strong component X (Y) of D− z. Similar
arguments show that each strong component of D− z either dominates some
terminal component or is dominated by some initial component of D − z
(intermediate strong components satisfy both). These facts imply that z is
adjacent to every vertex in D − z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected and (a)
follows.

Assume that there is a vertex v such that D − v is strong. Since D is
strong, D contains an arc vw from v to D − v. By induction, UG(D − v) is
not connected. Let connected components S and S′ of UG(D − v) be chosen
such that w ∈ S, S �→S′ in D (here we use (b) and the fact that D − v is
strong). Then v is completely adjacent to S′ in D (as v→w). Hence UG(S′)
is a connected component of UG(D) and the proof is complete. ��

The following theorem completely characterizes quasi-transitive digraphs
in recursive sense (see also Figure 2.11).

Theorem 2.7.5 (Bang-Jensen and Huang) [103] Let D be a digraph
which is quasi-transitive.

(a) If D is not strong, then there exist a transitive oriented graph T with ver-
tices {u1, u2, . . . , ut} and strong quasi-transitive digraphs H1, H2, . . . , Ht

such that D = T [H1, H2, . . . , Ht], where Hi is substituted for ui, i =
1, 2, . . . , t.

(b) If D is strong, then there exists a strong semicomplete digraph S with
vertices {v1, v2, . . . , vs} and quasi-transitive digraphs Q1, Q2, . . . , Qs such
that Qi is either a vertex or is non-strong and D = S[Q1, Q2, . . . , Qs],
where Qi is substituted for vi, i = 1, 2, . . . , s.

Proof: Suppose that D is not strong and let H1, H2, . . . , Ht be the strong
components of D. According to Lemma 2.7.3, if there is an arc between

2.8 Path-Mergeable Digraphs 55

Figure 2.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs
between different boxed sets indicate that there is a complete domination in the
direction shown.

Hi and Hj , then either Hi �→Hj or Hj �→Hi. Now if Hi �→Hj �→Hk, then, by
quasi-transitivity, Hi �→Hk. So by contracting each Hi to a vertex hi, we get
a transitive oriented graph T with vertices h1, h2, . . . , ht. This shows that
D = T [H1, H2, . . . , Ht].

Suppose now that D is strong. Let Q1, Q2, . . . , Qs be the subdigraphs of
D such that each UG(Qi) is a connected component of UG(D). According
to Lemma 2.7.4(a), each Qi is either non-strong or just a single vertex. By
Lemma 2.7.4(b) we obtain a strong semicomplete digraph S if each Qi is
contracted to a vertex. This shows that D = S[Q1, Q2, . . . , Qs]. ��

2.8 Path-Mergeable Digraphs

A digraph D is path-mergeable, if for any choice of vertices x, y ∈ V (D)
and any pair of internally disjoint (x, y)-paths P, Q, there exists an (x, y)-path
R in D, such that V (R) = V (P)∪V (Q). We will see, in several places of this
book, that the notion of a path-mergeable digraph is very useful for design
of algorithms and proofs of theorems. This makes it worthwhile studying
path-mergeable digraphs. The results presented in this section are adapted
from [72], where the study of path-mergeable digraphs was initiated by Bang-
Jensen.

56 2. Classes of Digraphs

x y

u1 u2 u3 u5 u6

v1 v2

u4

v3 v4 v5 v6

Figure 2.12 A digraph which is path-mergeable. The fat arcs indicate the path
xu1u2v1v2v3u3u4u5v4v5v6u6y from x to y which is obtained by merging the two
(x, y)-paths xu1u2u3u4u5u6y and xv1v2v3v4v5v6y.

We prove a characterization of path-mergeable digraphs, which implies
that path-mergeable digraphs can be recognized efficiently.

Theorem 2.8.1 A digraph D is path-mergeable if and only if for every
pair of distinct vertices x, y ∈ V (D) and every pair P = xx1 . . . xry,
P ′ = xy1 . . . ysy, r, s ≥ 1 of internally disjoint (x, y)-paths in D, either there
exists an i ∈ {1, . . . , r}, such that xi→y1, or there exists a j ∈ [s], such that
yj→x1.

Proof: We prove ‘only if’ by induction on r + s. It is obvious for r = s =
1, so suppose that r + s ≥ 3. If there is no arc between {x1, . . . , xr} and
{y1, . . . , ys}, then clearly P, P ′ cannot be merged into one path. Hence we
may assume without loss of generality that there is an arc xiyj for some i, j,
1 ≤ i ≤ r, 1 ≤ j ≤ s. If j = 1, then the claim follows. Otherwise apply
induction to the paths P [x, xi]yj , xP ′[y1, yj].

The proof of ‘if’ is left to the reader. It is similar to the proof of Proposition
2.8.3 below. ��

The proof of the following result is left as Exercise 2.24.

Corollary 2.8.2 Path-mergeable digraphs can be recognized in polynomial
time. ��

The next result shows that if a digraph is path-mergeable, then the merg-
ing of paths can always be done in a particularly nice way.

Proposition 2.8.3 Let D be a digraph which is path-mergeable and let P =
xx1 . . . xry, P ′ = xy1 . . . ysy, r, s ≥ 0 be internally disjoint (x, y)-paths in
D. The paths P and P ′ can be merged into one (x, y)-path P ∗ such that
vertices from P (respectively, P ′) remain in the same order as on that path.
Furthermore the merging can be done in at most 2(r + s) steps.

Proof: We prove the result by induction on r + s. It is obvious if r = 0 or
s = 0, so suppose that r, s ≥ 1. By Theorem 2.8.1 there exists an i such that

2.9 Locally In/Out-Semicomplete Digraphs 57

either xi→y1 or yi→x1. By scanning both paths forward one arc at a time, we
can find i in at most 2i steps; suppose without loss of generality xi→y1. By
applying the induction hypothesis to the paths P [xi, xr]y and xiP

′[y1, ys]y,
we see that we can merge them into a single path Q in the required order-
preserving way in at most 2(r+s−i) steps. The required path P ∗ is obtained
by concatenating the paths xP [x1, xi] and Q, and we have found it in at most
2(r + s) steps, as required. ��

2.9 Locally In/Out-Semicomplete Digraphs

A digraph D is locally in-semicomplete (locally out-semicomplete) if,
for every vertex x of D, the in-neighbours (out-neighbours) of x induce a semi-
complete digraph. Clearly, the converse of a locally in-semicomplete digraph
is a locally out-semicomplete digraph and vice versa. A digraph D is locally
semicomplete if it is both locally in- and locally out-semicomplete. See
Figure 2.13. Clearly every semicomplete digraph is locally semicomplete. A
locally in-semicomplete digraph with no 2-cycle is a locally in-tournament
digraph. Similarly, one can define locally out-tournament digraphs and
locally tournament digraphs. For convenience, we will sometimes re-
fer to locally tournament digraphs as local tournaments and to locally
in-tournament (out-tournament) digraphs as local in-tournaments (local
out-tournaments).

(a) (b)

Figure 2.13 (a) A locally out-semicomplete digraph which is not locally in-
semicomplete; (b) a locally semicomplete digraph.

Proposition 2.9.1 by Bang-Jensen shows that locally in-semicomplete
and locally out-semicomplete digraphs form subclasses of the class of path-
mergeable digraphs. In particular, this means that every tournament is path-
mergeable. In many theorems and algorithms on tournaments this property
is of essential use. In some other cases, the very use of this property allows
one to simplify proofs of results on tournaments and their generalizations or
speed up algorithms on those digraphs.

58 2. Classes of Digraphs

Proposition 2.9.1 [72] Every locally in-semicomplete (out-semicomplete)
digraph is path-mergeable.

Proof: Let D be a locally out-semicomplete digraph and let P = y1y2 . . . yk,
Q = z1z2 . . . zt be a pair of internally disjoint (x, y)-paths (i.e., y1 = z1 = x
and yk = zt = y). We show that there exists an (x, y)-path R in D, such that
V (R) = V (P) ∪ V (Q). Our claim is trivially true when |A(P)|+ |A(Q)| = 3.
Assume now that |A(P)| + |A(Q)| ≥ 4. Since D is out-semicomplete, either
y2→z2 or z2→y2 (or both) and the claim follows from Theorem 2.8.1.

The proposition holds for locally in-semicomplete digraphs as they are
the converses of locally out-semicomplete digraphs. ��

The path-mergeability can be generalized in a natural way as follows. A di-
graph D is in-path-mergeable if, for every vertex y ∈ V (D) and every pair
P, Q of internally disjoint paths with common terminal vertex y, there is a
path R such that V (R) = V (P)∪V (Q), the path R terminates at y and starts
at a vertex which is the initial vertex of either P or Q (or, possibly, both).
Observe that, in this definition, the initial vertices of paths P and Q may coin-
cide. Therefore, every in-path-mergeable digraph is path-mergeable. However,
it is easy to see that not every path-mergeable digraph is in-path-mergeable
(see Exercise 2.21). A digraph D is out-path-mergeable if the converse of D
is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable)
digraph is locally in-semicomplete (locally out-semicomplete). The converse is
also true (hence this is another way of characterizing locally in-semicomplete
digraphs). The proof of Proposition 2.9.2 is left as Exercise 2.25.

Proposition 2.9.2 Every locally in-semicomplete (out-semicomplete, respec-
tively) digraph is in-path-mergeable (out-path-mergeable, respectively). ��

Some simple, yet very useful, properties of locally in-semicomplete di-
graphs are described in the following results (in [105], by Bang-Jensen, Huang
and Prisner, these results were proved for locally tournament digraphs only,
so the statements below are their slight generalizations first stated by Bang-
Jensen and Gutin [89]). Observe that a locally out-semicomplete digraph,
being the converse of a locally in-semicomplete digraph, has similar proper-
ties (see Exercise 2.28). The next lemma follows from Proposition 1.7.1 (see
[91]).

Lemma 2.9.3 Every connected locally in-semicomplete digraph D has an
out-branching. ��

Theorem 2.9.4 is illustrated in Figure 2.14.

Theorem 2.9.4 Let D be a locally in-semicomplete digraph.

(i) Let A and B be distinct strong components of D. If a vertex a ∈ A
dominates some vertex in B, then a �→B.

(ii) If D is connected, then SC(D) has an out-branching.

2.10 Locally Semicomplete Digraphs 59

Proof: Let A and B be strong components of D for which there is an arc
(a, b) from A to B. Since B is strong, there is a (b′, b)-path in B for every
b′ ∈ V (B). By the definition of locally in-semicomplete digraphs and the fact
that there is no arc from B to A, we can conclude that a→b′. This proves (i).

Part (ii) follows from the fact that SC(D) is itself a locally in-tournament
digraph and Lemma 2.9.3. ��

Figure 2.14 The strong decomposition of a non-strong locally in-semicomplete
digraph. The big circles indicate strong components and a fat arc from a component
A to a component B between two components indicates that there is at least one
vertex a ∈ A such that a�→B.

2.10 Locally Semicomplete Digraphs

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [66].
As shown in several places in our book, this class of digraphs has many nice
properties in common with its proper subclass, semicomplete digraphs. The
main aim of this section is to obtain a classification of locally semicomplete
digraphs first proved by Bang-Jensen, Guo, Gutin and Volkmann [80]. In
the process of deriving this classification, we will show several important
properties of locally semicomplete digraphs. We start our consideration from
round digraphs, a nice special class of locally semicomplete digraphs.

60 2. Classes of Digraphs

2.10.1 Round Digraphs

A digraph on n vertices is round if we can label its vertices v1, v2, . . . , vn

so that for each i, we have N+(vi) = {vi+1, . . . , vi+d+(vi)} and N−(vi) =
{vi−d−(vi), . . . , vi−1} (all subscripts are taken modulo n). We will refer to
the ordering v1, v2, . . . , vn as a round labelling of D. See Figure 2.15 for
an example of a round digraph. Observe that every strong round digraph
D is hamiltonian, since v1v2 . . . vnv1 form a hamiltonian cycle, whenever
v1, v2, . . . , vn is a round labelling. Round digraphs form a subclass of lo-
cally semicomplete digraphs. We will see below that round digraphs play an
important role in the study of locally semicomplete digraphs.

1

3

4

56

R

2

Figure 2.15 A round digraph with a round labelling.

Proposition 2.10.1 [541] Every round digraph is locally semicomplete.

Proof: Let D be a round digraph and let v1, v2, . . . , vn be a round labelling of
D. Consider an arbitrary vertex, say vi. Let x, y be a pair of out-neighbours
of vi. We show that x and y are adjacent. Assume without loss of generality
that vi, x, y appear in that circular order in the round labelling. Since vi→y
and the in-neighbours of y appear consecutively preceding y, we must have
x→y. Thus the out-neighbours of vi are pairwise adjacent. Similarly, we can
show that the in-neighbours of vi are also pairwise adjacent. Therefore, D is
locally semicomplete. ��

The main result of this subsection is Theorem 2.10.4 of Huang [541] that
gives a characterization of round locally semicomplete digraphs. This char-
acterization generalizes the corresponding characterizations of round local
tournaments and tournaments, due to Bang-Jensen [66] and Alspach and
Tabib [38], respectively.

An arc xy of a digraph D is ordinary if yx is not in D. A cycle or path
Q of a digraph D is ordinary if all arcs of Q are ordinary.

The following two lemmas due to Huang [541] imply the necessity part of
Theorem 2.10.4. A sufficiency proof can be found in [91, 541].

Lemma 2.10.2 Let D be a round digraph; then the following is true:

2.10 Locally Semicomplete Digraphs 61

(d)(a) (b) (c)

Figure 2.16 Some forbidden digraphs in Huang’s characterization.

(a) Every induced subdigraph of D is round.
(b) None of the digraphs in Figure 2.16 is an induced subdigraph of D.
(c) For each x ∈ V (D), the subdigraphs induced by N+(x) − N−(x) and

N−(x) −N+(x) are transitive tournaments.

Proof: Exercise 2.31. ��

Lemma 2.10.3 Let D be a round digraph. Then, for each vertex x of D, the
subdigraph induced by N+(x) ∩N−(x) contains no ordinary cycle.

Proof: Suppose the subdigraph induced by some N+(x)∩N−(x) contains an
ordinary cycle C. Let v1, v2, . . . , vn be a round labelling of D. Without loss
of generality, assume that x = v1. Then C must contain an arc vivj such that
vjvi �∈ A(D) and i > j. We have v1 ∈ N−(vi) but vj �∈ N−(vi), contradicting
the assumption that v1, v2, . . . , vn is a round labelling of D. ��

Theorem 2.10.4 (Huang) [541] A connected locally semicomplete digraph
D is round if and only if the following holds for each vertex x of D:

(a) N+(x)−N−(x) and N−(x)−N+(x) induce transitive tournaments and
(b) N+(x) ∩ N−(x) induces a (semicomplete) subdigraph containing no or-

dinary cycle. ��

The proof of sufficiency of the conditions of this theorem in [91, 541] can
be transformed into a polynomial time algorithm to decide whether a digraph
D is round and to find a round labelling of D (if D is round).

Corollary 2.10.5 (Bang-Jensen) [66] A connected local tournament D is
round if and only if, for each vertex x of D, N+(x) and N−(x) induce tran-
sitive tournaments. ��

2.10.2 Non-Strong Locally Semicomplete Digraphs

The most basic properties of strong components of a connected non-strong
locally semicomplete digraph are given in the following result, due to Bang-
Jensen.

62 2. Classes of Digraphs

Theorem 2.10.6 [66] Let D be a connected locally semicomplete digraph
that is not strong. Then the following holds for D.

(a) If A and B are distinct strong components of D with at least one arc
between them, then either A�→B or B �→A.

(b) If A and B are strong components of D, such that A�→B, then A and B
are semicomplete digraphs.

(c) The strong components of D can be ordered in a unique way D1, D2, . . . ,
Dp such that there are no arcs from Dj to Di for j > i, and Di dominates
Di+1 for i ∈ [p− 1].

Proof: Recall that a locally semicomplete digraph is a locally in-semicomplete
digraph as well as a locally out-semicomplete digraph. Part (a) of this theo-
rem follows immediately from Part (i) of Theorem 2.9.4 and its analogue for
locally out-semicomplete digraphs. Part (b) can be easily obtained from the
definition of a locally semicomplete digraph. Finally, Part (c) follows from the
fact proved in Theorem 2.9.4 (and its analogue for locally out-semicomplete
digraphs) that SC(D) has an out-branching and an in-branching. Indeed, a
digraph which is both out-branching and in-branching is merely a hamilto-
nian path. ��

A locally semicomplete digraph D is round decomposable if there exists
a round local tournament R on r ≥ 2 vertices such that D = R[S1, . . . , Sr],
where each Si is a strong semicomplete digraph. We call R[S1, . . . , Sr] a
round decomposition of D. The following consequence of Theorem 2.10.6,
whose proof is left as Exercise 2.32, shows that connected, but not strongly
connected locally semicomplete digraphs are round decomposable.

Corollary 2.10.7 [66] Every connected, but not strongly connected locally
semicomplete digraph D has a unique round decomposition R[D1, D2, . . . , Dp],
where D1, D2, . . . , Dp is the acyclic ordering of strong components of D and
R is the round local tournament containing no cycle which one obtains by
taking one vertex from each Di. ��

Now we describe another kind of decomposition theorem for locally semi-
complete digraphs due to Guo and Volkmann. The proof of this theorem is
left as Exercise 2.33. The statement of the theorem is illustrated in Figure
2.18.

Theorem 2.10.8 [440, 442] Let D be a connected locally semicomplete di-
graph that is not strong and let D1, . . . , Dp be the acyclic ordering of strong
components of D. Then D can be decomposed into r ≥ 2 induced subdigraphs
D′

1, D
′
2, . . . , D

′
r as follows:

• D′
1 = Dp, λ1 = p,

• λi+1 = min{ j | N+(Dj) ∩ V (D′
i) �= ∅}, for each i ∈ [r − 1],

2.10 Locally Semicomplete Digraphs 63

Figure 2.17 A round decomposable locally semicomplete digraph D. The big cir-
cles indicate the sets that correspond to the sets W1, W2, . . . , W6 in the decompo-
sition D = R[W1, W2, . . . , W6], where R is the round locally semicomplete digraph
one obtains by replacing each circled set by one vertex. Fat arcs indicate that there
is a complete domination in the direction shown.

• D′
i+1 = D〈V (Dλi+1)∪V (Dλi+1+1)∪· · ·∪V (Dλi−1)〉, for each i ∈ [r−1].

The subdigraphs D′
1, D

′
2, . . . , D

′
r satisfy the properties below:

(a) D′
i consists of some strong components of D and is semicomplete for each

i ∈ [r]
(b) D′

i+1 dominates the initial component of D′
i and there exists no arc from

D′
i to D′

i+1 for any i ∈ [r − 1]
(c) if r ≥ 3, then there is no arc between D′

i and D′
j for i, j satisfying |j−i| ≥

2. ��

For a connected, but not strongly connected locally semicomplete digraph
D, the unique sequence D′

1, D
′
2, . . . , D

′
r defined in Theorem 2.10.8 is called

the semicomplete decomposition of D.

2.10.3 Strong Round Decomposable Locally Semicomplete
Digraphs

In the previous subsection we saw that every connected non-strong locally
semicomplete digraph is round decomposable. This property does not hold
for strong locally semicomplete digraphs (see Lemma 2.10.14). The follow-
ing assertions, due to Bang-Jensen, Guo, Gutin and Volkmann, provide some
important properties concerning round decompositions of strong locally semi-
complete digraphs.

64 2. Classes of Digraphs

16

12

13

14

15

9

10

11

5

6

7

8

1

2

3

4

D′
5 D′

4 D′
3 D′

2

D′
1

Figure 2.18 The semicomplete decomposition of a non-strong locally semicomplete
digraph with 16 strong components (numbered 1-16 corresponding to the acyclic
ordering). Each circle indicates a strong component and each box indicates a semi-
complete subdigraph formed by consecutive components all of which dominate the
first component in the previous layer. For clarity arcs inside components as well
as some arcs between components inside a semicomplete subdigraph D′

i (all going
from top to bottom) are omitted.

Proposition 2.10.9 [80] Let R[H1, H2, . . . , Hα] be a round decomposition of
a strong locally semicomplete digraph D. Then, for every minimal separating
set S, there are two integers i and k ≥ 0 such that S = V (Hi)∪. . .∪V (Hi+k).

Proof: We will first prove that

if V (Hi) ∩ S �= ∅, then V (Hi) ⊆ S. (2.3)

Assume that there exists Hi such that V (Hi) ∩ S �= ∅ �= V (Hi) − S.
Using this assumption we shall prove that D−S is strong, contradicting the
definition of S.

Let s′ ∈ V (Hi) ∩ S. To show that D − S is strong, we consider a pair
of different vertices x and y of D − S and prove that D − S has an (x, y)-
path. Since S is a minimal separating set, D′ = D − (S − s′) is strong.
Consider a shortest (x, y)-path P in D′ among all (x, y)-paths using at most
two vertices from each Hj . The existence of such a path follows from the fact
that R is strong. Since the vertices of Hi in D′ have the same in- and out-
neighbourhoods, P contains at most one vertex from Hi, unless x, y ∈ V (Hi)
in which case P contains only these two vertices from Hi. If s′ is not on
P , we are done. Thus, assume that s′ is on P . Then, since P is shortest
possible, neither x nor y belongs to Hi. Now we can replace s′ with a vertex
in V (Hi) − S. Therefore, D − S has an (x, y)-path, so (2.3) is proved.

Suppose that S consists of disjoint sets T1, . . . , T� such that

Ti = V (Hji) ∪ . . . ∪ V (Hji+ki) and (V (Hji−1) ∪ V (Hji+ki+1)) ∩ S = ∅

2.10 Locally Semicomplete Digraphs 65

for i ∈ [�]. If � ≥ 2, then D − Ti is strong and hence it follows from the fact
that R is round that Hji−1 dominates Hji+ki+1 for every i ∈ [�]. Therefore,
D − S is strong; a contradiction. ��
Corollary 2.10.10 [80] If a locally semicomplete digraph D is round decom-
posable, then it has a unique round decomposition D = R[D1, D2, . . . , Dα].

Proof: Suppose that D has two different round decompositions: D =
R[D1, . . . , Dα] and D = R′[H1, . . . , Hβ].

By Corollary 2.10.7, we may assume that D is strong. By the definition
of a round decomposition, this implies that α, β ≥ 3. Let S be a minimal
separating set of D. By Proposition 2.10.9, we may assume without loss of
generality that S = V (D1 ∪ . . . ∪ Di) = V (H1 ∪ . . . ∪ Hj) for some i and j.
Since D − S is non-strong, by Corollary 2.10.7, Di+1 = Hj+1,. . . , Dα = Hβ

(in particular, α − i = β − j). Now it suffices to prove that

D1 = H1,. . . ,Di = Hj (in particular, i = j). (2.4)

If D〈S〉 is non-strong, then (2.4) follows by Corollary 2.10.7. If D〈S〉 is
strong, then first consider the case α = 3. Then S = V (D1), because D−S is
non-strong and α = 3. Assuming that j > 1, we obtain that the subdigraph of
D induced by S has a strong round decomposition. This contradicts the fact
that R′ is a local tournament, since the in-neighbourhood of the vertex r′j+1

in R′ contains a cycle (where r′p corresponds to Hp, p = 1, . . . , β). Therefore,
(2.4) is true for α = 3. If α > 3, then we can find a separating set in D〈S〉
and conclude by induction that (2.4) holds. ��

Proposition 2.10.9 allows us to construct a polynomial algorithm for
checking whether a locally semicomplete digraph is round decomposable.

Proposition 2.10.11 [80] There exists a polynomial algorithm to decide
whether a given locally semicomplete digraph D has a round decomposition
and to find this decomposition if it exists.

Proof: We only give a sketch of such an algorithm. Find a minimal separating
set S in D starting with S′ = N+(x) for a vertex x ∈ V (D) and deleting
vertices from S′ until a minimal separating set is obtained. Construct the
strong components of D〈S〉 and D−S and label these D1, D2, . . . , Dα, where
D1, . . . , Dp, p ≥ 1, form an acyclic ordering of the strong components of
D〈S〉 and Dp+1, . . . , Dα form an acyclic ordering of the strong components
of D − S. For every pair Di and Dj (1 ≤ i �= j ≤ α), we check the following:
if there exist some arcs between Di and Dj , then either Di �→Dj or Dj �→Di.
If we find a pair for which the above condition is false, then D is not round
decomposable. Otherwise, we form a digraph R = D〈{x1, x2, . . . , xα}〉, where
xi ∈ V (Di) for each i ∈ [α]. We check whether R is round using Corollary
2.10.5. If R is not round, then D is not round decomposable. Otherwise, D
is round decomposable and D = R[D1, . . . , Dα].

It is not difficult to verify that our algorithm is correct and polynomial.
��

66 2. Classes of Digraphs

2.10.4 Classification of Locally Semicomplete Digraphs

We start this subsection with a lemma on minimal separating sets of locally
semicomplete digraphs. It will be shown in Lemma 5.8.4 that for a strong
locally semicomplete digraph D and a minimal separating set S in D, we
have that D − S is connected.

Lemma 2.10.12 [80] If a strong locally semicomplete digraph D is not semi-
complete, then there exists a minimal separating set S ⊂ V (D) such that
D − S is not semicomplete. Furthermore, if D1, D2, . . . , Dp is the acyclic
ordering of the strong components of D and D′

1, D
′
2, . . . , D

′
r is the semicom-

plete decomposition of D−S, then r ≥ 3, D〈S〉 is semicomplete and we have
Dp �→S �→D1.

Proof: Suppose D − S is semicomplete for every minimal separating set S.
Then D − S is semicomplete for all separating sets S. Hence D is semicom-
plete, because any pair of non-adjacent vertices can be separated by some
separating set S. This proves the first claim of the lemma.

Let S be a minimal separating set such that D − S is not semicomplete.
Clearly, if r = 2 (in Theorem 2.10.8), then D − S is semicomplete. Thus,
r ≥ 3. By the minimality of S every vertex s ∈ S dominates a vertex in D1

and is dominated by a vertex in Dp. Thus if some x ∈ Dp was dominated by
s ∈ S, then, by the definition of a locally semicomplete digraph, we would
have D1 �→Dp, contradicting the fact that r ≥ 3. Hence (using that Dp is
strongly connected) we get that Dp �→S and similarly S �→D1. From the last
observation it follows that S is semicomplete. ��

Now we consider strongly connected locally semicomplete digraphs which
are not semicomplete and not round decomposable. We first show that the
semicomplete decomposition of D−S has exactly three components, whenever
S is a minimal separating set such that D − S is not semicomplete.

Lemma 2.10.13 [80] Let D be a strong locally semicomplete digraph which
is not semicomplete. Either D is round decomposable, or D has a minimal
separating set S such that the semicomplete decomposition of D − S has
exactly three components D′

1, D
′
2, D

′
3.

Proof: By Lemma 2.10.12, D has a minimal separating set S such that the
semicomplete decomposition of D − S has at least three components.

Assume now that the semicomplete decomposition of D − S has more
than three components D′

1, . . . , D
′
r (r ≥ 4). Let D1, D2, . . . , Dp be the acyclic

ordering of strong components of D − S. According to Theorem 2.10.8 (c),
there is no arc between D′

i and D′
j if |i− j| ≥ 2. It follows from the definition

of a locally semicomplete digraph that

N+(D′
i) ∩ S = ∅ for i ≥ 3 and N−(D′

j) ∩ S = ∅ for j ≤ r − 2. (2.5)

2.10 Locally Semicomplete Digraphs 67

By Lemma 2.10.12, D〈S〉 is semicomplete and S = N+(Dp). Let Dp+1, . . . ,
Dp+q be the acyclic ordering of the strong components of D〈S〉. Using (2.5)
and the assumption r ≥ 4, it is easy to check that if there is an arc be-
tween Di and Dj (1 ≤ i �= j ≤ p + q), then Di �→Dj or Dj �→Di. Let
R = D〈{x1, x2, . . . , xp+q}〉 with xi ∈ V (Di) for each i ∈ [p + q]. Now it
suffices to prove that R is a round local tournament.

Since R is a subdigraph of D and no pair Di, Dj induces a strong di-
graph, we see that R is a local tournament. By Corollary 2.10.7 each of
the subdigraphs R′ = R − {xp+1, . . . , xp+q}, R′′ = R − V (R) ∩ V (D′

r−1)
and R′′′ = R − V (R) ∩ V (D′

2) is round. Since N+(v) ∩ V (R) (as well as
N−(v) ∩ V (R)) is completely contained in one of the sets V (R′), V (R′′) and
V (R′′′) for every v ∈ V (R), we see that R is round.

Thus if r ≥ 4, then D is round decomposable. ��
Our next result is a characterization of locally semicomplete digraphs

which are not semicomplete and not round decomposable. This character-
ization was proved for the first time by Guo in [432]. A weaker form was
obtained earlier by Bang-Jensen in [71]. Here we give the proof of this result
from [80].

Lemma 2.10.14 Let D be a strong locally semicomplete digraph which is not
semicomplete. Then D is not round decomposable if and only if the following
conditions are satisfied:

(a) There is a minimal separating set S such that D − S is not semicom-
plete and for each such S, D〈S〉 is semicomplete and the semicomplete
decomposition of D − S has exactly three components D′

1, D
′
2, D

′
3;

(b) There are integers α, β, μ, ν with λ2 ≤ α ≤ β ≤ p − 1 and p + 1 ≤ μ ≤
ν ≤ p + q such that

N−(Dα) ∩ V (Dμ) �= ∅ and N+(Dα) ∩ V (Dν) �= ∅,

or N−(Dμ) ∩ V (Dα) �= ∅ and N+(Dμ) ∩ V (Dβ) �= ∅,

where D1, D2, . . . , Dp and Dp+1, . . . , Dp+q are the acyclic orderings of
the strong components of D − S and D〈S〉, respectively, and Dλ2 is the
initial component of D′

2.

Proof: If D is round decomposable and satisfies (a), then we must have D =
R[D1, D2, . . . , Dp+q], where R is the digraph obtained from D by contracting
each Di into one vertex. This follows from Corollary 2.10.7 and the fact that
each of the digraphs D − S and D − V (D′

2) has a round decomposition that
agrees with this structure. Now it is easy to see that D does not satisfy (b).

Suppose now that D is not round decomposable. By Lemmas 2.10.12 and
2.10.13, D satisfies (a), so we only have to prove that it also satisfies (b).

If there are no arcs from S to D′
2, then it is easy to see that D has a

round decomposition. If there exist components Dp+i and Dj with V (Dj) ⊆

68 2. Classes of Digraphs

V (D′
2), such that there are arcs in both directions between Dp+i and Dj ,

then D satisfies (b). So we can assume that for every pair of sets from the
collection D1, D2, . . . , Dp+q, either there are no arcs between these sets, or
one set completely dominates the other. Then, by Corollary 2.10.5, D is
round decomposable, with round decomposition D = R[D1, D2, . . . , Dp+q] as
above, unless we have three subdigraphs X, Y, Z ∈ {D1, D2, . . . , Dp+q} such
that X �→Y �→Z �→X and there exists a subdigraph W ∈ {D1, D2, . . . , Dp+q}−
{X, Y, Z} such that either W �→X, Y, Z or X, Y, Z �→W .

One of the subdigraphs X, Y, Z, say without loss of generality X, is a
strong component of D〈S〉. If we have V (Y) ⊆ S also, then V (Z) ⊆ V (D′

2)
and W is either in D〈S〉 or in D′

2 (there are four possible positions for W
satisfying that either W �→X, Y, Z or X, Y, Z �→W). In each of these cases
it is easy to see that D satisfies (b). For example, if W is in D〈S〉 and
W �→X, Y, Z, then any arc from W to Z and from Z to X satisfies the first part
of (b). The proof is similar when V (Y) ⊆ V (D′

3). Hence we can assume that
V (Y) ⊆ V (D′

2). If Z = Dp, then W must be either in D〈S〉 and X, Y, Z �→W ,
or V (W) ⊆ V (D′

2) and W �→X, Y, Z (which means that W = Di and Y = Dj

for some λ2 ≤ i < j < p). In both cases it is easy to see that D satisfies (b).
The last case V (Y), V (Z) ⊆ V (D′

2) can be treated similarly. ��
We can now state a classification of locally semicomplete digraphs.

Theorem 2.10.15 (Bang-Jensen, Guo, Gutin, Volkmann) [80] Let D
be a connected locally semicomplete digraph. Then exactly one of the following
possibilities holds.

(a) D is round decomposable with a unique round decomposition given by
D = R[D1, D2, . . . , Dα], where R is a round local tournament on α ≥ 2
vertices and Di is a strong semicomplete digraph for each i ∈ [α];

(b) D is not round decomposable and not semicomplete and it has the struc-
ture as described in Lemma 2.10.14;

(c) D is a semicomplete digraph which is not round decomposable. ��

We finish this section with the following useful proposition, whose proof
is left as Exercise 2.36.

Proposition 2.10.16 [80] Let D be a strong non-round decomposable locally
semicomplete digraph and let S be a minimal separating set of D such that
D − S is not semicomplete. Let D1, . . . , Dp be the acyclic ordering of the
strong components of D − S and Dp+1, . . . , Dp+q be the acyclic ordering of
the strong components of D〈S〉. Suppose that there is an arc s → v from S
to D′

2 with s ∈ V (Di) and v ∈ V (Dj), then

Di∪Di+1∪. . .∪Dp+q �→D′
3 �→Dλ2∪. . .∪Dj . ��

2.11 Totally Φ-Decomposable Digraphs 69

2.11 Totally Φ-Decomposable Digraphs

Theorem 2.7.5 is a very important starting point for construction of poly-
nomial algorithms for hamiltonian paths and cycles in quasi-transitive di-
graphs (see Chapter 6) and solving more general problems in this class of
digraphs. This theorem shows that quasi-transitive digraphs are totally Φ-
decomposable, where Φ is the union of extended semicomplete and transitive
digraphs. Since both extended semicomplete digraphs and transitive digraphs
are special subclasses of much wider classes of digraphs, it is natural to study
totally Φ-decomposable digraphs, where Φ is a much more general class of
digraphs than the union of extended semicomplete and transitive digraphs.
However, our choice of candidates for the class Φ should be restricted in such
a way that we can still construct polynomial algorithms for some important
problems such as the hamiltonian cycle problem using properties of digraphs
in Φ.

This idea was first used by Bang-Jensen and Gutin [86] to introduce the
following three classes of digraphs:

(a) Φ0 is the union of all semicomplete multipartite digraphs, all connected
extended locally semicomplete digraphs and all acyclic digraphs,

(b) Φ1 is the union of all semicomplete bipartite digraphs, all connected ex-
tended locally semicomplete digraphs and all acyclic digraphs, and

(c) Φ2 is the union of all connected extended locally semicomplete digraphs
and all acyclic digraphs.

The aim of this section is to show that totally Φi-decomposable digraphs
can be recognized in polynomial time for i = 0, 1, 2. (If these recognition
problems were not polynomial, then the study of the properties of totally
Φi-decomposable digraphs would be of much less interest.)

A set Φ of digraphs is hereditary if D ∈ Φ implies that every induced
subdigraph of D is in Φ. Observe that every Φi, i = 0, 1, 2, is a hereditary
set.

Lemma 2.11.1 Let Φ be a hereditary set of digraphs. If a given digraph D
is totally Φ-decomposable, then every induced subdigraph D′ of D is totally
Φ-decomposable. In other words, total Φ-decomposability is a hereditary prop-
erty.

Proof: By induction on the number of vertices of D. The claim is obviously
true if D has less than 3 vertices.

If D ∈ Φ, then our claim follows from the fact that Φ is hereditary. So
we may assume that D = R[H1, . . . , Hr], r ≥ 2, where R ∈ Φ and each of
H1, . . . , Hr is totally Φ-decomposable.

Let D′ be an induced subdigraph of D. If there is an index i so that
V (D′) ⊂ V (Hi), then D′ is totally Φ-decomposable by induction. Otherwise,
D′ = R′[T1, . . . , Tr′], where r′ ≥ 2 and R′ ∈ Φ, is the subdigraph of R

70 2. Classes of Digraphs

induced by those vertices i of R, whose Hi has a non-empty intersection with
V (D′) and the Tj ’s are the corresponding Hi’s restricted to the vertices of
D′. Observe that R′ ∈ Φ, since Φ is hereditary. Moreover, by induction, each
Tj is totally Φ-decomposable, hence so is D′. ��

Lemma 2.11.2 There exists an O(mn + n2)-algorithm for checking if a di-
graph D with n vertices and m arcs has a decomposition D = R[H1, . . . , Hr],
r ≥ 2, where Hi is an arbitrary digraph and the digraph R is either acyclic
or semicomplete multipartite or semicomplete bipartite or connected extended
locally semicomplete.

Proof: If D is not connected and D1,. . . ,Dc are its components, then D =
Kc[D1, . . . , Dc]. Hence, in the rest of the proof we may assume that D is
connected. We consider the different possibilities for R we are interested in,
one by one.

Check whether R can be acyclic: First find the strong components
D1, . . . , Dk of D. If k = 1, then R cannot be acyclic and we can stop verifying
that possibility. So suppose k ≥ 2.

If we find two strong components Di and Dj such that there is an arc
between them but there are non-adjacent vertices x ∈ Di and y ∈ Dj , then
we replace Di and Dj by their union. This is justified because Di and Dj

cannot be in different sets Hs and Ht in a possible decomposition. Repeat
this step but now check also the possibility for a pair D′ and D′′ of new
‘components’ to have arcs between D′ and D′′ in different directions. In the
last case we also replace D′ and D′′ by their union. Continue this procedure
until all remaining sets satisfy that either there is no arc between them,
or there are all possible arcs from one to the other. Let V1, . . . , Vr, r ≥ 1,
denote the distinct vertex sets of the obtained ‘components’. If r = 1, then
we cannot find an acyclic graph as R. Otherwise, D = R[V1, . . . , Vr], r ≥ 2,
and we obtain R by taking one vertex from each Vi.

Check whether R can be a semicomplete multipartite digraph: Find
the connected components G1, . . . , Gc, c ≥ 1, of the complement of the un-
derlying graph UG(D) of D. If c = 1, then R cannot be semicomplete mul-
tipartite. So we may assume that c ≥ 2 below. Let Gj be the subgraph of
UG(D) induced by the vertices Vj of the jth component Gj of the comple-
ment of UG(D). Furthermore, let Gj1, . . . , Gjnj , nj ≥ 1, be the connected
components of Gj . Denote Vjk = V (Gjk).

Starting with the collection W = {V1, . . . , Vc}, we identify two of the sets
Vi and Vj if there exist Via and Vjb a ∈ [ni], b ∈ [nj] such that we have none
of the possibilities Via �→Vjb, Vjb �→Via or Via→Vjb and Vjb→Via. Clearly the
obtained set Vi ∪ Vj induces a connected subdigraph of D. Let Q1, . . . , Qr

denote the sets obtained, by repeating this process until no more changes
occur. If r = 1, then R cannot be semicomplete multipartite. Otherwise, R
is the semicomplete multipartite digraph obtained by set-contracting each
connected component of Qi into a vertex.

2.12 Planar Digraphs 71

Checking whether R can be a semicomplete bipartite digraph or a con-
nected extended locally semicomplete digraph is left as Exercise 2.39.

It is not difficult to see that, for every R being either acyclic or semicom-
plete multipartite, the procedures above can be realized as an O(nm + n2)-
algorithm. The same complexity is proved for semicomplete bipartite digraphs
and extended locally semicomplete digraphs in Exercise 2.39. ��

Theorem 2.11.3 [86] There exists an O(n2m+n3)-algorithm for checking if
a digraph with n vertices and m arcs is totally Φi-decomposable for i = 0, 1, 2.

Proof: We describe a recursive algorithm to check Φi-decomposability. We
have shown in Lemma 2.11.2 how to verify whether D = R[H1, . . . , Hr],
r ≥ 2, where R is acyclic, semicomplete multipartite, semicomplete bipartite
or connected extended locally semicomplete. Whenever we find an R that
could be used, the algorithm checks total Φi-decomposability of H1, . . . , Hr

in recursive calls.
Notice how the algorithm exploits the fact that total Φi-decomposability

is a hereditary property (see Lemma 2.11.1): if some R is found appropriate,
then R can be used, because if D is totally Φi-decomposable, then each of
H1, . . . , Hr (being an induced subdigraph of D) must also be totally Φi-
decomposable. Since there are O(n) recursive calls, the complexity of the
algorithm is O(n2m + n3). ��

2.12 Planar Digraphs

We now discuss planar (di)graphs, i.e., (di)graphs that can be drawn without
crossings between (arcs) edges (except at endpoints). Clearly this property
does not depend on the orientation of the arcs and hence we can ignore the
orientation below when we give a formal definition. Furthermore, most of the
results and definitions in this section are for undirected graphs, but are valid
also for planar digraphs as far as their underlying graphs are concerned.

An undirected graph G = (V, E) is planar if there exists a mapping f
which maps G to R

2 in the following way:

• Each vertex is mapped to a point in R
2 and distinct vertices are mapped

to distinct points.
• Each edge uv ∈ E is mapped to a simple (that is, not self-intersecting)

curve Cuv from f(u) to f(v) and no two curves corresponding to distinct
edges intersect, except possibly at their endpoints.

For algorithmic purposes as well as for arguing about planar graphs, it is
inconvenient to allow arbitrary curves in the embeddings of planar graphs.
A polygonal curve from u to v is a piecewise linear curve consisting of
finitely many lines such that the first line starts at u, the last line ends at v
and each other line starts at the last point of the previous line. Since we can

72 2. Classes of Digraphs

approximate any simple curve arbitrarily well by a polygonal curve we may
assume that the curves used in the embedding are always polygonal curves.

A planar graph G may have many different embeddings in the plane (each
embedding corresponds to a mapping f as above). Sometimes we wish to refer
to properties of a specific embedding f of G. In this case we say that G is
plane (that is, already embedded) with planar embedding f . A plane graph G
partitions R

2 into a finite number of (topologically) connected regions called
faces. Precisely one of these faces is unbounded and we call this the outer
face. It is easy to see that, for any fixed face F of G, we may re-embed G in
R

2 in such a way that F becomes the outer face. The boundary of a face F is
denoted by bd(F) and we normally describe a face by listing the vertices in
clockwise order around the face (for the unbounded face this corresponds to
listing the vertices on the boundary in the anti-clockwise order). See Figure
2.19 for an illustration of the definitions.

1

2

3

4

5

6

(a) (b)

1

2

3

4

5

6

1

2

3

4

5

6

(c)

Figure 2.19 (a) shows a non-planar embedding of a graph H; (b) shows a planar
embedding of H; (c) shows a planar embedding of H where all curves are polygonal.
With respect to the embedding in (c), the faces are 12341, 14561, 16321 and 36543.
The outer face is 36543.

Observe that if we add the edge 25 to the graph H in Figure 2.19, then
the resulting graph, which is isomorphic to K3,3, is no longer planar. In fact,
planar graphs have a famous characterization, due to Kuratowski:

Theorem 2.12.1 (Kuratowski’s theorem) [632] A graph has a planar
embedding if and only if it does not contain a subdivision3 of K5 or K3,3. ��

Based on this it is possible to show that planar graphs (and hence also
planar digraphs) can be recognized efficiently. In fact, Hopcroft and Tarjan

3 A subdivision H ′ of a graph H is any graph that can be obtained from H by
replacing each edge by a path all of whose internal vertices have degree 2 in H ′.

2.13 Digraphs of Bounded Width 73

[534] showed that it can be done in linear time and if the graph is planar,
one can find a planar embedding in the same time.

The following relation between the number of vertices, edges and faces in
a plane graph, known as Euler’s formula, is easy to prove by induction on
the number of faces.

Theorem 2.12.2 If G is a connected plane graph on n vertices and m edges,
then n − m + φ = 2, where φ denotes the number of faces in the embedding
on G. In particular, the number of faces is the same in every embedding of
G. ��

We leave it to the reader to derive the following easy consequence of
Theorem 2.12.2 (see Exercise 2.46):

Corollary 2.12.3 For every planar graph on n ≥ 3 vertices and m edges we
have m ≤ 3n − 6. ��

If we allow multiple edges, then we cannot bound the number of edges
as we did above. However, for planar digraphs we have the following easy
consequence:

Corollary 2.12.4 No planar digraph on n ≥ 3 vertices has more than 6n−12
arcs. ��

We finish this section by a conjecture of Neumann-Lara first posed in 1982
[724] that links planar digraphs with acyclic digraphs.

Conjecture 2.12.5 The vertices of every planar digraph can be partitioned
into two sets such that each set induces an acyclic digraph.

2.13 Digraphs of Bounded Width

The tree-width is one of the most important parameters in the area of undi-
rected graphs [573]. It is a cornerstone of the Graph Minors Theory, it is used
to prove theorems in structural graph theory, and it has many algorithmic
applications due to the fact that many NP-hard problems can be solved in
linear time when restricted to graphs of bounded tree-width [573]. Naturally,
researchers tried to extend the notion of tree-width to digraphs. In particu-
lar, Johnson, Robertson, Seymour and Thomas [573] introduced and studied
the notion of the directed tree-width, and Berwanger, Dawar, Hunter and
Kreutzer [154] and Obdržálek [731] came up with the notion of DAG-width.
There are several other directed width parameters, for example, Kelly-with
introduced by Hunter and Kreutzer [544].

While the authors of [154, 544, 573, 731] managed to obtain some ‘positive’
algorithmic results on digraphs of bounded directed tree-width, DAG-width

74 2. Classes of Digraphs

and Kelly-width similar to those on undirected graphs with bounded tree-
width, there are several ‘negative’ complexity results obtained by Dankel-
mann, Gutin and Kim [241] and Kreutzer and Ordyniak [626] indicating
that the directed width parameters are of somewhat lesser interest than the
tree-width.

In the first subsection of this section we consider digraphs of bounded
tree-width and, in the second subsection, we study digraphs in which directed
width parameters are bounded.

2.13.1 Digraphs of Bounded Tree-Width

To illustrate the usefulness of tree-width, we will show that one can find, in
a linear time, a minimum size kernel4 in a digraph whose underlying graph
is bounded by a constant tree-width. This result allows us to prove that, in
a planar digraph D of order n, one can check, in polynomial time, whether
D has a kernel of size O(log2 n), and if D has such a kernel, then to find one
of minimal size.

A non-trivial use of the tree-width is given by Alon, Fomin, Gutin, Kriv-
elevich and Saurabh [21, 22] who proved fixed-parameter tractability of the
problem of verifying whether a digraph contains, as a subdigraph, an out-tree
with at least k leaves, i.e., vertices of in-degree zero (for the definition of fixed-
parameter tractability, see Section 18.4). A refinement of the approach in [21]
allowed Bonsma and Dorn [173, 174] to prove fixed-parameter tractability of
the problem of verifying whether a digraph has an out-branching with at
least k leaves. Another application of tree-width can be found in [472], where
Gutin, Razgon and Kim proved that the problem of checking whether a di-
graph has an out-branching with at least k non-leaves is also fixed-parameter
tractable.

A tree decomposition of an (undirected) graph G is a pair (S, T) where
T is a tree whose vertices we will call nodes and S = {Si : i ∈ V (T)} is a
collection of subsets of V (G) (called bags) such that

1.
⋃

i∈V (T) Si = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (T) such that v, w ∈ Si,

and
3. for each v ∈ V (G) the set of nodes {i : v ∈ Si} forms a subtree of T .

The width of a tree decomposition ({Si : i ∈ V (T)}, T) is defined as the
number maxi∈V (T){|Si| − 1}. The tree-width of a graph G (tw(G)) is the
minimum width over all tree decompositions of G. The tree-width of a
digraph D (tw(D)) is the tree-width of its underlying graph.

It is not difficult to see that a connected digraph D is of tree-width one
if and only if D is a biorientation of a tree (Exercise 2.47). An undirected
4 A set S of vertices of a digraph D is a kernel if S is an independent set and

for each x ∈ V (D)− S there is an out-neighbour in S. For more information on
kernels, see Section 3.8.

2.13 Digraphs of Bounded Width 75

graph G is called series-parallel if there is an ASP digraph D such that
G = UG(D). It is well-known (see, e.g., [253] by de Fluiter and Bodlaender)
that an undirected graph G has tree-width at most two if and only if each
block of G is series-parallel (a block of a graph G is a maximal connected
subgraph H of G such that H − x is connected for every x ∈ V (H)).

There are several characterizations of undirected graphs of tree-width at
most k [601]. We will describe one of the most intuitive such characterizations.
A graph G is chordal, if every cycle in G of length at least four has a chord,
i.e., there is an edge connecting two non-consecutive vertices in the cycle. A
triangulation of a graph G is a spanning supergraph of G which is a chordal
graph.

Theorem 2.13.1 Let G be a graph with more than k vertices. The graph G
is of tree-width at most k if and only if G has a triangulation whose maximum
clique has at most k + 1 vertices. ��

To facilitate our description below we make use of a nice tree decom-
position (see, e.g., [601] by Kloks). In a nice tree decomposition, we have
a binary rooted tree T , i.e., T is a rooted tree such that every node has at
most two children. The nodes of T are of four types:

• An insert node i. The node i in T has only one child j and there is a vertex
x ∈ V not in Sj such that Si = Sj ∪ {x}.

• A forget node i. The node i in T has only one child j and there is a vertex
x ∈ V not in Si such that Sj = Si ∪ {x}.

• A join node i has two children p and q. The bags Si, Sp and Sq are exactly
the same.

• A leaf node i is simply a leaf of T .

It is not hard to transform a tree decomposition of G into a nice tree
decomposition. In fact, the following holds.

Lemma 2.13.2 [601] Given a tree decomposition of a graph G with n ver-
tices that has width k and O(n) nodes, we can find a nice tree decomposition
of G that also has width k and O(n) nodes in time O(n). ��

We will use Lemma 2.13.2 in the following result by Gutin, Kloks, Lee
and Yeo [466].

Theorem 2.13.3 Let D be a digraph of order n. Let the underlying graph
G of D have a tree decomposition with O(n) nodes and of width at most t.
Then, in O(n4t) time, we can either find a minimum size kernel in D or
determine that D has no kernel.

Proof: By Lemma 2.13.2, G has a nice tree decomposition with O(n) nodes
and of width at most t. Let (T,S) be such a nice tree decomposition of G.
Let S1, S2, . . . , Sr be the bags of the tree decomposition (i.e., the nodes of T

76 2. Classes of Digraphs

are 1, 2, . . . , r). Let root denote the root node of T . Recall that every vertex
(and arc) in D lies in at least one of the bags.

Let Yi denote the union of the bags Sj of the subtree of T with root
node i. For every i, consider a partition (Ki, MCi, DCi) of Si (the three
sets of a partition are disjoint and every vertex of Si is in one of the sets). A
(Ki, MCi, DCi)-kernel is an independent set Q in D such that Ki ⊆ Q ⊆ Yi,
(DCi ∪ MCi) ∩ Q = ∅ and every vertex in Yi − DCi either lies in Q or has
an out-neighbor in Q5.

The vertices in DCi may have an out-neighbor in Q, or not. Since
(DCi ∪ MCi) ∩ Q = ∅, every vertex in MCi has an out-neighbor in Q.
We define κi(Ki, MCi, DCi) as the minimal size of a (Ki, MCi, DCi)-kernel,
if one exists. If it does not exist, then κi(Ki, MCi, DCi) = ∞.

If we can compute κi(Ki, MCi, DCi) for all partitions (Ki, MCi, DCi)
and all i, then

μ = min{κroot(K, Sroot − K, ∅) : K ⊆ Sroot} (2.6)

gives us the size of a minimum size kernel in D.
Let i be a node of T . We show how to compute, in time O(4t), all pos-

sible κi(Ki, MCi, DCi). In fact we can also compute the actual minimum
(Ki, MCi, DCi)-kernels, for all possible partitions (Ki, MCi, DCi) in O(4t)
time, but we will leave the details of this to the reader. This will imply the
desired complexity above as T has O(n) vertices. We consider the cases when
i is a leaf, i has one child and i has two children, separately. We assume that
if i does have some children, then all κi’s are known for these children. We
will for each step argue that we find the correct values.

Case 1: i is a leaf. There are O(3|Si|) distinct partitions (Ki, MCi, DCi),
and we can easily find all of these in O(|Si|3|Si|) time. For each partition
(Ki, MCi, DCi) we can check whether Ki is an independent set and every
vertex in MCi has an out-neighbor in Ki in time O(|Si|2). If the outcomes
of both checks are positive, we have κi(Ki, MCi, DCi) = |Ki|. Otherwise, we
have κi(Ki, MCi, DCi) = ∞. This gives us a time complexity of O(|Si|3|Si|+
|Si|23|Si|) ⊆ O(4|Si|) ⊆ O(4t) (recall that |Si| ≤ t + 1).

Case 2: i has one child. Let j be the child of i in T . By the definition
of a nice tree decomposition, Sj and Si are identical, except for one vertex,
say x, which lies in either Si or Sj . We consider the following cases.

If x ∈ Ki, then if x is adjacent to a vertex in Ki, then κi(Ki, MCi, DCi) =
∞. Otherwise set DCj = DCi ∪ N−(x), MCj = MCi − N−(x) and Kj =
Ki − x. Clearly κi(Ki, MCi, DCi) = 1 + κj(Kj , MCj , DCj) now holds.

If x ∈ MCi and x has no out-neighbor in Ki, then κi(Ki, MCi, DCi) = ∞.
If x ∈ DCi or x ∈ MCi and x has an out-neighbor in Ki, then we have

κi(Ki, MCi, DCi) = κj(Ki, MCi − x, DCi − x).
If x ∈ Sj , then we have the following:

5 MC and DC stand for Must Cover and Don’t Care if a vertex from the set has
an out-neighbor in the kernel.

2.13 Digraphs of Bounded Width 77

κi(Ki, MCi, DCi) = min{κj(Ki∪{x}, MCi, DCi), κj(Ki, MCi∪{x}, DCi)}.

As all the above cases can be considered in O(|Si|) time, we get the time
complexity O(|Si|3|Si|) = O(4t) for computing κi’s for all possible partitions.

Case 3: i has two children. Let j and l be the two children, and re-
call that Si = Sj = Sl. It is not difficult to see that κi(Ki, MCi, DCi) is
equal to the minimum value of κj(Ki, W, MCi ∪ DCi − W) + κl(Ki, MCi −
W, DCi ∪ W) − |Ki|, over all W ⊆ MCi. The above can be done in
O(2|MCi|) time and there are

(|Si|
m

)
2|Si|−m partitions (Ki, MCi, DCi) with

|MCi| = m. Thus, we can compute κi’s for all possible partitions of Si in
time O(

∑|Si|
m=0 2m

(|Si|
m

)
2|Si|−m) = O(4t).

Since each κi(Ki, MCi, DCi) is computed correctly above, we note that
our algorithm will return the correct value of μ in (2.6). If we remem-
ber a minimum (Ki, MCi, DCi)-kernel for every possible i and partition
(Ki, MCi, DCi), then our algorithm can in fact return the minimum-sized
kernel, and not only its size. Certainly, if μ = ∞, D has no kernel. ��

A set S of vertices of an undirected graph G is called dominating if for
every x ∈ V (G)\S there is a vertex s ∈ S adjacent to x. The following result
was obtained by Fomin and Thilikos [328].

Theorem 2.13.4 Let G be a planar graph with n vertices. There is an
O(n4)-time algorithm that either constructs a tree decomposition of G with
O(n) nodes and of width at most 9.55

√
k, or determines that G has no dom-

inating set of size at most k. ��

Observe that every kernel in a digraph D is a dominating set in UG(D).
This observation and Theorems 2.13.3 and 2.13.4 imply the following:

Theorem 2.13.5 [466] Let D be a planar digraph of order n. There is an
O(n219.1

√
k + n4)-time algorithm that checks whether D has a kernel of size

at most k. Moreover, the algorithm finds a minimum size kernel in D, if D
has a kernel of size at most k. ��

Theorem 2.13.5 implies that the problem to verify whether a planar graph
has a kernel with at most k vertices is fixed-parameter tractable.

Corollary 2.13.6 [466] Let D be a planar digraph of order n. In polynomial
time, one can check whether D has a kernel of size O(log2 n), and if D has
such a kernel, then find one of minimal size. ��

We conclude this subsection by briefly considering the complexity of
checking whether tw(G) ≤ k for a graph G. Unfortunately, the problem is
NP-complete, but it is fixed-parameter tractable, and, provided, k is fixed,
there is a linear time algorithm for the problem (see [161, 601]).

78 2. Classes of Digraphs

2.13.2 Digraphs of Bounded Directed Widths

In this subsection, we consider three of the most studied directed width pa-
rameters: DAG-widths, directed path-widths and directed tree-width. We will
start from the notion of DAG-width rather than that of directed tree-width
as the former seems easier to understand than the latter.

A DAG-decomposition (DAGD) of a digraph D is a pair (H, χ) where
H is an acyclic digraph and χ = {Wh : h ∈ V (H)} is a family of subsets
of V (D) satisfying the following three properties: (i) V (D) =

⋃
h∈V (H) Wh,

(ii) for all h, h′, h′′ ∈ V (H), if h′ lies on a directed path from h to h′′, then
Wh∩Wh′′ ⊆ Wh′ , and (iii) if (u, v) ∈ A(D), then there exist h1, h2 ∈ V (H) (it
is possible that h1 = h2) such that u ∈ Wh1 , v ∈ Wh2 and there is a directed
(h1, h2)-path in H. The width of a DAGD (H, χ) is maxh∈V (H) |Wh| − 1.
The DAG-width of a digraph D (dagw(D)) is the minimum width over all
possible DAGDs of D.

A directed path decomposition (DPD) is a special case of DAGD
when H is a directed path. The directed path-width of a digraph D
(dpw(D)) is defined as the DAG-width above, but DAGDs are replaced by
DPDs.

The following notion of vertex separation allows one to evaluate the di-
rected path-width of a digraph without constructing any DPD. Let D be
a digraph and let π = (v1, v2, . . . , vn) be an ordering of V (D). We define
Vj = {vi : 1 ≤ j ≤ i} and ∂Vj = {vi ∈ Vj : (x, vi) ∈ A(D) for some
x ∈ V (D) \ Vj}. With the vertex separation of D with respect to π
given as vsπ(D) = maxj |∂Vj |, the vertex separation of D is defined as
vs(D) = min{vsπ(D) : π is an ordering of V (D)}.

It is well-known that, for undirected graphs, the path-width equals to
the vertex separation (see Kirousis and Papadimitriou [597]). We extend this
result to digraphs.

Theorem 2.13.7 For any digraph D, vs(D) = dpw(D).

Proof: Let π = (v1, v2, . . . , vn) be an ordering of V (D) and suppose vsπ(D) =
k. We will prove that dpw(D) ≤ k. Set Wi = {vi} ∪ ∂Vi−1 for i ≥ 2 and
W1 = {v1}. We claim that (12 . . . n, χ), where χ = {W1, W2, . . . , Wn}, is a
DPD of width k.

Obviously the property (i) of DPD is satisfied. To check the property
(ii), let us choose an arbitrary vertex vi ∈ V (G) and see whether the sets
Wj containing vi appear in a row. By the construction of Wj ’s, the vertex
vi appears in the set Wi and does not appear in any Wj with j < i. If
there is no backward arc entering vi, this set is the only one containing vi

and there is nothing to prove. Otherwise let (vi′ , vi) ∈ A(D) is a backward
arc and let i′ be the maximum such index. Observe that Wi and Wj for
i < j ≤ i′ contain vi and in fact no other set contains vi. To check the last
property (iii), it is enough to see that both end-vertices of every backward

2.13 Digraphs of Bounded Width 79

arc (vi, vj) ∈ A(D) are in Wi. It remains to observe that |Wj | ≤ k +1, which
implies that dpw(D) ≤ k.

For the converse, let (12 . . . l, χ), where χ = {W1, W2, . . . , Wl}, be a DPD
of width k. Without loss of generality we may assume that these sets are all
distinct. Let X1 = W1 and Xi = Wi \Wi−1 for each i ≥ 2. Order the vertices
of V (D) as follows. We begin with the empty ordering (the 0-th iteration). At
the j-th iteration (1 ≤ j ≤ l) we add a permutation of Xj to the end of the
previous iteration ordering. Suppose we have performed all l iterations and
obtained an ordering π = (v1, v2, . . . , vn). We will prove that vsπ(G) ≤ k.

We will prove that |∂Vi| ≤ k for each i. Consider an arbitrary vertex
vi ∈ V (D) and suppose that vi was included in π at the j-th iteration, which
means vi ∈ Wj . Notice that Vi ⊆ W1 ∪ . . . ∪ Wj . We will first show that
∂Vi ⊆ Wj . Consider an arbitrary backward arc (x, y) with x ∈ V (D) \Vi and
y ∈ Vi. Observe that y ∈ Wp for some p ≤ j, and if x ∈ Wq then q ≥ j. By
the property (iii) of DPD, {x, y} ⊆ Ws for some s ≥ j. Thus, by the property
(ii) of DPD, y ∈ Wj . Hence, we have shown that ∂Vi ⊆ Wj , which implies
|∂Vi| ≤ k + 1. To improve this inequality, we will consider the following two
cases:

(a) Vi is a proper subset of W1 ∪ . . .∪Wj . Then ∂Vj is a proper subset of
Wj and |∂Vi| ≤ k.

(b) Vi = W1 ∪ . . . ∪ Wj . As above we can show that y ∈ Wj′ for some
j′ > j. Thus, y ∈ Wj+1 and |∂Vj | ≤ |Wj ∩ Wj+1| ≤ k. The last inequality
holds due to the fact that Wj and Wj+1 are distinct.

In both cases we conclude that |∂Vi| ≤ k, which completes the proof. ��
It follows from Theorem 2.13.7 that each directed cycle is of directed

path-width 1.
Let Z be a set of vertices of a digraph D. A set S ⊆ V (D) − Z is Z-

normal if every directed walk that leaves and again enters S must traverse
a vertex of Z. For vertices r, r′ of an out-tree T we write r ≤ r′ if there is
a path from r to r′ or r = r′. An arboreal decomposition of a digraph
D is a triple (R, X, W), where R is an out-tree (not a subdigraph of D),
X = {Xe : e ∈ A(R)} and W = {Wr : r ∈ V (R)} are sets of vertices
of D that satisfy two conditions: (1) {Wr : r ∈ V (R)} is a partition of
V (D) into nonempty sets, and (2) if for each e = (r′, r′′) ∈ A(R) the set⋃
{Wr : r ∈ V (R), r ≥ r′′} is Xe-normal. The width of (R, X, W) is the

least integer w such that for all r ∈ V (R), |Wr ∪
⋃

e∼r Xe| ≤ w + 1, where
e ∼ r means that r is head or tail of e. The directed tree-width of D,
dtw(D), is the least integer w such that D has an arboreal decomposition of
width w.

Now we will study some basic results on the three directed width parame-
ters. The first lemma can be proved using only the definitions above (Exercise
2.48).

Lemma 2.13.8 Let D be a digraph. For d ∈ {dag, dt, dp}, we have dw(D) =
0 if and only if D is acyclic. ��

80 2. Classes of Digraphs

Let D be a digraph. It is immediately follows from the definitions of
DAG-width and directed path-width that dagw(D) ≤ dpw(D). It is easy
to show that dtw(D) ≤ dpw(D) (Exercise 2.49) from the definitions of the
two parameters. Berwanger, Dawar, Hunter and Kreutzer [154] proved that
dtw(D) ≤ 3 · dagw(D) + 1. Thus, we have the following:

Lemma 2.13.9 For a digraph D, we have dagw(D) ≤ dpw(D), dtw(D) ≤
dpw(D) and dtw(D) ≤ 3 · dagw(D) + 1. ��

The last two lemmas imply, in particular, that if dpw(D) = 1 then
dtw(D) = dagw(D) = 1. Thus, for every directed cycle C, we have
dpw(D) = dtw(C) = dagw(C) = 1. Lemma 2.13.9 has many applications
in this book.

Johnson, Robertson, Seymour and Thomas [573] proved that tw(G) =
dtw(

↔
G) for each undirected graph G and Obdržálek [731] showed that

tw(G) = dagw(
↔
G) for each undirected graph G. Since the tree-width prob-

lem is NP-hard, so are the problems of checking whether dtw(D) ≤ k and
dagw(D) ≤ k for a digraph D. However, there are O(nO(k))-time algorithms
for the two problems [573, 731].

Since tw(G) = dtw(
↔
G) and tw(G) = dagw(

↔
G) for each undirected graph

G, it is easy to prove (Exercise 2.50) that dtw(D) ≤ tw(D) and dagw(D) ≤
tw(D) for each digraph D.

2.14 Other Families of Digraphs

This section is devoted to digraphs of three classes: circulant digraphs, arc-
locally semicomplete digraphs and intersection digraphs.

2.14.1 Circulant Digraphs

For an integer n ≥ 2 and a set S ⊆ {1, 2, . . . , n− 1}, the circulant digraph
Cn(S) is defined as follows: V (Cn(S)) = {1, 2, . . . , n} and

A(Cn(S)) = {(i, i + j (mod n)) : 1 ≤ i ≤ n, j ∈ S}.

In particular, Cn(1, 2, . . . , n − 1) =
↔
Kn and Cn(1) = 	Cn (it is customary

to omit the set brackets when S is given by a list of its elements). Also,
consecutive-1 digraphs introduced at the end of Section 2.5 are circulant
digraphs. Circulant digraphs are a special family of Caley digraphs, see, e.g.,
[568] and are of importance in many applications of graph theory, see, e.g.,
[269]. Circulant digraphs are of great interest in digraph theory as well, cf.
Sections 3.8.1, 6.9 and 15.6. We start from some basic properties of circulant
digraphs.

2.14 Other Families of Digraphs 81

Proposition 2.14.1 Let Cn(S) be a circulant digraph. Then the following
holds:

(a) Cn(S) has a 2-cycle if and only if there is a pair s, t of elements of S
such that s + t = n,

(b) the converse of Cn(S) is isomorphic to Cn(S),
(c) Cn(S) is strong if and only if gcd(n, s1, s2, . . . , sp) = 1, where we have

{s1, s2, . . . , sp} = S. ��

Part (a) is easy to see: if i→j and j→i, then we set s = i − j and
t = j − i; also, if s + t = n, then (1, 1 + s) and (1 + s, 1 + s + t) = (1 + s, 1)
are arcs. If n is odd |S| = (n − 1)/2, then Cn(S) is a tournament called a
rotational tournament by Alspach [35]. To prove (b) observe that Cn(−S)
is the converse of Cn(S), where −S = {−s : s ∈ S}, and that the bijection
f(i) = n − i of [n] to itself is an isomorphism of Cn(S) to Cn(−S). It seems
Ariyoshi [45] was the first to obtain Part (c); we leave the proof of (c) as an
exercise.

In applications it is important to know which circulant digraphs Cn(S) are
|S|-strong [269] (since Cn(S) is |S|-regular, κ(Cn(S)) ≤ |S| and so |S|-strong
connectivity is maximal possible for Cn(S)). In [269] van Doorn obtained two
sufficient conditions:

Theorem 2.14.2 [269] A circulant digraph Cn(S) is |S|-strong if at least
one of the following conditions holds:

(a) gcd(n, s) = 1 for each s ∈ S,
(b) i ∈ S for each i = 1, 2, . . . , �|S|/2�. ��

2.14.2 Arc-Locally Semicomplete Digraphs

A digraph D is arc-locally semicomplete if for every arc xy of D, the
following two conditions hold:

(a) if u ∈ N−(x), v ∈ N−(y) and u �= v, then u and v are adjacent,
(b) if u ∈ N+(x), v ∈ N+(y) and u �= v, then u and v are adjacent.

This class of digraphs was introduced by Bang-Jensen in [70]. Clearly,
every semicomplete or semicomplete bipartite digraph is arc-locally semi-
complete. The same holds for extensions of cycles. Bang-Jensen [75] proved
that if we restrict ourselves to strong digraphs, the above three classes of
digraphs are, in fact, all arc-locally semicomplete digraphs.

Theorem 2.14.3 [75] A strong arc-locally semicomplete digraph is either
semicomplete or semicomplete bipartite or an extension of a cycle. ��

82 2. Classes of Digraphs

If an arc-locally semicomplete digraph D is non-strong, we do not have
a complete picture of how D ‘looks like’ apart from the case when every
vertex of D is on some cycle. In this case, Bang-Jensen [70] showed that
D is either semicomplete or semicomplete bipartite. The class of arc-locally
semicomplete digraphs was also studied by Galeana-Sánchez [381].

It is natural to define arc-in-locally (arc-out-locally) semicomplete
digraphs as digraphs satisfying the property (a) (the property (b)) above.
To the best of our knowledge, nobody has studied the structure of these two
classes of digraphs so far.

2.14.3 Intersection Digraphs

Let U and V be sets and let F = {(Sv, Tv) : Sv, Tv ⊆ U and v ∈ V } be
a family of ordered subsets of U (one for each v ∈ V). The intersection
digraph corresponding to F is the digraph DF = (V, A) such that vw ∈ A
if and only if Sv ∩ Tw �= ∅. The set U is called the universal set for DF .
The above family of pairs form a representation of D. The concept of an
intersection digraph is a natural analogue of the notion of an intersection
graph and was introduced by Beineke and Zamfirescu [133] and Sen, Das,
Roy and West [806]. Since an arc is an ordered pair of vertices, every line
digraph L(D) is the intersection digraph of the family A(D′), where D′ is the
converse of D. It follows from the definition of an intersection digraph that
every digraph D is the intersection digraph of the family {(A+(v), A−(v)) :
v ∈ V (D)}, where A+(v) (A−(v)) is the set of arcs leaving v (entering v).
Here the universal set is A(D).

Clearly, a digraph can be represented as the intersection digraph of various
families of ordered pairs. It is quite natural to ask how large the universal set
U has to be. For a digraph D the minimum number of elements in U such
that D = DF for some family F of ordered pairs of subsets of U is called
the intersection number, in(D) of D. Sen, Das, Roy and West [806] prove
the following theorem for the intersection number of an arbitrary digraph D.
For a digraph D = (V, A), a set B ⊆ A is one-way if there is a pair of sets
X, Y ⊂ V (called a generating pair) such that B = (X, Y)D, that is, B is
the set of arcs from X to Y .

Theorem 2.14.4 [806] The intersection number of a digraph D = (V, A)
equals the minimum number of one-way sets required to cover A.

Proof: Let B1, . . . , Bk be a minimum collection of one-way sets covering
A and let (X1, Y1), . . . , (Xk, Yk) be the corresponding generating pairs. Let
Sv = {i : v ∈ Xi}, and Tv = {i : v ∈ Yi}. Then Sv ∩ Tw �= ∅ if and only if
vw ∈ A, showing that in(D) ≤ k.

Now let U be a universal set of cardinality u = in(D) such that D has
a representation by a set of ordered pairs (Sv, Tv) of subsets of U . We may
assume that U = [u]. Define u one-way sets covering A as follows: v ∈ Xi if

2.14 Other Families of Digraphs 83

and only if i ∈ Sv and v ∈ Yi if and only if i ∈ Tv. Then vw ∈ A if and only
if v ∈ Xi, w ∈ Yi for some i. Thus, k ≤ in(D). ��

Notice that the minimum number of one-way sets required to cover A is
studied in Subsection 13.12.1.

A subtree intersection digraph is a digraph representable as the inter-
section digraph of a family of ordered pairs of subtrees in an undirected tree.
A matching diagram digraph is digraph representable as the intersection
digraph of a family of ordered pairs of straight-line segments between two par-
allel lines. An interval digraph is a digraph representable as the intersection
digraph of a family of ordered pairs of closed intervals on the real line. Sub-
tree intersection digraphs, matching diagram digraphs and interval digraphs
are ‘directed’ analogues of chordal graphs, permutation graphs and interval
graphs, respectively, where subtrees, straight-line segments and real line in-
tervals are also used for representation (see the book [421] by Golumbic).
While chordal graphs form a special family of undirected graphs, Harary,
Kabell and McMorris showed that every digraph is a subtree intersection
digraph.

Proposition 2.14.5 [499] Every digraph is a subtree intersection digraph.

Proof: Let D = (V, A) be an arbitrary digraph. Let G = (U, E), U = V ∪{x},
E = {{x, v} : v ∈ V }, x �∈ V . Clearly, G is an undirected tree. Setting
Sv = G〈{v}〉 and Tv = G〈{x} ∪ {w : wv ∈ A}〉 provides the required
representation. ��

The following construction by Müller shows that every interval digraph
is a matching diagram digraph [708]. Let {([av, bv], [cv, dv]) : v ∈ V (D)}
be a representation of an interval digraph D. To obtain a representation
{(Sv, Tv) : v ∈ V (D)} of D as a matching diagram digraph we set Sv to be
the line segment between points (av, 0) and (bv, 1) in the plane, and Tv to be
the line segment connecting the points (cv, 1) and (dv, 0).

There are several characterizations of interval digraphs, see, e.g., the pa-
pers [793] by Sanyal and Sen and [903] by West. We restrict ourselves to just
one of them.

Theorem 2.14.6 [806] A digraph D is an interval digraph if and only if
there exist independent row and column permutations of the adjacency matrix
M(D) of D which result in a matrix M ′ satisfying the following property: the
zero entries of M ′ can be labeled R or C such that every position above and
to the right of an R is an R and every position below and to the left of a C
is a C. ��

None of the characterizations given in [793, 903] implies a polynomial
algorithm to recognize interval digraphs. Müller [708] obtained such an algo-
rithm. A polynomial algorithm is also given in [708] to recognize unit interval
digraphs, i.e., interval digraphs that have interval representations, where all

84 2. Classes of Digraphs

intervals are of the same length. Brown, Busch and Lundgren [182] showed
that a tournament of order n is an interval digraph if and only if it contains
a transitive tournament of order n − 1 (as a subdigraph).

2.15 Exercises

2.1. Uniqueness of acyclic orderings. Prove that an acyclic digraph D has a
unique acyclic ordering if and only if D is traceable.

2.2. Linear time algorithm for finding an acyclic ordering of an acyclic
digraph. Verify that the algorithm given in the proof of Proposition 2.1.3
can be implemented as an O(n + m) algorithm using the adjacency list rep-
resentation (see Section 18.1).

2.3. Prove that a tournament is transitive if and only if it is acyclic. Hint: apply
Theorem 1.5.1.

2.4. Prove Proposition 2.3.1.

2.5. Let D be a semicomplete multipartite digraph such that every vertex of D
is on some cycle. Prove that D is unilateral.

2.6. In part (ii) ⇒ (i) of Theorem 2.4.1, prove that σ(D) = L(Q).

2.7. Derive Corollary 2.4.2 from Theorem 2.4.1 (iii).

2.8. (−) Prove Proposition 2.4.3 using Theorem 2.4.1 (i) and (ii).

2.9. Prove the following simple properties of line digraphs:

(i) L(D) ∼= �Pn−1 if and only if D ∼= �Pn;

(ii) L(D) ∼= �Cn if and only if D ∼= �Cn.

2.10. Let D be a digraph. Show by induction that Lk(D) is isomorphic to the
digraph H, whose vertex set consists of walks of D of length k and a vertex
v0v1 . . . vk dominates the vertex v1v2 . . . vkvk+1 for every vk+1 ∈ V (D) such
that vkvk+1 ∈ A(D).

2.11. Using the results in Exercise 2.9, prove the following elementary properties
of iterated line digraphs: Let D be a digraph. Then
(i) Lk(D) is a digraph with no arcs, for some k, if and only if D is acyclic;
(ii) if D has a pair of cycles joined by a path (possibly of length 0), then

lim
k→∞

nk =∞,

where nk is the order of Lk(D);
(iii) if no pair of cycles of D is joined by a path, then for all sufficiently large

values of k, each connected component of Lk(D) has at most one cycle.

2.12. Prove Proposition 2.4.4 by induction on k ≥ 1.

2.13. Prove Lemma 2.5.1.

2.14. Prove Lemma 2.5.5.

2.15. Prove Lemma 2.5.6.

2.15 Exercises 85

2.16. Prove Theorem 2.5.7.

2.17. Upwards embeddings of MVSP digraphs. Prove that one can embed
every MVSP digraph D into the Cartesian plane such that if vertices u, v have
coordinates (xu, yu) and (xv, yv), respectively, and there is a (u, v)-path in
D, then xu ≤ xv and yu ≤ yv. Hint: consider series composition and parallel
composition separately.

2.18. Prove Proposition 2.6.2. Hint: use induction on the number of reductions
applied for the ‘if’ part and the number of arcs for the ‘only if’ part.

2.19. Prove Proposition 2.6.3.

2.20. Prove part (b) of Lemma 2.7.4. Hint: if u and v are in S, then there is a

path from u to v in UG(S). Similarly, if x and y are in S′. Use these paths
(corresponding to sequences of non-adjacent vertices in D) to show that if
xu and vy are arcs, then u = v and x = y must hold if D is quasi-transitive.

2.21. (−) Construct an infinite family of path-mergeable digraphs, which are not
in-path-mergeable.

2.22. (−) Show that the following ‘claim’ is wrong. Let D be a locally in-
semicomplete digraph and let D contain internally disjoint paths P1, P2 such
that Pi is an (xi, y)-path (i = 1, 2) and x1 �= x2. Then x1 and x2 are adjacent.

2.23. Orientations of path-mergeable digraphs. Prove that every orientation
of a path-mergeable digraph is a path-mergeable oriented graph.

2.24. (+) Prove Corollary 2.8.2.

2.25. Prove Proposition 2.9.2.

2.26. Path-mergeable digraphs which are neither locally in-semicomplete
nor locally out-semicomplete. Show by a construction that there ex-
ists an infinite class of path-mergeable digraphs, none of which is locally
in-semicomplete or locally out-semicomplete. Then extend your construction
to arbitrary degrees of vertex-strong connectivity. Hint: consider extensions.

2.27. (−) Path-mergeable transitive digraphs. Prove that a transitive digraph
D = (V, A) is path-mergeable if and only if for every x, y ∈ V and every pair
xuy, xvy of (x, y)-paths of length 2, either u→v or v→u holds.

2.28. Prove Lemma 2.9.3.

2.29. Orientations of locally in-semicomplete digraphs. Prove that every
orientation of a digraph which is locally in-semicomplete is a locally in-
tournament digraph.

2.30. Strong orientations of strong locally in-semicomplete digraphs.
Prove that every strong locally in-semicomplete digraph on at least three
vertices has a strong orientation.

2.31. Prove Lemma 2.10.2.

2.32. Prove Corollary 2.10.7.

2.33. Prove Theorem 2.10.8.

86 2. Classes of Digraphs

2.34. (+) Using Lemma 2.10.13, show that if D is a non-round decomposable
locally semicomplete digraph, then the independence number of UG(D) is at
most two.

2.35. (−) Give an example of a locally semicomplete digraph on 4 vertices with
no 2-king.

2.36. Prove Proposition 2.10.16.

2.37. Prove the assertion stated in Exercise 2.34 using Lemma 2.10.14 and Propo-
sition 2.10.16.

2.38. Extending in-path-mergeability. Prove that if P, Q are internally disjoint
(x, z)- and (y, z)-paths in an extended locally in-semicomplete digraph D and
no vertex on P − z is similar to a vertex of Q − z, then there is a path R
from either x or y to z in D such that V (R) = V (P) ∪ V (Q).

2.39. Prove that there exists an O(mn+n2)-algorithm for checking if a digraph D
with n vertices and m arcs has a decomposition D = R[H1, . . . , Hr], r ≥ 2,
where Hi is an arbitrary digraph and the digraph R is either semicomplete
bipartite or connected extended locally semicomplete.

2.40. (−) Let D be a connected digraph which is both quasi-transitive and locally
semicomplete. Prove that D is semicomplete.

2.41. (−) Let D be a connected digraph which is both quasi-transitive and locally
in-semicomplete. Prove that the diameter of UG(D) is at most 2.

2.42. Traceable semicomplete bipartite digraph characterization. Prove
that a semicomplete bipartite digraph B is traceable if and only if it contains
a 1-path-cycle factor F . Hint: demonstrate that if F consists of a path and
a cycle only, then B is traceable; use it to establish the desired result (Gutin
[445]). (See also Chapter 6.)

2.43. Prove that if a bipartite tournament has a cycle, then it has a 4-cycle.

2.44. Show that every orientation of a quasi-transitive digraph is a quasi-transitive
digraph.

2.45. (−) Prove that the intersection number in(D) ≤ n for every digraph D of
order n. Show that this upper bound is sharp (Sen, Das, Roy and West [806]).

2.46. Prove Corollary 2.12.3. Hint: use that each edge is on the boundary of pre-
cisely two faces and that each face has at least three edges.

2.47. Using only the definition of tree-width prove that a connected digraph D is
of tree-width one if and only if D is a biorientation of a tree.

2.48. Prove Lemma 2.13.8.

2.49. Prove that dtw(D) ≤ dpw(D) every digraph D using only the definitions of
directed tree-width and directed path-width.

2.50. (−) Using the fact that tw(G) = dtw(
↔
G) and tw(G) = dagw(

↔
G) for each

undirected graph G prove that dtw(D) ≤ tw(D) and dagw(D) ≤ tw(D) for
each digraph D.

2.51. Prove Proposition 2.14.1 (c).

3. Distances

In this chapter, we study polynomial algorithms which find distances in
weighted and unweighted digraphs as well as some related complexity re-
sults. We consider bounds on the diameter of a digraph and describe several
results on minimizing the diameter of an orientation of directed and undi-
rected graphs. We deal with kings, kernels and quasi-kernels in digraphs.

Additional terminology and notation are given in Section 3.1. Some basic
results on the structure of shortest paths in weighted digraphs are proved in
Section 3.2. In Section 3.3 we study algorithms for finding shortest paths from
a vertex to the rest of the vertices of weighted and unweighted digraphs. We
also consider the Floyd-Warshall algorithm to compute distances between all
pairs of vertices in a weighted digraph. In Section 3.4 we consider bounds on
the diameter of strong directed and oriented graphs. The problem of minimiz-
ing the diameter of an orientation of a bridgeless graph is studied extensively
in Section 3.5.

Section 3.6 is devoted to (almost) minimum diameter orientations of
graphs belonging to special families of directed and undirected graphs. Quasi-
transitive digraphs, semicomplete bipartite digraphs and locally semicom-
plete digraphs are considered in Subsection 3.6.1. We finish the subsection
with a conjecture for semicomplete multipartite digraphs. In Subsection 3.6.2,
we deal with extended digraphs. Cartesian products of undirected graphs are
considered in Subsection 3.6.3 and chordal graphs in Subsection 3.6.4.

The notion of kings is investigated in Section 3.7. This notion is related
to the study of domination in biology and sociology. We study kernels and
quasi-kernels in Section 3.8.

3.1 Terminology and Notation on Distances

Let D = (V, A) be a directed pseudo-graph. Recall that for a set W ⊆ V ,

N+
D (W) =

⋃

w∈W

N+(w) −W, N−
D (W) =

⋃

w∈W

N−(w) −W.

Let N0
D(W) = W , N+1

D (W) = N+
D (W), N−1

D (W) = N−
D (W). For every posi-

tive integer p, we can define the pth out-neighbourhood of W as follows:

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 3,
© Springer-Verlag London Limited 2010

87

http://dx.doi.org/10.1007/978-1-84800-998-1_3

88 3. Distances

N+p
D (W) = N+

D (N+(p−1)
D (W))−

p−1⋃

i=0

N+i
D (W).

Similarly, one can define N−p
D (W) for every positive integer p. In par-

ticular, N+2(W) = N+(N+(W)) − (W ∪ N+(W)). Sometimes, N+p
D (W)

(N−p
D (W)) is called the open pth out-neighbourhood (open pth in-

neighbourhood) of W . We will also use the closed pth in- and out-
neighbourhoods of a set W of vertices of D which are defined as follows
(p > 0):

N0
D[W] = W, N+p

D [W] =
p⋃

i=0

N+i
D (W), N−p

D [W] =
p⋃

i=0

N−i
D (W).

To simplify the notation, we set N+
D [W] = N+1

D [W] and N−
D [W] =

N−1
D [W]. See Figure 3.1.

a b

c

de

f
g

Figure 3.1 A digraph D. The out-neighbourhoods of the set W = {a, b} are
N+({a, b}) = {f, g}, N+2({a, b}) = {e}, N+3({a, b}) = {d}, N+4({a, b}) = {c}.
The closed out-neighbourhoods are N+[W] = {a, b, f, g}, N+2[W] = {a, b, e, f, g},
N+3[W] = {a, b, d, e, f, g}, N+4[W] = {a, b, c, d, e, f, g}.

Let D = (V, A, c) be a directed multigraph with a weight function c :
A→R on its arcs. Recall that the weight of a subdigraph D′ = (V, A′) of D is
given by c(A′) =

∑
a∈A′ c(a). Whenever we speak about the length of a walk

we mean the weight of that walk (with respect to c). A negative cycle in a
weighted digraph D = (V, A, c) is a cycle W whose weight c(W) is negative.

We assume that D has no negative cycle, for otherwise the following def-
inition becomes meaningless. If x and y are vertices of D, then the distance
from x to y in D, denoted dist(x, y), is the minimum length of an (x, y)-
walk, if y is reachable from x, and otherwise dist(x, y) = ∞. Since D has no
cycle of negative weight, it follows that dist(x, x) = 0 for every vertex x ∈ V .
It follows from Proposition 1.4.1 that there is a shortest (x, y)-walk which
is, in fact, a path (if D has no cycle of zero weight either, a shortest walk
is always a path). Furthermore, by Proposition 1.4.1, the distance function
satisfies the triangle inequality:

dist(x, z) ≤ dist(x, y) + dist(y, z) for every triple of vertices x, y, z. (3.1)

3.2 Structure of Shortest Paths 89

The above definitions are applicable to unweighted directed multigraphs
as well: simply take the weight of every arc equal to one (then, the length of
a walk in the ‘weighted’ and ‘unweighted’ cases coincide).

The distance from a set X to a set Y of vertices in D is

dist(X, Y) = max{dist(x, y) : x ∈ X, y ∈ Y }.1 (3.2)

The diameter of D is diam(D) = dist(V, V). Clearly, D has finite diameter
if and only if D is strong. The out-radius rad+(D) and the in-radius
rad−(D) of D are defined by

rad+(D) = min{dist(x, V) : x ∈ V }, rad−(D) = min{dist(V, x) : x ∈ V }.

Because of the obvious duality between out-radius and in-radius, in many
cases, we will consider only one of them. The radius of D is

rad(D) = min{(dist(x, V) + dist(V, x))/2 : x ∈ V }.

To illustrate the definitions above, consider the digraph D in Figure 3.1.
Here we have dist(a, V) = dist(b, V) = dist(e, V) = 4 and dist(c, V) =
dist(d, V) = dist(f, V) = dist(g, V) = 3. Furthermore, we have dist(V, c) =
dist(V, f) = 4, dist(V, a) = dist(V, b) = dist(V, d) = 3 and dist(V, e) =
dist(V, g) = 2. Now we see that rad+(D) = 3, rad−(D) = 2, rad(D) = 2.5
and diam(D) = 4. It is also easy to see that dist({a, c}, {b, f}) = 3.

The following proposition gives a characterization of weighted digraphs
D of finite out-radius.

Proposition 3.1.1 A weighted digraph D has a finite out-radius if and only
if D has a unique initial strong component.

Proof: A digraph with two or more initial strong components is obviously
of infinite out-radius. If D has only one initial strong component, then D
contains an out-branching (by Proposition 1.7.1). Thus, rad+(D) < ∞. ��

This proposition implies that a weighted digraph D has a finite in-radius if
and only if D has a unique terminal strong component. Notice that rad(D) <
∞ if and only if D is strong.

For an undirected graph G, we can introduce the notions of distance
between pairs of vertices, vertex sets, radius, etc. by considering

↔
G.

3.2 Structure of Shortest Paths

In this section we study elementary, but very important properties of shortest
paths in weighted digraphs. We also consider some complexity results on
paths in directed and mixed weighted graphs.
1 This definition may seem somewhat unnatural (with max instead of min), but it

simplifies some of the notation in this chapter and also appears quite useful.

90 3. Distances

We assume that D = (V, A, c) is a weighted digraph with no negative
cycle.

Proposition 3.2.1 If P = x1x2 . . . xk is a shortest (x1, xk)-path in D, then
P [xi, xj] is a shortest (xi, xj)-path for all 1 ≤ i ≤ j ≤ k.

Proof: Suppose that xiQxj is an (xi, xj)-path whose length is smaller than
that of P [xi, xj]. Then the weight of the walk W = P [x1, xi]QP [xj , xk] is
less than the length of P . However, by Proposition 1.4.1, and the fact that
D has no negative cycle, W contains an (xi, xj)-path R whose length is at
most that of W and hence is smaller than that of P , a contradiction. ��

Let s be a fixed vertex of D such that dist(s, V) < ∞. Consider spanning
subdigraphs of D, each of which contains a shortest path from s to every
other vertex in D. The proof of the following theorem shows that given any
such subdigraph D′ of D, we can construct an out-branching of D rooted at
s, which contains a shortest (s, u)-path for every u ∈ V − s.

Theorem 3.2.2 Let D′ and s be as above. There exists an out-branching
B+

s such that, for every u ∈ V , the unique (s, u)-path in B+
s is a shortest

(s, u)-path in D.

Proof: We will give a constructive proof showing how to build B+
s from any

collection {Pv : v ∈ V −s} of shortest paths from s to the rest of the vertices.
Choose a vertex u ∈ V − s arbitrarily. Let initially B+

s := Pu. By Propo-
sition 3.2.1, for every x ∈ V (B+

s), the unique (s, x)-path in B+
s is a shortest

(s, x)-path in D. Hence, if V (B+
s) = V , then we are done. Thus, we may

assume that there exists w /∈ V (B+
s). Let z be the last vertex on Pw which

belongs to B+
s . Define H as follows:

V (H) := V (B+
s) ∪ V (Pw[z, w]), A(H) := A(B+

s) ∪A(Pw[z, w]).

We claim that, for every vertex x in Pw[z, w], the unique (s, x)-path in H
is a shortest (s, x)-path in D. By Proposition 3.2.1, Pw[s, z] is a shortest
(s, z)-path in D. Since z ∈ V (B+

s), the unique (s, z)-path Q in H has the
same length as Pw[s, z]. Therefore, the length of the path QPw[z, x] is equal
to the length of the path Pw[s, x]. Now observe that QPw[z, x] is the unique
(s, x)-path in H. We set B+

s := H and use an analogous approach to include
all vertices of D and preserve the desired property of B+

s . ��
Our constructive proof above implies the existence of a polynomial al-

gorithm to construct the final out-branching, starting from a collection of
shortest paths from s to all other vertices. We call such an out-branching a
shortest path tree from s. As we will see in Exercises 3.8 and 3.9, the
algorithms described in the next section can be easily modified so that they
construct a shortest path tree directly, while searching for the shortest paths.

3.3 Algorithms for Finding Distances in Digraphs 91

If we allow D to have negative weight cycles, then we obtain the following
result for shortest paths (recall that in the presence of negative cycles the
length of a shortest walk may not be defined, whereas the length of a shortest
path is still well-defined).

Proposition 3.2.3 It is NP-hard to find a shortest path between a pair of
vertices of a given weighted digraph.

Proof: Let D = (V, A) be an (unweighted) digraph and let x �= y be vertices
of D. Set c(uv) = −1 for every arc uv ∈ A. We have obtained a weighted
digraph D′ = (V, A, c). Clearly, D′ has an (x, y)-path of length 1 − n if
and only if D has a hamiltonian (x, y)-path. Since the problem of finding
a hamiltonian (x, y)-path is NP-complete (see Exercise 7.2) and D′ can be
constructed from D in polynomial time, our claim follows. ��

Clearly D′ above has a negative cycle if and only if D has any directed
cycle. As we will show in Subsection 3.3.2, we can find a longest path in an
acyclic digraph in polynomial time, using a reduction to the shortest path
problem.

In Section 3.3, we will see that one can check whether a weighted digraph
has a negative cycle in polynomial time. However, unless P = NP, this
result cannot be extended to weighted mixed graphs, because of the following
theorem by Arkin and Papadimitriou [48].

Theorem 3.2.4 Given a weighted mixed graph, it is NP-complete to deter-
mine whether a negative cycle exists. ��

It follows from Proposition 3.2.3 that it is NP-hard to find a shortest path
between a pair of vertices in a weighted mixed graph. More interestingly,
Arkin and Papadimitriou showed that the same is true even if we restrict
ourselves to weighted mixed graphs without negative cycles [48].

3.3 Algorithms for Finding Distances in Digraphs

In this section we describe well-known algorithms to find distances in weighted
and unweighted digraphs. Almost all algorithms which we describe are for
finding the distances from a fixed vertex of a digraph to the rest of the ver-
tices. If the given digraph is unweighted, then one can use the very simple
and fast breadth-first search algorithm that is introduced in Subsection 3.3.1.
If the given digraph D is weighted and acyclic, another fast and simple ap-
proach based on dynamic programming is provided in Subsection 3.3.2. When
D is an arbitrary digraph, but its weights are non-negative, Dijkstra’s algo-
rithm introduced in Subsection 3.3.3 solves the problem. When the weights
may be negative, but no negative cycle is allowed, the Bellman-Ford-Moore
algorithm given in Subsection 3.3.4 can be applied. This algorithm has the

92 3. Distances

following additional useful property: it can be used to detect a negative cycle
(if one exists).

If we are interested in finding the distances between all pairs of vertices of
a weighted digraph D, we can apply the Bellman-Ford-Moore algorithm from
every vertex of D. However, there is a much faster algorithm, due to Floyd
and Warshall. We describe the Floyd-Warshall algorithm in Subsection 3.3.5.
The reader can find comprehensive overviews of theoretical and practical
issues on the topic in the papers [211] by Cherkassky and Goldberg and [212]
by Cherkassky, Goldberg and Radzik.

3.3.1 Breadth-First Search (BFS)

This approach allows one to find quickly the distances from a given vertex s
to the rest of the vertices in an unweighted digraph D = (V, A). BFS is based
on the following simple idea. Starting at s, we visit each vertex x dominated
by s. We set dist′(s, x) := 1 and s := pred(x) (s is the predecessor of x).
Now we visit all vertices y not yet visited and dominated by vertices x of
distance 1 from s. We set dist′(s, y) := 2 and x := pred(y). We continue
in this fashion until we have reached all vertices which are reachable from s
(this will happen after at most n−1 iterations, by Proposition 1.4.1). For the
rest of the vertices z (not reachable from s), we set dist′(s, z) := ∞. In other
words, we visit the first (open) out-neighbourhood of s, then its second (open)
out-neighbourhood, etc. A more formal description of BFS is as follows. At
the end of the algorithm, pred(v) = nil means that either v = s or v is not
reachable from s. The correctness of the algorithm is due to the fact that
dist(s, x) = dist′(s, x) for every x ∈ V . This will be proved below.

BFS
Input: A digraph D = (V, A) and a vertex s ∈ V.
Output: dist′(s, v) and pred(v) for all v ∈ V.

1. For each v ∈ V set dist′(s, v) := ∞ and pred(v) := nil.
2. Set dist′(s, s) := 0. Create a queue Q consisting of s.
3. While Q is not empty do the following. Delete a vertex u, the head of Q,

from Q and consider the out-neighbours of u in D one by one. If, for an
out-neighbour v of u, dist′(s, v) = ∞, then set dist′(s, v) := dist′(s, u)+1,
pred(v) := u, and put v to the end of Q.

If D is represented by adjacency lists, the complexity of the above algo-
rithm is O(n + m). Indeed, Step 1 requires O(n) time. The time to perform
Step 3 is O(m) as the out-neighbours of every vertex are considered only once
and

∑
x∈V d+(x) = m, by Proposition 1.2.1.

To prove the correctness of BFS, it suffices to prove that dist(s, x) =
dist′(s, x) for every x ∈ V. By Steps 2 and 3 of the algorithm, dist(s, x) ≤
dist′(s, x). Indeed, v1v2 . . . vk, where v1 = s, vk = x and vi = pred(vi+1)

3.3 Algorithms for Finding Distances in Digraphs 93

for every i ∈ [k − 1], is an (s, x)-path. By induction on dist(s, x), we prove
that, in fact, the equality holds. If dist(s, x) = 0, then x = s and the result
follows. Suppose that dist(s, x) = k > 0 and consider a shortest (s, x)-path
P . Let y be the predecessor of x, i.e., y = x−

P . By the induction hypothe-
sis, dist′(s, y) = dist(s, y) = k − 1. Since y dominates x, by the algorithm,
dist′(s, x) ≤ dist′(s, y)+1 = k = dist(s, x). Combining dist(s, x) ≤ dist′(s, x)
with dist′(s, x) ≤ dist(s, x), we are done.

The BFS algorithm allows one to compute the radius, out-radius, in-
radius and diameter of a digraph in time O(n2 + nm). Using the array pred
one can generate the actual paths. We finish this section with the following
two important observations which are stated as propositions. Proposition
3.3.1 follows from the description of BFS. Proposition 3.3.2 has already been
proved. In both propositions D = (V, A) is a directed multigraph with a
specified vertex s.

Proposition 3.3.1 Let U be the set of vertices reachable from s. Then
(U, B), where B = {(pred(v), v) : v ∈ U − s} is an out-branching in D〈U〉
with root s. ��

We call the out-branching in the above proposition a BFS tree of D〈U〉
with root s, or simply a BFS tree from s. It is instructive to compare
Proposition 3.3.1 with Theorem 3.2.2.

Proposition 3.3.2 Let dist(s, V) < ∞. For every non-negative integer p ≤
dist(s, V), we have N+p(s) = {v ∈ V : dist(s, v) = p}. ��

Given a directed multigraph D = (V, A) and a vertex s we call sets

N0(s), N+(s), N+2(s), N+3(s), . . . ,

the distance classes from s. By the proposition above, N+i(s) consists
precisely of those vertices whose distance from s is i. See Figure 3.2 for an
illustration of a BFS tree and the corresponding distance classes.

Summarizing the discussion above we obtain the following.

Theorem 3.3.3 When applied to a directed multigraph D and a vertex s in
D, the BFS algorithm correctly determines a BFS tree T from s in D in time
O(n+m). Furthermore, the distance classes from s in D are the same as the
distance classes from s in T . ��

3.3.2 Acyclic Digraphs

Let D = (V, A, c) be an acyclic weighted digraph. We will show that the
distances from a vertex s to the rest of the vertices can be found quite easily,
using dynamic programming. Without loss of generality, we may assume that

94 3. Distances

s

y

zxw

u v

Figure 3.2 A digraph D with a BFS tree indicated by the bold arcs. The distance
classes from s are N0(s) = s, N+(s) = {u, w}, N+2(s) = {v, x, y} and N+3(s) =
{z}.

the in-degree of s is zero. Let L = v1, v2, . . . , vn be an acyclic ordering of the
vertices of D such that v1 = s. Clearly, dist(s, v1) = 0. For every i, 2 ≤ i ≤ n,
we have

dist(s, vi) =
{

min{dist(s, vj) + c(vj , vi) : vj ∈ N−(vi)} if N−(vi) �= ∅
∞ otherwise.

(3.3)
The correctness of this formula can be shown by the following argument.
We may assume that vi is reachable from s. Since the ordering L is acyclic,
the vertices of a shortest path P from s to vi belong to {v1, v2, . . . , vi}. Let
vk be the vertex dominating vi in P . By induction, dist(s, vk) is computed
correctly using (3.3). The term dist(s, vk) + c(vk, vi) is one of the terms on
the right-hand side of (3.3). Clearly, it provides the minimum.

The algorithm has two phases: the first finds an acyclic ordering, the
second implements (3.3). The complexity of this algorithm is O(n+m) since
the first phase runs in time O(n + m) (see Section 2.1) and the second phase
requires the same asymptotic time due to the formula

∑
x∈V d−(x) = m in

Proposition 1.2.1. Hence we have shown the following:

Theorem 3.3.4 The shortest paths from a fixed vertex s to all other vertices
can be found in time O(n + m) for acyclic digraphs. ��

We can also find the length of longest (s, x)-paths in linear time in any
acyclic digraph, by replacing the weight c(uv) of every arc uv with −c(uv). In
particular, we can see immediately that the longest path problem for acyclic
digraphs is solvable in polynomial time. In fact, a longest path of an acyclic
digraph can always be found in linear time:

Theorem 3.3.5 For acyclic digraphs a longest path can be found in time
O(n + m).

Proof: Exercise 3.6. ��

3.3.3 Dijkstra’s Algorithm

The next algorithm, due to Dijkstra [259], finds the distances from a given
vertex s in a weighted digraph D = (V, A, c) to the rest of the vertices,
provided that all the weights of arcs are non-negative.

3.3 Algorithms for Finding Distances in Digraphs 95

In the course of the execution of Dijkstra’s algorithm, the vertex set of D
is partitioned into two sets, P and Q. Moreover, a parameter δv is assigned
to every vertex v ∈ V . Initially all vertices are in Q. In the process of the
algorithm, the vertices reachable from s move from Q to P . While a vertex
v is in Q, the corresponding parameter δv is an upper bound on dist(s, v).
Once v moves to P , we have δv = dist(s, v). A formal description of Dijkstra’s
algorithm follows.
Dijkstra’s algorithm
Input: A weighted digraph D = (V, A, c), such that c(a) ≥ 0 for every a ∈ A,
and a vertex s ∈ V.
Output: The parameter δv for every v ∈ V such that δv = dist(s, v).

1. Set P := ∅, Q := V , δs := 0 and δv := ∞ for every v ∈ V − s.
2. While Q is not empty do the following.

Find a vertex v ∈ Q such that δv = min{δu : u ∈ Q}.
Set Q := Q − v, P := P ∪ v.
δu := min{δu, δv + c(v, u)} for every u ∈ Q ∩N+(v).

To prove the correctness of Dijkstra’s algorithm, it suffices to show that
the following proposition holds.

Proposition 3.3.6 At any time during the execution of the algorithm, we
have that

(a) For every v ∈ P , δv = dist(s, v).
(b) For every u ∈ Q, δu is the distance from s to u in the subdigraph of D

induced by P ∪ u.

Proof: When P = ∅, δs = dist(s, s) = 0 and the estimates δu = ∞, u ∈ V −s,
are also correct.

Assume that P = P0 and Q = Q0 are such that the statement of this
proposition holds. If Q0 = ∅, we are done. Otherwise, let v be the next
vertex chosen by the algorithm. Since Part (b) follows from Part (a) and
the way in which we update δu in the algorithm, it suffices to prove Part
(a) only. Suppose that (a) does not hold for P = P0 ∪ v. This means that
δv > dist(s, v). Let W be a shortest (s, v)-path in D. Since δv > dist(s, v), W
must contain at least one vertex from Q = Q0 − v. Let u be the first vertex
on W which is not in P0. Clearly, u �= v. By Proposition 3.2.1 and the fact
that u ∈ W , we have dist(s, u) ≤ dist(s, v). Furthermore, since the statement
of this proposition holds for P0 and Q0, we obtain that dist(s, u) = δu. This
implies that δu = dist(s, u) ≤ dist(s, v) < δv. In particular, δu < δv, which
contradicts the choice of v by the algorithm. ��

Each time a new vertex v is to be chosen we use O(n) comparisons to find
min{δu : u ∈ Q}. Updating the parameters takes O(n) time as well. Since
Step 2 is performed n−1 times, we conclude that the complexity of Dijkstra’s
algorithm is O(n2). In fact, Dijkstra’s algorithm can be implemented (using

96 3. Distances

so-called Fibonacci heaps) in time O(n log n + m) (see the paper [360] by
Fredman and Tarjan).

Summarizing the discussion above we obtain

Theorem 3.3.7 Dijkstra’s algorithm determines the distances from s to all
other vertices in time O(n log n + m). ��

Figure 3.3 illustrates Dijkstra’s algorithm.

9

3

2 6

1
7

2

2

s 0

∞ ∞

∞

∞

∞
1

9

3

2 6

1
7

2

2

s 0

∞

∞

∞

1

9

3

2 6

1
7

2

2

s 0

∞

∞

1

9

3

2 6

1
7

2

2

s
0

1

9

3

2 6

1
7

2

2

s
0

1

9

3

2 6

1
7

2

2

s
0

1

9

3

2 6

1
7

2

2

s
0

1

9

5

43

5

4

6

11

5

4

6

11

5

4

6

7

5

4

6

7

(g)

(e) (f)

(d)(c)

(a) (b)

2 2

2 2
3

3

3
2 2

3

2

2

2

2

2

2

2

2

3

Figure 3.3 Execution of Dijkstra’s algorithm. The white vertices are in Q; the
black vertices are in P. The number above each vertex is the current value of the
parameter δ. (a) The situation after performing the first step of the algorithm. (b)–
(g) The situation after each successive iteration of the loop in the second step of
the algorithm. The fat arcs indicate the corresponding shortest path tree found by
the algorithm if extended as in Exercise 3.8.

3.3 Algorithms for Finding Distances in Digraphs 97

It is a challenging open question whether there exists a linear algorithm
for calculating the distances from one vertex to all other vertices in a given
digraph with no negative cycles. It is easy to see that Dijkstra’s algorithm
sorts the vertices according to their distances from s. Fredman and Tarjan
[360] showed that if Dijkstra’s algorithm can be implemented as a linear time
algorithm, then one can sort numbers in linear time. Thorup [870] showed
that the opposite claim holds as well: if one can sort numbers in linear time,
then Dijkstra’s algorithm can be implemented as a linear time algorithm.
Currently, no one knows how to sort in linear time2.

In the case when D is the complete biorientation of an undirected graph
G and c(u, v) = c(v, u) holds for every arc uv of D, Thorup [871] recently
gave a linear algorithm for calculating shortest paths from a fixed vertex to all
other vertices. Thorup’s algorithm avoids the sorting bottleneck by building a
hierarchical bucketing structure, identifying vertex pairs that may be visited
in any order.

3.3.4 The Bellman-Ford-Moore Algorithm

This algorithm originates from the papers [134] by Bellman, [330] by Ford
and [705] by Moore. Let D = (V, A, c) be a weighted digraph, possibly with
arcs of negative weight. The algorithm described below can be applied to find
the distances from a given vertex s in D to the rest of the vertices, provided
D has no negative cycle.

Let δ(v, m) be the length of a shortest (s, v)-path that has at most m
arcs. Clearly, δ(s, 0) = 0 and δ(v, 0) = ∞ for every v ∈ V − s. Let v ∈ V . We
prove that for every m ≥ 0,

δ(v, m + 1) = min{δ(v, m), min{δ(u, m) + c(u, v) : u ∈ N−(v)}}. (3.4)

We show (3.4) by induction on m. For m = 0, (3.4) trivially holds. For
m ≥ 1, (3.4) is valid due to the following argument. Assume that there is a
shortest (s, v)-path P with no more than m+1 arcs. If P has at most m arcs,
its length is δ(v, m), otherwise P contains m + 1 arcs and, by Proposition
3.2.1, consists of a shortest (s, u)-path with m arcs and the arc uv for some
u ∈ N−(v). If every shortest (s, v)-path has more than m+1 arcs, then there
is no in-neighbour u of v such that δ(u, m) < ∞. Therefore, (3.4) implies
correctly that δ(v, m + 1) = ∞.

Since no path has more than n− 1 arcs, δ(v, n− 1) = dist(s, v) for every
v ∈ V − s. Thus, using (3.4) for m = 0, 1, . . . , n − 2, we obtain the distances
from s to the vertices of D. This results in the following algorithm.

2 Some readers may be confused about this as they may know of a lower bound
of Ω(n log n) for sorting a set of n numbers. However, this lower bound is only
valid for comparison based sorting. There are algorithms for sorting n numbers
that are faster than Ω(n log n), see e.g. the paper [41] by Andersson.

98 3. Distances

The Bellman-Ford-Moore algorithm
Input: A weighted digraph D = (V, A, c) with no negative cycle, and a fixed
vertex s ∈ V.
Output: The parameter δv for every v ∈ V such that δv = dist(s, v) for all
v ∈ V .

1. Set δs := 0 and δv := ∞ for every v ∈ V − s.
2. For i = 1 to n−1 do: for each vu ∈ A update the parameter δu by setting

δu := min{δu, δv + c(v, u)}.

It is easy to verify that the complexity of this algorithm is O(nm). Hence
we have

Theorem 3.3.8 When applied to a weighted directed graph D = (V, A, c)
with no negative cycle and a fixed vertex s ∈ V , the Bellman-Ford-Moore
algorithm correctly determines the distances from s to all other vertices in D
in time O(nm). ��

Figure 3.4 illustrates the execution of the Bellman-Ford-Moore algorithm.
Checking whether D has no negative cycle can be accomplished as fol-

lows. Let us assume that D is strong (otherwise, we will consider the strong
components of D one by one; an effective algorithm to build the strong com-
ponents is described in Chapter 2). Let us append the following additional
step to the above algorithm:

3. For every arc vu ∈ A do: if δu > δv + c(vu) then return the message ‘the
digraph contains a negative cycle’.

Theorem 3.3.9 A strong weighted digraph D has a negative cycle if and
only if Step 3 returns its message.

Proof: Suppose that D has no negative cycle. By the description of Step
2 and Proposition 3.2.1, δu ≤ δv + c(vu) for every arc vu ∈ A. Hence, the
message will not be returned.

Assume that D has a negative cycle Z = v1v2 . . . vkv1. Assume for the
purpose of contradiction that Step 3 of the Bellman-Ford-Moore algorithm
does not return the message. Thus, in particular, δvi ≤ δvi−1 + c(vi−1vi) for
every i ∈ [k], where v0 = vk. Hence,

k∑

i=1

δvi ≤
k∑

i=1

δvi−1 +
k∑

i=1

c(vi−1vi).

Since the first two sums in the last inequality are equal, we obtain 0 ≤∑k
i=1 c(vi−1vi) = c(Z); a contradiction. ��

3.3 Algorithms for Finding Distances in Digraphs 99

8

4

-5

2

4

10

-2

-2

5

-3

9

s
0

8

4

-5

2

4

10

-2

-2

5

-3

9

s
0

8

4

-5

2

4

10

-2

-2

5

-3

9

s
0

8

4

-5

2

4

10

-2

-2

5

-3

9

s
0

8

4

-5

2

4

10

-2

-2

5

-3

9

s
0

(a) (b)

(c) (d)

(f)(e)

∞

∞

∞

∞

8

4

3 8

8

3

1

7

0

8

3 -3

-1

3

1

-4

-1

1 8

8 2

8

4

-5

2

4

10

-2

-2

5

-3

9

s
0

∞

∞ ∞

∞

∞

8

4

−5

2

4

10

-2

-2

5

-3

9

s
0

d a

e

b

c

Figure 3.4 Execution of the Bellman-Ford-Moore algorithm. The vertex labellings
and arc weights are given in the first digraph. The values of the parameter δ are
given near the vertices of the digraphs (a)–(f). In the inner loop of the second step
of the algorithm the arcs are considered in the lexicographic order: ab, ac, ba, bc,
cb, da, dc, ec, ed, sd, se. (a) The situation after performing the first step of the
algorithm. (b)–(f) The situation after each of the five successive executions of the
inner loop in the second step of the algorithm.

3.3.5 The Floyd-Warshall Algorithm

The above algorithms can be run from all vertices to find all pairwise dis-
tances between the vertices of a strong digraph D. However, if D has nega-
tive weight arcs, but does not contain a negative cycle, we may only use the
Bellman-Ford-Moore algorithm n times, which will result in O(n2m) time
(see Exercise 3.19 for a faster method). The Floyd-Warshall algorithm will

100 3. Distances

find the required distances faster, in O(n3) time. According to Skiena [822], in
practice, the algorithm even outperforms Dijkstra’s algorithm applied from n
vertices (when the weights in D are all non-negative) due to the simplicity of
its code (and, thus, smaller hidden constants in the time complexity). The al-
gorithm originates from the papers [324] by Floyd and [900] by Warshall. We
assume that we are given a strong weighted digraph D = (V, A, c) that has
no negative cycle. In this subsection, it is convenient to assume that V = [n].

Denote by δm
ij the length of a shortest (i, j)-path in D〈[m − 1] ∪ {i, j}〉,

for all 1 ≤ m ≤ n − 1. In particular, δ1
ij is the length of the path ij, if it

exists. Observe that a shortest (i, j)-path in D〈[m] ∪ {i, j}〉 either does not
include the vertex m, in which case δm+1

ij = δm
ij , or does include it, in which

case δm+1
ij = δm

im + δm
mj . Therefore,

δm+1
ij = min{δm

ij , δm
im + δm

mj}. (3.5)

Observe that δm
ii = 0 for all i ∈ [n], and, furthermore, for all pairs i, j such

that i �= j, δ1
ij = c(i, j) if ij ∈ A and δ1

ij = ∞, otherwise. Formula (3.5) is
also correct when there is no (i, j)-path in D〈[m] ∪ {i, j}〉. Clearly, δn+1

ij is
the length of a shortest (i, j)-path (in D). It is also easy to verify that O(n3)
operations are required to compute δn+1

ij for all pairs i, j.
The above assertions can readily be implemented as a formal algorithm

(the Floyd-Warshall algorithm, see Exercise 3.14). The Floyd-Warshall al-
gorithm allows one to find the diameter and radius of a weighted digraph
without cycles of negative weight in O(n3) time. Using the algorithm, we
may check whether D has no negative cycle. For simplicity let us assume, as
above, that D is strong. Then the verification can be based on the following
theorem (see, e.g., Lawler’s book [636]) whose proof is left to the interested
reader as Exercise 3.15.

Theorem 3.3.10 A weighted digraph D has a negative cycle if and only if
δm
ii < 0 for some m, i ∈ [n]. ��

3.4 Inequalities on Diameter

For a network representing a certain real-world system, it is desirable to have
a small diameter as it increases the reliability of the system (see, e.g., Fiol,
Yebra and Alegre [316]). However, networks representing real-world systems
normally do not have many arcs to avoid too costly constructions. The objec-
tives of minimizing the diameter and the size of a digraph clearly contradict
each other. Therefore, it is important for a designer to know what kind of
trade-off can be achieved. The inequalities of this section give some insight
into this problem.

3.4 Inequalities on Diameter 101

It is well-known that, in a connected undirected graph G, we have
rad(G) ≤ diam(G) ≤ 2 rad(G). This inequality holds also for strong digraphs
(for our definition of radius).

Proposition 3.4.1 For a strong digraph D = (V, A), we have rad(D) ≤
diam(D) ≤ 2 rad(D).

Proof: Clearly, rad(D) ≤ diam(D). Let x be a vertex of D such that
(dist(x, V) + dist(V, x))/2 = rad(D), and let y, z be vertices of D such that
dist(y, z) = diam(D). Since dist(y, z) ≤ dist(y, x) + dist(x, z) ≤ 2 rad(D), we
conclude that diam(D) ≤ 2 rad(D). ��

The following simple bound (called the Moore bound) on the order of a
strong digraph is important in certain applications [316]. We leave its proof
to the reader (Exercise 3.23).

Proposition 3.4.2 Let n, Δ and d be the order, the maximum out-degree
and the diameter, respectively, of a strong digraph D. Then n ≤ 1+Δ+Δ2 +
· · · + Δd. ��

The Moore bound is attained for Δ = 1 by the cycle 	Cd+1 and for d = 1
by the complete digraph on Δ + 1 vertices. However, it is well-known (see
Bridges and Toueg [181] and Plesńık and Znám [752]) that this bound cannot
be attained for Δ > 1 and d > 1. Therefore,

n <
Δd+1 − 1

Δ − 1

for Δ > 1 and d > 1. After simple algebraic transformations, we obtain the
following:

Proposition 3.4.3 Let n, Δ and d be the order, the maximum out-degree
and the diameter, respectively, of a strong digraph D. If Δ > 1 and d > 1,
then d ≥ �logΔ(n(Δ − 1) + 1)�. ��

The cases d = 2, 3 have received special consideration. For Δ = 2, Miller
and Fris [699] proved that there is no 2-regular digraph of diameter d ≥ 3 and
order n = Δ+Δ2+· · ·+Δd. 3-regular digraphs of order n = Δ+Δ2+· · ·+Δd,
with Δ = 3, have been studied by Baskoro, Miller, Plesńık and Znám [126].

The following two theorems solve the problems of establishing lower and
upper bounds for the diameter of a strong digraph. Theorem 3.4.4 was proved
by Goldberg [418]; Theorem 3.4.5 was derived by Ghouila-Houri [402].

Theorem 3.4.4 Let D be a strong digraph of order n and size m, m ≥ n+1,
and let g(n, m) = � 2n−2

m−n+1�. Then diam(D) ≥ g(n, m). This bound is the best
possible. ��

102 3. Distances

Theorem 3.4.5 Let D be a strong digraph of order n and size m. Then
diam(D) ≤ n − 1, if n ≤ m ≤ (n2 + n − 2)/2 and, otherwise, we have

diam(D) ≤ �n + 1
2 −

√
2m − n2 − n + 17

4 �, otherwise. ��

Now we consider a more refined upper bound on the diameter of an eule-
rian digraph obtained by Soares [826].

Theorem 3.4.6 Let D = (V, A) be an eulerian digraph of order n, diameter
d and minimum in-degree r, and let

f(n, r, t) = max
{

2, t + 3
(

n − t

r + 1
− 1

)}
,

where t = d mod 3 . Then d ≤ f(n, r, t).

Proof: We may assume that d ≥ 3. Let v, w ∈ V such that dist(v, w) = d
and let Vi = N+i(v) for i = 0, 1, . . . , d. Clearly, V0, V1, . . . , Vd is a partition of
V . Consider three consecutive sets Vj−1, Vj , Vj+1 of the partition. Recall that
(X, Y) denotes the set of arcs with tail in X and head in Y . By the definition
of the partition, we have

(Vj , V) = (Vj , Vj) ∪ (Vj , Vj+1) ∪ (Vj , W), (3.6)

where W = V0∪V1∪. . .∪Vj−1. By Corollary 1.7.3, |(Vj , W)| ≤ |(V \W, W)| =
|(W, V \W)|. By the definition of the partition (W, V \W) = (Vj−1, Vj). Since
the minimum out-degree of D is r, we have |(Vj , V)| ≥ r|Vj |. Also, we have

|(Vj , Vj)| ≤ |Vj |(|Vj | − 1), |(Vj , Vj+1)| ≤ |Vj ||Vj+1|, |(Vj−1, Vj)| ≤ |Vj−1||Vj |.

Therefore it follows from (3.6) that

r|Vj | ≤ |Vj |(|Vj | − 1) + |Vj ||Vj+1|+ |Vj−1||Vj |.

Thus,
|Vj−1| + |Vj | + |Vj+1| ≥ r + 1. (3.7)

Since d+(v) ≥ r and d−(w) ≥ r, we have |V0|+|V1| ≥ r+1 and |Vd−1|+|Vd| ≥
r+1. Adding these two inequalities to inequality (3.7) for j = 3, 6, . . . , 3�(d−
3)/3� and to the inequalities |Vj | ≥ 1 for the remaining t = d mod 3 sets Vj ,
we obtain

n =
d∑

j=0

|Vj | ≥ (r + 1)
(

d − t

3
+ 1

)
+ t,

which implies the desired inequality. ��
Soares [826] showed that the bound of Theorem 3.4.6 is best possible by

constructing a strong r-regular digraph D of order n with diameter �f(n, r, t)�
for all integers n and r such that n − 1 > r ≥ 2.

3.5 Minimum Diameter of Orientations of Multigraphs 103

For oriented digraphs the upper bound of Theorem 3.4.6 can be improved.
Let D be an eulerian oriented graph of order n. Dankelmann [240] proved that
that diam(D) ≤ 4n

2δ0(D)+1 +2. For given n and δ0, Knyazev [603] constructed
strong δ0-regular oriented graphs of order n and of diameter larger than

4n
2δ0+1 − 4. This shows that Dankelmann’s upper bound is sharp modulo an
additive constant.

For a strong oriented graph D, an obvious upper bound on its diameter
is diam(D) ≤ lp(UG(D)), where lp(G) denotes the length of a longest path
in a graph G. This bound is sharp due to the following result by Gutin [455].
A short proof of this result was given by Bondy [166].

Theorem 3.4.7 Let G be a connected bridgeless graph. Then

max{diam(D) : D ∈ S(G)} = lp(G),

where S(G) is the set of strong orientations of G. ��

Oriented graphs of diameter 2 and minimum size (for fixed order n) were
discussed by Fűredi, Horak, Pareek and Zhu [368]. (If we consider digraphs
instead of oriented graphs, the minimum size can be found trivially: it is
attained by

↔
K1,n−1.) Let f(n) be the minimum size of a strong oriented

graph of diameter 2 and order n. The authors of [368] proved that

(1 − o(1))n log2 n ≤ f(n) ≤ n log2 n + O(n log2 log2 n).

They stated the following:

Conjecture 3.4.8 We have f(n) ≥ n log2 n + (1
2 + o(1))n log2 log2 n.

We will finish this section by the following conjecture of Shen [815].

Conjecture 3.4.9 Let D be a strong digraph of order n, girth g and mini-
mum out-degree at least r. Then diam(D) ≤ n − (r − 1)(g − 1)− 1.

Shen [815] showed that the bound in Conjecture 3.4.9 cannot be decreased.
The conjecture is trivial for either r = 1 or g = 2. Shen [815] proved the
conjecture for r = 2. It is easy to see that Conjecture 3.4.9 implies the
conjecture of Caccetta and Häggkvist (Conjecture 8.4.1).

3.5 Minimum Diameter of Orientations of Multigraphs

Readers may find the following complexity result surprising.

Theorem 3.5.1 (Chvátal and Thomassen) [224] It is NP-complete to
decide whether an undirected graph admits an orientation of diameter 2. ��

104 3. Distances

For a bridgeless multigraph G, let diammin(G) denote the minimum di-
ameter of an orientation of G. We will present a minor modification of the
original proof of Theorem 3.5.1 by Chvátal and Thomassen [224]. The main
difference is in the use of Lemma 3.5.2 (which is applied to two different
results in this section). Define a bipartite tournament BTs, with partite
sets U, W , each of cardinality s, as follows. Let U = {u1, u2, . . . , us} and
W = {w1, w2, . . . , ws}. The vertex ui dominates only vertices wi, wi+1, . . . ,
wi+�s/2	−1 (the subscripts are taken modulo s) for every i ∈ [s].

Lemma 3.5.2 Let s ≥ 2. The diameter diam(BTs) equals 3. In particular,
dist(U, U) = dist(W, W) = 2.

Proof: Clearly, it suffices to show that dist(U, U) = dist(W, W) = 2. This
follows from the fact that, for every i �= j, we have N+(ui) − N+(uj) �= ∅
and, hence, there is a vertex w ∈ W such that ui→w→uj . ��

Lovász [653] proved that it is NP-hard to decide whether a hypergraph of
rank3 3 is 2-colourable. By the result of Lovász, Theorem 3.5.1 follows from
the next theorem.

Theorem 3.5.3 Given a hypergraph H of rank 3 and order n, one can con-
struct in polynomial time (in n) a graph G such that diammin(G) = 2 if and
only if H is 2-colourable.

Proof: Let k be the integer satisfying 8 ≤ k ≤ 11 and n+ k is divisible by 4.
Let H0 be a hypergraph obtained from H by adding k new vertices v1, . . . , vk.
Moreover, append three new edges {{vi, vi+1} : i = 1, 2, 3} to H0 if H has an
odd number of edges, and add four new edges {{vi, vi+1} : i = 1, 2, 3, 4} to
H0 otherwise. Observe that H0 has an even number of edges, which is at least
four. To construct G, take disjoint sets R and Q such that the elements of R
(Q) are in a one-to-one correspondence with the vertices (the edges) of H0.
Let G〈R〉 and G〈Q〉 be complete graphs, and p ∈ R and q ∈ Q be adjacent if
and only if the vertex corresponding to p belongs to the edge corresponding
to q (in H0).

Append four new vertices w1, w2, w3, w4 and join each of them to all the
vertices in R ∪ Q. Finally, add a new vertex x and join it to all the vertices
in R. We show that the obtained graph G has the desired property. (Clearly,
G can be constructed in polynomial time.)

Assume that G admits an orientation G∗ of diameter 2. For a vertex
u ∈ R, set f(u) = 0 if and only if x→u in G∗; otherwise, f(u) = 1. Since
distG∗(x, q) = 2 (distG∗(q, x) = 2, respectively) for each q ∈ Q, every edge e
of H contains a vertex y such that f(y) = 0 (f(y) = 1, respectively). Thus
H is 2-colourable.

Now assume that H is 2-colourable. Then H0 admits a 2-colouring which
generates a partition R = R1 ∪ R2 such that every edge of H0 has a vertex
3 Recall that the rank of a hypergraph is the cardinality of its largest edge.

3.5 Minimum Diameter of Orientations of Multigraphs 105

corresponding to an element from Ri and |Ri| ≥ 4 (for every i = 1, 2). An
orientation G′ of G of diameter 2 is defined as follows. Orient the edges in
each complete graph G〈L〉 ∈ {G〈R1〉, G〈R2〉, G〈Q〉} such that the resulting
tournament contains the bipartite tournament BT|L|. Let Ai, Bi be the par-
tite sets of the bipartite tournaments in G〈Ri〉 (i = 1, 2) and let A, B be the
partite sets of the bipartite tournament in G〈Q〉. The rest of the edges in G
are oriented as follows:

x→R1→R2→x, R1→Q→R2,
(A1 ∪A2)→w1→A, B→w1→(B1 ∪B2),
(A1 ∪A2)→w2→B, A→w2→(B1 ∪B2),
(B1 ∪B2)→w3→A, B→w3→(A1 ∪A2),
(B1 ∪B2)→w4→B, A→w4→(A1 ∪A2).

Using Lemma 3.5.2, it is not difficult to verify that diam(G′) = 2. For
example, to show that distG′(A1, V (G′)) ≤ 2 and distG′(V (G′), A1) ≤ 2, it
suffices to observe that distG′(A1, A1) = 2 and

B1 ∪R2 ∪Q ∪ {w1, w2} ⊆ N+(A1),
{x, w3, w4} ⊆ N+(B1 ∪R2 ∪Q ∪ {w1, w2}),

B1 ∪ {x, w3, w4} ⊆ N−(A1),
N−(B1 ∪ {x, w3, w4}) ⊆ R2 ∪Q ∪ {w1, w2}.

��
Chvátal and Thomassen [224] dealt with the following parameter which

we call the strong radius. The strong radius of a strongly connected digraph
D = (V, A), srad(D), is equal to

min{max{dist(v, V), dist(V, v)} : v ∈ V }.
Chvátal and Thomassen [224] showed that it is NP-hard to decide whether
a graph admits a strongly connected orientation of strong radius 2. The
strong radius is of interest because, in particular, srad(D) ≤ diam(D) ≤
2 srad(D) for every strongly connected digraph D (this follows from the fact
that rad(D) ≤ srad(D) for every strong digraph D and Proposition 3.4.1).
Following [224], we prove a sharp upper bound for the value of the strong
radius of a strong orientation of a bridgeless connected multigraph. The first
part of the proof of Theorem 3.5.4 is illustrated in Figure 3.5.

Theorem 3.5.4 [224] Every bridgeless connected multigraph G = (V, E) ad-
mits an orientation of strong radius at most (rad(G))2 + rad(G).

Proof: We will show a slightly more general result. Let u ∈ V be arbi-
trary and let distG(u, V) = r, then there is an orientation L of G such that
distL(u, V) ≤ r2 + r and distL(V, u) ≤ r2 + r.

Since G is bridgeless, every edge uv is contained in some undirected cycle;
let k(v) denote the length of a shortest cycle through uv. It is not difficult to
prove (see Exercise 3.24) that for every v ∈ N(u), k(v) ≤ 2r + 1.

106 3. Distances

2

2

2

1

1

u
33

3
32

1

Figure 3.5 Constructing the orientation D of H in the proof of Theorem 3.5.4.
The integers on arcs indicate the step number in the process of obtaining D.

We claim that there is a subgraph H of G and an orientation D of H with
the following properties:

(a) NG(u) ⊆ V (H).
(b) For each v ∈ N(u), D has a cycle Cv of length k(v) containing either uv

or vu.
(c) D is the union of the cycles Cv.

Observe that by this claim and k(v) ≤ 2r + 1,

max{distD(u, V (D)), distD(V (D), u)} ≤ 2r. (3.8)

We demonstrate the above claim by constructing H and D step by step.
Let uv be an edge in G and let Zv be an undirected cycle of length k(v)
through uv. Orient Zv arbitrarily as a directed cycle and let Cv denote the
cycle obtained this way. Set H := Zv, D := Cv. This completes the first
step. At step i(≥ 2), we choose an edge uw such that w /∈ V (H) and an
undirected cycle Z = w1w2 . . . wkw1 in G such that w1 = u, w2 = w and
k = k(w). If no vertex in Zw − u belongs to H, then append the directed
cycle Cw = w1w2 . . . wkw1 to D and the cycle Z to H. Go to the next step.

Otherwise, there is a vertex wi (2 ≤ i ≤ k) such that wi ∈ V (H) (and
hence wi ∈ V (D)). Suppose that wi has the least possible subscript with this
property. Since wi ∈ V (D), there is some neighbour v of u such that wi ∈ Cv.
(Recall that Cv is a directed cycle.) Let Cv = v1v2 . . . vtv1, where u = v1,
v ∈ {v2, vt} and wi = vj for some j. By considering the converse of D, if
necessary, we may assume, without loss of generality, that v = v2. Now we
consider two cases.
Case 1: wk �= v. In this case, define the directed cycle Cw = uw2w3

. . . wiCv[vj+1, u] and observe that Cw has length k(w). (Indeed, if Cw had
more than k(w) arcs, the path Cw[wi, u] would be longer than the path
P2 = wiwi+1 . . . wku. In that case, the walk Zv[u, vj]P2[wi+1, u] containing
uv would be of length less than k(v); a contradiction.) Let Zw := UG(Cw).
Add Cw to D and Zw to H. Go to the next step.
Case 2: wk = v. In this case, define the directed cycle Cw as follows: Cw =
Cv[u, vj]wi−1wi−2 . . . w2u and observe that Cw has length k(w) (the proof of

3.5 Minimum Diameter of Orientations of Multigraphs 107

the last fact is similar to the one given in Case 1). Let Zw := UG(Cw). Add
Cw to D and Zw to H. Go to the next step.

Since V (G) is finite and we add at least one new vertex to H at each step,
this process will terminate with the desired subgraph H and its orientation
D. Thus, the claim is proved.

Consider the directed multigraph D. In G, contract all the vertices of D
into a new vertex u∗ (the operation of contraction for undirected multigraphs
is similar to that for directed multigraphs) and call the resulting multigraph
G∗. Note that G∗ is bridgeless and that by the property (a) of the above
claim, we obtain distG∗(u∗, V (G∗)) ≤ r − 1. By the induction hypothesis,
there is an orientation L∗ of G∗ such that

distL∗(u∗, V (L∗)) ≤ r2 − r and distL∗(V (L∗), u∗) ≤ r2 − r. (3.9)

Consider an orientation L of G obtained by combining L∗ with D and
orienting the rest of the edges in G arbitrarily. By (3.8) and (3.9), we have

distL(u, V (L)) ≤ r2 + r and distL(V (L), u) ≤ r2 + r.

��
The sharpness of the bound in Theorem 3.5.4 is proved in [224]. Theorem

3.5.4 immediately implies the following.

Corollary 3.5.5 For every bridgeless connected multigraph G of radius r,
diammin(G) ≤ 2r2 + 2r. ��

Plesńık [751] generalized Theorem 3.5.4 and Corollary 3.5.5 to orientations
of weighted multigraphs.

Theorem 3.5.6 Let G be a bridgeless connected multigraph in which every
edge has weight between 1 and W. If the radius of G is r, then G admits
an orientation of strong radius at most r2 + rW and of diameter at most
2r2 + 2rW. ��

Plesńık [751] showed that the result of the previous theorem regarding
the strong radius is sharp.

Chung, Garey and Tarjan [218] generalized Corollary 3.5.5 to mixed
graphs. They proved the following.

Theorem 3.5.7 Every bridgeless connected mixed graph G of radius r ad-
mits an orientation of diameter at most 8r2 +8r. Such an orientation can be
found in time O(r2(n + m)). ��

108 3. Distances

3.6 Minimum Diameter Orientations of Some Graphs
and Digraphs

Recall that an orientation of a digraph D is an oriented graph H obtained
from D by deleting one arc in every 2-cycle of D. For a strong digraph D
with bridgeless UG(D), let diammin(D) denote the minimum diameter of an
orientation of D. By Corollary 1.8.2, the assumption that UG(D) is bridgeless
implies that diammin(D) < ∞. (If UG(D) has a bridge, no orientation of D
is strong.)

Many authors consider the following parameter ρ(D) := diammin(D) −
diam(D). It turns out that, for many interesting directed and undirected
graphs G, ρ(G) = 0, 1 or 2 (a result which is quite different from the ‘pes-
simistic’ bound proved in Theorem 3.5.4). In this section, we discuss results
on minimum diameter orientations of some special families of directed and
undirected graphs G for which ρ(G) is (very) small.

3.6.1 Generalizations of Tournaments

Recall that a digraph is semicomplete k-partite if it can be obtained from
a complete k-partite graph by replacing each edge xy with either arc xy or
arc yx or both xy and yx. Recall that a digraph D is quasi-transitive if the
existence of arcs xy, yz (x �= z) in D implies that at least one of the arcs xz
and zx is in D.

Observe that, by Corollary 1.8.2, a strong semicomplete k-partite digraph
D, k ≥ 2, has a strong orientation unless D is a semicomplete bipartite
digraph with a partite set consisting of a single vertex. This justifies the
consideration of the following two classes of digraphs. Let D0 be the set of
strong quasi-transitive digraphs of order n ≥ 3. Let D1 be the set of strong
semicomplete bipartite digraphs with at least two vertices in each partite set.

For digraphs from the class D0∪D1 the following bound on the minimum
diameter of an orientation was obtained by Gutin and Yeo [478].

Theorem 3.6.1 If D ∈ Di for i ∈ {0, 1}, then

diammin(D) ≤ max{3 + 2i,diam(D)}.

Proof: Assume that this theorem is false and that D is a counterex-
ample to the theorem with as few 2-cycles as possible. Let D ∈ Di for
i ∈ {0, 1} and let γ = 3 + 2i. Let xyx be a 2-cycle in D. Clearly, the di-
ameter of D increases by at least one when we delete either of the arcs
xy or yx from D. Therefore, there exist vertices sxy, txy, syx, tyx in D,
such that distD−xy(sxy, txy) > max{γ,diam(D)} and distD−yx(syx, tyx) >
max{γ,diam(D)}. Let P = p0p1 . . . pl be an (sxy, txy)-path in D of minimum
length (note that l ≤ diam(D)) and let Q = q0q1 . . . qm be an (syx, tyx)-path
in D of minimum length (note that m ≤ diam(D)). Let ρ and η be defined

3.6 Minimum Diameter Orientations of Some Graphs and Digraphs 109

such that xy = pρpρ+1 and yx = qηqη+1. We now consider the following cases,
which exhaust all possibilities:

Case 1: ρ+1 < l, η+1 < m and D ∈ D0∪D1. We first show that pρ+2 and
qη+2 are adjacent. This is clearly true if D is semicomplete bipartite as these
two vertices belong to different partite sets of D. If D is quasi-transitive,
then pρ and pρ+2 are adjacent. Therefore, pρ+2→pρ by the minimality of
l. However, this implies that pρ+2 and qη+2 are adjacent, as pρ+2→(pρ =
qη+1)→qη+2.

If pρ+2→qη+2, then by qη = pρ+1, q0q1 . . . qηpρ+2qη+2 . . . qm is a (q0, qm)-
path of length m ≤ diam(D) in D − yx, a contradiction. The case when
qη+2→pρ+2 can be considered analogously.

Case 2: ρ > 0, η > 0 and D ∈ D0 ∪ D1. This case can be transformed
into Case 1 by considering the converse of D.

Case 3: ρ = 0, η + 1 = m and D ∈ D0. We first prove that l + m ≥ 3.
Suppose that l = m = 1, i.e., x = p0 = q1, y = p1 = q0. Let z0z1 . . . zk be
a shortest (y, x)-path in D − yx. By the choice of x, y, we have k ≥ 4. By
Proposition 2.7.1, zk→z1 and z2→z0. Hence, zkz1z2z0 is an (x, y)-path in
D − xy of length three, a contradiction with the choice of x. Thus, we may
assume, without loss of generality, that l ≥ 2.

Let R = r0r1 . . . rt be a shortest path from q0 to pl in D. The path R
can be chosen such that it does not contain yx. Indeed, if y = rj , x = rj+1

for some j, then r0r1 . . . rjp2p3 . . . pl is not longer than R (as p1p2 . . . pl is
a shortest (p1, pl)-path in D). So, we may assume that R does not contain
yx. It is not difficult to see that we may assume that R does not contain xy
either.

By Proposition 2.7.1, we obtain immediately that pl→p0 if l �= 3 and
pl→p1 if l = 3. If l = 3, then we have p3→p1 and p0→p1. Therefore, by the
minimality of l, p3→p0. Hence, we have shown that pl→p0 for every l ≥ 2.

We have t > 2, for otherwise r0r1 . . . rtp0 would be a path from q0 to qm

of length t + 1 ≤ 3 in D − yx. Since pl→p0 and rt−1→rt = pl, we conclude
that rt−1 and p0 are adjacent. If rt−1→p0, then r0r1 . . . rt−1p0 is a path from
q0 to qm of length t ≤ diam(D) in D − yx, a contradiction. If p0→rt−1, then
p0rt−1pl is a path of length two from p0 to pl in D − xy, a contradiction.

Case 4: η = 0, ρ+1 = l and D ∈ D0. This case can be transformed into
Case 3 by considering the converse of D.

Case 5: ρ = 0, η + 1 = m and D ∈ D1. Suppose that l = m = 1. Let
z0z1 . . . zk be a shortest (y, x)-path in D−yx. By the choice of x, y, k ≥ 6. By
the minimality of k, z3→z0 (z0 and z3 belong to different partite sets of D)
and zk→z2 (zk and z2 belong to different partite sets of D). Hence, zkz2z3z0

is an (x, y)-path in D−xy, a contradiction. So, we may assume, without loss
of generality, that m ≥ 2.

110 3. Distances

Let R = r0r1 . . . rt be a shortest path from q0 to pl in D. As in Case 3,
we may assume that R contains neither xy nor yx.

Suppose that t = 0, implying that q0 = pl and l, m ≥ 2. Assume that
l ≥ 3. If p0 and pl belong to different partite sets of D, then, by the minimality
of l and the assumption that D is semicomplete bipartite, pl→p0, which is
impossible as plp0 is a (q0, qm)-path of length one in D−yx, a contradiction. If
p0 and pl belong to the same partite set of D, then pl→p1 (by the minimality
of l) and plp1p2p3p0 is a (q0, qm)-path of length four in D−yx, a contradiction.
So, l = 2. Analogously, we can prove that m = 2. Since D−xy has a (p0, p2)-
path and p2 = q0→q1 = p1, there is a (p0, p1)-path S = s0s1 . . . sa in D−xy.
Assume that S has minimum length and observe that a ≥ 5, as s0s1 . . . sapl

is a (p0, pl)-path in D − xy. Furthermore, s3→s0 as s0 and s3 lie in different
partite sets of D and S is of minimum length. Observe that if p2→s3, then
p2s3s0 is a (q0, qm)-path in D−yx of length 2, and if s3→p2, then s0s1s2s3p2

is a (p0, pl)-path in D−xy of length 4. In both cases we obtain a contradiction.
Hence, t > 0.

Suppose that 1 ≤ t ≤ 2. Clearly r0 and r1 lie in different partite sets, so
we may assume, without loss of generality, that r0 and p0 are adjacent (the
case when r1 and p0 are adjacent can be considered analogously). Clearly p0

dominates r0 by the minimality of m. However, p0r0 . . . rt is a (p0, pl)-path
in D − xy of length of t + 1 ≤ 3, a contradiction. Hence, t ≥ 3.

Clearly r1 and r2 lie in different partite sets, so we may assume, without
loss of generality, that r1 and p0 are adjacent (the case when r2 and p0

are adjacent can be considered analogously). Clearly p0 dominates r1 by
the minimality of m. However, the path p0r1 . . . rt in D − xy is of length
t ≤ diam(D).

Case 6: η = 0, ρ+1 = l and D ∈ D1. This case can be transformed into
Case 5 by considering the converse of D. ��

The upper bound of this theorem is sharp as one can see from the following
examples given in [478]. Let Tk, k ≥ 3, be a (transitive) tournament with
vertices x1, x2, . . . , xk and arcs xixj for every 1 ≤ i < j ≤ k. Let y be a
vertex not in Tk, which dominates all vertices of Tk but xk and is dominated
by all vertices of Tk but x1. The resulting semicomplete digraph Dk+1 has
diameter 2. However, the deletion of any arc of Dk+1 between y and the set
{x2, x3, . . . , xk−1} leaves a digraph with diameter 3. Indeed, if we delete yxi,
2 ≤ 2 ≤ k − 1, then a shortest (xk, xi)-path becomes of length 3.

Let H be a strong semicomplete bipartite digraph with the following
partite sets V1 and V2 and arc set A: V1 = {x1, x2, x3}, V2 = {y1, y2, y3} and

A = {x1y1, y1x1, x1y2, y3x1, x2y1, y2x2, y3x2, y1x3, x3y3, x3y2}.

Let H ′ = H−x1y1 and H ′′ = H−y1x1. It is easy to verify that diam(H) = 4
(in particular, dist(y2, y3) = 4) and that diam(H ′) = diam(H ′′) = 5 (a short-
est (x1, y3)-path in H ′ and a shortest (y2, x1)-path in H ′′ are of length 5).

3.6 Minimum Diameter Orientations of Some Graphs and Digraphs 111

The digraph H can be used to generate an infinite family of semicomplete
bipartite digraphs with the above property: replace, say, x3 by a set of inde-
pendent vertices.

The above theorem inspired the following conjecture by Gutin, Koh, Tay
and Yeo [467].

Conjecture 3.6.2 There is an absolute constant c such that for every strong
semicomplete multipartite digraph D, we have diammin(D) ≤ diam(D) + c.

Recall that a digraph D is locally semicomplete if both of the digraphs
D〈N+(x)〉 and D〈N−(x)〉 are semicomplete digraphs for every vertex x ∈
V (D). The following theorem is an analog of Theorem 3.6.1 and was also
proved by Gutin and Yeo [478].

Theorem 3.6.3 If D is a strong locally semicomplete digraph of order n ≥ 3,
then

diammin(D) ≤ max{5, diam(D) + 1}.
��

3.6.2 Extended Digraphs

Recall the notion of an extension of a digraph. The (s1, s2, . . . , sn)-extension
(or just extension) D(s1, s2, . . . , sn) of a digraph D with vertices labelled,
say, 1, 2, . . . , n is obtained from D by replacing every vertex i by a set of si

independent (i.e., with no arc between them) vertices; more formally,

V (D(s1, s2, . . . , sn)) = {(pi, i) : 1 ≤ pi ≤ si, i ∈ [n]}

and (p, i)→(q, j) in D(s1, s2, . . . , sn) if and only if i→j in D.
Observe that complete p-partite graph is an extension of Kp. The first

result on the topic of this subsection was obtained by Šoltés [827].

Theorem 3.6.4 If n1 ≥ n2 ≥ 2, then ρ(Kn1,n2) = 1 for n1 ≤
(

n2
�n2/2	

)
, and

ρ(Kn1,n2) = 2, otherwise. ��

The original proof of Theorem 3.6.4 is rather long. A shorter proof of this
result using the well-known Sperner’s lemma is given by Gutin [450]; Gutin’s
proof is given in Chapter 2 of [91].

The exact values of ρ(Kn1,n2,...,nk
) are unknown, but the following result

obtained independently by Plesńık [751] and Gutin [450] gives a sharp upper
bound on f(n1, . . . , nk) = diammin(Kn1,n2,...,nk

).

Theorem 3.6.5 For every k ≥ 3 and all positive integers n1, . . . , nk, we
have 2 ≤ f(n1, . . . , nk) ≤ 3.

112 3. Distances

Proof: Obviously, f(n1, . . . , nk) ≥ 2.
If k is odd, let R(n1, n2, . . . , nk) stand for a multipartite tournament

with partite sets V1, . . . , Vk of cardinalities n1, . . . , nk such that Vi→Vj if and
only if j − i ≡ 1, 2, . . . , �k/2� (mod k). If k is even, then R(n1, n2, . . . , nk)
is determined as follows: R(n1, n2, . . . , nk) − Vk

∼= R(n1, n2, . . . , nk−1),
Vk→Vi (i = 1, 3, 5, . . . , k − 1), Vj→Vk (j = 2, 4, 6, . . . , k − 2). We show that
diam(R(n1, n2, . . . , nk)) ≤ 3 for every k ≥ 3.

Case 1: k is odd, k ≥ 3. It is sufficient to prove that dist(V1, Vi) ≤ 3
for all i ∈ [k]. If 1 < j ≤ �k/2� + 1, then V1→Vj by the definition. If
�k

2 � + 1 < j ≤ k, then V�k/2	+1 → Vj , hence dist(V1, Vj) = 2. Since V1 →
V�k/2	+1 → V�k/2	+2→V1, we have dist(V1, V1) ≤ 3.

Case 2: k is even, k ≥ 4. Since R(n1, . . . , nk) − Vk
∼= R(n2, . . . , nk−1), we

have dist(Vi, Vj) ≤ 3 for all 1 ≤ i, j ≤ k − 1. Moreover, Vk→Vi→Vi+1 for
i = 1, 3, 5, . . . , k−3 and Vk → Vk−1. Therefore dist(Vk, Vt) ≤ 2 for t ∈ [k−1].
Analogously, Vi→Vi+1→Vk for i = 1, 3, 5, . . . , k − 3 and Vk−1→V1→V2→Vk.
Hence dist(Vt, Vk) ≤ 3 for t ∈ [k − 1]. Finally, Vk→V1→V2→Vk. Therefore
dist(Vk, Vk) ≤ 3. ��

The following main result of this subsection was obtained by Gutin, Koh,
Tay and Yeo [467].

Theorem 3.6.6 Let H be a strong digraph of order n ≥ 3 and let D =
H(s1, s2, . . . , sn) with si ≥ 2, 1 ≤ i ≤ n. Then diam(H) ≤ diammin(D) ≤
diam(H) + 2.

Notice that Theorem 3.6.6 is a generalization of an analogous result for
extensions of graphs obtained by Koh and Tay [615, 846].

The requirement n ≥ 3 is important as one can see from Theorem 3.6.4
that diam(K2) = 1, but diammin(Ks,2) = 4 for s ≥ 3. Clearly, diam(H) ≤
diam(D′) for every orientation D′ of D. To prove the more difficult part of
the inequality in Theorem 3.6.6, we will use the following lemma.

Lemma 3.6.7 Let ti, si be integers such that 2 ≤ ti ≤ si for 1 ≤ i ≤ n
and let H be a strong digraph with vertex set [n], n ≥ 3. If the digraph
D′ = H(t1, t2, . . . , tn) admits an orientation F ′ in which every vertex v =
(p, i), such that i belongs to a cycle in H of length two, lies on a cycle Cv

of length not exceeding m, then D = H(s1, s2, . . . , sn) has an orientation F
with diameter at most max{m, diam(F ′)}.

Proof: Given an orientation F ′ of D′, we define an orientation F of D as
follows. We have (p, i)→(q, j) in F if and only if one of the following holds:

(a) p < ti, q < tj and (p, i)→(q, j) in F ′.
(b) p < ti, q ≥ tj and (p, i)→(tj , j) in F ′.
(c) p ≥ ti, q < tj and (ti, i)→(q, j) in F ′.
(d) p ≥ ti and q ≥ tj and (ti, i)→(tj , j) in F ′.

3.6 Minimum Diameter Orientations of Some Graphs and Digraphs 113

Let u = (p, i) and v = (q, j) be a pair of distinct vertices in F . If i �= j,
then it is clear that distF (u, v) ≤ diam(F ′) (we can use obvious modifications
of the corresponding paths in F ′). We have the same result if i = j but p < ti
or q < tj . Assume that i = j, p ≥ ti and q ≥ tj . If i belongs to a cycle in
H of length two, then using the cycle Cu we conclude that distF (u, v) ≤ m.
If i belongs to no cycle in H of length two, then since u, v dominate and are
dominated by the same vertices and since distF ((1, i), (2, i)) ≤ diam(F), we
have dist((p, i), (q, i)) ≤ diam(F). ��

Proof of Theorem 3.6.6: We prove that there exists an orientation D′ of D
such that diam(D′) ≤ diam(H) + 2. If diam(H) = 1, then this claim follows
from Theorem 3.6.5. Thus, we may assume that diam(H) ≥ 2.

Define an orientation F ′ of H(t1, t2, . . . , tn), where every ti = 2, as follows:

(1, i)→(1, j)→(2, i)→(2, j)→(1, i) if and only if i < j. (3.10)

Let u = (p, i) and v = (q, j) be a pair of distinct vertices in F ′. We
show that distF ′(u, v) ≤ diam(H) + 2. Suppose that ik1k2 . . . ksj is a path of
length s + 1 = distH(i, j) in H. Then the path Q = (p, i)(k∗

1 , k1)(k∗
2 , k2) . . .

(k∗
s , ks)(j∗, j), where x∗ = 1 or 2, is of length distH(i, j) in F ′. If j∗ = q, then

the last inequality follows. Otherwise, i.e., j∗ �= q, the path Q(3−k∗
s , ks)(q, j)

is of length distH(i, j) + 2 in F ′. Thus, distF ′(u, v) ≤ diam(H) + 2. Hence,
diam(F ′) ≤ diam(H). By (3.10), every vertex (p, i) of F ′, such that i lies on
a cycle in H of length 2, belongs to a cycle of length 4. Now this theorem
follows from Lemma 3.6.7. ��

We finish this subsection by the following conjecture from [467]. It is
unknown whether the conjecture is valid even for undirected graphs [615].
The conjecture is correct for H =

↔
T , where T is a tree [846], and some other

classes of digraphs, see [467].

Conjecture 3.6.8 Let H be a strong digraph of order n ≥ 3 and let D =
H(s1, s2, . . . , sn) with si ≥ 2, i ∈ [n], be of diameter at least three. Then
diammin(D) ≤ diam(H) + 1.

3.6.3 Cartesian Products of Graphs

The Cartesian product of a family of undirected graphs G1, G2, . . . , Gn,
denoted by G = G1 × G2 × . . . × Gn or

∏n
i=1 Gi, where n ≥ 2, is the graph

G having V (G) = V (G1)× V (G2)× . . .× V (Gn) = {(w1, w2, . . . , wn) : wi ∈
V (Gi), i ∈ [n]} and a pair of vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) of G
are adjacent if and only if there exists an r ∈ [n] such that urvr ∈ E(Gr) and
ui = vi for all i ∈ [n] \ {r}. Let Pn (Cn, Kn) be the (undirected) path (cycle,
complete graph) of order n and let Tn stand for a tree of order n. Roberts
and Xu [781, 782, 783, 784] and Koh and Tan [606] evaluated the quantity

114 3. Distances

ρ(Pk ×Ps). (We remark that Roberts and Xu [781, 782, 783, 784] considered
objective functions other than ρ for orientations of the Cartesian products of
undirected paths.) Koh and Tay [611] proved that most of those results can
be extended as follows.

Theorem 3.6.9 For n ≥ 2, k1 ≥ 3, k2 ≥ 6 and (k1, k2) �= (3, 6), we have
ρ(Pk1 × Pk2 × · · · × Pkn) = 0. ��

This, in particular, generalizes the main result of McCanna [688] on n-
cubes, i.e., the graphs

∏n
i=1 P2. Koh and Tay [610] have obtained the values

of q(r, k) = ρ(C2r × Pk) for r, k ≥ 2: q(r, k) = 0 if k ≥ 4, q(r, k) = 2 if k = 2
and r is even, q(r, k) = 1 in the remaining cases.

They have also evaluated ρ(Km × Pk), ρ(Km × C2r+1) and ρ(Km × Kn)
[612], ρ(Km ×C2r) [614] and ρ(Tm × Tn) [616]. König, Krumme and Lazard
[621] studied the Cartesian products of cycles. They proved the following
interesting result.

Theorem 3.6.10 Let p, q be integers with p, q ≥ 6. If at least one of these
two integers is even, then ρ(Cp × Cq) = 0. If both p and q are odd, then
ρ(Cp × Cq) = 1. ��

König, Krumme and Lazard [621] evaluated ρ(Cp × Cq) in most cases
when the minimum of p and q is smaller than 6. They also extended the
ρ(Cp × Cq) = 0 part of Theorem 3.6.10 to the Cartesian products of three
or more cycles. These results are described in more detail in [846]. Some of
the above results were extended by Koh and Tay [611], where the following
theorem was proved.

Theorem 3.6.11 For m ≥ 2, r ≥ 0, k1 ≥ 3, k2 ≥ 6 and (k1, k2) �= (3, 6),
we have ρ(

∏m
i=1 Pki ×

∏r
i=1 Cni) = 0. ��

This result was further extended by Koh and Tay in [613]. For details, see
[613] or Chapter 2 in [91].

3.6.4 Chordal Graphs

An undirected graph G is chordal if each cycle C of G of length at least 4
has a chord, i.e., an edge connecting two vertices of C that are not neighbours
in C. Fomin, Matamala and Rapaport [327] proved the following:

Theorem 3.6.12 Every connected chordal graph G with no bridge has an
orientation of diameter at most 2 diam(G) + 1. ��

Better bounds for diammin(G) can be obtained for special families of
chordal graphs. An undirected graph G with V (G) = {vi : i ∈ [n]} is called
an interval graph if there is a set {Ji : i ∈ [n]} of intervals on the real line

3.7 Kings in Digraphs 115

such that vivj is an edge if and only if Ji ∩ Jj �= ∅. If the corresponding set
{Ji : i ∈ [n]} of intervals can be chosen such that no interval is contained
in another, then G is called a proper interval graph. The class of interval
graphs is of great importance for graph theory and its applications [421]. It
is easy to see that every interval graph is chordal.

Improving results of Fomin, Matamala, Prisner and Rapaport [326],
Huang and Ye [542] proved the following:

Theorem 3.6.13 We have diammin(G) ≤ �3
2diam(G)�+1 for each bridgeless

connected interval graph G. If G is a 2-connected proper interval graph, then
diammin(G) ≤ � 5

4diam(G)� + k, where k = 0 if diam(G) ≤ 3 and k = 1,
otherwise. ��

It follows from examples in [326, 542] that the bounds of Theorem 3.6.13
are sharp.

3.7 Kings in Digraphs

In this section, we study r-kings in tournaments, semicomplete multipartite
digraphs and other generalizations of tournaments. The main emphasis is on
4-kings in semicomplete multipartite digraphs. The notion of a 2-king and
some results on 2-kings in tournaments will be generalized in Section 3.8.2.

3.7.1 2-Kings in Tournaments

Studying dominance in certain animal societies, the mathematical sociologist
Landau [634] observed that every tournament has a 2-king. In fact, in every
tournament T , each vertex x of maximum out-degree is a 2-king. Indeed, for a
vertex y ∈ T , y �= x, either x→y or there is an out-neighbour of x which is an
in-neighbour of y. In both cases, dist(x, y) ≤ 2. Observe that if a tournament
T has a vertex of in-degree zero, this vertex is the only r-king in T for every
positive integer r. Moon [702] proved the following.

Theorem 3.7.1 Every tournament with no vertex of in-degree zero has at
least three 2-kings.

Proof: Exercise 3.30. ��
The following example shows that this bound on the number of 2-kings

by Moon is sharp. Let Tn be a tournament with vertex set {x1, x2, . . . , xn}
and arc set A = X ∪ Y ∪ {xn−2xn}, where X = {xixi+1 : i ∈ [n − 1]} and
Y = {xjxi : 1 ≤ i < j − 1 ≤ n − 1, (j, i) �= (n, n − 2)}. It is easy to verify
that, for n ≥ 5, xn−3, xn−2, xn−1 are the only 2-kings in Tn (Exercise 3.32),
see Figure 3.6.

116 3. Distances

Figure 3.6 An example of a tournament with exactly three 2-kings. The arcs which
are not shown are oriented from right to left.

Since the converse of a tournament is a tournament, the above two results
can be reformulated for 2-serfs. (A vertex x is a 2 serf if dist(V, x) ≤ 2.) The
concepts of 2-kings and 2-serfs in tournaments were extensively investigated
by both mathematicians and political scientists (the latter have studied so-
called majority preferences). The interested reader is referred to Reid [774]
for a comprehensive recent survey on the topic.

3.7.2 Kings in Semicomplete Multipartite Digraphs

It is easy to see that Proposition 3.1.1 implies that a multipartite tourna-
ment T has a finite out-radius if and only if T contains at most one vertex of
in-degree zero (Exercise 3.34). Moreover, the following somewhat surprising
assertion holds. If a multipartite tournament has finite out-radius, the out-
radius is at most four. In other words, every multipartite tournament with
at most one vertex of in-degree zero contains a 4-king. (Similar results hold
for quasi-transitive digraphs and a certain class of digraphs that includes
multipartite tournaments, see Subsection 3.7.3.) This result was proved in-
dependently by Gutin [446] and Petrović and Thomassen [749]. The bound
is sharp as there exist infinitely many p-partite tournaments without 3-kings
for every p ≥ 2 [446]. Indeed, bipartite tournaments 	C4[Kq,Kq,Kq,Kq] for
q ≥ 2 do not have 3-kings (dist(u, v) = 4 for distinct vertices u, v from the
same Kq). It is clear that every multipartite tournament, for which the initial
strong component is some 	C4[Kq,Kq,Kq,Kq] (q ≥ 2), has no 3-king either.

Thus, 4-kings are of particular interest in multipartite tournaments. In
a number of papers (see, e.g., Gutin [450], Koh and Tan [607, 608, 609],
Petrović [748] and the survey paper [774] by Reid) the authors investigate
the minimum number of 4-kings in multipartite tournaments without vertices
of in-degree zero. (If a multipartite tournament has exactly one vertex of in-
degree zero, it contains exactly one 4-king, so this case is trivial.) In our view,
the most interesting result in this direction was obtained by Koh and Tan in
[607].

Theorem 3.7.2 Let T be a k-partite tournament with no vertex of in-degree
zero. If k = 2, T contains at least four 4-kings; it has exactly four 4-kings
if its initial strong component consists of a cycle of length four. If k ≥ 3, T
contains at least three 4-kings; it has exactly three 4-kings if its initial strong
component consists of a cycle of length three. ��

3.7 Kings in Digraphs 117

This theorem can be considered as a characterization of bipartite (p-
partite, p ≥ 3) tournaments with exactly k 4-kings for k ∈ {1, 2, 3, 4}
(k ∈ {1, 2, 3}). The next theorem by Gutin and Yeo [474] goes further with
respect to both exact number of 4-kings and the class of digraphs under
consideration.

Theorem 3.7.3 Let D = (V, A) be a semicomplete multipartite digraph and
let k be the number of 4-kings in D. Then

1. k = 1 if and only if D has exactly one vertex of in-degree zero.
2. k = 2, 3 or 4 if and only if the initial strong component of D has k

vertices.
3. k = 5 if and only if either the initial strong component Q of D has five

vertices or Q contains at least six vertices and possesses a path P =
p0p1p2p3p4 such that dist(p0, p4) = 4 and {p1, p2, p3, p4}⇒V −V (P). ��

We have seen that a vertex of maximum out-degree in a tournament is
a 2-king. It is slightly more difficult to show that a vertex of maximum out-
degree in a bipartite tournament is a 4-king (Exercise 3.33). With 4-kings in
k-partite tournaments for k ≥ 3, the situation is more complicated as can
be seen from the next theorem by Goddard, Kubicki, Oellermann and Tian
[412].

Theorem 3.7.4 Let T be a strongly connected 3-partite tournament of order
n ≥ 8. If v is a vertex of maximum out-degree in T , then dist(v, V (T)) ≤
�n/2� and this bound is best possible. ��

In the rest of this subsection, we will prove the following theorem using
an argument adapted from [474].

Theorem 3.7.5 Every semicomplete multipartite digraph with at most one
vertex of in-degree zero has a 4-king.

For the proof we need the following lemmas:

Lemma 3.7.6 If P = p0p1 . . . p� is a shortest path from p0 to p� in a semi-
complete multipartite digraph D, and � ≥ 3, then there is a (p�, p0)-path of
length at most 4 in D〈V (P)〉.

Proof: Since � ≥ 3 and P is a shortest path we have ({p0, p1}, p�) = ∅. If
p�→p0, we are done, so assume that p� and p0 belong to the same partite set
of D. This implies that p�→p1. Analogously, (p0, {p2, p3}) = ∅, which implies
that either p�p1p2p3p0 or p�p1p2p0 is a (p�, p0)-path of length at most 4 in
D〈V (P)〉. ��

Lemma 3.7.7 Let D be a semicomplete multipartite digraph and let Q be an
initial strong component of D. If Q has at least two vertices, then D has only
one initial strong component. Every vertex in Q, which is a 4-king in Q, is a
4-king in D.

118 3. Distances

Proof: Assume that |V (Q)| ≥ 2, but D has another initial strong component
Q′. Since Q contains adjacent vertices, there is an arc between Q and Q′, a
contradiction.

Let x be a 4-king in Q and let y ∈ V (D)− V (Q) be arbitrary. If x and y
are adjacent, then clearly x→y. Assume that x and y are not adjacent. Since
Q is strong, it contains a vertex z dominated by x. Clearly, x→z→y. Hence
dist(x, y) ≤ 2 and x is a 4-king in D. ��

Lemma 3.7.8 Let D be a strong semicomplete multipartite digraph and let
w be a vertex in D. For i ≥ 3, if N+i(w) �= ∅, then dist(N+i(w), N+i[w]) ≤ 4.

Proof: Let z ∈ N+i(w) be arbitrary. Since a shortest path from w to z is
of length i ≥ 3, by Lemma 3.7.6, dist(z, w) ≤ 4. Let q ∈ N+i[w] − {w, z}
and let r0r1 . . . rj be a shortest (w, q)-path in D. If 1 ≤ j ≤ 3, then, since z
dominates at least one of the vertices r0, r1, either zr0r1 . . . rj or zr1 . . . rj is
a (z, q)-path in D of length at most 4. If j ≥ 4, then, since z dominates at
least one of the vertices rj−3, rj−2, either zrj−3rj−2rj−1rj or zrj−2rj−1rj is
a (z, q)-path in D of length at most 4. ��
Proof of Theorem 3.7.5: Let D be a semicomplete multipartite digraph
with at most one vertex of in-degree zero. If D has a vertex x of in-degree
zero, then clearly x is a 2-king in D. Thus, assume that D has no vertex of
in-degree zero. Then, every initial strong component Q of D has at least two
vertices. By Lemma 3.7.7, Q is unique and every 4-king in Q is a 4-king in D.
It remains to show that Q has a 4-king. If every vertex in Q is a 4-king, then we
are done. Otherwise, let w be a vertex in Q which is not a 4-king of Q. Then,
r = distQ(w, V (Q)) ≥ 5. By Lemma 3.7.8, distQ(N+r

Q (w), N+r
Q [w]) ≤ 4, i.e.,

every vertex in N+r
Q (w) is a 4-king in Q (since N+r

Q [w] = V (Q)). ��

3.7.3 Kings in Generalizations of Tournaments

Bang-Jensen and Huang [104] considered kings in quasi-transitive digraphs.
The main result of [104] is the following.

Theorem 3.7.9 Let D be a quasi-transitive digraph. Then we have

(1) D has a 3-king if and only if it has a finite out-radius4.
(2) If D has a 3-king, then the following holds:

(a) Every vertex in D of maximum out-degree is a 3-king.
(b) If D has no vertex of in-degree zero, then D has at least two 3-kings.
(c) If the unique initial strong component of D contains at least three vertices,

then D has at least three 3-kings. ��
4 See Proposition 3.1.1.

3.8 (k, l)-Kernels 119

In the following family of quasi-transitive digraphs, every digraph has a
3-king but no 2-king: 	C3[Kk1 ,Kk2 ,Kk3] for every k1, k2, k3 ≥ 2.

In [749], Petrović and Thomassen obtained the following.

Theorem 3.7.10 Let G be an undirected graph whose complement is the
disjoint union of complete graphs, paths and cycles. Then every orientation
of G with at most one vertex of in-degree zero has a 6-king. ��

3.8 (k, l)-Kernels

Galeana-Sánchez and Li [382] introduced the concept of a (k, l)-kernel in
a digraph. This concept generalizes several well-known notions of special
independent sets of vertices such as a kernel and a quasi-kernel. In this section,
we discuss (k, l)-kernels and their special important cases, kernels and quasi-
kernels, and study some basic properties of kernels and quasi-kernels. The
notion of a (k, l)-kernel has various applications, especially that of a (2, 1)-
kernel.

Let k and l be integers with k ≥ 2, l ≥ 1, and let D = (V, A) be a digraph.
A set J ⊆ V is a (k, l)-kernel of D if

(a) for every ordered pair x, y of distinct vertices in J we have dist(x, y) ≥ k,
(b) for each z ∈ V − J , there exists x ∈ J such that dist(z, x) ≤ l.

A kernel is a (2, 1)-kernel and a quasi-kernel is a (2, 2)-kernel. Galeana-
Sánchez and Li [382] proved some results which relate (k, l)-kernels in a di-
graph D to those in its line digraph. In particular, they proved the following:

Theorem 3.8.1 Let D be a digraph with δ−(D) ≥ 1. Then the number of
(k, 1)-kernels in L(D) is less than or equal to the number of (k, 1)-kernels in
D. ��

3.8.1 Kernels

We start with an equivalent definition of a kernel. A set K of vertices in a
digraph D = (V, A) is a kernel if K is independent and the first closed neigh-
bourhood of K, N−[K], is equal to V. This notion was introduced by von
Neumann in [723]; kernels have found many applications, for instance in game
theory (a kernel represents a set of winning positions, cf. [723] and Chapter
14 in the book by Berge [144]), in logic [146] and in list edge-colouring of
graphs (see Section 17.9). Chvátal (see [393], p. 204) proved that the prob-
lem to verify whether a given digraph has a kernel is NP-complete. Several
sufficient conditions for the existence of a kernel have been proved. Many
of these conditions can be trivially extended to kernel-perfect digraphs,
i.e., digraphs for which every induced subdigraph has a kernel. The notion

120 3. Distances

of kernel-perfect digraphs allows one to simplify certain proofs (due to the
possibility of using induction, see the proof of Theorem 3.8.2) and is quite
useful for applications (see Section 17.9).

Clearly, every symmetric digraph, i.e. digraph whose every arc belongs to
a 2-cycle, is kernel-perfect (every maximal independent set is a kernel). It was
proved by von Neumann and Morgenstern [723] that every acyclic digraph is
kernel-perfect. Richardson [778] generalized this result as follows:

Theorem 3.8.2 Every digraph with no odd cycle is kernel-perfect.

The proof of Theorem 3.8.2, which we present here, is an adaptation of
the one by Berge and Duchet [145]. A digraph which is not kernel-perfect
is called kernel-imperfect. We say that a digraph D is critical kernel-
imperfect if D is kernel-imperfect, but every proper induced subdigraph of
D is kernel-perfect.

Lemma 3.8.3 Every critical kernel-imperfect digraph is strong.

Proof: Assume the converse and let D = (V, A) be a non-strong critical
kernel-imperfect digraph. Let T be a terminal strong component of D and
let S1 be a kernel of T . Since D has no kernel, the set M = V − N−[S1]
is non-empty. Hence the fact that D is critical kernel-imperfect implies that
D〈M〉 has a kernel S2. The set S1 ∪S2 is independent since no arc goes from
S1 to S2 (by the definition of a terminal strong component) and no arc goes
from S2 to S1 (by the definition of M). Clearly, N−[S1 ∪ S2] = V. Hence,
S1 ∪ S2 is a kernel of D, a contradiction. ��
Proof of Theorem 3.8.2: Let D be a kernel-imperfect digraph with no odd
cycle and let D′ be a critical kernel-imperfect subdigraph of D. By the lemma
above, D′ is strong. Since D′ is strong and has no odd cycles, by Theorem
2.2.1, D′ is bipartite. Let K be a partite set in D′. Since D′ is strong, K is
a kernel of D′, a contradiction. ��

This theorem has been strengthened in a number of papers. The condi-
tions (a) and (b) of the following theorem are due to Duchet (see the papers
by Berge [145]) and Galeana-Sánchez and Neumann-Lara [383], respectively).
Galeana-Sánchez showed that for every k ≥ 2, there are non-kernel-perfect
digraphs for which every odd cycle has at least k chords [380].

Theorem 3.8.4 A digraph D is kernel-perfect if at least one of the following
conditions holds:

(a) Every odd cycle has two arcs belonging to 2-cycles;
(b) Every odd cycle has two chords whose heads are consecutive vertices of

the cycle. ��

3.8 (k, l)-Kernels 121

There were other attempts to strengthen Richardson’s Theorem 3.8.2. In
particular, Duchet (see [176]) conjectured that every digraph D, which is not
an odd cycle and which does not have a kernel, contains an arc e such that
D− e has no kernel either. Apartsin, Ferapontova and Gurvich [42] found a
counterexample to this conjecture. They proved that the circulant digraph5

C43(1, 7, 8) has no kernel, but after deletion of any arc in this digraph a kernel
will appear.

Observe that by the symmetry of C43(1, 7, 8) one needs only to show that
C43(1, 7, 8)− (1, 2), C43(1, 7, 8)− (1, 8) and C43(1, 7, 8)− (1, 9) have kernels.
This task is left as Exercise 3.37. We note that C43(1, 7, 8) is the only known
counterexample to the Duchet conjecture; Gurvich (private communication,
December 1999) suspects that there is an infinite family of such circulant
digraphs. It was also proved in [42] that Cn(1, 7, 8) has a kernel if and only
if n ≡ 0 (mod 3) or n ≡ 0 (mod 29). The following problem seems quite
natural:

Problem 3.8.5 Characterize circulant digraphs which have kernels.

A biorientation D of a graph G is called normal, if every subdigraph of
D which is a semicomplete digraph has a kernel. An undirected graph G is
kernel-solvable if every normal biorientation of G has a kernel. Boros and
Gurvich [176] showed that a slight modification of the above conjecture of
Duchet holds. They proved the following:

Theorem 3.8.6 Let G be a connected non-kernel-solvable graph, which is
not an odd cycle of length at least 5. Then there exists an edge e in G such
that G − e is not kernel-solvable either. ��

Berge and Duchet (see [678]) conjectured that a graph G is perfect6 if and
only if G is kernel-solvable. Boros and Gurvich [175] proved one direction of
this conjecture, namely:

Theorem 3.8.7 Every perfect graph is kernel-solvable. ��

The two original proofs of Theorem 3.8.7 are quite involved and lengthy.
Using the notion of a fractional kernel, Aharoni and Holzman [8] found a much
shorter proof of Theorem 3.8.7. The fact that every kernel-solvable graph is
perfect follows [177] from the following important result, the Strong Perfect
Graph Theorem proved by Chudnovsky, Robertson, Seymour and Thomas
[216]. An induced cycle of odd length at least 5 is called an odd hole. An
induced subgraph that is the complement of an odd hole is called an odd
anti-hole.
5 Circulant digraphs are introduced in Section 2.14.1.
6 A graph G is perfect if, for every induced subgraph H of G, the chromatic number

of H is equal to the order of the largest clique of H.

122 3. Distances

Theorem 3.8.8 A graph G is perfect if and only if G has no odd hole and
odd anti-hole. ��

3.8.2 Quasi-Kernels

We start with an equivalent definition of a quasi-kernel. A set Q of vertices in
a digraph D = (V, A) is a quasi-kernel if Q is independent and the second
closed in-neighbourhood of Q, N−2[Q], is equal to V . The two results on 2-
kings (or, more precisely, 2-serfs) in tournaments mentioned in the beginning
of Section 3.7 have been extended to quasi-kernels in arbitrary digraphs as
follows. The first theorem is by Chvátal and Lovász [222]. We give a very
short proof by S. Thomassé (see [166]).

Theorem 3.8.9 Every digraph D has a quasi-kernel.

Proof: Let V = V (D). Consider an ordering x1, . . . , xn of V and two span-
ning subdigraphs of D, D1 = (V, A1) and D2 = (V, A2), where A1 = {xixj :
xixj ∈ A(D), i < j} and A2 = {xixj : xixj ∈ A(D), j < i}. By Theorem
3.8.2, D1 has a kernel K ′ and D2[K ′] has a kernel K ′′. Observe that K ′′ is a
quasi-kernel of D. ��

The second theorem is by Jacob and Meyniel [559].

Theorem 3.8.10 If a digraph D = (V, A) has no kernel, then D contains at
least three quasi-kernels.

Proof: By Theorem 3.8.9, D has a quasi-kernel Q1. Since D has no kernel,
we have V �= N−[Q1]. Let Q2 be a quasi-kernel of D−N−[Q1]. We will prove
that Q′

2 = Q2 ∪ (Q1 − N−(Q2)) is a quasi-kernel of D. It is straightforward
to see that Q′

2 is independent and

V = (V −N−[Q1]) ∪N−[Q1 ∩N−(Q2)] ∪N−[Q1 −N−(Q2)].

By the definition of Q2, every vertex of V − N−[Q1] is the initial vertex of
a path of length at most two terminating in Q2. Since N−[Q1 ∩ N−(Q2)] ⊆
N−2[Q2], every vertex of N−[Q1 ∩N−(Q2)] is the initial vertex of a path of
length at most two terminating in Q2. Since N−[Q1 − N−(Q2)] ⊆ N−[Q1],
a vertex of N−[Q1 − N−(Q2)] either belongs to Q1 or is the tail of an arc
whose head is in Q1 − N−(Q2). Hence, Q2 is a quasi-kernel.

Observe that Q1 ∩Q2 = ∅ and Q2 �= ∅. Thus, Q′
2 �= Q1.

As Q′
2 is not a kernel of D, we have V �= N−[Q′

2]. Let Q3 be a quasi-
kernel of D − N−[Q′

2] and let Q′
3 = Q3 ∪ (Q′

2 − N−(Q3)). As above, we
can demonstrate that Q′

3 is a quasi-kernel distinct from Q′
2. It remains to

show that Q′
3 �= Q1. Observe that Q3 ⊆ V − N−[Q′

2] and Q1 ⊆ N−[Q′
2].

Thus, Q1∩Q3 = ∅. By this fact and since Q3 is non-empty, we conclude that
Q′

3 �= Q1. ��

3.9 Exercises 123

Gutin, Koh, Tay and Yeo [468] characterized digraphs with exactly one
and two quasi-kernels, and, thus, provided necessary and sufficient conditions
for a digraph to have at least three quasi-kernels. In particular, they proved
the following:

Theorem 3.8.11 Every strong digraph of order at least three, which is not
a 4-cycle, has at least three quasi-kernels. ��

3.9 Exercises

3.1. Formulate the shortest (s, t)-path problem as a linear programming problem
with integer variables. Hint: use a variable for each arc.

3.2. Show how to check whether an undirected graph is bipartite in linear time
using BFS. Does your method extend to strongly connected digraphs? That
is, can you check whether a strong digraph is bipartite using BFS? Hint:
consider the proof of Theorem 2.2.1.

3.3. Illustrate the shortest path algorithm for acyclic digraphs (Subsection 3.3.2)
on the acyclic digraph in Figure 3.7.

-2

2

3

4

1

0

-1

3

5

1
-5

10

8

23

1

4

6

s

Figure 3.7 A weighted acyclic digraph.

3.4. Finding the longest paths from a fixed vertex to all other vertices
in a weighted acyclic digraph. Develop a polynomial algorithm for finding
the longest paths from a fixed vertex s to all other vertices in an arbitrary
weighted acyclic digraph. Preferably your algorithm should run in linear time.

3.5. Find the longest paths from s to all other vertices in the acyclic digraph in
Figure 3.7, e.g., using the algorithm that you designed in Exercise 3.4.

3.6. Finding a longest path in a weighted acyclic digraph in linear time.
Show how to find a longest path in a weighted acyclic digraph D in linear
time. Hint: use a variant of the dynamic programming approach taken in
(3.3), or construct a superdigraph D′ of D such that one can read out a
longest path in D from a shortest path tree from some vertex s in D′.

3.7. Execute Dijkstra’s algorithm on the digraph in Figure 3.8.

124 3. Distances

s

1

5

3

12

7

1

1

1

1

2

1

4

2

10

7

4

Figure 3.8 A digraph with non-negative weights on the arcs.

3.8. Complete the description of Dijkstra’s algorithm in Subsection 3.3.3 such
that not only the distances from s to the vertices of D are computed, but
also the actual shortest paths are found.

3.9. Complete the description of the Bellman-Ford-Moore algorithm in Subsec-
tion 3.3.4 such that not only the distances from s to the vertices of D are
computed, but also the actual shortest paths are found.

3.10. Execute the Bellman-Ford-Moore algorithm on the digraph in Figure 3.9.
Perform the scanning of arcs in lexicographic order.

s

1

5

3
7

1

1
1

7

7

-5

4-1

c d

ef

a b

Figure 3.9 A digraph with weights on the arcs and no negative cycles.

3.11. Negative cycle detection using the Bellman-Ford-Moore algorithm.
Prove Theorem 3.3.10.

3.12. Show how to detect a negative cycle in the digraph in Figure 3.10 using the
extension of the Bellman-Ford-Moore algorithm.

3.13. Show by an example that Dijkstra’s algorithm may not find the correct dis-
tances if it is applied to a weighted directed graph D where some arcs have
negative weights, even if there is no negative cycle in D.

3.14. Show how to implement the Floyd-Warshall algorithm so that it runs in time
O(n3).

3.15. Prove Theorem 3.3.10.

3.16. Re-weighting the arcs of a digraph. Let D = (V, A, c) be a weighted
digraph and let π : V → R be a function on the vertices of D. Define a new
weight function c∗ by c∗(u, v) = c(u, v) + π(u)− π(v) for all v ∈ V . Let dist∗

3.9 Exercises 125

s

1

5

3

1

1
1

7

7

-5

-1

c d

ef

a b

-1

2

Figure 3.10 A weighted digraph with a negative cycle.

be the distance function with respect to D∗ = (V, A, c∗), and let P be an
(x, y)-path in D. Prove that P is a shortest (x, y)-path in D (with respect
to c) if and only if P is a shortest (x, y)-path in D∗ (with respect to c∗).
Hint: consider what happens to the length of a path after the transformation
above.

3.17. Consider the weights introduced in Exercise 3.16. Show that the weight of
a cycle in D is unchanged under the transformation from D = (V, A, c) to
D∗ = (V, A, c∗).

3.18. Getting rid of negative weight arcs by re-weighting. Let D = (V, A, c)
be a weighted digraph with some arcs of negative weight, but with no negative
cycle. Let D′ = (V, A′, c′) be obtained from D by adding a new vertex s and
all arcs of the form sv, v ∈ V , and setting c′(s, v) = 0 for all v ∈ V and
c′(u, v) = c(u, v) for all u, v ∈ V . Let π(v) = distD′(s, v) for all v ∈ V . Define
c∗ by c∗(u, v) = c(u, v)+ π(u)−π(v) for all u, v ∈ V . Prove that c∗(u, v) ≥ 0
for all u, v ∈ V .

3.19. Johnson’s algorithm for shortest paths. Show that by combining the
observations of Exercises 3.16-3.18, one can obtain an O(n2 log n + nm) al-
gorithm for the all pairs shortest path problem in digraphs with no negative
cycles (Johnson [569]).

3.20. Let M = [mij] be the adjacency matrix of a digraph D = (V, A) with V = [n]
and let k be a natural number. Prove that there is an (i, j)-walk of length k
in D if and only if the (i, j) entry of the kth power of M is positive.

3.21. Show how to compute the kth power of the adjacency matrix of a digraph of
order n in time O(P (n) log k), where P (n) is the time required to compute
the product of two n× n matrices.

3.22. Finding a shortest cycle in a digraph. Describe a polynomial algorithm
to find the shortest cycle in a digraph. Hint: use Exercise 3.20.

3.23. Prove Proposition 3.4.2.

3.24. Short cycles through an edge. Let G = (V, E) be a 2-edge-connected
graph and let uv ∈ E. Prove that G has a cycle of length at most 2dist(u, V)+
1 through the edge uv. Hint: use the (undirected) distance classes from u and
v as well as the fact that uv is not a bridge.

126 3. Distances

3.25. We call a family F of subsets of [n] an antichain if no set in F is contained in
another. Prove Theorem 3.6.4 using the following lemma of Sperner. Let F
be an antichain on [n]. Then |F| ≤

`

n
�n/2�

´

. The bound is attained by taking

F to be the family of all subsets of size �n/2�. (Gutin [450])

3.26. Prove that ρ(Cp×Cq) > 0 when both p and q are odd (p, q ≥ 3) (D.B. West,
see [621]).

3.27. Construct orientations of P3 × P6 and P3 × P7 of diameter 8.

3.28. For every odd number n ≥ 3, give an example of a tournament T of order n,
in which all vertices are 2-kings.

3.29. Let T be a tournament on 4 vertices. Show that T contains a vertex which
is not a 2-king.

3.30. Prove Theorem 3.7.1 (Moon [704]).

3.31. Describe an infinite family of semicomplete digraphs, in which every member
has exactly two 2-kings.

3.32. Prove that the tournament Tn in Subsection 3.7.1 has only three 2-kings for
n ≥ 5.

3.33. 4-kings in bipartite tournaments. Prove that a vertex of maximum out-
degree in a strong bipartite tournament is a 4-king. For all s, t ≥ 4 construct
strong bipartite tournaments with partite sets of cardinality s and t which
do not have 3-kings. (Gutin [446])

3.34. Prove that a multipartite tournament T has a finite out-radius if and only if
T contains at most one vertex of in-degree zero. Hint: use Proposition 3.1.1.

3.35. 3-kings in quasi-transitive digraphs. Show that every quasi-transitive
digraph of finite radius has a 3-king (Bang-Jensen and Huang [104]).

3.36. Give a direct proof that every acyclic digraph is kernel-perfect. Prove that an
acyclic digraph has a unique kernel (von Neumann and Morgenstern [723]).

3.37. Prove that C43({1, 7, 8}) − (1, 2), C43({1, 7, 8}) − (1, 8) and C43({1, 7, 8}) −
(1, 9) have kernels, where C43({1, 7, 8}) is a circulant digraph.

4. Flows in Networks

The purpose of this chapter is to describe basic elements of the theory and
applications of network flows. This topic is probably the most important
single tool for applications of digraphs and perhaps even of graphs as a whole.
At the same time, from a theoretical point of view, flow problems constitute
a beautiful common generalization of shortest path problems and problems
such as finding internally (arc)-disjoint paths from a given vertex to another.
The theory of flows is well understood and fairly simple. This, combined with
the enormous applicability to real-life problems, makes flows a very attractive
topic to study. From a theoretical point of view, flows are well understood
as far as the basic questions, such as finding a maximum flow from a given
source to a given sink or characterizing the size of such a flow, are concerned.
However, the topic is still a very active research field and there are challenging
open problems such as deciding whether an O(nm) algorithm1 exists for the
general maximum flow problem.

Several books deal almost exclusively with flows; see, e.g., the books [13]
by Ahuja, Magnanti and Orlin, [267] by Dolan and Aldous, the classical text
[331] by Ford and Fulkerson and [710] by Murty. In particular, [13] and [710]
contain a wealth of applications of flows. In this chapter we can only cover
a very small part of the theory and applications of network flows, but we
will try to illustrate the diversity of the topic and show several applications
of a practical as well as theoretical nature. Many of the results given in this
chapter will be used in several other chapters such as those on connectivity
and hamiltonian cycles.

4.1 Definitions and Basic Properties

A network is a directed graph D = (V, A) associated with the following
functions on V × V : a lower bound lij ≥ 0, a capacity uij ≥ lij and
a cost cij for each (i, j) ∈ V × V . These parameters satisfy the following
requirement:

1 Here and everywhere in this chapter n is the number of vertices and m the
number of arcs in the network under consideration.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 4,
© Springer-Verlag London Limited 2010

127

http://dx.doi.org/10.1007/978-1-84800-998-1_4

128 4. Flows in Networks

For every (i, j) ∈ V × V, if ij �∈ A, then lij = uij = 0. (4.1)

In order to simplify notation in this chapter we also make the assumption
that

cij = −cji ∀(i, j) ∈ V × V. (4.2)

This assumption may seem restrictive but it is purely a technical con-
vention to make some of the following definitions simpler (in particular, the
definition of costs in the residual network in Subsection 4.1.2). When it comes
to implementing algorithms for various flow problems involving costs, this as-
sumption can easily be avoided (Exercise 4.2). Finally we assume that if there
is no arc between i and j (in any direction, then cij = 0.

In some cases we also have a function b : V → R called a balance vector
which associates a real number with each vertex of D. We will always assume
that

∑

v∈V

b(v) = 0. (4.3)

We use the shorthand notation N = (V, A, l, u, b, c) to denote a network
with corresponding digraph D = (V, A) and parameters l, u, b, c. If there are
no costs specified, or there is no prescribed balance vector, then we omit the
relevant letters from the notation. Note that whenever we consider a network
N = (V, A, l, u, b, c) we also have a digraph, namely, the digraph D = (V, A)
that we obtain from N by omitting all the functions l, u, b, c.

For a given pair of not necessarily disjoint subsets U, W of the vertex set
of a network N = (V, A, l, u) and a function f on V × V we use the notation
f(U, W) as follows (here fij denotes the value of f on the pair (i, j)):

f(U, W) =
∑

i∈U,j∈W

fij . (4.4)

We will always make the realistic assumption that n = O(m) which holds
for all interesting networks. In fact, almost always, the networks on which we
work will be connected as digraphs.

4.1.1 Flows and Their Balance Vectors

A flow in a network N is a function x : A → R0 on the arc set of N . We
denote the value of x on the arc ij by xij . For convenience, we will sometimes
think of x as a function of V ×V and require that xij = 0 if ij �∈ A (see, e.g.,
the definition of residual capacity in (4.7)). An integer flow in N is a flow
x such that xij ∈ Z0 for every arc ij. For a given flow x in N the balance
vector of x is the following function bx on the vertices:

4.1 Definitions and Basic Properties 129

bx(v) =
∑

vw∈A

xvw −
∑

uv∈A

xuv ∀v ∈ V. (4.5)

That is, bx(v) is the difference between the flow on arcs with tail v and the
flow on arcs with head v. We classify vertices according to their balance values
(with respect to x). A vertex v is a source if bx(v) > 0, a sink if bx(v) < 0
and otherwise v is balanced (bx(v) = 0). When there is no confusion possible
(in particular when there is only one flow in question) we may drop the index
x on b and say that b is the balance vector of x.

A flow x in N = (V, A, l, u, b, c) is feasible if lij ≤ xij ≤ uij for all
ij ∈ A and bx(v) = b(v) for all v ∈ V . If no balance vector is specified for the
network, then a feasible flow x is only required to satisfy lij ≤ xij ≤ uij for
all (i, j) ∈ A.

The cost of a flow x in N = (V, A, l, u, c) is given by

cT x =
∑

ij∈A

cijxij . (4.6)

See Figure 4.1 for an example of a feasible flow.

b

c

d

e

a f

(1, 3, 4, 3)

(0, 0, 3, 1)

(2, 4, 5, 6)

(1, 1, 4, 1)

(3, 3, 3, 1)
(5, 6, 8, 4)

(0, 3, 3, 2)

(4, 5, 7, 8)

(2, 2, 4, 1)

Figure 4.1 A network N = (V, A, l, u, c) with a feasible flow x specified. The
specification on each arc ij is (lij , xij , uij , cij). The cost of the flow is 109.

We point out that whenever the lower bounds are all zero (an assumption
that is not a restriction of the modelling power of flows as we shall see in
Section 4.2) we will always assume that if iji is a 2-cycle of a network N
and x is a flow in N , then at least one of xij , xji is equal to zero. We call
such a flow a netto flow in N . The practical motivation for this restriction
is that very often one uses flows to model items (water, electricity, telephone
messages, etc.) that move from one place to another in time. Here it makes
perfect sense to say that sending 3 units from i to j and 2 units from j to
i is the same as sending 1 unit from i to j and nothing from j to i (we say

130 4. Flows in Networks

that 2 of the units cancel out). In some of the definitions below it is easier
to work with netto flows.

The notion of flows generalizes that of paths in directed graphs. Indeed,
if P is an (s, t)-path in a digraph D = (V, A), then we can describe a feasible
flow x in the network N = (V, A, l ≡ 0, u ≡ 1) by taking xij = 1 if ij is an
arc of P and xij = 0 otherwise. This flow has balance vector

bx(v) =

⎧
⎨

⎩

1 if v = s
−1 if v = t
0 otherwise.

We can also see that if there are weights on the arcs of D and we let N inherit
these weights as costs on the arcs, then the cost of the flow defined above
is equal to the length (weight) of P . Hence the shortest path problem is a
special case of the minimum cost flow problem (which is studied in Section
4.10) with respect to the balance vector described above (here we implicitly
used Theorem 4.3.1 for the other direction of going from a flow to an (s, t)-
path in D). In a very similar way we can also see that flows generalize cycles
in digraphs. It is an important and very useful fact about flows that in some
sense one can also go the other way. As we shall see in Theorem 4.3.1, every
flow in a network with n vertices and m arcs can be decomposed into no
more than n + m flows along simple paths and cycles. Furthermore, paths
and cycles play a fundamental role in several algorithms for finding optimal
flows where the optimality is with respect to measures we define later.

4.1.2 The Residual Network

The concept of a residual network was implicitly introduced by Ford and
Fulkerson [331].

For a given flow x in a network N = (V, A, l, u, c), define the residual
capacity rij from i to j as follows:

rij = (uij − xij) + (xji − lji). (4.7)

The residual network N (x) with respect to x is defined as N (x) =
(V, A(x), l̃ ≡ 0, r, c), where A(x) = {ij : rij > 0}. That is, the cost function
is the same2 as for N and all lower bounds are zero. See Figure 4.2 for an
illustration.

The arcs of the residual network have a natural interpretation. If ij ∈ A
and xij = 5 < 7 = uij , then we may increase x by up to 2 units on the arc ij
at the cost of cij per unit. Furthermore, if we also have lij = 2, then we can
also choose to decrease x by up to 3 units along the arc ij. The cost of this
decrease is exactly cji = −cij per unit. Note that a decrease of flow along the

2 Note that this differs from definitions in other texts such as [13], but we can do
this since we made the assumption (4.2).

4.2 Reductions Among Different Flow Models 131

a

b

c

d

e

f

(1, 6)

(2, −6)

(3, 1)

(3, 1)

(2, −3)

(3, −2)

(1, −4)

(1, −8)

(2, 8)

(2, 4)

(2, 1)

(1, 3)

Figure 4.2 The residual network N (x) corresponding to the flow in Figure 4.1.
The data on each arc is (r, c).

arc ij may also be thought of as sending flow in the opposite direction along
the residual arc ji and then cancelling out.

4.2 Reductions Among Different Flow Models

The purpose of this section is to show that one can restrict the general defi-
nition of a flow network considerably and still retain its modeling generality.
We also show that one can model networks with lower bounds, capacities and
costs on the vertices by networks, where all these numbers are on arcs only.

4.2.1 Eliminating Lower Bounds

We start with the following easy observation which shows that within the
general model the assumption that all lower bounds are zero does not limit
the model.

Lemma 4.2.1 Let N = (V, A, l, u, b, c) be a network.

(a) Suppose that the arc ij ∈ A has lij > 0. Let N ′ be obtained from N
by making the following changes: b(j) := b(j) + lij, b(i) := b(i) − lij,
uij := uij − lij, lij := 0. Then every feasible flow x in N corresponds to
a feasible flow x′ in N ′ and vice versa. Furthermore, the costs of these
two flows are related by cT x = cT x′ + lijcij.

(b) There exists a network Nl≡0 in which all lower bounds are zero such
that every feasible flow x in N corresponds to a feasible flow x′ in Nl≡0

and vice versa. Furthermore, the costs of these two flows are related by
cT x = cT x′ +

∑
ij∈A lijcij.

132 4. Flows in Networks

Proof: Part (a) is left to the reader as Exercise 4.3. Since we may eliminate
lower bounds one arc at the time, (b) follows from (a) by induction on the
number of arcs. ��

It is also useful to observe that we can construct N ′ from N in time
O(n + m) and reconstruct the flow x from x′ in time O(m). Hence the time
for eliminating lower bounds and reconstructing a flow in the original network
is negligible since all algorithms on networks need O(n+m) time just to input
the network.

4.2.2 Flows with One Source and One Sink

Let s, t be distinct vertices of a network N = (V, A, l ≡ 0, u, c). An (s, t)-flow
is a flow x satisfying the following for some k ∈ R0:

bx(v) =

⎧
⎨

⎩

k if v = s
−k if v = t
0 otherwise.

The value of an (s, t)-flow x is denoted by |x| and is defined by

|x| = bx(s). (4.8)

The next lemma combined with Lemma 4.2.1 shows that using only (s, t)-
flows, one can model everything which can be modeled via flows in the general
network model.

Lemma 4.2.2 Let N = (V, A, l ≡ 0, u, b, c) be a network. Let3 M =∑
{v:b(v)>0} b(v) and let Nst be the network defined as follows: Nst = (V ∪

{s, t}, A′, l′ ≡ 0, u′, b′, c′), where

(a) A′ = A ∪ {sr : b(r) > 0} ∪ {rt : b(r) < 0},
(b) u′

ij = uij for all ij ∈ A, usr = b(r) for all r such that b(r) > 0 and
uqt = −b(q) for all q such that b(q) < 0,

(c) c′ij = cij for all ij ∈ A and c′ = 0 for all arcs leaving s or entering t,
(d) b′(v) = 0 for all v ∈ V , b′(s) = M , b′(t) = −M.

Then every feasible flow x in N corresponds to a feasible flow x′ in Nst and
vice versa. Furthermore, the costs of x and x′ are related by cT x = c′T x′. See
Figure 4.3.

Proof: Exercise 4.4. ��
It follows from Lemma 4.2.2 that given any network N in which all lower

bounds are zero, we can check the existence of a feasible flow in N by con-
structing the corresponding network Nst and check whether this network has
3 Recall that we also have M = −

P

{v:b(v)<0} b(v) by (4.3).

4.2 Reductions Among Different Flow Models 133

an (s, t)-flow x such that |x| = M where M is defined in Lemma 4.2.2. This
latter task is precisely the problem of finding the maximum value of a feasible
(s, t)-flow in Nst, a problem which we study extensively in Sections 4.5-4.7.
See also Theorem 4.8.3.

(a) (b)

s t

3

6

6

0

0

−3

−4

−8

(5, 5)

(3, 1)

(1, 1)

(2, 0)

(4, 3)

(4, 0)

(4, 3)

(1, 0)

(2, 1)

(7, 2)
(5, 2) (5, 2)

(6, 6)

(6, 6)

(3, 3)

(8, 8)

(4, 4)

(3, 3)
(1, 1)

(2, 0)

(5, 2)

(6, 6)

(5, 2)

(4, 0)(1, 0)

(4, 3) (4, 3)

(2, 1)

(5, 5)

(3, 1)

(2, 1)

(6, 6)
(7, 2)

(2, 1)

Figure 4.3 Part (a) shows a network N with a feasible flow with respect to the
balance vector specified at each vertex. The numbers on each arc are (capacity,
flow). Costs are omitted for clarity. Part (b) shows the network Nst as defined in
Lemma 4.2.2 and a feasible flow x′ in Nst.

4.2.3 Circulations

A circulation is a flow x with bx(v) = 0 for all v ∈ V . Combining our next
result with Lemmas 4.2.1 and 4.2.2 shows that one can also model everything
that can be modeled in the general (flow) network model by the seemingly
much more restricted circulations. Note that we cannot completely exclude
lower bounds in this reduction (see Exercise 4.5).

Lemma 4.2.3 Let N = (V, A, l ≡ 0, u, b, c) be a network with distinct ver-
tices s, t and let the balance vector of N satisfy b(v) = 0 for all v ∈ V −{s, t},
b(s) = M , b(t) = −M , for some M ∈ R0. Let N ∗ = (V, A ∪ {ts}, l′′, u′′, c′′)
be the network obtained from N by adding a new arc ts with lower bound
lts = M , capacity uts = M and cost c′′ts = 0, keeping the lower bound, ca-
pacity and cost of each original arc and posing no restriction on the balance
vector of N ∗. Then every feasible (s, t)-flow x in N corresponds to a feasible
circulation x′′ in N ∗ and vice versa. Furthermore, the costs of x and x′′ are
related by cT x = c′′T x′′.

Proof: Exercise 4.5. ��
The concept of a circulation is a very useful tool for applications to ques-

tions concerning sub(di)graphs of (di)graphs as we show in Section 4.11.

134 4. Flows in Networks

4.2.4 Networks with Bounds and Costs on the Vertices

In some applications of flows one is not interested in imposing lower bounds
and capacities on arcs, but rather on vertices. One such example is when one
is looking for a cycle subdigraph that contains all vertices of a certain subset
X and possibly other vertices (see Section 4.11). Another example is when
one is looking for a path factor which covers all vertices of a digraph (see
Section 13.5). We show below how to model networks with lower bounds,
capacities and costs on vertices (and possibly also on arcs) by standard net-
works where all functions, other than the balance vectors, are on the arcs.
First we introduce a useful transformation of any digraph to a bipartite di-
graph which we will use not only for the problem above but also several other
places in the book.

a

b

c

d

as at

bs bt

cs

ds

ct

dt

DSTD

Figure 4.4 The vertex splitting procedure.

Given a digraph D = (V, A), construct a new digraph DST as follows.
For each vertex v ∈ V , DST contains two new vertices vs, vt and the arc
vtvs. For each arc xy ∈ A(D), A(DST) contains the arc xsyt. See Figure 4.4.
We say that the digraph DST is obtained from D by the vertex splitting
procedure.

Now suppose that N = (V, A, l, u, b, c, l∗, u∗, c∗) is a network with a pre-
scribed balance vector b, lower bounds, capacities and costs l, u, c on the arcs
(the case when there are no such specifications can easily be modeled by
taking l ≡ 0, u ≡ ∞, c ≡ 0) and lower bounds, capacities and costs l∗, u∗, c∗

on the vertices. To be precise we have to define the meaning of these new
parameters. There is some freedom in such a definition, but for the applica-
tions we will need, it suffices to use the definition that l∗(v) is the minimum
and u∗(v) the maximum amount of flow that may pass through v and the
cost of sending one such unit through v is c∗(v). By ‘passing through’ we

4.2 Reductions Among Different Flow Models 135

mean the obvious thing when b(v) = 0 and if b(v) > 0 (b(v) < 0) we think of
l∗(v), u∗(v), c∗(v) as bounds and costs per unit on the total amount of flow
out of (in to) v.

Let DST be the digraph obtained from D = (V, A) by performing the
vertex splitting procedure. Define a new network based on the digraph DST

by adding lower bounds, capacities and costs as follows:

(a) For every arc isjt (corresponding to an arc ij of A) we let h′(isjt) = h(ij),
where h ∈ {l, u, c}.

(b) For every arc itis (corresponding to a vertex i of V) we let h′(itis) = h∗(i),
where h∗ ∈ {l∗, u∗, c∗}.

Finally we define the function b′ as follows:

If b(i) = 0, then b′(is) = b′(it) = 0;
If b(i) > 0, then b′(it) = b(i) and b′(is) = 0;
If b(i) < 0, then b′(it) = 0 and b′(is) = b(i).

−1

(0, 3, 0)

2

(1, 4, 6)

−4

(2, 2, 1)

0−4

0 3

−1 0

20

(1, 3, 2)

(0, 3, 0)

(2, 2, 1)

(1, 4, 6)

(0, 3, 4)

(0, 3, 4)

3

(1, 3, 2)

N N ′

Figure 4.5 The construction of N ′ from N . The specification is the balance vector
and (l, u, c). For clarity only one arc of N has a description of bounds and cost.

See Figure 4.5 for an example of the construction. It is not difficult to
show the following result.

Lemma 4.2.4 Let N and N ′ be as described above. Then every feasible flow
in N corresponds to a feasible flow in N ′ = (V (DST), A(DST), l′, u′, b′, c′)
and vice versa. Furthermore, the costs of these flows are the same.

Proof: Exercise 4.6. ��

136 4. Flows in Networks

4.3 Flow Decompositions

In this section we consider a network N = (V, A, l ≡ 0, u) and denote by
D = (V, A) the underlying digraph of N . By a path or cycle in N we mean
a directed path or cycle in D. We will show that every flow in a network
can be decomposed into a small number of very simple flows in the same
network. Besides being a nice elementary mathematical result, this also has
very important algorithmic consequences as will be clear from the succeeding
sections.

A path flow f(P) along a path P in N is a flow with the property that
there is some number k ∈ R0 such that f(P)ij = k if ij is an arc of P and
otherwise f(P)ij = 0. Analogously, we can define a cycle flow f(W) for any
cycle W in D. The arc sum of two flows x, x′, denoted x + x′, is simply the
flow obtained by adding the two flows arc-wise.

Theorem 4.3.1 Every flow x in N can be represented as the arc sum of
some path and cycle flows f(P1), f(P2), . . . , f(Pα), f(C1), . . . , f(Cβ) with the
following two properties:

(a) Every directed path Pi, 1 ≤ i ≤ α, with positive flow connects a source
vertex to a sink vertex.

(b) α + β ≤ n + m and β ≤ m.

Proof: Let x be a non-zero flow in N . Suppose first that bx(i0) > 0 for
some i0 ∈ V . Since bx(i0) > 0 it follows from (4.5) that there is some arc
i0i1 leaving i0 with xi0i1 > 0. If b(i1) < 0, then we have found a path from
i0 to the sink i1. Otherwise b(i1) ≥ 0 and it follows from (4.5) and the fact
that xi0i1 > 0 that i1 has some arc i1i2 leaving it with xi1i2 > 0. Continuing
this way, we either find a path P from i0 to a sink vertex ik such that x
is positive on all arcs on P , or eventually some vertex that was examined
previously must be reached for the second time. In the latter case we have
detected a cycle C = irir+1 . . . ip−1ipir such that x is positive on all arcs of
C. Now we change the flow x as follows:

(i) If we detected a path P from i0 to a sink ik, then let δ = min{xiqiq+1 :
iqiq+1 ∈ A(P)} and define μ by μ = min{bx(i0),−bx(ik), δ}. Let f(P) be
the path flow of value μ along P . Decrease x by μ units along P .

(ii) Otherwise we have detected a cycle C. Let μ = min{xiqiq+1 : iqiq+1 ∈
A(C)} and let f(C) be a cycle flow of value μ along C. Decrease x by μ
units along C.

If no arc carries positive flow after the changes made above, we are done.
Otherwise we repeat the process above. If every vertex v becomes balanced
with respect to the current flow x (i.e., bx(v) = 0) before x is identically zero,
then just start from a vertex i0 which has an arc i0i1 with positive flow. From
now on only cycle flows will be extracted in the subroutine described above.

4.4 Working with the Residual Network 137

Since each of these iterations either results in a vertex becoming balanced
with respect to the current flow, or in an arc ij losing all its flow, i.e., xij

becomes zero, the total number of iterations, extracting either a path flow
or a cycle flow from the current flow, is at most n + m. It follows from the
description above that (a) and the first part of (b) holds. The second part of
(b) follows from the fact that each time we extract a cycle flow at least one
arc loses all its flow. ��

The proof above immediately implies an algorithm for finding such a
decomposition in time O(m2) if one uses DFS to find the next path or cycle
flow to extract. However, if we use an appropriate data structure and a little
care, this complexity can be improved.

Lemma 4.3.2 Given an arbitrary flow x in N one can find a decomposition
of x into at most n + m path and cycle flows, at most m of which are cycle
flows, in time O(nm).

Proof: Exercise 4.7. ��
The following useful fact is an easy consequence of Theorem 4.3.1.

Corollary 4.3.3 Let N be a network. Every circulation in N can be decom-
posed into no more than m cycle flows. ��

4.4 Working with the Residual Network

Suppose N is a network and x, x′ are feasible flows in N . What can we say
about the relation between x and x′? Clearly one can be obtained from the
other by changing the flow along each arc appropriately, but we can reveal
much more interesting relations as we shall see below. In fact, it turns out
that if x is feasible in N and x′ is any other feasible flow in N , then x′ can be
expressed in terms of x and some feasible flow in the residual network N (x).
The other direction holds as well: if x is feasible in N and y is feasible in
N (x), then we can ‘add’ y to x and obtain a new feasible flow in N . These
two properties imply that in order to study flows in a network N it suffices
to find one feasible flow x and then work in the residual network N (x). We
assume below that all lower bounds are zero. Recall that, according to the
results in Section 4.2, this restriction does not limit our modeling power.

The first result shows that if x is a feasible flow in N = (V, A, l ≡ 0, u, b, c)
and x̃ is a feasible flow in N (x), then one can ‘add’ x̃ to x and obtain a new
feasible flow in N . Here ‘adding’ is arc-wise and should be interpreted as
defined below. Recall that we may assume we are dealing with netto flows.

Definition 4.4.1 Let x be a feasible flow in N = (V, A, l ≡ 0, u, c) and let
x̃ be a feasible flow in N (x). Define the flow x∗ = x ⊕ x̃ as follows: Start by
letting x∗

ij := xij for every ij ∈ A and then for every arc ij in N (x) such
that x̃ij > 0 we modify x∗ as follows (see Figure 4.6).

138 4. Flows in Networks

(a) If xji = 0, then x∗
ij := xij + x̃ij.

(b) If xij = 0 and xji < x̃ij, then x∗
ij := x̃ij − xji and x∗

ji := 0.
(c) If xji ≥ x̃ij, then x∗

ji := xji − x̃ij.

Note that by (4.7), if 0 < xji < x̃ij , then ij ∈ A. Using that x is a netto
flow it is easy to check that the resulting flow x∗ is also a netto flow.

i j i ji j

i j i j

xij ≥ 0 xij + x̃ijx̃ij > 0

xji < x̃ij

xij = 0

x̃ij − xji

(a)

(b)

x̃ x∗

(c)

i jx̃ij > 0

i jx̃ij > 0 xji > x̃ij xji − x̃iji j i j

x

Figure 4.6 The three different cases in Definition 4.4.1. The three columns shows
the flows x̃, x and x∗, respectively. An arc between i and j is shown unless the
corresponding flow on that arc is zero.

Theorem 4.4.2 Let x be a feasible flow in N = (V, A, l ≡ 0, u, c) with bal-
ance vector bx and x̃ is a feasible flow in N (x) = (V, A(x), r, c) with balance
vector bx̃. Then x∗ = x⊕ x̃ is a feasible flow in N with balance vector bx + bx̃

and the cost of x∗ is given by cT x∗ = cT x + cT x̃.

Proof: Let us first show that 0 ≤ x∗
ij ≤ uij for every ij ∈ A. We started

the construction of x∗ by letting x∗
ij := xij for every arc. Hence it suffices to

consider pairs (i, j) for which x̃ij > 0. We consider the three possible cases
(a)-(c) in Definition 4.4.1. In Case (a) we have x∗

ji = 0 and

0 < x∗
ij = xij + x̃ij ≤ xij + rij

= xij + (uij − xij + xji)
= uij ,

since we have xji = 0 in Case (a). In Case (b) we will have x∗
ji = 0 and

4.4 Working with the Residual Network 139

0 ≤ x∗
ij = x̃ij − xji ≤ rij − xji

= (uij − xij + xji) − xji

= uij ,

since we have xij = 0 in Case (b). In Case (c) it is easy to see that we get
x∗

ij = 0 and that 0 ≤ x∗
ji < uji.

Consider the balance vector of the resulting flow. We wish to prove that
x∗ has balance vector bx + bx̃, that is, for every i ∈ V ,

bx∗(i) =
∑

ij∈A

x∗
ij −

∑

ji∈A

x∗
ji = bx(i) + bx̃(i). (4.9)

This can be proved directly from the definitions of the balance expressions
for x and x̃. However, this approach is rather tedious and there is a simple
inductive proof using Theorem 4.3.1. If x̃ is just a cycle flow in N (x), then it
is easy to see (Exercise 4.12) that the balance vector of x∗ equals that of x.
Similarly, if x̃ is just a path flow of value δ along a (p, q)-path, for some distinct
vertices p, q ∈ V , then bx∗(v) = bx(v) for vertices v which are either internal
vertices on P or not on P and bx∗(p) = bx(p) + δ, bx∗(q) = bx(q) − δ. In the
general case, when x̃ is neither a path flow nor a cycle flow inN (x) we consider
a decomposition of x̃ into path and cycle flows in N (x) according to Theorem
4.3.1. Using the observation above and Theorem 4.3.1 (implying that when
adding all balance vectors of the paths and cycles in a decomposition, we
obtain the balance vector of x̃) it is easy to prove by induction on the number
of paths and cycles in the decomposition that (4.9) holds.

We leave it to the reader to prove using the same approach as above that
the cost of x∗ is given by cT x∗ = cT x + cT x̃ (see Exercise 4.12). ��

The next theorem shows that the difference between any two feasible flows
in a network can be expressed as a feasible flow in the residual network with
respect to any of those flows.

Theorem 4.4.3 Let N = (V, A, l ≡ 0, u, c) be a network and let x and x′

be feasible netto flows in N with balance vectors bx and bx′ . There exists a
feasible flow x̄ in N (x) with balance vector bx̄ = bx′ −bx such that x′ = x⊕ x̄.
Furthermore, the costs of these flows satisfy cT x̄ = cT x′ − cT x.

Proof: Let x, x′ be feasible netto flows in N = (V, A, l ≡ 0, u, c) and define
a flow in N (x) as follows. For every arc pq ∈ N (x) we let x̄pq := 0 and then
for every arc ij ∈ A such that either xij > 0 or x′

ij > 0 holds, we modify x̄
as follows:

(a) If xij > x′
ij , then x̄ji := xij − x′

ij + x′
ji.

(b) If x′
ij > xij , then x̄ij := x′

ij − xij + xji.

140 4. Flows in Networks

Using that x and x′ are feasible netto flows in N , one can verify that x̄
is a feasible netto flow in N (x) (Exercise 4.13). It also follows easily from
Definition 4.4.1 that x′ = x ⊕ x̄. Now the last two claims regarding balance
vector and cost follow from Theorem 4.4.2. ��

The following immediate corollary of Theorem 4.4.3 and Corollary 4.3.3
will be useful when we study minimum cost flows in Section 4.10.

Corollary 4.4.4 If x and x′ are feasible flows in the network N = (V, A, l ≡
0, u, c) such that bx = bx′ , then there exists a collection of at most m cycles
W1, W2, . . . , Wk in N (x) and cycle flows f(W1), . . . , f(Wk) in N (x) such that
the following holds:

(a) x′ = x⊕(f(W1)+. . . +f(Wk)) = (. . . ((x⊕f(W1))⊕f(W2))⊕. . .)⊕f(Wk);
(b) cT x′ = cT x +

∑k
i=1 cT f(Wi). ��

4.5 The Maximum Flow Problem

In this and the next section we study (s, t)-flows in networks with all lower
bounds equal to zero. That is, we consider networks of the type N = (V, A, l ≡
0, u) where s, t ∈ V are special vertices and we are only interested in flows
x which satisfy bx(s) = −bx(t) and bx(v) = 0 for all other vertices. We call
s the source and t the sink of N . By Theorem 4.3.1, every (s, t)-flow x
can be decomposed into a number of path flows along (s, t)-paths and some
cycle flows whose values do not affect the value of the flow x. Based on this
observation we also say that x is a flow from s to t.

Recall from (4.8) that the value |x| of an (s, t)-flow is |x| = bx(s). We are
interested in determining the maximum value k for which N has a feasible
(s, t)-flow of value4 k. Such a flow is called a maximum flow in N . The
problem of finding a maximum flow from s to t in a network with a specified
source s and sink t is known as the maximum flow problem [331].

An (s, t)-cut is a set of arcs of the form (S, S) where S, S form a partition
of V such that s ∈ S, t ∈ S. The capacity of an (s, t)-cut (S, S) is the number
u(S, S), that is, the sum of the capacities of arcs with tail in S and head in
S (recall (4.4)). Cuts of this kind are interesting in relation to the maximum
flow problem as we shall see below.

Lemma 4.5.1 For every (s, t)-cut (S, S) and every (s, t)-flow x, we have

|x| = x(S, S)− x(S, S). (4.10)

Proof: Starting from the definition of |x| and the fact that bx(v) = 0 for all
v ∈ S − s we obtain
4 Observe that there always exists a feasible flow in N since we have assumed

l ≡ 0.

4.5 The Maximum Flow Problem 141

|x| = bx(s) +
∑

i∈S−s

bx(i)

=
∑

i∈S

(
∑

ij∈A

xij −
∑

ji∈A

xji)

= x(S, V)− x(V, S)
= x(S, S) + x(S, S)− x(S, S)− x(S, S)
= x(S, S)− x(S, S),

where we also used (4.4). ��
Since a feasible flow x satisfies x ≤ u, every feasible (s, t)-flow must satisfy

x(S, S) ≤ u(S, S) for every (s, t)-cut (S, S). (4.11)

A minimum (s, t)-cut is an (s, t)-cut (S, S) with

u(S, S) = min{u(S′, S′) : (S′, S′) is an (s, t)-cut in N}.

It follows from (4.11) and Lemma 4.5.1 that the capacity of any (s, t)-
cut provides an upper bound for the value |x| for any feasible flow x in the
network. We also obtain the following useful consequence.

Lemma 4.5.2 If a flow x has value |x| = u(S, S) for some (s, t)-cut (S, S),
then x(S, S) = 0, x is a maximum (s, t)-flow and (S, S) is a minimum (s, t)-
cut. ��

Suppose x is an (s, t)-flow in N and P is an (s, t)-path in N (x) such that
rij ≥ ε > 0 for each arc ij on P . Let x′′ be the (s, t)-path flow of value ε
in N (x) which is obtained by sending ε units of flow along the path P . By
Theorem 4.4.2, we can obtain a new flow x′ = x ⊕ x′′ of value |x| + ε in N ,
implying that x is not a maximum flow in N . We call a path P in N (x) as
above an augmenting path with respect to x. The capacity δ(P) of an
augmenting path P is given by

δ(P) = min{rij : ij is an arc of P}. (4.12)

We call an arc ij of P for which xij < uij a forward arc of P and an
arc ij of P for which xji > 0 a backward arc of P .

When we ‘add’ the path flow x′′ to x according to Definition 4.4.1 we
say that we augment along P by ε units. It follows from the definition of
δ(P) and Theorem 4.4.2 that δ(P) is the maximum value by which we can
augment x along P and still have a feasible flow in N after the augmentation.

Now we are ready to prove the following fundamental result, due to Ford
and Fulkerson, relating minimum (s, t)-cuts and maximum (s, t)-flows.

142 4. Flows in Networks

Theorem 4.5.3 (Max-Flow Min-Cut theorem) [331] Let N = (V, A, l ≡
0, u) be a network with source s and sink t. For every feasible (s, t)-flow x in
N the following are equivalent:

(a) The flow x is a maximum (s, t)-flow.
(b) There is no (s, t)-path in N (x).
(c) There exists an (s, t)-cut (S, S) such that |x| = u(S, S).

Proof: We show that (a)⇒(b)⇒(c)⇒(a).

x = u

x = u

x = 0

x = 0

N (x) N

s t s tS S S S

Figure 4.7 Illustration of part (b)⇒(c) in the proof of Theorem 4.5.3. The set S
consists of those vertices that are reachable from s in N (x). The left part shows

the situation in the residual network where we have S⇒S and the right part shows
the corresponding situation in N .

(a)⇒(b): Suppose x is a maximum flow in N and that N (x) contains an
(s, t)-path P . Let δ(P) > 0 be the capacity of P and let x′ be the (s, t)-
path flow in N (x) which sends δ(P) units of flow along P . By Theorem
4.4.2, x⊕x′ is a feasible flow in N of value |x|+δ(P) > |x|, contradicting
the maximality of x. Hence (a)⇒(b).

(b)⇒(c): Suppose that N (x) contains no (s, t)-path. Let

S = {y ∈ V : N (x) contains an (s, y)-path}.

By the definition of S, there is no arc from S to S in N (x). Thus the
definition of N (x) implies that for every arc ij ∈ (S, S) we have xij = uij

and for every arc ij ∈ (S, S) we have xij = 0 (see Figure 4.7). This implies
that we have |x| = x(S, S) − x(S, S) = u(S, S) − 0 = u(S, S). Hence we
have proved that (b)⇒(c).

(c)⇒(a): This follows directly from Lemma 4.5.2. ��

4.5.1 The Ford-Fulkerson Algorithm

The proof of Theorem 4.5.3 suggests the following simple method for finding
a maximum (s, t)-flow in a network where all lower bounds are zero. Start

4.5 The Maximum Flow Problem 143

with x ≡ 0. This is a feasible flow since 0 = lij ≤ uij for all arcs ij ∈ A. Try
to find an (s, t)-path P in N (x). If there is such a path P , then augment x by
δ(P) units along P . Continue this way until there is no (s, t)-path in N (x)
where x is the current flow. This method, due to Ford and Fulkerson [331],
is called the Ford-Fulkerson (FF) algorithm.

Strictly speaking this is not really an algorithm if we do not specify how
we wish to search for an augmenting (s, t)-path. It can be shown (see Exercise
4.17) that when the capacities are allowed to take non-rational values and
there is no restriction on the choice of augmenting paths (other than the
restriction that one has to augment as much as possible along the current
path), then the process above may continue indefinitely and without even
converging to the right value of a maximum flow (see Exercise 4.17). In real-
life applications this problem cannot occur since all numbers represented in
computers are rational approximations of real numbers and in this case the
algorithm will always terminate (Exercise 4.18).

Theorem 4.5.4 If N = (V, A, l ≡ 0, u) has all capacities integers, then
the Ford-Fulkerson algorithm finds a maximum (s, t)-flow in time O(m|x∗|),
where x∗ is a maximum (s, t)-flow.

Proof: The following generic process called the labelling algorithm will
find an augmenting path in N (x) in time O(n + m) if one exists5. Start with
all vertices unlabelled except s and every vertex unscanned. In the general
step we pick a labelled but unscanned vertex v and scan all its out-neighbours
while labelling (by backwards pointers showing where a vertex got labelled
from) those vertices among the out-neighbours of v that are unlabelled. If
t becomes labelled this way, the process stops and an augmenting path, de-
termined by the backwards pointers, is returned. If all vertices are scanned
and t was not labelled, the process stops and the set of labelled vertices S
and its complement S correspond to a minimum (s, t)-cut (recall the proof
of Theorem 4.5.3).

Each time we augment along an augmenting path, the value of the current
flow increases by at least one, since the capacities in the residual network
are all integers (this is clear in the first iteration and easy to establish by
induction for the rest of the iterations of the algorithm). Hence there can be
no more than |x∗| iterations of the above search for a path and the complexity
follows. ��

To see that the seemingly very pessimistic estimate in Theorem 4.5.4
for the time spent by the algorithm may in fact be realized, consider the
network in Figure 4.8 and the sequence of augmenting paths specified there.
The reader familiar with the literature on flows may see that our example is
different from the classical example in books on flows. The reason for this is
5 We could also use path finding algorithms such as BFS and DFS, but the original

algorithm by Ford and Fulkerson uses only the generic labelling approach. See
also Section 4.6.

144 4. Flows in Networks

t

b c

e f

1

M

M

M

M

s

a

d

M

M

M

M

Figure 4.8 A possibly bad network for the Ford-Fulkerson algorithm. The num-
ber M denotes a large integer. If we choose augmenting paths of the form sabeft
with augmenting capacity 1 in odd-numbered iterations and augmenting paths of
the form sdebct with augmenting capacity 1 in even-numbered iterations, then a
maximum flow x of value 2M will be found only after 2M augmentations. Clearly,
if instead we augment first along sabct and then along sdeft, each time by M units,
we can find a maximum flow after just two augmentations.

that if we interpret the Ford-Fulkerson algorithm precisely as it is described
in [331, page 18] (see also the proof of Theorem 4.5.4), then the algorithm
will not behave badly on the usual example, whereas it still will do so on the
example in Figure 4.8.

The value of the maximum flow in the example in Figure 4.8 is 2M . This
shows that the complexity of the Ford-Fulkerson algorithm is not bounded by
a polynomial in the size of the input (recall from Chapter 1 that we assume
that numbers are represented in binary notation). It is worth noting though
that Theorem 4.5.4 implies that if all capacities are small integers, then we
get a very fast algorithm which, due to its simplicity, is easy to implement.
The following is an easy but very important consequence of the proof of
Theorem 4.5.3:

Theorem 4.5.5 (Integrality theorem for maximum (s, t)-flows) [331]
Let N = (V, A, l ≡ 0, u) be a network with source s and sink t. If all capacities
are integers, then there exists an integer maximum (s, t)-flow in N .

Proof: This follows from our description of the Ford-Fulkerson algorithm. We
start with x ≡ 0 and every time we augment the flow we do this by adding an
integer-valued path flow of value δ(P) ∈ Z+. Hence the new (s, t)-flow is also
an integer flow. It follows from the fact that all capacities are integers that in
a finite number of steps we will reach a maximum flow (by Lemma 4.5.1, |x|
cannot exceed the capacity of any cut). Now the claim follows by induction
on the number of augmentations needed before we have a maximum flow. ��

An (s, t)-flow in a network N is maximal if every (s, t)-path in N uses at
least one arc pq such that xpq = upq (such an arc is called saturated). That
is, either x is maximum or after augmenting along an augmenting path P the
resulting flow x′ has x′

ij < xij for some arc6. This is equivalent to saying that

6 Recall that we always work with netto flows.

4.5 The Maximum Flow Problem 145

every augmenting path with respect to x contains at least one backward arc
when P is considered as an oriented path in N . It is important to distinguish
between a maximal flow and a maximum flow. An (s, t)-flow x is maximal if
it is either maximum, or in order to augment it to a flow with a higher value,
we must reduce the flow in some arc. See also Figure 4.9.

(2, 1)

(1, 0)

(1, 0)

(2, 1)

(1, 1)

(2, 1) (2, 2)

s t

a b

c d

Figure 4.9 A network N with flow x which is maximal but not maximum as the
path P = sabcdt is an (s, t)-path in N (x). Note that the arc bc is a backward arc
of P . The data on each arc is (capacity, flow).

4.5.2 Maximum Flows and Linear Programming

We digress for a short while to give some remarks on the relation between
maximum flows and linear programming. First observe that the maximum
flow problem (with lower bounds all equal to zero) is equivalent to the fol-
lowing linear programming problem:

maximize k

subject to

bx(v) =

⎧
⎨

⎩

k if v = s
−k if v = t
0 otherwise.

0 ≤ xij ≤ uij for every ij ∈ A.

The matrix T of the constraints of this linear program is given by T =
»

S
I

–

, where S is the vertex-arc incidence matrix7 of the underlying directed

graph of the network (recall the definition of bx) and I is the m×m identity
matrix. The matrix S has the property that every column contains exactly
+1 and exactly one −1. This implies that S is totally unimodular, i.e., each
7 The vertex-arc incidence matrix S = [sij] of a digraph D = (V, A) has rows

labelled by the vertices of V and columns labelled by the arcs of A and the entry
svi,aj equals 1 if the arc aj has tail vi, −1 if aj has head vi and 0, otherwise.

146 4. Flows in Networks

square submatrix of S has determinant 0, 1 or −1 (see, e.g., the book [229]
by Cook, Cunningham, Pulleyblank and Schrijver). Hence it follows from
Exercise 4.19 that the matrix T is also totally unimodular. Therefore the
integrality theorem for maximum flows (Theorem 4.5.5) follows immediately
from the Hoffman-Kruskal characterization of total unimodularity (see [229,
Theorem 6.25]).

Since the maximum flow problem is just a linear programming problem,
it follows that one can find a maximum flow using any method for solving
general linear programming problems. In particular, by the total unimodular-
ity of T , the Simplex algorithm will always return an integer maximum flow,
provided that all capacities are integers. However, due to the special nature
of the problem, more efficient algorithms can be found when we exploit the
structure of flow problems. Finally, we remark that the max-flow min-cut
theorem can be derived from the duality theorem for linear programming
(see, e.g., the book [742] by Papadimitriou and Steiglitz).

4.6 Polynomial Algorithms for Finding a Maximum
(s, t)-Flow

In this section and in some of the exercises we describe a number of polyno-
mial algorithms for the maximum flow problem. For a survey of complexities
of various maxflow algorithms see, e.g., Chapter 10 of Schrijver’s book [803].
The following problem has been folklore for many years.

Problem 4.6.1 Is there an O(mn) algorithm for the maximum flow prob-
lem?

The Ford-Fulkerson algorithm can be modified in various ways to ensure
that it becomes a polynomial algorithm. We describe two such modifications
(see also Exercises 4.25 and 4.26). After doing so we describe a different
approach in which we do not augment the flow by just one path at the time.
For the first two subsections we need the following definition.

Definition 4.6.2 A layered network is a network N = (V, A, l ≡ 0, u)
with the following properties:

(a) There is a partition V = V0 ∪ V1 ∪ V2 ∪ . . . ∪ Vk ∪ Vk+1 such that V0 =
{s}, Vk+1 = {t} and

(b) every arc of A goes from a layer Vi to the next layer Vi+1 for some
i = 0, 1, . . . , k.

See Figure 4.10 for an example of a layered network.

4.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 147

s t

5

12

8

3

4

7

10

4

7

4

2

7

11

1

12

14

4

6

7

Figure 4.10 A layered network with source s and sink t. The numbers on the arcs
indicate the capacities.

4.6.1 Augmenting Along Shortest Augmenting Paths

Edmonds and Karp [288] observed that in order to modify the Ford-Fulkerson
algorithm so as to get a polynomial algorithm, it suffices to choose the aug-
menting paths as shortest paths with respect to the number of arcs on the
path.

Let x be a feasible (s, t)-flow in a network N . Denote by δx(s, t) the length
of a shortest (s, t)-path in N (x). If no such path exists, we let δx(s, t) = ∞.

Suppose that there is an augmenting path in N (x) and let P be a shortest
such path. Let r be the number of arcs in P . Define the network LN (x) as
the network one obtains from N (x) by taking the vertices from the distance
classes V0, V1, . . . , Vr, i.e., Vi = {v : distN (x)(s, v) = i}, and all arcs belonging
to (Vi, Vi+1)N (x) for i = 0, 1, . . . , r−1 along with their residual capacities rij .
Observe that, by the definition of distance classes, LN (x) contains all the
shortest augmenting paths with respect to x in N (x).

The crucial fact that makes augmenting along shortest paths a good ap-
proach is the following lemma.

Lemma 4.6.3 [288] Let x be a feasible (s, t)-flow in N and let x′ be obtained
from x by augmenting along a shortest path in N (x). Then

δx′(s, t) ≥ δx(s, t). (4.13)

Proof: Suppose this is not the case for some x, x′ where x′ is obtained from x
by augmenting along a shortest path P in N (x). By the remark above, LN (x)
contains all the shortest augmenting paths (with respect to x) in N (x). Let
r = δx(s, t). By our assumption, N (x′) contains an (s, t)-path P ′ whose
length is less than r. Thus P ′ must use an arc ij such that ij �∈ A(N (x)).
However, every arc that is in N (x′) but not in LN (x) is of the form ji where
ij is an arc of P , or is inside a layer of LN (x). It follows that P ′ has at least
r + 1 arcs, contradicting the assumption. ��

148 4. Flows in Networks

Note that even if N (x′) contains no (s, t)-path of length δx(s, t), it may
still contain a path of length δx(s, t) + 1, since we may use an arc which was
inside a layer of LN (x).

Theorem 4.6.4 (Edmonds, Karp) [288] If we always augment along
shortest augmenting paths, then the Ford-Fulkerson algorithm has complexity
O(nm2).

Proof: By Lemma 4.6.3, the length of the current augmenting path increases
monotonically throughout the execution of the algorithm. It follows from the
proof of Lemma 4.6.3 that if the length of the next augmenting path does not
go up, then that path is also a path in LN (x). Note also that at least one arc
from some layer Vi to the next disappears after each augmentation8. Hence
the number of iterations in which the length of the current augmenting path
stays constant is at most m. Since the length can increase at most n−2 times
(the length of an (s, t)-path is at least 1 and at most n− 1) and we can find
the next augmenting path in time O(n+m) using BFS we obtain the desired
complexity. ��

Zadeh [926] constructed networks with n vertices and m arcs for which the
Edmonds-Karp algorithm requires Ω(nm) augmentations to find a maximum
flow. Hence the estimate on the worst case complexity is tight.

4.6.2 Maximal Flows in Layered Networks

Let L = (V = V0 ∪ V1 ∪ . . . ∪ Vk, A, l ≡ 0, u) be a layered network with
V0 = {s} and Vk = {t}. By the definition of a maximal flow in Section 4.5,
an (s, t)-flow x in L is maximal if there is no (s, t)-path of length k in the
residual network L(x). That is, every augmenting path with respect to x (if
there is any) must use at least one arc pq such that p ∈ Vj , q ∈ Vi for some
j ≥ i.

We saw above that if we always augment along shortest augmenting paths,
then the length of a shortest augmenting path is monotonically increasing.
Hence if we have a method to find a maximal flow in a layered network in
time O(p(n, m)), then we can use that method to obtain an O(np(n, m))
algorithm for finding a maximum (s, t)-flow in any given network.

The method of Edmonds and Karp above achieves a maximal flow in time
O(m2). It was observed by Dinic [262] (who also independently and earlier
discovered the method of using shortest augmenting paths) that a maximal
flow in a layered network can be obtained in time O(nm), thus resulting in
an O(n2m) algorithm for maximum flow.

The idea is to search for a shortest augmenting path in a depth-first search
manner. We modify slightly the standard DFS algorithm (see Section 1.9) as

8 Recall that in each augmentation we augment by δ(P) units along the current
augmenting path P .

4.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 149

shown below. The vector π is used to remember the arcs of the augmenting
path detected if one is found.

Dinic’s algorithm (one phase)
Input: A layered network L = (V = V0 ∪ V1 ∪ . . . ∪ Vk, A, l ≡ 0, u).
Output: A maximal flow x in L.

1. Initialization: xij := 0 for every arc ij in A, let v := s be the current
vertex and let A′ := A.

2. Searching step: If there is no arc with tail v in A′ (from v to the next
layer among the remaining arcs), then if v = s, go to Step 5; otherwise
go to Step 4;
If there is an arc vw ∈ A′, then let π(w) := v and let v := w. If v �= t,
repeat Step 2.

3. Augmentation step: Using the π labels find the augmenting path P
detected and augment x along P by δ(P) units. Delete all arcs ij of A′

for which xij = uij . Erase all labels on vertices (π(i) := nil for all i ∈ V).
Let v := s and go to Step 2.

4. Arc deletion step: (The search above has revealed that there is no
(v, t)-path in the current digraph D′ = (V, A′). Furthermore, v �= s.)
Delete all arcs with head or tail v from A′, let v := π(v) and go to Step
2.

5. Termination: Return the maximal flow x.

Theorem 4.6.5 Dinic’s algorithm (one phase of) correctly determines a
maximal flow in a given layered network L in time O(nm).

Proof: Let L = (V = V0 ∪ V1 ∪ . . . ∪ Vk, A, l ≡ 0, u). Each time the current
flow is augmented in the algorithm it is changed along an augmenting path
of length k. We only delete an arc from A′ when it is no longer present in
the residual network L(x) where x is the current flow. Hence no deleted arc
could be used in an augmenting path of length k with respect to the current
flow. Furthermore, when the algorithm terminates there is no (s, t)-path in
the current digraph D′ = (V, A′). Here A′ consists of those arcs from one
layer to the next which are still not filled to capacity by the current x. It
follows that the algorithm terminates with a maximal flow.

The complexity follows from the fact that we perform at most O(n) steps
between each deletion of an arc which is either saturated (via the actual
augmenting path P) or enters a vertex for which we deleted all arcs having
that vertex as the head or tail (see Step 4). ��

4.6.3 The Push-Relabel Algorithm

The flow algorithms we have seen in the previous sections have the common
feature that they all increase the flow along one augmenting path at a time.
Very often, when searching for an augmenting path, one finds a path P con-
taining an arc rq whose capacity is relatively small compared to the capacity

150 4. Flows in Networks

of the prefix P [s, r] of that path. This means that along P [s, r] we were able
to augment by a large amount of flow, but due to the smaller capacity of the
arc rq we only augment by that smaller amount and start all over again. In
Dinic’s algorithm this could be taken into account by not starting all over
again, but instead backtracking until a new forward arc can be found in the
layered network. However, we are still limited to finding one path at a time.
Now we present a different approach, which allows one to work with more
than one augmenting path at a time. We will discuss an algorithm of Gold-
berg and Tarjan [415, 416] called the push-relabel algorithm. The basic
idea is to try to push as much flow towards t as possible, by first sending the
absolute maximum possible, namely,

∑
sr∈A usr, out of s and then trying to

push this forward to t. At some point no more flow can be sent to t and the
algorithm returns the excess flow back to s again. This very vague description
will be made precise below (the reader should compare this with the so-called
MKM algorithm described in Exercise 4.25).

Let N = (V, A, l ≡ 0, u) be a network with source s and sink t. A feasible
flow x in N is called a preflow if bx(v) ≤ 0 for all v ∈ V −s. Note that every
(s, t)-flow x is also a preflow since we have bx(v) = 0 if v ∈ V − {s, t} and
bx(t) = −bx(s) ≤ 0. Hence preflows generalize (s, t)-flows, an observation
that we shall use below. Preflows were originally introduced by Karzanov
[586]. Let x be a preflow in a network N . A height function with respect
to x is a function h : V → Z0 which satisfies

h(s) = n, h(t) = 0; (4.14)
h(p) ≤ h(q) + 1 for every arc pq of N (x).

The following useful lemma is an immediate consequence of Theorem
4.3.1(a).

Lemma 4.6.6 Let x be a preflow in a network N = (V, l ≡ 0, u) with source
s and sink t and let v be a vertex such that bx(v) < 0. Then N (x) contains a
(v, s)-path.

Proof: By the definition of a preflow, s is the only vertex r for which we have
bx(r) > 0. Hence, by Theorem 4.3.1(a), every decomposition of x into path
and cycle flows contains an (s, v)-path P . Now it follows that N (x) contains
a (v, s)-path, since every arc of P has positive flow in N and hence gives rise
to an oppositely oriented arc in N (x). ��

Now we are ready to describe the (generic) push-relabel algorithm. During
the execution of the algorithm, a vertex v ∈ V is called active if bx(v) < 0.
An arc pq of N (x) is admissible if h(p) = h(q) + 1. The algorithm uses two
basic operations push and lift.

push(pq): Let p be a vertex with bx(p) < 0 and let pq be an admissible
arc in N (x). The operation push(pq) changes xpq to xpq + ρ, where
ρ = min{−bx(p), rpq}.

4.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 151

lift(p): Let p be a vertex with bx(p) < 0 and h(p) ≤ h(q) for every arc pq in
N (x). The operation lift(p) changes the height of p as follows:

h(p) := min{h(z) + 1 : pz is an arc of N (x)}.

By the remark after the proof of Lemma 4.6.6, the number h(p) is well-
defined.

Lemma 4.6.7 Let x be a preflow in N and let h be defined as in (4.14).
If p ∈ V satisfies bx(p) < 0, then at least one of the operations push(pq),
lift(p) can be applied.

Proof: Suppose bx(p) < 0, but we cannot perform a push from p. Then there
is no admissible arc with tail p and hence we have h(p) ≤ h(q) for every arc
pq in N (x). It follows from Lemma 4.6.6 that there is at least one arc out of
p in N (x) and hence we can perform the operation lift(p). ��
The generic push-relabel algorithm
Input: A network N = (V, l ≡ 0, u) with source s and sink t.
Output: A maximum (s, t)-flow in N .
Preprocessing step:

(a) For each p ∈ V let h(p) := distN (p, t);
(b) Let h(s) := n;
(c) Let xsp := usp for every arc out of s in N ;
(d) Let xij := 0 for all other arcs in N .

Main loop:
While there is an active vertex p ∈ V − t do the following:

if N (x) contains an admissible arc pq, then push(pq) else lift(p).

Theorem 4.6.8 The generic push-relabel algorithm correctly determines a
maximum (s, t)-flow in N in time O(n2m).

Proof: We first show that the function h remains a height function through-
out the execution of the algorithm. Initially this is the case since we use
exact distance labels and there are no arcs out of s in N (x) (Exercise 4.20).
Observe that for every vertex p, h(p) is only changed when we perform the
operation lift(p) and then it is changed so as to preserve the condition (4.14).
Furthermore, the operation push(pq) may introduce a new arc qp in N (x),
but this arc will satisfy h(q) = h(p) − 1 and hence does not violate (4.14).
It follows that h remains a height function throughout the execution of the
algorithm.

It is easy to see that x remains a preflow throughout the execution of the
algorithm, since only a push operation affects the current x and by definition
a push operation preserves the preflow condition.

152 4. Flows in Networks

Now we prove that if the algorithm terminates, then it does so with a
maximum flow x. Suppose that the algorithm has terminated. This means
that no vertex v ∈ V has bx(v) < 0. Thus it follows from the definition of a
preflow that x is an (s, t)-flow. To prove that x is indeed a maximum flow, it
suffices to show that there is no (s, t)-path in N (x). This follows immediately
from the fact that h remains a height function throughout the execution of
the algorithm. By (4.14), every arc pq in N (x) has h(p) ≤ h(q) + 1 and we
always have h(s) = n, h(t) = 0. Since no (s, t)-path has more than n−1 arcs,
there is no (s, t)-path in N (x) and hence, by Theorem 4.5.3, x is a maximum
(s, t)-flow.

To prove that the algorithm terminates and to determine its complexity,
it is useful to distinguish between two kinds of pushes. An execution of the
operation push(pq) is a saturating push if the arc pq is filled to capacity
after the push and hence pq is not an arc of N (x) immediately after that
push. A push which is not saturating is an unsaturating push.

We now establish a number of claims from which the complexity of the
algorithm follows.

(A) The total number of lifts is O(n2): By Lemma 4.6.6, every vertex
p with bx(p) < 0 has a path to s in N (x). Hence, we have h(p) ≤ 2n− 1,
by (4.14). Since the height of a vertex p increases by at least one every
time the operation lift(p) is performed, no vertex can be lifted more than
2n − 2 times and the claim follows.

(B) The total number of saturating pushes is O(nm): Let us consider
a fixed arc pq and find an upper bound for the number of saturating
pushes along this arc in the algorithm. When we perform a saturating
push along pq, we have h(p) = h(q) + 1 and the arc pq disappears from
the residual network. It can only appear again in the current residual
network after flow has been pushed from q to p in some later execution
of the operation push(qp). At that time we have h(q) = h(p) + 1. This
and the fact that h remains a height function and never decreases at
any vertex, implies that before we can perform a new saturating push
along pq, h(p) has increased by at least two. We argued above that we
always have h(p) ≤ 2n − 1 and now we conclude that there are at most
O(n) saturating pushes along any given arc. Thus the total number of
saturating pushes is O(nm).

(C) The total number of unsaturating pushes is O(n2m): Let Φ =∑
bx(v)<0 h(v). Then Φ ≥ 0 during the whole execution of the algorithm

and since h(v) < 2n at any time during the execution we have Φ ≤ 2n2

after the preprocessing step. Let us examine what happens to the value
of Φ after performing the different kinds of operations. A lift will increase
Φ by at most 2n − 1. Hence, by (A), the total contribution to Φ from
lifts is O(n3). A saturating push from p to q can increase Φ by at most
h(q) ≤ 2n− 1 (it may also decrease Φ if p becomes balanced, but we are
not concerned about that here). Hence, by (B), the total contribution to

4.7 Unit Capacity Networks and Simple Networks 153

Φ from saturating pushes is O(n2m). An unsaturating push from p to
q will decrease Φ by at least one, since p becomes balanced and h(p) =
h(q)+1 (if q was balanced before, then Φ decreases by one and otherwise
it decreases by h(p)).
It follows from the considerations above that the total increase in Φ
during the execution of the algorithm is O(n2m). Now it follows from
the fact that Φ is never negative that the total number of unsaturating
pushes is O(n2m). ��

It is somewhat surprising that the simple approach above results in an
algorithm of such a low complexity. The complexity bound is valid no matter
which vertex we choose to push from or lift. This indicates the power of
the approach. However, the algorithm does have its drawbacks. If no control
is supplied to direct the algorithm (as to which vertices to push from or
lift), then a large amount of time may be spent without any effect on the
final maximum flow. In Exercise 4.21 the reader is asked to give an example
showing that a large amount of useless work may be performed if no extra
guidance is given to the choice of pushes. There are several approaches which
can improve the performance of the push-relabel algorithm, we mention just
two of these. For details see, e.g., the book by Ahuja, Magnanti and Orlin
[13].

(a) If we examine the active vertices in a first-in first-out (FIFO) order, then
we obtain an O(n3) algorithm [416].

(b) If we always push from a vertex p which has the largest height h(p) among
all active vertices, then we obtain an O(n2

√
m) algorithm [207, 416].

Cheriyan and Maheshwari [207] have shown by examples that the worst
case bounds for the FIFO and maximum height variants are tight. For another
way to improve the performance of the generic algorithm in practice, see
Exercise 4.22.

4.7 Unit Capacity Networks and Simple Networks

In this section we consider two special cases of networks, both of which occur
in applications and for which, due to their special structure, one can obtain
faster algorithms for finding a maximum flow. All networks considered in this
section are assumed to have a source s and a sink t.

4.7.1 Unit Capacity Networks

A unit capacity network is a network N = (V, A, l ≡ 0, u ≡ 1), i.e.,
all arcs have capacity equal to one. Unit capacity networks are important in
several applications of flows to problems such as finding a maximum matching

154 4. Flows in Networks

in a bipartite graph (Subsection 4.11.1), finding an optimal path cover of an
acyclic digraph (Section 13.5) and finding cycle subdigraphs covering specified
vertices (Subsection 13.8).

Lemma 4.7.1 If N is a unit capacity network without cycles of length 2 and
x is a feasible (s, t)-flow, then N (x) is also a unit capacity network.

Proof: Exercise 4.39. ��
Let N = (V, A, l ≡ 0, u ≡ 1) be a unit capacity network with source

s and sink t. Since the value of a minimum (s, t)-cut in N is at most n −
1 (consider the cut (s, V − s)), we see from Theorem 4.5.4 that the Ford-
Fulkerson algorithm will find a maximum (s, t)-flow in time O(nm). The
purpose of this section is to show that one can obtain an even faster algorithm.
Our exposition is based on an idea due to Even and Tarjan [308].

Lemma 4.7.2 Let L = (V = V0 ∪ V1 ∪ . . . ∪ Vk, A, l ≡ 0, u ≡ 1) be a layered
unit capacity network with V0 = {s} and Vk = {t}. One can find a maximal
(s, t)-flow in L in time O(m).

Proof: It suffices to see that the capacity of each augmenting path is 1 and
no two augmenting paths of the same length can use the same arc. Hence it
follows that Dinic’s algorithm will find a maximal flow in time O(m). ��

Lemma 4.7.3 Let N = (V, A, l ≡ 0, u ≡ 1) be a unit capacity network and
let x∗ be a maximum (s, t)-flow in N . Then

distN (s, t) ≤ 2n/
√
|x∗|. (4.15)

Proof: Let ω = distN (s, t) and let V0 = {s}, V1, V2, . . . , Vω be the first ω
distance classes from s. Since N contains no multiple arcs, the number of
arcs from Vi to Vi+1 is at most |Vi||Vi+1| for i = 0, 1, . . . , ω − 1. Since the
arcs in (Vi, Vi+1) correspond to the arcs across an (s, t)-cut in N , we have
|x∗| ≤ |Vi||Vi+1| for i = 0, 1, . . . , ω − 1. Thus max{|Vi|, |Vi+1|} ≥

√
|x∗| for

i = 0, 1, . . . , ω − 1. Now we easily see that

n = |V | ≥
ω∑

i=0

|Vi| ≥
√
|x∗|�ω + 1

2
�, (4.16)

implying that ω ≤ 2n/
√
|x∗|. ��

Theorem 4.7.4 [308] For unit capacity networks the complexity of Dinic’s
algorithm is O(n

2
3 m).

Proof: Let N be a unit capacity network with source s and sink t. We
assume for simplicity that N has no 2-cycles. The case when N does have
a 2-cycle can be handled similarly (Exercise 4.41). Let q be the number of

4.7 Unit Capacity Networks and Simple Networks 155

phases performed by Dinic’s algorithm before a maximum (s, t)-flow is found
in N . Let 0 ≡ x(0), x(1), . . . , x(q) denote the (s, t)-flows in N which have
been calculated after the successive phases of the algorithm. Thus x(0) is the
starting flow which is the zero flow and x(i) denotes the flow after phase i
of the algorithm. Let τ = �n 2

3 � and let K = |x(q)| denote the value of a
maximum (s, t)-flow in N .

By Lemmas 4.7.1 and 4.7.2, it suffices to prove that the total number of
phases, q, is O(n

2
3). This is clear in the case when K ≤ τ , since we augment

the flow by at least one unit after each phase. So suppose that K > τ . Choose
j such that |x(j)| < K−τ and |x(j+1)| ≥ K−τ . By Theorems 4.4.2 and 4.4.3
the value of a maximum flow in N (x(j)) is K − |x(j)| > τ .

Applying Lemmas 4.7.1 and 4.7.3 to N (x(j)), we see that distN (x(j))(s, t) ≤
2n

2
3 . Using Lemma 4.6.3 and the fact that each phase of Dinic’s algorithm

results in a maximal flow, we see that j ≤ 2n
2
3 . Thus, since at most τ phases

remain after phase j we conclude that the total number of phases q is O(n
2
3).
��

4.7.2 Simple Networks

A simple network is a network N = (V, A, l ≡ 0, u) with special vertices s, t
in which every vertex in V −{s, t} has precisely one arc entering or precisely
one arc leaving. For an example see Figure 4.11.

s t

Figure 4.11 A simple network. Capacities are not shown.

Below we assume that the simple network in question does not have any
2-cycles. It is easy to see that this is not a serious restriction (Exercise 4.42).

Lemma 4.7.5 Let N = (V, A, l ≡ 0, u ≡ 1) be a simple unit capacity network
on n vertices and let x∗ be a maximum (s, t)-flow in N . Then

distN (s, t) ≤ n/|x∗|. (4.17)

Proof: Let ω = distN (s, t) and V0 = {s}, V1, V2, . . . , Vω be the first ω distance
classes from s. Every unit of flow from s to t passes through the layer Vi for

156 4. Flows in Networks

i = 1, 2, . . . , ω − 1. Furthermore, since N is a simple unit capacity network,
at most one unit of flow can pass through each v ∈ V . Thus |Vi| ≥ |x∗|, for
i = 1, 2, . . . , ω − 1, and hence

|V | >
ω−1∑

i=1

|Vi| ≥ (ω − 1)|x∗|,

implying that ω ≤ |V |/|x∗|. ��

Lemma 4.7.6 If N is a simple unit capacity network, then N (x) is also a
simple unit capacity network.

Proof: Exercise 4.40. ��
Using Lemmas 4.7.5 and 4.7.6 one can prove the following result due to

Even and Tarjan. We leave the details as Exercise 4.43.

Theorem 4.7.7 [308] For simple unit capacity networks Dinic’s algorithm
has complexity O(

√
nm). ��

We point out that Dinic’s algorithm will also find a maximum (s, t)-flow in
time O(

√
nm) in a simple network even if not all capacities are one, provided

that the network has the property that at most one unit of flow can pass
through any vertex v ∈ V − {s, t}. In particular a vertex may be the tail of
an arc with capacity ∞ provided that it is the head of at most one arc and
this arc (if it exists) has capacity one. We use this extension of Theorem 4.7.7
in Section 4.11.

4.8 Circulations and Feasible Flows

We now return to the general flow model and consider the problem of deter-
mining whether a feasible flow exists with respect to the given lower bounds
and capacities on the arcs and a prescribed balance vector. As we showed in
Section 4.2, in order to study the general case, it suffices to study circula-
tions since we may use Lemmas 4.2.1-4.2.3 to transform the general case to
the case of circulations. Note that in this section we always assume that all
the data of the network are integers (that is, l and u are integers).

We need the following very simple observation. The proof is analogous to
that of Lemma 4.5.1.

Lemma 4.8.1 If x is a circulation in N , then for every partition S, S of V
we have x(S, S) = x(S, S). ��

The example in Figure 4.12 gives us a starting point for detecting what
can prevent the existence of a feasible circulation.

4.8 Circulations and Feasible Flows 157

(1, 5)

(0, 2)(3, 5)

a c

b

Figure 4.12 A network with no feasible circulation. The specification on the arcs
is (l, u).

Let N be the network in Figure 4.12 and let S = {b} and S = {a, c}.
Then l(S, S) = 3 > 2 = u(S, S). Now using Lemma 4.8.1 we see that if x is
a feasible flow in N , we must have

2 = u(S, S) ≥ x(S, S) = x(S, S) ≥ l(S, S) = 3,

implying that there is no feasible flow in N . More generally, our argument
shows that if N = (V, A, l, u) is a network for which some partition S, S of V
satisfies l(S, S) > u(S, S), then N has no feasible circulation. Hoffman [531]
proved that the converse holds as well.

Before we prove Theorem 4.8.2, we remark that Theorem 4.4.2 remains
valid for networks with non-zero lower bounds provided that we modify the
definition of x ⊕ x̃ slightly (see Exercise 4.30).

Theorem 4.8.2 (Hoffman’s circulation theorem) [531] A network N =
(V, A, l, u) with non-negative lower bounds on the arcs has a feasible circula-
tion if and only if the following holds for every proper subset S of V :

l(S, S) ≤ u(S, S). (4.18)

Proof: Let N = (V, A, l, u) be a network. We argued above that if x is
a feasible circulation in N , then for every partition (S, S) of V we have
l(S, S) ≤ u(S, S).

To prove the converse we assume that (4.18) holds for all S ⊂ V and give
an algorithmic proof showing how to construct a feasible circulation starting
from the all-zero circulation. Clearly x ≡ 0 is a circulation in N and if l ≡ 0,
then we are done. So we may assume that lij > xij for some ij ∈ A.

We try to find a (j, i)-path in N (x). If such a path P exists, then we
let δ(P) > 0 be the minimum residual capacity of an arc on P . Let ε =
min{δ(P), lij−xij}. By Theorem 4.4.2 (which, as remarked earlier, also holds
when some lower bounds are non-zero), we can increase the current flow x
by ε units along the cycle iP and obtain a new circulation.

We claim that we can continue this process until the current circulation
x has lij ≤ xij ≤ uij for all arcs ij ∈ A, that is, we can obtain a feasible
circulation in N (observe that the procedure above preserves the inequality

158 4. Flows in Networks

x ≤ u). Suppose this is not the case and that at some point we have xst < lst

for some arc st and there is no (t, s)-path in N (x). Define T as follows:

T = {r : there exists a (t, r)-path in N (x)}.

It follows from the definition of the residual network N (x) (in particular
(4.7)) that in N we have xij = uij for all arcs ij with i ∈ T and j ∈ T and
xqr ≤ lqr for all arcs qr with q ∈ T and r ∈ T . Using that s ∈ T and xst < lst

we obtain that

u(T, T) = x(T, T) = x(T , T) < l(T , T),

contradicting the assumption that (4.18) holds. This and the fact that all
data are integers shows that the algorithm we described above will indeed
find a feasible circulation in N . ��

It is not difficult to turn the proof above into a polynomial algorithm
which, given a network N = (V, A, l, u), either finds a feasible circulation x
in N , or a subset S violating (4.18) (Exercise 4.29).

We conclude with a remark on finding feasible flows with respect to arbi-
trary balance vectors in general networks. This problem is relevant as a start-
ing point for many algorithms on flows. It follows from the results in Section
4.2 and the fact that the push-relabel algorithm can be turned into an O(n3)
algorithm (using the FIFO implementation) that the following holds.

Theorem 4.8.3 There exists an O(n3) algorithm for finding a feasible flow
in a given network N = (V, A, l, u, b). Furthermore, if l, u, b are all integer
functions, then an integer feasible flow can be found in time O(n3). ��

Using Lemma 4.2.2 and Theorem 4.8.2 one can derive the following fea-
sibility theorem for flows by Gale (Exercise 4.44):

Theorem 4.8.4 [378] There exists a feasible flow in the network N =
(V, A, l ≡ 0, u, b) if and only if

∑

s∈S

b(s) ≤ u(S, S) for every S ⊂ U. (4.19)

��

4.9 Minimum Value Feasible (s, t)-Flows

Let N = (V, A, l, u) be a network with source s, sink t and non-negative
lower bounds on the arcs. A minimum feasible (s, t)-flow in N is a feasible
(s, t)-flow whose value is minimum possible among all feasible (s, t)-flows.
Although at first glance this problem may seem somewhat artificial, it turns

4.9 Minimum Value Feasible (s, t)-Flows 159

out that for many applications it is actually a minimum feasible flow that is
sought (see, e.g., Sections 6.7 and 13.5).

To estimate the value of a minimum (s, t)-flow, let us define the demand
γ(S, S) of an (s, t)-cut (S, S) as the number

γ(S, S) = l(S, S) − u(S, S). (4.20)

Let x be a feasible flow. Then, by Lemma 4.5.1, for every (s, t)-cut (S, S) we
have

|x| = x(S, S)− x(S, S)
≥ l(S, S)− u(S, S) (4.21)
= γ(S, S).

Hence the demand of any (s, t)-cut provides a lower bound for the value of a
minimum feasible (s, t)-flow. The next result shows that the minimum value
of an (s, t)-flow is exactly the maximum demand of an (s, t)-cut.

Theorem 4.9.1 (Min-Flow Max-Demand theorem) Suppose x is a
minimum feasible (s, t)-flow in a network N = (V, A, l, u) with non-negative
lower bounds on the arcs. Then

|x| = max{γ(S, S) : s ∈ S, t ∈ S}. (4.22)

Furthermore we can find a minimum feasible (s, t)-flow by two applications
of any algorithm for finding a maximum (s, t)-flow.

Proof: Suppose x is a feasible (s, t)-flow in N . If |x| = 0, then x is clearly
a minimum (s, t)-flow (since all lower bounds are non-negative). Hence we
may assume that |x| > 0. Suppose that y is a feasible (t, s)-flow in N (x). By
Theorem 4.4.29, x⊕ y is a feasible flow in N of value |x| − |y|. Now suppose
that y is a maximum (t, s)-flow in N (x). Apply Theorem 4.5.3 to y and N (x)
and let (T, T) be a minimum (t, s)-cut in N (x). The capacity of (T, T) is by
definition equal to r(T, T), where r is the capacity function of N (x). By the
choice of (T, T) and the definition of the residual capacities we have

|y| = r(T, T)

=
∑

ij∈(T,T)

(uij − xij) +
∑

qp∈(T ,T)

(xqp − lqp)

= u(T, T)− l(T , T) + x(T , T) − x(T, T)
= u(T, T)− l(T , T) + |x|, (4.23)

9 As we remarked in the last section, this theorem is also valid in the general case
of non-zero lower bounds.

160 4. Flows in Networks

by Lemma 4.5.1. Rearranging this, we obtain that |x|−|y| = l(T , T)−u(T, T).
This implies that the flow x⊕y (whose value is |x|−|y|) is a minimum feasible
(s, t)-flow and proves (4.22).

It remains to prove the second claim on how to find a minimum (s, t)-
flow. It follows from the argument above that once we have any feasible (s, t)-
flow, we can find a minimum (s, t)-flow by just one max flow calculation. On
the other hand it follows from Lemmas 4.2.1 and 4.2.2 that we can find a
feasible (s, t)-flow in N (if any exists) by performing the two transformations
suggested in those lemmas and then using a max flow algorithm to check
whether there is a feasible flow in the last network constructed (now feasibility
is with respect to the value of b(s) and all lower bounds are zero). ��

4.10 Minimum Cost Flows

We now turn to networks with costs on the arcs and study the follow-
ing problem called the minimum cost flow problem: Given a network
N = (V, A, l, u, b, c) find a feasible flow of minimum cost10. By the results
in Section 4.2, without loss of generality, we may treat the problem only for
networks with lower bound zero on all arcs and furthermore assume that we
are looking for either an (s, t)-flow of value b(s) or a circulation of minimum
cost. However, for different applications, different flow models may be more
convenient than others. Hence, except for always assuming that the lower
bounds are zero, we will treat the general case, and hence all the special
cases also, below.

We mentioned in Section 4.2 that the shortest path problem is a special
case of the minimum cost flow problem. To see this, let D = (V, A, c) be an
arc weighted digraph with special vertices s, t and assume that D has no cycle
of negative weight. Let N = (V, A, l ≡ 0, u ≡ 1, c) be the network obtained
from D by adding a lower bound of zero and a capacity of 1 to each arc of D
and interpreting the weight of an arc in D as its cost in N . We claim that a
shortest (s, t)-path in D corresponds to a minimum cost integer (s, t)-flow of
value 1 in N . Clearly, any (s, t)-path P of weight M in D can be transformed
into an (s, t)-flow of cost M just by sending one unit of flow along P in N .
Thus it suffices to prove that every (s, t)-flow x of value 1 and cost M can
be transformed into an (s, t)-path in D of weight at most M . By Theorem
4.3.1, we may decompose x into a path flow of value 1 along an (s, t)-path P ′

and a number of cycle flows. All these cycles have non-negative cost since D
has no negative cycle. Hence it follows that P ′ has cost at most M . It follows
from our observations above that every minimum cost (s, t)-flow of value 1
in N can be decomposed into an (s, t)-path of the same cost and some cycle
flows along cycles of cost zero.
10 Recall that the cost of a flow is given by

P

ij∈A xijcij .

4.10 Minimum Cost Flows 161

In Exercise 4.47 the reader is asked to show that the maximum flow
problem is also a special case of the minimum cost flow problem. However,
the minimum cost flow problem is interesting not only because it generalizes
these two problems, but also because a large number of practical applications
can be formulated as minimum cost flow problems. The very comprehensive
book by Ahuja, Magnanti and Orlin [13] contains a large number of such
applications. We will discuss one of these in a reformulated form below.

A small cargo company uses a ship with a capacity to carry at most r units
of cargo. The ship sails on a long route (say from Southampton to Alexandria)
with several stops at ports in between. At these ports cargo may be unloaded
and new cargo loaded. At each port there is an amount bij of cargo which is
waiting to be shipped from port i to port j > i (ports are numbered after
the order in which the ship visits them). Let fij denote the income for the
company from transporting one unit of cargo from port i to port j. The goal
for the cargo company is to plan how much cargo to load at each port so as
to maximize the total income while never exceeding the capacity of the ship.
We illustrate how to model this problem, which we call the ship loading

problem, as a minimum cost flow problem. The motivation for describing
this application is that it shows not only that sometimes it is easier to work
with the general model, but also that allowing negative costs on the arcs may
simplify the formulation.

Let n be the number of stops including the starting port and the terminal
port. Let N = (V, A, l ≡ 0, u, c) be the network defined as follows:

V = {v1, v2, . . . , vn} ∪ {vij : 1 ≤ i < j ≤ n},

A = {v1v2, v2v3, . . . , vn−1vn} ∪ {vijvi, vijvj : 1 ≤ i < j ≤ n}.
The capacity of the arc vivi+1 is r for i = 1, 2, . . . , n−1 and all other arcs have
capacity ∞. The cost of the arc vijvi is −fij for 1 ≤ i < j ≤ n. All other arcs
have cost zero (including those of the form vijvj). The balance vector of vij is
bij for 1 ≤ i < j ≤ n and the balance vector of vi is −(b1i + b2i + . . . + bi−1i)
for i = 1, 2, . . . , n. (See Figure 4.13.)

We claim that this network models the ship loading problem. Indeed,
suppose that t12, t13, . . . , t1n, t23, . . . , tn−1n are cargo numbers, where tij(≤
bij) denotes the amount of cargo the ship will transport from port i to port j
and that the ship is never loaded above capacity. The total income from these
cargo loads is I =

∑
1≤i<j≤n tijfij . Let x be the flow in N defined as follows.

The flow on an arc of the form vijvi is tij , the flow on an arc of the form
vijvj is bij − tij and the flow on an arc of the form vivi+1, i = 1, 2, . . . , n− 1,
is the sum of those tab for which a ≤ i and b ≥ i + 1. It follows from the
fact that tij , 1 ≤ i < j ≤ n, are legal cargo numbers that x is feasible with
respect to the balance vector and the capacity restriction. It is also easy to
see that the cost of x is −I.

Conversely, suppose that x is a feasible flow in N of cost J . We claim
that we get a feasible cargo assignment sij , 1 ≤ i < j ≤ n with income −J

162 4. Flows in Networks

1 2 3 4 5

13 24

15

r r r r

−f15
−f14

−f13
−f24

−f35

−f25

12 23 34 45

35

14 25

−f34−f12 −f23 −f45

Figure 4.13 The network for the ship loading problem with three intermediate
stops. For readability vertices are named by numbers only. The costs (capacities)
are only shown when non-zero (not infinite). The balance vectors are as specified
in the description in the text, i.e., the balance vector of the vertex 34 is b34 and the
balance vector of the vertex 4 is −(b14 + b24 + b34).

by letting sij be the value of x on the arc vijvi. This is easy to check and
we leave the details to the reader. It follows that a minimum cost flow in N
corresponds to an optimal loading of the ship and vice versa.

Below we consider the minimum cost flow problem in some detail. Fur-
ther applications are given in Section 4.11. See also Section 4.10.3 for two
important special cases of the minimum cost flow problem.

We use the notion of the cost of a path or a cycle in a network. This is
simply the sum of the costs of all arcs in the path or cycle. An augmenting
path (cycle) with respect to a given flow x in a network N is a path (cycle)
in N (x). Whenever we speak about an augmenting cycle or path W we use
δ(W) to denote the minimum residual capacity of an arc on W in N (x).
Furthermore, for every β ≤ δ(W) we denote by x′ := x ⊕ βW the flow we
obtain from x by augmenting along W with β units.

Whenever we say that a flow x is optimal in a network N , we mean by
this that x is a minimum cost flow among all flows in N with balance vector
bx.

4.10.1 Characterizing Minimum Cost Flows

Recall from Theorem 4.5.3 that, when we consider maximum (s, t)-flows, we
can verify optimality by showing that there is no (s, t)-path in the residual
network with respect to the current flow. It turns out that we can also use
the residual network to check whether a given feasible flow in a network N =
(V, A, l, u, c) has minimum cost among all flows with the same balance vector.

4.10 Minimum Cost Flows 163

Suppose first that x is feasible in N and that there is some cycle W in N (x)
such that the cost c(W) of W is negative. Let δ denote the minimum residual
capacity of an arc on W and let x′ be the cycle flow in N (x) which sends δ
units around W . Then it follows from Theorem 4.4.2 that x⊕x′ is a flow in N
with the same balance vector as x and cost cT x+cT x′ = cT x+δc(W) < cT x.
Thus if N (x) contains a cycle of negative cost, then x is not a minimum cost
feasible flow in N with respect to the balance vector bx.

The interesting thing is that the other direction holds as well. Indeed,
suppose x is feasible in N = (V, A, l, u, b, c) and that N (x) contains no cycle
of negative cost. Let y be an arbitrary feasible flow in N . Since we have
specified a balance vector b for N , it follows from Corollary 4.4.4 that there
exists a collection of at most m cycles W1, W2, . . . , Wk in N (x) and cycle
flows f(W1), . . . , f(Wk) in N (x) such that cT y = cT x+

∑k
i=1 c(Wi)δi, where

δi > 0 is the amount of flow that f(Wi) sends along Wi in N (x). Since N (x)
has no negative cost cycle, c(Wi) ≥ 0 for i = 1, 2, . . . , k and we see that11

cT y ≥ cT x. Thus we have established the following important optimality
criterion for the minimum cost flow problem.

Theorem 4.10.1 Let x be a feasible flow in the network N = (V, A, l, u, b, c).
Then x is a minimum cost feasible flow in N if and only if N (x) contains
no directed cycle of negative cost. ��

It is natural to ask how useful this optimality criterion is. First observe
that, using the Bellman-Ford-Moore algorithm (Subsection 3.3.4), we can
check whether an arbitrary given network contains a negative cycle in time
O(nm). Thus we obtain the following algorithm, due to Klein [598], for finding
a minimum cost feasible flow in a network.

The cycle canceling algorithm
Input: A network N = (V, A, l, u, b, c).
Output: A minimum cost feasible flow in N .

1. Find a feasible flow x in N .
2. Search for a negative cycle in N (x).
3. If such a cycle W is found, then augment x by δ(W) units along W and

go to Step 2.
4. Return x.

Just as is the case for the Ford-Fulkerson algorithm, the cycle canceling
algorithm may never terminate if the capacities are non-rational numbers. It
is easy to modify the example in Exercise 4.17 to show this. However, if all
lower bounds and capacities are integers (or just rational numbers), then this
is indeed an algorithm, although not always a very fast one. See Figure 4.14
for an illustration of the algorithm.
11 In fact, our argument shows that cT y = cT x if and only if y can be obtained

from x by ‘adding’ zero or more cycle flows, each of cost zero, in N (x).

164 4. Flows in Networks

1 3(6, 5, 1)

(3, 3, 2)(3, 2, 3)

(4,-2)

(5,-1)
(1, 1)

(3,-2)

(2, 2, 2) (2,-2) (2,-2)

(3,-1) (3, 1)

(3,-2)(3, 3)

1

2

3

1 3 1 3

(2, 2)

(2, 2)

(1, 1)

(5, -1)

(2, 2)
(2, 0, 2)

(6, 5, 1)

(3, 1, 2)(3, 0, 3)

(4, 2, 2)

4

22

4

(1, -2)
(3, 3)

(2, -2)

4 4

(a)

(d) (e)

(c)(b)

4

1 3

2 2

(4, 4, 2)

(1, 3)

(2,-3)

(2, 2)

(2,-2)

Figure 4.14 An illustration of the cycle canceling algorithm. (a) A network N
with a feasible flow x with respect to the balance vector (b(1), b(2), b(3), b(4)) =
(2, 3, 1,−6). The data on the arcs are (capacity, flow, cost). (b) The residual network
N (x). The data on the arcs are (residual capacity, cost). (c) The residual network
after augmenting by 2 units along the cycle 1421. (d) The residual network after
augmenting by 2 units along the cycle 2432. (e) The final optimal flow.

Let U and C denote the maximum capacity of N and the maximum
numerical value among all costs of N .

Theorem 4.10.2 If all lower bounds, capacities, costs and balance vectors
of the input network N are integers, then the cycle canceling algorithm finds
an optimum flow in time O(nm2CU).

Proof: By Theorem 4.8.3, we can find a feasible flow x in N in time O(n3).
Hence Step 1 can be performed within the promised time bound, since we
assume that all networks in this chapter have m = Ω(n). The maximum
possible cost of a feasible flow in N is mUC and the minimum possible cost
is −mUC. Since we decrease the cost of the current flow by at least one
in Step 3, it follows that after at most O(mUC) executions of Step 3 we
obtain a minimum cost feasible flow. Now the complexity follows from the
fact that Step 2 can be performed in time O(nm), using the Bellman-Ford-
Moore algorithm. ��

4.10 Minimum Cost Flows 165

Furthermore, just as it was the case for maximum flows, we have a nice
integrality property.

Theorem 4.10.3 (Integrality theorem for minimum cost flows) If all
lower bounds, capacities and balance vectors of the network N are integers,
then there exists an integer minimum cost flow.

Proof: This is an easy consequence of the proof of Theorem 4.10.2. By
Theorem 4.8.3, we may assume that the flow x after Step 1 is an integer flow.
Now the claim follows easily by induction of the number of augmentations
made by the cycle canceling algorithm, since in each augmentation we change
the current flow by an integer amount along the arcs of the augmenting cycle.

��
For arbitrary networks with integer-valued data, the complexity of the

cycle canceling algorithm is not very impressive and the algorithm is clearly
not polynomial since its running time is exponential in both the maximum
capacity and the maximum (absolute value of the) cost. It is easy to construct
examples for which the algorithm, without some guidance as to how the next
negative cycle should be chosen, may use O(mUC) augmentations before it
arrives at an optimum flow (Exercise 4.52). However, for several applications,
such as when we are looking for certain structures in digraphs, both U and
C are small and then the algorithm is quite attractive due to its simplicity
(see, e.g., some of the results in Section 4.11).

The problem of finding a strongly polynomial algorithm12 for the mini-
mum cost flow problem was posed by Edmonds and Karp [288] in 1972 and
remained open until Tardos [842] found the first such algorithm in 1985. We
mentioned above that if we use just any negative cycle in Step 3, then the
cycle canceling algorithm may use a non-polynomial number of iterations.
Goldberg and Tarjan showed that the following variant of the algorithm is
already strongly polynomial [417]. The mean cost of a cycle W is the number
c(W)/|A(W)|.

Theorem 4.10.4 [417] If we always augment along a cycle of minimum
mean cost (as negative mean cost as possible) in Step 3, then the cycle can-
celing algorithm has complexity O(n2m3 log n), even if some arcs have non-
rational data. ��

The correctness of the algorithm, provided that it terminates, follows
from Theorem 4.10.1, since there is no negative cycle in the current residual
network at termination. Due to space considerations, we will not prove the
complexity part of the theorem here. We refer the interested reader to [13,
710] for nice accounts for the complexity of this algorithm. It is interesting to

12 A graph algorithm is strongly polynomial if (counting each arithmetic opera-
tion as constant time) the number of operations is bounded by a polynomial in
n and m.

166 4. Flows in Networks

note that although the proof of the complexity statement of Theorem 4.10.4
is quite non-trivial, it uses just the basic definitions of flows along with some
new concepts which are used to make the proof smoother.

4.10.2 Building up an Optimal Solution

The cycle canceling algorithm starts from a (generally) non-optimal but fea-
sible flow and continues through a sequence of feasible flows until an optimal
flow is found (provided the algorithm ever terminates). In this subsection we
describe another approach, due to Jewell [565] and Busacker and Gowen [184],
in which we start from a (generally) infeasible flow which is optimal13 and
continue through a sequence of optimal but infeasible flows until a feasible
and optimal flow is reached.

Theorem 4.10.5 (The buildup theorem) [565, 184] Suppose that x is a
minimum cost feasible flow in a network N = (V, A, l ≡ 0, u, c) with respect
to the balance vector b = bx and let P be a minimum cost (p, q)-path in N (x).
Let α ≤ δ(P) and let f(P) be the path flow of value α in N (x). Then the
flow x′ := x⊕ f(P) is a minimum cost feasible flow in N with respect to the
balance vector b′ given by

b′(v) =

⎧
⎨

⎩

b(v) if v �∈ {p, q}
b(p) + α if v = p
b(q)− α if v = q.

Proof: By Theorem 4.10.1, it is sufficient to prove that there is no negative
cycle in N (x′). Since x is optimal, there is no negative cycle in N (x). Suppose
that N (x′) contains a negative cycle W . By the definition of x′, every arc
in N (x′) is either an arc of N (x) or the opposite of an arc on P . Consider
the directed multigraph H that we obtain from A(P)∪A(W), considered as
a multiset, by deleting all arcs a such that both a and the opposite arc are
in A(P) ∪ A(W). It is easy to see that if we add the arc qp to H, then we
obtain a directed multigraph M such that each connected component of M is
eulerian. Hence, by Exercise 4.8, we can decompose A(H) into a (p, q)-path
P ′ and a number of cycles W1, W2, . . . , Wk. It follows from our remark above
and the way we defined H that all arcs of P ′, W1, W2, . . . , Wk are arcs of
N (x). By (4.2) opposite arcs have costs which cancel and hence, using that
c(W) < 0, we obtain

c(P) > c(P) + c(W)

= c(P ′) +
k∑

i=1

c(Wi)

≥ c(P ′),
13 Recall that optimality is with respect to flows with the same balance vector.

4.10 Minimum Cost Flows 167

since the cost of each Wi must be non-negative because Wi is a cycle in
N (x). Thus we see that P ′ is a (p, q)-path with a cost smaller than that of
P , contradicting the minimality of P . Hence W cannot exist and the proof
is complete. ��

Based on Theorem 4.10.5 we can construct an algorithm, called the
buildup algorithm [565, 184], for finding an optimal feasible flow in a net-
work N = (V, A, l ≡ 0, u, b, c). The algorithm described below only works if
there are no negative cycles in the starting network. This restriction poses no
practical problems since, according to Exercise 4.49, we may reduce the gen-
eral minimum cost flow problem to the case when all costs are non-negative.
Under the assumption that N has no negative cycles, the flow x ≡ 0 is an
optimal circulation in N . At any time during the execution of the buildup
algorithm the sets Ux, Zx are defined with respect to the current flow x as
follows:

Ux = {v|bx(v) < b(v)}, Zx = {v|bx(v) > b(v)}.
Observe that Ux = ∅ if and only if Zx = ∅.
The buildup algorithm
Input: A network N = (V, A, l ≡ 0, u, b, c).
Output: A minimum cost feasible flow in N with respect to b or a proof
that the problem is infeasible.

1. Let xij := 0 for every ij ∈ A;
2. If Ux = ∅, then go to Step 8;
3. If there is no (Ux, Zx)-path in N (x), go to Step 9;
4. Let p and q be chosen such that p ∈ Ux, q ∈ Zx and N (x) contains a

(p, q)-path;
5. Find a minimum cost (p, q)-path P in N (x);
6. Let ε = min{δ(P), b(p)−bx(p), bx(q)−b(q)} (δ(P) is the residual capacity

of P);
7. Let x := x⊕ εP ; modify Ux, Zx and go to Step 2;
8. Return x;
9. Return ‘no feasible solution’.

See Figure 4.15 for an illustration of the algorithm.

Theorem 4.10.6 [565, 184] Let N = (V, A, l ≡ 0, u, b, c) have all data inte-
gers and no negative costs. The buildup algorithm correctly determines a min-
imum cost feasible flow x in N or detects that no feasible flow exists in N . The
algorithm can be performed in time O(n2mM), where M = maxv∈V |b(v)|.
Furthermore, if there is a feasible flow in N , then the algorithm will find an
integer optimal feasible flow in N .

Proof: Exercise 4.50. ��
The following result shows that when we consider minimum cost (s, t)-

flows, the cost of successive augmenting (s, t)-paths forms a monotonically

168 4. Flows in Networks

(2, 0, 2)

(3, 1, 2)

(6, 5, 1)

(3, 0, 3)

(4, 2, 2)(2, 2)

(1,-2)

(2, 2)

(5,-1)

(3, 3)

(1,-2)

(2, 2)

(3,-1)

(4, 2)(2, 2)(2, 2)

(1,-2)

(3, 3)

(6, 1)(6, 1)

(3, 2)

12

−6

3

(a) (b) (c)

(d) (e)

(4, 2)

(2, 2)

(4, 2)

(3, 3)

(3, 3)

(3, 3)

(2, 2)

(2, 2)

(1, 1)

(2,-2)

Figure 4.15 The buildup algorithm performed on the network from Figure 4.14(a).
Parts (a)-(d) show the current residual network with respect to the flow x, starting
from x ≡ 0 in (a). For each arc (u, c) is specified and in (a) b(v) is specified for each
vertex. White circles correspond to the set Ux and white boxes correspond to Zx.
Black circles represent vertices that have reached the desired balance value. Part
(e) shows the final optimal flow.

increasing function. One can make a more general statement (Exercise 4.51),
but for simplicity we consider only (s, t)-flows here.

Proposition 4.10.7 Let N be a network with distinct vertices s, t and let x
be an optimal (s, t)-flow in N . Suppose x′ is obtained from x by augmenting by
one unit along a minimum cost (s, t)-path P in N (x) and that x′′ is obtained
from x′ by augmenting by one unit along a minimum cost (s, t)-path P ′ in
N (x′). Then

cT x− cT x′ ≥ cT x′ − cT x′′. (4.24)

Proof: Let x, x′, x′′ and P, P ′ be as described in the proposition. Analogously
to the way we argued in the proof of Theorem 4.10.5, we can show that the
directed multigraph H ′ obtained from the multiset of arcs from A(P)∪A(P ′)
by deleting arcs that are opposite in the two paths can be decomposed into
two (s, t)-paths Q, R and some cycles W1, . . . , Wp such that all arcs of these
paths and cycles are in N (x). Since x is optimal each cycle Wi, i = 1, 2, . . . , p,

4.10 Minimum Cost Flows 169

has non-negative cost by Theorem 4.10.1. Using that P is a minimum cost
(s, t)-path in N (x), we conclude that each of R, Q has cost at least c(P)
implying that c(P ′) ≥ c(P). Hence (4.24) holds. ��

4.10.3 The Assignment and the Transportation Problem

In this section we briefly discuss two special cases of the minimum cost flow
problem, both of which occur frequently in practical applications. For a more
detailed discussion see, e.g., [91, Section 3.12].

In the Assignment Problem, the input consists of a set of persons
P1, P2, . . . , Pn, a set of jobs J1, J2, . . . , Jn and an n × n matrix M = [Mij]
whose entries are non-negative integers. Here Mij is a measure for the skill of
person Pi in performing job Jj (the lower the number the better Pi performs
job Jj). The goal is to find an assignment π of persons to jobs so that each
person gets exactly one job and the sum

∑n
i=1 Miπ(i) is minimized. Given

any instance of the assignment problem, we may form a complete bipartite
graph B = (U, V ; E) where U = {P1, P2, . . . , Pn}, V = {J1, J2, . . . , Jn} and
E contains the edge PiJj with the weight Mij for each i ∈ [m], j ∈ [n]. Now
the assignment problem is equivalent to finding a minimum weight perfect
matching in B. Clearly we can also go the other way and hence the assignment
problem is equivalent to the weighted bipartite matching problem. It
is also easy to see from this observation that the assignment problem is a
(very) special case of the minimum cost flow problem. In fact, if we think
of Mij as a cost and orient all edges from U to V in the bipartite graph
above, then what we are seeking is an integer-valued flow of minimum cost
so that the value of the balance vector equals 1 for each Pi, i = 1, 2, . . . , m,
and equals -1 for each Jj , j = 1, 2, . . . , n.

Inspecting the description of the buildup algorithm above, it is not hard
to see that the following holds (Exercise 4.53).

Theorem 4.10.8 The buildup algorithm solves the assignment problem for
a bipartite graph on n vertices in time O(n3). ��

In the transportation problem we are given a set of production plants
S1, S2, . . . , Sm that produce a certain product to be shipped to a set of re-
tailers T1, T2, . . . , Tn. For each pair (Si, Tj) there is a real-valued cost cij of
transporting one unit of the product from Si to Tj . Each plant produces ai,
i = 1, 2, . . . ,m, units per time unit and each retailer needs bj , j = 1, 2, . . . , n,
units of the product per time unit. We assume below that

∑m
i=1 ai =

∑n
j=1 bj

(this is no restriction of the model as shown in Exercise 4.54). The goal is
to find a transportation schedule for the whole production (i.e., how many
units to send from Si to Tj for i = 1, 2, . . . ,m, j = 1, 2, . . . , n) in order to
minimize the total transportation cost.

Again the transportation problem is easily seen to be a special case of the
minimum cost flow problem. Consider a bipartite network N with partite sets

170 4. Flows in Networks

S = {S1, S2, . . . , Sm} and T = {T1, T2, . . . , Tn} and all possible arcs from S
to T , where the capacity of the arc SiTj is ∞ and the cost of sending one unit
of flow along SiTj is cij . Now it is easy to see that an optimal transportation
schedule corresponds to a minimum cost flow in N with respect to the balance
vectors

b(Si) = ai, i = 1, 2, . . . ,m, and b(Tj) = −bj , j = 1, 2, . . . , n.

Again we could solve the transportation problem by the buildup algorithm
but in this case we would not be guaranteed a polynomial running time since
the running time would depend on the required balance values. Applying
Theorem 4.10.4, we obtain a strongly polynomial algorithm for the problem.
Clearly one would expect the existence of an algorithm of better complex-
ity for the transportation problem (being a restricted version of the general
minimum cost flow problem). Such an algorithm was given by Kleinschmidt
and Schannath.

Theorem 4.10.9 [600] The transportation problem with m suppliers and n
consumers can be solved in time O(min{n, m}(n + m)2 log(n + m)). ��

For much more material on the assignment and transportation problems,
including a survey of various complexities, the reader may consult Chapters
17 and 21 of Schrijver’s book [803].

4.11 Applications of Flows

In this section we illustrate the applicability of flows to a large spectrum of
problems both of theoretical and practical nature. For further applications
see, e.g., Chapters 5, 13 and 17. Since we will need these results in later
chapters the main focus is on finding certain substructures in digraphs.

4.11.1 Maximum Matchings in Bipartite Graphs

Let G = (V, E) be an undirected graph. Recall that a matching in G is a set
of edges from E, no two of which share a vertex, and a maximum match-
ing of G is a matching of maximum cardinality among all matchings of G.
Matching problems occur in many practical applications such as the following
scheduling problem. We are given a set T = {t1, t2, . . . , tr} of tasks (such as
handling a certain machine) to be performed and a set P = {p1, p2, . . . , ps}
of persons, each of which is capable of performing some of the tasks from
T . The goal is to find a maximum number of tasks such that each task can
be performed by some person who does not at the same time perform any
other task and no task is performed by more than one person. This can be
formulated as a matching problem as follows. Let B = (P, T ; E) be the bi-
partite graph whose vertex set is P ∪ T and such that for each i, j such that

4.11 Applications of Flows 171

1 ≤ i ≤ s, 1 ≤ j ≤ r, E contains the edge pitj whenever person pi can
perform task tj . Now it is easy to see that the answer to the problem above
is a matching in B which covers the maximum possible number of vertices in
T (see also Exercise 4.55). Finding a maximum matching in an arbitrary (not
necessarily bipartite) graph is quite complicated and it was a great break-
through when Edmonds [282] found a polynomial algorithm. For the case of
bipartite graphs we describe a simple algorithm based on flows.

Theorem 4.11.1 For bipartite graphs the maximum matching problem is
solvable in time O(

√
nm).

Proof: Let B = (X, Y ; E) be an undirected bipartite graph with bipartition
(X, Y). Construct a network NB = (X ∪Y ∪{s, t}, A, l ≡ 0, u) as follows (see
Figure 4.16):

A = {ij : i ∈ X, j ∈ Y and ij ∈ E}∪{si : i ∈ X}∪{jt : j ∈ Y }, uij = ∞
for all ij ∈ (X, Y), usi = 1 for all i ∈ X and ujt = 1 for all j ∈ Y .

B NB

s t

Figure 4.16 A bipartite graph and the corresponding network. Capacities are one
on all arcs of the form sv, ut and ∞ on all arcs corresponding to edges of B.

We claim that the value of a maximum (s, t)-flow in NB equals the size
of a maximum matching in B. To see this, suppose that x is an integer flow
in N of value k. Let M = {ij : i ∈ X, j ∈ Y and xij > 0}. For each i ∈ X
the flow on the arc xsi is either zero or one. Furthermore, if xsi = 1, then
it follows from the fact that x is integer valued and bx(i) = 0 that precisely
one arc from i to Y has non-zero flow. Similarly , for each j ∈ Y , if xjt = 1,
then precisely one arc from X to j has non-zero flow. It follows that M is a
matching of size k in B and hence, by Theorem 4.5.5, the size of a maximum
matching in B is at least the value of a maximum flow in NB .

On the other hand, if M ′ = {qiri : qi ∈ X, ri ∈ Y, i = 1, 2, . . . , h} is
a matching in B, then we obtain a feasible (s, t)-flow of value h in NB by
sending one unit of flow along each of the internally disjoint paths sqirit,
i = 1, 2, . . . , h. This shows that the opposite inequality also holds and the
claim follows.

172 4. Flows in Networks

It follows from the arguments above that, given a maximum integer flow
x, we can obtain a maximum matching M of B by taking precisely those arcs
of the form uivi, ui ∈ X, vi ∈ Y , which have flow value equal to 1. Note that
NB is a simple network. Hence the complexity claim follows from the fact
that we can find a maximum flow in N in time O(

√
nm), using the algorithm

of Theorem 4.7.7 (recall that this complexity is also valid for simple networks
where not all capacities are 1, provided that at most one unit of flow can pass
through any vertex distinct from s, t). ��

In the case of dense graphs a slightly faster algorithm of complexity
O(n1.5

√
m/ log n) was given by Alt, Blum, Mehlhorn and Paul in [39]. It

is still possible to obtain fast algorithms for finding a maximum matching
in general graphs, see, e.g., Tarjan’s book [845]. However, it does not seem
possible to formulate the maximum matching problem for an arbitrary graph
as an instance of the maximum flow problem in some network. In [604] a
generalization of flows which contains the maximum matching problem for
general graphs as a special case was studied by Kocay and Stone.

A vertex cover of an undirected graph G = (V, E) is a subset U ⊆ V
such that every edge e ∈ E has at least one of its end-vertices in U . Since no
two edges of a matching share a vertex, it follows that for every vertex cover
U in G, the size of U is at least the size of a maximum matching. For general
graphs there does not have to be equality between the size of a maximum
matching and the size of a minimum vertex cover. For instance, if G is just
a 5-cycle, then the size of a maximum matching is 2 and no vertex cover
has less than 3 vertices. We now prove the following result, due to König
[619], which shows that for bipartite graphs equality does hold. The proof
illustrates the power of the max-flow min-cut theorem.

Theorem 4.11.2 (König’s theorem) [619] Let B = (X, Y ; E) be an undi-
rected bipartite graph with bipartition (X, Y). The size of a maximum match-
ing in B equals the size of a minimum vertex cover in B.

Proof: Let NB = (V ∪{s, t}, A, l ≡ 0, u) be defined as in the proof of Theorem
4.11.1. Let x be a maximum flow in NB and let (S, S) be the minimum cut
defined with respect to x, as in the proof of Theorem 4.5.3 (see Figure 4.17).
Recall that S is precisely those vertices of V ∪ {s, t} which can be reached
from s in NB(x). Since the capacity of each arc from X to Y is ∞, there is
no edge from S ∩ X to S ∩ Y in G. Thus U = (X ∩ S) ∪ (Y ∩ S) is a vertex
cover in B. Furthermore, it follows from the definition of S that we must
have xsi = 1 for all i ∈ X ∩ S and xjt = 1 for all j ∈ Y ∩ S. This shows
that |x| = |X ∩ S|+ |Y ∩ S|. We showed in the proof of Theorem 4.11.1 that
|M∗| = |x| = |X ∩ S| + |Y ∩ S|, where M∗ is a maximum matching in B.
Hence |M∗| = |U |, implying that U is a minimum vertex cover and the proof
is complete. ��

We say that a matching M covers a set of vertices Z if every vertex in Z
is incident with an edge from M . Recall that a matching is perfect if it covers

4.11 Applications of Flows 173

s t

X ∩ S Y ∩ S

X ∩ S Y ∩ S

S

S

x = 1
x = 1

Figure 4.17 The situation when a maximum flow has been found. The thick dotted
arc indicates that there is no arc between the two sets X ∩ S and Y ∩ S.

all vertices. We saw above that the simple proof of Theorem 4.11.1 was easily
modified to a proof of König’s theorem. We can also derive the following
classical result due to Hall [493]. For an undirected graph G = (V, E) and a
subset U ⊂ V , we denote by N(U) the set of vertices in V − U which have
at least one edge to a vertex in U .

Theorem 4.11.3 (Hall’s theorem) [493] A bipartite graph B = (X, Y ; E)
has a matching covering X if and only if the following holds:

|N(U)| ≥ |U | for every U ⊆ X. (4.25)

Proof: The necessity of (4.25) is clear since every vertex in U has a private
neighbour in Y if B has a matching covering X.

Suppose now that (4.25) holds. Then |Y | ≥ |X| and by adding a set X ′

of |Y | − |X| vertices to X and joining each of these completely to Y we can
obtain a bipartite supergraph B′ of B for which (4.25) also holds. Clearly
B′ has a perfect matching if and only if B has a matching covering X. So
it suffices to prove that |X| = |Y | and (4.25) implies that B has a perfect
matching.

Let x be an integer maximum flow in the network NB which is defined as
in the proof of Theorem 4.11.1. If we can prove that |x| = |X|, then it follows
from the proof of Theorem 4.11.1 that B has a perfect matching. So suppose
|x| < |X|. By the proof of Theorem 4.11.2, we have |x| = |X ∩ S| + |Y ∩ S|,
where S is the set of vertices that are reachable from s in NB(x). Since (4.25)
holds and we argued in the proof of Theorem 4.11.2 that all neighbours of
X ∩ S are in Y ∩ S, we also have

|X| = |X ∩ S| + |X ∩ S| ≤ |Y ∩ S| + |X ∩ S| = |x| < |X|,

a contradiction. Hence we must have |x| = |X| and the proof is complete. ��

174 4. Flows in Networks

The case |X| = |Y | in Hall’s theorem, the so-called marriage theorem,
was proved much earlier (in 1917) by Frobenius.

Corollary 4.11.4 (The Marriage theorem) [363] A bipartite graph B =
(X, Y ; E) has a matching covering X if and only if |X| = |Y | and (4.25)
holds. ��

4.11.2 The Directed Chinese Postman Problem

Suppose a postman has to deliver mail along all the streets in a small14 town.
Assume furthermore that on one-way streets the mail boxes are all on one
side of the street, whereas for two-way streets, there are mail boxes on both
sides of the street. For obvious reasons the postman wishes to minimize the
distance he has to travel in order to deliver all the mail and return home to
his starting point. We show below how to solve this problem in polynomial
time using minimum cost flows.

We can model the problem by a directed graph D = (V, A) and a cost
function c : A→R+ where V contains a vertex for each intersection of streets
in the town and the arcs model the streets. A 2-cycle corresponds to a two-
way street and an arc which is not in a 2-cycle corresponds to a one-way
street in the obvious way. The cost of an arc corresponds to the length of
the corresponding street. Now it is easy to see that an optimal route for the
postman corresponds to a minimum cost closed walk in D which traverses
each arc at least once.

We have seen in Theorem 1.7.2 that if a digraph is eulerian, then it con-
tains a closed trail which covers all arcs precisely once. Thus if D is eulerian,
the optimal walk is simply a eulerian trail in D (using each arc exactly once).
Below we show how to solve the general case by reducing the problem to a
minimum cost circulation problem. First observe that there is no solution to
the problem if D is not strongly connected, since any closed walk is strongly
connected as a digraph. Hence we assume below that the digraph in question
is strong, a realistic assumption when we think of the postman problem.

Let D = (V, A) be a strong digraph and let c be a cost function on A. The
cost c(W) of a walk W is

∑
ij∈A cijwij where wij denotes the number of times

the arc ij occurs on W . Define N as the network N = (V, A, l ≡ 1, u ≡ ∞, c),
that is, all arcs have lower bounds one, capacity infinity and cost equal to
the cost on each arc.

Theorem 4.11.5 The cost of a minimum cost circulation in N equals the
minimum cost of a Chinese postman walk in D.

Proof: Suppose W is a closed walk in D which uses each arc ij ∈ A exactly
wij ≥ 1 times. Then it is easy to see that we can obtain a feasible circulation
of cost c(W) in N just by sending wij units of flow along each arc ij ∈ A.
14 This assumption is to make sure that the postman can carry all the mail in his

backpack, say. Without this assumption the problem becomes much harder.

4.11 Applications of Flows 175

Conversely, suppose x is an integer feasible circulation in N . Form a
directed multigraph D′ = (V, A′) by letting A′ contain xij copies of the arc
ij for each ij ∈ A. It follows from the fact that x is an integer circulation that
D′ is an eulerian directed multigraph (see Figure 4.18). Hence, by Theorem
1.7.2, D′ has an eulerian tour T . The tour T corresponds to a closed walk W
in D which uses each arc at least once and clearly we have c(W) = cT x. ��

a

b c

a

b

d3

2

2

1

11

d

c

(a) (b)

Figure 4.18 An instance of the directed Chinese postman problem. Part (a) shows
a digraph with cost 1 (not shown) on every arc. Part (b) shows the values of a min-
imum cost circulation in the corresponding network. This circulation corresponds
to the postman tour abdacdacbda.

The corresponding problem can be considered for a connected edge-
weighted undirected graph G = (V, E). Here the goal is to find a tour which
traverses all edges in E at least once and minimizes the total weight of the
tour. It is not hard to see that this problem is equivalent to finding a minimum
cost subset of E so that by duplicating these edges we obtain a supergraph G∗

of G in which all vertices have even degree. This is equivalent to G∗ having an
orientation as a strongly connected eulerian directed multigraph. Edmonds
and Johnson showed how to solve this problem via matching techniques [287]
. Finally there is also the Mixed Chinese Postman problem (MCPP) in
which the input is a mixed graph M = (V, A, E) with weights on the arcs and
edges. Again the goal is to find minimum cost subsets E′ ⊆ E and A′ ⊆ A
so that duplicating these edges and arcs in M results in a mixed supergraph
M∗ of M which can be oriented as a strongly connected eulerian directed
multigraph. A necessary and sufficient condition for a mixed graph to have
an orientation as an eulerian directed multigraph is given in Corollary 11.7.4.
The MCCP is NP-hard [741]. From the point of view of practical relevance
the MCPP is probably the most important of the three variants as it directly
models situations such as garbage collection, snow removal, street sweeping,
etc. For an exact algorithm for the MCPP see, e.g., Nobert and Picard [730].

176 4. Flows in Networks

4.11.3 Finding Subdigraphs with Prescribed Degrees

In some algorithms on directed multigraphs, an important step is to decide
whether a directed multigraph D contains a subdigraph with prescribed de-
grees on the vertices. One such example is when we are interested in checking
whether D contains a cycle factor (see Chapter 6). Below we show that such
problems and more general versions of these problems can be answered using
flows. See Exercise 4.60 for another application of flows to a similar question
involving construction of directed multigraphs with specified in- and out-
degrees. Other applications of the techniques illustrated in this subsection
can be found in Chapter 12.

Theorem 4.11.6 There exists a polynomial algorithm for the following prob-
lem. Given a directed multigraph D = (V, A) with V = {v1, v2, . . . , vn} and
integers a1, a2, . . . , an, b1, b2, . . . , bn, find a subdigraph D′ = (V, A∗) of D
which satisfies d+

D′(vi) = ai and d−D′(vi) = bi for each i = 1, 2, . . . , n, or show
that no such subdigraph exists. Furthermore, if there are costs specified for
each arc, then we can also find in polynomial time the cheapest (minimum
cost) subdigraph which satisfies the degree conditions.

Proof: We may assume that ai ≤ d+
D(vi), bi ≤ d−D(vi) for each i = 1, 2, . . . , n

and that
∑n

i=1 ai =
∑n

i=1 bi. Clearly each of these conditions is necessary
for the existence of D′ and they can all be checked in time O(n). Let M =∑n

i=1 ai and define a network N as follows: N = (V ′∪V ′′∪{s, t}, A′, l ≡ 0, u),
where V ′ = {v′1, v′2, . . . , v′n}, V ′′ = {v′′1 , v′′2 , . . . , v′′n} and A′ = {sv′i : i =
1, 2, . . . , n} ∪ {v′′j t : j = 1, 2, . . . , n} ∪ {v′iv′′j : vivj ∈ A}. Finally, we let
usv′

i
= ai, uv′′

i t = bi for i = 1, 2, . . . , n and all other arcs have capacity one.
Clearly the maximum possible value of an (s, t)-flow in N is M . We claim

that N has an (s, t)-flow of value M if and only if D has the desired subdi-
graph.

Suppose first that D′ = (V, A∗) is a subdigraph satisfying d+
D′(vi) = ai

and d−D′(vi) = bi for each i = 1, 2, . . . , n. Then the following is an (s, t)-flow
of value M in N : xsv′

i
= ai, xv′′

i t = bi, for each i = 1, 2, . . . , n and xv′
iv

′′
j

equals one if vivj ∈ A∗ and zero otherwise.
Suppose now that x is an integer (s, t)-flow of value M in N and let

A∗ = {vivj : xv′
iv

′′
j

= 1}. Then D′ = (V, A∗) is the desired subdigraph.
It follows from our arguments above that we can find the desired subdi-

graph D′ in polynomial time using any polynomial algorithm for finding a
maximum flow in a network.

Observe also that if we have a cost function c on the arcs of D and let N
inherit costs in the obvious way (arcs incident to s or t have cost zero), then
finding a minimum cost subdigraph D′ can be solved using any algorithm for
minimum cost flows. ��

It follows from Theorem 4.11.6 that we can decide whether a given digraph
has a spanning k-regular subdigraph for some specified natural number k in

4.11 Applications of Flows 177

polynomial time. In fact, using minimum cost flows we can even find the
cheapest such subdigraph in the case that there are costs on the arcs. What
happens if we do not require the regular subdigraph to be spanning? If k = 1,
then the existence version of the problem is trivial, since such a subdigraph
exists unless D is acyclic. Yannakakis and Alon observed that already when
k ≥ 2 the existence version of the problem becomes NP-complete. For details
see [361].

4.11.4 Path-Cycle Factors in Directed Multigraphs

We start with three necessary and sufficient conditions for the existence of a
cycle factor in a directed multigraph. The reason for giving all three is that
in certain cases one of them provides a better way to deal with the problem
under consideration than the other two. The first two parts are given in Ore’s
book [733]; the last is due to Yeo [919].

Proposition 4.11.7 Let D = (V, A) be a directed multigraph.

(a) D has a cycle factor if and only if the bipartite representation BG(D) of
D contains a perfect matching.

(b) D has a cycle factor if and only if there is no subset X of V such that
either |

⋃
v∈X N+(v)| < |X| or |

⋃
v∈X N−(v)| < |X|.

(c) D has a cycle factor if and only if V cannot be partitioned into subsets
Y , Z, R1, R2 such that (Y, R1) = ∅, (R2, R1 ∪ Y) = ∅, |Y | > |Z| and Y
is an independent set.

Proof: (a): Suppose BG(D) has a perfect matching consisting of edges
v′1v

′′
π(1), ..., v

′
nv′′π(n), where π is a permutation of the set {1, ..., n}. Then the

arcs v1vπ(1), ..., vnvπ(n) form a cycle factor. Indeed, in the digraph D′ induced
by these arcs every vertex vi has out-degree and in-degree equal to one and
such a digraph is precisely a disjoint union of cycles.

Conversely, if C1 ∪ C2 ∪ . . . ∪ Ck is a cycle factor in D, then for every
vi ∈ V let π(i) be the index of the successor of vi on the cycle containing
vi. Then π induces a permutation of V and {vivπ(i) : vi ∈ V } is a perfect
matching in BG(D).

(b): Clearly D has a cycle factor if and only if the converse of D has
a cycle factor, so it suffices to show that D has a cycle factor if and only
if there is no subset X satisfying |

⋃
v∈X N+(v)| < |X|. Necessity is clear

because if |
⋃

v∈X N+(v)| < |X| holds for some X, then there can be no cycle
subdigraph which covers all vertices of X (there are not enough distinct out-
neighbours). So suppose |

⋃
v∈X N+(v)| ≥ |X| holds for all X ⊂ V . Then it

is easy to see that |N(X ′)| ≥ |X ′| holds for every subset X ′ ⊂ V ′ of BG(D)
(where V (BG(D)) = V ′ ∪ V ′′, recall Section 1.6). It follows from Theorem
4.11.3 that BG(D) has a perfect matching and now we conclude from (a)
that D has a cycle factor.

178 4. Flows in Networks

(c): We first prove the necessity. Suppose D has a cycle factor F and
yet there is a partition Y, R1, R2, Z as described in (c). By deleting suitable
arcs from the cycles in F we can find a collection of |Y | vertex-disjoint paths
such that all these paths start in Y and end at vertices of V − Y each of
which dominates some vertex in Y (here we used that Y is an independent
set). However, this contradicts the existence of the partition Y, R1, R2, Z as
described in (c), since it follows from the fact that |Z| < |Y | that there can
be at most |Z| such paths in D (all such paths must pass through Z).

Now suppose that D has no cycle factor. Then we conclude from (b) that
there exists a set X such that |

⋃
v∈X N+(v)| < |X| holds. Let

Y = {v ∈ X : d−D〈X〉(v) = 0}, R1 = V −X−N+(X), R2 = X−Y, Z = N+(X).

Then (Y, R1) = ∅, (R2, R1∪Y) = ∅ and Y is an independent set. Furthermore,
since |

⋃
v∈X N+(v)| < |X|, we also have |Z| + |X − Y | = |

⋃
v∈X N+(v)| <

|X| = |X − Y | + |Y |, implying that |Z| < |Y |. This shows that Y, Z, R1, R2

form a partition as in (c). ��
It is not difficult to show that Proposition 4.11.7 remains valid for directed

pseudographs (where we allow loops) provided that we consider a loop as a
cycle (Exercise 4.66). We will use that extension below.

Combining Proposition 4.11.7 with Theorem 4.11.1 we obtain

Corollary 4.11.8 The existence of a cycle factor in a digraph can be checked
and a cycle factor found (if one exists) in time O(

√
nm). ��

Recall that the path-cycle covering number pcc(D) of a directed pseudo-
graph is the least positive integer k such that D has a k-path-cycle factor. The
next result (whose proof is left as Exercise 4.68) and Theorem 4.11.1 imply
that we can calculate pcc(D) in polynomial time for any directed pseudo-
graph.

Proposition 4.11.9 Let n be the number of vertices in a directed pseudo-
graph D and let ν be the number of edges in a maximum matching of BG(D).
If ν = n, then pcc(D) = 1, otherwise pcc(D) = n − ν. ��

The following result by Gutin and Yeo generalizes Proposition 4.11.7(c).

Corollary 4.11.10 [475] A digraph D has a k-path-cycle factor (k ≥ 0) if
and only if V (D) cannot be partitioned into subsets Y , Z, R1, R2 such that
(Y, R1) = ∅, (R2, R1 ∪ Y) = ∅, |Y | > |Z|+ k and Y is an independent set.

Proof: Assume that k ≥ 1. Let D′ be an auxiliary digraph obtained from D
by adding k new vertices u1, ..., uk together with the arcs {uiw, wui : w ∈
V (D), i = 1, 2, ..., k}. Observe that D has a k-path-cycle factor if and only
if D′ has a cycle factor. By Proposition 4.11.7(c), D′ has a cycle factor if

4.12 Exercises 179

and only if its vertex set cannot be partitioned into sets Y , Z ′, R1, R2 that
satisfy (Y, R1) = ∅, (R2, R1 ∪ Y) = ∅, |Y | > |Z ′| and Y is an independent
set. Note that if Y, Z ′, R1, R2 exist in D′, then the vertices u1, ..., uk are
in Z ′. Let Z = Z ′ − {u1, ..., uk}. Clearly, the subsets Y , Z, R1, R2 satisfy
(Y, R1) = ∅, (R2, R1∪Y) = ∅, |Y | > |Z|+k and Y is an independent set. ��

The proof above and Corollary 4.11.8 easily implies the first part of the
following proposition.

Proposition 4.11.11 Let D be a directed pseudograph and let k be a fixed
non-negative integer. Then

(a) In time O(
√

nm) we can check whether D has a k-path-cycle-factor and
construct one (if it exists).

(b) Given a k-path-cycle factor in D, in time O(m), we can check whether
D has a (k − 1)-path-cycle factor and construct one (if it exists).

Proof: Exercise 4.69. ��

4.12 Exercises

Unless otherwise stated, all numerical data in the exercises below are integers.

4.1. Find a feasible flow in the network N of Figure 4.19.

−57

5

3 4 2

10

1

3

7

6−3 3

−1 −1

4

Figure 4.19 A network N with balance vector b specified at each vertex. All lower
bounds and costs are zero and capacities are shown on the arcs.

4.2. Suppose the network N = (V, A, l, u, b, c) has some 2-cycle iji for which
cij �= −cji. Show how to transform N into another network N ′ without 2-
cycles such that every feasible flow in N corresponds to a feasible flow in N ′

of the same cost. What is the complexity of this transformation?

4.3. Prove Lemma 4.2.1(a).

4.4. Prove Lemma 4.2.2.

180 4. Flows in Networks

4.5. Prove Lemma 4.2.3. In particular, argue why we need to take lts = M rather
than lts = 0.

4.6. Prove Lemma 4.2.4.

4.7. (+) Fast decomposition of flows. Prove Lemma 4.3.2.

4.8. Decomposing an eulerian directed multigraph into arc-disjoint cy-
cles. Prove that the arc set of every eulerian directed multigraph can be
decomposed into arc-disjoint cycles. Hint: form a circulation in an appropri-
ate network and apply Theorem 4.3.1.

4.9. Find the residual network corresponding to the network and flow indicated
in Figure 4.20.

(1, 2, 5)

(2, 4, 4)

(2, 3, 6)

(0, 2, 3)

(0, 1, 2)

(0, 0, 9)

(6, 7, 9)

(0, 3, 4)

(1, 3, 5)

(1, 6, 7)
(0, 0, 1)

(2, 4, 6)

(3, 3, 3)

(2, 5, 7)

(0, 2, 5) (0, 2, 2)1

2

4

5

6
8

7

3

Figure 4.20 A network with a flow x. The notation for the arcs is (l, x, u).

4.10. Find the balance vector bx for the flow x in Figure 4.20.

4.11. Eliminating lower bounds on arcs in maximum flow problems. Show
how to reduce the maximum (s, t)-flow problem in a network N with some
non-zero lower bounds on the arcs to the maximum (s′, t′)-flow problem in a
network N ′ with source s′ and sink t′ and all lower bounds equal to zero.

4.12. Let x be a flow in N = (V, A, l ≡ 0, u, c) and let f(W) be a cycle flow of
value δ in N (x). Show that the flow x∗ = x ⊕ f(W) has the same balance
vector as x in N . Show also that the cost of x∗ is given by cT x + cT f(W).

4.13. Prove that the flow x̄ defined in the proof of Theorem 4.4.3 is a feasible flow
in N (x).

4.14. Let x be a feasible flow in N = (V, A, l ≡ 0, u, c) and let y be a feasible flow in
N (x). Show that N (x ⊕ y) = N (x)(y), where N (x)(y) denotes the residual
network of N (x) with respect to y. That is, show that the two networks
contain the same arcs and with the same residual capacities.

4.15. An alternative decomposition of a flow. Consider the proof of Theorem
4.3.1 and suppose that, instead of taking μ = min{bx(i0),−bx(ik), δ}, we let
μ = δ. What kind of decomposition into path and cycle flows will we get and
what is the bound on their number?

4.12 Exercises 181

4.16. Structure of minimum (s, t)-cuts. Decide which of the following is true
or false. In each case either give a counterexample or a proof of correctness.
(a) If all arcs have different capacities, then there is a unique minimum

(s, t)-cut.
(b) If we multiply the capacity of each arc by a constant k, then the structure

(as subset of the vertices) of the minimum (s, t)-cuts is unchanged.
(c) If we add a constant k to the capacity of each arc, then the structure (as

subset of the vertices) of the minimum (s, t)-cuts is unchanged.

4.17. (+) The Ford-Fulkerson algorithm may never terminate if capaci-
ties are real numbers.

1

r

r2

s t

Figure 4.21 A bad network for the generic Ford-Fulkerson algorithm. All arcs
except the three in the middle have capacity r + 2. Those in the middle have
capacities 1, r, r2, where r is the golden ratio.

LetN be the network in Figure 4.21. Here r is the golden ratio, i.e., r2 = 1−r.
Observe that rn+2 = rn − rn+1 for n = 1, 2,

(a) Show that the value of a maximum flow in N is 1 + r + r2 = 2.
(b) Devise an infinite sequence of augmentations along properly chosen aug-

menting paths in the current residual network so that the flow value will
converge towards 1 +

P∞
i=2 ri = 2. This shows that, when the capaci-

ties are non-rational numbers, the Ford-Fulkerson algorithm may never
terminate. Hint: first augment by one unit and then by ri units in the
ith augmentation step, i ≥ 2, along an appropriately chosen augmenting
path.

4.18. (+) Prove that the Ford-Fulkerson algorithm will always terminate if all
capacities are rational numbers.

4.19. Let S be a totally unimodular p× q matrix and I the p× p identity matrix.
Show that the matrix [S I] is also totally unimodular.

4.20. Exact distance labels give a height function for the push-relabel
algorithm. Let N be a network with source s and sink t and let x be a
preflow in N such that there is no (s, t)-path in N (x). Prove that if we let
h(i) equal the distance from i to t in N (x) for i ∈ V − s and h(s) = n, then
we obtain a height function.

4.21. Bad performance of the push-relabel algorithm. Give an example
which shows that the push-relabel algorithm may use many applications of
push and lift without sending any extra flow into t or back to s.

182 4. Flows in Networks

4.22. Eliminating some useless work in the push-relabel algorithm. Let
N = (V, A, l ≡ 0, u) be a network with source s and sink t. Suppose that we
execute the generic push-relabel algorithm on N . Let h be a height function
with respect to N and x. We say that h has a hole at position i + 1, for
some i < n at some point in the execution of the algorithm if at that time
the following holds:

|{v : h(v) = j}| > 0 for every j ≤ i and
|{v : h(v) = i + 1}| = 0.

Let h′ be defined as follows:
h′(v) = h(v) if h(v) ∈ {1, 2, . . . , i} ∪ {n, n + 1, . . . , 2n− 1}
h′(v) = n + 1 if i < h(v) < n.

(a) Prove that h′ is a height function, that is, (4.14) is satisfied.
(b) Describe how to implement this modification of the height function effi-

ciently so that it may be used as a subroutine in the push-relabel algo-
rithm.

(c) Explain why changing the height function as above, when a hole is de-
tected, may help speed up the push-relabel algorithm.

4.23. Using the height function to detect a minimum cut after termina-
tion of the push-relabel algorithm. Suppose x is a maximum (s, t)-flow
that has been found by executing the push-relabel algorithm on a network
N = (V, A, l ≡ 0, u). Describe a method to detect a minimum (s, t)-cut in
O(n) steps using the values of the height function upon termination of the
algorithm.

4.24. (+) Re-optimizing a maximum (s, t)-flow. Suppose x is a maximum
flow in a network N = (V, A, l ≡ 0, u). Show how to re-optimize x (that is, to
change it to a feasible flow of maximum value) in each of the following cases:
(a) Increase the capacity of one arc by k units. Show that the new optimal

solution can be found in time O(km).
(b) Decrease the capacity of one arc by k units. Show that new optimal

solution can be found in time O(km). Hint: use Theorem 4.3.1.

4.25. (+) Pulling and pushing flow, the MKM algorithm. The purpose of
this exercise is to introduce another, very efficient, method for finding a maxi-
mal (s, t)-flow in a layered network due to Malhotra, Kumar and Maheshwari
[679]. Let L = (V = V0 ∪ V1 ∪ . . . ∪Vk, A, l ≡ 0, u) be a layered network with
V0 = {s} and Vk = {t}. Let y be a feasible (s, t)-flow which is not maximal
in L. For each vertex i ∈ V − {s, t} let αi, βi, ρi be defined as follows:

αi =
X

ji∈A

uji − yji, (4.26)

βi =
X

ij∈A

uij − yij , (4.27)

ρi = min{αi, βi}. (4.28)

Let

ρs =
X

sj∈A

usj − ysj , ρt =
X

jt∈A

ujt − yjt. (4.29)

Finally let ρ = mini∈V {ρi}.
Suppose that ρ > 0 and let i ∈ V be chosen such that ρ = ρi.

4.12 Exercises 183

(a) Prove that it is possible to send an additional amount of ρ units from i
to t (called pushing from i to t) and ρ units of flow from s to i in L
(called pulling from s to i). Hint: use that the network is layered.

The observation above leads to the following algorithm A for finding a
maximal flow in a layered network. Below the ρ-values always refer to
the current flow.

The MKM algorithm
1. Start with the zero flow y ≡ 0 and calculate ρi for all i ∈ V . If some

i ∈ V has ρi = 0, then go to Step 6;
2. Choose i such that ρi = ρ;
3. Push ρ units of flow from i to t and pull ρ units from s to i;
4. Delete all arcs which are saturated with respect to the new flow. If

this results in some vertex of in- or out-degree zero, then also delete
that vertex and all incident arcs. Continue this until no more arcs
can be deleted;

5. Calculate ρi for all vertices in the current layered network. If ρi > 0
for all vertices, then go to Step 2. Otherwise go to Step 6.

6. If ρs = 0 or ρt = 0, then halt;
7. If there is a vertex i with ρi = 0, then delete all such vertices and

their incident arcs;
8. Go to Step 5.

(b) Prove that the algorithm above correctly determines a maximal flow in
the input layered network L.
The complexity of A depends on how we perform the different steps,
especially Step 3. Suppose we apply the following rule for performing
Step 3. We always push/pull ρ units one layer at a time. If j is the
current vertex from (to) which we wish to send flow to (from) the next
(previous) layer, then we always fill an arc with tail (head) j completely
if there is still enough flow left and then continue to fill the next arc as
much as possible.

(c) Argue that, using the rule above, we can implement the algorithm to
run in O(n2) time. Hint: at least one vertex will be deleted between
two consecutive applications of Step 3. Furthermore, one can keep the
ρ-values effectively updated (explain how).

(d) Illustrate the algorithm on the layered network in Figure 4.10.

4.26. Finding maximum (s, t)-flows by scaling. Let N = (V, A, l ≡ 0, u) be a
network with source s and sink t and let U denote the maximum capacity of
an arc in N .
(a) (−) Prove that the capacity of a minimum (s, t)-cut is at most U |A|.
(b) Let C be a constant and let x be a feasible (s, t)-flow in N . Show that in

time O(|A|) one can find an augmenting path of capacity at least C, or
detect that no such path exists in N (x). Hint: consider the subnetwork
of N (x) containing only arcs whose capacity is at least C.

(c) Consider the following algorithm:

Max-flow by scaling
1. U := max{uij : ij ∈ A};
2. xij := 0 for every ij ∈ A;

3. C := 2� log2 U�;
4. while C ≥ 1 do
5. while N (x) contains an augmenting path of capacity at least C

184 4. Flows in Networks

do augment x along P ;
6. C := C/2
7. return x

Prove that the algorithm correctly determines a maximum flow in the
input network N .

(d) Argue that every time Step 4 is performed the residual capacity of every
minimum (s, t)-cut is at most 2C|A|.

(e) Argue that the number of augmentations performed in Step 5 is at most
O(|A|) before Step 6 is executed again.

(f) Conclude that Max-flow by scaling can be implemented so that its
complexity becomes O(|A|2 log U). Compare this complexity to that of
other flow algorithms in this chapter.

4.27. Show how to find a maximum (s, t)-flow in the network of Figure 4.22 using
(a) The Ford-Fulkerson method;
(b) Dinic’s algorithm;
(c) The push-relabel algorithm;
(d) The MKM algorithm described in Exercise 4.25;
(e) The scaling algorithm described in Exercise 4.26.

5

15

4

5

10

5

6

15

10

30

20s t

9

25

Figure 4.22 A network with lower bounds and cost equal to zero on all arcs and
capacities as indicated on the arcs.

4.28. (+) Rounding a real-valued flow. Let N = (V, A, l, u) be a network
with source s and sink t and all data on the arcs non-negative integers (note
that some of the lower bounds may be non-zero). Suppose x is a real-valued
feasible flow in N such that xij is a non-integer for at least one arc.
(a) Prove that there exists a feasible integer flow x′ in N with the property

that |xij − x′
ij | < 1 for every arc ij ∈ A.

(b) Suppose now that |x| is an integer. Prove that there exists an integer
feasible flow x′′ in N such that |x′′| = |x|.

(c) Describe algorithms to find the flows x′, x′′ above. What is the best
complexity you can achieve?

4.29. Finding a feasible circulation. Turn the proof of Theorem 4.8.2 into a
polynomial algorithm which either finds a feasible circulation, or a proof that
none exists. What is the complexity of the algorithm?

4.30. Residual networks of networks with non-zero lower bounds. Show
how to modify the definition of x ⊕ x̃ in order to obtain an analogue of

4.12 Exercises 185

Theorem 4.4.2 for the case of networks where some lower bounds are non-
zero.

4.31. Show that a feasible circulation (if one exists) can always be found by just
one max flow calculation in a suitable network. Hint: transform the network
into an (s, t)-flow network with all lower bounds equal to zero.

4.32. (+) Flows with balance vectors within prescribed intervals. Let
N = (V, A, l, u) be a network where V = {1, 2, . . . , n} and let ai ≤ bi,
i = 1, 2 . . . , n, be integers. Prove that there exists a flow x in N which satis-
fies

lij ≤ xij ≤ uij ∀ij ∈ A, (4.30)

ai ≤ bx(i) ≤ bi ∀i ∈ V, (4.31)

if and only if the following three conditions are satisfied:

X

i∈V

ai ≤ 0, (4.32)

X

i∈V

bi ≥ 0, (4.33)

u(X, X) ≥ l(X, X) + max{a(X),−b(X)} ∀X ⊂ V, (4.34)

where a(X) =
P

i∈X ai.
Hint: construct a network which has a feasible circulation if and only if (4.30)
and (4.31) hold. Then apply Theorem 4.8.2.

4.33. Submodularity of the capacity function for cuts. Let N = (V, A, l, u)

be a network with source s and sink t. Prove that if (S, S) and (T, T) are
(s, t)-cuts, then

u(S, S) + u(T, T) ≥ u(S ∩ T, S ∩ T) + u(S ∪ T, S ∪ T).

Hint: consider the contribution of each arc in the network to the four cuts.

4.34. Show that if (S, S) and (T, T) are minimum (s, t)-cuts, then so are (S ∩
T, S ∩ T) and (S ∪ T, S ∪ T). Hint: use Exercise 4.33.

4.35. (+) Finding special minimum cuts. Suppose that x is a maximum (s, t)-
flow in a network N = (V, A, l, u). Let

U = {i : there exists an (s, i)-path in N (x)},

W = {j : there exists a (j, t)-path in N (x)}.
Prove that (U, U) and (W, W) are minimum (s, t)-cuts. Then prove that for
every minimum (s, t)-cut (S, T) we have U ⊆ S and W ⊆ T .

4.36. (+) Let x be an (s, t)-flow in a network N = (V, A, l, u). Explain how to find
an augmenting path of maximum capacity in polynomial time. Hint: use a
variation of Dijkstra’s algorithm.

186 4. Flows in Networks

4.37. (+) Augmenting along maximum capacity augmenting paths. Show
that if we always augment along an augmenting path with the maximum
residual capacity, then the Ford-Fulkerson algorithm becomes a polynomial
algorithm (Edmonds and Karp [288]). Hint: show that the number of aug-
mentations is O(m log U), where U is the maximum capacity of an arc.

4.38. Converting a maximum preflow to a maximum (s, t)-flow. Let N =
(V, A, l ≡ 0, u) be a network with source s and sink t. A preflow x in N is
maximum if |bx(t)| equals the value of a maximum (s, t)-flow in N .

(a) Let N = (V, A, l ≡ 0, u) be a network with source s and sink t and let y
be a maximum preflow in N . Prove that there exists a maximum (s, t)-
flow x in N with the property that xij ≤ yij for every arc ij ∈ A. Hint:
use flow decomposition.

(b) How fast can you convert a maximum preflow to a maximum (s, t)-flow?

4.39. (−) Prove Lemma 4.7.1.

4.40. (−) Prove Lemma 4.7.6.

4.41. Show that the complexity of Dinic’s algorithm for unit capacity networks

remains O(n
2
3 m) even if we allow the network to have 2-cycles. Hint: prove a

modified version of Lemma 4.7.3 and apply that as we applied Lemma 4.7.3
in the proof of Theorem 4.7.4.

4.42. Elimination of 2-cycles from simple networks. Suppose that N =
(V, A, l ≡ 0, u ≡ 1) is a simple unit capacity network with source s, sink
t and that uvu is a 2-cycle in N . Show that we may always delete one of the
arcs uv or vu without affecting the value of a maximum (s, t)-flow in N .

4.43. Prove Theorem 4.7.7. Hint: see the proof of Theorem 4.7.4.

4.44. Show how to derive Theorem 4.8.4 from Lemma 4.2.2 and Theorem 4.8.2.

4.45. Scheduling jobs on identical machines. Let J be a set of jobs which are
to be processed on a set of identical machines (such as processors, airplanes,
trucks, etc.). Each job is processed by one machine. There is a fixed schedule
for the jobs, specifying that job j ∈ J must start at time sj and finish at time
fj . Furthermore, there is a transition time tij required to set up a machine
which has just performed job i to perform job j (e.g., jobs could be different
loads for trucks and tij could be time to drive a truck from the position
of load i to that of load j). The goal is to find a feasible schedule for the
jobs which requires as few machines as possible. Show how to formulate this
problem as a minimum value (s, t)-flow problem.

4.46. (+) Scheduling supervision of projects. This exercise deals with a prac-
tical problem concerning the assignment of students to various projects in
a course. All projects which are chosen by at least one student are to be
supervised by one or more qualified teachers. Each student is supervised by
one teacher only. There are n students, m different projects and t possible
supervisors for the projects.
Let bi, i = 1, 2, . . . , m, denote the maximum number of students who may
choose the same project (they work alone and hence need individual super-
vision). For each project i, i = 1, 2, . . . , m, there is a subset Ai ⊆ {1, . . . , t}
of the teachers who are capable of supervising the ith project. Finally each
teacher j, j = 1, 2, . . . , t, has an upper limit of kj on the number of students
(s)he can supervise.

4.12 Exercises 187

Every student must be assigned exactly one project. We also assume that
each student has ranked the projects from 1 to m according to the order of
preference. Namely, the project the student would like best is ranked one.
Denote the rank of project j by student i by rij .
The goal is to find an assignment p(1), p(2), . . . , p(n) of students to projects
(that is, student i is assigned project p(i)) which respects the demands above
and at the same time minimizes the sum

Pn
i=1 rip(i).

(a) Show how to formulate the problem as a minimum cost flow problem.
(b) If we only wish to find a feasible assignment (i.e., one that does not

violate the demands above), then which is the fastest algorithm you can
devise?

(c) Which minimum cost flow algorithm among those in Section 4.10 will
give the fastest algorithm for the problem when formulated as in question
(a)?

(d) Let p(1), p(2), . . . , p(n) be an optimal assignment of students to projects.
Suppose that before the actual supervision of the projects starts, some
supervisor j ∈ {1, 2, . . . , t} lowers his/her capacity for supervision from
kj to k′

j < kj .
Describe a fast algorithm which either proves that no feasible assignment
exists or changes the assignment p(1), p(2), . . . , p(n) to a new optimal
assignment p′(1), p′(2), . . . , p′(n) with respect to the new restrictions.

(e) Suppose now that the change in capacity only happens after the students
have started working on the projects. The goal now is to find a new
optimal and feasible solution or show that no feasible solution exists,
while at the same time rescheduling as few students as possible to new
projects (we assume that rescheduled students must start all over again).
Explain briefly how to solve this variant of the problem. Hint: devise
some measure of cost for rescheduling a student in a minimum cost flow
model.

4.47. (−) Let N = (V, A, l ≡ 0, u) be a network with source s and sink t and let
N ′ = (V, A′, l′ ≡ 0, u′, c′) be obtained from N by adding a new arc ts with
uts = ∞ and cts = −1 taking u′

ij = uij for all ij ∈ A and c′ij = 0 for all
ij ∈ A. Prove that there is a 1-1 correspondence between the minimum cost
circulations in N ′ and the maximum (s, t)-flows in N .

4.48. Let N = (V, A, l ≡ 0, u, b, c) be a network with some arcs of infinite capacity
and some arcs of negative cost.
(i) Show that there exists a finite optimal solution to the minimum cost

flow problem (finding a feasible flow in N of minimum cost) if and only
if N has no cycle C of negative cost such that all arcs of C have infinite
capacity. Hint: study the difference between an arbitrary feasible solution
and some fixed solution of finite cost.

(ii) Let K be the sum of all finite capacities and those b-values that are pos-
itive. Show that if there exists a finite optimal solution to the minimum
cost flow problem for N , then there exists one for which no arc has flow
value more than K. Hint: use flow decomposition.

4.49. Eliminating negative cost arcs from minimum cost flow problems.
Suppose N = (V, A, l ≡ 0, u, b, c) contains an arc uv of negative cost, but
no cycle of infinite capacity and negative cost (see Exercise 4.48). Derive a
result similar to Lemma 4.2.1 which can be used to transform N into a new
network N+ in which all costs are non-negative and such that given any
feasible flow x+ in N+ we can obtain a feasible flow x in N and find the

188 4. Flows in Networks

cost of x efficiently, given the cost of x+. Hint: reverse arcs of negative costs,
negate the costs of such arcs and update balance vectors.

4.50. Prove Theorem 4.10.6.

4.51. Try to generalize the statement of Proposition 4.10.7 to the case when the
paths P, P ′ do not necessarily have the same end-vertices. Hint: consider the
network Nst obtained as in Lemma 4.2.2.

4.52. Show by an example that the cycle canceling algorithm may use Ω(mUC)
augmentations before arriving at an optimal flow.

4.53. Show that the buildup algorithm of Section 4.10 can be applied to solve the
assignment problem in time O(n3).

4.54. Show how to reduce the case when
Pm

i=1 ai �=
Pn

j=1 bj to the case when the
equality holds for the transportation problem. Hint: introduce new plants or
retailers.

4.55. (−) Show how to reduce the problem of finding a matching in a bipartite
graph B = (X, Y, E) which maximizes the number of edges incident to ver-
tices in X to the problem of finding a maximum matching in a bipartite
graph.

4.56. (+) Prove that if D is a k-regular semicomplete digraph on n vertices, then
D contains a spanning tournament T which is regular or almost regular
(|δ+(T) − δ−(T)| ≤ 1) depending on whether n is odd or even. Observe
that every regular tournament has an odd number of vertices (Bang-Jensen
[69]).

4.57. (+) Generalized matchings in undirected graphs. Let G = (V, E)
be an undirected graph. Recall that for any subset S ⊂ V we denote by
NG(S) the set of vertices in V − S which have at least one edge to S. Prove
that every graph G either has a vertex disjoint collection of edges e1, . . . , ek

and odd cycles C1, . . . , Cr covering V , or a set S ⊂ V with |NG(S)| < |S|
and S is independent. Derive an algorithm from your proof which either
finds the desired generalized matching, or an independent subset S such that
|N(S)| < |S|. Hint: use Theorem 4.8.2 on an appropriate network.

4.58. Prove the following theorem due to König [620].

Theorem 4.12.1 [620] Every regular bipartite graph has a perfect matching.

4.59. Find a minimum cost Chinese postman walk in the digraph of Figure 4.23.

4.60. Show how to formulate the following problem as a flow problem. Given
two sequences of non-negative integers a1, a2, . . . , an and b1, b2, . . . , bn decide
whether or not there exists a directed multigraph D = ({v1, v2, . . . , vn}, A)
such that d+

D(vi) = ai and d−
D(vi) = bi for each i = 1, 2, . . . , n. Hint: use

Theorem 4.11.3 or the proof idea of this theorem.

4.61. Tree solution to a flow problem. Let N = (V, A, l ≡ 0, u, b, c) be a
network with n vertices for which there exists a feasible flow and let D =
(V, A) be the underlying digraph of N . Prove that there exists a feasible flow
x in N such that the number of arcs on which 0 < xij < uij is at most n− 1.
We call such a feasible flow a tree solution. Hint: show that if C is a cycle

4.12 Exercises 189

3

7

4

1

2

6

8

9

10

12

Figure 4.23 A digraph with costs on the arcs.

in UG(D) where 0 < xij < uij for every arc on the cycle, then we can change
the current flow such that the resulting flow x′ is either 0 or uij for at least
one arc ij of C and no new arc pq with 0 < x′

pq < upq is created.

4.62. Let N = (V, A, l ≡ 0, u, b, c) be a network with n vertices for which there
exists a feasible flow. Prove that there exists an optimal feasible flow which
is a tree solution.

4.63. Vertex potentials and flows. Let N = (V, A, l ≡ 0, u, b, c) be a network
and x a feasible flow in N . Prove that x is an optimal flow if and only if there
exists a function π : V→R such that cπ

ij ≥ 0 for every arc ij in N (x). Here
cπ

ij = cij − π(i) + π(j) is the reduced cost function and the costs in N (x)
are with respect to cπ instead of c. Hint: see Exercises 3.16-3.18.

4.64. Complementary slackness conditions for optimality of a flow. Let
N = (V, A, l ≡ 0, u, b, c) be a network and x a feasible flow in N . Prove that
x is an optimal flow if and only if there exists a function π : V→R such that
the following holds where cπ

ij = cij − π(i) + π(j) as above. Hint: use Exercise
4.63.

cπ
ij > 0 ⇒ xij = 0, (4.35)

cπ
ij < 0 ⇒ xij = uij , (4.36)

0 < xij < uij ⇒ cπ
ij = 0. (4.37)

4.65. (+) A primal-dual algorithm for minimum cost flows. Let N =
(V, A, l ≡ 0, u, c) be a network with source s and sink t for which the value
of a maximum (s, t)-flow is K > 0. Let x be an optimal (feasible) (s, t)-flow
of value k < K and let π : V→R be chosen such that cπ

ij ≥ 0 for every arc
ij in N (x) (see Exercise 4.63). Define A0 as those arcs ij of N (x) for which
we have cπ

ij = 0 and let N0 be the subnetwork of N (x) induced by the arcs
of A0.

(a) Show that if y is a feasible (s, t)-flow in N0 of value p, then x′ = x⊕ y is
an optimal (s, t)-flow of value k + p in N . Hint: verify that cπ

ij ≥ 0 holds
for every arc ij in N (x′).

(b) Suppose y is a maximum (s, t)-flow in N0, but x′ = x⊕ y has value less
than K. Let S denote the set of vertices which are reachable from s in
N0(y). Let ε, ε1, ε2 be defined as follows. Here we let εi =∞ if there are
no arcs in the corresponding set, i = 1, 2:

ε1 = min {cπ
ij |i ∈ S, j ∈ S, cπ

ij > 0 and xij < uij},

190 4. Flows in Networks

ε2 = min {−cπ
ij |i ∈ S, j ∈ S, cπ

ij < 0 and xij > 0}.

Let ε = min{ε1, ε2}. Prove that ε < ∞.
(c) Now define π′ as follows: π′(v) := π(v) + ε if v ∈ S and π′(v) := π(v)

if v ∈ S. Let N ′
0 contain those arcs of N (x′) for which we have cπ′

ij = 0
and let S′ denote the set of vertices which are reachable from s in N ′

0.

Show that S is a proper subset of S′ and that cπ′
ij ≥ 0 holds for all arcs

in N (x′). Hint: use Exercise 4.14.
(d) If t �∈ S′, then we can change π′ as above (based on the set S′ rather

than S). Conclude that after at most n − 1 such updates of the vector
π′, the current network N ′

0 contains an (s, t)-path.
(e) Use the observations above to design an algorithm that finds a minimum

cost (s, t)-flow of value K in N by solving a sequence of maximum flow
problems. What is the complexity of this algorithm?

4.66. Cycle factors of directed pseudographs. Prove that Proposition 4.11.7
also holds for directed pseudographs provided we consider a loop as a cycle.

4.67. (+) Calculating the path-cycle covering number of a digraph. Show
how to find in time O(

√
nm) the minimum integer k such that a given digraph

D has a path-cycle factor with k paths. Hint: use minimum value flows in an
appropriately constructed simple network.

4.68. Prove Proposition 4.11.9.

4.69. Prove Proposition 4.11.11. Hint: use the same network as in Exercise 4.67.

4.70. (+) Path-cycle covering numbers of extensions of digraphs. Let R be
a digraph on r vertices, and let l1 ≤ u1, l2 ≤ u2, ..., lr ≤ ur be 2r non-negative
integers. Let Ip denote an independent set on p vertices. Show how to find
min{pcc(R[Ip1 , ..., Ipr]) : li ≤ pi ≤ ui, i = 1, ..., r} in time O(r3). Hint:
generalize the network you used in Exercise 4.67 (Bang-Jensen and Gutin
[89, 454]).

4.71. Let k ∈ Z+. Show that a directed graph D = (V, A) has a k-path-cycle factor
if and only if |

S

v∈X N+(v)| ≥ |X| − k and |
S

v∈X N−(v)| ≥ |X| − k.

5. Connectivity of Digraphs

The concept of connectivity is one of the most fundamental concepts in (di-
rected) graph theory. There are numerous practical problems which can be
formulated as (local) connectivity problems for digraphs and hence a signif-
icant part of this theory is also important from a practical point of view.
Results on connectivity are often quite difficult and a deep insight may be
required before one can obtain results in the area. Because of the very large
number of important results on connectivity, we will devote this chapter as
well as Chapters 10, 11, 12 and 14 to this area. Several connectivity problems,
such as the connectivity augmentation problems in Sections 14.2 and 14.3,
are of significant practical interest. These chapters illustrate several impor-
tant topics as well as techniques that have been successful in solving local or
global connectivity problems.

We will often consider directed multigraphs rather than directed graphs,
since several results on arc-strong connectivity hold for this larger class and
also it becomes easier to prove many results. However, when we consider
vertex-strong connectivity, multiple arcs play no role and then we may as-
sume that we are considering digraphs. Note that, unless we explicitly say
otherwise, we will assume that we are working with a directed graph (i.e.,
there are no multiple arcs).

After introducing some new terminology, an efficient way of representing
a directed multigraph as a network and a fast algorithm for finding the strong
components of a digraph, we proceed to ear decompositions of strong directed
multigraphs. We show how to use ear decompositions to obtain short proofs
of several basic connectivity results. Then we state and prove Menger’s the-
orem which is one of the most fundamental results in graph theory. Based
on Menger’s theorem, we describe various algorithms to determine the arc-
strong and vertex-strong connectivity of a directed multigraph. In Section 5.6
we study the structure of directed multigraphs which are k-(arc)-strong but
removing any arc destroys that property. We prove deep results by Mader
on the structure of such directed multigraphs. Section 5.7 deals with di-
graphs which are k-strong but no vertex can be deleted without decreasing
the vertex-strong connectivity. In Section 5.8 we consider connectivity prop-
erties of special classes of digraphs.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 5,
© Springer-Verlag London Limited 2010

191

http://dx.doi.org/10.1007/978-1-84800-998-1_5

192 5. Connectivity of Digraphs

5.1 Additional Notation and Preliminaries

Let D = (V, A) be a directed multigraph and let X, Y ⊆ V be subsets
of V . We denote by d+(X, Y) the number of arcs with tail in X − Y and
head in Y − X, i.e., d+(X, Y) = |(X − Y, Y − X)D|. Furthermore we let
d(X, Y) = d+(X, Y)+ d+(Y, X). Hence we have d+(X) = d+(X, V −X) and
d−(X) = d+(V −X, X). An arc xy leaves a set X if x ∈ X and y ∈ V −X.
The sets X, Y are intersecting if each of the sets X − Y, X ∩ Y, Y − X is
non-empty. If also V − (X ∪ Y) �= ∅, then X and Y are crossing.

Let F be a family of subsets of a set S. We call a set A ∈ F a member of
F . The family F is an intersecting family (a crossing family) if A, B ∈ F
implies A∪B, A∩B ∈ F whenever A, B are intersecting (crossing) members
of F . A family F of subsets of a set S is laminar if it contains no two
intersecting members. That is, if A, B ∈ F and A∩B �= ∅, then either A ⊆ B
or B ⊆ A holds. A family of sets is cross-free if it contains no two crossing
members.

For an arbitrary directed multigraph D = (V, A) and vertices x, y ∈ V ,
λ(x, y) (κ(x, y)) denote the maximum number of arc-disjoint (internally dis-
joint) (x, y)-paths in D. The numbers λ(x, y), κ(x, y) are called the local
arc-strong connectivity, respectively, the local vertex-strong connec-
tivity from x to y. Furthermore we let

λ′(D) = min
x,y∈V

λ(x, y),

κ′(D) = min
x,y∈V

κ(x, y). (5.1)

Analogously to the way we defined a cut with respect to an (s, t)-flow in
Chapter 4 we define an (s, t)-cut to be a set of arcs of the form (U, Ū),
where Ū = V −U and s ∈ U, t ∈ Ū . Recall that an (s, t)-separator is a subset
X ⊆ V (D)−{s, t} with the property that D−X has no (s, t)-path. We also
say that X separates s from t. Thus a separator of D is a set of vertices
S such that S is an (s, t)-separator for some pair s, t ∈ V (D) (recall the
definition of a separator from Section 1.5). A minimum separator of D is
a minimum cardinality separator X of D.

The following simple observation plays a central role in many proofs of
connectivity results.

Proposition 5.1.1 Let D = (V, A) be a directed multigraph and let X, Y be
subsets of V . Then the following holds:

d+(X) + d+(Y) = d+(X ∪ Y) + d+(X ∩ Y) + d(X, Y),
d−(X) + d−(Y) = d−(X ∪ Y) + d−(X ∩ Y) + d(X, Y). (5.2)

Furthermore, if d−(X ∩ Y) = d+(X ∩ Y), then we also have

5.1 Additional Notation and Preliminaries 193

d+(X) + d+(Y) = d+(X − Y) + d+(Y − X) + ε,

d−(X) + d−(Y) = d−(X − Y) + d−(Y −X) + ε, (5.3)

where ε = d(X ∩ Y, V − (X ∪ Y)).

Proof: Each of these equalities can easily be proved by considering the con-
tribution of the different kinds of arcs that are counted on at least one side of
the equality. For example, Figure 5.1 shows the possible edges contributing
to at least one side of the first equality. ��

X Y

Figure 5.1 The various types of arcs contributing to the out-degrees of the sets
X, Y, X ∩ Y and X ∪ Y .

A set function f on a ground-set S is submodular if f(X) + f(Y) ≥
f(X ∪ Y) + f(X ∩ Y) for all X, Y ⊆ S. The following easy corollary of
Proposition 5.1.1 is very useful, as we shall see many times in this chapter.

Corollary 5.1.2 For an arbitrary directed multigraph D, d+
D, d−D are sub-

modular functions on V (D). ��

Recall that for a proper subset X of V (D) we denote by N+(X) the set of
out-neighbours of X. The next result shows that the functions |N−|, |N+|
are also submodular.

Proposition 5.1.3 Let D = (V, A) be a digraph and let X, Y be subsets of
V . Then the following holds:

|N+(X)| + |N+(Y)| ≥ |N+(X ∩ Y)| + |N+(X ∪ Y)|,
|N−(X)| + |N−(Y)| ≥ |N−(X ∩ Y)| + |N−(X ∪ Y)|.

Proof: These inequalities can easily be checked by considering the contribu-
tions of the different kind of neighbours of the sets X, Y, X ∩ Y and X ∪ Y
(Exercise 5.1). ��

194 5. Connectivity of Digraphs

5.1.1 The Network Representation of a Directed Multigraph

In many proofs and algorithms concerning directed multigraphs, it is con-
venient to think of a directed multigraph as a (flow) network. Here we will
formalize this and prove an elementary result which will be applied in later
sections.

Definition 5.1.4 Let D = (V, A) be a directed multigraph. The network
representation of D, denoted N (D), is the following network: N (D) =
(V, A′, � ≡ 0, u) where A′ contains the arc ij precisely when D contains at
least one arc from i to j. For every arc ij ∈ A′ uij is equal to the number of
arcs from i to j in D. See Figure 5.2.

2

4

2

2

3

1

1
2

3

1

1
1

D N (D)

Figure 5.2 A directed multigraph D and its network representation N (D). Num-
bers on arcs indicate capacity in N (D).

The next lemma shows a useful connection between arc-disjoint paths in
D and flows in N (D).

Lemma 5.1.5 Let D = (V, A) be a directed multigraph and let s, t be distinct
vertices of V . Then λ(s, t) equals the value of a maximum (s, t)-flow in N (D).

Proof: Let P1, . . . , Pr be a collection of pairwise arc-disjoint (s, t)-paths in
D. These paths may use different copies of an arc between the same two
vertices i and j, but, since the paths are arc-disjoint, in total they use no
more than uij copies of the arc ij. Hence we can construct a feasible (s, t)-
flow of value r in N (D) just by sending one unit of flow along each of the
paths P1, . . . , Pr. Conversely, if x is any integral (s, t)-flow of value k in N (D)
(recall Theorem 4.5.5), then by Theorem 4.3.1, x can be decomposed into k
(s, t)-path-flows f(P1), . . . , f(Pk) of value 1 (those that have a higher value
r > 1 can be replaced by r (s, t)-path-flows of value 1 along the same path)

5.2 Finding the Strong Components of a Digraph 195

and some cycle flows. By the capacity constraint on the arcs, at most uij of
these path flows use the arc ij. Hence we can replace the arcs used by each
f(Pi) by arcs in D in such a way that we obtain k arc-disjoint (s, t)-paths in
D. This completes the proof of the lemma. ��

5.2 Finding the Strong Components of a Digraph

In many problems on digraphs it suffices to consider the case of strong di-
graphs. For example, if we wish to find a cycle through a given vertex x in a
digraph D, we need only consider the strong component of D containing x.
Furthermore, certain properties, such as being hamiltonian, imply that the
digraph in question must be strong. The aim of this section is to develop a
fast algorithm for finding strong components in a digraph and in particular
to recognize strong digraphs.

Tarjan [843] was the first to obtain an O(n + m) algorithm to compute
the strong components of a digraph. We start this section by presenting a
simpler algorithm due to S. R. Kosaraju and M. Sharir, then we discuss its
complexity and prove its correctness. Our presentation is adapted from the
book [232] by Cormen, Leiserson, Rivest and Stein. The reader may wish to
recall the definition of the DFS and DFSA algorithms from Sections 1.9 and
2.1, respectively.

SCA(D)
Input: A digraph D.
Output: The vertex sets of strong components of D.

1. Call DFSA(D) to compute the ‘acyclic’ ordering v1, v2, . . . , vn.
2. Compute the converse D′ of D.
3. Call DFS(D′), but in the main loop of DFS consider the vertices accord-

ing to the ordering v1, v2, . . . , vn. In the process of DFS(D′) output the
vertices of each DFS tree as the vertices of a strong component of D.

Figure 5.3 illustrates the strong component algorithm (SCA). Clearly, the
complexity of SCA is O(n+m). It is more difficult to establish the correctness
of SCA. Several lemmas are needed.

The proof of our first lemma is simple and left as an exercise, Exercise
5.2.

Lemma 5.2.1 If a pair x, y of vertices belongs to the same strong component
S of a digraph D, then the vertices of every path between x and y are in S.

��

Lemma 5.2.2 In any execution of DFS on a digraph, all vertices of the same
strong component are placed in the same DFS tree.

196 5. Connectivity of Digraphs

6

7

8

1

2

5

4

3

6

7

8

1

2 3

4

5

(b)(a)

Figure 5.3 (a) A digraph D; the order of vertices found by DFSA is shown. (b)
The converse D′ of D; the bold arcs are the arcs of a DFS forest for D′.

Proof: Let S be a strong component of a digraph D, let r be the first vertex
of S visited by DFS and let x be another vertex of S. Consider the time
tvisit(r) of DFS. By Lemma 5.2.1, all vertices on an (r, x)-path belong to S
and apart from r are unvisited. Thus, by Proposition 1.9.3, x belongs to the
same DFS tree as r. ��

In the rest of this section tvisit(u) and texpl(u) are the time-stamps cal-
culated during the first step of SCA (recall that these depend on the order in
which the DFS routine visits the vertices). The forefather φ(u) of a vertex
u is the vertex w reachable from u such that texpl(w) is maximum.

Since u is reachable from itself, we have

texpl(u) ≤ texpl(φ(u)). (5.4)

Clearly, by the definition of forefather

if v is reachable from u, then texpl(φ(v)) ≤ texpl(φ(u)). (5.5)

The next lemma gives a justification for the term ‘forefather’.

Lemma 5.2.3 In any execution DFS on a digraph D, every vertex u ∈ V (D)
is a descendant of its forefather φ(u).

Proof: If φ(u) = u, this lemma is trivially true. Thus, assume that φ(u) �= u
and consider the time tvisit(u) of DFS for D. Look at the status of φ(u). The
vertex φ(u) cannot be already explored as that would mean texpl(φ(u)) <
texpl(u), which is impossible. If φ(u) is already visited but not explored, then,
by Corollary 1.9.2, u is a descendant of φ(u) and the lemma is proved.

It remains to show that φ(u) has been indeed visited before time tvisit(u).
Assume it is not true and consider a (u, φ(u))-path P . If every vertex of P
except for u has not been visited yet (at the time tvisit(u)), then by Propo-
sition 1.9.3, φ(u) is a descendant of u, i.e., texpl(φ(u)) < texpl(u), which is
impossible. Suppose now that there is a vertex x in P apart from u which
has been visited. Assume that x is the last such vertex in P (going from u
towards φ(u)). Clearly, x has not been explored yet (as x dominates an unvis-
ited vertex). By Proposition 1.9.3 applied to P [x, φ(u)], φ(u) is a descendant
of x. Thus, texpl(φ(u)) < texpl(x), which contradicts the definition of φ(u).

5.2 Finding the Strong Components of a Digraph 197

Thus, φ(u) has been indeed visited before time tvisit(u), which completes
the proof of this lemma. ��

Lemma 5.2.4 For every application of DFS to a digraph D and for every
u ∈ V (D), the vertices u and φ(u) belong to the same strong component of
D.

Proof: There is a (u, φ(u))-path by the definition of forefather. The existence
of a path from φ(u) to u follows from Lemma 5.2.3. ��

Now we show a stronger version of Lemma 5.2.4.

Lemma 5.2.5 For every application of DFS to a digraph D and for every
pair u, v ∈ V (D), the vertices u and v belong to the same strong component
of D if and only if φ(u) = φ(v).

Proof: If u and v belong to the same strong component of D, then every
vertex reachable from one of them is reachable from the other. Hence, φ(u) =
φ(v). By Lemma 5.2.4, u and v belong to the same strong components as their
forefathers. Thus, φ(u) = φ(v) implies that u and v are in the same strong
component of D. ��

Theorem 5.2.6 The algorithm SCA correctly finds the strong components
of a digraph D.

Proof: We prove, by induction on the number of DFS trees found in the
execution of DFS on D′, that the vertices of each of these trees induce a
strong component of D. Each step of the inductive argument proves that
the vertices of a DFS tree formed in D′ induce a strong component of D
provided the vertices of each of the previously formed DFS trees induce a
strong component of D. The basis for induction is trivial, since the first tree
obtained has no previous trees, and hence the assumption holds trivially.
Recall that by the description of SCA, in the second application of DFS, we
always start a new DFS tree from the vertex which currently has the highest
value of texpl among vertices not yet in the DFS forest under construction.

Consider a DFS tree T with root r produced in DFS(D′). By the defini-
tion of a forefather φ(r) = r. Indeed, r is reachable from itself and has the
maximum texpl among the vertices reachable from r. Let S(r) = {v ∈ V (D) :
φ(v) = r}. We now prove that

V (T) = S(r). (5.6)

By Lemmas 5.2.2 and 5.2.5, every vertex in S(r) is in the same DFS tree.
Since r ∈ S(r) and r is the root of T , every vertex in S(r) belongs to T .
To complete the proof of (5.6), it remains to show that if u ∈ V (T), then
u ∈ S(r), namely, if texpl(φ(x)) �= texpl(r), then x is not placed in T . Suppose
that texpl(φ(x)) �= texpl(r) for some vertex x. By induction hypothesis, we

198 5. Connectivity of Digraphs

may assume that texpl(φ(x)) < texpl(r), since otherwise x is placed in the
tree with root φ(x) �= r. If x was placed in T , then r would be reachable from
x. By (5.5) and φ(r) = r, this would mean texpl(x) ≥ texpl(φ(r)) = texpl(r),
a contradiction. ��

5.3 Ear Decompositions

In this section we study the structure of strongly connected digraphs by
introducing the concept of an ear decomposition (see Figure 5.4) and derive
a number of results from this definition. Among other things, we reprove
some of the results from Chapter 1.

Definition 5.3.1 An ear decomposition of a directed multigraph D is a
sequence E = {P0, P1, P2, . . . , Pt}, where P0 is a cycle or a vertex and each
Pi is a path, or a cycle with the following properties:

(a) Pi and Pj are arc-disjoint when i �= j.
(b) For each i = 0, 1, . . . , t: let Di denote the digraph with vertices

⋃i
j=0 V (Pj)

and arcs
⋃i

j=0 A(Pj). If Pi is a cycle, then it has precisely one vertex in
common with V (Di−1). Otherwise the end-vertices of Pi are distinct ver-
tices of V (Di−1) and no other vertex of Pi belongs to V (Di−1).

(c)
⋃t

j=0 A(Pj) = A(D).

Each Pi, 0 ≤ i ≤ t, is called an ear of E. The size of an ear Pi is the
number |A(Pi)| of arcs in the ear. The number of ears in E is the number
t + 1. An ear Pi is trivial if |A(Pi)| = 1. All other ears are non-trivial.

0

0

0
0

0

0

0

0

1

1

1

2

2

2

2

3 3 3

4 5

6

Figure 5.4 An ear decomposition E = {P0, P1, . . . , P6} of a digraph. The num-
ber on each arc indicates the number of the ear to which it belongs. The ears
P0, P1, P2, P3 are non-trivial and the ears P4, P5, P6 are trivial.

It is easy to see from the definition above that parallel arcs play no role in
the structure of ear decompositions (if there is more than one copy of an arc,

5.3 Ear Decompositions 199

at most one copy will be part of a non-trivial ear). Hence we assume below
that we are dealing with digraphs.

Theorem 5.3.2 Let D be a digraph on at least two vertices. Then D is
strong if and only if it has an ear decomposition. Furthermore, if D is strong,
every cycle can be used as starting cycle P0 for an ear decomposition of D.

Proof: We may assume that |V (D)| ≥ 3 since otherwise the claim is trivial.
Suppose first that D has an ear decomposition E = {P0, P1, P2, . . . , Pt}. Note
that the digraph P0 is strong. Now it is easy to prove, by induction on the
number of ears in E , that D is strong. If Di is strong, then Di+1 is also strong
since it is obtained by adding a path with two end-vertices x, y in Di and all
other vertices outside of V (Di).

Conversely, assume that D is strong and let v be an arbitrary vertex in
V (D). Since |V (D)| ≥ 3 and D is strong, there is some cycle C = u1u2 . . . ur,
where u1 = ur = v. Let P0 := C, i := 0 and execute phases 1 and 2 below:

Phase 1:

1. If every vertex of V (D) is in V (Di), then go to Phase 2.
2. Let i := i + 1 and let u be a vertex not in V (Di−1) such that there is

some arc xu from V (Di−1) to u.
3. Let Pi be a shortest path from u to V (Di−1).
4. Take xPi as the next ear and repeat Phase 1.

Phase 2:

1. For each remaining arc zw of D which was not included in A(Di) (i is
the counter above) do the following:

2. Let i := i + 1 and let Pi = zw (that is, include all these arcs as trivial
ears).

To see that the algorithm above finds an ear decomposition of D, it suffices
to check that we can always find an arc xu and a path from u to V (Di) as
claimed in Phase 1. This follows easily from the fact that D is strong. ��

There are several interesting consequences of Theorem 5.3.2 and its proof.

Corollary 5.3.3 Every ear decomposition of a strong digraph on n vertices
and m arcs has m − n + 1 ears.

Proof: Exercise 5.3. ��
The next lemma follows from Definition 5.3.1.

Lemma 5.3.4 Let E = {P0, P1, P2, . . . , Pk, a1, a2, . . . , ap} be an ear decom-
position of a strong digraph D such that P0 is a cycle, each Pi is a path of
length at least 2 and a1, a2, . . . ap are arcs (the trivial ears). Then the digraph
induced by P0 ∪ P1 ∪ P2 ∪ . . . ∪ Pk is a strong spanning subdigraph of D with∑k

i=0 |A(Pi)| arcs. ��

200 5. Connectivity of Digraphs

Lemma 5.3.5 Let D be a strong digraph on n vertices, let P0, P1, P2, . . . , Pr

be the non-trivial ears of an ear decomposition E of D and assume that
|A(Pi)| ≥ 3 for i = 0, . . . , s(≤ r). Then D has a strong spanning subdigraph
D′ on at most 2n − (|V (P0)| + s) arcs.

Proof: By Lemma 5.3.4, we can let D′ be the strong spanning subdigraph of
D formed by the union of P0, P1, . . . , Pr, which implies that D′ has n vertices
and

∑k
i=0 |A(Pi)| arcs. Note that P0 contributes |V (P0)| vertices and |V (P0)|

arcs to D′ and each Pi, 1 ≤ i ≤ r, contributes |A(Pi)|−1 vertices and |A(Pi)|
arcs to D′. This implies that |A(D′)| − |V (D′)| = r.

As P1, P2, . . . , Ps all contribute at least two vertices to D′ and each of
the paths Ps+1, Ps+2, . . . , Pr contributes one vertex to D′ we get that n =
|V (D′)| ≥ |V (P0)| + 2s + (r − s). This implies the claim as follows.

|A(D′)| = n + r ≤ n + (n − |V (P0)| − s) ≤ 2n − (V (P0) + s).��

Corollary 5.3.6 Every strong digraph D on n vertices has a strong spanning
subdigraph with at most 2n−2 arcs and equality holds only if the longest cycle
in D has length 2 in which case UG(D) is a tree.

Proof: The 2n − 2 bound follows from Lemma 5.3.5 since |V (P0)| ≥ 2. It
also follows from the same lemma that we only have equality if the longest
cycle in D has length two. As D is strong this only happens if UG(D) is a
tree. ��

Corollary 5.3.7 There is a linear algorithm to find an ear decomposition of
a strong digraph D.

Proof: This can be seen from the proof of Theorem 5.3.2. The proof itself is
algorithmic and it is not too hard to see that if we use breadth-first search
(see Section 3.3.1) together with a suitable data structure to find the path
from u to V (Di−1), then we can obtain a linear algorithm. Details are left to
the interested reader as Exercise 5.18. ��

Corollary 5.3.8 It is an NP-complete problem to decide whether a given
digraph D has an ear decomposition with at most r non-trivial ears. It is
NP-complete to decide whether a given digraph D has an ear decomposition
with at most q arcs in the non-trivial ears.

Proof: Note that in both cases the numbers r (respectively q) are assumed
to be part of the input to the problem. A strong digraph D has an ear
decomposition with only one non-trivial ear (respectively, precisely n arcs in
the non-trivial ears) if and only if D has a Hamilton cycle. Hence both claims
follow from Theorem 6.1.1. ��

The next two corollaries were proved in Chapter 1, but we reprove them
here to illustrate an application of ear decompositions. Recall that a bridge
of an undirected graph G is an edge e such that G − e is not connected.

5.4 Menger’s Theorem 201

Corollary 5.3.9 [780] A strong digraph D contains a spanning oriented sub-
graph which is strong if and only if UG(D) has no bridge.

Proof: If UG(D) has a bridge, xy, then D contains the 2-cycle xyx, since
D is strong. Observe that no matter which of these two arcs we delete we
obtain a non-strong digraph. Suppose conversely that UG(D) has no bridge.
Consider again the proof of Theorem 5.3.2. If we can always choose the path
from u to V (Di−1) in such a way that it does not end in x, or contains at least
one inner vertex, then it follows from the fact that we use shortest paths that
no ear Pi, i ≥ 1, contains a 2-cycle. In the remaining case, the only path from
u to V (Di−1) is the arc ux and hence the 2-cycle xux is a bridge in UG(D).
It remains to avoid using a 2-cycle as starting point (that is, as the cycle
P0). This can be done, unless all cycles in D are 2-cycles. If this is the case,
then UG(D) is a tree and every edge of UG(D) is a bridge, contradicting the
assumption. ��

Corollary 5.3.10 [162] A mixed graph M has a strong orientation if and
only if M is strongly connected and has no bridge.

Proof: This follows from Corollary 5.3.9, since we may associate with any
mixed graph M = (V, A, E) the directed graph D one obtains by replacing
each edge in M by a 2-cycle. Clearly deleting an arc of a 2-cycle in D corre-
sponds to orienting the corresponding edge in M . ��

Ear decompositions of undirected graphs can be similarly defined. These
play an important role in many proofs on undirected graphs, in particular in
Matching Theory; see, e.g., the book by Lovász and Plummer [657].

5.4 Menger’s Theorem

The following theorem, due to Menger [696], is one of the most fundamental
results in graph theory.

Theorem 5.4.1 (Menger’s theorem) [696] Let D be a directed multigraph
and let u, v ∈ V (D) be a pair of distinct vertices. Then the following holds:

(a) The maximum number of arc-disjoint (u, v)-paths equals the minimum
number of arcs covering all (u, v)-paths and this minimum is attained for
some (u, v)-cut (X, X̄).

(b) If the arc uv is not in A(D), then the maximum number of internally
disjoint (u, v)-paths equals the minimum number of vertices in a (u, v)-
separator.

Proof: First let us see that version (b) involving vertex-disjoint paths can be
easily derived from the arc-disjoint version (a). Recall that multiple arcs play
no role in questions regarding (internally) vertex-disjoint paths and hence we

202 5. Connectivity of Digraphs

can assume that the directed multigraph in question is actually a digraph.
Given a digraph D = (V, A) and u, v ∈ V construct the digraph DST by
the vertex splitting procedure (see Section 4.2.4). Now it is easy to check
that arc-disjoint (us, vt)-paths in DST correspond to internally disjoint (u, v)-
paths in D (if a (us, vt)-path in DST contains the vertex xt (xs) for some
x �= u, v, then it must also contain xs (xt)). Furthermore, for any set of �
arcs that cover all (us, vt)-paths in DST , there exists a set of � arcs of the
form w1

t w1
s , . . . , w�

tw
�
s with the same property and such a set corresponds to

a (u, v)-separator X = {w1, . . . , w�} in D. Hence it suffices to prove (a).
Because of the similarity between Menger’s theorem (in the form (a)) and

the max-flow min-cut theorem (Theorem 4.5.3), it is not very surprising that
we can prove Menger’s theorem in version (a) using Theorem 4.5.3. We did
part of the work already in Section 5.1.1 where we showed that λ(u, v) equals
the value of a maximum (u, v)-flow in N (D). Similarly it is easy to see that
every (u, v)-cut (X, X̄) in D corresponds to a (u, v)-cut (X, X̄) in N (D) of
capacity |(X, X̄)| and conversely. Now (a) follows from Theorem 4.5.3. ��

As we shall see in Exercise 5.14, for networks where all capacities are
integers, we can also derive the max-flow min-cut theorem from Menger’s
theorem.

In order to illustrate the use of submodularity in proofs concerning con-
nectivity for digraphs we will give a second proof of Theorem 5.4.1(a) due to
Frank [344]1:

Second proof of Menger’s theorem part (a):
Clearly the maximum number of arc-disjoint (s, t)-paths can be no more

than the minimum size of an (s, t)-cut.
The proof of the other direction is by induction on the number of arcs in

D. Let k denote the size of a minimum (s, t)-cut. The base case is when D has
precisely k arcs. Then these all go from s to t and thus D has k arc-disjoint
(s, t)-paths. Hence we can proceed to the induction step. Call a vertex set
U tight if s ∈ U, t �∈ U and d+(U) = k. If some arc xy does not leave any
tight set, then we can remove it without creating an (s, t)-cut of size (k − 1)
and the result follows by induction. Hence we can assume that every arc in
D leaves a tight set.

Claim: If X and Y are tight sets, then the sets X ∩ Y and X ∪ Y are tight.

To see this we use the submodularity of d+. First note that each of X ∩Y
and X∪Y contains s and none of them contains t. Hence, by our assumption,
they both have degree at least k in D. Now using (5.2) we conclude

k + k = d+(X) + d+(Y) ≥ d+(X ∪ Y) + d+(X ∩ Y) ≥ k + k, (5.7)

by the remark above. It follows that each of X ∪ Y and X ∩ Y is tight and
the claim is proved.
1 Note that this proof requires no other prerequisites than Proposition 5.1.1.

5.4 Menger’s Theorem 203

If every arc in D is of the form st, then we are done, so we may assume
that D has an arc su where u �= t. Let T be the union of all tight sets that
do not contain u. Then T �= ∅, since the arc su leaves a tight set. By the
claim, T is also tight. Now consider the set T ∪ {u}. If there is no arc from u
to V − T , then d+(T ∪ {u}) ≤ k − 1, a contradiction since T ∪ {u} contains
s but not t. Hence there must be some v ∈ V − T − u such that uv ∈ A(D).
Now let D′ be the directed multigraph we obtain from D by replacing2 the
two arcs su, uv by the arc sv. Suppose D′ contains an (s, t)-cut of size less
than k. That means that some set X containing s but not t has out-degree
at most k − 1 in D′. Since d+

D(X) ≥ k it is easy to see that we must have
s, v ∈ X and u �∈ X. Hence d+

D(X) = k and now we get a contradiction to
the definition of T (since we know that v �∈ T). Thus every (s, t)-cut in D′

has size at least k. Since D′ has fewer arcs than D, it follows by induction
that D′ contains k arc-disjoint (s, t)-paths. At most one of these can use the
new arc sv (in which case we can replace this arc by the two we deleted).
Thus it follows that D also has k arc-disjoint (s, t)-paths. ��

Corollary 5.4.2 Let D = (V, A) be a directed multigraph. Then the following
holds:

(a) D is k-arc-strong if and only if it contains k arc-disjoint (s, t)-paths for
every choice of distinct vertices s, t ∈ V .

(b) D is k-strong if and only if |V (D)| ≥ k + 1 and D contains k internally
disjoint (s, t)-paths for every choice of distinct vertices s, t ∈ V .

Proof: Recall that, by definition, a directed multigraph D = (V, A) is k-arc-
strong if and only if D−A′ is strong for every A′ ⊂ A with |A′| ≤ k−1. Now
we see that (a) follows immediately from Theorem 5.4.1(a). To prove (b) we
argue as follows: By definition (see Chapter 1) D is k-strong if and only if
|V (D)| ≥ k + 1 and D−X is strong for every X ⊂ V such that |X| ≤ k − 1.
Suppose that D has at least k + 1 vertices but is not k-strong. Then we can
find a subset X ⊂ V of size at most k − 1 such that D − X is not strong.
Let D1, . . . , Dr, r ≥ 2, be any acyclic ordering of the strong components in
D−X. Taking s ∈ V (Dr) and t ∈ V (D1) it follows that there is no arc from
s to t and that X is an (s, t)-separator of size less than k. Now it follows from
Theorem 5.4.1(b) that D does not contain k internally disjoint paths from s
to t.

Suppose conversely that there exists s, t ∈ V (D) such that there are no
k internally disjoint (s, t)-paths in D. If there is no arc from s to t, then it
follows from Theorem 5.4.1(b) that D contains an (s, t)-separator X of size
less than k. Then D −X is not strong and, by definition, D is not k-strong.
Hence we may assume that there is an arc st in D. Let r be the number of
arcs from s to t in D (i.e., μ(s, t) = r). If r ≥ k, then k of these arcs form

2 We will return to this useful reduction technique, called splitting off the arcs
su, uv, in Chapter 14.

204 5. Connectivity of Digraphs

the desired (s, t)-paths, so by our assumption on s, t we have r < k. Now
consider the digraph D′ obtained from D by removing all arcs from s to t. In
D′ there can be no k− r internally disjoint (s, t)-paths (since otherwise these
together with the r arcs from s to t would give a collection of k internally
disjoint (s, t)-paths). Thus, by Theorem 5.4.1(b), there exists a set X ′ ⊂ V
of size less than k − r which forms an (s, t)-separator in D′.

Let A, B denote a partition of V − X ′ in such a way that s ∈ B, t ∈ A
and there is no arc from B to A in D′. Since |V | ≥ k + 1, at least one of the
sets A, B contains more than one vertex. Without loss of generality, we may
assume that A contains a vertex v distinct from t. Now we see that X ′ ∪ {t}
is an (s, v)-separator of size less than k − r + 1 ≤ k in D and there is no
arc from s to v in D. Applying Theorem 5.4.1(b) to this pair we conclude as
above that D is not k-strong. ��

Recall the numbers λ′(D), κ′(D) which were defined in (5.1).

Corollary 5.4.3 Let D be a directed multigraph. The number λ′(D) equals
the maximum number k for which D is k-arc-strong. The number κ′(D) equals
the maximum number k for which k ≤ |V | − 1 and D is k-strong. Hence we
have λ′(D) = λ(D) and κ′(D) = κ(D). ��

5.5 Determining Arc- and Vertex-Strong Connectivity

In applications it is often important to be able to calculate the degree of
arc-strong or vertex-strong connectivity of a directed multigraph. We can re-
duce the problem of finding κD(x, y) to that of finding the local arc-strong
connectivity from xs to yt in the digraph DST which we obtain by applying
the vertex splitting procedure to D (see the proof of Corollary 5.4.2). Thus
it is sufficient to consider arc-strong connectivity. It follows from Menger’s
theorem and Lemma 5.1.5 that λ(D) can be found using O(n2) flow calcula-
tions. Namely, determine λ(x, y) for all choices of x, y ∈ V (D). However, as
we shall see below we can actually find λ(D) with just O(n) flow calculations.
For a similar result see Exercise 5.7.

Proposition 5.5.1 [796] For any directed multigraph D = (V, A) with V =
{v1, v2, . . . , vn} the arc-strong connectivity of D satisfies

λ(D) = min {λ(v1, v2), . . . , λ(vn−1, vn), λ(vn, v1)}.

Proof: Let k = λ(D). By (5.1) and Corollary 5.4.3, λ(D) is no more than the
minimum of the numbers λ(v1, v2), . . . , λ(vn−1, vn), λ(vn, v1). Hence it suffices
to prove that k = λ(vi, vi+1) for some i = 1, 2, . . . , n (where vn+1 = v1). By
Corollary 5.4.3 and Theorem 5.4.1, some X ⊂ V has out-degree k. If there is
an index i ≤ n − 1 such that vi ∈ X and vi+1 ∈ V − X, then, by Menger’s

5.5 Determining Arc- and Vertex-Strong Connectivity 205

theorem, λ(vi, vi+1) ≤ k and the claim follows. If no such index exists, then
we must have X = {vr, vr+1, . . . , vn} for some 1 < r ≤ n. Now we get by
Menger’s theorem that λ(vn, v1) ≤ k and the proof is complete. ��

Combining this with Lemma 5.1.5, we get the following result due to
Schnorr:

Corollary 5.5.2 [796] We can calculate the arc-strong connectivity of a di-
rected multigraph by O(n) maximum flow calculations in N (D). ��

If D has no multiple arcs, then its network representation N (D) has all
capacities equal to 1 and it follows from Theorem 4.7.4 that we can find a
maximum flow in N (D) in time O(n

2
3 m) and hence we can calculate λ(D)

in time O(n
5
3 m). Esfahanian and Hakimi [302] showed that the bound, n,

on the number of max-flow calculations that is needed can be improved by a
factor of at least 2.

Note that if we are only interested in deciding whether λ(D) ≥ k, for
some value of k which is not too big compared to m, then it may be better
to use the simple labelling algorithm of Ford and Fulkerson (see Chapter 4).
In that case it is sufficient to check for flows of value at least k, which can be
done with k flow-augmenting paths and hence in time O(km) per choice of
source and terminal. Thus the overall complexity of finding λ(D) is O(knm)
(see also the book by Even [306]). This can be improved slightly; see the
paper [384] by Galil. For other connectivity algorithms based on flows, see,
e.g., [305, 308].

One may ask if there is a way of deciding whether a given directed multi-
graph D is k-(arc)-strong without using flows. Extending work by Linial,
Lovász and Wigderson [645] (see also [656]), Cheriyan and Reif [208] gave
Monte Carlo and Las Vegas3 type algorithms for k-strong connectivity in
digraphs. Both algorithms in [208] are based on a characterization of k-strong
digraphs via certain embeddings in the Euclidean space R

k−1. The algorithms
are faster than the algorithms described above, but the price is the chance
of an error (for the Monte Carlo algorithm), respectively only the expected
running time can be given (for the Las Vegas algorithm). We refer the reader
to [208] for details.

The currently fastest algorithm to determine the arc-strong connectivity
uses matroid intersection4 and is due to Gabow [374]. This algorithm finds
the arc-strong connectivity of a digraph D in time O(λ(D)m log (n2/m)). It
is based on Edmonds’ branching theorem (Theorem 9.3.1). In Chapter 9 we
discuss the relation between arc-strong connectivity and arc-disjoint branch-
ings, which is used in Gabow’s algorithm. Gabow’s approach also works very
3 A Monte Carlo algorithm always terminates, but may make an error with some

small probability, whereas a Las Vegas algorithm may (with some small proba-
bility) never terminate, but if it does, then the answer it provides is correct; see
e.g., the book [180] by Brassard and Bratley.

4 See Section 18.8 for the definition of the matroid intersection problem.

206 5. Connectivity of Digraphs

efficiently for the case when we want to decide whether λ(D) ≥ k for some
number k.

The currently fastest algorithm to determine κ(D) is due to Gabow [377].
The complexity of the algorithm is O((n + min{κ(D)

5
2 , κ(D)n

3
4 })m).

Nagamochi and Ibaraki [712] found a very elegant and effective way to
calculate the edge-connectivity of an undirected graph without using flow
algorithms. We describe their method briefly below (see also [352, 713]).

A maximum adjacency ordering of an undirected graph G = (V, E)
is an ordering v1, v2, . . . , vn of its vertices, satisfying the following property:

d(vi+1, Vi) ≥ d(vj , Vi) for i ∈ [n], i < j ≤ n, (5.8)

where Vi = {v1, v2, . . . , vi} and d(X, Y) denotes the number of edges with
one end in X − Y and the other in Y −X.

Theorem 5.5.3 [712]

(a) Given any undirected graph G on n vertices, one can find a maximum
adjacency ordering of G starting at a prescribed vertex v1 in time O(n +
m).

(b) For every maximum adjacency ordering v1, v2, . . . , vn of G we have
λ(vn−1, vn) = dG(vn). ��

Corollary 5.5.4 [712] There is an O(nm + n2) algorithm to determine the
edge-connectivity of a graph with n vertices and m edges.

Proof: This is an easy consequence of (b) and the fact that for every choice
of x, y ∈ V (G):

λ(G) = min{λ(x, y), λ(G/{x, y})}, (5.9)

where G/{x, y} is the graph we obtain from G by contracting the set {x, y}.
The equality (5.9) follows from the fact that λ(G) equals the size of a mini-
mum cut (X, V −X) in G. If this cut separates x, y, then λ(G) = λ(x, y) by
Menger’s theorem, and otherwise X is still a cut in G/{x, y}, implying that
λ(G) = λ(G/{x, y}) (contractions do not decrease edge-connectivity). Hence
we can start from an arbitrary maximum adjacency ordering v1, v2, . . . , vn.
This gives us λ(vn−1, vn). Save this number, contract {vn−1, vn} and continue
with a maximum adjacency ordering of G/{vn−1, vn}. The edge-connectivity
of G is the minimum of the numbers saved. We leave the remaining details
to the interested reader (see also the paper [714] by Nagamochi and Ibaraki).

��
It is an interesting open problem whether some similar kind of ordering

can be used to find the arc-strong connectivity of a directed multigraph.
Note that (5.9) does not hold for arbitrary directed multigraphs. To see this
consider Figure 5.5.

5.6 Minimally k-(Arc)-Strong Directed Multigraphs 207

y x xy

D D/{x, y}

Figure 5.5 A digraph D with λ(D) = 0, λ(x, y) = 2 and λ(D/{x, y}) = 1.

5.6 Minimally k-(Arc)-Strong Directed Multigraphs

A directed multigraph D = (V, A) is minimally k-(arc)-strong if D is k-
(arc)-strong, but for every arc e ∈ A, D − e is not k-(arc)-strong. From an
application point of view it is very important to be able to identify a small
subgraph of a k-(arc)-strong directed multigraph which is spanning and still
k-(arc)-strong. The reason for this could be as follows. If many arcs of D
are redundant, then it may make sense to discard these. If one is writing
an algorithm for finding a certain structure that is based on k-(arc)-strong
connectivity, then working with the smaller subgraph could speed up the
algorithm, especially if k is relatively small compared to n.

Note, however, that if we are given a k-(arc)-strong directed multigraph
D = (V, A) and ask for the smallest number of arcs in a spanning k-(arc)-
strong subgraph of D, then this is an NP-hard problem. Indeed, a strong
digraph D on n vertices has a strong spanning subgraph on n arcs if and only
if D has a hamiltonian cycle. Hence, we must settle for finding spanning sub-
graphs with relatively few arcs. Since every k-arc-strong directed multigraph
on n vertices has at least kn arcs, the proof of Theorem 5.6.1 together with
Exercise 9.7 implies that there is a polynomial algorithm to find a spanning
k-arc-strong subgraph with no more than twice the optimum number of arcs.
We discuss this topic in more detail in Section 12.4.

5.6.1 Minimally k-Arc-Strong Directed Multigraphs

We start with a result by Dalmazzo which gives an upper bound on the
number of arcs in any minimally k-arc-strong directed multigraph of order n.

Theorem 5.6.1 [239] A minimally k-arc-strong directed multigraph has at
most 2k(n − 1) arcs and this is the best possible.

Proof: Let D = (V, A) be k-arc-strong and let s be a fixed vertex of V . By
Corollary 5.4.2, d+(U), d−(U) ≥ k for every ∅ �= U ⊂ V . Hence, by Edmonds’

208 5. Connectivity of Digraphs

branching theorem (Theorem 9.3.1), D contains k arc-disjoint in-branchings
B−

s,1, . . . , B
−
s,k rooted at s and k arc-disjoint out-branchings B+

s,1, . . . , B
+
s,k

rooted at s. Let A′ = A(B−
s,1)∪ . . .∪A(B−

s,k)∪A(B+
s,1)∪ . . .∪A(B+

s,k) and let
D′ = (V, A′). Then D′ is k-arc-strong and has at most 2k(n − 1) arcs. Thus
if D is minimally k-arc-strong, then A = A′. To see that this bound cannot
be sharpened it suffices to consider the directed multigraph obtained from a
tree T (as an undirected graph) and replacing each edge uv of T by k arcs
from u to v and k arcs from v to u. ��

Berg and Jordán [141] showed that for digraphs with sufficiently many
vertices the bound in Theorem 5.6.1 can be improved. The complete bipartite
digraph

↔
Kk,n−k shows that the bound on the number of arcs in Theorem 5.6.2

cannot be improved.

Theorem 5.6.2 [141] There exists a function f(k) such that every mini-
mally k-arc-strong digraph on n ≥ f(k) vertices has at most 2k(n − k) arcs.

��

We now present some important results by Mader [667]. Combining these
results with Theorem 14.1.2 we obtain a construction method (also due to
Mader) to generate all k-arc-strong directed multigraphs.

A set ∅ �= X ⊂ V is k-in-critical (k-out-critical) if d−(X) = k
(d+(X) = k). When we do not want to specify whether X is k-in-critical or
k-out-critical, we say that X is k-critical. It it easy to see that if D = (V, A)
is minimally k-arc-strong, then every arc uv leaves a k-out-critical set and
enters a k-in-critical set. Applying (5.2) we obtain Lemma 5.6.3 below, which
implies that every arc uv leaves precisely one minimal k-out-critical set Xu

and enters precisely one minimal k-in-critical set Yu. Here minimal means
with respect to inclusion.

Lemma 5.6.3 If X, Y are crossing k-in-critical sets in D, then X ∩ Y and
X ∪ Y are also k-in-critical sets and d(X, Y) = 0.

Proof: Suppose X, Y are crossing and k-in-critical. Using (5.2) we get

k + k = d−(X) + d−(Y)
= d−(X ∪ Y) + d−(X ∩ Y) + d(X, Y)
≥ k + k,

implying that X ∩ Y and X ∩ Y are both k-in-critical and d(X, Y) = 0. ��
Intuitively, Lemma 5.6.3 implies that minimally k-arc-strong directed

multigraphs have vertices of small in-degree and vertices small out-degree.
The next result by Mader shows that this is indeed the case. In fact, a much
stronger statement holds.

5.6 Minimally k-(Arc)-Strong Directed Multigraphs 209

Theorem 5.6.4 [667] Every minimally k-arc-strong directed multigraph has
at least two vertices x, y with d+(x) = d−(x) = d+(y) = d−(y) = k.

Proof: We give a proof due to Frank [344]. Let R be a family of k-in-critical
sets with the property that

every arc in D enters at least one member of R. (5.10)

By our remark above such a family exists since D is minimally k-arc-strong.
Our first goal is to make R cross-free (that is, we want to replace R

by a new family R∗ of k-in-critical sets such that R∗ still satisfies (5.10)
and no two members of R∗ are crossing). To do this we apply the so-called
uncrossing technique which is quite useful in several proofs. If there are
crossing members X, Y in R, then by Lemma 5.6.3, X∩Y and X∪Y are k-in-
critical and d(X, Y) = 0. Hence every arc entering X or Y also enters X ∪Y ,
or X ∩ Y . Thus we can replace the sets X, Y by X ∩ Y, X ∪ Y in R (we only
add sets if they are not already there). Since |X∩Y |2+|X∪Y |2 > |X|2+|Y |2
and the number of sets in R does not increase, we will end up with a family R
which is cross-free. Note that we could have obtained such a family directly by
choosing the members in R as the unique minimal k-in-critical sets entered by
the arcs of A. However, this choice would make the proof more complicated,
since we lose the freedom of just working with a cross-free family satisfying
(5.10). We shall use this freedom in Case 2 below. Assume below that

R is cross-free. (5.11)

Now the trick is to consider an arbitrary fixed vertex s and show that
V − s contains a vertex with in-degree and out-degree k. This will imply the
theorem.

Let s be fixed and define the families S, U and L as follows:

S = {X ∈ R : s �∈ X}, (5.12)
U = {V − X : s ∈ X ∈ R}, (5.13)
L = L(R) = S ∪ U . (5.14)

Claim A: The family L is laminar.

Proof of Claim A: We must show that no two members of L are inter-
secting. Suppose X, Y ∈ L are intersecting. Then X and Y cannot both be
from S since then they are crossing and this contradicts (5.11). Similarly X
and Y cannot both be from U , since then V − X, V − Y are crossing mem-
bers of R, a contradiction again. Finally, if X ∈ S and Y ∈ U , then X and
V − Y are crossing members of R, contradicting (5.11). This proves that L
is laminar. ��

By the choice of S and U we have the following property:

210 5. Connectivity of Digraphs

Every arc either enters a member of S or leaves a member of U (or both).
(5.15)

Suppose R is chosen such that (5.10) and (5.11) hold and furthermore
∑

X∈L
|X| is minimal. (5.16)

To complete the proof of the theorem we consider two cases.

Case 1: Every member of L has size one:

Let X = {x ∈ V − s : {x} ∈ S} and Y = {y ∈ V − s : {y} ∈ U}.
Then X cannot be empty, since every arc leaving s enters X. Similarly Y is
non-empty. Now if X ∩ Y = ∅, then there can be no arc leaving X, by the
definition of X and (5.15). However, d+(X) ≥ k, since D is k-arc-strong and
hence we have shown that X ∩ Y �= ∅. Let t be any element in X ∩ Y , then
we have d+(t) = d−(t) = k.

Case 2: Some member Z of L has size at least two:

Choose Z such that |Z| is minimal among all members of L of size at
least two.

Note that if we consider the converse D∗ of D and let R∗ = {V − X :
X ∈ R} and then define S∗,U∗ as we defined S and U from R, then S∗ = U
and U∗ = S. Furthermore, the corresponding family L∗ satisfies (5.15) and
(5.16). This shows that we may assume without loss of generality that Z ∈ S.
We claim that

the directed multigraph D〈Z〉 is strongly connected. (5.17)

Suppose this is not the case and let Z1, Z2 be a partition of Z with the
property that there are no arcs from Z2 to Z1. Then we have k ≤ d−(Z1) ≤
d−(Z) = k, implying that Z1 is k-in-critical and that every arc that enters
Z also enters Z1. Let R′ = R − {Z} + {Z1}, S ′ = S − {Z} + {Z1} and let
L′ = S ′ ∪ U . Then L′ still satisfies (5.15) and

∑

X∈L′

|X| <
∑

X∈L
|X|.

However, this contradicts the choice of R. Thus we have shown that D〈Z〉 is
strongly connected. This establishes (5.17).

We return to the proof of the theorem. Let

A = {z ∈ Z : {z} ∈ S}, B = {z ∈ Z : {z} ∈ U}.

If A ∩B �= ∅, then any vertex t ∈ A ∩B has d+(t) = d−(t) and we are done.
Suppose A ∩B = ∅. Then we claim that

5.6 Minimally k-(Arc)-Strong Directed Multigraphs 211

A = ∅. (5.18)

Suppose A �= ∅. By the choice of R so that L satisfies (5.16), we cannot
leave out any set without violating (5.15). Hence we cannot have A = Z, be-
cause then we could leave out Z without violating (5.15). Now (5.17) implies
that there is an arc uv from A to Z − A. Since L satisfies (5.15), the arc
uv either enters some member of S or leaves a member of U . If it enters a
member M of S, then by the definition of A, M cannot be of size one. On
the other hand, by the fact that L is laminar and the minimality of Z, M
also cannot have size at least two. Hence uv must leave a member W of U .
Since we have assumed A ∩B = ∅, this must be a set of size more than one.
Using that L is laminar it follows that W ⊂ Z, contradicting the choice of
Z. Hence we must have A = ∅ and (5.18) is established. Next we claim that

B = Z. (5.19)

Since A = ∅ and Z is minimal among all members of L of size at least
2, every arc with both ends in Z must leave a member of B (using the same
arguments as above). Hence B �= ∅ and we must have B = Z, since otherwise
(5.17) would imply the existence of an arc from Z − B to B, contradicting
what we just concluded.

Now we are ready to complete the proof of the theorem. Since B = Z,
every vertex in Z has out-degree k. Thus we have

k|Z| =
∑

v∈Z

d+(v)

= d+(Z) + |A(D〈Z〉)|
≥ k + |A(D〈Z〉)|
= k + (

∑

v∈Z

d−(v)) − d−(Z)

=
∑

v∈Z

d−(v)

≥ k|Z|.

Hence equality holds everywhere, in particular, every vertex in Z has in-
and out-degree k. ��

When D is a k-arc-strong directed multigraph containing parallel arcs,
the number of vertices with in- and out-degree equal to k may be exactly
two, as shown by taking an undirected path v1v2 . . . vr, r ≥ 3, and replacing
each edge vivi+1 by k arcs from vi to vi+1 and k arcs from vi+1 to vi. Here
only v1 and vr have the desired semi-degrees [925].

Now we turn to digraphs. Let u+(D) (respectively, u=(D) and u−(D))
denote the number of vertices v in D with d+(v) = k < d−(v) (respectively,
d+(v) = d−(v) = k and d+(v) > k = d−(v)).

212 5. Connectivity of Digraphs

Mader [675] gave examples showing that for k = 2, 3 there are even infinite
families of directed graphs (no multiple arcs) which are k-arc-strong and still
have u−(D) + u=(D) + u−(D) bounded by a constant. However, for k ≥ 4
such examples do not seem to exist.

Conjecture 5.6.5 [675] For every integer k ≥ 4, there is a ck > 0 such that
every minimally k-arc-strong digraph D on n vertices has u−(D)+2u=(D)+
u−(D) ≥ ckn.

Verifying another conjecture of Mader [675], Yuan and Cai [925] proved
the following result.

Theorem 5.6.6 Let D be a minimally k-arc-strong digraph, then

u+(D) + 2u=(D) + u−(D) ≥ 2k + 2.��

1
1

1

2 2

1

3 4

2

1

3

Figure 5.6 A construction of a 2-arc-strong directed multigraph starting from a
single vertex.

Using Corollary 14.1.3 and Theorem 5.6.4 one can obtain the following
complete characterization of k-arc-strong directed multigraphs, due to Mader
[669].

Theorem 5.6.7 [669] A directed multigraph D is k-arc-strong if and only if
it can be obtained by starting from a single vertex and applying the following
two operations (in any order):

Operation A: Add a new arc connecting existing vertices.
Operation B: Choose k distinct arcs u1v1, . . . ukvk and replace these by 2k

new arcs u1s, . . . , uks, sv1, . . . , svk, where s is a new vertex.

Proof: Clearly operation A preserves the property of being k-arc-strong. To
see that this also holds for operation B we apply Menger’s theorem. Suppose
D is k-arc-strong and D′ is obtained from D by one application of operation
B but D′ is not k-arc-strong. Let U ⊂ V (D′) be some subset such that
d+

D′(U) ≤ k − 1. Then we must have U �= {s} and U �= V (D), since clearly s
has in- and out-degree k in D′. Now it is easy to see that the corresponding set
U−s has out-degree less than k in D, a contradiction. From these observations
it is easy to prove by induction on the number of vertices that every directed

5.6 Minimally k-(Arc)-Strong Directed Multigraphs 213

multigraph that can be constructed via operations A and B is k-arc-strong.
Here we assume by definition that every directed pseudograph having just
one vertex is k-arc-strong.

The other direction can be proved using induction on the number of arcs.
If D is k-arc-strong and not minimally k-arc-strong, then we can remove an
arc and apply induction. Otherwise it follows from Theorem 5.6.4 that D
contains a vertex s such that d+(s) = d−(s) = k. According to Theorem
14.1.3, this vertex and the 2k arcs incident with it can be replaced by k new
arcs in such a way that the resulting directed multigraph D′ is k-arc-strong.
By induction D′ can be constructed via operations A and B. Since we can go
from D′ back to D by using operation B once, D can be constructed using
operations A and B. ��

See Figure 5.6 for an illustration of the theorem.

5.6.2 Minimally k-Strong Digraphs

In this section D = (V, A) is always a digraph (i.e., no multiple arcs) and
hence we know that d+(v) = |N+(v)| for each v ∈ V . Several results from
this section will be used in Section 12.4.

Mader [671] proved that when we consider vertex connectivity instead of
arc connectivity, the bound of Theorem 5.6.1 can be improved as follows. The
complete bipartite digraph

↔
Kk,n−k shows that this bound on the number of

arcs is best possible.

Theorem 5.6.8 [671] Every minimally k-strong digraph on n ≥ 4k + 3 ver-
tices has at most 2k(n − k) arcs. ��

We saw in the last section that every minimally k-arc-strong directed
multigraph has at least two vertices with in- and out-degree equal to k.
Mader conjectures that this is also the case for vertex-strong connectivity in
digraphs.

Conjecture 5.6.9 [671] Every minimally k-strong digraph contains at least
two vertices such that both have in- and out-degree k.

This longstanding conjecture is still open and seems very difficult. For
k = 1 the truth of Conjecture 5.6.9 follows from Theorem 5.6.4. Mader [676]
has proved the conjecture for k = 2. For all other values of k the conjecture
is open. Examples by Mader [667] show that one cannot replace two by three
in the conjecture.

Before reading the next couple of pages, the reader is advised to consult
Subsection 14.3.1 to understand the definition of a one-way pair. An arc e of
a k-strong digraph is k-critical if D − e is not k-strong. By Lemma 14.3.2,
for each k-critical arc uv we can associate sets Tuv, Huv such that (Tuv, Huv)
is a one-way pair in D − uv and h(Tuv, Huv) = k − 1. This one-way pair

214 5. Connectivity of Digraphs

may not be unique, but below we always assume that we have chosen a fixed
one-way pair for each k-critical arc in D.

Lemma 5.6.10 Let D = (V, A) be a k-strong digraph. Then the following is
true:

(a) If D has two k-critical arcs ux, uy, such that d+(u) ≥ k+1, then |Tuy| >
|Hux|.

(b) If D has two k-critical arcs xu, yu, such that d−(u) ≥ k+1, then |Hxu| >
|Tyu|.

w

u

M

Tux

Hux

Tuy Huy

z

y

x x

y

Tux

Hux

Tuy Huy

II

Ia

b

c

e a

b

c

d

e

II

d

Suy

Sux

(A) (B)

w

u

Figure 5.7 Illustration of the proof of Lemma 5.6.10. Part (A) illustrates the case
when Hux ∩Huy �= ∅. Part (B) illustrates the case when Hux ∩Huy = ∅. The first
row of each 3×3 diagram corresponds to the set Tux. The first column corresponds
to Tuy and so on. The positions of x, y indicate that they can be in either of the
two neighbouring cells. The numbers a, b, c, d, e denote the cardinality of the sets
corresponding to their cell.

Proof: Since (b) follows from (a) by considering the converse of D, it suffices
to prove (a). Hence we assume that ux, uy are k-critical arcs of D and that
d+(u) ≥ k +1. Let (Tux, Hux), (Tuy, Huy) be the pairs associated with ux, uy
above. Note that these are not one-way pairs in D, since there is a (unique)
arc, namely, ux (uy) which goes from Tux (Tuy) to Hux (Huy). Let also
Sux = V −(Tux∪Hux) and Suy = V −(Tuy∪Huy). Then |Sux| = |Suy| = k−1
and x ∈ Hux − Huy, y ∈ Huy − Hux. It will be useful to study Figure 5.7
while reading the proof.

Let a, b, c, d, e be defined as in Figure 5.7. Since each of the sets Sux, Suy

has size k − 1 we see that

5.6 Minimally k-(Arc)-Strong Directed Multigraphs 215

a + b + 2c + d + e = 2k − 2. (5.20)

We claim that Hux ∩ Huy = ∅. Suppose this is not the case and let
z ∈ Hux ∩ Huy be arbitrarily chosen. Now it follows from the fact that
(Tux, Hux) is a one-way pair in D − ux and (Tuy, Huy) is a one-way pair in
D−uy, that the set CI , indicated by the line I in Figure 5.7, separates u from
z in D. Hence c + d + e ≥ k, since D is k-strong. Now (5.20) implies that the
set CII , indicated by the line II, has size at most k − 2. Since d+(u) ≥ k + 1
and u has precisely two arcs, namely, ux, uy out of Tux ∩ Tuy in D − CII ,
we see that there is some out-neighbour w of u inside Tux ∩ Tuy. But now
it is easy to see that CII ∪ {u} separates w from z, contradicting that D is
k-strong. Hence we have shown that Hux ∩Huy = ∅.

To complete the proof, we only need to show that a ≥ d. Suppose this
is not the case. Then in particular d ≥ 1 and the size of the set CII is at
most |Suy| + a − d ≤ k − 2. Thus as above we can argue that u has an out-
neighbour w inside Tux ∩ Tuy. Now CII ∪ {u} separates w from x in D, a
contradiction. ��

An anti-directed trail is the digraph T̄ one obtains from a closed undi-
rected trail T of even length by fixing a traversal of T and orienting the edges
so that every second vertex v has in-degree zero when we consider just the
two arcs between v and its successor and predecessor on T . We denote the
anti-directed trail T̄ by T̄ = v1v̄1v2v̄2 . . . vr v̄rv1, where v̄i indicates that the
vertex v̄i is dominated by both its successor and its predecessor on the trail
T . A vertex which dominates (is dominated by) both its successor and its
predecessor on T̄ is a source (sink) of T̄ . Note that if a vertex v is repeated
on T̄ , then v may be both a source and a sink. An anti-directed cycle is
an anti-directed trail in which no vertex occurs twice (that is, the underlying
graph is just a cycle). See Figure 5.8 for an illustration of the definitions.

v1v̄1

v2 = v̄3

v3 v̄2

Figure 5.8 An anti-directed trail v1v̄1v2v̄2v3v̄3v1 on 6 vertices. The vertex v2 = v̄3

is both a source and a sink of T̄ . Note that T̄ contains no anti-directed cycle.

Now we can prove the following important result due to Mader:

216 5. Connectivity of Digraphs

Theorem 5.6.11 [671] Let D be a k-strong digraph containing an anti-
directed trail T̄ = v1v̄1v2v̄2 . . . vrv̄rv1. Then at least one of the following holds:

(a) Some arc e ∈ A(T̄) is not k-critical in D.
(b) Some source vi of T̄ has out-degree k in D.
(c) Some sink v̄j of T̄ has in-degree k in D.

Proof: If (b) or (c) holds there is nothing to prove so suppose that d+(vi) ≥
k + 1 for each source and d−(v̄j) ≥ k + 1 for each sink of T̄ . We shall prove
that (a) holds.

Suppose to the contrary that every arc e on T̄ is k-critical. Applying
Lemma 5.6.10(a) to the arcs v1v̄r, v1v̄1, we obtain |Tv1v̄r | > |Hv1v̄1 |. Similarly,
we get from Lemma 5.6.10(b) that |Hv1v̄1 | > |Tv2v̄1 |. Repeating this argument
around the trail we reach the following contradiction:

|Tv1v̄r | > |Hv1v̄1 | > |Tv2v̄1 | > |Hv2v̄2 | > . . . > |Hvr v̄r | > |Tv1v̄r |.

Hence we have shown that (a) holds. ��
The following is an easy consequence.

Corollary 5.6.12 [671] Every minimally k-strong digraph contains a vertex
x of in-degree k, or a vertex y of out-degree k. ��

Using Theorem 5.6.11, Mader proved the following much stronger state-
ment.

Theorem 5.6.13 [676] Every minimally k-strong digraph contains at least
k + 1 vertices of out-degree k and at least k + 1 vertices of in-degree k. ��

This is best possible for digraphs on at most 2k + 1 vertices as shown
by

↔
Kk,k+1. When the number of vertices becomes larger, the following result

gives a better bound and shows that the number of vertices of out-degree k
(and hence also the number of vertices of in-degree k) grows as n grows.

Theorem 5.6.14 [676] Every minimally k-strong digraph on n vertices con-

tains at least k−1
2k−1

√
2n

k+2 vertices of out-degree k. ��

The following conjecture by Mader would imply that, in fact, the right
lower bound grows linearly with n.

Conjecture 5.6.15 [675] Every minimally k-strong digraph on n vertices
contains at least n−k

k+1 + k vertices with out-degree equal to k.

Proposition 5.6.16 [676] For k ≥ 2, every minimally k-strong digraph con-
tains a vertex v with min{d+(v), d−(v)} = k and max{d+(v), d−(v)} ≤ 2k−2.

��

5.6 Minimally k-(Arc)-Strong Directed Multigraphs 217

For more on the topic see the surveys [675] and [677] by Mader. Theorem
5.6.11 has many other nice consequences. Here is one for undirected graphs.

Corollary 5.6.17 [665] Let C be a cycle of a k-connected undirected graph
G. Then either C contains an edge e which can be removed without decreasing
the connectivity of G, or some vertex v ∈ V (C) has degree k in G.

Proof: To see this, it suffices to consider the complete biorientation D of G
and notice that D − xy is k-strong if and only if D − {xy, yx} is k-strong
(Exercise 5.22) which happens if and only if G − e is k-connected, where
e = xy. Next, observe that in D, the cycle C either corresponds to one anti-
directed trail C ′, obtained by alternating the orientation on the arcs taken
twice around the cycle C, when |C| is odd, or to two anti-directed cycles
C ′, C ′′ when |C| is even. Now the claim follows from Theorem 5.6.11. ��

One reason why Corollary 5.6.17 is important is the following easy con-
sequence concerning augmentations of undirected graphs, which was pointed
out by Jordán.

Corollary 5.6.18 [577] Let G = (V, E) be an undirected graph which is k-
connected, but not (k + 1)-connected. Then every minimal set of edges F
which augments the connectivity of G to (k + 1) induces a forest. ��

For directed graphs one obtains the following result, due to Jordán, on
augmentations from k-strong to (k + 1)-strong connectivity. Compare this
with Theorem 14.3.8.

Corollary 5.6.19 [575] Let D = (V, A) be a directed graph which is k-strong,
but not (k+1)-strong and let F be a minimal set of new arcs, whose addition
to D gives a (k + 1)-strong digraph. Then the digraph induced by the arcs in
F contains no anti-directed trail. ��

One can also apply Theorem 5.6.11 to questions like: how many arcs can
be deleted from a k-strong digraph, so that it still remains (k−1)-strong [675]
(for undirected graphs see [164])? One easy consequence is the following.

Corollary 5.6.20 [675] If D = (V, A) is minimally k-strong and D′ =
(V, A′) is a spanning (k − 1)-strong subgraph of D, then the difference
D0 = (V, A −A′) contains no anti-directed trail.

Proof: Suppose T̄ = v1v̄1v2v̄2 . . . vrv̄rv1 is an anti-directed trail in D0. Since
D is minimally k-strong, (a) cannot hold in Theorem 5.6.11. Suppose without
loss of generality that (b) holds, then some source vi has d+

D(vi) = k. However,
since d+

T̄
(vi) = 2, this implies that d+

D′(vi) = k − 2, contradicting the fact
that D′ is (k − 1)-strong. ��

Theorem 5.6.11 has many other important applications. We illustrate one
such application in Section 12.4.1.

218 5. Connectivity of Digraphs

5.7 Critically k-Strong Digraphs

In this section we always consider directed graphs (no multiple arcs). A vertex
v of a digraph D is critical if κ(D − v) < κ(D). The goal of this section is
to illustrate some conditions under which we can always find a non-critical
vertex in a digraph D. First observe that there can be no function f(k) with
the property that every k-strong digraph D with at least f(k) vertices has
a vertex v such that D − v is still k-strong. This is not even the case for
tournaments. To see this consider the example due to Thomassen (private
communication, 1985) in Figure 5.9.

x y

Figure 5.9 A family T of 3-strong tournaments (the three paths from left to right
can be arbitrary long). The big arc indicates that all arcs not explicitly shown go
from right to left. It can be verified (Exercise 5.26) that each tournament in T is
3-strong and has the property that every vertex other than x, y is critical. Thus
after removing at most two vertices we obtain a 3-strong tournament in which every
vertex is critical.

The example in Figure 5.9 can easily be generalized to arbitrary degrees
of vertex-strong connectivity, by replacing each of the tournaments on seven
vertices (right and left side of the figure) by the kth power of a (2k +1)-cycle
and replacing the three long paths by k long paths starting at the top k
vertices in the left copy and ending at the top k vertices in the right copy.

Below we discuss some results by Mader on sufficient conditions for a
k-strong digraph to contain a non-critical vertex.

Definition 5.7.1 Let D have κ(D) = k. A fragment in D is a subset X ⊂
V with the property that either |N+(X)| = k and X ∪ N+(X) �= V , or
|N−(X)| = k and X ∪N−(X) �= V .

Thus a fragment X corresponds to a one-way pair (X, Y) with h(X, Y) =
k. Mader proved the following important result:

Theorem 5.7.2 [672] Every critically k-strong digraph contains a fragment
of size at most k. ��

5.7 Critically k-Strong Digraphs 219

This was conjectured by Hamidoune [494, Conjecture 4.8.3] who also con-
jectured the next two results, both of which are easy consequences of Theorem
5.7.2.

Corollary 5.7.3 [672] Every critically k-strong digraph contains a vertex x
with in-degree, or out-degree less than 2k.

Proof: Let D = (V, A) be a critically k-strong digraph. By Theorem 5.7.2,
D contains a fragment X with |X| ≤ k. By considering the converse of D if
necessary, we may assume that |N+(X)| = k. We prove that every vertex of
X has out-degree at most 2k−1. Let x ∈ X be arbitrary. Note that every out-
neighbour of x outside X contributes to |N+(X)|, implying that there are at
most k of these. Now the claim follows from the fact that d+

D〈X〉(x) ≤ k − 1.
��

We leave the proof of the next easy consequence as Exercise 5.24.

Corollary 5.7.4 [672] Every critically k-strong oriented graph contains a
vertex x with in-degree, or out-degree less than �3k−1

2 �. ��

In [677] Mader surveys a number of results on k-strong digraphs D with
the property that whenever we delete a set of vertices X of size at most
k′ ≤ k the resulting digraph D − X is only (k − |X|)-strong. Such digraphs
are also called (k, k′)-critical and our discussion above on critically k-strong
digraphs correspond to the case k′ = 1.

Among other things, Mader shows that for every prime power k there
exists a (k + 1, 2)-critical digraph without 2-cycles.

Conjecture 5.7.5 [677] For every k ≥ 2, there is only a finite number of
(k, 2)-critical oriented graphs.

Mader also conjectured the following and showed by an example that this
does not hold for infinite digraphs (implying that also the conjecture above
is false for infinite oriented graphs).

Conjecture 5.7.6 [677] If D is a (k, r)-critical digraph with r > (2k+1)/3,
then D is the complete digraph

↔
Kk+1.

Conjecture 5.7.7 [677] For all k, r ∈ N, there is an integer h(k, r) so that
every finite, k-strong digraph D = (V, A) on at least h(k, r) vertices contains
a set W ⊂ V with |W | = r such that κ(D −W) ≥ k − 2 holds.

The case r = 3 follows from the following result by Mader.

Theorem 5.7.8 [677] For every k ∈ N only a finite number of (k, 3)-critical
finite digraphs exist. ��

220 5. Connectivity of Digraphs

5.8 Connectivity Properties of Special Classes of
Digraphs

In this section we describe a few results on the connectivity of various classes
of digraphs introduced in Chapter 2. Some of these results will be used in
other sections and chapters in this book.

H1

H2

H3

H4

K2

K3

K3

K3

Figure 5.10 A 2-strong digraph D with decomposition D = Q[H1, H2, H3, H4].
Bold arcs indicate that all possible arcs are present and have the direction shown.
The right figure shows the 2-strong digraph D0 = Q[K2, K3, K3, K3] obtained from
D by deleting all arcs inside each Hi.

The first lemma, due to Bang-Jensen, implies that almost all minimally
k-strong decomposable digraphs are subdigraphs of extensions of digraphs.

Lemma 5.8.1 [74] Let D = F [S1, S2, . . . , Sf] where F is a strong digraph
on f ≥ 2 vertices and each Si is a digraph with ni vertices and let D0 =
F [Kn1 ,Kn2 , . . . ,Knf

] be the digraph obtained from D by deleting every arc
which lies inside some Si

5. Let S be a minimal (with respect to inclusion)
separating set of D0. Then S is also a separating set of D, unless each of the
following holds:

(a) S = V (S1) ∪ V (S2) . . . ∪ V (Sf) \ V (Si) for some i ∈ [f],
(b) D〈Si〉 is a strong digraph, and
(c) D = C2[S, Si].

In particular, if F has at least three vertices, then D is k-strong if and only
if D0 is k-strong.

Proof: Let S be a minimal separating set of D0 and assume S is not sep-
arating in D. It is easy to see that if x and y with x, y �∈ S belong to
5 Recall that Kni is the digraph on ni vertices and no arcs.

5.8 Connectivity Properties of Special Classes of Digraphs 221

different sets Si, then D − S has an (x, y)-path if and only if D0 − S has
such a path. Thus, since S is separating in D0 but not in D, we must have
S = V (S1) ∪ V (S2) . . . ∪ V (Sf) \ V (Si) for some i ∈ [f]. Note that here we
used the minimality of S to get that S ∩ Sj = ∅ for some j. Now it follows
trivially that D〈Si〉 must be a strong digraph, since D − S is strong and the
minimality of S implies that D = C2[S, Si] (if some Sj ⊂ S does not have
arcs in both directions to Si, then S−Sj is also separating, contradicting the
choice of S). ��

See Figure 5.10 for an example illustrating the lemma.

Combining Lemma 5.8.1 with Theorem 2.7.5 we obtain:

Corollary 5.8.2 If D is a k-strong quasi-transitive digraph with decompo-
sition D = Q[W1, . . . , W|Q|], then the digraph D0 = Q[K|W1|, . . . ,K |W|Q||]
(that is, the digraph obtained by deleting all arcs inside each Wi) is also k-
strong. ��

Another easy consequence of Lemma 5.8.1 is the following result by Bang-
Jensen, Gutin and Yeo:

Theorem 5.8.3 [95] Suppose that D is a digraph which can be decomposed
as D = F [S1, S2, ..., Sf], where f = |V (F)| ≥ 2, and define the digraph D0

by D0 = D−∪f
i=1{uv : u, v ∈ V (Si)}. Then D is strong if and only if D0 is

strong.

Here is a useful observation on locally semicomplete digraphs due to Bang-
Jensen. The proof is left as Exercise 5.25.

Lemma 5.8.4 [66] Let D be a strong locally semicomplete digraph and let S
be a minimal (not necessarily minimum) separating set of D. Then D− S is
connected. ��

Proposition 5.8.5 Let D = (V, A) be a k-strong digraph and let D′ be ob-
tained from D by adding a new set of vertices X and joining each vertex of
X to V in such a way that |N+

D′(v)|, |N−
D′(v)| ≥ k + 1 for each v ∈ X. Then

D′ is k-strong. If D′ is not (k + 1)-strong, then every minimum separating
set of D′ is also a minimum separating set of D.

Proof: Suppose D′ is not (k +1)-strong and let S′ be a minimum separating
set of D′. Then |S′| ≤ k. Let S = S′ ∩ V (D). Since every vertex of X − S′

has an in-neighbour and an out-neighbour in V − S, we get that D − S is
not strong and hence S = S′ must hold and S′ is also separating in D. This
implies that |S′| = k, D′ is k-strong and every minimum separating set of D′

is a minimum separating set of D. ��
Now we turn to a characterization of eulerian digraphs in terms of local

connectivities. We need the following result due to Lovász.

222 5. Connectivity of Digraphs

Theorem 5.8.6 [652] Let v be a vertex in a digraph D which satisfies
λ(v, x) ≤ λ(x, v) for every x ∈ V (D). Then d+(v) ≤ d−(v).

Proof: Call a set X ⊆ V −v full with respect to v if there exists an x ∈ X so
that d−(X) = λ(v, x) and call x a core of X. The following three properties of
full sets are easy consequences of the submodularity of the in-degree function
for sets (Corollary 5.1.2):

(a) If X and Y are full sets with cores x and y and we also have x ∈ Y , then
X ∩ Y , X ∪ Y are full sets with cores x, y, respectively.

(b) For every x �= v there exists a full set Tx with core x so that for every
full set X containing x we have Tx ⊆ X (hence Tx is the unique minimal
full set containing x).

(c) Observation (b) implies that every x ∈ V − v is contained in a unique
maximal full set. Let X1, X2, . . . , Xk be the maximal full sets with cores
x1, x2, . . . , xk, respectively. Then xi �∈ Xj whenever i �= j.

Now we are ready to prove the theorem. Let X1, X2, . . . , Xk be the max-
imal full sets and let xi be a core of Xi. Furthermore, let Vi = Xi −

⋃
j �=i Xj .

Observation (c) implies that xi ∈ Vi for every i ∈ [k]. Thus d+(Vi) ≥
λ(xi, v) ≥ λ(v, xi) = d−(Xi) by the assumption of the theorem. Hence,

k∑

i=1

d+(Vi) ≥
k∑

i=1

d−(Xi). (5.21)

By the remark in the beginning of (b),
⋃k

i=1 Xi = V − v. Hence every arc
contributing to the left-hand side of (5.21) either enters v or some Xj , j �= i.
Each such edge is counted precisely once on the left-hand side of (5.21). On
the other hand, every arc leaving v or entering a set Xj from somewhere
other than v is counted at least once on the right-hand side of (5.21). Thus,

0 ≤
k∑

i=1

d+(Vi) −
k∑

i=1

d−(Xi) ≤ d−(v) − d+(v),

which proves the theorem. ��

Corollary 5.8.7 [652] A digraph D = (V, A) is eulerian if and only if
λ(x, y) = λ(y, x) for every pair of vertices x, y ∈ V .

Proof: If D = (V, A) is eulerian, then, by Corollary 1.7.3, for every non-
empty proper subset X ⊂ V we have d+(X) = d−(X). By Menger’s theorem
(Theorem 5.4.1) this implies that λ(x, y) = λ(y, x) for every pair of vertices
x, y ∈ V . The converse direction follows by applying Theorem 5.8.6 to D and
the converse of D. ��

5.10 Exercises 223

5.9 Disjoint X-Paths in Digraphs

A result of Gallai [385] states that if X is a subset of the vertices of an
undirected graph G = (V, E), then there exist k disjoint paths each of which
connects two distinct vertices in X if and only if |S| +

∑
1
2�|C ∩ X|� ≥ k

holds for every S ⊂ V , where the sum is taken over connected components
C of G − S.

Gallai’s result does not generalize to digraphs, no matter whether we re-
place connected component by strong component or by connected component
of the underlying graph: in the first case the condition will not be necessary
and in the later it will not be sufficient (take, for example, the digraph con-
sisting of three vertices x1, x2, s and arcs x1s, x2s) and X = {x1, x2}).

Kriesell [627] found a way to refine the definition of vertex separation
so that a necessary and sufficient condition can indeed be found. To state
the result we need some definitions. Let D = (V, A) be a digraph and let
X ⊂ V a subset of its vertices. An X-path is a path P whose initial and
terminal vertex are distinct vertices of X and all other vertices of P belong
to V (D) − X. We denote by A−(X) (A+(X)) the set of all arcs in D whose
tail (head) belongs to X (note that arcs inside X contribute to both sets).

Theorem 5.9.1 [627] Let k be an integer, D = (V, A) a digraph and X ⊆ V .
There exist k pairwise disjoint X-paths if and only if

|S ∩ T | +
∑

C∈C(G)

�|C ∩ (X ∪ S ∪ T)|/2� ≥ k (5.22)

for all S, T ∈ V with S ∩X = T ∩X. Here C(G) denotes the set of connected
components in the graph G = UG(D − (A−(S) ∪A+(T))). ��

We will not give the proof here. Kriesell first shows that disjoint X-paths
in D correspond, in a natural way, to matchings6 in the digraph HD(X)
which we obtain by performing the vertex splitting procedure from Section
4.2.4 on D and then contracting each of the arcs xtxs, x ∈ X in DST . Now
one can apply Tutte’s characterization for the existence of a matching of a
given cardinality in a graph and translate the characterization back to the
desired characterization for the existence of k disjoint X-paths in D.

5.10 Exercises

5.1. Submodularity of |N− | and |N+|. Prove Proposition 5.1.3.

5.2. Prove Lemma 5.2.1.

6 A matching in a digraph D is a collection of arcs which have no vertices in
common, i.e., the corresponding edges form a matching in UG(D).

224 5. Connectivity of Digraphs

5.3. (−) Prove Corollary 5.3.3.

5.4. Complexity of converting between a directed multigraph and its
network representation. Show that given a directed multigraph D one
can construct its network representation N (D) in polynomial time. Show
that converting in the other direction cannot always be done in a time which
is polynomial in the size of the network representation. Hint: recall that we
assume that capacities are represented as binary numbers.

5.5. Show that every k-regular tournament is k-arc-strong.

5.6. (−) Prove that every eulerian directed multigraph is strong.

5.7. Let D be a digraph, let s be a vertex of D and let k be a natural number.
Suppose that min{λ(s, v), λ(v, s)} ≥ k for every vertex v ∈ V (D)− s. Prove
that λ(D) ≥ k.

5.8. (−) Vertex-strong connectivity of planar digraphs. In a planar undi-
rected graph G on n vertices and m edges we always have m ≤ 3n − 6 by
Euler’s formula (see Corollary 2.12.3). Conclude that no planar digraph is
6-strong.

5.9. (−) Let D be a k-strong digraph and let a be an arbitrary arc of D. Let D′

be obtained from D by reversing a. Prove that D′ is (k − 1)-strong.

5.10. Connectivity of powers of cycles. Recall that the kth power of a cycle
C = v1 . . . vnv1 is the digraph with vertex set {v1, . . . , vn} and arc set {vivj :
i + 1 ≤ j ≤ i + k, i ∈ [n]}. Prove that the kth power of a cycle on n ≥ k + 1
vertices is k-strong.

5.11. (−) For every natural number k describe a k-strong digraph D for which
reversing any arc of D results in a digraph with vertex-strong connectivity
less than k.

5.12. (+) Finding k arc-disjoint (x, y)-paths of minimum total weight. Let
D = (V, A, w) be a directed multigraph with weights on the arcs, let x, y ∈ V
be distinct vertices and let k be a natural number. Describe a polynomial
algorithm which either finds a minimum weight collection of k arc-disjoint
(x, y)-paths, or demonstrates that D does not have k arc-disjoint (x, y)-paths.
Hint: use flows. Argue that you can find k internally disjoint (x, y)-paths of
minimum total weight using a similar approach.

5.13. (+) Minimum augmentations to ensure k arc-disjoint (s, t)-paths.
Let D = (V, A, w) be a directed multigraph, let s, t be special vertices of D
and let k be a natural number such that D does not have k arc-disjoint (s, t)-
paths. Prove that it is possible to augment D optimally by adding new arcs
so that the new directed multigraph has k arc-disjoint (s, t)-paths and all new
arcs go from s to t. Now consider the same problem when there are weights
on the arcs. Devise an algorithm to find the cheapest set of new arcs whose
addition to D gives a directed multigraph with k arc-disjoint (s, t)-paths.
Hint: use min cost flows.

5.14. Relation between Menger’s theorem and the Max-Flow Min-Cut
theorem. Prove that Menger’s theorem implies the max-flow min-cut theo-
rem for network in which all capacities are integer valued.

5.10 Exercises 225

5.15. Refining Menger’s theorem. Let D be a k-strong directed multigraph.
Let x1, x2, . . . , xr, y1, y2, . . . , ys be distinct vertices of D and let a1, a2, . . . , ar,
b1, b2, . . . , bs be natural numbers such that

r
X

i=1

ai =

s
X

j=1

bj = k.

Prove that D contains k internally disjoint paths P1, P2, . . . , Pk with the
property that precisely ai (bj) of these start at xi (end at yj). Argue that
the analogous statement concerning arc-disjoint paths is true if we replace
vertex-strong connectivity by arc-strong connectivity.

5.16. Refining Menger’s theorem for undirected graphs. Prove the analo-
gous statement of Exercise 5.15 for undirected graphs.

5.17. Menger’s theorem for sets of vertices. Let D be k-strong and let X, Y
be distinct subsets of V (D). Prove that D contains k internally disjoint paths
which start in X and end in Y and have only their starting (ending) vertex
in X (Y).

5.18. (+) Ear decomposition in linear time. Supply the algorithmic details
missing in the proof of Corollary 5.3.7. In particular, describe how to store
the arcs in such a way that the ear decomposition can be found in linear
time.

5.19. (+) Strong orientations of mixed multigraphs in linear time. Give
an O(n+m) algorithm for finding a strong orientation of a mixed multigraph
or a proof that no such orientation exists (Chung, Garey and Tarjan [218]).

5.20. (+) Cycle subdigraphs containing specified arcs. Prove the following.
Suppose D is k-strong (respectively, k-arc-strong) and e1, e2, . . . , ek are arcs
of D such that no two arcs have a common head or tail. Then D has a cycle
subgraph (respectively, a collection of arc-disjoint cycles) F = {C1, . . . , Cr},
1 ≤ r ≤ k, such that each arc ei is an arc of precisely one of the cycles in F .
Hint: add two new vertices s, t, connect these appropriately to D and then
apply Menger’s theorem to s and t.

5.21. Prove the following: Every s-regular round digraph has strong vertex- and
arc-connectivity equal to s (Ayoub and Frisch [54]).

5.22. Connectivity of complete biorientations of undirected graphs. Let G
be a k-connected undirected graph for some k ≥ 1 and let D be the complete
biorientation of G. Prove that for every arc xy of D the digraph D − xy is
k-strong if and only if D − {xy, yx} is k-strong.

5.23. Minimal k-out-critical sets are strongly connected. Prove that if D is
a directed multigraph and X is a minimal k-out-critical set, then the directed
multigraph D〈X〉 is strongly connected.

5.24. Derive Corollary 5.7.4 from Theorem 5.7.2.

5.25. Removing a minimal separating set from a locally semicomplete
digraph. Prove Lemma 5.8.4.

5.26. Large 3-strong tournaments with every vertex critical. Prove that
every tournament in the class T from Figure 5.9 is 3-strong and that every
vertex different from x, y is critical.

226 5. Connectivity of Digraphs

5.27. (−) Let D be a k-arc-strong semicomplete digraph on at least 2k+2 vertices.
Prove that there exists an arc a of D such that D − a is k-arc-strong. Hint:
prove that D cannot be minimally k-arc-strong.

5.28. (−) Describe a polynomial algorithm which, given a directed multigraph D,
decides whether λ(D) = δ0(D).

6. Hamiltonian, Longest and Vertex-Cheapest
Paths and Cycles

In this chapter we will consider the hamiltonian path and cycle problems
for digraphs as well as some related problems such as the longest or vertex-
heaviest path and cycle problems. We describe and prove a number of results
in the area as well as formulate several open questions.

In this edition of the book, we do not discuss some powerful necessary
conditions, due to Gutin and Yeo, for a digraph to be hamiltonian (see [91,
476]). These conditions are generalizations of the simple conditions that every
hamiltonian digraph is strong and contains a cycle factor.

Section 6.1 deals with the time complexity issues. In Section 6.2, we obtain
necessary and sufficient conditions by Bang-Jensen for a path-mergeable di-
graph to be hamiltonian. Since locally in-semicomplete and out-semicomplete
digraphs are proper subclasses (see Proposition 2.9.1) of path-mergeable di-
graphs, we may use these conditions, in Section 6.3, to derive a characteriza-
tion of hamiltonian locally in-semicomplete and out-semicomplete digraphs.
As corollaries, we obtain the corresponding results for locally semicomplete
digraphs. Digraphs with restricted degrees are considered in Section 6.4 where
a number of degree-related sufficient conditions for a digraph to be hamilto-
nian are described. In that section, we also consider a powerful proof tech-
nique, called multi-insertion, that can be applied to prove many theorems
on hamiltonian digraphs. Oriented graphs with restricted semi-degrees are
considered in Section 6.5, where six conjectures and some supporting results
are presented.

A number of papers were devoted to studying the structure of longest
cycles and paths of semicomplete multipartite digraphs. In Section 6.6, we
consider the most important results obtained in this area so far including
some important results by Yeo. The proofs in that section provide further
illustrations of the multi-insertion technique.

Sections 6.7 and 6.8 are devoted to quasi-transitive digraphs. We present
two interesting methods to tackle the hamiltonian path and cycle problems,
and the vertex-heaviest path and cycle problems, respectively, in this class
of digraphs. The second method by Bang-Jensen, Gutin and Yeo allows one
to find vertex-heaviest paths and cycles in vertex-weighted quasi-transitive
digraphs in polynomial time (where the weights are on the vertices). Since

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 6,
© Springer-Verlag London Limited 2010

227

http://dx.doi.org/10.1007/978-1-84800-998-1_6

228 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

the weights can be positive and negative, the results can be formulated (and
are formulated) for vertex-cheapest paths and cycles.

The last section is devoted to results and open problems on hamiltonian
paths and cycles in some classes of digraphs not considered in the previous
sections. For additional information on hamiltonian and traceable digraphs,
see, e.g., the surveys [85, 90] by Bang-Jensen and Gutin, [169] by Bondy,
[457] by Gutin and [890, 888] by Volkmann.

6.1 Complexity

For arbitrary digraphs the hamiltonian path and hamiltonian cycle prob-
lems are very difficult and both are NP-complete (see, e.g., the book [393]
by Garey and Johnson). For convenience of later referencing we state these
results as theorems.

Theorem 6.1.1 The problem to decide whether a given digraph has a hamil-
tonian cycle is NP-complete. ��

Theorem 6.1.2 The problem to decide whether a given digraph has a hamil-
tonian path is NP-complete. ��

It is worthwhile mentioning that the hamiltonian cycle and path problems
are NP-complete even for some special classes of digraphs. Garey, Johnson
and Tarjan showed [395] that the problem remains NP-complete even for pla-
nar 3-regular digraphs. We prove the following result due to A. Yeo (private
communication, 2003).

z1 − z6

y1 − y6

x1 − x6

Figure 6.1 The gadget H(x, y, z). The vertices are ordered from the left to the
right and labelled as indicated in the left part of the figure.

Theorem 6.1.3 It is NP-complete to decide whether a 2-regular digraph D
has a hamiltonian cycle.

Proof: We will reduce 3-SAT (see Section 18.3) to the Hamilton cycle
problem for 2-regular digraphs. Consider the following digraph H(x, y, z):
V (H(x, y, z)) = {xi, yi, zi : i = 1, 2, 3, 4, 5, 6},

6.1 Complexity 229

A(H(x, y, z)) = {xiyi, yizi, zixi : i = 1, 2, 3, 4, 5, 6} ∪
{xjxj+1, yjyj+1, zjzj+1 : j = 1, 2, 3, 4, 5}

(see Figure 6.1). It is easy to verify that the digraph H(x, y, z) has the fol-
lowing properties:

(i) Every Hamilton path of H(x, y, z) starting at x1 (y1, z1, respectively)
terminates at x6 (y6, z6, respectively).

(ii) Let P ∪Q be a 2-path factor of H(x, y, z) such that the path P starts
at x1 and the path Q starts at y1. Then P terminates at x6 and Q at y6.
Similarly for the pairs x1, z1 and y1, z1.

(iii) Let P ∪ Q ∪ R be a 3-path factor of H(x, y, z) such that the paths
P, Q and R start at x1, y1 and z1, respectively. Then P, Q and R terminate
at x6, y6 and z6, respectively.

Consider an instance I of 3-SAT with variables v1, . . . , vk and clauses
C1, . . . , Cp. We may assume that every variable and its negation appear in
I as literals (if needed, add to I clauses containing variables together with
their negations). Construct a digraph D as follows: start from a disjoint union
U = H1 ∪H2 ∪ . . .∪Hp, where Hi = H(α, β, γ), α, β and γ are literals in Ci,
i ∈ [p]. Since the same literals can occur in different clauses, we denote the
vertices of Hi = H(α, β, γ) by αj(Hi), βj(Hi) and γj(Hi), j = 1, 2, 3, 4, 5, 6.

For each i ∈ [k], let Si = {ji
1, j

i
2, . . . , j

i
a(i)} (ji

1 < ji
2 < . . . < ji

a(i)) be a set
defined as follows: l ∈ Si if and only if Cl contains vi as a literal. Similarly,
for each i = 1, 2, . . . , k, let S′

i = {qi
1, q

i
2, . . . , q

i
b(i)} (qi

1 < qi
2 < . . . < qi

b(i)) be a

set such that l ∈ S′
i if and only if Cl contains vi as a literal.

Now we finish constructing D. Add to U vertices u1, w1, u2, w2, . . . , uk, wk.
Each ui dominates the vertex vi

1(Hji
1
) and the vertex vi

1(Hqi
1
), i ∈ [k]. Each

vertex vi
6(Hji

l
) dominates vi

1(Hji
l+1

), l ∈ [a(i) − 1], and each vertex vi
6(Hqi

l
)

dominates vi
1(Hqi

l+1
), l ∈ [b(i)−1]. The vertex wi is dominated by two vertices,

vi
6(Hji

a(i)
) and vi

6(Hqi
b(i)

), for every i ∈ [k]. Finally, wi→{ui−1, ui+1} for every
i ∈ [k], where u0 = uk, uk+1 = u1.

It is easy to verify that D is 2-regular. Consider a truth assignment t in
which vi = 1. We show how to construct the fragment1 of a Hamilton cycle
Z in D corresponding to vi. The fragment contains the arc from ui to vi

1

in Hji
1
, the arcs vi

6(Hji
l
)vi

1(Hji
l+1

), l ∈ [a(i) − 1], the arc from ui
6 in Hji

a(1)

to wi and the arc wiui+1. If vi = 1 in t, then we can similarly construct
the fragment of Z corresponding to vi (we use Hqi

1
, Hqi

2
, . . . , Hqi

b(1)
instead of

Hji
1
, Hji

2
, . . . , Hji

a(1)
).

Since every clause is satisfied by t, the cycle Z uses vertices from each
digraph in the disjoint union H1∪H2∪ . . .∪Hp. By the properties (i), (ii) and
(iii) of H(x, y, z) above, if s (1 ≤ s ≤ 3) literals are satisfied in a clause Cj by

1 Each fragment is not a path, but a collection of disjoint arcs.

230 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

t, all vertices of the corresponding digraph Hj can be used in Z due to the
existence of an appropriate s-path factor in Hj . Thus, Z is indeed Hamilton.

Similarly, from a Hamilton cycle Z of D one can construct a truth assign-
ment t satisfying I by finding which literals in t are to be assigned 1. ��

It follows easily from Theorems 6.1.1 and 6.1.2 that the longest path and
cycle problems are NP-hard as optimization problems for arbitrary digraphs.
This is also true for several special classes of digraphs. However, for some
important special classes of digraphs these problems are polynomial time
solvable. We will discuss many such classes in the chapter.

One such important example is as follows. Johnson, Robertson, Seymour
and Thomas [573] proved the following theorem for directed tree-width. By
Lemma 2.13.9, this theorem holds also for directed path-width and DAG-
width (see Section 2.13 for definitions of directed width parameters).

Theorem 6.1.4 The Hamilton cycle and path problems are polynomial-time
solvable for digraphs of bounded directed tree-width (DAG-width, directed
path-width, respectively). ��

Many sufficient conditions for the existence of a Hamilton cycle can be
transformed into sufficient conditions for the existence of a Hamilton path
using the following simple observation.

Proposition 6.1.5 A digraph D has a Hamilton path if and only if the di-
graph D∗, obtained from D by adding a new vertex x∗ such that x∗ dominates
every vertex of D and is dominated by every vertex of D, is hamiltonian. ��

6.2 Hamilton Paths and Cycles in Path-Mergeable
Digraphs

The class of path-mergeable digraphs was introduced in Section 2.8, where
some of its properties were studied. In this section, we prove a characteriza-
tion of hamiltonian path-mergeable digraphs due to Bang-Jensen [72].

We begin with a simple lemma which forms the basis for the proof of
Theorem 6.2.2. For a cycle C, a C-bypass is a path of length at least two
with both end-vertices on C and no other vertices on C.

Lemma 6.2.1 [72] Let D be a path-mergeable digraph and let C be a cycle in
D. If D has a C-bypass P , then there exists a cycle in D containing precisely
the vertices V (C) ∪ V (P).

Proof: Let P be an (x, y)-path. Then the paths P and C[x, y] can be merged
into one (x, y)-path R, which together with C[y, x] forms the desired cycle.

��

6.3 Hamilton Paths and Cycles in Locally In-Semicomplete Digraphs 231

Theorem 6.2.2 [72] A path-mergeable digraph D of order n ≥ 2 is hamil-
tonian if and only if D is strong and UG(D) is 2-connected.

Proof: ‘Only if’ is obvious; we prove ‘if’. Suppose that D is strong, UG(D)
is 2-connected and D is not hamiltonian. Let C = u1u2 . . . upu1 be a longest
cycle in D. Observe that, by Lemma 6.2.1, there is no C-bypass. For each
i ∈ [p] let Xi (respectively, Yi) be the set of vertices of D − V (C) that can
be reached from ui (respectively, from which ui can be reached) by a path in
D − (V (C)− ui). Since D is strong,

X1 ∪ . . . ∪Xp = Y1 ∪ . . . ∪ Yp = V (D) − V (C).

Since there is no C-bypass, every path starting at a vertex in Xi and ending
at a vertex in C must end at ui. Thus, Xi ⊆ Yi. Similarly, Yi ⊆ Xi and,
hence, Xi = Yi. Since there is no C-bypass, the sets Xi are disjoint. Since
we assumed that D is not hamiltonian, at least one of these sets, say X1, is
non-empty. Since UG(D) is 2-connected, there is an arc with one end-vertex
in X1 and the other in V (D)− (X1 ∪u1), and no matter what its orientation
is, this implies that there is a C-bypass, a contradiction. ��

Using the proof of this theorem, Lemma 6.2.1 and Proposition 2.8.3, it is
not difficult to show the following (Exercise 6.1):

Corollary 6.2.3 [72] There is an O(nm) algorithm to decide whether a given
strong path-mergeable digraph has a hamiltonian cycle and find one if it exists.

��

Clearly, Theorem 6.2.2 and Corollary 6.2.3 imply an obvious characteriza-
tion of longest cycles in path-mergeable digraphs and a polynomial algorithm
to find a longest cycle. Neither a characterization nor the complexity of the
hamiltonian path problem for path-mergeable digraphs is currently known.
The following problem was posed by Bang-Jensen and Gutin:

Problem 6.2.4 [89] Characterize traceable path-mergeable digraphs. Is there
a polynomial algorithm to decide whether a path-mergeable digraph is trace-
able?

For a related result, see Proposition 7.3.3. This result may be considered
as a characterization of traceable path-mergeable digraphs. However, this
characterization seems of not much value from the complexity point of view.

6.3 Hamilton Paths and Cycles in Locally
In-Semicomplete Digraphs

According to Proposition 2.9.1, every locally in-semicomplete digraph is path-
mergeable. By Exercise 6.2, every strong locally in-semicomplete digraph has

232 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

a 2-connected underlying graph. Thus, Theorem 6.2.2 implies the following
characterization of hamiltonian locally in-semicomplete digraphs2.

Theorem 6.3.1 [105] A locally in-semicomplete digraph D of order n ≥ 2
is hamiltonian if and only if D is strong. ��

This theorem generalizes Camion’s theorem on strong tournaments (Corol-
lary 1.5.2). Bang-Jensen and Hell [101] showed that for the class of locally
in-semicomplete digraphs Corollary 6.2.3 can be improved to the following
result.

Theorem 6.3.2 [101] There is an O(m + n log n) algorithm for finding a
hamiltonian cycle in a strong locally in-semicomplete digraph. ��

In Section 6.2, we remarked that the Hamilton path problem for path-
mergeable digraphs is unsolved so far. For a subclass of this class, locally
in-semicomplete digraphs, an elegant characterization, due to Bang-Jensen,
Huang and Prisner, exists.

Theorem 6.3.3 [105] A locally in-semicomplete digraph is traceable if and
only if it contains an in-branching.

Proof: Since a Hamilton path is an in-branching, it suffices to show that
every locally in-semicomplete digraph D with an in-branching T is traceable.
We prove this claim by induction on the number b of vertices of T of in-degree
zero.

For b = 1, the claim is trivial. Let b ≥ 2. Consider a pair of vertices x, y
of in-degree zero in T . By the definition of an in-branching there is a vertex
z in T such that T contains both (x, z)-path P and (y, z)-path Q. Assume
that the only common vertex of P and Q is z.

By Proposition 2.9.2, there is a path R in D that starts at x or y and
terminates at z and V (R) = V (P) ∪ V (Q). Using this path, we may replace
T with an in-branching with b − 1 vertices of in-degree zero and apply the
induction hypothesis of the claim. ��

Clearly, Theorem 6.3.3 implies that a locally out-semicomplete digraph is
traceable if and only if it contains an out-branching. By Proposition 1.7.1,
we have the following:

Corollary 6.3.4 A locally in-semicomplete digraph is traceable if and only
if it contains only one terminal strong component. ��

Using Corollary 6.3.4, Bang-Jensen and Hell [101] proved the following:
2 Actually, this characterization, as well as the other results of this section, were

originally proved only for oriented graphs. However, as can be seen from Exercises
2.29 and 2.30, the results for oriented graphs immediately imply the results of
this section.

6.4 Hamilton Cycles and Paths in Degree-Constrained Digraphs 233

Theorem 6.3.5 A longest path in a locally in-semicomplete digraph D can
be found in time O(m + n log n). ��

Corollary 6.3.4 and Lemma 2.9.3 imply the following:

Corollary 6.3.6 (Bang-Jensen) [66] A locally semicomplete digraph has
a hamiltonian path if and only if it is connected. ��

Notice that there is a nice direct proof of this corollary (using Proposition
2.9.2), which is analogous to the classical proof of Rédei’s theorem displayed
in procedure HamPathTour in Section 18.1. See Exercise 6.4.

6.4 Hamilton Cycles and Paths in Degree-Constrained
Digraphs

In Subsection 6.4.1 we formulate certain sufficient degree-constrained condi-
tions for hamiltonicity of digraphs. Several of these conditions do not follow
from the others, i.e., there are certain digraphs that can be proved to be
hamiltonian using some condition but none of the others. (The reader will be
asked to show this in the exercises.)

In Subsection 6.4.3 we provide proofs to some of these conditions to il-
lustrate the power of the multi-insertion technique. (This technique can
be traced back to Ainouche [16] for undirected graphs and to Bang-Jensen
[70] for digraphs, see also the paper [93] by Bang-Jensen, Gutin and Huang).
The technique itself is introduced in Subsection 6.4.2. The strength of the
multi-insertion technique lies in the fact that we can prove the existence of a
hamiltonian cycle without actually exhibiting it. Moreover, our hamiltonian
cycles may have quite a complicated structure. For example, compare the
hamiltonian cycles in the proof of Theorem 6.4.1 to the hamiltonian paths
constructed in the inductive proof of Theorem 1.4.2. The multi-insertion tech-
nique is used in some other parts of this book, see e.g., Section 6.6.

Let x, y be a pair of distinct vertices in a digraph D. The pair {x, y} is
dominated by a vertex z if z→x and z→y; in this case we say that the
pair {x, y} is dominated. Likewise, {x, y} dominates a vertex z if x→z
and y→z; we call the pair {x, y} dominating.

6.4.1 Sufficient Conditions

Considering the converse digraph and using Theorem 6.3.1, we see that a
locally out-semicomplete digraph is hamiltonian if and only if it is strong.
This can be generalized as follows. We prove Theorem 6.4.1 in Subsection
6.4.3.

234 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

Theorem 6.4.1 [94] Let D be a strong digraph of order n ≥ 2. Suppose that,
for every dominated pair of non-adjacent vertices {x, y}, either d(x) ≥ n and
d(y) ≥ n − 1 or d(x) ≥ n − 1 and d(y) ≥ n. Then D is hamiltonian. ��

The following example shows the sharpness of the conditions of Theorem
6.4.1 (and Theorem 6.4.5), see Figure 6.2. Let G and H be two disjoint
transitive tournaments such that |V (G)| ≥ 2, |V (H)| ≥ 2. Let w be the vertex
of out-degree 0 in G and w′ the vertex of in-degree 0 in H. Form a new digraph
by identifying w and w′ to one vertex z. Add four new vertices x, y, u, v
and the arcs {xv, yv, ux, uy} ∪ {xz, zx, yz, zy} ∪ {rg : r ∈ {x, y, v}, g ∈
V (G) − w} ∪ {hs : h ∈ V (H) − w′, s ∈ {u, x, y}}. Denote the resulting
digraph by Qn, where n is the order of Qn. It is easy to check that Qn

is strong and non-hamiltonian (Exercise 6.7). Also, x, y is the only pair of
non-adjacent vertices which is dominating (dominated, respectively). An easy
computation shows that

d(x) = d(y) = n − 1 = d+(x) + d−(y) = d−(x) + d+(y).

u

H − w′
G− w

z

y xv

Figure 6.2 The digraph Qn. The two unoriented edges denote 2-cycles.

Combining Theorem 6.4.1 with Proposition 6.1.5 one can obtain sufficient
conditions for a digraph to be traceable (see also Exercise 6.6). Theorem 6.4.1
also has the following immediate corollaries.

Corollary 6.4.2 (Ghouila-Houri) [403] If the degree of every vertex in a
strong digraph D of order n is at least n, then D is hamiltonian. ��

Corollary 6.4.3 Let D be a digraph of order n. If the minimum semi-degree
of D, δ0(D) ≥ n/2, then D is hamiltonian. ��

It turns out that even a slight relaxation of Corollary 6.4.3 brings in non-
hamiltonian digraphs. In particular, Darbinyan [245] proved the following:

6.4 Hamilton Cycles and Paths in Degree-Constrained Digraphs 235

Proposition 6.4.4 Let D be a digraph of even order n ≥ 4 such that the
degree of every vertex of D is at least n − 1 and δ0(D) ≥ n/2 − 1. Then
either D is hamiltonian or D belongs to a non-empty finite family of non-
hamiltonian digraphs. ��

By Theorem 6.3.1, a locally semicomplete digraph is hamiltonian if and
only if it is strong [66]. This result was generalized by Bang-Jensen, Gutin
and Li [94] as follows.

Theorem 6.4.5 Let D be a strong digraph of order n. Suppose that D sat-
isfies min{d+(x) + d−(y), d−(x) + d+(y)} ≥ n for every pair of dominating
non-adjacent and every pair of dominated non-adjacent vertices {x, y}. Then
D is hamiltonian.

We prove this theorem in Subsection 6.4.3. Theorem 6.4.5 implies Corol-
lary 6.4.3 as well as the following theorem by Woodall [911]:

Corollary 6.4.6 Let D be a digraph of order n ≥ 2. If d+(x) + d−(y) ≥ n
for all pairs of vertices x and y such that there is no arc from x to y, then
D is hamiltonian. ��

The following theorem generalizes Corollaries 6.4.2, 6.4.3 and 6.4.6. The
inequality of Theorem 6.4.7 is best possible: Consider

↔
Kn−2 (n ≥ 5) and fix

a vertex u in this digraph. Construct the digraph Hn by adding to
↔
Kn−2 a

pair v, w of vertices such that both v and w dominate every vertex in
↔
Kn−2

and are dominated by only u, see Figure 6.3. It is easy to see that Hn is
strong and non-hamiltonian (Hn − u is not traceable). However, v, w is the
only pair of non-adjacent vertices in Hn and d(v) + d(w) = 2n − 2.

↔
Kn−3

u

w v

Figure 6.3 The digraph Hn.

Theorem 6.4.7 (Meyniel’s theorem) [698] Let D be a strong digraph of
order n ≥ 2. If d(x) + d(y) ≥ 2n− 1 for all pairs of non-adjacent vertices in
D, then D is hamiltonian. ��

236 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

Short proofs of Meyniel’s theorem were given by Overbeck-Larisch [735]
and Bondy and Thomassen [171]. The second proof is slightly simpler than
the first one and can also be found in the book [902] by West (see Theorem
8.4.38). Using Proposition 6.1.5 one can easily see that replacing 2n − 1 by
2n − 3 in Meyniel’s theorem we obtain sufficient conditions for traceability.
(Note that for traceability we do not require strong connectivity.) Darbinyan
[248] proved that by weakening the degree condition in Meyniel’s theorem
only by one, we obtain a stronger result:

Theorem 6.4.8 [248] Let D be a digraph of order n ≥ 3. If d(x) + d(y) ≥
2n − 2 for all pairs of non-adjacent vertices in D, then D contains a hamil-
tonian path in which the initial vertex dominates the terminal vertex. ��

Berman and Liu [147] extended Theorem 6.4.7 as formulated below. For
a digraph D of order n, a set M ⊆ V (D) is Meyniel if d(x) + d(y) ≥ 2n− 1
for every pair x, y of non-adjacent vertices in M . The proof of Theorem 6.4.9
in [147] is based on the multi-insertion technique.

Theorem 6.4.9 [147] Let M be a Meyniel set of vertices of a strong digraph
D of order n ≥ 2. Then D has a cycle containing all vertices of M . ��

Another extension of Meyniel’s theorem was given by Heydemann [527].

Theorem 6.4.10 [527] Let h be a non-negative integer and let D be a strong
digraph of order n ≥ 2 such that, for every pair of non-adjacent vertices x
and y, we have d(x) + d(y) ≥ 2n− 2h + 1. Then D contains a cycle of length
greater than or equal to �n−1

h+1 � + 1. ��

Manoussakis [682] proved the following sufficient condition that involves
triples rather than pairs of vertices. Notice that Theorem 6.4.11 does not
imply either of Theorems 6.4.1, 6.4.5 and 6.4.7 [94].

Theorem 6.4.11 [682] Suppose that a strong digraph D of order n ≥ 2
satisfies the following conditions for every triple x, y, z ∈ V (D) such that x
and y are non-adjacent:

(a) If there is no arc from x to z, then d(x)+d(y)+d+(x)+d−(z) ≥ 3n−2.
(b) If there is no arc from z to x, then d(x)+d(y)+d−(x)+d+(z) ≥ 3n−2.

Then D is hamiltonian. ��

The next theorem, due to Zhao and Meng, resembles Theorems 6.4.5 and
6.4.7. However, Theorem 6.4.12 does not imply any of these theorems. The
sharpness of the inequality of Theorem 6.4.12 can be seen from the digraph
Hn introduced before Theorem 6.4.7.

6.4 Hamilton Cycles and Paths in Degree-Constrained Digraphs 237

Theorem 6.4.12 [933] Let D be a strong digraph of order n ≥ 2. If

d+(x) + d+(y) + d−(u) + d−(v) ≥ 2n − 1

for every pair x, y of dominating vertices and every pair u, v of dominated
vertices, then D is hamiltonian. ��

Theorems 6.4.5 and 6.4.12 support the following conjecture by Bang-
Jensen, Gutin and Li.

Conjecture 6.4.13 [94] Let D be a strong digraph of order n ≥ 2. Suppose
that d(x)+d(y) ≥ 2n−1 for every pair of dominating non-adjacent and every
pair of dominated non-adjacent vertices {x, y}. Then D is hamiltonian.

Bang-Jensen, Guo and Yeo [82] proved that if we replace the degree con-
dition d(x) + d(y) ≥ 2n − 1 with d(x) + d(y) ≥ 5

2n − 4 in Conjecture 6.4.13,
then D is hamiltonian. They also provided additional support for Conjecture
6.4.13 by showing that every digraph satisfying the condition of Conjecture
6.4.13 has a cycle factor.

Perhaps Conjecture 6.4.13 can even be generalized to the following which
was conjectured by Bang-Jensen, Gutin and Li:

Conjecture 6.4.14 [94] Let D be a strong digraph of order n ≥ 2. Suppose
that, for every pair of dominated non-adjacent vertices {x, y}, d(x) + d(y) ≥
2n − 1. Then D is hamiltonian.

Let F be the digraph obtained from the complete digraph
↔
Kn−3 by

adding three new vertices {x, y, z} and the following arcs {xy, yx, yz, zy, zx}∪
{xu, ux, yu : u ∈ V (

↔
Kn−3)}, see Figure 6.4. Clearly F is strongly connected

and the underlying undirected graph of F is 2-connected. However, F is not
hamiltonian as all hamiltonian paths in F −x start at z, but x does not dom-
inate z. The only pairs of non-adjacent vertices in D are z and any vertex
u ∈ V (

↔
Kn−3) and here we have d(z) + d(u) = 2n− 2. Thus both conjectures

above would be the best possible.
One of the oldest conjectures in the area of hamiltonian digraphs is the

following conjecture by Nash-Williams.

Conjecture 6.4.15 [719, 720] Let D be a digraph of order n ≥ 3 satisfying
the following conditions:

1. For every positive integer k less than (n − 1)/2, the number of vertices
of out-degree less than or equal to k is less than k.

2. The number of vertices of out-degree less than or equal to (n − 1)/2 is
less than or equal to (n − 1)/2.

3. For every positive integer k less than (n − 1)/2, the number of vertices
of in-degree less than or equal to k is less than k.

238 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

x y

z

↔
Kn−3

Figure 6.4 The digraph F .

4. The number of vertices of in-degree less than or equal to (n− 1)/2 is less
than or equal to (n − 1)/2.

Then D is hamiltonian.

Conjecture 6.4.15 seems to be very difficult (see comments by Nash-
Williams in [720, 721]). This conjecture was inspired by the corresponding
theorem by Pósa [753] on undirected graphs. Pósa’s result implies that the as-
sertion of this conjecture is true at least for symmetric digraphs, i.e., digraphs
D such that xy ∈ A(D) implies yx ∈ A(D).

One may also try to obtain digraph analogues of various other sufficient
degree conditions for graphs, such as Chvátal’s theorem [220], which asserts
that if the degree sequence d1 ≤ d2 ≤ . . . ≤ dn of an undirected graph
satisfies the condition dk ≤ k < n

2⇒dn−k ≥ n− k for each k, then the graph
is hamiltonian. Similarly, one may ask whether every strong digraph whose
non-decreasing degree sequence d1 ≤ d2 ≤ . . . ≤ dn satisfies the following
condition is hamiltonian:

dk ≤ 2k < n⇒dn−k ≥ 2(n − k), k = 1, 2, . . . , n− 1. (6.1)

For a digraph D we can obtain the non-decreasing out-degree and in-
degree sequences: d+

1 ≤ d+
2 ≤ . . . ≤ d+

n and d−1 ≤ d−2 ≤ . . . ≤ d−n (orderings
of vertices of D in these two sequences are usually different). Using the two
sequences, one may suggest conditions similar to (6.1):

d+
k ≤ k <

n

2
⇒ d+

n−k ≥ n − k and

(6.2)

d−k ≤ k <
n

2
⇒ d−n−k ≥ n − k, 1 ≤ k ≤ (n − 1)/2.

6.4 Hamilton Cycles and Paths in Degree-Constrained Digraphs 239

It is not difficult to construct an infinite family of non-hamiltonian strong
digraphs that satisfy both (6.1) and (6.2) (Exercise 6.15). However, if we
‘mix’ the out-degrees with the in-degrees in (6.2), we obtain the following
conjecture due to Nash-Williams:

Conjecture 6.4.16 [721] A strong digraph D is hamiltonian, if the non-
decreasing out-degree and in-degree sequences of D satisfy the following:

d+
k ≤ k <

n

2
⇒ d−n−k ≥ n − k and

d−k ≤ k <
n

2
⇒ d+

n−k ≥ n − k, 1 ≤ k ≤ (n − 1)/2.

6.4.2 The Multi-Insertion Technique

Let P = u1u2 . . . us be a path in a digraph D and let Q = v1v2 . . . vt be a
path in D−V (P). The path P can be inserted into Q if there is a subscript
i ∈ [t − 1] such that vi→u1 and us→vi+1. Indeed, in this case the path Q
can be extended to a new (v1, vt)-path Q[v1, vi]PQ[vi+1, vt]. The path P can
be multi-inserted into Q if there are integers i1 = 1 < i2 < . . . < im =
s + 1 such that, for every k = 2, 3, . . . ,m, the subpath P [uik−1 , uik−1] can be
inserted into Q. The sequence of subpaths P [uik−1 , uik−1], k = 2, . . . ,m, is
a multi-insertion partition of P . Similar definitions can be given for the
case when Q is a cycle.

The complexity of algorithms in this subsection is measured in terms of
the number of queries to the adjacency matrix of a digraph. In this subsection
we prove several simple results, which are very useful while applying the
multi-insertion technique. Some of these results are used in this section, others
will be applied in other parts of this book. The following lemma is a simple
extension of a lemma by Bang-Jensen, Gutin and Li [94].

Lemma 6.4.17 Let P be a path in D and let Q = v1v2 . . . vt be a path (a
cycle, respectively) in D−V (P). If P can be multi-inserted into Q, then there
is a (v1, vt)-path R (a cycle, respectively) in D so that V (R) = V (P)∪V (Q).
Given a multi-insertion partition of P , the path R can be found in time
O(|V (P)||V (Q)|).

Proof: We consider only the case when Q is a path, as the other case (Q is a
cycle) can be proved analogously. Let P = u1u2 . . . us. Suppose that integers
i1 = 1 < i2 < . . . < im = s + 1 are such that the subpaths P [uik−1 , uik−1],
k = 2, 3, . . . ,m, form a multi-insertion partition of P .

We proceed by induction on m. If m = 2, then the claim is obvious, hence
assume that m ≥ 3. Let xy ∈ A(Q) be such that the subpath P [ui1 , ui2−1]
can be inserted between x and y on Q. Choose r as large as possible such that
uir−1→y. Clearly, P [ui1 , uir−1] can be inserted into Q to give a (v1, vt)-path

240 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

Q∗. Thus, if r = m, we are done. Otherwise apply the induction hypothesis
to the paths P [uir , us] and Q∗ (observe that by the choice of r none of the
subpaths of the multi-insertion partition of P [uir , us] can be inserted between
x and y in Q, and thus every such subpath can be inserted into Q∗).

If we postpone the actual construction of R till we have found a new
multi-insertion partition M of P and all (distinct) pairs of vertices between
which the subpaths of M can be inserted, then the complexity claim of this
lemma follows easily. ��

The next two corollaries due to Bang-Jensen, Gutin and Huang, respec-
tively, Yeo can easily be proved using Lemma 6.4.17; their proofs are left as
an easy exercise (Exercise 6.11).

Corollary 6.4.18 [93] Let D be a digraph. Suppose that P = u1u2 . . . ur is
a path in D and C is a cycle in D − P . Suppose that for each i ∈ [r − 1],
either the arc uiui+1 or the vertex ui can be inserted into C, and, in addition,
assume that ur can be inserted into C. Then D contains a cycle Z with the
vertex set V (P) ∪ V (C) and Z can be constructed in time O(|V (P)||V (C)|).

��

Corollary 6.4.19 [915] Let D be a digraph. Suppose that P = u1u2 . . . ur is
a path in D and C is a cycle in D−P . Suppose also that for each odd index
i the arc uiui+1 can be inserted into C, and if r is odd, ur can be inserted
into C. Then D contains a cycle Z with the vertex set V (P) ∪ V (C) and Z
can be constructed in time O(|V (P)||V (C)|). ��

Corollary 6.4.20 [93] Let D be a digraph. Suppose that C is a cycle of even
length in D and Q is a cycle in D − C. Suppose also that for each arc uv of
C either the arc uv or the vertex u can be inserted into Q. Then D contains
a cycle Z with the vertex set V (Q)∪ V (C) and Z can be constructed in time
O(|V (Q)||V (C)|).

Proof: If there is a vertex x on C that can be inserted into Q, then apply
Corollary 6.4.18 to C[x+, x] and Q. Otherwise, all the arcs of C can be in-
serted into Q and we can apply Corollary 6.4.19 to C[y+, y] and Q, where y
is any vertex of C. ��

6.4.3 Proofs of Theorems 6.4.1 and 6.4.5

The following lemma is a slight modification of a lemma by Bondy and
Thomassen [171]; its proof is not difficult and is left as an exercise to the
reader (Exercise 6.8).

Lemma 6.4.21 Let Q = v1v2 . . . vt be a path in D and let w, w′ be vertices
of V (D) − V (Q) (possibly w = w′). If there do not exist consecutive vertices
vi, vi+1 on Q such that viw, w′vi+1 are arcs of D, then d−Q(w)+d+

Q(w′) ≤ t+ξ,
where ξ = 1 if vt→w and 0, otherwise. ��

6.4 Hamilton Cycles and Paths in Degree-Constrained Digraphs 241

In the special case when w′ = w above, we get the following interpretation
of the statement of Lemma 6.4.21.

Lemma 6.4.22 Let Q = v1v2 . . . vt be a path in D, and let w ∈ V (D)−V (Q).
If w cannot be inserted into Q, then dQ(w) ≤ t + 1. If, in addition, vt does
not dominate w, then dQ(w) ≤ t. ��

Let C be a cycle in D. Recall that an (x, y)-path P is a C-bypass if
|V (P)| ≥ 3, x �= y and V (P)∩ V (C) = {x, y}. The length of the path C[x, y]
is the gap of P with respect to C.

Proof of Theorem 6.4.1: Assume that D is non-hamiltonian and C =
x1x2 . . . xmx1 is a longest cycle in D. We first show that D contains a C-
bypass. Assume D does not have one. Since D is strong, D must contain a
cycle Z such that |V (Z) ∩ V (C)| = 1. Without loss of generality, we may
assume that V (Z)∩V (C) = {x1}. Let z be the successor of x1 on Z. Since D
has no C-bypass, z and x2 are non-adjacent. Since z and x2 are a dominated
pair, d(z) + d(x2) ≥ 2n− 1. On the other hand, since D has no C-bypass, we
have dC−x1(z) = dZ−x1(x2) = 0 and |({z, x2}, y) ∪ (y, {z, x2})| ≤ 2 for every
y ∈ V (D) − (V (C) ∪ V (Z)). Thus, d(z) + d(x2) ≤ 2(n − 1); a contradiction.

Let P = u1u2 . . . us be a C-bypass (s ≥ 3). Without loss of generality,
let u1 = x1, us = xγ+1, 0 < γ < m. Suppose also that the gap γ of P is
minimum among the gaps of all C-bypasses.

Since C is a longest cycle of D, γ ≥ 2. Let C ′ = C[x2, xγ], C ′′ =
C[xγ+1, x1], R = D−V (C), and let xj be any vertex in C ′ such that x1→xj .
Let also xk be an arbitrary vertex in C ′. We first prove that

dC′′(xj) ≥ |V (C ′′)| + 2. (6.3)

Since C is a longest cycle and P has the minimum gap with respect to C,
u2 is not adjacent to any vertex on C ′, and there is no vertex y ∈ V (R)−{u2}
such that either u2→y→xk or xk→y→u2. Therefore,

dC′(xk) + dC′(u2) ≤ 2(|V (C ′)| − 1) (6.4)

and
dR(xk) + dR(u2) ≤ 2(n − m − 1). (6.5)

By the maximality of C, u2 cannot be inserted into C ′′, so by Lemma
6.4.22,

dC′′(u2) ≤ |V (C ′′)| + 1. (6.6)

The fact that the pair of non-adjacent vertices {xj , u2} is dominated by
x1 along with (6.4), (6.5) and (6.6), implies that

2n − 1 ≤ d(xj) + d(u2) ≤ dC′′(xj) + 2n − |V (C ′′)| − 3.

This implies (6.3).

242 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

By (6.3) and Lemma 6.4.22, x2 can be inserted into C ′′. Since C is a
longest cycle, it follows from Lemma 6.4.17 that there exists β ∈ {3, . . . , γ}
so that the subpath C[x2, xβ−1] can be multi-inserted into C ′′, but C[x2, xβ]
cannot. In particular, xβ cannot be inserted into C ′′. Thus, by (6.3) and
Lemma 6.4.22, x1 does not dominate xβ and dC′′(xβ) ≤ |V (C ′′)|. This along
with (6.4)-(6.6) gives d(xβ) + d(u2) ≤ 2n − 3. Since u2 forms a dominated
pair with x2, we have that d(u2) ≥ n − 1. Hence,

d(xβ) ≤ n − 2. (6.7)

By the definition of multi-insertion, there are α ∈ {2, 3, . . . , β − 1} and
i ∈ {γ + 1, . . . , m} such that xi→xα and xβ−1→xi+1. Observe that the
pair {xβ , xi+1} is dominated by xβ−1. Thus, by (6.7) and the assumption
of the theorem, either xβ→xi+1 or xi+1→xβ . If xβ→xi+1, then the path
P [x2, xβ] can be multi-inserted into C ′′ which contradicts our assumption.
Hence, xi+1→xβ . Considering the pair xβ , xi+2, we conclude analogously that
xi+2→xβ . Continuing this process, we finally conclude that x1→xβ , contra-
dicting the conclusion above that the arc x1xβ does not exist. ��

Proof of Theorem 6.4.5: Assume that D is not hamiltonian and C =
x1x2 . . . xmx1 is a longest cycle in D. Set R = D−V (C). We first prove that
D has a C-bypass with 3 vertices.

Since D is strong, there is a vertex y in R and a vertex x in C such
that y→x. If y dominates every vertex on C, then C is not a longest cycle,
since a path P from a vertex xi on C to y such that V (P) ∩ V (C) = {xi}
together with the arc y→xi+1 and the path C[xi+1, xi] form a longer cycle
in D. Hence, either there exists a vertex xr ∈ V (C) such that xr→y→xr+1,
in which case we have the desired bypass, or there exists a vertex xj ∈
V (C) so that y and xj are non-adjacent, but y→xj+1. Since the pair {y, xj}
dominates xj+1, d+(xj) + d−(y) ≥ n. This implies the existence of a vertex
z ∈ V (D) − {xj , xj+1, y} such that xj→z→y. Since C is a longest cycle,
z ∈ V (C). So, B = zyxj+1 is the desired bypass.

Without loss of generality, assume that z = x1 and the gap j of B with
respect to C is minimum among the gaps of all C-bypasses with three vertices.
Clearly, j ≥ 2.

Let C ′ = C[x2, xj] and C ′′ = C[xj+1, x1]. Since C is a longest cycle,
C ′ cannot be multi-inserted into C ′′. It follows from Lemma 6.4.21 that
d+

C′′(xj) + d−C′′(x2) ≤ |V (C ′′)| + 1. By Lemma 6.4.22 and the maximality
of C, dC′′(y) ≤ |V (C ′′)| + 1. Analogously to the way we derived (6.4) in the
previous proof, we get that dR(y)+d+

R(xj)+d−R(x2) ≤ 2(n−m− 1). Clearly,
d+

C′(xj) + d−C′(x2) ≤ 2|V (C ′)| − 2. Since dC′(y) = 0, the last four inequalities
imply

d(y) + d+(xj) + d−(x2) ≤ 2n − 2. (6.8)

6.5 Longest Paths and Cycles in Degree-Constrained Oriented Graphs 243

Since y is adjacent to neither x2 nor xj , the assumption of the theorem
implies that d+(y) + d−(x2) ≥ n and d−(y) + d+(xj) ≥ n, which contradicts
(6.8). ��

6.5 Longest Paths and Cycles in Degree-Constrained
Oriented Graphs

One may expect that for oriented graphs (i.e., digraphs with no 2-cycles)
a result much stronger than Corollary 6.4.3 holds. Thomassen [854] raised
the natural question of determining the minimum semi-degree that ensures a
Hamilton cycle in an oriented graph. The first attempt to answer this question
was made by Häggkvist [487] who proved that if δ0(D) ≥ (1

2−2−18)n, then D
is hamiltonian. Häggkvist [487] also constructed the following infinite family
of non-hamiltonian oriented graphs D of order n with δ0(D) = (3n − 5)/8.

Let n = 4p + 3, where p is an odd positive integer. Define a digraph D as
follows: V (D) is the disjoint union of four sets Y, Z, R1 and R2 of cardinalities
p + 2, p + 1, p and p, respectively. The arc set A(D) = A(C4[R1, Y, R2, Z]) ∪
AR1∪AR2∪AY,Z , where AR1 and AR2 are the arcs sets of regular tournaments
on vertex sets R1 and R2, respectively, and AY,Z is the arc set of a bipartite
tournament T with partite sets Y and Z in which |d+

T (v) − d−T (v)| ≤ 1 for
each v ∈ Y ∪Z (such a bipartite tournament exists by Exercise 1.27). Observe
that δ+(D) = d+(r) = p−1

2 + p + 1 = 3n−5
8 for each r ∈ R2 and D has no

cycle factor by Proposition 4.11.7(c).
In fact, the above construction was extended by Keevash, Kühn and Os-

thus [587] to prove the following:

Theorem 6.5.1 For any integer n ≥ 3 there is an oriented graph D of order
n with minimum semi-degree �(3n− 4)/8�− 1 which does not contain a cycle
factor. ��

This theorem implies the right lower bound for the minimum semi-degree
that ensures hamiltonicity of an oriented graph at least for graphs of large
order. Indeed, Keevash, Kühn and Osthus [587] proved the following:

Theorem 6.5.2 There exists an integer N such that every oriented graph D
of order n ≥ N with δ0(D) ≥ �(3n − 4)/8� is hamiltonian. ��

The proof of this theorem is quite involved and uses two powerful tools:
Young’s version of the Digraph Regularity Lemma [921] and Csaba’s version
of the so-called Blow-up Lemma [233].

The authors of [587] were unable to settle the following conjecture of
Häggkvist [487] even for large values of n.

Conjecture 6.5.3 Let D be an oriented graph of order n and let δ0(D) +
δ+(D) + δ−(D) > 3n−3

2 . Then D is hamiltonian.

244 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

In support of this conjecture Kelly, Kühn and Osthus [588] proved the
following result.

Theorem 6.5.4 For every α > 0 there exists an integer N = N(α) such that
every oriented graph D of order n ≥ N with δ0(D)+δ+(D)+δ−(D) ≥ (3

2+α)n
is hamiltonian. ��

Jackson conjectured that for regular oriented graphs the following strong
assertion holds.

Conjecture 6.5.5 [555] Every k-regular oriented graph of order at most
4k + 1, where k �= 2, contains a Hamilton cycle.

Jackson [555] raised two more conjectures:

Conjecture 6.5.6 Every 2-strong oriented graph D has either a Hamilton
cycle or a cycle of length at least 2δ−(D) + 2.

Conjecture 6.5.7 Every strong oriented graph D has a cycle of length at
least 2δ0(D) + 1.

In support of both conjectures, Jackson [555] proved that a strong oriented
graph D of minimum in-degree and out-degree k contains either a Hamilton
path or a path of length 2k+2 and that an oriented graph D of minimum in-
degree and out-degree k contains a path of length 2k. The last result provides
support to the following conjecture of S. Thomassé (private communication,
2002). Recall that the girth g(D) of a digraph D is the length of a shortest
cycle of D.

Conjecture 6.5.8 Let D be a digraph containing a cycle and let g be the
girth of D. Then D has a path of length (g − 1)δ+(D).

Even the special case of oriented graphs (i.e., g ≥ 3 and, thus, the lower
bound is 2δ+(D)) remains open.

6.6 Longest Paths and Cycles in Semicomplete
Multipartite Digraphs

While both Hamilton path and Hamilton cycle problems are polynomial time
solvable for semicomplete multipartite digraphs (the latter was a difficult
open problem for a while and was proved by Bang-Jensen, Gutin and Yeo [97]
using several deep results on cycles and paths in semicomplete multipartite
digraphs, see also [917]), only a characterization of traceable semicomplete
multipartite digraphs is known. In Subsection 6.6.1, we give basic results
on hamiltonian and longest paths and cycles in semicomplete multipartite

6.6 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 245

digraphs. Several results of Subsection 6.6.1 are proved in Subsection 6.6.3
using the most important assertion of Subsection 6.6.2. In Subsection 6.6.4,
we formulate perhaps the most important known result on cycles in semi-
complete multipartite digraphs, Yeo’s Irreducible Cycle Subdigraph Theo-
rem, and prove some interesting consequences of this powerful result. Due
to space limitations our treatment of hamiltonian semicomplete multipartite
digraphs is certainly restricted. The reader can find more information on the
topic in the survey papers [89, 90] by Bang-Jensen and Gutin, [457] by Gutin
and [890, 894] by Volkmann, the theses [436, 451, 847, 905, 916], by Guo,
Gutin, Tewes, Winzen and Yeo respectively and the papers cited there.

6.6.1 Basic Results

We start by considering the longest path problem for semicomplete multipar-
tite digraphs. The following characterization by Gutin is proved in Subsection
6.6.3.

Theorem 6.6.1 [448, 452] A semicomplete multipartite digraph D is trace-
able if and only if it contains a 1-path-cycle factor. One can verify whether
D is traceable and find a hamiltonian path in D (if any) in time O(n2.5).

This theorem can be reformulated as pc(D) = 1 if and only if pcc(D) = 1
for a semicomplete multipartite digraph D. Using the result of Exercise 4.67,
the last statement can be easily extended to the following result by Gutin:

Theorem 6.6.2 [451] For a semicomplete multipartite digraph D, pc(D) =
pcc(D). The path covering number of D can be found in time O(n2.5). ��

The non-complexity part of the next result by Gutin follows from Theorem
6.6.1. The complexity part is a simple consequence of Theorem 13.8.1.

Theorem 6.6.3 [452] Let D be a semicomplete multipartite digraph of order
n.

(a) Let F be a 1-path-cycle subdigraph with maximum number of vertices in
D. Then D contains a path P such that V (P) = V (F).

(b) A longest path in D can be constructed in time O(n3). ��

We see from Theorem 6.6.1 that the hamiltonian path problem for semi-
complete multipartite digraphs turns out to be relatively simple. The hamilto-
nian cycle problem for this class of digraphs seems to be much more difficult.
One could guess that similarly to Theorem 6.6.1, a semicomplete multipar-
tite digraph is hamiltonian if and only if it is strong and has a cycle factor.
Even though these two conditions (strong connectivity and the existence of a
cycle factor) are sufficient for semicomplete bipartite digraphs and extended
semicomplete digraphs (see Theorems 6.6.4 and 6.6.5), they are not sufficient

246 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

for semicomplete k-partite digraphs (k ≥ 3) (see, e.g., an example later in
this subsection). The following characterization was obtained independently
by Gutin [444] and Häggkvist and Manoussakis [488].

Theorem 6.6.4 A semicomplete bipartite digraph D is hamiltonian if and
only if D is strong and contains a cycle factor. One can check whether D
is hamiltonian and construct a Hamilton cycle of D (if one exists) in time
O(n2.5). ��

Some sufficient conditions for the existence of a hamiltonian cycle in a
bipartite tournament are described in the survey paper [457] by Gutin.

Theorem 6.6.5 [456] An extended semicomplete digraph D is hamiltonian
if and only if D is strong and contains a cycle factor. One can check whether
D is hamiltonian and construct a Hamilton cycle of D (if one exists) in time
O(n2.5). ��

These two theorems were generalized by Gutin as follows.

Theorem 6.6.6 [447, 451] Let D be a strong semicomplete bipartite digraph.
The length of a longest cycle in D is equal to the number of vertices in a cycle
subdigraph of D of maximum order. One can find a longest cycle in D in time
O(n3).

Theorem 6.6.7 [451] Let D be a strong extended semicomplete digraph and
let F be a cycle subdigraph of D. Then D has a cycle C which contains all
vertices of F . The cycle C can be found in time O(n3). In particular, if F is
maximum, then V (C) = V (F), i.e., C is a longest cycle of D.

Proofs of the last two theorems are given in Subsection 6.6.3. One can see
that the statement of Theorem 6.6.7 is stronger than Theorem 6.6.6. In fact,
the analogue of Theorem 6.6.7 for semicomplete bipartite digraphs does not
hold [451], see Exercise 6.21. The following strengthening of Theorem 6.6.7
is proved by Bang-Jensen, Huang and Yeo [106].

Theorem 6.6.8 Let D = (V, A) be a strong extended semicomplete digraph
with decomposition given by D = S[H1, H2, . . . , Hs], where s = |V (S)| and
every V (Hi) is a maximal independent set in V . Let mi, i ∈ [s], denote
the maximum number of vertices from Hi which are contained in a cycle
subdigraph of D. Then every longest cycle of D contains precisely mi vertices
from each Hi, i ∈ [s]. ��

One may ask whether there is any degree of strong connectivity, which
together with a cycle factor is sufficient to guarantee a hamiltonian cycle
in a semicomplete multipartite digraph (or a multipartite tournament). The

6.6 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 247

answer is negative. In fact, there is no s such that every s-strong multipartite
tournament with a cycle factor has a Hamilton cycle. Figure 6.5 shows a non-
hamiltonian multipartite tournament T which is s-strong (s is the number of
vertices in each of the sets A, B, C, D and X, Y, Z), and has a cycle factor. We
leave it to the reader to verify that there is no Hamilton cycle in T (Exercise
6.20).

...
...

...

...
...

...
...

•••

•••

•••

• •••

•

ZYX

DCBA

Figure 6.5 An s-strong non-hamiltonian multipartite tournament T with a cycle
factor. Each of the sets A, B, C, D and X, Y, Z induces an independent set with
exactly s vertices. All arcs between two sets have the direction shown.

We conclude the description of basic results on hamiltonian semicomplete
digraphs by the following important result which we mentioned above.

Theorem 6.6.9 (Bang-Jensen, Gutin and Yeo) [97] One can verify
whether a semicomplete multipartite digraph D has a hamiltonian cycle and
find one (if it exists) in time O(n7). ��

Yeo [917] proved that the problem can be solved in time O(n5).

6.6.2 The Good Cycle Factor Theorem

The purpose of this subsection, based on the paper [93] by Bang-Jensen,
Gutin and Huang, is to prove some sufficient conditions for a semicomplete
multipartite digraph to be hamiltonian.

Let F = C1 ∪ C2 be a cycle factor or a 1-path-cycle factor in a digraph
D, where C1 is a cycle or a path in D and C2 is a cycle. A vertex v ∈
V (Ci) is called out-singular (in-singular) with respect to C3−i if v⇒C3−i

(C3−i⇒v); v is singular with respect to C3−i if it is either out-singular or
in-singular with respect to C3−i.

248 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

Lemma 6.6.10 [93] Let Q ∪ C be a cycle factor in a semicomplete multi-
partite digraph D. Suppose that the cycle Q has no singular vertices (with
respect to C) and D has no hamiltonian cycle, then for every arc xy of Q
either the arc xy itself can be inserted into C, or both vertices x and y can
be inserted into C.

Proof: Assume without loss of generality that there is some arc xy on Q
such that neither x nor xy can be inserted into C. Since D is a semicom-
plete multipartite digraph and x is non-singular and cannot be inserted into
C, there exists a vertex v on C which is not adjacent to x and v−→x→v+.
Furthermore, v is adjacent to y since x and y are adjacent. Since xy can-
not be inserted into C, we have v→y. Then D contains a Hamilton cycle
Q[y, x]C[v+, v]y, which contradicts the assumption. ��

Lemma 6.6.11 [93] Let D be a semicomplete multipartite digraph contain-
ing a cycle factor C1 ∪ C2 such that Ci has no singular vertices with respect
to C3−i, for both i = 1, 2; then D is hamiltonian. Given C1 and C2, a hamil-
tonian cycle in D can be found in time O(|V (C1)||V (C2)|).

Proof: If at least one of the cycles C1, C2 is even, then by Corollary 6.4.20 and
Lemma 6.6.10 we can find a Hamilton cycle in D in time O(|V (C1)||V (C2)|).
Thus, assume that both of C1, C2 are odd cycles. If some vertex in Ci can be
inserted into C3−i for some i = 1 or 2, then by Corollary 6.4.18 and Lemma
6.6.10, we can construct a Hamilton cycle in D in time O(|V (C1)||V (C2)|).
Thus, we may also assume that no vertex in Ci can be inserted into C3−i for
both i = 1, 2. So, by Lemma 6.6.10, every arc of Ci can be inserted into C3−i.

Now we show that either D is hamiltonian or we may assume that every
arc of Ci can be inserted between two different pairs of vertices in C3−i

(i = 1, 2). Consider an arc x1x2 of C1. Since both x1 and x2 are non-singular
and cannot be inserted into C2, there exist vertices v1 and v2 on C2 such that
vi is not adjacent to xi and v−i →xi→v+

i , i = 1, 2. If v1→x2, then we obtain
a Hamilton cycle. So we may assume that the only arc between x2 and v1 is
x2v1. For the same reason, we may assume that v2 dominates x1 but is not
dominated by x1. Now the arc x1x2 can be inserted between v−1 and v1 and
between v2 and v+

2 .
Hence, x1x2 cannot be inserted between two pairs of vertices only in the

case that v−1 = v2 and v1 = v+
2 . We show that in this case D is hamiltonian.

Construct, at first, a cycle C∗ = C1[x2, x1]C2[v+
1 , v−2]x2 which contains all

the vertices of D but v−1 , v1. The arc v−1 v1 can be inserted into C1, by the
remark at the beginning of the proof. But v−1 v1 cannot be inserted between
x1 and x2, since v1 does not dominate x2 and v−1 = v2 is not dominated by
x1. Hence, the arc v−1 v1 can be inserted into C∗ to give a hamiltonian cycle
of D. This completes the proof that either D is hamiltonian or every arc on
Ci can be inserted between two different pairs of vertices in C3−i.

Assume without loss of generality that the length of C2 is not greater
than that of C1. Then C1 has two arcs xiyi (i = 1, 2) that can be inserted

6.6 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 249

between the same pair u, v of vertices in C2. Since C1 is odd, one of the paths
Q = C1[y+

1 , x−
2] and C1[y+

2 , x−
1] has odd length. Without loss of generality,

suppose that Q is odd. Obviously, C∗ = C2[v, u]C1[x2, y1]v is a cycle of D.
By the fact shown above each arc of the path Q can be inserted into C2

between a pair of vertices different from u, v. Therefore, each arc of Q can
be inserted into C∗. Hence, by Corollary 6.4.19 we conclude that D has a
hamiltonian cycle H. It is not difficult to verify that H can be found in time
O(|V (C1)||V (C2)|). ��

Let D be a semicomplete multipartite digraph and let C ∪ C ′ be a cycle
subdigraph of D. We write that C�>C ′ if C contains singular vertices with
respect to C ′ and they all are out-singular, and C ′ has singular vertices with
respect to C and they all are in-singular. A cycle factor F = C1∪C2∪ . . .∪Ct

is good if for every pair i, j, 1 ≤ i < j ≤ t, neither Ci�>Cj nor Cj�>Ci.
Since this definition and the proof of Lemma 6.6.12 are quite important,

we illustrate them in Figure 6.6. Observe that if C, C ′ are a pair of disjoint
cycles in a semicomplete multipartite digraph D, then (up to switching the
role of the two cycles) at least one of the following four cases applies (see
Figure 6.6):

(a) Every vertex on C has an arc to and from C ′.
(b) There exist vertices x ∈ V (C), y ∈ V (C ′) such that x⇒V (C ′) and

y⇒V (C), or V (C ′)⇒x and V (C)⇒y.
(c) C contains distinct vertices x, y such that x⇒V (C ′) and V (C ′)⇒y.
(d) C�>C ′.

The alternatives (a)-(c) are covered by the definition of a good cycle factor
(for cycle factors containing only two cycles); the alternative (d) is not.

C C′ C C′
C C′

C C′

x

y

x

y

x

y

(a) (b) (c) (d)

Figure 6.6 The four possible situations (up to switching the role of the two cycles or
reversing all arcs) for arcs between two disjoint cycles in a semicomplete multipartite
digraph. In (a) every vertex on C has arcs to and from C′. In (b)-(d) a fat arc
indicates that all arcs go in the direction shown from or to the specified vertex (i.e.,
in (b) all arcs between x and C′ leave x).

The following lemma gives the main result for a good cycle factor con-
taining two cycles.

Lemma 6.6.12 [93] If D is a semicomplete multipartite digraph containing
a good factor C1 ∪C2, then D is hamiltonian. A Hamilton cycle in D can be
constructed in time O(|V (C1)||V (C2)|).

250 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

Proof: The first case is that at least one of the cycles C1 and C2 has no
singular vertices (Situation (a) in Figure 6.6). If both C1, C2 have no singular
vertices, then D is hamiltonian by Lemma 6.6.11 and we can find a Hamilton
cycle in D in time O(|V (C1)||V (C2)|). Assume now that only one of them has
no singular vertices. Suppose without loss of generality that C1 contains an
out-singular vertex x and C2 has no singular vertices. Since C2 contains no
singular vertices, C1 has at least one vertex which is not out-singular. Suppose
that x ∈ V (C1) was chosen such that x+ is not out-singular. Hence there is
a vertex y on C2 dominating x+. If x→y, then y can be inserted into C1 and
hence, by Lemma 6.6.10 and Corollary 6.4.18, D is hamiltonian (consider
C2[y+, y] and C1). Otherwise, x is not adjacent to y. In this case, x→y+ and
D has the hamiltonian cycle C1[x+, x]C2[y+, y]x. The above arguments can
be easily converted into an O(|V (C1)||V (C2)|) algorithm.

Consider the second case: each of C1, C2 has singular vertices with respect
to the other cycle. Assume without loss of generality that C1 has an out-
singular vertex x1. If C2 also contains an out-singular vertex x2 (Situation
(b) in Figure 6.6), then x1 is not adjacent to x2 and xi→x+

3−i for both i = 1, 2.
Hence D is hamiltonian. If C2 contains no out-singular vertices, then it has
in-singular vertices. Since C1 ∪ C2 is a good factor, C1 contains both out-
singular and in-singular vertices (Situation (c) in Figure 6.6). Since both C1

and C2 have in-singular vertices, the digraph D′ obtained from D by reversing
the orientations of the arcs of D has two cycles C ′

1 and C ′
2 containing out-

singular vertices. We conclude that D′ (and hence D) is hamiltonian. Again,
the above arguments can be converted into an O(|V (C1)||V (C2)|) algorithm.

��

The main result on good cycle factors is the following theorem by Bang-
Jensen, Gutin and Huang. This theorem can be proved by induction on t, the
number of cycles in a good cycle factor. We leave the details to the reader.

Theorem 6.6.13 (Bang-Jensen, Gutin and Huang) [93] If D is a
strong semicomplete multipartite digraph containing a good cycle factor F =
C1 ∪C2 ∪ . . .∪Ct (t ≥ 1), then D is hamiltonian. Furthermore, given F one
can find a hamiltonian cycle in D in time O(n2). ��

6.6.3 Consequences of Lemma 6.6.12

In this subsection mostly based on [93], we will show that several important
results on semicomplete multipartite digraphs are consequences of Lemma
6.6.12.

Proof of Theorem 6.6.1: It is sufficient to prove that if P is a path and
C is a cycle of D such that V (P) ∩ V (C) = ∅, then D has a path P ′ with
V (P ′) = V (P)∪V (C). Let P and C be such a pair, and let u be the initial and
v the terminal vertex of P . If u is non-singular or in-singular with respect
to C, then obviously the path P ′ exists. Similarly if v is non-singular or

6.6 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 251

out-singular with respect to C. Assume now that u is out-singular and v is
in-singular with respect to C.

Add a new vertex w to D and the arcs zw, for all z �= u, and the arc wu
to obtain the semicomplete multipartite digraph D′. Then w forms a cycle C ′

with P in D′ and C ∪ C ′ is a good cycle factor of D′. Therefore, by Lemma
6.6.12, D′ has a hamiltonian cycle. Then D contains a hamiltonian path.

It is easy to see that the proof above supplies a recursive O(n2) algorithm
for finding a hamiltonian path in D given a 1-path-cycle factor F . Thus,
the complexity result of this theorem is due to the fact that we can either
construct a 1-path-cycle factor in a digraph or discover that it does not exist
in time O(n2.5): see Exercise 4.67. ��

To obtain the rest of the proofs in this subsection, we need the following:

Lemma 6.6.14 [93] Let D be a strong semicomplete multipartite digraph
containing a cycle subdigraph F = C1 ∪ C2 ∪ . . . ∪ Ct such that for every
pair i, j (1 ≤ i ≤ j ≤ t) Ci⇒Cj or Cj⇒Ci holds. Then D has a cycle C
of length at least |V (F)| and one can find C in time O(n2) for a given F .
If D is an extended semicomplete digraph, then we can choose C such that
V (F) ⊆ V (C).

Proof: Define a tournament T (F) as follows: {C1, . . . , Ct} forms the vertex
set of T (F) and Ci→Cj in T (F) if and only if Ci⇒Cj in D. Let H be the
subdigraph of D induced by the vertices of F and let W be a partite set of
D having a representative in C1.

First consider the case that T (F) is strong. Then it has a hamiltonian
cycle. Without loss of generality assume that C1C2 . . . CtC1 is a hamiltonian
cycle in T (F). If each of Ci (i ∈ [t]) has a vertex from W , then for every
i ∈ [t] choose any vertex wi of V (Ci) ∩W . Then

C1[w1, w
−
1]C2[w2, w

−
2] . . . Ct[wt, w

−
t]w1

is a hamiltonian cycle in H. If there exists a cycle Ci containing no vertices of
W , then we may assume (shifting the cyclic order if needed) that Ct has no
vertices from W . Obviously, H has a hamiltonian path starting at a vertex
w ∈ W ∩ V (C1) and finishing at some vertex v of Ct. Since v→w, H is
hamiltonian.

Now consider the case where T (F) is not strong. Replacing in F every
collection X of cycles which induce a strong component in T (F) by a hamilto-
nian cycle in the subdigraph induced by X, we obtain a new cycle subdigraph
L of D such that T (L) has no cycles. The subdigraph T (L) contains a unique
hamiltonian path Z1Z2 . . . Zs, where Zi is a cycle of L. Since D is strong
there exists a path P in D with the first vertex in Zs and the last vertex in
Zq (1 ≤ q < s) and the other vertices not in L. Assume that q is as small as
possible. Then we can replace the cycles Zq, . . . , Zs by a cycle consisting of
all the vertices of P ∪Zq ∪ . . .∪Zs except maybe one and derive a new cycle

252 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

subdigraph with less cycles. Continuing in this manner, we obtain finally a
single cycle.

In the case of an extended semicomplete digraph D, if D〈V (F)〉 is not
strong, then T (F) is not strong. Also, Ci⇒Cj implies that Ci �→Cj . This,
combined with the above argument on semicomplete multipartite digraphs,
allows one to construct a cycle C such that V (F) ⊂ V (C).

Using the above proof together with an O(n2) algorithm for constructing
a hamiltonian cycle in a strong tournament (see Theorem 6.3.2 or Exercise
6.5) and obvious data structures one can obtain an O(n2) algorithm. ��
Lemma 6.6.15 [93] Let C ∪ C ′ be a cycle factor in a strong semicom-
plete multipartite digraph D of order n. Then D has a cycle Z of length
at least n− 1 containing all vertices of C. The cycle Z can be found in time
O(|V (C)||V (C ′)|).
Proof: Suppose that the (existence) claim is not true. By Lemma 6.6.12, this
means that each of C and C ′ has singular vertices with respect to the other
cycle, and all singular vertices on one cycle are out-singular and all singular
vertices on the other cycle are in-singular. Assume without loss of generality
that C has only out-singular vertices with respect to C ′. Since D is strong
C has a non-singular vertex x. Furthermore we can choose x such that its
predecessor x− on C is singular. Let y be some vertex of C ′ such that y→x.
If x− is adjacent to y+, the successor of y on C ′, then D has a hamiltonian
cycle. Otherwise x−→y++ and D has a cycle of length n − 1 containing all
vertices of C. The complexity result easily follows from the above arguments.

��
The next two results due to Gutin are easy corollaries of Lemma 6.6.15:

Corollary 6.6.16 [444] Let C∪C ′ be a cycle factor in a strong semicomplete
bipartite digraph D. Then D has a hamiltonian cycle Z. The cycle Z can be
found in time O(|V (C)||V (C ′)|).
Proof: Since D is bipartite, it cannot have a cycle of length n − 1. ��
Corollary 6.6.17 [449] Let C ∪ C ′ be a cycle factor in a strong extended
semicomplete digraph D. Then D has a hamiltonian cycle Z. The cycle Z
can be found in time O(|V (C)||V (C ′)|).
Proof: If C and C ′ have a pair x, y of non-adjacent vertices (x ∈ V (C), y ∈
V (C ′)), then obviously x→y+, y→x+ and D has a Hamilton cycle that can
be found in time O(|V (C)|V (C ′)|). Assuming that any pair of vertices from
C and C ′ is adjacent, we complete the proof as in Lemma 6.6.15. ��

Corollaries 6.6.16 and 6.6.17 imply immediately the following useful result.

Proposition 6.6.18 If F = C1∪C2∪ . . . ∪Ck is a cycle factor in a digraph
which is either semicomplete bipartite or extended semicomplete and there is
no F ′ = C ′

1 ∪ C ′
2 ∪ . . . ∪ C ′

r such that for every i ∈ [k], V (Ci) ⊂ V (C ′
j) for

some j ∈ [r], then without loss of generality Ci⇒Cj for every i < j. ��

6.6 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 253

Lemma 6.6.15 implies immediately the following result first proved by
Ayel (see [555]).

Corollary 6.6.19 If C is a longest cycle in a strong semicomplete multipar-
tite digraph D, then D − V (C) is acyclic. ��

Proof of Theorem 6.6.6: Let F = C1 ∪ . . . ∪ Ct be a cycle subdigraph of
maximum order in a strong semicomplete bipartite digraph D. We construct
a semicomplete digraph S, a generalization of the tournament T in Lemma
6.6.14, as follows. The vertices of S are the cycles in F , Ci→Cj in S if and
only if there is an arc from Ci to Cj in D. Cycles of length two in S indicate
what cycles in F can be merged together by Corollary 6.6.16. Therefore, we
can merge cycles in F till S becomes oriented, i.e., without 2-cycles. Now we
can apply Lemma 6.6.14.

Complexity details are left to the reader. ��
Proof of Theorem 6.6.7: The proof is similar to that of Theorem 6.6.6,
applying Corollary 6.6.17 instead of Corollary 6.6.16. Details are left to the
reader as Exercise 6.24. ��

6.6.4 Yeo’s Irreducible Cycle Subdigraph Theorem and Its
Applications

While Lemma 6.6.12 is strong enough to imply short proofs of results on
longest cycles in some special families of semicomplete multipartite digraphs
such as semicomplete bipartite graphs and extended semicomplete digraphs,
this lemma does not appear strong enough to be used in proofs of longest cycle
structure results for other families of semicomplete multipartite digraphs. In
this subsection, we formulate the very deep theorem of Yeo on irreducible
cycle subdigraphs in semicomplete multipartite digraphs, the main theorem
in [915], that is more powerful than Lemma 6.6.12. We provide short proofs
of some important consequences of this theorem.

Recall that for two subdigraphs X, Y of D, a path P is an (X, Y)-path
if P starts at a vertex x ∈ V (X), terminates at a vertex y ∈ V (Y) and
V (P) ∩ (V (X) ∪ V (Y)) = {x, y}.

Theorem 6.6.20 (Yeo’s irreducible cycle subdigraph theorem) [915]
Let D be a semicomplete multipartite digraph with partite sets V1, V2, . . . , Vc.
Let X ⊆ V (D) and let F be a cycle subdigraph of D consisting of t cycles
that covers X, such that t is minimum. Then the following holds.

(a) We can label the cycles C1, C2, . . . , Ct of F , such that Ci�>Cj, whenever
1 ≤ i < j ≤ t.

(b) Assume that C1, C2, . . . , Ct are ordered as stated in (a), then there are
cycles Cn0 , Cn1 , . . . , Cnm (n0 = 1, nm = t), and integers q1, q2, . . . , qm ∈
[c], such that the following is true. For every (Cj , Ci)-path P starting at

254 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

u and terminating at v with V (P) ∩ V (F) = {u, v} and 1 ≤ i < j ≤ t,
there exists an integer k ∈ [m], such that nk−1 ≤ i < j ≤ nk and
{u+

Cj
, v−Ci

} ⊆ Vqk
∩X. ��

By a careful analysis of the proof of Theorem 6.6.20 in [916] one can
obtain the following:

Theorem 6.6.21 [916] Let D be a semicomplete multipartite digraph, and
let X ⊆ V (D) be arbitrary. Let F be a cycle subdigraph of D that covers
X. Then in O(|V (D)|3) time we can find a new cycle subdigraph, F ′, of D,
that covers X, such that F ′ has the properties (a) and (b) given in Theorem
6.6.20. Furthermore we can find F ′, such that for every cycle C in F , the
vertices X ∩ V (C) are included in some cycle of F ′. ��

Theorems 6.6.20 and 6.6.21 are very important starting points of [97],
where polynomial solvability of the Hamilton cycle problem for semicomplete
multipartite digraphs is established. We will prove some important conse-
quences of Theorem 6.6.20 and state several more of them.

Theorem 6.6.22 [915] Every regular semicomplete multipartite digraph is
hamiltonian.

Proof: Let D be a regular semicomplete multipartite digraph. By Exercise
13.17, D contains a cycle factor F = C1 ∪ C2 ∪ . . . ∪ Ct. We may assume
that F is chosen, such that t is minimum. If t = 1, then D is hamiltonian, so
assume that t > 1.

Let X = V (D). Let Cn0 , Cn1 , . . . , Cnm and q1, q2, . . . , qm be defined as
in Theorem 6.6.20. Let yx ∈ A(D) be an arc from y ∈ V (Ci), with i ∈
{2, 3, . . . , t} to x ∈ V (C1). Part (b) of Theorem 6.6.20 implies that x−, y+ ∈
Vq1 . Now we define the two distinct arcs a1(yx) = xy+ and a2(yx) = x−y.
By Theorem 6.6.20, a1(yx) and a2(yx) are arcs in D. Indeed, x and y+ (x−

and y) are adjacent. If y+→x, then y++ ∈ Vq1 , which is impossible.
If y′x′ and yx are distinct arcs from V (D)−V (C1) to V (C1), then we see

that a1(yx), a2(yx), a1(y′x′) and a2(y′x′) are four distinct arcs from V (C1)
to V (D)−V (C1). We have now shown that the number of arcs leaving V (C1)
is at least twice as large as the number of arcs entering V (C1). However, this
contradicts the fact that D is an eulerian digraph (see Corollary 1.7.3). ��

Theorem 6.6.23 (Yeo) [915] Let D be a (�k/2� + 1)-strong semicomplete
multipartite digraph, and let X be an arbitrary set of vertices in D such that
X includes at most k vertices from each partite set of D. If there is a cycle
subdigraph F = C1 ∪ . . . ∪Ct, which covers X, then there is a cycle C in D,
such that X ⊆ V (C).

Proof: We may clearly assume that F has the properties described in The-
orem 6.6.20, and t ≥ 2, since otherwise we are done. Let Cn0 , Cn1 , . . . , Cnm

6.6 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 255

and q1, q2, . . . , qm be defined as in Theorem 6.6.20. Since X contains at
most k vertices from each partite set, we have that min{|Vq1 ∩ V (C1) ∩
X|, |Vq1 ∩ V (Cn1) ∩ X|} = r ≤ �k/2�. Assume without loss of generality
that |Vq1 ∩ V (Cn1)∩X| = r. Since D is (�k/2�+ 1)-strong we get that there
exists a (V (Cn1) − (Vq1 ∩ V (Cn1) ∩ X)−, V (C1) ∪ . . . ∪ V (Cn1−1))-path in
D−(Vq1 ∩V (Cn1)∩X)−, P = p1 . . . pl. Assume that pl ∈ V (Ci) (1 ≤ i < n1).
By Theorem 6.6.20, the (Cn1 , Ci)-path P contradicts the minimality of F ,
since n0 ≤ i < n1 and p+

1 �∈ X ∩ Vq1 . ��
A family of semicomplete multipartite digraphs described in [915] shows

that one cannot weaken the value �k/2� + 1 of strong connectivity in this
theorem. Using the fact that every k-strong digraph of independence number
at most k has a cycle factor (see Proposition 13.8.2) and applying Theorem
6.6.23, we obtain the following two corollaries:

Corollary 6.6.24 [915] If a k-strong semicomplete multipartite digraph D
has at most k vertices in each partite set, then D contains a Hamilton cycle.

��

Corollary 6.6.25 [915] A k-strong semicomplete multipartite digraph has a
cycle through any set of k vertices. ��

Theorem 6.6.22 was generalized by Yeo [919] as follows (its proof also
uses Theorem 6.6.20). Let il(D) = max{|d+(x) − d−(x)| : x ∈ V (D)} and
ig(D) = Δ0(D) − δ0(D) for a digraph D (the two parameters are called the
local irregularity and the global irregularity, respectively, of D [919]).
Clearly, il(D) ≤ ig(D) for every digraph D.

Theorem 6.6.26 [919] Let D be a semicomplete c-partite digraph of order n
with partite sets of cardinalities n1, n2, . . . , nc such that n1 ≤ n2 ≤ . . . ≤ nc.
If ig(D) ≤ (n − nc−1 − 2nc)/2 + 1 or il(D) ≤ min{n − 3nc + 1, (n − nc−1 −
2nc)/2 + 1}, then D is hamiltonian. ��

The result of this theorem is best possible in a sense: Yeo [919] constructed
an infinite family D of non-hamiltonian semicomplete multipartite digraphs
such that every D ∈ D has il(D) = ig(D) = (n − nc−1 − 2nc + 1)/2 + 1 ≤
n − 3nc + 2.

There are many corollaries of this theorem including the following one by
Volkmann and Yeo:

Theorem 6.6.27 [897] Every arc of a regular multipartite tournament is
contained in a Hamilton path. ��

Another generalization of Theorem 6.6.22, whose proof is based on The-
orem 6.6.20, was obtained by Guo, Tewes, Volkmann and Yeo [439]. For a
digraph D and a positive integer k, define

256 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

f(D, k) =
∑

x∈V (D),d+(x)>k

(d+(x) − k) +
∑

x∈V (D),d−(x)<k

(k − d−(x)).

Theorem 7.5.3 in Ore’s book [733] on the existence of a perfect matching in
a bipartite graph can easily be transformed into a sufficient condition for a
digraph to contain a cycle factor. This condition is as follows. If, for a digraph
D and positive integer k, we have f(D, k) ≤ k− 1, then D has a cycle factor.
For a positive integer k ≥ 2, let G′

k be a semicomplete 3-partite digraph with
the partite sets V1 = {x}, V2 = {y1, y2, . . . , yk−1} and V3 = {z1, z2, . . . , zk}
and arc set

{yx, xz, zy, yv : y ∈ V2, z ∈ V3, v ∈ V3 − z1} ∪ {z1x}.

The digraph G′′
k is the converse of G′

k. We observe that f(G′
k, k) = k − 1

(Exercise 6.28), but G′
k is not hamiltonian, as a hamiltonian cycle would

contain the arc xz1 and every second vertex on the cycle would belong to the
partite set V3. Since x has no in-neighbour in V3 − z1, this is not possible.
Clearly, G′′

k is not hamiltonian either.

Theorem 6.6.28 [439] Let D be a semicomplete multipartite digraph such
that f(D, k) ≤ k − 1 for some positive integer k. If D is not isomorphic to
G′

k or G′′
k, then D is Hamiltonian. ��

The authors of [439] introduced the following family of semicomplete mul-
tipartite digraphs. Let D be a semicomplete multipartite digraph with par-
tite sets V1, V2, . . . , Vk. If min{|(xi, Vj)|, |(Vj , xi)|} ≥ 1

2 |Vj | for every ver-
tex xi ∈ Vi and for every 1 ≤ i, j ≤ k, j �= i, then D is called a
semi-partitioncomplete digraph. Several sufficient conditions to guar-
antee hamiltonicity of semi-partitioncomplete digraphs were derived in [439].
In particular, the following result was proved.

Theorem 6.6.29 If a strong semi-partitioncomplete digraph D of order n
has less than n/2 vertices in every partite set, then D is hamiltonian. ��

6.7 Hamilton Paths and Cycles in Quasi-Transitive
Digraphs

The methods developed in [103] by Bang-Jensen and Huang and [454] by
Gutin to characterize hamiltonian and traceable quasi-transitive digraphs
as well as to construct polynomial algorithms for verifying the existence of
Hamilton paths and cycles in quasi-transitive digraphs can be easily general-
ized to much wider classes of digraphs [89]. Thus, in this section, along with
quasi-transitive digraphs, we consider totally Φ-decomposable digraphs for
various sets Φ of digraphs.

6.7 Hamilton Paths and Cycles in Quasi-Transitive Digraphs 257

By Theorem 2.7.5, every strong quasi-transitive digraph D has a decom-
position D = S[Q1, Q2, . . . , Qs], where S is a strong semicomplete digraph,
s = |V (S)|, and each Qi, i ∈ [s], is either just a single vertex or a non-
strong quasi-transitive digraph. Also, a non-strong quasi-transitive digraph
D with at least two vertices has a decomposition D = T [H1, H2, . . . , Ht],
where T is a transitive oriented graph, t = |V (T)|, and every Hi is a strong
semicomplete digraph. These decompositions are called canonical decomposi-
tions. The following characterization of hamiltonian quasi-transitive digraphs
is due to Bang-Jensen and Huang [103].

Theorem 6.7.1 [103] A strong quasi-transitive digraph D with canonical
decomposition D = S[Q1, Q2, . . . , Qs] is hamiltonian if and only if it has a
cycle factor F such that no cycle of F is a cycle of some Qi.

Proof: Clearly, a Hamilton cycle in D crosses every Qi. Thus, it suffices to
show that if D has a cycle factor F such that no cycle of F is a cycle of some
Qi, then D is hamiltonian. Observe that V (Qi)∩F is a path factor Fi of Qi

for every i ∈ [s]. For every i ∈ [s], delete the arcs between end-vertices of all
paths in Fi except for the paths themselves, and then perform the operation
of path-contraction for all paths in Fi. As a result, one obtains an extended
semicomplete digraph S′ (since S is semicomplete). Clearly, S′ is strong and
has a cycle factor. Hence, by Theorem 6.6.5, S′ has a Hamilton cycle C. After
replacing every vertex of S′ with the corresponding path from F , we obtain
a Hamilton cycle in D. ��

Similarly to Theorem 6.7.1, one can prove the following characterization
of traceable quasi-transitive digraphs (see Exercise 6.29).

Theorem 6.7.2 [103] A quasi-transitive digraph D with at least two vertices
and with canonical decomposition D = R[G1, G2, . . . , Gr] is traceable if and
only if it has a 1-path-cycle factor F such that no cycle or path of F is
completely in some D〈V (Gi)〉. ��

It appears that Theorems 6.7.1 and 6.7.2 do not imply polynomial al-
gorithms to verify hamiltonicity and traceability, respectively. The following
characterization of hamiltonian quasi-transitive digraphs is given implicitly
in the paper [454] by Gutin:

Theorem 6.7.3 (Gutin) [454] Let D be a strong quasi-transitive digraph
with canonical decomposition D = S[Q1, Q2, . . . , Qs]. Let n1, . . . , ns be the
orders of the digraphs Q1, Q2, . . . , Qs, respectively. Then D is hamiltonian
if and only if the extended semicomplete digraph S′ = S[Kn1 ,Kn2 , . . . ,Kns]
has a cycle subdigraph which covers at least pc(Qj) vertices of Knj for every
j ∈ [s].

Proof: Suppose that D has a Hamilton cycle H. For every j ∈ [s], V (Qj)∩H
is a kj-path factor Fj of Qj . By the definition of the path covering number,

258 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

we have kj ≥ pc(Qj). For every j ∈ [s], the deletion of the arcs between
end-vertices of all paths in Fj except for the paths themselves, and then
path-contraction of all paths in Fj transforms H into a cycle of S′ having at
least pc(Qj) vertices of Knj for every j ∈ [s].

Suppose now that S′ has a cycle subdigraph L containing pj ≥ pc(Qj)
vertices of Knj for every j ∈ [s]. Since S′ is a strong extended semicomplete
digraph, by Theorem 6.6.7, S′ has a cycle C such that V (C) = V (L). Clearly,
every Qj has a pj-path factor Fj . Replacing, for every j ∈ [s], the pj vertices
of Knj in C with the paths of Fj , we obtain a hamiltonian cycle in D. ��

Theorem 6.7.3 can be used to show that the Hamilton cycle problem for
quasi-transitive digraphs is polynomial time solvable.

Theorem 6.7.4 (Gutin) [454] There is an O(n4) algorithm which, given a
quasi-transitive digraph D, either returns a hamiltonian cycle in D or verifies
that no such cycle exists. ��

The approach used in the proofs of Theorems 6.7.3 and 6.7.4 in [454]
can be generalized to a much wider class of digraphs as was observed by
Bang-Jensen and Gutin [89]. We follow the main ideas of [89].

Theorem 6.7.5 Let Φ be an extension-closed set of digraphs, i.e., Φext = Φ,
including the trivial digraph K1 on one vertex. Suppose that for every digraph
H ∈ Φ we have pcc(H) = pc(H). Let D be a totally Φ-decomposable digraph.
Then, given a total Φ-decomposition of D, the path covering number of D can
be calculated and a minimum path factor found in time O(n4).

Proof: We prove this theorem by induction on n. For n = 1 the claim is
trivial.

Let D be a totally Φ-decomposable digraph and let D = R[H1, . . . , Hr]
be a Φ-decomposition of D such that R ∈ Φ, r = |V (R)| and every Hi (of
order ni) is totally Φ-decomposable. A pc(D)-path factor of D restricted to
every Hi corresponds to a disjoint collection of some pi paths covering V (Hi).
Hence, we have pc(Hi) ≤ pi ≤ ni. Therefore, arguing similarly to that in the
proof of Theorem 6.7.3, we obtain

pc(D) = min{pc(R[Kp1 , . . . ,Kpr]) : pc(Hi) ≤ pi ≤ ni, i ∈ [r]}. (6.9)

Since Φ is extension-closed, and since, for every digraph Q ∈ Φ, pc(Q) =
pcc(Q), we obtain

pc(D) = min{pcc(R[Kp1 , . . . ,Kpr]) : pc(Hi) ≤ pi ≤ ni, i ∈ [r]}. (6.10)

By the result of Exercise 4.70, given the lower and upper bounds pc(Hi)
and ni (i ∈ [r]), we can find the minimum in (6.10) and thus pc(D) in time
O(n3). Let T (n) be the time needed to find the path covering number of a
totally Φ-decomposable digraph of order n. Then, by (6.10),

6.7 Hamilton Paths and Cycles in Quasi-Transitive Digraphs 259

T (n) = O(n3) +
r∑

i=1

T (ni).

Furthermore, T (1) = O(1). Hence T (n) = O(n4). ��
Recall (see Section 2.11) that Φ0 (Φ2) is the family of all semicomplete

multipartite, extended locally semicomplete and acyclic digraphs (semicom-
plete bipartite, extended locally semicomplete and acyclic digraphs). Clearly,
both families of digraphs are extension-closed. As we know, pc(D) = pcc(D)
for every semicomplete multipartite digraph D (see Theorem 6.6.2), for every
extended locally semicomplete digraph D (by Theorem 5.8.1 in [91]) and ev-
ery acyclic digraph D (which is trivial). Notice that one can check whether a
digraph D is totally Φ0-decomposable (totally Φ2-decomposable) and, if this
is the case, find a total Φ0-decomposition (Φ2-decomposition) in time O(n4)
(see Section 2.11). Therefore, Theorem 6.7.5 implies the following theorem
by Bang-Jensen and Gutin:

Theorem 6.7.6 [90] The path covering number of a totally Φ0-decomposable
digraph can be calculated in time O(n4). ��

Corollary 6.7.7 [90] One can verify whether a totally Φ2-decomposable di-
graph is hamiltonian in time O(n4).

Proof: Let D = R[H1, . . . , Hr], r = |R|, be a decomposition of a strong
digraph D (r ≥ 2). Then, D is hamiltonian if and only if the following family
S of digraphs contains a hamiltonian digraph:

S = {R[Kp1 , . . . ,Kpr] : pc(Hi) ≤ pi ≤ |V (Hi)|, i ∈ [r]}.

Now suppose that D is a totally Φ2-decomposable digraph. Then, every
digraph of the form R[Kp1 , . . . ,Kpr] is in Φ2. We know (see Theorem 6.6.4
and Theorem 5.8.1 in [91]) that every digraph in Φ2 is hamiltonian if and
only if it is strong and contains a cycle factor. Thus, all we need is to verify
whether there is a digraph in S containing a cycle factor. It is easily seen
that there is a digraph in S containing a cycle factor if and only if there is a
circulation in the network formed from R by adding lower bounds pc(Hi) and
upper bounds |V (Hi)| to the vertex vi of R for every i ∈ [r]. Since the lower
bounds can be found in time O(n4) (see Theorem 6.7.5) and the existence of a
circulation checked in time O(n3) (see Exercise 4.31), we obtain the required
complexity O(n4). ��

Since every quasi-transitive digraph is totally Φ2-decomposable this theo-
rem immediately implies Theorem 6.7.4. Note that the minimum path factors
in Theorem 6.7.5 can be found in time O(n4). Also, a hamiltonian cycle in
a hamiltonian totally Φ2-decomposable digraph can be constructed in time
O(n4).

260 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

6.8 Vertex-Cheapest Paths and Cycles

In this section, we consider problems that generalize the Hamilton path and
cycle problems in a significant way. We prove that the problems of finding
vertex-cheapest paths and cycles in vertex-weighted quasi-transitive digraphs
are polynomial time solvable. The values of the weights can be any reals,
positive or negative. Thus, we can conclude that the longest and shortest
path and cycle problems for quasi-transitive digraphs are polynomial time
solvable. The same result holds for acyclic digraphs as the only non-trivial
problem from the above four is the longest path problem and it is well-known
that it can be solved in polynomial time, see Section 3.3.2. Notice that for
the quasi-transitive digraphs three of the above four problems are non-trivial
(the shortest and longest cycles and longest path) and, in fact, much more
difficult than the longest path problem for acyclic digraphs as the reader can
see in the rest of the section. It appears that the problems are non-trivial
even for semicomplete digraphs. The following results were proved by Bang-
Jensen, Gutin and Yeo for extended semicomplete and locally semicomplete
digraphs.

Theorem 6.8.1 [100] Let D = (V, A) be an extended semicomplete digraph
with a cycle and real-valued costs on the vertices. In time O(n3m + n4 log n)
we can find a minimum cost cycle in D. ��

Theorem 6.8.2 [98] Let D be a locally semicomplete digraph with real-
valued costs on the vertices. In time O(n(m+n log n)) we can find a minimum
cost cycle of D. ��

The approach described in the previous section seems too weak to allow
us to construct polynomial time algorithms for vertex-cheapest paths and
cycles in quasi-transitive digraphs. A more powerful method that leads to
such algorithms was first suggested by Bang-Jensen, Gutin and Yeo [100]
and, in the rest of this section, we describe this method.

6.8.1 Vertex-Cheapest Paths and Cycles in Quasi-Transitive
Digraphs

Recall that the cost of a subset of vertices is the sum of the costs of its
vertices and the cost of a subdigraph is the sum of the costs of its vertices.
For a digraph D of order n and i ∈ [n] we define mpi(D) (mpci(D)) to
be the minimum cost of an i-path (i-path-cycle) subdigraph of D. We set
mp0(D) = 0 and mpc0(D) is zero if D has no negative cycle and otherwise
it is the minimum cost of a cycle subdigraph in D. Note that mp0(D) and
mpc0(D) always exist as we may take single vertices as paths and we always
have mpci(D) ≤ mpi(D). For any digraph D with at least one cycle we denote
by mc(D) the minimum cost of a cycle in D.

6.8 Vertex-Cheapest Paths and Cycles 261

Let D = (V, A) be a digraph and let X be a non-empty subset of V . We
say that a cycle C in D is an X-cycle if C contains all vertices of X. In this
section, we consider the following problems for a digraph D = (V, A) with n
vertices and real-valued costs on the vertices:

(P1) Determine mpi(D) for all i ∈ [n].
(P2) Find a cheapest cycle in D or determine that D has no cycle.

Clearly, problems (P1) and (P2) are NP-hard as determining the numbers
mp1(D) and mc(D) generalize the hamiltonian path and cycle problems (as-
sign cost −1 to each vertex of D). The problem (P2) can be solved in time
O(n3) when all costs are non-negative using an all pairs shortest path calcu-
lation. The problems (P1) and (P2) were solved in [87] for the special case
when all costs are non-negative. However, the approach of [87] cannot be used
or modified to work with negative costs. Bang-Jensen, Gutin and Yeo [100]
managed to obtain an approach suitable for arbitrary real costs.

6.8.2 Minimum Cost k-Path-Cycle Subdigraphs

In this subsection, we will use certain notions and results on network flows
from Chapter 4. As in Chapter 4, we will allow capacities and costs on the
vertices in our networks. This makes it easier to model certain problems
for digraphs and it is easy to transform such a network into one where all
capacities and costs are on the arcs (see Subsection 4.2.4 for details). With
these remarks in mind, the following lemma follows directly from Lemma
4.2.4 and Proposition 4.10.7.

Lemma 6.8.3 Let N = (V, A) be a network with source s and sink t, capac-
ities on arcs and vertices and a real-valued cost c(v) for each vertex v ∈ V .
For all integers i such that there exists a feasible (s, t)-flow of value i in N ,
let fi be a minimum cost (s, t)-flow in N of value i and let c(fi) be the cost
of fi. Then, for all i where all of fi−1, fi, fi+1 exist, we have

c(fi+1)− c(fi) ≥ c(fi)− c(fi−1). (6.11)

��

Recall that a cycle subdigraph of a digraph D is a collection of vertex-
disjoint cycles of D.

Lemma 6.8.4 Let D = (V, A) be a digraph with real-valued cost function
c on the vertices. In time O(n(m + n log n)) we can determine the number
mpc0(D) and find a cycle subdigraph of cost mpc0(D) if mpc0(D) < 0.

Proof: Let H(w) be the digraph on 4 vertices w1, w2, w3, w4 and the following
arcs w1w2, w2w1, w2w3, w3w4, w4w3. Let D∗ = (V ∗, A∗) be obtained from D
as follows: replace every vertex v by the digraph H(v). Furthermore, for

262 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

every original arc uv ∈ A, D∗ contains the arc u4v1. There are no costs on
the vertices and all arcs have cost 0 except the arcs of the form v2v3 which
have cost c(v). Observe that mpc0(D) is precisely the minimum cost of a
spanning cycle subdigraph in D∗. Let V ∗ = {x1, x2, . . . , x4n}. Construct a
bipartite graph B with partite sets L = {�1, . . . , �4n} and R = {r1, . . . , r4n},
in which �irj is an edge if and only if xixj ∈ A∗. Moreover, the cost of �irj

is equal to the cost of xixj . Observe that a minimum cost perfect matching
in B corresponds to a minimum cost cycle subdigraph in D∗. We can find a
minimum cost perfect matching in B in time O(n(m+n log n)), see the remark
after the proof of Theorem 11.1 in [622]. Using the transformation from B to
D∗, we can compute the minimum cost of a spanning cycle subdigraph F in
D∗ in time O(n(m+n log n)). If this cost is negative, we can find a minimum
cost cycle subdigraph of D within the same time. ��

Lemma 6.8.5 Let D = (V, A) be a vertex-weighted digraph.

(a) In total time O(n2m + n3) we can determine the numbers
{mpc1(D), mpc2(D), . . . , mpcn(D)} and find j-path-cycle subdigraphs Fj,
j = 1, 2, . . . , n, where Fj has cost mpcj(D).

(b) The costs mpci(D) satisfy the following inequality for every i ∈ [n − 1]:

mpci+1(D) −mpci(D) ≥ mpci(D) − mpci−1(D). (6.12)

Proof: Form a network N(D) from D by adding a pair s, t of new vertices
along with arcs {(s, v), (v, t) : v ∈ V }. Let all vertices and all arcs of D have
lower bound 0 and capacity 1. Let c(s) = c(t) = 0, let each other vertex of
N(D) inherit its cost from D and let all arcs have cost 0.

Suppose Fj is a j-path-cycle subdigraph of D. Using Fj we can obtain
a feasible flow fj of value j in N(D) if we assign fj(a) = 1 to all arcs a in
Fj and those arcs a of N(D) that start (terminate) at s (t) and terminate
(start) at the initial (terminal) vertex of a path in Fj , and fj(a) = 0 for all
other arcs of N(D). Similarly, by Theorem 4.3.1, we can transform a feasible
integer-valued (s, t)-flow of value j in N(D) into a j-path-cycle subdigraph
of D.

Notice that N(D) has a feasible integer-valued (s, t)-flow of value k for
any integer k = 0, 1, . . . , n. Thus it follows from the observations above that
for every j = 0, 1, . . . , n the value mpcj(D) is exactly the minimum cost of
a flow of value j in N(D). Now (6.11) implies that the inequality (6.12) is
valid.

It remains to prove (a). It follows from Lemma 6.8.4 that we can find a
minimum cost flow f of value 0 in time O(n3). Now we can use the Buildup
algorithm from Subsection 4.10.2 starting from f. Using the Buildup algo-
rithm we can find feasible integer-valued flows fj for all j ∈ [n], such that
fj is a minimum cost feasible (s, t)-flow of value j in N(D), in total time
O(n2m) (the complexity of obtaining fj+1 starting from fj is O(nm)). This
proves (a). ��

6.8 Vertex-Cheapest Paths and Cycles 263

6.8.3 Cheapest i-Path Subdigraphs in Quasi-Transitive Digraphs

By Theorem 6.6.1, in a semicomplete multipartite digraph D all cycles of a
k-path-cycle subdigraph with k ≥ 1 can be merged with one of the paths
to form a new path. This easily implies the following lemma which plays an
important role in our algorithms.

Lemma 6.8.6 Let D be a semicomplete multipartite digraph. Then for every
i ∈ [n] we have mpi(D) = mpci(D). ��

The next theorem shows that (P1) is polynomially solvable for quasi-
transitive digraphs.

Theorem 6.8.7 Let D = (V, A) be a vertex-weighted quasi-transitive di-
graph. Then the following holds:

(a) In total time O(n2m + n3) we can find for every i ∈ [n], the value of
mpi(D) and an i-path subdigraph Fi of cost mpi(D).

(b) For all i ∈ [n − 1] we have

mpi+1(D) − mpi(D) ≥ mpi(D) −mpi−1(D). (6.13)

Proof: We prove (b) by induction on n. The statement vacuously holds for
n = 1 and is easy to verify for n = 2 (recall that, by definition, mp0(D) = 0).
This proves the basis of induction and we now assume that n ≥ 3.

By Theorem 2.7.5, D has a decomposition D = T [Q1, . . . , Qt], t =
|T | ≥ 2, where T is an acyclic digraph or a semicomplete digraph. Let
D′ = T [Kn1 , . . . ,Knt] be obtained from D by deleting all arcs inside each
Qi, i ∈ [t]. Assign costs to the vertices vk

1 , . . . , vk
nk

of Knk
, as follows:

c′(vk
j) = mpj(Qk)− mpj−1(Qk). (6.14)

By the induction hypothesis (b) holds for Qk implying that we have

c′(vk
j) ≤ c′(vk

j+1) for every j ≥ 1. (6.15)

Let F ′
i be an i-path-cycle subdigraph of D′. If T is acyclic, then D′ is

acyclic and, thus, F ′
i is an i-path subdigraph of D′. If T is semicomplete, then

D′ is extended semicomplete and, thus, by Theorem 6.6.1 and Lemma 6.8.6,
we may assume that F ′

i is an i-path subdigraph of D′. Hence, mpi(D′) =
mpci(D′) and it follows from Lemma 6.8.5(b) that (6.13) holds for D′. Thus
it suffices to prove that mpi(D) = mpi(D′).

Let F ′
i be an i-path subdigraph of D′ and let pk denote the number of

vertices from Knk
which are covered by F ′

i . Since all vertices of Knk
are

similar it follows from (6.15) that we may assume (by making the proper re-
placements if necessary) that F ′

i includes vk
1 , . . . , vk

pk
. For each k, replace

the vertices vk
1 , . . . , vk

pk
in F ′

i by a pk-path subdigraph of Qk with cost

264 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

mppk
(Qk) =

∑pk

i=1 c′(vk
i). As a result, we obtain, from F ′

i , an i-path subdi-
graph Fi of D for which we have c′(F ′

i) =
∑t

k=1 mppk
(Qk) = c(Fi) and, thus,

c(Fi) = c′(F ′
i). Reversing the process above it is easy to get, from an i-path

subdigraph of D, an i-path subdigraph F ′
i of D′ such that c(Fi) = c′(F ′

i).
This shows that mpi(D) = mpi(D′) and hence (6.13) holds for D by the
remark above.

We prove the complexity by induction on n. Let m′ be the number of arcs
in D′ and recall that all these arcs are also in D. Clearly when a digraph H has
|V (H)| ≤ 2 we can choose a constant c1 so that we can determine the numbers
mpi(H), i = 1, 2, . . . , |V (H)|, in time at most c1|V (H)|2(|A(H)| + |V (H)|).
Now assume by induction that for each Qi we can determine the desired
numbers inside Qi in time at most c1n

2
i (mi + ni). This means that we can

find the numbers mpi(Qj) for all j ∈ [t] and i ∈ [nj] in total time

t∑

j=1

c1n
2
j (mj + nj) ≤ c1n

2
t∑

j=1

(mj + nj) = c1n
2(m − m′ + n).

By Lemma 6.8.5(a), Theorem 6.6.1 and Lemma 6.8.6, there is a constant c2

such that in total time at most c2n
2(m′ + n) we can find, for every j ∈ [n],

a j-path-cycle subdigraph of cost mpj(D′) in D′. It follows from the way
we construct Fi above from F ′

i that if we are given for each k ∈ [t] and
each 1 ≤ j ≤ nk a j-path subdigraph in Qk of cost mpj(Qk), then we can
construct all the path subdigraphs Fr, 1 ≤ r ≤ n, in time at most c3n

3 for
some constant c3. Hence the total time needed by the algorithm is at most

c1n
2(m −m′ + n) + c2n

2(m′ + n) + c3n
3 =

c1n
2(m + n) + (c2 − c1)n2m′ + (c2 + c3)n3,

which is at most c1n
2(m + n) for c1 sufficiently large. ��

The next theorem is an easy consequence of Theorem 6.8.7 (assign all
vertices cost −1).

Theorem 6.8.8 One can find a longest path in any quasi-transitive digraph
in time O(n2m + n3). ��

Sometimes, one is interested in finding path subdigraphs that include
maximum number of vertices from a given set X or avoid as many vertices
of X as possible. We consider a minimum cost extension of this problem in
the next result.

Theorem 6.8.9 Let D = (V, A) be a vertex-weighted quasi-transitive digraph
and let X ⊆ V be non-empty. Let pj be the maximum possible number of
vertices from X in a j-path subdigraph and let qj be maximum possible number
of vertices from X not in a j-path subdigraph. In total time O(n2m + n3) we
can find, for all j ∈ [n], a cheapest j-path subdigraph which includes pj (avoids
qj, respectively) vertices of X.

6.9 Hamilton Paths and Cycles in Various Classes of Digraphs 265

Proof: Let C =
∑

v∈V |c(v)| and subtract C+1 from the cost of every vertex
in X. Now, for each j ∈ [n], every cheapest j-path subdigraph Fj must cover
as many vertices from X as possible, i.e., pj vertices. Furthermore, since
the new cost of Fj is exactly the original one minus pj(C + 1), cheapest
j-path subdigraphs covering pj vertices from X are preserved under this
transformation. Now the ‘including’ part of the claim follows from Theorem
6.8.7(a). The ‘avoiding’ part can be proved similarly, by adding C+1 to every
vertex of X. ��

6.8.4 Finding a Cheapest Cycle in a Quasi-Transitive Digraph

Bang-Jensen, Gutin and Yeo obtained the following:

Theorem 6.8.10 [100] For quasi-transitive digraphs with vertex-weights the
minimum cost cycle problem can be solved in time O(n5 log n).

Proof: Let D be a quasi-transitive digraph. If D is not strong, then we simply
look at the strong components, so assume that D is strong. By Theorem 2.7.5,
D = T [Q1, . . . , Qt], where T is a strong semicomplete digraph, and each Qi

is either a single vertex or a non-strong quasi-transitive digraph.
Suppose we have found a minimum cost cycle Ci in each Qi which contains

a cycle. Then clearly the minimum cost of a cycle in D is the minimum cost
cycle among those cycles Ci that exist and the minimum cost of a cycle C
which intersects at least two Qi’s. Hence it follows that applying this approach
recursively we can find the minimum cost cycle in D. Now we show how to
compute a minimum cost cycle C as above.

Let D′ be defined as in the proof of Theorem 6.8.7 including the vertex-
costs. It is easy to show using the same approach as when we converted
between i-path subdigraphs of D′ and D in the proof of Theorem 6.8.7, that
the cost of C is precisely mc(D′). Now it follows from Theorem 6.8.1 that we
can find the cycle C in time O(n3m + n4 log n).

Since we can construct D′ including finding the costs for all the vertices
in time O(n2m +n3) by Theorem 6.8.7 and there are at most O(n) recursive
calls, the approach above will lead to a minimum cost cycle of D in time
O(n4m+n5 log n). In fact, we can bound the first term as we did in the proof
of Theorem 6.8.7 and obtain O(n3m + n5 log n) = O(n5 log n) rather than
O(n4m + n5 log n). This completes the proof. ��

6.9 Hamilton Paths and Cycles in Various Classes of
Digraphs

Let us start from the following simple observation.

Proposition 6.9.1 The line digraph L(D) is hamiltonian if and only if D
is eulerian. ��

266 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

Grötschel and Harary [427] showed that only very few bridgeless graphs
have the property that every strong orientation is hamiltonian.

Theorem 6.9.2 [427] Let G be a bridgeless graph. If G is neither a cycle nor
a complete graph, then G contains a strong non-hamiltonian orientation. ��

However, Thomassen proved in the following result that there are many
more graphs with the property that every strong orientation is traceable.

Theorem 6.9.3 [857] Let G be a 2-edge-connected undirected graph such
that every connected component of G is either bipartite or an odd cycle of
length at least 5. Also assume that G has at most one non-bipartite compo-
nent. Then every strong orientation of G is traceable.

To prove Theorem 6.9.3, we need the following lemma whose proof is left
as Exercise 6.32.

Lemma 6.9.4 Let L be the complement of an odd cycle u1u2 . . . u2k+1u1,
k ≥ 2, and let F be an orientation of L. Then, there are i �= j ∈ {1, 2, . . . , 2k+
1} such that uiujui+1 or ui+1ujui is a path in F . ��

Proof of Theorem 6.9.3: Let G1, . . . , Gr be bipartite connected com-
ponents of G such that Ai, Bi are partite sets of Gi, i ∈ [r]. Let Z =
u1u2 . . . u2k+1u1 be the odd cycle in G, if one exists.

Let H be a strong orientation of G. Define a partition A, B of V (G) as
follows. Let A∗ = A1 ∪ . . . ∪ Ar and B∗ = B1 ∪ . . . ∪ Br. If Z does not exist
(in G), then A = A∗, B = B∗. Otherwise, by Lemma 6.9.4, without loss of
generality, we have that there exists a j such that u1uju2 is a directed path
in H. Let A = A∗ ∪ {u3, u5, . . . , u2k+1}, B = B∗ ∪ {u2, u4, . . . , u2k} ∪ {u1}.
By this construction, H〈A〉 is a tournament and H〈B〉 is either a tournament
(if Z does not exist) or H has a path xzy such that x, y ∈ B and xy �∈ G〈B〉.

We now show that H has a cycle C including all vertices of A. If H〈A〉
is strong, then C exists by Camion’s theorem (Corollary 1.5.2). If H〈A〉 is
not strong, then there is a shortest path P in H from the terminal strong
component of H〈A〉 to its initial strong component. Let P start at u and
terminate at w. (Clearly, P does not have vertices other than u and w in
these two components.) It is easy to check that H〈(A− V (P)) ∪ {u, w}〉 has
a hamiltonian (w, u)-path Q. The paths P and Q form a cycle containing A.
Let C be a longest cycle containing A.

If H−V (C) is a tournament, then some vertex of C dominates a vertex v
of the initial strong component of H −V (C). The tournament H −V (C) has
a hamiltonian path starting at v; this path can be extended to a hamiltonian
path in H. Thus, we may assume that H − V (C) is not a tournament. In
particular, x, y ∈ V (H) − V (C). Let C = v1v2 . . . vmv1. We consider two
cases.

6.9 Hamilton Paths and Cycles in Various Classes of Digraphs 267

Case 1: z ∈ V (C). We first prove that C contains vertices vi, vi+j such
that vi dominates one of x, y and vi+j is dominated by the other one and
1 ≤ j ≤ m− 1. Since G has no triangles, each of z+ and z− is adjacent to at
least one of x, y. By the maximality of C, if z+ and y are adjacent, we must
have z+→y and then z, z+ is the desired pair. Hence, we may assume that
z+ is adjacent to x and, hence, either z, z+ is the desired pair or z+→x. Now
considering z− one can prove that either z−, z is the desired pair or z−, z+

is the desired pair.
Among all pairs vi, vi+j satisfying the above property choose one such

that j is the smallest possible. We may assume (by interchanging x and y if
needed) that vi→x and y→vi+j . We show that j = 1. Assume that j > 1.
Because of the minimality of j, x is not dominated by vi+s when 1 ≤ s < j
and because of the maximality of C, x does not dominate vi+1. Hence, x is
not adjacent to vi+1. Similarly, we can see that y is not adjacent to vi+j−1

and none of the vertices vi+s, 1 ≤ s < j, is dominated by y. Since G has no
triangle, j ≥ 3 and vi+1→y and x→vi+j−1; a contradiction to the minimality
of j. Thus, we may assume that vi→x, y→vi+1.

We add to the oriented graph H−V (C) the arc yx obtaining a tournament
T . Let v be a vertex in the initial strong component of T dominated by a
vertex u in C. By Camion’s theorem, T has a hamiltonian path P starting
at v and terminating at some vertex w. If yx is not on P , then C[u+, u]P
is a hamiltonian path of H. If yx is on P , then P [v, y]C[vi+1, vi]P [x, w] is a
hamiltonian path of H.

Case 2: z �∈ V (C). If H − V (C) is strong, then we consider any arc of
H between x and C (such an arc exists as the degree of x in G equals 2). If
this arc starts (terminates) at x, we add to H − V (C) the arc xy (yx) and
consider a hamiltonian cycle in the resulting tournament. Using this together
with C and the arc between x and C, it is easy to find a hamiltonian path
in H.

So we assume that H − V (C) is not strong. Let H1, H2, . . . , Hp be an
acyclic ordering of strong components of H−V (C). We may assume without
loss of generality (consider the converse of H if needed) that at most one of
x, y belongs to V (H1). Clearly, some vertex v in H1 is dominated by a vertex
in C. We can find a hamiltonian path in H as in the case when H − V (C)
is a tournament unless for some i, V (Hi) = {x} and V (Hi+1) = {y} or
V (Hi−1) = {y}. But this is impossible due to the existence of xzy. ��

In this theorem it is important that G does not contain a 3-cycle. Indeed,
let M be a multipartite tournament consisting of a strong tournament T
with fixed vertex y and triple x1, x2, x3 of independent vertices such that
N+(xi) = {y} for every i = 1, 2, 3. Since |N+({x1, x2, x3})| < 2 (see Exercise
4.71), M has no 1-path-cycle factor. (Recall that a multipartite tournament
is traceable if and only if it has a 1-path-cycle factor, see Theorem 6.6.1.)
However, Thomassen [857] remarks that Theorem 6.9.3 is perhaps far from
being the best possible. He claims that by using the method of the proof

268 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

of this theorem, it is not difficult to show that any strong orientation of a
graph, whose complement is a disjoint union of two 5-cycles and independent
vertices, has a hamiltonian path.

Problem 6.9.5 Find a non-trivial extension of Theorem 6.9.3.

We recall that a digraph D is unilateral if for every pair x, y of distinct
vertices of D there is a path between x and y (not necessarily both (x, y)-path
and (y, x)-path). For some of the graphs in Theorem 6.9.3 not only all strong
orientations are traceable, but also all unilateral ones satisfy this property.
This was shown by Fink and Lesniak-Foster in the following theorem.

Theorem 6.9.6 [315] Let G be a graph and let F = Q1 ∪ . . .∪Qk be a path
subgraph of G in which every path Qi is of length 1 or 2. Then an orientation
of G − ∪k

i=1E(Qi) is traceable if and only if it is unilateral. ��

Erdős and Trotter [301] investigated when the Cartesian product of two
directed cycles is hamiltonian. They proved the following (gcd means the
greatest common divisor):

Theorem 6.9.7 Let d = gcd(k, m). The Cartesian product 	Ck× 	Cm is hamil-
tonian if and only if d ≥ 2 and there exist positive integers d1, d2 such that
d1 + d2 = d and gcd(k, d1) = gcd(m, d2) = 1. ��

For a generalization of Theorem 6.9.7, see Theorem 15.6.2.

In Section 2.5, we introduced de Bruijn digraphs DB(d, t), Kautz digraphs
DK(d, t) as well as their generalizations: DG(d, n), DI(d, n), D(d, n, q, r). The
consecutive-d digraphs D(d, n, q, r) are the most general among the digraphs
listed above. Thus, we restrict our attention to these digraphs. Du, Hsu and
Hwang [278] proved the following result for digraphs D(d, n, q, r).

Theorem 6.9.8 If gcd(n, q) ≥ 2, or gcd(n, q) = 1 and q ≥ 5, then
D(d, n, q, r) is hamiltonian. ��

Hwang [545] as well as Du and Hsu [277] characterized hamiltonian di-
graphs D(d, n, q, r) for gcd(n, q) = 1 and d = 1 (d = 2, respectively). Chang,
Hwang and Tong [195] showed that every digraph D(4, n, q, r) is hamiltonian.
They also gave examples of digraphs D(3, n, q, r), which are not hamiltonian
[194].

Several authors considered hamiltonicity for circulant digraphs. In partic-
ular, Rankin [763] proved the following classic result:

Theorem 6.9.9 A strong circulant digraph Cn(a, b) is hamiltonian if and
only if there are two non-negative integers s and t, such that s+ t = gcd(sa+
tb, n) = gcd(a − b, n). ��

6.9 Hamilton Paths and Cycles in Various Classes of Digraphs 269

Recall that according to Part (c) of Proposition 2.14.1 Cn(a1, a2, . . . , ap)
is strong if and only if gcd(n, a1, a2, . . . , ap) = 1. There is no characterization
of hamiltonian circulant digraphs Cn(S) with |S| ≥ 3 [568, 650]. Locke and
Witte [650] gave an infinite family of non-hamiltonian circulant digraphs of
out-degree 3. Curran and Witte [235] obtained sufficient conditions for a
circulant digraph of out-degree at least 3 to be hamiltonian and stated the
following conjecture:

Conjecture 6.9.10 Suppose that Cn(S) is strong and |S| ≥ 3. If Cn(B) is
not strong for every proper subset B of S, then Cn(S) is hamiltonian.

Jirásek [568] showed that for infinitely many non-hamiltonian circulant
digraphs constructed by Locke and Witte [650] the reversal of any arc pro-
duces a Hamilton cycle. This solved a problem of C. Thomassen stated in
[169], whether there is a non-hamiltonian oriented graph in which the rever-
sal of any arc results in a hamiltonian graph.

In Section 2.14.2 we introduced arc-locally semicomplete (ALS) digraphs
and formulated the following characterization of strong ALS digraphs by
Bang-Jensen: a strong ALS digraph is either semicomplete or semicomplete
bipartite or an extended cycle. Clearly, an extended cycle is hamiltonian if
and only if it has a cycle factor. Thus, this characterization and Theorems
1.5.3 and 6.6.4 imply the following:

Corollary 6.9.11 [75] An ALS digraph is hamiltonian if and only if it is
strong and contains a cycle factor. ��

Motivated by arc-locally semicomplete digraphs, Bang-Jensen [75] intro-
duced the following family of digraphs, which we will call Q-digraphs. A
digraph D is a Q-digraph if the following condition holds for every four dis-
tinct vertices x, y, z, w of D: if xy, zy and zw are arcs, then vertices x and w
are adjacent. There are Q-digraphs which are neither semicomplete digraphs
nor semicomplete bipartite digraphs nor extended cycles, see Figure 6.7.

Nevertheless, Bang-Jensen [75] raised the following two conjectures:

Conjecture 6.9.12 A Q-digraph is hamiltonian if and only if it is strong
and has a cycle factor.

Conjecture 6.9.13 The hamiltonian path and cycle problems are polyno-
mial time solvable for Q-digraphs.

Generalizing the notion of f -connectivity of undirected graphs introduced
in [179], Bang-Jensen and Brandt [77] came up with the following notion. Let
f be a monotone increasing function f : Z+ → R (i.e., f(x) ≤ f(y) for each
x < y). A digraph D = (V, A) is f -expanding if for every ∅ �= X ⊂ V we
have the following: if |X| ≤ |V − N+[X]|, then |N+(X)| ≥ f(|X|), and if
|X| ≤ |V − N−[X]|, then |N−(X)| ≥ f(|X|). It is not difficult to show that
every f -expanding digraph D is �f(1)�-strong (Exercise 6.38) and, thus, if
f(1) > 0, then D is strong. Bang-Jensen and Brandt [77] proved the following:

270 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

Figure 6.7 Two hamiltonian Q-digraphs.

Theorem 6.9.14 If f(k) ≥ 3k+1, then every f -expanding digraph of suffi-
ciently large order is hamiltonian. ��

Bang-Jensen and Brandt believe that some degree of polynomial expan-
sion suffices for guaranteeing hamiltonicity of digraphs.

Conjecture 6.9.15 [77] There exists a natural number r so that if f(k) ≥
kr, then every f -expanding digraph is hamiltonian.

Bang-Jensen and Brandt [77] proved that if f(k) ≥ ck, c > 0 and D is an
f -expanding digraph of order n, then D contains a path of length c

c+2n and
a cycle of length at least n(c

c+2)2.
For a digraph D = (V, A), a set S ⊆ V is called a q+-set (q−-set,

respectively) if S has at least two vertices and, for every u ∈ S, there exists
v ∈ S, v �= u such that N+(u)∩N+(v) �= ∅ (N−(u)∩N−(v) �= ∅, respectively).
A digraph D is called s-quadrangular if, for every q+-set S, we have

| ∪ {N+(u) ∩N+(v) : u �= v, u, v ∈ S}| ≥ |S|
and, for every q−-set S, we have

| ∪ {N−(u) ∩N−(v) : u �= v, u, v ∈ S)}| ≥ |S|.
Gutin, Jones, Rafiey, Severini and Yeo formulated the following:

Conjecture 6.9.16 [464] Every strong s-quadrangular digraph is hamilto-
nian.

It was shown by Severini [807] that the digraph of a unitary matrix is s-
quadrangular. It follows that if Conjecture 6.9.16 is true, then the digraph of
an irreducible unitary matrix is hamiltonian. Unitary matrices are important
in quantum mechanics and, at present, are central in the theory of quantum
computation [728].

It was proved in [464] that Conjecture 6.9.16 holds for each strong s-
quadrangular digraph D with Δ0(D) ≤ 3 and every strong s-quadrangular
digraph D has a cycle factor.

6.10 Exercises 271

6.10 Exercises

6.1. Using the proof of Theorem 6.2.2, Lemma 6.2.1 and Proposition 2.8.3, prove
Corollary 6.2.3.

6.2. Prove that every strong locally in-semicomplete digraph has a 2-connected
underlying graph.

6.3. Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian cycle if and only if it is strong (Bang-Jensen [66]).

6.4. Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian path if and only if it is connected (Bang-Jensen [66]). Hint:
use Proposition 2.9.2.

6.5. Give a direct proof of the following result. One can find a longest cycle in
a semicomplete digraph in time O(n2) (Manoussakis [681]). Hint: start by
finding a hamiltonian path P and show that using P we can construct a
hamiltonian cycle in the desired time.

6.6. Using Proposition 6.1.5 and Theorem 6.4.1 prove the following:

Proposition 6.10.1 Let D be a digraph of order n. Suppose that, for every
dominated pair of non-adjacent vertices {x, y}, either d(x) ≥ n−1 and d(y) ≥
n− 2 or d(x) ≥ n− 2 and d(y) ≥ n− 1. Then D is traceable.

6.7. Prove that the digraph Qn introduced before Theorem 6.4.1 is strong and
non-hamiltonian.

6.8. Prove Lemma 6.4.21.

6.9. Find an infinite family of hamiltonian digraphs that satisfy the conditions of
both Theorems 6.4.1 and 6.4.5, but do not satisfy the conditions of Theorem
6.4.7 and are neither locally out-semicomplete nor locally in-semicomplete
(Bang-Jensen, Gutin and Li [94]).

6.10. Find an infinite family of hamiltonian digraphs that satisfy the conditions
of Theorem 6.4.12, but do not satisfy the conditions of Theorem 6.4.7 (Zhao
and Meng [933]).

6.11. Prove Corollaries 6.4.18 and 6.4.19.

6.12. Using Meyniel’s theorem, prove that if a strong digraph D has at least n2 −
3n + 5 arcs, then D is hamiltonian (Lewin [641]).

6.13. Prove that every digraph with more than (n−1)2 arcs is hamiltonian (Lewin
[641]).

6.14. Prove that if the minimum semi-degree of a digraph D of order n is at least
(n + 1)/2, then every arc of D is contained in a Hamilton cycle of D.

6.15. Construct an infinite family of non-hamiltonian strong digraphs that satisfy
both (6.1) and (6.2) (Bermond and Thomassen [152]).

6.16. Let P = v1v2 . . . vp be a longest path in an oriented graph D. Prove that if
d−(v1) > 0, then D contains a cycle of length at least d−(v1) + 2. Deduce
from this that every oriented graph D of positive minimum in-degree contains
a cycle of length at least δ−(D) + 2 (Jackson [555]).

272 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

6.17. For each integer k ≥ 1, construct oriented graphs of minimum in-degree k
that have no cycle of length greater than k + 2 (Jackson [555]).

6.18. Prove that every vertex of a semicomplete multipartite digraph D belongs to
a longest path in D (Volkmann [888]).

6.19. (+) Give a direct proof of the first (non-algorithmic) part of Theorem 6.6.1
(Gutin [448, 452]).

6.20. Show that the multipartite tournament in Figure 6.5 is non-hamiltonian.

6.21. Show that the analogue of Theorem 6.6.7 for semicomplete bipartite digraphs
does not hold, i.e., there are a strong semicomplete bipartite digraph D and
a maximum cycle subdigraph F in D such that D〈V (F)〉 is not hamiltonian
(Gutin [451]).

6.22. Prove Theorem 6.6.13 by induction on t.

6.23. By inspecting all intermediate steps in the proof of Corollary 6.6.16, show
that the following statement holds. Let D be a bipartite digraph obtained
by taking two disjoint even cycles C = u1u2 . . . u2k−1u2ku1 and Z =
v1v2 . . . v2r−1v2rv1 and adding an arc between v2i−1 and u2j and between
v2i and u2j−1 (in any direction, possibly one in each direction) for all i ∈ [k]
and j ∈ [r]. D is hamiltonian if and only if it is strong. Moreover, if D is
strong, then, given cycles C and Z as above, a hamiltonian cycle of D can
be found in time O(|V (C)||V (Z)|) (Gutin [451]).

6.24. Prove Theorem 6.6.7.

6.25. Prove the following proposition. Let D be a strong semicomplete multipartite
digraph of order n and let r be the cardinality of minimum partite set of
D. If for each pair of dominated non-adjacent vertices x, y, d(x) + d(y) ≥
min{2(n− r) + 3, 2n− 1}, then D is hamiltonian (Zhou and Zhang [934]).

6.26. Prove that every oriented graph of minimum in-degree and out-degree k ≥ 2,
on at most 2k + 2 vertices, is a multipartite tournament with at most two
vertices in each partite set.

6.27. Prove the following theorem due to Jackson:

Theorem 6.10.2 [555] Every oriented graph of minimum in-degree and out-
degree k ≥ 2, on at most 2k + 2 vertices, is hamiltonian.

6.28. Check that f(G′
k, k) = k − 1, where the digraph G′

k and the function f are
introduced after Theorem 6.6.26.

6.29. Characterization of traceable quasi-transitive digraphs. Prove The-
orem 6.7.2 using Theorem 6.6.1. Hint: see the proof of Theorem 6.7.1.

6.30. Another characterization of traceable quasi-transitive digraphs.
Formulate and prove a characterization of traceable quasi-transitive digraphs
similar to Theorem 6.7.3.

6.31. Prove that if D is a non-strong quasi-transitive digraph with a hamiltonian
path, then ¯UG(D) is not connected.

6.32. Prove Lemma 6.9.4.

6.33. Prove that if D is a strong oriented graph of order at least three and D
does not contain, as induced subdigraph, any digraph in Figure 6.8, then

6.10 Exercises 273

D is hamiltonian (Kemnitz and Greger [590]). Hint : show that D is locally
out-semicomplete and use the characterization of hamiltonian locally out-
semicomplete digraphs (Gutin and Yeo [477]).

Figure 6.8 Forbidden digraphs in Exercise 6.33. Unoriented arcs can be oriented
arbitrarily.

6.34. A counterexample to a conjecture from [590]. Consider the tournament
D with V (D) = {x1, x2, x3, x4, x5} and

A(D) = {x1x2, x2x3, x3x4, x4x5, x5x1, x1x3, x2x4, x3x5, x4x1, x5x2}

and any 2-strong tournament T , containing three vertices y1, y2, y3 such that

{y1y2, y2y3, y3y1} ⊆ A(T).

Let us construct an oriented graph T ∗ with vertex set V (D) ∪ V (T) and arc
set

A(D) ∪A(T) ∪ {y1x2, x4y1, y2x2, x4y2, y3x4, x2y3}.
Prove that

(a) T ∗ is strong.
(b) T ∗ does not contain, as induced subdigraph, any orientation of K1,3.
(c) For every vertex v in T ∗, T ∗〈N(v)〉 is strong.
(d) T ∗ is not hamiltonian.

(Gutin and Yeo [477])

6.35. Connected (g, f)-factors in some semicomplete multipartite di-
graphs. Given a digraph D and two positive integers f(x), g(x) for every
x ∈ V (D), a subgraph H of D is called a (g, f)-factor if g(x) ≤ d+

H(x) =

d−
H(x) ≤ f(x) for every x ∈ V (D). If f(x) = g(x) = 1 for every x, then a

connected (g, f)-factor is a hamiltonian cycle. Prove the following result by
Gutin [459]:

Theorem 6.10.3 Let D be a semicomplete bipartite digraph or an extended
locally in-semicomplete digraph. Then D has a connected (g, f)-factor if and
only if D is strongly connected and contains a (g, f)-factor. One can check
whether D has a connected (g, f)-factor in O(n3) time. ��

6.36. Connected (g, f)-factors in quasi-transitive digraphs. The additional
terminology used in this exercise is introduced in the previous exercise. Prove
the following assertion. The connected (g, f)-factor problem is polynomial
time solvable for quasi-transitive digraphs (Gutin [459]).

6.37. Formulate and prove a ‘cycle’ analog of Theorem 6.8.9.

274 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

6.38. Prove that every f -expanding digraph is �f(1)	-strong.

6.39. Prove that every strong s-quadrangular digraph D has a cycle factor. Hint:
use Proposition 4.11.7(b) (Gutin et al. [464]).

7. Restricted Hamiltonian Paths and Cycles

In this chapter we discuss results on hamiltonian paths and cycles with special
properties. We start by studying hamiltonian paths with one or more end-
vertices prescribed, that is, we study paths which start in a given vertex, paths
which connect two prescribed vertices and, finally, paths which start and end
in specified vertices. Not surprisingly, the level of difficulty of these problems
increases when we fix more and more end-vertices. Even for tournaments the
last problem is still not completely solved.

The next topic covered is hamiltonian cycles which either avoid or con-
tain certain prescribed arcs. These problems are very difficult even for tour-
naments. As we will show in Section 7.4, some of these results imply that
the problem of deciding the existence of a hamiltonian cycle in a digraph
obtained from a semicomplete digraph by adding just a few new vertices and
some arcs is already very difficult. In fact, the problem is highly non-trivial,
even if we add just one extra vertex.

The last topic covered in the chapter is orientations of hamiltonian cycles.
We discuss in some detail one of the main tools in a proof by Havet and
Thomassé of the deep result that every tournament on at least eight vertices
contains every orientation of a hamiltonian undirected path.

7.1 Hamiltonian Paths with a Prescribed End-Vertex

We begin with hamiltonian paths starting or ending at a prescribed vertex.
Besides being of independent interest, results of this type are also useful in
connection with results on hamiltonian paths with both end-vertices pre-
scribed (but the direction of the path is not necessarily given).

To get a feeling for arguing with extended tournament structure, we start
with the following easy result.

Proposition 7.1.1 Suppose that a strong extended tournament D has an
(x, y)-path P such that D−P has a cycle factor. Then D has a hamiltonian
path starting at x and a hamiltonian path ending at y.

Proof: Choose a path P ′ starting at x to be as long as possible so that
D − P ′ has a cycle factor consisting of the cycles C1, C2, . . . , Cq, q ≥ 0. By

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 7,
© Springer-Verlag London Limited 2010

275

http://dx.doi.org/10.1007/978-1-84800-998-1_7

276 7. Restricted Hamiltonian Paths and Cycles

Proposition 6.6.18, we may assume that Ci⇒Cj when 1 ≤ i < j ≤ q. Let
P ′ = u1u2 . . . ur where u1 = x. If q �= 0, then, by the choice of P ′, ur is
completely dominated by C1. Since D is strong, there is an arc from P ′ to
C1. Let ui be the vertex of P ′ with largest index i < r such that there is an arc
uiz from ui to C1 and let z− be the predecessor of z on C1. Since ui+1 has no
arc to C1, we obtain z−→ui+1. Here we used the property that nonadjacent
vertices of an extended semicomplete digraph are similar (defined in Chapter
1). Hence C1[z, z−] can be inserted between ui and ui+1, contradicting the
choice of P ′. So q = 0 and P ′ is a hamiltonian path starting at x. An analogous
argument can be applied to show that D has a hamiltonian path ending at
y. ��

The following result, due to Bang-Jensen and Gutin, shows that, for di-
graphs that are either semicomplete bipartite or extended locally semicom-
plete, there is a nice necessary and sufficient condition for the existence of a
hamiltonian path starting at a prescribed vertex.

Theorem 7.1.2 [90] Let D = (V, A) be a digraph which is either semicom-
plete bipartite or extended locally out-semicomplete and let x ∈ V . Then D
has a hamiltonian path starting at x if and only if D contains a 1-path-cycle
factor F of D such that the path of F starts at x, and, for every vertex y of
V −{x}, there is an (x, y)-path1 in D. Moreover, if D has a hamiltonian path
starting at x, then, given a 1-path-cycle factor F of D such that the path of
F starts at x, the desired hamiltonian path can be found in time O(n2).

Proof: As the necessity is clear, we will only prove the sufficiency. Suppose
that F = P ∪C1∪ ...∪Ct is a 1-path-cycle factor of D that consists of a path
P starting at x and cycles Ci, i = 1, ..., t. Suppose also that every vertex of
D is reachable from x. Then, without loss of generality, there is a vertex of P
that dominates a vertex of C1. Let P = x1x2 . . . xp, C1 = y1y2 . . . yqy1, where
x = x1 and xk→ys for some k ∈ [p], s ∈ [q]. We show how to find a new path
starting at x which contains all the vertices of V (P)∪V (C1). Repeating this
process we obtain the desired path. Clearly, we may assume that k < p and
that xp has no arc to V (C1).

Assume first that D is an extended locally out-semicomplete digraph. If P
has a vertex xi which is similar to a vertex yj in C1, then xiyj+1, yjxi+1 ∈ A
and using these arcs we see that P [x1, xi]C[yj+1, yj]P [xi+1, xp] is a path
starting from x and containing all the vertices of P ∪ C1. If P has no vertex
that is similar to a vertex in C1, then we can apply the result of Exercise
2.38 to P [xk, xp] and xkC1[ys, ys−1] and merge these two paths into a path
R starting from xk and containing all the vertices of P [xk, xp] ∪ C1. Now,
P [x1, xk−1]R is a path starting at x and containing all the vertices of P ∪C1.

Suppose now that D is semicomplete bipartite. Then either ys−1→xk+1,
which implies that P [x1, xk]C1[ys, ys−1]P [xk+1, xp] is a path starting at x

1 This is equivalent to saying that D has an out-branching with root x.

7.2 Weakly Hamiltonian-Connected Digraphs 277

and covering all the vertices of P ∪ C1, or xk+1→ys−1. In the latter case,
we consider the arc between xk+2 and ys−2. If ys−2→xk+2, we can construct
the desired path, otherwise we continue to consider arcs between xk+3 and
ys−3 and so on. If we do not construct the desired path in this way, then we
find that the last vertex of P dominates a vertex in C1, contradicting our
assumption above.

Using the process above and breadth-first search, one can construct an
O(n2) algorithm for finding the desired hamiltonian path starting at x. ��

Just as the problem of finding a minimum path factor generalizes the
hamiltonian path problem, we may generalize the problem of finding a hamil-
tonian path starting at a certain vertex to the problem of finding a path factor
with as few paths as possible such that one of these paths starts at a specified
vertex x. We say that a path factor starts at x if one of its paths starts at
x and denote by pcx(D) the minimum number of paths in a path factor that
starts at x. The problem of finding a path factor with pcx(D) paths which
starts at x in a digraph D is called the PFx problem

2.
Let Φ1 be the union of all semicomplete bipartite, extended locally semi-

complete and acyclic digraphs. Using an approach similar to that taken in
Section 6.8, Bang-Jensen and Gutin proved the following.

Theorem 7.1.3 [90] Let D be a totally Φ1-decomposable digraph. Then the
PFx problem for D can be solved in time O(|V (D)|4). ��

7.2 Weakly Hamiltonian-Connected Digraphs

Recall that an [x, y]-path in a digraph D = (V, A) is a path which ei-
ther starts at x and ends at y or oppositely. We say that D is weakly
hamiltonian-connected if it has a hamiltonian [x, y]-path (also called an
[x, y]-hamiltonian path) for every choice of distinct vertices x, y ∈ V . Ob-
viously, deciding whether a digraph contains an [x, y]-hamiltonian path for
some x, y is not easier than determining whether D has any hamiltonian path
and hence for general digraphs this is an NP-complete problem by Theorem
6.1.2 (see also Exercise 7.2). In this section we discuss various results that
have been obtained for generalizations of tournaments. All of these results
imply polynomial algorithms for finding the desired paths.

7.2.1 Results for Extended Tournaments

We start with a theorem, due to Thomassen [856], which has been general-
ized to several super-classes of tournaments as will be seen in the following
subsections.
2 Observe that pc(D) ≤ pcx(D) ≤ pc(D) + 1 holds for every digraph D.

278 7. Restricted Hamiltonian Paths and Cycles

Theorem 7.2.1 [856] Let D = (V, A) be a tournament and let x1, x2 be
distinct vertices of D. Then D has an [x1, x2]-hamiltonian path if and only
if none of the following holds.

(a) D is not strong and either none of x1, x2 belongs to the initial strong com-
ponent of D or none of x1, x2 belongs to the terminal strong component
(or both).

(b) D is strong and for i = 1 or 2, D − xi is not strong and x3−i belongs to
neither the initial nor the terminal strong component of D − xi.

(c) D is isomorphic to one of the two tournaments in Figure 7.1 (possibly
after interchanging the names of x1 and x2).

x2

x1

Figure 7.1 The exceptional tournaments in Theorem 7.2.1. The edge between x1

and x2 can be oriented arbitrarily.

The following easy corollary is left as Exercise 7.4:

Corollary 7.2.2 [856] Let D be a strong tournament and let x, y, z be dis-
tinct vertices of D. Then D has a hamiltonian path connecting two of the
vertices in the set {x, y, z}. ��

Thomassen [856] used a nice trick in his proof of Theorem 7.2.1 by using
Corollary 7.2.2 in the induction proof. We will give his proof below.

Proof of Theorem 7.2.1: Let x1, x2 be distinct vertices in a tournament
D. It is easy to check that if any of (a)-(c) holds, then there is no [x1, x2]-
hamiltonian path in D.

Suppose now that none of (a)-(c) hold. We prove, by induction on n, that
D has an [x1, x2]-hamiltonian path. This is easy to show when n ≤ 4, so
assume now that n ≥ 5 and consider the induction step with the obvious
induction hypothesis. If D is not strong, then let D1, D2, . . . , Ds, s ≥ 2, be
the acyclic ordering of the strong components of D. Since (a) does not hold,

7.2 Weakly Hamiltonian-Connected Digraphs 279

we may assume without loss of generality that x1 ∈ V (D1) and x2 ∈ V (Ds).
Observe that D1 has a hamiltonian path P1 starting at x1 and Ds has a
hamiltonian path Ps ending at x2. Let Pi be a hamiltonian path in Di for
each i = 2, 3, . . . , s−1. Then P1P2 . . . Ps−1Ps is an (x1, x2)-hamiltonian path.

If D − xi is not strong for i = 1 or 2, then we may assume without loss
of generality that i = 1. Let D′

1, . . . , D
′
p, p ≥ 2, be the acyclic ordering of the

strong components of D − x1. Since (b) does not hold we may assume, by
considering the converse of D if necessary, that x2 belongs to D′

p. Let y be
any out-neighbour of x1 in D′

1. Our argument for the previous case implies
that there is a (y, x2)-hamiltonian path P in D−x1, implying that x1P is an
(x1, x2)-hamiltonian path in D. Hence we may assume that D − xi is strong
for i = 1, 2.

If D − {x1, x2} is not strong, then it is easy to prove that D has an
(xi, x3−i)-hamiltonian path for i = 1, 2 (Exercise 7.1). Hence we only need
to consider the case when D′ = D − {x1, x2} is strong. Let u1u2 . . . un−2u1

be a hamiltonian cycle of D′. By considering the converse if necessary, we
may assume that x1 dominates u1. Then D has an (x1, x2)-hamiltonian path
unless x2 dominates un−2 so we may assume that is the case. By the same
argument we see that either the desired path exists or x1 dominates un−3 and
x2 dominates un−4. Now it is easy to see that either the desired path exists,
or n− 2 is even and we have x1 �→{u1, u3, . . . , un−3}, x2 �→{u2, u4, . . . , un−2}.
If x1 or x2 dominates any vertex other than those described above, then, by
repeating the argument above, we see that either the desired path exists or
{x1, x2}�→V (C), which is impossible since D is strong. Hence we may assume
that

{u2, u4, . . . , un−2}�→ x1 �→{u1, u3, . . . , un−3},
{u1, u3, . . . , un−3}�→ x2 �→{u2, u4, . . . , un−2}. (7.1)

If n = 6, then using that (c) does not hold, it is easy to see that the desired
path exists. So we may assume that n ≥ 8. By induction, the theorem and
hence also Corollary 7.2.2 holds for all tournaments on n − 2 vertices. Thus
D′ has a hamiltonian path P which starts and ends in the set {u1, u3, u5}
and by (7.1), P can be extended to an (x1, x2)-hamiltonian path of D. ��

We now turn to extended tournaments. An extended tournament D does
not always have a hamiltonian path, but, as we saw in Theorem 6.6.1, it
does when the following obviously necessary condition is satisfied: there is
a 1-path-cycle factor in D. Thus if we are looking for a sufficient condition
for the existence of an [x, y]-hamiltonian path, we must require the existence
on an [x, y]-path P such that D − P has a cycle factor (this includes the
case when P is already hamiltonian). Checking for such a path factor in an
arbitrary digraph can be done in polynomial time using flows, see Exercise
7.3.

280 7. Restricted Hamiltonian Paths and Cycles

The next result is similar to the structure we found in the last part of the
proof of Theorem 7.2.1.

Lemma 7.2.3 [92] Suppose that D is a strong extended tournament con-
taining two adjacent vertices x and y such that D − {x, y} has a hamilto-
nian cycle C but D has no hamiltonian [x, y]-path. Then C is an even cycle,
N+(x) ∩ V (C) = N−(y) ∩ V (C), N−(x) ∩ V (C) = N+(y) ∩ V (C), and the
neighbours of x alternate between in-neighbours and out-neighbours around
C.

Proof: Exercise 7.5. ��
Bang-Jensen, Gutin and Huang obtained the following characterization

for the existence of an [x, y]-hamiltonian path in an extended tournament.
Note the strong similarity with Theorem 7.2.1.

Theorem 7.2.4 [92] Let D be an extended tournament and x1, x2 be distinct
vertices of D. Then D has an [x1, x2]-hamiltonian path if and only if D has
an [x1, x2]-path P such that D−P has a cycle factor and D does not satisfy
any of the conditions below:

(a) D is not strong and either the initial or the terminal component of D (or
both) contains none of x1 and x2;

(b) D is strong and the following holds for i = 1 or i = 2: D−xi is not strong
and either x3−i belongs to neither the initial nor the terminal component
of D−xi, or x3−i does belong to the initial (terminal) component of D−xi

but there is no (x3−i, xi)-path ((xi, x3−i)-path) P ′ such that D − P ′ has
a cycle factor.

(c) D, D − x1 and D − x2 are all strong and D is isomorphic to one of the
tournaments in Figure 7.1. ��

The proof of this theorem in [92] is constructive and implies the following
result (the proof is much more involved than that of Theorem 7.2.1). We point
out that the proof in [92] makes explicit use of the fact that the digraphs have
no 2-cycles. Hence the proof is only valid for extended tournaments and not
for general extended semicomplete digraphs, for which the problem is still
open.

Theorem 7.2.5 [92] There exists an O(
√

nm) algorithm to decide if a given
extended tournament has a hamiltonian path connecting two specified vertices
x and y. Furthermore, within the same time bound a hamiltonian [x, y]-path
can be found if it exists. ��

Theorem 7.2.4 implies the following characterization of extended tourna-
ments which are weakly hamiltonian-connected (see Exercise 7.7).

7.2 Weakly Hamiltonian-Connected Digraphs 281

Theorem 7.2.6 [92] Let D be an extended tournament. Then D is weakly
hamiltonian-connected if and only if it satisfies each of the conditions below.

(a) D is strongly connected.
(b) For every pair of distinct vertices x and y of D, there is an [x, y]-path P

such that D − P has a cycle factor.
(c) For each vertex x of D, D − x has at most two strong components and

if D − x is not strong, then for each vertex y in the initial (respectively
terminal) strong component, there is a (y, x)-path (respectively an (x, y)-
path) P ′ such that D − P ′ has a cycle factor.

(d) D is not isomorphic to any of the two tournaments in Figure 7.1. ��

The following result generalizes Corollary 7.2.2. Note that we must assume
the existence of the paths described below in order to have any chance of
having a hamiltonian path with end-vertices in the set {x, y, z}. The proof
below illustrates how to argue with extended tournament structure.

Corollary 7.2.7 [92] Let x, y and z be three vertices of a strong extended
tournament D. Suppose that, for every choice of distinct vertices u, v ∈
{x, y, z}, there is a [u, v]-path P in D so that D − P has a cycle factor.
Then there is a hamiltonian path connecting two of the vertices in {x, y, z}.

Proof: If both D − x and D − y are strong, then, by Theorem 7.2.4, either
D has a hamiltonian path connecting x and y, or D is isomorphic to one
of the tournaments in Figure 7.1, in which case there is a hamiltonian path
connecting x and z. There is a similar argument if both D − x and D − z,
or D − y and D − z are strong. So, without loss of generality, assume that
neither D − x nor D − y is strong. Let S1, S2, . . . , St be an acyclic ordering
of the strong components of D − x. Note that St has an arc to x, since D is
strong.

Suppose first that y ∈ V (Si) for some 1 < i < t. We show that this implies
that D − y is strong, contradicting our assumption. Consider an [x, y]-path
P and a cycle factor F of D − P . It is easy to see that P cannot contain
any vertex of Si+1, . . . , St. Hence each of these strong components contains a
cycle factor consisting of those cycles from F that are in Sj for j = i+1, . . . , t.
In particular (since it contains a cycle), each Sj has size at least 3 for j =
i+1, . . . , t. It also follows from the existence of P and F that every vertex in
Si is dominated by at least one vertex from U = V (S1)∪. . .∪V (Si−1). Indeed,
if some vertex z ∈ V (Si) is not dominated by any vertex from U , then using
that Sr⇒Sp for all 1 ≤ r < p ≤ t we get that z is similar to all vertices in
U . However, this contradicts the existence of P and F . Now it is easy to see
that D− y is strong since every vertex of Si − y is dominated by some vertex
from V (S1)∪ . . .∪ V (Si−1) and dominates a vertex in V (Si+1)∪ . . .∪ V (St).
Hence we may assume that y belongs to S1 or St.

By considering the converse of D if necessary, we may assume that y ∈
V (S1). By Theorem 7.2.4(b), we may assume that there is no (y, x)-path W

282 7. Restricted Hamiltonian Paths and Cycles

such that D − W has a cycle factor. Thus it follows from the assumption of
the corollary that there is an (x, y)-path P ′ = v1v2 . . . vr, v1 = x, vr = y such
that D − P ′ has a cycle factor F ′. Since P ′ − x is contained in S1, we can
argue as above that each Si, i > 1, has a cycle factor (inherited from F ′) and
hence each Si contains a hamiltonian cycle Ci, by Theorem 6.6.7.

Note that every vertex of S1 which is not on P ′ belongs to some cycle
of F ′ that lies entirely inside S1. Hence, if r = 2 (that is, P ′ is just the
arc x→y), then it follows from Proposition 7.1.1 (which is also valid when
the path in question has length zero) that S1 contains a hamiltonian path
starting at y. This path can easily be extended to a (y, x)-hamiltonian path
in D, since each Si, i > 1, is hamiltonian. Thus we may assume that r ≥ 3.

If S1 − y is strong, then D − y is strong, contradicting our assumption
above. Let T1, T2, . . . , Ts, s ≥ 2, be an acyclic ordering of the strong compo-
nents of S1−y. Note that each V (Ti) is either covered by some cycles from the
cycle factor F ′ of D−P ′ and hence Ti has a hamiltonian cycle (by Theorem
6.6.5), or is covered by a subpath of P ′[v2, vr−1] and some cycles (possibly
zero) from F ′ and hence Ti has a hamiltonian path (by Theorem 6.6.1). Note
also that there is at least one arc from y to T1 and at least one arc from Ts

to y. If T1 contains a portion of P ′[v2, vr−1], then it is clear that T1 contains
v2. But then D − y is strong since x→v2, contradicting our assumption. So
T1 contains no vertices of P ′[v1, vr−1] and hence, by the remark above, T1

has a hamiltonian cycle to which there is at least one arc from y. Using the
structure derived above, it is easy to show that D has a (y, x)-hamiltonian
path (Exercise 7.6). ��

It can be seen from the results above that when we consider weak
hamiltonian-connectedness, extended tournaments have a structure which is
closely related to that of tournaments. To see that Theorem 7.2.4 does not
extend to general multipartite tournaments, consider the multipartite tour-
nament D obtained from a hamiltonian bipartite tournament B with classes
X and Y , by adding two new vertices x and y along with the following arcs:
all arcs from x to X and from Y to x, all arcs from y to Y and X to y and an
arc between x and y in any direction. It is easy to see that D satisfies none
of the conditions (a)-(c) in Theorem 7.2.4, yet there can be no hamiltonian
path with end-vertices x and y in D because any such path would contain a
hamiltonian path of B starting and ending in X or starting and ending in Y .
Such a path cannot exist for parity reasons (|X| = |Y |). Note also that we can
choose B so that the resulting multipartite tournament is highly connected.

Bang-Jensen and Manoussakis [110] characterized weakly hamiltonian-
connected bipartite tournaments. In particular, they proved a necessary and
sufficient condition for the existence of an [x, y]-hamiltonian path in a bipar-
tite tournament. The statement of this characterization turns out to be quite
similar to that of Theorem 7.2.4. The only difference between the statements
of these two characterizations is in Condition (c): in the characterization for

7.2 Weakly Hamiltonian-Connected Digraphs 283

bipartite tournaments the set of forbidden digraphs is absolutely different
and moreover infinite.

7.2.2 Results for Locally Semicomplete Digraphs

Our next goal is to describe the solution of the [x, y]-hamiltonian path prob-
lem for locally semicomplete digraphs. Notice that this solution also covers
the case of semicomplete digraphs and so, in particular, it generalizes Theo-
rem 7.2.1 to semicomplete digraphs.

We start by establishing notation for some special locally semicomplete
digraphs. Up to isomorphism there is a unique strong tournament with four
vertices. We denote this by T 1

4 . It has the following vertices and arcs:

V (T 1
4) = {a1, a2, a3, a4}, A(T 1

4) = {a1a2, a2a3, a3a4, a4a1, a1a3, a2a4}.

The semicomplete digraphs T 2
4 , T 3

4 , and T 4
4 are obtained from T 1

4 by adding
some arcs, namely:

A(T 2
4) = A(T 1

4) ∪ {a3a1, a4a2},

A(T 3
4) = A(T 1

4) ∪ {a3a1}, A(T 4
4) = A(T 1

4) ∪ {a1a4}.

Let T4 = {T 1
4 , T 2

4 , T 3
4 , T 4

4 }. It is easy to check that every digraph of T4 has
a unique hamiltonian cycle and has no hamiltonian path between two vertices
which are not consecutive on this hamiltonian cycle (two such vertices are
called opposite).

Let T6 be the set of semicomplete digraphs with the vertex set {x1, x2, a1,
a2, a3, a4} such that each member D of T6 has a cycle a1a2a3a4a1 and the
digraph D〈{a1, a2, a3, a4}〉 is isomorphic to one member of T4, in addition,
xi → {a1, a3} → x3−i → {a2, a4} → xi for i = 1 or i = 2. It is straightfor-
ward to verify that T6 contains only two tournaments (denoted by T ′

6 and
T ′′

6), namely, the ones shown in Figure 7.1, and that |T6| = 11. Since none
of the digraphs of T4 has a hamiltonian path connecting any two opposite
vertices, no digraph of T6 has a hamiltonian path between x1 and x2.

For every even integer m ≥ 4 there is only one 2-strong, 2-regular locally
semicomplete digraph on m vertices, namely, the second power 	C2

m of an
m-cycle (Exercise 7.8). We define

T ∗ = { 	C2
m | m is even and m ≥ 4}.

It is not difficult to prove that every digraph of T ∗ has a unique hamilto-
nian cycle and is not weakly hamiltonian-connected (Exercise 7.9, see also

284 7. Restricted Hamiltonian Paths and Cycles

[69]). For instance, if the unique hamiltonian cycle of 	C2
6 is denoted by

u1u2u3u4u5u6u1, then u1u3u5u1 and u2u4u6u2 are two cycles of 	C2
6 and

there is no hamiltonian path between any two vertices of {u1, u3, u5} or of
{u2, u4, u6}.

Let T 1
8 be the digraph consisting of 	C2

6 together with two new vertices x1

and x2 such that x1 → {u1, u3, u5} → x2 → {u2, u4, u6} → x1. Furthermore,
T 2

8 (T 3
8 , respectively) is defined as the digraph obtained from T 1

8 by adding
the arc x1x2 (the arcs x1x2 and x2x1, respectively). Let T8 = {T 1

8 , T 2
8 , T 3

8 }.
It is easy to see that every element of T8 is a 3-strong locally semicomplete
digraph and has no hamiltonian path between x1 and x2.

Before we present the main result, we state the following two lemmas that
were used in the proof of Theorem 7.2.10 by Bang-Jensen, Guo and Volkmann
in [81]. The first lemma generalizes the structure found in the last part of the
proof of Theorem 7.2.1.

Lemma 7.2.8 [81] Let D be a strong locally semicomplete digraph on n ≥ 4
vertices and x1, x2 two distinct vertices of D. If D − {x1, x2} is strong, and
N+(x1) ∩ N+(x2) �= ∅ or N−(x1) ∩ N−(x2) �= ∅, then D has a hamiltonian
path connecting x1 and x2.

Proof: Exercise 7.10. ��
Another useful ingredient in the proof of Theorem 7.2.10 is the following

linking result. An odd chain is the second power, 	P 2
2k+1 for some k ≥ 1, of

a path on an odd number of vertices.

Lemma 7.2.9 [81] Let D be a connected, locally semicomplete digraph with
p ≥ 4 strong components and acyclic ordering D1, D2, ..., Dp of these. Suppose
that V (D1) = {u1} and V (Dp) = {v1} and that D − x is connected for
every vertex x. Then, for every choice of u2 ∈ V (D2) and v2 ∈ V (Dp−1),
D has two vertex disjoint paths P1 from u2 to v1 and P2 from u1 to v2 with
V (P1) ∪ V (P2) = V (D) if and only if D is not an odd chain from u1 to v1.

Proof: If D is an odd chain, it is easy to see that D has no two vertex-disjoint
(ui, v3−i)-paths, for i = 1, 2 (Exercise 7.11). We prove by induction on p that
the converse is true as well. Suppose that D is not an odd chain from u1 to
v1. Since the subdigraph D−x is connected for every vertex x, |N+(Di)| ≥ 2
for all i ≤ p − 2 and |N−(Dj)| ≥ 2 for all j ≥ 3. If p = 4, then it is not
difficult to see that D has two vertex-disjoint paths P1 from u2 to v1 and P2

from u1 to v2 with V (P1) ∪ V (P2) = V (D) (Exercise 7.13). If p = 5, it is
also not difficult to check that D has the desired paths, unless D is a chain
on five vertices. So we assume that p ≥ 6. Now we consider the digraph D′,
which is obtained from D by deleting the vertex sets {u1, v1}, V (D2 − u2)
and V (Dp−1 − v2).

Using the assumption on D, it is not difficult to show that D′ is a con-
nected, but not strongly connected locally semicomplete digraph with the

7.2 Weakly Hamiltonian-Connected Digraphs 285

acyclic ordering {u2}, D3, D4, . . . , Dp−2, {v2} of its strong components. Fur-
thermore, for every vertex y of D′, the subdigraph D′ − y is still connected.
Let u be an arbitrary vertex of D3 and v an arbitrary vertex of Dp−2. Note
that there is a (u1, u)-hamiltonian path P in D〈{u1, u} ∪ V (D2 − u2)〉 and
similarly there is a (v, v1)-hamiltonian path Q in D〈{v, v1} ∪ V (Dp−1 − v2)〉.
Hence if D′ has disjoint (u2, v)-, (u, v2)-paths which cover all vertices of D′,
then D has the desired paths. So we can assume D′ has no such paths. By
induction, D′ is an odd chain from u2 to v2. Now using that D is not an odd
chain from u1 to v1 it is easy to see that D has the desired paths. We leave
the details to the reader. ��

A weaker version of Lemma 7.2.9 was proved in [69, Theorem 4.5].

Below we give a characterization, due to Bang-Jensen, Guo and Volk-
mann, for the existence of an [x, y]-hamiltonian path in a locally semicom-
plete digraph. Note again the similarity to Theorem 7.2.1.

Theorem 7.2.10 [81] Let D be a connected locally semicomplete digraph
on n vertices and x1 and x2 be two distinct vertices of D. Then D has no
hamiltonian [x1, x2]-path if and only if one of the following conditions is
satisfied:

(1) D is not strong and either the initial or the terminal component of D (or
both) contains none of x1, x2.

(2) D is strongly connected, but not 2-strong,
(2.1) there is an i ∈ {1, 2} such that D−xi is not strong and x3−i belongs

to neither the initial nor the terminal component of D − xi;
(2.2) D − x1 and D − x2 are strong, s is a separating vertex of D,

D1, D2, ..., Dp is the acyclic ordering of the strong components of
D − s, xi ∈ V (Dα) and x3−i ∈ V (Dβ) with α ≤ β − 2. Further-
more, V (Dα+1) ∪ V (Dα+2) ∪ ... ∪ V (Dβ−1) contains a separating
vertex of D, or D′ = D〈V (Dα) ∪ V (Dα+1) ∪ ... ∪ V (Dβ)〉 is an odd
chain from xi to x3−i with N−(Dα+2) ∩ V (D − V (D′)) = ∅ and
N+(Dβ−2) ∩ V (D − V (D′)) = ∅.

(3) D is 2-strong and is isomorphic to T 2
4 or to one member of T6 ∪ T8 ∪ T ∗

and x1, x2 are the corresponding vertices in the definitions. ��
As an easy consequence of Theorem 7.2.10, we obtain a characterization

of weakly hamiltonian-connected locally semicomplete digraphs. The proof is
left to the interested reader as Exercise 7.12.

Theorem 7.2.11 [81] A locally semicomplete digraph D with at least three
vertices is weakly hamiltonian–connected if and only if it satisfies (a), (b) and
(c) below:

(a) D is strong,
(b) For every x ∈ V (D), D − x has at most two strong components,
(c) D is not isomorphic to any member of T6 ∪ T8 ∪ T ∗. ��

286 7. Restricted Hamiltonian Paths and Cycles

7.3 Hamiltonian-Connected Digraphs

We now turn to hamiltonian paths with specified initial and terminal vertices.
An (x, y)-hamiltonian path is a hamiltonian path from x to y. Clearly,
asking for such a path in an arbitrary digraph is an even stronger require-
ment than asking for an [x, y]-hamiltonian path3. A digraph D = (V, A)
is hamiltonian-connected if D has an (x, y)-hamiltonian path for every
choice of distinct vertices x, y ∈ V .

We can check, in polynomial time, whether a digraph of bounded directed
tree-width4 is hamiltonian-connected due the the following theorem by John-
son, Robertson, Seymour and Thomas.

Theorem 7.3.1 [573] For a digraph D of bounded directed tree-width and a
pair x, y of distinct vertices of D, we can check, in polynomial time, whether
D has an (x, y)-hamiltonian path. ��

By Lemma 2.13.9, all of the above holds for DAG-width and directed
path-width.

No characterization5 for the existence of an (x, y)-hamiltonian path is
known, even for the case of tournaments. However, by Theorem 7.3.6, there
is a polynomial algorithm for the problem in the next section, so in the algo-
rithmic sense a good characterization does exist. The following very impor-
tant partial result, due to Thomassen, was used in the algorithm of Theorem
7.3.6.

Theorem 7.3.2 (Thomassen) [856] Let D = (V, A) be a 2-strong semi-
complete digraph with distinct vertices x, y. Then D contains an (x, y)-
hamiltonian path if either (a) or (b) below is satisfied.

(a) D contains three internally disjoint (x, y)-paths each of length at least
two,

(b) D contains a vertex z which is dominated by every vertex of V −x and D
contains two internally disjoint (x, y)-paths each of length at least two.

��

In his proof Thomassen explicitly uses the fact that the digraph is allowed
to have cycles of length 2. This simplifies the proof (which is still far from
trivial), since one can use contraction to reduce to a smaller instance and
then use induction.
3 We know of no class of digraphs for which the [x, y]-hamiltonian path problem is

polynomially solvable, but the (x, y)-hamiltonian path problem is NP-complete.
For arbitrary digraphs they are equivalent from a complexity point of view (see
Exercise 7.2).

4 See Section 2.13 for definitions of directed width parameters.
5 By this we mean a structural characterization involving only conditions that can

be checked in polynomial time.

7.3 Hamiltonian-Connected Digraphs 287

An important ingredient in the proof of Theorem 7.3.2, as well as in
several other proofs concerning the existence of an (x, y)-hamiltonian path
in a semicomplete digraph D, is to prove that D contains a spanning acyclic
graph in which x can reach all other vertices and y can be reached by all
other vertices. The reason for this can be seen from the following result which
generalizes an observation by Thomassen in [856].

Proposition 7.3.3 [72] Let D be a path-mergeable digraph. Then D has a
hamiltonian (x, y)-path if and only if D contains a spanning acyclic digraph
H in which d−H(x) = d+

H(y) = 0 and such that, for every vertex z ∈ V (D), H
contains an (x, z)-path and a (z, y)-path.

Proof: Exercise 7.15. ��
Theorem 7.3.2 and Menger’s theorem (see Theorem 5.4.1) immediately

imply the following result. For another nice consequence see Exercise 7.16.

Theorem 7.3.4 [856] If a semicomplete digraph D is 4-strong, then D is
hamiltonian-connected. ��

Thomassen constructed an infinite family of 3-strongly connected tour-
naments with two vertices x, y for which there is no (x, y)-hamiltonian path
[856]. Hence, from a connectivity point of view, Theorem 7.3.4 is the best
possible.

Theorem 7.3.4 is a very important result with several consequences.
Thomassen has shown in several papers how to use Theorem 7.3.4 to obtain
results on spanning collections of paths and cycles in semicomplete digraphs.
See, e.g., the papers [857, 859] by Thomassen and also Section 7.4.

The next theorem by Bang-Jensen, Manoussakis and Thomassen gener-
alizes Theorem 7.3.2. Recall that for specified distinct vertices s, t, an (s, t)-
separator is a subset S ⊆ V − {s, t} such that D − S has no (s, t)-path. An
(s, t)-separator is trivial if either s has out-degree zero or t has in-degree
zero in D − S.

Theorem 7.3.5 [111] Let T be a 2-strong semicomplete digraph on at least
10 vertices and let x, y be vertices of T such that y �→x. Suppose that both of
T −x and T −y are 2-strong. If all (x, y)-separators consisting of two vertices
(if any exist) are trivial, then T has an (x, y)-hamiltonian path. ��

Based on Theorem 7.3.5 and several other structural results on 2-strong
semicomplete digraphs Bang-Jensen, Manoussakis and Thomassen proved the
following.

Theorem 7.3.6 [111] The (x, y)-hamiltonian path problem is polynomially
solvable for semicomplete digraphs. ��

The algorithm uses a divide-and-conquer approach and cannot be easily
modified to find a longest (x, y)-path in a semicomplete digraph. There also
does not seem to be any simple reduction of this problem to the problem of
deciding the existence of a hamiltonian path from x to y.

288 7. Restricted Hamiltonian Paths and Cycles

Conjecture 7.3.7 [89] There exists a polynomial algorithm which, given a
semicomplete digraph D and two distinct vertices x and y of D, finds a longest
(x, y)-path.

Note that if we ask for the longest [x, y]-path in a tournament, then this
can be answered using Theorem 7.2.1 (see Exercise 7.18).

Conjecture 7.3.8 [89] There exists a polynomial algorithm which, given
a digraph D that is either extended semicomplete or locally semicomplete,
and two distinct vertices x and y of D, decides whether D has an (x, y)-
hamiltonian path and finds such a path if one exists.

The following extension of Theorem 7.3.4 to extended tournaments has
been conjectured by Bang-Jensen, Gutin and Huang:

Conjecture 7.3.9 [92] If D is a 4-strong extended tournament with an
(x, y)-path P such that D − P has a cycle factor, then D has an (x, y)-
hamiltonian path.

Guo [433] extended Theorem 7.3.4 to locally semicomplete digraphs.

Theorem 7.3.10 (Guo) [433] Let D be a 2-strong locally semicomplete di-
graph and let x, y be two distinct vertices of D. Then D contains a hamilto-
nian path from x to y if (a) or (b) below is satisfied.

(a) There are three internally disjoint (x, y)-paths in D, each of which is of
length at least 2 and D is not isomorphic to any of the digraphs T 1

8 and
T 2

8 (see the definition in the preceding section).
(b) The digraph D has two internally disjoint (x, y)-paths P1, P2, each of

which is of length at least 2 and a path P which either starts at x or
ends at y and has only x or y in common with P1, P2 such that V (D) =
V (P1) ∪ V (P2) ∪ V (P). Furthermore, for any vertex z �∈ V (P1) ∪ V (P2),
z has a neighbour on P1 − {x, y} if and only if it has a neighbour on
P2 − {x, y}. ��

Since neither of the two exceptions in (a) is 4-strong, Theorem 7.3.10
implies the following:

Corollary 7.3.11 [433] Every 4-strong locally semicomplete digraph is
hamiltonian-connected. ��

In [432] Guo used Theorem 7.3.10 to give a complete characterization of
those 3-strongly connected arc-3-cyclic (that is, every arc is in a 3-cycle) lo-
cally tournament digraphs with no hamiltonian path from x to y for specified
vertices x and y. In particular this characterization shows that there exist in-
finitely many 3-strongly connected digraphs which are locally tournament di-
graphs (but not semicomplete digraphs) and are not hamiltonian-connected.

7.4 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs 289

Thus, as far as this problem is concerned, it is not only the subclass of semi-
complete digraphs which contain difficult instances within the class of locally
semicomplete digraphs. It should be noted that Guo’s proof does not rely on
Theorem 7.3.4. However, due to the non-semicomplete exceptions mentioned
above, it seems unlikely that a much simpler proof of Corollary 7.3.11 can be
found using Theorems 7.3.4 and 2.10.15.

Not surprisingly, there are also several results on hamiltonian-connectivity
in digraphs with many arcs. One example is the following result by Lewin.

Theorem 7.3.12 [641] If a digraph on n ≥ 3 vertices has (n − 1)2 + 1 or
more arcs, then it is hamiltonian-connected. ��

If a digraph D is hamiltonian-connected, then D is also hamiltonian (since
every arc is in a hamiltonian cycle). The next result, due to Bermond, shows
that we only need a slight strengthening of the degree condition in Corollary
6.4.3 to get a sufficient condition for strong hamiltonian-connectivity.

Theorem 7.3.13 [144] Every digraph D on n vertices with minimum semi-
degree at least n+1

2 is hamiltonian-connected. ��

Overbeck-Larisch showed that if we just ask for weak hamiltonian-
connectedness, then we can replace the condition on the semi-degrees by
a condition on the degrees:

Theorem 7.3.14 [735] Every 2-strong digraph on n vertices and minimum
degree at least n + 1 is weakly hamiltonian-connected. ��

Thomassen asked whether all 3-strong digraphs D = (V, A) on n vertices
with d+(x) + d−(x) ≥ n + 1 for all x ∈ V are necessarily hamiltonian-
connected. However, this is not the case, as was shown by Darbinyan [247].

For further results on hamiltonian cycles containing a subset of the ver-
tices in a prescribed order see Section 10.3.

7.4 Hamiltonian Cycles Containing or Avoiding
Prescribed Arcs

We now turn our attention to hamiltonian cycles in digraphs with the ex-
tra condition that these cycles must either contain or avoid all arcs from a
prescribed subset A′ of the arcs. Not surprisingly, problems of this type are
quite difficult even for semicomplete digraphs. If we have no restriction on the
size of A′, then we may easily formulate the hamiltonian cycle problem for
arbitrary digraphs as an avoiding problem for semicomplete digraphs. Hence
the avoiding problem without any restrictions is certainly NP-complete. Be-
low, we study both types of problems from a connectivity as well as from
a complexity point of view. We also show that when the number of arcs to

290 7. Restricted Hamiltonian Paths and Cycles

be avoided, respectively, contained in a hamiltonian cycle, is some constant,
then, from a complexity point of view, the avoiding version is no harder than
the containing version. Finally, we show that for digraphs which can be ob-
tained from a semicomplete digraph by adding a few new vertices and some
arcs, the hamiltonian cycle problem is very hard and even if we just added
one new vertex, the problem is highly non-trivial.

7.4.1 Hamiltonian Cycles Containing Prescribed Arcs

We start by studying the problem of finding a hamiltonian cycle that con-
tains certain prescribed arcs e1, e2, . . . , ek. This problem, which we call the
k-HCA problem, is clearly very hard for general digraphs. We show below
that even for semicomplete digraphs this is a difficult problem. For k = 1
the k-HCA problem is a special case of the (x, y)-hamiltonian path problem
and it follows from Theorem 7.3.6 that there is a polynomial algorithm to
decide the existence of a hamiltonian cycle containing one prescribed arc in
a semicomplete digraph.

Based on the evidence from Theorem 7.3.6, Bang-Jensen, Manoussakis
and Thomassen raised the following conjecture. As mentioned above, when
k = 1 the conjecture follows from Theorem 7.3.6.

Conjecture 7.4.1 [111] For each fixed k, the k-HCA problem is polynomi-
ally solvable for semicomplete digraphs.

When k = 2 the problem already seems very difficult. This is interesting,
especially in view of the discussion below concerning hamiltonian cycles in
digraphs obtained from semicomplete digraphs by adding a few new vertices.
Bang-Jensen and Thomassen proved that when k is not fixed the k-HCA
problem becomes NP-complete even for tournaments [118]. The proof of
this result in [118] contains an interesting idea which was generalized by
Bang-Jensen and Gutin in [84]. Consider a digraph D containing a set W of
k vertices such that D − W is semicomplete. Construct a new semicomplete
digraph DW as follows. First, split every vertex w ∈ W into two vertices
w1, w2 such that all arcs entering w now enter w1 and all arcs leaving w now
leave w2. Add all possible arcs from vertices of index 1 to vertices of index 2
(whenever the arcs in the opposite direction are not already present). Add all
edges between vertices of the same index and orient them randomly. Finally,
add all arcs of the kind w1z and zw2, where w ∈ W and z ∈ V (D)−W . See
Figure 7.2. It is easy to show that the following holds:

Proposition 7.4.2 [84] Let W be a set of k vertices of a digraph D such
that D − W is a semicomplete digraph. Then D has a cycle of length c ≥ k
containing all vertices of W , if and only if the semicomplete digraph DW has
a cycle of length c + k through the arcs {w1w2 : w ∈ W}.

7.4 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs 291

W

S S

W1 W2

DWD

Figure 7.2 The construction of DW from D and W . The bold arc from W1 to W2

indicates that all arcs not already going from W2 to W1 (as copies of arcs in D) go
in the direction shown. The four other bold arcs indicate that all possible arcs are
present in the direction shown.

Proof: Exercise 7.20. ��
Let D = (V, A) be a semicomplete digraph and A′ = {u1v1, . . . , ukvk}

be a subset of A. Let D′ be the digraph obtained from D by replacing each
arc uivi ∈ A′ by a path uiwivi, i ∈ [k], where wi is a new vertex. Then
every cycle C in D that uses all arcs in A′ corresponds to a cycle C ′ in
D′ which contains all vertices of W = {w1, w2, . . . , wk} and conversely. This
observation and Proposition 7.4.2 allows us to study cycles through a specified
set W of vertices in digraphs D such that D −W is semicomplete instead of
studying cycles containing k = |W | fixed arcs in semicomplete digraphs.

Note that if k is not fixed, then it is NP-complete to decide the existence
of a cycle through k given vertices in a digraph which can be obtained from a
semicomplete digraph by adding k new vertices and some arcs. Indeed, take
k = |V (D)|, then this is the Hamilton cycle problem for general digraphs.
This proves that the k-HCA is NP-complete for semicomplete digraphs.

Now we can reformulate Conjecture 7.4.1 to the following equivalent state-
ment:

Conjecture 7.4.3 [84] Let k be a fixed natural number. There exists a poly-
nomial algorithm to decide if there is a hamiltonian cycle in a given digraph
D which is obtained from a semicomplete digraph by adding at most k new
vertices and some arcs.

The truth of this conjecture when k = 1 follows from Proposition 7.4.2
and Theorem 7.3.6. Surprisingly, when |W | = 2 the problem already seems
very difficult.

292 7. Restricted Hamiltonian Paths and Cycles

We conclude this subsection with some results on the k-HCA problem
for highly connected tournaments. Thomassen [859] obtained the following
theorem for tournaments with large strong connectivity (the function f(k) is
defined recursively by f(1) = 1 and f(k) = 2(k − 1)f(k − 1) + 3 for k ≥ 2).
The proof is by induction on k and uses Theorem 7.3.4 to establish the case
k = 1 (this is another illustration of the importance of Theorem 7.3.4).

Theorem 7.4.4 [859] If {x1, y1, ..., xk, yk} is a set of distinct vertices in an
h(k)-strong tournament T , where h(k) = f(5k)+12k+9, then T has a k-path
factor P1 ∪ P2 ∪ ... ∪ Pk such that Pi is an (xi, yi)-path for i = 1, ..., k. ��

Theorem 7.4.4 implies the following:

Theorem 7.4.5 [859] If a1, ..., ak are arcs with no common head or tail in
an h(k)-strong tournament T , then T has a hamiltonian cycle containing
a1, ..., ak in that cyclic order. ��

Combining the ideas of avoiding and containing, Thomassen proved the
following (where the function h was defined in Theorem 7.4.4):

Theorem 7.4.6 [859] For any set A1 of at most k arcs in an h(k)-strong
tournament T and for any set A2 of at most k independent6 arcs of T −A1,
the digraph T −A1 has a hamiltonian cycle containing all arcs of A2. ��

7.4.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle

How many arcs can we delete from a strong tournament and still have a
hamiltonian cycle, no matter what set of arcs is deleted? This is a difficult
question, but it is easy to see that for some tournaments the answer is that
even one missing arc may destroy all hamiltonian cycles. If some vertex has
in- or out-degree 1, then deleting that arc clearly suffices to destroy all hamil-
tonian cycles. On the other hand, for every p, it is also easy to construct an
infinite set S of strong tournaments in which δ0(T) ≥ p for every T ∈ S and
yet there is some arc of T which is on every hamiltonian cycle of T (see Ex-
ercise 7.19). It follows from Theorem 7.4.7 below that all such tournaments
are strong but not 2-strong.

We can generalize the question to k-strong tournaments and again it is
obvious that if some vertex v has in- or out-degree k (this is the smallest
possible by the connectivity assumption), then deleting all k arcs out of or
into v, we can obtain a digraph with no hamiltonian cycle. Thomassen [857]
conjectured that in a k-strong tournament, k is the minimum number of arcs
one can delete in order to destroy all hamiltonian cycles. The next theorem
due to Fraisse and Thomassen answers this in the affirmative.
6 A set of arcs is independent if no two of the arcs share a vertex.

7.4 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs 293

Theorem 7.4.7 [334] For every k-strong tournament D = (V, A) and every
set A′ ⊂ A such that |A| ≤ k−1, there is a hamiltonian cycle C in D−A′. ��

The proof is long and non-trivial; in particular it uses Theorem 7.3.4.
Below we describe a stronger result due to Bang-Jensen, Gutin and Yeo [96].
The authors proved Theorem 7.4.8 using results on irreducible cycle factors in
multipartite tournaments, in particular Yeo’s irreducible cycle factor theorem
(Theorem 6.6.20). This is just one more illustration of the power of Theorem
6.6.20.

Theorem 7.4.8 [96] Let T = (V, A) be a k-strong tournament on n vertices,
and let X1, X2, . . . , Xp (p ≥ 1) be a partition of V such that 1 ≤ |X1| ≤
|X2| ≤ . . . ≤ |Xp|. Let D be the digraph obtained from T by deleting all arcs
which have both head and tail in the same Xi (i.e., D = T −∪p

i=1A(T 〈Xi〉)).
If |Xp| ≤ n/2 and k ≥ |Xp|+

∑p−1
i=1 �|Xi|/2�, then D is hamiltonian. In other

words, T has a hamiltonian cycle which avoids all arcs with both head and
tail in some Xi. ��

We will not give the proof here since it is quite technical, but we give
the main idea of the proof. The first observation is that D is a multipartite
tournament, which follows from the way we constructed it. Our goal is to
apply Theorem 6.6.20 to D. Hence we need to establish that D is strong (see
Exercise 7.24) and has a cycle factor (Exercise 7.25). Now we can apply The-
orem 6.6.20 to prove that every irreducible cycle factor in D is a hamiltonian
cycle. This last step is non-trivial (Exercise 7.26).

The following result shows that the bound for k in Theorem 7.4.8 is sharp:

Theorem 7.4.9 [96] Let 2 ≤ r1 ≤ r2 ≤ . . . ≤ rp be arbitrary integers. Then
there exists a tournament T and a collection X1, X2, ..., Xp of disjoint sets of
vertices in T such that

(a) T is (rp − 1 +
∑p−1

i=1 �ri/2�)-strong;
(b) |Xi| = ri for i ∈ [p];
(c) D = T − ∪p

i=1A(T 〈Xi〉) is not hamiltonian. ��

In fact, the paper [96] is concerned with aspects of the following more
general problem:

Problem 7.4.10 [96] Which sets B of edges of the complete graph Kn have
the property that every k-strong orientation of Kn induces a hamiltonian
digraph on Kn −B?

The Fraisse-Thomassen theorem says that this is the case whenever B con-
tains at most k−1 edges. Theorem 7.4.8 says that a union of disjoint cliques of
sizes r1, . . . , rp has the property whenever

∑l
i=1�ri/2�+max1≤i≤l{�ri/2�} ≤

k. By Theorem 7.4.9, this is the best possible result for unions of cliques.
Let us show that Theorem 7.4.8 implies Theorem 7.4.7. Let T be a k-

strong tournament on n vertices and let A′ = {e1, e2, . . . , ek−1} be a given

294 7. Restricted Hamiltonian Paths and Cycles

set of k − 1 arcs of T . In UG(T) these arcs induce a number of connected
components X1, X2, . . . , Xp, 1 ≤ p ≤ k−1. Denote by ai, i ∈ [p], the number
of arcs from A′ which join two vertices from Xi. Then we have

∑p
i=1 ai = k−1

and |Xi| ≤ ai + 1, i ∈ [p]. We may assume that the numbering is chosen so
that |X1| ≤ |X2| ≤ . . . ≤ |Xp|. Note that |Xp| ≤ k < n/2. Furthermore, since
each ai ≥ 1, we also have |Xp| ≤ (k − 1) − (p − 1) + 1 = k − p + 1. Now we
can make the following calculation:

|Xp|+
p−1∑

i=1

� |Xi|
2

� = � |Xp|
2

� +
p∑

i=1

� |Xi|
2

�

≤ �|Xp|
2

� + �1
2

p∑

i=1

|Xi|�

≤ �k − p + 1
2

� + �1
2

p∑

i=1

(ai + 1)�

= �k − p + 1
2

� + �k − 1 + p

2
�

= k.

Now it follows from Theorem 7.4.8 that T has a hamiltonian cycle which
avoids every arc with both head and tail in some Xi and in particular it
avoids all arcs in A′. This shows that Theorem 7.4.8 implies Theorem 7.4.7.

Note that if A′ induces a tree and possibly some disjoint edges in UG(T),
then Theorem 7.4.8 is no stronger than Theorem 7.4.7. This can be seen
from the fact that in this case we have equality everywhere in the calculation
above. In all other cases Theorem 7.4.8 provides a stronger bound.

In relation to Problem 7.4.10, it seems natural to investigate bounds for
k in different cases of the set B. In particular, one may consider the following
problems.

Problem 7.4.11 What are sharp bounds for k in Problem 7.4.10 when B is
a spanning forest of Kn consisting of m disjoint paths containing r1, ..., rm

vertices, respectively?

Problem 7.4.12 What are sharp bounds for k in Problem 7.4.10 when B is
a spanning forest of Kn consisting of m disjoint stars containing r1, ..., rm

vertices, respectively?

Problem 7.4.13 What are sharp bounds for k in Problem 7.4.10 when B is
a spanning cycle subdigraph of Kn consisting of m disjoint cycles containing
r1, ..., rm vertices, respectively?

7.4 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs 295

How easy is it to decide, given a semicomplete digraph D = (V, A) and
a subset A′ ⊆ A, whether D has a hamiltonian cycle C which avoids all
arcs of A′? As we mentioned earlier, this problem is NP-complete if we
pose no restriction on the arcs in A′. In the case when A′ is precisely the
set of those arcs that lie inside the sets of some partition X1, X2, . . . , Xr of
V , then the existence of C can be decided in polynomial time. This follows
from the fact that D〈A − A′〉 is a semicomplete multipartite digraph and, by
Theorem 6.6.9, the hamiltonian cycle problem is polynomially solvable for
semicomplete multipartite digraphs. The same argument also covers the case
when k = 1 in the conjecture below.

Conjecture 7.4.14 For every k there exists a polynomial algorithm which,
for a given semicomplete digraph D = (V, A) and a subset A′ ⊆ A such that
|A′| = k, decides whether D has a hamiltonian cycle that avoids all arcs in
A′.

At first glance, cycles that avoid certain arcs seem to have very little to do
with cycles that contain certain specified arcs. Hence, somewhat surprisingly,
if Conjecture 7.4.1 is true, then so is7 Conjecture 7.4.14: Suppose that Con-
jecture 7.4.1 is true. Then it follows from the discussion of Subsection 7.4.1
that also Conjecture 7.4.3 holds. Hence, for fixed k, there is a polynomial
algorithm Ak which, given a digraph D = (V, A) and a subset W ⊂ V for
which D −W is semicomplete and |W | ≤ k, decides whether or not D has a
hamiltonian cycle. Let k be fixed and D be a semicomplete digraph and let
A′, |A′| ≤ k, be a prescribed set of arcs in D. Let W be the set of all vertices
such that at least one arc of A′ has head or tail in W . Then |W | ≤ 2|A′| and
D has a hamiltonian cycle avoiding all arcs in A′ if and only if the digraph
D −A′ has a hamiltonian cycle. By the remark above we can test this using
the polynomial algorithm Ar, where r = |W |.

7.4.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles

Recall from Chapter 2 that we call an arc xy ordinary if it is not contained in
a 2-cycle. Deciding whether a given digraph has a hamiltonian cycle C such
that all arcs of C are ordinary is of course an NP-complete problem since the
hamiltonian cycle problem for oriented graphs is NP-complete. This implies
that the problem is NP-complete even for semicomplete digraphs.

Tuza [881] studied this problem for semicomplete digraphs and posed the
following conjecture:

Conjecture 7.4.15 [881] Let s be a positive integer and suppose that D =
(V, A) is a semicomplete digraph such that for every Y ⊂ V , |Y | < s, the

7 We thank Thomassen for pointing out this consequence to us (private commu-
nication, August 1999).

296 7. Restricted Hamiltonian Paths and Cycles

induced semicomplete digraph D〈V − Y 〉 is strong and has at least one or-
dinary arc. Then there exists a hamiltonian cycle in D which has at least s
ordinary arcs.

The following result shows that it is enough to prove that there is a cycle
of length at least s + 1 with this property.

Proposition 7.4.16 [881] If a strong semicomplete digraph T has a cycle
of length at least s + 1 which contains at least s ordinary arcs, then T has a
hamiltonian cycle with at least s ordinary arcs. ��

Tuza has proved the existence of such a cycle for s = 1, 2, see [881]. It is
easy to see that s+1 cannot be replaced by s in Proposition 7.4.16 (Exercise
7.29).

7.5 Arc-Traceable Digraphs

A digraph D = (V, A) is arc-traceable if every arc xy ∈ A is contained in
a hamiltonian path of D. In this short section we briefly discuss results on
semicomplete digraphs.

First observe that arc-traceable semicomplete digraphs can be recognized
in polynomial time. This follows from the fact that there is a polynomial
algorithm for checking whether there is a hamiltonian path through a given
arc in a semicomplete digraph (Exercise 7.28).

Since every strong in-semicomplete digraph is hamiltonian (Theorem
6.3.1) we easily get the following observation (Exercise 7.27).

Proposition 7.5.1 [693] Every 2-strong in-semicomplete digraph is arc-
traceable. ��

In [185] Busch, Jacobson and Reid studied strong tournaments which
are not arc-traceable. Although they were not able to characterize these,
they found some necessary conditions for a strong tournament to be non-arc-
traceable, one of which is the following.

Theorem 7.5.2 [185] Let T be a strong tournament containing an arc xy
which is not in any hamiltonian path of T . Then the following holds:

(1) T has a vertex z such that T − z is not strong.
(2) T has k strong components, T1, T2, . . . , Tk, k ≥ 4, where T1 is the initial

and Tk the terminal strong component of T − z.
(3) The vertex x is in T1 and y is in Tk.
(4) The vertex z has no arc to T2 and no arc from Tk−1. ��

7.6 Oriented Hamiltonian Paths and Cycles 297

yx

u

v

Figure 7.3 A strong tournament T with no hamiltonian path including the arc
xy. The bold arcs indicate that all arcs between the three 3-cycles, except the arc
uv, have the direction shown.

Figure 7.3 illustrates the theorem. It also shows that the following nec-
essary condition for a tournament to be arc-traceable, is not sufficient: for
every arc xy, T contains a 1-path-cycle factor F in which xy is an arc of the
unique path in F .

Theorem 7.5.3 [185] If T is a strong tournament with δ0(T) ≥ 2 and for
every arc xy ∈ A(T), d−(x) + d+(y) ≥ n

2 − 2, then T is arc-traceable. ��

In [693] Meierling and Volkmann studied arc-traceable locally semicom-
plete digraphs and obtained a number of results which generalize those in
[185], including Theorem 7.5.2.

7.6 Oriented Hamiltonian Paths and Cycles

Since every tournament has a hamiltonian directed path, it is natural to
ask whether every tournament contains every orientation of a hamiltonian
undirected path. This is not true, as one can see from the examples in Figure
7.4.

Figure 7.4 The unique tournaments with no anti-directed hamiltonian path.

298 7. Restricted Hamiltonian Paths and Cycles

A path is anti-directed if the orientation of each arc on the path is
opposite to that of its predecessor. The reader can easily verify that none
of the three tournaments in Figure 7.4 contains an anti-directed hamiltonian
path. Grünbaum [431] proved that, except for the three tournaments of Figure
7.4, every tournament contains an anti-directed hamiltonian path. Rosenfeld
[787] strengthened this to the following statement:

Theorem 7.6.1 [787] In a tournament on at least nine vertices, every vertex
is the origin of an anti-directed hamiltonian path. ��

Rosenfeld conjectured that there exists a natural number N such that ev-
ery tournament on at least N vertices contains every orientation of a hamilto-
nian undirected path. Grünbaum’s examples show that we must have N ≥ 8.
Rosenfeld’s conjecture has been studied extensively and many partial results
were obtained until it was proved by Thomason [851] (see also Theorem
7.6.3). We will mention one of these partial results here (see also the papers
[37] by Alspach and Rosenfeld and [835] by Straight).

Forcade found the following beautiful result which generalizes Redei’s
theorem for tournaments whose number of vertices is a power of two.

Theorem 7.6.2 [329] If T is a tournament on n = 2r vertices for some
r, then for every orientation P of a path on n vertices, T contains an odd
number of occurrences of P . ��

Thomason [851] proved Rosenfeld’s conjecture by showing that N is less
than 2128. He also conjectured that N = 8 should be the right number. This
was confirmed by Havet and Thomassé [509].

Theorem 7.6.3 (Havet-Thomassé theorem) [509] Every tournament on
at least eight vertices contains every orientation of a hamiltonian path. ��

The proof of Theorem 7.6.3 in [509] is very long (involving a lot of cases),
but it uses a very nice partial result which we shall describe below. First
we need some new notation. Let P = u1u2 . . . un be an oriented path. The
vertex u1 (un) is the origin (terminus) of P . An interval of P is a maximal
subpath P ′ = P [ui, uj]8 such that P ′ is a directed path (i.e., either a (ui, uj)-
path or a (uj , ui)-path). See an illustration in Figure 7.5. The intervals are
labeled I1, I2, . . . , It(P) starting from u1. The length �i(P) of the ith interval
is the number of arcs in the directed subpath corresponding to Ii. If the
first interval of P is directed out of u1, then P is an out-path, otherwise
P is an in-path. Now we can describe any oriented path P by a signed
sequence sgn(P)(�1, �2, . . . , �t(P)), where sgn(P) is ‘+’ if P is an out-path
and otherwise sgn(P) is ‘−’. We also use the notation ∗P to denote the
subpath P [u2, un].

8 We use the same notation here as for directed paths, i.e., P [ui, uj] = uiui+1 . . . uj

when i ≤ j.

7.6 Oriented Hamiltonian Paths and Cycles 299

1 2 3 4 5 6 7 8 9 10 11 12

Figure 7.5 An oriented path with intervals [1, 3], [3, 6], [6, 7], [7, 8], [8, 10], [10, 11],
[11, 12].

For every set X ⊆ V in a tournament T = (V, A), we define the sets
R+(X) (R−(X)) to be those vertices that can be reached from (can reach)
the set X by a directed path. By definition X ⊆ R+(X)∩R−(X). A vertex u
is an out-generator (in-generator) of T if R+(u) = V (R−(u) = V). Recall
that by Theorem 1.4.2, every tournament T has at least one out-generator
and at least one in-generator. In fact, by Proposition 2.9.2, a vertex is an
out-generator (in-generator) if and only if it is the initial (terminal) vertex
of at least one hamiltonian path in T .

The next result, due to Havet and Thomassé, deals with oriented paths
covering all but one vertex in a tournament. It plays an important role in the
proof of Theorem 7.6.3 in [509].

Theorem 7.6.4 [509] Let T = (V, A) be a tournament on n + 1 vertices.
Then

(1) For every out-path P on n vertices and every choice of distinct vertices
x, y such that |R+({x, y})| ≥ �1(P) + 1, either x or y is an origin of (a
copy of) P in T .

(2) For every in-path P on n vertices and every choice of distinct vertices
x, y such that |R−({x, y})| ≥ �1(P) + 1, either x or y is an origin of (a
copy of) P in T .

The following is an easy corollary of Theorem 7.6.4. We state it now since
we shall use it in the inductive proof below.

Corollary 7.6.5 [851] Every tournament T on n vertices contains every
oriented path P on n−1 vertices. Moreover, every subset of �1(P)+1 vertices
contains an origin of P . In particular, there are at least two distinct origins
of P in T . ��

Proof of Theorem 7.6.4: (We follow the proof in [509]). The proof is by
induction on n and clearly holds for n = 1. Now suppose that the theorem
holds for all tournaments on at most n vertices. It suffices to prove (1) since
(2) can be reduced to (1) by considering the converses of T and P .

Let P = u1u2 . . . un be given and let x, y be distinct vertices such that
|R+({x, y})| ≥ �1(P) + 1. We may assume that x→y and hence R+(x) =
R+({x, y}). We consider two cases.

300 7. Restricted Hamiltonian Paths and Cycles

Case 1 �1(P) ≥ 2: If |N+(x)| ≥ 2, let z ∈ N+(x) be an out-generator of
T 〈R+(x)− x〉 and let t ∈ N+(x) be distinct from z. By the definition of z
we have that |R+

T−x({t, z})| = |R+(x)| − 1 > �1(∗P). Note that ∗P is an
out-path, since �1(P) > 1. By the induction hypothesis, either z or t is the
origin of ∗P in T − x, implying that x is an origin of P in T .

Thus we may assume that N+(x) = {y}. Since |R+({x, y})| ≥ �1(P)+1 ≥
3 we see that N+(y) �= ∅. Let q be an out-generator of T 〈N+(y)〉. Then q
is also an out-generator of T 〈R+({x, y})− y〉, q→x and |R+

T−y({x, q})| =
|R+({x, y})| − 1 > �1(∗P). By induction, either x or q is the origin of ∗P in
T − y and since x has no out-neighbour in T − y it must be q that is the
origin. Now we see that y is the origin of P in T .

Case 2 �1(P) = 1: We consider first the subcase when |N+(x)| ≥ 2. Let
X := R−

T−x(N+(x)) and consider the partition (X, Y, {x}) of V , where Y =
V −X − x. By the definition of these sets, we have Y �→x, X �→Y and y ∈ X.
If |X| ≥ �2(P) + 1, then we claim that x is an origin of P in T ; indeed, let
p ∈ N+(x) be an in-generator of T 〈X〉 and take u ∈ N+(x) − p. By the
induction hypothesis, either p or u is an origin of ∗P in T − x and hence x is
an origin of P in T .

So we may assume that |X| ≤ �2(P). Note that �2(P) ≤ n − 2 holds
always (remember we count arcs). Hence |Y | > 1, since T has n + 1 vertices.
Let s be an in-generator of T 〈Y 〉. Since d+(x) > 1 and X �→Y we have
R−

T−y(s) = V − y. Let w ∈ Y − s be arbitrary. By the induction hypothesis
either w or s is an origin of ∗P in T − y and hence y is an origin of P in T .

Now consider the case when N+(x) = {y}. Suppose first that |N−
T−x(y)| ≥

n − 2. By induction, Theorem 7.6.4 and hence Corollary 7.6.5 holds for T −
{x, y}. Thus some vertex in N−

T (y) is an origin of ∗∗P . Hence x is an origin
of P in T (using x→y and an arc into y from the origin of ∗∗P in T −{x, y}).
So we may assume that |N+(y)| ≥ 2. Let U = R−

T−y(N+(y)) and W =
V − U − {x, y}. Then W �→{x, y} and U �→W ∪ {x}. If |U | ≥ �2(P) + 1, then
by the same proof as we used above (beginning of Case 2), we get that y
is an origin of P . So suppose |U | ≤ �2(P). This implies in particular that
�2(P) ≥ |N+(y)| ≥ 2.

If |W | ≥ 2, then we let w ∈ W be an in-generator of T − {x, y} and take
w′ ∈ W −w arbitrary. By induction either w or w′ is an origin of the in-path
∗∗P (recall that �2(P) ≥ 2 and hence ∗∗P is an in-path). Thus using the arc
xy and an arc into y from the origin of ∗∗P in W we see that x is the origin of
P . Finally consider the case when |W | = 1 (note that |W | = n− 1− |U | ≥ 1,
since |U | ≤ �2(P) ≤ n − 2). Then |U | = n − 2 and �2(P) = n − 2 (since we
assumed above that �2(P) ≥ |U |). Thus ∗P is a directed in-path. Using that
y is an in-generator of T − x, we get that x is an origin of P . This completes
the proof of the theorem. ��

If the path in Theorem 7.6.4 has n+1 vertices instead of n, then the state-
ment is no longer true. However, the exceptions (to the n+1, n+1 version of

7.6 Oriented Hamiltonian Paths and Cycles 301

Theorem 7.6.4) can be characterized [509] and based on this characterization
Havet and Thomassé were able to prove that the tournaments in Figure 7.4
are indeed the only tournaments that do not contain every orientation of a
hamiltonian path.

In [509] Havet and Thomassé also proved the following result which is of
independent interest.

Proposition 7.6.6 [509] Let P be an out-path on n1 vertices and Q an in-
path on n2 vertices. Let T = (V, A) be a tournament on n = n1 +n2 vertices.
If x ∈ V is the origin of a copy of P and of Q in T , then we may choose
copies of P and Q such that V (P) ∩ V (Q) = {x} and x is the origin of both
copies. ��

How easy is it to find an occurrence of a prescribed orientation of a hamil-
tonian path P in a tournament? If P is a directed path, then this can be done
in time9 O(n log n) (see Section 18.1). Some patterns can be found faster;
Bampis, Hell, Manoussakis and Rosenfeld [64] showed that one can find an
anti-directed hamiltonian path in O(n) time. This is the best possible as
shown in [514]. The following somewhat surprising result by Hell and Rosen-
feld shows that finding distinct patterns requires quite different complexities:

Theorem 7.6.7 [514] For every 0 ≤ α ≤ 1 there exists an orientation P of
a path on n vertices so that every algorithm which checks for an occurrence
of P in a tournament T with n vertices must make Ω(n log αn) references to
the adjacency matrix of T in the worst case. ��

Based on Theorem 7.6.3 Havet proved the following result:

Theorem 7.6.8 [505] There is an O(n2) algorithm that takes as input a
tournament on n ≥ 8 vertices and an oriented path P on at most n vertices
and returns an occurrence of P in T . ��

It is not known whether there are orientations of paths that in the worst
case need Ω(n1+ε) references (for some ε > 0) to the adjacency matrix to be
found in a tournament. By this we mean that in some cases one needs that
many steps to either find the desired path or conclude that no such path
exists.

Instead of considering orientations of hamiltonian paths in tournaments,
one may just as well consider orientations of hamiltonian cycles in tourna-
ments. However, one particular cycle, namely, the directed hamiltonian cycle,
can only be found in strong tournaments. Rosenfeld [788] conjectured that
the directed hamiltonian cycle is the only orientation of a hamiltonian cy-
cle that can be avoided by tournaments on arbitrarily many vertices. This
conjecture was settled by Thomason who proved the following:
9 We remind the reader that in measuring the complexity, we only count how many

times we have to ask about the orientation of a given arc.

302 7. Restricted Hamiltonian Paths and Cycles

Theorem 7.6.9 [851] Every tournament on n ≥ 2128 vertices contains every
oriented cycle of length n except possibly the directed hamiltonian cycle. ��

Thomason also conjectured that the correct value of the lower bound on n
is 9. One easily obtains a tournament with 8 vertices having no anti-directed
hamiltonian cycle by adding a new vertex v to the tournament on 7 vertices
in Figure 7.4 and joining v arbitrarily to the other 7 vertices. Hence 9 would
be best possible if true.

Using the methods developed in [509] along with a number of new ideas,
Havet [506] proved the following result. Recall that every strong tournament
has a hamiltonian cycle.

Theorem 7.6.10 [506] Every tournament T on n ≥ 68 vertices contains
every oriented cycle of length n, except possibly the directed hamiltonian cycle.

��

Hell and Rosenfeld [515] gave a polynomial algorithm for testing the ex-
istence of an anti-directed hamiltonian path P with prescribed end-vertices
in a tournament. Note that it is not specified that P must be an out-path.

Problem 7.6.11 [515] Extend the method of [515] to obtain a polynomial
algorithm for deciding whether a given tournament T with vertices x, y has
an ADH-path P starting in x and ending in y such that P is an out-path
from x.

Bampis, Hell, Manoussakis and Rosenfeld proved that if the last vertex
is not specified, then the problem is polynomially solvable [64].

Problem 7.6.12 [515] Is it true that for any out-path P on n vertices such
that no interval of P is larger than k, any tournament T on n vertices and
any prescribed vertex x of T which has out-degree at least k + 1, there is an
occurrence of P in T which starts in x on a forward arc?

As mentioned in Section 7.3, Thomassen [856] proved that there are 3-
strong tournaments with no (x, y)-hamiltonian path for some choice of ver-
tices x and y, but that every 4-strong tournament contains such a path. As
pointed out in [515] a much weaker condition suffices to guarantee that a
tournament T contains an anti-directed hamiltonian path with prescribed
end vertices.

Theorem 7.6.13 [515] Every tournament T with δ0(T) ≥ 4 contains an
anti-directed hamiltonian path with prescribed end-vertices. ��

Problem 7.6.14 [515] Can the minimum degree bound of 4 above be lowered
to 3 or even 2?

7.7 Exercises 303

Problem 7.6.15 [76] Find a sufficient condition for a tournament to con-
tain two arc-disjoint ADH-paths with the same end-vertices.

Not surprisingly, if a digraph is almost complete, then it will contain all
orientations of a hamiltonian undirected path. The following result is due to
Heydemann, Sotteau and Thomassen:

Theorem 7.6.16 [526] Let D be a digraph on n vertices and at least (n −
1)(n − 2) + 3 arcs and let C be an arbitrary orientation of a cycle of length
n. Then D contains a copy of C, except for the case when D is not strong
and C is a directed hamiltonian cycle. ��

7.7 Exercises

7.1. Prove that if D is a strong semicomplete digraph with distinct vertices x, y
such that D − x and D − y are strong but D − {x, y} is not strong, then D
has an (x, y)-hamiltonian path and a (y, x)-hamiltonian path.

7.2. (−) Prove that, from a complexity point of view, the hamiltonian path prob-
lem, the [x, y]-hamiltonian path problem and the (x, y)-hamiltonian path
problem are all equivalent. That is, each of them can be reduced in polyno-
mial time to each of the two others.

7.3. Show how to decide in time O(
√

nm) whether or not a given input digraph
D with special vertices x, y contains a 1-path-cycle factor such that the path
is a path between x and y. Hint: use flows.

7.4. Derive Corollary 7.2.2 from Theorem 7.2.1.

7.5. Prove Lemma 7.2.3.

7.6. Prove the last claim in the proof of Corollary 7.2.7.

7.7. Derive Theorem 7.2.6 from Theorem 7.2.4.

7.8. 2-regular 2-strong locally semicomplete digraphs. Prove that for every
n ≥ 5 there exists (up to isomorphism) precisely one 2-strong and 2-regular

locally semicomplete digraph, namely, the second power �C2
n of an n-cycle.

7.9. Prove that the second power �C2
n of an n-cycle has a unique hamiltonian cycle.

Next, prove that �C2
n is not weakly hamiltonian-connected.

7.10. Prove Lemma 7.2.8.

7.11. Prove that if D is the second power �P 2
2k+1 of an odd path P = u1u2 . . . u2k+1,

then there is no pair of disjoint (u1, u2k)-, (u2, u2k+1)-paths in D.

7.12. Prove Theorem 7.2.11.

7.13. Suppose D = (V, A) is a non-strong locally semicomplete digraph with strong
decomposition D1, D2, D3, D4 such that D− x is connected for every x ∈ V .
Let ui ∈ V (Di) be specified for each i = 1, 2, 3, 4. Prove that D contains
disjoint (u1, u3)-,(u2, u4)-paths P, Q so that V = V (P) ∪ V (Q).

304 7. Restricted Hamiltonian Paths and Cycles

7.14. (+) Prove the following: Let T be a 2-strong semicomplete digraph and x, y
vertices of T , such that T −x and T − y are both 2-strong, x�→y, and neither
x nor y is contained in a 2-cycle. If T − {x, y} is not 2-strong, then T has
an (x, y)-hamiltonian path. Hint: consider a minimal separator of the form
{u, x, y}.

7.15. (+) Prove Proposition 7.3.3.

7.16. (−) Hamiltonian cycles containing a prescribed arc in semicomplete
digraphs. Use Theorem 7.3.2 to show that every 3-strong semicomplete di-
graph D = (V, A) has a cycle containing the arc a for any prescribed arc
a ∈ A.

7.17. (++) Prove Theorem 7.3.5.

7.18. Longest [x, y]-paths in tournaments. Find a characterization for the
length of a longest [x, y]-path in a tournament. Hint: use Theorem 7.2.1.

7.19. For every p ≥ 1, construct an infinite family S of strong tournaments which
satisfy that δ0(T) ≥ p for each T ∈ S and there is some arc a ∈ A(T) which
belongs to every hamiltonian cycle of T . Extend your construction to work
also for arbitrary high arc-strong connectivity.

7.20. Prove Proposition 7.4.2.

7.21. (+) Hamiltonian cycles in almost acyclic digraphs. Prove that for
every fixed k there is a polynomial algorithm to decide whether there is a
hamiltonian cycle in a given digraph D, which is obtained from an acyclic
digraph H = (V, A) by adding a set S of k new vertices and some arcs of
the form st where s ∈ S and t ∈ V ∪ S. Hint: use the fact that the k-linkage
problem is polynomial for acyclic digraphs (see Theorem 10.4.1).

7.22. Let D be constructed as in Exercise 7.21. Show that if k is not fixed (that is,
k is part of the input), then the problem above is NP-complete.

7.23. Let T be a tournament, let Y1, Y2, . . . , Ys (s ≥ 1) be disjoint sets of vertices in
T and let x and y be arbitrary distinct vertices in V (T)− (Y1 ∪Y2∪ . . .∪Ys).
Prove that if there exist k disjoint (x, y)-paths in T , then there exist at least
k −

Ps
i=1�|Yi|/2� disjoint (x, y)-paths in T − ∪s

i=1A(T 〈Yi〉).

7.24. (+) Let X1, X2, . . . , Xp and D be defined as in Theorem 7.4.8. Prove that D
is strong. Hint: first prove the following two claims and then combine them
into a proof that D is strong:

(a) If x ∈ Xi and y ∈ Xj (1 ≤ i �= j ≤ l), then there are �|Xi|/2�+�|Xj |/2�+
�|Xl|/2	 disjoint (x, y)-paths in Di,j .

(b) If x, y ∈ Xi (x �= y), then there are |Xi| disjoint (x, y)-paths in Di.
Furthermore there is an (x, y)-path in D (Bang-Jensen, Gutin and Yeo
[96]).

7.25. (+) Prove that the digraph D in Theorem 7.4.8 has a cycle factor [96]. Hint:
let D′ be obtained from D by the vertex-splitting technique (Section 4.2).
Form a network from D′ by putting lower bound 1 on arcs of the kind vtvs,
v ∈ V (D) and zero elsewhere. Put capacity 1 on arcs of the kind vtvs and ∞
on all other arcs. Now apply Theorem 4.8.2 and deduce the result from the
structure one can derive using a presumed bad cut (S, S).

7.7 Exercises 305

7.26. (+) Prove that the digraph D in Theorem 7.4.8 is hamiltonian [96]. Hint:
consider any irreducible factor. Apply Theorem 6.6.20 and conclude that the
cycle factor is a hamiltonian cycle.

7.27. Prove Proposition 7.5.1.

7.28. Show that there is a polynomial algorithm for checking whether a semicom-
plete digraph d has a hamiltonian path through a given arc xy. Hint: you
can reduce the problem to the problem of checking for a hamiltonian cycle
through a given arc in a semicomplete digraph.

7.29. Show by an example that s+1 cannot be replaced by s in Proposition 7.4.16.

7.30. Orientations of paths in strong tournaments. Prove the following state-
ment: Let T be a strong tournament on n vertices and P an out-path on n−1
vertices. Then
(a) every vertex of T except possibly one is an origin of P and
(b) if �1(P) ≥ 2, then every vertex of out-degree at least 2 is an origin of P .

7.31. Orientations of paths in 2-strong tournaments. Let T be a 2-strong
tournament on n vertices and let P be an oriented path on n − 1 vertices.
Prove that every vertex of T is an origin of P .

8. Paths and Cycles of Prescribed Lengths

In this chapter we study the following five topics:

• Pancyclicity, vertex-pancyclicity and arc-pancyclicity of digraphs (Section
8.1). Most of the results are on tournaments and their generalizations.

• Efficient algorithms for finding short paths and cycles (Section 8.2). We
demonstrate how the colour coding technique can be applied to design
efficient algorithms for short paths and cycles.

• Cycles of length k modulo p (Section 8.3). We discuss the even cycle prob-
lem and sufficient conditions for the existence of cycles of length k modulo
p.

• Girth (Section 8.4). We present mainly results related to the Caccetta-
Häggkvist and Hoáng-Reed conjectures.

• Short cycles in semicomplete digraphs (Section 8.5). We overview results
on k-cycles in p-partite tournaments for k ≤ p.

8.1 Pancyclicity of Digraphs

A digraph D of order n is pancyclic if it has cycles of all lengths 3, 4, . . . , n.
We say that D is vertex-pancyclic (arc-pancyclic, respectively) if for
every v ∈ V (D) (a ∈ A(D), respectively) and every k ∈ {3, 4, . . . , n} there
is a cycle of length k containing v. We also say that D is (vertex-)m-
pancyclic if D contains a k-cycle (every vertex of D is on a k-cycle) for
each k = m, m + 1, . . . , n. Note that some early papers on pancyclicity
in digraphs require that D is (vertex-)2-pancyclic in order to be (vertex-
)pancyclic (see e.g. the survey [152] by Bermond and Thomassen). We feel
that this definition is too restrictive, since often one can prove pancyclicity
results for much broader classes of digraphs when the 2-cycle is omitted from
the requirement.

In Subsection 8.1.1, we consider pancyclicity in degree-constrained di-
graphs. Pancyclicity in extended semicomplete, quasi-transitive and locally
semicomplete digraphs is studied in Subsections 8.1.2 and 8.1.3. Pancyclicity
in other classes of digraphs is overviewed in Subsection 8.1.4. Cycle extend-
ability is introduced in Subsection 8.1.5 and arc-pancyclicity is studied in
Subsection 8.1.6.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 8,
© Springer-Verlag London Limited 2010

307

http://dx.doi.org/10.1007/978-1-84800-998-1_8

308 8. Paths and Cycles of Prescribed Lengths

8.1.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs

The following assertion is due to Alon and Gutin:

Proposition 8.1.1 [24] Every digraph D = (V, A) on n vertices for which
δ0(D) ≥ n/2 + 1 is vertex-2-pancyclic.

Proof: Let v ∈ V be arbitrary. By Corollary 6.4.3 there is a Hamilton cycle
u1u2 . . . un−1u1 in D − v. If there is no cycle of length k through v, then
for every i, |N+(v) ∩ {ui}| + |N−(v) ∩ {ui+k−2}| ≤ 1, where the indices are
computed modulo n − 1. By summing over all values of i, 1 ≤ i ≤ n − 1, we
conclude that |N−(v)|+ |N+(v)| ≤ n− 1, contradicting the assumption that
all in-degrees and out-degrees exceed n/2. ��

The following analogue of Proposition 8.1.1 is an easy consequence of
Corollary 6.4.6. It was proved by Randerath, Schiermeyer, Tewes and Volk-
mann [762].

Proposition 8.1.2 Every digraph D = (V, A) on n ≥ 3 vertices for which
δ0(D) ≥ (n + 1)/2 is vertex-pancyclic. ��

Thomassen [853] proved that just by adding one to the degree condition
for hamiltonicity in Theorem 6.4.7 one obtains cycles of all possible lengths
in the digraphs satisfying the degree condition.

Theorem 8.1.3 [853] Let D be a strong digraph on n vertices such that
d(x) + d(y) ≥ 2n whenever x and y are nonadjacent. Then either D has
cycles of all lengths 2, 3, . . . , n, or D is a tournament (in which case it has
cycles of all lengths 3, 4, . . . , n) or n is even and D is isomorphic to

↔
K n

2 , n
2
.
��

The following example from [853] shows that 2n cannot be replaced by
2n − 1 in Theorem 8.1.3. For some m ≤ n let Dn,m = (V, A) be the digraph
with vertices V = {v1, v2, . . . , vn} and arcs A = {vivj |i < j or i = j + 1} −
{vivi+m−1|1 ≤ i ≤ n−m+1}. We leave it as Exercise 8.1 to show that Dn,m

is strong, has no m-cycle and if m > (n+1)/2, then Dn,m satisfies Meyniel’s
condition for hamiltonicity (Theorem 6.4.7). In [244] Darbinyan characterizes
those digraphs which satisfy Meyniel’s condition, but are not pancyclic.

Theorem 8.1.3 extends Moon’s theorem (Theorem 1.5.1) and Corollaries
6.4.2 and 6.4.6. However, as pointed out by Bermond and Thomassen in
[152], Theorem 8.1.3 does not imply Meyniel’s theorem (Theorem 6.4.7). The
following result is due to Häggkvist:

Theorem 8.1.4 [490] Every hamiltonian digraph on n vertices and at least
1
2n(n + 1)− 1 arcs is pancyclic. ��

Song [830] generalized the result of Jackson given in Theorem 6.10.2 and
proved the following theorem.

8.1 Pancyclicity of Digraphs 309

Theorem 8.1.5 [830] Let D = (V, A) be an oriented graph on n ≥ 9 vertices
with minimum degree n − 2. Suppose that D satisfies the following property:

xy �∈ A ⇒ d+(x) + d−(y) ≥ n − 3. (8.1)

Then D is pancyclic. ��

Song [830] pointed out that if the minimum degree condition in Theorem
8.1.5 is relaxed, then it is no longer guaranteed that D is hamiltonian.

Using Theorems 8.1.5 and 8.5.3, Bang-Jensen and Guo proved that un-
der the same conditions as in Theorem 8.1.5 the digraph is in fact vertex-
pancyclic.

Theorem 8.1.6 [79] Let D be an oriented graph on n ≥ 9 vertices and
suppose that D satisfies the conditions in Theorem 8.1.5. Then D is vertex
pancyclic. ��

It should be noted that every digraph which satisfies the condition of
Theorem 8.1.5 is a multipartite tournament with independence number at
most 2.

There are several other results on pancyclicity of digraphs with large
minimum degrees, see e.g. the papers [242, 243, 246] by Darbinyan.

8.1.2 Pancyclicity in Extended Semicomplete and
Quasi-Transitive Digraphs

In this subsection we show how to use the close relationship between the class
of quasi-transitive digraphs and the class of extended semicomplete digraphs
to derive results on pancyclic and vertex-pancyclic quasi-transitive digraphs
from analogous results for extended semicomplete digraphs.

A digraph D is triangular with partition V0, V1, V2, if the vertex set of
D can be partitioned into three disjoint sets V0, V1, V2 with V0 �→V1 �→V2 �→V0.
Note that this is equivalent to saying that D = 	C3[D〈V0〉, D〈V1〉, D〈V2〉].

Gutin [456] characterized pancyclic and vertex-pancyclic extended semi-
complete digraphs. Clearly no extended semicomplete digraph of the form
D = 	C2[Kn1 ,Kn2] with at least 3 vertices is pancyclic since all cycles are
of even length. Hence we must assume that there are at least 3 partite sets
in order to get a pancyclic extended semicomplete digraph. It is also easy
to see that the (unique) strong 3-partite extended semicomplete digraph on
4 vertices is not pancyclic (since it has no 4-cycle). These observations and
the following theorem completely characterize pancyclic and vertex-pancyclic
extended semicomplete digraphs.

Theorem 8.1.7 [456] Let D be a hamiltonian extended semicomplete di-
graph of order n ≥ 5 with k partite sets (k ≥ 3). Then

310 8. Paths and Cycles of Prescribed Lengths

(a) D is pancyclic if and only if D is not triangular with a partition V0, V1, V2,
two of which induce digraphs with no arcs, such that either |V0| = |V1| =
|V2| or no D〈Vi〉 (i = 0, 1, 2) contains a path of length 2.

(b) D is vertex-pancyclic if and only if it is pancyclic and either k > 3 or
k = 3 and D contains two cycles Z, Z ′ of length 2 such that Z ∪ Z ′ has
vertices in the three partite sets. ��

It is not difficult to see that Theorem 8.1.7 extends Theorem 1.5.1, since
no semicomplete digraph on n ≥ 5 vertices satisfies any of the exceptions
from (a) and (b).

The next two lemmas by Bang-Jensen and Huang [103] concern cycles
in triangular digraphs. They are used in the proof of Theorem 8.1.10 which
characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs.

Lemma 8.1.8 [103] Suppose that D is a triangular digraph with a partition
V0, V1, V2 and suppose that D is hamiltonian. If D〈V1〉 contains an arc xy
and D〈V2〉 contains an arc uv, then every vertex of V0 ∪ {x, y, u, v} is on
cycles of lengths 3, 4, . . . , n.

Proof: Let C be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D′ from D in the following way. For each of i = 0, 1, 2, first
path-contract1 each maximal subpath of C which is contained in D〈Vi〉 and
then delete the remaining arcs of D〈Vi〉. It is clear that D′ is a subdigraph of
D, and in this process, C is changed to a hamiltonian cycle C ′ of D′. Hence D′

is also triangular with a partition V ′
0 , V ′

1 , V ′
2 such that |V ′

0 | = |V ′
1 | = |V ′

2 | = r,
for some r (the last fact follows from the existence of a hamiltonian cycle in
D′). Then each vertex of D is on a cycle of length k with 3r ≤ k ≤ |V (D)|
(to see this, just use suitable pieces of the r subpaths of C in each Vi).

Now we may assume that r ≥ 2 and we show that each vertex of V0 ∪
{x, y, u, v} is on a cycle of length k with 3 ≤ k ≤ 3r−1. To see this, we modify
D′ to another digraph D′′ as follows. If x and y are in distinct maximal
subpaths Px, Py of C in D〈V1〉, then we add (in D′) an arc from the vertex to
which Px was contracted to the vertex to which Py was contracted. If x and
y are in the same maximal subpath P of C in D〈V1〉, then we add (in D′) an
arc from the vertex to which P was contracted to an arbitrary other vertex of
V ′

1 . For the vertices u and v we make a similar modification. Hence we obtain
a digraph D′′ which is isomorphic to a subdigraph of D. The digraph D′′ is
also triangular with a partition V ′′

0 , V ′′
1 , V ′′

2 such that |V ′′
0 | = |V ′′

1 | = |V ′′
2 | = r.

Moreover D′′〈V ′′
1 〉 contains an arc x′y′ and D′′〈V ′′

2 〉 contains an arc u′v′. It
is clear now that each vertex of V ′′

0 ∪ {x′, y′, u′, v′} is on a cycle of length k
where 3 ≤ k ≤ 3r − 1. Using the same structure as for these cycles we can
see that in D each vertex of V0 ∪ {x, y, u, v} is on a cycle of length k with
3 ≤ k ≤ 3r − 1. ��
1 Recall the definition of path-contraction from Section 1.3.

8.1 Pancyclicity of Digraphs 311

Lemma 8.1.9 [103] Suppose that D is a triangular digraph with a partition
V0, V1, V2 and D has a hamiltonian cycle C. If D〈V0〉 contains an arc of C
and a path P of length 2, then every vertex of V1 ∪ V2 ∪ V (P) is on cycles of
lengths 3, 4, . . . , n.

Proof: Exercise 8.5. ��
It is easy to check that a strong quasi-transitive digraph on 4 vertices is

pancyclic if and only if it is a semicomplete digraph. For n ≥ 5 we have the
following characterization due to Bang-Jensen and Huang:

Theorem 8.1.10 [103] Let D = (V, A) be a hamiltonian quasi-transitive
digraph on n ≥ 5 vertices.

(a) D is pancyclic if and only if it is not triangular with a partition V0, V1, V2,
two of which induce digraphs with no arcs, such that either |V0| = |V1| =
|V2|, or no D〈Vi〉 (i = 0, 1, 2) contains a path of length 2.

(b) D is not vertex-pancyclic if and only if D is not pancyclic or D is trian-
gular with a partition V0, V1, V2 such that one of the following occurs:

(b1) |V1| = |V2|, both D〈V1〉 and D〈V2〉 have no arcs, and there exists a
vertex x ∈ V0 such that x is not contained in any path of length 2 in
D〈V0〉 (in which case x is not contained in a cycle of length 5).

(b2) one of D〈V1〉 and D〈V2〉 has no arcs and the other contains no path of
length 2, and there exists a vertex x ∈ V0 such that x is not contained
in any path of length 1 in D〈V0〉 (in which case x is not contained in
a cycle of length 5).

Proof: To see the necessity of the condition in (a), suppose that D is trian-
gular with a partition V0, V1, V2, two of which induce digraphs with no arcs.
If |V0| = |V1| = |V2|, then D contains no cycle of length n − 1. If no D〈Vi〉
(i = 0, 1, 2) contains a directed path of length 2, then D contains no cycle of
length 5.

Now we prove the sufficiency of the condition in (a). According to Theo-
rem 2.7.5, there exists a semicomplete digraph T on k vertices for some k ≥ 3
such that D is obtained from T by substituting a quasi-transitive digraph Hv

for each vertex v ∈ V (T) (here Hv is non-strong if it has more than one
vertex). Let C be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D′ from D in the following way: for each Hv, v ∈ V (T), first
path-contract each maximal subpath of C which is contained in Hv and then
delete the remaining arcs of Hv. In this process C is changed to a hamiltonian
cycle C ′ of D′.

Suppose D is not pancyclic. Then it is easy to see that D′ is not pancyclic.
By Theorem 8.1.7, D′ is triangular with a partition V ′

0 , V ′
1 , V ′

2 . Let Vi ⊂ V be
obtained from V ′

i , i = 0, 1, 2, by substituting back all vertices on contracted
subpaths of C. Then D is triangular with partition V0, V1, V2. Moreover each
D〈Vi〉 is covered by r disjoint subpaths of C for some r.

312 8. Paths and Cycles of Prescribed Lengths

By Lemma 8.1.8, two of V0, V1, V2, say V1 and V2, induce subdigraphs
with no arcs in D. If |V0| = |V1| = |V2| we have the first exception in (a).
Hence we may assume that |V0| > |V1| = |V2|. Then D〈V0〉 contains an arc of
C. From Lemma 8.1.9, we see that D〈V0〉 contains no path of length 2. This
completes the proof of (a).

The proof of (b) is left to the reader as Exercise 8.6. ��

8.1.3 Pancyclic and Vertex-Pancyclic Locally Semicomplete
Digraphs

We saw in the last subsection how the structure theorem for quasi-transitive
digraphs (i.e., Theorem 2.7.5) was helpful in finding a characterization for
(vertex-)pancyclic quasi-transitive digraphs. Now we show that the structure
theorem for locally semicomplete digraphs (Theorem 2.10.15) is also very
useful for finding a characterization of those locally semicomplete digraphs
which are (vertex-)pancyclic. Our first goal (Lemma 8.1.14) is a characteri-
zation of those round decomposable locally semicomplete digraphs which are
(vertex-)pancyclic.

Lemma 8.1.11 Let R be a strong round local tournament and let C be a
shortest cycle of R and suppose C has k ≥ 3 vertices. Then for every round
labelling v0, v1, . . . , vn−1 of R such that v0 ∈ V (C) there exist indices 0 <
a1 < a2 < . . . < ak−1 < n so that C = v0va1va2 . . . vak−1v0.

Proof: Let C be a shortest cycle and let L = v0, v1, . . . , vn−1 be a round
labelling of R so that v0 ∈ V (C). If the claim is not true, then there exists a
number 2 ≤ l < k− 1 so that C = v0va1va2 . . . vak−1v0, where 0 < a1 < . . . <
al−1 and al < al−1. Now the fact that L is a round labelling of R implies
that vl−1→v0, contradicting the fact that C is a shortest cycle. ��

Recall that the girth g(D) of a digraph is the length of a shortest cycle in
D = (V, A). For a vertex v ∈ V we let gv(D) denote the length of a shortest
cycle in D that contains v. The next lemma shows that every round local
tournament R is g(R)-pancyclic.

Lemma 8.1.12 A strong round local tournament digraph R on r vertices
has cycles of length k, k + 1, ..., r, where k = g(R).

Proof: By Lemma 8.1.11 we may assume that R contains a cycle of the
form vi1vi2 ...vik

vi1 , where 0 = i1 < i2 < ... < ik < r. Because D is strong,
vim dominates all the vertices vim+1, . . . , vim+1 for m = 1, 2, ..., k. Now it is
easy to see that D has cycles of lengths k, k + 1, ..., r through the vertices
vi1 , vi2 , ..., vik

. ��
There is also a very nice structure on cycles through a given vertex in a

round local tournament digraph. We leave the proof as Exercise 8.7.

8.1 Pancyclicity of Digraphs 313

Lemma 8.1.13 If a strong round locally tournament digraph with r vertices
has a cycle of length k through a vertex v, then it has cycles of all lengths
k, k + 1, . . . , r through v. ��

Lemma 8.1.14 [80] Let D be a strongly connected round decomposable lo-
cally semicomplete digraph with round decomposition D = R[S1, . . . , Sp]. Let
V (R) = {r1, r2, . . . , rp}, where ri is the vertex of R corresponding to Si. Then

(1) D is pancyclic if and only if either the girth of R is 3 or g(R) ≤
max1≤i≤p |V (Si)| + 1.

(2) D is vertex-pancyclic if and only if, for each i = 1, ..., p, either gri(R) = 3
or gri(R) ≤ |V (Si)| + 1.

Proof: As each Si is semicomplete, it has a hamiltonian path Pi. Further-
more, since R is a strong locally semicomplete digraph, it is hamiltonian by
Theorem 6.3.1. Thus, starting from a p-cycle with one vertex from each Si,
we can get cycles of all lengths p+1, p+2, . . . , n, by taking appropriate pieces
of hamiltonian paths P1, P2, . . . , Pp in S1, . . . , Sp. Thus, if g(R) = 3, then D
is pancyclic by Lemma 8.1.12. If g(R) ≤ max1≤i≤r |V (Si)| + 1, then D is
pancyclic by Lemma 8.1.12 and the fact that (by Moon’s theorem) every Si

has cycles of lengths 3, 4, . . . , |V (Si)|. If g(R) > 3 and, for every i = 1, ..., r,
g(R) > |V (Si)|+ 1, then D is not pancyclic since it has no (g(R)− 1)-cycle.
The second part of the lemma can be proved analogously by first proving
that for each i = 1, 2, . . . , p, every vertex in Si is on cycles of all lengths
gri(R), gri(R) + 1, . . . , n (using Lemma 8.1.13) and then applying Theorem
1.5.1. ��

The main part of the characterization of (vertex-)pancyclic locally semi-
complete digraphs is to prove the following lemma (recall Theorem 2.10.15).

Lemma 8.1.15 [80] Let D be a strong locally semicomplete digraph on n
vertices which is not round decomposable. Then D is vertex-pancyclic.

Proof: If D is semicomplete, then the claim follows from Moon’s theorem. So
we assume that D is not semicomplete. Thus, D has the structure described
in Lemma 2.10.14.

Let S be a minimal separating set of D such that D − S is not semi-
complete and let D1, D2, ..., Dp be the acyclic ordering of the strong compo-
nents of D − S. Since the subdigraph D〈S〉 is semicomplete, it has a unique
acyclic ordering Dp+1, ..., Dp+q with q ≥ 1 of its strong components. Recall-
ing Lemma 2.10.14(a), the semicomplete decomposition of D − S contains
exactly three components D′

1, D
′
2, D

′
3. Recall that the index of the initial

component of D′
2 is λ2. From Theorem 2.10.8 and Lemma 2.10.12, we see

that D′
2 ⇒ D′

1 ⇒ S ⇒ D1 and there is no arc between D′
1 and D′

3.
We first consider the spanning subdigraph D∗ of D which is obtained by

deleting all the arcs between S and D′
2. By Lemma 2.10.14, D∗ is a round

314 8. Paths and Cycles of Prescribed Lengths

decomposable locally semicompletedigraph and D∗ = R∗[D1, D2, . . . , Dp+q],
where R∗ is the round locally semicomplete digraph obtained from D∗ by
contracting each Di to one vertex (or, equivalently, R∗ is the digraph obtained
by keeping an arbitrary vertex from each Di and deleting the rest). It can
be checked easily that gv(R∗) ≤ 5 for every v ∈ V (R∗). Thus D∗ is vertex
5-pancyclic by the remark in the proof of Lemma 8.1.14 (in the case when
n = 4, D is easily seen to be vertex-pancyclic so we may assume n ≥ 5). Thus,
it remains to show that every vertex of D lies on a 3-cycle and a 4-cycle.

We define

t = max{ i |N+(S) ∩ V (Di) �= ∅, λ2 ≤ i < p},

A = V (Dλ2) ∪ ... ∪ V (Dt),

t′ = min{ j |N+(Dj) ∩ V (D′
2) �= ∅, p + 1 ≤ j ≤ p + q}

and B = V (Dt′) ∪ ... ∪ V (Dp+q).

It follows from Proposition 2.10.16 that B �→D′
3 �→A.

Since we have S �→D1 �→Dλ2 �→D′
1 �→S, every vertex of S is in a 4-cycle

and since we have B �→D′
3 �→A�→D′

1 �→S, each vertex of V (D′
3)∪A∪ V (D′

1) is
contained in a 4-cycle.

By the definition of t′ and A, there is an arc sa from Dt′ to A. It follows
from Lemma 2.10.14(b) that there is an arc a′s′ from A to B. Let v ∈ V (D′

1)
and w ∈ V (D′

3) be arbitrarily chosen. Then savs and s′wa′s′ are 3-cycles.
Suppose D′

2 contains a vertex x that is not in A, then A�→x. We also have
x, s′ ∈ N+(a′) and this implies that x→s′. From this we get that x�→Dt′ , in
particular, x→s. Hence xsax is a 3-cycle and xvsax is a 4-cycle. Thus, there
only remains to show that every vertex of S ∪A is contained in a 3-cycle.

Let u be a vertex of S and let D� be the strong component containing u.
If D� has at least three vertices, then u lies on a 3-cycle by Theorem 1.5.1.
So we assume |V (D�)| ≤ 2. If � < t′, then u and a′ are adjacent because
D� dominates the vertex s′ of B. If � ≥ t′, then either u = s or s → u (if
V (D�) = {s, u}, then usu is a 2-cycle) and hence u, a are adjacent. Therefore,
in any case, u is adjacent to one of {a, a′}. Assume without loss of generality
that a and u are adjacent. If u → a, then uavu is a 3-cycle. If a → u, then
uwau is a 3-cycle because of D′

3 → A. Hence, every vertex of S has the
desired property.

Finally, we note that S′ = N+(D′
3) is a subset of V (D′

2) and it is also a
minimal separating set of D. Furthermore, D−S′ is not semicomplete. From
the proof above, every vertex of S′ is also in a 3-cycle. So the proof of the
theorem is completed by the fact that A ⊆ S′. ��

Combining Lemmas 8.1.14 and 8.1.15 we have the following characteriza-
tion of pancyclic and vertex-pancyclic locally semicomplete digraphs due to
Bang-Jensen, Guo, Gutin and Volkmann:

8.1 Pancyclicity of Digraphs 315

Theorem 8.1.16 [80] A strong locally semicomplete digraph D is pancyclic
if and only if it is not of the form D = R[S1, . . . , Sp], where R is a round local
tournament digraph on p vertices with g(R) > max{2, |V (S1)|, . . . , |V (Sp)|}+
1. D is vertex-pancyclic if and only if D is not of the form D = R[S1, . . . , Sp],
where R is a round local tournament digraph with gri(R) > max{2, |V (Si)|}+
1 for some i ∈ {1, . . . , p}, where ri is the vertex of R corresponding to Si. ��

8.1.4 Further Pancyclicity Results

To characterize pancyclic locally in-semicomplete digraphs seems a much
harder problem than that of characterizing pancyclic locally semicomplete
digraphs. Tewes [848] studied this problem and obtained several partial re-
sults of which we will state a few below.

Theorem 8.1.17 [848] Let D be a locally in-tournament digraph on n ver-
tices and let 3 ≤ k ≤ n be an integer such that δ−(D) > 3n

2(k+1) −
1
2 . Further-

more, let D be strong if k ≥ 2δ−(D)+2. Then D has a cycle of length k. For
k ≥

√
n + 1 this bound is sharp. ��

For further results on pancyclic and vertex-pancyclic locally in-tournament
digraphs, see [849, 850].

Let the function f(k) be defined as follows for fixed n:

f(k) =
{

n+1
k + k−1

2 if k is even
n+2

k + k−5
2 if k is odd.

Theorem 8.1.18 [848] Let D be a strongly connected locally in-tournament
digraph on n vertices such that δ−(D) > f(k) for some integer 3 ≤ k ≤√

n + 1. Then D has cycles of all lengths k, k + 1, . . . , n. ��

Since every regular tournament is strong (Exercise 8.4) it is also pancyclic
by Moon’s theorem. Note that by Theorem 6.6.22, every regular multipartite
tournament is hamiltonian. This motivated Volkmann to make the following
conjecture.

Conjecture 8.1.19 [890] Every regular p-partite tournament with p ≥ 4 is
pancyclic.

Note that in the 3-partite tournament D = 	C3[Kk,Kk,Kk] all cycles
have length some multiple of 3. Hence the condition p ≥ 4 above is necessary.
For p ≥ 5 Conjecture 8.1.19 follows from the next result due to Yeo (for an
outline of Yeo’s proof see Volkmann [890]).

Theorem 8.1.20 [918] Every regular multipartite tournament with at least
5 partite sets is vertex-pancyclic. ��

316 8. Paths and Cycles of Prescribed Lengths

Yeo [920] also proved that all regular 4-partite tournaments with at least
13918 vertices are vertex-pancyclic.

Volkmann [893] raised the following conjecture for regular 3-partite tour-
naments:

Conjecture 8.1.21 Every regular semicomplete 3-partite digraph D con-
tains cycles of length 3, 6, . . . , |V (D)|.

The following results support this conjecture: by Theorem 6.6.22, D is
hamiltonian.

There are also many results on sufficient conditions in terms of the num-
ber of arcs for a digraph to contain a cycle of length precisely k. We refer
the reader to the survey of Bermond and Thomassen [152] for a number of
references to such results.

Recall that for a given directed pseudograph D = (V, A), the line digraph
L(D) of D has vertex set A and a→a′ is an arc in L(D) precisely when the
head of a equals the tail of a′ in D (note that a loop in D gives rise to a
loop in L(D)). Let D = (V, A) be a directed pseudograph; D is pancircular
if it contains a closed trail of length q for every q ∈ {3, 4, ..., |A|}. Due to a
natural bijection between the set of closed trails in D and the set of cycles
in L(D), we obtain the following:

Proposition 8.1.22 L(D) is pancyclic if and only if D is pancircular. ��

Imori, Matsumoto and Yamada [551], who introduced the notion of pan-
circularity, proved the following theorem.

Theorem 8.1.23 Let D be a regular and pancircular directed pseudograph.
Then, L(D) is also regular and pancircular. ��

This theorem was used in [551] to show that de Bruijn digraphs are pan-
cyclic and pancircular.

Theorem 8.1.24 [551] Every de Bruijn digraph DB(d, t) is pancyclic and
pancircular.

Proof: de Bruijn digraphs DB(d, t) were introduced for d ≥ 2 and t ≥ 1. Let
DB(d, 0) be the directed pseudograph consisting of a singular vertex and d
loops. Clearly, DB(d, 1) = L(DB(d, 0)). Since

DB(d, t + 1) = L(DB(d, t)) (8.2)

for t ≥ 1 by Lemma 2.5.1, we conclude that (8.2) holds for all t ≥ 0. We
prove the theorem by induction on t ≥ 0. Clearly, DB(d, 0) is pancyclic and
pancircular. Assume that DB(d, t) is pancyclic and pancircular. By Theorem
8.1.23, L(DB(d, t)) is pancircular. By Proposition 8.1.22, L(DB(d, t)) is pan-
cyclic. By (8.2), DB(d, t + 1) = L(DB(d, t)). Thus, DB(d, t + 1) is pancyclic
and pancircular. ��

8.1 Pancyclicity of Digraphs 317

8.1.5 Cycle Extendability in Digraphs

The following definitions are due to Hendry [517]. A non-hamiltonian cycle
C in a digraph D is extendable if there is some cycle C ′ with V (C ′) =
V (C)∪{y} for some vertex y ∈ V −V (C). A digraph D which has at least one
cycle is cycle extendable if every non-hamiltonian cycle of D is extendable.
Clearly a cycle extendable digraph is pancyclic if and only if it contains a
3-cycle and vertex-pancyclic if and only if every vertex is in a 3-cycle.

The following is an easy consequence of the proof of Theorem 1.5.1:

Theorem 8.1.25 [704] A strong tournament T = (V, A) is cycle extendable
unless V can be partitioned into sets U, W, Z such that W �→U �→Z and T 〈U〉
is strong. ��

Hendry [517] studied cycle extendability in digraphs with many arcs and
obtained the next two results.

Theorem 8.1.26 [517] Every strong digraph on n vertices and at least n2−
3n + 5 arcs is cycle extendable. ��

Hendry showed that digraphs may have very large in- and out-degree and
still not be cycle extendable. This contrasts to the situation for undirected
graphs. Hendry has shown in [518, Corollary 8] that, apart from certain excep-
tions, every graph satisfying Dirac’s condition for hamiltonicity (d(x) ≥ n/2
for every vertex [266]) is also cycle extendable (with the obvious analogous
definition of cycle extendability for undirected graphs). The main result of
[517] is the following.

Theorem 8.1.27 [517] Let D be a digraph on n ≥ 7 vertices such that
δ0(D) ≥ 2n−3

3 . Then D is cycle extendable unless n = 3r for some r and
D contains Fn as a spanning subdigraph and D is a spanning subdigraph of
Gn. See Figure 8.1 for the definition of Fn, Gn. ��

F3k G3k

↔
Kk

↔
Kk

↔
Kk

↔
Kk

↔
Kk

↔
Kk

Figure 8.1 The digraphs Fn and Gn. All arcs indicate complete domination in the
direction shown.

318 8. Paths and Cycles of Prescribed Lengths

A cycle C in a digraph D is 1-maximal if D has no cycle C ′ such that
C − a is a subpath of C ′ for some arc a of C and |V (C ′)| > |V (C)|. Each of
the next two results generalizes Corollary 1.5.2.

Lemma 8.1.28 Let D be a strong digraph and let C be a 1-maximal cycle
in D. Then no vertex of D − V (C) is adjacent to all vertices in C.

Proof: Exercise 8.12. ��

Lemma 8.1.29 Given a strong digraph D and a vertex v ∈ V (D) we can
find in polynomial time either a hamiltonian cycle of D or a 1-maximal cycle
containing v.

Proof: Exercise 8.13. ��

8.1.6 Arc-Pancyclicity

A digraph D of order n is arc-k-cyclic for some k ∈ {3, 4, . . . , n} if each arc of
D is contained in a cycle of length k. A digraph D = (V, A) is arc-pancyclic
if it is arc-k-cyclic for every k = 3, 4, . . . , n. Demanding that a digraph is
arc-pancyclic is a very strong requirement, since in particular every arc must
be in a hamiltonian cycle. Hence it is not surprising that most results on arc-
pancyclic digraphs are for tournaments and generalizations of tournaments.
However, Moon proved that almost all tournaments are arc-3-cyclic [704], so
for tournaments this is not such a hard requirement, in particular in the light
of Theorem 8.1.30 below.

Tian, Wu and Zhang characterized all tournaments that are arc-3-cyclic
but not arc-pancyclic. See Figure 8.2 for the definition of the classes D6,D8.

Theorem 8.1.30 [873] An arc-3-cyclic tournament is arc-pancyclic unless
it belongs to one of the families D6,D8 (in which case the arc yx does not
belong to a hamiltonian cycle). ��

It is not difficult to derive the following two corollaries from this result:

Corollary 8.1.31 [873] Every arc-3-cyclic tournament has at most one arc
which is not in cycles of all lengths 3, 4, . . . , n.

Proof: Exercise 8.14. ��

Corollary 8.1.32 [913] A tournament is arc-pancyclic if and only if it is
arc-3-cyclic and arc-n-cyclic.

Proof: Exercise 8.15. ��
The following result due to Alspach is also an easy corollary:

Corollary 8.1.33 [34] Every regular tournament is arc-pancyclic. ��

8.1 Pancyclicity of Digraphs 319

U W

x y x y

D6 D8

Figure 8.2 The two families of non-arc-pancyclic arc-3-cyclic tournaments. Each
of the sets U and W induces an arc-3-cyclic tournament. All edges that are not
already oriented may be oriented arbitrarily, but all arcs between U and W have
the same direction.

Finally, observe that since each tournament in the infinite family D6 is 2-
strong and the arc yx is not in any hamiltonian cycle we obtain the following
result due to Thomassen:

Theorem 8.1.34 [856] There exist infinitely many 2-strong tournaments
containing an arc which is not in any hamiltonian cycle. ��

In [432, 434] Guo studied arc-pancyclic locally tournament digraphs and
obtained several results which generalize those above. In particular he made
the important observation that one can in fact get a more general result by
studying paths from x to y for all such pairs where the arc xy is not present
rather than just those for which the arc yx is present (which is the case for
tournaments of course).

Theorem 8.1.35 [434] Let D be an arc-3-cyclic local tournament and let
x, y be distinct vertices such that there is no arc from x to y. Then D contains
an (x, y)-path of length k for every k such that 2 ≤ k ≤ n − 1 unless D is
isomorphic to one of the local tournaments T 1

8 , T 2
8 (from Section 7.2) or D

belongs to one of the families D6 or D8, possibly with the arc from y to x
missing. ��

The proofs of Theorems 8.1.30 and 8.1.35 are very technical and consist
of a long case analysis. Hence it makes no sense to give any of these proofs

320 8. Paths and Cycles of Prescribed Lengths

here. However, we will finish the section with a proof of the following partial
result which Guo used in his proof of Theorem 8.1.35.

Theorem 8.1.36 [434] Let D be a connected, arc-3-cyclic local tournament
which is not 2-strong. Then D is isomorphic to 	C3[T1, T2, {s}] where Ti is
an arc-3-cyclic tournament for i = 1, 2 and s is a vertex. Furthermore, D is
arc-pancyclic.

Proof: First observe that D is strongly connected since it is connected
and arc-3-cyclic. Since D is not 2-strong, it has a separating vertex s. Let
T1, T2, . . . , Tk denote the acyclic ordering of the strong components of D− s.
If there is an arc xs from V (T1) to s, then no arc from x to V (T2) can be in
a 3-cycle. Hence we must have s�→V (T1) and similarly V (Tk)�→s. Since D is
arc-3-cyclic, each of T1, Tk must be an arc-3-cyclic tournament.

If k ≥ 3, then for every vertex u ∈ V (T2), either no arc from V (T1) to u
or no arc from u to V (T3) can be in a 3-cycle, contradicting our assumption.
Thus we must have k = 2 and we have proved that D = 	C3[T1, T2, {s}].

It remains to prove that D is arc-pancyclic. Since T1 and T2 have hamil-
tonian paths, it is easy to see that each arc which does not belong to either
T1 or T2 is on cycles of all possible lengths. So we just have to consider arcs
inside T1, T2. If |V (T1)| = |V (T2)| = 1, there is nothing more to prove. So
suppose without loss of generality that |V (T1)| ≥ 3. Let u1u2 . . . uru1, r ≥ 3,
be a hamiltonian cycle of T1. Let uiuj be an arbitrary arc of T1. If T1 − ui is
strong, then T1 − ui has a hamiltonian cycle and hence T1 has a hamiltonian
path starting with the arc uiuj . Using this and a hamiltonian path in T2 we
can easily obtain cycles of all lengths 3, 4, . . . , n through uiuj in D. Suppose
now that T1 − ui is not strong. Then T1 − ui satisfies the assumption of the
theorem, so by induction it has the same structure as D and uj must belong
to the initial component of T1 − ui. Hence again we find a hamiltonian path
starting with the arc uiuj in T1 and finish as above.

Similarly, if |V (T2)| ≥ 3, the same proof as above can be applied to every
arc of T2. Thus we have shown that D is arc-pancyclic. ��

The following natural and interesting problem remains open.

Problem 8.1.37 Characterize arc-pancyclic semicomplete digraphs.

A partial result on the problem was obtained by Darrah, Liu and Zhang [249].

8.2 Colour Coding: Efficient Algorithms for Paths and
Cycles

While it is NP-complete to decide whether a digraph D of order n has a path
or cycle with n vertices, it is not trivial to see for what functions lp(n) and

8.2 Colour Coding: Efficient Algorithms for Paths and Cycles 321

lc(n), one can verify in polynomial time whether D contains a path (cycle,
respectively) of length lp(n) (lc(n), respectively). In particular, Papadimitriou
and Yannakakis [743] conjectured that one can determine in polynomial time
the existence of a path of length pl(n) = Θ(log n). Alon, Yuster and Zwick
[31, 32] resolved this conjecture in the affirmative. They also proved that
one can check whether a digraph of order n has a 	Ck in polynomial time as
long as k = O(log n). In this section we will briefly consider certain elegant
ideas behind the algorithms designed in [31, 32]. Further developments on the
topic can be found in [33] and in the references therein. Various algorithmic
aspects on enumeration of short cycles are also discussed there. For other
applications of colour coding, see, e.g., Liu, Lu, Chen and Sze [649].

We start with a simple technical result on the expectation of a geometric
random variable. This result can be found in many books on probability the-
ory; we include its short proof for the sake of completeness. We use Prob(E)
to denote the probability of the event E.

Lemma 8.2.1 Let 0 < p ≤ 1 and let x1, x2, . . . be a sequence of random
boolean variables such that xj = 1 with probability p for each j ≥ 1. A
random variable ν is defined as follows: for j ≥ 1, ν = j if and only if xj = 1
and x1 = x2 = . . . = xj−1 = 0. Then, the expectation of ν is 1/p.

Proof: The expectation of ν equals

∞∑

i=1

i·Prob(ν = i) =
∞∑

i=1

Prob(ν ≥ i) =
∞∑

i=1

(1 − p)i−1 = 1/p.

��
To design algorithms verifying the existence of paths and cycles, Alon,

Yuster and Zwick [31, 32] introduced two methods: the random acyclic sub-
digraph method and the colour-coding method. We consider first the random
acyclic subdigraph method and then the method of colour-coding. In the rest
of this section, we will follow [32].

Let D = (V, A) be a digraph with V = {u1, u2, . . . , un}. Let M = [mij]
be the adjacency matrix of D, i.e., mij = 1 if ui→uj and mij = 0, otherwise.
It is well known (see Exercise 3.20) that the (i, j)th entry of the kth power
of M is non-zero if and only if there is a (ui, uj)-walk of length k. However,
many of the (ui, uj)-walks of length k can be with repeated vertices (and
even arcs). Thus, one naturally asks how we can get rid of walks that are
not paths or cycles. One such method is the random acyclic subdigraph
method: we choose randomly a permutation π on [n] and construct the
corresponding acyclic spanning subdigraph H of D by taking the following
arcs: uπ(i)uπ(j) ∈ A(H) if and only if uπ(i)uπ(j) ∈ A and π(i) < π(j). Clearly,
every walk of H is a path in D (no vertices can be repeated as H is acyclic).
On the other hand, every path P with k arcs in D has a 1/(k + 1)! chance
to be a path in H as well (Exercise 8.18).

322 8. Paths and Cycles of Prescribed Lengths

Let O(nω) be the complexity of boolean matrix multiplication (i.e., of
the multiplication of two boolean n × n matrices). Due to Coppersmith and
Winograd [230], ω < 2.376. Using random acyclic subdigraphs, one can prove
the following:

Theorem 8.2.2 [31, 32] Let D = (V, A) be a digraph that contains a path
(a cycle, respectively) of length k. A path (a cycle, respectively) of length k in
D can be found in expected time O((k + 1)!·m) (O(k! log k·nω), respectively).

Proof: To find a path of length k in D one can apply the following algorithm.
Choose randomly a permutation π of [n] and construct the corresponding
acyclic spanning subdigraph H of D as described above. Using the O(m)
algorithm of Subsection 3.3.2, find a longest path P in H. If the length of P
is less than k, then repeat the above procedure. Otherwise return a subpath
of P whose length is k.

Since D contains 	Pk+1, H has a path of length at least k with probability
at least 1/(k+1)!. Hence, by Lemma 8.2.1, the expected number of iterations
in the above algorithm is at most (k + 1)!. Thus, the expected running time
is O((k + 1)!m) as claimed.

To find a cycle of length k in D one can apply the following algorithm.
Choose randomly a permutation π on [n] and construct the corresponding
acyclic spanning subdigraph H of D as above. By computing (in time O(nω ·
log k), see Exercise 3.21) the (k − 1)th power of the adjacency matrix of H,
we find all pairs of vertices which are end-vertices of (k − 1)-paths in H (see
Exercise 8.19). If the terminal vertex of one of the paths dominates the initial
vertex of the path in D, we construct the corresponding k-cycle and stop. If
no k-cycle is found, we repeat the above procedure.

Clearly, the expected number of iterations in the above algorithm is at
most k!. This implies the expected running time of O(k! log k ·nω). ��

Now we turn our attention to a more powerful approach, the colour-
coding method. Let c : V →[k] be a colouring of the vertices of D. A path
P in D is colourful if no pair of vertices of P are of the same colour.

Lemma 8.2.3 Let D = (V, A) be a digraph and let c : V →[k + 1] be a
colouring of the vertices of D. A colourful path of length k in D, if one
exists, can be found in time 2O(k) ·m.

Proof: Add to D a new vertex s of colour 0 that dominates all vertices of D
and is dominated by no vertex. As a result, we obtain a digraph D′, which
has a (k+1)-path starting at s if and only if D contains a path of length k. To
find a path of length k + 1 in D′ starting at s we use dynamic programming.
Suppose that we have already found for each vertex v ∈ V the possible sets
of colours on colourful (s, v)-paths of length i as well as the corresponding
paths (just one path for every possible set). We also call such sets colourful.
Observe that for every v we have at most

(
k+1

i

)
colourful sets and (s, v)-paths,

8.2 Colour Coding: Efficient Algorithms for Paths and Cycles 323

respectively. We inspect every colourful set C that belongs to the collection of
v and every arc vu. Let P (C) be the corresponding colourful path. If c(u) �∈ C,
then we add C ∪ c(u) (P (C)u, respectively) to the collection of colourful sets
(paths, respectively) of u of cardinality (length, respectively) i + 1. Clearly,
D′ contains a colourful (k + 1)-path with respect to the colouring c if and
only if the collection of colourful paths of length k + 1 for some vertex is not
empty. The number of operations of this algorithm is at most

O

(
k+1∑

i=0

i

(
k + 1

i

)
m

)
= O((k + 1)2k+1m).

��
The next lemma follows from Lemma 8.2.3 and is left as Exercise 8.21.

Lemma 8.2.4 Let D = (V, A) be a digraph and let c : V →[k] be a colouring
of the vertices of D. For all ordered pairs x, y of distinct vertices colourful
(x, y)-paths of length k − 1 in D, if they exist, can be found in total time
2O(k) ·nm. ��

Actually, for dense digraphs the complexity of this lemma can be improved
to 2O(k) ·nω [32]. Clearly, Lemma 8.2.4 implies a 2O(k) ·nm algorithm to find
a k-cycle in D.

If P is a path of order k in D whose vertices are randomly coloured from
a set of k colours, then P has a chance of k!/kk > e−k to become colourful.
Thus, by Lemma 8.2.1, the expected number of times to randomly generate
k-colouring to detect P is at most �ek�. This fact and Lemmas 8.2.3 and 8.2.4
imply the following:

Theorem 8.2.5 (Alon, Yuster and Zwick) [31, 32] If a digraph D has
a path of length k (k-cycle, respectively), then a path of length k (k-cycle,
respectively) can be found in 2O(k)·m (2O(k)·nm, respectively) expected time.

��

The algorithms mentioned in this theorem are quite simple, but unfortu-
nately not deterministic. Fortunately, one can de-randomize these algorithms
to obtain deterministic algorithms with time complexity still linear in m. Ob-
serve that for a path P of order k in D = (V, A) many k-colourings of V are
equally good or bad depending on P being colourful or not. This means that
we do not need to consider all kn k-colourings of V to detect a path of order
k in D; a subset S of colourings such that every path of order k is colourful
for at least one colouring of S is sufficient. In other words, we wish that for
every k-set W of vertices there is a colouring from S that assigns vertices of
W different colours.

This is captured in the notion of a k-perfect family of hash functions from
[n] to [k]. Schmidt and Siegel [795] following Fredman, Komlós and Szemerédi

324 8. Paths and Cycles of Prescribed Lengths

[359] gave an explicit construction of a k-perfect family from [n] to [k] in which
each function is specified by b = O(k) + 2 log2 log2 n bits. Thus, the size of
the family is 2b = 2O(k) log2

2 n. The value of each of these functions on each
specified element of [n] can be computed in O(1) time. Using this family, the
algorithms of Theorem 8.2.5 can be de-randomized to obtain deterministic
algorithms running in time O(2O(k) ·m log2 n) and, respectively, O(2O(k) ·
mn log2 n). Alon, Yuster and Zwick [31, 32] pointed out how to decrease
each of the above complexities by the multiplicative factor of log n. They
also showed how to de-randomize some versions of algorithms mentioned in
Theorem 8.2.2. This implies that the following two parameterized problems
are fixed parameter tractable: given an input digraph D and a parameter k,
check whether D has a path (cycle, respectively) with at least k vertices (for
an introduction to fixed parameter tractability, see Section 18.4).

8.3 Cycles of Length k Modulo p

The linear-time algorithms for computing the period of a digraph described
in Section 17.8 show that the problem to verify whether all cycles of a digraph
are of length 0 modulo p for some p is polynomial time solvable. This problem
has the natural ‘existence’ analogue: given a (fixed) integer p ≥ 2, verify
whether a digraph D has a cycle of length equal 0 modulo p. In this section,
we consider this and the more general problem of the existence of cycles of
lengths equal k modulo p. In Subsection 8.3.1, we study the complexity results
on these problems; Subsection 8.3.2 is devoted to some sufficient conditions
for the existence of cycles of lengths equal k modulo p.

8.3.1 Complexity of the Existence of Cycles of Length k Modulo
p Problems

We start our consideration from the following problem. Given a (fixed) inte-
ger p ≥ 2, verify whether a digraph D has a cycle of length equal 0 modulo p.
The case of p = 2 of this problem is called the Even Cycle problem. The
even cycle problem has numerous applications (see e.g. Robertson, Seymour
and Thomas [786] and Thomassen [868] and the reference to further litera-
ture therein) and is related to several problems on permanents of matrices,
so-called Pfaffian orientations of graphs, colouring of hypergraphs, etc. The
complexity of the even cycle problem was an open problem for quite some
time: Thomassen [869] proved that the even cycle problem is polynomial time
solvable for planar digraphs and Galluccio and Loebl [390] extended this re-
sult to digraphs, whose underlying undirected graphs do not contain sub-
graphs contractible to either K5 or K3,3. Finally, independently McCuaig,
and Robertson, Seymour and Thomas (see [786]) found highly non-trivial
proofs of the following result:

8.3 Cycles of Length k Modulo p 325

Theorem 8.3.1 The even cycle problem is polynomial time solvable. ��

We are not aware of any paper determining the complexity of the problem
to check whether a digraph has a cycle of length equal 0 modulo p for fixed
p > 2.

Problem 8.3.2 Is there a polynomial algorithm to check whether a digraph
has a cycle of length equal 0 modulo p for fixed p > 2?

The last problem can be naturally generalized to the problem to verify
whether a digraph D has a cycle of length equal k modulo p for fixed k, p
such that 0 ≤ k < p, p ≥ 2. We have considered the case of k = 0; the
case of k > 0 was studied by Arkin, Papadimitriou and Yannakakis [49], who
proved the following theorem (observe that the case of k = 1 and p = 2 is
polynomial time solvable since one can check whether a digraph is bipartite
in polynomial time):

Theorem 8.3.3 Let k, p be a pair of fixed integers such that p > 2 and
k ∈ [p − 1]. The problem to verify whether a digraph D has a cycle of length
k modulo p is NP-complete.

Proof: Let D be a digraph and let k ≥ 2. Choose k arbitrary arcs
a1, a2, . . . , ak in D and replace every arc xy in A(D) − {a1, a2, . . . , ak} by
an (x, y)-path of length p, whose intermediate vertices do not belong to D
(and the intermediate vertices of all such paths are distinct). Clearly, the
obtained digraph D′ has a cycle of length equal k modulo p if and only if D
has a cycle through all arcs a1, a2, . . . , ak. For a fixed k ≥ 2, the problem of
the existence of a cycle through k given arcs in a digraph is NP-complete
(see Proposition 10.1.2 and Theorem 10.2.1); hence this theorem is proved for
k ≥ 2. For k = 1, we choose a pair of arcs a, b, replace a by a path of length 2,
b by a path of length p−1, and every c ∈ A(D)−{a, b} by a path of length p
such that all internal vertices of the paths are distinct and distinct from the
vertices of D. Clearly, the obtained digraph D′ has a cycle of length equal 1
modulo p if and only if D has a cycle through a and b; the last problem is
NP-complete as we remarked above. ��

Because of this theorem, the following result of Galluccio and Loebl [389]
is of certain interest:

Theorem 8.3.4 Let k, p be a pair of fixed integers such that p ≥ 2 and
0 ≤ k < p. There is a polynomial algorithm to verify whether a planar digraph
D has a cycle of length k modulo p. ��

326 8. Paths and Cycles of Prescribed Lengths

8.3.2 Sufficient Conditions for the Existence of Cycles of Length k
Modulo p

A digraph D = (V, A) is called even if, for every B ⊆ A, the subdivision of all
arcs in B results in a digraph with an even cycle. A k-weak-double-cycle
is a digraph which is defined recursively as follows (see Figure 8.3):

Figure 8.3 The 5-double-cycle and a 5-weak-double-cycle.

1. The complete biorientation
↔
Ck of a k-cycle is a k-weak-double-cycle.

2. If H is a k-weak-double-cycle and D is obtained from H by subdividing
an arc or splitting a vertex 2, then D is a k-weak-double-cycle.

It is easy to see that for odd k a k-weak-double-cycle is even because it has
an odd number of cycles and every arc is in an even number of distinct cycles
(see Exercise 8.24). The following result is much more difficult to prove.

Theorem 8.3.5 (Seymour and Thomassen) [813] A digraph is even if
and only if it contains a k-weak-double-cycle for some odd k. ��

Galluccio and Loebl [391] have extended this result. They call a digraph
D = (V, A) (k, p)-odd if, for every B ⊆ A, the subdivision of all arcs in B
results in a digraph with a cycle of length different from k modulo p.

Theorem 8.3.6 [391] A digraph is (k, p)-odd if and only if it contains a q-
weak-double-cycle, with (q − 2)k �≡ 0 (mod p). ��

Using Theorem 8.3.5 and other results, Thomassen [868] proved the fol-
lowing very interesting theorem:
2 The operations of subdividing an arc and splitting a vertex are introduced at

the end of Section 1.3.

8.3 Cycles of Length k Modulo p 327

Theorem 8.3.7 (Thomassen’s even cycle theorem) If D is a strong
digraph with δ0(D) ≥ 3, then D is even. ��

Koh [605] constructed an infinite family of digraphs D with δ0(D) ≥ 2 and
with no even cycle. Thomassen [860] strengthened this result by exhibiting,
for every k ≥ 2, a digraph Dk with δ0(Dk) ≥ k and with no even cycle.
This implies that the strong connectivity requirement in Theorem 8.3.7 is
necessary. Theorem 8.3.7 implies that every 3-strong digraph has an even
cycle. Thomassen [863] pointed out that there exists a 2-strong digraph of
order 7 that has no even cycle, namely, the digraph in Figure 8.4.

Figure 8.4 A 2-strong digraph with no even cycle.

Thomassen [860] constructed infinitely many 2-strong digraphs that are
not even. However, the following question is still open:

Problem 8.3.8 [863] Are there infinitely many 2-strong digraphs with no
even cycle?

Theorem 8.3.7 was extended by Galluccio and Loebl [391], who proved
that every strong digraph D with δ0(D) ≥ 3 contains a cycle of length dif-
ferent from k modulo p, for every 1 ≤ k < p, p ≥ 3.

Although we do not provide a proof of Theorem 8.3.7, we will prove
Theorem 8.3.11 which implies a result weaker than Theorem 8.3.7, i.e.m
Corollary 8.3.12, but its assertion is not only on even cycles but also on
cycles of length 0 modulo q(≥ 2). To prove Theorem 8.3.11, we need two
lemmas; the first lemma is the famous Lovász local lemma (cf. Alon and
Spencer [28] or McDiarmid [690]). For an event E, E means that E does not
hold.

Lemma 8.3.9 (Lovász local lemma) Let E1, . . . , En be events in an ar-
bitrary probability space. Suppose that each event Ei is mutually independent
of all other events except for at most d events, and that Prob(Ei) ≤ p for
every i ∈ [n]. If ep(d + 1) ≤ 1, where e is the basis of the natural logarithm,
then Prob(∩n

i=1Ei) > 0. ��

328 8. Paths and Cycles of Prescribed Lengths

Lemma 8.3.10 [26] Let D be a digraph and let q ≥ 2 be an integer. Suppose
that every vertex x of D is assigned a colour c∗(x), an integer in [q−1], such
that for every u ∈ V (D) there exists an out-neighbour v with c∗(v) ≡ c∗(u)+1
(mod q), then D contains a cycle of length 0 (mod q).

Proof: Clearly, choosing an arbitrary vertex u0 in V (D), we can find a
sequence u0, u1, . . . of vertices such that uiui+1 ∈ A(D) and c∗(ui+1) ≡
c∗(ui) + 1 (mod q) for every i ≥ 0. Let s be the least integer such that
uj = us for some j < s. It remains to observe that the cycle ujuj+1 . . . us is
of length 0 (mod q). ��

The following result is due to Alon and Linial:

Theorem 8.3.11 [26] For a digraph D = (V, A), if

e(Δ−(D)δ+(D) + 1)(1 − 1/q)δ+(D) < 1 (8.3)

or if
e(Δ+(D)δ−(D) + 1)(1 − 1/q)δ−(D) < 1, (8.4)

then D contains a cycle of length 0 (mod q).

Proof: Since (8.4) transforms into (8.3) by replacing D by its converse, it
suffices to prove that (8.3) implies that D has a cycle of length 0 modulo q.

For every vertex u, delete d+(u) − δ+(D) arcs with tail u and consider
the resulting digraph D′ = (V, A′). Assign to every vertex u of D′ a colour
c(u), an integer in {0, 1, . . . , q − 1}, independently according to a uniform
distribution. For each u ∈ V , let Eu denote the event that there is no v ∈ V
with uv ∈ A′ and c(v) ≡ c(u)+1 (mod q). Clearly, Prob(Eu) = (1−1/q)δ+(D).
It is not difficult to verify that each event Eu is mutually independent of all
the events Ev except for those satisfying

N+(u) ∩ (v ∪N+(v)) �= ∅.

The number of such v’s is at most Δ−(D)δ+(D) and hence, by our assumption
(8.3) and Lemma 8.3.9, Prob(∩u∈V Eu) > 0. This means that there is a
colouring c∗ such that for every u ∈ V there exists a v ∈ V with uv ∈ A′ and
c∗(v) ≡ c∗(u) + 1 (mod q). Now it follows from Lemma 8.3.10 that D has a
cycle of length 0 modulo q. ��

The easy proof of the following corollary is left as Exercise 8.29.

Corollary 8.3.12 Every k-regular digraph D with k ≥ 8 contains an even
cycle. ��

We have seen above that no constant k can guarantee that a digraph
of out-degree at least k contains an even cycle. This leads to the following
natural question (raised by Erdős, see [860]): what is the smallest integer h(n)

8.4 Girth 329

such that every digraph of order n and minimum out-degree h(n) contains
an even cycle? In order to prove an upper bound for h(n) we need a result on
hypergraph colouring. The following lemma is due to Beck [129]3: Recall that
a hypergraph H = (V, E) is 2-colourable if there is a function f : V →{0, 1}
such that, for every edge E ∈ E , there exist a pair of vertices x, y ∈ E such
that f(x) �= f(y).

Lemma 8.3.13 There exists an absolute constant d such that every m-
uniform hypergraph with at most �dm1/32m� edges is 2-colourable. ��
Lemma 8.3.14 [26] For every n ≥ 2,

h(n) ≤ log2 n − 1
3

log2 log2 n + O(1).

Proof: Let m ≥ 2 be an integer and let d be a constant satisfying Lemma
8.3.13. Suppose that

n = �dm1/32m� (8.5)

and let D = (V, A) be a digraph of order n and δ+(D) ≥ m − 1. Let H be
the hypergraph on the set of vertices V , whose n edges are the sets N+[u] =
N+(u) ∪ u. Since every edge of H is of cardinality at least m, Lemma 8.3.13
implies that H is 2-colourable. This means that there exists a vertex colouring
c∗ : V →{0, 1} such that for every u ∈ V there is v ∈ N+(v) with c∗(v) ≡
c∗(u)+1 (mod 2). Hence, by Lemma 8.3.10, D has an even cycle. Solving for
m from (8.5) we obtain that

h(n) ≤ m − 1 ≤ log2 n − 1
3

log2 log2 n + O(1).

��
Clearly, if a digraph D contains cycles of length k and k + 1 for some k,

then D has an even cycle. Deciding the existence of such cycles of consecutive
length in a strong digraph is NP-complete (see Exercise 8.33). Furthermore,
it is easy to construct digraphs of arbitrary high vertex-strong connectivity
with no such cycles (Exercise 8.34). It would be interesting to find non-
trivial degree conditions (weaker than conditions implying pancyclicity, such
as those in Section 8.1) which guarantee that a non-bipartite digraph has
two cycles of consecutive lengths. See also Exercise 1.31 for another type of
sufficient condition for the existence of two cycles of consecutive lengths.

8.4 Girth

Recall that the girth g(D) of a digraph D is the length of a shortest cycle in
D. The girth is an important parameter of a digraph and has been studied
in a number of papers especially with respect to its extreme values.
3 Radhakrishnan and Srinivasan [758] improved the bound of this lemma to 0.7·

2m
p

m/ ln m. Hence, the bound of Lemma 8.3.14 can be slightly improved.

330 8. Paths and Cycles of Prescribed Lengths

Theorem 6.4.10 claims that if the minimum degree of every vertex in a
strong digraph D is large enough, then the length of a longest cycle in D is
large as well. Caccetta and Häggkvist [186] conjectured a somewhat similar
result for girth (with obvious replacement of upper bound to a lower bound):

Conjecture 8.4.1 (Caccetta and Häggkvist) [186] Every digraph of
minimum out-degree k and order n has a cycle of length at most �n/k�.

This conjecture is trivially true for k = 1; it was proved for k = 2 by
Caccetta and Häggkvist [186], for k = 3 by Hamidoune [496] and for k = 4
and 5 by Hoang and Reed [530]. Hamidoune [495] proved that the conjecture
is true for digraphs with transitive automorphism group. It follows from the
next result that there is only a finite number, if any, of counterexamples
to Conjecture 8.4.1. In particular, Conjecture 8.4.1 is proved for the case
n ≥ 2k2 − 3k + 1.

Theorem 8.4.2 (Shen) [815] For every digraph of order n and minimum
out-degree k, g(D) ≤ max{�n/k�, 2k − 2}. ��

For an arbitrary integer k ≥ 1, we have the following:

Theorem 8.4.3 (Chvátal and Szemerédi) [223] There is a constant c
such that every digraph of minimum out-degree k ≥ 1 and order n contains
a cycle of length at most �n/k� + c. Moreover, c ≤ 2500. ��

Refinements of the proof in [223] were used by Nishimura [729] to show
that c ≤ 304 and by Shen [816] to prove that c ≤ 73. For relatively small val-
ues of n/k, the following result of Chvátal and Szemerédi [223] is of interest.

Theorem 8.4.4 Every digraph of minimum out-degree k and order n has a
cycle of length at most �2n/(k + 1)�.

Proof: By induction on n ≥ 2. For n = 2 or 3 and k ≥ 1, the digraph in
question has either a 2-cycle or a 3-cycle and hence the claim holds. Let D be
a digraph of order n ≥ 4 and minimum out-degree k ≥ 1. Since the size of D
is at least kn, D contains a vertex v of in-degree at least k. If D has a 2-cycle,
we are done. So, assume that D is an oriented graph. Let D′ be the digraph
obtained from D by deleting the vertices of N−[v] = N−(v)∪{v} and adding
the new arc xy for every ordered pair x, y such that xy �∈ A(D), y ∈ N+(v)
and x dominates an in-neighbour of v. Clearly, D′ is of order at most n−k−1
and minimum out-degree at least k. By the induction hypothesis, D′ contains
a cycle C of length at most 2(n − k − 1)/(k + 1). Replacing each of the new
arcs xy in C by the path xuvy, we obtain a closed walk C∗ in D. If C has
precisely s new arcs, then v appears on C∗ exactly s times, and so C∗ is the
union of at least s cycles (see Exercise 1.5), whose total length is at most
2(n − k − 1)/(k + 1) + 2s. Clearly, the shortest of these cycles has length at
most 2n/(k + 1). ��

8.4 Girth 331

Searching for new approaches to the Caccetta-Hággkvist conjecture,
Hoang and Reed [530] came up with the following conjecture that implies
the Caccetta-Hággkvist conjecture (Exercise 8.35).

Conjecture 8.4.5 Every digraph D of minimum out-degree k contains a
sequence C1, C2, . . . , Ck of cycles such that ∪j−1

i=1Ci and Cj have at most one
vertex in common.

In the case of k = 2, the last conjecture was proved by Thomassen [862].
The conjecture was verified for tournaments by Havet, Thomassé and
Yeo [510].

Theorem 8.4.6 [862] Every digraph D of minimum out-degree 2 contains a
pair of cycles with precisely one vertex in common.

Proof: By induction on n, the order of D. If n = 3, the claim trivially holds,
so assume that n ≥ 4. Since the minimum out-degree in the terminal strong
component of D is at least 2, we may assume that D is strong. Moreover, since
δ+(D) ≥ 2, D has a vertex x such that D − x is strong (see Exercise 8.22).
If D〈N−(x)〉 contains a cycle C, then the required pair of cycles consists of
C and a cycle formed by a shortest path P from x to C and the arc from
the terminal vertex of P to x. So, we may assume that D〈N−(x)〉 is acyclic,
and, thus, D〈N−(x)〉 has a vertex y of in-degree 0.

If we delete all arcs with tail y and identify x and y, we obtain the digraph
D′ of order n − 1 and minimum out-degree at least 2. By the induction
hypothesis, D′ has a pair of cycles with precisely a vertex in common; these
cycles correspond to cycles C1 and C2 in D. We may assume that C1 and C2

have yx in common for otherwise they have precisely a vertex in common.
Since D−x is strong, y is in a cycle C3 of D−x. It is not difficult to see that
C1 ∪C2 ∪C3 contains a pair of cycles having precisely y in common. Indeed,
if C3 has only y in common with C1 or C2, then there is nothing to prove. If
C3 intersects with C1 ∪ C2 at a vertex distinct from y, then let z be such a
vertex with C3[y, z] being as short as possible (meaning that C3[y, z] has only
y and z in common with V (C1)∪V (C2)). Choose i such that z is in Ci, where
i = 1 or 2. Then C3−i and Ci[z, y]C3[y, z] is the required pair of cycles. ��

The density of a digraph D is the ratio of its size and order (i.e., m/n).
Clearly, high density of a strong digraph D guarantees that g(D) is small.
Thomassen (see [148]) asked to determine the least number m(n, k) such that
every strong digraph of order n and size at least m(n, k) contains a cycle of
length at most k. Bermond, Germa, Heydemann and Sotteau [148] solved
this problem by proving the following:

Theorem 8.4.7 Let D be a strong digraph of order n and let k ≥ 2. Then

|A(D)| ≥ n2 + (3 − 2k)n + k2 − k

2

implies that g(D) ≤ k. ��

332 8. Paths and Cycles of Prescribed Lengths

This theorem is best possible since there exist strong digraphs of order n
and size (n2 + (3 − 2k)n + k2 − k)/2 − 1 with shortest cycle of length k + 1
(Exercise 8.36).

In many questions on properties of (di)graphs, one may ask whether all
(di)graphs satisfying a certain property must have cycles of length at most
a constant. Perhaps the most famous such question is the problem regard-
ing the chromatic number of an undirected graph: given k ≥ 3 and g ≥ 3, is
there an undirected graph of chromatic number k and of girth at least g? This
problem was resolved in the affirmative by Erdős [296] using probabilistic ar-
gument (a simplification of the original proof is given by Alon and Spencer
[28]). Clearly, many digraphs of large vertex-strong connectivity are quite
dense and, thus, of small girth. However, it is not difficult to construct di-
graphs of large vertex-strong connectivity and large girth. The ‘vertex-strong
connectivity’ and ‘girth’ parts of the next result were proved by Ayoub and
Frisch [54] (see Exercise 5.21) and Liu and Zhou [647] (see Exercise 8.37),
respectively.

Proposition 8.4.8 If n = gs, g ≥ 2, then there exists an s-regular round
digraph of order n which is s-strong and has girth g. ��

8.5 Short Cycles in Semicomplete Multipartite Digraphs

As we mentioned in Chapter 6 the hamiltonian cycle problem is NP-complete
for arbitrary digraphs and polynomial time solvable for certain families of
digraphs including semicomplete multipartite digraphs. In this section we
consider the existence of ‘short’ cycles in semicomplete multipartite digraphs.
By short cycles in a semicomplete p-partite digraph we mean cycles of length
at most p.

The cycle structure of semicomplete bipartite digraphs is quite well un-
derstood due to Theorem 6.6.4 and Exercises 8.16, 8.17. The cycle structure
of semicomplete p-partite digraphs, p ≥ 3, is less investigated especially for
cycles of length more than p. In this section, we will consider results on cy-
cles of length at most p. Most of the results on short cycles in semicomplete
multipartite digraphs were actually obtained for multipartite tournaments.
Therefore, we state them for multipartite tournaments. However, all of them
can be immediately extended to semicomplete multipartite digraphs due to
the following theorem of Volkmann.

Theorem 8.5.1 [890] Let D be a strong semicomplete p-partite digraph of
order n, p, n ≥ 2, with a cycle C of length at least 3. Then D contains a
strong orientation containing the cycle C, if and only if D �=

↔
K1,n−1 . ��

8.5 Short Cycles in Semicomplete Multipartite Digraphs 333

Interestingly enough the analogue of this theorem does not hold for longest
paths, see Exercise 8.38 (some relaxation of the analogue still holds, see Exer-
cise 8.39). It is often more convenient to work with the following easy corollary
of this theorem.

Corollary 8.5.2 [890] Every strong semicomplete p-partite digraph, p ≥ 3,
contains a spanning strong oriented subgraph. ��

One of the most interesting results on the topic is the following theorem
of Guo and Volkmann.

Theorem 8.5.3 [441] Let D be a strong p-partite tournament, p ≥ 3, with
partite sets V1, . . . , Vp. For each i ∈ [p], there exists a vertex v ∈ Vi belonging
to an s-cycle of D for every s ∈ {3, 4, . . . , p}.

Proof: It suffices to prove that V1 has a vertex v which is on an s-cycle of
D for every s ∈ {3, 4, . . . , p}. We proceed by induction on s.

We will first show that D has a 3-cycle through a vertex in V1. Let C =
v1v2 . . . vkv1 be a shortest cycle through a vertex, say v1, in V1. Suppose that
k ≥ 4. By the minimality of k, v3 ∈ V1, since otherwise v3→v1 implying the
3-cycle v1v2v3v1 through a vertex in V1, a contradiction. This means that
v4 �∈ V1; without loss of generality assume that v4 ∈ V2. Since k ≥ 4 is
minimal and v3 ∈ V1, we conclude that v4→v1, i.e., k = 4, and v2 ∈ V2.
If there is a vertex x ∈ V − (V1 ∪ V2) which dominates a vertex of C and
is dominated by a vertex in C, then there exists i ∈ {1, 2, 3, 4} such that
vi+1→x→vi (indices modulo 4), which implies that there is a 3-cycle through
v1 or v3, a contradiction.

This means that the set V (D)−(V1∪V2) can be partitioned into sets S1, S2

such that S2→V (C)→S1. Assume without loss of generality that S1 �= ∅.
Since D is strong there is a path from S1 to C. Let P = x1x2 . . . xq be a
shortest such path. Clearly, q ≥ 3. If P has no vertex in S2, then one of the
vertices x2, x3 belongs to V1 and the other to V2 (V −(S1∪S2) ⊂ V1∪V2). By
the minimality of P , x3→x1 implying that x1x2x3x1 is a 3-cycle containing
a vertex in V1, a contradiction. Therefore, P has a vertex in S2. By the
minimality of P and S2→C, it follows that xq−1 ∈ S2. If q = 3, then v1x1x2v1

is a 3-cycle, a contradiction. So, assume that q ≥ 4. Since xq−2 cannot be
in S1 ∪ S2, xq−2 ∈ V1 ∪ V2. If xq−2 ∈ V1, we have v2→xq−2 implying that
xq−2xq−1v2xq−2 is a 3-cycle, a contradiction. Finally, if xq−2 ∈ V2, then
v1xq−2xq−1v1 is a 3-cycle, a contradiction. We have shown that D has a
3-cycle containing a vertex in V1.

Suppose now that 3 ≤ s < p and some vertex u1 of V1 is contained in a
k-cycle for every k = 3, 4, . . . , s. Assume, on the other hand, that

no vertex of V1 is in a k-cycle for any k = 3, 4, . . . , s, s + 1. (8.6)

Let u1u2 . . . usu1 be an s-cycle of D and let S be the union of partite
sets of D not represented in C. We claim that there is no vertex in S, which

334 8. Paths and Cycles of Prescribed Lengths

dominates a vertex in C and is dominated by a vertex in C. Indeed, if such
a vertex existed, one could insert it into C, a contradiction with (8.6). This
means that S can be partitioned into sets S1, S2 such that S2→C→S1. As-
sume without loss of generality that S1 �= ∅. Since D is strong there is a path
from S1 to C. Let P = y1y2 . . . yq be a shortest such path. Clearly, q ≥ 3.

Assume that P has a vertex of S2. Clearly, yq−1 ∈ S2 and no other vertex
of P is in S2. If yq−2 �∈ V1, then yq−2yq−1C[u3, u1]yq−2 is an (s + 1)-path
containing u1, a contradiction with (8.6). Hence, yq−2 ∈ V1 and u2→yq−2.
Now we see that u2yq−2yq−1P [u4, u2] (or u1u2yq−2yq−1u1, if s = 3) is an
(s + 1)-cycle containing u1, a contradiction with (8.6). Thus, we conclude
that P has no vertex of S2.

Assume that P contains a vertex yl of V1. Let l be chosen such that
{y1, y2, . . . , yl−1}∩V1 = ∅. Assume that q ≤ s. Due to the facts that every ver-
tex of C dominates y1, for every k = 3, 4, . . . , s+1, and yl→{y1, y2, ..., yl−2},
there is a k-cycle Ck containing parts of C and P ; Ck includes yl ∈ V1, a
contradiction with (8.6). Therefore, q ≥ s + 1. Assume that l ≤ s + 1. Since
yi→y1, for every i = 3, 4, . . . , s + 1, we obtain that P [y1, yi]y1 is an i-cycle
containing yl, a contradiction with (8.6). Thus, we conclude that l ≥ s+2. In
the cycle C ′ = P [y1, yl]y1, the vertex yl dominates every vertex. Hence, for
every i = 3, 4, . . . , s + 1 we can construct an i-cycle using part of the vertices
of C ′ including yl, a contradiction with (8.6).

Thus, P has no vertex in V1. Hence, u1 dominates every vertex in P . If q ≥
k+1, then u1P [yq−k, yq]C[uk+1, u1] would be an (s+1)-cycle containing u1, a
contradiction with (8.6). Therefore, q ≤ k. Since every vertex of C dominates
y1, PC[uk+1, uk−q+1]y1 is an (s+1)-cycle containing u1, a contradiction with
(8.6).

Thus, the assumption (8.6) has resulted in a contradiction. This proves
the theorem. ��

This theorem generalizes several other results on multipartite tourna-
ments and (ordinary) tournaments. Three of them are Moon’s theorem on
vertex pancyclic tournaments, Theorem 1.5.1, and the following extension of
Theorem 1.5.1 by Gutin.

Corollary 8.5.4 [453] Let D be a strong p-partite tournament, p ≥ 3, such
that one partite set of D consists of a single vertex v. Then for each k ∈
{3, 4, . . . , p}, D contains a k-cycle through v. ��

By Theorem 8.5.1, Corollary 8.5.4 can be extended to semicomplete p-
partite digraphs, p ≥ 3. Theorem 8.5.3 generalizes the following assertion,
due to Bondy, which was actually the first non-trivial result on cycles in
multipartite tournaments. Again, Corollary 8.5.5 can be extended to semi-
complete p-partite digraphs, p ≥ 3.

Corollary 8.5.5 [167] A strong p-partite tournament contains an s-cycle for
every s ∈ {3, 4, . . . , p}. ��

8.5 Short Cycles in Semicomplete Multipartite Digraphs 335

The assertion of this corollary is the best possible in the sense that for
every p ≥ 3 there exists a strong p-partite tournament with no cycle of length
more than p. The following example is due to Bondy [167]. Let H be a p-
partite tournament with partite sets V1 = {v}, V2, . . . , Vp such that |Vi| ≥ 2
for each 2 ≤ i ≤ p. If V2→v→∪p

j=3 Vj and Vj→Vi for 2 ≤ i < j ≤ p, then H
is strong but does not have a k-cycle for every k > p.

Another interesting generalization of Moon’s theorem is due to Goddard
and Oellermann.

Theorem 8.5.6 [413] Every vertex of a strong p-partite tournament D be-
longs to a cycle that contains vertices from exactly t partite sets of D for each
t ∈ {3, 4, . . . , p}. ��

It is left as Exercise 8.40 to show that Theorem 8.5.3 is the best possible in
the following sense: for every p ≥ 3 there exists a strong p-partite tournament
T such that some vertex v of T is not contained in a k-cycle for some 3 ≤
k ≤ p. If one wishes to consider only cycles through a given vertex of a
multipartite tournament, one perhaps should sacrifice the exactness. This is
illustrated by the following result due to Guo, Pinkernell and Volkmann.

Theorem 8.5.7 [438] If D is a strong p-partite tournament and v an arbi-
trary vertex of D, then v belongs to either a k-cycle or a (k + 1)-cycle for
every k ∈ {3, 4, . . . , p}. ��

For regular multipartite tournaments Guo and Kwak proved the following
much stronger result. Observe that the partite sets of a regular multipartite
tournament are of the same cardinality.

Theorem 8.5.8 [437] Let D be a regular p-partite tournament. If the cardi-
nality of the partite sets of D is odd, then every arc of D is on a cycle that
contains vertices from exactly k partite sets for each k ∈ {3, 4, . . . , p}. ��

This theorem generalizes the corresponding result by Alspach [34] on reg-
ular tournaments. The next theorem is another generalization of Alspach’s
theorem.

Theorem 8.5.9 [436] Let D be a regular p-partite tournament. If every arc
of D is contained in a 3-cycle, then every arc of D is on a k-cycle for each
k ∈ {3, 4, . . . , p}. ��

Gutin and Rafiey [470] characterized strong p-partite tournaments in
which a longest cycle is of length p and, thus, settled a problem in [888]. This
characterization implies an O(pn3)-time algorithm for checking whether the
length of a longest cycle of a p-partite tournament on n vertices is p. Gutin,
Rafiey and Yeo [471] characterized strong p-partite tournaments, which are
not tournaments, that have a unique p-cycle. (Tournaments with unique
Hamilton cycle were characterized by Douglas [273].) The characterization
allowed the authors of [471] to enumerate such non-isomorphic p-partite tour-
naments for p ≥ 5.

336 8. Paths and Cycles of Prescribed Lengths

8.6 Exercises

8.1. Non-pancyclic digraphs satisfying Meyniel’s condition. Prove that if
m > (n+1)/2, then the digraph Dn,m described after Theorem 8.1.3 satisfies
Meyniel’s condition for hamiltonicity but has no m-cycle.

8.2. Pancyclic digraphs satisfying Woodall’s condition for hamiltonicity.
Prove that if D satisfies the condition in Corollary 6.4.6, then either D is

pancyclic, or n is even and D =
↔
K n

2 , n
2
. Hint: use Theorem 8.1.3.

8.3. Prove the following result due to Overbeck-Larisch [736]. If a digraph D =
(V, A) satisfies d(x) + d(y) ≥ 2n + 1 for every pair of non-adjacent vertices
x, y ∈ V , then D is pancyclic. Hint: use Theorem 8.1.3.

8.4. (−) Prove that every regular tournament is strong.

8.5. (+) Prove Lemma 8.1.9. Hint: use a similar approach as that taken in the
proof of Lemma 8.1.8.

8.6. (+) Vertex-pancyclic quasi-transitive digraphs. Prove part (b) of The-
orem 8.1.10. Hint: use a similar approach as taken in the proof of (a) to reduce
the problem to one for extended semicomplete digraphs and then apply The-
orem 8.1.7.

8.7. Prove Lemma 8.1.13. Hint: consider a shortest cycle through v (which by the
assumption has length at most k).

8.8. [517] Prove the following: let C = v1v2 . . . vkv1 be a non-extendable cycle in a
digraph D = (V, A) on n vertices where 2 ≤ k ≤ n− 1 and let u ∈ V −V (C).
Then
(a) for every 1 ≤ i ≤ k, D contains at most one of the arcs viu and uvi+1,
(b) |(u, V (C))|+ |(V (C), u)| ≤ k,
(c) for every 1 ≤ i ≤ k, |(vi, V − V (C))|+ |(V − V (C), vi+1)| ≤ n− k, and
(d) if vi−1u, uvi+1 ∈ A, then for 1 ≤ h ≤ i− 2 or i + 1 ≤ h ≤ k, D contains

at most one of the arcs vhvi and vivh+1 and hence |(vi, V (C) − vi)| +
|(V (C)− vi, vi)| ≤ k.

8.9. Cycle extendable regular tournaments. Characterize these.

8.10. Cycle extendable locally semicomplete digraphs. Characterize cycle
extendable locally semicomplete digraphs.

8.11. (+) Weakly cycle extendable digraphs. Call a digraph D weakly cycle
extendable if every cycle C which is not a longest cycle of D is contained
in some larger cycle C′, i.e., V (C) ⊂ V (C′). For each of the following classes
characterize weakly cycle extendable digraphs:
• Extended semicomplete digraphs
• Path-mergeable digraphs
• In-semicomplete digraphs

8.12. Prove Lemma 8.1.28.

8.13. Prove Lemma 8.1.29.

8.14. Prove Corollary 8.1.31.

8.15. Prove Corollary 8.1.32.

8.6 Exercises 337

8.16. (+) A bipartite digraph D = (V, A) on an even number n of vertices is even
(vertex-)pancyclic if it has cycles of all lengths 4, 6, 8, . . . , n (through every
vertex v ∈ V). Prove the following theorem due to Zhang [929]:

Theorem 8.6.1 A bipartite tournament D is even vertex-pancyclic if and

only if D is hamiltonian and is not isomorphic to �C4[K n
4
, K n

4
, K n

4
, K n

4
].

8.17. Extend Theorem 8.6.1 to semicomplete bipartite digraphs (Gutin [456]).

8.18. (−) Let 1 ≤ k ≤ n be integers. Let a1, a2, . . . , ak be a sequence of objects and
let c be a colouring that assigns one of the colours {1, 2, . . . , n} to every object
such that no colour is assigned to two objects. Prove that the probability of
the event c(a1) < c(a2) < . . . < c(ak) equals 1/k!.

8.19. (−) Let M be an n× n matrix and let k be a natural number. Describe an
algorithm that finds the kth power of M using only O(log k) multiplications
of two n× n matrices.

8.20. Prove the first equality in the proof of Lemma 8.2.1.

8.21. Prove Lemma 8.2.4 using Lemma 8.2.3.

8.22. Let D be a strong digraph of minimum out-degree 2. Prove that D contains
a vertex x such that D − x is strong. Hint: consider D′, a maximal strong
proper subdigraph of D. Prove that D′ contains all vertices of D but one.

8.23. (−) Prove that a digraph D is even if and only if, for every assignment of
weights 0 and 1 to its arcs, D contains a cycle of even weight.

8.24. Let D be a k-weak-double-cycle for some odd k. Prove that D has an odd
number of cycles and that every arc is in an even number of cycles. Hint: use
the recursive definition of a k-weak-double-cycle.

8.25. Let D be a k-weak-double-cycle for some odd k. Prove that D has an even
cycle. Hint: assume that all cycles in D are odd and use Exercise 8.24 to
obtain a contradiction.

8.26. Prove that given an arc e in a digraph D it is NP-complete to decide whether
D has an odd cycle through e (even cycle through e, respectively) (Thomassen
[860]).

8.27. Digraphs for which all cycles have the same parity. Show that there is
a polynomial algorithm to decide if the length of all cycles of a given digraph
have the same parity.

8.28. (−) Give a short direct proof that the problem to verify whether a digraph
D has cycle of length 0 modulo p, where both D and p form an input, is
NP-complete.

8.29. Prove Corollary 8.3.12.

8.30. (−) Prove the following generalization of Lemma 8.3.10. Let D = (V, A, w) be
a weighted digraph and let k ≥ 2 be an integer. If there is a vertex colouring
c∗ : V→{0, 1, . . . , k−1} of D such that for every u ∈ V there is a v ∈ N+(u)
with c∗(v) ≡ c∗(u) + w(u, v) (mod k), then D has a cycle of weight 0 (mod
k) (Alon and Linial [26]).

338 8. Paths and Cycles of Prescribed Lengths

8.31. Cycles modulo k in weighted digraphs. Using the result of the previous
exercise and the method of proof of Theorem 8.3.11 prove the following gen-
eralization of Theorem 8.3.11: Let D = (V, A, w) be a weighted digraph and
let k ≥ 2 be an integer. If either (8.3) or (8.4) holds, then D contains a cycle
of weight 0 (mod k) (Alon and Linial [26]).

8.32. Prove that a 3-weak-double-cycle is (k, p)-odd for every pair k, p such that
1 ≤ k < p, p ≥ 3 (Galluccio and Loebl [391]).

8.33. Prove that it is NP-complete to decide whether a strong digraph has two
cycles whose lengths differ by one. Hint: reduce the hamiltonian cycle problem
to this problem.

8.34. Construct for every k an infinite family of k-strong digraphs such that no
digraph in the family has two cycles whose lengths differ by one.

8.35. Prove that Conjecture 8.4.5 implies Conjecture 8.4.1.

8.36. For every k ≥ 2, construct strong digraphs on n vertices such that the number

of arcs is n2+(3−2k)n+k2−k
2

− 1 and the shortest cycle has length k + 1.

8.37. (−) Prove that if n = gs, then the s-regular round digraph of order n is of
girth g.

8.38. (+) For p ≥ 3, construct an infinite family Fp of strong semicomplete p-
partite digraphs such that every digraph D in Fp contains a hamiltonian
path, yet, a longest path of any strong orientation of D has n − 2 vertices,
where n is the order of D (Gutin, Tewes and Yeo [473]).

8.39. (++) Prove the following theorem. Let D be a strong semicomplete mul-

tipartite digraph of order n such that D �=
↔
Kn−1,1 and let l be the length of

a longest path in D. Then D contains a strong spanning oriented subgraph
with a path of length at least l − 2 (Gutin, Tewes and Yeo [473]).

8.40. For every p ≥ 3 construct a strong p-partite tournament T such that some
vertex v of T is not contained in a k-cycle for some 3 ≤ k ≤ p.

9. Branchings

Recall that an in-tree (out-tree) is a oriented tree in which every vertex except
one, called the root, has out-degree (in-degree) one. This chapter deals with
spanning in- and out-trees in directed (multi)graphs. Some papers use the
name arborescence for spanning in- and out-trees but we will use the name
branching instead as this is also widely used and was used in the original
paper by Edmonds on arc-disjoint out-branchings (see Section 9.3 below).
Thus an out-branching (in-branching) of D is a spanning out-tree (in-
tree) in D.

Branchings play an important role in the theory of directed graphs and
have several important applications, which is why we have devoted a separate
chapter to branchings. We start with Tutte’s Matrix Tree theorem which gives
a formula for the number of out-branchings with a given root in a directed
multigraph. Then we discuss the minimum cost branching problem, a directed
analogue of the minimum spanning tree problem. After this we consider arc-
disjoint branchings and out-branchings with bounds on the out-degrees. Then
we move on to arc-disjoint in- and out-branchings and out-trees with extreme
numbers of leaves (many or few). Finally we give some results on the source
location problem and discuss a number of miscellaneous topics.

We will use the following notation: B+
s , B−

s , B+ and B− denote respec-
tively an out-branching rooted at s, an in-branching rooted at s, an out-
branching with no root specified and an in-branching with no root specified.
Similarly T+

s , T−
s , T+, T− denote respectively an out-tree rooted at s, an

in-tree rooted at s, an out-tree with no root specified and an in-tree with no
root specified.

9.1 Tutte’s Matrix Tree Theorem

Counting spanning trees in graphs is a fundamental problem in graph theory
and dates back to Cayley’s famous formula [193] from 1889 stating that the
number of spanning trees in Kn is nn−2. Actually, this formula follows from
the so-called Matrix Tree Theorem for graphs (Corollary 9.1.3) which is im-
plicit in the work of Kirchoff from 1847 [596]. In 1948 Tutte [876] proved a
generalization of this theorem to directed multigraphs (Theorem 9.1.2). He
proved that the number of out-branchings rooted at the same vertex r in a

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 9,
© Springer-Verlag London Limited 2010

339

http://dx.doi.org/10.1007/978-1-84800-998-1_9

340 9. Branchings

digraph D can be found efficiently by calculating the determinant of a certain
matrix derived from D. The purpose of this section is to derive this result.

Recall that for a directed multigraph D we denote by μD(i, j) the number
of arcs from i to j in D.

The so-called Kirchoff matrix K = K(D) of a directed multigraph D
on n vertices is defined as follows, where we assume that the vertices are
numbered 1, 2, . . . , n:

Kij =
{

d−(i) if i = j and
−μD(i, j) if i �= j.

(9.1)

Notice that the sum of the entries of any column of K is zero by the
definition above. Figure 9.1 shows a digraph and its Kirchoff matrix.

34

1 2

K =

2

6

4

1 0 0 -1
-1 1 -1 -1
0 -1 2 0
0 0 -1 2

3

7

5

Figure 9.1 A digraph D and its Kirchoff matrix K = K(D).

For i ∈ [n] we denote by Kī(D) the matrix obtained from K(D) by
deleting the ith row and the ith column.

Lemma 9.1.1 Let H be a directed multigraph with Δ−(H) = 1 and let i be
a vertex of H. Then H has at most one out-branching rooted at i. Moreover,
det (Kī(H)) ∈ {0, 1} and det (Kī(H)) = 1 if and only if H has an out-
branching rooted in i.

Proof: Suppose first that H contains an out-branching B+
i rooted at i. Then

every vertex except i has its only incoming arc included in B+
i , showing that

H has no other out-branching rooted at i. Since application of the same
permutation to the rows and the columns to a matrix does not change the
value of its determinant, we may assume that i = 1 and that the other vertices
are labelled according to a breadth-first order from vertex 1. With respect
to this ordering Kī(H) is an upper triangular matrix, all of whose diagonal
elements are one, implying that det (Kī(H)) = 1.

Now suppose that H has no out-branching rooted at i. If some vertex j �= i
has d−(j) = 0, then the jth column of Kī consists of zeros only, implying that
det (Kī(H)) = 0. So we may assume that d−(j) = 1 for every j �= i. Now the
fact that there is no out-branching from i implies that H has a cycle C which
does not contain vertex i. It is easy to show that the columns corresponding
to the vertices of C are linearly dependent and thus det (Kī(H)) = 0. ��

9.1 Tutte’s Matrix Tree Theorem 341

Theorem 9.1.2 (Tutte’s Matrix Tree Theorem) [876] For every di-
rected multigraph D with Kirchoff matrix K(D) defined as in (9.1), the num-
ber of out-branchings rooted at vertex i equals det (Kī(D)).

Proof: Recall the following basic identity for the determinant of a matrix
consisting of columns c1, c2, . . . , cn each on n elements:

det(c1, . . . , (ci + c′i), . . . , cn) = det(c1, . . . , ci, . . . , cn) + det(c1, . . . , c
′
i, . . . , cn).

Since the only entries in K(D) which are greater than zero occur in the
diagonal elements and each column sums to zero, we may decompose K(D)
into s = Πn

i=1Kii n × n matrices {K(Hi)}i∈[s] by writing each column i as
the sum of Kii columns which correspond in a one-to-one fashion to the arcs
entering vertex i (see Figure 9.2).

2

6

4

1 0 0 -1
-1 1 -1 0
0 -1 1 0
0 0 0 1

3

7

5

2

6

4

1 0 0 0
-1 1 -1 -1
0 -1 1 0
0 0 0 1

3

7

5

2

6

4

1 0 0 -1
-1 1 0 0
0 -1 1 0
0 0 -1 1

3

7

5

2

6

4

1 0 0 0
-1 1 0 -1
0 -1 1 0
0 0 -1 1

3

7

5

Figure 9.2 The decomposition of K(D) into its four components. Here D is the
digraph in Figure 9.1.

We may assume w.l.o.g. that i = 1. We will now show how to express
det (K1̄(D)) in terms of the simpler matrices K(Hi), i ∈ [s] above. Let D̂ be
obtained from D by deleting all arcs into vertex 1. Then we have

det (K1̄(D̂)) =
d−(2)∑

j2=1

det (K1̄(D̂j2)),

where D̂j2 is obtained from D̂ by deleting all arcs entering vertex 2 apart
from one (the j2th arc). Continuing this way we get

det (K1̄(D̂)) =
d−(2)∑

j2=1

. . .

d−(n)∑

jn=1

det (K1̄(D̂j2...jn)).

Now the theorem follows from Lemma 9.1.1 applied to each term above and
the fact that K1̄(D̂) = K1̄(D). ��

Now we can prove Kirchoff’s famous formula for the number of spanning
trees in an undirected graph G.

342 9. Branchings

Corollary 9.1.3 (Kirchoff’s Matrix Tree Theorem) [596] The number
of spanning trees in an undirected graph G on n vertices is equal to any one

of the numbers det(K(
↔
Gī)), i ∈ [n].

Proof: Fix an arbitrary vertex r in G and observe that every spanning tree T

in G corresponds to a unique out-branching B+
r in

↔
G. Now the claim follows

from Theorem 9.1.2. ��
Since the determinant of a matrix can be calculated efficiently we obtain

the following (see, e.g., [405, page 53]).

Corollary 9.1.4 There is an O(n3) algorithm for finding the number of out-
branchings rooted at a given of a directed multigraph on n vertices. ��

If we actually wanted to list all out-branchings in a digraph D, we clearly
have to spend time at least proportional to the number of such branchings in
D. In [582] Kapoor and Ramesh give an O(Nn+n3) algorithm for listing all
out-branchings in a directed multigraph on n vertices and N out-branchings.
The algorithm is based on generating one out-branching from another by a
series of arc swaps.

9.2 Optimum Branchings

Given a directed multigraph D = (V, A) a special vertex s and a non-negative
cost function w on the arcs. What is the minimum cost (measured as the sums
of the arc costs) of an out-branching B+

s rooted at s in D? This problem,
which is a natural generalization of the minimum spanning tree problem for
undirected graphs (Exercise 9.6), is called the minimum cost branching

problem. The problem arises naturally in applications where one is seeking a
minimum cost subnetwork which allows communication from a given source
to all other vertices in the network (see the discussion at the end of the
section).

It is easy to find a minimum spanning tree in an undirected graph. The
greedy approach works as follows: order the edges according to their weights
in increasing order E = {e1, e2, . . . , em}. Start from T = ∅ and go through E
while always adding the next edge to T if it can be added without creating a
cycle. This is the so-called Kruskal algorithm (see, e.g., [232]). It is not difficult
to construct examples which show that using a similar greedy approach to
find a minimum cost out-branching in a directed multigraph may be incorrect
(Exercise 9.2).

The minimum cost branching problem was first shown to be polynomially
solvable by Edmonds [283]. Later Fulkerson [366] gave a two-phase greedy al-
gorithm which solves the problem very elegantly. The fastest algorithm for the
problem is due to Tarjan [844]. Tarjan’s algorithm solves the problem in time

9.2 Optimum Branchings 343

O(m log n), that is, with the same time complexity as Kruskal’s algorithm for
undirected graphs [231]. The purpose of this section is to describe two differ-
ent algorithms for finding minimum cost out-branching in a weighted directed
multigraph. First we show how to solve the problem using matroids and then
we give a simple direct algorithm based on Edmonds’ original algorithm.

9.2.1 Matroid Intersection Formulation

To illustrate the generality of matroids, let us show how to formulate the
minimum cost branching problem as a weighted matroid intersection problem.
We refer to Section 18.8 for relevant definitions on matroids.

Let D = (V, A) be a directed multigraph and let r ∈ V be a vertex which
can reach all other vertices by directed paths. We define M1 = (A, I1) and
M2 = (A, I2) as follows (here I1, I2 ⊆ 2A):

• A′ ∈ I1 if and only if no two arcs in A′ have a common head and no arc
has head r,

• A′′ ∈ I2 if and only if UG(D〈A′′〉) has no cycle.

It follows from the definition of M2 that M2 is the circuit matroid of
UG(D) (see Section 18.8). It is easy to show that M1 satisfies the axioms
(I1)-(I3) and hence is a matroid. In particular, all maximal members of I1

have the same size n − 1 (by our assumption, every vertex in V − r has at
least one in-neighbour) and thus the rank of M1 is n − 1.

Since r can reach all other vertices, UG(D) is connected and hence the
rank of M2 is also n − 1. We claim that every common base of M1 and M2

is an out-branching with root r. This follows easily from the definition of an
out-branching and the fact that any common base corresponds to a spanning
tree in UG(D), since M2 has rank n − 1.

Thus we can find an out-branching with root r by applying the algorithm
for matroid intersection of Theorem 18.8.11 to the pair M1, M2. Of course
such an out-branching can be found much easier by using, e.g., DFS starting
from r. However, the point is that using the algorithm for weighted ma-
troid intersection, we can find a minimum cost out-branching B+

r in D. It is
easy to see that the required oracles for testing independence in M1 and M2

can be implemented very efficiently (Exercise 9.3). In fact (and much more
importantly in the light of the existence of other and more efficient algo-
rithms for minimum cost branchings), using matroid intersection algorithms
we can even find a minimum cost subdigraph which has k out-branchings
with a specified root s in a directed multigraph with non-negative weights
on the arcs (Exercise 9.4). Furthermore, in Exercise 9.5, the reader is asked
to show that one can also solve the following problem, using matroid inter-
section: Given directed multigraphs D = (V, A) and D′ = (V, A′) on the
same vertices, a cost function c on A′, a natural number k and a vertex
s ∈ V . Find a minimum cost set of arcs A∗ ⊆ A′ such that the directed
multigraph D∗ = (V, A ∪ A∗) has k arc-disjoint out-branchings rooted at s.

344 9. Branchings

Clearly, the minimum cost branching problem corresponds to the case when
A = ∅. Hence, using matroid intersection formulations, one can in fact solve
problems which are much more general than the minimum cost branching
problem.

9.2.2 A Simple Algorithm for Finding a Minimum Cost
Out-Branching

Below we will often call a minimum cost out-branching an optimum out-
branching. Let D = (V, A) be a directed multigraph with a designated root
r ∈ V and c a non-negative cost vector on A. Denote by yv, v ∈ V − r, the
minimum cost of an arc entering v. The following easy observation is the key
to the algorithm below.

Lemma 9.2.1 Let c′ be the cost function on A defined by c′(uv) = c(uv) −
yv. Then B+

r is an optimum branching with respect to c if and only if it is
optimum with respect to c′.

Proof: Since every vertex except r has precisely one arc entering it in any
out-branching, c(B+

r) = c′(B+
r) +

∑
v∈V −r yv holds for an arbitrary out-

branching B+
r and the claim follows. ��

For a given directed multigraph D and weight function c, let F ∗ be a
subdigraph of D obtained by taking a minimum cost arc entering each vertex
except r, that is, d−F∗(v) = 1 for v �= r. Note that the cost of F ∗ is zero with
respect to c′ and hence the following holds, by Lemma 9.2.1.

Lemma 9.2.2 If F ∗ is an out-branching, then it is optimum. ��

The following result is due to Karp.

Lemma 9.2.3 [584] There exists an optimum out-branching with root r
which contains all but one arc of every cycle C in F ∗.

Proof: Let B+
r be an optimum out-branching which contains the maximum

number of arcs from F ∗. If F ∗ is itself a branching, then, by Lemma 9.2.2,
we have B+

r = F ∗, so assume that C is a cycle in F ∗ and suppose A(C) −
A(B+

r) = {u1v1, u2v2, . . . , ukvk} has at least 2 arcs and occurring in that
order on C. Consider an arbitrary vertex vi, i ∈ [k], and denote by a(vi) the
arc entering vi in B+

r . By the choice of B+
r , Hi = B+

r + uivi − a(vi) is not an
out-branching. This implies that Hi contains a cycle which consists of the arc
uivi and a path Pi which starts in vi and ends in ui. Consider the last arc xy
of Pi which does not belong to C. As Hi contains all the arcs of C[vi−1, ui]
and every vertex of C has in-degree one in Hi it follows that y = vi−1 (indices
are taken modulo k). Thus we have shown that Hi and hence B+

r contains
a (vi, vi−1)-path. However, this holds for every i ∈ [k] and so B+

r contains a

9.3 Arc-Disjoint Branchings 345

directed cycle1, a contradiction. Hence we have shown that B+
r contains all

but one arc of C. ��
When we contract the cycle C below to get the weighted directed multi-

graph D/C, the arcs incident to vC inherit the costs from the original arcs
between C and V − C.

Lemma 9.2.4 If C is a cycle in F ∗ and W+
r is an optimum out-branching

in D/C (the directed multigraph obtained by contracting C to a vertex vC),
then we can obtain an optimum branching B+

r in D by replacing vC by C
minus one arc.

Proof: Let xvC be the unique arc of W+
r entering vC and let y ∈ V (C)

be chosen so that xy ∈ A and has the same cost as xvC in D/C. Clearly
we can extend W+

r to an out-branching B+
r of D by blowing up C again

and deleting the unique arc of C which enters y (arcs leaving vC in W+
r are

replaced by corresponding arcs starting in vertices from C). By Lemma 9.2.3,
there exists an optimum out-branching B̂+

r containing all but one arc of C and
contracting C will transform B̂+

r into an out-branching B̃+
r in D/C. Now, by

Lemma 9.2.1, it follows from the fact that W+
r is an optimum out-branching

in D/C and C has cost zero w.r.t. c′ that c′(B̂+
r) ≥ c′(B+

r), implying that
B+

r is an optimum out-branching. ��

Theorem 9.2.5 [283] There is a polynomial algorithm for the minimum cost
out-branching problem.

Proof: We may assume that the root r can reach every other vertex, as
otherwise no branching exists. The algorithm is very simple. First construct
F ∗ and search for a cycle in it. If F ∗ is acyclic, it is the desired branching.
If F ∗ contains a cycle C, let D′ = D/C and solve the problem recursively
in D′. Finally convert the optimum out-branching in D′ to an optimum out-
branching of D as described in the proof of Lemma 9.2.4. This algorithm can
easily be implemented as an O(n(n + m)) algorithm. ��

9.3 Arc-Disjoint Branchings

This section is devoted to a very important result due to Edmonds [285].
The result can be viewed as just a fairly simple generalization of Menger’s
theorem. However, as will be clear from the next subsections, it has many
important consequences.

1 Note that when k = 1 we do not get the contradiction since P1 is simply C[v1, u1].

346 9. Branchings

Theorem 9.3.1 (Edmonds’ branching theorem) [285] A directed multi-
graph D = (V, A) with a special vertex z has k arc-disjoint out-branchings
rooted at z if and only2 if

d−(X) ≥ k ∀ ∅ �= X ⊆ V − z. (9.2)

Proof: We give a short proof due to Lovász [654]. The necessity is clear, so
we concentrate on sufficiency. The idea is to grow an out-tree T+

z from z in
such a way that the following condition is satisfied:

d−
D−A(T+

z)
(U) ≥ k − 1 for all ∅ �= U ⊆ V − z. (9.3)

If we can keep on growing T+
z until it becomes spanning while always

preserving (9.3), then the theorem follows by induction on k. To show that
we can do this, it suffices to prove that we can add one more arc at a time
to T+

z until it is spanning. Let us call a set X ⊆ V − z problematic if
d−

D−A(T+
z)

(X) = k− 1. It follows from the submodularity of d−
D−A(T+

z)
(recall

Corollary 5.1.2) that if X, Y are problematic and X ∩ Y �= ∅, then so are
X ∩ Y, X ∪ Y . Observe also that if X is problematic, then X ∩ V (T+

z) �= ∅,
because X has in-degree at least k in D. If all problematic sets are contained
in V (T+

z), then let W = V . Otherwise let W be an inclusions-wise minimal
problematic set which is not contained in V (T+

z).
We claim that there exists an arc uv in D such that u ∈ V (T+

z)∩W and
v ∈ W − V (T+

z). Indeed if this was not the case, then W �= V and every arc
that enters W − V (T+

z) also enters W . Hence we would have

d−D(W − V (T+
z)) = d−

D−A(T+
z)

(W − V (T+
z)) ≤ d−

D−A(T+
z)

(W) ≤ k− 1, (9.4)

contradicting the assumption of the theorem.
The arc uv cannot enter a problematic set X, since that would contradict

the definition of W (recall that u ∈ W). Hence we can add the arc uv to T+
z

without violating (9.3) and now the claim follows by induction. ��

Corollary 9.3.2 There exists a polynomial algorithm for finding k arc-
disjoint out-branchings from a given root s in a directed multigraph which
satisfies (9.2).

Proof: The proof above can be turned into a polynomial algorithm which,
given a directed multigraph D = (V, A) a vertex z ∈ V and a natural number
k, either finds k arc-disjoint out-branchings from k, or a set X ⊆ V − z with
out-degree less than k (Exercise 9.7). ��
2 By Menger’s theorem (Theorem 5.4.1), (9.2) is equivalent to the existence of k

arc-disjoint paths from z to every other vertex of D.

9.3 Arc-Disjoint Branchings 347

The following possible generalization naturally emerges. In addition to
z, we are given a subset W ⊆ V − z so that d−(X) ≥ k for every subset
X ⊆ V − z, X ∩ W �= ∅ (by Menger’s theorem this is equivalent to saying
that there are k arc-disjoint (z, t)-paths for every t ∈ W). Is it true that there
are k arc-disjoint out-trees rooted at z so that each contains every element of
W? The answer is yes if W = V −z (by Edmonds’ theorem) or if |W | = 1 (by
Menger’s theorem). However, Lovász [652] found the example in Figure 9.3
which shows that such a statement is not true in general. This example can be
generalized to directed multigraphs with arbitrarily many vertices (Exercise
9.10).

x

z

Figure 9.3 A digraph with λ(z, t) ≥ 2, t ∈ W which has no two arc-disjoint out-
trees rooted at z and both containing every element of T . Here W consists of the
three black vertices ([652, Figure 1]).

Observe that in Figure 9.3 d−(x) = 1 < 2 = d+(x) holds for the only
vertex x not in T and recall that the desired number of arc-disjoint out-trees
above was two. Bang-Jensen, Frank and Jackson proved that if λ(z, x) ≥ k
holds for those vertices x ∈ V (D) for which d+(x) > d−(x) (that is, the value
of k is restricted by the local arc-connectivities from z to these vertices), then
a generalization is indeed possible.

Theorem 9.3.3 [78] Let D = (V, A) be a directed multigraph with a special
vertex z and let T ′ := {x ∈ V − z : d−(x) < d+(x)}. If λ(z, x) ≥ k(≥ 1) for
every x ∈ T ′, then there is a family F of k arc-disjoint out-trees rooted at z
so that every vertex x ∈ V belongs to at least r(x) := min(k, λ(z, x)) members
of F . ��

Clearly, if λ(z, x) ≥ k holds for every x ∈ V in Theorem 9.3.3, then we are
back at Edmonds’ theorem. Another special case is also worth mentioning.
Call a directed multigraph D = (V, A) with root z a preflow directed
multigraph if d−(x) ≥ d+(x) holds for every x ∈ V − z. (The name arises
from the max-flow algorithms of Karzanov [586] and Goldberg and Tarjan

348 9. Branchings

[415], see also the definition of a preflow in Chapter 4.) The following corollary
of Theorem 9.3.3 may be considered as a generalization of Theorem 4.3.1.

Corollary 9.3.4 [78] In a preflow directed multigraph D = (V, A) for any
integer k(≥ 1) there is a family F of k arc-disjoint out-trees with root z so
that every vertex x belongs to min(k, λ(z, x; D)) members of F . In particular,
if k := max(λD(z, x) : x ∈ V − z), then every x belongs to λD(z, x) members
of F . ��

Aharoni and Thomassen have shown that Edmonds’ branching theorem
cannot be generalized to infinite directed multigraphs [9].

9.4 Implications of Edmonds’ Branching Theorem

Below we give a number of consequences of Theorem 9.3.1 (for yet another
consequence see Theorem 10.7.3). The first result, due to Even, may be viewed
as a generalization of Menger’s theorem for global arc-strong connectivity.

Corollary 9.4.1 [306, Theorem 6.10] Let D = (V, A) be a k-arc-strong di-
rected multigraph and let x, y be arbitrary distinct vertices of V . Then for
every 0 ≤ r ≤ k there exist paths P1, P2, . . . , Pk in D which are arc-disjoint
and such that the first r paths are (x, y)-paths and the last k − r paths are
(y, x)-paths.

Proof: Let [D, x, y] be as described above. Add a new vertex s and join
it to x by r parallel arcs of the form sx and to y by k − r parallel arcs
of the form sy. Let D′ denote the new directed multigraph. We claim that
D′ satisfies (9.2). To see this let X ⊆ V be arbitrary. If X �= V , then we
have d−D′(X) ≥ d−D(X) ≥ k, since D is k-arc-strong. If X = V , we have
d−D′(V) = d+

D′(s) = k. It follows from Theorem 9.3.1 that D′ contains k arc-
disjoint out-branchings all rooted at s. By the construction of D′, when we
restrict to D, these branchings must consist of r out-branchings rooted at
x and k − r out-branchings rooted at y. Take the r (x, y)-paths from those
rooted at x and the k − r (y, x)-paths from those rooted at y and we obtain
the desired paths. ��

The next result, due to Nash-Williams, gives a sufficient condition for
the existence of k edge-disjoint spanning trees in an undirected graph. This
condition is the best possible in terms of the edge-connectivity (see the remark
after Theorem 9.4.3) and hence we see that for an undirected graph we may
need twice the obvious edge-connectivity requirement to guarantee k edge-
disjoint trees. This contrasts with the case for directed graphs where k-arc-
strong connectivity suffices by Edmonds’ theorem.

Theorem 9.4.2 [717] Every 2k-edge-connected undirected graph contains k
edge-disjoint spanning trees.

9.4 Implications of Edmonds’ Branching Theorem 349

Proof: Let G = (V, E) be a 2k-edge-connected undirected graph. By Nash-
Williams’ orientation theorem (Theorem 11.5.3), G has a k-arc-strong orien-
tation D = (V, A). Let z ∈ V be arbitrary and note that d−(X) ≥ k holds
for each subset X ⊆ V − z of vertices. Hence by Theorem 9.3.1, D contains
k arc-disjoint out-branchings rooted at z. Suppressing the orientation of all
arcs on the branchings we obtain k edge-disjoint trees in G = UG(D). ��

The following characterization, due to Tutte, of undirected graphs which
have k edge-disjoint spanning trees can also be derived from Edmonds’
branching theorem and Theorem 11.7.6 (see Exercise 9.19). See also Exercise
11.59 for a simpler orientation result which still implies Theorem 9.4.3.

Theorem 9.4.3 [879] An undirected graph G = (V, E) has k edge-disjoint
spanning trees if and only if

∑

1≤i<j≤p

e(Vi, Vj) ≥ k(p − 1), (9.5)

holds for every partition V1, V2, . . . , Vp of V . Here e(Vi, Vj) denotes the num-
ber of edges with one end in Vi and the other in Vj. ��

It is easy to derive Theorem 9.4.2 from Theorem 9.4.3. Furthermore, we
can use Theorem 9.4.3 to show that the condition in Theorem 9.4.2 is best
possible in terms of the edge-connectivity. Let Gk be the graph obtained from
the complete graph on 2k+2 vertices by removing the edges of a hamiltonian
cycle. Then it is easy to show that Gk is (2k − 1)-edge-connected and using
Theorem 9.4.3 on the partition corresponding to one vertex per set in the
partition we can see that Gk has no k edge-disjoint spanning trees (in fact
this partition has precisely one arc less than the required number). In order to
get an example with arbitrarily many vertices and no k edge-disjoint trees for
each k we let H be an arbitrary 2k-edge-connected graph and let Hk be the
graph consisting of 2k + 2 copies H1, H2, . . . , H2k+2 of H and with one edge
between Hi and Hj just if the corresponding vertices vi, vj are adjacent in Gk

(where we have assumed that the vertices of Gk are labelled v1, v2, . . . , v2k+2

and Hi corresponds to vi for i ∈ [2k + 2]). It is not difficult to prove that
Hk is (2k − 1)-edge-connected and the partition corresponding to the 2k + 2
copies of H shows that Hk has no k edge-disjoint spanning trees. Note also
that Gk above is (2k− 1)-edge-connected and (2k− 1)-regular. Furthermore,
a simple counting argument shows that all except finitely many (2k − 1)-
edge-connected and (2k− 1)-regular graphs have no k edge-disjoint spanning
trees (simply because they do not have enough edges).

In some applications (e.g., when a number of tasks have to be distributed
to different units who can cover part of the jobs or demands) one is interested
in covering all edges (arcs) of an undirected (a directed) graph by forests (in-
or out-trees).

Theorem 9.4.4 [718] Let G = (V, E) be an undirected graph. Then E can
be covered by k forests if and only if

350 9. Branchings

|E(G〈X〉)| ≤ k(|X| − 1) for all X ⊆ V. (9.6)

Proof: Since no forest can use more than |X|−1 edges with both ends inside
any set X, we see that the condition (9.6) is necessary. To prove sufficiency we
use Theorem 9.3.1 and the following result which follows easily from Theorem
11.7.3:

Proposition 9.4.5 A graph H = (V, E) has an orientation D = (V, A) such
that d−D(v) ≤ k for every vertex v ∈ V if and only if

|E(G〈X〉)| ≤ k|X| for all X ⊆ V. ��

Suppose now that G = (V, E) satisfies (9.6). By Proposition 9.4.5, G has
an orientation D such that d−D(v) ≤ k for every vertex v ∈ V . Add a new
vertex s to D and add k− d−D(v) arcs from s to v for each v ∈ V . Denote the
new directed multigraph by D′. We claim that

d−D′(X) ≥ k for all X ⊆ V. (9.7)

This follows from the fact that for every X ⊆ V we have

d−D′(X) =
∑

v∈X

d−D(v)− |E(G〈X〉)|

= k|X| − |E(G〈X〉)|
≥ k|X| − k(|X| − 1) = k.

By Theorem 9.3.1, D′ has k arc-disjoint out-branchings rooted at s. These
branchings must use all arcs of D since every vertex of V has in-degree one
in each of these branchings and we have only added k − d−D(v) arcs from s
to v. Now delete the vertex s from each of the branchings and suppress the
orientations of all arcs. The resulting k forests cover E. ��

The last part of the proof above also implies the sufficiency part of the
following theorem. The necessity of (9.8) follows from the fact that no vertex
of an out-branching has in-degree bigger than one. The necessity of (9.9) is
seen as in the proof above.

Theorem 9.4.6 [336] The arc set of a directed multigraph D = (V, A) can
be covered by k out-trees if and only if

d−(v) ≤ k for all v ∈ V and (9.8)

|A(D〈X〉)| ≤ k(|X| − 1) for all X ⊆ V. (9.9)

��

9.5 Out-Branchings with Degree Bounds 351

9.5 Out-Branchings with Degree Bounds

Finding a spanning tree T with restrictions on the maximum degree of T
in a graph is a well-known problem which has many practical applications,
e.g., in communications, design of reliable networks, etc. Such problems have
been studied extensively in both the mathematical and the computer science
literature (see, e.g., the references in [117]). If we wish to find a spanning tree
where the maximum degree is at most some given integer, then the problem
is NP-hard3, but Fürer and Raghavachari [369] showed that, in polynomial
time, one can find in a given connected graph G a spanning tree of G whose
maximum degree is at most t(G) + 1, where t(G) is the least number k such
that G has a spanning tree T with Δ(T) = k. Czumaj and Strothmann [236]
showed that if the input graph G is k-connected and has maximum degree
at most k(r − 2) + 2, then one can find, in polynomial time, a spanning tree
T of G such that Δ(T) ≤ r, where Δ(T) denotes the maximum degree of
any vertex in T . They also showed that for the special case of 2-connected
graphs one can obtain a stronger result: Every 2-connected graph G contains
a spanning tree T with the property that

dT (v) ≤ dG(v) + 3
2

for every vertex v. (9.10)

Bang-Jensen, Thomassé and Yeo [117] studied analogous problems for
out-branchings in directed multigraphs. They made the following conjecture.

Conjecture 9.5.1 [117] Let D be a k-arc-strong directed multigraph. For
every vertex s ∈ V , there exists an out-branching B+

s such that d+

B+
s
(x) ≤

d+
D(x)

k + 1 for all vertices x of D.

This would be best possible as there are k-arc-strong k-regular directed
multigraphs with no hamiltonian path (Exercise 9.11). Now let G be a 2k-
edge-connected graph. By Exercise 11.32, G has a k-arc-strong balanced4

orientation D. Hence, Conjecture 9.5.1 would imply the existence of a span-
ning out-branching B+

s whose underlying tree T satisfies dT (x) ≤ dG(x)+1
2k +2

for all vertices x. Hence if Δ(G) ≤ 2k(r−2)+2, Conjecture 9.5.1 would imply
that G contains a spanning tree with maximum degree at most r + 3

2k and
hence would strengthen the result of Czumaj and Strothmann (by showing
that we may replace k-connectivity by k-edge-connectivity when k is even).

By Theorem 9.3.1, every 2-arc-strong directed multigraph contains, in
particular, the union of two arc-disjoint out-branchings rooted at any given
vertex s. So the case k = 2 of Conjecture 9.5.1 follows from the next theorem.

Theorem 9.5.2 [117] Let D be a directed multigraph which is the union of
two arc-disjoint out-branchings rooted at s. There exists an out-branching B+

s

3 The hamiltonian path problem easily reduces to this problem.
4 Recall that this means that for every vertex v we have |d+

D(v)− d−
D(v)| ≤ 1.

352 9. Branchings

rooted at s such that d+

B+
s
(x) ≤ d+

D(x)

2 +1 for all vertices x of D. Furthermore,
such an out-branching can be found in polynomial time.

Proof: Let T+
s be an out-tree rooted at s and let D′ = D〈V (T+

s)〉. We say
that T+

s is good if for all vertices x of T+
s we have

d+

T+
s

(x) ≤ d+
D′ (x)

2 + 1 when d+
D′(x) = d+

D(x) and d+

T+
s

(x) ≤ d+
D′ (x)+1

2 other-
wise.

Clearly the out-tree consisting of just the vertex s is good and if one
can find a good spanning out-tree, the proof is completed. It suffices then
to prove that every non-spanning good out-tree T+

s is strictly contained in a
good out-tree.

Call a vertex x of T+
s an out-vertex if it has an out-neighbour in D

which belongs to V − V (T+
s). It is clear that T+

s has at least one out-vertex.
Suppose one vertex x of T+

s has precisely one out-neighbour y in D which
belongs to V −V (T+

s) (i.e., d+
D′(x) = d+

D(x)− 1). Then taking T̂+
s = T+

s ∪xy

and letting D′′ be the subdigraph induced by V (T̂+
s) in D we have

d+

T̂+
s

(x) = d+

T+
s

(x) + 1 ≤ d+
D′(x) + 1

2
+ 1

=
d+

D(x)
2

+ 1

=
d+

D′′(x)
2

+ 1,

implying that T̂+
s is good. Hence we may assume that every out-vertex x ∈ T+

s

has at least two out-neighbours belonging to V − V (T+
s) in D.

Start now from any out-vertex x1 and denote by y1 one of its out-
neighbours in V −V (T+

s). As D contains two arc-disjoint (s, y1)-paths, there
exists a path P1 starting at some vertex x2 of T+

s and ending at y1, with all
internal vertices outside of T+

s and which does not use the arc x1y1. Since
x2 has at least two out-neighbours in V − V (T+

s) it is the origin of an arc
e = x2y2, where y2 /∈ T+

s and e is not the first arc of P1. Applying the same
argument as above we see that y2 is the end of a path P2 starting at some
vertex x3 of T+

s , with all internal vertices in V −V (T+
s), and which does not

use the arc e. We continue this construction, and let k be the largest integer
such that V (P1), . . . , V (Pk−1) are pairwise disjoint. We denote by a the first
repeated vertex (which belongs to Pk. Here, by the first repeated vertex, we
mean the first vertex among V (P1) ∪ . . . ∪ V (Pk−1) that we encounter by
moving backwards on Pk starting in yk). If a = x1, we consider the out-tree
A∗ = T+

s ∪ P1 ∪ . . . ∪ Pk[a, yk] and let D∗ be the subdigraph induced by the
vertices of A∗. We claim that A∗ is good. To see this, it suffices to observe
the following: every new vertex that we add to T+

s has out-degree one and

9.5 Out-Branchings with Degree Bounds 353

for each i ∈ [k] the out-degree of xi is one larger in A∗ than in T+
s , while the

out-degree of xi in D∗ is at least two larger than in D′.
If a �= x1, there exists a unique Pi, i < k, such that a ∈ Pi. Again it is

easy to see that the out-tree T+
s ∪Pi[xi+1, a]∪Pi+1 ∪ . . .∪Pk−1 ∪Pk[a, yk] is

good. The complexity claim follows from the constructive proof above. ��
Using induction, with Theorem 9.5.2 as the base case, one can prove the

following result which provides some support for Conjecture 9.5.1. The proof
is left to the reader as Exercise 9.12.

Theorem 9.5.3 [117] If a vertex s has k arc-disjoint paths to every other
vertex in D, then D has an out-branching B+

s rooted at s such that d+

B+
s
(v) ≤

d+
D(v)

2r + r, where r = � log 2k�. Furthermore, such an out-branching can be
found in polynomial time. ��

For acyclic directed multigraphs Bang-Jensen, Thomassé and Yeo gave
a complete characterization for the existence of an out-branching satisfying
given (not necessarily uniform) restrictions on the out-degree of each vertex.
For a set of vertices X in D we denote by X− the set of vertices with at least
one arc to a vertex in X. Thus X− =

⋃
x∈X N−(x).

Theorem 9.5.4 [117] Let D = (V, A) be an acyclic directed multigraph and
let f : V →Z0. Suppose that D has precisely one vertex s of in-degree zero.
Then D has an out-branching B+

s rooted at s satisfying

d+

B+
s
(v) ≤ f(v) for all v ∈ V (9.11)

if and only if

∑

x∈X−

f(x) ≥ |X| for all X ⊂ V − s. (9.12)

Furthermore, there exists a polynomial algorithm which given an acyclic di-
rected multigraph and a non-negative integer assignment to its vertices, either
finds an out-branching satisfying (9.11) or a set X of vertices violating (9.12).

��

In the case of tournaments we can get much more structure on an out-
branching as illustrated by the following theorem due to Lu [658].

Theorem 9.5.5 [658] Let T be a tournament and let v be a vertex of maxi-
mum out-degree. Then T contains an out-branching B+

v such that

• every vertex in B+
v except v has out-degree at most two;

• the distance from v to any other vertex in B+
v is at most 2.

354 9. Branchings

Proof: We give a proof due to Bondy [166]. Let Y = N+(v), X = V −Y − v
and form the undirected bipartite graph B with bipartition classes X, Y and
an edge between x ∈ X and y ∈ Y for each yx ∈ A(T). Now it is easy to see
that T has the desired out-branching if and only if we can find a subgraph of
B in which every vertex of X has degree one and no vertex in Y has degree
more than two. By Hall’s theorem (Theorem 4.11.3) such a subgraph exists
if and only if every subset S ⊆ X has at least 1

2 |S| neighbours in Y . (Indeed,
apply Hall’s theorem to the graph B′ that we obtain by substituting two
independent vertices for each y ∈ Y .).

Let S ⊂ X be arbitrary. Since T is a tournament, some s ∈ S dominates
at least 1

2 (|S| − 1) vertices in S. Since sv ∈ A(T) and v has maximum out-
degree it follows that s dominates at most |Y |− 1

2 (|S|+1) vertices of Y . Thus
at least 1

2 (|S| + 1) vertices of Y dominate s and hence S has at least 1
2 |S|

neighbours in Y in B. ��

9.6 Arc-Disjoint In- and Out-Branchings

We saw in Section 9.3 that the problem of deciding the existence of k arc-
disjoint out-branchings all with the same root could be solved efficiently and
in Section 9.4 we saw that many problems can be reformulated and solved us-
ing an algorithm for the k arc-disjoint out-branchings problem. In this section
we consider the following much harder problem called the arc-disjoint in-

and out-branching problem: Given a digraph D and vertices u, v (not
necessarily distinct). Decide whether D has a pair of arc-disjoint branch-
ings B+

u , B−
v such that B+

u is an out-branching rooted at u and B−
v is an

in-branching rooted at v.

Theorem 9.6.1 [68] The arc-disjoint in- and out-branching problem is NP-
complete for arbitrary digraphs.

Proof: We give a proof due to Thomassen (see [68]). The problem belongs to
NP, since if the desired branchings exist, then such a pair forms a certificate
that the given instance is a ’yes’ instance. We show how to reduce the arc-
disjoint 2-path problem to the arc-disjoint in- and out-branching problem in
polynomial time.

Let [D, x1, x2, y1, y2] be an instance of the arc-disjoint 2-path problem.
Construct a new digraph D′ by adding four new vertices x′

1, x
′
2, y

′
1, y

′
2 and

the following arcs (see Figure 9.4):
{x′

1x1, x
′
2x2, y1y

′
1, y2y

′
2, x

′
2x

′
1, y

′
1x

′
1, y

′
2y

′
1, y

′
2x

′
2, y

′
2x

′
1}∪{vx′

1 : v ∈ V (D)−x1}∪
{y′

2v : v ∈ V (D) − y2}.
The reader can easily verify that there exist arc-disjoint branchings B+

x′
2
,

B−
y′
1

in D′ if and only if D contains a pair of arc-disjoint (x1, y1)-, (x2, y2)-
paths. Since we can construct D′ in polynomial time from D, it follows that
the arc-disjoint in- and out-branching problem is NP-complete. ��

9.6 Arc-Disjoint In- and Out-Branchings 355

x1

x2

y2y1

y′
1 y′

2

x′
1 x′

2

D

Figure 9.4 The construction of D′ in the proof of Theorem 9.6.1. The bold arcs
indicate that all the arcs have that direction, except the arcs x′

1x1, y2y
′
2.

For arbitrary digraphs it is easy to reduce the arc-disjoint in- and out-
branching problem for the case when u �= v to the case when u = v by
a polynomial reduction (Exercise 9.13). Hence the problem remains NP-
complete when we ask for an out-branching and an in-branching that are arc-
disjoint and have the same root. However, Bang-Jensen and Huang showed
that if the vertex that is to be the root is adjacent to all other vertices in the
digraph and is not in any 2-cycle, then the problem becomes polynomially
solvable.

Theorem 9.6.2 [103] Let D = (V, A) be a strongly connected digraph and v
a vertex of D such that v is not on any 2-cycle and V (D) = {v} ∪ N−(v) ∪
N+(v). Let A = {U1, U2, . . . , Uk} (B = {W1, W2, . . . , Wr}) denote the set of
terminal (initial) components in D〈N+(v)〉 (D〈N−(v)〉). Then D contains
a pair of arc-disjoint branchings B+

v , B−
v such that B+

v is an out-branching
rooted at v and B−

v is an in-branching rooted at v if and only if there exist
disjoint arc sets EA, EB ⊂ A such that all arcs in EA ∪ EB go from N+(v)
to N−(v) and every Ui ∈ A (Wj ∈ B) is incident with an arc from EA
(EB). Furthermore, there exists a polynomial algorithm to find the desired
branchings, or demonstrate the non-existence of such branchings.

Proof: We prove the characterization and refer the reader to [103] and Ex-
ercise 9.14 for the algorithmic part.

First we note that if the branchings exist, then the arc sets EA and EB
exist. Indeed, if B+

v , B−
v are such branchings, then there must be an arc from

B−
v (B+

v) leaving (entering) every terminal (initial) component of D〈N+(v)〉
(D〈N−(v)〉) and since v is not on any 2-cycle, all these arcs go from N+(v)
to N−(v).

Suppose that there exist sets EA and EB as above. Every vertex x ∈
N+(v) has a path to one of the terminal components in A and every vertex
in N−(v) can be reached by a path from one of the initial components in
B. Hence, we can choose a family of vertex-disjoint trees T−

1 , T−
2 , . . . , T−

k ,

356 9. Branchings

T+
1 , T+

2 , . . . , T+
r such that T−

i (T+
j) is an in-tree (out-tree) rooted at a vertex

in Ui (Wj) and
⋃k

i=1 V (T−
i) = N+(v),

⋃r
j=1 V (T+

j) = N−(v). Let B+
v be the

out-branching induced by the arcs {vw : w ∈ N+(v)} ∪ EB ∪
⋃r

j=1 A(T+
j)

and B−
v be the in-branching induced by the arcs {uv : u ∈ N−(v)} ∪ EA ∪⋃k

i=1 A(T−
i). Then B+

v and B−
v are the desired branchings. ��

The following is an easy corollary of Theorem 9.6.2.

Corollary 9.6.3 [68] A tournament D = (V, A) has arc-disjoint branchings
B+

v , B−
v rooted at a specified vertex v ∈ V if and only if D is strong and for

every arc a ∈ A the digraph D − a contains either an out-branching or an
in-branching with root v. ��

There is a small inconsistency in the statement (and the proof) of The-
orem 9.6.2 in [103] as it was not mentioned that v is not on a 2-cycle and
the statement (the part involving the ends to the arcs in EA, EB) becomes
slightly different when v is contained in a 2-cycle. However, as the reader is
asked to prove in Exercise 9.14, one can still describe a nice characterization
and prove that it can be checked in polynomial time whether the desired
branchings exist and to find such branchings if they exist.

When v is adjacent to all other vertices, one can prove the following, using
Theorem 9.6.2 and the extension in Exercise 9.14 (see Exercise 9.15).

Theorem 9.6.4 Let D be a 2-arc-strong digraph with a vertex v that is adja-
cent to all other vertices of D. Then D has arc-disjoint in- and out-branchings
rooted at v. ��

Since the discussion above takes care of the semicomplete case, a possible
next step is to consider the following problem posed by Bang-Jensen.

Problem 9.6.5 [89] Characterize those locally semicomplete digraphs D that
have arc-disjoint branchings B+

v , B−
v for a given vertex v ∈ V (D).

When u �= v, the arc-disjoint in- and out-branching problem becomes
much harder even for semicomplete digraphs. Bang-Jensen [68] found a com-
plete characterization for the case of tournaments. This characterization,
which is quite complicated, implies the tournament case of the following the-
orem by Bang-Jensen and Yeo.

Theorem 9.6.6 [120] Every 2-arc-strong semicomplete digraph T = (V, A)
contains arc-disjoint in- and out-branchings B−

r , B+
s for every choice of ver-

tices r, s ∈ V .

Proof: This follows easily from Theorem 13.10.3 since it is easy to show
that the semicomplete digraph S4 which is the unique exception to that
theorem has arc-disjoint in- and out-branchings B−

u , B+
v for every choice of

u, v ∈ V (S4). ��

9.6 Arc-Disjoint In- and Out-Branchings 357

Theorem 9.6.7 [68] There is a polynomial algorithm for checking whether a
given tournament with specified distinct vertices u, v has arc-disjoint branch-
ings B+

u , B−
v and finding such branchings if they exist. ��

This algorithm uses the polynomial algorithms from Corollary 10.7.22 and
Theorem 10.7.23.

The following conjecture, due to Bang-Jensen, was verified by Bang-
Jensen and Huang [103] for the special case when D is quasi-transitive and
u = v.

Conjecture 9.6.8 [89] The arc-disjoint in- and out-branching problem is
polynomially solvable for locally semicomplete digraphs and quasi-transitive
digraphs.

Thomassen conjectured that there is some sufficient condition, in terms
of arc-strong connectivity, for the existence of arc-disjoint in- and out-
branchings rooted at the same vertex in a digraph (see also Conjecture
13.10.14).

Conjecture 9.6.9 [866] There exists a natural number N such that every di-
graph D which is N -arc-strong has arc-disjoint branchings B+

v , B−
v for every

choice of v ∈ V (D).

Verifying a conjecture from [89] (see also [91, Conjecture 9.9.12]) Bang-
Jensen and Yeo proved that for tournaments the following much stronger
property holds. Note that if Conjecture 13.10.2 is true, then we may replace
74k by 2k.

Theorem 9.6.10 [120] Let T be a 74k-arc-strong tournament. Then T has
2k arc-disjoint branchings B+

v,1, . . . , B
+
v,k, B−

v,1, . . . , B
−
v,k such that B+

v,1, . . . ,

B+
v,k are out-branchings rooted at v and B−

v,1, . . . , B
−
v,k are in-branchings

rooted at v, for every vertex v ∈ V (T). ��

Conjecture 9.6.11 [120] Theorem 9.6.10 holds also if we replace 74k by 2k.

Now let us turn to the case of acyclic directed multigraphs. It is easy to see
that if an acyclic directed multigraph D has arc-disjoint branchings B+

s , B−
t ,

where B+
s is an out-branching rooted at s and B−

t is an in-branching rooted
at t, then s (t) must be the unique source (sink) in D. The following corollary
of Theorem 9.5.4 characterizes when an acyclic directed multigraph contains
such a pair of arc-disjoint branchings. Recall the definition of X− from the
end of Section 9.5.

Corollary 9.6.12 [117] Let D be an acyclic directed multigraph such that
there is exactly one sink s of and exactly one source t in D. Then D contains

358 9. Branchings

arc-disjoint branchings B+
s and B−

t where the first is an out-branching rooted
at s and the second is an in-branching rooted at t if and only if we have

∑

x∈X−

(d+(x) − 1) ≥ |X| for all X ⊂ V − s. (9.13)

Furthermore, there exists a polynomial algorithm which given D, s, t either
finds the desired branchings or set X of vertices violating (9.13).

Proof: As remarked above, an acyclic directed multigraph H has an in-
branching rooted at a vertex z if and only if z is the unique vertex of out-
degree zero in H. Now we see that D has the desired branchings if and only
if D has an out-branching rooted at s which satisfies (9.11) with respect to
f(v) = d+(v)− 1 for v �= t and f(t) = 0. By Theorem 9.5.4 this is equivalent
to requiring that (9.13) must hold. The complexity claim follows from the
last part of Theorem 9.5.4. ��

9.7 Out-Branchings with Extremal Number of Leaves

A vertex x of an out-branching B is called a leaf if d+
B(x) = 0. For an

out-branching B, let L(B) denote the set of leaves of B. For a digraph D
containing an out-branching, let �min(D) and �max(D) denote the minimum
and maximum number of leaves in an out-branching of D. If D has no out-
branching, we will write �min(D) = 0 or �max(D) = 0; recall that, by Propo-
sition 1.7.1, a connected digraph D contains an out-branching if and only if
D has only one initial strong component.

The problem of finding an out-branching with extremal number of leaves
is of interest in applications, e.g., the problem of finding an out-branching
with minimum number of leaves was considered in the US patent [256] by
Demers and Downing, where its application to the area of database systems
was described.

For general digraphs, the problems of finding an out-branching with
minimum/maximum number of leaves are NP-hard: a digraph has an out-
branching with just one leaf if and only if it is traceable and by taking the
complete biorientation of an undirected graph, we can reduce the NP-hard
problem of finding a spanning tree with maximum number of leaves in a
connected undirected graph [393] to the problem of finding an out-branching
with the maximum number of leaves in a digraph.

Note that restricted to acyclic digraphs the problems of finding an out-
branching with minimum and maximum number of leaves are of different
complexity (provided P �= NP): while the former is polynomial time solvable
(see Subsection 9.7.1), the latter is NP-hard (see Exercise 9.21).

9.7 Out-Branchings with Extremal Number of Leaves 359

9.7.1 Minimum Leaf Out-Branchings

In this subsection, we give upper bounds on �min(D) for general and strong
digraphs D and a polynomial algorithm for computing �min(D) for acyclic
digraphs D.

Recall that for a digraph D, α(D) denotes the independence number of
UG(D). Las Vergnas proved the following upper bound on �min(D) for general
digraphs.

Theorem 9.7.1 (Las Vergnas’ theorem) [635] For every digraph D, we
have �min(D) ≤ α(D). ��

We will prove the following proposition which immediately implies the
theorem.

Proposition 9.7.2 Let B be an out-branching of D with more than α(D)
leaves. Then D contains an out-branching B′ such that L(B′) is a proper
subset of L(B).

Proof: We will prove this claim by induction on the number n of vertices in
D. For n ≤ 2 the result holds; thus, we may assume that n ≥ 3 and consider
an out-branching B of D with |L(B)| > α(D). Clearly, D has an arc xy such
that x, y are leaves of B. If the in-neighbor p of y in B is of out-degree at
least 2, then L(B′) ⊂ L(B), where B′ = B + xy − py. So, we may assume
that d+

B(p) = 1. Observe α(D − y) ≤ α(D) < |L(B)| = |L(B − y)|. Hence by
the induction hypothesis, D− y has an out-branching B′′ such that L(B′′) ⊂
L(B−y). Notice that L(B−y) = L(B)∪{p}\{y}. If p ∈ L(B′′), then observe
that L(B′′ + py) ⊂ L(B). Otherwise, L(B′′ + xy) ⊆ L(B) \ {x} ⊂ L(B). ��

It is easy to show that Las Vergnas’ theorem implies the Gallai-Millgram
theorem (see Section 13.5). Using Las Vergnas’ theorem, we can easily show
the following result which is equivalent to another important theorem, Dil-
worth’s theorem (see Section 13.5).

Theorem 9.7.3 If D if a transitive acyclic digraph with a unique source s,
then �min(D) = α(D).

Proof: By Las Vergnas’ theorem, D contains an out-branching B with k ≤
α(D) leaves. Observe that B is rooted at s and the vertices of every path in
B starting at s and terminating at a leaf induce a clique in UG(D). Thus, the
vertices of UG(D) can be covered by k cliques and, hence, α(UG(D)) ≤ k.
We conclude that �min(D) = α(D). ��

Las Vergnas proved another upper bound on �min(D).

Theorem 9.7.4 [635] Let D be a digraph on n vertices such that any two
distinct non-adjacent vertices have degree sum at least 2n − 2h − 1, where
1 ≤ h ≤ n − 1. Then �min(D) ≤ h. ��

360 9. Branchings

Settling a conjecture of Las Vergnas [635], Thomassé [852] proved the
following:

Theorem 9.7.5 If D is a strong digraph, then �min(D) ≤ max{α(D)−1, 1}.
��

Demers and Downing [256] suggested a heuristic approach for finding,
in an acyclic digraph, an out-branching with minimum number of leaves.
However, no argument or assertion has been made to provide the validity of
their approach and to investigate its computational complexity. Using another
approach, Gutin, Razgon and Kim [472] showed that a minimum leaf out-
branching in an acyclic digraph can be found in polynomial time.

The following algorithm MINLEAF introduced in [472] returns an out-
branching with minimum number of leaves in an acyclic digraph5. It is not
difficult to prove that MINLEAF is correct and of running time O(m +
n1.5

√
m/ log n) (Exercise 9.24).

MINLEAF
Input: An acyclic digraph D with vertex set V .
Output: A minimum leaf out-branching T of D if �min(D) > 0 and ’NO’,
otherwise.

1. Find a source r in D. If there is another source in D, return “no out-
branching”. Let V ′ = {v′ : v ∈ V }.

2. Construct a bipartite graph B = B(D) of D with partite sets V, V ′ − r′

and an edge xy′ for each arc xy ∈ A(D).
3. Find a maximum matching M in B.
4. M∗ := M . For all y′ ∈ V ′ not covered by M , set M∗ := M∗ ∪ {an

arbitrary edge incident with y′}.
5. A(T) := ∅. For all xy′ ∈ M∗, set A(T) := A(T) ∪ {xy}.
6. Return T .

Figure 9.5 illustrates MINLEAF. There M = {rx′, xy′, zt′} and T =
D − zy.

�

� �r

x y

z t

D

r r

x x

y y

z z

t t

x′ x′

y′ y′

z′ z′

t′ t′

�
�

B(D) M∗

Figure 9.5 Illustration for MINLEAF.

5 Observe that an acyclic digraph D has an out-branching if and only if it is
connected and has exactly one source.

9.7 Out-Branchings with Extremal Number of Leaves 361

By Lemma 2.13.8, acyclic digraphs are the digraphs of directed tree-width
(DAG-width, directed path-width) 0. Dankelmann, Gutin and Kim proved
the following:

Theorem 9.7.6 [241] The problem of finding an out-branching with the min-
imum number of leaves is NP-hard even for digraphs of directed tree-width
(DAG-width, directed path-width, respectively) 1. ��

This theorem is in sharp contrast with the Hamilton path part of Theorem
6.1.4.

9.7.2 Maximum Leaf Out-Branchings

Bonsma and Dorn [173] showed that the problem of checking whether a di-
graph has an out-branching with at least k leaves is fixed-parameter tractable.
Lower bounds on the maximum number of leaves in an out-branching of a
digraph were investigated by Alon, Fomin, Gutin, Krivelevich and Saurabh
[22, 21] (there is extensive literature on the maximum number of leaves in a
spanning tree of a connected undirected graph [22]).

For a digraph D let �t
max(D), denote the maximum possible number of

leaves in an out-tree of D. Clearly �max(
↔
G) = �t

max(
↔
G) if G is a connected

undirected graph, as any maximum leaf tree can be extended to a maximum
leaf spanning tree with the same number of leaves.

Notice that �t
max(D) ≥ �max(D) for every digraph D. Let L be the family

of digraphs D for which either �max(D) = 0 or �t
max(D) = �max(D). It is easy

to see that L contains all strong and acyclic digraphs.
The following assertion, whose proof is left to the reader as Exercise

9.16, shows that L includes a large number of digraphs including all strong
digraphs, acyclic digraphs, semicomplete multipartite digraphs and quasi-
transitive digraphs.

Proposition 9.7.7 [22] Suppose that a digraph D satisfies the following
property: for every pair R and Q of distinct strong components of D, if there
is an arc from R to Q, then each vertex of Q has an in-neighbor in R. Then
D ∈ L. ��

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is
a forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every
backward arc of the type vi+1vi is called double.

The following assertion is a slight refinement of a result by Alon, Fomin,
Gutin, Krivelevich and Saurabh [22]. For a better bound, see [21].

Lemma 9.7.8 Let D be an oriented graph of order n containing an out-
branching and with d−(x) = 2 for all x ∈ V (D). If D has no out-tree with k
leaves, then n ≤ k5.

362 9. Branchings

Proof: Assume that D has no out-tree with k leaves. Consider an out-
branching B+ of D with p leaves so that this is the maximum number of
leaves over all out-branchings in D. By the assumption p < k.

First observe that if Q = v1v2 . . . vs is an arbitrary path in B+ from the
root to a leaf and vivj is a forward arc, then, by the maximality of p, B+

must branch at vj−1, that is, d+
B+(vj−1) ≥ 2. Since B+ has at most k − 1

leaves and no two forward arcs end in the same vertex, this implies that Q
has at most (k − 2) forward arcs.

Now fix a path P = u1u2 . . . uq from the root to a leaf in B+ which has
q ≥ n/p vertices. When we delete all vertices of P from B+ we obtain a
collection of out-trees covering V (D)−V (P). It is easy to show by induction
on the number of leaves that B+ can be decomposed into a collection P =
{P1, P2, . . . , Pp} of vertex-disjoint directed paths covering all vertices of D so
that P = P1.

Let P ′ ∈ P \ {P} be arbitrary. There are at most k − 1 vertices on P
with in-neighbors on P ′ since otherwise we could choose a set X of at least
k vertices on P for which there were in-neighbors on P ′. The vertices of X
would be leaves of an out-tree formed by the vertices V (P ′)∪X. Thus, there
are m ≤ (k−1)(p−1) ≤ (k−1)(k−2) vertices of P with in-neighbors outside
P and at least q − (k − 2)(k − 1) vertices of P have both in-neighbors on P .

Let f be the number of forward arcs for P . By the argument above f ≤
k − 2. Let uv be an arc of A(D) \ A(P) such that v ∈ V (P). There are
three possibilities: (i) u �∈ V (P), (ii) u ∈ V (P) and uv is forward for P ,
(iii) u ∈ V (P) and uv is backward for P . By the inequalities above for m
and f , we conclude that there are at most k(k − 2) vertices on P which
are not terminal vertices (i.e., heads) of a backward arc. Consider a path
R = v0v1 . . . vr formed by backward arcs. Observe that the arcs {vivi+1 :
0 ≤ i ≤ r− 1}∪{vjv

+
j : 1 ≤ j ≤ r} form an out-tree with r leaves, where v+

j

is the successor of vj on P. Thus, there is no path of backward arcs of length
more than k − 1.

If the in-degree of u1 in D[V (P)] is 2, remove one of the backward arcs
terminating at u1. Observe that now the backward arcs for P form a vertex-
disjoint collection of out-trees with roots at vertices that are not terminal
vertices of backward arcs. Therefore, the number of out-trees in the collection
is at most k(k − 2). Observe that each out-tree in the collection has at most
k−1 leaves and thus its arcs can be decomposed into at most k−1 paths, each
of length at most k−1. Hence, the original total number of backward arcs for
P is at most k(k−2)(k−1)2 +1 (where the last one comes from the possible
extra arc into u1). On the other hand, it is at least q−k(k−2) as every vertex
on P is the head of an arc not in A(P). Thus, q−k(k−2) ≤ k(k−2)(k−1)2+1.
Combining this inequality with q ≥ n/(k − 1), we conclude that n ≤ k5. ��

Theorem 9.7.9 [22] Let D be a digraph in L with �max(D) > 0.

(a) If D is an oriented graph with δ−(D) ≥ 2, then �max(D) ≥ n1/5 − 1.
(b) If D is a digraph with δ−(D) ≥ 3, then �max(D) ≥ n1/5 − 1.

9.8 The Source Location Problem 363

Proof: Let B+ be an out-branching of D. By deleting some arcs from A(D)\
A(B+), if necessary, we may assume that d−(x) = 2 for every x ∈ V (D). Now
the inequality �max(D) ≥ n1/5−1 follows from Lemma 9.7.8 and the definition
of L.

Let B+ be an out-branching of D. Let P be the path formed in the proof
of Lemma 9.7.8. (Note that A(P) ⊆ A(B+).) Delete every double arc of P , in
case there are any, and delete some more arcs from A(D) \A(B+), if needed,
to ensure that the in-degree of each vertex of D becomes 2. It is not difficult
to see that the proof of Lemma 9.7.8 remains valid for the new digraph D.
Now the inequality �max(D) ≥ n1/5 − 1 follows from Lemma 9.7.8 and the
definition of L. ��

It is not difficult to give examples showing that the restrictions on the
minimum in-degrees in Theorem 9.7.9 are optimal. Indeed, any directed cycle
C is a strong oriented graph with all in-degrees 1 for which �max(C) = 1 and
the complete biorientation of any cycle is a strong digraph D with all in-
degrees equal to 2 and �max(D) = 2.

For some subfamilies of L, one can obtain better bounds on �max(D).
An example is the class of multipartite tournaments. Recall from Section
3.7 that every multipartite tournament D with at most one source has an
out-branching B+ such that the distance from the root of B+ to any vertex
is at most 4. This implies that �max(D) ≥ n−1

4 . Also for a tournament D
of order n, it is easy to prove that �max(D) ≥ n − log2 n (Exercise 9.25).
This bound is essentially tight, i.e., we cannot replace the right-hand side by
n − log2 n + Ω(log2 log2 n) as shown by random tournaments; see [29, pages
3-4] for more details.

Solving an open problem from [21], Bonsma and Dorn proved the following
result.

Theorem 9.7.10 [174] Let D be a digraph on n vertices with at least one
out-branching. If δ−(D) ≥ 3 or if D is an oriented graph and δ−(D) ≥ 2,
then �max(D) ≥ 1

4

√
n. ��

Results in [21] imply that this bound is best possible modulo the coeffi-
cient, i.e., �max(D) = Θ(

√
n).

9.8 The Source Location Problem

Definition 9.8.1 Let D = (V, A) be a directed multigraph and let k, l be
non-negative integers. A subset S ⊆ V is a (k, l)-source for D if S has k
arc-disjoint paths to every vertex v ∈ V − S and every vertex v ∈ V − S has
l arc-disjoint paths to S.

By Theorem 9.3.1, S is a (k, l)-source if and only if the digraph we obtain
by contracting S to a new vertex s has k arc-disjoint out-branchings rooted at

364 9. Branchings

s and l arc-disjoint in-branchings rooted at s. It follows from this remark and
Menger’s theorem that if d−(X) < k or d+(X) < l, then every (k, l)-source
S must intersect X. Note that, trivially, V (D) is a (k, l)-source. The source

location problem is as follows: Given [D, k, l]; find a (k, l)-source S of D
of minimum size.

Call a set X ⊂ V (k, l)-bad if d−(X) < k or d+(X) < l and no proper
subset of X has this property. Clearly, S is a (k, l)-source if and only if it in-
tersects all (k, l)-bad sets. Now we can translate the source location problem
into a problem of finding transversals of hypergraphs as follows. Given D, k
and l let H(k,l)(D) = (V, E) be the hypergraph with vertex set V and E con-
tains the hyperedge X for each (k, l)-bad set X. A transversal of H(k,l)(D)
is a set of vertices containing at least one vertex from each edge. Hence the
source location problem is equivalent to finding a minimum size transversal
of H(k,l)(D).

Clearly the minimum size of a (k, l)-source is at least as big as the max-
imum number of disjoint (k, l)-bad sets. Ito, Makino, Arata, Honami, Itatsu
and Fujishige proved that the other direction also holds.

Lemma 9.8.2 [553] For every digraph D and non-negative numbers k, l the
size of a minimum (k, l)-source of D equals the maximum number of disjoint
(k, l)-bad sets. ��

A hypergraph H = (V, E) is a subtree hypergraph if there exists a tree
T on V such that each hyperedge of E induces a subtree of T .

In [523] van den Heuvel and Johnson proved the following result, implying
that a minimum size transversal of a subtree hypergraph can be found in
polynomial time, provided that an oracle for deciding, in polynomial time,
whether a subset is a transversal or not is given6.

Theorem 9.8.3 [523] Let H = (V, E) be a subtree hypergraph on n vertices.
If it is possible to check whether or not a subset S ⊆ V is a transversal in
time g(n), then it is possible to find a minimum size transversal of H in time
O(n3g(n)). ��

Proposition 9.8.4 [553] For every digraph and non-negative integers k, l
the hypergraph H(k,l)(D) is a subtree hypergraph. ��

The next lemma follows easily from our remark just after the definition
of a (k, l)-source.

Lemma 9.8.5 [523] Using flows one can check, in polynomial time, whether
a given set of vertices is a (k, l)-source. ��

Thus combining Proposition 9.8.4, Lemma 9.8.5 and Theorem 9.8.3 we
obtain the following.
6 Without this assumption the problem is NP-hard [523].

9.9 Miscellaneous Topics 365

Theorem 9.8.6 [523] The source location problem is solvable in polynomial
time. ��

Using an entirely different approach, Bárász, Becker and Frank [124] found
another polynomial algorithm for the source location problem. In [524] van
den Heuvel and Johnson studied a problem closely related to the source
location problem.

9.9 Miscellaneous Topics

9.9.1 Edge-Disjoint Mixed Branchings

We saw in the proof of Theorem 9.4.2 that we could use Edmonds’ branch-
ing theorem to prove that every 2k-edge-connected graph has k edge-disjoint
spanning trees. However, that proof does not imply an algorithm to check
whether a given undirected graph has k edge-disjoint spanning trees. In fact,
this problem is more complicated for undirected graphs than the problem of
finding k arc-disjoint out-branchings from a given root in a directed multi-
graph where the proof of Edmonds’ branching theorem provides the answer.
For undirected graphs the characterization, given in Theorem 9.4.3, is much
more complicated and does not imply a polynomial algorithm for the prob-
lem. Such an algorithm can be obtained from a formulation of the problem
as a matroid partition problem (see Exercise 18.27). See also the remark at
the end of the subsection.

A mixed multigraph is the same as a mixed graph, except that we allow
parallel arcs and parallel edges as well as arcs that are parallel to edges. We
say that two subgraphs of a mixed multigraph are edge-disjoint if they do
not share any arcs or edges (they may contain different copies of an arc/edge,
but not the same).

Definition 9.9.1 Let M = (V, E ∪ A) be a mixed multigraph with a special
vertex s. A mixed out-branching B+

s with root s is a spanning tree in the
underlying undirected multigraph G of M with the property that there is a
path from s to every other vertex v in B+

s .

One reason why mixed out-branchings are of interest in relation to undi-
rected graphs can be seen from the following easy lemma (which in particular
covers the case when no arc of M is directed).

Lemma 9.9.2 Let M = (V, E ∪ A) be a mixed multigraph with a special
vertex s called root. There are k edge-disjoint mixed out-branchings rooted
at s if and only if there exists an orientation D of M with k edge-disjoint
out-branchings at s.

366 9. Branchings

Proof: Exercise 9.17. ��
The following characterization, due to Frank, generalizes Theorems 9.4.3

and 9.3.1.

Theorem 9.9.3 [336] Let M = (V, E ∪ A) be a mixed multigraph with a
special vertex s. There are k edge-disjoint mixed out-branchings rooted at s,
if and only if the following holds for all subpartitions F = {V1, V2, . . . , Vt} of
V − s:

aF ≥ kt, (9.14)

where aF denotes the number of edges, oriented or not, which enter some
Vi. ��

One can use submodular flows to decide in polynomial time whether a
given undirected graph G has k edge-disjoint spanning trees. By Lemma 9.9.2,
all we need to check is whether there is some orientation of G which has k
arc-disjoint out-branchings from a given vertex. Thus, given G we form an
arbitrary orientation D of G and then follow the approach in Exercise 11.67.
It is not hard to see that, with a slight modification, the same approach can
be used to determine the existence of k edge-disjoint mixed branchings from
a given root in a mixed graph (Exercise 9.18).

9.9.2 The Minimum Covering Out-Tree Problem

It is easy to decide whether a digraph D has some out-tree rooted at a pre-
scribed vertex s which covers (that is, contains the vertices of) a certain spec-
ified subset X ⊆ V (D) (Exercise 9.26). This makes it natural to consider the
following problem which we call the minimum covering out-tree prob-

lem. Given a digraph D = (V, A) with a non-negative integer-valued weight
function w on the arcs, some vertex s ∈ V and a subset X ⊆ V . What is the
minimum cost of an out-tree T+

s rooted in s such that X ⊆ V (T+
s)?

Theorem 9.9.4 The minimum covering out-tree problem is NP-hard even
when w ≡ 1.

Proof: The graph Steiner problem is as follows (this is a special case7,
but already this is NP-complete, see Exercise 9.27). Given an undirected
graph G = (V, E) and a subset X ⊂ V , find a subtree of G which contains all
vertices of X and as few other vertices as possible. We show how to reduce
the graph Steiner problem to the special case w ≡ 1 of the minimum covering
out-tree problem in polynomial time. Let [G, X] be an instance of the graph
Steiner problem and construct an instance [D, X, s] of the minimum covering
7 A more well-known version is the so-called Steiner tree problem for graphs.

Here one is given an undirected graph G = (V, E) with non-negative cost on the
edges and a subset S ⊆ V and the goal is to find a minimum cost tree containing
all the vertices of S.

9.9 Miscellaneous Topics 367

out-tree problem by letting D be the complete biorientation of G, taking s
as some vertex from X and using the same X. Every tree T which covers X
in G corresponds in the obvious way to an out-tree T+

s in D which covers
X and vice versa. This completes the construction which can obviously be
performed in polynomial time. Since the graph Steiner problem is NP-hard
[585], we conclude that so is the minimum covering out-tree problem. ��

It follows from results by Frank in [349] that if all arcs whose head does
not belong to X have cost zero, then the problem can be solved in polynomial
time. In fact, the model in [349] shows that even the generalization where
one is seeking k arc-disjoint out-trees with a common root all of which cover
a prescribed subset X can be solved in polynomial time, provided the cost of
all arcs whose head do not belong to X is zero.

9.9.3 Minimum Cost Arc-Disjoint Branchings with Bandwidth
Constraints

Consider the following typical problem in network communications. A collec-
tion of k distinct messages is to be transferred from a source node s to all
other nodes in the network. Each message is transferred from the source to the
recipients via an out-branching in the network. A subset of r of these branch-
ings may overlap in a link (arc) a if the corresponding link (arc) has enough
bandwidth to send all r messages without interference at the same time. If we
also make the sensible assumption that using different links may have differ-
ent costs, then we see that we may model the problem above as an instance
of the so-called minimum cost k out-branchings with bandwidth con-

straints problem [187]. Here the goal is, given a digraph D = (V, A), a
root s ∈ V , an integer-valued capacity function b and a cost function c, both
on A; find a collection of k out-branchings from s such that the arc a is used
by at most b(a) of the branchings for each a ∈ A and the total cost8 of the
branchings is as small as possible.

The problem can be solved using matroid techniques as follows: Construct
a new directed multigraph D∗ = (V, A∗) by replacing each arc a ∈ A by b(a)
copies, each of cost c(a). Clearly the desired branchings in D correspond to a
minimum cost set of arcs in D∗ which can be partitioned into k arc-disjoint
out-branchings rooted at s. Define two matroids M1, M2 on the arc set of
D as follows. A subset A′ ⊂ A is independent in M1 if the corresponding
edges in UG(D) can be partitioned into k forests and a subset A′′ ⊂ A is
independent in M2 if s has in-degree zero and all other vertices have in-degree
at most k in the subdigraph induced by A′′. It is easy to show that M2 is
a matroid and the fact that M1 is a matroid follows from the definition of
the union of matroids (see Section 18.8). Now we can solve the problem of
finding a minimum cost collection of k arc-disjoint out-branchings in D∗ as
8 Here the cost is the sum of the costs of all the branchings.

368 9. Branchings

an instance of the weighted matroid intersection problem for the matroids
M1 and M2.

The approach above has several drawbacks: first the number of arcs may
increase drastically when we replace each arc a by b(a) copies and second we
need to apply an algorithm for matroid partitioning as a subroutine (to check
whether the current set of arcs is independent in M1). In [187] Cai, Deng
and Wang showed how to formulate the minimum cost k out-branchings
with bandwidth constraints problem as the problem of finding an optimal
intersection of two weighted polymatroids on A. They also showed that this
leads to a more efficient algorithm for the problem.

9.9.4 Out-Forests

An out-forest in a digraph is a spanning collection of disjoint out-trees.
Below we describe a result due to El-Sahili and Kouider [294] which has
several implications as shown in Section 11.3. By a spanning out-forest in
D we mean a collection of disjoint out-trees which cover V (D). The level of
a vertex in an out-tree is its distance from the root. For a given out-forest F
we define the ith level Li of F to be the set of vertices whose level is i (in the
out-tree to which they belong). Thus L0 is the set of roots of out-trees in F ,
L1 is the set of out-neighbours of these roots in F and so on. Let �i = |Li| and
associate to each spanning out-forest F the vector v(F) = (�0, �1, . . . , �p(F)),
where p(F) denotes the length of the longest path in F .

Proposition 9.9.5 [294] Every digraph contains a spanning out-forest F
in which Li is an independent set for i = 0, 1, . . . , p(F). In particular, every
spanning out-forest F minimizing v(F) lexicographically (among all spanning
out-forests) has this property.

Proof: Let F∗ be chosen among all spanning out-forests so as to minimize
v(F∗) lexicographically and let L0, L1, . . . be its levels defined as above. We
claim that each Li is an independent set in D. Suppose to the contrary that
uv is an arc of D such that u, v ∈ Li for some i. Note that uv is not an arc
of F∗ as u and v have the same level. Thus we can modify the two out-trees
Tu, Tv ∈ F∗ containing u and v respectively by removing the part of Tv rooted
in v from Tv and moving it to Tu by adding the arc uv. Note that we may
have Tu = Tv. The resulting out-forest F has v(F) < v(F∗), contradicting
the choice of F∗. ��

9.9.5 The Maximum Weight Out-Forest Problem

The maximum weight out-forest problem is the problem of finding, in
a weighted digraph D = (V, A) (with weight function c : A→R+), an out-
forest in D whose total arc weight is maximum. In the special case when
we want the forest to have only one out-tree we have the maximum weight

9.9 Miscellaneous Topics 369

out-branching problem. This is clearly equivalent to the minimum weight
out-branching problem since we can transform one to the other by modifying
the weights as follows: c′(a) = c(a∗) − c(a), where a∗ is a maximum weight
arc.

To find a maximum weight out-forest in D, we can simply extend D to
a new weighted digraph D′ by adding a new vertex r which dominates all
vertices in V and assign weight zero to all of these arcs. Clearly a maximum
weight out-branching rooted at r in D′ corresponds to a maximum weight out-
forest in D. As we have seen in Section 9.2, a maximum cost out-branching
can be found quite efficiently in an arc weighted digraph. However, in some
practical applications it is the calculation of the weight function c which con-
sumes the most time. Such an example is given by Ouyang, Memon, Suel and
Trendafilov [734], where a problem related to data compression is formulated
as a maximum weight spanning out-forest problem. In this application, the
calculation of the optimum out-forest, once the weights are found, takes only
a very small fraction of the time it takes to calculate all arc weights (where
the weight of an arc corresponds to how well one file can be compressed with
respect to another file).

In the application above and others too, it is possible to estimate, for a
given positive integer k, which are the k incoming arcs at each vertex with the
highest weight. Thus it is relevant to see how well one can approximate the
cost of an optimum out-forest by making the calculation on the digraph Dk

consisting only of the k maximum weight arcs entering each vertex. Bagchi,
Bhargava and Suel proved the following result.

Theorem 9.9.6 [56] Let D = (V, A) be a digraph and let c be a non-negative
cost function on A. Let k be a natural number and define Dk = (V, Ak) to be
the subdigraph of D induced by the set of the k arcs of maximum cost entering
each vertex in V . Denote by OPT (H) the maximum weight of an out-forest
in the digraph H. Then we have

OPT (Dk)
OPT (D)

≥ k

k + 1
. (9.15)

��

This is best possible as seen from the class of digraphs Hk = (V, A),
where V = {u, v, v1, v2, . . . , vk} and A = {uv, vv1, v1v, vv2, v2v, . . . , vvk, vkv}
and letting all arcs of the form viv have cost 1 + ε and the remaining arcs
have cost 1. Here OPT (Dk) = k + ε and OPT (D) = k + 1 so as ε → 0 we
get the ratio in the theorem [56].

We will not prove Theorem 9.9.6 here but just give a short argument
for k = 1. Let D, c be given and define D′ as we did above by adding a
new vertex r and arcs of cost zero from r to all vertices of D. Let D′

1 be
the digraph induced by the heaviest arc entering each vertex in D′ except
r (breaking ties arbitrarily). If D′

1 is an out-branching (from r) it is clearly

370 9. Branchings

optimal. Otherwise we may discard the lowest weight arc from each cycle in
D′

1 and add an arc from r to the head of the arc we remove. Clearly this
results in an out-branching from r whose cost is at least half of the optimum
one. Now we obtain the desired out-forest by deleting r.

If, instead of looking for an optimum out-forest, we want to find an op-
timum out-branching from a specified root in a given arc-weighted digraph,
then there can be no such approximation guarantee. It is easy to construct
examples for every k, where OPT (Dk)

OPT (D) can be made arbitrarily small (Exercise
9.20). This does not contradict the argument above for k = 1, since generally
arcs leaving the root may have any non-negative cost.

9.9.6 Branchings and Edge-Disjoint Trees

Clearly, if a directed multigraph D has two arc-disjoint out-branchings
B+

s1
, B+

s2
(possibly s1 �= s2), then each underlying multigraph UMG(D −

A(B+
si

)) is connected and hence has a spanning tree for i = 1, 2. The follow-
ing problem attributed to Thomassé9 can be seen as an attempt to find a
result linking Tutte’s characterization of graphs with two edge-disjoint trees
and a weakening of Edmonds’ branching theorem (for k = 2).

Problem 9.9.7 Find a good characterization of directed multigraphs D for
which there exists an out-branching B+

s rooted at some vertex of D so that
UMG(D −B+

s) is connected.

9.10 Exercises

9.1. Show how to derive Menger’s theorem (Theorem 5.4.1) from Edmonds’
branching theorem (Theorem 9.3.1).

9.2. Greedy min cost branching algorithms may fail. Construct examples of
weighted digraphs for which the natural generalization of Kruskal’s algorithm
for finding a minimum spanning tree to directed multigraphs will fail to find
a minimum cost out-branching from the specified root.

9.3. Efficient implementation of independence oracles for the matroid
intersection formulation of the minimum cost branching problem.
Show how to implement the necessary oracles for testing independence in the
two matroids M1, M2 which were used in Subsection 9.2.1. Your algorithms
should have complexity around O(m), where m is the number of arcs in the
directed multigraph.

9.4. (+) Finding a minimum cost subdigraph which has k arc-disjoint
out-branchings rooted at s in a directed multigraph. Show how to
formulate this as a matroid intersection problem. Then sketch an algorithm
to find the desired branchings. Hint: modify the matroids M1, M2 from Sub-
section 9.2.1.

9 It is mentioned on the URL http://www.cs.elte.hu/egres/

9.10 Exercises 371

9.5. (+) Finding a minimum cost set of new arcs to add to a directed
multigraph in order to ensure the existence of k arc-disjoint out-
branchings with a specified root. Show how to solve this problem (for-
mulated just before Section 9.2.2) using an algorithm for weighted matroid
intersection. Hint: use a similar approach as that in Exercise 9.4. Compare
also with Exercise 11.67.

9.6. Formulating the minimum spanning tree problem as a minimum
cost branching problem. Show that the minimum spanning tree problem
(given a connected undirected graph with non-negative weights on the edges,
find a spanning tree of minimum weight) can be formulated and solved as a
minimum cost branching problem.

9.7. (+) A polynomial algorithm for finding k arc-disjoint out-
branchings from a specified root. Show how to turn the proof of The-
orem 9.3.1 into a polynomial algorithm which either finds a collection of k
arc-disjoint branchings with root z, or a proof that no such collection of
branchings exists. Hint: use flows.

9.8. Greedy algorithm for arc-disjoint branchings. Instead of applying the
algorithmic version of Theorem 9.3.1 to find k arc-disjoint out-branchings
with a given root, one may try a greedy approach: find an out-branching B+

z

from z. Delete all arcs of B+
z . Find a new out-branching, delete its arcs and so

on. Give an example of a digraph D which has 2 arc-disjoint out-branchings
with root z, but not every out-branching B+

z can be deleted while leaving
another with root z.

9.9. (+) Arc-disjoint out-branchings with possibly different roots. Prove
the following result due to Frank [336]: In a directed multigraph D = (V, A)
there are k arc-disjoint out-branchings (possibly with different roots) if and
only if

t
X

i=1

d−(Xi) ≥ k(t− 1) (9.16)

holds for every subpartition {X1, X2, . . . , Xt} of V . Hint: add a new vertex
s and a minimal set of new arcs from s to V so that s is the root of k out-
branchings in the new graph. Prove that this minimal set of arcs has precisely
k arcs.

9.10. Generalize the example in Figure 9.3 to digraphs with arbitrarily many ver-
tices.

9.11. Construct, for every k ≥ 2, a k-arc-strong and k-regular directed multigraph
which has no hamiltonian path. Hint: you may construct one which has two
vertices so that removing these the remaining graph has four connected com-
ponents.

9.12. Prove Theorem 9.5.3. Hint: use induction on r = � log k�. Show how to trans-
form your proof into a polynomial algorithm for finding the desired out-
branching.

9.13. Show how to reduce the arc-disjoint in- and out-branching problem for the
case u �= v to the case u = v.

9.14. (+) Extend Theorem 9.6.2 to the case when v is on some 2-cycle. Hint: how
should the sets EA, EB and the branchings described be modified?

372 9. Branchings

9.15. Prove Theorem 9.6.4. Hint: use Theorem 9.6.2 and Exercise 9.14.

9.16. Prove Proposition 9.7.7.

9.17. Prove Lemma 9.9.2.

9.18. Show how to use submodular flows to decide in polynomial time whether a
mixed graph M has k edge-disjoint mixed branchings from a given root. Hint:
see Exercise 11.67 and adjust the upper/lower bounds on arcs appropriately.

9.19. (+) Prove Theorem 9.4.3. Hint: use Edmonds’ branching theorem and The-
orem 11.7.6.

9.20. For every choice of natural numbers k, K construct a digraph D = (V, A)
and a cost function c on A so that for some vertex r the cost of a maximum
weight out-branching from r in D is at least K times higher than the cost of
a maximum weight out-branching from r in Dk, where Dk is as in Theorem
9.9.6. Hint: start with k = 1 and generalize your construction to arbitrary k.
Also note that we do not require that every vertex has at least k arcs entering
in D (in which case Dk will contain all arcs entering that vertex).

9.21. Prove that the problem of finding an out-branching with maximum number
of leaves in an acyclic digraph is NP-hard. Hint: transform to this problem
the set cover problem formulated as a bipartite graph problem, i.e., given a
bipartite graph B = (X, Y ; E) find a minimum cardinality subset C of X
such that N(C) = Y . (Alon, Fomin, Gutin, Krivelevich and Saurabh [23].)

9.22. Arc-disjoint out-branchings with few leaves in tournaments. Let T
be a tournament with 3 arc-disjoint out-branchings rooted at s ∈ V (T).
Prove that T contains 3 arc-disjoint out-branchings B+

s,1, B
+
s,2, B

+
s,3 such that

B+
s,i has at most 4 leaves for i = 1, 2, 3. Explain briefly how to obtain 3 arc-

disjoint out-branchings B+
s,1, B

+
s,2, B

+
s,3 as above if we start from 3 arbitrary

arc-disjoint out-branchings from s in a tournament T . Hint: consider the
independence number of T minus one or more branchings.

9.23. (−) Prove that the problem of checking whether a digraph has an out-
branching with at most k leaves is NP-hard for each fixed natural number
k.

9.24. Prove that the algorithm MINLEAF described is correct and of running time
O(m+n1.5

p

m/ log n). Hint: use the fact that there is an algorithm of running

time O(n1.5
p

m/ log n) for finding a maximum matching in a bipartite graph
of order n and size m [39].

9.25. For a tournament T of order n, prove that �max(T) ≥ n−log2 n (Alon, Fomin,
Gutin, Krivelevich and Saurabh [22]).

9.26. Finding an out-tree which covers a prescribed vertex set. Show how
to decide in polynomial time whether a digraph D = (V, A) has an out-tree
with root s which contains all vertices of a prescribed subset X ⊆ V (and
possibly other vertices).

9.27. Show that the graph Steiner problem is NP-hard by describing a reduction
of the set covering problem to the graph Steiner problem.

10. Linkages in Digraphs

We saw in Chapter 5 that it is easy to check (e.g., using flows) whether a
directed multigraph D = (V, A) has k (arc)-disjoint paths P1, P2, . . . , Pk from
a subset X ⊂ V to another subset Y ⊂ V and we can also find such paths
efficiently. On many occasions (e.g., in practical applications) we need to be
able to specify the initial and terminal vertices of each Pi, i = 1, 2, . . . , k,
that is, we wish to find a so-called linkage from X = {x1, x2, . . . , xk} to
Y = {y1, y2, . . . , yk} such that Pi is an (xi, yi)-path for every i ∈ [k]. This
problem is considerably more difficult and is in fact NP-complete already
when k = 2. In this chapter we start by giving a proof of this fact and
then we discuss a number of results on sufficient conditions for the existence
of linkages, polynomial algorithms for special classes of digraphs, including
acyclic, planar and semicomplete digraphs in the case of vertex disjoint paths
and acyclic digraphs and some generalizations of tournaments in the case of
arc-disjoint paths. The reader will see that quite a lot can be said about the
linkage problems for special classes of digraphs and that still the problems
are not trivial for these classes of digraphs. Finally we briefly discuss topics
such as multi commodity flows and subdivisions of transitive tournaments in
digraphs with large out-degree.

10.1 Additional Definitions and Preliminaries

Recall from Chapter 5 that for a digraph D = (V, A) with distinct vertices
x, y we denote by κD(x, y) the largest integer k such that D contains k inter-
nally disjoint (x, y)-paths. When discussing intersections between paths P, Q
we will often use the phrase ‘let u be the first (last) vertex on P which is on
Q’. By this we mean that if, say, P is an (x, y)-path, then u is the only vertex
of P [x, u] (P [u, y]) which is also on Q.

Let x1, x2, . . . , xk, y1, y2, . . . , yk be distinct vertices of a digraph D. A
k-linkage from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D is a system of vertex-
disjoint paths P1, P2, . . . , Pk such that Pi is an (xi, yi)-path in D1. A digraph
1 Sometimes one allows that the paths may share one or both of their end-vertices,

i.e., V (Pi) ∩ V (Pj) ⊆ {xi, yi, xj , yj} whenever i �= j, where xi = yj or xi = xj is
possible.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 10,
© Springer-Verlag London Limited 2010

373

http://dx.doi.org/10.1007/978-1-84800-998-1_10

374 10. Linkages in Digraphs

D = (V, A) is k-linked if it contains a k-linkage from (x1, x2, . . . , xk) to
(y1, y2, . . . , yk) for every choice of distinct vertices x1, x2, . . . , xk, y1, y2, . . . , yk.
A digraph D is k-(arc)-cyclic if it has a cycle containing the vertices (arcs)
x1, x2, . . . , xk (a1, a2, . . . , ak) for every choice of k vertices (arcs). The follow-
ing easy observation is left to the reader as Exercise 10.1.

Proposition 10.1.1 Every k-linked digraph is k-cyclic and every 2k-cyclic
digraph is k-linked. ��

There is a close relation between linkage problems and problems con-
cerning cycles through prescribed vertices or arcs as can be seen from the
following complexity statement. The proof is left to the reader as Exercise
10.2.

Proposition 10.1.2 For general digraphs the following problems are equiva-
lent from a computational point of view (that is, if one is polynomially solvable
or NP-complete, then so are each of the others).

(P1) Given four distinct vertices u1, u2, v1, v2 in a digraph D. Decide whether
or not D has disjoint paths connecting u1 to v1 and u2 to v2. We call
this the 2-linkage problem.

(P2) Given two distinct arcs e1, e2 in a digraph D. Does D have a cycle
through e1 and e2?

(P3) Given two distinct vertices u and v in a digraph D. Does D have a
cycle through u and v?

(P4) Given two distinct vertices u and v in a digraph D. Does D have disjoint
cycles Cx, Cy such that x ∈ Cx and y ∈ Cy?

(P5) Given three distinct vertices x, y, z. Does D have an (x, z)-path which
also contains the vertex y? ��

We prove in Theorem 10.2.1 that the 2-linkage problem is NP-complete.
Hence it follows from Proposition 10.1.2 that all the problems mentioned in
Proposition 10.1.2 are NP-complete.

It is interesting to note that although problems (P1)-(P5) are all very hard
for general digraphs, the difficulty of these problems may vary considerably
for some classes of digraphs. For instance, problem (P3) is trivial for locally
semicomplete digraphs since such a cycle exists if and only if x and y are in
the same strong component of D. Problem (P4) is also easy for semicomplete
digraphs, since such cycles exist if and only if there exist disjoint 3-cycles
C, C ′ one containing x and the other containing y (Exercise 10.16). However,
problems (P1) and (P2) are considerably more difficult to prove polynomial,
even for tournaments (see Theorem 10.5.12). Note that (P2) and also (P5)
may be considered as special cases of (P1) if we drop the requirement that
the vertices must be distinct in (P1).

The k-linkage problem is the following straightforward generaliza-
tion of the 2-linkage problem. Given a digraph D and distinct vertices

10.2 The Complexity of the k-Linkage Problem 375

x1, x2, . . . , xk, y1, y2, . . . , yk. Does D have a collection of disjoint paths
P1, P2, . . . , Pk such that Pi is an (xi, yi)-path, for every i ∈ [k]?

10.2 The Complexity of the k-Linkage Problem

We start with the following result by Fortune, Hopcroft and Wyllie showing
that already for k = 2 the k-linkage problem is very difficult for general
digraphs.

Theorem 10.2.1 [332] The 2-linkage problem is NP-complete.

Since this theorem is very important and the gadget2 construction used
in the proof is quite illustrative, we give the proof in detail below. We follow
the proof in [332].

First we need a lemma whose proof is left as Exercise 10.4.

C
D

A B

8′

10′

12′ 12

8

9

10
5

5′

4′ 4

3′ 3

2′
2

6′
6

11′ 11

7 7′

9′

1′

1

(a)

(b)

(c)

D

A B

C

Figure 10.1 Part (a) shows a switch S. Parts (b) and (c) show schematic pictures
of a switch ([332, Fig. 1]). In (c) the two vertical arcs correspond to the paths
(8,9,10,4,11), respectively, (8’,9’,10’,4’,11’). Note that for convenience, we label the
arcs, rather than the vertices, in this Figure.

2 Quite often NP-completeness proofs are constructed by piecing together certain
gadgets about which one can prove certain properties. Based on these properties
one then shows that the whole construction has the desired properties. For other
instances of this technique, see e.g. Chapters 6 and 16.

376 10. Linkages in Digraphs

Lemma 10.2.2 [332] Consider the digraph S shown in Figure 10.1(a). Sup-
pose there are two disjoint paths P, Q passing through S such that P leaves
S at A and Q enters S at B. Then P must enter S at C and Q must leave
S at D. Furthermore, there exists exactly one more path R passing through
S which is disjoint from P, Q and this is either

(8, 9, 10, 4, 11) or (8′, 9′, 10′, 4′, 11′),

depending on the actual routing of P . ��

The digraph S in Figure 10.1 is called a switch. We can stack arbitrarily
many switches on top of each other and still have the conclusion on Lemma
10.2.2 holding for each switch. The way we stack is simply by identifying the
C and D arcs of one switch with the A and B arcs of the next (see Figure
10.2). A switch can be represented schematically as in Figure 10.1(c), or,
when we want to indicate stacking of switches, as in Figure 10.1(b).

D2 = B3

D1 = B2

C3 D3

S1

S2

S3

C2 = A3

C1 = A2

A1 B1

Figure 10.2 Stacking three switches on top of each other.

Proof of Theorem 10.2.1: The reduction is from 3-SAT (see the definition
in Section 17.5). Let F = C1 ∗C2 ∗ . . . ∗Cr be an instance of 3-SAT with vari-
ables x1, x2, . . . , xk. For each variable xi we let Hi be the digraph consisting

10.2 The Complexity of the k-Linkage Problem 377

of two internally disjoint (u, v)-paths of length r (the number of clauses in
F). We associate one of these paths with the literal xi and the other with
the literal xi. We are now ready to explain the construction of the digraph
D[F] and show that it contains disjoint (u1, v1)-, (u2, v2)-paths if and only if
F is satisfiable.

See Figure 10.3. We form a chain H1→H2→ . . .→Hk on the subdigraphs
corresponding to each variable (see the middle of the figure, Hi corresponds
to the variable xi). With each clause Ci we associate three switches, one for
each literal it contains. The left paths of these switches (that is, the paths in
the left-hand part of the figure) all start at the vertex ni−1 and end at ni.
The right path of each switch is substituted for a (private) arc of Hi such that
the arc is taken from the path which corresponds to xi if the literal is xi and
from the path which corresponds to xi if the literal is xi. The substitution
is shown for the clause Ci = x1 + x2 + x5 in the figure. By the choice of the
lengths of the paths in Hi we can make this substitution so that different arcs
in Hi are substituted by different switches corresponding to several clauses,
all of which contain the literal xi or xi. The switches corresponding to the
clause Ci are denoted Si,1, Si,2, Si,3. We stack these switches in the order
S1,1S1,2S1,3 . . . Sr,1Sr,2Sr,3 as shown in the right part of the figure. A two-
way arc between a clause and some Hj (shown only for Ci) indicates a switch
that is substituted for these arcs3. Finally, we join the D arc of the switch
Sr,3 to the vertex z1 of H1, add an arc from wk in Hk to n0 and choose
vertices u1, u2, v1, v2 as shown (that is, u2 is the tail of the C arc for Sr,3, u1

is the tail of the B arc of S1,1 and v2 is the head of the A arc of S1,1). This
completes the description of D[F].

We claim that D[F] contains disjoint (u1, v1)-, (u2, v2)-paths if and only
if F is satisfiable. Suppose first that D[F] has disjoint (u1, v1)-, (u2, v2)-paths
P, Q. It follows from the definition of D[F] that the paths P and Q will use
all the arcs that go between two switches (i.e., those arcs that are explicitly
shown in the right-hand side of Figure 10.3). Hence, by Lemma 10.2.2, after
removing the arcs of Q and the arcs of P from u1 to the first vertex z1 of
H1, the only remaining way to pass through a switch Si,j is to use either the
right path or the left path of Si,j but not both! By the construction of D[F],
P must traverse the subdigraphs corresponding to the variables in the order
H1, H2, . . . , Hk and each time P uses precisely one of the two paths in Hi

(recall again that some of the arcs in Hi in Figure 10.3 correspond to the
right path of some switch). Let T be the truth assignment which sets xi := 1
if P uses the path corresponding to xi and let xi := 0 in the opposite case.
We show that this is a satisfying truth assignment for F .

It follows from the construction of D[F] and the remark above on arcs
used by Q and the first part of P from u1 to H1 that the path P contains all
the vertices n0, n1, . . . , nr in that order. Since each of the paths from nj to

3 Note that this is the same switch which is shown in the right-hand side of the
figure!

378 10. Linkages in Digraphs

v2

u2

u1

v1

n0

n1

ni−1

ni

nr

nr−1

Ci = x1 + x2 + x5

x1 x1

x2 x2

xk xk

Sr,3

Sr,2

Sr,1

Sr−1,3

S1,1

S1,2

S1,3

via Si,1

via Si,2

via Si,3

to x5

H1

H2

Hk

z1

w1

wk

zk

w2

z2

Figure 10.3 A schematic picture of the digraph D[F].

nj+1 is part of a switch for every j = 0, 1, . . . r− 1, we must use the left path
of precisely one of these switches to go from nj to nj+1. By Lemma 10.2.2,
every time we use a left path of a switch, the right path cannot also be used.
From this we see that for each clause Cj , j ∈ [r], it must be the case that
at least one of the literals y (in particular the one whose left path we could
use) of Cj becomes satisfied by our truth assignment. This follows because
P must use the path corresponding to y in the middle. Thus we have shown
that F is satisfiable.

Suppose now that T ′ is a satisfying truth assignment for F . Then for
every variable xi which is true (false) we can use the subpath corresponding
to xi (xi) in Hi. For each clause Cj we can fix one literal which is true and
use the left path of the switch that corresponds to that literal (that path
cannot be blocked by the way we chose subpaths inside the Hi’s). By Lemma
10.2.2, we can find disjoint paths P, Q such that P starts in u1 and ends in
the initial vertex z1 of H1 and Q is a (u2, v2)-path in the right part of D[F].
Furthermore, by the same lemma, after removing the vertices of P and Q,
we still have the desired paths corresponding to each literal available. This
shows that we can route the disjoint (u1, v1)-, (u2, v2)-paths in D[F]. ��

10.3 Sufficient Conditions for a Digraph to Be k-Linked 379

The digraph D[F] above is not strongly connected and one may ask
whether the problem becomes easier if we require high vertex-strong con-
nectivity. However, using Theorem 10.2.1, Thomassen [867] proved that the
2-linkage problem remains NP-complete even for highly connected digraphs.

Johnson, Robertson, Seymour and Thomas [573] proved the following
theorem for directed tree-width. By Lemma 2.13.9, this theorem holds also
for directed path-width and DAG-width (see Section 2.13 for definitions of
directed width parameters).

Theorem 10.2.3 [573] Let k be a fixed positive integer. The k-linkage prob-
lem is polynomial-time solvable for digraphs of bounded directed tree-width
(DAG-width, directed path-width, respectively). ��

Lynch proved that for undirected graphs the k-linkage problem is NP-
complete when k is part of the input [662]. The case k = 2 was proved to
be polynomially solvable by Seymour [808], Shiloach [819] and Thomassen
[855] and a complete characterization was obtained by Seymour [808] and
Thomassen [855]. The results in [808, 855] (see also Jung’s paper [580]) imply
that every 6-connected undirected graph is 2-linked (see also the remark
at the end of Section 10.6). For fixed k ≥ 3 the k-linkage problem is also
polynomially solvable [785]. This is just one of many important consequences
of the deep work of Robertson and Seymour on Graph Minors. The interesting
thing is that [785] only proves the existence of an O(n3) algorithm for fixed k
(the constant depending heavily on k). As far as we know, no actual algorithm
has ever been published, even in the case k = 3.

The following result, due to Thomassen, shows that for directed graphs
the situation is quite different from the undirected case. Namely, there is no
degree of vertex-strong connectivity which will guarantee a directed graph to
be 2-linked.

Theorem 10.2.4 [867] For every natural number k there exists an infinite
family of k-strong and non-2-linked digraphs Dk. ��

In fact, Thomassen proved that even for the special case of cycles through
two fixed vertices (Problem (P3) of Proposition 10.1.2) no degree of vertex-
strong connectivity suffices to guarantee such a cycle. Recall that a digraph
D = (V, A) is 2-cyclic if it has a cycle containing x, y for every choice of
distinct vertices x, y ∈ V .

Theorem 10.2.5 [867] For every natural number k there exists an infinite
family of k-strong digraphs D′

k which are not 2-cyclic. ��

10.3 Sufficient Conditions for a Digraph to Be k-Linked

In this section we briefly discuss some sufficient conditions for a digraph
to be k-linked for some (prescribed) k. It is easy to see that the complete

380 10. Linkages in Digraphs

digraph
↔
Kn is k-linked for all k ≤ �n/2�. The next result due to Manoussakis

shows that digraphs which are close to being complete are k-linked whenever
|V (D)| ≥ 2k. The proof is left as Exercise 10.6.

Theorem 10.3.1 [680] Let D = (V, A) be a digraph of order n and let k be
an integer such that n ≥ 2k ≥ 2. If |A| ≥ n(n − 2) + 2k, then D is k-linked.

��

The proof of Theorem 10.3.1 in [680] is based on the following lemma.

Lemma 10.3.2 [680] If D − x is k-linked for some vertex x ∈ V which
satisfies d+(x), d−(x) ≥ 2k − 1, then D is k-linked.

Proof: Exercise 10.8. ��
The requirement on the number of arcs in Theorem 10.3.1 is very strong

and hence the result is not very useful. However, Manoussakis showed by an
example that the number of arcs in Theorem 10.3.1 is best possible [680].

The next result, due to Heydemann and Sotteau, shows that for 2-linkages
one can also get a sufficient condition in terms of δ0(D). The proof is easy
and is left as Exercise 10.7. See also Theorem 10.3.4 below.

Theorem 10.3.3 [525] If a digraph D satisfies δ0(D) ≥ n/2 + 1, then D is
2-linked. ��

The condition above is still quite restrictive and one would expect a
stronger result to hold. Examples from [525] show that we cannot weaken
the degree condition. However, we can strengthen the result in the following
way.

Theorem 10.3.4 If a digraph D satisfies δ0(D) ≥ n/2 + 1, then for every
choice of distinct vertices x, y, u, v ∈ V , D contains internally disjoint paths
P, Q such that P is an (x, y)-path, Q is a (u, v)-path and V (P)∪ V (Q) = V .

Proof: Let X = V − {x, y, u, v} and construct D′ from D − {x, y, u, v} by
adding two new vertices p and q such that

N−
D′(p) = N−

D (v) ∩X, N+
D′(p) = N+

D (x) ∩X,

N−
D′(q) = N−

D (y) ∩X, N+
D′(q) = N+

D (u) ∩X.

It is easy to see that for every w ∈ V − {x, y, u, v}, d−D′(w) ≥ d−D(w)− 2 and
d+

D′(w) ≥ d+
D(w) − 2. Hence the resulting digraph D′ which has n′ = n − 2

vertices satisfies δ0(D′) ≥ n′/2. By Corollary 6.4.3, D′ has a hamiltonian
cycle C. Let p+, q+ (p−, q−) denote the successors (predecessors) of p, q on
C. Then xC[p+, q−]y and uC[q+, p−]v are the desired paths which cover V .

��
Manoussakis extended Theorem 10.3.3 to 3-linkages.

10.3 Sufficient Conditions for a Digraph to Be k-Linked 381

Theorem 10.3.5 [680] If a digraph D has n ≥ 9 vertices and δ0(D) ≥
n/2 + 2, then D is 3-linked. ��

Based on Theorems 10.3.3 and 10.3.5, Manoussakis posed the following
problem.

Problem 10.3.6 [680] Determine the minimum function f(n, k) such that
every digraph D on n vertices which satisfies δ0(D) ≥ f(n, k) is k-linked.

Note that f(n, k) ≤ n − 1 for n ≥ 2k, since the complete digraph on
n ≥ 2k vertices is k-linked. According to Manoussakis [680], Hurkens proved
that f(n, 4) = n/2+3 when n ≥ 13 and Manoussakis mentioned in [680] that
perhaps f(n, k) ≤ n/2 + k − 1 holds for n ≥ 4k − 3. This was confirmed for
n sufficiently large by Kühn and Osthus [628].

Theorem 10.3.7 [628] Let k ≥ 2 be an integer. Every digraph D of order
n ≥ 400k3 which satisfies δ0(D) ≥ n/2 + k − 1 is k-linked. ��

Kühn and Osthus [628] also prove that the bound suggested by Manous-
sakis would be best possible for every k.

Proposition 10.3.8 [628] For every integer k ≥ 2 and every n ≥ 2k there
exists a digraph D on n vertices with δ0(D) ≥ �n/2� + k − 2 which is not
k-linked. ��

By Proposition 10.1.1, the next result immediately implies Theorem
10.3.7.

Theorem 10.3.9 [628] Let k ≥ 2 be an integer. Every digraph D of order
n ≥ 200k3 which satisfies δ0(D) ≥ (n + k)/2 − 1 is k-cyclic. ��

A digraph D = (V, A) is k-cyclic hamiltonian if for every choice of dis-
tinct vertices x1, x2, . . . , xk ∈ V there is a hamiltonian cycle in D which visits
x1, x2, . . . , xk in that order. In [630] Kühn, Osthus and Young use Theorem
10.3.9 to prove the following.

Theorem 10.3.10 [630] For every integer k ≥ 3 there exists an integer
n0(k) such that every digraph D on at least n0(k) vertices and minimum
semi-degree δ0(D) ≥ �(n + k)/2� − 1 is k-cyclic Hamiltonian. ��

Clearly this result also implies a result on hamiltonian cycles containing
k prescribed arcs. We leave the details to the reader.

Let us conclude this section with a result in connection with problem (P3)
of Proposition 10.1.2. It is easy to see that if a digraph is 2-linked, then it
is also 2-arc-cyclic and hence 2-cyclic. Heydemann and Sotteau proved that
if we only want a digraph to be 2-cyclic, then it is possible to weaken the
condition in Theorem 10.3.1 somewhat.

Theorem 10.3.11 [525] Every strong digraph D = (V, A) with δ0(D) ≥ 2
and |A| ≥ n2 − 5n + 15 is 2-cyclic. ��

382 10. Linkages in Digraphs

10.4 The k-Linkage Problem for Acyclic Digraphs

When the digraph considered is acyclic, there is enough structure to allow an
efficient solution of the k-linkage problem for every fixed k. Perl and Shiloach
[746] proved that the 2-linkage problem is polynomially solvable for acyclic
digraphs. In their elegant proof they showed how to reduce the 2-linkage
problem for a given acyclic digraph to a simple path finding problem in
another digraph. Fortune, Hopcroft and Wyllie extended Perl and Shiloach’s
result to arbitrary k. The proof of this result below is an extension of the
proof by Perl and Shiloach (see also Thomassen’s survey [865]).

Theorem 10.4.1 [332] For each fixed k, the k-linkage problem is polyno-
mially solvable for acyclic digraphs.

Proof: Let D = (V, A) be acyclic and let x1, x2, . . . , xk, y1, y2, . . . , yk be dis-
tinct vertices of D for which we wish to find a k-linkage from (x1, x2, . . . , xk)
to (y1, y2, . . . , yk). We may assume that d−D(xi) = d+

D(yi) = 0 for all i ∈ [k],
since such arcs play no role in the problem and can therefore be deleted.

Form a new digraph D′ = (V ′, A′) whose vertex set is the set of all k-
tuples of distinct vertices of V . For any such k-tuple (v1, v2, . . . , vk) there is
at least one vertex, say vr, which cannot be reached by any of the other vi

by a path in D. (Here we used that D is acyclic.) For each out-neighbour
w of vr such that w �∈ {v1, v2, . . . , vk}, we let A′ contain an arc from
(v1, v2, . . . , vr−1, vr, vr+1, . . . , vk) to (v1, v2, . . . , vr−1, w, vr+1, . . . , vk). Only
arcs as those described above are in A′.

We claim that D′ has a directed path from the vertex (x1, x2, . . . , xk) to
the vertex (y1, y2, . . . , yk) if and only if D contains disjoint paths P1, P2, . . . ,
Pk such that Pi is an (xi, yi)-path for each i ∈ [k].

Suppose first that D′ has a path P from (x1, x2, . . . , xk) to (y1, y2, . . . , yk).
By definition, every arc of P corresponds to one arc in D. Hence we get a col-
lection of paths P1, P2, . . . , Pk such that Pi is an (xi, yi)-path for each i ∈ [k]
by letting Pi contain those arcs that correspond to a shift in the ith vertex of
a k-tuple. Suppose two of these paths, Pi, Pj , are not disjoint. Then it follows
from the assumption that d−D(xi) = d+

D(yi) = 0 for all i ∈ [k] and the defi-
nition of D′ that there is some vertex u ∈ V − {x1, x2, . . . , xk, y1, y2, . . . , yk}
such that u ∈ V (Pi) ∩ V (Pj). Let w (z) be the predecessor of u on Pi (Pj).
We may assume without loss of generality that the arc on P corresponding
to wu is used before that corresponding to zu. This means that at the time
we change from w to u in the ith coordinate, the jth coordinate corresponds
to a vertex z′ which can reach u in D (through z). Now it follows from the
definition of the arcs in A′ that we could not have changed the ith coordinate
again before we have used the arc corresponding to zu in D′. However, that
would lead to a k-tuple which contains two copies of the same vertex u from
D, contradicting the definition of D′. Hence Pi and Pj must be disjoint.

Suppose now that D contains disjoint paths Q1, Q2, . . . , Qk such that
Qi is an (xi, yi)-path for all i ∈ [k]. Then we can construct a path from

10.4 The k-Linkage Problem for Acyclic Digraphs 383

(x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D′ as follows. Start with the tuple
(x1, x2, . . . , xk). At any time we choose a coordinate j of the current k-tuple
(z1, z2, . . . , zk) such that the vertex zj is not in {y1, y2, . . . , yk} and zj cannot
be reached in D by any other vertex from the tuple. Note that such a vertex
exists since D is acyclic and d+(yi) = 0 for all i ∈ [k]. It is easy to show
by induction that we will always have zj ∈ V (Qj). Now we use the arc zjw
corresponding to the arc out of zj on Qj and change the jth coordinate from
zj to w. It follows from the fact that Q1, . . . , Qk are disjoint that this will
produce a path from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D′.

Given any instance (D, x1, x2, . . . , xk, y1, y2, . . . , yk) we can produce the
digraph D′ in time O(k!nk+2) by forming all possible k-tuples and deciding
which arcs to add based on the definition of D′. Then we can decide the
existence of a path from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in polynomial time
using BFS in D′. This proves that the k-linkage problem is polynomial for
each fixed k. ��

Note that we don’t actually have to construct D′ in advance. It suffices
to introduce the vertices and arcs when they become relevant for the search
for a path from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in D′.

It is not difficult to see that we can also use the approach above to find
the cheapest collection of k disjoint paths where the ith path is an (xi, yi)-
path in a given acyclic digraph with non-negative costs on the arcs. Here the
goal is to minimize the total cost of the arcs used by the paths (see Exercise
10.11).

Suppose that D is an acyclic graph and v is a vertex of in-degree 1. Let
u be the unique in-neighbour of v. Then the digraph D′ = D//uv which we
obtain by path-contracting the arc uv is also acyclic. Furthermore, contract-
ing such an arc can have no effect on the existence of a certain linkage in
the digraph since only one path in such a linkage may enter the vertex v.
This shows that we may assume that all vertices except the terminals have
in- and out-degree at least 2 when considering the 2-linkage problem (and
more generally the k-linkage problem) for acyclic graphs. Furthermore we
may assume that no arc enters xi and no arc leaves yi, i = 1, 2.

It is also easy to see that, given any acyclic digraph D with distinct
vertices x1, x2, y1, y2, in polynomial time, we can either decide the existence
of disjoint (x1, y1)-, (x2, y2)-paths, or obtain a new reduced digraph D∗ such
that d−D∗(x1) = d−D∗(x2) = d+

D∗(y1) = d+
D∗(y2) = 0, every other vertex has in-

and out-degree at least 2 in D∗ and D∗ has the desired paths if and only if
D has such paths. Hence, from a computational point of view, the following
result due to Thomassen completely solves the 2-linkage problem for acyclic
digraphs.

384 10. Linkages in Digraphs

Theorem 10.4.2 [862] Let D be an acyclic digraph on at least five ver-
tices with vertices x1, x2, y1, y2 such that d−(x1) = d−(x2) = 0, d+(y1) =
d+(y2) = 0 and every other vertex has in- and out-degree at least 2. Sup-
pose D does not contain disjoint (x1, y1)-, (x2, y2)-paths. Let H denote the
digraph one obtains from D by adding two new vertices x0, y0 and the arcs
x0x1, x0x2, y1y0, y2y0, x1y2, x2y1. Then H can be drawn in the plane such that
the outer cycle is formed by the two paths x0x1y2y0, x0x2y1y0 and every other
facial cycle4 is the union of two directed paths in H (see Figure 10.4). ��

x1 y2

y0

y1x2

x0

Figure 10.4 The digraph H obtained from the acyclic digraph D by adding x0, y0

and arcs x0x1, x0x2, y1y0, y2y0, x1y2, x2y1 (shown as bold arcs) as described in
Theorem 10.4.2.

Theorem 10.4.2 was generalized by Metzlar [697]. The following interest-
ing connection between the 2-linkage problem for undirected graphs and the
2-linkage problem for acyclic digraphs is a corollary of Theorem 10.4.2.

Corollary 10.4.3 [862] Let D = (V, A) be an acyclic digraph and sup-
pose that the vertices x1, x2, y1, y2 are all distinct and satisfy that d−(xi) =
d+(yi) = 0 for i = 1, 2 and that all other vertices of D have in- and out-
degree at least 2. Then D contains disjoint (x1, y1)-, (x2, y2)-paths if and
only if UG(D) contains such paths. ��

Thomassen [862] mentioned that it would be interesting to have a direct
proof of Corollary 10.4.3. Such a proof was given by Lucchesi and Giglio in
[660]. In that paper the connection between the 2-linkage problem for acyclic
digraphs and the 2-linkage problem for undirected graphs was studied. It was
shown that there is a very close connection between the two problems.

The example in Figure 10.5 shows that Corollary 10.4.3 has no analogue
when k > 2.
4 A cycle C in a plane graph G is facial with respect to a planar drawing of G if

C is the boundary of some face.

10.5 Linkages in (Generalizations of) Tournaments 385

x3

y1

y2

y3

a c

db

x2

x1

Figure 10.5 An acyclic digraph D in which every non-special vertex has in- and
out-degree at least 2. There does not exist disjoint paths P1, P2, P3 such that Pi is
an (xi, yi)-path, i = 1, 2, 3. However, UG(D) has such paths.

Theorem 10.4.4 The weak k-linkage problem and k-linkage problem are
W[1]-hard even for acyclic digraphs (k is the parameter). ��

The fact that the weak k-linkage problem for acyclic digraphs is W[1]-hard
is proved in [824]. The k-linkage part of the theorem follows from the weak
k-linkage part and the transformation from a digraph D to its line digraph
L(D) (see also [425]).

10.5 Linkages in (Generalizations of) Tournaments

We now turn to linkage problems for tournaments and their generalizations.
It turns out that for semicomplete digraphs enough structure is present to
allow a polynomial algorithm for the 2-linkage problem (Theorem 10.5.12).
We show in Subsection 10.5.3 that this algorithm can be used as a subroutine
in a polynomial algorithm for the 2-linkage problem for a large super class of
the semicomplete digraphs.

We start out with some sufficient conditions in terms of the degree of
(local) strong connectivity.

10.5.1 Sufficient Conditions in Terms of (Local-)Connectivity

The following proposition was proved by Thomassen [859] in the case when
D is a tournament. By inspection of the proof in [859] one sees that the only
place there where it is used that one is dealing with a tournament, rather
than an arbitrary digraph, is to be sure that there is an arc between every
successor of x and every predecessor of y on the paths P1, . . . , Pp below. Hence
we can state and prove Thomassen’s result in the following much stronger
form:

386 10. Linkages in Digraphs

Proposition 10.5.1 [74, 859] Let D be a digraph and x, y, u, v distinct ver-
tices of D such that κ(u, v) ≥ q + 2 and P1, . . . , Pp are internally disjoint
(x, y)-paths such that the subdigraph D〈V (P1) ∪ . . . ∪ V (Pp)〉 has no (x, y)-
path of length less than or equal to 3 and such that the successor of x on
Pi is adjacent to the predecessor of y on Pj for all i, j ∈ [p]. Then D has q
internally disjoint (u, v)-paths, the union of which intersects at most 2q of
the paths P1, . . . , Pp.

Proof: We may assume that p ≥ 2q +1, since otherwise the claim is trivially
true. Let Q = {Q1, Q2, . . . , Qq} be internally disjoint (u, v)-paths in D −
{x, y}. We define two collections of subpaths of the paths in Q as follows (in
Exercise 10.17 the reader is asked to describe an algorithm for constructing
such collections starting from Q).

Let Q′
1, Q

′
2, . . . , Q

′
q be chosen such that either Q′

i = Qi or Q′
i = Q[u, z]

for some vertex z ∈ V (Pj) where j ∈ [p] and Pj [z, y] has only the vertex z in
common with U = V (Q′

1)∪ . . .∪V (Q′
q). We also assume that |U | is minimum

subject to the conditions above. If some path Pr contains a vertex w from U
and Pr[w, y] contains no vertices from U−w, then the minimality of U implies
that one of the paths Q′

1, Q
′
2, . . . , Q

′
q terminates in w. This implies that the

collection Q′
1, Q

′
2, . . . , Q

′
q intersects at most q of the paths P1, P2, . . . , Pp.

Analogously we can define a collection Q′′
1 , Q′′

2 , . . . , Q′′
q where Q′′

i is either
Qi or Q′′

i = Qi[w, v] for a vertex w on some Pk satisfying that Pk[x, w] con-
tains only the vertex w from V (Q′′

1)∪. . .∪V (Q′′
q) and such that Q′′

1 , Q′′
2 , . . . , Q′′

q

intersect at most q of the paths P1, P2, . . . , Pp.
Now we construct the desired paths as follows. For each i ∈ [q], if Q′

i = Qi

or Q′′
i = Qi, then let Ri := Qi. Otherwise let z be the terminal vertex

of Q′
i, let w be the initial vertex of Q′′

i and let r, j be chosen such that
z ∈ V (Pj), w ∈ V (Pr). Let x′ (y′) be the successor (predecessor) of x (y) on
Pr (Pj). By the assumption that D contains no (x, y)-path of length 3 and
that every successor of x is adjacent to every predecessor of y on the paths
P1, . . . , Pp, we get that y′x′ ∈ A. Let Ri := Q′

iPj [z, y′]Pr[x′, w]Q′′
i (see Figure

10.6).
Now R1, R2, . . . , Rq are internally disjoint (u, v)-paths and by construc-

tion they contain no more than 2q vertices from the paths P1, P2, . . . , Pp. ��
Our proof above is constructive and can easily be turned into a fast algo-

rithm for finding the desired collection of paths (Exercise 10.18). The follow-
ing result by Thomassen is an easy corollary.

Corollary 10.5.2 [859] Every 5-strong semicomplete digraph is 2-linked.

Proof: Let D be a 5-strong semicomplete digraph and let x1, x2, y1, y2 be
arbitrary distinct vertices of D. If D − {x3−i, y3−i} has an (xi, yi)-path P
of length at most 3 for i = 1 or i = 2, then D − P is strong and hence
contains an (x3−i, y3−i)-path. Hence we may assume that every (xi, yi)-path
in D − {x3−i, y3−i} has length at least 4 for i = 1, 2.

10.5 Linkages in (Generalizations of) Tournaments 387

y

Q′′
i

y′

x′
w

z

Q′
i

Pj

Pr

u

v

x

Figure 10.6 How to obtain Ri from Q′
i, Q

′′
i , Pj and Pr. The bold arcs indicate the

resulting (u, v)-path.

Let P1, P2, P3 be internally disjoint (x1, y1)-paths in D − {x2, y2}. Then
D and these paths satisfy the assumption of Theorem 10.5.1 for q = 1 and
it follows that D has an (x2, y2)-path which intersects at most two of the
paths P1, P2, P3. Since x1, x2, y1, y2 were chosen arbitrarily, it follows that D
is 2-linked. ��

Bang-Jensen [65] constructed the 4-strong non-2-linked semicomplete di-
graph in Figure 10.7, showing that 5-strong connectivity is best possible for
general semicomplete digraphs. We leave it to the reader to check that one
can generalize this example to an infinite family of 4-strong semicomplete
digraphs none of which is 2-linked.

We now turn our attention to special classes of generalizations of tour-
naments. The first lemma shows that for the class of round decomposable
locally semicomplete digraphs one can improve the bound from Corollary
10.5.2. The proof is left as Exercise 10.22.

Lemma 10.5.3 [74] For each natural number k, every (3k−2)-strong round
decomposable locally semicomplete digraph is k-linked. ��

In order to get a result on k-linkages for locally semicomplete digraphs
that are not round decomposable we use the following lemma which allows
us to apply Proposition 10.5.1. Recall that by Exercise 2.34, α(D) ≤ 2 if D
is locally semicomplete but not round decomposable.

Lemma 10.5.4 [74] Let x and y be distinct vertices in a locally semicomplete
digraph D such that α(D) ≤ 2 and let P1, . . . , Pp be internally disjoint (x, y)-

388 10. Linkages in Digraphs

y2

y1

x1

x2

Figure 10.7 A 4-strong non-2-linked semicomplete digraph T . All arcs not shown
go from left to right and x1y2x1, x2y1x2 are the only 2-cycles in T . There is no pair
of disjoint (x1, y1)-,(x2, y2)-paths in T . The tournament which results from T by
deleting the arcs y2x1 and y1x2 is also 4-strong.

paths such that the locally semicomplete digraph D′ = D〈V (P1)∪ . . .∪V (Pp)〉
has no (x, y)-path of length less than 6. Then for all 1 ≤ i, j ≤ p, the prede-
cessor u of y on Pi dominates the successor v of x on Pj.

Proof: We may assume that each Pi is a minimal (x, y)-path. Suppose there
exist i and j such that the predecessor u of y on Pi is not adjacent to the
successor v of x on Pj . Note that the assumption of the lemma and Exercise
10.20 implies that y→x. Therefore D′ is strong and we conclude from Exercise
10.20 (applied to u, v) that D′ contains an (x, y)-path of length at most 5,
contradicting the assumption. Hence u→v must hold. ��

The following theorem by Bang-Jensen gives a sufficient condition for the
existence of a specified k-linkage in a locally semicomplete digraph which is
not round decomposable in terms of local connectivities. It generalizes a result
by Thomassen for tournaments [859]. Bang-Jensen also proved an analogous
result for quasi-transitive digraphs, see [74] for details.

Theorem 10.5.5 [74] There exists, for each natural number k, a natural
number f(k) such that the following holds. If D is a locally semicomplete
digraph with α(D) ≤ 2 and x1, x2, . . . , xk, y1, y2, . . . , yk are distinct vertices
in D such that κ(xi, yi) ≥ f(k) for all i ∈ [k], then D has disjoint paths
P1, P2, . . . , Pk where Pi is an (xi, yi)-path for all i ∈ [k].

10.5 Linkages in (Generalizations of) Tournaments 389

Proof: Let f(1) = 1 and f(k) = 2(k − 1)f(k − 1) + 2k + 1 for k ≥ 2.
We prove by induction on k that this choice works for f . This is clear for
k = 1, so we proceed to the induction step assuming k ≥ 2. Suppose that
x1, x2, . . . , xk, y1, y2, . . . , yk are distinct vertices in a locally semicomplete di-
graph D for which α(D) ≤ 2 and assume that κ(xi, yi) ≥ 2(k − 1)f(k − 1) +
2k+1 for all i ∈ [k]. We prove that D−{x2, . . . , xk, y2, . . . , yk} has an (x1, y1)-
path P1 such that κH(xi, yi) ≥ f(k−1) for i = 2, . . . , k, where H = D−V (P1).
Then the result follows by induction. If D − {x2, . . . , xk, y2, . . . , yk} has an
(x1, y1)-path of length at most 5, then this can play the role of P1, so assume
that no such path exists. Let Q1, Q2, . . . , Q2(k−1)f(k−1)+1 be internally dis-
joint (x1, y1)-paths in D−{x2, . . . , xk, y2, . . . , yk}. We show that one of these
can play the role of P1. First note that by Lemma 10.5.4 and the remark
above, we have that for all 1 ≤ i, j ≤ 2(k − 1)f(k − 1) + 1 the predeces-
sor of y1 on Qi dominates the successor of x1 on Qj . Hence, by Proposi-
tion 10.5.1, for each i = 2, 3, . . . , k, there are internally disjoint (xi, yi)-paths
P1,i, P2,i, . . . , Pf(k−1),i which together intersect at most 2f(k−1) of the paths
Q1, Q2, . . . , Q2(k−1)f(k−1)+1. Hence there is at least one path Qr which inter-
sects none of Pj,i, 2 ≤ i ≤ k, 1 ≤ j ≤ f(k − 1). Thus we can use that Qr as
P1. ��

Combining Lemma 10.5.3, Theorem 10.5.5 and Theorem 2.10.15 we obtain
the following result by Bang-Jensen (extending a similar result for semicom-
plete digraphs by Thomassen [859]). Here and below f(k) is the function
which is defined in the proof of Theorem 10.5.5.

Theorem 10.5.6 [74] There exists, for each natural number k, a natural
number f(k) such that every f(k)-strong locally semicomplete digraph is k-
linked. ��

Corollary 10.5.7 [74] Every f(k)-strong locally semicomplete digraph is k-
arc-cyclic. ��

The function f(k) is probably far from best possible for Theorem 10.5.6
and Corollary 10.5.7. In particular, f(2) = 7, but, using Theorem 2.10.15, it
should be possible to prove that the following holds.

Conjecture 10.5.8 [74] Every 5-strong locally semicomplete digraph is 2-
linked.

10.5.2 The 2-Linkage Problem for Semicomplete Digraphs

In the proof of Corollary 10.5.2 we really only used that κT−{xi,yi}(x3−i, y3−i)
was at least 3 for i = 1, 2 in order to ensure the existence of three internally
disjoint (x1, y1)-paths in D−{x2, y2} and then we applied Proposition 10.5.1.
Bang-Jensen strengthened this sufficient condition as follows.

390 10. Linkages in Digraphs

Theorem 10.5.9 [65] Let T be a semicomplete digraph and let x1, x2, y1, y2

be distinct vertices of T . Suppose that

min{κT−{x2,y2}(x1, y1), κT−{x1,y1}(x2, y2)} ≥ 2 and (10.1)

max{κT−{x2,y2}(x1, y1), κT−{x1,y1}(x2, y2)} ≥ 3, (10.2)

then T has a pair of disjoint (x1, y1)-, (x2, y2)-paths. ��

This is best possible with respect to local connectivities. The semicom-
plete digraph in Figure 10.7 shows that we cannot replace 3 by 2 above.
However, see Theorem 10.5.13 for a special case where we can do this.

Bang-Jensen showed that for cycles through two arcs (the special case
when y1→x2 and y2→x1), we can strengthen Corollary 10.5.2 in the case
of tournaments. The digraph in Figure 10.7 shows that for semicomplete
digraphs we cannot always weaken the connectivity requirement.

Theorem 10.5.10 [65] Every 3-strong tournament and every 5-strong semi-
complete digraph is 2-arc-cyclic. ��

It follows from the proof of Theorem 10.5.10 in [65] that for a fixed pair of
arcs e, e′ we can replace the connectivity requirement that D is 5-strong by
(5 − i)-strong provided that i of the arcs e, e′ are not in a 2-cycle (i = 1, 2).

Conjecture 10.5.11 [74] Every 3-strong locally tournament digraph is 2-
arc-cyclic.

The example in Figure 10.7 indicates that finding a complete generaliza-
tion of those semicomplete digraphs that do not have disjoint (x, y)-, (u, v)-
paths for a given set of distinct vertices x, y, u, v may be very difficult. In the
special case where we allow u and y to be equal, that is, we are seeking an
(x, v)-path which passes through the vertex u (that is, the problem (P5) in
Proposition 10.1.2), it is indeed possible to give a characterization. Such a
characterization was given by Bang-Jensen in [67].

From the algorithmic point of view, the 2-linkage problem for semicom-
plete digraphs was solved by Bang-Jensen and Thomassen who proved the
following result:

Theorem 10.5.12 [118] The 2-linkage problem is solvable in time O(n5) for
semicomplete digraphs. ��

The proof of this result in [118] is highly non-trivial. The basic approach
is divide and conquer and several non-trivial results and steps are needed to
make the algorithm work. We state the most important of these results below
since it is of independent interest.

Recall from Section 7.3 that an (s, t)-separator S is trivial if t has in-
degree zero, or s has out-degree zero in D − S. The following result, which
complements Theorem 10.5.9, is very important for the proof of correctness

10.5 Linkages in (Generalizations of) Tournaments 391

of the algorithm of Bang-Jensen and Thomassen, since it corresponds to a
case where no problem reduction is possible (using the approach taken in the
algorithm).

Theorem 10.5.13 [118] Let x1, x2, y1, y2 be distinct vertices of a semicom-
plete digraph T , such that κT−{xi,yi}(x3−i, y3−i) = 2 for i = 1, 2. Suppose that
all (xi, yi)-separators of size 2 in T − {x3−i, y3−i} are trivial, for i = 1, 2.
Then T has a pair of disjoint (x1, y1)-, (x2, y2)-paths. Furthermore such a
pair of paths can be constructed in time O(n3). ��

Note that the semicomplete digraph in Figure 10.7 does not satisfy the
assumption of Theorem 10.5.13 since the two non-labeled vertices in the
middle form a non-trivial (x2, y2)-separator of size 2 in T − {x1, y1}.

10.5.3 The 2-Linkage Problem for Generalizations of Tournaments

Now we show that the 2-linkage problem can be solved in polynomial time
for quite large classes of digraphs which can be obtained by starting from
semicomplete digraphs and then performing certain substitutions. The algo-
rithm we describe uses the polynomial algorithm from Theorem 10.5.12 for
the case of semicomplete digraphs as a subroutine. The results in this section
are due to Bang-Jensen [74].

Theorem 10.5.14 [74] Let D = F [S1, S2, . . . , Sf] where F is a strong di-
graph on f ≥ 2 vertices and each Si is a digraph with ni vertices and let
x1, x2, y1, y2 be distinct vertices of D. There exist semicomplete digraphs
T1, . . . , Tf such that V (Ti) = V (Si) for all i ∈ [f], and the digraph D′ =
F [T1, T2, . . . , Tf] has vertex-disjoint (x1, y1)-, (x2, y2)-paths if and only if D
has such paths. Furthermore, given D and x1, x2, y1, y2, D′ can be constructed
in time O(n2), where n is the number of vertices of D.

Proof: If D has the desired paths, then so does any digraph obtained from D
by adding arcs. Hence if D has the desired paths, then trivially D′ exists and
can be constructed in time O(n2) once we know a pair of disjoint (x1, y1)-,
(x2, y2)-paths.

If no Si contains both of x1, y1 or both of x2, y2, then it is easy to see
that D has the desired paths if and only if it has such paths which do not
use an arc inside any Sj . Thus in this case we can add arcs arbitrarily inside
each Si to obtain a D′ which satisfies the requirement.

Suppose next that some Si contains all of the vertices x1, x2, y1, y2. If
there is an (xj , yj)-path P in Si − {x3−j , y3−j}, j = 1 or 2, then it follows
from that fact that F is strong that D has the desired paths and we can find
such a pair in time O(n2). Thus, by our initial remark, we may assume that
there is no (xj , yj)-path P in Si −{x3−j , y3−j} for j = 1, 2. Now it is easy to
see that D has the desired paths if and only if it has such paths which do not
use an arc inside any Sj . Thus we can replace Si by a tournament in which

392 10. Linkages in Digraphs

x1 and x2 both have no out-neighbours in Si − {x1, x2} and every other Sk

by an arbitrary tournament on the same vertex set. Clearly the digraph D′

obtained in this way satisfies the requirement.
Suppose now without loss of generality that x1, y1 ∈ V (Sj) for some j

but x2 �∈ V (Sj). Suppose first that y2 ∈ V (Sj). If there is no (x1, y1)-path in
Sj − y2, then D has the desired paths if and only if it has such paths which
do not use an arc inside any Si and we can construct D′ by adding arcs in
Sj in such a way that no (x1, y1)-path avoiding y2 is created (that is, y2 will
still separate x1 from y1 in D′〈V (Sj)〉) and arbitrary arcs in every other Si.
On the other hand, if Sj − y2 contains an (x1, y1)-path avoiding y2, then it
follows from the fact that F is strong that D has the desired paths and hence
D′ exists as remarked above. Hence we may assume that y2 �∈ V (Sj).

If Sj contains an (x1, y1)-path which does not cover all the vertices of Sj ,
then it follows from the fact that F is strong that D has the desired paths.
Thus we may assume that either Sj has no (x1, y1)-path, or every (x1, y1)-
path in Sj contains all the vertices of Sj . In the last case we may assume that
V (Sj) separates x2 from y2. Now D has the desired paths if and only if it
has such a pair which does not use any arcs from Sj . Thus in both cases we
can construct D′ by replacing Sj by a tournament with no (x1, y1)-path and
every other Si by an arbitrary tournament on the same vertex set, except in
the case when x2 and y2 belong to some Si, i �= j. In this case we replace
that Si by a tournament with no (x2, y2)-path (by the remark above we may
assume that Si has no (x2, y2)-path).

It follows from the considerations above that D′ can be constructed in
time O(n2). ��

Recall that quasi-transitive digraphs can be decomposed according to
Theorem 2.7.5. Hence we can apply Theorem 10.5.14 to these digraphs.

Theorem 10.5.15 [74] There exists a polynomial algorithm for the 2-linkage
problem for quasi-transitive digraphs.

Proof: Let D be a quasi-transitive digraph and x1, x2, y1, y2 specified dis-
tinct vertices for which we want to determine the existence of vertex-disjoint
(x1, y1)-,(x2, y2)-paths. First check that D−{xi, yi} contains an (x3−i, y3−i)-
path for i = 1, 2. If not, then we stop. Now it follows from Theorem 2.7.5 that
either x1, x2, y1, y2 are all in the same strong component of D, or the paths
exist. For example, if D is not strong and y1, say, is not in the same strong
component as x1 then, by Theorem 2.7.5, x1 and y1 belong to different sets
Wi, Wj in the canonical decomposition D = Q[W1, . . . , W|Q|], where Q is a
transitive digraph. Hence x1→y1 and the desired paths clearly exist.

Thus we may assume that D is strong. Let D = S[W1, W2, . . . , W|S|] be a
decomposition of D according to Theorem 2.7.5. Now apply Theorem 10.5.14
and construct the digraph D′ which has the desired paths if and only if D
does. As remarked in Theorem 10.5.14, D′ can be constructed in polynomial

10.5 Linkages in (Generalizations of) Tournaments 393

time. By the construction of D′ (replacing each Wi by a semicomplete di-
graph) it follows that D′ is a semicomplete digraph and hence we can apply
the polynomial algorithm of Theorem 10.5.12 to D′ in order to decide the
existence of the desired paths in D. The algorithm of Theorem 10.5.12 can
be used to find vertex-disjoint (x1, y1)-, (x2, y2)-paths in D′ if they exist and
given these paths it is easy to construct the corresponding paths in D (it
suffices to take minimal paths). ��

By inspecting the proof of Theorem 10.5.14 it is not difficult to see that
the following much more general result is true. The main point is that in
the proof of Theorem 10.5.14 we either find the desired paths or decide that
they exist if and only if there are such paths that use no arcs inside any Si.
Hence instead of making each Ti semicomplete, we may just as well make it
an independent set, by deleting all arcs inside Si.

Theorem 10.5.16 [74] Let Φ be a class of strongly connected digraphs, let
Φ0 denote the class of all extensions of graphs in Φ and let

Φ∗ = {F [D1, . . . , D|F |] : F ∈ Φ, each Di is an arbitrary digraph}.

There is a polynomial algorithm for the 2-linkage problem in Φ∗ if and only
if there is a polynomial algorithm for the 2-linkage problem for all digraphs
in Φ0. ��

This result shows that studying extensions of digraphs can be quite useful.
One example of such a class Φ, for which Theorem 10.5.16 applies, is the

class of strong semicomplete digraphs. This follows from the fact that we
can reduce the 2-linkage problem for extended semicomplete digraphs to the
case of semicomplete digraphs in the same way as we did for quasi-transitive
digraphs in the proof of Theorem 10.5.15. Hence the 2-linkage problem is
polynomially solvable for all digraphs that can be obtained from strong semi-
complete digraphs by substituting arbitrary digraphs for vertices. It is im-
portant to note here that Φ must consist only of strong digraphs, since it is
not difficult to reduce the 2-linkage problem for arbitrary digraphs (which
is NP-complete by Theorem 10.2.1) to the 2-linkage problem for those di-
graphs that can be obtained from the digraph H consisting of just an arc uv
by substituting arbitrary digraphs for the vertex v.

The proof of the following easy lemma is left to the reader as Exercise
10.23. Note that four is best possible as can be seen from the complete biori-
entation of the undirected graph consisting of 4-cycle x1x2y1y2x1 and a vertex
z joined to each of the four other vertices.

Lemma 10.5.17 Let D be a digraph of the form D = 	C2[S1, S2], where Si

is an arbitrary digraph on ni vertices, i = 1, 2. If D is 4-strong, then D is
2-linked. ��

The following result generalizes Corollary 10.5.2.

394 10. Linkages in Digraphs

Theorem 10.5.18 [74] Let k ≥ 4 be a natural number and let F be a digraph
on f ≥ 2 vertices with the property that every k-strongly connected digraph of
the form F [T1, T2, . . . , Tf], where each Ti, i ∈ [f], is a semicomplete digraph,
is 2-linked. Let D = F [S1, S2, . . . , Sf], where Si is an arbitrary digraph on ni

vertices for all i ∈ [f]. If D is k-strongly connected, then D is 2-linked.

Proof: Let D = F [S1, S2, . . . , Sf], where Si is an arbitrary digraph on ni

vertices for each i ∈ [f], be given. By Lemma 10.5.17 we may assume that
D cannot be decomposed as D = 	C2[R1, R2], where R1 and R2 are arbitrary
digraphs. Construct D′ as described in Theorem 10.5.14. Note that by Lemma
5.8.1, κ(D′) = κ(D). Thus D′ is k-strong and using Theorem 10.5.14 and the
assumption of the theorem we conclude that D is 2-linked. ��

Corollary 10.5.19 [74] Every 5-strong quasi-transitive digraph is 2-linked.

Proof: By Theorem 2.7.5, every strong quasi-transitive digraph is of the form
D = F [S1, S2, . . . , Sf], f = |F |, where F is a strong semicomplete digraph
and each Si is a non-strong quasi-transitive digraph on ni vertices. By Lemma
2.7.4 and the connectivity assumption, |F | ≥ 3. Note that for any choice
of semicomplete digraphs T1, . . . , Tf the digraph D′ = F [T1, T2, . . . , Tf] is
semicomplete. Hence the claim follows from Theorem 10.5.18 and the fact
that, by Corollary 10.5.2, every 5-strong semicomplete digraph is 2-linked.
(Since F has at least three vertices, it follows from Lemma 5.8.1 that κ(D′) =
κ(D).) ��

10.6 Linkages in Planar Digraphs

In this section we briefly discuss the k-linkage problem for planar digraphs
(recall the definition of a planar digraph from Section 2.12). The constraint
that the digraph in question can be embedded in the plane clearly poses some
restrictions to the structure of vertex-disjoint paths. This is illustrated by the
following result.

Proposition 10.6.1 Suppose that D = (V, A) is a planar digraph with dis-
tinct vertices x, y, u, v ∈ V and that D is embedded in the plane in such a
way that the vertices x, v, y, u appear on the bounding cycle C of the outer
face in that order (see Figure 10.8). Then D does not have a pair of disjoint
(x, y)-, (u, v)-paths.

Proof: We first prove that no matter how we connect x and y by a simple
(that is, not self-intersecting) curve R and u, v by another simple curve R′,
both inside the bounded disc with boundary C (see Figure 10.8) the two
curves must intersect. Suppose we can choose simple curves R, R′ so that R
connects x and y and R′ connects u and v. Then we can add a new point z
in the interior of the outer face and join it to each of the vertices x, y, u, v

10.6 Linkages in Planar Digraphs 395

x

y

u v

C

Figure 10.8 A topological obstruction for the existence of disjoint (x, y)- and
(u, v)-paths in a planar graph G. The cycle C is the boundary of the outer face of
G.

by disjoint simple curves which lie entirely in the closed disc formed by the
outer face and its boundary C. This gives us an embedding of K5 in the
plane, contradicting Theorem 2.12.1.

Suppose now that P, Q are disjoint paths in D such that P is an (x, y)-
path and Q is a (u, v)-path. In the embedding of D these correspond to simple
curves and hence, by the argument above, they must intersect at some point
in the plane. Since D is planar, no two arcs intersect in the interior (as
curves) and hence we see that P and Q must intersect in some vertex v of
D. However, this contradicts the assumption that they are disjoint. ��

We point out that the first part of the proof above can be established using
the Jordan curve theorem directly to establish that R and R′ must intersect
somewhere in the disc with boundary C (see, e.g., the book by Bondy and
Murty [170]).

It was shown by Lynch [662] that when k is part of the input, then the
k-linkage problem remains NP-complete even for planar digraphs. For fixed
k, Schrijver has developed a polynomial algorithm.

Theorem 10.6.2 [799, 800] For every integer k ≥ 1 the k-linkage problem
is polynomially solvable for planar digraphs5. ��

The proof method is based on cohomology over free (non-abelian) groups,
a topic which would require too much space to cover in the present book.
Schrijver mentions that part of the group theory and topology is mainly used
to keep notation fairly simple, but in any case the proof is too complicated to
include here even as a (convincing) sketch. For additional discussion on and
applications (for digraphs embedded on surfaces) of this very powerful proof
technique we refer the reader to Schrijver’s papers [799, 800, 801]. We should

5 Note that k is not part of the input.

396 10. Linkages in Digraphs

mention though that arguments like those used in the proof of Proposition
10.6.1 play an important role in Schrijver’s approach.

To further illustrate how to use planarity in arguments in linkage prob-
lems, we consider a special case of the k-linkage problem for which a good
characterization for the existence of a prescribed linkage has been found by
Ding, Schrijver and Seymour [261].

Suppose that we are given a planar digraph D = (V, A) which is embedded
in the plane in such a way that the vertices s1, s2, . . . , sk, t1, t2, . . . , tk all
belong to the boundary of the outer face F of D. Ding, Schrijver and Seymour
[261] proved that in this case there is a simple polynomial algorithm to decide
the existence of a collection of disjoint paths P1, P2, . . . , Pk, where Pi is an
(si, ti)-path for every i ∈ [k].

In fact, as we will see below, it turns out to be easier to describe an
algorithm for the following slight extension of the problem: in addition to the
vertices s1, s2, . . . , sk, t1, t2, . . . , tk we are also given subsets A1, A2, . . . , Ak of
A and we demand that Pi can only use6 arcs from Ai for all i ∈ [k].

Motivated by the example in Figure 10.8 we say that two pairs of terminals
(si, ti) and (sj , tj) on bd(F) cross if each simple curve from si to ti in R2−F
(considered as a subspace of R2) crosses each simple curve from sj to tj in
R2 − F . By Proposition 10.6.1 a necessary condition for the existence of
disjoint (s1, t1), . . . , (sk, tk)-paths in D is that the following cross-freeness
condition is satisfied:

for every i �= j (si, ti) and (sj , tj) do not cross. (10.3)

Using the cross-freeness condition we see that there is no solution unless
the terminals occur in the order u1, v1, u2, v2, . . . uk, vk around bd(F), where
{ui, vi} = {sπ(i), tπ(i)} for some permutation π of [k]. Clearly this condition
can be checked in polynomial time if we are given the (polygonal) embedding
of D.

We measure closeness of two polygonal paths with the same end-points
by the area between the two paths. See Figure 10.9 for an illustration. The
proof of the following lemma is left as Exercise 10.25.

Lemma 10.6.3 Let R be a path from x to y along the boundary of the outer
face (ignoring the orientation of the arcs in D) and let D′ be a subdigraph
of D which contains the vertices x and y. Then either D′ has no (x, y)-path
or there exist a unique (x, y)-path Q in D′ which is closest to R. Given the
embedding of D, we can find Q in polynomial time if it exists. Furthermore,
no other (x, y)-path ‘crosses over’ Q at any point (e.g., in Figure 10.9 the
path v8v9v5 crosses over the path v2v9v10 at the vertex v9). ��
6 In [261] Ding, Schrijver and Seymour consider an even more general case where

not all paths linking different pairs of terminals must be disjoint, but for sim-
plicity we assume that they are all disjoint.

10.6 Linkages in Planar Digraphs 397

s t

v1

v4
v5

v6

v7

v8 v9

v10 v11

v2 v3

Figure 10.9 Let R be the path sv1v2v3v4v5v6t in the underlying graph of D. The
(s, t)-path sv7v2v9v5v6v11t is closer to R than the (s, t)-path sv7v8v9v5v6v11t.

Now we are ready to describe a greedy algorithm which either finds the
desired paths in D, or a proof that no such paths exist (using only arcs from
the sets A1, A2, . . . , Ak).

Start with sk, tk. Since D satisfies the cross-freeness condition, one of the
two paths between sk and tk along bd(F) contains no other terminals. Denote
this path by P .

If D〈Ak〉 contains no (sk, tk)-path, then there is no solution, so assume
below that such a path exists.

Let Pk be the unique (sk, tk)-path in D〈Ak〉 which is closest to P . Modify
each Ai, i ∈ [k − 1], by removing from Ai every arc that is incident to a
vertex on Pk. Now repeat the steps above for the pair sk−1, tk−1 and continue
recursively.

After at most k iterations we either find the required linkage or conclude
that no such linkage exists.

To prove the correctness of the algorithm we observe that if Q1, Q2, . . . ,
Qk is a solution, then so is Q1, Q2, . . . , Qk−1, Pk. Indeed, if Pk intersects
some Qi, then so does Qk because Pk is either equal to Qk or strictly closer
to P than Qk. This shows that the greedy choice is legal and the correct-
ness follows. It also follows from Lemma 10.6.3 that the algorithm above is
polynomial in the size of D.

We finish this section with some remarks on the problem (P3) in Propo-
sition 10.1.2 for the case of planar digraphs. By Theorem 10.2.5 there is no
degree of vertex-strong connectivity which guarantees that a digraph is 2-
cyclic (that is, has a cycle containing x, y for every choice of vertices x, y).
For planar digraphs the maximum degree of vertex-strong connectivity is 5
(Exercise 5.8). One may ask whether there is some degree of vertex-strong
connectivity which suffices to guarantee that the planar digraph is 2-cyclic.
However, this is not the case as shown by the 5-strong non-2-cyclic planar di-
graph Dk (k = 20) in Figure 10.10 (Exercise 10.27). This example arose from
a personal communication with Böhme and Harant (October 1999). The fact
that there exist 5-strong non-2-cyclic planar digraphs was also mentioned by
Bermond and Thomassen in the survey paper [152]. Note also that these ex-
amples of 5-strong non-2-cyclic planar digraphs show that for directed graphs
there is no analogue of Tutte’s theorem on hamiltonian planar graphs (every
4-connected planar graph is hamiltonian [878]).

398 10. Linkages in Digraphs

Using the same family of planar undirected graphs Gk, k ≥ 20, as in
Figure 10.10 one can easily construct 5-strong planar graphs which do not
contain disjoint [s1, t1]-, [s2, t2]-paths, hence providing the proof that the
condition of being 6-connected cannot be lowered to being 5-connected for
undirected graphs (recall the discussion at the end of Section 10.2).

x y

(a) (b)

G4

↔
G20

Figure 10.10 Part (a) shows a planar 5-connected graph Gk with k = 4; Part (b)
shows a 5-strong planar digraph Dk that is obtained from the complete biorientation
of Gk (shown for k = 20) by adding two new vertices x, y and joining these by the
arcs indicated. The digraph has no cycle through x and y.

10.7 Weak Linkages

Let D be a directed multigraph and let s1, s2, . . . , sk, t1, t2, . . . , tk be a
collection of not necessarily distinct vertices of D. A weak k-linkage
from (s1, s2, . . . , sk) to (t1, t2, . . . , tk) is a collection of k arc-disjoint paths
P1, . . . , Pk such that Pi is an (si, ti)-path for each i ∈ [k]. A directed
multigraph D = (V, A) is weakly k-linked if it contains a weak k-linkage
from (s1, s2, . . . , sk) to (t1, t2, . . . , tk) for every choice of (not necessarily dis-
tinct) vertices s1, . . . , sk, t1, . . . , tk. The weak k-linkage problem is the
following. Given a directed multigraph D = (V, A) and distinct vertices
x1, x2, . . . , xk, y1, y2, . . . , yk; decide whether D contains k arc-disjoint paths
P1, . . . , Pk such that Pi is an (xi, yi)-path.

In view of Theorem 10.7.3 below, the following result by Fortune, Hopcroft
and Wyllie may seem slightly surprising.

Theorem 10.7.1 [332] The weak k-linkage problem is NP-complete already
for k = 2.

Proof: Let [D, x, y, u, v] be an instance of the 2-linkage problem. Transform
D = (V, A) into the directed multigraph H by performing the vertex splitting

10.7 Weak Linkages 399

procedure (see Section 4.2). Then it is easy to show that H has a pair of
arc-disjoint (xt, ys)-, (ut, vs)-paths if and only if D has disjoint (x, y)-, (u, v)-
paths (Exercise 10.28). Since H can be constructed from D in polynomial
time, the claim now follows from Theorem 10.2.1. ��

The following problem is mentioned by Schrijver in [799, page 265] and
[801].

Problem 10.7.2 Does there exist a polynomial algorithm to decide the exis-
tence of two arc-disjoint paths with prescribed end-vertices in a planar directed
multigraph?

Even the complexity of the special case when we are looking for arc-
disjoint (x, y)- and (y, x)-paths is open! Hence we see from Theorem 10.6.2
that the weak 2-linkage problem is much more difficult for planar digraphs
than the 2-linkage problem. This is not really surprising since planarity cer-
tainly has implications on vertex-disjoint paths, whereas the implications on
arc-disjoint paths are not so obvious although there clearly are some.

Observe that if D is weakly k-linked, then D is k-arc-strong. To see this
it suffices to take si = x and ti = y for each i, then there are k arc-disjoint
(x, y)-paths in D and since x, y may be chosen arbitrarily, it follows that D
is k-arc-strong.

Shiloach observed [818] that Edmonds’ branching theorem implies that
k-arc-strong connectivity is also sufficient for the existence of k arc-disjoint
paths with specified initial and terminal vertices:

Theorem 10.7.3 [818] A directed multigraph D is weakly k-linked if and
only if D is k-arc-strong.

Proof: Above we have argued on the necessity. To see the sufficiency, let
x1, x2, . . . , xk, y1, . . . , yk be given. Construct a new directed multigraph D′

by adding a new vertex s and arcs sxi for all i ∈ [k] to D. Since D is k-arc-
strong, it is not difficult to check that d−D′(X) ≥ k for every subset X of V .
Hence by Theorem 9.3.1, D′ has arc-disjoint out-branchings B+

s,1, . . . , B
+
s,k all

rooted at s. Since s has out-degree k in D′, each B+
s,i must use precisely one

arc out of s and without loss of generality B+
s,i uses the arc sxi. Now it is

clear that B+
s,i contains an (xi, yi)-path Pi and the paths P1, . . . , Pk form the

desired linkage. ��
Using Theorem 9.3.3 we can obtain, in an analogous way, the following

sufficient condition, due to Bang-Jensen, Frank and Jackson, for the existence
of k arc-disjoint paths with prescribed initial and terminal vertices (Exercise
10.29).

Theorem 10.7.4 [78] Let (s1, t1), . . . , (sk, tk) be k pairs of vertices in a di-
rected multigraph D = (V, A) so that for every vertex x with d−(x) < d+(x)
or x = tj there are arc-disjoint paths from si to x for every i ∈ [k]. Then
there are arc-disjoint paths from si to ti (i = 1, 2, . . . , k). ��

400 10. Linkages in Digraphs

Note that if we only impose the condition in Theorem 10.7.4 on the
vertices t1, t2, . . . , tk, then D may not have arc-disjoint paths from si to ti
(i = 1, 2, . . . , k). This can be seen from the example in Figure 10.11. The ex-
ample can easily be generalized to arbitrary local strong connectivities from
si to ti, i = 1, 2, while preserving planarity. We formulate this as a theorem
below.

Theorem 10.7.5 For every natural number k there exists a planar digraph
D with distinct vertices s1, s2, t1, t2 such that D has κD(si, ti) ≥ k for i = 1, 2,
but D has no arc-disjoint (s1, t1)-, (s2, t2)-paths. ��

This shows that there is no sufficient condition for the existence of a weak
linkage from (s1, s2, . . . , sr) to (t1, t2, . . . , tr) in terms of local vertex-strong
connectivities from si to ti, i = 1, 2, . . . , r.

s1

t2

t1

s2

Figure 10.11 An example of a planar digraph with κ(si, ti) = 2, i = 1, 2, and no
arc-disjoint (s1, t1)-, (s2, t2)-paths.

10.7.1 Weak Linkages in Acyclic Directed Multigraphs

The following easy observation, due to Fortune, Hopcroft and Wyllie, can be
used to reduce the weak k-linkage problem for acyclic directed multigraphs
to the k-linkage problem for the same class. We need the following lemma
whose proof is left as Exercise 10.30.

Lemma 10.7.6 If D is acyclic, then so is its line digraph L(D). ��

Theorem 10.7.7 [332] For each k, there exists a polynomial algorithm for
the weak k-linkage problem for the class of acyclic directed multigraphs.

Proof: Let [D, x1, x2, . . . , xk, y1, y2, . . . , yk] be an instance of the weak k-
linkage problem where D is an acyclic directed multigraph. If some xi has

10.7 Weak Linkages 401

out-degree zero or some yj has in-degree zero, then trivially the desired paths
do not exist. Hence we may assume that this is not the case.

Transform the instance [D, x1, x2, . . . , xk, y1, y2, . . . , yk] into a new in-
stance [D′, x′

1, x
′
2, . . . , x

′
k, y′

1, y
′
2, . . . , y

′
k] as follows. If xi has out-degree two or

more, we add a new vertex x′
i and the arc x′

ixi to D; otherwise let x′
i := xi,

i = 1, 2, . . . , k. Similarly, for each j ∈ [k], if yj has in-degree more than one, we
add a new vertex y′

j and the arc yjy
′
j ; otherwise let y′

j := yj . Clearly, D′ has
arc-disjoint paths P ′

1, . . . , P
′
k such that P ′

i is an (x′
i, y

′
i)-path, i = 1, 2, . . . , k,

if and only if D has arc-disjoint paths P1, . . . , Pk, where Pi is an (xi, yi)-path,
i = 1, 2, . . . , k.

Now consider D∗ := L(D′) and let si (ti) be the vertex of D∗ which
corresponds to the unique arc with tail (head) x′

i (y′
i). Then it is easy to

show that D∗ has a collection Q1, Q2, . . . , Qk of disjoint paths so that Qi

is an (si, ti)-path, i = 1, 2, . . . , k, if and only if D′ has arc-disjoint paths
P ′

1, . . . , P
′
k such that P ′

i is an (x′
i, y

′
i)-path, i = 1, 2, . . . , k.

Since we have transformed the instance [D, x1, x2, . . . , xk, y1, y2, . . . , yk]
into [D∗, s1, s2, . . . , sk, t1, t2, . . . , tk] by a polynomial algorithm, the theorem
now follows from Theorem 10.4.1. ��

In [799], Schrijver shows how to apply a polynomial algorithm for the
weak k-linkage problem in acyclic digraphs to solve a scheduling problem in
the airline industry.

10.7.2 Weak Linkages in Eulerian Directed Multigraphs

As we will see below, questions about weak linkages are slightly easier for
eulerian directed multigraphs than for arbitrary directed multigraphs. How-
ever, the weak 2-linkage problem seems difficult and is still open. As we also
mention in Section 14.1, eulerian directed multigraphs often have properties
similar to those of undirected multigraphs. This is also illustrated by their
properties with respect to arc-disjoint paths as can be seen from some of the
results mentioned in this subsection (see, e.g., Figure 10.13).

We start with a very simple, yet quite important observation. As men-
tioned earlier the complexity version of the corresponding problem for planar
digraphs is still open (Problem 10.7.2).

Lemma 10.7.8 Let D be a eulerian directed multigraph and let s, t be dis-
tinct vertices of D. Then D has arc-disjoint (s, t)-, (t, s)-paths if and only if
D has an (s, t)-path.

Proof: Let P be an arbitrary (s, t)-path. Let D′ be obtained from D by
removing the arcs of P . In D′, every vertex distinct from s, t has in-degree
equal out-degree and we have d−D′(s) = d+

D′(s) + 1, d+
D′(t) = d−D′(t) + 1. Let

N (D′) be the network representation of D′ (recall Definition 5.1.4) and let
x be the flow that has value equal to the capacity on every arc. By the flow

402 10. Linkages in Digraphs

decomposition theorem (Theorem 4.3.1), x can be decomposed into a (t, s)-
flow of value one and some cycle flows. Since the (t, s)-path in N (D′) is also
a path in D′, D′ contains a (t, s)-path as claimed. ��

Let x1, . . . , xk be a k-tuple of (not necessarily distinct) vertices, which will
be called terminals. We say that a trail T = (v0v1v2 . . . vt−1vt) visits the
terminals in the order x1, x2, . . . , xk if x1 = vi1 , x2 = vi2 , . . . , xk = vik

for
some7 0 ≤ i1 ≤ . . . ≤ ik ≤ t. Based on the following lemma (whose proof
is left as Exercise 10.34), we could restrict ourselves only to eulerian trails.
However, it is sometimes convenient to work also with non-eulerian trails.

Lemma 10.7.9 Let D be an eulerian directed multigraph. Assume that there
is a trail visiting some terminals in the order x1, x2, . . . , xk. Then there exists
an eulerian trail visiting the terminals in the same order. ��

Given an eulerian directed multigraph and terminals x1, x2, . . . , xk there
are at least three different problems one may consider [546]:

Specific Trail (ST) Problem

Instance: An eulerian directed multigraph G and an ordered k-tuple of ter-
minals x1, x2, . . . , xk.

Question: Does there exist a trail visiting the terminals in the order x1, . . . ,
xk?

Unique Trail (UT) Problem

Instance: An eulerian directed multigraph G and an unordered k-tuple of
terminals x1, x2, . . . , xk.

Question: Do all eulerian trails visit the terminals in the same cyclical order?

All Trail (AT) Problem

Instance: An eulerian directed multigraph G and an unordered k-tuple of
terminals x1, x2, . . . , xk.

Question: Does there exist a trail Tπ visiting the terminals in the order
xπ(1), . . . , xπ(k) for every permutation π of [k]?

We will denote by k-ST, k-UT and k-AT the corresponding problems when
the number of terminals is exactly k. The ST-problem seems to be the most
important among these three problems, since it is equivalent to the eule-
rian weak linkage problem (see Lemma 10.7.10). However, the remaining two
problems occur naturally in the study of the ST-problem.
7 We do not exclude some additional occurrences of terminals in a trail. In general,

a trail may visit given terminals in several different orders.

10.7 Weak Linkages 403

As we show below, results on these three problems for eulerian directed
multigraphs are, in fact, strongly related to weak linkages in directed multi-
graphs which are not eulerian, but become eulerian if we add the so-called de-
mand arcs. Let [D, s1, s2, . . . , sk, t1, t2, . . . , tk] be an instance of the weak k-
linkage problem. The demand directed multigraph H associated with this
instance is the directed multigraph consisting of the arcs8 t1s1, t2s2, . . . , tksk.
The special case of the weak k-linkage problem when D +H is eulerian (here
H is the demand directed multigraph of D) is called the eulerian weak

k-linkage problem. When, instead of being a fixed number k, the number
of demand arcs is part of the input, we call the above problem the eulerian

weak linkage problem.

Lemma 10.7.10 The k-ST-problem is equivalent to the eulerian weak k-
linkage problem.

Proof: We show that the k-ST-problem is a special case of the eulerian
weak k-linkage problem using the following reduction. Let [D, x1, . . . , xk] be
an instance of the k-ST -problem. Define s1, t1, . . . , sk, tk by si = xi and
ti = xi+1, i = 1, 2, . . . , k, (xk+1 = x1) and let H consist of the arcs tisi,
i = 1, 2, . . . , k. Then D + H is eulerian and it is easy to see that D + H has
arc-disjoint paths P1, . . . , Pk, where Pi is an (si, ti)-path, i = 1, 2, . . . , k, if
and only if D has a trail visiting the terminals in the order x1, x2, . . . , xk.

Conversely, given an instance [D, s1, . . . , sk, t1, . . . , tk] of the eulerian weak
k-linkage problem (thus D + H is eulerian), we construct an instance of the
k-ST -problem as follows. Let D̃ be the directed multigraph obtained from
D by adding new vertices x1, . . . , xk, and arcs xisi, tixi+1, i = 1, 2, . . . , k.
Clearly, D̃ is an eulerian directed multigraph, and it admits a closed trail
visiting the terminals in the order x1, . . . , xk if and only if D admits a weak
k-linkage for the prescribed pairs (si, ti), i = 1, 2, . . . , k, of terminals. ��

Now we see from Lemma 10.7.8 that the weak 2-linkage problem is easy
in the case when the directed multigraph in question becomes eulerian if we
add the two demand arcs t1s1, t2s2. This was also observed by Frank in [341].
The eulerian weak 3-linkage problem is already considerably harder. It was
solved by Ibaraki and Poljak [546]. We describe their main result in Theorem
10.7.11.

It is easy to see that for k = 3, the problems 3-ST, 3-UT, and 3-AT are
mutually equivalent from a complexity point of view. The reason is that for
k = 3 there are only two distinct cyclical orders of terminals, (x1, x2, x3)
and (x1, x3, x2). Moreover, we may assume that one eulerian trail T of G is
already given (since it may be constructed by a polynomial time algorithm
according to Exercise 18.3). The trail T visits the terminals in one of the
possible orders, say (x1, x2, x3). Hence it only remains to decide whether
there is a trail visiting the terminals in the other order.
8 Hence, if s1 = s2 = . . . = sk and t1 = t2 = . . . = tk, the demand directed

multigraph consists of k parallel arcs from t1 to s1.

404 10. Linkages in Digraphs

We recall the solution, due to Ibaraki and Poljak [546], of the UT-problem,
since it suggests a possible approach to the remaining two problems. Recall
that, for an arc a of D, D/a denotes the directed multigraph obtained from
D by (set-)contracting the arc a. We allow terminals to be identified by the
contraction. Below we denote the set of terminals by X and an instance of
the UT -problem by [D, X]. Clearly, if [D, X] admits several orders of visiting
terminals, then [D/a, X] admits several orders as well, but the converse need
not be true. We say that [D, X] is UT-minimal, if [D, X] admits unique
cyclical order of visiting terminals by an eulerian trail, but [D/a, X] admits
several orders whenever any arc a is contracted. Ibaraki and Poljak charac-
terized UT -minimal instances.

Theorem 10.7.11 [546] Let [D, X] be a UT-minimal instance. Then

(a) d+(x) = d−(x) = 1 for every terminal x, and d+(u) = d−(u) = 2 for
every non-terminal u,

(b) D can be embedded in the plane such that every face is a directed cycle,
and all terminals lie on one common face. ��

Observe that the first part of the condition (b) is equivalent to the prop-
erty that the four edges incident to a non-terminal vertex u are oriented
alternatively out of and into the vertex u (in the planar representation). See
Figure 10.12.

x1

x3

x2

Figure 10.12 An eulerian digraph with no (eulerian) trail visiting x1, x2, x3 in
that order.

Theorem 10.7.12 [546] Both the UT-problem and the 3-ST-problem are
polynomially solvable. ��

Furthermore, Ibaraki and Poljak proved that the eulerian weak linkage
problem and hence the ST-problem are NP-complete.

Theorem 10.7.13 [546] The eulerian weak linkage problem is NP-complete.

10.7 Weak Linkages 405

Proof: We sketch the construction used in [546]. The reduction is from the
weak 2-linkage problem, which is NP-complete by Theorem 10.7.1. Let [D =
(V, A), s1, s2, t1, t2] be an instance of the weak 2-linkage problem. Let D∗ =
D + H be the directed multigraph we obtain from D by adding the two
demand arcs t1s1 and t2s2.

Form a directed multigraph D′ from D by adding two new vertices s, t
and, for every v ∈ V , appending max{0, d+

D∗(v) − d−D∗(v)} arcs of the form
sv as well as max{0, d−D∗(v) − d+

D∗(v)} arcs of the form vt. Let p be the
sum of d+

D∗(v) − d−D∗(v) taken over those vertices for which this number is
positive. Now let si = s and ti = t, i = 3, 4, . . . , p+2, be new terminals. Then
[D′, s1, s2, . . . , sp+2, t1, t2, . . . , tp+2] is an instance of the eulerian weak linkage
problem and it is easy to show that D has arc disjoint (s1, t1)-, (s2, t2)-paths
if and only if D′ has arc-disjoint (si, ti)-paths, i = 1, 2, . . . , p + 2 (Exercise
10.35). ��

Ibaraki and Poljak posed the following conjecture:

Conjecture 10.7.14 [546] The k-ST-problem is polynomial for any fixed k.

The condition of minimality which was used in Theorem 10.7.11 can be
replaced by a more technical notion of irreducibility. Let us say that an
instance [D, X] is 2-irreducible if there is no set S of vertices such that
|S| > 1 and one of the following holds:

(a) |(S, S̄)| = |(S̄, S)| ≤ 2, D〈S〉 is connected and S ∩X = ∅,
(b) |(S, S̄)| = |(S̄, S)| = 1, and |S ∩X| = 1.

Note that D/S (the directed multigraph obtained by contracting S) is
eulerian whenever D is eulerian. It is not difficult to see the following:

Lemma 10.7.15 Let [D, X] be an instance of the UT-problem which admits
a unique order, and let S satisfy one of the conditions (a) and (b) above.
Then [D/S, X] admits a unique order as well. ��

It is also easy to see that D/S can be realized by a series of arc con-
tractions, and hence every minimal UT-instance is 2-irreducible. Thus, the
following theorem is a generalization of Theorem 10.7.11.

Theorem 10.7.16 [546] Let [D, X] be a UT-instance which is 2-irreducible
and admits eulerian trail with unique order of terminals. Then the conditions
(a) and (b) of Theorem 10.7.11 hold.

The polynomial time algorithm for the UT-problem is a consequence of
Theorem 10.7.16. The algorithm proposed in [546] consists of the following
steps:

406 10. Linkages in Digraphs

1. Reduce an instance [D, X] to a 2-irreducible one. This can be done by
applying network flow techniques.

2. Check the degree conditions.
3. Using a planarity test, decide whether D has a planar drawing, and if

yes, then test the remaining conditions of Theorem 10.7.16.

The notion of 2-irreducibility formulated here is weaker than the notion
of irreducibility used in [546] where it was required, in addition, that [D, X]
does not contain any non-terminal vertex of in- and out-degree one. However,
using the general definition of irreducibility given in [115, Section 3], it can
be seen that this additional condition is automatically satisfied by any AT-
infeasible and irreducible instance.

Let [D, X] be an instance of AT-problem. Let us say that [D, X] is AT-
minimal, if [D, X] does not admit an eulerian trail visiting the terminals for
every given order, but [D/a, X] does whenever any arc a is contracted. The
following result by Bang-Jensen and Poljak shows that there are also degree
restrictions on AT -minimal instances.

Theorem 10.7.17 [115] Let [D, X] be k-AT-minimal. Then d+(u) ≤ k − 1
for every non-terminal u, and d+(x) ≤ k − 2 for every terminal x. ��

The weak 2-linkage problem for undirected graphs is polynomially solvable
and a complete characterization of undirected graphs having no edge-disjoint
s1t1 and s2t2-paths is available (Dinic and Karzanov [263, 264], Seymour
[808] and Thomassen [855]). Such a graph G can be reduced to a graph G′

that has a planar representation with the following properties (see Figure
10.13(a)):

(a) Each of the four terminals has degree 2 and all other vertices have degree
3, and

(b) the terminals are located on the outer face in the order s1, s2, t1, t2.

s

t

p

q

(b)

x

y

u

v

(a) (c)

s t p q

Figure 10.13 Part (a) shows an infeasible instance for the edge-disjoint 2-linkage
problem for undirected graphs. The graph shown has no xy-path and uv-path which
are edge-disjoint; Parts (b) and (c) show infeasible instances of the arc-disjoint [s, t]-,
[p, q]-paths problem for eulerian directed multigraphs.

10.7 Weak Linkages 407

The complete biorientation
↔
G of an undirected graph G is eulerian and

it contains arc-disjoint (s1, t1)-, (s2, t2)-paths if and only if G contains edge-
disjoint s1t1, s2t2-paths. Hence, the weak 2-linkage problem for eulerian di-
graphs generalizes the weak 2-linkage problem. So far the weak 2-linkage
problem for eulerian digraphs remains unsolved. However, even the simpler
version in which we just require arc-disjoint [s1, t1], [s2, t2]-paths (that is, the
order of si, ti is not fixed in the ith path, i = 1, 2) still generalizes the edge-
disjoint 2-linkage problem. This problem was solved by Frank, Ibaraki and
Nagamochi in [353]. They proved that the problem is solvable in polynomial
time. Furthermore they showed the following result. Below, by a reduction,
we mean a series of transformations such that the desired paths exist in the
new digraph if and only if they exist in the previous digraph (for details see
[353]).

Theorem 10.7.18 [353] Let D be an eulerian directed multigraph and let
s1, s2, t1, t2 be not necessarily distinct vertices of D. Then D contains arc-
disjoint [s1, t1], [s2, t2]-paths, unless it can be reduced to an eulerian directed
multigraph D′ such that either D′ has six vertices and is isomorphic to the
digraph in Figure 10.13(c), or each of (a),(b) and (c) below hold.

(a) Each of s1, s2, t1, t2 has in- and out-degree one and all other vertices have
in- and out-degree two in D′.

(b) There is at most one cut vertex9 in UG(D′).
(c) D has a planar embedding such that every face is a directed cycle and

all terminals are located on the outer face in the order s, p, t, q where
{s, t} = {s1, t1} and {p, q} = {s2, t2}. ��

10.7.3 Weak Linkages in Tournaments and Generalizations of
Tournaments

We now consider the weak 2-linkage problem for some generalizations of
tournaments. We prove that this problem and a related special case (the arc
version of problem (P5) from Proposition 10.1.2) are polynomially solvable for
semicomplete digraphs. The corresponding algorithms are used as subroutines
in a much more complicated algorithm by Bang-Jensen [68] for the problem
concerning arc-disjoint in- and out-branchings in tournaments. We prove the
first results for the class of extended locally in-semicomplete digraphs instead
of just for semicomplete digraphs. We do this to show that not much extra
effort is needed to obtain the result (which also has the same statement as
for semicomplete digraphs alone) for this much larger class of digraphs. The
results in this subsection are due to Bang-Jensen [68, 73]

9 Recall that a vertex x in a connected undirected graph G is a cut vertex if G−x
is not connected.

408 10. Linkages in Digraphs

Recall that two vertices are similar if and only if they are non-adjacent and
have the same in- and out-neighbours. Note that if x, y are non-adjacent ver-
tices with a common out-neighbour w in an extended locally in-semicomplete
digraph, then x and y are similar vertices, by the definition of an extension
and the definition of a locally in-semicomplete digraph.

The following lemma can be proved along the same lines as Lemma
10.7.20. The proof is left to the reader as Exercise 10.31.

Lemma 10.7.19 Let D be a strong extended locally in-semicomplete digraph
and let x, y be distinct vertices of D. Then D has arc-disjoint (x, y)-,(y, x)-
paths if and only if there is no arc a such that D − a contains no (x, y)-path
and no (y, x)-path. ��

Lemma 10.7.20 [73] Let D = (V, A) be an extended locally in-semicomplete
digraph and x, y, z vertices of D such that x �= z and D contains a path from
y to z. If D has arc-disjoint (x, y)-, (x, z)-paths, then D contains arc-disjoint
(x, y)-, (y, z)-paths. Similarly, if an extended locally out-semicomplete digraph
D′ has a path from x to y and arc-disjoint (x, z)-, (y, z)-paths, then D′ has
arc-disjoint (x, y)- and (y, z)-paths.

Proof: Let P1 and P2 be arc-disjoint paths such that P2 is an (x, z)-path
and P1 is a minimal (x, y)-path. If y ∈ V (P2), or yx ∈ A, then the claim is
trivial so we assume that none of these hold. We can also assume that x and
y are not similar vertices, because if they are, then y dominates the successor
of x on P2 and again the claim is trivial.

If D has a (y, z)-path whose first intersection with V (P1)∪V (P2) (starting
from y) is on P2, then the desired paths clearly exist. Hence we may assume
that D contains a path from y to V (P1) ∪ V (P2) − y whose only vertex w
from V (P1) ∪ V (P2)− y is in V (P1)− V (P2). Now choose P among all such
paths so that w is as close as possible to x on P1. By the assumption above
w �= x. Let u (v) denote the predecessor of w on P1 (P), i.e., u = w−

P1
and

v = w−
P .

Suppose first that u and v are not adjacent. Then, by the remark just
before Lemma 10.7.19, u and v are similar. Now the choice of P implies that
v = y (otherwise the predecessor of v on P dominates u, contradicting the
choice of P). By the assumption that x and y are not similar we conclude
that u �= x, but then u−

P1
y ∈ A, contradicting the minimality of P1.

Thus we may assume that u and v are adjacent. By the choice of P , this
implies that uv ∈ A. Choose r as the first vertex on P which is dominated by
u. By the minimality of P1, r �= y. Let s be the predecessor of r on P . The
choice of r and P implies that u and s are similar. Thus as above, we must
have s = y, and since u �= x we reach a contradiction as before.

The second half of the lemma follows from the first by considering the
converse and interchanging the names of x and z. ��

10.7 Weak Linkages 409

The digraph D = (V, A) with vertex set V = {x, u, v, y, z} and arc set
A = {xu, uv, vy, yu, vz, xz} shows that the conclusion of Lemma 10.7.20 does
not hold for general digraphs.

Using Lemma 10.7.20 we can now characterize those extended locally in-
semicomplete digraphs which do not have arc-disjoint (x, y)-, (y, z)-paths.

Theorem 10.7.21 [73] An extended locally in-semicomplete digraph D has
arc-disjoint (x, y)-, (y, z)-paths if and only if it has an (x, y)-path and a (y, z)-
path and D has no arc e such that D − e has no (x, y)-path and no (y, z)-
path10.

Proof: Clearly if D has such an arc e, then the paths cannot exist. Now
assume that D has no such arc and that D has an (x, y)-path and a (y, z)-
path. We prove that D has the desired paths. By Lemma 10.7.19 we may
assume x �= z.

By Lemma 10.7.20, we may assume that D contains no pair of arc-disjoint
(x, y)-,(x, z)-paths. Thus, by Menger’s theorem, there exists an arc e = uv
such that D − e has no path from x to {y, z}. Let X = {w : ∃(x, w) −
path in D − e} and B = V (D) − X. Then x ∈ X, y, z ∈ B and the only arc
from X to B is e.

Since D contains an (x, y)-path, D〈X〉 has an (x, u)-path and D〈B〉 has
a (v, y)-path. D〈B〉 also has a (y, z)-path, since e does not destroy all paths
from y to z.

If v = y, the desired paths clearly exist (and can in fact be chosen vertex
disjoint). If v = z, then it follows from our assumption that there is no arc
a in D〈B〉 which separates y from z and also z from y. Now it follows from
Lemma 10.7.19 that D〈B〉 contains arc-disjoint (z, y)-, (y, z)-paths and hence
D contains the desired paths. Thus we may assume v �= y, z.

Now it is clear that the desired paths exist if and only if D〈B〉 has arc-
disjoint (v, y)-, (y, z)-paths. By induction this is the case unless there exists
an arc e′ = ab in D〈B〉 such that D〈B〉 − e′ has no path from v to y and
no path from y to z, but then e′ separates x from y and y from z in D,
contradicting the assumption that D has no such arc. ��

Our proof above is constructive and hence we have the following (see also
Exercise 10.32):

Corollary 10.7.22 [68] There exists a polynomial algorithm which, given
an extended in-semicomplete digraph D and distinct vertices x, y, z, either
returns a pair of arc-disjoint (x, y)-, (y, z)-paths or an arc a such that D− a
has no (x, y)-path and no (y, z)-path. ��

We can now prove the main result of this section.
10 Figure 10.11 with s2 = t1 shows that the theorem does not hold for planar

digraphs.

410 10. Linkages in Digraphs

Theorem 10.7.23 [68] The weak 2-linkage problem is polynomially solvable
for semicomplete digraphs.

Proof: (Sketch) Let [D, x1, x2, y1, y2] be an instance of the weak 2-linkage
problem for semicomplete digraphs. By relabelling if necessary, we can assume
that x1→x2. Below it is understood that we stop as soon as the existence of
the desired paths has been decided.

It is easy to check whether there is any arc e such that D−e has no (xi, yi)-
path for i = 1, 2. If such an arc exists, then D does not have the desired paths
and we stop. Now check whether D contains arc-disjoint (x2, y1)-, (x2, y2)-
paths P, P ′. If this is the case, then either x1P or P [x1, y1] (if x1 ∈ V (P))
and P ′ are the desired paths and we stop.

Hence, by Menger’s theorem, there is an arc e such that D − e has no
path from x2 to {y1, y2}. Let

Y := {v : v has a path to {y1, y2} in D − e} and X := V (D) − Y.

Then x2 ∈ X and x1 ∈ Y , because the arc e does not separate x1 from
{y1, y2}. Furthermore, e is the only arc from X to Y . Let z be the head of
e and let w be its tail. Note that D〈X〉 contains an (x2, w)-path Q since D
contains an (x2, y2)-path.

If z = x1, then the desired paths exist: We cannot have another arc e′

which separates x1 from {y1, y2} in D′ = D〈Y 〉 because then e′ separates
{x1, x2} from {y1, y2} and we would have stopped earlier. Thus, by Menger’s
theorem, D′ contains arc-disjoint (x1, y1)-, (x1, y2)-paths P1, P2, implying
that P1 and QP2 are the desired paths.

If z = y2, then the desired paths exist since any (x1, y1)-path in D′ and
Qy2 will work.

If z = y1, then the desired paths exist if and only if D′ contains arc-
disjoint (x1, y1)-, (y1, y2)-paths. This can be decided in polynomial time by
the algorithm whose existence follows from Corollary 10.7.22.

Finally, if z �∈ {x1, y1, y2}, then the desired paths exist if and only if
D′ contains arc-disjoint (x1, y1),- (z, y2)-paths. Hence we have reduced the
problem to a smaller one of the same kind.

We leave it to the reader to verify that our steps above can be performed
in polynomial time and to estimate the time complexity of the algorithm
(Exercise 10.33). ��

10.8 Linkages in Digraphs with Large Minimum
Out-Degree

In this section we consider linkages in digraphs with lower bounds on the
out-degree, but no condition on the degree of (arc)-strong connectivity. By
Menger’s theorem, the following result due to Mader would be trivial if we
also required that D was k-arc-strong.

10.8 Linkages in Digraphs with Large Minimum Out-Degree 411

Theorem 10.8.1 [670] For every integer k ≥ 1, every digraph D with
δ+(D) ≥ k contains a pair of distinct vertices x, y so that λ(x, y) ≥ k−1. ��

Mader [670] gave an example of a digraph D with δ+(D) = 12k such that
no pair of distinct vertices are joined by more than 11k internally disjoint
paths. On the other hand, he proved the following:

Theorem 10.8.2 [673] There exists a function f(k) such that every digraph
D with δ+(D) ≥ f(k) contains a pair of distinct vertices x, y such that
κ(x, y) ≥ k. Furthermore f(k) = k for k ≤ 3. ��

The value of f(k) above is not known for k ≥ 4. Mader [673] proved that
f(4) < 40 and gave an example showing that f(9) > 9.

It is natural to ask whether one can also guarantee the existence of a pair
of vertices x, y so that min{κ(x, y), κ(y, x)} ≥ k, provided that the minimum
out-degree is sufficiently high (as a function of k). However, already for k = 2
this is not true, as shown by a construction by Mader in [670]. The example
in [670] also shows that there is no function f(k) so that δ(D) ≥ f(k) implies
the existence of a pair of vertices x, y so that min{κ(x, y), κ(y, x)} ≥ k.

10.8.1 Subdivisions of Transitive Tournaments in Digraphs of
Large Out-Degree

A fundamental result of Mader [663] states that for every integer k there is
a smallest integer d(k) such that every undirected graph of average degree
at least d(k) contains a subdivision of the complete graph on k vertices. The
following conjecture by Mader would provide a digraph analogue of this result
and would generalize Theorem 10.8.2.

Conjecture 10.8.3 [673] There exists a function h : Z+ → Z+ such that
every digraph D with δ+(D) ≥ h(k) contains a subdivision of TTk.

The conjecture is easily seen to hold for k ≤ 3 with h(k) = k − 1 for
k ≤ 3. For k = 2 this is trivial and for k = 3 we can argue as follows: Let D
have minimum out-degree at least 2. Let v be an arbitrary vertex and start
growing a BFS tree from v. First observe that either we find a TT3 or each
vertex in N+(v) has an out-neighbour in N+2(v). Now, if we do not find
the desired subdivision of TT3 in D〈{v} ∪N+(v) ∪N+2(v) ∪ . . . ∪N+r(v)〉,
then each vertex in N+r(v) must have a private out-neighbour in N+(r+1)(v).
Since D is finite, this process cannot continue indefinitely and hence we will
eventually find the desired subdivision of TT3 in D.

Mader [674] proved that h(4) = 3. Even the existence of h(5) is open. It
is easy to see that we cannot replace the lower bound on the out-degree by a
lower bound on the average out-degree since the orientation of the complete
bipartite graph Kk,k, where we orient all edges from the first colour class to

412 10. Linkages in Digraphs

the second, has average out-degree k/2 but no subdivision of TT3 and no
directed cycle.

In [629] Kühn, Osthus and Young showed that if the minimum out-degree
of a digraph is sufficiently large compared to its order, then one can in fact
obtain a subdivision of a complete digraph.

Theorem 10.8.4 [629] Let D be a digraph on n vertices and out-degree
at least d. Then D contains a subdivision of the complete digraph of order
�d2/(8n3/2)�. ��

The bound in the theorem is non-trivial as soon as d ≥ 4n3/4 which is
the bound for having a subdivision of a 2-cycle. Thomassen [860] gave a
construction of a digraph on n vertices and minimum out-degree at least
1
2 log2 n which has no even cycle and hence contains no subdivision of the
complete digraph on three vertices.

10.9 Miscellaneous Topics

10.9.1 Universal Arcs in 2-Cyclic Digraphs

Recall that a digraph D is 2-cyclic if the vertices x, y are on a common cycle
for every choice of vertices in x, y ∈ V (D). Ádám [5] calls an arc a in digraph
D universal if D contains a cycle through a and x for every x ∈ V (D).
He also asked which 2-cyclic digraphs have the property that they contain a
universal arc. Hetyei [521] conjectured that this always holds.

Conjecture 10.9.1 [521] Every 2-cyclic digraph has a universal arc.

Hubenko [543] proved that every 2-cyclic bipartite tournament has a uni-
versal arc. She also proved the following slightly stronger statement.

Theorem 10.9.2 [543] Let D be a 2-cyclic bipartite tournament such that
δ0(D) ≥ 2. Then every longest cycle contains a universal arc. ��

Hubenko [543] also posed the following problem.

Problem 10.9.3 [543] Let D be a 2-cyclic bipartite tournament. Is it true
that for every maximal cycle11 C all arcs of C are universal?

Volkmann and Winzen generalized Hubenko’s results to arbitrary multi-
partite tournaments.

Theorem 10.9.4 [896] Every 2-cyclic multipartite tournament contains a
universal arc. ��
Theorem 10.9.5 [896] Let D be a strong multipartite tournament with
δ0(D) ≥ 2. Then every longest cycle of D contains a universal arc. ��
11 A cycle is maximal in D if there is no cycle C′ in D such that V (C) ⊂ V (C′).

Note that maximal cycles are non-extendable, but the converse is not always the
case.

10.9 Miscellaneous Topics 413

10.9.2 Integer Multicommodity Flows

Recall the definition of a network and a flow from Chapter 4. In this section
we consider briefly the following common generalization of flows and weak
linkages called the integer multicommodity flow problem (if k is fixed
in advance, we call it the integer k-commodity flow problem): Given
a natural number k ≥ 1, a network N = (V, A, � ≡ 0, u), 2k not necessarily
distinct vertices s1, s2, . . . , sk, t1, t2, . . . , tk and integers r1, r2, . . . , rk, decide
whether there exist integer-valued flows f1, f2, . . . , fk such that each of the
following holds (recall that |f i| is the value of the flow f i):

(i) f i is an (si, ti)-flow in N ,
(ii) |f i| ≥ ri for all i ∈ [k],
(iii) fp

ij ≥ 0 for every ij ∈ A, p ∈ [k],
(iv) For every ij ∈ A:

∑k
p=1 fp

ij ≤ uij .

A collection of flows f1, f2, . . . , fk which satisfies (i)-(iv) is called a fea-
sible k-commodity flow with respect to (si, ti), i = 1, 2, . . . , k. We can
also consider the maximization version where no demands r1, r2, . . . , rk

are specified (or they are to be considered as lower bounds) and the goal is
to maximize the sum of the values of the flows.

If we take k = 1, we have the standard (maximum) (s, t)-flow problem for
which several polynomial algorithms were described in Chapter 4. However,
Even showed that already when k = 2 the problem becomes very hard.

Theorem 10.9.6 [307] The integer 2-commodity problem is NP-complete.

Proof: The problem clearly belongs to NP since given a feasible instance we
can take specifications of two feasible flows, one from s1 to t1 and the other
from s2 to t2, as a valid certificate.

Now let [D = (V, A), x1, x2, y1, y2] be an instance of the weak 2-linkage
problem. Let N = (V, A, � ≡ 0, u ≡ 1), take si = xi, ti = yi, i = 1, 2 and let
r1 = r2 = 1. Then it is easy to see that D has arc-disjoint (x1, y1)-, (x2, y2)-
paths if and only if N has a feasible integer 2-commodity flow with respect
to the pairs (si, ti), i = 1, 2. Now the claim follows from Theorem 10.7.1. ��

What we really observed above was simply that the weak 2-linkage prob-
lem is nothing but a very special case of the 2-commodity flow problem.
This is not surprising since if we concentrate on one of the two flows f i in a
feasible integer 2-commodity flow (with respect to the values r1, r2 and the
capacities of the given network), then f i is just a normal (si, ti)-flow and
hence can be decomposed into ri (si, ti)-paths and some cycle flows by The-
orem 4.3.1. Hence the integer multicommodity flow problem is nothing but
a generalization of weak linkage problems.

The name multicommodity flow comes from the interpretation of each
flow as representing a different commodity that has to be shipped from the
source of that commodity to its sink while respecting the total capacity of

414 10. Linkages in Digraphs

the network. Problems of this type are of importance in practical applications
such as telecommunications and routing problems. For a number of results
on how to solve multicommodity flow problems in practice see the book by
Gondran and Minoux [422]. See also the survey [52] by Assad and Chapter
70 of Schrijver’s book [805]

10.10 Exercises

10.1. Prove Proposition 10.1.1.

10.2. Prove Proposition 10.1.2.

10.3. Prove that problem (P5) of Proposition 10.1.2 for semicomplete digraphs
can be reduced to the 2-linkage problem for semicomplete digraphs in poly-
nomial time.

10.4. Prove Lemma 10.2.2.

10.5. The 2-linkage problem is NP-hard for digraphs of maximum out-
degree 2. Prove this claim. Hint: modify the digraph D[F] in Figure 10.3.

10.6. Prove Theorem 10.3.1. Hint: use Lemma 10.3.2.

10.7. Prove Theorem 10.3.3 without using Theorem 10.3.4.

10.8. Prove Lemma 10.3.2.

10.9. Let D be the acyclic digraph in Figure 10.14. Show that the digraph D′ de-
fined as in the proof of Theorem 10.4.1 has a directed path from (x1, x2, x3)
to (y1, y2, y3).

x1

x2

x3

y1

y2

y3

a

b

c

d

Figure 10.14 An instance of the 3-path problem for acyclic digraphs.

10.10. (+) Argue that in the algorithm which is implicit in the proof of Theorem
10.4.1 we do not really need to construct D′ when searching for a path from
(x1, x2, . . . , xk) to (y1, y2, . . . , yk). Does that lead to an improvement in the
complexity estimate?

10.11. Finding a cheapest collection of k disjoint paths with prescribed
ends in an acyclic digraph with costs on the arcs. Show that the
approach used in the proof of Theorem 10.4.1 can be modified so that one

10.10 Exercises 415

can find the cheapest collection of disjoint paths joining xi to yi for i =
1, 2, . . . , k.

10.12. (+) Prove that under the assumption of Corollary 10.4.3, for every non-
special vertex v, the digraph D contains directed (x1, v)-, (x2, v)-, (v, y1)-,
(v, y2)-paths such that the only common vertex of any two of these paths is
v (Lucchesi and Giglio [660]). Hint: use Menger’s theorem and the fact that
D is acyclic.

10.13. A sufficient condition for digraph to be 2-linked. Let D = (V, A)
satisfy d+(x) + d−(y) ≥ n + 2 whenever D does not contain the arc xy.
Prove that D is 2-linked. Hint: first show that if xy �∈ A, then there are three
internally disjoint (x, y)-paths of length 2 in D (Heydemann and Sotteau
[525]).

10.14. Prove that every k-linked digraph is also k-strong.

10.15. Prove that if a digraph D = (V, A) is 2-linked, then for every choice of dis-
tinct vertices x, y, D contains disjoint cycles Cx, Cy such that x ∈ V (Cx), y ∈
V (Cy). Generalize this to k-linked digraphs and k vertices.

10.16. (−) Disjoint cycles containing prescribed vertices in tournaments.
Prove that a tournament T contains disjoint cycles Cx, Cy such that x ∈
V (Cx), y ∈ V (Cy) if and only if T contains disjoint 3-cycles such that one
contains x and the other contains y.

10.17. Describe how to construct the collection Q′
1, Q

′
2, . . . , Q

′
q of subpaths in the

proof of Proposition 10.5.1. What is the complexity of your algorithm?

10.18. Show how to turn the proof of Proposition 10.5.1 into an algorithm which
takes as input a collection P1, P2, . . . , Pp of internally disjoint (x, y)-paths
and a collection Q1, Q2, . . . , Qq of internally disjoint (u, v)-paths in D −
{x, y} and finds a collection of q (u, v)-paths which intersect no more than
2q vertices of P1, P2, . . . , Pp.

10.19. Let D be a locally semicomplete digraph and let x, y be distinct non-adjacent
vertices. Prove that every minimal (x, y)-path is an induced path (Bang-
Jensen [66]).

10.20. (−) Let D be a locally semicomplete digraph such that α(D) = 2. Prove
that if x and y are non-adjacent vertices of D and D has an (x, y)-path,
then there exists an (x, y)-path P of length at most 3.

10.21. (+) Prove the following statement. Let k ≥ 3, let D be a k-strong lo-
cally semicomplete digraph which is round decomposable and let D =
R[S1, . . . , Sr] be the round decomposition of D. Let x and y be vertices
such that x ∈ V (Si) and y ∈ V (Sj), where i �= j, and let P be a minimal
(x, y)-path. Then D − V (P) is (k − 2)-strong (Bang-Jensen [74]). Hint: use
Exercise 10.20.

10.22. (+) Prove Lemma 10.5.3. Hint: use Exercise 10.21.

10.23. Prove Lemma 10.5.17.

10.24. (++) Prove Theorem 10.5.13.

416 10. Linkages in Digraphs

10.25. Prove Lemma 10.6.3. Hint: show how to modify a given (x, y)-path which
is not closest to R into one which is closer by a stepwise (but finite and
polynomially bounded) improvement. For the algorithmic part you can use
that the embedding is with polygonal curves.

10.26. Prove that the graph G4 in Figure 10.10(a) is 5-connected.

10.27. Prove that the digraph Dk in Figure 10.10(b) is 5-strong and has no cycle
through x, y. Hint: use Exercise 14.8 and Proposition 10.6.1.

10.28. Supply the missing details in the proof of Theorem 10.7.1.

10.29. Prove Theorem 10.7.4.

10.30. (−) Prove Lemma 10.7.6.

10.31. Prove Lemma 10.7.19.

10.32. Determine the complexity of the algorithm of Corollary 10.7.22.

10.33. Fill in the missing details of the proof of Theorem 10.7.23. What is the
complexity of this recursive algorithm?

10.34. Prove Lemma 10.7.9.

10.35. Prove the last Claim in the proof of Theorem 10.7.13. Hint: use the same
approach as in the proof of Lemma 10.7.8.

10.36. Fan-in, fan-out in eulerian directed multigraphs. Let D be an eulerian
directed multigraph and suppose D has arc-disjoint paths P1, P2, . . . , Pk

such that Pi starts at xi and ends at u for every i ∈ [k]. Prove that D
contains arc-disjoint paths P ′

1, P
′
2, . . . , P

′
k such that P ′

i is a (u, xi)-path.

10.37. (+) Arc-disjoint (x, y)-, (y, z)-paths in quasi-transitive digraphs.
Prove that the characterization in Theorem 10.7.21 can be extended to
quasi-transitive digraphs.

10.38. Show that the 3-ST-problem for eulerian digraphs can be reduced in poly-
nomial time to the problem of deciding the existence of arc-disjoint [s1, t1]-,
[s2, t2]-paths in an eulerian digraph with specified vertices s1, t1, s2, t2. Hint:
use Exercise 10.36.

10.39. Prove that the arc-version of problem (P5) of Proposition 10.1.2 is NP-
complete.

11. Orientations of Graphs and Digraphs

The purpose of this chapter is to discuss various aspects of orientations of
(multi)graphs. There are many ways of looking at such questions. We can
ask which graphs can be oriented as a digraph of a certain type (e.g., a
locally semicomplete digraph). We can try to obtain orientations containing
no directed cycles of even length, or no long paths. We can try to relate
certain parameters of a graph to the family of all orientations of this graph
(e.g., what does high chromatic number imply for orientations of a graph).
We can also look for conditions which guarantee orientations with high arc-
strong connectivity or high in-degree at every vertex, etc. There are hundreds
of papers dealing with orientations of graphs in one way or another and we
can only cover some of these topics. Hence we have chosen some of those
mentioned above. Finally, we also study briefly the theory of submodular
flows, which generalizes standard flows in networks and turns out to be a very
useful tool (not only theoretically, but also algorithmically) for certain types
of connectivity questions as well as orientation problems. We illustrate this
by applying the submodular flow techniques to questions about orientations
of mixed graphs and by giving a short proof of Nash-Williams’ orientation
theorem. In Section 13.1 we also use submodular flows to give an algorithmic
proof of the Lucchesi-Younger Theorem.

We also discuss orientations of digraphs and point out here that although
the concept of orienting mixed graphs and orienting digraphs (that is, deleting
one arc from every 2-cycle) are very closely related, they are actually different
problems in many cases. This is because a mixed graph may contain directed
2-cycles and when we orient a mixed graph M we only orient the undirected
part of M .

11.1 Underlying Graphs of Various Classes of Digraphs

In this section we discuss the underlying undirected graphs of some gener-
alizations of tournaments. As can be seen, these include important classes
of undirected graphs such as comparability graphs and proper circular arc
graphs. For much more information about these classes and their relations to
each other, the reader is encouraged to consult the books [178] by Brandstädt,
[421] by Golumbic, and [754] by Prisner. Here we will just define those classes

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 11,
© Springer-Verlag London Limited 2010

417

http://dx.doi.org/10.1007/978-1-84800-998-1_11

418 11. Orientations of Graphs and Digraphs

that we need. A graph G is a circular arc graph if there exists a family of
circular arcs indexed by the vertices of the graph such that two vertices are
adjacent if and only if the two corresponding arcs intersect. This family of
circular arcs form a representation of G. A proper circular arc graph
is a circular arc graph which has a representation by circular arcs, none of
which is properly contained in another. A graph G is chordal if every cycle
of length at least 4 has a chord, that is, G has no induced cycle of length four
or more. Finally, G is a comparability graph if it has a transitive orienta-
tion (that is, there exists a transitive oriented graph T such that UG(T) is
isomorphic to G).

We will always use Δ to denote the maximum degree of the undirected
graph in question.

11.1.1 Underlying Graphs of Transitive and Quasi-Transitive
Digraphs

Since every transitive digraph is also quasi-transitive, every comparability
graph has a quasi-transitive orientation. The next theorem by Ghouila-Houri
shows that the other direction also holds.

Theorem 11.1.1 [404] A graph G has a quasi-transitive orientation if and
only if it has a transitive orientation.

Proof: To illustrate the usefulness of the decomposition theorem for quasi-
transitive digraphs (Theorem 2.7.5), we give a proof which is quite differ-
ent from the one in [404]. We prove the non-trivial part of the statement
by induction on the number of vertices. When n ≤ 3 the claim is easily
verified, so we proceed to the induction step, assuming n ≥ 4. Suppose D
is a quasi-transitive orientation of G and that D is not transitive. If D is
not strongly connected, then, by Theorem 2.7.5, we can decompose D as
D = T [W1, W2, . . . , Wt], t = |V (T)| ≥ 2, where T is transitive and each Wi

is a strong quasi-transitive digraph. As t ≥ 2 it follows by induction that
we can reorient each UG(Wi) as a transitive digraph Ti, i = 1, 2, . . . , k. This
gives a transitive orientation D′ = T [T1, T2, . . . , Tt] of G.

Suppose now that D is strong. By Theorem 2.7.5, D can be decomposed
as D = S[W1, W2, . . . , Ws], s = |V (S)| ≥ 2, where S is a strong semicomplete
digraph and each Wi is either a single vertex or a non-strong quasi-transitive
digraph. It follows by induction (as above) that we can orient each UG(Wi) as
a transitive digraph T ′

i , i = 1, 2, . . . , s. Let TTs be the transitive tournament
on s vertices. Then D′ = TTs[T ′

1, T
′
2, . . . , T

′
s] is a transitive orientation of G.

��
The following construction is due to Ghouila-Houri [404]. Let G = (V, E)

be an undirected graph. Construct a graph Gqtd from G as follows: V (Gqtd) =⋃
uv∈E(G){xuv, xvu} and there is an edge from xuv to xwz in Gqtd precisely

if w = v and uz �∈ E, or u = z and vw �∈ E. In particular, there is an

11.1 Underlying Graphs of Various Classes of Digraphs 419

edge xuvxvu for each uv ∈ E. See Figure 11.1 for an illustration of this
construction. Note that if xuvxvw is an edge of Gqtd, then so is xwvxvu.
Every edge of Gqtd corresponds to a forbidden pair of oriented edges of G.
The interest in this construction lies in the following very useful fact.

a
b

c

d

ef

ad

dfde

bd cd

dcdb

ed fd

da

ab ba

ac ca

bc cb

ef feG

a

b

c

d e

f

Gqtd

H
Hqtd

cb
ba fe ed

dc

bc
ab fb ef de

cd

bf

Figure 11.1 An illustration of the construction of Gqtd for two graphs. Due to space
considerations we have dropped the x’s in the name of the vertices of Gqtd, Hqtd.
The graph G is a comparability graph. The graph H is not a comparability graph.
Note that bf, cb, dc, ed, fe, bf is a 5-cycle in Hqtd.

Theorem 11.1.2 [404] A graph G is a comparability graph (and hence has
a transitive orientation) if and only if Gqtd is bipartite.

Proof: Suppose G = (V, E) is a comparability graph and let T = (V, A) be
a transitive orientation of G. In Gqtd the vertices X1 corresponding to the

420 11. Orientations of Graphs and Digraphs

arcs of T (that particular orientation of the edge uv for each uv ∈ E) form
an independent set. By symmetry of the definition of the edges of Gqtd, the
remaining vertices X2 of Gqtd also induce an independent set. Hence Gqtd is
bipartite with bipartition (X1, X2).

Conversely, suppose that Gqtd is bipartite with bipartition (X, Y). Be-
cause Gqtd contains a perfect matching consisting of edges of the form xuvxvu

it follows that |X| = |Y | and X contains precisely one of the vertices xuv, xvu

for each uv ∈ E. It follows from the definition of Gqtd that orienting the edges
corresponding to the vertices in X (Y) results in a quasi-transitive orienta-
tion D of G1. By Theorem 11.1.1, G has a transitive orientation. ��

Corollary 11.1.3 Comparability graphs can be recognized in time O(Δm),
where m is the number of edges in the input graph.

Proof: This follows from Theorem 11.1.2 and the fact that the number of
edges in Gqtd is O(Δ|E|). Note that we can check whether a given undirected
graph is bipartite in linear time using BFS (Exercise 3.2). ��

For various results on recognition of comparability graphs see the papers
[420] by Golumbic, [513] by Hell and Huang, [706] by Morvan and Viennot
and [709] by Muller and Spinrad.

Consider the comparability graph G in Figure 11.1 and suppose that
our goal is to obtain a quasi-transitive orientation of G. If we choose the
orientation a→d, then this forces the edge between d and e to be oriented as
e→d. This in turn forces the orientations c→d and b→d and each of these
force f→d. Similarly it can be seen that the five edges ad, bd, cd, de, df force
each other. It is easy to see that the corresponding ten vertices in Gqtd form
one connected component of Gqtd.

It is not difficult to see that this observation holds for arbitrary compa-
rability graphs, i.e., if xuv and xwz are in the same connected component
of Gqtd and wz �= vu, then, once we decide on an orientation for the edge
uv in G, that orientation forces one on the edge wz. An implication class
for G = (V, E) is a maximal set of edges E′ with the property that in every
orientation of G as a quasi-transitive digraph the choice of an orientation of
one edge e ∈ E′ forces the orientation of all other edges in E′.

By our remark above the implication classes for G coincide with the con-
nected components of Gqtd. More precisely the connected component C of
Gqtd corresponds to the implication class E′ = {uv ∈ E : xuv ∈ V (C)}.
It is not difficult to see that the implication classes form a partition of E.
Given Gqtd we can obtain the implication classes of G just by finding the
connected components of Gqtd. Hence we can find the implication classes in
time O(Δm) (recall that Gqtd has O(Δm) edges).

Let G be a comparability graph and suppose we want to find a transitive
orientation of G. We can obtain a quasi-transitive orientation just by picking
1 If xuv ∈ X, then orient uv from u to v, otherwise orient it from v to u.

11.1 Underlying Graphs of Various Classes of Digraphs 421

an arbitrary edge from each implication class, choosing an orientation for
this edge and then orient the remaining edges in that class the way they are
forced to be oriented. The problem is that this orientation will in general not
be transitive. Consider for example the graph G in Figure 11.1. Since each of
the edges ab, bc and ac forms an implication class of size one, there is nothing
that prevents us from orienting these three edges as the 3-cycle a→b→c→a.

We now describe a simple and very useful technique, due to Hell and
Huang [513], for obtaining a transitive orientation of a given comparability
graph G. Let 1, 2, . . . , n be a fixed labelling of the vertices of G. We say that
a vertex xij of Gqtd is lexicographically smaller than a vertex xrs if either
i < r or i = r and j < s.

The lexicographic 2-colouring of Gqtd is the unique 2-colouring (on
colours A, B) which is obtained as follows. Mark all vertices of Gqtd non-
coloured. Next, as long as there are uncoloured vertices, choose the lexico-
graphically smallest vertex xij which is not coloured yet and colour it A.
Colour all other vertices in the same connected component as they are forced
(that is, by A if the distance from xij is even and by B otherwise). When all
vertices of Gqtd are coloured the process stops.

The usefulness of lexicographic 2-colourings comes from the following re-
sult (see also Theorem 11.1.9).

Theorem 11.1.4 [513] Let G be a comparability graph with vertex set
{1, 2, . . . , n} and let f : V (Gqtd)→{A, B} be the lexicographic 2-colouring
of V (Gqtd). Define an orientation D of G such that an edge ij is oriented
as i→j precisely when xij receives colour A by the colouring f . Then D is a
transitive orientation of G.

Proof: Exercise 11.3. ��
Note that if we apply the lexicographic 2-colouring procedure to a non-

comparability graph, then this will be discovered after Gqtd has been formed
when we try to 2-colour a non-bipartite connected component H of Gqtd. The
algorithm will discover that H is not bipartite and hence G does not have
any orientation as a quasi-transitive digraph. Thus we have obtained another
proof of Theorem 11.1.1 (the lexicographic 2-colouring algorithm either finds
a transitive orientation of G, or concludes that G has no quasi-transitive
orientation).

The whole algorithm (including the construction of Gqtd) can be per-
formed in time O(Δm), where m is the number of edges of G, since we can
find the connected components of Gqtd using BFS.

11.1.2 Underlying Graphs of Locally Semicomplete Digraphs

For a given proper circular-arc graph G, with a prescribed circular-arc rep-
resentation, we get a natural order on the vertices of G by fixing a point on

422 11. Orientations of Graphs and Digraphs

the circle and labelling the vertices v1, v2, . . . , vn according to the clockwise
ordering of the right endpoints of their intervals (circular arcs) on the circle
with respect to this point. Since every proper circular-arc graph has a repre-
sentation in which no two arcs cover the whole circle [421], we may assume
that we are working with such a representation. Now it is not difficult to
see that the following process leads to a round local tournament orientation
of G (see Chapter 2 for the definition of a round local tournament2): orient
the edge between vi and vj from vi to vj just if the left endpoint of the jth
interval is contained in the ith interval. Thus we have the following result
due to Skrien (see also [66, 512, 539]):

Proposition 11.1.5 [823] Every proper circular arc graph has an orienta-
tion as a round local tournament. ��

In fact, Hell and Huang showed that the other direction holds as well.

Theorem 11.1.6 [513] A connected graph is a proper circular arc graph if
and only if it is orientable as a round local tournament.

Proof: We proved one direction above. To prove the other direction assume
that D is a round local tournament and that v1, v2, . . . , vn is a round enu-
meration of V (D). If no such labelling is given, then we can find one in time
O(n + m) (Exercise 11.5). Now represent UG(D) by circular arcs as follows.
Let ε be a fixed number such that 0 < ε < 1. Make an n-scale-clock on a cycle
and associate with the vertex vi the circular arc from i to i+d+

D(i)+ ε in the
clockwise order for each i ∈ [n] (indices modulo n). It is easy to check that
this gives a proper circular arc representation of UG(D). Note that here we
use the fact that the out-neighbours of every vertex of D induce a transitive
tournament (see Chapter 2) to see that no arc is properly contained in any
other arc. ��

By Theorem 11.1.6, the class of underlying graphs of locally semicomplete
digraphs contains the class of proper circular arc graphs. The next result, due
to Skrien [823] (see also [512, 539]), says that there are no other graphs that
can be oriented as locally semicomplete digraphs.

Theorem 11.1.7 [823] The underlying graphs of locally semicomplete di-
graphs are precisely the proper circular arc graphs. ��

Hell, Bang-Jensen and Huang [512] showed that, just as in the case of
comparability graphs, there is a useful auxiliary graph Gltd related to orien-
tations as a local tournament digraph: Let G = (V, E) be given and define
Gltd as follows: V (Gltd) =

⋃
uv∈E(G){xuv, xvu} and there is an edge from xuv

to xwz precisely if v = z and uw �∈ E, or u = w and vz �∈ E. Furthermore,
the edge xuvxvu is in E(Gltd) for each uv ∈ E. The proof of the following
result is left as Exercise 11.6.
2 Hell and Huang use the name local transitive tournament instead of round

local tournament [513].

11.1 Underlying Graphs of Various Classes of Digraphs 423

Theorem 11.1.8 [512] The graph G has an orientation as a local tourna-
ment digraph if and only if the graph Gltd is bipartite. ��

Suppose G is a proper circular arc graph. Then it follows from Theorems
11.1.7 and 11.1.8 that Gltd is bipartite. Again each connected component
of Gltd corresponds to an implication class E′ of edges of G. Hence we can
find a local tournament orientation of G by fixing the orientation of one arc
from each implication class arbitrarily and then giving all remaining arcs the
forced orientation.

If our goal is to find a representation of G as a proper circular arc graph,
then we are not interested in just any local tournament orientation of G, but
we need an orientation as a round local tournament (compare with Theorem
11.1.6). Again we can use the lexicographic method from Section 11.1.1: Since
Gltd is bipartite, we can apply the lexicographic 2-colouring procedure which
was defined in Section 11.1.1. It follows from the next theorem and the proof
of Theorem 11.1.6 that the lexicographic method is also of use in recognition
of proper circular arc graphs.

Theorem 11.1.9 [513] Let G be a proper circular arc graph and let f :
V (Gltd)→{A, B} be the lexicographic 2-colouring of V (Gltd). Define an ori-
entation D of G such that an edge ij is oriented as i→j precisely when xij

receives colour A by the colouring f . Then D is a round local tournament
orientation of G. ��

This shows that using the lexicographic method one can obtain an O(Δm)
algorithm for recognizing and representing proper circular arc graphs.

In fact an even faster and optimal algorithm for recognizing proper circu-
lar arc graphs has been found by Deng, Hell and Huang [257]. This algorithm
also uses the fact that a graph is a proper circular arc graph if and only if it
has an orientation as a round local tournament.

Theorem 11.1.10 [257] There is an O(n + m) algorithm to find a local
tournament orientation of a graph G or to report that G does not admit
such an orientation. Moreover, if a local tournament orientation exists, the
algorithm also identifies all balanced arcs. ��

We will define the notion of a balanced arc in the next subsection.

11.1.3 Local Tournament Orientations of Proper Circular Arc
Graphs

In this subsection we describe a deep result by Huang [538, 539] which gives
a complete characterization of all the possible local tournament orientations
of a given proper circular arc graph. In order to state Theorem 11.1.12 below
we need several definitions.

424 11. Orientations of Graphs and Digraphs

Let G = (V, E) be an undirected graph. An edge xy of G is balanced if
every vertex z ∈ V − {x, y} is adjacent to both or none of x and y. An edge
is unbalanced if it is not balanced. If all edges of G are unbalanced, then
G is reduced and otherwise G is reducible . It follows from this definition
that a graph which is not reduced can be decomposed as described in the
next lemma. See Figure 11.2 for an illustration.

a

b

c

d

e

f

ab

cf

de

G G′ H

Figure 11.2 A reduced graph G and a reducible graph G′. The graph G′ can be
reduced to the graph H by identifying the pairs {a, b}, {c, f} and {d, e}.

Lemma 11.1.11 If G is not a reduced graph, i.e., it has a balanced edge, then
there exist a reduced subgraph H of G and complete subgraphs Ka1 , Ka2 , . . . ,
Kah

of G such that3 G = H[Ka1 , Ka2 , . . . , Kah
], h = |V (H)|. Furthermore

we can find this (unique) decomposition in time O(n3).

Proof: We leave the easy proof to the reader. ��
Actually such a decomposition can be found even faster in O(n2) time,

see the paper [290] by Ehrenfeucht, Gabow, McConnell and Sullivan.

Let G = (V, E) be a proper circular arc graph. As we mentioned in the last
subsection, one can partition E into disjoint non-empty subsets E1, . . . , Er

with the property that if we fix the orientation of one edge in each Ei, then
there is precisely one way to orient all the remaining edges in E so that
the resulting digraph is a local tournament digraph. In other words, the
orientation of one edge in Ei implies the orientation of all other edges in Ei.
As in the last section we call the sets E1, . . . , Er the implication classes of G
(see Theorems 11.1.12 and 11.1.13 below).

Theorem 11.1.12 [539, Huang] Let G be a connected proper circular arc
graph and let C1, . . . , Ck be the connected components of G. Then one of the
following two statements holds.
3 Here the composition H[G1, G2, . . . , G|V (H)|] is defined analogously to the com-

position of digraphs in Section 1.3.

11.1 Underlying Graphs of Various Classes of Digraphs 425

Bi

Ai

Ci Cj Cp

Ap

Bp

Aj

Bj

Figure 11.3 Implication classes for orientations of a graph G as a local tournament
digraph.The sets Ci, Cj , Cp denote distinct connected components of G. For each
component a bipartition Ar, Br is shown. The edges shown inside Ci form one
implication class and the edges shown between Cj and Cp form another implication
class.

(a) G is bipartite, the set of all unbalanced edges of G with both ends in a
fixed Ci form an implication class and the set of all unbalanced edges of
G between two distinct Ci and Cj form an implication class (see Figure
11.3).

(b) G is not bipartite, k = 1 and all unbalanced edges of G form one impli-
cation class. ��

Observe that an edge forms an implication class by itself if and only if it
is balanced. Hence Theorem 11.1.12 can be reformulated as follows.

Theorem 11.1.13 (Huang) [539] Let G be a proper circular arc graph
which is reduced (that is, every edge is unbalanced), let Ḡ denote the com-
plement graph of G and let C1, . . . , Ck denote the connected components of
Ḡ.

(a) If Ḡ is not bipartite, then k = 1 and (up to a full reversal) G has only
one orientation as a locally tournament digraph, namely, the round ori-
entation.

(b) If Ḡ is bipartite, then every orientation of G as a locally tournament
digraph can be obtained from the round locally tournament digraph ori-
entation D of G by repeatedly applying one of the following operations:
(I) reverse all arcs in D that go between two different Ci’s,
(II) reverse all arcs in D that have both ends inside some Ci. ��

It is also possible to derive a similar result characterizing all possible
orientations of G as a locally semicomplete digraph. We refer the reader to
[539] for the details.

As an example of the power of Huang’s result (Theorems 11.1.12 and
11.1.13) we state and prove the following corollary which was implicitly stated
in [539] (see also Exercise 2.34).

426 11. Orientations of Graphs and Digraphs

Corollary 11.1.14 If D is a locally tournament digraph such that UG(D) is
not bipartite, then D = R[S1, . . . , Sr], where R is a round locally tournament
digraph on r vertices and each Si is a strong tournament.

Proof: If UG(D) is reduced, then this follows immediately from Theorem
11.1.13, because according to Theorem 11.1.13, there is only one possible
locally tournament digraph orientation of UG(D). So suppose that UG(D)
is not reduced. By Lemma 11.1.11, UG(D) = H[Ka1 , . . . , Kah

], h = |V (H)|,
where H is a reduced proper circular arc graph, each Kai is a complete graph
and some ai ≥ 2. Because we can obtain an isomorphic copy of H as a sub-
graph of UG(D) by choosing an arbitrary vertex from each Kai , we conclude,
from Theorem 11.1.12, that in D all arcs between two distinct Kai , Kaj have
the same direction (note that H is non-bipartite). Thus D = R[S1, . . . , Sr],
where (up to reversal of all arcs) R is the unique round locally tournament
digraph orientation of H and each Si is the tournament D〈V (Kai)〉. Note
that D〈V (Kai)〉 may not be a strong tournament, but according to Corol-
lary 2.10.7 we can find a round decomposition of D so that this is the case.

��

11.1.4 Underlying Graphs of Locally In-Semicomplete Digraphs

The structure of the underlying graphs of locally in-tournament digraphs is
more complicated than in the case of local tournaments and quasi-transitive
digraphs

In [882]4 an algorithm is given for recognizing graphs orientable as locally
in-tournament digraphs (as well as finding a locally in-tournament digraph
orientation if one exists). The complexity is O(nm) which is worse than the
simple algorithm based on 2-satisfiability given in Proposition 11.1.15 below.

The proposition below gives an illustration that algorithms for the 2-SAT
problem (see Section 17.5) are useful for certain orientation problems.

Proposition 11.1.15 [105] There is an O(Δm) algorithm for recognizing
graphs that are orientable as locally in-tournament digraphs.

Proof: Let a graph G = (V, E) be given, and let D = (V, A) be an arbitrary
orientation of the edges of G, where A = {a1, a2, . . . , am}. If ai is an orienta-
tion of an edge yz of G, then the reverse orientation of that edge is denoted
by

←
ai. We now construct an instance of the 2-SAT problem as follows. The set

of variables is X = {x1, . . . , xm}. The variables are interpreted as follows. If
xi = 1, then we keep the orientation ai, otherwise we take the opposite orien-
tation

←
ai. The clauses consist of those pairs of literals (�i + �j) for which �i, �j

correspond to arcs with the same terminal vertex and non-adjacent initial
4 In [882] Urrutia and Gavril studied locally in-tournament digraphs under an-

other name, fraternally oriented graphs.

11.1 Underlying Graphs of Various Classes of Digraphs 427

vertices in D. It is easy to see that G is orientable as a locally in-tournament
digraph if and only if the above-defined instance of 2-SAT is satisfiable. By
Theorem 17.5.5 the complexity of 2-SAT is O(K), where K is the number of
clauses. Hence, it follows from the way we construct the clauses above that
we can recognize graphs orientable as locally in-tournament digraphs in time
O(Δm). ��

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h
(b) (c)

a

b

c

d

e

f

g

h
(a)

Figure 11.4 An undirected graph G and two orientations of G.

The construction used in the proof above is illustrated in Figure 11.4.
Part (a) shows an undirected graph G; part (b) an arbitrary orientation D of
G. The instance of 2-satisfiability corresponding to this orientation contains
one variable for each arc of D and the following clauses:

(x̄ab + x̄cb), (x̄ad + x̄cd), (xcb + xce), (xcd + xce), (x̄ce + x̄fe),
(x̄ce + x̄he), (x̄fe + x̄he), (x̄fg + x̄hg), (x̄ce + xeg).

Part (c) shows an orientation of G as an in-tournament digraph corresponding
to the truth assignment (xab, xad, xcb, xcd, xce, xdb, xeg, xfe, xfg, xhe, xhg) =
(0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0).

In Exercise 18.13 a useful correspondence between the 2-SAT problem
and the problem of deciding the existence of an independent set of size n/2
in graphs with a perfect matching is indicated. Using this correspondence, it
is no surprise that for graphs which are orientable as in-tournament digraph
there is a construction similar to the one used in Theorem 11.1.2 for compa-
rability graphs. (In Theorem 11.1.8 we saw a similar one for the underlying
graphs of locally semicomplete digraphs.)

Let G = (V, E) be an undirected graph and define the undirected graph
Gitd as follows: V (Gitd) =

⋃
uv∈E(G){xuv, xvu} and there is an edge from xuv

to xwz precisely if w = v and z = u, or v = z and uw �∈ E.

428 11. Orientations of Graphs and Digraphs

The proof of the following lemma is left to the reader as Exercise 11.1. It
is useful to compare this lemma with Exercise 18.13.

Proposition 11.1.16 A graph G = (V, E) is orientable as a locally in-
tournament digraph if and only if the graph Gitd has an independent set
of size |E|. ��

B1 B2 B3

Figure 11.5 The digraphs B1, B2, B3.

Let B be the family of the three digraphs shown in Figure 11.5 and let F
be any subset of B other than {B1} or {B2}. Skrien [823] characterized the
classes of those graphs which can be oriented without a member of F as an
induced subdigraph. These are the classes of complete graphs, comparability
graphs, proper circular arc graphs and nested interval graphs. Since each
of the forbidden configurations contains just two arcs, 2-SAT could be used
to solve the recognition problem for each of these four classes, all in time
O(Δm).

11.2 Orientations with No Even Cycles

The problem of deciding whether a given digraph has an even cycle is poly-
nomially solvable, but very complicated (see Section 8.3). The corresponding
problem for undirected graphs is easy (see Exercise 11.14). Here we will con-
sider a somewhat opposite orientation problem where we wish to achieve
orientations with no even cycles. Since we can concentrate on strong com-
ponents when looking for even cycles, we only consider strong orientations
without even cycles. Clearly we can also concentrate on graphs that are non-
bipartite since otherwise every cycle will be even and the answer is trivial. It
is also clear that it suffices to consider graphs which are 2-connected.

Let G be an undirected graph and let us call an orientation D of G odd
if there is no directed cycle of even length in D. The following problem was
posed by Bang-Jensen in 1992 (see, e.g., [400]).

Problem 11.2.1 Is there a polynomial algorithm which given an undirected
graph G either returns a strong odd orientation D of G or a proof (in the
form of a certificate that can be checked in polynomial time) that G has no
such orientation?

11.2 Orientations with No Even Cycles 429

(a) (b)

oddodd

odd
odd odd

oddodd

odd

Figure 11.6 Illustration of an odd-K4 and an odd necklace. Each of the six dashed
lines in the odd-K4 in part (a) corresponds to internally disjoint paths and the word
odd inside a cycle in part (b) indicates that the length of the bounding cycle is odd.

This seems to be a very hard problem and so far only a partial answer
(Theorem 11.2.3 below) is known. In order to state Theorem 11.2.3, we need
the following definitions. An odd-K4 is an undirected graph which is a sub-
division of the complete graph on four vertices in which each of the four
3-cycles of K4 becomes odd cycles (see Figure 11.6(a)). An odd necklace is
any undirected graph which can be obtained from an odd number t of odd
cycles C1, C2, . . . , Ct by identifying one vertex of Ci with one vertex of Ci+1

(modulo t) in such a way that |V (Ci)∩V (Cj)| = 1 if |i− j| = 1 (mod k) and
|V (Ci) ∩ V (Cj)| = 0 otherwise (see Figure 11.6(b)).

The proof of the following lemma is left as Exercise 11.13.

Lemma 11.2.2 [400] Let G be a graph which is either an odd-K4 or an odd
necklace. Then every strong orientation of G has an even cycle. ��

However, graphs that contain odd-K4’s may have strong odd orientations
as shown in Figure 11.7. Note that in this orientation the 2-connected sub-
graph corresponding to the odd-K4 is not oriented as a strong digraph.

Figure 11.7 A strong odd orientation of a graph with an odd-K4 (shown as fat
arcs).

430 11. Orientations of Graphs and Digraphs

Gerards and Shepherd proved the following result:

Theorem 11.2.3 [400] Let G be 2-connected and non-bipartite. If G con-
tains neither an odd-K4 nor an odd necklace as a subgraph, then G has a
strong odd orientation. ��

By Lemma 11.2.2, Theorem 11.2.3 can be reformulated as follows:

Theorem 11.2.4 [400] Let G be an undirected graph. Then each 2-connected
non-bipartite subgraph of G has a strong odd orientation if and only if G
contains neither an odd-K4 nor an odd necklace as a subgraph. ��

The proof of Theorem 11.2.3 is based on a constructive characterization
of graphs with no odd-K4’s and no odd necklaces [400, Theorem 7, Corollary
8] (see also [398]).

It is shown in [400] that graphs which contain no odd-K4 and no odd
necklace can be recognized in polynomial time. Furthermore the proof of
Theorem 11.2.3 in [400] is constructive and implies that there is a polynomial
algorithm for Problem 11.2.1 for graphs with no odd-K4 and no odd chain.

For further results on orientations of graphs with no odd-K4 see the papers
[397, 399] by Gerards.

How many edges can a graph G have before every strong orientation of
G has an even cycle? Since every strong orientation of a complete graph on
n vertices is pancyclic by Theorem 1.5.1 it is clear that there is some upper
bound on the number of edges (as a function on n) for graphs which have
strong orientations without even cycles.

Let A and B be disjoint sets of size �(n − 1)/2� and �(n − 1)/2�, re-
spectively. Form a graph Hn by taking V (Hn) = A ∪ B ∪ v, where v is a
new vertex and E(Hn) = {ab : a ∈ A, b ∈ B} ∪ {vc : c ∈ A ∪ B}. Then
|E(Hn)| = �(n + 1)2/4� − 1 and we can orient Hn so that it is strong and all
cycles are 3-cycles just by orienting all arcs from v to A, from A to B and
from B to v.

Let Cn = v0v1 . . . vn−2vn−1v0 be a cycle. Let Ln be obtained from Cn by
adding all chords vivj such that i − j is a positive even number. It is not
difficult to check that each graph Ln has |E(Ln)| = �(n+1)2/4�−1 and that
Ln has a strong orientation with no even cycles (Exercise 11.15).

These two classes show that the following result, due to Chung, Goddard
and Kleitman, is best possible in terms of the number of edges. We formulate
it as a theorem for oriented graphs.

Theorem 11.2.5 [219] Every strong oriented graph on n vertices and at
least �(n+1)2/4� = f(n)+1 arcs contains an even cycle. Furthermore every
strong oriented graph D on n vertices with f(n) arcs which has no even cycle
consists of a maximal hamiltonian arc-critical subdigraph H of D on an odd
number (2r+1, for some r) of vertices and an acyclic bipartite tournament B
on the remaining vertices, having the partite sets as equal in size as possible,
each vertex of which is joined to r + 1 vertices of H. ��

11.3 Colourings and Orientations of Graphs 431

By a maximal hamiltonian arc-critical subdigraph of D we mean a sub-
digraph on, say, n′ vertices which has f(n′) edges, is hamiltonian, and is
maximal with respect to these conditions (that is, every subdigraph of D
with n′′ > n′ vertices is either non-hamiltonian or has less than f(n′′) arcs).

Although Theorems 11.2.3 and 11.2.5 do give some information as to
which graphs have strong orientations without even cycles, there are large
classes of graphs for which they give no information. One such class is the
cubic graphs one can obtain by joining two odd cycles of the same length by
a perfect matching. The Petersen graph5 is one of these graphs. It is easy
to see that the Petersen graph (an orientation of which is shown in Figure
11.8) contains an odd-K4 and hence is not covered by Theorem 11.2.3. In
Exercise 11.12 the reader is asked to prove that every strong orientation of
the Petersen graph contains an even cycle.

Obviously an oriented graph has an even cycle if it has two cycles whose
length differ by one. Hence the following problem may be interesting to study.
The analogous problem was considered for undirected graphs by Bondy and
Vince in [172].

Problem 11.2.6 Is there a polynomial algorithm to decide whether a given
2-connected graph has a strong orientation without two cycles whose length
differ by one?

11.3 Colourings and Orientations of Graphs

In this section we discuss connections between a very important parameter of
an undirected graph G, its chromatic number, and properties of orientations
of G.

Recall that the chromatic number of an undirected graph G = (V, E), de-
noted χ(G), is the smallest natural number k for which V can be partitioned
into disjoint independent sets V1, V2, . . . , Vk. A more popular and obviously
equivalent definition is that χ(G) is the smallest number k such that we can
assign each vertex v ∈ V a colour from the set [k] without ever using the same
colour for vertices that are adjacent (joined by an edge) in G. A k-colouring
of an undirected graph G is any function mapping V (G)→[k]. A k-colouring
is proper if f(u) �= f(v) for every edge uv ∈ E(G). For convenience we also
define the chromatic number of a digraph as χ(D) = χ(UG(D)).

For an arbitrary digraph lp(D) denotes the length of a longest path in D.
The first relation we will discuss is between the numbers lp(D) and χ(G) for
an arbitrary orientation D of G.
5 The Petersen graph, due to the Danish pioneer of graph theory, Julius Petersen

(1839-1910), is very important in several problems on undirected graphs (see,
e.g., [902]).

432 11. Orientations of Graphs and Digraphs

If χ(G) = k, then we can obtain an acyclic orientation D of G with
lp(D) = k − 1 just by orienting all edges between Vi and Vj from Vi to Vj

for all 1 ≤ i < j ≤ k, where V1, V2, . . . , Vk is a partition of V into k disjoint
independent sets. Hence if χ(G) is small, then G has an orientation without
long directed paths. The interesting thing is that the opposite direction also
holds as was discovered independently by Gallai, Roy and Vitaver.

Theorem 11.3.1 (Gallai-Roy-Vitaver theorem) [387, 789, 887] For ev-
ery digraph D, χ(D) ≤ lp(D) + 1.

Proof: This is an easy consequence of Proposition 9.9.5 and the notation
introduced there. Indeed, if χ(D) = n, then we must have p(F∗) ≥ n − 1,
where F∗ is any spanning out-forest minimizing the vector v. Since each
vertex in Li, i > 1, has an in-coming arc from Li−1 we can trace back a path
x0x1 . . . xn−1 of length n − 1 by starting from a vertex xn−1 ∈ Ln−1. This
shows that lp(D) ≥ χ(D) − 1 ��

Gallai asked [387] whether every graph G has an orientation with precisely
one path of length χ(G). This is not true, as shown by an example by Youngs
[924]. For a detailed discussion of this topic and related problems see the book
by Jensen and Toft [564].

An alternative formulation6 of Theorem 11.3.1 is that the chromatic num-
ber of a graph is given by

χ(G) = min{lp(D) + 1 : D is an orientation of G}.

For any orientation D of an undirected graph G, we obtain an upper
bound k on χ(G) from Theorem 11.3.1. It follows from the fact that the
problem of finding the minimum k such that an undirected graph has a k-
colouring is NP-hard (as shown by Karp [585]) that it is an NP-hard problem
to find an orientation D of a given undirected graph G which minimizes lp(D).
The next theorem by Tuza shows that given an orientation D of G, in linear
time, one can find a colouring using at most lp(D) + 1 colours.

Theorem 11.3.2 [880] If D is a digraph such that lp(D) < k, then a proper
k-colouring of UG(D) can be found in time O(n + m). ��

By the Gallai-Roy-Vitaver theorem, the directed path of length k − 1 is
contained in every k-chromatic digraph. More generally, one can ask which
digraphs are contained in every k-chromatic digraph. Such digraphs are called
k-universal. It follows from the well-known result of Erdős [296], showing
that k-chromatic graphs may have arbitrarily high girth, that k-universal
graphs must be oriented trees.
6 Combining this with the famous 4-Colour Theorem by Appel and Haken [43]

which says that every planar graph has chromatic number at most four, we see
that the 4-Colour Theorem is equivalent to the statement that every planar graph
has an orientation such that no directed path has length more than 3.

11.3 Colourings and Orientations of Graphs 433

Burr proved the existence of a function f(n) such that every tree on n
vertices is f(n)-universal. To prove this, we need the following lemma.

Lemma 11.3.3 [183] If Δ+(D) ≤ k, then χ(D) ≤ 2k + 1.

Proof: Clearly D contains a vertex v whose in-degree is also at most k and
removing v from D we can repeat the argument, so UG(D) is 2k-degenerate7

which immediately implies the claim. ��

Theorem 11.3.4 [183] Every oriented tree on n ≥ 3 vertices is (n − 1)2 -
universal.

Proof: We proceed by induction on n. The case n = 3 is easily seen to
hold. Now assume that the theorem holds for some n ≥ 3 and let T be an
oriented tree on n + 1 vertices. By considering the converse of T if necessary,
we may assume that T contains some arc uv where v has in-degree 0 in T .
Let T ′ = T − v. Now let D = (V, A) be an arbitrary digraph with χ(D) ≥ n2

and partition V into V1, V2 = V − V1 where V1 = {v ∈ V |d+(v) < n}.
By Lemma 11.3.3 χ(D〈V1〉) ≤ 2n − 1 and hence χ(D〈V2〉) ≥ (n − 1)2. By
the induction hypothesis, D〈V2〉 contains T ′. Let u be a vertex in D〈V2〉
corresponding to u in some copy of T ′ in D〈V2〉. As d+(u) ≥ n we can find a
vertex z ∈ V (D) − V (T ′) so that u dominates z. Now T ′ + z is the desired
copy of T . ��

Burr conjectured that f(n) is, in fact, much smaller.

Conjecture 11.3.5 [183] Every oriented tree on n ≥ 3 vertices is 2(n− 1)-
universal.

Clearly this would be best possible as an out-tree on k vertices with root
r and k − 1 vertices dominated by the root is not contained in any (k − 2)-
regular tournament. Conjecture 11.3.5 contains as a special case the following
longstanding conjecture due to Sumner (see [912]) which has attracted con-
siderable attention (see, e.g., [489, 508]).

Conjecture 11.3.6 (Sumner) Every tournament on at least 2n−2 vertices
contains every oriented tree on n vertices.

Currently the best known bound for Sumner’s conjecture is due to El-
Sahili [293] who proved that every oriented tree is contained in every tour-
nament of order at least 3n − 3.

Bondy obtained the following generalization of Theorem 11.3.1 to strong
digraphs. Note that Camion’s theorem is a direct consequence of Theorem
11.3.7.
7 An undirected graph G is p-degenerate if and only if every induced subgraph

of G has a vertex of degree at most p.

434 11. Orientations of Graphs and Digraphs

Theorem 11.3.7 [167] Every strong digraph contains a directed cycle of
length at least χ(D). ��

This result was generalized as follows by Addario-Berry, Havet and
Thomassé.

Theorem 11.3.8 [6] Let D be a strong digraph with χ(D) = r. For every
3 ≤ k ≤ r, D contains a cycle C of length at least k such that χ(D〈V (C)〉) ≤
k. ��

Denote by P (k, l) the oriented path consisting of k forward arcs followed
by l backward arcs for some k, l ≥ 1. Such a path is called a path with two
blocks. Note that P (k, l) and P (l, k) are isomorphic. El-Sahili conjectured
in [292] that every path with two blocks and r ≥ 4 vertices is r-universal.
This was proved by Addario-Berry, Havet and Thomassé.

Theorem 11.3.9 [6] Let k, l, r be positive integers so that k + l + 1 = r ≥ 4
and let D be an r-chromatic digraph. Then D contains a copy of P (k, l). ��

The proof of Theorem 11.3.9 is too long to be included here but in order
to illustrate the usefulness of Proposition 9.9.5 we will prove the following
weaker result due to El-Sahili and Kouider.

Theorem 11.3.10 [294] Every digraph D contains either a P (k, l− 1) or a
P (k − 1, l) for every choice of positive integers k, l so that k + l = χ(D). In
particular D contains a copy of P (k − 1, l − 1).

Proof: By Proposition 9.9.5, D contains a spanning out-forest F with levels
L0, L1, . . . , Lp such that each Li is an independent set. Thus D is (p + 1)-
colourable and we have p ≥ χ(D)−1 = k+l−1. For j = 0, . . . , l−1 let Xj =8
⋃

r≥0 Lk−1+j+rl. Then (L0, L1, . . . , Lk−2, X0, X1, . . . , Xl−1) is a partition of
V (D) into k+ l−1 sets. As χ(D) = k+ l, some Xj contains adjacent vertices
x, y. Note that x ∈ Lk−1+j+sl and y ∈ Lk−1+j+tl where s �= t as each Li is
independent and we may assume s < t. Denote by Tx, Ty the out-trees in F
which contain x, y, respectively, possibly Tx = Ty. Let Q be the path from
the root of Tx to x and let R be the path to y from its ancestor in Lk+j+sl.
Then Q has length k−1+ j +sl ≥ k−1 and R has length (t−s)l−1 ≥ l−1.
Thus D has a path P (k, l − 1) if xy ∈ A or a path P (k − 1, l) if yx ∈ A. ��

The case when D is strong in Theorem 11.3.9 also follows easily from
Theorem 11.3.8 and Proposition 9.9.5. To see this let D and k, l ≥ 1 with
k+l = χ(D)−1 be given. By Theorem 11.3.8, D contains a directed cycle C of
length at least k +1 so that χ(D〈V (C)〉) ≤ k +1. Let D1 = D〈V (C)〉 and let
D2 be obtained from D by contracting C to one vertex c and then reversing
8 That is, Xj contains those levels of F whose index is at least k − 1 and is

congruent to k − 1 + j modulo l.

11.4 Orientations and Nowhere-Zero Integer Flows 435

all remaining arcs. It is not difficult to see that the proof of Proposition 9.9.5
can be modified to show that D2 has a spanning out-forest F where all levels
are independent and L0 = {c}. Since χ(D〈V − V (C)〉) ≥ χ(D)− (k + 1) ≥ l
it follows that F has at least l + 1 levels and thus D2 contains a path of
length l starting in c. Taking the reverse of that path back in D and a path
of length k ending in c in D1 we obtain the desired copy of P (k, l) in D.

Analogously to the definition of a path with two blocks, a cycle with two
blocks C(k, l) is a digraph consisting of two vertices x, y and two internally
disjoint (x, y)-paths of lengths k, l, respectively.

Benhocine and Wojda [136] proved that every tournament on n ≥ 4 ver-
tices contains every C(k, l) with k, l ≥ 1 and k + l = n. This does not hold
for general digraphs as shown by an example by Gyárfás and Thomassen
(see [6]). However, the digraphs in the example by Gyárfás and Thomassen
are not strongly connected and it is easy to see that every strongly connected
digraph of order n which is not a directed cycle contains a C(k, l) for some
k, l ≥ 1.

Addario-Berry, Havet and Thomassé asked whether we can always find,
in a strong digraph D, a pair of vertices that are joined by two internally
disjoint paths which are both long, where the measure is with respect to the
chromatic number of D.

Problem 11.3.11 [6] Let D be an n-chromatic strongly connected digraph
(n ≥ 4) and let k, l be positive integers such that k + l = n. Does D contain
a C(k′, l′) for some integers k′ ≥ k and l′ ≥ l?

Minty showed that one can also measure the chromatic number of a graph
by how much one can balance oriented cycles in orientations.

Theorem 11.3.12 [700] If G has an orientation such that every oriented
cycle contains at least |V (C)|/k arcs in each direction, then χ(G) ≤ k. ��

This was strengthened by Tuza as follows.

Theorem 11.3.13 [880] If G has an orientation such that every cycle of
length |V (C)| ≡ 1 (modulo k) contains at least |V (C)|/k arcs in each direc-
tion, then χ(G) ≤ k. ��

For more relations between chromatic number and paths and cycles in di-
graphs see Bondy’s survey [169, Section 4.4] and the paper [839] by Szigeti
and Tuza.

11.4 Orientations and Nowhere-Zero Integer Flows

In this section, unless otherwise stated, we assume that all undirected multi-
graphs in question are connected.

436 11. Orientations of Graphs and Digraphs

Let G = (V, E) be an undirected multigraph. A k-flow on G is an as-
signment of an orientation a to each edge e ∈ E as well as an integer x(a)
from the set [k− 1] such that for each vertex v the sum of the values of x on
arcs into v equals the sum of the values of x on arcs leaving v. That is, x is a
circulation in the resulting oriented multigraph D. Hence we can think of a
k-flow on a multigraph G as a pair (D, x) where D = (V, A) is an orientation
of G and x is an integer circulation in D with the property that x(a) ∈ [k−1]
for each a ∈ A. Below we use this notation. The flow x is sometimes called
a nowhere-zero k-flow to stress the fact that x never takes the value zero
on an arc. We say that G has a k-flow if there exists a k-flow on G. It is
easy to see that a multigraph G has a k-flow for some k if and only if each
connected component of G has a k-flow. Furthermore, it is easy to show that
a connected multigraph with a bridge cannot have a k-flow for any k (see
Exercise 11.19). It is easy to see that a pseudograph G has a k-flow if and
only if the multigraph H that we obtain by deleting all loops from G has a
k-flow. This is why we assume that we are working with a multigraph rather
than a pseudograph below.

For convenience, we will always specify the value of a flow x on an arc uv
by x(uv), rather than xuv as we did in Chapter 4. We start with a very easy
result on 2-flows.

Proposition 11.4.1 A multigraph G has a 2-flow if and only if all degrees
of G are even.

Proof: Clearly, if G has a 2-flow x, then all degrees are even, since x is a
circulation which only takes the value 1. Suppose now that all degrees of
G are even. We may assume that G is connected as otherwise we consider
each component in turn. By Euler’s theorem, G has a closed walk W =
w0w1w2w3 . . . wm−1wm, where w0 = wm which uses each edge precisely once.
Let D be the orientation obtained by orienting the edge wiwi+1 from wi to
wi+1 for i = 0, 1, . . . , m− 1. Then (D, x ≡ 1) is a 2-flow in G. ��

For any abelian9 group (Γ, +) we can define a flow in a multigraph G =
(V, E) as follows. A Γ -flow in G is a pair (D, x) where D is an orientation
of G, x maps A(D) to the non-zero elements {g1, g2, . . . , g|Γ |−1} of Γ and x
satisfies

∑

uv∈A(D)

x(uv) =
∑

vw∈A(D)

x(vw) for all v ∈ V, (11.1)

where addition is in the group Γ and |Γ | denotes the number of elements in
the group Γ . That is, x is a circulation which takes values from Γ −g0, where
g0 is the neutral element of (Γ , +).

Tutte proved the following important theorem, relating k-flows on a multi-
graph G to arbitrary group-valued circulations on orientations of G.
9 Recall that an additive group (Γ , +) is abelian if a + b = b + a holds for all

elements a, b of Γ .

11.4 Orientations and Nowhere-Zero Integer Flows 437

Theorem 11.4.2 (Tutte) [877] If (Γ , +) is a finite abelian group, then an
undirected multigraph G has a Γ -flow if and only if it has a k-flow, where
k = |Γ |. ��

An important step in proving Theorem 11.4.2 is to demonstrate the fol-
lowing theorem by Tutte. Although we do not prove Theorem 11.4.2, we still
prove Theorem 11.4.3 and then use it below. The group Zk is the additive
group of integers modulo k.

Theorem 11.4.3 [877] Let G = (V, E) be an undirected multigraph and
k ≥ 1 an integer. Then G has a k-flow if and only if G has a Zk-flow.

Proof: If (D, x) is a k-flow in G, then x(a) ∈ [k − 1] for each a ∈ A and
∑

uv∈A(D)

x(uv) −
∑

vw∈A(D)

x(vw) = 0 ≡ 0 (modulo k).

Hence (D, x) is also a Zk-flow in G.

Suppose now that (D′, x′) is a Zk-flow in G. Since all calculations are
modulo k, we may assume that x′(a) ∈ [k − 1] for each a ∈ A. By the
definition of a Zk-flow we also have

∑

uv∈A(D′)

x′(uv) −
∑

vw∈A(D′)

x′(vw) ≡ 0 (modulo k).

For a given Zk-flow (D = (V, A), x), we let the balance vector bx be
defined as in (4.5), that is,

bx(v) =
∑

vw∈A(D)

x(vw) −
∑

uv∈A(D)

x(uv).

Now assume that (D′, x′) is chosen among all Zk-flows in G such that the
sum

φ(D′, x′) =
∑

v∈V (D′)

|bx′(v)| (11.2)

is minimized. We show that φ(D′, x′) = 0, implying that (D′, x′) is a k-flow
in G. Suppose this is not the case. Then let

P = {v ∈ V : bx′(v) > 0}, M = {v ∈ V : bx′(v) < 0}.

It follows from standard flow considerations (compare with Section 4.1)
that P, M �= ∅. By Theorem 4.3.1, we conclude that there is a path Q from P
to M in D′. Let (D′′, x′′) be obtained by reversing all arcs of Q and changing
the flow of each arc a ∈ A(Q) to k − x′(a) while leaving the flow on all arcs
not on Q unchanged. It is easy to see that (D′′, x′′) is a Zk-flow in G and that
φ(D′′, x′′) = φ(D′, x′) − 2k (which is still at least zero since every vertex in

438 11. Orientations of Graphs and Digraphs

P (M) contributes a positive (negative) multiple of k to the balance vector).
This contradicts the choice of (D′, x′) and hence we must have φ(D′, x′) = 0
implying that (D′, x′) is a k-flow. ��

The usefulness of Theorem 11.4.2 is illustrated several times below. The
point is that, as we shall see below, it is sometimes considerably easier to
establish that a multigraph has a Γ -flow than it is to prove directly that it
has a |Γ |-flow.

A multigraph is cubic if every vertex has degree 3.

Proposition 11.4.4 A cubic multigraph G has a 3-flow if and only if G is
bipartite.

Proof: Suppose first that G is cubic and bipartite with bipartition (X, Y).
Let D be the orientation obtained by orienting all edges from X to Y . Let
x ≡ 1, then (D, x) is a Z3-flow in G. By Theorem 11.4.3, G has a 3-flow
(D′, x′).

Suppose now that G is cubic and has a 3-flow (D, x). Since the only values
of x are 1 and 2, it is easy to see that taking X (Y) as those vertices which
are the tail (head) of an arc whose x-value is 2, we obtain a partition of V (G)
into two independent sets. Thus G is bipartite with bipartition (X, Y). ��

A multigraph G is r-edge-colourable if one can assign each edge a
number from the set [r] in such a way that all edges incident to the same
vertex receive different numbers. Such an assignment is also called an r-
edge-colouring of G. By Exercise 4.58, every cubic bipartite multigraph
is 3-edge-colourable. For general 3-edge-colourable cubic multigraphs it may
not be possible to find a 3-flow (see Exercise 11.26), but one can always find
a 4-flow as the next result shows.

Theorem 11.4.5 A cubic multigraph G has a 4-flow if and only if G is
3-edge-colourable.

Proof: By Theorem 11.4.2, G has a 4-flow if and only if it has a Z2 × Z2-
flow10. Observe that the non-zero elements of Z2×Z2 are their own inverses.
Furthermore these three elements sum up to the zero element in Z2 × Z2.
This shows that at every vertex of G precisely one edge has flow equal to
(1, 0), (0, 1) and (1, 1), respectively. Thus if (D, x) is a Z2 × Z2-flow in G,
then we can consider the elements (0, 1), (1, 0), (1, 1) as edge colours and we
obtain that G is 3-edge-colourable. This argument works the other way also
and hence the claim is proved. ��

Theorem 11.4.6 A multigraph G has a 4-flow if and only if it contains two
eulerian subgraphs G1, G2 such that E(G) = E(G1) ∪ E(G2).

10 The additive group (Z2 × Z2, +) has elements {(0, 0), (1, 0), (0, 1), (1, 1)} and
addition is coordinate-wise.

11.4 Orientations and Nowhere-Zero Integer Flows 439

Proof: Exercise 11.25. ��

Theorem 11.4.7 [560] Every 4-edge-connected multigraph G has a 4-flow.

Proof: Let G = (V, E) be 4-edge-connected. By Theorem 9.4.2, G has two
edge-disjoint spanning trees T1, T2. Every edge e ∈ E−E(T1) forms a unique
cycle Ce with E(T1). Let E1 be the modulo 2 sum of the edge sets of all
cycles of the form Ce, e ∈ E − E(T1). Then the subgraph G1 of G induced
by E1 is eulerian and contains all edges of E − E(T1). Similarly there is an
eulerian subgraph G2 which contains all edges of E −E(T2). Hence E(G) =
E(G1) ∪ E(G2), because T1 and T2 are edge-disjoint, and the claim follows
from Theorem 11.4.6. ��

2
4

3

3

2

1

1

1 1

2

1

2
2

1

2

Figure 11.8 The Petersen graph with a 5-flow (D, x) indicated. Notice that the
value 4 is only used once.

By Theorem 11.4.5 and the existence of 2-edge-connected cubic multi-
graphs which are not 3-edge-colourable (the most famous example being the
Petersen graph, see Figure 11.8 for an orientation of the Petersen graph) we
conclude that not all 2-edge-connected multigraphs have a 4-flow. However,
Tutte conjectured that 4 can be replaced by 5.

Conjecture 11.4.8 (Tutte’s 5-flow conjecture) [877] Every multigraph
which is 2-edge-connected has a 5-flow.

The next lemma (described as a folklore result by Seymour in [809]) shows
that it is sufficient to prove the conjecture for multigraphs which are cubic
and 3-connected.

Lemma 11.4.9 If k ≥ 3 and G = (V, E) is a 2-edge-connected multigraph
which does not have a k-flow, but every 2-edge-connected multigraph H =
(V ′′, E′′) with |V ′′| + |E′′| < |V | + |E| has a k-flow, then G is cubic and
3-connected.

440 11. Orientations of Graphs and Digraphs

Proof: Suppose first that G has a cut-vertex z such that V − z has con-
nected components H1, . . . , Hp, p ≥ 2. By the minimality of G, each of the
multigraphs Hi + z, i ∈ [p], has a k flow and using these we easily obtain a
k-flow for G. Hence we may assume that G is 2-connected.

Suppose {e, e′} is a 2-edge-cut in G. Let e = st and let U ′ ∪ W ′ be a
bipartition of V such that s ∈ U ′, t ∈ W ′ and there is no edge between U ′

and W ′ in G − {e, e′}. Let U = U ′ − s and W = W ′ − t. By the definition
of U, W and the fact that G has no cut-vertex there is precisely one edge
between U and W in G, namely, e′. Now let the multigraph G′ = (V ′, E′) be
obtained from G by contracting e into one vertex ve and deleting the loop
created this way. Since |V ′|+|E′| < |V |+|E| and contraction cannot decrease
edge-connectivity, it follows from the assumption on G that there is a k-flow
(D′, x′) in G′.

In D′ we may assume without loss of generality that e′ is oriented as an
arc a′ from W to U . Let r = x′(a′). Since x′ is a circulation the following
must hold:

∑

w∈W

x′(vew)−
∑

w′∈W

x′(w′ve) = r,

∑

u∈U

x′(veu)−
∑

u′∈U

x′(u′ve) = −r.

In G− e the vertex s (t) is adjacent only to vertices in U (W). Let D′′ be
the orientation obtained by using the orientations prescribed by D′ on the
edges of G and orienting the edge st from s to t. Define x′′ by x′′(a) = x′(a)
for all arcs except st where we take x′′(st) = r. Then (D′′, x′) is a k-flow in G,
contradicting the assumption. Hence it follows that G is 3-edge-connected.

If G has a vertex s of degree at least 4, then it follows from a result of
Fleischner [319] (see Exercise 11.35) that s has neighbours u, v so that replac-
ing the edges su, sv by the edge uv we obtain a 2-edge-connected multigraph
G∗11. By the minimal choice of G, there is a k-flow (D∗, x∗) in G∗ and it is
easy to obtain a k-flow in G from this (just replace the arc between u and v
in D∗ by a path of length 2 via s in G, using the two edges su, sv and send
the appropriate amount of flow along that path). This contradicts the choice
of G and hence we conclude that G is cubic. It follows from Exercise 11.20
that G is 3-connected. ��

A major breakthrough on Tutte’s 5-flow conjecture came when Jaeger
[560] proved that every 2-edge-connected multigraph has an 8-flow. His proof
was surprisingly short and elegant. The reader is asked to give a proof of
Jaeger’s result in Exercise 11.28.

The strongest result so far is due to Seymour.
11 In the language of Section 14.1 the result says that there is a feasible splitting

su, sv (with respect to 2-edge-connectivity) for some pair of neighbours u, v of s.

11.5 Orientations Achieving High Arc-Strong Connectivity 441

Theorem 11.4.10 [809, Seymour] Every 2-edge-connected multigraph has a
nowhere-zero 6-flow. ��

Since the proof is based on arguments that do not involve directed graphs,
we will not give the proof in detail here (see Seymour’s original paper [809] or
the books by Diestel [258] and Fleischner [321]). It follows from Lemma 11.4.9
that it suffices to prove the result for 3-connected cubic multigraphs. Seymour
proves that the edge set of such a multigraph G can be covered by two
multigraphs G1, G2 such that G1 is eulerian and G2 has a 3-flow x′. It follows
from Proposition 11.4.1 that G1 has a 2-flow. Since E(G) = E(G1) ∪ E(G2)
it is easy to obtain a Z2 × Z3-flow in G using x, x′ and hence, by Theorem
11.4.2, G has a 6-flow.

An algorithmic version of Seymour’s proof, leading to a polynomial algo-
rithm for finding a 6-flow in any 2-edge-connected multigraph, was given by
Younger [923].

Bienia, Goddyn, Gvozdjak, Sebő and Tarsi proved the following inter-
esting result. The case when k ≥ 5 is an obvious consequence of Theorem
11.4.10.

Theorem 11.4.11 [159] If G has a nowhere-zero flow with at most k − 1
distinct values, then G has a k-flow. ��

For much more information on nowhere-zero flows we refer the reader to
the books by Fleischner [321] and Jensen and Toft [564], the papers [561, 562]
by Jaeger as well as [810] by Seymour. In particular, Chapter 13 in the book
by Jensen and Toft [564] contains a lot of useful information about the subject
and the important open problems.

11.5 Orientations Achieving High Arc-Strong
Connectivity

Let us recall that an orientation D of a multigraph G = (V, E) is obtained by
assigning one of the two possible orientations to each edge of G (in particular,
two parallel edges may receive opposite orientations).

By Robbins’ theorem, a multigraph G = (V, E) has a strongly connected
orientation if and only if G is 2-edge-connected. Below we describe two gen-
eralizations of Robbins’ theorem, due to Nash-Williams, both of which are
much deeper than Robbins’ theorem, especially the one in Theorem 11.5.4.

11.5.1 k-Arc-Strong Orientations

In order to illustrate to usefulness of the splitting technique which is dis-
cussed in Chapter 14, we prove Theorem 11.5.3 below using a splitting result
for undirected graphs. This theorem, due to Lovász, is analogous to Theorem

442 11. Orientations of Graphs and Digraphs

14.1.2. The reader is asked to prove this theorem in Exercise 11.34. Analo-
gously to the directed case, we denote by λ(x, y) the maximum number of
edge-disjoint xy-paths in G and we say that a graph G = (V + s, E) with a
special vertex s is k-edge-connected in V if λ(x, y) ≥ k holds for all x, y ∈ V .

Theorem 11.5.1 (Lovász’s splitting theorem) [655] Let G = (V +s, E)
be a multigraph with a designated vertex s of even degree and suppose that G
is k-edge-connected in V , for some k ≥ 2. Then for every edge st there exists
an edge su such that after splitting off the pair (st, su) the new graph is still
k-edge-connected 12 in V . ��

An undirected multigraph G = (V, E) is minimally k-edge-connected
if G is k-edge-connected (λ(G) = k), but λ(G − e) = k − 1 for every edge
e ∈ E. The following theorem by Mader is analogous to Theorem 5.6.4. The
proof is left to the reader as Exercise 11.33.

Theorem 11.5.2 [664] Every minimally k-edge-connected multigraph has a
vertex of degree k. ��

Now we can prove the following famous result of Nash-Williams:

Theorem 11.5.3 (Nash-Williams’ orientation theorem) [716] An
undirected multigraph G = (V, E) has a k-arc-strong orientation D if and
only if G is 2k-edge-connected.

Proof: The proof idea used below is due to Lovász [655]. Suppose G has a
k-arc-strong orientation D. Thus for every non-empty proper subset X of V
we have d+

D(X), d−D(X) ≥ k. This implies that in G we have d(X) ≥ 2k and
hence, G is 2k-edge-connected.

To prove the other direction, we proceed by induction on the number of
edges in G. Let G = (V, E) be 2k-edge-connected. If |E| = 2k, then G is just
two vertices x, y joined by 2k copies of the edge xy. Clearly this multigraph
has a k-arc-strong orientation. Thus we may proceed to the induction step.
Since adding arcs to a directed multigraph cannot decrease its arc-strong
connectivity, it suffices to consider the case when G is minimally 2k-edge-
connected.

By Theorem 11.5.2, G contains a vertex s such that dG(s) = 2k. Ap-
ply Lovász’s splitting theorem to G with s as the special vertex and con-
clude that we can pair off the 2k edges incident to s in G in k pairs
(su1, sv1), . . . , (suk, svk) in such a way that deleting s and adding the edges
u1v1, . . . , ukvk to G − s results in a 2k-edge-connected graph H. Since H
has fewer edges than G it follows by induction that H has an orientation D′

which is k strong.
By Exercise 14.7, we can obtain a k-arc-strong orientation of G by adding

the arcs u1s, u2s, . . . , uks and the arcs sv1, sv2, . . . , svk to H. ��

12 As for directed graphs (see Section 14.1), splitting off the pair (su, sv) means
that we replace the edges su, sv by a new edge uv (or a copy of that edge if it
already exists).

11.5 Orientations Achieving High Arc-Strong Connectivity 443

11.5.2 Well-Balanced and Best-Balanced Orientations

Following Nash-Williams, let us say that an orientation D of a multigraph
G is well-balanced if λD(x, y) ≥ �λG(x,y)

2 � for every ordered pair of vertices
x, y ∈ V (G).

Following Király and Szigeti [595], we say that an orientation of a multi-
graph is smooth if the in-degree and out-degree of every vertex differ by at
most one and a smooth well-balanced orientation of a multigraph G is called
a best-balanced orientation of G. Nash-Williams proved the following much
stronger result which clearly contains Theorem 11.5.3 as a special case.

Theorem 11.5.4 (Nash-Williams’ strong orientation theorem) [716]
Every multigraph G has a best-balanced orientation D. ��

It is beyond the scope of this book to give a complete proof here. The
original proof by Nash-Williams [716] is quite complicated and so are alter-
native proofs by Mader (using a local edge-connectivity version of Theorem
11.5.1 [668]) and Frank [343]. It remains a real challenge to find a short and
transparent proof for this important theorem.

We will outline the main idea of Nash-Williams’ proof (the two other
proofs use the same approach). The first observation is that if G is eulerian,
then the statement is easy to prove (Exercise 11.31). So we may assume that
G is not eulerian. We can make it eulerian by adding any matching on the
odd degree vertices. Such a matching will be called a pairing of G. If we
could find a pairing M so that after orienting G + M as an eulerian digraph
D′ and then removing the arcs corresponding to M , we still have

λD(x, y) = �λG(x, y)/2� for all x, y ∈ V, (11.3)

where13 D = D′ − M , then we would obtain the desired orientation since D
is clearly smooth.

Let us see which conditions the pairing M should satisfy in order to give
rise to the desired orientation D as above. Following Frank [343], we use
the notation f̃ = 2�f/2� whenever f is an integer-valued function. Let R
be defined as follows: R(∅) = R(V) = 0 and for every ∅ �= X �= V we let
R(X) = max{λG(x, y) : x ∈ X, y ∈ V − X}. We call R the requirement
function for G. Let bG(X) = dG(X) − R̃G(X) for all X ⊆ V . By Menger’s
Theorem for undirected edge-connectivity (11.3) is equivalent to requiring
that

d−D(X) ≥ R̃G(X)/2 ∀X ⊂ V. (11.4)

A pairing M is feasible if

dM (X) ≤ bG(X) ∀X ⊂ V. (11.5)

13 By this we mean the oriented graph obtained from D by removing the arcs
corresponding to M .

444 11. Orientations of Graphs and Digraphs

Here dM (X) denotes the number of edges from M with precisely one end
in X. Suppose M is a feasible pairing for G. Let D′ be an eulerian orientation
of G + M and let D = D′ − M . Then we have

d−D(X) ≥ d−D′(X)− dM (X)
= (dG(X) + dM (X))/2 − dM (X)
= (dG(X)− dM (X))/2
≥ R̃G(X)/2, (11.6)

implying that (11.4) and hence (11.3) holds.
Clearly D is a smooth orientation of G. Thus if we can find a feasible

pairing, then we get the desired orientation easily. The main point then is to
prove the next theorem.

Theorem 11.5.5 [716, Nash-Williams] Every undirected multigraph has a
feasible pairing. ��

Let M be a pairing of G. An orientation O of M is good if

d−O(X) − d+
O(X) ≤ bG(X) ∀X ⊂ V. (11.7)

M is well-orientable if there exists a good orientation of M and M is
strong if every orientation of M is good.

Proposition 11.5.6 A pairing M of G is strong if and only if M is feasible.

Proof: Exercise 11.37. ��
Thus Theorem 11.5.5 is equivalent to Theorem 11.5.7.

Theorem 11.5.7 [716, Nash-Williams] Every graph has a strong pairing.
��

11.5.3 Simultaneous Best-Balanced Orientations

Nash-Williams proved the following extension of Theorem 11.5.4.

Theorem 11.5.8 [716] Every subgraph H of a multigraph G has a best-
balanced orientation that can be extended to a best-balanced orientation of
G. ��

Király and Szigeti refined this result as follows.

Theorem 11.5.9 [595] Let G = (V, E) be a multigraph, {E1, E2, . . . , Ek}
an arbitrary partition of E and Gi = (V, Ei), 1 ≤ i ≤ k. Then G has a best-
balanced orientation D so that the induced orientations Di, i = 1, 2, . . . , k, of
each Gi are also best-balanced. ��

11.5 Orientations Achieving High Arc-Strong Connectivity 445

An easy consequence of Euler’s theorem is that the edge set of every
multigraph G with 2k vertices of odd degree can be decomposed into k paths
and some cycles such that the end-vertices of each path are vertices of odd
degree in G. The following thus is a direct consequence of Theorem 11.5.9.

Corollary 11.5.10 [595] Let P1, . . . , Pr, C1, . . . , Cs be a decomposition of
the edge set of G = (V, E) such that each Pi is a path and each Cj is a cycle.
There is a best-balanced orientation of G for which each Pi is a directed path
and each Cj is a directed cycle. ��

Corollary 11.5.11 [595] For every partition {X1, X2, . . . , Xr} of V (G),
there exists a best-balanced orientation D of the multigraph G so that D〈Xi〉
is also best-balanced for all i ∈ [r]. ��

11.5.4 Best-Balanced Orientations of Eulerian Multigraphs

Not surprisingly, one can obtain stronger results for eulerian multigraphs.
The following results are all due to Király and Szigeti.

For an eulerian multigraph G, an edge-pairing at vertex v is an arbitrary
partition P (v) = {[u1v, u2v], [u3v, u4v], . . . , [ud(v)−1v, ud(v)v]} of the edges
incident to v into d(v)

2 pairs. Suppose we are given a collection of edge pairings
P(G) = {P (v) : v ∈ V }, one for each vertex of G. An eulerian orientation
D of G is admissible with respect to P(G) if at each vertex v every pair
[u2i−1v, u2iv] forms a directed path in D.

Proposition 11.5.12 [595] Let G be an eulerian multigraph and let an ar-
bitrary edge-pairing P(G) = {P (v) : v ∈ V } be given. Then there exists an
eulerian orientation of G which is admissible with respect to P(G).

Proof: Exercise 11.38. ��

Theorem 11.5.13 [595] Every eulerian multigraph G = (V, E) has a best-
balanced orientation D such that D−v is a best-balanced orientation of G−v
for all v ∈ V .

Proof: Let G be an eulerian multigraph and define an edge-pairing at vertex
v ∈ V as follows. Take a maximum number of pairs of parallel edges incident
to v. Since G is eulerian, the remaining edges incident to v are incident to
vertices of odd degree in G − v. By Theorem 11.5.7, there exists a strong
pairing Mv of G − v; Mv induces a pairing of the remaining edges incident
to v (those not paired with parallel edges). Thus, taking the pairs from the
edge-pairing of parallel edges and those induced from Mv, we obtain an edge-
pairing at v. Let P(G) consist of these edge-pairings for each v ∈ V (G).
By Proposition 11.5.12, there is an eulerian orientation D of G which is
admissible with respect to P(G). For v ∈ V let O(Mv) be the orientation of
Mv defined by D (each edge in Mv inherits the orientation of the pair at v

446 11. Orientations of Graphs and Digraphs

to which it corresponds). Then D − v + O(Mv) is an eulerian orientation of
G− v. This implies that D− v is smooth for all v so it remains to prove that
it is also well-balanced. Let O′(Mv) denote the converse of O(Mv) for every
v ∈ V . Note that O′(Mv) is good because Mv is strong and furthermore
d−D−v(X) − d+

D−v(X) = d−O′(Mv)(X) − d+
O′(Mv)(X) since D − v + O(Mv) is

eulerian. Now, using that O′(Mv) is good, we obtain d−D−v(X)− d+
D−v(X) ≤

bG−v(X) for every X, implying that D−v is well-balanced by Exercise 11.39.
��

Corollary 11.5.14 [595] An eulerian multigraph G = (V, E) has an eulerian
orientation D so that D− v is k-arc-strong for all v ∈ V if and only if G− v
is 2k-edge-connected for all v ∈ V . ��

Corollary 11.5.15 [595] An eulerian multigraph G = (V, E) has a k-arc-
strong orientation D so that D − v is (k − 1)-arc-strong for all v ∈ V if and
only if G is 2k-edge-connected and G − v is (2k − 2)-edge-connected for all
v ∈ V . ��

11.6 k-Strong Orientations

As indicated in the last section, a substantial amount of results exists on
orientations preserving high arc-strong connectivity. On the contrary, not
much is known about orientations that achieve high vertex-strong connec-
tivity. The following conjecture, due to Jackson and Thomassen, is a special
case of Conjecture 11.10.2.

Conjecture 11.6.1 [866] Every 2k-connected graph has a k-strong orienta-
tion.

Very little progress has been made on this conjecture and even the exis-
tence of a function g(k) so that every g(k)-connected graph has a k-strong
orientation is open for k ≥ 3. For k = 2 the result below by Jordán (Theorem
11.6.4) shows that g(2) ≤ 18.

To see that the bound 2k would be best possible, let G be the kth power
of an undirected cycle C = v1v2 . . . v2rv1 on 2r > 2k vertices. It is not
difficult to prove that G is 2k-connected and that the only separating sets of
size 2k in G are those obtained by taking two sets of k consecutive vertices
on C, each separated by at least one vertex on both sides. From this it
follows that if we add the diagonals v1vr+1, v2vr+2, . . . , vrv2r, then we obtain
a (2k + 1)-connected graph H and it is clear that H cannot have a (k + 1)-
strong orientation, since H is not 2(k + 1)-edge-connected, a condition we
know is trivially necessary just to have a (k + 1)-arc-strong orientation. See
Figure 11.9 and Exercise 11.57.

It is also easy to show that a graph which is not 2k-connected may still
have a k-strong orientation. Take for example two copies X, Y of K2k+1, fix

11.6 k-Strong Orientations 447

Figure 11.9 A 7-connected 7-regular graph obtained from the third power of a
10-cycle by adding longest diagonals.

a set {x1, x2, . . . , xk} of k vertices in X and similarly {y1, y2, . . . , yk} in Y
and add to X ∪ Y the edges of the cycle C = x1y1x2y2x3 . . . xkykx1. The
resulting graph G has a k-strong orientation by orienting X and Y as k-
strong tournaments and C as a directed cycle. Note that G is k-connected
and 2k-edge-connected, but G is not k + 1-connected as {x1, x2, . . . , xk} is a
separating set of size k.

The following conjecture by Frank is still open even for k = 2. It attempts
a full characterization which would imply Conjecture 11.6.1. Note that for
k = 1 the conjecture follows from Robbins’ theorem. Compare also with
Section 11.10.

Conjecture 11.6.2 [346, Frank] A graph G = (V, E) has a k-strong orien-
tation if and only if G − X is 2(k − j)-edge-connected for every set X of j
vertices (0 ≤ j ≤ k).

Corollary 11.5.14 implies that Conjecture 11.6.2 holds for eulerian multi-
graphs when k = 2. Jordán [578] used this result (also obtained be he and
Berg in [142]) to obtain a sufficient condition for an arbitrary graph to have
a 2-strong orientation (Theorem 11.6.4). His proof also uses the following
result for undirected graphs.

Theorem 11.6.3 [578] Every 6k-connected graph contains k edge-disjoint
2-connected spanning subgraphs. ��

Theorem 11.6.4 [578] Every 18-connected graph has a 2-strong orientation.

Proof: Let G = (V, E) be an arbitrary 18-connected graph. By Theorem
11.6.3, G contains three edge-disjoint 2-connected spanning subgraphs Hi =
(V, Ei), i = 1, 2, 3. Observe that H ′ = (V, E1 ∪ E2) is 4-edge-connected and
H ′ − v is 2-edge-connected for every v ∈ V . This follows easily from the
fact that each of H1, H2 is 2-connected. Since H3 is a connected spanning
subgraph of G we may use a subset X ⊂ E3 of edges from H3 to connect
possible vertices of odd degree in H ′ without introducing new vertices of odd

448 11. Orientations of Graphs and Digraphs

degree in H = (V, E1 ∪ E2 ∪ X) (Exercise 11.52). Hence H is eulerian and
H − v is 2-edge-connected for every v ∈ V . Now it follows from Corollary
11.5.14 that H has a 2-strong orientation. Clearly this implies that G also
has one. ��

The bound 18 above is not sharp as we do not really need that H3 is
2-connected, any connected graph would suffice here.

11.7 Orientations Respecting Degree Constraints

In this section we first consider orientations of multigraphs which satisfy
prescribed constraints on their semi-degrees. Then we consider the more gen-
eral case when we have restrictions on certain subsets of the vertices (pos-
sibly all proper subsets of the vertex set). A set function f on a ground-
set S is supermodular if f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y) holds
for every choice of sets X, Y ⊆ S. Recall that f is submodular on S if
f(X)+f(Y) ≥ f(X ∩Y)+f(X ∪Y) holds for every choice of sets X, Y ⊆ S.
The function f is modular if it is both submodular and supermodular14.
Note that when we are dealing with a function f defined on the vertex set V
of a (di)graph H, then we can always extend f to a modular function on 2V

by letting f(X) =
∑

v∈X f(v) for every X ⊆ V .

11.7.1 Orientations with Prescribed Degree Sequences

We saw in Section 4.11.3 that given a directed multigraph D = (V, A) and
numbers a1, a2, . . . , an such that

∑n
i=1 ai ≤ |A|, we can use algorithms for

maximum flows to decide whether D has a spanning subdigraph D′ such that
d−D′(vi) = ai for every i ∈ [n].

We start by showing that we can also solve a similar orientation problem
using flows. Namely, given an undirected multigraph G = (V, E), V = [n], and
numbers a1, a2, . . . , an such that

∑n
i=1 ai = |E|, does G have an orientation

D for which d−D(i) = ai, for all i ∈ [n]?
First, form the reference orientation H = (V, A) of G by orienting an edge

ij from i to j whenever i < j. Form the network N = (V, A, l ≡ 0, u ≡ 1) by
giving each arc of A capacity one and lower bound zero. Let us interpret a
feasible integer flow x in N as an orientation D′ = (V, A′) of G as follows.
If xij = 1, then A′ contains the arc ij and otherwise it contains the arc ji.
Then for a given flow x we see that for each i ∈ [n], the vertex i will satisfy

d−D′(i) =
∑

ji∈A

xji + (d+
H(i) −

∑

ij∈A

xij).

Since we want D′ to have in-degree ai at vertex i, for all i ∈ [n], we obtain
the following restriction on the balance vector bx of x:
14 Note that a modular function f with f(∅) = 0 satisfies f(X) =

P

x∈X f(x).

11.7 Orientations Respecting Degree Constraints 449

d+
H(i)− ai =

∑

ij∈A

xij −
∑

ji∈A

xji = bx(i) ∀i ∈ [n]. (11.8)

Thus we have reduced the orientation problem to that of deciding whether
there exists a feasible flow x in N which has balance vector bx as in (11.8).
Hence, by Lemma 4.2.2, we can use any polynomial algorithm for maximum
flow to solve the orientation problem and find the desired orientation if one
exists.

Based on the reduction above and the feasibility theorem for flows (The-
orem 4.8.4) one may derive necessary and sufficient conditions for the exis-
tence of an orientation with a prescribed in-degree sequence (or equivalently,
out-degree sequence). One such feasibility theorem which is particularly well-
known is for orientations of complete graphs as tournaments. The score of a
vertex in a tournament is its out-degree. Landau proved the following char-
acterization for score sequences of tournaments (the reader is asked to give a
proof in Exercise 11.41):

Theorem 11.7.1 (Landau’s theorem) [634] A sequence (s1, s2, . . . , sn)
of integers satisfying 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn is the score sequence of some
tournament on n vertices if and only if

k∑

i=1

si ≥
(

k

2

)
∀k ∈ [n],

with equality when k = n. ��
For a very nice collection of different proofs of Landau’s theorem we refer

the reader to the survey paper [774] by Reid.
Harary and Moser [501] characterized score sequences of strong tourna-

ments.

Theorem 11.7.2 [501] A sequence s1 ≤ s2 ≤ . . . ≤ sn of non-negative
integers with n ≥ 3 is the out-degree sequence of some strong tournament if
and only if for each j, 1 ≤ j ≤ n − 1,

j∑

i=1

si >

(
j

2

)

and
n∑

i=1

si =
(

n

2

)
.

��
Below we denote, for an undirected graph G = (V, E) and a subset X

of V , the number of edges of E with at least one end (both ends) in X by
eG(X) (iG(X)). Furthermore we denote by c(G) the number of connected
components of G. Frank and Gyárfás proved the following theorem which
deals with bounds on the in-degrees of an orientation:

450 11. Orientations of Graphs and Digraphs

Theorem 11.7.3 [351] Let G = (V, E) be an undirected graph. Let f : V →
Z0 and g : V → Z+ ∪ {∞} be functions on V such that f ≤ g. Then the
following holds:

(a) There exists an orientation D of G such that

d−D(v) ≥ f(v) for all v ∈ V (11.9)

if and only if

eG(X) ≥ f(X) for all X ⊆ V. (11.10)

(b) There exists an orientation D′ of G such that

d−D′(v) ≤ g(v) for all v ∈ V (11.11)

if and only if

iG(X) ≤ g(X) for all X ⊆ V. (11.12)

(c) There exists an orientation D∗ of G satisfying both (11.9) and (11.11) if
and only if there is one satisfying (11.9) and one satisfying (11.11)15.

Proof: We consider (a) first. If D satisfies (11.9), then (11.10) follows easily
from the following calculation:

f(X) =
∑

v∈X

f(v) ≤
∑

v∈X

d−D(v)

= eG(X)− d+(X) ≤ eG(X). (11.13)

Suppose now that (11.10) holds but there is no orientation which satisfies
(11.9). Choose D among all possible orientations of G as one which minimizes

∑

{v∈V :f(v)>d−
D(v)}

(f(v)− d−D(v)). (11.14)

Let x be a vertex for which f(x) > d−D(x). Let X consist of those vertices
u ∈ V for which there is a directed (x, u)-path in D. Note that by the
definition of X we have d+

D(X) = 0 or X = V . Since f(X) ≤ eG(X), it
is easy to see (using that x ∈ X) that there is some vertex u ∈ X such

15 Frank calls the phenomenon formulated in part (c) of the theorem the linking
principle [343, 347].

11.7 Orientations Respecting Degree Constraints 451

that d−(u) > f(u). Let P be any (x, u)-path in D. Let D′ be obtained
from D by reversing the orientation of every arc on P . Now it is easy to see
that D′ either satisfies (11.9) or achieves a smaller count for (11.14). This
contradiction completes the proof that (11.9) holds.

To prove (b) we proceed as follows. Let g′(v) = min{dG(v), g(v)} for every
v ∈ V . It is easy to see that G has an orientation D satisfying d−D(v) ≤ g′(v)
for all v ∈ V if and only if it has one satisfying d−D(v) ≤ g(v) for all v ∈ V .
On the other hand, G has an orientation satisfying (11.11) with respect to
g′ if and only if it has an orientation satisfying (11.9) with respect to f(v) =
dG(v) − g′(v), v ∈ V (just consider the converse of such an orientation). By
(a), such an orientation exists if and only if eG(X) ≥ f(X) for each X ⊆ V .
Using that

∑
x∈X dG(x) = eG(X) + iG(X), we conclude that eG(X) ≥ f(X)

if and only if iG(X) ≤ g′(X). This proves (b).
To prove that (c) holds, we choose among all orientations satisfying

(11.11) an orientation D which minimizes (11.14). If the sum for this D
is zero, then we are done. Otherwise observe that the only vertex whose in-
degree is increased by reversing the path P (as in the proof of (a)) is the
vertex x for which we have d−D(x) < f(v) ≤ g(v) and hence we still have
d−D′(x) ≤ g(v) and get the same contradiction as in the proof of (a). ��

The non-constructive proof above can easily be turned into a polynomial
algorithm which finds the desired orientations or a proof that none exists
(Exercise 11.42).

We also point out that using the approach from the beginning of this
subsection, Theorem 11.7.3 can be proved using flows (Exercise 11.43).

Although Theorem 11.7.3 is fairly simple to prove, it has several conse-
quences. One of these is the marriage theorem which characterizes the exis-
tence of a perfect matching in a bipartite graph (Corollary 4.11.4). To see
that Theorem 11.7.3 implies the marriage theorem, it suffices to see that a
bipartite graph B = (U, V, E) has a perfect matching if and only if it has
an orientation D in which every vertex in U has in-degree one and every
vertex in v ∈ V has in-degree dB(v) − 1. We leave the details to the reader
as Exercise 11.44. The next result, due to Ford and Fulkerson, can also be
derived from Theorem 11.7.3. The proof of this is left as Exercise 11.40.

Corollary 11.7.4 [331] Let M = (V, A, E) be a mixed graph. Let G = (V, E)
be the undirected part and let D = (V, A) be the directed part of M . The edges
from G can be oriented so that the resulting directed multigraph16is eulerian
if and only if dG(v)+d−D(v)+d+

D(v) is even for each v ∈ V and the following
holds:

dG(X) ≥ d−(X) − d+(X) for all X ⊆ V. (11.15)

��
16 Recall that a mixed graph may have an edge and an arc with the same end-

vertices.

452 11. Orientations of Graphs and Digraphs

The following common generalization of Robbins’ theorem (Theorem
1.6.1) and Theorem 11.7.3 was obtained by Frank and Gyárfás in [351].

Theorem 11.7.5 [351] Let G = (V, E) be an undirected graph which is 2-
edge-connected. Let f : V → Z0 and g : V → Z+ ∪ {∞} be functions on V
such that f ≤ g. Then the following holds:

(a) There exists a strong orientation D of G such that

d−D(v) ≥ f(v) for all v ∈ V (11.16)

if and only if

eG(X) ≥ f(X) + c(G −X) for all ∅ �= X ⊆ V. (11.17)

(b) There exists a strong orientation D′ of G such that

d−D′(v) ≤ g(v) for all v ∈ V (11.18)

if and only if

iG(X) + c(G −X) ≤ g(X) for all ∅ �= X ⊆ V. (11.19)

(c) There exists a strong orientation D∗ of G satisfying both (11.16) and
(11.18) if and only if there is one satisfying (11.16) and one satisfying
(11.18). ��

11.7.2 Restrictions on Subsets of Vertices

The purpose of this subsection is to study more general problems on ori-
entations with degree conditions on subsets of vertices rather than just the
vertices themselves.

Let G = (V, E) be an undirected graph and let h : 2V → Z+ ∪ {0} satisfy
h(∅) = h(V) = 0. The function h is fully G-supermodular17 if

h(X) + h(Y) ≤ h(X ∩ Y) + h(X ∪ Y) + dG(X, Y) (11.20)

holds for all pairs of subsets of V (recall that dG(X, Y) denotes the number
of edges in G with one end in X − Y and the other in Y − X). If (11.20)
is required to hold only for intersecting (crossing) sets, then we say that h
is intersecting (crossing) G-supermodular. A set function h on G is
symmetric if h(X) = h(V − X) for every X ⊂ V . The following quite
general theorem was proved in [335]. It allows one to find conditions for the
existence of k-arc-strong orientations satisfying certain degree constraints on
the vertices (see, e.g., [343, page 98]).
17 This strange-looking definition will be easier to understand when one consid-

ers the relation between orientations of mixed graphs and submodular flows in
Section 11.9. In particular, see (11.38).

11.8 Submodular Flows 453

Theorem 11.7.6 (Frank’s orientation theorem) [335] Let G be an undi-
rected graph and let h be a non-negative crossing G-supermodular function
on subsets of V. There exists an orientation D of G which satisfies

d−D(X) ≥ h(X) for all X ⊂ V (11.21)

if and only if both
eF ≥

∑

Vi∈F
h(Vi) (11.22)

and
eF ≥

∑

Vi∈F
h(V − Vi) (11.23)

hold for every partition F = {V1, V2, . . . , Vt} of V , where eF denotes the
number of edges connecting different Vi’s. If h is intersecting G-supermodular,
then (11.22) alone is necessary and sufficient. If h is fully G-supermodular, or
h is symmetric and crossing supermodular, then it suffices to require (11.22)
and (11.23) only for partitions of V into two sets. ��

It is an easy exercise to show that Frank’s orientation theorem implies
Nash-Williams’ orientation theorem (Exercise 11.51).

Frank shows in [343] how to derive Theorem 11.7.6 from the theory of
submodular flows discussed in Section 11.8. See also Exercise 11.69.

11.8 Submodular Flows

In all of this section we consider set functions which are integer valued and
zero on the empty set. The purpose of this section is to introduce a very pow-
erful generalization of flows, due to Edmonds and Giles [286], and to show
how many important theorems in graph theory and combinatorial optimiza-
tion are special cases of this theory.

Let D = (V, A) be a directed multigraph and let r : A → R be a function
on A. We use the notation

r+(U) =
∑

a∈(U,Ū)

r(a), r−(U) =
∑

a∈(Ū,U)

r(a). (11.24)

That is, r+(U) (r−(U)) is the sum of the r values on arcs leaving (entering)
U and U = V − U18.

In Chapter 4 it is shown that every feasible flow in a network N =
(V, A, l, u, b) can be modelled as a circulation in an augmented network. Re-
call that for a circulation x in a network N we require that for every vertex
18 Note that the function r+ is a generalization of d+ for any directed multigraph

D, since taking r ≡ 1 we obtain d+.

454 11. Orientations of Graphs and Digraphs

v, the flow into v equals the flow out of v. This easily translates to non-empty
proper subsets of the vertex set V , i.e., for every circulation x and every non-
empty proper subset U of V , x−(U) = x+(U). The flows we will consider
below do not in general satisfy this property, but there is a bound b(U) on
the difference between the flow into U and the flow out of U .

Let F be a family of subsets of V closed under union and intersection
and let b : F → Z∪ {∞} be a function defined on F . The function b is fully
submodular on F if the inequality

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) (11.25)

holds for every choice of members X, Y of F . If (11.25) is only required
to hold for intersecting (crossing) members of F , then b is intersecting
(crossing) submodular on F . By an intersecting (crossing) pair (F , b) we
mean a family F which is intersecting (crossing) and a function b which is
submodular on intersecting (crossing) subsets of F .

11.8.1 Submodular Flow Models

Let f : A → Z∪{−∞} and g : A → Z∪{∞} be functions on the arc set of a
directed multigraph D = (V, A). Let F be a family of subsets of V such that
∅, V ∈ F and let b : F → Z ∪ {∞} be fully submodular on F . A function
x : A → R is a submodular flow with respect to F if it satisfies

x−(U)− x+(U) ≤ b(U) for all U ∈ F . (11.26)

A submodular flow x is feasible with respect to f, g if f(a) ≤ x(a) ≤ g(a)
holds for all a ∈ A. The set of feasible submodular flows (with respect to given
f, g and (F , b)) form a polyhedron called the submodular flow polyhedron
Q(f, g; (F , b)) [343].

Submodular flows were introduced by Edmonds and Giles in [286]. In that
paper it was only required that the function b is crossing submodular on a
crossing family F , something which gives much more flexibility in applica-
tions (see Subsection 11.8.4). However, as remarked by Frank in [343] the
crossing submodular functions define the same class of polyhedra as do fully
submodular functions.

Submodular flow polyhedra have very nice properties which make sub-
modular flows a very powerful tool in combinatorial optimization (see, e.g.,
Subsection 11.8.4).

Theorem 11.8.1 (Edmonds-Giles theorem) [286] Let D = (V, A) be a
directed multigraph. Let F be a crossing family of subsets of V such that
∅, V ∈ F , let b : F → Z ∪ {∞} be crossing submodular on F with b(∅) =
b(V) = 0, and let f ≤ g be functions on A such that f : A → Z ∪ {−∞} and
g : A → Z ∪ {∞}. The linear system

11.8 Submodular Flows 455

{f ≤ x ≤ g and x−(U)− x+(U) ≤ b(U) for all U ∈ F} (11.27)

is totally dual integral. That is, if f, g, b are all integer valued, then the lin-
ear program min {cT x : x satisfies (11.27)} has an integer optimum solution
(provided it has a solution). Furthermore, if c is integer valued, then the dual
linear program has an integer-valued optimum solution (provided it has a so-
lution). ��

In the definition of a submodular flow, we have followed Frank [338, 339,
343, 347, 348, 357] and Schrijver [798]. Sometimes the definition of a submod-
ular flow is slightly different (see, e.g., the original paper by Edmonds and
Giles [286] or the book by Fujishige [364]), namely, x is required to satisfy

f ≤ x ≤ g and x+(U) − x−(U) ≤ b(U) for all U ∈ F . (11.28)

There is really no difference in these two definitions, since we see that if x
satisfies (11.27), then −x satisfies (11.28) with respect to the same submod-
ular function b and the bounds −g ≤ − f .

One can also use supermodular functions in the definition as shown in the
next lemma. Hence there are several models to choose from when one wants
to model a problem as a submodular flow problem. Depending on the problem
at hand, one model may be easier to use than another. For an illustration of
this see Sections 11.8.4 and 13.1, where we use several different definitions.

Lemma 11.8.2 Let D = (V, A) be a directed multigraph and let F be a cross-
ing family of subsets of V such that ∅, V ∈ F . If p is a crossing supermodular
function on F with p(∅) = p(V) = 0, then any x : A → R which satisfies

x−(U) − x+(U) ≥ p(U) for all U ∈ F (11.29)

is a submodular flow.

Proof: To see this, observe that the function b(U) = −p(U) is crossing
submodular on the crossing family F defined as the complements of sets
in F . Furthermore, by (11.24), (11.29) is equivalent to x−(U) − x+(U) ≤
−p(U) = b(U) for all U ∈ F . ��

11.8.2 Existence of Feasible Submodular Flows

The following theorem, due to Frank, characterizes when a feasible submod-
ular flow exists with respect to functions f, g and b.

Theorem 11.8.3 (Feasibility theorem for fully submodular flows)
[338] Let D = (V, A) be a directed multigraph, let f ≤ g be modular functions
on A such that f : A → Z ∪ {−∞} and g : A → Z ∪ {∞} and let b be
a fully submodular function on 2V . There exists an integer-valued feasible
submodular flow if and only if

456 11. Orientations of Graphs and Digraphs

f−(U) − g+(U) ≤ b(U) for all U ⊆ V. (11.30)

In particular there exists a feasible integer-valued submodular flow if and only
if there exists any feasible submodular flow.

Proof: We follow the proof by Frank in [343]. Suppose first that there exists a
feasible submodular flow x. Then we have f−(U)−g+(U) ≤ x−(U)−x+(U) ≤
b(U), showing that (11.30) holds.

Suppose now that (11.30) holds. Define the set function p as follows:

p(U) = f−(U) − g+(U). (11.31)

Claim: The function p is fully supermodular, that is, p(U) + p(W) ≤ p(U ∩
W) + p(U ∪W) for all U, W ⊆ V . Furthermore, equality only holds if f(a) =
g(a) for all arcs with one end in U −W and the other in W − U .
Proof of Claim: Since f and g are modular as set functions, we get, by
considering the contribution of each arc in A:

p(U) + p(W) = (f−(U)− g+(U)) + (f−(W)− g+(W))
= (f−(U) + f−(W))− (g+(U) + g+(W))
= (f−(U ∩W) + f−(U ∪W) + f(U, W))
−(g+(U ∩W) + g+(U ∪W) + g(U, W))

= (p(U ∩W) + p(U ∪W))− (g(U, W)− f(U, W)),

where f(U, W) counts the f values on arcs with one end in U − W and the
other in W − U19.

From this it follows that p is supermodular (since f ≤ g) and that equality
only holds if f(a) = g(a) for all arcs with one end in U −W and the other in
W − U . This completes the proof of the claim.

An arc a ∈ A is tight if f(a) = g(a) and a subset U ⊂ V is tight if
p(U) = b(U). Suppose that there is no feasible flow with respect to f, g and
b in D and that f, g are chosen so that the number of tight arcs plus the
number of tight sets is maximum.

If every arc a ∈ A is tight, then take x(a) = f(a) = g(a) for every a ∈ A.
Now we have x−(U) − x+(U) = f−(U) − g+(U) ≤ b(U) and hence x is a
feasible submodular flow in D, a contradiction.

Hence we may assume that there is some arc a0 such that f(a0) < g(a0).
Suppose that there is no tight set which is entered by a0. Then we can increase
f(a0), until either the new value f ′(a0) equals g(a0), or we find a tight set U
(with respect to f ′, g) which is entered by a0. It follows that the new functions
f ′, g have a higher count of tight arcs plus tight sets. Hence, by the choice of
f, g, there exists a feasible submodular flow x with respect to f ′, g. Obviously
19 Again this definition generalizes the corresponding definition of d(X, Y) in Chap-

ter 5.

11.8 Submodular Flows 457

x is also feasible with respect to f, g, contradicting the assumption. Hence
the arc a0 must enter a tight set U .

Similarly we can prove (by lowering g otherwise) that the arc a0 must
also leave some tight set W . Now we have, using the claim, (11.30) and the
fact that p(U) = b(U), p(W) = b(W):

p(U ∩W) + p(U ∪W) ≥ p(U) + p(W)
= b(U) + b(W)
≥ b(U ∩W) + b(U ∪W)
≥ p(U ∩W) + p(U ∪W),

implying that equality holds everywhere above. However, this contradicts the
second part of the claim since f(a0) < g(a0) and we have argued that the arc
a0 leaves U and enters W . This contradiction completes the proof. ��

Note that the special case of Theorem 11.8.3 when b ≡ 0 says that x−(U)−
x+(U) = 0 for all subsets U ⊆ V . In particular x−(v) = x+(v) for all v ∈
V . That is, every feasible submodular flow with respect to f, g and b ≡
0 is circulation and conversely. It is easy to see that the characterization
in Theorem 11.8.3 in the case b ≡ 0 is exactly the condition in Hoffman’s
circulation theorem (Theorem 4.8.2).

In fact, the proof of Theorem 11.8.3 in some sense resembles that of The-
orem 4.8.2. Thus it is natural to ask how easy it is to find a feasible solu-
tion, or detect that none exists. This can be read out of the proof above:
the essential step is to decide whether an arc enters or leaves a tight set
(or both). This requires that we can find min{b(U) − p(U) : a ∈ (U,U)}
and min{b(U) − p(U) : a ∈ (U, U)} for every arc a of the directed multi-
graph D. This is a special case of the problem of minimizing a submodular
function, that is, finding the minimum value of the submodular function in
question over a prescribed family of sets. This can be done in polynomial time
for arbitrary submodular functions using the ellipsoid method as shown by
Grötschel, Lovász and Schrijver [429]. However, the ellipsoid method, though
polynomial, is not of practical use, since it is highly inefficient.

It was an open problem for several decades whether there exists a poly-
nomial combinatorial algorithm for minimizing a submodular function b over
a family F , that is, to find min{b(U) : U ∈ F}. Schrijver [802] solved the
problem completely by describing a strongly polynomial time algorithm for
minimizing an arbitrary submodular function given by a value-giving oracle.
Schrijver’s algorithm does not use the ellipsoid method or any other linear
programming method. A similar result was obtained independently by Iwata,
Fleischer and Fujishige [554]20.

As mentioned earlier, one can also define submodular flows for functions
b that are intersecting, respectively crossing, submodular functions (defined
20 In fact, both Schrijver and Iwata, Fleischer and Fujishige were awarded the 2003

Fulkerson price for their papers [554, 802].

458 11. Orientations of Graphs and Digraphs

on a family of subsets of the directed multigraph D which is intersecting,
respectively crossing). In the case of intersecting and in particular for cross-
ing submodular flows the feasibility theorem is much more complicated. A
collection U1, U2, . . . , Uk of subsets of a ground set S are co-disjoint if their
complements are pairwise disjoint (that is, Ui ∪ Uj = S for all i �= j). Frank
proved the following feasibility theorem crossing submodular flows:

Theorem 11.8.4 (Existence of a crossing submodular flow) [339] Let
D = (V, A) be a directed multigraph and let f, g be real-valued modular func-
tions such that f ≤ g. Let F ′′ be a crossing family of subsets of V such that
∅, V ∈ F ′′ and let b′′ be a crossing submodular function on F ′′. Then there
exists a feasible submodular flow with respect to f, g and b′′ if and only if

f−(
t⋃

i=1

Xi) − g+(
t⋃

i=1

Xi) ≤
t∑

i=1

qi∑

j=1

b′′(Xij) (11.32)

holds for every subpartition {X1, X2, . . . , Xt} of V such that each Xi is the
intersection of co-disjoint members Xi1, Xi2, . . . , Xiqi of F ′′. Furthermore, if
f, g, b′′ are all integer-valued functions and (11.32) holds, then there exists a
feasible integer-valued submodular flow with respect to f, g and b′′. ��

Finding a feasible submodular flow or a configuration which shows that
none exists is much more difficult than finding a feasible circulation in a
network (recall Section 4.8). Frank [339] gave a combinatorial algorithm for
finding a feasible integer-valued submodular flow with respect to bounds f, g
and a pair (F , b) which is either intersecting or crossing submodular. The
algorithm is polynomial provided one has an algorithm for minimizing the
involved submodular functions. For this task we can apply the algorithms of
Schrijver and Iwata, Fleischer and Fujishige which we mentioned above.

11.8.3 Minimum Cost Submodular Flows

Let D = (V, A) be a directed multigraph and let f : A → Z ∪ {−∞}, g :
A → Z ∪ {∞} be functions on the arc set of D. Let c : A → R be a cost
function on the arcs of D. Let B ⊆ 2V be a crossing family with ∅, V ∈ B. Let
b : 2V → Z∪{∞} be crossing submodular on B with b(∅) = b(V) = 0. Denote
the network defined by D and these functions by NS = (V, A, f, g, (B, b), c).
The minimum cost submodular flow problem is as follows:

Minimize
∑

a∈A

c(a)x(a)

subject to
x−(U)− x+(U) ≤ b(U) for all U ∈ B
f(a) ≤ x(a) ≤ g(a) for all a ∈ A.

11.8 Submodular Flows 459

A feasible submodular flow with respect to f, g and b which achieves this
minimum is called an optimal submodular flow in NS .

This problem, which again generalizes the minimum cost circulation prob-
lem from Chapter 4, is very interesting because it forms a common extension
of many problems on (di)graphs as well as problems from other areas (see,
e.g., the book [364] by Fujishige). Recall also Theorem 11.8.1.

Fujishige proved the following (see also the papers [234] by Cunningham
and Frank and Frank’s paper [338]):

Theorem 11.8.5 [365] The minimum cost submodular flow problem can be
solved in polynomial time provided a polynomial algorithm for minimizing the
relevant submodular functions is available. ��

11.8.4 Applications of Submodular Flows

In this section we will illustrate the usefulness of submodular flows as a tool
to obtain short proofs of important results as well as algorithms for various
connectivity problems. See also Section 13.1.

We start with Nash-Williams’ orientation theorem (Theorem 11.5.3). The
approach taken is due to Frank [340] (the same idea was used by Jackson
[556]). Let G = (V, E) be an undirected graph. Let D be an arbitrary ori-
entation of G. Clearly G has a k-arc-strong orientation if and only if it is
possible to reorient some arcs of D so as to get a k-arc-strong directed multi-
graph. Suppose we interpret the function x : A → {0, 1} as follows: x(a) = 1
means that we reorient a in D and x(a) = 0 means that we leave the orien-
tation of a as it is in D. Then G has a k-arc-strong orientation if and only if
we can choose x so that the following holds:

d−D(U) + x+(U)− x−(U) ≥ k ∀ ∅ �= U ⊂ V. (11.33)

This is equivalent to

x−(U)− x+(U) ≤ (d−D(U) − k) = b(U) ∀ U ⊂ V, U �= ∅, V, (11.34)

b(∅) = b(V) = 0. (11.35)

Observe that the function b is crossing submodular on F = 2V (it is not
fully submodular in general, since we have taken b(∅) = b(V) = 0). Thus we
have shown that G has a k-arc-strong orientation if and only if there exists
a feasible integer-valued submodular flow in D with respect to the functions
f ≡ 0, g ≡ 1 and b.

Suppose now that G is 2k-edge-connected, that is, dG(X) ≥ 2k for all
proper non-empty subsets of V . We claim that x ≡ 1

2 is a feasible submodular
flow. This follows from the following calculation:

460 11. Orientations of Graphs and Digraphs

d−D(U) + x+(U) − x−(U) = d−D(U) +
1
2
d+

D(U)− 1
2
d−D(U)

=
1
2
d−D(U) +

1
2
d+

D(U)

≥ 1
2
(2k − d+

D(U)) +
1
2
d+

D(U)

= k.

Hence it follows from the integrality statement of Theorem 11.8.4 and the
equivalence between (11.33) and (11.34) that there is a feasible integer-valued
submodular flow x in D with respect to f, g and b. As described above this
implies that G has a k-arc-strong orientation where the values of x prescribe
which arcs to reverse in order to obtain such an orientation from D.

Notice that by formulating the problem as a minimum cost submodular
flow problem, we can also solve the weighted version where the two possible
orientations of an edge may have different costs and the goal is to find the
cheapest k-arc-strong orientation of the graph (Exercise 11.66). By Theorem
11.8.5, the optimal (minimum cost feasible) submodular flow in D with re-
spect to the functions f ≡ 0, g ≡ 1 and b (as defined in (11.34)) can be found
in polynomial time (see Exercise 11.65).

The following useful result, mentioned by Frank in [338], follows from the
discussion above and Theorem 11.8.5.

Corollary 11.8.6 [338] There is a polynomial algorithm for finding the min-
imum number of arcs to reverse in a directed multigraph D in order to obtain
a k-arc-strong reorientation of D. ��

Similarly, combining the discussion above with Frank’s algorithm for find-
ing a feasible submodular flow (or deciding that none exists) with respect to
a crossing submodular function, we obtain the following result21:

Corollary 11.8.7 [338] There is a polynomial algorithm for finding a k-arc-
strong orientation of a given undirected multigraph G or verify that G has no
such orientation. ��

The following theorem by Frank can also be derived from the formulation
of the k-arc-strong orientation as a submodular flow problem (see Fujishige’s
book [364, Section 3.3]).

Theorem 11.8.8 [337] If D and D′ are k-arc-strong orientations of an
undirected graph G, then there exists a sequence of k-arc-strong orientations
D = D0, D1, . . . , Dr = D′ of G such that for each i ∈ [r], Di is obtained from
Di−1 by reversing all arcs in a directed path or a directed cycle. ��
21 See Exercise 11.36 for a different proof based on Lovász’s splitting theorem.

11.9 Orientations of Mixed Multigraphs 461

Frank [337] gives a direct and short proof of this without using submodular
flows, but his proof uses submodular arguments (see Exercises 11.47-11.50).

In [358] Frank and Tardos showed how to reduce the following problem to
a submodular flow problem. Given a directed graph D = (V, A) and a special
vertex s, find a minimum set of new arcs to add to D such that the resulting
directed multigraph contains k internally disjoint paths from s to v for every
v ∈ V − s. The similar problem where we only want arc-disjoint (s, v)-paths
is solvable via matroid intersection algorithms (see Exercise 9.5).

For much more material on submodular flows the reader is referred to
the books by Fujishige [364] and Schrijver [804], the papers [338, 339, 343,
347, 348] by Frank, [357] by Frank and Tardos and the paper [798] by Schri-
jver. In particular [357] and [364, 804] give a lot of interesting results on the
structure of submodular flows and the relation between submodular flows
and other models such as independent flows and polymatroidal flows. Finally
Schrijver’s paper [798] is a very useful overview of the various models and
their interrelations.

11.9 Orientations of Mixed Multigraphs

In this section a mixed graph may contain multiple edges and/or arcs. Also
recall that when we speak of orienting a mixed (multi)graph this means that
we assign an orientation to every edge and leave the original arcs unchanged
(implying that the result may not be an oriented graph).

Orientation problems for mixed graphs are generally much harder than
for undirected graphs. One illustration of this is displayed in Figure 11.10.
This example, due to Tardos (see [347]), shows that the linking principle
for strong connectivity orientations does not hold for general mixed graphs
(compare this with Theorem 11.7.5).

Not every 2k-arc-strong mixed graph has a k-arc-strong orientation (Ex-
ercise 11.55) but Jackson proved the following extension of Theorem 11.5.3.
The proof is left to the reader as Exercise 11.54.

Theorem 11.9.1 [556] Let M = (V, A, E) be a mixed graph. Let G = (V, E)
and D = (V, A) denote the undirected, respectively the directed part of M ,
and define k by

k = min{�1
2
dG(X)� + d+

D(X) : X is a proper subset of V }.

Then the edges of E can be oriented in such a way that the resulting directed
multigraph is k-arc-strong. ��

It is not difficult to see that one can formulate the problem of orienting a
mixed graph so as to get a k-arc-strong directed multigraph as a submodular

462 11. Orientations of Graphs and Digraphs

a b

c d
[0, 1]

[0, 0][0, 1]

[1, 1]

Figure 11.10 A mixed graph M with prescribed lower and upper bounds on the
desired in-degrees in the directed multigraph induced by the arc between a and c
and the arc between b and d in an orientation D of M . It is easy to see that by
orienting the edges ac, bd as a→c, d→b we obtain a strong orientation satisfying
the lower bounds on the directed multigraph induced by the newly oriented arcs.
Similarly if we orient the same edges as c→a, b→d we obtain a strong orientation
which satisfies the upper bounds on the directed multigraph induced by the newly
oriented arcs. However, there is no strong orientation which satisfies the lower and
upper bounds simultaneously on the directed multigraph induced by the newly
oriented arcs.

flow problem. We can use the same approach as in Subsection 11.8.4. The
only change is that we insist that x(a) = 0 for original arcs (Exercise 11.54).

Jackson [556] conjectured that Theorem 11.9.1 could be extended to local
connectivities and hence providing a generalization of Nash-Williams’ strong
orientation theorem (Theorem 11.5.4). However, examples by Enni [295] show
that this conjecture is false. In the case when the directed part D = (V, A) of
M = (V, A, E) is eulerian such an extension is indeed possible. In [295] Enni
shows how to extend Theorem 11.5.5 to the case of mixed graphs when the
directed part D = (V, A) is eulerian.

We remark that there seems to be no easy way of formulating orientation
problems concerning local connectivities as submodular flow problems.

When we consider orientation problems where the input is a mixed graph
M = (V, A, E) which we wish to orient so as to satisfy a certain lower bound
h(X) on the in-degree of every subset X of vertices, then we cannot in gen-
eral apply a theorem like Frank’s orientation theorem (Theorem 11.7.6). The
reason for this is that even if the function h(X) ‘behaves nicely’, we have
to take into account the arcs in A because these will contribute to the in-
degree of the final oriented graph D′. To give an example, consider a mixed
graph M = (V, A, E) and let h(X) = k for all proper subsets of V and
h(∅) = h(V) = 0. That is, we are looking for a k-arc-strong orientation of
M . When we want to apply a theorem like Theorem 11.7.6 we have to con-
sider the revised in-degree lower bound h′ given by h′(X) = k − d−D(X),
where D = (V, A) is the directed graph induced by the arcs already ori-
ented in M . The function h′ is easily seen to be crossing G-supermodular,
where G = (V, E) is the undirected part of M (Exercise 11.64). However,

11.9 Orientations of Mixed Multigraphs 463

h′ is typically negative on certain sets and hence Theorem 11.7.6 cannot be
applied.

As we mentioned above, for the particular lower bound h(X) = k, when-
ever ∅ �= X �= V , the problem can be formulated as a submodular flow
problem. This is no coincidence as we show below.

Let G = (V, E) be an undirected graph. Let h : 2V → Z ∪ {−∞} be
crossing G-supermodular with h(∅) = h(V) = 0. Let D = (V, A) be an
arbitrary but fixed orientation of G. Let x : A(D)→{0, 1} be a vector and
define an orientation D′ = (V, A′) of G by taking A′ = {a : a ∈ A, x(a) =
0}∪{←a : a ∈ A, x(a) = 1}. Here

←
a denotes the opposite orientation of the arc

a (compare with Section 11.8.4). Then D′ will satisfy

d−D′(U) ≥ h(U) for all U ⊂ V (11.36)

if and only if d−D(U)− x−(U) + x+(U) ≥ h(U) for all U ⊂ V , or equivalently

x−(U) − x+(U) ≤ d−D(U) − h(U) = b′′(U) for all U ⊂ V. (11.37)

Since d−D satisfies (5.2) and h is crossing G-supermodular22, we conclude
that whenever U, W are crossing sets the following holds:

b′′(U) + b′′(W) = (d−
D(U)− h(U)) + (d−

D(W)− h(W))

= d−
D(U ∩W) + d−

D(U ∪W) + dG(U, W)− (h(U) + h(W))

≥ d−
D(U ∩W) + d−

D(U ∪W) + dG(U, W)− (h(U ∩W)

+ h(U ∪W) + dG(U, W))

= b′′(U ∩W) + b′′(U ∪W). (11.38)

Thus the function b′′ is crossing submodular on F ′′ = 2V −{∅, V } and the
equivalence of (11.36) and (11.37) shows that there is a one-to-one correspon-
dence between orientations satisfying (11.36) and integer-valued solutions to
the submodular flow problem defined by (11.37) and 0 ≤ x ≤ 1. This shows
that we can use submodular flow algorithms to solve the orientation prob-
lem. We can also derive a characterization of the existence of an orientation
satisfying (11.36) from Theorem 11.8.4. We do this below as an illustration
of how to use the feasibility theorem for crossing submodular flows (Theorem
11.8.4).

Suppose there exists an integer-valued feasible submodular flow with re-
spect to the crossing submodular function b′′ defined above. By (11.32) this
means that

f−(
t⋃

i=1

Xi) − g+(
t⋃

i=1

Xi) ≤
t∑

i=1

qi∑

j=1

b′′(Xij) (11.39)

22 Note how we use the definition of a crossing G-supermodular function here to
get rid of the contribution from edges with one end in X − Y and the other in
Y −X.

464 11. Orientations of Graphs and Digraphs

holds for every subpartition P = {X1, X2, . . . , Xt} of V such that each Xi is
the intersection of co-disjoint subsets Xi1, Xi2, . . . , Xiqi of V .

Xi

Xi

Xi1

Xi3

Xi4

Xi5

Xi2

Figure 11.11 The situation when deriving Theorem 11.9.2 from Theorem 11.8.4.
The set Xi is part of a subpartition P of V and Xi is the intersection of the five
co-disjoint sets Xi1, . . . , Xi5 whose complements (which form a partition of Xi) are

indicated in the figure. The arcs shown are those between different sets Xij , Xir

(which are the same as those arcs that go between different Xij ’s!) and those arcs
that enter Xi.

We derive an expression that relates only to G and h using (11.39). To
do so, it is helpful to study Figure 11.11.

Using that f ≡ 0 and g ≡ 1 and the definition of b′′ we see that (11.39)
is equivalent to

− d+
D(

t⋃

i=1

Xi) ≤
t∑

i=1

qi∑

j=1

(d−D(Xij)− h(Xij)). (11.40)

For fixed i the sum
∑qi

j=1 d−D(Xij) counts the following arcs:

(1) those arcs which enter Xi (the common intersection of all Xij ’s) from its
complement, plus

(2) those arcs which go between different Xij ’s (which is the same as arcs that
go from some Xij to some other Xir). This is the same as the number of
edges in G that go between two Xij ’s. Denote the total number of edges
of this kind in G by ei.

Using this observation we conclude that (11.40) is equivalent to

d+
D(∪t

i=1Xi) +
t∑

i=1

d−D(Xi) ≥
t∑

i=1

(
qi∑

j=1

h(Xij)− ei). (11.41)

11.9 Orientations of Mixed Multigraphs 465

Finally, observe that the left-hand side of (11.41) counts precisely those
edges of G which enter some Xi ∈ P. Now we have proved the following
orientation theorem due do Frank:

Theorem 11.9.2 (Frank’s general orientation theorem) [343] Let G =
(V, E) be an undirected graph. Let h : 2V → Z ∪ {−∞} be crossing G-
supermodular with h(∅) = h(V) = 0. There exists an orientation D of G
satisfying

d−D(X) ≥ h(X) for all X ⊂ V (11.42)

if and only if

eP ≥
t∑

i=1

(
qi∑

j=1

h(Xij) − ei) (11.43)

holds for every subpartition P = {X1, X2, . . . , Xt} of V such that each Xi

is the intersection of co-disjoint sets Xi1, Xi2, . . . , Xiqi . Here eP counts the
number of edges which enter some member of P and ei counts the number of
edges which go between different sets Xij, Xir. ��

By our previous remark on the function k − d−D, Theorem 11.9.2 can be
used to derive a necessary and sufficient condition for the existence of a k-
arc-strong orientation of a mixed graph. This is left to the reader as Exercise
11.58.

One might ask whether such a complicated condition involving partitions
and copartitions is really necessary in Theorem 11.9.2. The following example
due to Frank [347] shows that one cannot have a condition which only involves
partitions or subpartitions.

a b

c d

X1

X2
X3

Figure 11.12 Frank’s example showing that no (sub)partition type condition for
the existence of an orientation satisfying (11.42) exists.

Let G = (V, E) be the graph in Figure 11.12 and let the sets X1, X2, X3

be as defined there. Define h by h(∅) = h(V) = 0, h(X1) = h(X3) = 1,
h(X2) = 2 and h(X) = −∞ for all other subsets of V . Then h is crossing

466 11. Orientations of Graphs and Digraphs

G-supermodular since no two crossing sets X, Y have h(X), h(Y) > −∞. It
is easy to check that G has no orientation satisfying (11.42) with respect to
h. On the other hand, if we decrease h(Xi) by one for any i = 1, 2, 3, then
there exists a feasible orientation with respect to the new hi. This shows
that every certificate for the non-existence of an orientation with respect to
h must include all the sets X1, X2, X3. It is easy to see that these three sets
neither form a subpartition nor do they form a co-partition.

a b

c d

Figure 11.13 A mixed graph which has no 2-arc-strong orientation and for which
every certificate for the non-existence of such an orientation must involve the three
sets {a}, {b, d}, {a, b, c} [347, Figure 2.3].

The example from Figure 11.12 also shows that there is no 2-arc-strong
orientation of the mixed graph in Figure 11.13. Hence even for orientations
of mixed graphs to obtain a uniform degree of arc-strong connectivity we
cannot hope for a much simpler condition.

Since we derived Theorem 11.9.2 from Theorem 11.8.4, it is possible to
get a simpler characterization if one can find such a characterization of feasi-
bility of submodular flows with respect to a crossing pair (F ′′, b′′). This was
done by Frank in [347] where a somewhat simpler (but still far from easy)
characterization was found.

11.10 k-(Arc)-Strong Orientations of Digraphs

We saw in Corollary 5.3.9 that every strong digraph without a bridge has
a strong orientation. In this section we investigate how much of the degree
of arc-strong or vertex-strong connectivity of a digraph D comes from its
2-cycles. More precisely, suppose we must delete one arc of every 2-cycle
(thus obtaining an orientation of D), can we always maintain a high arc-
strong, respectively vertex-strong, connectivity if the starting digraph has
high arc-strong, respectively vertex-strong, connectivity? It is not difficult to
see that we may not be able to preserve the same degree of arc/vertex-strong
connectivity, even if D is semicomplete. See Figure 11.14 for an example. So
the question is whether there exist functions f(k), g(k) with the property that

11.10 k-(Arc)-Strong Orientations of Digraphs 467

every f(k)-strong ((g(k)-arc-strong) digraph contains a spanning k-strong (k-
arc-strong) subgraph without cycles of length 2.

Figure 11.14 A 2-strong semicomplete digraph which has no 2-arc-strong spanning
subtournament. Undirected edges correspond to directed 2-cycles.

Let us first consider arc-strong connectivity. Note that every k-arc-strong
oriented graph D must have UG(D) 2k-edge-connected. In particular, if G

is an undirected graph with edge-connectivity λ(G) = 2k − 1 and
↔
G is the

complete biorientation of G, then D does not contain a spanning k-arc-strong
subgraph. Hence the following result due to Jackson and Thomassen implies
that g(k) = 2k and this is the best possible by the remark above.

Theorem 11.10.1 [556, 866] Every 2k-arc-strong digraph has a k-arc-strong
orientation. ��

Since we may convert a digraph to a mixed graph by replacing each 2-cycle
with an undirected edge, Theorem 11.10.1 follows from Theorem 11.9.1.

In the vertex-strong connectivity case the problem becomes much harder.
Jackson and Thomassen posed the following conjecture (see [866]):

Conjecture 11.10.2 [866]) Every 2k-strong digraph has a k-strong orien-
tation.

In Section 11.6 we noted that if an oriented graph D is k-strong, then
UG(D) is k-connected and 2k-edge-connected. The following example, due
to Alon and Ziegler [866, page 406], shows that UG(D) may be k-connected
and 2k-edge-connected and still D has no k-strong orientation: take the com-
plete biorientation of H, where H is the graph constructed by taking two
large complete graphs G1, G2 sharing just one vertex v and adding k − 1
independent edges with one end in V (G1)− v and the other in V (G2)− v.

On the other hand, the example above does not satisfy the obvious nec-
essary condition that D−X has a (k− j)-arc-strong orientation for every set
X of j vertices (0 ≤ j ≤ k). The semicomplete digraph in Figure 11.14 shows
that this condition is still not sufficient and the example can be generalized

468 11. Orientations of Graphs and Digraphs

to an arbitrary odd number of vertices by taking the second power on an odd
cycle C and orienting the original edges as in Figure 11.14. This shows that
Conjecture 11.6.2 can be extended neither to mixed graphs nor to digraphs.

Conjecture 11.10.2 clearly generalizes Conjecture 11.6.1 and it is open
even for k = 2 whether there there is some function f(k) so that every
f(k)-strong digraph has a k-strong orientation. Jordán’s proof that every 18-
connected graph has a 2-strong orientation does not extend to orientations of
digraphs as it explicitly uses that the starting point is an undirected graph.
Below we will describe some results on special classes of digraphs.

Guo [435] and Huang [540] considered orientations of locally semicomplete
digraphs.

Theorem 11.10.3 [540] Every round decomposable k-strong locally semi-
complete digraph can be oriented as a k-strong local tournament23. ��

Bang-Jensen and Thomassen [66] proved that for semicomplete digraphs
the function f(k) indeed exists. The value of this function was later improved
by Guo.

Theorem 11.10.4 [435] For every natural number k, every (3k − 2)-strong
locally semicomplete digraph has an orientation as a k-strong local tourna-
ment digraph.

We will not prove the bound 3k−2 here, but instead give the proof by Bang-
Jensen and Thomassen that f(k) ≤ 5k for semicomplete digraphs. That proof
illustrates the main ideas and Guo’s proof is a refinement of the proof we give.
Note that by Theorem 11.10.3 it is enough to consider semicomplete digraphs.

We prove by induction on k that every 5k-strong semicomplete digraph
D contains a spanning k-strong tournament. The case k = 1 is easy, since
by Theorem 1.5.1, every strong semicomplete digraph has a Hamilton cycle.
Let C be a Hamilton cycle in D. For every 2-cycle of D delete an arbitrary
arc of that 2-cycle, unless one of its arcs is used by C. In the latter case
we delete one arc of the 2-cycle so as to preserve C. We obtain a spanning
strong tournament T of D. Note that the case k = 1 also follows easily from
Corollary 5.3.9.

Suppose we have proved the statement for all r ≤ k− 1, that is, every 5r-
strong semicomplete digraph contains a spanning r-strong tournament. Let
D be a 5k-strong semicomplete digraph and suppose D does not contain a
spanning k-strong tournament. We derive a contradiction to this assumption.
First observe that we must have |V (D)| ≥ 5k + 2 since otherwise D is the
complete digraph on 5k + 1 vertices and this clearly contains a k-connected
spanning tournament.

By the induction hypothesis, D contains a (k − 1)-strong spanning tour-
nament. Let T be chosen among all (k − 1)-strong spanning tournaments of
D such that the following holds:
23 The paper [540] claims that in fact all k-strong non-semicomplete locally semi-

complete digraphs have such an orientation. This, however, is not true.

11.10 k-(Arc)-Strong Orientations of Digraphs 469

(i) The number s of separating sets of size k − 1 in T is minimum over all
k − 1-strong spanning subtournaments of D.

(ii) T has a separating set S of size k − 1 such that the number m of strong
components of T − S is minimum taken over all separating sets of size
k − 1 of T .

Let S be some separating set of T such that T −S has precisely m strong
components T1, . . . , Tm (written in the unique acyclic order). Let U = V (T1)∪
. . . ∪ V (Tm−1) and W = V (Tm). Since D is 5k-strong, it follows easily from
Menger’s theorem (Corollary 5.4.2) that in D there are 5k internally disjoint
paths from W to U (see Exercise 5.17). At most k − 1 of these can pass
through S. Thus in D − S there are at least 4k + 1 arcs from W to U . Let
U ′ ⊂ U (W ′ ⊂ W) be those vertices v of U (W) for which some arc in D
from W to U has v as its head (tail). Since D−S has at least 4k +3 vertices,
either U or W has size at least 2k + 2. Using this and the fact that D − S
has 4k + 1-internally disjoint (w, u)-paths for every choice of u ∈ U, w ∈ W ,
we get from Corollary 5.4.2 that either |U ′| ≥ 2k + 1 or |W ′| ≥ 2k + 1. By
considering the converse of D if necessary, we may assume |U ′| ≥ 2k + 1.

The digraph T 〈U ′〉 is a tournament on at least 2k + 1 vertices and hence
it has a vertex x with at least k out-neighbours in U ′. Let y be a vertex in
W ′ such that yx is an arc of D (y exists since x ∈ U ′). In T we have the
arc xy (since every vertex in U dominates every vertex in W) and since x
has out-degree at least k in T 〈U ′〉, there are at least k (x, y)-paths of length
2 in T . Let T ′ be the spanning tournament in D that we obtain from T by
replacing the arc xy by the arc yx. Applying Lemma 14.4.6, we get that T ′

has no more than s minimum separating sets. However, it is easy to see that
T ′−S is either strong (if x ∈ V (T1)), or it has fewer strong components than
T − S and hence we obtain a contradiction to the choice of T according to
(i), (ii). ��

It can be seen by inspecting Guo’s proof in [435] that (3k − 2)-strong
connectivity is the best bound one can prove using his approach. However,
at least for k = 2 this is not sharp when we have more than 2k vertices:

Proposition 11.10.5 [108] Every 3-strong semicomplete digraph on at least
5 vertices contains a spanning 2-strong tournament. ��

As an illustration of the usefulness of the structural characterization of
quasi-transitive digraphs in Theorem 2.7.5 we show how Theorem 11.10.4
implies the same statement for quasi-transitive digraphs.

Corollary 11.10.6 For every natural number k, every (3k−2)-strong quasi-
transitive digraph has an orientation as a k-strong quasi-transitive digraph.

Proof: Let D be a (3k − 2)-strong quasi-transitive digraph and let D =
Q[W1, . . . , Wq], q = |Q|, be a decomposition of D according to Theorem
2.7.5. By Corollary 5.8.2, the digraph D0 obtained from D by deleting all

470 11. Orientations of Graphs and Digraphs

arcs inside each Wi is also (3k − 2)-strong. By Theorem 2.7.5, if Q con-
tains a 2-cycle qiqjqi, then each of Wi, Wj has size one. Now let H be a
semicomplete digraph obtained from D0 by adding an arbitrary arc between
every pair of vertices inside each V (Wi). Clearly H is (at least) (3k − 2)-
strong and hence, by Theorem 11.10.4, it contains a spanning k-connected
tournament T (which is obtained from H by deleting one arc from every
2-cycle, that is, T is an orientation of H). By the way we constructed H,
we have T = Q′[T1, . . . , Tq] for some choice of tournaments T1, . . . , T|Q| on
|W1|, . . . , |Wq| vertices, respectively. Here Q′ is a spanning tournament in
Q. Applying Corollary 5.8.2 to T = Q′[T1, . . . , Tq], we get that the quasi-
transitive digraph D′ = Q′[K|W1|, . . . ,K |Wq|] is k-strong and by the remark
above on 2-cycles in Q we see that D′ is a spanning subdigraph of D. It is
easy to see that if we delete an arc from every 2-cycle of a quasi-transitive
digraph, then the result is a quasi-transitive digraph (Exercise 11.68). Let
W ′

i be obtained from Wi by deleting one arc from every 2-cycle in Wi for
i = 1, 2, . . . , q. Now we see that D′′ = Q′[W ′

1, W
′
2, . . . ,W

′
q] is the desired k-

strong orientation of D. ��
Note that it also follows from the proof above that every (3k − 2)-strong

quasi-transitive digraph contains a spanning k-strong extended tournament.

11.11 Miscellaneous Topics

11.11.1 Another Measure of Well-Balancedness

Instead of trying to find well-balanced orientations where λD(x, y) and
λD(y, x) are as close as possible for all pairs of vertices, one may also look
for different measures for the quality of an orientation. Pekéc (private com-
munication, October 1997) posed the following problem:

Problem 11.11.1 Let G be a multigraph and define Mopt as

Mopt = max{
∑

x,y∈V (D)

λD(x, y) : D is an orientation of G}.

Is there a nice characterization for Mopt? In particular, can Mopt be calculated
in polynomial time?

11.11.2 Orienting to Preserve Reachability for Prescribed Pairs

In [492] Hakimi, Schmeichel and Young considered the problem of orienting
a connected graph in such a way as to maximize or minimize the number
of pairs of vertices x, y for which the orientation has an (x, y)-path. Let G
be an undirected graph, D be an orientation of G and denote by reach(D)

11.11 Miscellaneous Topics 471

the number of pairs (x, y) so that D has an (x, y)-path. Denote by reach(G)
(Reach(G)) the minimum (maximum) of reach(D) over all orientations of
G. By Robbin’s theorem Reach(G) = |V (G)|(|V (G)| − 1) if and only if it
is 2-edge-connected. It is shown in [492] that Reach(G) can be found in
polynomial time.

Problem 11.11.2 [492] Determine the complexity of the maximum reacha-
bility orientation problem for mixed graphs.

Let us call an orientation D with reach(D) = reach(G) minimal. It is
easy to see that every minimal orientation is acyclic (Exercise 11.70). Using
this observation it is shown in [492] that reach(G) is equal to |E(G)| plus the
number of edges one needs to add to G in order to obtain a comparability
graph. They then show that determining this number is NP-hard and hence
so is determining reach(G).

In [46] Arkin and Hassin considered orientations of mixed graphs which
preserve directed paths between prescribed ordered pairs of vertices. They
show that the following is an NP-hard problem: Given mixed graph M and
a collection P = {(sj , tj) : j ∈ [r]} of ordered pairs of vertices in M . Does
M have an orientation D which contains a directed (sj , tj)-path for each
j ∈ [r] (such an orientation is called a P -orientation of M and M is called
P -connected if it has an (si, ti)-path for all i ∈ [r])?

When M is some undirected graph it is easy to show that the desired
orientation exists if and only if there is no edge e whose removal disconnects
the graph into components X and Y so that for some i �= j si, tj ∈ X and
sj , ti in Y (Exercise 11.71). Such an edge is called a P -bridge. In the case
of mixed graphs we must also take into account the directed edges and it
is easy to see that the absence of P -bridges is not sufficient to guarantee
the existence of a P -orientation even when |P | = 2. An edge e of a mixed
graph M is called P -essential if none of the two orientations of e preserve
P -connectedness of the resulting mixed graph. When |P | = 2 the existence
of P -essential edges is the only thing that can prevent a P -connected mixed
graph from having a P -orientation. For |P | > 2 the absence of P -essential
edges is no longer sufficient [46].

Theorem 11.11.3 [46] A mixed graph M has a P -orientation for P =
{(s1, t1), (s2, t2)} if and only if M is P -connected and has no essential edges.

��

By Theorem 11.5.4, an undirected graph G with s, t ∈ V (G) has an
orientation D so that min{λD(s, t), λD(t, s)} ≥ k if and only if λG(s, t) ≥ 2k.
Motivated by this the following problem was posed in [46].

Problem 11.11.4 Given an undirected multigraph G = (V, E), vertices
s1, s2, t1, t2 ∈ V and a positive integer k. Does G have an orientation D
such that λD(si, ti) ≥ k for i = 1, 2?

472 11. Orientations of Graphs and Digraphs

It is shown by a simple example in [46] that already for k = 2 it is
not sufficient to require that every edge-cut separating V into X, Y so that
s1, t2 ∈ X and s2, t1 ∈ Y has at least 2k edges.

11.12 Exercises

11.1. Prove Proposition 11.1.16.

11.2. Show that if a locally semicomplete digraph D contains a 2-cycle xyx, then
the edge xy is balanced in UG(D).

11.3. (+) Lexicographic 2-colouring gives a transitive orientation of
comparability graphs. Prove Theorem 11.1.4.

11.4. Prove that if G is a reduced proper circular arc graph, then, up to reversing
the orientation of all arcs, G has a unique orientation as a round local
tournament.

11.5. (+) Linear algorithm for recognizing round local tournaments.
Prove that there is an O(n + m) algorithm which either finds a round
labelling of an oriented graph D or decides that D is not a round local
tournament (Huang [539]).

11.6. Prove Theorem 11.1.8.

11.7. Using the same approach as in the proof of Proposition 11.1.15 formulate
the instance of 2-SAT which corresponds to the oriented graph D in Fig-
ure 11.15. Show that UG(D) has no orientation as a locally in-tournament
digraph.

1

2

5

6

7
3

4 8

Figure 11.15 An oriented graph D.

11.8. An orientation-based characterization of proper interval graphs. A
straight ordering of an oriented graph is a vertex ordering v1, v2, . . . , vn

such that for each i the vertex vi is dominated by vi−d−(vi)
, vi−d−(vi)+1,

. . . , vi−1 and dominates vi+1, vi+2, . . . , vi+d+(vi)
. Here indices are not mod-

ulo n, that is, 1 ≤ i− d−(vi) and i + d+(vi) ≤ n for each i ∈ [n]. A digraph
is straight if it has a straight ordering (Deng, Hell and Huang [257]). A
graph is a proper interval graph if it is the intersection graph of an
inclusion-free family of intervals on the real line.

11.12 Exercises 473

(a) Prove that if D has a straight ordering, then D is an acyclic round local
tournament digraph.

(b) Prove that an undirected graph G is a proper interval graph if and only
if it has a straight orientation. Hint: compare this with Theorem 11.1.6.

11.9. Recognizing non-strong locally semicomplete digraphs in linear
time. Give a simple linear algorithm to recognize non-strong locally semi-
complete digraphs based on Theorem 2.10.6 (Bang-Jensen, Hell and Huang
[102]).

11.10. Derive Theorem 11.3.1 from Theorem 11.3.7.

11.11. (+) Acyclic orientations such that every vertex is on an (s, t)-
path. Let G = (V, E) be an undirected graph. Let s, t be special vertices
and assume that if G has a cut-vertex, then every cut-vertex v of G separates
G− v into two connected components, one containing s and one containing
t. Prove that G has an acyclic orientation D such that every vertex of D is
on an (s, t)-path (Gerards and Shepherd [400]).

11.12. Strong orientations of the Petersen graph contain an even cycle.
Prove that every strongly connected orientation of the Petersen graph has
an even cycle.

11.13. Strong orientations of odd-K4’s and odd necklaces contain even
cycles. Prove Lemma 11.2.2.

11.14. Undirected graphs without even cycles. Describe the structure of those
connected undirected graphs that have no even cycle.

11.15. Graphs with strong orientations without even cycles and with
the maximum number of vertices. Prove that the graph Ln defined in
Section 11.2 has a strong orientation without even cycles.

11.16. (−) Prove that Theorem 11.3.7 implies Camion’s theorem (Corollary 1.5.2)
that every strong tournament has a hamiltonian cycle.

11.17. 3-colouring the Petersen graph. Find an orientation of the Petersen
graph which has no directed path of length 3. Use this to find a 3-colouring
of the Petersen graph by colouring as in the proof of Theorem 11.3.1.

11.18. Figure 11.16 shows a graph G known as the Grötzsch graph. Prove that
every orientation of G has a path of length 3. Find an orientation D of G
such that lp(D) = 3. Finally, show that if e is any edge of G, then we can
find an orientation of G− e with no path of length 3.

11.19. Prove that if a connected graph G has a k-flow (D, x) for some k, then D
is strongly connected.

11.20. Prove that a cubic graph is 3-edge-connected if and only if it is 3-connected.

11.21. (+) Prove that the Petersen graph has no 4-flow.

11.22. Hamiltonian graphs have a 4-flow. Prove that every hamiltonian graph
has a 4-flow. Hint: use Theorem 11.4.6.

11.23. Find a 4-flow in the cubic graph in Figure 11.17.

474 11. Orientations of Graphs and Digraphs

Figure 11.16 The Grötzsch graph.

Figure 11.17 A hamiltonian cubic graph.

11.24. Converting a Zk-flow to a k-flow. The proof of Theorem 11.4.3 gives rise
to a polynomial algorithm to convert a given Zk-flow to a k-flow. Describe
such an algorithm and illustrate it by converting the Z5-flow in the Petersen
graph in Figure 11.18 to a 5-flow.

2 2

1

2 2

1

1

2 2

2

1

1

1

1

1

Figure 11.18 A Z5-flow in the Petersen graph.

11.25. (+) Prove Theorem 11.4.6. Hint: define a Z2×Z2-flow from G1, G2 and vice
versa.

11.26. Show that the complete graph on 4 vertices is 3-edge-colourable and has no
3-flow.

11.12 Exercises 475

11.27. (+) Three spanning trees with no common edges in graphs which
are 3-edge-connected. Prove that every 3-edge-connected graph has three
spanning trees T1, T2, T3 with the property that E(T1)∩E(T2)∩E(T3) = ∅.
Hint: use Theorem 9.4.2.

11.28. (+) Jaeger’s 8-flow theorem. Prove, without using Theorem 11.4.10,
that every 2-edge-connected graph G has an 8-flow. Hint: first observe that
it suffices to prove the statement for 3-edge-connected graphs. By Exercise
11.27, G has three spanning trees such that no edge lies in all of these. Use
this to construct a Z2 × Z2 × Z2-flow in G (compare this with the proof of
Theorem 11.4.7).

11.29. A minimum counterexample to Tutte’s 5-flow conjecture has no
3-cycle. Show that if G is cubic 3-edge-connected and C is a 3-cycle of
G, then the graph H obtained by contracting C to one vertex v in G and
deleting the loops created is also cubic and 3-edge-connected. Show that
every 5-flow in H can be extended to a 5-flow in G.

11.30. Show by an example that the idea of Exercise 11.29 does not always work
for cycles longer than 5.

11.31. (−) Nash-Williams’ strong orientation theorem for eulerian multi-
graphs. Prove Theorem 11.5.4 for eulerian graphs. Hint: consider an eule-
rian tour.

11.32. Smooth k-arc-connected orientations. Prove the following slight exten-
sion of Nash-Williams’ orientation theorem. If G = (V, E) is 2k-connected,
then it has a k-arc-strong orientation D such that max{|d+

D(x) − d−
D(x)| :

x ∈ V (D)} ≤ 1. Hint: follow the proof of Theorem 11.5.3 and change it
appropriately when needed.

11.33. (+) Vertices of degree k in minimally k-edge-connected graphs.
Prove that every minimally k-edge-connected graph contains a vertex of
degree k. Hint: use the results analogous to Proposition 5.1.1 for undirected
graphs.

11.34. (+) Lovász’s splitting theorem for undirected edge-connectivity.
Prove Theorem 11.5.1. Hint: define a set of vertices X not containing the
special vertex s to be k-dangerous if d(X) ≤ k + 1. Clearly a splitting
(su, sv) preserves k-edge-connectivity unless there is some k-dangerous set
X ⊂ V with u, v ∈ X. Observe that the degree function of an undirected
graph has properties analogous to Proposition 5.1.1. Use this to show that
there are at most two distinct maximal k-dangerous sets X, Y which contain
a given neighbour t of s. Let X, Y be distinct maximal k-dangerous sets
containing t but not s if such sets exist. Otherwise, either let X be the
unique maximal k-dangerous set containing t but not s and Y = ∅ or, if
no k-dangerous sets containing t but not s exist, then take X = Y = ∅.
Conclude that s has a neighbour t′ in V − (X ∪ Y) and show that (st, st′)
is an admissible splitting [655].

11.35. (+) Splittings that do not create cut-edges. Prove the following result
due to Fleischner [319]. If G is a 2-edge-connected undirected graph and s
is a vertex of degree at least 4, then there exist neighbours u, v of s such
that replacing the edges su, sv by one edge uv results in a graph which is
2-edge-connected. Hint: this follows from Theorem 11.5.1 if dG(s) is even. If

476 11. Orientations of Graphs and Digraphs

dG(s) is odd, then study maximal 2-dangerous sets containing neighbours
of s (see also the hints for Exercise 11.34).

11.36. (+) A polynomial algorithm for finding a k-arc-strong orienta-
tion of a 2k-edge-connected multigraph. Convert the proof of Theorem
11.5.3 into a polynomial algorithm which finds a k-arc-strong orientation of
an arbitrary input multigraph, or outputs a proof that none exists.

11.37. Prove Proposition 11.5.6.

11.38. Prove Proposition 11.5.12.

11.39. Prove that an orientation D of a multigraph G is well-balanced if and only
if

d−
D(X)− d+

D(X) ≤ bG(X) ∀X ⊆ V. (11.44)

11.40. Prove Corollary 11.7.4.

11.41. (+) Show how to derive Theorem 11.7.1 from Theorem 4.8.4.

11.42. Show how to convert the proof of Theorem 11.7.3 into a polynomial algo-
rithm which either finds an orientation with the desired property, or a set
violating the corresponding necessary condition.

11.43. Show how to derive Theorem 11.7.3 using the approach taken in the begin-
ning of Subsection 11.7.1 and Exercise 4.32.

11.44. Prove that Theorem 11.7.3 implies the marriage theorem (Corollary 4.11.4).

11.45. Prove that the condition in Conjecture 11.6.2 is necessary in order to have
a k-strong orientation.

11.46. Reversing the orientation of a cycle preserves arc-strong connec-
tivity. Prove that if D is k-arc-strong and C is a cycle in D, then the digraph
obtained by reversing the orientation of all arcs on C is also k-arc-strong.

11.47. (+) Converting one k-arc-strong orientation into another via re-
versal of cycles. Suppose that D and D′ are k-arc-strong orientations of
G = (V, E) and that d−

D(v) = d−
D′(v) for every v ∈ V . Prove that one can

obtain D′ from D by successive reversals of the orientation of a cycle in the
current digraph.

11.48. Reversal of a path while preserving k-arc-strong connectivity. Sup-
pose that D and D′ are k-arc-strong orientations of a graph G and that there
exists a vertex u such that d−

D(u) < d−
D′(u). Show that D′ contains a vertex

v such that d−
D(v) > d−

D′(v) and a (u, v)-path P . Under what conditions can
we obtain a new k-arc-strong orientation of G by reversing the arcs of P?

11.49. (+) Finding a good path to reverse. Suppose that D and D′ are
k-arc-strong orientations of a graph G and that there exists a vertex u
such that d−

D(u) < d−
D′(u). Prove that there is always a vertex v such that

d−
D(v) > d−

D′(v) and a (u, v)-path P such that one can reverse all arcs of
P without destroying the k-arc-strong connectivity. Hint: use your observa-
tion in Exercise 11.48. Assume that all paths are bad. Use submodularity
of d−

D to show that the maximal sets X1, X2, . . . , Xh containing v but not
u and which have in-degree k in D are pairwise disjoint. Count those arcs

11.12 Exercises 477

that have at most one end-vertex in ∪h
i=1Xi in both D and D′ and obtain

a contradiction (Frank [337]).

11.50. Proof of Theorem 11.8.8. Combine your observations in Exercises 11.47,
11.48 and 11.49 into a proof of Theorem 11.8.8.

11.51. Show that Theorem 11.5.3 is a special case of Theorem 11.7.6.

11.52. Let G = (V, E) be an arbitrary connected graph containing two edge-disjoint
connected spanning graphs H = (V, E′) and T = (V, E′′). Suppose H is not
eulerian and that O = {v1, v2, . . . , v2k} is the set of odd degree vertices in
H. Show that one can use a subset of the edges from E′′ to form a collection
of k edge-disjoint paths whose end-vertices are precisely the set O.

11.53. Let D = (V, A) be a digraph and x : A → R a function on the arc set of D.
Show that the function x−(U)− x+(U) is a modular function.

11.54. (+) Prove Theorem 11.9.1. Hint: use a similar approach to that used in
Section 11.8.4 to prove Theorem 11.5.3 via submodular flows.

11.55. Construct 2k-arc-strong mixed graphs with no k-arc-strong orientation.
Hint: they must violate the condition in Theorem 11.9.1.

11.56. Prove directly that the condition (11.43) is necessary for the existence of
an orientation satisfying (11.42). Hint: assume that D is an orientation
which satisfies (11.42) and study which edges are counted by the sum
Pqi

j=1 d−
D(Xij).

11.57. Constructing k-(strongly)-connected k-regular (di)graphs. Prove
that the rth power of an undirected cycle is (2r)-connected. Prove that
if n is even and G is obtained from an even cycle v1v2 . . . v2kv1 by taking
the rth power and then adding longest diagonals (v1vk+1, v2vk+2, etc.), then
G is (2r + 1)-connected. These graphs are due to Harary [498], see also the
book [872, pages 202-205] by Thulasiraman and Swamy.

11.58. (+) Orienting a mixed graph to be k-arc-strong. Use Theorem
11.9.2 to derive a necessary and sufficient condition for a mixed graph
M = (V, A, E) to have a k-arc-strong orientation (Frank [343, 347]).

11.59. (+) Orientations containing k-arc-disjoint out-branchings from a
given root. Let G = (V, E) be an undirected graph with a special vertex
s ∈ V and let k be a natural number. Prove without using Theorem 11.7.6
that G has an orientation such that d−(X) ≥ k for every X ⊆ V − s if and
only if (9.5) holds (Frank [344]).

11.60. (+) Orienting a mixed graph in order to obtain many arc-disjoint
branchings. Consider the problem of finding an orientation of a mixed
graph M = (V, A, E) so that it has k arc-disjoint out-branchings rooted at
a specified vertex s or concluding that no such orientation exists. Show how
to reduce this problem to a submodular flow problem. Argue that you can
also solve the minimum cost version where there may be different costs on
the two possible orientations of an edge e ∈ E.

11.61. (+) Arc-disjoint in- and out-branchings with a fixed root in ori-
entations of graphs. Describe an algorithm to decide whether a given
undirected graph G = (V, E) has an orientation D such that there exist arc-
disjoint in- and out-branchings F+

v , F−
u where u, v ∈ V are specified (not

478 11. Orientations of Graphs and Digraphs

necessarily distinct) vertices of V . Prove that the corresponding problem for
mixed graphs is NP-complete. Hint: use Theorem 9.6.1.

11.62. (−) Characterize when an undirected graph G = (V, E) has an orientation
so that x, y are in the same strong component for specified distinct vertices
x, y ∈ V .

11.63. Orienting a mixed graph so as to get a closed trail containing
two specified vertices. Show that the following problem is NP-complete:
Given a mixed graph M = (V, A, E) and two distinct vertices s, t. Decide if
M has an orientation that contains are-disjoint (s, t)-, (t, s)-paths.

11.64. Let M = (V, A, E) be a mixed graph and let D = (V, A) be the directed part
of M . Prove that for every k the function k−d−

D is crossing G-supermodular.

Hint: use the fact that d−
D is submodular.

11.65. Show how to minimize the submodular function b defined by (11.34) and
(11.35) over a given collection of subsets in polynomial time. Hint: use flows
to determine the in-degrees of the relevant sets.

11.66. Let k be a natural number and let G = (V, E) be a graph with a cost
function c that for every edge e ∈ E assigns a cost to each of the two
possible orientations of e. Show how to formulate the problem of finding
a k-arc-strong orientation of G of minimum cost with respect to c as a
minimum cost submodular flow problem.

11.67. Reversing arcs in order to get many arc-disjoint out-branchings
from a fixed root. Show how to solve the following problem using sub-
modular flows. Given a directed multigraph D = (V, A), a vertex s ∈ V
and a natural number k. Determine whether it is possible to reverse the
orientation of some arcs in A such that the resulting directed multigraph
has k arc-disjoint out-branchings rooted at s. Argue that one can also solve
the minimum cost version of the problem in polynomial time.

11.68. Orientations of quasi-transitive digraphs are quasi-transitive. Prove
this claim. Hint: use Theorem 2.7.5.

11.69. Derive Theorem 11.7.6 from the feasibility theorem for crossing submodular
flows (Theorem 11.8.4).

11.70. Consider the reachability orientation problem in Section 11.11.2. Prove that
every minimal orientation is acyclic.

11.71. Consider the P -orientation problem (Subsection 11.11.2) for an undirected
graph G and show that the desired orientation exists if and only if G has
no P -bridge.

12. Sparse Subdigraphs with Prescribed
Connectivity

In this chapter we treat a topic that is of practical interest and at the same
time illustrates important applications of several concepts from other chap-
ters, including Chapters 2, 4, 5 and 6.

A spanning k-(arc)-strong subdigraph D′ of a directed multigraph D is
called a certificate for the k-(arc)-strong connectivity of D. One of the cen-
tral questions treated in the chapter is the following optimization problem.
Let D = (V, A) be a k-(arc)-strong directed multigraph and let c be a cost
function on A (possibly c(a) = 1 for all a ∈ A). What is the minimum cost
of a k-(arc)-strong spanning subdigraph D′ of D? An optimal certificate
for k-(arc)-strong connectivity in D is a spanning k-(arc)-strong subdigraph
D′ of minimum cost. Finding such an optimal certificate is a hard problem
already when k = 1 and c ≡ 1. This follows from the fact that the optimal
certificate for the strong connectivity of D has n arcs if and only if D has a
Hamilton cycle. The fact that the Hamilton cycle problem is a special case of
the problem of finding an optimal certificate for strong connectivity makes it
interesting to consider classes of digraphs for which we know that the Hamil-
ton cycle problem is polynomially solvable and to see what we can say about
the complexity of finding the optimal certificate for strong connectivity (when
c ≡ 1). This topic is treated in Section 12.2 for some classes of generalizations
of tournaments. Section 12.3 deals with approximating the size of an optimal
certificate for strong connectivity and in Section 12.5 we briefly deal with the
case when c is arbitrary and we are looking for a minimum cost certificate for
strong connectivity. In Section 12.4 we give a number of results on small cer-
tificates for k-(arc)-strong connectivity. In Section 12.6 we consider digraph
analogues of the graph Steiner problem and finally in Section 12.7 we discuss
a number of miscellaneous topics.

Definition 12.0.1 Let D = (V, A) be a directed multigraph. We denote by
δ≥k(D) the minimum number of arcs in a spanning subdigraph D′ of D which
has δ0(D′) ≥ k. If δ0(D) < k, we let δ≥k(D) = ∞.

Proposition 12.0.2 There exists a polynomial algorithm A which, given a
directed multigraph D = (V, A) with minimum semi-degree δ0(D) ≥ k, re-
turns a subset A′ ⊆ A of cardinality δ≥k(D) such that the directed multigraph
D′ = (V, A′) has δ0(D′) ≥ k.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 12,
© Springer-Verlag London Limited 2010

479

http://dx.doi.org/10.1007/978-1-84800-998-1_12

480 12. Sparse Subdigraphs with Prescribed Connectivity

Proof: Exercise 12.9. ��
The following result is an easy consequence of the proof of Theorem 5.6.1.

Proposition 12.0.3 Every k-arc-strong digraph contains a spanning k-arc-
strong subdigraph with at most 2k(n − 1) arcs. ��

The proof of Theorem 9.3.1 can be turned into a polynomial algorithm
for finding, in a given directed multigraph D with a specified vertex r, either
k arc-disjoint out-branchings from r or a proof that no such set of branchings
exist (see Exercise 9.7). As every k-(arc)-strong directed multigraph D has
minimum semi-degree at least k, every certificate for the k-(arc)-strong con-
nectivity of a D on n vertices must have at least δ≥k(D) ≥ kn arcs. Hence
we have the following corollary:

Corollary 12.0.4 There exists a polynomial algorithm to find, in a given k-
arc-strong digraph D, a spanning k-arc-strong subdigraph with at most twice
the number of arcs in an optimal certificate. ��

12.1 Minimum Strong Spanning Subdigraphs

The central topic of the first three sections in this chapter is the problem of
finding an optimal certificate for strong connectivity (c ≡ 1). We call this the
MSSS problem (MSSS stands for Minimum Spanning Strong Subdigraph).
Note that multiple arcs will never be part of an optimal solution to the MSSS
problem, so below we consider digraphs rather than directed multigraphs.

The MSSS problem is a special case1 of the so-called minimum equiva-

lent subdigraph problem of a digraph. Here, for a given D, we wish to
find a spanning subdigraph D′ with as few arcs as possible such that, for every
choice of x, y ∈ V (D), D′ contains an (x, y)-path if and only if D has one. This
problem, which has many practical applications, has been considered several
times in the literature, see, e.g., [10, 406, 537, 592, 593, 685, 779, 821].

A digraph D = (V, A) is strong if and only if it contains an out-branching
and an in-branching rooted at some vertex v. Furthermore, for every choice
of in- and out-branchings B−

v , B+
v rooted at v, the digraph H = (V, A(B−

v)∪
A(B+

v)) forms a strong spanning subdigraph of D on 2n−2−k arcs, where k =
|A(B−

v)∩A(B+
v)|. Thus we have the following easy but important observation.

Proposition 12.1.1 Let D = (V, A) be a strong digraph on n vertices, let
v ∈ V be arbitrary and let k ≤ n − 2 be a natural number. There exists a
1 It is, in fact, the most important ingredient since once we know the best subdi-

graph inside each strong component, we can contract each strong component to
a vertex and consider the problem of finding a minimum equivalent subdigraph
of an acyclic directed multigraph. That problem is solvable in polynomial time
by Proposition 2.3.5.

12.1 Minimum Strong Spanning Subdigraphs 481

strong spanning subdigraph of D with at most 2n − 2 − k arcs if and only if
D contains an in-branching B−

v and an out-branching B+
v with the same root

so that |A(B−
v) ∩A(B+

v)| ≥ k. ��

Hence the MSSS problem is equivalent to finding, for an arbitrary ver-
tex v ∈ V (D), an out-branching B+

v and an in-branching B−
v maximizing

|A(B+
v) ∩A(B−

v)|.
Note that if we fix an out-branching B+

v , then we can find an in-branching
B−

v maximizing |A(B−
v) ∩ A(B+

v)| in polynomial time using any polynomial
algorithm for finding a minimum cost in-branching in a digraph (see Section
9.2).

Recall that pcc(D), the path-cycle covering number of D, is the smallest
(positive) number of paths in a k-path-cycle factor of D. Define, for every
digraph D, the number pcc∗(D) by

pcc∗(D) =
{

0 if D has a cycle factor
pcc(D) otherwise.

Proposition 12.1.2 For every strongly connected digraph D = (V, A) of
order n, we have δ≥1(D) = n + pcc∗(D). Hence every spanning strong subdi-
graph of D has at least n + pcc∗(D) arcs.

Proof: To see that δ≥1(D) ≤ n + pcc∗(D) it suffices to observe that given
any k-path-cycle factor F of a strong digraph D we can obtain a spanning
digraph D′ with minimum in- and out-degree one by adding at most 2k arcs
from D to the arcs of F such that k of these arcs enter the initial vertex of
each of the k paths in F and the other k leave the terminal vertices of the k
paths. This D′ will have at most n + k arcs. To prove the other direction let
D′ be a spanning digraph of D with δ(D′) ≥ 1 and δ≥1(D) arcs. We claim
that we can extract a (δ≥1(D) − n)-path-cycle factor from D′. To see this,
it suffices to consider a connected component of UG(D′) and show that the
desired inequality holds here. Below we assume that UG(D′) is connected.

Let C1, C2, . . . , Cr be any maximal collection of vertex-disjoint cycles in
D′ which we can obtain by extracting the vertices of each cycle one by one
from D′ and deleting the vertices of each cycle as we go along. After deleting
these vertices from D′ there is no cycle left and it is not difficult to show,
using that δ(D′) ≥ 1, that we can cover the remaining vertices of D′ (those
not on any of the cycles) by (δ≥1(D)−n) paths. Details are left to the reader
as Exercise 12.1. ��

We prove in Section 12.2.1 that the inequality of Proposition 12.1.2 is,
in fact, an equality for extended semicomplete digraphs. It was shown in
[119] that this is also the case for semicomplete bipartite digraphs. However,
already for quasi-transitive digraphs and semicomplete multipartite digraphs
the inequality of Proposition 12.1.2 is not always an equality as such digraphs
can have a cycle factor and still not be hamiltonian (see Sections 6.6 and 6.7).

482 12. Sparse Subdigraphs with Prescribed Connectivity

12.1.1 Digraphs with High Minimum Degree

Theorem 12.1.3 below is due to Bang-Jensen, Huang and Yeo.

Theorem 12.1.3 [107] Let D be a strong digraph, let R denote the comple-
ment of UG(D) and let c ≥ 0 be an integer. Suppose we have2

∑

{u∈V (D):dR(u)>c}
[dR(u)− c] ≤ q. (12.1)

Then, in polynomial time, we can find a strong spanning subdigraph H of D
such that |A(H)| ≤ n + c +

√
2q.

Proof: We only prove the existence here and leave the complexity as Exercise
12.2. Recall the definition of a 1-maximal cycle from Section 8.1.5. Let z1 be
an arbitrary vertex, let D1 = D and let C1 be a 1-maximal cycle containing z1

in D1. If C1 is a hamiltonian cycle, then this can play the role of H. Otherwise
contract C1 into one vertex z2 and let D2 denote the resulting digraph (we
delete multiple arcs if some are created as well as the loop created at z2). Let
C2 be a 1-maximal cycle containing z2 in D2. If C2 is a hamiltonian cycle in
D2, then stop. Otherwise contract C2 into one vertex z3 and let D3 denote
the resulting digraph. Continue this way until the current 1-maximal cycle
Cj is a hamiltonian cycle in Dj .

Denote by Hi the subdigraph of D induced by the arcs of C1, C2, . . . , Ci.
It is easy to see that Hi has |V (Hi)| + i − 1 arcs and that |V (Hi)| ≥ i + 1.
Hence it suffices to show that the process above can continue for at most
c +

√
2q contraction steps.

Below we denote by dR(x, Y) the number of edges in R between the ver-
tex x and the vertices in Y ⊂ V − x. Suppose x is a vertex in Di which
does not belong to Hi. We claim that |(x, V (Hi))R| ≥ i. The claim holds
for i = 1 by Lemma 8.1.28. Suppose the claim does not hold for some
step i above and let this i be chosen as small as possible. Then we have
dR(x, V (Hi−1)) = i − 1 = dR(x, V (Hi)). Since |V (Hi−1)| ≥ i, x has an arc
to or from some vertex of V (Hi−1) in D and thus x is adjacent to zi in Di.
Furthermore, x must be adjacent to every y ∈ V (Hi)−V (Hi−1) since we have
dR(x, V (Hi−1)) = dR(x, V (Hi)). However, this means that x is adjacent to
every vertex of Ci, contradicting Lemma 8.1.28 since Ci is a 1-maximal cycle
in the strong digraph Di. This shows that dR(x, V (Hi)) ≥ i for every step i
above and the claim is proved.

Let j be chosen such that Cj is a hamiltonian cycle in Dj . By our remark
above, Hj is a spanning strong subdigraph of D with n + j − 1 arcs. Hence
we may assume that j > c. Let p ≥ 0 be chosen such that j = c + p + 1. For
each i = c+1, . . . , c+ p+1 we choose a vertex xi ∈ V (Hi)−V (Hi−1). Using
the definition of q and the fact that dR(xi) ≥ i− 1 (since xi has at least i− 1
non-neighbours in Hi−1), we get
2 Here dR(u) is the degree of vertex u in the complement of UG(D).

12.2 Polynomially Solvable Cases of the MSSS Problem 483

q ≥
c+p+1∑

i=c+1

[dR(xi) − c] ≥
p∑

i=0

i =
p(p + 1)

2
.

Thus we have p(p+1) ≤ 2q which implies that p ≤
√

2q (with equality only if
q = 0). This implies that Hc+p+1 is a spanning strong subdigraph of D with
at most n + c +

√
2q arcs. ��

Corollary 12.1.4 If D is a strong digraph on n vertices so that no vertex
of D has more than c non-neighbours, then D contains a strong spanning
subdigraph with at most n + c arcs. ��

It is easy to derive the following consequence from Theorem 12.1.3 (simply
suppress the subdividing vertices and consider D).

Corollary 12.1.5 [107] Suppose D = (V, A) satisfies the hypothesis of
Theorem 12.1.3 and let D̃ be obtained from D by subdividing some arcs.
Then D̃ contains a strong subdigraph H̃ = (Ṽ , Ã) such that V ⊆ Ṽ and
|Ã| ≤ |Ṽ | + c +

√
2q. ��

12.2 Polynomially Solvable Cases of the MSSS Problem

Since the MSSS problem is NP-hard, it is natural to study the problem under
certain extra assumptions. In order to find classes of digraphs for which we
can solve the MSSS problem in polynomial time, we have to consider classes of
digraphs for which we can solve the hamiltonian cycle problem in polynomial
time.

Khuller, Raghavachari and Young considered the restriction when the
digraph in question has no cycle with more than r arcs. Then the problem
is known under the name SCCSr [592]. In [593] it is shown that if one only
considers digraphs with no cycle longer than 3, then the optimal certificate
can be found in polynomial time. The algorithm is based on the following
result.

Theorem 12.2.1 [593] The SCCS3 problem reduces in time O(n2) to the
problem of finding a minimum edge-cover3 in a bipartite graph. ��

This gives an O(n2 +m
√

n) time algorithm for the SCCS3 problem, since
the problem of finding a minimum edge cover in a bipartite graph is equivalent
to the problem of finding a maximum matching in such a graph [618]. The
latter problem can be solved in time O(

√
nm) (see Theorem 4.11.1). Although

SCCS3 is a very restricted case of the MSSS we shall see in Section 12.4.3
3 An edge-cover of an undirected graph G = (V, E) is a set of edges E′ ⊂ E such

that every v ∈ V is incident with at least one edge from E′.

484 12. Sparse Subdigraphs with Prescribed Connectivity

that the result is actually useful in obtaining an approximation algorithm for
a more general problem for directed multigraphs.

Already the SCCS5 problem is NP-hard and the SCCS17 is even MAX
SNP-hard, implying that there cannot exist a polynomial time approxima-
tion scheme for this problem, unless P = NP [592].

12.2.1 The MSSS Problem for Extended Semicomplete Digraphs

The next result by Bang-Jensen and Yeo shows that the inequality in Propo-
sition 12.1.2 is actually an equality for digraphs that are extensions of a
semicomplete digraph. The main tool in the proof below is the character-
ization of the longest cycle in an extended semicomplete digraph given in
Theorem 6.6.8.

Theorem 12.2.2 [119] Let D = (V, A) be a strong extended semicomplete
digraph and let D̃ = (V, Ã) be a minimum strong spanning subdigraph of D.
Then |Ã| = n + pcc∗(D) = δ≥1(D).

Proof: (Sketch) Let D = S[H1, H2, . . . , Hs], s = |V (S)|, be a strong extended
semicomplete digraph, where the decomposition is such that S is semicom-
plete. For each i = 1, 2, . . . , s we let mi denote the maximum number of
vertices from Hi that can be covered by any cycle subdigraph of D. Let C
be a longest cycle of D. By Theorem 6.6.8, C contains precisely mi vertices
from Hi for each i = 1, 2, . . . , s. If D is hamiltonian, then pcc∗(D) = 0 and
there is nothing to prove. Hence we may assume below that pcc∗(D) > 0. By
Corollary 6.6.19, the extended semicomplete digraph D′ = D − C is acyclic.
Let k = α(D′). By Lemma 13.5.9, D′ has a path-factor P1 ∪ P2 ∪ . . . ∪ Pk

where P1 is a longest path in D′, P2 is a longest path in D′ − P1 and so on.
Start by letting H := (V (C), A(C)). Since P1 is a longest path in D′, its

initial (terminal) vertex x (y) has no arc entering (going out) in D′. Thus,
since D is strong, there exist arcs ux, yv such that u, v are vertices of H.
Change H by adding the vertices of P and all arcs of P along with the arcs
ux, yv to H. Now consider the path P2 in D′−P1. Using that P2 is a longest
path in D′ − P1, we again conclude that there must exist an arc from V (H)
to the initial vertex of P2 and an arc from the terminal vertex of P2 to H.
Now it is easy to see how to continue and end up with a subdigraph H which
is strong, spanning and has n + k arcs.

It remains to prove that this is optimal. By the remark above pcc∗(D) > 0,
so by Proposition 12.1.2, it suffices to prove that k = pcc(D). Let p = pcc(D)
and let R1, R2, . . . , Rp,Q be an arbitrary p-path-cycle factor of D, where Q
consists of one or more cycles and Ri is a path for i = 1, 2, . . . , p. If some
Ri contains two vertices from the same Hi, then we can replace it with a
new path R′

i and a cycle Ci (Exercise 12.4). Doing this for all the paths
R1, R2, . . . , Rp until none of these contains two independent vertices we end

12.2 Polynomially Solvable Cases of the MSSS Problem 485

up with a collection of paths R′
1, R

′
2, . . . , R

′
p, where R′

i is the result of remov-
ing zero or more cycles from D〈Ri〉4. Now consider the cycle subdigraph Q′

we obtain by taking Q and all the cycles we extracted above. By the defini-
tion of mi, Q′ contains at most mi vertices from Hi. Thus α(D−V (Q′)) ≥ k
and since no R′

i contains two independent vertices, it follows that p ≥ k must
hold. ��

Corollary 12.2.3 [119] A minimum spanning strong subdigraph of a strong
extended semicomplete digraph can be found in time O(n

5
2).

Proof: Exercise 12.5. ��

12.2.2 The MSSS Problem for Quasi-Transitive Digraphs

We first give a lower bound for the number of arcs in any minimum span-
ning strong subdigraph of an arbitrary given strong quasi-transitive digraph.
This bound can be calculated in polynomial time using Gutin’s algorithm for
finding a hamiltonian cycle in a quasi-transitive digraph (Theorem 6.7.4) as
well as the algorithm of Theorem 6.7.5. We prove that this lower bound is
also attainable for quasi-transitive digraphs. The proof of this uses Theorem
6.6.8.

Definition 12.2.4 Let D be a strong quasi-transitive digraph and define
pc∗(D) by pc∗(D) = 0 if D is hamiltonian and pc∗(D) = pc(D) otherwise.

Lemma 12.2.5 For every strongly connected quasi-transitive digraph D, ev-
ery spanning strong subdigraph of D has at least n + pc∗(D) arcs.

Proof: Exercise 12.7. ��
In fact Lemma 12.2.5 holds for arbitrary digraphs. This is not in contradic-

tion with Theorem 12.2.2 since pcc∗(D) = pc∗(D) for every strong extended
semicomplete multipartite digraph by Theorems 6.6.2 and 6.6.5. Below we
characterize the optimal solution to the MSSS problem for quasi-transitive
digraphs and show that the problem is polynomially solvable.

Theorem 12.2.6 [106] Every minimum spanning strong subdigraph of a
quasi-transitive digraph has precisely n + pc∗(D) arcs. Furthermore, we can
find a minimum spanning strong subdigraph in time O(n4).

Proof: Let D = S[W1, W2, . . . , Ws], s = |S| ≥ 2, be the decomposition of
a strong quasi-transitive digraph D according to Theorem 2.7.5. Using the
algorithm of Theorem 6.7.4 we can check whether D is hamiltonian and find
a hamiltonian cycle if one exists. If D is hamiltonian, then any hamiltonian
4 Observe that by the definition of p, no R′

i is empty.

486 12. Sparse Subdigraphs with Prescribed Connectivity

cycle is the optimal spanning strong subdigraph. Suppose below that D is
not hamiltonian. Then in particular we have pc∗(D) = pc(D) by Definition
12.2.4.

Let D0 = S[Kn1 ,Kn2 , . . . ,Kns] be the extended semicomplete digraph
one obtains by deleting all arcs inside each Wi (that is, ni = |V (Wi)| for all
i ∈ [s]).

For each i = 1, 2, . . . , s, let mi denote the maximum number of vertices
which can be covered in Hi by any cycle subdigraph of D0. According to
Theorem 6.6.8, every longest cycle C in D0 contains exactly mi vertices from
Hi, i = 1, 2, . . . , s. By Theorem 6.6.8, we can find C in time O(n3). Let

k = max{pc(Wi)− mi : i = 1, 2, . . . , s}. (12.2)

Note that by Theorem 6.7.3, k ≥ 1 since D has no hamiltonian cycle.
Let m∗

i = max{pc(Wi), mi}, i = 1, 2, . . . , s, and define the extended semi-
complete subdigraph D∗ of D by D∗ = S[H∗

1 , H∗
2 , . . . , H∗

s], where H∗
i is an

independent set containing m∗
i vertices for i = 1, 2 . . . , s. Since vertices inside

an independent set of D have the same in- and out-neighbours, we may think
of C as a longest cycle in D∗ (i.e., C contains precisely mi vertices from H∗

i ,
i = 1, 2, . . . , s). By Corollary 6.6.19, D∗ −C is acyclic and by Lemma 13.5.9,
D∗ − C can be covered by k paths P ∗

1 , P ∗
2 , . . . , P ∗

k such that P ∗
i is a longest

path in D∗ − (V (P ∗) ∪ . . . ∪ V (P ∗
i−1)) for i = 1, 2, . . . , k.

It follows from the proof of Theorem 12.2.2 that we can glue P ∗
1 onto C

and then P ∗
2 onto the resulting graph etc., until we obtain a spanning strong

subdigraph D∗∗ of D∗ with |V ∗|+ k arcs.
Now we obtain a spanning strong subdigraph of the quasi-transitive di-

graph D as follows. Since m∗
i ≥ pc(Wi) for i = 1, 2, . . . , s, each Wi contains

a collection of ti = m∗
i paths Pi1, Pi2, . . . , Piti such that these paths cover all

vertices of Wi. Such a collection of paths can easily be constructed from a
given collection of pc(Wi) paths which cover V (Wi). Let xi1, xi2, . . . , xiti be
the vertex set of H∗

i , i = 1, 2, . . . , s. Replace xij in D∗∗ by the path Pij for
each j = 1, 2, . . . , ti, i = 1, 2, . . . , s. We obtain a spanning strong subdigraph
D′ of D. The number of arcs in D′ is

A(D′) =
s∑

i=1

(|Wi| − m∗
i) + (|V ∗| + k)

= (n − |V ∗|) + (|V ∗| + k)
= n + k. (12.3)

It remains to argue that D′ is the smallest possible. By Lemma 12.2.5, it
suffices to prove that pc∗(D) ≥ k.

Since this part is similar to the proof of Theorem 12.2.2 we only sketch
how to prove it. Let P1, P2, . . . , Pr be an optimal path cover of D. Path-
contract all subpaths that lie inside some Wi and let P ′

1, . . . , P
′
r denote the

resulting paths. Delete all arcs that still remain inside each Wi after this

12.3 Approximation Algorithms for the MSSS Problem 487

contraction. That way we obtain a path cover of an extended semicomplete
digraph which we may consider as a subdigraph of D0.

As in the proof of Theorem 12.2.2, we can continue replacing paths in
the current collection by a cycle or a path until every path in the current
collection contains at most one vertex from Hi. Let P ′′

1 , P ′′
2 . . . , P ′′

r be the
final collection after removing all such cycles. Using an argument analogous
to the last part of the proof of Theorem 12.2.2, we now conclude that r ≥ k,
implying that the subdigraph D′ is optimal. ��

12.3 Approximation Algorithms for the MSSS Problem

By Proposition 12.0.3 there is a 2-approximation for the MSSS problem. It
also follows from Lemma 5.3.5 and Corollary 5.3.7 that, in linear time, we can
find a strong spanning subdigraph on at most 2n−2 arcs in any strong digraph
on n vertices. The purpose of this section is to discuss better approximation
algorithms. We start with a simple but useful observation.

Lemma 12.3.1 It is sufficient to consider digraphs with no cut vertex.

Proof: Suppose D contains a cut vertex v and that UG(D)−v has connected
components X1, X2, . . . , Xk, k ≥ 2. Then the arc set of every spanning strong
subdigraph of D is the disjoint union of the arc sets of spanning strong subdi-
graphs of D1, D2, . . . , Dk, where Di = D〈Xi + v〉. Hence we can decompose
the problem into k problems, one for each Di. Combining α-approximations
for each Di, i ∈ [k], we obtain an α-approximation for D. ��

12.3.1 A Simple 7
4
-Approximation Algorithm

Theorem 12.3.2 In time O(n2) we can find a 7
4 -approximation for the

MSSS problem in a strong digraph with no cut vertex.

Proof: We only prove the existence and leave the complexity to the reader as
Exercise 12.8. Given a strong digraph D on n vertices having no cut vertex we
proceed as follows. If n = 2, we return D as the optimal solution so we may
assume n ≥ 3. Since D has no cut vertex it contains a cycle of length at least
3. Let P0 be such a cycle and add to it a maximal sequence P1, P2, . . . , Ps of
ears of size at least three (as defined in Definition 5.3.1, but without ears of
size two or one added). Let X = V (P0) ∪ . . . ∪ V (Ps).

We claim that Y = V (D) − X is an independent set. Assume this is not
true and let uv be an arc of Y so that v dominates some vertex in X. Since
we cannot add any new ear of size at least three to X, it follows that every
(X, u)-path must pass through v (in fact, v is the first vertex after X on any
such path) and thus uv is contained in a strong component W of D〈Y 〉. Now
it follows from the fact that v is not a cut vertex that there is an edge e in

488 12. Sparse Subdigraphs with Prescribed Connectivity

UG(D) with precisely one vertex p in W and p �= v. Let q be the other vertex
of e. If q ∈ X, then it is easy to see that we can add another ear of size at
least three to X, contradicting the maximality of the sequence P1, P2, . . . , Ps.
So q ∈ Y . But now it follows from the fact that D is strong and q �∈ W that
if pq ∈ A(D), then there is a directed path from q to X which avoids W
and if qp ∈ A(D), then there is a directed path from X to q which avoids
W and again we find a new ear of size at least three. Thus in both cases
we obtain a contradiction to the maximality of P1, P2, . . . , Ps. Therefore Y is
independent.

Let D′
X be the strong spanning subdigraph of D〈X〉 consisting of all arcs

from P0, P1, . . . , Ps. Since each ear Pi, i ≤ s, adds at least two new vertices
to X, we have s ≤ |X|−3

2 . Hence we get

|A(D′
X)| = |X|+ s ≤ |X| + |X| − 3

2
<

3
2
|X|.

By adding each vertex of Y to D′
X as an ear of size two we obtain a strong

spanning subdigraph D′ of D with m′ = |A(D′
X)| + 2(n − |X|) arcs. By the

calculation above,

m′ <
3
2
|X|+ 2(n − |X|) ≤ 2n − |X|

2
. (12.4)

If |X| ≥ n
2 , then we get from (12.4) that m′ ≤ 7

4n and we are done. So
assume |X| < n

2 . It follows from the fact that Y is independent that every
strong spanning subdigraph of D must contain at least 2(n − |X|) arcs (one
in and out from every vertex of Y). Thus the approximation ratio α which we

obtain by returning D′ as our solution is no worse than m′

2(n−|X|) ≤
2n− |X|

2
2(n−|X|) .

This number is strictly increasing in |X| and as |X| < n
2 we have α ≤ 7

4 . ��

12.3.2 Better Approximation Algorithms

Khuller, Raghavachari and Young [592] gave an approximation algorithm
with approximation guarantee 1.65 for the MSSS problem. The idea in the
algorithm from [592] is to find a long cycle, contract it and continue recur-
sively. As a slight improvement the authors were able to show in [593] that
this approach can be performed in such a way that one obtains a solution in
polynomial time with no more than about 1.62 times the size of an optimum
solution.

Extending the idea of contracting cycles Vetta [886] improved this bound
to the following, which is currently the best approximation guarantee for
general digraphs.

Theorem 12.3.3 [886] There exists a polynomial algorithm which given a
strong digraph D returns a strong spanning subdigraph H of D with at most
3
2 times the size of a minimum spanning strong subdigraph of D. ��

12.4 Small Certificates for k-(Arc)-Strong Connectivity 489

The proof of Theorem 12.3.3 uses several tricks to perform cycle contrac-
tion in an appropriate way so as to guarantee the desired approximation ratio.
Vetta’s algorithm also requires the calculation of a spanning subdigraph D′

with δ0(D′) ≥ 1 and hence is not linear.
In [932] Zhao, Nagamochi and Ibaraki showed that by contracting appro-

priately chosen cycles one can obtain a linear time 5
3 -approximation algorithm

for the MSSS problem.
The following corollary follows from the proof of Theorem 12.3.2. To see

this it suffices to note that when we create D′ from D′
X above by adding two

arcs from every vertex incident to each vertex in Y , we may do so without
creating a 2-cycle.

Corollary 12.3.4 Every strong digraph D without a cut vertex contains a
minimum spanning strong subdigraph without 2-cycles. ��

By Corollary 12.3.4, if we can prove that an arc xy of a 2-cycle must be
contained in every optimal solution to the MSSS problem for D, then we can
reduce the problem to a digraph with fewer arcs by considering D − yx.

We finish this section with a couple of remarks on the MSSS problem for
digraphs in which every vertex has high degree. Bessy and Thomassé proved
that one can bound the size of a minimum spanning strong subdigraph of D
in terms of the independence number α(D) of D.

Theorem 12.3.5 [157] Every strong digraph D has a spanning strong sub-
digraph with at most |V (D)| + 2α(D) − 2 arcs. ��

By Corollary 12.1.4 the following holds:

Theorem 12.3.6 Every strong digraph D with Δ(UG(D)) ≤ n
r contains a

spanning strong digraph with at most (1 + 1
r)n arcs. Furthermore, such a

subdigraph can be found in polynomial time. ��

12.4 Small Certificates for k-(Arc)-Strong Connectivity

In this section we present some results by Cheriyan and Thurimella [209]
which show that we can approximate the size of a smallest k-(arc)-strong
spanning subdigraph better, the higher k is. We point out that the results for
k-arc-strong connectivity are only valid for digraphs5 and consider the case
of directed multigraphs in Section 12.4.3.
5 As usual, for vertex-strong connectivity, parallel arcs play no role so in the case

of k-strong connectivity we may assume that we are dealing with a digraph.

490 12. Sparse Subdigraphs with Prescribed Connectivity

12.4.1 Small Certificates for k-Strong Connectivity

Cheriyan and Thurimella gave an approximation algorithm with a very good
approximation guarantee by combining some fairly elementary results on sub-
graphs of (di)graphs with Mader’s powerful result on anti-directed trails and
k-critical arcs (Theorem 5.6.11). We start with the two subgraph results and
then describe the simple algorithm from [210].

Proposition 12.4.1 [210] Let B = (V, E) be a bipartite graph with mini-
mum degree k. Let E′ ⊂ E be a minimum cardinality subset of E with the
property that B′ = (V, E′) has minimum degree k−1. Then |E′| ≤ |E|−|V |/2
and this bound is best possible. ��

Theorem 12.4.2 [210] There exists a polynomial algorithm which, given a
k-strong digraph D = (V, A), returns a spanning k-strong spanning subdigraph
D′′ = (V, A′′) of D such that |A′′| ≤ (1 + 1

k)|A∗
opt|, where D∗ = (V, A∗

opt) is
any optimal certificate for the k-strong connectivity of D.

Proof: Let B be the following algorithm:

Input: A directed graph D = (V, A) and a number k such that D is k-strong.
Output: A small certificate D̃ = (V, Ã) for k-strong connectivity of D.

1. Use the algorithm A of Proposition 12.0.2 to find a subset A′ ⊂ A of size
δ≥k−1(D) such that the digraph D′ = (V, A′) has δ0(D′) ≥ k − 1;

2. Find an inclusion-wise minimal subset A′′ ⊂ A−A′ with the property
that D̃ = (V, A′ ∪A′′) is k-strong;

3. Return D̃.

Clearly D̃ = (V, A′ ∪ A′′) is k-strong, so we can concentrate on the ap-
proximation factor and the running time.

To see that the approximation factor is as claimed, let D∗ = (V, A∗
opt)

denote an arbitrary optimal certificate for k-strong connectivity of D. Clearly
we have

|A′| ≤ |A∗
opt|. (12.5)

To bound the size of A′′ we use Theorem 5.6.11. We claim that D′′ =
(V, A′′) has no anti-directed trail. Suppose T is an anti-directed trail in D′′.
Note that T is a subdigraph of D̃. Hence we can apply Theorem 5.6.11 to D̃.
Now it follows from the fact that every arc of A′′ is k-critical in D̃ that only
(b) or (c) can hold in Theorem 5.6.11 when applied to D̃. However, by the
choice of A′, neither (b) nor (c) can hold in D̃ since every source (sink) of T
has out-degree (in-degree) at least k + 1 in D. Thus T cannot exist and D′′

has no anti-directed trail. From this it follows, by considering the bipartite
representation BG(D′′), that

|A′′| ≤ 2|V | − 1. (12.6)

12.4 Small Certificates for k-(Arc)-Strong Connectivity 491

We leave the proof of this as Exercise 12.10 (recall the definition of BG(D)
in Chapter 1).

Combining (12.5) and (12.6), it is easy to see that the approximation
guarantee of B is at least as good as (1 + 2

k). However, using Proposition
12.4.1, we can do a little better. Let A∗∗ be a minimum cardinality subset of
A∗

opt so that the spanning subdigraph D∗∗ = (V, A∗∗) has δ0(D∗∗) ≥ k − 1.
Consider BG(D∗) and the edge sets E∗, E∗∗ corresponding to A∗

opt and A∗∗.
By Proposition 12.4.1

|A∗∗| = |E∗∗| ≤ |E∗| − |V (BG(D∗))|/2
= |A∗

opt| − |V |. (12.7)

By the choice of A′ we have |A′| ≤ |A∗∗| and combining (12.6) and (12.7)
gives

|Ã|
|A∗

opt|
≤

|A∗
opt| − |V |+ (2|V | − 1)

|A∗
opt|

≤ 1 +
1
k

, (12.8)

since clearly |A∗
opt| ≥ k|V |.

It remains to prove that B can actually be performed in polynomial time.
Step 1 is performed by the polynomial algorithm A whose existence is proved
in Exercise 12.9. Step 3 can be implemented by starting from D and deleting
arcs of Ā one by one until every remaining arc from Ā is k-critical. Clearly
this part can be done in polynomial time, using any algorithm for checking
whether a digraph is k-strong. ��

The authors claimed in [210] that the running time of the algorithm can
be made O(k|A|2).

Bang-Jensen posed the problem whether a similar result as Theorem
12.4.7 holds for optimal certificates for k-strong connectivity in tournaments.

Problem 12.4.3 [76] Does there exist a function g = g(k) such that every
k-strong tournament contains a spanning k-strong subdigraph with at most
kn + g(k) arcs?

12.4.2 Small Certificates for k-Arc-Strong Connectivity

Cheriyan and Thurimella showed that for arc-strong connectivity one can also
approximate the size of an optimal certificate better the higher the arc-strong
connectivity is.

492 12. Sparse Subdigraphs with Prescribed Connectivity

Theorem 12.4.4 [210] There exists a polynomial algorithm which given a
k-arc-strong digraph D = (V, A) returns a spanning k-arc-strong subdigraph
D′ = (V, A′) of D such that |A′| ≤ (1+4/

√
k)|Aopt|, where |Aopt| denotes the

number of arcs in an optimal certificate for k-arc-strong connectivity. The
running time of the algorithm is O(k3|V |3 + |A|1.5 log2 (|V |).

Proof: The idea is similar to the vertex-strong connectivity case so we will
only sketch the proof here. Let D = (V, A) be k-arc-strong. First find, using
the algorithm A of Proposition 12.0.2, a minimum cardinality subset U ⊂ A
such that H = (V, U) has δ0(H) ≥ k. Then find an inclusion-wise minimal
subset U ′ ⊂ A − U such that H̃ = (V, U ∪ U ′) is k-arc-strong. As in the
proof of Theorem 12.4.2, the key step is to estimate the size of U ′, since |U |
is clearly at most the size of an optimal solution.

To estimate |U ′| we use the following definition. An arc uv of a k-arc-
strong digraph W is special if W − uv is not k-arc-strong and furthermore
d+

W (u), d−W (v) ≥ k +1. Clearly each arc in the set U ′ is special in the digraph
H̃. Hence we can apply the following estimate.

Theorem 12.4.5 [210] Let k ≥ 1 be an integer and let W = (V, A) be a k-
arc-strong digraph. The number of special arcs in W is at most 4

√
k|V |. ��

Combining this with the fact that |A′| is no more than the size of an
optimal certificate the theorem follows. For the complexity bound we refer
to [210]. ��

Every integer k ≥ 0 determines two unique integers τk, ωk with 0 ≤ ωk ≤
τk such that k = τk(τk + 1) + ωk. Now let σ(k) = τk + ωk

τk+1 . Gabow [376]
studied the structure of special arcs and was able to improve the bound in
Theorem 12.4.5 as follows.

Theorem 12.4.6 [376] Let k ≥ 1 be an integer and let W = (V, A) be a
k-arc-strong digraph. For k ≥ 15 the number of special arcs in W is at most
σ(k)|V | and this bound is tight. For 5 < k < 15 there are at most 5|V | special
arcs. ��

The remainder of this section deals with the case when D is a tournament.
The results described are due to Bang-Jensen, Huang and Yeo. Let n ≥ 3 and
k ≥ 1 be two integers. We define f(n, k) to be the smallest integer such that
every k-arc-strong tournament on n vertices contains a k-arc-strong spanning
subdigraph with at most f(n, k) arcs. By Proposition 12.0.3 and the fact that
every vertex in a k-arc-strong digraph has out-degree at least k, we have

nk ≤ f(n, k) ≤ 2k(n − 1). (12.9)

Since every strong tournament is hamiltonian we have f(n, 1) = n.
For all k ≥ 1 and n ≥ 5k+2 we define Tn,k as the class of tournaments on

n vertices that can be obtained from a transitive tournament A on k vertices

12.4 Small Certificates for k-(Arc)-Strong Connectivity 493

TTk

B C

A

1

2

3

k

Figure 12.1 The structure of the tournaments in Tn,k. The tournament A is the
transitive tournament on k vertices, B and C are arbitrary k-arc-strong tourna-
ments. The bold arcs B→A, A→C indicate that all possible arcs are present in
that direction. There are exactly k arcs from C to B and all other arcs go from B
to C.

and two k-arc-strong tournaments B, C as shown in Figure 12.1. It is not
difficult to show that each tournament in Tn,k is k-arc-strong (Exercise 12.3).

Let T be any member of Tn,k. Observe that every k-arc-strong subdi-
graph D of T must contain at least k(k + 1)/2 arcs from B to A and exactly
k arcs from C to B (there are no more). Hence we have [

∑
x∈B d+

D(x)] −
[
∑

x∈B d−D(x)] ≥ k(k + 1)/2 − k, implying that
∑

x∈B d+
D(x) ≥ k|B| + k(k −

1)/2. This implies that D has at least nk + k(k − 1)/2 arcs. Thus the tour-
naments in Tn,k show that f(n, k) ≥ nk + ck2 for some constant c > 0 and
hence the following result is best possible in terms of the exponent on k.

Theorem 12.4.7 [107] For every n ≥ 3 and k ≥ 1, every k-arc-strong tour-
nament T on n vertices contains a spanning k-arc-strong subdigraph D′ with
at most nk + 136 k2 arcs. ��

The following result shows that for tournaments, δ≥k can be bounded
nicely.

Theorem 12.4.8 [107] For every tournament with δ0(T) ≥ k we have
δ≥k(T) ≤ nk + k(k + 1)/2. Furthermore, if T is also k-arc-strong, then we
have δ≥k(T) ≤ nk + k(k − 1)/2.

Proof: Let T = (V, A) be a tournament on n vertices with δ0(T) ≥ k.
Form a flow network N with vertex set U = VS ∪ VT ∪ {p, q}, where
VS = {vS : v ∈ V }, VT = {vT : v ∈ V }, and arc set {pvS : v ∈ V } ∪ {vSwT :
vw ∈ A} ∪ {vT q : v ∈ V }. Every arc of the kind vSwT has capacity 1 and
lower bound 0 and each arc a in the set {pvS : v ∈ V } ∪ {vT q : v ∈ V } has
capacity n and a lower bound l(a) = k. Observe that if x is a feasible integer-
valued (p, q)-flow in N of value M (the flow out of p) then the spanning

494 12. Sparse Subdigraphs with Prescribed Connectivity

subdigraph D′ of T that we obtain by taking those arcs vw ∈ A for which
x(vSwT) = 1 has precisely M arcs and δ0(D′) ≥ k. The other direction holds
as well. Thus the minimum number of arcs in a spanning subdigraph D′ of
T with δ0(D′) ≥ k is equal to the minimum value of a feasible integer valued
(p, q)-flow in N . By Theorem 4.9.1, this value is equal to the maximum of
l(R, R̄)−u(R̄, R) over all partitions of U into two sets R, R̄ where p ∈ R and
q ∈ R̄.

Let (R, R̄) be an arbitrary partition as above and denote by X, Y, Z, W
the following sets:

• X = {v ∈ V : vS ∈ R̄ and vT ∈ R}, Y = {v ∈ V : vS ∈ R̄ and vT ∈ R̄},
• Z = {v ∈ V : vS ∈ R and vT ∈ R̄}, W = {v ∈ V : vS ∈ R and vT ∈ R}.

Then U = X ∪ Y ∪Z ∪W and it is easy to check that we have l(R, R̄) ≤
k(n + |X| − |Z|) and u(R̄, R) ≥ |X|(|X| − 1)/2 (every arc in X contributes
one to u(R̄, R)). Thus we have

l(R, R̄)− u(R̄, R) ≤ kn + k|X| − k|Z| − |X|(|X| − 1)/2. (12.10)

This implies that l(R, R̄)− u(R̄, R) ≤ kn + k(k + 1)/2 with equality only
if |Z| = 0. Furthermore, if T is k-arc-strong then it is easy to see that either
|Z| ≥ 1 or there are at least k arcs from Y to X ∪W in T . In both cases we
conclude that l(R, R̄)− u(R̄, R) ≤ kn + k(k − 1)/2. Since (R, R̄) was chosen
arbitrarily the result now follows. ��

Bang-Jensen, Huang and Yeo also made the following conjecture, which
if true would imply that f(n, k) = nk + k(k − 1)/2. Furthermore, since a
minimum spanning subdigraph D with δ0(D) ≥ k can be found in polynomial
time, the truth of the conjecture would imply that one can find an optimal
certificate for k-arc-strong connectivity in polynomial time for every k-arc-
strong tournament T .

Conjecture 12.4.9 [107] For each k ≥ 1 and for every k-arc-strong tour-
nament T every optimal certificate for the k-arc-strong connectivity of T has
precisely δ≥k(T) arcs, that is, the minimum possible.

Conjecture 12.4.10 [107] There exists a polynomial algorithm for finding
a minimum k-arc-strong spanning subdigraph of a given k-arc-strong tourna-
ment T .

12.4.3 Certificates for Directed Multigraphs

In this section, for a given k-arc-strong directed multigraph D, we denote by
OPTk(D) the size of a minimum spanning k-arc-strong directed multigraph
of D.

12.4 Small Certificates for k-(Arc)-Strong Connectivity 495

The following example, due to Gabow [375], shows that the approach in
Section 12.4.2 does not always work when the input is a directed multigraph.
Recall that the approach for a given digraph D = (V, A) was to find a min-
imum cardinality set of arcs A′ ⊆ A so that δ0(H) ≥ k, where H = (V, A′),
and then find an arbitrary inclusion-wise minimal set of arcs A′′ ⊆ A − A′

so that adding these arcs to H results in a k-arc-strong subdigraph of D.
Now consider the k-arc-strong directed multigraph Wk which we obtain from
a complete biorientation of an undirected n-cycle, n even, by replacing each
arc by k-copies of the arc. Clearly Wk is k-arc-strong and if we label its ver-
tices 0, 1, 2, . . . , n − 1 around the original cycle, we can obtain the following
valid choices for A′ and A′′: A′ is the set of all arcs between vertex 2i and
2i + 1, i = 0, 1, . . . , n

2 − 1 and A′′ is the set of all arcs between vertex 2i − 1
and 2i, i = 1, . . . , n

2 − 1. Then |A′ ∪ A′′| = 2k(n − 1), but by just taking k
copies of the directed k-cycle we obtain an optimal k-arc-strong subdigraph
of Wk with kn arcs. Thus |A′ ∪A′′|/OPTk(D) → 2 as n →∞.

The following lemma is due to Gabow [376].

Lemma 12.4.11 [376] Let D = (V, A) be a directed multigraph which con-
tains K arc-disjoint out-branchings rooted at some vertex s ∈ V . Suppose
that H = (V, Ã) is a spanning subdigraph of D and that H has L arc-disjoint
out-branchings rooted in s. For every integer 0 ≤ r ≤ K − L there exists a
set of arcs Ar ⊆ A − Ã so that the directed multigraph H + Ar has L + r
arc-disjoint out-branchings rooted in s and no vertex of V is the head of more
than r arcs from Ar.

Proof: Exercise 12.12. ��

Lemma 12.4.12 [376] If D is a k-arc-strong directed multigraph with no
cycle of length more than 3, then OPTk(D) ≥ kOPT1(D). ��

The following result, due to Gabow, shows that it is indeed possible to
obtain a better approximation guarantee than 2 for directed multigraphs.
Note that contrary to the case of directed graphs the approximation guarantee
becomes worse the higher k is.

Theorem 12.4.13 [376] There exists a polynomial (2 − 1
3k)-approximation

algorithm for approximating the smallest spanning k-arc-strong directed multi-
graph of a k-arc-strong directed multigraph D.

Proof: The algorithm is based on the cycle contraction idea of Khuller et
al. for finding an approximate solution to the MSSS problem (see Section
12.3). There are two phases in the algorithm. First we contract cycles of
length at least four as long as possible. Let H denote the resulting directed
multigraph. Apply the polynomial algorithm of Theorem 12.2.1 to find an
optimal solution to the MSSS problem for H and let AH denote the set of
arcs in this solution. Now let W = (V, A′) be the strong spanning subdigraph

496 12. Sparse Subdigraphs with Prescribed Connectivity

of D that we obtain by taking the arcs of all the contracted cycles plus the
arcs corresponding to AH back in6 D. In the second phase of the algorithm
we fix an arbitrary vertex s ∈ V and apply Lemma 12.4.11 and its obvious
analogue for in-branchings to W, s with r = k − 1 to get a set of arcs A′′

so that W + A′′ has k arc-disjoint out-branchings rooted in s and a set of
arcs A′′′ so that W +A′′′ has k arc-disjoint in-branchings rooted in s. Clearly
W + A′′ + A′′′ is k-arc-strong, so it remains to bound the number of arcs in
A′ ∪ A′′ ∪ A′′′. Let c be the total number of arcs in the cycles of length at
least four which were contracted in the first phase, let h be the number of
vertices in H and let aH = |AH |. Then |A′| = c + aH by construction and it
is easy to see that n ≥ 3c

4 + h and aH ≤ 2h hold. Hence, as OPTk(D) ≥ nk
we have

OPTk(D) ≥ k(
3c

4
+

aH

2
). (12.11)

Since contraction of cycles does not increase the size of a smallest k-
arc-strong spanning subdigraph we have OPTk(D) ≥ OPTk(H). By Lemma
12.4.12 this means that

OPTk(D) ≥ kaH . (12.12)

Now it is easy to show that |A′| ≤ 5OPTk(D)
3k and using Lemma 12.4.11

we see that max{|A′′|, |A′′′|} ≤ (k− 1)n ≤ (k− 1)OPTk(D)/k. Thus we have

|A′|+ |A′′|+ |A′′′| ≤ 5OPTk(D)
3k

+2(k−1)OPTk(D)/k = (2− 1
3k

)OPTk(D),

as desired. ��
Gabow, Goemans, Tardos and Williamson proved the following result

which implies that also for directed multigraphs one can get a better ap-
proximation the higher k is. Note that for digraphs (no multiple arcs) the
bound obtained from Gabow’s improvement (Theorem 12.4.6) of the bound
in Theorem 12.4.5 is still better than the bound below.

Theorem 12.4.14 There exists a polynomial algorithm which is based on
LP-rounding and achieves an approximation ratio of 1+ 2

k for the problem of
finding a minimum size k-arc-strong spanning subdigraph of a k-arc-strong
directed multigraph. ��

6 If there are several choices for an arc when we do this blow up process, just take
an arbitrary among the possible choices.

12.5 Minimum Weight Strong Spanning Subdigraphs 497

12.5 Minimum Weight Strong Spanning Subdigraphs

Khuller, Raghavachari and Young posed the following problem concerning the
weighted version of the MSSS problem. Here the goal is to find in a strong
digraph with non-negative cost on the arcs, a spanning strong subdigraph of
minimum cost.

Problem 12.5.1 [592] Does there exist a μ-approximation algorithm for
minimum cost strong connectivity certificates for some μ < 2?

The existence of a polynomial algorithm with approximation guarantee
2 follows from the fact that finding a minimum cost in-branching (out-
branching) with a given root can be done in polynomial time (see Section
9.2). Indeed, if B−

r (B+
r) is a minimum cost in-branching (out-branching)

rooted at r, then D′ = (V, A(B−
r) ∪ A(B+

r)) is strong and clearly has cost
at most twice the optimum. Below, when we refer to the branchings al-
gorithm, we mean the algorithm which chooses a root r and then finds a
minimum cost out-branching B+

r and a minimum cost in-branching B−
r and

returns D′ = (V, A(B−
r) ∪ A(B+

r)). The example in Figure 12.2 shows that
the approximation guarantee of the branchings algorithm cannot be better
than 2. See also Exercise 12.11.

v

0 0

1 + ε

11

0
u

r

Figure 12.2 A bad example for the branchings algorithm [695, Figure 14]. The
algorithm returns a solution of value 2, whereas the optimum strong spanning
subdigraph has cost 1 + ε.

In order to understand why the branchings algorithm may perform poorly,
it is useful to consider the example in Figure 12.2. The arc vu is not included
in any of the two branchings B+

r , B−
r found by the branching algorithm, even

though this arc is very important in the optimal solution. On the other hand,
if we lower the cost of the arc only slightly from 1 + ε to 1 − ε, then it will
be included in both of the branchings B+

r , B−
r and the branchings algorithm

will return the optimum solution.
This kind of observation is the intuition behind the so-called drop algo-

rithm by Khuller, Raghavachari and Zhu [594]. They calculate the following
number for each arc a:

drop(a) =
(c(BI) + c(BO)) − (c(B′

I) + c(B′
O))

c(a)
, (12.13)

498 12. Sparse Subdigraphs with Prescribed Connectivity

where c(BI) (c(BO)) is the cost of a minimum cost in-branching (out-
branching) rooted in the fixed root r in D and c(B′

I), c(B
′
O) are the cor-

responding values when the cost of a is dropped to 0.
The drop algorithm is iterative. In each iteration it determines the most

important arc as the one with the highest drop value (according to (12.13))
and drops its cost to zero. The algorithm terminates when the current digraph
has an in-branching and an out-branching of cost zero from r. The algorithm
then returns the union of 0-cost out-branchings B+

r , B−
r . With respect to the

original cost this solution is still a 2-approximation.

Lemma 12.5.2 The drop algorithm is a 2-approximation algorithm.

Proof: Exercise 12.13. ��
Experiments reported in [594] indicate that the drop algorithm performs

much better than this guarantee and furthermore, already running the drop
algorithm with a fixed root is better than running the branchings algorithm
from every possible root and taking the best solution found.

12.6 Directed Steiner Problems

In this section we discuss several directed analogues of the Steiner problem for
undirected graphs (Section 9.9.2). There are at least three ways to generalize
the problem to digraphs:

• Given a digraph D = (V, A) with non-negative arc costs and a subset
X ⊂ V and a vertex r ∈ V (possibly r ∈ X), we may ask for a minimum
cost out-tree T+

r rooted at r so that this out-tree contains all vertices from
X. This is the directed Steiner tree problem.

• The directed Steiner problem is as follows. Given a directed multi-
graph D = (V, A), possibly with a cost function on the arcs, and a subset S
of its vertices; find a minimum (cost) subset A′ of A such that D′ = (V, A′)
contains an (s, t)-path for every choice of s, t ∈ S. The vertices in S are
called terminals.

• Observe that a solution to the graph Steiner problem7 for an instance
[G, X] is a connected subgraph H of G with the minimum number of ver-
tices which contains all vertices of X. A natural generalization to digraphs
would be to ask for the minimum number of vertices in a strongly con-
nected subdigraph H which contains all vertices of a given subset X of
vertices in a digraph D. Generalizing this a bit further by considering real-
valued vertex costs and asking for a minimum cost subdigraph containing
all of X, we obtain the minimum cost strong subdigraph problem

(see, e.g., [98]). We will return to this problem in Section 12.7.3.

7 See Section 9.9.2.

12.6 Directed Steiner Problems 499

All three problems are NP-hard (Exercise 12.15).

If |X| = k, then we can obtain a trivial k-approximation algorithm for
the directed Steiner tree problem, by taking for each x ∈ X a shortest (r, x)-
path in D. The following result by Charikar, Chekuri, Cheung, Dai, Goel,
Guha and Li shows that one can obtain a significantly better approximation.
Note that because the set covering problem reduces to the directed Steiner
tree problem in an approximation preserving way (Exercise 12.16), it follows
from a result of Feige [310] that we should not expect to find a polynomial
approximation algorithm with a ratio better than log |X|.

Theorem 12.6.1 [198] There exists a family of algorithms that achieves an
approximation ratio of i(i− 1)k

1
i in time O(nik2i) for any fixed i > 1 where

k = |X|. In particular, a polynomial O(kε)-approximation algorithm exists
for any ε > 0. ��

In Exercise 12.14 the reader is asked to describe a polynomial algorithm
for the directed Steiner problem in the case when |S| = 2. Feldman and
Ruhl [311] proved that, for every fixed k, the directed Steiner problem with k
terminals is solvable in polynomial time. In fact they proved that the following
more general problem is polynomially solvable for every fixed p: Given a
directed multigraph D = (V, A) and p pairs {(s1, t1), . . . , (sp, tp)} of vertices;
find a smallest set of arcs A′ in A such that D′ = (V, A′) contains an (si, ti)-
path for i = 1, 2, . . . , p. Feldman and Ruhl also showed that the weighted
version is still polynomial (provided p is fixed).

Bang-Jensen, Gutin and Yeo proved that for some generalizations of tour-
naments one can solve the directed Steiner problem in polynomial time.
Among other results they proved the following:

Theorem 12.6.2 [98] The directed Steiner problem is solvable in polyno-
mial time for locally semicomplete digraphs and for extended semicomplete
digraphs. ��

Conjecture 12.6.3 [98] The directed Steiner problem is solvable in polyno-
mial time for semicomplete multipartite digraphs.

Note that this conjecture is still open even for semicomplete bipartite di-
graphs.

In real-life applications, such as telecommunications, one is often inter-
ested in serving only a subset of the customers from a given source and
furthermore not all customers have the same demand. This gives rise to
the following more general problem which is called the directed Steiner

problem with connectivity constraints (DSCC) in [237]. Given a di-
rected graph D = (V, A) with weights on the arcs, a special vertex s and
a number kv associated with each vertex v ∈ V − s; find a minimum cost

500 12. Sparse Subdigraphs with Prescribed Connectivity

subset A′ ⊆ A such that D〈A′〉 contains kv arc-disjoint (s, v)-paths for all
v ∈ V − s. It follows from our remarks in Section 9.9.2 that this problem is
NP-complete, even if we only allow kv ∈ {0, 1} for each v ∈ V − s. In [237]
Dahl discusses a cutting plane approach to solving the DSCC problem.

In [694] Melkonian and Tardos consider the following common generaliza-
tion of the directed Steiner tree problem and the MSSS problem.

Problem 12.6.4 Given a digraph D = (V, A) with arc costs and a function
f : 2V → Z satisfying

d+
D(S) ≥ f(S) for each S ⊆ V, (12.14)

find a minimum cost subdigraph D′ of D so that (12.14) holds when we replace
D by D′.

Taking f(S) = 1 for all proper subsets of V and f(V) = f(∅) = 0 we
obtain the MSSS problem and taking f(S) = 1 for all S such that r ∈ S and
(V −S)∩X �= ∅ and f(S) = 0, otherwise, we obtain the directed Steiner tree
problem.

Melkonian and Tardos show in [694] that if the function f in Prob-
lem 12.6.4 is crossing supermodular8, then every basic solution to the LP-
relaxation of the problem (formulated as an integer program in the obvious
way) contains a variable whose value is at least 1

4 . They use this to devise
a 4-approximation algorithm for Problem 12.6.4 in the case of a crossing su-
permodular demand function f . The algorithm is based on the the following
lemma and the idea of iterative rounding which we illustrate below.

Lemma 12.6.5 Let D′ = (V, A′) be a subdigraph of a digraph D = (V, A)
and let f be an integer-valued crossing supermodular function defined on all
subsets of V . Then the function h(S) = f(S)−d+

D′(S) is also crossing super-
modular.

Proof: Exercise 12.19. ��
This suggests the following simple algorithm. First find a basic solution

to the LP-relaxation of Problem 12.6.4. Include all arcs whose value (via
the corresponding variable in the LP) is at least 1

4 in the solution. Denote
by D′ the digraph consisting of the arcs chosen so far and recursively solve
Problem 12.6.4 for the digraph H = D−A(D′) and the function f−d+

D′ until
no positive demand remains (that is, the current function f has no positive
value).

Conjecture 12.6.6 [694] If f is crossing supermodular in Problem 12.6.4,
then every basic solution to the LP-relaxation of the problem contains a vari-
able whose value is at least 1

2 .

If true, this would imply a 2-approximation for the problem using the
same method as described above. For further work on Problem 12.6.4 see,
e.g., the paper [695] by Melkonian and Tardos.
8 This notion is defined in Section 11.8.

12.7 Miscellaneous Topics 501

12.7 Miscellaneous Topics

12.7.1 The Directed Spanning Cactus Problem

A directed cactus is a strongly connected digraph in which each arc is
contained in exactly one cycle.

Palbom [740] studied the complexity of various problems related to span-
ning directed cactii in digraphs. It is not difficult to check whether a given
digraph is a cactus (Exercise 12.18), but deciding whether a digraph con-
tains a spanning cactus is a hard problem (called the directed spanning

cactus problem).

Theorem 12.7.1 [740] Deciding whether a given digraph has a spanning
directed cactus is NP-complete. ��

Clearly this implies that the weighted case is hard. In fact it is hard even
for weighted complete graphs with weights obeying the triangle inequality.

Theorem 12.7.2 [740] Finding a spanning directed cactus of minimum
weight in an asymmetric9 weighted complete digraph, where the weights obey
the triangle inequality, is polynomial time equivalent to finding the minimum
TSP tour in the same digraph. The two problems also have the same hardness
of approximation. ��

The directed spanning cactus problem is trivial for locally in-semicomplete
digraphs and easy for path-mergeable digraphs (Exercise 12.17), but non-
trivial already for extended semicomplete digraphs (see, e.g., Exercise 12.20).

Problem 12.7.3 Determine the complexity of the spanning directed cactus
problem for well-structured classes of digraphs such as quasi-transitive di-
graphs, extended semicomplete digraphs and semicomplete multipartite di-
graphs.

12.7.2 An FTP Algorithm for the MSSS Problem

In view of the NP-hardness of the MSSS problem, it makes sense to study
the problem in the framework of parametrized complexity.

Since the hamiltonian cycle problem is NP-complete we cannot hope
to find an algorithm of complexity O(f(k)nc) for deciding whether a given
digraph has a strong spanning subdigraph with at most n + k arcs, unless
P = NP. As we shall see below, the following reformulation of the MSSS
problem allows us to consider fixed parameter tractability questions regarding
the MSSS problem.
9 This just means that the weight of arcs uv and vu may be different.

502 12. Sparse Subdigraphs with Prescribed Connectivity

Problem 12.7.4 (MSSS(k)) Given a strong digraph D on n vertices and
a natural number k ≤ n − 2. Does D have a spanning strong subdigraph on
at most 2n − 2 − k arcs?

Bang-Jensen and Yeo proved that problem MSSS(k) is indeed fixed pa-
rameter tractable and showed how to either solve the problem, or obtain
a problem kernel of size (2k − 1)2 in polynomial time when the underlying
graph of D has no cut vertex.

Theorem 12.7.5 [122] Let D be a strong digraph on n ≥ 3 vertices with no
cut vertex and let k ≤ n − 2 be a non-negative integer. In polynomial time
in n we can either decide that (D, k) is a yes instance of MSSS(k) or find
a strong digraph Dker such that |V (Dker)| ≤ f(k) = (2k − 1)2 and (D, k) is
a yes instance of Problem 12.7.4 if and only if (Dker, k) is a yes instance of
MSSS(k). ��

Corollary 12.7.6 [122] MSSS(k) is fixed parameter tractable with respect to
the parameter k given in the formulation of Problem 12.7.4. ��

12.7.3 Minimum Cost Strong Subdigraphs

In the directed Steiner problem the objective is to minimize the total number
(cost) of the arcs in the solution. If instead of minimizing this we want to
minimize the number of the vertices in a strong digraph containing a pre-
scribed set X of vertices, then we obtain an instance of the minimum cost
strong subdigraph problem10 which we defined in Section 12.6.

Lemma 12.7.7 [98] Let D be a digraph with real-valued costs on the vertices
and let X be the set of vertices of negative cost. In time O(m + n log n) one
can compute a cheapest cycle, which contains a fixed vertex v ∈ V (D) and no
vertices in X − v. In time O(n(m + n log n)) one can find a cheapest cycle,
which contains at most one vertex from X.

Proof: Exercise 12.21. ��
We will also use the following lemma.

Lemma 12.7.8 [98] Let D be a digraph with real-valued costs on its vertices
such that D is either locally semicomplete or extended semicomplete. Let X
denote the negative cost vertices in D. If X �= ∅ and D〈X〉 is connected,
then we can find a minimum cost strong subdigraph in D, in O(m + n log n)
time. ��

Theorem 12.7.9 [98] Let D be a strong extended semicomplete digraph with
real-valued costs on the vertices. In time O(m + n log n) one can find a min-
imum cost strong subdigraph of D.
10 Give vertices in X cost -1 and all other vertices cost 1.

12.8 Exercises 503

Proof: Let X denote the set of vertices of negative cost in D. If X = ∅, then
the cheapest strong subdigraph of D is a minimum cost vertex in D. Hence,
assume that X is non-empty. If D〈X〉 is connected, the claim follows from
Lemma 12.7.8. Thus, we may assume that D〈X〉 is not connected. Then all
vertices in X are similar (have exactly the same in- and out-neighbours). Let
x be a minimum cost vertex from X and let C be a minimum cost cycle
among those which contain x and no other vertex from X.

As all vertices from X are similar, D〈V (C) ∪X〉 is strong. Now it is easy
to see that the minimum cost strong subdigraph of D is either D〈V (C) ∪X〉
or the vertex x, whichever has the smaller cost. By Lemma 12.7.7, we can
find C in time O(m + n log n). ��

Bang-Jensen, Gutin and Yeo conjecture the following extension of Theo-
rem 12.7.9.

Conjecture 12.7.10 [98] The minimum cost strong subdigraph problem is
solvable in polynomial time for semicomplete multipartite digraphs.

Theorem 12.7.11 A minimum cost strong subdigraph of a locally semicom-
plete digraph D can be found in time O(nm + n2 log n).

Proof: Since D is locally semicomplete, every strong subdigraph of D with
at least two vertices contains a spanning cycle by Theorem 6.3.1. Hence a
minimum cost strong subdigraph D′ of D can be found in time O(nm +
n2 log n) by finding a minimum cost cycle (see Theorem 6.8.2) and a minimum
cost vertex of D and taking the cheapest of these two as D′. ��

12.8 Exercises

12.1. Complete the proof of Proposition 12.1.2. Hint: consider the proof of The-
orem 5.3.2.

12.2. Convert the proof of Theorem 12.1.3 into a polynomial algorithm for finding
the desired digraph.

12.3. Prove that the tournaments Tn,k described in Figure 12.1 are k-arc-strong
for all k ≥ 1 and n ≥ 5k + 2.

12.4. Prove that if a path P in an extended semicomplete digraph D contains two
vertices from an independent set I of D, then there exists a path P ′ and a
cycle C′ in D with V (P) = V (P ′) ∪ V (C′).

12.5. (+) Prove Corollary 12.2.3. Hint: the proof of Theorem 12.2.2 is algorithmic.
Identify the subroutines needed to do the different steps. See also Exercise
4.67.

12.6. Show that the proof of Theorem 12.2.6 can be turned into an O(n4) al-
gorithm for finding a minimum strong spanning subdigraph of a quasi-
transitive digraph.

504 12. Sparse Subdigraphs with Prescribed Connectivity

12.7. (+) Prove Lemma 12.2.5. Hint: consider the way we argued in the proof of
Proposition 12.1.2.

12.8. Prove the complexity part of Theorem 12.3.2.

12.9. Finding subgraphs with specified bounds on degrees. Describe a
polynomial algorithm which takes as input a digraph D = (V, A) on n
vertices and non-negative integers a1, a2, . . . , an, b1, b2, . . . , bn such that
d+

D(vi) ≥ ai and d−
D(vi) ≥ bi for i = 1, 2, . . . , n and returns a minimum

cardinality subset A′ of A such that the digraph D′ = (V, A′) satisfies that
d+

D′(vi) ≥ ai and d−
D′(vi) ≥ bi for i = 1, 2, . . . , n. Hint: use flows and consider

a network similar to that used in the proof of Theorem 4.11.6.

12.10. Prove that if a digraph D = (V, A) contains no closed anti-directed trail,
then |A| ≤ 2|V | − 1. Hint: consider the bipartite representation BG(D) of
D and show that this has no cycle.

12.11. (+) Show that for every p with 1 < p < 2 there exists a weighted digraph
D = D(p) for which the weight of D′ = (V, A(B−

r) ∪ A(B+
r)), where B−

r

(B+
r) is a minimum cost in-branching (out-branching) rooted at r in D is

at least p times the weight of a minimum cost strong spanning subdigraph
of D.

12.12. Prove Lemma 12.4.11. Hint: use flows to find the set Ar.

12.13. Prove Lemma 12.5.2. Hint: consider the arcs {a1, a2, . . . , ap} whose values
were dropped to zero. Then the cost of the returned solution is at most the
original cost of these arcs.

12.14. (++) Describe a polynomial algorithm for finding, in a given digraph D =
(V, A) with specified vertices s, t, a minimum size subset A′ ⊆ A such that
D′ = (V, A′) has s, t in the same strong component (Natu and Fang [722]).

12.15. Prove that each of the problems listed in the beginning of Section 12.6 is
NP-hard.

12.16. Describe an approximation preserving polynomial reduction from the set
covering problem to the directed Steiner tree problem.

12.17. Prove that every strongly connected path-mergeable digraph has a spanning
directed cactus.

12.18. Recognizing cactii in polynomial time. Describe a polynomial algo-
rithm to decide whether a given digraph is a directed cactus.

12.19. Prove Lemma 12.6.5.

12.20. (+) Construct a strong extended semicomplete digraph D which has a
spanning cactus, but no such cactus contains a longest cycle of D.

12.21. Prove Lemma 12.7.7. Hint: Show how to use Dijkstra’s algorithm with Fi-
bonacci heaps [232] to solve the problem.

13. Packings, Coverings and Decompositions

In this chapter we study problems dealing with packing subdigraphs into a
digraph, covering the vertices of a digraph by certain structures or decom-
posing a digraph into pieces with given properties. Many results fall into this
very general description and we can only cover some representative ones.

Among the topics on packing that we cover are: packing directed cuts (the
Lucchesi-Younger theorem), packing dijoins (Woodall’s conjecture), packing
hamiltonian paths and cycles. On the border between packings and coverings
we deal with path/cycle factors and then we move on to covering the vertices
of a digraph by (not necessarily disjoint) cycles. We give a proof of Gallai’s
conjecture, saying that the vertices of every strong digraph D can be covered
by a set of at most α(D) cycles. Finally, in the part on decompositions,
we study both decompositions of the arc set (arc-disjoint strong spanning
subdigraphs, hamiltonian cycles) and of the vertex set (decompositions into
digraphs with a prescribed bound on the longest path, into digraphs of given
minimum out-degree, etc.).

13.1 Packing Directed Cuts: The Lucchesi-Younger
Theorem

In this section we consider directed multigraphs. Let D = (V, A) be a directed
multigraph which is connected, but not strongly connected. A directed cut
(or just a dicut) in D is a set of arcs of the form (X, V − X), where X is a
non-empty proper subset of V such that there are no arcs from V −X to X
(i.e., (V − X, X) is a one-way pair with h(V − X, X) = 0). Note that two
dicuts (X, V − X) and (Y, V − Y) may be arc-disjoint but still X ∩ Y �= ∅.
As an example consider the second power of a directed path x1x2 . . . x2k+1.
Here {({x1, . . . , x2i−1}, {x2i, . . . , x2k+1}) : 1 ≤ i ≤ k} is a family of k arc-
disjoint cuts (the first and last having two arcs and all other having three
arcs). Clearly these cuts overlap considerably when we consider their vertex
sets. For simplicity we will sometimes denote a dicut (X, V −X) just by the
set X.

A dijoin is a subset A′ ⊂ A which covers all dicuts. Let Ω(D) denote the
maximum number of arc-disjoint dicuts in D and let ε(D) be the minimum

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 13,
© Springer-Verlag London Limited 2010

505

http://dx.doi.org/10.1007/978-1-84800-998-1_13

506 13. Packings, Coverings and Decompositions

cardinality of a dijoin. In the example above, when k = 2r + 1, the arcs
{x2i−1x2i+1 : i ∈ [r]} form a minimum dijoin.

Suppose D = (V, A) is connected but not strongly connected. Then it is
clear that we can obtain a strong directed multigraph by contracting certain
arcs. It is also clear that if we contract an arc a which is not an arc of a dicut
(X, V − X), then in the resulting directed multigraph D′ = (V ′, A′), the
corresponding pair (X ′, V ′−X ′) is still a dicut. On the other hand, if A′ is a
dijoin and we contract all arcs of A′, then the resulting directed multigraph
is strong. Let θ(D) denote the minimum number of arcs whose contraction in
D leads to a strong directed multigraph. Then it follows from the discussion
above that

Ω(D) ≤ θ(D) ≤ ε(D). (13.1)

The number a1(D) is the minimum number of new arcs one has to add to
D in order to obtain a strongly connected directed multigraph (see Section
14.3). Note that if D is a directed (x, y)-path on r vertices, then a1(D) = 1,
since we may add a new arc yx and get a strong digraph. However, in order
to obtain a strong directed multigraph by contracting arcs, we must contract
r− 1 arcs, showing that θ(D) = r− 1. This proves that θ(D) and a1(D) may
be arbitrarily far apart.

Let D be a directed multigraph. Recall that the operation of subdividing
an arc consists of replacing the arc xy in question by the path xuy of length
two, where u is a new vertex. If several arcs are subdivided, then all the new
vertices (used to subdivide these arcs) are distinct.

Lemma 13.1.1 Let D = (V, A) be a directed multigraph and let D′ be ob-
tained from D by subdividing each arc once. If D has k arc-disjoint dicuts,
then D′ has 2k arc-disjoint dicuts.

Proof: Let D′ = (V ′, A′) be obtained from D by subdividing each arc once.
Let X1, . . . , Xk be chosen such that the dicuts (X1, V −X1), . . . , (Xk, V −Xk)
are arc-disjoint in D. For each dicut (Xi, V −Xi) we denote by X ′

i the set we
obtain in D′ by taking the union of Xi and the new vertices that subdivide the
arcs leaving Xi. Now it is easy to see that the dicuts (X1, V

′−X1), (X ′
1, V

′−
X ′

1), . . . , (Xk, V ′ − Xk), (X ′
k, V ′ − X ′

k) are pairwise arc-disjoint. ��
The next theorem, due to Lucchesi and Younger, shows that in fact equal-

ity holds everywhere in (13.1).

Theorem 13.1.2 (Lucchesi-Younger theorem) [661] Let D = (V, A) be
a directed multigraph which is connected and either D has just one vertex, or
it is not strongly connected. Then Ω(D) = ε(D).

Proof: We give a proof due to Lovász [654]. The proof is by induction on
the number of arcs in A. If A = ∅, then D has precisely one vertex and there
are no dicuts. Hence the statement of the theorem is vacuously true.

13.1 Packing Directed Cuts: The Lucchesi-Younger Theorem 507

Now let a ∈ A be an arbitrary arc. Contract a and consider the resulting
directed multigraph D/a. Note that the dicuts of D/a are exactly those in
D which do not contain the arc a. By induction, ε(D/a) = Ω(D/a). Hence if
Ω(D/a) ≤ Ω(D)−1, then we can cover all dicuts in D by ε(D/a)+1 ≤ Ω(D)
arcs and the theorem is proved. Thus we may assume that

Ω(D/a) = Ω(D) for every arc a ∈ A. (13.2)

By Lemma 13.1.1, if we subdivide all arcs in A, then the resulting digraph
has at least Ω(D) + 1 arc-disjoint dicuts (with equality only if Ω(D) = 1).
Hence, starting from D and subdividing arbitrary (not previously subdivided)
arcs, we will get a sequence of directed multigraphs D0 = D, D1, . . . , Dh,
where Ω(Di) = Ω(D) for each i ≤ h − 1 and Ω(Dh) = Ω(D) + 1. Let f be
the last arc we subdivided in this process and let H = Dh−1. Now H contains
Ω(D) + 1 dicuts X1, X2, . . . , XΩ(D)+1 such that only two of them have an
arc in common and that arc is f .

Observe that H/f arises from G/f by subdivision. Hence, by the as-
sumption (13.2), Ω(H/f) = Ω(D) and so H contains Ω(D) arc-disjoint di-
cuts Y1, Y2, . . . , YΩ(D) none of which contains the arc f . This implies that
X1, X2, . . . , XΩ(D)+1, Y1, Y2, . . . , YΩ(D) is a collection of 2Ω(D) + 1 dicuts in
H such that no arc belongs to more than two of these. Thus the following
lemma will give us a contradiction, implying that (13.2) cannot hold and
hence the theorem follows.

Lemma 13.1.3 If a digraph D contains at most k arc-disjoint dicuts, and
C is any collection of dicuts in D such that no arc belongs to more than two
dicuts in C, then |C| ≤ 2k.

Proof of Lemma 13.1.3: The proof below illustrates a powerful proof
technique, known as the uncrossing technique. Call two dicuts (X, V −
X), (Y, V − Y) crossing if X and Y are crossing as sets. The first step is to
uncross crossing dicuts in the family.

It follows from (5.2) that if (X, V −X), (Y, V −Y) are crossing dicuts, then
each of (X∪Y, V −(X∪Y)), (X∩Y, V −(X∩Y)) is a dicut and d(X, Y) = 0.
Furthermore, the dicuts (X ∪Y, V − (X ∪Y)) and (X ∩Y, V − (X ∩Y)) cover
each arc of D the same number of times as the dicuts (X, V −X), (Y, V −Y)
(here we used that d(X, Y) = 0). Let C′ = C − {(X, V − X), (Y, V − Y)} +
{(X ∪Y, V − (X ∪Y)), (X ∩Y, V − (X ∩Y))}. Then C′ has the same property
as C that no arc covers more than two dicuts in C and furthermore we have

∑

(X,V −X)∈C
|X|2 ≤

∑

(Z,V −Z)∈C′

|Z|2, (13.3)

because |X ∪ Y |2 + |X ∩ Y |2 > |X|2 + |Y |2 when X, Y cross. Hence, if we
replace crossing dicuts pairwise as we did above, then we will eventually reach
a new family C∗ of size |C| such that the dicuts in C∗ are pairwise non-crossing

508 13. Packings, Coverings and Decompositions

and no arc of D belongs to more than two dicuts in C∗. Hence it suffices to
prove that C∗ contains at most 2k dicuts.

Let C∗ = {Z1, Z2, . . . , ZM} and let Ai = (Zi, V − Zi), i = 1, 2, . . . ,M , be
the corresponding arc sets. Construct an undirected graph G(C∗) = (V, E) as
follows: V = {v1, v2, . . . , vM} and there is an edge between vi and vj if and
only if Ai ∩Aj �= ∅. Since D contains at most k arc-disjoint dicuts, it follows
that G(C∗) has at most k independent vertices. Hence it suffices to show that
G(C∗) is a bipartite graph, since then we get |C| = |C∗| ≤ 2k.

Let v′1v
′
2 . . . v′sv

′
1 be an arbitrary cycle in G(C∗). Note that the arc sets of

the corresponding dicuts A′
1, . . . , A

′
s must be different, since if (Z ′

i, V −Z ′
i) =

(Z ′
j , V −Z ′

j) for some 1 ≤ i < j ≤ s, then every arc in (Z ′
i, V −Z ′

i) is covered
twice (by (Z ′

i, V −Z ′
i) and by (Z ′

j , V −Z ′
j)) and hence the vertices v′i, v

′
j each

have degree one in G(C∗), contradicting the fact that they are on a cycle.
Note also that if two dicuts (X, V − X) and (Y, V − Y) have X ∪ Y = V ,
then they are arc-disjoint and hence are not adjacent in G(C∗).

X

Y

Y X Y

(b)

(a)

X

X Y

Figure 13.1 Illustration of the definition of being to the right and left for cuts. In
the two situations in part (a) (part (b)) the dicut (X, V −X) is to the left (right)
of the dicut (Y, V − Y). In the right part of (a) we have X ∪ Y = V .

Since A′
i ∩A′

i+1 �= ∅ for i = 0, 1, . . . , s− 1, where A′
0 = A′

s, it follows from
our remarks above that we have either Z ′

i ⊂ Z ′
i+1 or Z ′

i+1 ⊂ Z ′
i. We prove

that the two possibilities occur alternately and hence s is even. Suppose not,
then without loss of generality we have Z ′

0 ⊂ Z ′
1 ⊂ Z ′

2. Let us say that a
dicut A′

i is to the left of another dicut A′
j if either Z ′

i ⊂ Z ′
j or Z ′

i ∪Z ′
j = V

(which is equivalent to V − Z ′
i ⊂ Z ′

j) and that A′
i is to the right of A′

j

if Z ′
i ∩ Z ′

j = ∅ (which is equivalent to Z ′
i ⊂ V − Z ′

j) or Z ′
j ⊂ Z ′

i (which is
equivalent to V −Z ′

i ⊂ V −Z ′
j). See Figure 13.1. Since C∗ contains no crossing

members, each A′
i �= A′

j is either to the right or to the left of A′
j . Since A′

2

is to the right of A′
1 and A′

0 = A′
s is to the left of A′

1, it follows that there
is some 2 ≤ j ≤ s − 1 such that A′

j is to the right of A′
1 and A′

j+1 is to the
left of A′

1. Suppose first that Z ′
j ∩Z ′

1 = ∅, then we cannot have Z ′
j+1 ⊂ Z ′

1 as

13.1 Packing Directed Cuts: The Lucchesi-Younger Theorem 509

A′
j+1 and A′

j have a common arc. So we must have Z ′
1 ∪Z ′

j+1 = V , but then
any arc a common to A′

j and A′
j+1 enters Z ′

1, contradicting that d−(Z ′
1) = 0.

Hence we must have Z ′
1 ⊂ Z ′

j . The fact that A′
j , A

′
j+1 have a common arc a

(and hence either Z ′
j ⊂ Z ′

j+1 or Z ′
j+1 ⊂ Z ′

j) implies that, by the choice of j,
we have Z ′

j+1 ⊂ Z ′
1 ⊂ Z ′

j+1. But now the arc a belongs to three dicuts A′
1, A

′
j

and A′
j+1, a contradiction. This completes the proof of the lemma and, by

the remark above, also the proof of the theorem. ��
Combining (13.1) and Theorem 13.1.2, we obtain:

Corollary 13.1.4 Let D be a non-strong directed multigraph whose under-
lying graph is connected. Then θ(D) = ε(D), that is, D can be made strongly
connected by contracting ε(D) arcs. ��

The proof of Theorem 13.1.2 is not constructive but using submodular
flows one can find a minimum dijoin A′ ⊆ A of D in polynomial time. As
another illustration of the power of submodular flows, we show below how
the Lucchesi-Younger theorem (Theorem 13.1.2) can be proved using a for-
mulation of the problem as a minimum cost submodular flow problem and
the duality theorem for linear programming. This application of submodular
flows was first pointed out by Edmonds and Giles [286].

We wish to find a minimum set of arcs which cover all directed cuts in
D. Let x : A → {0, 1} and let us interpret the value of x(a) as follows. If
x(a) = 1, then we choose a to be in the cover and otherwise (if x(a) = 0) a is
not chosen. Since the set of chosen arcs must cover all directed cuts, we have
the requirement

x−(W) ≥ 1 for all ∅ �= W ⊂ V such that d+
D(W) = 0. (13.4)

Let F = {W : d+
D(W) = 0}. Then ∅, V ∈ F and (13.4) is equivalent to

x+(W)− x−(W) ≤ b(W) for all W ∈ F , (13.5)

where b(∅) = b(V) = 0 and b(W) = −1 for all W ∈ F ′ = F − {∅, V }.
By our remark on different formulations of submodular flow problems,

we see that this (having the form of (11.28)) is indeed a submodular flow
formulation. Hence, by assigning cost one to each arc, we can formulate the
problem of finding an optimal cover of the directed cuts as the following
minimum cost submodular flow problem (in the form of (11.28)):

LY : Minimize
∑

a∈A

x(a)

subject to
x−(W) ≥ 1 for all W ∈ F ′

0 ≤ x(a) ≤ 1 for all a ∈ A.

510 13. Packings, Coverings and Decompositions

Taking dual variables yW for each member W of F ′ and ξ(a) for each arc
a ∈ A, we get that the dual of LY is

LY∗ : Maximize
∑

W∈F ′

yW −
∑

a∈A

ξ(a)

subject to

−ξ(a) +
∑

a∈(W,W)

yW ≤ 1 for all a ∈ A

yW ≥ 0 for all W ∈ F ′

ξ(a) ≥ 0 for all a ∈ A.

Eliminate the variables ξ(a) from LY∗ and notice that, if yW = 0 for all
members W ∈ F which are entered by a, then the optimal choice for ξ(a) is
ξ(a) = 0. We get that LY∗ is equivalent to the problem

LY∗∗ : Maximize
∑

W∈F ′

yW +
∑

a∈A

min{0, [1−
∑

a∈(W,W)

yW]} (13.6)

subject to
yW ≥ 0 for all W ∈ F ′. (13.7)

By the Edmonds-Giles theorem, there exists an integer-valued optimum
solution {yW : w ∈ F} ∪ {ξ(a) : a ∈ A} to LY∗ and hence to L∗∗. Notice
that if some variable yW in such a solution is 2 or more, then we can decrease
its value to 1 without changing the value of the objective function in (13.6).
Hence there exists an optimal solution to LY∗∗ in which all values are 0 or 1.
It follows from the optimality of the solution that if yW = yW ′ = 1, then we
can assume that no arc enters both of W, W ′ (otherwise we may put yW ′ = 0
without changing the value of the objective function). This shows that the
cuts corresponding to the non-zero values of y are arc-disjoint and hence we
have shown that the size of an optimal cover equals the maximum number of
arc-disjoint directed cuts, which is exactly the statement of Theorem 13.1.2.
Furthermore, by Theorem 11.8.5, we obtain the following corollary:

Corollary 13.1.5 There exists a polynomial algorithm which given a di-
rected multigraph D = (V, A) finds a minimum dijoin A′ ⊆ A of D. ��

Note that we can minimize the function b from (13.5) over a given collec-
tion of sets in polynomial time (using flows). Namely, the minimum value is
-1 if the collection contains a member of F ′ and 0 otherwise.

It follows from the formulation of the minimum directed cut covering
problem as a submodular flow problem and Theorem 11.8.5 that we can also

13.2 Packing Dijoins: Woodall’s Conjecture 511

solve the minimum cost version of the problem, even if there are non-uniform
costs on the arcs and we want to find a minimum cost cover of the directed
cuts. Furthermore, we can also solve the problem of finding a set of arcs which
cover each directed cut at least k times for each k (simply replace the number
−1 by −k in (13.5)).

13.2 Packing Dijoins: Woodall’s Conjecture

Woodall [909, 910] posed the following challenging conjecture which inter-
changes the role of directed cuts and dijoins in the Lucchesi-Younger theo-
rem.

Conjecture 13.2.1 (Woodall’s conjecture) In a digraph, the minimum
size of a directed cut is equal to the maximum number of disjoint dijoins.

The following observation is attributed to Frank in [804].

Proposition 13.2.2 If D is a directed multigraph such that the minimum
size of a directed cut is at least two, then D contains two disjoint dijoins.

Proof: Since UG(D) is 2-edge-connected it has a strong orientation Ds =
(V, As) by Theorem 1.6.1. Let X1 ⊂ A be the set of arcs in D which are also
arcs in Ds and let X2 = A − X1. Then it is easy to see that X1, X2 are the
desired dijoins. ��

A digraph is source-sink connected if it contains a directed path from
each initial component to each terminal component. Schrijver [797] and Fe-
ofiloff and Younger [314] proved that Woodall’s conjecture is true for source-
sink connected digraphs.

Theorem 13.2.3 [314, 797] In a source-sink connected digraph, the mini-
mum size of a directed cut is equal to the maximum number of dijoins. ��

For planar digraphs, by duality, Conjecture 13.2.1 is equivalent to the
following conjecture by Woodall.

Conjecture 13.2.4 [909] In a planar digraph D the length of a shortest
cycle is equal to the maximum number of arc-disjoint feedback arc sets of D.

This conjecture does not hold when we replace planar digraphs by tourna-
ments as shown by the following example due to Thomassen (see, e.g., [268]):
It is easy to construct a strong tournament X on 5 vertices such that every
feedback arc set of X has at least three arcs (Exercise 13.1). Now let T be
the tournament on 15 vertices obtained by taking three copies X1, X2, X3 of
X and adding arcs between them so that between Xi and Xi+1, i = 1, 2, 3,
we have the arcs of a matching of size five in the direction towards Xi+1 and

512 13. Packings, Coverings and Decompositions

all the remaining 20 arcs go from Xi+1 to Xi. It can be shown by a careful
analysis (Exercise 13.2) that one must delete at least 39 (which is more than
1
3 |A(T)|) arcs in T in order to obtain an acyclic digraph. Thus T cannot
contain 3 disjoint feedback arc sets.

Using a directed analogue of the Szemerédi regularity lemma (see, e.g.,
[268]), Donadelli and Kohayakawa [268] showed that, in fact, one can obtain
an infinite family of sparse oriented graphs which have many directed cycles
but no two arc-disjoint feedback arc sets.

Theorem 13.2.5 [268] Let an integer � ≥ 3 and a real number β > 0 be
given. For any sufficiently large n, there exists an oriented graph Dn = (V, A)
with O(n1+ 1

(�−1)) arcs and girth � such that any subset A′ ⊂ A with |A′| ≥
(1
2 + β)|A| induces a digraph with at least one cycle of length �. ��

This result is best possible in the sense that every digraph contains an
acyclic subdigraph with at least half of its arcs (just take a random ordering of
its vertices and keep all arcs pointing forward or all arcs pointing backward).

Lee and Wakabayashi proved that Conjecture 13.2.4 is true if we replace
planar digraphs by series-parallel digraphs.

Theorem 13.2.6 [638] In a series-parallel digraph the length of a shortest
cycle is equal to the maximum number of disjoint feedback arc sets of D. ��

They showed that for series-parallel digraphs, even the extension of The-
orem 13.2.6 where we have weights c(a) on the arcs and each arc is allowed
to be in at most c(a) of the feedback arc sets holds1.

In [817] Shepherd and Vetta survey results related to Woodall’s conjecture
and the Lucchesi-Younger theorem, see also [804, Chapter 56].

13.3 Packing Cycles

For a digraph D, the maximum number of vertex-disjoint (arc-disjoint) cycles
is denoted by ν0(D) (ν1(D)).

Proposition 13.3.1 For every digraph D there exist digraphs D′ and D′′

such that ν0(D) = ν1(D′) and ν1(D) = ν0(D′′). The digraphs D′ and D′′ can
be constructed from D in polynomial time.

Proof: The digraph D′′ can be defined as D′′ := L(D). To construct D′ sim-
ply apply the vertex splitting procedure (see Subsection 4.2.4) to all vertices
of D. The reader is advised to verify that the equalities of this proposition
indeed hold. ��

Theorem 13.3.2 Given a digraph D and an integer k, it is NP-complete
to decide whether ν0(D) ≥ k (ν1(D) ≥ k).
1 Theorem 13.2.6 is the case when c = 1 for all arcs.

13.3 Packing Cycles 513

Proof: By Proposition 13.3.1 it is sufficient to show this claim only for ν0.
A scheme of the proof of the assertion for ν0 is given in Exercise 13.25. ��

It turns out that one of the sufficient conditions to guarantee the existence
of a large number of vertex-disjoint cycles in a digraph D is that δ+(D) is large
enough. Let f(k) be the least integer such that every digraph of minimum
out-degree at least f(k) contains k vertex-disjoint cycles. The very existence
of f(k) for every k ≥ 1 is not obvious. Thomassen [858] was the first to prove
this fact. He proved that f(k) ≤ (k + 1)!.

Bermond and Thomassen made the following conjecture which would be
best possible (see, e.g., Exercise 13.3).

Conjecture 13.3.3 [152] Every digraph with minimum out-degree at least
2k − 1 has k disjoint cycles (that is, f(k) = 2k − 1).

The conjecture holds for k = 1, as every acyclic digraph has a vertex of
out-degree zero. Thomassen proved that the conjecture also holds for k = 2
(see Exercises 13.3 and 13.4). Lichiardopol, Pór and Sereni [644] have verified
the conjecture for k = 3. Alon [17] was the first to prove that the function
f(k) is linear. He obtained the following result.

Theorem 13.3.4 There exists an absolute constant C so that f(k) ≤ Ck
for all k. In particular, C = 64 will do. ��

We will not give a proof of Theorem 13.3.4 as it is somewhat tedious.
However, we will prove a slightly weaker result, Theorem 13.3.7. This proof
shows basic ideas involved in the proof of Theorem 13.3.4 in [17]. We leave
as Exercise 13.5 the proof of the following corollary.

Corollary 13.3.5 [17] Every digraph with minimum out-degree k has at least
k2/128 arc-disjoint cycles. ��

For k-regular digraphs, the result of this corollary seems far from being
sharp. Alon, McDiarmid and Molloy [27] conjectured the following:

Conjecture 13.3.6 Every k-regular digraph contains
(
k+1
2

)
arc-disjoint cy-

cles.

This conjecture was verified for k ≤ 3 in [27]. Now we formulate Theorem
13.3.7.

Theorem 13.3.7 [17] For k large enough, f(k) ≤ (3 + o(1))k loge k.

Proof: For technical reasons, we prove this theorem not only for digraphs,
but for directed pseudographs without parallel arcs. However, for simplicity
we will still use the term ‘digraphs’ in the rest of this subsection for digraphs
with possible loops.

514 13. Packings, Coverings and Decompositions

Clearly, Theorem 13.3.7 holds for k = 1. Assume that Theorem 13.3.7 is
true for all values up to some k and k + 1 is the minimum integer violating
the inequality. Then, f(k + 1) > f(k) + 4. Let D = (V, A) be a digraph of
minimum out-degree r, r = f(k+1)−1, such that D does not have k+1 vertex-
disjoint cycles. We also assume that D has the minimum possible number of
vertices and, subject to this property, the minimum size. By the definition of
D, the out-degree of every vertex of D is exactly r and δ−(D) > 0. Moreover,
D has no loop, since otherwise the digraph obtained from D by deleting
a vertex with a loop cannot contain k vertex-disjoint cycles, showing that
f(k + 1) − 2 = r − 1 ≤ f(k) − 1, which is impossible as we saw above that
f(k + 1) > f(k) + 4.

We proceed by proving certain properties of D formulated as lemmas. The
proof of Lemma 13.3.10 exploits a probabilistic argument. The first lemma
is due to Thomassen [858] and the next two to Alon [17].

Lemma 13.3.8 [858] For every v ∈ V , the subdigraph D〈N−(v)〉 contains
a cycle.

Proof: Fix an arbitrary vertex v ∈ V. Put H = D〈N−(v)〉. It suffices to
show that δ−(H) > 0. Assume that u ∈ V (H) and d−H(u) = 0. Then, there is
no vertex in D that dominates both u and v. This implies that the digraph
D′, obtained from D by first deleting the arcs with tail u except for uv and
then contracting uv, has minimum out-degree r. (Notice that D′ may have
a loop.) By the minimality of D, the digraph D′ has k + 1 vertex-disjoint
cycles. These cycles can easily be transformed into vertex-disjoint cycles of
D, a contradiction. ��

Lemma 13.3.9 [17] We have |V | ≤ k(r2 − r + 1).

Proof: Put n = |V | and let G be the undirected graph with vertex set
V in which a pair u and v of distinct vertices is adjacent if and only if
there is a vertex in D that dominates both. Define m = n

(
r
2

)
and observe

that the size of G is at most m (since every vertex of D has out-degree
r). Therefore, as is well known (see, e.g., Berge [143, page 282]) G has an
independent set of cardinality at least n2

2m+n . If this number is at least k + 1,
then there is a set x1, . . . , xk+1 of independent vertices of G. This means
that the sets N−(x1),. . . ,N−(xk+1) are pairwise disjoint. It now follows from
Lemma 13.3.8 that D has k+1 vertex-disjoint cycles, a contradiction. Hence,

n2

2m+n ≤ k. This implies the inequality of Lemma 13.3.9. ��

Lemma 13.3.10 [17] We have k(r2 − r + 2)(1 − 1
k+1)r ≥ 1.

Proof: Assume that the inequality of this lemma is false and

k(r2 − r + 2)(1 − 1
k + 1

)r < 1.

13.4 Arc-Disjoint Hamiltonian Paths and Cycles 515

Assign independently to every vertex v ∈ V a colour i ∈ [k + 1] with prob-
ability p = 1

k+1 . Let Vi be the set of vertices coloured i. For each vertex
v ∈ V , let Ev denote the event that all out-neighbours of v are of colours
different than that of v. Since every vertex of D has out-degree r we have
Prob(Ev) = (1−p)r. For each i ∈ [k+1], let Fi denote the event that Vi = ∅.
Then Prob(Fi) = (1 − p)n ≤ (1 − p)r+1. Hence, by Lemma 13.3.9,

∑

v∈V

Prob(Ev) +
k+1∑

i=1

Prob(Fi) ≤ n(1 − p)r + (k + 1)(1 − p)r+1

≤ k(r2 − r + 1)(1 − p)r + k(1 − p)r

= k(r2 − r + 2)(1 − p)r

< 1.

This implies that with positive probability each D〈Vi〉 is non-empty and
has a positive minimum out-degree, and hence possesses a cycle. Thus, there
is a choice of V1, . . . , Vk+1 giving k + 1 disjoint cycles in D, a contradiction.

��
Conclusion of the proof of Theorem 13.3.7: Lemma 13.3.10 implies that

k(r2 − r + 2) ≥ er/(k+1).

Hence, for k large enough, f(k) ≤ f(k+1)−1 = r ≤ (3+o(1))k loge k. Thus,
Theorem 13.3.7 is proved. ��

13.4 Arc-Disjoint Hamiltonian Paths and Cycles

From Euler’s theorem (Theorem 1.7.2) one easily derives the following result
attributed to Veblen in [152] (see also Exercise 13.28).

Theorem 13.4.1 The arcs of a digraph can be partitioned into cycles if and
only if, for each vertex x, we have d+(x) = d−(x). ��

The proof of the following strengthening of Theorem 13.4.1 for regular
digraphs by Kotzig is left to the reader as Exercise 13.6.

Theorem 13.4.2 [625] If D is a regular digraph, then the arc set of D can
be partitioned into cycle factors. ��

We now consider decompositions of the arc set of a digraph into hamil-
tonian cycles. Deciding whether such a decomposition exists for an arbitrary
digraph is an extremely hard problem. Even for complete digraphs this is
non-trivial. It is an old result due to Walecki (see [36]) that the edge set
of the complete undirected graph Kn has a decomposition into hamiltonian
cycles if and only if n is odd (if n is even, then each vertex has odd degree

516 13. Packings, Coverings and Decompositions

and no decomposition can exist). Using this result we easily conclude that
the arc set of

↔
Kn can be decomposed into hamiltonian cycles when n is odd.

However, for even n another approach is needed by the remark above.
It is easy to check that the arcs of

↔
K4 cannot be decomposed into hamil-

tonian cycles. Indeed, without loss of generality, the first cycle in such a
decomposition is 12341 where the vertices of

↔
K4 are labelled 1,2,3,4. After

removing these arcs one obtains a strong semicomplete digraph with a unique
hamiltonian cycle 14321 and hence the desired decomposition cannot exist.
With a little more effort one can also prove that the arc set of

↔
K6 cannot

be decomposed into five hamiltonian cycles (Exercise 13.29). On the other
hand, Tillson proved that for all other values of n such a decomposition does
indeed exist.

Theorem 13.4.3 (Tillson’s decomposition theorem) [874] The arcs of
↔
Kn can be decomposed into hamiltonian cycles if and only if n �= 4, 6. ��

Theorem 13.4.3 will be used in Section 13.10. Answering a question of
Alspach, Bermond and Sotteau, Ng [725] extended Theorem 13.4.3 to the
following:

Theorem 13.4.4 [725] The arcs of
↔
Kr,r,...,r (s times) can be decomposed

into hamiltonian cycles if and only if (r, s) �= (4, 1) and (r, s) �= (6, 1). ��

The following conjecture, due to Kelly (see [704]), is probably one of the
most famous conjectures in tournament theory:

Conjecture 13.4.5 (Kelly’s conjecture) The arcs of a regular tourna-
ment of order n can be partitioned into (n − 1)/2 hamiltonian cycles.

This conjecture was verified for n ≤ 9 by Alspach [152, page 28]. Jack-
son [555] proved that every regular tournament of order at least 5 contains
a hamiltonian cycle C and a hamiltonian path arc-disjoint from C. Zhang
proved in [928] that there are always two arc-disjoint hamiltonian cycles for
n ≥ 5. A digraph D is almost regular if Δ0(D) − δ0(D) ≤ 1. Thomassen
[857] proved the following:

Theorem 13.4.6 [857] Every regular or almost regular tournament of order
n has at least �

√
n/1000� arc-disjoint hamiltonian cycles. ��

This result was improved by Häggkvist to the following:

Theorem 13.4.7 [487] There is a positive constant c (in fact, c ≥ 2−18)
such that every regular tournament of order n contains at least cn arc-disjoint
hamiltonian cycles. ��

13.4 Arc-Disjoint Hamiltonian Paths and Cycles 517

For n sufficiently large, the following result due to Keevash, Kühn and
Osthus follows directly from Theorem 6.5.1.

Theorem 13.4.8 [587] There exists an integer k0 such that every k-regular
tournament with k ≥ k0 has at least 2k+1

8 arc-disjoint hamiltonian cycles. ��

Thomassen [861] proved that the arcs of every regular tournament of
order n can be covered by 12n hamiltonian cycles. So far the Kelly conjecture
remains unsettled and it remains a serious challenge to find a proof of this
longstanding and very interesting conjecture.

For further results on decompositions into hamiltonian cycles we refer the
reader to the paper [36] by Alspach, Bermond and Sotteau and the paper
[726] by Ng.

Let T be the tournament on n = 4m+2 vertices obtained from two regular
tournaments T1 and T2, each on 2m + 1 vertices, by adding all arcs from the
vertices of T1 to T2 (i.e., V (T1)�→V (T2) in T). Clearly T is not strong and so
has no hamiltonian cycle. The minimum in-degree and minimum out-degree
of T is m which is about n

4 . Bollobás and Häggkvist [165] showed that if we
increase the minimum in- and out-degree slightly, then, not only do we obtain
many arc-disjoint hamiltonian cycles, we also obtain a very structured set of
such cycles provided that the tournament has enough vertices.

Theorem 13.4.9 [165] For every ε > 0 and every natural number k there is
a natural number n(ε, k) with the following property. If T is a tournament of
order n > n(ε, k) such that δ0(T) ≥ (1

4 + ε)n, then T contains the kth power
of a hamiltonian cycle. ��

It is easy to prove that every tournament on n vertices with minimum in-
and out-degree at least n

4 is strongly connected (see Exercise 1.12).

We now turn our attention to other results concerning arc-disjoint hamil-
tonian paths and cycles in tournaments. Thomassen [857] completely char-
acterized tournaments having at least two arc-disjoint hamiltonian paths. A
tournament is almost transitive if it is obtained from a transitive tourna-
ment with acyclic ordering u1, u2, . . . , un (i.e., ui→uj for all 1 ≤ i < j ≤ n) by
reversing the arc u1un. Let T be a non-strong tournament with the acyclic
ordering T1, T2, . . . , Tk of its strong components. Two components Ti, Ti+1

are called consecutive for i = 1, 2, . . . , k − 1.

Theorem 13.4.10 [857] A tournament T fails to have two arc-disjoint
hamiltonian paths if and only if T has a strong component which is an almost
transitive tournament of odd order or T has two consecutive strong compo-
nents of order 1. ��

Deciding whether a given tournament T has a hamiltonian path P and
a hamiltonian cycle C such that P and C are arc-disjoint seems to be a
difficult problem. Thomassen found the following partial solution involving
arc-3-cyclic tournaments:

518 13. Packings, Coverings and Decompositions

Theorem 13.4.11 [857] Let T be an arc-3-cyclic tournament of order at
least 3. Then T has a hamiltonian path P and a hamiltonian cycle arc-disjoint
from P , unless T is a 3-cycle or the tournament of order 5 obtained from a
3-cycle by adding two vertices x, y and the arc xy and letting y (respectively
x) dominate (respectively be dominated by) the vertices of the 3-cycle. ��

It is easy to see that regular tournaments are arc-3-cyclic (Exercise 13.19).
Hence Theorem 13.4.11 generalizes the result of Jackson above. But Theorem
13.4.11 goes much further since, as we mentioned in Section 8.1.6, almost all
tournaments satisfy the assumption of the theorem (see [704]). The following
conjecture, in some sense generalizing Kelly’s conjecture, was proposed by
Thomassen:

Conjecture 13.4.12 [857] For any ε > 0 almost all tournaments of order
n have �(1

2 − ε)n� arc-disjoint hamiltonian cycles.

Erdős (see [857]) raised the following problem:

Problem 13.4.13 Do almost all tournaments have δ0(T) arc-disjoint hamil-
tonian cycles?

As we mentioned in the beginning of Section 7.4 there is no degree con-
dition which guarantees that a strong tournament contains two arc-disjoint
hamiltonian cycles. In fact, one can easily show that even high arc-strong
connectivity does not exclude the existence of one arc which is in all hamil-
tonian cycles (see Exercise 7.19). Thomassen posed the following conjecture.

Conjecture 13.4.14 [857] For each integer k ≥ 2 there exists an integer
h(k) such that every h(k)-strong tournament has k arc-disjoint hamiltonian
cycles.

Thomassen [857] showed by an example that h(2) > 2 and conjectured
that h(2) = 3. His example also shows that h is not bounded by any lin-
ear function. See also Figure 13.4 for an example of a 2-strong tournament
without two arc-disjoint hamiltonian cycles.

By Theorem 7.4.7, Conjecture 13.4.14 would follow for k = 2 from the
following conjecture due to Bang-Jensen and Yeo (h(2) = 3 would hold). Note
that in Figure 13.4 it suffices to remove two arcs to destroy all hamiltonian
cycles.

Conjecture 13.4.15 [120] Every tournament T either contains two arc-
disjoint hamiltonian cycles or a set A′ of at most two arcs such that T − A′

has no hamiltonian cycle.

13.5 Path Factors 519

13.5 Path Factors

Recall that the path covering number of a digraph is the minimum number
of disjoint paths needed to cover V (D).

The following attainable lower bound for the path covering number of a di-
graph D is quite trivial: pcc(D) ≤ pc(D). Clearly pcc(D) = pc(D) for acyclic
digraphs and we saw in Theorem 6.6.2 that this also holds for semicomplete
multipartite digraphs D. The aim of this section is to prove theorems by Gal-
lai and Milgram, respectively, Dilworth which provide bounds on the path
covering number in terms of the independence number. These bounds are
useful in several applications (see, e.g., Section 13.9).

Lemma 13.5.1 Let D = (V, A) be a digraph and let D̂ be obtained from D
by adding a new vertex s and all possible arcs from s to V . Then pc(D) =
�min(D̂).

Proof: Exercise 13.7. ��
Recall that the independence number α(D) of a digraph D is the cardinal-

ity of a maximum independent set of vertices of D. Rédei’s theorem (Theorem
1.4.2) can be rephrased as saying that every digraph with independence num-
ber one has a hamiltonian path and hence path covering number equal one.
Gallai and Milgram generalized this as follows.

Theorem 13.5.2 (Gallai-Milgram theorem) [388] For every digraph D,
pc(D) ≤ α(D).

Proof: Combine Lemma 13.5.1 and Theorem 9.7.1. ��
The following theorem due to Erdős and Szekeres [300] follows easily from

Theorem 13.5.2.

Theorem 13.5.3 Let n, p, q be positive integers with n > pq, and let I =
(i1, i2, . . . , in) be a sequence of n distinct integers. Then there exists either
a decreasing subsequence of I with more than p integers or an increasing
subsequence of I with more than q integers.

Proof: Let D = (V, A) be the digraph with V = {i1, i2, . . . , in} and A =
{imik : m < k and im < ik}. Observe the obvious correspondence between
independent sets of D and decreasing subsequences of I (respectively paths
of D and increasing subsequences of I). Let F = P1 ∪ . . .∪Ps be a minimum
path factor of D. By Theorem 13.5.2, s ≤ α(D). Hence, α(D)·maxs

j=1 |Pj | ≥
n > pq. Thus, either α(D) > p, i.e., there exists a decreasing subsequence
with α(D) > p integers, or maxs

j=1 |Pj | > q, i.e., there exists an increasing
subsequence with more than q integers. ��

The well-known Chvátal-Erdős sufficient condition for hamiltonicity of
undirected graphs states that if G is a k-connected undirected graph and

520 13. Packings, Coverings and Decompositions

α(G) ≤ k, then G is hamiltonian [221]. This does not extend to digraphs as
shown in [558] (see also Exercise 13.10 and Section 13.8 below). Clearly, if a
digraph D = (V, A) has a hamiltonian cycle, then for every choice of distinct
vertices v1, v2, . . . , vr ∈ V , D has an r-path factor P1, . . . , Pr such that vi is
the initial vertex of Pi, i = 1, 2, . . . , r. Inspired by this observation, Bessy
[156] posed the following conjecture.

Conjecture 13.5.4 [156] Let D be a digraph with α(D) ≤ κ(D). Then,
for every choice of α = α(D) vertices {x1, x2, . . . , xα}, there exists an α-
path factor P1, P2, . . . , Pα of D such that xi is the initial vertex of Pi, i =
1, 2, . . . , α.

Bessy showed by an example that if α(D) > κ(D), then the desired paths
may not exist. He also verified Conjecture 13.5.4 for digraphs with α ≤ 2 (by
the remark above, the case α = 1 follows from Camion’s theorem).

Theorem 13.5.5 [156] Let D = (V, A) be a 2-strong digraph with α(D) ≤ 2.
Then for every choice of distinct vertices x, y ∈ V , D has a 2-path factor
Px, Py so that Px starts in x and Py starts in y. ��

For acyclic digraphs it turns out that the minimum path factor problem
can be solved quite efficiently. This is important since this problem has many
practical applications. One such example is as follows.

A news agency wishes to cover a set of events E1, E2, . . . , En each of
which takes place within the coming week starting at a prescribed time Ti,
i = 1, 2, . . . , n. For each event Ei its duration time ti and geographical site Oi

are known. The news agency wishes to cover each of these events by having
one reporter present for the full duration of the event. At the same time it
wishes to use as few reporters as possible. Assuming that the travel time tij
from Oi to Oj is known for each 1 ≤ i, j ≤ n, we can model this problem
as follows. Form a digraph D = (V, A) by letting V = {v1, v2, . . . , vn} and
for every choice of i �= j put an arc from vi to vj if Tj ≥ Ti + ti + tij . It is
easy to see that D is acyclic. Furthermore, if the events can be covered by
k reporters, then D has a k-path factor (just follow the routes travelled by
the reporters). It is also easy to see that the converse holds. Hence having
an algorithm for the minimum path factor problem for acyclic digraphs will
provide a solution to this and a large number of similar problems (such as
airline and tanker scheduling, see Exercise 13.8).

Using flows in networks, we can effectively find a pcc(D)-path-cycle factor
in any digraph D (see Exercises 4.7 and 4.67). Since a k-path-cycle factor in
an acyclic digraph has no cycles, this implies that the minimum path factor
problem for acyclic digraphs is easy (at least from an algorithmic point of
view).

Theorem 13.5.6 For acyclic digraphs the minimum path factor problem is
solvable in time O(

√
nm). ��

13.6 Cycle Factors with the Minimum Number of Cycles 521

The following is a direct corollary of Theorem 9.7.3 and Lemma 13.5.1.

Theorem 13.5.7 Every acyclic transitive digraph D has pc(D) = α(D). ��

Another application of the path covering number of acyclic digraphs is
for partial orders. A partial order consists of a set X and a binary relation
‘ ≺ ‘ which is transitive (that is, x ≺ y, y ≺ z implies x ≺ z). Let P = (X,≺)
be a partial order. Two elements x, y ∈ X are comparable if either x ≺ y or
y ≺ x holds. Otherwise x and y are incomparable. A chain in P is a totally
ordered subset Y of X, that is, all elements in Y are pairwise comparable. An
antichain on P is a subset Z of X, no two elements of which are comparable.
Dilworth proved the following well-known min-max result relating chains to
antichains:

Theorem 13.5.8 (Dilworth’s theorem) [260] Let P = (X,≺) be a partial
order. Then the minimum number of chains needed to cover X equals the
maximum number of elements in an antichain.

Proof: Given P = (X,≺), let D = (X, A) be the digraph such that xy ∈ A
for x �= y ∈ X if and only if x ≺ y. Clearly, D is transitive. Furthermore,
a path (an independent set) in D corresponds to a chain (antichain) in P .
Thus the claim follows from Theorem 13.5.7. ��

We mentioned in Section 9.7.1 that Dilworth’s theorem is equivalent to
Theorem 9.7.3 and saw above how to get Dilworth’s theorem from Theorem
9.7.3. To see the other direction, suppose that D is transitive and has a unique
source s. Then every out-branching is rooted in s and we have pc(D) ≤
�min(D). By Theorem 9.7.1, �min(D) ≤ α(D) and by Dilworth’s theorem,
pc(D) = α(D). Hence �min(D) = α(D).

We conclude this section with a simple result on extended semicomplete
digraphs. Lemma 13.5.9 is used in Section 12.2.

Lemma 13.5.9 Let D be an acyclic extended semicomplete digraph with
α(D) = k, then the following holds:

(a) pc(D) = k.
(b) One can obtain a minimum path factor of D as follows: choose a longest

path P in D, remove V (P) and continue recursively.

Proof: Exercise 13.27. ��

13.6 Cycle Factors with the Minimum Number of Cycles

The Minimum cycle factor problem is as follows: Given a directed graph
D with a cycle factor; find a cycle factor of D with the minimum number

522 13. Packings, Coverings and Decompositions

of cycles among all cycle factors of D. The problem is clearly NP-hard for
general digraphs as the answer is one if and only if D is hamiltonian.

The minimum cycle factor problem is easy for extended semicomplete di-
graphs and semicomplete bipartite digraphs (Exercise 13.15) but seems very
difficult for general semicomplete multipartite digraphs. Below we consider
the minimum cycle factor problem for quasi-transitive digraphs. The expo-
sition is based on results by Bang-Jensen and Nielsen [113]. We start with
some new notation.

Definition 13.6.1 For every digraph, D, with at least one cycle and every
non-negative integer, i, let ηi(D) = min{j | D has a j-path-i-cycle factor}.

Thus η0(D) = pc(D) and ηi(D) = 0 if and only if D has an i-cycle factor,
so for general digraphs the computation of ηi(D) is NP-hard already for
i = 0, 1. By Theorems 6.7.5 and 6.7.4, calculating η0(D) and η1(D) can be
done in polynomial time for quasi-transitive digraphs.

We also make use of the following technical definition. At the end of this
section we will also supply some motivation for the definition.

Definition 13.6.2 Let F = C1 ∪ . . .∪Cq be a q-cycle factor of a digraph D.
We say that F is reducible if there exists a q′-cycle factor F ′ = C ′

1∪. . .∪C ′
q′

of D such that each of the following holds:

(a) q′ < q;
(b) for every i ∈ [q] there is a j ∈ [q′] such that V (Ci) ⊆ V (C ′

j).

Such an F ′ is called a reduction of F . If no reduction of F exists, then
F is said to be irreducible.

It is clear that every minimum cycle factor is irreducible. In the following
D will always denote a quasi-transitive digraph with canonical decomposition
D = S[Q1, Q2, . . . , Qs], where S is either a strong semicomplete digraph
or a transitive oriented digraph, depending on whether D is strong or not.
Furthermore, those cycles of a cycle factor F that are contained in a Qi are
called small cycles and all other cycles of F are called large cycles.

Lemma 13.6.3 Let F be an irreducible cycle factor in D. Then the following
holds:

(a) If D is non-strong, then F has no large cycle.
(b) If D is strong, then F has precisely one large cycle.

Proof: Exercise 13.11. ��

Corollary 13.6.4 Every minimum cycle factor in a strong quasi-transitive
digraph contains exactly one large cycle. ��

13.6 Cycle Factors with the Minimum Number of Cycles 523

For a strong quasi-transitive digraph D = S[Qi, . . . , Qs] we denote by
D0 = S[Kn1 , . . . ,Kns] the strong extended semicomplete digraph we obtain
from D by deleting all arcs from each Qi, i ∈ [s]. Let C be the set of all cycle
subdigraphs of D0 and let mi(D) = max

S∈C
{|V (S) ∩ V (Kni)|}, for all i ∈ [s].

By Theorem 6.6.8, every longest cycle in D0 contains exactly mi(D) vertices
of Hi.

Lemma 13.6.5 [113] If D = S[Qi, . . . , Qs] is a strong quasi-transitive di-
graph containing a cycle factor, then D has a minimum cycle factor in which
the (unique) large cycle C intersects Qi in exactly mi(D) paths for each
i ∈ [s]. That is, by contracting each maximal subpath of C which lies inside
Qi (for every i ∈ [s]), we obtain a longest cycle of D0.

Proof: Exercise 13.12. ��
A canonical minimum cycle factor of a quasi-transitive digraph D

is one for which the unique large cycle intersects each Qi in exactly mi(D)
paths. By Lemma 13.6.5, every strong quasi-transitive digraph with a cycle
factor has a canonical minimum cycle factor.

Let I(D) = {i | mi(D) < pc(Qi)} and note that for every i ∈ [s], Qi has
the same number ci of small cycles with respect to every canonical minimum
cycle factor (for i /∈ I(D) this number is zero). Since, for every t ≥ 0 and every
digraph H, we have ηt+1(H) ≥ ηt(H)− 1, we see that, for i ∈ I(D), we have
ci = min{j | ηj(Qi) = mi(D)}. Hence, we have the following characterization
of the number, kmin(D), of cycles in a minimum cycle factor:

Theorem 13.6.6 [113] For every strong quasi-transitive digraph, D, con-
taining a cycle factor, we have

kmin(D) = 1 +
∑

i∈I(D)

min{j | ηj(Qi) = mi(D)}.

Furthermore, every cycle factor of D has at least 1 +
∑

i∈I(D)

(pc(Qi)−mi(D))

cycles. ��

It follows from Theorem 13.6.6 that we could determine kmin(D) in poly-
nomial time, provided we could calculate ηj(Qi), for every i ∈ [r] and every
j ∈ {0, 1, . . . , � |V (Qi)|

2 �}, in polynomial time. However, it is unlikely the ap-
proach used in [113] (using network flows) can be extended to the general
case (j ≥ 3).

Problem 13.6.7 Does there exist a polynomial algorithm which for a given
quasi-transitive digraph D finds the numbers ηj(D), j = 0, 1, . . . , � |V (D)|

2 �,
and a corresponding path-cycle factor whenever ηj(D) < ∞?

524 13. Packings, Coverings and Decompositions

Problem 13.6.8 [113] Determine the complexity of computing kmin(D) and
finding a minimum cycle factor of a quasi-transitive digraph D.

When kmin(D) is small, in particular when kmin(D) ∈ {1, 2, 3}, the prob-
lem is polynomially solvable: the case kmin(D) = 1 is the hamiltonian cycle
problem, which is polynomial by Theorem 6.7.1, and the cases kmin(D) = 2, 3
are covered by the next theorem.

Theorem 13.6.9 [113] For k ∈ {2, 3} there exist polynomial algorithms to
verify whether a quasi-transitive digraph has a cycle factor with at most k
cycles. ��

Conjecture 13.6.10 [113] For each fixed k there is a polynomial algorithm
which determines whether a given quasi-transitive digraph D has a cycle fac-
tor with at most k cycles and, if so, finds a minimum cycle factor of D.

By Theorem 13.6.9, the conjecture holds for k ≤ 3 and the techniques
used in the paper can be modified to work for slightly higher k values, but
do not extend to arbitrary (fixed) values of k.

Let us return to the notion of an irreducible cycle-factor. We have noted
that every minimum cycle factor is irreducible and Bang-Jensen and Nielsen
proved that irreducible cycle factors can be found efficiently.

Theorem 13.6.11 [113] There is an O(n5) algorithm which, given a cycle
factor F in a quasi-transitive digraph D = R[H1, H2, . . . , Hr], either confirms
that F is irreducible or returns a reduction of F . Hence in time O(n6) any
given cycle factor can be converted into an irreducible one. ��

It is easy to see that an irreducible cycle factor F with c ≤ 2 cycles in a
strong quasi-transitive digraph D is also minimum: if c = 2, every Hamilton
cycle in D would be a reduction of F . It is thus natural at this point to ask
whether every irreducible cycle factor in a strong quasi-transitive digraph D
is also minimum or, at least, close to being minimum. Unfortunately, this is
not always the case as shown by an example in [113]. In fact, the example in
[113] shows that F may be irreducible and have arbitrarily many cycles even
though kmin(D) = 2.

Solving (perhaps even partially) the following problem seems to be closely
related to solving the minimum cycle factor problem for quasi-transitive di-
graphs.

Problem 13.6.12 [113] Characterize those cycle factors of a quasi-transitive
digraph which are irreducible but not minimum cycle factors.

Problem 13.6.13 What is the complexity of deciding whether a digraph has
a cycle factor with at least two directed cycles?

13.7 Cycle Factors with a Fixed Number of Cycles 525

13.7 Cycle Factors with a Fixed Number of Cycles

Two cycles C, C ′ in a digraph D = (V, A) are complementary if these cycles
form a 2-cycle factor2 in D.

Reid proved the case k = 3 in the following result (see also Exercise 13.30).
Song extended this to arbitrary 3 ≤ k ≤ n − 3.

Theorem 13.7.1 [773, 829] Every 2-strong tournament on at least 8 vertices
has a 2-cycle factor consisting of a k-cycle and an (n − k)-cycle for every
3 ≤ k ≤ n − 3. ��

The theorem also holds for 2-strong tournaments on 6 vertices and the
only exception on 7 vertices is a 3-regular tournament T7 (see [773]). There
are infinite families of tournaments T with κ(T) = 1 which do not have
complementary cycles. One such example was given in [643] by Li and Shu.
This example shows that the following result is best possible in terms of the
lower bound of 3.

Theorem 13.7.2 [643] Let T be a strong tournament on at least 6 vertices.
If max{δ−(T), δ+(T)} ≥ 3 and T is not isomorphic to the tournament T7,
then T has a 2-cycle factor. ��

There are a number of results on 2-cycle factors in bipartite tournaments.
One of these is the following due to Song:

Theorem 13.7.3 [828] Let R be a bipartite tournament with 2k +1 vertices
in each partite set (k ≥ 4). If every vertex of R has out-degree and in-degree
at least k, then for any vertex x in R, R contains a 2-cycle factor C∪C ′ such
that C includes x and the length of C is at most 6 unless R is isomorphic to
	C4[Kk+1,Kk+1,Kk,Kk]. ��

For further results on 2-cycle factors in semicomplete bipartite digraphs
see, e.g., the paper [931] by Zhang and Wang and [930] by Zhang, Manoussakis
and Song.

The problem of deciding the existence of a 2-cycle factor in semicomplete
p-partite digraphs with p ≥ 3 is quite difficult. Giving a partial answer to
a conjecture by Yeo in [918], Volkmann proved the following for the case of
regular multipartite tournaments.

Theorem 13.7.4 [892] Let D be regular p-partite tournament D with p ≥ 4
and |V (D)| ≥ 6. Then D has a 2-cycle factor in which one of the cycles has
length 3, unless D is isomorphic to one of two 3-regular 4-partite multipartite
tournaments D4,2, D

∗
4,2 on 8 vertices or the 3-regular tournament T7. ��

2 This should not be confused with a cycle factor consisting of cycles of length
two.

526 13. Packings, Coverings and Decompositions

The two multipartite tournaments D4,2, D
∗
4,2 do have a 2-cycle factor but

in every such 2-cycle factor both cycles have length 4. Volkmann also settled
the case of regular 3-partite tournaments and his results imply the following.
For a further result see [891].

Theorem 13.7.5 [895, 897] Every regular multipartite tournament on at
least 8 vertices has a 2-cycle factor. ��

The following conjecture has been proposed by Volkmann. Observe that
for a semicomplete multipartite digraph D with p partite sets V1, V2, . . . , Vp,
the independence number α(D) is equal to the size of a largest set among
the Vi’s.

Conjecture 13.7.6 [890] Let D be a p-partite tournament with partite sets
V1, V2, ..., Vp and let α = α(D). If D is (α + 1)-strong, then D has a 2-cycle
factor, unless D is a member of a finite family of multipartite tournaments.

In fact, Conjecture 13.7.6 is just one instance of the following meta-
conjecture due to Volkmann (private communication, 1997): Several results
which hold for k-strong tournaments should also hold for every semicomplete
multipartite digraph D provided that D is (α(D) + k − 1)-strong. One in-
stance where this is known to be true is for the hamiltonian cycle problem
(see Corollary 6.6.24).

An obvious necessary condition for a digraph D to contain a 2-cycle factor
is that the girth of D is at most n/2. The second power D = 	C2

2k+1 of an
odd cycle has girth k + 1 and D is a 2-strong locally semicomplete digraph.
This shows that Theorem 13.7.1 cannot be extended to locally semicomplete
digraphs. Confirming a conjecture by Bang-Jensen [69], Guo and Volkmann
proved that powers of odd cycles are the only exceptions when n ≥ 8.

Theorem 13.7.7 [442] Let D be a 2-strong locally semicomplete digraph on
n ≥ 8 vertices. Then D has a 2-cycle factor such that both cycles have length
at least 3 if and only if D is not the second power of an odd cycle. ��

Guo and Volkmann have shown that, although Theorem 13.7.1 cannot be
extended to locally semicomplete digraphs, there is still enough structure to
allow 2-cycle factors with many different lengths. We refer the reader to [443]
for details.

Meierling and Volkmann [692] proved the following extension of Theorem
13.7.7 in the case of oriented graphs.

Theorem 13.7.8 [692] Every 2-strong locally in-tournament digraph D on
n ≥ 8 vertices has a pair of complementary cycles if and only if D is not the
second power of an odd cycle. ��

Bang-Jensen and Nielsen [112] gave a polynomial algorithm for checking
whether a given locally semicomplete digraph has a 2-cycle factor. They also

13.7 Cycle Factors with a Fixed Number of Cycles 527

showed in [113] that there is a polynomial algorithm for checking the existence
of a 2-cycle factor in a quasi-transitive digraph.

The existence of a 2-cycle factor such that each cycle contains a prescribed
vertex and has a prescribed length in a bipartite digraph has been studied in
the papers [646, 899] by Little, Teo and Wang.

We now turn to cycle factors with more than two cycles. Bollobás (see
[829]) posed the following problem:

Problem 13.7.9 Let k be a positive integer. What is the least integer g(k)
so that all but a finite number of g(k)-strong tournaments contain a k-cycle
factor?

Chen, Gould and Li [203] answered this problem by proving that g(k) ≤
3k2+k. In relation to Problem 13.7.9, Song made the following much stronger
conjecture:

Conjecture 13.7.10 [829] For any k integers n1, n2, ..., nk with ni ≥ 3 for
i = 1, 2, ..., k and

∑k
i=1 ni = n, all but a finite number of k-strong tourna-

ments on n vertices contain a k-cycle factor such that the k cycles have the
lengths n1, n2, ..., nk, respectively.

If, instead of tournaments, we consider digraphs which are almost com-
plete, then, by the following result, due to Amar and Raspaud, we may almost
completely specify the lengths of the cycles in a cycle factor.

Theorem 13.7.11 [40] Let D be a strong digraph on n vertices and at least
(n− 1)(n− 2) + 3 arcs. For every partition n = n1 + n2 + . . . + nk such that
ni ≥ 3 for all i ∈ [k], D contains a k-cycle factor C1 ∪ C2 ∪ . . . ∪ Ck such
that Ci has length ni for all i ∈ [k] except in two cases:

n = 6, n1 = n2 = 3 and α(D) = 3, or
n = 9, n1 = n2 = n3 = 3 and α(D) = 4. ��

Bessy posed the following problem.

Problem 13.7.12 [156] Does there exist a function f such that every di-
graph D with α(D) ≤ κ(D) has a cycle factor with at most f(α(D)) cycles?

By Camion’s theorem f(1) = 1. It is not hard to show that f(2) ≥ 2
(Exercise 13.10). An example in [558] also given in [156] shows that f(3) ≥ 2
and Bessy also shows by an example in [156] that if we do not require α(D) ≤
κ(D), then no function f exists.

528 13. Packings, Coverings and Decompositions

13.8 Cycle Subdigraphs Covering Specified Vertices

In the solution of several algorithmic problems, such as finding the longest
cycle in an extended semicomplete digraph or a semicomplete bipartite di-
graph, it is an important subproblem to find a cycle subdigraph which covers
as many vertices as possible. Below we show how to solve this problem using
an idea due to Alon (see [452]).

Theorem 13.8.1 There is an O(n3) algorithm which finds, for any given
digraph D, a cycle subdigraph covering the maximum number of vertices in
D.

Proof: Let D be a digraph and let D′ be the directed pseudograph one
obtains by adding a loop at every vertex. Let B be the weighted bipartite
graph one obtains from the bipartite representation BG(D′) of D by adding
the following weights to the edges: the weight of an edge x′y′′ of B equals 1 if
x �= y and equals 2 if x = y. It is easy to see (Exercise 13.13) that, by solving
the assignment problem for B (in time O(n3), see Section 4.10.3) and then
removing all the edges with weight 2 from the solution, we obtain a set of
edges of B corresponding to some 1-regular subdigraph F of D of maximum
order. ��

Jackson and Ordaz [557] proved the following sufficient condition for the
existence of a cycle factor in a digraph. (For undirected graphs this is the
Chvátal-Erdős condition which we mentioned in Section 13.5.)

Proposition 13.8.2 [557] If D is a k-strong digraph such that α(D) ≤ k,
then D has a spanning cycle subdigraph. ��

We now prove a generalization of this result. Deciding whether there is a
cycle containing all vertices from a prescribed set X in an arbitrary digraph
is an NP-complete problem already when |X| = 2 (see Theorems 10.2.1 and
10.2.5). Proposition 13.8.2 corresponds to the special case X = V in the
following theorem, due to Bang-Jensen, Gutin and Yeo.

Theorem 13.8.3 [95] Let D = (V, A) be a k-strong digraph and let X ⊂
V (D) be such that α(D〈X〉) ≤ k, then D has a cycle subdigraph3 covering
X.

Proof: This can be proved directly from Theorem 4.8.2 (Exercise 13.16). We
give a simple proof based on Proposition 4.11.7 which also holds for directed
pseudographs (see Exercise 4.66).

Let D and X be as defined in the theorem. Form the directed pseudograph
D′ from D by adding a loop at each vertex not in X. Then D has a cycle
subdigraph covering X if and only if D′ has a cycle factor, because the new
3 Note that the cycle subdigraph is not necessarily spanning.

13.9 Proof of Gallai’s Conjecture 529

arcs cannot contribute to cycles which cover vertices from X. Suppose D′ has
no cycle factor. Then, by Proposition 4.11.7(c), we can partition the vertices
of V into sets R1, R2, Y, Z so that (Y, R1) = ∅, (R2, R1 ∪ Y) = ∅, |Y | > |Z|
and Y is an independent set. Note that no vertex with a loop can be in an
independent set. Thus we have Y ⊆ X. It follows from the description of the
arcs between the sets above that there is no path from Y to R1 in D−Z. Thus
we must have |Z| ≥ k since D is k-strong. But now we have the contradiction

k ≤ |Z| < |Y | ≤ α(D〈X〉) ≤ k.

Thus D′ has a cycle factor, implying that D has a cycle subdigraph covering
X. ��

Theorem 13.8.3 shows that the obvious necessary condition for the exis-
tence of a cycle covering a specified subset X, namely, that there exists some
collection of disjoint cycles covering X, is satisfied in many cases. Indeed, if D
is k-strong, then we may take X arbitrarily large, provided its independence
number stays below k + 1.

We point out that when |X| = k and D is k-strong, then the existence
of a cycle subdigraph covering X can also be proved easily using Menger’s
theorem (Theorem 5.4.1). See Exercise 5.15.

The proof above combined with that of Theorem 13.8.1 immediately im-
plies the following result.

Theorem 13.8.4 There exists an O(n3) algorithm for checking whether a
given digraph D = (V, A) with a prescribed subset X ⊆ V has a cycle subdi-
graph covering X. ��

13.9 Proof of Gallai’s Conjecture

Now we discuss the problem of covering the vertices of a digraph with a
small number of not necessarily disjoint cycles. A collection R of cycles is
spanning if every vertex in V (D) is contained in at least one cycle of R.

Since semicomplete digraphs have a rich structure, it is natural to believe
that some of this structure is present in digraphs with small independence
number, in particular for digraphs of independence number two.

Two cycles C, C ′ are consistent if they are either disjoint or their inter-
section is a subpath in both cycles. If D has a pair of consistent cycles C, C ′

which are spanning and not disjoint, then these along with all remaining arcs
of D (not on C, C ′) form an ear decomposition with precisely two non-trivial
ears. Clearly, the converse also holds. Bondy [168] gave a short proof of the
following result by Chen and Manalastras.

Theorem 13.9.1 [201] If D is strong and α(D) ≤ 2, then D is either hamil-
tonian or it has a pair of consistent cycles which is spanning. ��

530 13. Packings, Coverings and Decompositions

Theorem 13.9.1 immediately implies the following result, which again im-
plies Theorem 9.7.5 in the case α(D) = 2:

Corollary 13.9.2 [201] If D is strong and α(D) ≤ 2, then D is traceable.
��

It is tempting to ask whether one can generalize Corollary 13.9.2 to the
statement that every k-strong digraph D with α(D) ≤ k + 1 is traceable.
However, the example in Figure 13.2, due to Bondy [168], shows that such a
generalization is not possible. We leave it to the reader to prove that D has
no hamiltonian path (Exercise 13.31).

Figure 13.2 A 2-strong digraph D with α(D) = 3 and no hamiltonian path. The
vertical edges correspond to directed 2-cycles.

Note that if a digraph D = (V, A) has a hamiltonian path, then pc(D −
X) ≤ |X| + 1 for every X ⊂ V (see also Proposition 1.4.3). In the digraph
in Figure 13.2 we have pc(D − X) = 3 = |X| + 1 when X consists of the
two vertices to the left. Hence, the example in Figure 13.2 shows that the
condition above is not always sufficient to guarantee a hamiltonian path in a
digraph.

Gallai [386] conjectured that every strong digraph D has a spanning collec-
tion of α(D) not necessarily disjoint cycles. For α = 2 the conjecture follows
from Theorem 13.9.1. Bessy and Thomassé [158] gave an elegant proof of the
full conjecture which we describe below.

Let D = (V, A). Given an ordering E = v1, . . . , vn of V , we say that an
arc vivj is forward if i < j and backward if j < i. A directed path P of
D is a forward path with respect to an ordering v1, v2, . . . , vn if it does not
contain any backward arc with respect to v1, v2, . . . , vn.

An ordering E = v1, . . . , vn is elementary equivalent to another order-
ing E′ of V , if one of the following holds:

(i) E′ = vn, v1, . . . , vn−1,
(ii) E′ = v2, v1, v3, . . . , vn and neither v1v2 nor v2v1 is an arc of D.

13.9 Proof of Gallai’s Conjecture 531

Two orderings E, E′ of V are equivalent if there is a sequence E =
E1, . . . , Ek = E′ such that Ei and Ei+1 are elementary equivalent, for i =
1, . . . , k − 1. The classes of this equivalence relation are called the cyclic
orders of D. Roughly speaking, a cyclic order O is a class of orderings of
the vertices on the integers modulo n, where one stays in the class while
switching consecutive vertices which are not joined by an arc.

Given an ordering E, the index of a directed cycle C with respect to E,
denoted iE(C), is the number of backward arcs of C with respect to E. This
corresponds to the number of times the cycle winds around in the ordering.
Observe that if E′ is elementary equivalent to E, then iE(C) = iE′(C).
Consequently, the index of a cycle is invariant in a given cyclic order O, we
denote it by iO(C). By extension, the index iO(R) of a set of cycles R is the
sum of the indices of the cycles of R. A cycle is simple if it has index one. A
cyclic order O is coherent if every arc of D is contained in a simple cycle.

The following important result has many consequences, e.g., Theorem
13.9.7. Note also that Camion’s theorem (Theorem 1.5.2) is an easy conse-
quence of Theorem 13.9.3 (see Exercise 13.32).

Theorem 13.9.3 [158] Every strong digraph has a coherent cyclic order.

Proof: Let us consider a cyclic order O which minimizes iO(C), where C
is the set of all cycles in D. We suppose for contradiction that O is not
coherent. Then there exists an ordering E = v1, . . . , vn of O and a backward
arc a = vjvi which is not in a cycle of index 1 with respect to O. Assume
moreover that E and a are chosen in order to minimize j − i. Let k be the
largest integer i ≤ k < j such that there exists a forward path from vi to vk.
Observe that vk has no out-neighbour in {vp : k < p ≤ j}. If k �= i, by the
minimality of j − i, vk has no in-neighbour in {vp : k < p ≤ j}. In particular
the ordering E′ = v1, . . . , vk−1, vk+1, . . . , vj , vk, vj+1, . . . , vn is equivalent to
E, and contradicts the minimality of j− i. Thus k = i, and by the minimality
of j − i, there is no in-neighbour of vi in {vp : i < p < j}. In particular
the ordering E′ = v1, . . . , vi−1, vi+1, . . . , vj−1, vi, vj , . . . , vn is equivalent to
E. Observe now that in E′′ = v1, . . . , vi−1, vi+1, . . . , vj−1, vj , vi, vj+1, . . . , vn,
every cycle C satisfies iE′′(C) ≤ iE′(C), and the inequality is strict if the
arc a belongs to C. Since D is strong, there exists a cycle which contains a,
contradicting the choice of O. ��

Corollary 13.9.4 [155] Given a strong digraph D = (V, A) on n vertices
and m arcs we can find a coherent cyclic ordering O of D in time O(nm2).

Proof: For a given ordering E = v1, v2, . . . , vn of V , we define the index,
iE(a), of the arc a ∈ A as the minimum index among all cycles of D which
contain a. Furthermore, define the index iE(v) of each vertex v ∈ V as the
maximum index of an arc with tail v.

We show how to modify, in time O(m), a given ordering E = v1, v2, . . . , vn

to a new ordering E′ so that we have iE′(vn) ≤ iE(vn) and iE′(vn) < iE(vn)

532 13. Packings, Coverings and Decompositions

if iE(vn) > 1 (note that vn may not be the last vertex in E′, see below) and
all backward arcs with respect to E′ are also backward with respect to E.
This will imply the desired algorithm as, by the definition of a cyclic order, we
may always reorder a given ordering so that a particular vertex w becomes
the last one in the ordering. In particular, if the index of vn is still larger
than one in the new ordering, we may move it to the last position in a new
equivalent order and repeat the step above. As iE(v) ≤ n for every ordering,
we need time at most O(nm) to find an ordering in which vn has index 1 and
hence the total time will be O(n2m) as claimed.

Let DE be the spanning subdigraph of D consisting of all arcs of A that
are forward with respect to E and let T−

vn
be a maximum size in-tree rooted

in vn in DE (can be found by an execution of DFS backwards from v in DE).
Observe that every arc vnvj , where vj ∈ V (T−

vn
), has iE(vnvj) = 1. If every

out-neighbour of vn is in V (T−
vn

), then iE(vn) = 1 and we return E′ = E.
Otherwise, let i be the smallest index so that vnvi is an arc of D and

vi �∈ V (T−
vn

). Let E′ be the ordering obtained from E by moving all vertices
of V (T−

vn
) ∩ {vi+1, vi+2, . . . , vn} forward so that all these vertices now occur

in their original order between vi−1 and vi.
Because vi is not a vertex of T−

vn
, no new backward arc is created. Hence,

since all arcs from vn to {v1, . . . , vi−1} have index one, we get iE′(vn) <
iE(vn) (all backward arcs leaving vn either have index 1 or index one smaller
in E′ than in E). Clearly the complexity of the algorithm above is O(m). ��

An independent set X of D is cyclic independent with respect to O
if there exists an ordering v1, . . . , vn of O such that X = {v1, . . . , vk}. The
cyclic independence number, denoted α(O), of a coherent cyclic order O
is the maximum k such that D has a cyclic independent set X with respect
to O such that |X| = k. Observe that α(O) depends on the choice of O
(Exercise 13.33).

Lemma 13.9.5 [158] Let D be a strong digraph and let v1, . . . , vn be an
ordering of a coherent cyclic order O of D. Let X be a subset of vertices of
D such that there is no forward path between any two distinct vertices of X.
Then X is a cyclic independent set. In particular, |X| ≤ α(O).

Proof: We consider an ordering E = v1, . . . , vn of O such that there is no
forward path between any two distinct vertices of X, and E is chosen in such
a way that j − i is minimum, where vi is the first element of X in the or-
dering, and vj is the last element of X in the ordering. Suppose for the sake
of contradiction that X �= {vi, . . . , vj}. Then there exists vk /∈ X for some
i < k < j. There cannot exist both a forward path from X ∩ {vi, . . . , vk−1}
to vk and a forward path from vk to X ∩ {vk+1, . . . , vj}. Without loss of
generality, we assume that there is no forward path from X ∩ {vi, . . . , vk−1}
to vk. Suppose moreover that vk is chosen with minimum index k. Clearly,
vk has no in-neighbour in {vi, . . . , vk−1}, and since O is coherent, vk has no
out-neighbour in {vi, . . . , vk−1} (such an arc cannot belong to a cycle of index

13.9 Proof of Gallai’s Conjecture 533

one by the assumption that there is no forward path from X ∩{vi, . . . , vk−1}
to vk). Thus the ordering v1, . . . , vi−1, vk, vi, . . . , vk−1, vk+1, . . . , vn belongs to
O, contradicting the minimality of j− i. Consequently, X = {vi, . . . , vj}, and
there is no forward arc, and (by the same argument as for vk above) no back-
ward arc between any two vertices of X. This shows that X is independent
and considering now the ordering vi, . . . , vn, v1, . . . , vi−1, we conclude that X
is a cyclic independent set. ��
Theorem 13.9.6 [158] Let D be a strong digraph and let O be a coherent
cyclic order of V (D). The minimum value of iO(R), where R is a spanning
collection of cycles of D, is equal to α(O).

Proof: We consider a coherent cyclic order O of D with cyclic independence
number k = α(O). Let E = v1, . . . , vn be an ordering of O such that S =
{v1, . . . , vk} is an independent set of D. Clearly, if a cycle C contains q vertices
of S, then the index of C is at least q. In particular the inequality iO(R) ≥ k
is satisfied for every spanning collection of cycles of D. To prove that equality
holds, we consider an auxiliary digraph D′ on vertex set V ∪ S′ where S′ =
{v′1, . . . , v′k} whose arc set consists of every forward arc of E and every arc
viv

′
j for which vivj is an arc of D and vj ∈ S. Note that D′ is acyclic and

every vertex in S (S′) has in-degree (out-degree) zero. Let T ′ be the transitive
closure of D′. We will prove that the size of a maximum independent set in
T ′ is exactly k. Consider such an independent set I, and let I ′ = I ∩ S′.

Since one can arbitrarily permute the vertices of S in the ordering E and
still remain in O, we may assume that I ′ = {v′1, . . . , v′j} for some 0 ≤ j ≤ k.
Using that every vertex is in a simple cycle (as O is coherent), we conclude
that there is a directed path in D′ from vi to v′i, and consequently viv

′
i ∈

A(T ′), showing that we cannot have both vi ∈ I and v′i ∈ I. Clearly, the
ordering E′ = vj+1, . . . , vn, v1, . . . , vj belongs to O. By the fact that I is
an independent set in T ′, there is no forward path joining two elements of
ID = (I ∩ V) ∪ {v1, . . . , vj} in E′ (ID is the set corresponding to I back in
D), and thus, by Lemma 13.9.5, |ID| ≤ k, implying that |I| ≤ k.

Observe also that {v1, . . . , vk} are the sources of T ′ and {v′1, . . . , v′k} are
the sinks of T ′, and both are maximum independent sets of T ′. We now apply
Theorem 13.5.7, in order to obtain a covering of V (T ′) by k disjoint paths
P ′

1, . . . , P
′
k so that these paths start in {v1, . . . , vk} and end in {v′1, . . . , v′k}.

We can assume without loss of generality that the initial vertex of P ′
i is

exactly vi, for all i = 1, . . . , k. Let us now denote by σ the permutation of
{1, . . . , k} such that v′σ(i) is the terminal vertex of P ′

i , for all i. Back in D′ the
paths P ′

1, . . . , P
′
k correspond to a collection of paths P1, . . . , Pk which cover all

vertices of D′ but are not necessarily disjoint (recall that T ′ is the transitive
closure of D′). The only arc on Pi which is a backward arc in D is the last
arc into vσ(i). Hence a cycle of length r in the permutation σ corresponds to
a closed walk W back in D whose number of backward arcs with respect to
O is exactly r. Note that W may intersect itself since, as we remarked, the
paths P1, . . . , Pk do not have to be vertex disjoint (see Figure 13.3).

534 13. Packings, Coverings and Decompositions

7’

6’

5’

4

2

7

6

5

12

3 4

5

7

1

6

3

D

D′

Figure 13.3 An illustration of the proof of Theorem 13.9.6. The left part of the fig-
ure shows a strong digraph D on 7 vertices with a coherent cyclic order 1,2,3,4,5,6,7
indicated. The given coherent order shows that 5,6,7 is a cyclic independent set of
size 3. The right part of the figure shows the acyclic digraph D′ obtained as de-
scribed in the proof. In the transitive closure T ′ of D′ the paths 5345’, 6126’ and 77’
form a path cover of T ′ which maximizes the number of cycles in the permutation
σ. Back in D′ these correspond to the paths 5345’, 6126’ and 72347’ which cover
V (D′) but are not disjoint. In D these correspond to the three cycles 5345, 6126
and 72347 which span V (D).

Now assume that among all sets of paths covering V (D′), we have chosen
P1, . . . , Pk (starting in v1, . . . , vk, respectively) in such a way that the per-
mutation σ has a maximum number of cycles. We claim that if (i1, . . . , ip) is
a cycle of the permutation σ (meaning that σ(ij) = ij+1, j = 1, 2, . . . , p − 1
and σ(ip) = i1), then the paths Pi1 , . . . , Pip are pairwise vertex-disjoint (im-
plying that the corresponding closed walk back in D is in fact a cycle). If
not, suppose that v is a common vertex of Pil

and Pim , and replace Pil
by

Pil
[vil

, v]∪Pim [v, vσ(im)] and Pim by Pim [vim , v]∪Pil
[v, vσ(il)]. This is a con-

tradiction to the maximality of the number of cycles of σ. Now, in the set of
paths P1, . . . , Pk, contract all the pairs {vi, v

′
i}, for i = 1, . . . , k. This gives a

spanning set R of cycles of D which satisfies iO(R) = k. ��
Now we can finish the proof of Gallai’s conjecture.

Theorem 13.9.7 (Bessy-Thomassé theorem) [158] Every strong di-
graph D is spanned by α(D) cycles.

Proof: By Theorem 13.9.3, D has a coherent cyclic order O. By Theo-
rem 13.9.6, D is spanned by a set R of cycles such that |R| ≤ iO(R) =
α(O) ≤ α(D). ��

Corollary 13.9.8 There is a polynomial algorithm which, given a strong
digraph D and a coherent order O of D, calculates αO(D).

13.9 Proof of Gallai’s Conjecture 535

Proof: Given D on n vertices and O, we proceed as follows: Fix an ordering
E = v1, v2, . . . , vn in O. Let DST be obtained from D by applying the vertex
splitting procedure (see Section 4.2.4) to D. Form a flow network N from
DST by assigning capacity n to all arcs, lower bound 1 to all arcs of the
form vtvs, v ∈ V , lower bound 0 to all arcs of the kind vswt and finally
giving all arcs a cost of 0, except those arcs vswt which correspond to an
arc vw ∈ A(D) which is a backward arc with respect to E. Every feasible
circulation in N corresponds to a collection of cycles in D which cover all
vertices and conversely. Hence, by Theorem 13.9.6, the cost of a minimum
cost flow x in N equals αO(D). ��

In the algorithm above we only find the number αO(D) and not an actual
maximum cyclic independent set S. A polynomial algorithm to find such a
set S can be derived from the proof of Theorem 13.9.6, see Exercise 13.36.

Charbit and Sebő [196] gave a shorter non-algorithmic proof of Theorem
13.9.7 based on LP-duality and total unimodularity. We briefly describe their
main result and show how to deduce Theorem 13.9.7 from this. Let D be
endowed with a cyclic order O. A vertex-weighting w : V → N of D is
index-bounded (w.r.t. O) if w(C) ≤ iO(C) for every cycle C of D.

Theorem 13.9.9 [196] Let D be a digraph in which every vertex lies on a
cycle. Suppose O is a cyclic order of D. Then the minimum index iO(C) over
all families C of cycles spanning V (D) is equal to the maximum of w(D) over
all index bounded weightings w of D. ��

We can get Theorem 13.9.7 from this result as follows: Let D be strong
and let O be a coherent cyclic order of D. Then |C| ≤ iO(C) whenever C is a
family of cycles spanning V (D), because every cycle in C has index at least
one. Furthermore, since every vertex is contained in a cycle of index one with
respect to O, every index-bounded weighting of D must be {0, 1}-valued. Now
we see that for a given index-bounded weighting w, the set of vertices with
w(v) = 1 must form an independent set because every arc is contained in a
cycle C with iO(C) = 1 and w(C) ≤ iO(C) as w is index-bounded. This shows
that w(D) ≤ α(D) and now Theorem 13.9.9 gives that |C| ≤ iO(C) ≤ α(D)
for every family of cycles C which spans V (D) and minimizes iO(C).

A different algorithmic proof of Theorem 13.9.7 can be obtained by com-
bining Corollary 13.9.4 with the algorithmic version of the coflow theorem by
Cameron and Edmonds [188, 190]. For details see [191].

Theorem 13.9.10 (Coflow theorem) [188, 190] Let D = (V, A), let ω :
A → Z0 be a weighting of its arcs and extend ω to sets of arcs in the obvious
way4. Then

4 ω(X) =
P

a∈X ω(a) for every X ⊆ A.

536 13. Packings, Coverings and Decompositions

max{|S| : S ⊆ V ;∀ cycle C, |S ∩ C| ≤ ω(C)}
= min{

∑

C∈C
ω(C) + |V −

⋃

C∈C
V (C)| : C is a family of cycles of D}.

��

The cyclomatic number of an (un)directed graph D = (V, A) is the parame-
ter |A|−|V |+c(D), where c(D) denotes the number of connected components
of UG(D). A digraph is cyclic if every vertex belongs to a cycle. Note that
a cyclic digraph is not necessarily strongly connected. The following conjec-
ture, which Bondy [168] attributes to Chen and Manalastras [201], generalizes
Gallai’s conjecture above and Theorem 9.7.5.

Conjecture 13.9.11 [168, 201] Every strong digraph D contains a cyclic
spanning subdigraph with cyclomatic number at most α(D).

The example below due to Favaron (see [168]) shows that one cannot hope
to find, for every strong digraph D, a strong spanning subdigraph of D with
cyclomatic number at most α(D). Let r ≥ 2 and take r copies T1, T2, . . . , Tr

of the strong tournament on four vertices. Let the vertices be labelled so that
the unique hamiltonian cycle in the ith copy is uixiviyiui, i = 1, 2, . . . , r.
Let Dr be the digraph obtained from the disjoint union of T1, T2, . . . , Tr by
adding the arcs uiui+1 and vi+1vi for all odd i, respectively, ui+1ui and vivi+1

for all even i, 1 ≤ i ≤ r (indices modulo r). Then Dr is strong, α(Dr) = r and
it can be shown that Dr has no strong spanning subdigraph with cyclomatic
number less than 2r − 1 (Exercise 13.37). Moreover, every cyclic spanning
subdigraph of Dr with cyclomatic number r consists of r disjoint 4-cycles.

13.10 Decomposing a Tournament into Strong Spanning
Subdigraphs

The purpose of this section, based on [120], is to give a number of results
supporting Conjecture 13.10.2 below.

The following result due to Yeo (personal communication, 2001) can be
proved similarly to Theorem 6.1.3. Clearly this implies that it is an NP-
complete problem to decide whether a given digraph has two arc-disjoint
spanning strong subdigraphs.

Theorem 13.10.1 It is an NP-complete problem to decide whether a given
2-regular digraph contains arc-disjoint hamiltonian cycles. ��

In [120] Bang-Jensen and Yeo posed the following conjecture which con-
tains the Kelly conjecture (Conjecture 13.4.5) as the special case when
n = 2k + 1.

13.10 Decomposing a Tournament into Strong Spanning Subdigraphs 537

Conjecture 13.10.2 [120] The arc set of a tournament T can be decomposed
into k arc-disjoint spanning strong subdigraphs if and only if T is k-arc-
strong.

Let S2k be the semicomplete digraph one obtains from two disjoint copies
of

↔
Kk with vertex sets {x1, x2, . . . , xk} and {y1, y2, . . . , yk} by adding a per-

fect matching {x1y1, x2y2, . . . , xkyk} oriented from the first copy to the sec-
ond and all arcs of the kind yjxi where i �= j in the opposite direction.
Note that S2k has no 2-cycle of the form xpyqxp. The following result by
Bang-Jensen and Yeo [120] verifies Conjecture 13.10.2 for 2-arc-strong tour-
naments.

Theorem 13.10.3 Let D be a 2-arc-strong semicomplete digraph, on n ver-
tices. Then D has two arc-disjoint spanning strong subdigraphs, if and only
if it is not isomorphic to S4. ��

We first verify Conjecture 13.10.2 in the case when T has a non-trivial
λ(T)-cut, that is, there is a set S ⊂ V (T) such that d+(S) = k and
min{|S|, |V (T) − S|} ≥ 2. In this case, as we show below, the desired de-
composition exists even in the case of semicomplete digraphs, except for one
semicomplete digraph on four vertices.

We shall use two well-known results in this section. The first one was
known under the name “The Evans conjecture” and originally dealt with
partially completed Latin squares, but it can easily be restated as follows:

Theorem 13.10.4 [825] Let B be a complete bipartite graph, with n vertices
in each partite set, and let R be a set of edges in B, such that |R| ≤ n − 1.
Then we can decompose E(B) into n edge-disjoint matchings M1, M2, ..., Mn,
such that |Mi ∩R| ≤ 1 for all i = 1, 2, ..., n. ��

Corollary 13.10.5 [120] Let B = (X, Y, E) be a complete bipartite graph
(undirected), with |X| = t, |Y | = s and t > s. Let R be a set of edges in B,
such that |R| ≤ s. Then we can colour the edges of B by |R| colours in such
a way that all edges in R receive distinct colours and every vertex in X ∪ Y
is incident with all |R| colours. ��

Lemma 13.10.6 [120] Let D be a semicomplete digraph which is isomorphic
to S2k for some k ≥ 2. Then D contains k arc-disjoint spanning strong
subdigraphs except when k = 2, in which case D has no such decomposition.

Proof: Exercise 13.20. ��

Lemma 13.10.7 Let D be a semicomplete digraph and let k be an integer,
such that

∑
x∈V (D) max{0, k − d+(x)} ≤ k − 1. Then |V (D)| ≥ k + 1.

Proof: Let n = |V (D)| and note that the following must hold: n(n − 1) ≥
|A(D)| =

∑
x∈V (D) d+(x) ≥ nk − (k − 1). By rearranging the terms we get

that (n − 1)(n − k) ≥ 1, implying that n ≥ k + 1. ��

538 13. Packings, Coverings and Decompositions

Theorem 13.10.8 [120] Let k ≥ 1 and let D be a k-arc-strong semicomplete
digraph such that there exists a set S ⊂ V (D), with 2 ≤ |S| ≤ |V (D)| − 2
and d+(S) = k. There exist k arc-disjoint strong spanning subdigraphs of D
except if D = S4.

Proof: We may assume that D is not isomorphic to S4 since, by Lemma
13.10.6, S4 has no two arc-disjoint spanning strong subdigraphs.

Using an argument analogous to that in the proof of Lemma 13.10.7, we
obtain that k ≤ |S| ≤ n − k (by showing that |S| ≥ k and |V (D) − S| ≥ k,
respectively). If |S| = |V − S| = 2, then D contains S4 as a proper spanning
subdigraph and it is easy to check that adding any arc to S4 will result in
a digraph with two arc-disjoint strong spanning subdigraphs. Hence we may
assume that n ≥ 5. By reversing all arcs if necessary, we may assume that
|V − S| ≥ |S|.

Let ei = xiyi, i = 1, 2, . . . , k, be the k arcs from S to V (D) − S and
let X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk}. Note that we may have
|X| < k or |Y | < k or both. If |S| = k, then X = S as no vertex of S can
have more than k−1 out-neighbours in S. Hence, by Lemma 13.10.6 and the
remark above, we may assume that |V − S| > |S| if |S| = k. By Corollary
13.10.5 (with R = {e1, e2, . . . , ek}), we can colour all arcs between S and
V (D)−S with k colours, such that the arcs from S to V (D)−S get different
colours and every vertex in V is incident with arcs of all k colours. Note that
if |V − S| = |S| > k, this follows from Theorem 13.10.4.

Assume, without loss of generality, that the arc xiyi is coloured with
colour i, and let Fi contain all arcs between S and V (D) − S of colour i.

By Theorem 9.3.1, D〈V (D) − S〉 contains k arc-disjoint out-branchings
B+

y1
, B+

y2
, . . . , B+

yk
, such that B+

yi
is rooted at yi, for i = 1, 2, . . . , k (con-

sider k arc-disjoint out-branchings rooted at any vertex s ∈ S in D. Each
of these must contain exactly one of the arcs e1, e2, . . . , ek. Thus the out-
branching that contains the arc ei must contain an out-branching from
yi in D〈V (D) − S〉). Analogously, there exist k arc-disjoint in-branchings
B−

x1
, B−

x2
, . . . , B−

xk
, in D〈S〉, such that B−

xi
is rooted at xi, for i = 1, 2, . . . , k.

Let Hi = B−
xi
∪ B+

yi
∪ Fi, for i = 1, 2, . . . , k. Clearly H1, H2, . . . , Hk are arc-

disjoint and spanning. Each Hi is furthermore strong: by the construction of
the colouring, every vertex in V is incident to an arc of colour i, every vertex
in V (D) − S − yi has an arc in Hi into S, and hence every vertex in V can
reach yi (via B−

xi
and the arc xiyi) and every vertex in S − xi has an arc in

Hi from V (B+
yi

), implying that all vertices of V can be reached by yi. This
completes the proof. ��

The theorem below verifies Conjecture 13.10.2 in the case when T has no
vertex of in- or out-degree smaller than 37k. Given a digraph D = (V, A) we
use the notation dX(v), where X ⊆ A, to denote the number of arcs in X
which have v as either their tail or head (that is, it is the degree of v in the
underlying graph of D〈X〉). We need the following technical lemma.

13.10 Decomposing a Tournament into Strong Spanning Subdigraphs 539

Lemma 13.10.9 [107] Let T be a tournament and R a subset of A(T). Sup-
pose that

∑
{u∈V (T):dR(u)>c}[dR(u) − c] ≤ q and that z is a vertex such that

d+
T (u) ≤ d+

T (z) + γ for all u ∈ V (T). (13.8)

Let W be the set of vertices which are not reachable from z by a directed path
in D = T −R. Then |W | ≤ 2c + 2dR(z) + 2γ − 1 +

√
2q. ��

Theorem 13.10.10 Let T be a k-arc-strong tournament, with δ0(T) ≥ 37k.
Then there exist k arc-disjoint spanning strong subdigraphs in T .

Proof: Let T = (V, A) be a k-arc-strong tournament on n vertices, with
δ0(T) ≥ 37k. Let v1, v2, . . . , vn be an ordering of the vertices of T such
that d+(v1) ≤ d+(v2) ≤ . . . ≤ d+(vn). Note that since T is a tourna-
ment this ordering also satisfies d−(v1) ≥ d−(v2) ≥ . . . ≥ d−(vn). Let
X = {vn−k+1, vn−k+2, . . . , vn} and Y = {v1, v2, . . . , vk}.

Since T is k-arc-strong, it follows from Exercise 5.15 that there are k arc-
disjoint paths P1, P2, . . . , Pk from Y to X such that all end-vertices of these
paths are disjoint. Let y1, y2, . . . , yk and x1, x2, . . . , xk be distinct vertices
which are chosen such that X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk} and
Pi is a (yi, xi)-path for i = 1, 2, . . . , k. Note that each Pi may contain several
vertices from X ∪ Y − {xi, yi}.

Let ci = γi = 2k − 2 for all i ∈ [k] and define q1, q2, . . . , qk+1 recursively
as follows:

q1 = 0,

qi = qi−1 + 2(2k − 2 +
√

2qi−1), i = 2, 3, . . . , k + 1. (13.9)

Note that we have q1 < q2 < . . . < qk+1 and it is not difficult to show by
induction on i that qi < 16k(i − 1) (Exercise 13.38). In particular, we have
qk+1 < 16k2.

We will now construct arc-disjoint strong subdigraphs H1, H2, . . . , Hk of
T (in that order). Given H1, H2, . . . , Hi−1 (i ∈ [k−1]), we define the following
sets Li, Ri ⊆ A and Zi, Wi ⊆ V .

• Li = A(H1) ∪A(H2) ∪ . . . ∪A(Hi−1).
• Ri = Li ∪A(Pi+1) ∪A(Pi+2) ∪ . . . ∪A(Pk).
• Zi = {z ∈ V |dLi(z) ≥ 10k}.
• Wi = X ∪ Y ∪ Zi − {xi, yi}.

Define the digraphs Di, D
∗
i and D∗∗

i as follows: Di = T−Ri, D∗
i = Di−Wi

and D∗∗
i = D∗

i ∪ V (Pi) ∪A(Pi).
Assume that we have already found arc-disjoint strong5 subdigraphs

H1, H2, . . . , Hi−1 so that the following holds.
5 Note that these subdigraphs may not be spanning in T .

540 13. Packings, Coverings and Decompositions

(a)
∑i−1

j=1

∑
dHj

(u)>2[dHj (u)− 2] ≤ qi.
(b)

∑
dRi

(u)>ci
[dRi(u)− ci] ≤ qi.

(c) |Zi| ≤ 2k and |Wi| ≤ 4k − 2.
(d) dRi(xi), dRi(yi) ≤ 2k − 2.

Claim: D∗∗
i is strongly connected.

Proof of Claim: Let Q be all the vertices in D∗
i which cannot be reached

by xi. By Lemma 13.10.9 (with γ = 4k − 2) we get that

|Q| ≤ 2ci + 2dRi(xi) + 2(4k − 2)− 1 +
√

2qi

≤ (4k − 4) + (4k − 4) + (8k − 4)− 1 + 6k

= 22k − 9. (13.10)

Note that D∗
i contains no vertex from Zi (neither xi nor yi belongs to Zi by

(d)). Let r ∈ V (D∗
i) be arbitrary. Since r �∈ Zi we have

d−D∗
i
(r) ≥ 37k − 10k − k − (4k − 2) (13.11)

= 22k + 2. (13.12)

This follows from the fact that there are at least 37k arcs into r in T and as
we have used at most 10k of them in the Hj ’s so far (as r �∈ Zi) at most k in
the Pj ’s and at most 4k−2 into vertices in Wi (by (c)). It follows from (13.10)
and (13.11) that r can be reached from xi (as if r could not be reached, then
N−(r) could not be reached from xi). Analogously we get that all vertices in
D∗

i can reach yi in D∗
i . Since D∗∗

i = D∗
i ∪ V (Pi) ∪ A(Pi) it follows that D∗∗

i

is strong, which proves the claim. ��
By Corollary 12.1.5 (with ci and qi, in the place of c and q), we can find

a strong spanning subdigraph Hi of D∗∗
i with |A(Hi)| ≤ |V (Hi)|+ ci +

√
2qi.

We can now prove (a)-(d) by induction on i. Suppose first that i = 1.
Then (a) holds vacuously and since L1 = ∅ and R1 = A(P2) ∪ . . . ∪ A(Pk) it
follows that (c) and (d) hold. Finally, as no vertex is incident to more than
two arcs on each Pj , j = 1, 2, . . . , k and c1 = 2k − 2, (b) also holds.

Suppose now that (a) and (b) hold for some i < k. We will now show that
(a) and (b) hold for i+1. By the construction of Hi above we have |A(Hi)| ≤
|V (Hi)|+ ci +

√
2qi. Since every vertex in Hi has degree at least two (in the

undirected sense) this implies that
∑

dHi
(u)>2[dHi(u) − 2] ≤ 2(ci +

√
2qi).

By the recursive definition of qi+1 we have qi+1 − qi = 2(2k − 2 +
√

2qi) =
2(ci +

√
2qi). Now we see that (a) holds for i + 1. To see that (b) holds given

(a), it suffices to observe that every vertex has degree at least 2 in every Hj

constructed so far and at most 2 in each Pt, t ∈ [k]. Hence every vertex u
contributing to the sum in (b) contributes with at least the same amount to
the sum in (a).

13.10 Decomposing a Tournament into Strong Spanning Subdigraphs 541

Note that every vertex in Zi+1 must contribute at least 10k − ci+1 to
the sum in (b), implying that qi+1 ≥ |Zi+1|(8k + 2). As we have seen that
qi+1 < 16k2, this implies that |Zi+1| < 2k, which was the first part of (c).
The second part of (c) follows immediately from this and the definition of
Wi.

In order to prove that (d) holds for i + 1, we note that if xi+1 or yi+1 are
used in any subdigraph Hj ∈ {H1, H2, . . . , Hi−1}, then it must be because it
lies on the corresponding path, Pj , in which case it will have degree at most
2 in Hj . This implies that the degrees of xi+1 and yi+1 are at most 2 in each
of the subdigraphs H1, H2, . . . , Hi−1, Pi+1, Pi+2, . . . , Pk, implying (d).

We have now constructed H1, H2, . . . , Hk. Let H∗ = V (H1) ∩ V (H2) ∩
. . . ∩ V (Hk) and W ∗ = X ∪ Y ∪ {z|dR∗(z) ≥ 10k}, where R∗ = A(H1) ∪
A(H2)∪ . . .∪A(Hk). Note that V (T)−H∗ ⊆ W ∗, as Wi ⊆ W ∗. Let w ∈ W ∗

be arbitrary, and assume that w �∈ Zi but w ∈ Zi+1. By the construction
of Hj , j ≥ i + 1, this means that w is incident to at most two arcs in each
Hj . By the construction of Hi we have |A(Hi)| ≤ |V (Hi)| + ci +

√
2qi. This

implies that dHi(w) ≤ 2 + 2ci + 2
√

2qi (consider any ear decomposition of
Hi). Now we see that

dR∗(w) ≤ dLi(w) + dHi(w) +
k∑

j=i+1

dHj (w)

≤ 10k + (2 + 2ci + 2
√

2qi) + 2(k − i)
≤ 10k + (16k + 2) + 2k
≤ 28k + 2 ≤ 30k.

Furthermore |W ∗| ≤ 4k by a similar argument as when we proved (c)
above (using that qk+1 ≤ 16k2). Since δ0(T) ≥ 37k this implies that every
vertex in W ∗ has at least 3k arcs into H∗ and 3k arcs from H∗. Therefore it
is not difficult to connect every vertex in W ∗ to every Hi, which it does not
already belong to, by disjoint arcs (one in each direction). This gives us the
desired arc-disjoint spanning strong subdigraphs. ��

The following two conjectures represent successive weakenings of Conjec-
ture 13.10.2.

Conjecture 13.10.11 [120] Let k, s and t be natural numbers such that k =
s + t. Then every k-arc-strong tournament contains arc-disjoint spanning
subdigraphs D1, D2 such that D1 is s-arc-strong and D2 is t-arc-strong.

Conjecture 13.10.12 [120] Every k-arc-strong tournament contains a span-
ning strong subdigraph H such that T − A(H) is (k − 1)-arc-strong.

Thomassen proved [857, Theorem 4.2] that every 2-arc-strong tournament
T contains a hamiltonian path P such that T−A(P) is strong. It is interesting

542 13. Packings, Coverings and Decompositions

2-strong 2-strong

Figure 13.4 An infinite family of 2-strong tournaments such that the deletion of
the arcs of any hamiltonian cycle leaves a non-strong digraph. The first and the
last box symbolizes arbitrary 2-strong tournaments and the fat arc indicates that
except for the 6 arcs shown from right to left all other arcs go from left to right
[120].

to note that we cannot replace hamiltonian path by hamiltonian cycle above,
as shown by the infinite class of 2-(arc-)strong tournaments in Figure 13.4.

Conjecture 13.10.13 [120] Except for finitely many exceptions for each k,
every k-arc-strong semicomplete digraph can be decomposed in k arc-disjoint
spanning strong subdigraphs.

We have already seen (Lemma 13.10.6) that the 2-strong semicomplete
digraph S4 cannot be decomposed into two strong spanning digraphs.

The following conjecture by Bang-Jensen and Yeo would immediately
imply Thomassen’s conjecture on arc-disjoint in- and out-branchings in highly
arc-strong digraphs (Conjecture 9.6.9).

Conjecture 13.10.14 [120] There exists a natural number K such that ev-
ery K-arc-strong digraph contains two arc-disjoint strong spanning subdi-
graphs.

13.11 The Directed Path-Partition Conjecture

The majority of this section is based on the paper [114] by Bang-Jensen,
Nielsen and Yeo. Recall that given a digraph D, lp(D) denotes the order
of a longest path in D. The Gallai-Roy-Vitaver theorem (Theorem 11.3.1)
states that the chromatic number of (the underlying graph of) a digraph D
is at most lp(D). In 1983 Laborde, Payan and Xuong posed the following
conjecture which extends this theorem in a natural way.

Conjecture 13.11.1 [633] Every digraph D contains an independent set X,
such that lp(D −X) < lp(D).

The corresponding statement for undirected graphs is easily seen to be
true (just take any maximal independent set). Conjecture 13.11.1 seems very
difficult, however, and only a few partial results have been obtained. Clearly,

13.11 The Directed Path-Partition Conjecture 543

if the digraph has a kernel, then removing any kernel will decrease the order
of every longest path. Havet [507] verified the conjecture for digraphs with
independence number at most two. The following, more general, conjecture
is also due to Laborde et al.

Conjecture 13.11.2 (Path Partition conjecture) [633] For every di-
graph D and every choice of positive integers, �1, �2, such that lp(D) = �1+�2,
there exists a partition of D into two digraphs, D1 and D2, such that
lp(Di) ≤ �i, for i = 1, 2.

A seemingly stronger version of Conjecture 13.11.2 is stated in [169].
Bondy attributes it to Laborde et al. [633] although only the undirected
version of Conjecture 13.11.2 is explicitly mentioned there.

Conjecture 13.11.3 [169] For every digraph D and every choice of positive
integers, �1, �2, such that lp(D) = �1 + �2, there exists a partition of D into
two digraphs, D1 and D2, such that lp(Di) = �i, for i = 1, 2.

All three conjectures above are very difficult to attack for general di-
graphs, since very little can be said about the structure of longest paths in
general digraphs. They are all trivial for connected locally semicomplete di-
graphs as every such digraph has a hamiltonian path (Theorem 6.3.3). The
proof of Conjecture 13.11.2 is even more trivial in the case of bipartite di-
graphs, since we may simply let D1 and D2 be the arc-less digraphs induced
by the two independent sets of an arbitrary bipartition. Already for quasi-
transitive digraphs the conjectures seem non-trivial.

Theorem 13.11.4 [114] Let D be a digraph which is either extended semi-
complete or locally in-semicomplete. For every choice of positive integers,
�1, �2, such that lp(D) = �1 + �2, there exists a partition of D into two di-
graphs, D1 and D2, such that lp(Di) = �i, for i = 1, 2. ��

Below we give a proof of an extension of Conjecture 13.11.2 for quasi-
transitive digraphs. We will use the following two lemmas whose proofs are
left to the reader as Exercises 13.21 and 13.22.

Lemma 13.11.5 [114] Let D = S[Kn1 ,Kn2, . . . ,Kns], where S is a semi-
complete digraph and let li,k denote the maximum number of vertices of Kni

that can be covered by a k-path subdigraph in D. Then every maximum k-path
subdigraph in D covers exactly li,k vertices of Ei, for every i ∈ [s]. ��

Denote by lpk(D) the maximum number of vertices in a k-path subdigraph
of D. A set of k disjoint paths in D with lpk(D) vertices is called a maximum
k-path subdigraph of D.

Lemma 13.11.6 [114] Let D = S[Q1, Q2, . . . , Qs], where S is a strong semi-
complete digraph and each Qi is either a single vertex or a non-strong quasi-
transitive digraph. For every k ∈ {1, 2, . . . , |V (D)|} and i ∈ [s], there exists

544 13. Packings, Coverings and Decompositions

an integer, vi,k, such that every maximum k-path subdigraph, Pk, of D sat-
isfies |V (Qi) ∩ V (Pk)| = vi,k and no k-path subdigraph of D contains more
than vi,k vertices of Qi. ��

Theorem 13.11.7 [114] Let D be a quasi-transitive digraph or a strong ex-
tended semicomplete digraph, and let q be any positive integer. Then there
exists a partition X, Y of V (D) such that the following holds:

(i) lp(D〈X〉) ≤ q,
(ii) lpk(D〈Y 〉) ≤ lpk(D)− q, for all k = 1, 2, 3, ..., |V (Y)|, provided lpk(D)−

q ≥ 0.

Proof: We prove the theorem by induction on |V (D)|. For the base case,
when |V (D)| = 1, the claim is trivially true.

Suppose first that D is strong. By Theorem 2.7.5 and the definition of an
extended semicomplete digraph, we may let D = S[Q1, Q2, ..., Qs], where S
is a strong semicomplete digraph and each Qi is either a non-strong quasi-
transitive digraph (in particular, it could be an independent set of vertices)
or a single vertex, for every i ∈ [s]. Let vi,k be defined as in Lemma 13.11.6
and assume without loss of generality that vi,1 < |Qi|, for all i ∈ [l] and
vj,1 = |Qj |, for j ∈ {l + 1, l + 2, . . . , s} (i.e., there is no path in D containing
all the vertices of Qi, for any i ∈ [l], but there is a path in D containing all
the vertices of Ql+1 ∪Ql+2 ∪ . . .∪Qs). We may assume that q < v1,1 + v2,1 +
. . . + vs,1, since otherwise (X, Y) = (V (D), ∅) is the desired partition. Now
define r and γr such that the following holds:

γr = v1,1 + v2,1 + . . . + vr−1,1 < q ≤ v1,1 + v2,1 + . . . + vr,1.

We now consider the cases r ≤ l and r > l separately and assume first
that r ≤ l. Let q′ = q − γr > 0 and use our induction hypothesis to partition
Qr into (Xr, Yr) such that lp(Qr〈Xr〉) ≤ q′ and lpk(Qr〈Yr〉) ≤ lpk(Qr) − q′,
for all k = 1, 2, 3, ..., |V (Yr)|. Let X = V (Q1) ∪ V (Q2) ∪ . . . ∪ V (Qr−1) ∪ Xr

and let Y = Yr ∪ V (Qr+1) ∪ V (Qr+2) ∪ . . . ∪ V (Qs). We will now show that
X and Y fulfill the conditions (i) and (ii) in the theorem.

Denote the vertices of S by V (S) = [s], where i has been expanded to Qi

in D. We first show that Sl = S〈{1, 2, . . . , l}〉 is acyclic. Indeed, assume that
C = c1c2 . . . czc1 is a cycle in Sl, and without loss of generality assume that
|V (Qc1)| ≤ |V (Qcj)| for all j = 2, 3, . . . , z. It is not difficult to see (by going
around the cycle, C, |V (Qc1)| times) that there exists a cycle (and, hence,
a path) in D which contains all the vertices in Qc1 , and hence it follows
from Lemma 13.11.6 that vc1,1 = |Qc1 |, which contradicts the definition of l.
Therefore Sl is acyclic and hence, if i ≤ l, no path in D visits Qi more than
once. This implies the following:

13.11 The Directed Path-Partition Conjecture 545

lp(D〈X〉) = lp(Q1) + lp(Q2) + . . . + lp(Qr−1) + lp(Qr〈Xr〉)
≤ γr + q′

= q,

where the first equality follows from the fact that S〈{1, 2, . . . , r}〉 is semi-
complete and hence traceable. Let k ∈ {1, 2, 3, ..., |V (Y)|} be arbitrary, let
Wk be a maximum k-path subdigraph of D〈Y 〉 and assume that Wk ∩ Qr

consists of b ≥ 0 paths. Then the intersection of Qr with any maximum k-
path subdigraph of D consists of at least b paths, and hence vr,k ≥ lpb(Qr)
(where we define lp0(·) = 0). If b > 0, we may assume that q′ < lp(Qr),
which implies that lpb(Qr) − q′ > 0; hence, by our induction hypothesis,
lpb(Qr〈Yr〉) ≤ lpb(Qr)− q′ ≤ vr,k − q′. Thus, for any value of b, we have:

lpk(D〈Y 〉) ≤ lpb(Qr〈Yr〉) + vr+1,k + vr+2,k + . . . + vs,k

≤ vr,k + vr+1,k + . . . + vs,k − q′

= v1,1 + v2,1 + . . . + vr−1,1 + vr,k + vr+1,k + . . . + vs,k − q
≤ v1,k + v2,k + . . . + vr−1,k + vr,k + vr+1,k + . . . + vs,k − q
= lpk(D) − q.

Suppose now that r > l. Let q′ = q − γr > 0 and let Xr be any subset of
q′ vertices from Qr. Let Yr = V (Qr)−Xr, and define X and Y as we did in
the previous case. By Lemma 13.11.6:

lp(D〈X〉) ≤ v1,1 + v2,1 + . . . + vr−1,1 + |Xr|
= γr + (q − γr).

Therefore (i) holds; we will now prove (ii). Let k ∈ {1, 2, 3, ..., |V (Y)|} be
arbitrary and note that vr,k = |Qr|. This implies the following:

lpk(D〈Y 〉) ≤ |Yr|+ vr+1,k + vr+2,k + . . . + vs,k

= (vr,k − q′) + vr+1,k + . . . + vs,k

= v1,1 + v2,1 + . . . + vr−1,1 + vr,k + vr+1,k + . . . + vs,k − q
≤ v1,k + v2,k + . . . + vr−1,k + vr,k + vr+1,k + . . . + vs,k − q
= lpk(D) − q,

which completes the case when D is strong.
Now suppose D is a non-strong quasi-transitive digraph. By Theorem

2.7.5, there is a transitive oriented graph T and strong quasi-transitive di-
graphs H1, H2, . . . , Ht such that D = T [H1, H2, . . . , Ht]. Define pin

i as the
maximum number of vertices on a path in D − V (Hi), such that the termi-
nal vertex on the path has an arc into Hi. Define pend

i to be the maximum
number of vertices on a path in D, such that the terminal vertex on the path
belongs to Hi. We will place vertices of D into X and Y as follows:

(a) If pend
i ≤ q: Put V (Hi) into X.

(b) If pin
i ≥ q: Put V (Hi) into Y .

(c) If pin
i < q < pend

i : Let q′i = q − pin
i and use our induction hypothesis to

partition Hi into (Xi, Yi) such that lp(Hi〈Xi〉) ≤ q′i and lpk(Hi〈Yi〉) ≤

546 13. Packings, Coverings and Decompositions

lpk(Hi)− q′i, for all k = 1, 2, 3, ..., |V (Yi)|. Put Xi into X and put Yi into
Y .

The above defines our partition, so we will now show that (i) and (ii)
hold. Let P be a longest path in D〈X〉, and assume that the terminal vertex
belongs to Hi. If Hi was considered in (a), then clearly |V (P)| ≤ pend

i ≤ q
and if Hi was considered in (c), then |V (P)| ≤ pin

i + q′i = q (since, for every
j such that Hi → Hj , we have Hj ⊆ Y).

Let k ∈ {1, 2, . . . , |V (Y)|} be arbitrary and let Wk be a k-path subdigraph
of D〈Y 〉, such that |V (Wk)| = lpk(D〈Y 〉). Let P be any path in Wk and
assume that P starts in the vertex x ∈ V (Hi). If Hi was considered in
(b), then there is a path P ′ in D, such that |V (P ′)| ≥ q and the terminal
vertex in P ′ dominates x. However, merging P and P ′ into one path and
considering this path together with the k − 1 paths in Wk − P , we see that
lpk(D) ≥ lpk(D〈Y 〉) + q. Therefore we may assume that Hi was considered
in (c).

Suppose that b paths of Wk start in Hi. By our induction hypothesis we
know that lpb(Hi〈Yi〉) ≤ lpb(Hi) − q′i. We can obtain a k-path subdigraph
of D by substituting the b paths in Hi〈Yi〉 by b paths in Hi and prepend-
ing a path of order pin

i to one of the paths (as we did above). This implies that

lpk(D) ≥ pin
i + lpb(Hi) + (|Wk| − lpb(Hi〈Yi〉))

≥ pin
i + |Wk| + q′i

= |Wk| + q

= lpk(D〈Y 〉) + q,

which completes the proof. ��
The proof of the following corollary is left to the reader as Exercise 13.24.

The case when D is strong is covered in Theorem 13.11.7.

Corollary 13.11.8 [114] Let D be an extended semicomplete digraph and
let q be any positive integer. Then there exists a partition X, Y of V (D) such
that lp(D〈X〉) ≤ q and lpk(D〈Y 〉) ≤ lpk(D) − q, for k = 1, 2, 3, ..., |V (Y)|,
provided lpk(D) − q ≥ 0. ��

13.12 Miscellaneous Topics

13.12.1 Maximum One-Way Cuts and Covering by One-Way Cuts

Recall that a directed cut is a set of arcs of the form (X, V − X) (that is,
the set of all arcs from X to V − X) where X, V − X �= ∅ and d−(X) = 0.
If we drop the last condition, we speak about a one-way cut. Clearly every

13.12 Miscellaneous Topics 547

non-trivial partition Y, V − Y of the vertex set of a digraph gives rise to two
one-way cuts, one from Y to V − Y and one from V − Y to Y .

It is an easy fact that every undirected graph has a bipartition containing
at least half of its edges (the obvious greedy algorithm will produce such
a subgraph). Edwards [289] improved this bound by showing that one can

always find a bipartite subgraph with at least m
2 +

√
m
8 + 1

64 −
1
8 edges in any

graph with m edges (with equality for complete graphs of odd order). This
immediately implies that every digraph with m arcs has a one-way cut of size

at least m
4 +

√
m
32 + 1

256 −
1
16 . Regular tournaments show that the bound can

be achieved, so if we want to ensure the existence of larger one-ways cuts, we
must make some assumptions on the digraphs.

In [20] Alon, Bollobàs, Gyàrfàs, Lehel and Scott studied lower bounds on
the maximum one-way cut in acyclic digraphs. They proved that 1

4 is still the
best fraction of the total number of arcs one can guarantee in a one-way cut,
although one can get more arcs in a one-way cut than for arbitrary digraphs.
Let h(m) denote the minimum, over all acyclic digraphs D with m arcs, of
the size of a maximum one-way cut in D.

Theorem 13.12.1 [20] For m ≥ 1, m
4 + Ω(m3/5) ≤ h(m) = m

4 + O(m4/5).
��

Theorem 13.12.2 [20] The minimum number of one-way cuts needed to
cover the arcs of the complete digraph on n vertices is equal to

c(n) = min
{

k :
(

k

�k/2�

)
≥ n

}
= log2 n +

1
2

log2 log2 n + O(1).

Proof: Given a collection S of one-way cuts (X1, Y1), . . . , (Xp, Yp) of the
complete digraph with vertex set V , we associate with each v ∈ V the set
Sv = {i : v ∈ Xi}. Now it is easy to see that S covers all arcs in the complete
digraph with vertex set V if and only if {Sv}v∈V forms an antichain. Thus
the bound in the theorem follows from Sperner’s Lemma. ��

Problem 13.12.3 [20] What is the smallest d(k) such that the arcs of every
acyclic digraph D with δ+(D) ≤ k can be covered by d(k) one-way cuts?

Theorem 13.12.4 [20] Let D be a digraph with m arcs and δ+(D) ≤ k.
Then D has a one-way cut of size at least k+1

4k+2m.

Proof: Let G be the underlying multigraph of D. By Lemma 11.3.3, χ(G) ≤
2k + 1 so let us pick a (2k + 1)-colouring of G. By identifying the vertices in
each colour class of G and keeping multiple edges, we obtain a weighted copy
K of K2k+1. Now take a random partition of V (K) into two sets of sizes k

548 13. Packings, Coverings and Decompositions

and k + 1, respectively, chosen uniformly from the set of all such partitions.
The expected weight of the resulting cut is k+1

2k+1m. Thus K has a cut of
weight w ≥ k+1

2k+1m. In G this cut corresponds to a cut [X, Y] with w edges,
implying that, back in D, either (X, Y) or (Y, X) is a one-way cut whose
weight is at least k+1

4k+2m. ��

13.12.2 Acyclic Decompositions of Digraphs

By an acyclic arc-decomposition of a digraph D = (V, A) we mean a
partition of A into sets A1, A2, . . . , As, s ≥ 2, such that the subdigraph
induced by Ai is acyclic for all i ∈ [s]. Wood proved the following result
which is best possible.

Theorem 13.12.5 [907] For every integer s ≥ 2, every digraph D = (V, A)
has an acyclic arc-decomposition A1, A2, . . . , As such that d+

Ai
(v) ≤ �d+(v)

s−1 �
for all v ∈ V and i ∈ [s]. ��

Instead of decomposing the arc set of a digraph into acyclic subdigraphs
we may also consider decompositions of the vertex set such that each subset
of the vertices in the decomposition induces an acyclic digraph. The complete
digraph shows that when considering vertex partitions, we must assume some-
thing about the structure of the digraph in order to guarantee the existence
of a partition into k vertex induced subdigraphs all of which are acyclic. Ac-
cording to Thomassé the following conjecture was posed independently by
Neumann-Lara and Škrekovski.

Conjecture 13.12.6 If D is an orientation of a planar graph, then there is
a partition of V (D) into {X1, X2} so that D〈Xi〉 is acyclic for i = 1, 2.

13.12.3 Decomposing Tournaments into Strong Subtournaments

Since every strong tournament has a hamiltonian cycle, a tournament T
contains a 2-cycle factor if and only if T can be partitioned into two strong
subtournaments. Thomassen posed the following problem which generalizes
the problem of the existence of a 2-cycle factor in a tournament.

Problem 13.12.7 (Thomassen) [773] Is it true that for all natural num-
bers r, s, there exists a natural number f(r, s) with the following property:
except for finitely many exceptions for each r, s, every f(r, s)-strong tourna-
ment T can be partitioned into an r-strong tournament T1 and an s-strong
tournament T2?

It follows from Theorem 13.7.1 that f(1, 1) = 2. It is worth noticing
that the problem of determining the analogue f ′(1, 1) of f(1, 1) for semi-
complete digraphs is open. Since every 3-strong semicomplete digraph con-
tains a spanning 2-strong tournament (Proposition 11.10.5), we obtain that
2 ≤ f ′(1, 1) ≤ 3 holds for semicomplete digraphs.

13.12 Miscellaneous Topics 549

The next conjecture by Bang-Jensen, Guo and Yeo goes further than
Problem 13.12.7. It may be seen as a first step towards studying partitions
into subtournaments containing prescribed vertices in highly connected tour-
naments.

Conjecture 13.12.8 [83] For all natural numbers r, s there exists a natural
number g(r, s) such that the following is true with no more than finitely many
exceptions for each choice of r, s: for every tournament T which is g(r, s)-
strong and every choice of distinct vertices x, y ∈ V (T), there exist vertex-
disjoint subtournaments Tx, Ty of T such that V (T) = V (Tx) ∪ V (Ty), Tx is
r-strong, Ty is s-strong and x ∈ V (Tx), y ∈ V (Ty).

Note that it is easy to decide in polynomial time whether a tournament
T contains two disjoint cycles Cx and Cy such that x ∈ V (Cx) and y ∈
V (Cy). This follows from the fact that, by Moon’s theorem, every strongly
connected tournament is vertex-pancyclic. Hence Cx and Cy exist if and
only if T contains disjoint 3-cycles, one containing x and the other y. It
follows from this that every 4-strong tournament contains cycles Cx, Cy as
above. Bang-Jensen, Guo and Yeo proved that this already holds for 3-strong
tournaments and an infinite family of 2-strong counter-examples was given
[83]. Hence g(1, 1) = 3.

13.12.4 Decomposing Digraphs under Degree Constraints

Stiebitz proved [834] that the vertex set of every undirected graph of mini-
mum degree (s+ t+1) can be decomposed into two sets which induce graphs
of minimum degree at least s and t, respectively. He also posed the following
problem at the Midsummer Combinatorial Workshop in Prague in 1995.

Problem 13.12.9 [833] Does there exist a function f(s, t) such that every
digraph D = (V, A) with δ+(D) ≥ f(s, t) contains two digraphs D1 = (V1, A1)
and D2 = (V2, A2) with V = V1 ∪ V2 and V1 ∩ V2 = ∅ such that δ+(D1) ≥ s
and δ+(D2) ≥ t?

The only known value of f for positive s, t is f(1, 1) = 3. The second
power of an odd cycle shows that f(1, 1) > 2. To show that f(1, 1) ≤ 3 we
use the result of Thomassen that every digraph of minimum out-degree 3 has
a pair of vertex-disjoint cycles (see Exercise 13.4). Let D have δ+(D) ≥ 3
and let X1, X2 be vertex sets of two disjoint cycles in D. Now define V1 to be
X1 plus all those vertices of V − {X1 ∪X2} that can reach X1 by a directed
path in D〈V −X2〉 and V2 = V − V1. It is easy to check that this gives the
desired partition.

Problem 13.12.9 seems very hard and already the existence of f(2, 1) is
open. See also the paper [17] where Alon poses the problem whether f(2, 2)
exists.

550 13. Packings, Coverings and Decompositions

A theorem of Lovász [651] asserts that if G is an undirected graph with
maximum degree Δ and d1 ≥ d2 ≥ . . . ≥ dk are non-negative integers such
that d1 +d2 + . . .+dk +k−1 = Δ, then the vertex set of G can be partitioned
into V1, V2, . . . , Vk so that the subgraph induced by Vi has maximum degree
at most di. For k = 2 this result implies that vertex set of every graph
of maximum degree 2d + 1 can be partitioned into two sets, none of which
induces a graph with maximum degree more than d.

The following argument by Alon [17] shows that no such result can hold
for directed graphs: By a result of Thomassen (see also Section 8.3), for every
k there exists a digraph Dk = (V, A) with d+(v) = k for every vertex v ∈ V
and Dk has no even cycle. Now consider an arbitrary partition of V into non-
empty sets V1, V2. We claim that some vertex in Vi has all its out-neighbours
inside Vi for i = 1 or 2. Suppose this is not the case and let v1 be an arbitrary
vertex in V1. Then v1 has an out-neighbour v2 ∈ V2 which in turn has an out-
neighbour v3 ∈ V1 and so on. Since |V | is finite we must reach a point when
vi = vj and now vivi+1 . . . vj−1vi is an even cycle in Dk, a contradiction.

Alon also showed that if we allow partitions into three or more sets, then
one can always reduce the maximum degree of the resulting digraphs.

Theorem 13.12.10 [19] Let d1, d2, . . . , dk, Δ , k ≥ 3, be non-negative inte-
gers such that d1+d2+. . . dk+k−1 = 2Δ. Then the vertex set of any directed
graph D with Δ+(D) = Δ can be partitioned into k subsets V1, V2, . . . , Vk such
that Δ+(D〈Vi〉) ≤ di for all i ∈ [k]. ��

13.13 Exercises

13.1. Construct a strong tournament on 5 vertices such that one must delete at
least 3 arcs to obtain an acyclic digraph.

13.2. (+) Let T be the tournament on 15 vertices described in Section 13.2. Prove
that every feedback arc set of T has at least 39 arcs.

13.3. For every n ≥ 3, construct a digraph of minimum out-degree 2 not having
two disjoint cycles.

13.4. (+) Minimum out-degree three implies two disjoint cycles. Prove
that every digraph D with δ+(D) ≥ 3 has a pair of vertex-disjoint cycles.
Hint: use Lemma 13.3.8 (Thomassen [858]).

13.5. Prove Corollary 13.3.5 using Theorem 13.3.4. Hint: first observe that every
digraph D with δ+(D) ≥ k has at least k

64
vertex-disjoint cycles. Remove

the arcs of these and continue recursively.
13.6. (−) Prove Theorem 13.4.2. Hint: use Exercise 13.17.
13.7. Prove Lemma 13.5.1. Hint: start by extracting paths by going backwards

from leaves.
13.8. Scheduling airplanes. An airport has a certain number of runways that

can be used for landing of airplanes. How would you schedule airplanes to
use the minimum number of the runways (in order to possibly have some
spare ones permanently ready for emergency landings) if every use of a
runway can be determined as a fixed time interval ?

13.9. (−) Show by examples that properties (1) and (2) of Lemma 13.5.9 need
not hold for arbitrary acyclic digraphs.

13.13 Exercises 551

13.10. Non-hamiltonian 2-strong digraphs with α = 2. Construct such a
digraph. Hint take two 2-strong tournaments on five vertices and join them
appropriately by arcs [156].

13.11. Prove Lemma 13.6.3. Hint: use the proof of Theorem 6.7.1.
13.12. Prove Lemma 13.6.5.
13.13. Complete the proof of Theorem 13.8.1.
13.14. Heaviest cycle subdigraphs in digraphs. Describe an O(n3) algorithm

to find, in a digraph with non-negative weights on the arcs, a cycle subdi-
graph of maximum weight. Hint: use the same approach as in the proof of
Theorem 13.8.1.

13.15. Finding a minimum cycle factor in extended semicomplete and
semicomplete bipartite digraphs. Describe polynomial algorithms for
the minimum cycle factor problem in the case of digraphs from one of these
classes.

13.16. (+) Prove Theorem 13.8.3 directly from Theorem 4.8.2. Show that your
proof implies the existence of an algorithm, which given a k-strong digraph
D and a subset X ⊆ V (D), either finds a collection of disjoint cycles covering
all the vertices of X, or an independent set X ′ ⊆ X of size more than k.

13.17. Every regular directed multigraph has a cycle factor. Prove this
claim.

13.18. Prove that every 2-arc-strong semicomplete digraph H has three distinct
vertices q1, q2, q3 such that H − qi is strong for i = 1, 2, 3.

13.19. (−) Prove that every regular tournament is arc-3-cyclic. Show that this is
not always true for regular semicomplete digraphs.

13.20. (+) Prove Lemma 13.10.6. Hint: the cases k = 2, 3, 5 can be handled sep-
arately. Apply Theorem 13.4.3 to get, for each k �= 2, 3, 5, a decomposi-
tion of K∗

k+1 into arc-disjoint hamiltonian paths P1, P2, . . . , Pk such that Pi

starts in xi and ends in xπ(i) for all i ∈ [k] where the vertex set of
↔
Kk is

{x1, x2, . . . , xk} and π is a permutation of [k]. Show that these paths can
be extended to the desired spanning strong subdigraphs.

13.21. Derive Lemma 13.11.5 from Theorem 6.6.8.
13.22. Use Lemma 13.11.5 to prove Lemma 13.11.6.
13.23. Recall that lc(D) denotes the length of a longest cycle in D. Prove the

following result:

Proposition 13.13.1 [114] For every digraph D and every choice of posi-
tive integers, �1, �2, such that lp(D) = �1 + �2, there exists a partition of D
into two digraphs, D1 and D2, such that lc(Di) ≤ �i, for i = 1, 2.

13.24. Prove Corollary 13.11.8.
13.25. Finding disjoint cycles is hard. Prove that the following problem is

NP-complete. Given a digraph D and an integer k, decide whether D has at
least k disjoint cycles. Hint: use a reduction from the 3-dimensional matching
problem. (Given three sets X1, X2, X3 of the same cardinality n and a subset
R of X1×X2×X3, decide whether the elements of every Xi can be labelled
xi

1, x
i
2, . . . , x

i
n so that (x1

j , x
2
j , x

3
j) ∈ R for each j ∈ [n]. This problem is NP-

complete, see Gary and Johnson [393].) In the reduction you may utilize
the gadget L given in Figure 13.5. We start from the digraph G on vertices
X1∪X2∪X3 and with no arcs. For each (x, y, z) ∈ R, we add L to G. Prove
that the resulting digraph has n + 2|R| cycles (all of which are 3-cycles) if
and only if there exists the required labelling of the elements in X1, X2 and
X3 (A. Yeo, personal communication).

13.26. Prove Theorem 13.4.10.

552 13. Packings, Coverings and Decompositions

x

y

z

L

Figure 13.5 The gadget for Exercise 13.25.

13.27. Prove Lemma 13.5.9. Hint: the only acyclic extended semicomplete digraphs
are extensions of transitive tournaments.

13.28. Show that Theorem 13.4.1 follows from Theorem 1.7.2.

13.29. Prove that the arcs of
↔
K6 cannot be decomposed into 5 hamiltonian cycles.

13.30. Show that there is only one 2-strong tournament on 7 vertices which has no
2-cycle factor.

13.31. Prove that the digraph in Figure 13.2 has no hamiltonian path.
13.32. Show that if v1, v2, . . . , vn is an ordering of a coherent cyclic order and there

is an arc between vi and vi+1, then vi→vi+1.
13.33. Show by an example that the cyclic independence number of a digraph may

depend on which cyclic order O we choose.
13.34. Describe a linear algorithm which, given a digraph D = (V, A) an ordering

E of V and an arc a ∈ A, decides whether iE(a) > 1. Hint: how can you
find an equivalent order E′, so that a will be a backward arc in E′?

13.35. Describe a polynomial algorithm which, given a digraph D = (V, A) an
ordering E of V and an arc a ∈ A, finds the index iE(a) of the arcs a with
respect to the ordering E.

13.36. (+) Finding a maximum cyclic independent set in polynomial
time. Show how to find, given a strong digraph D and a coherent cyclic
order O of D, a cyclic independent set (with respect to O) of maximum
size). Hint: consider what happens if you start the proof of Theorem 13.9.6
from a set S which is cyclic independent with respect to O but |S| < αO(D).
Argue that in the resulting transitive digraph you can find, in polynomial
time, an independent set of size larger than |S| and from that obtain a new
larger cyclic independent with respect to O.

13.37. Let Dr be the digraph which is defined at the end of Subsection 13.9. Show
that every strong spanning subdigraph of Dr has cyclomatic number at
least 2r − 1. Next show that every cyclic spanning subdigraph of Dr with
cyclomatic number r is an r-cycle factor in which all cycles are 4-cycles.

13.38. Let qi, i = 1, 2, . . . , k +1, be defined as in (13.9). Prove that qi < 16k(i− 1)
for all i ∈ [k + 1].

13.39. Covering a digraph of bounded maximum out-degree by few one-
way cuts. Prove the following where c = c(n) is the function in Theorem
13.12.2.

Proposition 13.13.2 [20] Let D be a digraph with δ+(D) ≤ k. Then the
arcs of D can be covered by at most c(2k + 1) one-way cuts.

Hint: use Lemma 11.3.3 to bound the chromatic number of D by 2k +1 and

show how to extend a covering of an arc-weighted copy of
↔
K2k+1 by r cuts

to a covering of D by the same number of cuts.

14. Increasing Connectivity

In this chapter we discuss the important problem of increasing the (arc)-
strong connectivity of a given directed (multi)graph by a number of different
operations. These include adding new arcs, reversing existing arcs and de-
orienting arcs. In Section 14.1 we introduce the operation of splitting off a
pair of arcs incident with a vertex. We prove Mader’s splitting theorem which
allows one to give inductive proofs for several important results on directed
multigraphs. In Section 14.2, using Mader’s theorem, we describe a solution,
due to Frank, for the problem of finding a minimum cardinality set of new
arcs to add to a directed multigraph such that the result is a k-arc-strong
directed multigraph. In Section 14.3 we describe a solution by Frank and
Jordán of the analogous problem for vertex-strong connectivity.

Another way of increasing the arc/vertex-strong connectivity of a directed
multigraph is by reversing the orientation of certain arcs. In Sections 14.4 and
14.5 we discuss this approach. In Section 14.6 we consider the variation of
the augmentation problem where parallel arcs are not allowed and a new arc
can only be added if the opposite arc is already present. This is equivalent
to deorienting (replacing the arc by a 2-cycle) some of the arcs that are not
contained in a 2-cycle. Finally we briefly discuss a number of miscellaneous
results such as increasing the arc-strong connectivity of a bipartite directed
multigraph while preserving bipartiteness and increasing the arc-strong con-
nectivity of a directed hypergraph.

14.1 The Splitting Off Operation

In Frank’s proof of Menger’s theorem in Section 5.4, we saw how one could
apply the idea of replacing two arcs incident to some vertex by one new arc
and then apply induction. In this section we shall see yet another indica-
tion that this type of operation can be very useful. We consider a directed
multigraph D with a special vertex s. We always assume that

d+
D(s) = d−D(s). (14.1)

To emphasize that s is a special vertex we specify D as D = (V + s, A) or
D = (V + s, E ∪ F) where F is the set of arcs with one end-vertex in s

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 14,
© Springer-Verlag London Limited 2010

553

http://dx.doi.org/10.1007/978-1-84800-998-1_14

554 14. Increasing Connectivity

(s �∈ V and E∩F = ∅). Furthermore we will assume that the local arc-strong
connectivity between every pair x, y of vertices in V is at least k. By Menger’s
theorem this is equivalent to

d+(U), d−(U) ≥ k for all ∅ �= U ⊂ V. (14.2)

Whenever a digraph D = (V + s, A) satisfies (14.2) for some k we say
that D is k-arc-strong in V .

We consider the operation of replacing a pair (us, sv) of arcs incident with
s by one new arc uv. The operation of performing this replacement is called
splitting off or just splitting the pair (us, sv) and the resulting directed
multigraph is denoted by Duv. The splitting of a pair (us, sv) is admissible
if (14.2) holds in Duv. If this is the case, we will also say that the pair (us, sv)
is an admissible pair (or an admissible splitting).

Recall the definition of a k-(in/out)-critical set of vertices from Section
5.6. The following useful lemma is due to Frank:

Lemma 14.1.1 [342] If X and Y are intersecting k-critical sets, then one
of the following holds:

(a) X ∪ Y is k-critical,
(b) Y − X is k-critical and d(X ∩ Y, V + s − (X ∪ Y)) = 0.

Proof: We consider three cases:
Case 1: X ∪ Y �= V and X, Y are either both k-out-critical or both k-in-
critical.

Assume that X, Y are both k-out-critical. It follows from (14.2) that
d+(X ∪ Y), d+(X ∩ Y) ≥ k. Using the submodularity of d+

D, we obtain

k + k = d+(X) + d+(Y)
≥ d+(X ∪ Y) + d+(X ∩ Y)
≥ k + k, (14.3)

and from this we get that X ∪ Y is k-critical and hence (a) holds. The same
conclusion is reached if X, Y are both k-in-critical.
Case 2: X ∪ Y = V and X, Y are either both k-out-critical or both k-in-
critical.

We will assume that X, Y are both k-out-critical, the proof is analogous in
the other case. Let S = V +s−X and T = V +s−Y . Then d−(S) = d−(T) = k
and S ∩ T = {s}. Since S − T = Y − X and T − S = X − Y , we get from
(14.2) that d−(S − T), d−(T − S) ≥ k. Since d−(s) = d+(s), we can apply
(5.3) and obtain

k + k = d−(S) + d−(T)
= d−(S − T) + d−(T − S) + d(S ∩ T, V + s − (S ∪ T))
≥ k + k + d(V − S, T), (14.4)

14.1 The Splitting Off Operation 555

implying that Y −X = S−T is k-in-critical and that d(S∩T, V +s−(S∪T)) =
0. Since X ∩ Y = V + s − (S ∪ T) and V + s − (X ∪ Y) = {s} = S ∩ T we
also see that d(X ∩ Y, V + s− (X ∪ Y)) = 0. Thus (b) holds.
Case 3: One of X, Y is k-in-critical and the other is k-out-critical.

We consider the case when X is k-in-critical and Y is k-out-critical, the
other case is analogous. Let Z = V +s−X. Then we have d+(Y) = d+(Z) = k,
Y ∩Z = Y −X and Y ∪Z = V +s−(X−Y). Hence d+(Y ∩Z) = d+(Y −X) ≥ k
and d+(Y ∪Z) = d−(V + s− (Y ∪Z)) = d−(X − Y) ≥ k. Now we can apply
(5.2) and we get

k + k = d+(Y) + d+(Z)
= d+(Y ∩ Z) + d+(Y ∪ Z) + d(Y, Z)
≥ k + k + d(Y, Z), (14.5)

implying that d+(Y − X) = d+(Y ∩ Z) = k and that d(Y, Z) = 0. Since
Z − Y = V + s− (X ∪ Y) and Y − Z = X ∩ Y , the last equality shows that
d(X ∩ Y, V + s− (X ∪ Y)) = 0. Thus (b) holds. ��

We are now ready to prove the following important result by Mader.

Theorem 14.1.2 (Mader’s directed splitting theorem) [669] Suppose
that D = (V + s, E ∪ F) satisfies (14.2) and that d+(s) = d−(s). Then for
every arc sv there is an arc us such that the pair (us, sv) is an admissible
splitting.

Proof: The proof we give is due to Frank [342]. First note that a pair (us, sv)
can be split off preserving (14.2) if and only if there is no k-critical set which
contains both u and v. Hence if there is no k-critical set containing v, then
we are done. If X and Y are intersecting k-critical sets containing v, then
only alternative (i) can hold in Lemma 14.1.1, because the existence of the
arc sv implies that d(V + s− (X ∪ Y), X ∩ Y) ≥ 1. Hence the union T of all
k-critical sets containing v is also k-critical. If we can find an in-neighbour u
of s in V −T , then we are done, since by the choice of T , there is no k-critical
set which contains u and v. So suppose that all in-neighbours of s are in T .
If T is k-out-critical, then

d−(V − T) = d+(T) − d+(T, s) + d+(s, V − T)
≤ k − (d−(s) − d+(s) + 1)
= k − 1,

since s has no in-neighbour in V − T and sv is an arc from s to T (we also
used d−(s) = d+(s)). This contradicts (14.2) so we cannot have that T is
k-out-critical. But if T is k-in-critical, then

d+(V − T) = d−(T + s) = d−(T) − d+(s, T) + d+(V − T, s)
≤ k − 1 + 0 < k,

556 14. Increasing Connectivity

a contradiction again. Hence we have shown that (us, sv) is an admissible
pair and the proof is complete. ��

s

Figure 14.1 A digraph D = (V + s, A) which is 2-arc-strong in V and has no
admissible splitting at s. Note that d−(s) = 2 �= 1 = d+(s).

Note that the assumption that d−(s) = d+(s) in Theorem 14.1.2 cannot
be removed. Figure 14.1 shows an example of a digraph D = (V + s, A) with
no admissible splitting at s.

s

a c

b

d

e

f

X

a c

b

d

e

f

Figure 14.2 A digraph D = (V + s, A) which is 2-arc-strong in V . A complete
splitting of the arcs is shown in the right figure after removal of s. The set X shows
that we cannot split off both of the pairs (as, sb), (cs, sa), since that would leave X
with out-degree one.

Corollary 14.1.3 Suppose that D = (V + s, E + F) satisfies (14.2) and
that d+(s) = d−(s). Then there exists a pairing ((u1s, sv1), . . . , (urs, svr)),
r = d−(s), of the arcs entering s with the arcs leaving s such that replacing
all arcs incident with s by the arcs u1v1, . . . , urvr and then deleting s, we
obtain a k-arc-strong directed multigraph D′. ��

14.2 Increasing the Arc-Strong Connectivity Optimally 557

See Figure 14.2 for an example of a complete splitting in a digraph.

Frank and Jackson showed that for eulerian directed multigraphs one can
get a stronger result. Namely, it is possible to split off all arcs incident with
the special vertex s in such a way that all local arc-strong connectivities
within V are preserved.

Theorem 14.1.4 [341, 556] Let D = (V + s, A) be an eulerian directed
multigraph. Then for every arc us ∈ A there exists an arc sv ∈ A such that
λDuv (x, y) = λD(x, y) for all x, y ∈ V . ��

A similar result concerning local connectivity preserving splittings holds
for general undirected graphs. This very powerful result was proved by Mader
[668]. Such a similarity between eulerian digraphs and general undirected
graphs with respect to certain properties seems to be quite common. To
say it popularly: Eulerian digraphs often behave like undirected graphs. For
another example of this phenomenon see Section 10.7.2.

Bang-Jensen, Frank and Jackson showed that it is possible to give a com-
mon generalization of Theorem 14.1.4 and Mader’s directed splitting theorem
(Theorem 14.1.2) to mixed graphs. Since the statement of this result is rather
technical, we refer the interested reader to the paper [78].

It was pointed out by Enni in [295] that Theorem 14.1.4 cannot be ex-
tended to arbitrary digraphs, not even if one only wants to preserve the
minimum of λ(x, y) and λ(y, x). For two other generalizations of Theorem
14.1.2 see the papers [836] by Su and [372] by Gabow and Jordán.

14.2 Increasing the Arc-Strong Connectivity Optimally

We will consider the arc-connectivity augmentation problem: Given
a directed multigraph D = (V, E) and a natural number k such that D is
not k-arc-strong; find a minimum cardinality set of new arcs F to add to
D such that the resulting directed multigraph D′ = (V, E ∪ F) is k-arc-
strong. This D′ is called an optimal augmentation of D. We will present
a solution to this problem due to Frank [342]. Frank solved the problem by
supplying a min-max formula for the minimum number of new arcs as well
as a polynomial algorithm to find such a minimum set of new arcs. First let
us make the simple observation that such a set F indeed exists, since we may
just add k parallel arcs in both directions between a fixed vertex v ∈ V and
all other vertices in V (it is easy to see that the resulting directed multigraph
will be k-arc-strong).

Definition 14.2.1 Let D = (V, A) be a directed multigraph. Then γk(D) is
the smallest integer γ such that

558 14. Increasing Connectivity

∑

Xi∈F
(k − d−(Xi)) ≤ γ and

∑

Xi∈F
(k − d+(Xi)) ≤ γ,

for every subpartition F = {X1, . . . , Xt} of V with ∅ ⊂ Xi ⊂ V , ∀ i ∈ [t].

We call γk(D) the subpartition lower bound for arc-strong con-
nectivity. By Menger’s theorem, D is k-arc-strong if and only if γk(D) ≤ 0.
Indeed, if D is k-arc-strong, then d+(X), d−(X) ≥ k holds for all proper
non-empty subsets of V and hence we see that γk(D) ≤ 0. Conversely, if D is
not k-arc-strong, then let X be a set with d−(X) < k. Take F = {X}, then
we see that γk(D) ≥ k − d−(X) > 0.

Lemma 14.2.2 [342] Let D = (V, A) be a directed multigraph and let k be
a positive integer such that γk(D) > 0. Then D can be extended to a new
directed multigraph D′ = (V + s, A ∪ F), where F consists of γk(D) arcs
whose head is s and γk(D) arcs of whose tail is s such that (14.2) holds in
D′.

Proof: We will show that, starting from D, it is possible to add γk(D) arcs
from V to s so that the resulting graph satisfies

d+(X) ≥ k for all ∅ �= X ⊂ V. (14.6)

Then it will follow analogously (by considering the converse of D) that it is
also possible to add γk(D) new arcs from s to V so that the resulting graph
satisfies

d−(X) ≥ k for all ∅ �= X ⊂ V. (14.7)

First add k parallel arcs from v to s for every v ∈ V . This will certainly
make the resulting directed multigraph satisfy (14.6). Now delete as many
new arcs as possible until removing any further arc would result in a digraph
where (14.6) no longer holds (that is, every remaining new arc vs leaves a
k-out-critical set). Let D̃ denote the current directed multigraph after this
deletion phase and let S be the set of vertices v which still have an arc to
s in D̃. Let F = {X1, . . . , Xr} be a family of k-out-critical sets such that
every v ∈ S is contained in some member Xi of F and assume that F has
as few members as possible with respect to this property. Clearly this choice
implies that either F is a subpartition of V , or there is a pair of intersecting
sets Xi, Xj in F .

14.2 Increasing the Arc-Strong Connectivity Optimally 559

Case 1: F is a subpartition of V .
Then we have

kr =
r∑

i=1

d+

D̃
(Xi)

=
r∑

i=1

(d+
D(Xi) + d+

D̃
(Xi, s))

=
r∑

i=1

d+
D(Xi) + d−

D̃
(s),

implying that d−
D̃

(s) =
∑r

i=1(k − d+
D(Xi)) ≤ γk(D), by the definition of

γk(D).

Case 2: Some pair Xi, Xj ∈ F is intersecting.
If Xi, Xj are crossing, then the submodularity of d+

D̃
and (14.2) imply

that Xi ∪ Xj is also k-out-critical and hence we could replace the two sets
Xi, Xj by the set Xi ∪ Xj in F , contradicting the choice of F . Hence we
must have Xi ∪Xj = V and F = {X1, X2}, where without loss of generality
i = 1, j = 2. Let X = V −X1 = X2 −X1 and Y = V −X2 = X1 −X2. Then
d−D(X) = d+

D(X1) and d−D(Y) = d+
D(X2) and hence we get

γk(D) ≥ (k − d−D(X)) + (k − d−D(Y))
= k − d+

D(X1) + k − d+
D(X2)

≥ k − d+

D̃
(X1) + k − d+

D̃
(X2) + d−

D̃
(s)

= d−
D̃

(s),

since X1, X2 are k-out-critical in D̃. Thus d−
D̃

(s) ≤ γk(D) as claimed. ��

Theorem 14.2.3 (Frank’s arc-connectivity augmentation theorem)
[342] Let D = (V, A) be a directed multigraph and k a positive integer such
that γk(D) > 0. The minimum number of new arcs that must be added to
D in order to give a k-arc-strong directed multigraph D′ = (V, A ∪ F) equals
γk(D).

Proof: To see that we must use at least γk(D) arcs, it suffices to observe
that if X and Y are disjoint sets, then no new arc can increase the out-degree
(in-degree) of both sets. Hence a subpartition F realizing the value of γk in
Definition 14.2.1 is a certificate that we must use at least γk(D) new arcs.

To prove the other direction, we use Mader’s splitting theorem and Lemma
14.2.2. According to this lemma we can extend D to a new directed multi-
graph D̃ by adding a new vertex s and γk(D) arcs from V to s and from s
to V . Note that we may not need γk(D) arcs in both directions, but we will
need it in one of the directions by our remark in the beginning of the proof.

560 14. Increasing Connectivity

In the case where fewer arcs are needed, say from V to s, we add arbitrary
arcs from V to s so that the resulting number becomes γk(D).

Now it follows from Corollary 14.1.3 that all arcs incident with s can be
split off without violating (14.2). This means that if we remove s, then the
resulting directed multigraph D′ is k-arc-strong. ��

See Figure 14.3 for an example illustrating the theorem.

a c

b

d

e

f a c

b

d

e

f

D D′

Figure 14.3 A digraph D with γ2(D) = 5. The big circles indicate a subpartition
which realizes γ2(D). The right part of the figure shows an optimal 2-arc-strong
augmentation D′ of D obtained by adding 5 new arcs. Compare this with Figure
14.2. Here the digraph in the right part is the same as the augmented digraph D′.

The reader may have noticed that in the proof of Lemma 14.2.2, we never
specified exactly how we obtained the minimal set of arcs from V to s so that
(14.6) held. The proof is valid for every such set of arcs that is minimal with
respect to deletion of arcs. This means in particular that we can use a greedy
approach to find such a set of arcs starting from the configuration with k
parallel arcs from every vertex v ∈ V to s. This gives rise to the following
algorithm, by Frank [342], for augmenting the arc-strong connectivity opti-
mally to k for any directed multigraph D which is not already k-arc-strong:

Frank’s arc-strong connectivity augmentation algorithm
Input: A directed multigraph D = (V, A) and a natural number k such that
γk(D) > 0.
Output: A k-arc-strong optimal augmentation D∗ of D.

1. Let v1, v2, . . . , vn be a fixed ordering of V and let s be a new vertex.
2. For each i ∈ [n], add k parallel arcs from vi to s and from s to vi.
3. Starting from i := 1, remove as many arcs from vi to s as possible without

violating (14.6). If i < n, then let i := i + 1 and repeat this step;
Let γ− denote the number of remaining arcs from V to s in the resulting
digraph.

4. Starting from i := 1, remove as many arcs from s to vi as possible without
violating (14.7). If i < n, then i := i + 1 and repeat this step;

14.2 Increasing the Arc-Strong Connectivity Optimally 561

Let γ+ denote the number of remaining arcs from s to V in the resulting
directed multigraph.

5. Let γ = max{γ−, γ+}. If γ− < γ+, then add γ+ − γ− arcs from v1 to s;
if γ+ < γ−, then add γ− − γ+ arcs from s to v1.

6. Let D′ denote the current directed multigraph. In D′ we have d−D′(s) =
d+

D′(s) and (14.2) holds. Split off all arcs incident with s in D′ by applying
Theorem 14.1.2 γ times. Let D∗ denote the resulting directed multigraph.

7. Return D∗.

Using flows, this algorithm can be implemented as a polynomial algorithm
for augmenting the arc-strong connectivity of a given directed multigraph
[342]. See Exercises 14.1 and 14.3.

Frank [342] pointed out that his algorithm also works for the following
problem called the arc-strong connectivity augmentation problem

with vertex-weights. Here there are two weights cin(v), cout(v) on every
vertex v and the cost of adding an arc from u to v is equal to cout(u)+cin(v).
The only change needed in the algorithm above is that now the ordering of
the vertices should be so that cout(v1) ≥ cout(v2) ≥ . . . ≥ cout(vn) when we
delete arcs into s and we use another ordering (if necessary) with the same
property with respect to cin when we delete arcs out of s. The reason why
this greedy approach works is outlined in [342] and comes from the fact that
a certain polymatroidal structure is present [342, 357].

If instead we allow weights on the arcs and ask for a minimum weight
(rather than just minimum cardinality) set of new arcs to add to D in order
to obtain a k-arc-strong directed multigraph D′, then we have the weighted

arc-strong connectivity augmentation problem.

Theorem 14.2.4 The weighted arc-strong connectivity augmentation prob-
lem is NP-hard.

Proof: Let D = (V, A) be a digraph on n vertices V = [n]. Define weights

c(ij) on the arcs of the complete digraph
↔
Kn with vertex set V as follows:

c(ij) =
{

1 if ij ∈ A
2 if ij �∈ A. (14.8)

Let D0 = (V, ∅) (that is, the digraph on V with no arcs). Since every
vertex of a strong digraph is the tail of at least one arc, we need at least n
arcs to make D0 strong. Now it is easy to see that D0 can be made strongly
connected using arcs with total weight at most n if and only if D has a
Hamilton cycle. Thus we have reduced the NP-hard Hamilton cycle problem
to the weighted arc-strong connectivity augmentation problem. Clearly our
reduction can be carried out in polynomial time. ��

We complete this section with an interesting result by Cheng and Jordán.
It implies that the so-called successive augmentation property holds for
arc-strong connectivity.

562 14. Increasing Connectivity

Theorem 14.2.5 [206] Let D be a directed multigraph with λ(D) = �. Then
there exists an infinite sequence D = D0, D1, D2, . . . of directed multigraphs
such that, for every i ≥ 0, A(Di) ⊂ A(Di+1), V (Di) = V (D) and Di is an
optimal (� + i)-arc-strong augmentation of D. ��

It is shown by an example in [206] that a similar property does not hold
for the vertex-strong connectivity augmentation problem which we consider
below.

14.3 Increasing the Vertex-Strong Connectivity
Optimally

We now turn to the vertex-strong connectivity augmentation prob-

lem: given a digraph D = (V, A) on at least k + 1 vertices, find a smallest
set F of new arcs for which D′ = (V, A ∪ F) is k-strong.

When it comes to studying vertex-strong connectivity, multiple arcs play
no role and hence we shall always consider digraphs (knowing that our results
extend to directed multigraphs). In particular, in this section we have d+

D(v) =
|N+

D (v)| for every vertex v.
Let us first observe that, even if we do not allow multiple arcs, we cannot

bound the number of arcs we need to add to make a digraph D k-strong
by some function of γk(D) (recall Definition 14.2.1). To see this, it suffices
to note that there are k-arc-strong digraphs which are not k-strong and one
can construct such digraphs where the number of new arcs one needs to add
in order to obtain a k-strong superdigraph is arbitrarily high (see Exercise
14.6).

Suppose X is a non-empty set of vertices in a digraph D such that
N+[X] �= V and |N+(X)| < k (recall that N+[X] = X ∪ N+(X)). Then
it follows from Menger’s theorem that D is not k-strong because the set
N+(X) separates every vertex in X from every vertex in V − N+[X]. Fur-
thermore, in order to obtain a k-strong digraph by adding arcs to D we must
add at least k − |N+(X)| new arcs with tail in X and head in V − N+(X).

Similarly to the definition of γk(D) in Definition 14.2.1, we can define
γ∗

k(D) as follows:

Definition 14.3.1 Let D = (V, A) be a directed graph. Then γ∗
k(D) is the

smallest integer γ such that

∑

X∈F−

(k − |N−(X)|) ≤ γ and

∑

X∈F+

(k − |N+(X)|) ≤ γ,

14.3 Increasing the Vertex-Strong Connectivity Optimally 563

for every choice of subpartitions F−,F+ of V with the property that every
X ∈ F− satisfies N−[X] �= V and every X ∈ F+ satisfies N+[X] �= V .

As with arc-strong connectivity it is not hard to see that γ∗
k(D) is a lower

bound for the number of new arcs we must add to D to obtain a k-strong
digraph. This follows from the fact that the sets in F− are disjoint and hence
no new arc can increase the in-neighbourhoods (out-neighbourhoods) of two
sets from F− (F+). We call the number γ∗

k(D) the subpartition lower
bound for vertex-strong connectivity.

The k-strong augmentation number of D, denoted ak(D), is the min-
imum number of new arcs that must be added to a digraph D = (V, A) in
order to obtain a k-strong digraph. It is easy to see that ak(D) is well-defined
provided that D has at least k + 1 vertices.

14.3.1 One-Way Pairs

First we point out that for vertex-strong connectivity augmentation, the sub-
partition lower bound is no longer sufficient, that is, it may not be possible to
make D k-strong by adding γ∗

k(D) arcs. An example illustrating this is given
in Figure 14.4(a). Here k = 2 and it is not difficult to check that γ∗

k(D) = 2.
However, it is not possible to make D 2-strong by adding just two new arcs. In
order to explain this, we need a few new definitions due to Frank and Jordán
[354]. Let X, Y be disjoint non-empty proper subsets of V . The ordered pair
(X, Y) is a one-way pair in D = (V, A) if D has no arc with tail in X and
head in Y (that is, Y ⇒X). For such a pair (X, Y) we refer to X (Y) as the
tail (head) of the pair. Let h(X, Y) = |V − X − Y |. The deficiency of a
one-way pair (X, Y) with respect to k-strong connectivity is

ηk(X, Y) = max{0, k − h(X, Y)}. (14.9)

For instance, if N+[X] �= V , then the pair (X, V − N+[X]) is a one-way
pair with deficiency ηk(X, V − N+[X]) = max{0, k − |N+(X)|}. One-way
pairs are closely related to k-strong connectivity.

Lemma 14.3.2 [354] A digraph D = (V, A) is k-strong if and only if we
have h(X, Y) ≥ k for every one-way pair (X, Y) in D.

Proof: Suppose first that D is k-strong. By Corollary 5.4.2, there are k
internally disjoint (s, t)-paths for every choice of distinct vertices s, t ∈ V .
Now let (X, Y) be a one-way pair and take s ∈ X, t ∈ Y . For every collection
of the k internally disjoint paths from s to t, each such path must use a vertex
in V −X − Y and hence h(X, Y) ≥ k. Conversely, assume that h(X, Y) ≥ k
for every one-way pair (X, Y). Let S be a minimal separator of D. By the
definition of a separator, V − S can be divided into two sets X, Y so that
there is no arc from X to Y in D − S (namely, let s, t be separated by S

564 14. Increasing Connectivity

(a) (b)

T2
H3

H1

T3

H2
T1

e f

a b c d

Figure 14.4 An example, due to Jordán [576, Figure 3.9.1], showing that the sub-
partition lower bound is not always attainable. The desired connectivity is k = 2 and
the value γ∗

2(D) is 2 and it is realized by the subpartitions {{d}, {e}}, {{a}, {f}},
respectively (see (a)). Part (b) shows three pairwise independent one-way pairs
(T1, H1), (T2, H2), (T3, H3) (tails are indicated by boxes). This shows that a2(D) ≥
3. In fact, a2(D) = 3, since adding the arcs af, ed, da will result in a 2-strong
digraph.

and let X denote those vertices that can be reached from s in D − S and
Y = V − X − S). Thus (X, Y) is a one-way pair and h(X, Y) = |S| showing
that |S| ≥ k and hence D is k-strong. ��

Two one-way pairs (X, Y), (X ′, Y ′) are independent if either their heads
or their tails are disjoint. Hence one-way pairs that contribute to the sums in
Definition 14.3.1 are always independent since either all heads or all tails are
disjoint for those pairs. As we saw in Figure 14.4, the sum of deficiencies over
one-way pairs for which either all tails are disjoint or all heads are disjoint
does not always provide the right lower bound for the number of new arcs
needed in order to make the digraph k-strong.

By Lemma 14.3.2, in order to obtain a k-strong superdigraph of D, we
must add enough new arcs to cover all one-way pairs with ηk(X, Y) > 0 (we
must add at least ηk(X, Y) arcs from X to Y). Clearly, if (X, Y), (X ′, Y ′)
are independent one-way pairs, then no new edge can decrease both ηk(X, Y)
and ηk(X ′, Y ′). This shows that if F is any family of pairwise independent
one-way pairs in D, then we must add at least

ηk(F) =
∑

(X,Y)∈F
ηk(X, Y) (14.10)

new arcs to D in order to obtain a k-strong digraph. We call the number ηk(F)
the deficiency of F . Now consider Figure 14.4(b). Here we have indicated
one-way pairs (Ti, Hi), i = 1, 2, 3. These are pairwise independent and have
total deficiency 3. Thus it follows from our arguments above that we need at
least 3 new arcs to make D k-strong. In fact, 3 arcs are sufficient in this case
as pointed out in the caption of the figure.

14.3 Increasing the Vertex-Strong Connectivity Optimally 565

14.3.2 Optimal k-Strong Augmentation

The following theorem, due to Frank and Jordán, shows that the maximum
deficiency over families of independent one-way pairs gives the right lower
bound for the vertex-strong connectivity augmentation problem.

Theorem 14.3.3 (The Frank-Jordán vertex-connectivity augmenta-
tion theorem) [354] For every digraph D on at least k + 1 vertices we have

ak(D) = max
F

{ηk(F)}, (14.11)

where F is a family of independent one-way pairs in D. ��

Frank and Jordán also gave a polynomial algorithm for finding an optimal
augmenting set of size ak(D). Their algorithm was based on the ellipsoid
method1 and hence is not a combinatorial algorithm. Recently [885] Végh
and Benczúr found such an algorithm.

Theorem 14.3.4 [885] There exists a combinatorial O(n7) algorithm which,
given a digraph D = (V, A) on n vertices and a natural number k, finds a
minimum cardinality set F of new arcs to add to D so that the resulting graph
is k-strong. ��

Earlier Frank [355] had given a combinatorial polynomial algorithm found
for fixed k. It is beyond the scope of this book to describe any of these
algorithms here. The combinatorial algorithms in [355] and [885] rely on a
detailed study of the structure of one-way pairs. We refer to the proof of
Lemma 5.6.10 for an example of a proof that uses the structure of one-way
pairs.

Although we may have ak(D) > γ∗
k(D) as we saw in Figure 14.4, Frank

and Jordán proved (see below) that the difference cannot be arbitrary large.
A family F of independent one-way pairs is subpartition-type if either all
the tails in F are pairwise disjoint, or all the heads in F are pairwise disjoint.
It is easy to see that if F is subpartition-type, then ηk(F) ≤ γ∗

k(D).

Proposition 14.3.5 [355] For any digraph D = (V, A) and any target con-
nectivity k there exists a family F of independent one-way pairs such that the
deficiency, ηk(F), of F equals ak(D) and F is either subpartition-type or the
disjoint union of two families of subpartition-type. Thus ak(D) ≤ 2γ∗

k(D).
��

The next result shows that if we need to add many arcs to D (in terms
of k) to make it k-strong, then the subpartition lower bound is attainable.

1 For a thorough treatment of the ellipsoid method and its consequences for Com-
binatorial Optimization, see the book [430] by Grötschel, Lovász and Schrijver.

566 14. Increasing Connectivity

Proposition 14.3.6 [355] If F is a family of independent one-way pairs and
ηk(F) ≥ 2k2−1, then F is subpartition-type. Hence if ak(D) ≥ 2k2−1, then
γ∗

k(D) = ak(D). ��

Now let us consider the special case of the vertex-strong connectivity
augmentation problem when we want to increase κ(D) from k to k + 1. The
following result is due to Frank and Jordán:

Theorem 14.3.7 [355] If κ(D) = k and ak+1(D) ≥ 2k +2, then ak+1(D) =
γ∗

k+1(D). ��

Frank and Jordán also showed that when we augment the connectivity by
just one, then we can restrict the structure of the set of new arcs.

Theorem 14.3.8 [354] If κ(D) = k, then D can be optimally augmented to
a (k + 1)-strong digraph by adding disjoint cycles and paths. In particular, if
D is a k-strong and k-regular digraph, then there are disjoint cycles covering
V whose addition to D gives a (k +1)-strong and (k +1)-regular digraph. ��

It is instructive to compare this result with Theorem 5.6.11.

14.3.3 Special Classes of Digraphs

For general digraphs one cannot say much about the structure of families
of independent one-way pairs, but as we are going to see, there are (non-
trivial) classes of digraphs for which nice structure can be found and hence
a good estimate on the value of ak(D) can be given. The first result, due to
Masuzawa, Hagihara and Tokura, deals with in-branchings.

Theorem 14.3.9 [686] Let B = (V, A) be an in-branching. Then ak(B) is
given by ak(B) =

∑
v∈V max{0, k − d−(v)}. ��

The proof of this result in [686] is long, but Frank and Jordán found a short
proof based on Theorem 14.3.3, see [355].

For an arbitrary digraph we define the numbers ηk
−(D), ηk

+(D) by

η−
k (D) =

∑

v∈V

max{0, k − d−(v)}, (14.12)

η+
k (D) =

∑

v∈V

max{0, k − d+(v)}. (14.13)

Frank made the following conjecture, which would imply that we have
ak(D) = γk(D) for every acyclic digraph D:

Conjecture 14.3.10 [345] For any acyclic digraph D on at least k + 1 ver-
tices ak(D) = max{ηk

−(D), ηk
+(D)}.

A partial result was obtained by Frank and Jordán in [355].

14.3 Increasing the Vertex-Strong Connectivity Optimally 567

Lemma 14.3.11 [355] Let D = (V, A) be an acyclic digraph for which
ak(D) = γ∗

k(D). Then ak(D) = max{ηk
−(D), ηk

+(D)}.

Proof: Since ak(D) = γ∗
k(D), there exists some family F of independent

one-way pairs with ηk(F) = ak(D) such that all tails, or all heads, in F
are pairwise disjoint. By considering the converse of D if necessary, we may
assume that the tails {T1, . . . , Tt} of F are pairwise disjoint.

Because D is acyclic, the subgraph induced by Ti is acyclic for each i ∈
[t]. Hence each Ti contains a vertex xi of out-degree zero in D〈Ti〉. Thus
N+(xi) ⊆ N+(Ti) and hence k − d+(xi) ≥ k − |N+(Ti)| ≥ k − h(Ti, Hi) for
each i ∈ [t]. Now we obtain

ak(D) ≥ ηk
+(D)

≥
t∑

i=1

(k − d+(xi))

≥
t∑

i=1

(k − h(Ti, Hi))

≥ ak(D),

showing that ak(D) = ηk
+(D). ��

Bang-Jensen made the following conjecture at a meeting in Budapest in
1994:

Conjecture 14.3.12 For every semicomplete digraph D on at least k + 1
vertices

ak(D) ≤ k(k + 1)
2

.

If true, this would be the best possible since a transitive tournament T
on n ≥ k + 1 vertices needs this many arcs. To see this it suffices to observe
that if v1, v2, . . . , vn is the unique acyclic ordering of the vertices in T , then
the first k vertices need k, k − 1, . . . , 2, 1 new arcs entering them in order to
satisfy the condition that the in-degree is at least k. It is not difficult to check
(Exercise 14.5) that one can always make a transitive tournament k-strong
by adding k(k+1)

2 new arcs. The following partial result follows from the work
of Frank and Jordán [355]:

Proposition 14.3.13 For every semicomplete digraph D on at least k + 1
vertices we have ak(D) ≤ k2.

Proof: We prove this by showing that if D is an r-strong semicomplete
digraph which has at least r + 2 vertices, then we need at most 2r + 1 new
arcs to make it (r + 1)-strong. This will imply that we need at most k2 arcs
to make any semicomplete digraph k-strong.

568 14. Increasing Connectivity

Suppose first that D is not strongly connected. Since every semicomplete
digraph has a Hamilton path (by Theorem 1.4.2), it follows that we can make
D strong by adding one arc.

Suppose now that r ≥ 1 and that there is some r-strong semicomplete
digraph D for which we need at least 2r + 2 arcs to obtain an (r + 1)-strong
semicomplete digraph from D. Thus ar+1(D) ≥ 2r +2 and then we conclude
from Theorem 14.3.7 that ar+1(D) = γ∗

r+1(D). Hence, by the definition of
γ∗

r+1(D), there exist 2r + 2 pairwise disjoint sets X1, X2, . . . , X2r+2, such
that either each of these has |N+(Xi)| = r or each has |N−(Xi)| = r. By
considering the converse of D if necessary, we may assume that |N+(Xi)| = r
for each Xi. Let X ′ be obtained by taking one vertex xi from each Xi and
let D′ = D〈X ′〉. Since D′ is semicomplete and has 2r + 2 vertices, it is easy
to see that some xi has at least r + 1 out-neighbours in D′. However, each of
these contributes to |N+

D (Xi)|, a contradiction. ��

14.4 Arc Reversals and Vertex-Strong Connectivity

Suppose now that we want to increase the vertex-strong connectivity of a
digraph by reorienting arcs rather than adding new ones. This gives rise to
the following problem.

Problem 14.4.1 Given a natural number k and a digraph D = (V, A) on at
least k + 1 vertices, find a minimum set F ⊂ A of arcs in D such that the
digraph D′ obtained from D by reversing every arc in F is k-strong.

If such a subset exists, then we let rk(D) = |F |, where F is a minimum
cardinality subset of A, whose reversal makes the resulting digraph k-strong.
Otherwise we let rk(D) = ∞.

We saw in Section 13.1 that, using submodular flows, we can find r1(D)
in polynomial time for any digraph. For arbitrary digraphs and k ≥ 2 it is not
clear how we can decide whether such a reversal even exists, let alone find an
optimal one (unless we try all possibilities which clearly requires exponential
time). Indeed, this seems to be a very difficult problem (see also Conjecture
11.6.2). Clearly,

ak(D) ≤ rk(D), (14.14)

since, instead of reversing in D, we may add exactly those new arcs we would
obtain by reversing and keep the original ones.

The next lemma, whose proof is left to the reader as Exercise 14.10, shows
that for semicomplete digraphs D, rk(D) is bounded by a function depending
only on k.

Lemma 14.4.2 [109] If a semicomplete digraph D has at least 2k + 1 ver-
tices, then rk(D) ≤

(
4k−2

2

)
. ��

14.4 Arc Reversals and Vertex-Strong Connectivity 569

Bang-Jensen and Jordán showed that, somewhat surprisingly, as soon as
the number of vertices in the given semicomplete digraph D is sufficiently
high (depending only on k), the minimum number of arcs in D we need
to reverse in order to achieve a k-strong semicomplete digraph equals the
minimum number of new arcs we need to add to D to obtain a k-strong
semicomplete digraph.

Theorem 14.4.3 [109] If D is a semicomplete digraph on n ≥ 3k − 1 ver-
tices, then ak(D) = rk(D). ��

The idea is to show that rk(D) ≤ ak(D), by demonstrating that a certain
optimal augmenting set F of D has the property that if we reverse the existing
(opposite) arcs of F in D, then we obtain a k-strong semicomplete digraph.
As we point out later, even for semicomplete digraphs, it is by no means the
case that just an arbitrary optimal augmenting set will have this property. It
was shown in [109] that 3k−1 is the best possible for semicomplete digraphs.
However, in the case when D is tournament, the question as to whether or
not the bound is best possible was left open and the following conjecture was
implicitly formulated.

Conjecture 14.4.4 [109] For every tournament D on at least 2k+1 vertices,
we have ak(D) = rk(D).

One may argue that perhaps if we restrict ourselves to only adding arcs
between adjacent vertices, then we could have ak(D) = rk(D) for arbitrary
digraphs D, provided both numbers are finite and the number of vertices in
D is large enough. This is not true, however, as can be seen from the digraph
D in Figure 14.5. It is not difficult to see that a2(D) = 1 and that any arc
whose addition to D results in a 2-strong digraph has tail x and head in T2∪z
(in particular, D + xz is 2-strong). On the other hand, it is also easy to see
that r2(D) ≥ 2 (Exercise 14.15). This example can be modified to work for
any k ≥ 1 (Exercise 14.16).

If we add arcs to the digraph D described above without increasing the
number of out-neighbours of x and of z, we can construct a semicomplete
digraph D′ of any given size for which xz is an optimal augmentation but
reversing xz does not make D′ 2-strong. This construction for k = 2 and
similar constructions for higher connectivity show that even for semicomplete
digraphs we cannot reverse along an arbitrary optimal augmenting set for
k ≥ 2.

The following conjecture, which implies Conjecture 14.3.12, was made by
Bang-Jensen at a meeting in Budapest in 1994. Again the transitive tourna-
ment on n ≥ 2k + 1 vertices shows that the bound would be best possible if
true.

Conjecture 14.4.5 For every tournament T on n vertices and every positive
integer k such that n ≥ 2k + 1 we have rk(T) ≤ k(k+1)

2 .

570 14. Increasing Connectivity

vu

T1-u T2-v

y

x z

T1 T2

Figure 14.5 A digraph with a2(D) = 1 and r2(D) = 2. The digraphs T1 and T2

are 2-strong. Bold arcs between sets of vertices indicate that all arcs between these
sets are present and have the direction shown.

We complete this section with the following useful observation, which we
use in Section 11.10.

Lemma 14.4.6 [66, 435] Let D = (V, A) be a k-strong digraph and let xy
be an arc of D. If D has at least (k + 1)-internally disjoint (x, y)-paths each
of length at least 2, then the digraph D′ obtained from D by replacing the arc
xy by the arc yx (or just deleting xy if yx ∈ A) is k-strong. Furthermore, if
D′ is not (k + 1)-strong, then every minimum separating set S′ of D′ is also
separating in D.

Proof: Suppose that D′ is not (k+1)-strong. Let S′ be a minimum separator
of D′. Then |S′| ≤ k and there is some pair a, b of vertices separated by S′ in
D′. It follows from the assumption on κ(x, y) that either S′ ∩ {x, y} �= ∅ or
S′ does not separate x, y. From this we get that {a, b} �= {x, y} and that a, b
are also separated by S′ in D. This shows that every minimum separating
set of D′ is also separating in D. Since D is k-strong we have |S′| = k and
hence D′ is k-strong. ��

14.5 Arc-Reversals and Arc-Strong Connectivity

Let rdeg
k (D) be the minimum number of arcs one needs to reverse in a directed

multigraph D in order to obtain a directed multigraph D′ with δ0(D′) ≥ k.
If no such reversal exists, we let rdeg

k (D) = ∞. Analogously define rarc
k (D) to

be the minimum number of arcs one needs to reverse in D in order to obtain a
k-arc-strong directed multigraph. By Theorem 11.5.3, rarc

k (D) < ∞ precisely

14.5 Arc-Reversals and Arc-Strong Connectivity 571

when UMG(D) is 2k-edge-connected. We saw in Section 11.8.4 that we can
determine rarc

k (D) in polynomial time using submodular flows.
For an arbitrary directed multigraph D the value of rarc

k (D) may depend
on the number of vertices of D. We prove below that for tournaments rarc

k (T)
is always bounded by a quadratic function of k. It follows from our proofs
that one can determine rarc

k (T) for an arbitrary tournament T using standard
minimum cost flows instead of the more complicated submodular flows. The
results in this section are from [121] by Bang-Jensen and Yeo.

14.5.1 Determining rdeg
k (D) Efficiently

We start by observing that the problem of determining rdeg
k (D) and finding

an optimal set of arcs to reverse can be solved using flows in networks for
any given directed multigraph D.

Let D = (V, A) be an arbitrary directed multigraph and let N = (V, A, l ≡
0, u ≡ 1) be the corresponding flow network in which every arc has capacity
one and lower bound zero. Starting from any directed multigraph D′ which
is obtained from D by reversing some arcs, we can define an integer flow x in
N by taking xij = 1 precisely if the arc ij is reversed when going from D to
D′. It is easy to see that we may also go the other way. Hence we may study
reversals of arcs in D through integer flows in N . Given an integer flow x in N ,
let D′ be obtained from D by reversing those arcs ij that have xij = 1. The in-
degree of a vertex i in D′ is given by d−D′(i) = d−D(i)+

∑
ij∈A xij −

∑
ji∈A xji.

Hence, in order for D′ to have δ0(D′) ≥ k we must have

k ≤ d−D(i) +
∑

ij∈A

xij −
∑

ji∈A

xji ≤ d+
D(i) + d−D(i)− k, (14.15)

where the last inequality ensures that d+
D′(i) ≥ k. The condition above is

equivalent to requiring that the flow x satisfies 0 ≤ xij ≤ 1 and

d+
D(i)− k ≥

∑

ij∈A

xij −
∑

ji∈A

xji ≥ k − d−D(i). (14.16)

This is just a feasibility problem for flows and hence can be solved in
polynomial time using any algorithm for finding a maximum flow in a network
(see Exercise 4.32). By introducing the cost 1 on every arc and solving a
minimum cost flow problem, in polynomial time, we can determine rdeg

k (D)
and find an optimal reversing set, or determine that rdeg

k (D) = ∞ which
corresponds to the case when there is no feasible flow in N .

Note that if D has 2-cycles, then the optimal reversal may involve the
creation of parallel arcs. If D has no multiple arcs and we insist that the
reversal does not create multiple arcs, we can exclude the reversal of arcs in
2-cycles by letting lij = uij = 0 for every arc which is part of a 2-cycle.

572 14. Increasing Connectivity

The following result by Bang-Jensen and Yeo shows that for tournaments
rdeg
k depends only on k. The result below is best possible since for all n ≥

2k + 1 we have rdeg
k (TTn) = k(k + 1)/2.

Theorem 14.5.1 [121] If T is a tournament, with |V (T)| ≥ 2k + 1, then
rdeg
k (T) ≤ k(k + 1)/2. ��

14.5.2 Reversals of Arcs to Achieve High Arc-Strong
Connectivity in Tournaments

The next result by Bang-Jensen and Yeo shows that in the case of tourna-
ments, the numbers rdeg

k and rarc
k are closely related.

Theorem 14.5.2 [121] For every tournament T with |V (T)| = n ≥ 2k + 1
we have

rarc
k (T) = max{k − λ(T), rdeg

k (T)}.

In particular, if rdeg
k (T) ≥ k − λ(T), then rarc

k (T) = rdeg
k (T).

Proof: Recall that for X, Y ⊆ V (T) we denote by |(X, Y)| the number of
arcs with tail in X and head in Y . Let q = max{k − λ(T), rdeg

k (T)} and let
T ′ be a tournament obtained from T by reversing at most q arcs, such that
the following holds:

(i) δ0(T ′) ≥ k.
(ii)

∑
x∈V (T ′)(d

+(x))2 is minimum.

Note that there exists such a T ′, by the definition of q. If T ′ is k-arc-
strong, then we are done, so assume that λ(T ′) < k. Let S be chosen such
that |(S, V − S)| = λ(T ′) in T ′, and such that |S| is minimum among all
subsets S′ with |(S′, V −S′)| = λ(T ′). As δ+(T ′), δ−(T ′) ≥ k and λ(T ′) < k,
we have 2 ≤ |S| ≤ |V (T ′)| − 2.

If there exists a vertex x ∈ S, with |(S, x)| ≤ |(x, V −S)|, then S′ = S−x is
a contradiction against the choice of S. Therefore |(S, x)| > |(x, V −S)|, which
implies that d+

T ′(x) ≤ |S| − 2, for all x ∈ S. The minimality of |(S, V − S)|
implies that |(S, y)| ≤ |(y, V − S)| and hence we get d+

T ′(y) ≥ |S|, for all
y ∈ V − S. If |S| ≤ 2k, then
∑

x∈S

d+
T ′(x) = |(S, S)|+|(S, V −S)| < |S|(|S|−1)/2+k ≤ k(|S|−1)+k = k|S|,

which is a contradiction to δ+(T ′) ≥ k. Therefore |S| ≥ 2k + 1. Analogously
we can prove that |V − S| ≥ 2k + 1. This implies that for all x ∈ S we have
d−T ′(x) ≥ n−1− (|S|−2) ≥ |V −S|+1 ≥ 2k+2 > k+1 and for all y ∈ V −S
we have d+

T ′(y) ≥ |S| ≥ 2k + 1 > k + 1.
Note that reversing any arc yx which goes from V − S to S in T ′ will

maintain (i) and decrease (ii) as d+
T ′(y) ≥ d+

T ′(x)+2. Hence it follows from the

14.6 Increasing Connectivity by Deorienting Arcs 573

fact that |S|, |V −S| ≥ 2k + 1 (implying that T ′ contains arcs from V −S to
S) that we have reversed exactly q arcs in order to obtain T ′ and furthermore
every arc from V − S to S in T ′ also goes from V − S to S in T (otherwise
we could improve (ii) by not reversing such an arc originally). Let R denote
the arcs in T ′ which have an opposite direction to what they had in T (i.e.,
R are the arcs that have been reversed, and |R| = q). We will now show that
all arcs in R go from S to V −S in T ′. It follows from the remark above that
there is no (V − S, S)-arc in R.

If there exists an (S, S)-arc in R, then let vu be such an arc (i.e., uv ∈
A(T)). As |V − S| ≥ 2k + 1 and |(S, V − S)T ′ | < k (the number of arcs
from S to V − S in T ′), there exists a vertex w in V − S, with wv ∈ A(T ′).
Now consider the tournament T ′′, obtained from T ′ by reversing vu and wv.
Note that T ′′ also has q arcs reversed compared to T (uv is reversed back
again). Compared to T ′ we see that all degrees stay the same except that
d+(w) decreases by one and d−(u) decreases by one. Therefore we still have
δ+(T ′′), δ−(T ′′) ≥ k, and we obtain a contradiction against (ii).

If there exists a (V −S, V −S)-arc in R, we analogously obtain a contra-
diction. Therefore all arcs in R are (S, V − S)-arcs.

Since we have reversed q arcs, there are at least λ(T) + q ≥ k arcs in T ′

from S to V −S, contradicting the assumption that T ′ has fewer than k such
arcs. ��

Note that the proof above can be turned into a polynomial algorithm
for finding a set of q arcs whose reversal makes T k-arc-strong using just
flows instead of the more complicated submodular flows (as we mentioned
in the introduction, one can determine rarc

k (D) for an arbitrary digraph D
using minimum cost submodular flows). We leave the details to the interested
reader.

Combining Theorem 14.5.1 with Theorem 14.5.2, we obtain the following
upper bound on rarc

k (T) which provides support to Conjecture 14.4.5. Recall
again that the transitive tournaments show that this is best possible.

Corollary 14.5.3 [121] For every tournament T with |V (T)| = n ≥ 2k + 1
we have rarc

k (T) ≤ k(k + 1)/2. ��
For general digraphs D there need not be any close relation between

the numbers rdeg
k (D) and rarc

k (D). For example, let D = Pt[C3, . . . , C3] be
the digraph obtained by substituting a 3-cycle for each vertex of a directed
path Pt on t vertices. Then it is easy to see that rdeg

2 (D) = 6 and rarc
2 (D)

is proportional to t and hence can be made much larger than rdeg
2 (D) by

increasing t.

14.6 Increasing Connectivity by Deorienting Arcs

It is not difficult to find examples of tournaments T for which ak(T) > rarc
k (T)

and rarc
k (T) < ∞ since adding parallel arcs may increase the arc-strong

574 14. Increasing Connectivity

connectivity. On the other hand, parallel arcs have no effect on vertex-strong
connectivity and in fact we saw in Theorem 14.4.3 that when n ≥ 3k − 1 we
have ak(D) = rk(D) for every semicomplete digraph. Recall also Conjecture
14.4.4.

We now consider the operation of deorienting an arc. Let xy be an ordi-
nary2 arc of a digraph D. By deorienting xy we mean the operation which
adds the arc yx to D. Clearly, deorienting arcs is equivalent to adding new
arcs with the restriction that we can only add an arc which is opposite to an
existing arc and we cannot create parallel arcs. Hence we may view deorient-
ing arcs as a restricted version of the arc addition operation.

Let deordeg
k (D) denote the minimum number of arcs we need to deorient in

D in order to obtain a digraph D′ with δ0(D′) ≥ k. Clearly deordeg
k (D) < ∞ if

and only if each vertex of D has degree at least k in UG(D) and deordeg
k (D) ≤

rdeg
k (D) for every oriented graph. If D contains directed 2-cycles, this may

not hold. See, e.g., Figure 14.6. In Exercise 14.18 the reader is asked to give
a polynomial algorithm for finding deordeg

k (D) for an arbitrary digraph D.
For tournaments we have the following characterization by Bang-Jensen and
Yeo.

Theorem 14.6.1 [121] Let T be a tournament on at least 2k + 1 vertices.
Then deordeg

k (T) = rdeg
k (T). In particular, deordeg

k (T) ≤ k(k + 1)/2. ��

Analogously define deorarc
k (D) to be the minimum number of arcs one

needs to deorient in D in order to obtain a k-arc-strong digraph. It is easy to
see that deorarc

k (D) < ∞ if and only if UG(D) is k-edge-connected. Further-
more, if D is an oriented graph (in particular, if D is a tournament), then
we have deorarc

k (D) ≤ rarc
k (D) since instead of reversing an optimal set A′ of

arcs we may deorient these arcs and obtain a digraph with minimum semi-
degree at least k. Figure 14.6 shows that the inequality above may not hold
when D contains 2-cycles. The following is a corollary of Theorem 13.1.2.

Figure 14.6 A digraph D for which 1 = rarc
2 (D) < deorarc

2 (D) = 2.

Theorem 14.6.2 Let D be a non-strong digraph for which UG(D) is 2-edge-
connected. Then deorarc

1 (D) = rarc
1 (D). ��

2 Recall that this means that D does not contain the arc yx.

14.6 Increasing Connectivity by Deorienting Arcs 575

When k ≥ 2 and D is an arbitrary digraph we do not know how to
determine deorarc

k (D) efficiently, but as we show below, this is possible when
D is a tournament.

One might expect that deorarc
k (D) < rarc

k (D) for most oriented graphs.
The next result shows that for tournaments the two numbers are equal and
hence, with respect to increasing the arc-strong connectivity of a tournament,
there is no gain from deorienting arcs rather than reversing arcs.

Theorem 14.6.3 [121] For every tournament T on at least 2k + 1 vertices
we have deorarc

k (T) = rarc
k (T).

Proof: We saw in Theorem 14.5.2 that rarc
k (T) = max{k − λ(T), rdeg

k (T)}.
If rarc

k (T) = rdeg
k (T), then, by Theorem 14.6.1, we have

deorarc
k (T) ≤ rarc

k (T)

= rdeg
k (T)

= deordeg
k (T)

≤ deorarc
k (T),

implying that deorarc
k (T) = rarc

k (T). So we may assume that rarc
k (T) = k −

λ(T). Now the claim follows from the easy fact that deorarc
k (T) ≥ k − λ(T).

��
We argued in Section 14.5.2 that we can find, in polynomial time, a set

of arcs A′ ⊂ A(T) of size rarc
k (T) in a tournament T such that reversing the

arcs of A′ results in a k-arc-strong tournament. Thus it follows from Theorem
14.6.3 that, in polynomial time, we can determine deorarc

k (T) and find a set
of deorarc

k (T) arcs to deorient such that the resulting semicomplete digraph
is k-arc-strong. One optimal set of arcs to deorient is simply a set that would
form an optimal reversal.

Problem 14.6.4 [121] Is there a polynomial algorithm which, given a di-
graph D and positive integer k, determines deorarc

k (D)?

As we saw above the answer is yes if k = 1 or if D is a tournament
but we do not even know whether there exists a polynomial algorithm for
general oriented graphs when k = 2. Even the case of semicomplete digraphs
is open. Recall that deordeg

k (D) can be calculated in polynomial time via
flows (Exercise 14.18).

Problem 14.6.5 [121] Is there a polynomial algorithm which, given an ori-
ented graph D and positive integer k, determines deorarc

k (D)?

576 14. Increasing Connectivity

Analogously to the definition of deorarc
k (D) we may define deork(D) to

denote the minimum number of arcs we need to deorient in D in order to
obtain a k-strong digraph. Clearly deork(D) < ∞ precisely when UG(D)
is k-connected. Notice that when D is a semicomplete digraph we have
deork(D) = ak(D) and hence the results in Section 14.4 apply.

Problem 14.6.6 Determine classes of digraphs for which deork(D) can be
determined efficiently.

Problem 14.6.7 Is there a polynomial algorithm for deciding whether a di-
graph D satisfies deorarc

k (D) = rarc
k (D)?

Problem 14.6.8 Characterize those oriented graphs D for which one has
deorarc

k (D) = rarc
k (D).

14.7 Miscellaneous Topics

14.7.1 Increasing Arc-Strong Connectivity of a Bipartite Digraph

The deorienting operation above gives rise to a special type of augmentation
problems in which we are not just interested in increasing the arc-strong
connectivity of a digraph by adding as few arcs as possible, but we also
have a structure requirement on the possible arcs that may be added. Along
the same line, Gabow and Jordán [372] considered the following situation
which generalizes the problem of increasing the arc-strong connectivity of
a bipartite digraph while preserving bipartiteness. We are given a directed
graph D = (V, A), a bipartition V = X1 ∪ X2 of V and a positive integer
k. The goal is to find a smallest set F of arcs for which D′ = (V, A ∪ F) is
k-arc-strong and F ⊆ (X1, X2)∪ (X2, X1). For D as above and i = 1, 2 define
γ+

k (D, Xi) and γ−
k (D, Xi) as follows:

• γ+
k (D, Xi) = max{

∑p
j=1(k−d+(Uj)) : U1, . . . , Up is a subpartition of Xi},

• γ−
k (D, Xi) = max{

∑p
j=1(k−d−(Uj)) : U1, . . . , Up is a subpartition of Xi}.

In Section 14.2 we proved that the minimum number of new arcs we need
to add to D in order to obtain a k-arc-strong directed multigraph D′ =
(V, A ∪ F) is exactly γk(D). In the bipartition constrained augmentation
problem we may need more than γk(D) arcs. See Figure 14.7 for an example
from [371].

Let Φ(k,X1,X2)(D) = max{γk(D), γ+
k (D, X1) + γ−

k (D, X1), γ+
k (D, X2) +

γ−
k (D, X2)} and denote by OPT k

X1,X2
(D) the minimum number of new arcs

we must add to D in order to obtain a k-arc-strong bipartite digraph.

14.7 Miscellaneous Topics 577

b2 a2

a1 b1

Figure 14.7 A k-arc-strong bipartite multigraph. The full arcs have multiplicity
k and the dotted arcs have multiplicity one. By adding the arcs a1a2, b1b2 we can
increase the arc-strong connectivity by one. However, if the resulting digraph must
remain bipartite, then we need to add the three arcs b2a2, b1a1, a1b2 [372].

To see that OPT k
X1,X2

(D) ≥ Φ(k,X1,X2)(D), it suffices to observe that no
single arc can decrease the deficiency of more than one deficient set which
lies entirely inside X1 or X2.

In the digraph of Figure 14.7 we have

3 = OPT k+1
X1,X2

(D) > Φ(k+1,X1,X2)(D) = 2,

showing that equality does not always hold. Let H = (V = X1 ∪X2, A) with
X1 = {a1, a2}, X2 = {b1, b2} where A consists of k copies of each of the arcs
a1b1, b2a2. It is easy to see that 3k = OPT k

X1,X2
(H) > Φ(k,X1,X2)(H) = 2k, so

we may have OPT k
X1,X2

(D) ≥ Φ(k,X1,X2)(D) + k. Using a (non-trivial) mod-
ification of Frank’s algorithm from Section 14.2, Gabow and Jordán found
a polynomial algorithm which adds at most k arcs more than the optimum,
thereby showing that OPT k

X1,X2
(D) ≤ Φ(k,X1,X2)(D) + k always holds.

14.7.2 Augmenting Arc-Strong Connectivity in Directed
Hypergraphs

One can define a directed hypergraph in many ways. Below we follow Frank
et al. [356] and give a definition that straightforwardly generalizes the notion
of a directed graph. To make it more clear what is going on, we use the
name star hypergraph [116] for this kind of orientation of a hypergraph. A
star hypergraph H∗ is a hypergraph H = (V, E) together with a function
h : E → V that associates one vertex h(a) ∈ a to each hyperedge a ∈ E .
We write H∗ = (V, A), where A = (E , h), and call h(a) the head of a.
For each of the definitions below let H∗ = (V, A) be a star hypergraph. We
always denote by H = (V, E) the underlying hypergraph of H∗, that is, the
hypergraph we obtain by ignoring the orientation (thus E and A contain the
same edges as subsets of V). By an arc of H∗ we always mean a hyperedge
with a designated head. The arc a enters a set X ⊂ V if a∩(V −X) �= ∅ and
h(a) ∈ X. Similarly, a leaves X if h(a) �∈ X and a∩X �= ∅. The in-degree of

578 14. Increasing Connectivity

X ⊂ V , d−(X), is the number of arcs that enter X and the out-degree of X,
d+(X), is the number of arcs that leave X. Note that, as for usual digraphs,
we have d−(X) = d+(V −X). Note also that an arc a may contribute to the
out-degree of up to |a|−1 sets in a partition P of V but only to the in-degree
of at most one set in P.

A path in H∗ is a sequence P = v1, a1, v2, a2, v3, a3, . . . , ak−1, vk such
that vi ∈ V , for i ∈ [k], all vi are distinct, aj ∈ A for j ∈ [k−1], h(ai) = vi+1

and vi ∈ ai for i ∈ [k− 1]. We call a path P as above an (s, t)-path if s = v1

and t = vk.
It is not difficult (Exercise 14.20) to extend Menger’s theorem to star

hypergraphs: there exist k-arc-disjoint (s, t)-paths in H∗ if and only if
d−(X) ≥ k for every X ⊂ V with s �∈ X and t ∈ X. We say that a star
hypergraph H∗ = (V, A) is k-arc-strong if d−(X) ≥ k for all ∅ �= X ⊂ V .

In [140] Berg, Jackson and Jordán consider the problem of augmenting
the arc-strong connectivity of a star hypergraph by adding new hyperarcs
(again with a designated head for each new hyperarc) of size at most t for
some t ≥ 2 (all new hyperarcs must have size at most t). Their main result
is the following theorem which is easily seen to generalize Theorem 14.2.3.

Theorem 14.7.1 [140] Let H∗ = (V, A) be a star hypergraph and γ a non-
negative integer. Then H∗ can be made k-arc-strong by adding γ hyperarcs
of size at most t if and only if

γ ≥
r∑

i=1

(k − d−(Xi)) and (t − 1)γ ≥
r∑

i=1

(k − d+(Xi)) (14.17)

holds for every subpartition {X1, X2, . . . , Xr} of V . ��

One of the main tools in the proof of Theorem 14.7.1 is a generalization
of the splitting off operation from Section 14.1 in which the special ver-
tex s is incident only to arcs of size 2 and we may split off a set of t arcs
u1s, u2s, . . . , uts entering s with one arc sv leaving s and replace these arcs
by one new hyperarc {u1, u2, . . . , ut, v} with head v.

It is briefly indicated in [140] how one can obtain a polynomial algorithm
for finding an optimal augmentation of a star hypergraph to a k-arc-strong
star hypergraph by adding hyperarcs of size at most t. One of the main
tools is again minimum cut calculations in a suitable network via max flow
calculations.

14.7.3 Weighted Versions of Local Arc-Connectivity Problems

In [47] Arkin, Hassin and Shahar studied weighted versions of the three
operations adding, reversing and deorienting arcs, which we have considered
above, applied to problems concerning local arc-connectivity.

In [47] the deorientation operation was replaced by the more general oper-
ation of complementing an arc. By complementing an arc xy in a digraph

14.7 Miscellaneous Topics 579

D = (V, A) we mean the operation of adding a new arc from y to x to
the digraph, thereby possibly creating parallel arcs if μD(y, x) ≥ 1. Con-
trary to the situation for the deorientation operation, where we may have
deorarc

k (D) > rarc
k (D) (see Figure 14.6), we never need to complement more

than rarc
k (D) arcs in D to obtain a k-arc-strong directed multigraph, as we

may just complement the set of arcs in an optimal reversal.
In [47] many problems concerning local connectivities were considered

for each of the three operations of adding, reversing or complementing arcs.
In the first and third case, the possible new arcs are weighted and in the
case of arc reversal the original arcs are weighted. That is, we are given a
weight function either on V ×V −A or on A (in the case of reversal) and the
goal is to find a cheapest set of arcs to either add or reverse so that the given
local connectivity requirement is satisfied. One can reduce the complementing
problem to an addition problem with weights, simply by giving infinite cost
to all new arcs xy for which there is no copy of the arc yx in the input
digraph. This shows that for the weighted versions the complement version
is no harder than the addition version.

The simplest problem of the type above is when the input is a digraph
D = (V, A), two vertices s, t and a weight function on the arcs and the goal
is to add, complement or reverse arcs of minimum cost so that the resulting
digraph has k arc-disjoint (s, t)-paths. All three variants can be solved by
reducing to minimum cost flow problems (Exercises 14.21 and 14.22).

When we want to guarantee k-arc-disjoint paths from a given vertex s to
every other vertex (or equivalently, by Edmonds’ branching theorem, ensure
the existence of k arc-disjoint out-branchings from s) by adding a cheapest
set of new arcs or reversing a minimum cost subset of the original arcs these
problems can still be solved in polynomial time by using an algorithm for
weighted matroid intersection and submodular flows, respectively (Exercises
9.5 and 14.23). When we only want k arc-disjoint paths from s to a subset T ⊆
V , all three variants (adding, complementing and reversing) become NP-hard
[47]. Arkin et al. show that both the reversal and the complementing variant
of the following problem (which they call the S to S problem) are NP-
hard3: Given a digraph D = (V, A) and a subset S ⊆ V ; find a cheapest set
of arcs to reverse (or complement) so that the resulting digraph contains an
(s, t)-path for every choice of distinct vertices s, t ∈ S.

Problem 14.7.2 [47] Is there a polynomial algorithm for the S to S problem
when |S| = k, k fixed (not part of the input) and the operation is either
addition, complement or reversal?

The problem is open already for k = 2 in the case of reversal and for k ≥ 3
for addition and complement. For k = 2 there is a polynomial algorithm in
case of addition (and hence complement) [47].

3 The addition version is also NP-hard [342].

580 14. Increasing Connectivity

14.8 Exercises

14.1. (+) Greedy deletion of arcs in Frank’s algorithm. Show how to im-
plement Steps 2 and 3 of Frank’s algorithm in Section 14.2 by using flows
to find the maximum number of arcs that can be deleted for each vertex vi

(Frank [342]). Hint: let t be a vertex of V −vi, identify s and t to one vertex
t′ and then calculate λ(vi, t

′) in the resulting directed multigraph. Do this
for all t ∈ V − vi and let ρ be the smallest of the numbers calculated. Using
Menger’s theorem, show that we may delete precisely min{μ(vi, s), ρ − k}
arcs from vi to s without violating (14.2).

14.2. Perform Frank’s algorithm on the digraph in Figure 14.8 when the goal is
to obtain a 2-arc-strong directed multigraph.

Figure 14.8 A directed graph H.

14.3. (+) Finding an admissible split. Show that Step 5 of Frank’s algorithm
in Section 14.2 can be implemented using flows. That is, show how to decide
if a given splitting (us, sv) preserves k-arc-strong connectivity in V (Frank
[342]). Hint: we need to decide if there is a set U ⊂ V such that u, v ∈ U
and d+(U) = k or d−(U) = k. This can be done using flows in a way similar
to that outlined in the hint to Exercise 14.1.

14.4. (+) Augmenting rooted arc-strong connectivity. Consider the prob-
lem of finding the minimum number of new edges to add to a directed multi-
graph so that the new directed multigraph has k arc-disjoint out-branchings
at s. Show how to reduce this problem to the general k-arc-connectivity
augmentation problem. Try to derive a min-max formula for the optimal
number of new arcs.

14.5. Augmenting acyclic tournaments to k-strong connectivity. Prove
that an acyclic tournament on n ≥ k + 1 vertices can be made k-strong by

adding k(k+1)
2

arcs. Hint: use Exercise 5.10.

14.6. (+) Let D = �Cn[
↔
Kk, I1,

↔
Kk, . . . ,

↔
Kk, I1], where I1 denotes the digraph

which is just an isolated vertex and n is an even number. Prove that
γk(D) = k. Try to determine ak(D).

14.7. Obtaining new k-arc-strong directed multigraphs by adding new
vertices. Let D be a k-arc-strong directed multigraph, let x be a new vertex
and let D′ be obtained from D and x by adding k arcs from x to arbitrary
vertices of D and k arcs from arbitrary vertices of D to x. Prove that D′ is
k-arc-strong.

14.8. Obtaining new k-strong digraphs by adding vertices. Let D be a
k-strong digraph, let x be a new vertex and let D′ be obtained from D and
x by adding k arcs from x to distinct vertices of D and k arcs from distinct
vertices of D to x. Prove that D′ is k-strong.

14.8 Exercises 581

14.9. Vertices with high in- and out-degree in semicomplete digraphs.
Prove that every semicomplete digraph on at least 4k − 1 vertices has a
vertex x with d+(x), d−(x) ≥ k. Show that this is the best possible.

14.10. Prove Lemma 14.4.2. Hint: use Exercises 14.8 and 14.9 to reduce the problem
to one for a tournament on at most 4k − 2 vertices.

14.11. Bi-submodularity of the function h(X, Y) on one-way pairs. Let
D = (V, A) be a digraph. Recall that a pair (X, Y), where X, Y ⊂ V ,
is a one-way pair if there are no edges from X to Y and that h(X, Y) is
defined by h(X, Y) := |V − (X ∪ Y)|. Prove that the function h(X, Y) is
bi-submodular, i.e., for every choice of one-way pairs (X, Y), (X ′, Y ′) the
following holds:

h(X, Y) + h(X ′, Y ′) ≥ h(X ∪X ′, Y ∩ Y ′) + h(X ∩X ′, Y ∪ Y ′).

Hint: consider the contribution of a vertex v ∈ V to each side of the inequal-
ity.

14.12. Let D be a digraph that is k-strong but not (k + 1)-strong. Call a one-way
pair (X, Y) critical if h(X, Y)=k. By Lemma 14.3.2, the family

F = {(X, Y) : (X, Y) is a critical one-way pair}

is non-empty. Prove that F is a crossing family of pairs of sets, i.e., if
(X, Y), (X ′, Y ′) ∈ F satisfy X ∩X ′ �= ∅ and Y ∩ Y ′ �= ∅, then (X ∪X ′, Y ∩
Y ′), (X ∩X ′, Y ∪ Y ′) ∈ F . Hint: use Exercise 14.11.

14.13. Let H be the digraph in Figure 14.8. Determine a2(H) and a set of a2(H)
arcs whose addition to H results in a 2-strong digraph. Use one-way pairs
to verify optimality.

14.14. Let D be a digraph with κ(D) = k and suppose that γ∗
k+1(D) = 2k + 1.

Prove that ak+1(D) = γ∗
k+1(D).

14.15. Let D be the digraph illustrated in Figure 14.5. Prove that r2(D) ≥ 2.

14.16. Generalize the example in Figure 14.5 to obtain an infinite set of digraphs
D = {D1, D2, . . . } such that rk(Dk) > ak(Dk), k = 1, 2,

14.17. Let T be the tournament on 7 vertices shown in Figure 14.9. Show that
r2(T) = 1 and that r2(T − v) = 3.

14.18. Calculating deordeg
k (D). Show how to calculate deordeg

k (D) via flows.
Hint: let

defdeg
k (D) =

X

v∈V

min{0, k − d−(v)}+
X

v∈V

min{0, k − d+(v)}

and show how to use flows to find a maximum set of arcs A′ so that deori-
enting these arcs decreases defdeg

k (D) by 2|A′|. Then use this observation
to solve the full problem.

14.19. Give examples of tournaments T for which ak(T) < rarc
k (T) < ∞.

14.20. Menger’s theorem for star hypergraphs. Prove Menger’s theorem for
star hypergraphs. Hint: follow the second proof of Menger’s theorem in
Section 5.4.

582 14. Increasing Connectivity

v

X Y

Figure 14.9 A strong tournament T on 7 vertices. The fat arcs indicate that all
arcs between the sets indicated have the directions shown.

14.21. Show how to formulate the problem of finding a minimum cost set of new
arcs to add to a digraph D = (V, A) so that the resulting digraph has k
arc-disjoint (s, t)-paths as a minimum cost flow problem.

14.22. Show how to solve the same problem as above when the operation is arc-
reversal. Hint: use minimum cost flows again.

14.23. Let D = (V, A) be a digraph, let s be a specified vertex of D and let ω be a
non-negative weight function on A. The goal is to find a minimum cost set
of arcs to reverse so that the resulting digraph contains k-arc-disjoint out-
branchings rooted in s. Show how to formulate this problem as a submodular
flow problem [47].

14.24. N P-hardness of the unweighted s to T reversal problem. Show that
the problem of deciding, for a given digraph D = (V, A), a vertex s and a
subset T ⊂ V − s, the minimum number of arcs one needs to reverse in D
in order to get a digraph in which s can reach every vertex of T . Hint: show
how to reduce the Set Covering Problem4 to the problem above [47].

14.25. Use the result of the previous exercise to show that the following problem is
NP-hard: Given a digraph D = (V, A) and a subset S ⊆ V find a minimum
cardinality subset of arcs in A so that after reversing these arcs the resulting
digraph has an (s, t)-path for every choice of s, t ∈ S [47].

4 Given S = {a1, a2, . . . , an}, and integer K and a family F = {X1, X2, . . . , Xm}
of S. Does F contain a subcollection of at most K subsets so that these cover
every element of S at least once?

15. Feedback Sets and Vertex Orderings

In the previous chapters, we considered various properties of cycles in di-
graphs. In this chapter, we consider the question of how few vertices have
to be deleted to get rid of all cycles. We will also consider the arc version of
this question (i.e., to destroy all cycles we delete arcs rather than vertices).
The last question leads us to the notion of an ‘optimal’ ordering of a digraph
which is of interest in various applications. We will see that the minimum
number of vertices (arcs) required to destroy all cycles is related to the max-
imum number of vertex-disjoint (arc-disjoint) cycles in the digraph under
consideration. We will also consider the question of decreasing the number of
cycles by reversing arcs.

In a digraph D, a set S of vertices (arcs) is a feedback vertex set (an
feedback arc set) if D − S is acyclic. The minimum number of elements
in a feedback vertex (arc) set of D is denoted by τ0(D) (τ1(D)). Notice
that the parameters τ0(D) and τ1(D) have several practical applications, one
of the most important is testing electronic circuits (see Leiserson and Saxe
[639]). An electronic circuit can be modelled by a directed graph by letting
each (boolean) gate correspond to a vertex and the wires into each gate
be modelled by arcs into the vertex corresponding to that gate. Finding a
small set of arcs whose removal makes the resulting digraph acyclic can help
reduce the hardware overhead needed for testing the circuit using so-called
scan registers (see Kunzmann and Wunderlich [631]).

Let π = v1, v2, . . . , vn be an ordering of the vertices of a digraph D. An
arc vivj ∈ A(D) is called forward (backward) with respect to π if i < j
(i > j); π is τ -optimal (or, simply optimal) if the number of backward
arcs with respect to π is minimum among all orderings of vertices of D. The
following proposition is folklore; we leave its proof as Exercise 15.1.

Proposition 15.0.1 Let D be a digraph and let S ⊆ A(D). Then the fol-
lowing claims are equivalents:

(a) S is a feedback arc set of minimum size;
(b) There exists a τ -optimal ordering π of V (D) such that S is the set of

backward arcs with respect to π;
(c) D − S is an acyclic subdigraph of D of maximum size. ��

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 15,
© Springer-Verlag London Limited 2010

583

http://dx.doi.org/10.1007/978-1-84800-998-1_15

584 15. Feedback Sets and Vertex Orderings

Recall that for a digraph D, ν0(D) (ν1(D)) denotes the maximum number
of vertex-disjoint (arc-disjoint) cycles in D (see Section 13.3).

In Section 15.1 we state two conjectures on feedback arc sets, consider
partial results and relations to other conjectures. Section 15.2 is devoted to
optimal orderings of vertices in tournaments. Complexity of the feedback set
problems is discussed in Section 15.3. In Section 15.4 we study relations be-
tween the parameters ν0 and ν1, on the one hand, and parameters τ0 and τ1,
on the other hand. We state the famous Younger’s conjecture and give an
overview of the proof of this conjecture by Reed, Robertson, Seymour and
Thomas. In Section 15.5 we give a proof of Seymour’s Second Neighbourhood
Conjecture for tournaments based on special orderings of vertices of tourna-
ments. The proof is due to Havet and Thomassé. Section 15.6 is devoted to
Ádám’s conjecture on decreasing the number of cycles in a digraph by arc
reversals.

15.1 Two Conjectures on Feedback Arc Sets

For a digraph D, let m̄(D) be the number of edges in the complement
of UG(D). Chudnovsky, Seymour and Sullivan proved the following upper
bound for τ1(D) for digraphs D with girth at least 4.

Theorem 15.1.1 [217] If an oriented graph D has no 3-cycle, then τ1(D) ≤
m̄(D).

Proof: The proof is by induction on n = |V (D)|. Clearly, the theorem holds
for n ≤ 2 and assume that n ≥ 3. For a vertex v of D, let f(v) denote the
number of induced paths of length 2 starting at v and let g(v) denote the
number of induced paths of length 2 in which v is the middle vertex. Since∑

v∈V (D) f(v) =
∑

v∈V (D) g(v), there is a vertex v such that f(v) ≤ g(v).
Choose such a vertex v. Let D1 = D〈N+(v)〉 and let D2 = D − N+[v].
Observe that m̄(D) ≥ m̄(D1) + m̄(D2) + g(v). By the induction hypothesis,
τ1(D1) ≤ m̄(D1) and τ1(D2) ≤ m̄(D2); for i = 1, 2 let Xi be a feedback arc
set of Di of minimum size. Let X3 = {ab ∈ A(D) : a ∈ N+(v), b �∈ N+(v)};
clearly |X3| = f(v). Since D has no 3-cycle, no arc of X3 has its head in
N−(v). Thus, D − X is acyclic, where X = X1 ∪X2 ∪X3. Hence

τ1(D) ≤ |X| = |X1| + |X2| + |X3| =
τ1(D) + τ2(D) + f(v) ≤

m̄(D1) + m̄(D2) + g(v) ≤ m̄(D).

��
Chudnovsky, Seymour and Sullivan believed that the bound in Theorem

15.1.1 is not sharp and suggested the following:

15.2 Optimal Orderings in Tournaments 585

Conjecture 15.1.2 [217] If an oriented graph D has no 3-cycle, then we
have τ1(D) ≤ 1

2m̄(D).

Chudnovsky, Seymour and Sullivan [217] proved the conjecture for two
cases: (a) V (D) can be partitioned into two subsets Y and Z such that
D〈Y 〉 and D〈Z〉 are tournaments, (b) the vertices of D can be arranged in
a circle such that if distinct vertices u, v, w are in clockwise order and u→w,
then u→v and v→w. Kostochka and Stiebitz (see [217]) proved that in any
minimal counterexample to the conjecture every vertex has at least 3 non-
neighbours, and the conjecture holds for all oriented graphs of order at most
8.

The following conjecture appears to be very strong. According to Sullivan
[837] who attributes it to Lichiardopol, the conjecture implies the Hoang-
Reed, Caccetta-Häggkvist, Bermond-Thomassen and Thomassé conjectures
(Conjectures 8.4.5, 8.4.1, 13.3.3 and 6.5.8, respectively).

Conjecture 15.1.3 Every digraph D has some minimal feedback arc set that
contains a path of length δ+(D).

15.2 Optimal Orderings in Tournaments

To illustrate the definitions above and to gain some understanding of difficul-
ties in studying the feedback sets, let us consider the class of tournaments.

For a tournament T , let β(T) be the maximum number of arcs in an
acyclic subdigraph of T . Fixing an arbitrary ordering u1, . . . , un of vertices
in T , we see that the number of forward arcs plus the number of backward
arcs equals

(
n
2

)
. By replacing the ordering u1, u2, . . . , un by un, un−1, . . . , u1

if needed, we obtain that β(T) ≥ n(n − 1)/4. One may guess that we can
always find an acyclic subdigraph of T of size exceeding n(n − 1)/4 by a
significant number, say, εn(n− 1)/4, where ε is an absolute positive constant
not depending on n. However, this is not true due to the following result due
to Erdős and Moon [298]. Its proof is a modification of the original proof
suggested by N. Alon.

Theorem 15.2.1 For every n ≥ 3, there exists a tournament T of order n
such that β(T) ≤ n(n − 1)/4 + 1

2

√
n3 loge n.

Proof: Consider a random tournament Tn on vertices [n], i.e., a tournament
chosen randomly from the set of all tournaments on [n]. Observe that for
every pair i �= j ∈ [n], ij ∈ A(Tn) with probability 1/2.

For every pair i < j ∈ [n], define the random variable xij by

xij =
{

+1 if ij ∈ A(Tn)
−1 otherwise.

586 15. Feedback Sets and Vertex Orderings

Let N =
(
n
2

)
. With respect to the ordering π = 1, 2, . . . , n, the number of

forward arcs minus the number of backward arcs equals

SN =
∑

1≤i<j≤n

xij .

Then, Eπ = {|SN | > a} denotes the event that, in one of the two orderings
π = π(1), π(2), . . . , π(n)(= 1, 2, . . . , n) and π∗ = π(n), π(n − 1), . . . , π(1)(=
n, n − 1, . . . , 1), the number of forward arcs exceeds n(n − 1)/4 + a/2. On
the other hand, SN is the sum of

(
n
2

)
random independent variables taking

values +1 and −1, each with probability 1/2. By Corollary A.1.2 in [29],

Prob(|SN | > a) ≤ 2e−a2/(2N), (15.1)

for every positive number a.
Observe that the event E that for at least one permutation of 1, 2, . . . , n,

the number of forward arcs exceeds n(n− 1)/4 + a/2 equals the union of the
events Eν for all permutations of 1, 2, . . . , n, whose total number is n!. Put
a =

√
n3 loge n. Applying (15.1) we obtain

Prob(E) ≤ 2n! exp(−n loge n)
≤ 2n!n−n < 1

for every n ≥ 3. This means that with positive probability the event E does
not hold, i.e., for every permutation of 1, 2, . . . , n, the number of forward
arcs does not exceed n(n − 1)/4 +

√
n3 loge n/2. By the definition of Tn, it

follows that there exists a tournament of order n with the above-mentioned
property. ��

A slightly better result was obtained by de la Vega in [254] who proved
that

√
loge n in the inequality of Theorem 15.2.1 can be replaced by a con-

stant. Alon and Spencer [29] describe an explicit construction of tournaments
T for which β(T) ≤ n(n − 1)/4 + O(n3/2 log n).

15.3 Complexity of the Feedback Set Problems

In Subsection 15.3.1 we consider NP-completeness results including a proof
of a conjecture by Bang-Jensen and Thomassen that the problem of finding
a smallest feedback arc set in a tournament is NP-complete. In Subsection
15.3.2 we prove that the smallest feedback arc set problem is polynomial
time solvable for planar digraphs. Approximation algorithms for the feedback
arc problem are discussed in Section 15.3.3. Finally, in Subsection 15.3.4 we
consider a recent result by Chen, Liu, Lu, O’Sullivan and Razgon [205] that
the problem of finding a smallest feedback vertex set in a digraph is fixed-
parameter tractable.

15.3 Complexity of the Feedback Set Problems 587

15.3.1 NP-Completeness Results

The following result can be proved similarly to Proposition 13.3.1.

Proposition 15.3.1 For every digraph D there exist digraphs D′ and D′′

such that τ0(D) = τ1(D′) and τ1(D) = τ0(D′′). The digraphs D′ and D′′ can
be constructed from D in polynomial time. ��

This proposition implies that the following problems are of the same com-
plexity (up to a polynomial factor).

FVS Problem: Given an integer k and a digraph D, is τ0(D) ≤ k?
FAS Problem: Given an integer k and a digraph D, is τ1(D) ≤ k?

Karp [585] was the first to prove the following theorem:

Theorem 15.3.2 The FAS problem is NP-complete. ��

Gavril [396] proved that the FAS problem remains NP-complete even
for digraphs D with Δ0(D) ≤ 3 or line digraphs. Proposition 15.3.1 and
Theorem 15.3.2 imply immediately that the FVS problem is NP-complete.
The FVS problem remains NP-complete for digraphs D with Δ0(D) ≤ 2,
planar digraphs D with Δ0(D) ≤ 3 (see Garey and Johnson [393]) and for
line digraphs (see Gavril [396]). This problem, unlike the FAS problem, is
NP-complete even for undirected graphs [393].

Bang-Jensen and Thomassen [118] and Speckenmeyer [831] proved the
following:

Theorem 15.3.3 The FVS problem is NP-complete for tournaments. ��

Bang-Jensen and Thomassen [118] conjectured that the FAS problem is
also NP-complete for tournaments. Interestingly, this conjecture was inde-
pendently solved by several groups of researchers almost at the same time,
see Alon [18], Charbit, Thomassé and Yeo [197] and Conitzer [227]. In fact,
Ailon, Charikar and Newman [15] were the first to find a randomized reduc-
tion from FAS on digraphs to FAS on tournaments and the approaches of
[18] and [197] can be viewed as deterministic variations of this randomized
reduction.

In the remainder of this subsection, we present the proof from [197] that
FAS for tournaments is NP-complete.

Recall that the Cauchy-Schwarz inequality is often formulated as follows:
(u, v) ≤

√
(u, u)(v, v), where u and v are n-dimensional vectors and (x, y) =∑n

i=1 xiyi when x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
Let z be a positive integer and let k = 2z. We denote by A the k × k

matrix whose rows and columns are indexed by the subsets Fi of {1, 2, . . . , z}
(in any order) and whose entries are aij = (−1)|Fi∩Fj |.

588 15. Feedback Sets and Vertex Orderings

Lemma 15.3.4 For any subset J of r columns of A, we have

k∑

i=1

|
∑

j∈J

aij | ≤ k
√

r.

Proof: Let p �= q. Observe that aipaiq = (−1)2|Fi∩Fp∩Fq|+|Fi∩(FpΔFq)|. Since
there are equal numbers of subsets Fi for which |Fi ∩ (FpΔFq)| is even and
odd,

∑k
i=1 aipaiq = 0 when p �= q. Now by the Cauchy-Schwarz inequality,

∑k
i=1

|
P

j∈J aij |
k ≤

√
Pk

i=1(
P

j∈J aij)2

k =
√
Pk

i=1(
P

p∈J a2
ip+2

P

p �=q∈J aipaiq)

k =
√

r.

��

Lemma 15.3.5 Suppose that z is divisible by 3. Let B = (bij) be the matrix
obtained from A by an arbitrary permutation of the columns and let qi be
defined as follows: qi = max{|

∑p
j=1 bij | : p ∈ [k]}. Then

∑k
i=1 qi ≤ 2k5/3.

Proof: Define the integers l = k2/3 and s = k1/3. For all i ∈ [k] and j ∈ [s],
we let cj

i = |
∑jl

j′=(j−1)l+1 bij′ |. By Lemma 15.3.4 we have
∑k

i=1 cj
i ≤ k

√
l for

all j ∈ [s]. Therefore
∑k

i=1

∑s
j=1 cj

i ≤ ks
√

l = k5/3.
We now bound qi. Assume that p is defined so that qi = |

∑p
j′=1 bij′ |. Let

j be such that (j − 1)l ≤ p < jl. Note that qi ≤ c1
i + c2

i + . . . + cj−1
i + l since

|
∑p

i=(j−1)l+1 bij | ≤ l. Thus
∑k

i=1 qi ≤ (
∑k

i=1

∑s
j=1 cj

i) + kl ≤ 2k5/3 ≤ l. ��
We leave the proof of the following lemma as Exercise 15.2.

Lemma 15.3.6 Every column of A has k/2 positive entries, except the empty
set column which has k. ��

Theorem 15.3.7 Let z be divisible by 3. There exists a bipartite tournament
Gk in which partite sets both have k vertices (|V (Gk)| = 2k) and τ1(Gk) ≥
k2

2 − 2k5/3. Furthermore, we can construct Gk in polynomial time.

Proof: Let the partite sets of Gk be {r1, r2, . . . , rk} and {s1, s2, . . . , sk},
respectively. Now add an arc from ri to sj if aij = −1 in A, and add an arc
from sj to ri if aij = 1 in A. This clearly defines a bipartite tournament,
which can be constructed in polynomial time. Let π be a τ -optimal ordering
of V (Gk). Without loss of generality, we may assume that the order of the
sj ’s in π is s1, s2, . . . , sk. Let i ∈ [k] be arbitrary and define p such that
s1, s2, . . . , sp come before ri in π and sp+1, sp+2, . . . , sk come after ri in π.
Let mi denote the number of positive entries of A in row i and note that the
number of backward arcs incident with ri is as follows:

15.3 Complexity of the Feedback Set Problems 589

|{aij : aij = −1, j ≤ p}| + |{aij : aij = 1, j > p}| =
|{aij : aij = −1, j ≤ p}| + (mi − |{aij : aij = 1, j ≤ p}|) =

mi −
p∑

j=1

aij .

Thus, by Lemmas 15.3.5 and 15.3.6, τ1(Gk) ≥ k(k+1)
2 − 2k5/3 > k2

2 − 2k5/3.
��

Theorem 15.3.8 The FAS problem for tournaments is NP-complete.

Proof: We will use a reduction from FAS for arbitrary digraphs to FAS for
tournaments. Let D be an arbitrary digraph with V (D) = {v1, v2, . . . , vn}.
We may assume that D has no cycles of length two, as deleting such a cycle
decreases the minimum feedback arc set by exactly one. Set k = 26�1+log2n�.
Note that k = O(n6) and k ≥ 64n6. Let Gk be the bipartite tournament built
in Theorem 15.3.7 with partite sets {r1, r2, . . . , rk} and {s1, s2, . . . , sk}.

We now construct a tournament T with vertex set {wj
i : i ∈ [n], j ∈ [k]}

and the arc set described below. Let a, b ∈ [n] and i, j ∈ [k] be arbitrary. The
arc between vertices wi

a and wj
b in T is oriented as follows:

(a) wi
awj

b ∈ A(T) if a = b and i < j;
(b) wi

awj
b ∈ A(T) if vavb ∈ A(D);

(c) If va and vb have no arc between them in D and a < b, then wi
awj

b ∈ A(T)
if risj ∈ A(Gk) and wj

bw
i
a ∈ A(T) if sjri ∈ A(Gk).

We will now bound τ1(T) from both above and below. Without loss of
generality, assume that v1, v2, . . . , vn is a τ -optimal ordering of V (D). Note
that Theorem 15.3.7 implies that the arcs generated by (c) above will always
contribute between (

(
n
2

)
−|A(D)|)(k2

2 −2k5/3) and (
(
n
2

)
−|A(D)|)(k2

2 +2k5/3)
to τ1(T). Now consider the following ordering of the vertices in T :

w1
1, w

2
1, . . . , w

k
1 , w1

2, w
2
2, . . . , w

k
2 , . . . , w1

n, w2
n, . . . , wk

n.

This ordering implies the following bound on τ1(T):

τ1(T) ≤ k2τ1(D) +
((

n

2

)
− |A(D)|

) (
k2

2
+ 2k5/3

)
.

In order to bound τ1(T) from below let π be a τ -optimal ordering of
the vertices in T . Let i1, i2, . . . , in be an arbitrary collection of n integers
from [k] and note that there are at least τ1(D) arcs between vertices in
{wi1

1 , wi2
2 , wi3

3 , . . . , win
n } which are backward arcs in π, as this set of vertices

induce a digraph isomorphic to D. By summing over all possible values of
i1, i2, . . . , in we get knτ1(D) backward arcs, where each arc can be counted
at most kn−2 times. This implies the following:

590 15. Feedback Sets and Vertex Orderings

τ1(T) ≥ knτ1(D)
kn−2

+
((

n

2

)
− |A(D)|

) (
k2

2
− 2k5/3

)
.

Since k1/3 ≥ 641/3n2 = 4n2, the above two bounds imply the following:

τ1(D) − 1
2

<
τ1(T)

k2
− 1

2

((
n

2

)
− |A(D)|

)
< τ1(D) +

1
2
.

So if we could compute τ1(T) in polynomial time, we would also be able to
compute τ1(D). Since our reduction is polynomial, we are done. ��

15.3.2 FAS for Planar Digraphs

While for arbitrary digraphs and even for tournaments the FAS problem is
NP-complete (as we saw above), for planar digraphs the situation is quite
different (unless P = NP) due to the following result by Lucchesi:

Theorem 15.3.9 [659] The FAS problem is polynomially solvable for planar
digraphs.

We give a proof of Theorem 15.3.9 below. First we need the definition
of the dual of a plane directed pseudograph. Let G = (V, E) be a planar
pseudograph and let F be the set of faces of G (with respect to the fixed
planar embedding of G). Let G∗ be the pseudograph which has a vertex vi

for each face fi ∈ F and for every edge e ∈ E such that e is on the boundary
of faces fi, fj , the two vertices vi, vj corresponding to fi, fj are joined by an
edge1. In general G∗ contains parallel edges and may also contain loops. For
plane directed pseudographs we can also define a dual called the directed
dual. This is the same as above but now the orientation of the arc between vi

and vj is always chosen such that the arc crosses the original arc e from left
to right (here left means the left side when we traverse e from its tail to its
head). See Figure 15.1 for an example of the dual of a directed multigraph.

If D = (V, A) is a plane directed multigraph and D∗ is its directed dual,
then it is easy to see that D∗ is also planar (Exercise 15.3). In fact, we have
that (D∗)∗ is isomorphic to the converse of D (Exercise 15.4).

Proof of Theorem 15.3.9: Let D be a planar directed multigraph and
assume that D is embedded in the plane with directed dual D∗. Clearly we
may assume that UG(D) is connected since otherwise we just consider each
connected component separately.

We prove that the size of a minimum feedback set of D is equal to the
minimum size of a dijoin of D (see the definition of a dijoin in Section 13.1).
Recall from Section 13.1 that this is also the minimum number of arcs whose
contraction results in a strongly connected directed multigraph.
1 Note that if e is not part of the boundary of a facial cycle, then fi = fj and we

get a loop at vi.

15.3 Complexity of the Feedback Set Problems 591

(a) (b)

Figure 15.1 (a) A plane directed multigraph D; (b) the directed dual D∗ of D
drawn on top of D. White circles indicate the vertices of D∗ and thin arcs are arcs
of D∗. Fat arcs indicate arcs of D.

If we delete an arc a of D the effect on the dual will be the same as if
we contract the corresponding dual arc a∗ (the one crossing a from left to
right). If C is a facial cycle of D, then the vertex v corresponding to C has
all arcs directed into it or out of it (depending on whether the orientation of
C is clockwise or anti-clockwise). Thus in D∗ the arcs incident with v form a
directed cut (recall the definition of a directed cut from Section 13.1) in D∗

implying that D∗ is not strong.
Conversely, if D∗ is not strongly connected, then let H be an initial strong

component (that is, there is no arc from V − V (H) to V (H) in D) of D∗.
Now it is not difficult to see that the arcs of D corresponding to the directed
cut (V (H), V −V (H)) in D∗ (which is non-empty since D is connected) form
a directed cycle (Exercise 15.5). Thus we have shown that D has a directed
cycle if and only if D∗ is not strongly connected. Furthermore, deleting arcs of
D until we obtain an acyclic directed multigraph is equivalent to contracting
arcs of D∗ until we obtain a strong directed multigraph. This shows that
the size of a minimum feedback arc set of D equals the size of a minimum
directed join in D∗. Now it follows from Corollary 13.1.5 that we can find
the feedback number (and a minimum feedback arc set) of D in polynomial
time. ��

Our arguments above imply the following:

Corollary 15.3.10 For a planar digraph D, ν1(D) = τ1(D). ��

15.3.3 Approximation Algorithms

We mentioned above that in several applications one wishes to find a min-
imum (cardinality) feedback arc set. From now on the following problem

592 15. Feedback Sets and Vertex Orderings

will be called the Feedback Arc Set (FAS) Problem 2: given a digraph
D = (V, A), find an ordering s = v1, v2, . . . , vn of V with minimum number
of backward arcs.

Observe that if A′ is an arbitrary feedback arc set, then by definition
D − A′ is acyclic and hence has an acyclic ordering v1, v2, . . . , vn. With re-
spect to this ordering every arc vivj ∈ A−A′ satisfies i < j. Hence, from the
algorithmic point of view, finding a minimum feedback arc set in D is equiv-
alent to finding an ordering u1, u2, . . . , un of V which maximizes (minimizes)
the number of forward arcs (backward arcs); an arc uiuj is forward with
respect to the above ordering if i < j, otherwise uiuj is backward3. This
again is easily seen to be (algorithmically) equivalent to finding an acyclic
subdigraph with the maximum number of arcs in D (Exercise 15.7) . The
latter problem is known as the Maximum Acyclic Subdigraph (MAS)

Problem. Arora, Frieze and Kaplan [50] and Frieze and Kannan [362] de-
signed polynomial-time approximation scheme (PTAS) for the MAS Problem
restricted to dense digraphs and, in particular, to tournaments. (For a min-
imization problem Q, PTAS is an algorithm which takes an instance of Q
and a parameter ε > 0 and, in polynomial time, produces a solution that is
within a factor 1 + ε of being optimal.)

One may also consider weighted versions of the problems above. Each
arc is assigned a non-negative real-valued weight and the goal is to find a
feedback arc set of minimum total weight (respectively, an acyclic subdigraph
of maximum weight). The weighted version of the acyclic subdigraph problem
is known as the Linear Ordering Problem. It arises naturally in the study
of interactions between various sectors of an economical system (see Reinelt
[775] and also Funke and Reinelt [367] and Grötschel, Jünger and Reinelt
[428]).

For the Linear Ordering Problem there is a very easy way to obtain an
ordering which achieves at least half of the optimum value of an ordering.
The proof of the following proposition is an easy exercise (Exercise 15.8).

Proposition 15.3.11 Given any weighted digraph D = (V, A, w), in time
O(m) one can find an acyclic subdigraph D′ = (V, A′) of D such that w(A′) ≥
w(A)/2. ��

This proposition implies that there exists a polynomial 2-approximation
algorithm for the Linear Ordering Problem, since w(A)/2 ≤ w(A′) ≤
w(Ao) ≤ w(A), where w(Ao) is the optimum weight.

Note that although the Linear Ordering Problem and the FAS Problem
are equivalent problems from the algorithmic point of view, the approxima-
tion algorithm above cannot be used as a 2-approximation algorithm for the
FAS Problem as well. The reason is that the optimal ordering may have all
or almost all arcs in the right direction (implying the number τ1 is close to

2 This is the optimization version of the decision FAS problem considered earlier.
3 Clearly, the set of backward arcs forms a feedback arc set.

15.3 Complexity of the Feedback Set Problems 593

zero) whereas the ordering above may still have as little as half the arcs in
the right direction. In fact, approximating the number τ1 seems to be very
difficult and so far no c-approximation algorithm is known for any constant
c. The following is the best known approximation guarantee for the FAS
Problem. It is due to Seymour [811].

Theorem 15.3.12 [811] There exists an O(log n log log n) approximation al-
gorithm for the FAS Problem. ��

Another approximation algorithm for a generalization of the FAS Prob-
lem (as well as the Feedback Vertex Set Problem) is described by Even,
Naor, Schieber and Sudan [304]. Kenyon-Mathieu and Schudy [591] obtained
a polynomial-time approximation scheme (PTAS) for the FAS Problem re-
stricted to tournaments. Notice that a PTAS is not possible for the FAS
Problem on all digraphs which follows from an in-approximability result of
Dinur and Safra [265].

15.3.4 Fixed-Parameter Tractability Results

It has been a challenging open problem to decide whether the Parameter-

ized FVS and FAS Problems are fixed-parameter tractable (FPT). See
Section 18.4 for definitions related to FPT and the survey paper [482] by
Gutin and Yeo for the history of the problem prior to its solution by Chen,
Liu, Lu, O’Sullivan and Razgon [205]. Given a digraph D and a parameter
k, the Parameterized FVS (FAS) Problem is the problem of checking
whether τ0(D) ≤ k (τ1(D) ≤ k). By Proposition 15.3.1, if one of the two
parameterized problems is FPT, then so is the other one. This allows us to
conclude that FAS is FPT after proving that the parameterized FVS is FPT.

Chen, Liu, Lu, O’Sullivan and Razgon proved the following:

Theorem 15.3.13 The Parameterized FVS Problem is FPT. ��

The rest of the section is based on the paper [765] by Razgon. We provide
some ideas behind the proof of Theorem 15.3.13. Let D be an acyclic digraph,
and let X = {x1, x2, . . . , xl} and Y = {y1, y2, . . . , yl} be a pair of disjoint
sets of vertices called terminals. A set R of non-terminal vertices orderly
separates X from Y if D−R has no path from xi to yj for all i, j with 1 ≤ j ≤
i ≤ l. The problem of checking whether there is a set R of cardinality at most
k that orderly separates X from Y is called the Parameterized Ordered

Multicut Problem for Acyclic Digraphs (abbreviated POMC-AD).
To keep the subsection relatively short, we will assume that there is an FPT
algorithm to solve POMC-AD (such an algorithm is described by Razgon
[765]) and we will prove that the Parameterized FVS is FPT using a
reduction from the Parameterized FVS to POMC-AD.

The reduction is based on the principle of iterative compression that
has been used to design non-trivial FPT algorithms for various parameter-
ized problems. Let v1, v2, . . . , vn be vertices of a digraph D. The reduction

594 15. Feedback Sets and Vertex Orderings

iteratively generates a sequence D0, D1, . . . , Dn of digraphs, where D0 is the
empty digraph and Di = D〈{v1, v2, . . . , vi}〉 for each i ≥ 1. For each i ≥ 0,
the reduction produces a feedback vertex set Si of Di with |Si| ≤ k or returns
‘NO’ if Di has no feedback vertex set of cardinality at most k.

The sets Si are computed recursively. In particular, S0 = ∅. For each
Si, i ≥ 1, if Si−1 is a feedback vertex set for Di, then we set Si = Si−1.
Otherwise, if |Si−1| ≤ k− 1, we set Si = Si−1 ∪ {vi}. Finally, if Si−1 is not a
feedback vertex set of Di and |Si−1| = k, then we set S′

i = Si−1∪{vi} and try
to find a feedback vertex set Si of Di of cardinality smaller than |S′

i| = k +1.
In particular, for each subset F of S′

i, we apply a procedure denoted by
Replace(Di−F, S′

i−F) whose input consists of Di−F and S′
i−F and output

is either a feedback set F ′ of Di − F of cardinality smaller than |S′
i| − |F |

and such that F ′ ∩S′
i = ∅ or ‘NO’ if no such feedback vertex set exists. If we

succeed to find at least one such F ′, then we set Si = F ∪ F ′. Otherwise, we
return ‘NO’. In other words, we guess all possibilities of F = S′

i ∩ Si.
It remains to describe Replace(H, S), where H = Di −F and S = S′

i −F
and prove its correctness and complexity.

Replace(H, S)
Input: a digraph H and a feedback vertex set S of H; c = |S|.
Output: a feedback vertex set R of H with R ∩ S = ∅ and |R| < c or ‘NO’
if no such feedback vertex set R exists.

1. If H is acyclic then return ∅.
2. If H〈S〉 is not acyclic then return ‘NO’.
3. Construct AS := {uv ∈ A(H) : v ∈ S}.
4. For each possible ordering s1, s2, . . . , sc of the vertices of S do the follow-

ing three steps:
4a. For each si find the set Ti of vertices w of H − S such that H〈AS〉

has a path from w to si;
4b. Construct a digraph H ′ by adding a set T = {t1, t2, . . . , tc} of new

vertices to H −AS and by adding the arc wti for each w ∈ Ti (Steps
3, 4a and 4b are illustrated in Figure 15.2);

4c. Solve POMC-AD for the digraph H ′, terminals S and T and param-
eter k′ = c − 1; if the solution R is not ‘NO’, return R.

5. Return ‘NO’.

It is not difficult to see that Replace(H, S) is an FPT algorithm pro-
vided POMC-AD admits an FPT algorithm. Let us show the correctness of
Replace(H, S).

Theorem 15.3.14 If Replace(H, S) returns a set R, then R satisfies the
output specifications and if ‘NO’ is returned, then no set R satisfying the
output specifications exists.

Proof: Assume first that Replace(H, S) returns a set R. This means that
there is an ordering s1, s2, . . . , sc of S such that R orderly separates S from

15.3 Complexity of the Feedback Set Problems 595

�

x s1

s2

y

x s1

s2

y

z

H H ′

t1

t2
z

Figure 15.2 Illustrating Steps 3, 4a and 4b of Replace(H, S). We have S = {s1, s2},
AS = {xs1, zs1, zs2, s1s2} and T1 = T2 = {x, z}.

T in H ′. By definition, R ⊆ V (H) \ S. Suppose that R is not a feedback
vertex set of H and let Z be a cycle in H −R.

By definition of AS , the digraph H − AS is acyclic. Thus, Z contains
arcs in AS . Partition arcs in AS ∩ A(Z) into maximal paths P1, P2, . . . , Pl,
where the ordering is according to their appearance on Z. It follows from the
definition of AS that the terminal vertex of each Pi is some vertex sij ∈ S.
By Step 2 of Replace(H, S), the initial vertex of each Pi is some wi ∈ Tij .
Since H〈AS〉 is acyclic, the union of the paths P1, P2, . . . , Pl does not form
Z. Moreover, Z includes a path (in H −R−AS) from sj1 to a vertex of Tj2 ,
. . ., a path from sjl−1 to a vertex of Tjl

and a path from sjl
to a vertex of

Tj1 . We have (j1 ≥ j2) ∨ . . . ∨ (jl−1 ≥ jl) ∨ (jl ≥ j1) as otherwise we get
j1 < j2 < . . . < jl < j1, a contradiction. Thus, H − AS − R has a path from
some si to a vertex of Tj such that i ≥ j. Therefore, the digraph H ′ − R
has an (si, tj)-path contradicting our assumption that R orderly separates S
from T in H ′. Thus, we conclude that R is a feedback vertex set of H.

It remains to prove that if R is a feedback vertex set of H such that
S ∩ R = ∅ and |R| ≤ |S| − 1, then R orderly separates S from T in H ′ for
at least one ordering s1, s2, . . . , sc. Let R be a feedback vertex set of H such
that S ∩ R = ∅ and |R| ≤ |S| − 1 and let s1, s2, . . . , sc be an ordering of S.
Let t1, t2, . . . , tc and H ′ be as described in Replace(H, S). We partition the
proof into two claims.

Claim 1. For each i, H ′ −R has no (si, ti)-path.

Proof: Suppose this is not true, i.e., there is an i such that P is an (si, ti)-
path in H ′ −R and let w be the predecessor of ti on P. By definition of H ′,
P ′′ = P [si, w] is a path in H−R. Also by definition of H ′, w ∈ Ti and H〈AS〉
has a (w, si)-path P ′. Observe that w /∈ R (as w belongs to a path in H −R)
and all other vertices of P ′ are in S and, thus, not in R. Thus, P ′ is a path
in H −R. The union P ′ ∪P ′′ is a closed walk in H −R implying that H −R

596 15. Feedback Sets and Vertex Orderings

has a cycle, a contradiction to the assumption that R is a feedback vertex
set in H. ��
Claim 2. Let l be an integer such that 1 ≤ l ≤ c. Then there is an integer p,
1 ≤ p ≤ l, such that H ′ − R has no (sp, ti)-path for any i ∈ [l].

Proof: Suppose that this claim is not true, i.e., for each integer p, 1 ≤ p ≤ l,
the digraph H ′ −R has an (sp, ti)-path for some i ∈ [l].

Fix an arbitrary p, 1 ≤ p ≤ l. By Claim 1, H ′ − R has no (sp, tp)-path.
Thus, there exists an integer z(p) ∈ [l] such that H ′ − R has an (sp, tz(p))-
path Qp. Consider a sequence p0, p1, . . . , pl, where p0 = p and pi = z(pi−1),
1 ≤ i ≤ l. Clearly, the sequence has at least two equal elements. Without
loss of generality, we may assume that p0 = py, where 1 ≤ y ≤ l. For each
i ∈ {0, 1, . . . , y − 1}, let Q′

pi
= Qpi − tz(p). By definition of H ′, Q′

pi
is a path

in H −R terminating in a vertex wpi+1 ∈ Tpi+1 .
Let Q′′

1 , Q′′
2 , . . . , Q′′

y be paths in H〈As〉 such that each Q′′
i is a (wpi , spi)-

path. As in the proof of Claim 1, we can see that each Q′′
i is a path in

H − R. Observe that the union of Q′
p0

, Q′′
1 , Q′

p1
, Q′′

2 , . . . , Q′
py−1

, Q′′
y is a walk

in H − R. This walk is closed since its initial vertex sp0 coincides with its
terminal vertex spy . Thus, H − R has a cycle, a contradiction. ��

Now we will produce the desired ordering starting from our ordering
s1, s2, . . . , sc. By Claim 2, there exists p ∈ [c] such that sp has no path
to any ti in H ′. If p �= c, we swap sp and sc in the ordering (here and be-
low, if two terminals in S interchange, the corresponding terminals in T also
interchange). Assume that the last c − l vertices in the ordering of S have
been fixed. If l = 1, by Claim 1, we are done. Otherwise, find p, 1 ≤ p ≤ l,
satisfying Claim 2. If p �= l, swap sp and sl in the ordering. ��

15.4 Disjoint Cycles Versus Feedback Sets

In this section, we study relations between the parameters ν0 and ν1, on the
one hand, and parameters τ0 and τ1, on the other hand. We state the famous
Younger’s conjecture and present an overview of the proof of this conjecture
due to Reed, Robertson, Seymour and Thomas. Some (still) open conjectures
and problems are mentioned as well.

15.4.1 Relations Between Parameters νi and τi

Clearly, for every digraph D, ν0(D) ≤ ν1(D) and it is easy to find an infinite
family of digraphs D for which the two parameters are not equal. The same is
true for the parameters τ0, τ1. Furthermore, we obviously have νi(D) ≤ τi(D)
for i = 0, 1. It is easy to construct an infinite family of digraphs D such that
ν0(D) < τ0(D) (Exercise 15.12) and thus, by Propositions 13.3.1 and 15.3.1,
an infinite family of digraphs D such that ν1(D) < τ1(D).

15.4 Disjoint Cycles Versus Feedback Sets 597

On the other hand, there are families of digraphs for which the last two
inequalities become equalities. Szwarcfiter [840] described a family of digraphs
D for which ν0(D) = τ0(D). His family generalizes two families introduced
by Frank and Gyárfás [350] and by Wang, Floyd and Soffa [898]. Szwarcfiter
[840] also provides polynomial algorithms to recognize his family of digraphs
and to find k-cycle factors and feedback vertex sets of cardinality k, where
k = ν0(D) = τ0(D). We have already seen that planar digraphs D satisfy
ν1(D) = τ1(D). Seymour [812] showed that the same result holds for a special
family of eulerian digraphs. Another class of digraphs with the same property
was considered by Ramachandran [760].

Even though not always νi(D) = τi(D), i = 0, 1 (in which case τi(D)
exceeds νi(D)), Younger [922] conjectured that the former is bounded by
a function of the latter. In other words, he conjectured that for every k,
there exists a (least) natural number t0(k) (t1(k), respectively) such that for
every digraph D the following holds: either D contains k vertex-disjoint (arc-
disjoint, respectively) cycles or D has a feedback vertex (arc, respectively)
set of cardinality at most t0(k) (t1(k), respectively). By Propositions 13.3.1
and 15.3.1, the validity of the ‘vertex’ version of Younger’s conjecture implies
that the ‘arc’ version holds and vice versa. Moreover, Propositions 13.3.1
and 15.3.1 imply that if the functions t0(k) and t1(k) exist, then they are
equal (Exercise 15.13). Younger’s conjecture was settled by Reed, Robertson,
Seymour and Thomas [769]. We discuss their solution in the next subsection.
In the rest of this subsection we consider the parameters ν1 and τ1 for the
class of tournaments.

Even for a tournament T , the parameters ν1(T) and τ1(T) do not always
coincide. By the proof of Theorem 15.2.1, for every n ≥ 3 a random tour-
nament Tn with n vertices, with probability tending to 1 as n→∞, has at
least n(n− 1)/4−

√
n3 loge n/2 arcs in a feedback arc set of T . On the other

hand, it follows from a result by Chartrand, Geller and Hedetniemi [199] that
Tn has at most �n

3 �
n−1

2 �� ≤ 1
3

(
n
2

)
arc-disjoint cycles (each cycle has at least

three arcs). Isaak conjectured the following:

Conjecture 15.4.1 [552] If T is a tournament which has a minimum feed-
back arc set A such that T 〈A〉 is a transitive subtournament of T , then ν1(T)
and τ1(T) coincide.

In [552] Isaak posed the following problem. Note that if the answer to the
problem is yes, then this implies Conjecture 15.4.1.

Problem 15.4.2 Suppose T is a tournament having a minimum feedback
arc set which induces an acyclic digraph with a hamiltonian path. Is it true
that the maximum number of arc-disjoint cycles in T equals the cardinality
of a minimum feedback arc set of T?

It is easy to see that a minimum feedback arc set of a given digraph
must induce an acyclic subdigraph of D (Exercise 15.9). The next result by

598 15. Feedback Sets and Vertex Orderings

Barthélémy, Hudry, Isaak, Roberts and Tesman implies that every acyclic
digraph arises as a minimum feedback arc set of some tournament.

Theorem 15.4.3 [125] Let D be an acyclic digraph. Then there exists a
tournament T containing D as a subdigraph such that the arcs of D form a
minimum feedback arc set in T . ��

15.4.2 Solution of Younger’s Conjecture

The vertex and arc versions of Younger’s conjecture were proved for various
families of digraphs including the families mentioned above. McCuaig [689]
proved the existence of t0(2) by characterizing intercyclic digraphs, i.e.,
digraphs D for which ν0(D) ≤ 1. Moreover, he established that t0(2) = 3.
Reed and Shepherd [770] proved the vertex version of Younger’s conjecture
for planar digraphs using a result of Seymour [811]. The result of Reed and
Shepherd combined with a result of Goemans and Williamson [414] implies
that tpd

0 (c) = O(c), where tpd
0 (c) is the function t0(c) restricted to planar di-

graphs. Finally, Younger’s conjecture was completely settled by Reed, Robert-
son, Seymour and Thomas [769]. In this subsection, we give a scheme of their
proof. In particular, we provide a complete proof of perhaps the most inter-
esting lemma in [769].

One of the important tools in the proof in [769] is the following well-known
Ramsey Theorem [761].

Theorem 15.4.4 (Ramsey Theorem) For all integers q, l, r ≥ 1 there
exists a (minimum) integer Rl(r, q) ≥ 0 so that the following holds. Let Z be
a set of cardinality at least Rl(r, q) and let every l-subset of Z be assigned a
colour from [q]. Then there exist an r-subset S of Z and a colour k ∈ [q] so
that every l-subset of S is of colour k. ��

Some readers may be more familiar with the graph-theoretic special case
of this theorem. For every pair of natural numbers q, r there exists an integer
R2(r, q) ≥ 0 so that every q-edge-coloured complete graph of order at least
R2(r, q) has a monochromatic complete subgraph of order r.

We start describing the scheme of the proof of Younger’s conjecture by
the following lemma whose proof is left as Exercise 15.14.

Lemma 15.4.5 [769] Let c ≥ 1 be an integer such that t0(c − 1) exists. Let
D be a digraph with ν0(D) < c and let T be a feedback vertex set of D of
cardinality τ0(D). Suppose U, W are disjoint subsets of T both of cardinality
r, where r ≥ 2t0(c − 1). Then there is an r-path subdigraph of D from U to
W , which contains no vertex in T − (U ∪W). ��

Let L = P1 ∪ . . . ∪ Pk be a k-path subdigraph in a digraph D and let ui

(wi) be the initial (terminal) vertex in Pi, i ∈ [k]. Recall that we say that L
is a k-linkage from (u1, . . . , uk) to (w1, . . . , wk) and L.

15.4 Disjoint Cycles Versus Feedback Sets 599

The following lemma was proved by the authors of [769] in joint work with
Alon. Its proof uses Ramsey’s theorem as well as Theorem 13.5.3 of Erdős
and Szekeres.

Lemma 15.4.6 [769] Let c ≥ 2 be an integer such that t0(c− 1) exists, and
let k ≥ 1 be an integer. Then there exists an integer t ≥ 0 (depending on k)
so that the following holds. If D is a digraph with ν0(D) < c and τ0(D) ≥ t,
then there are distinct vertices u1, . . . , uk, w1, . . . , wk of D and a pair of k-
path subdigraphs L1,L2 of D so that

(a) L1 is a k-linkage from (u1, . . . , uk) to (w1, . . . , wk),
(b) L2 is a k-linkage from (w1, . . . , wk) to either (u1, . . . , uk) or (uk, . . . , u1),
(c) every (directed) cycle of L1 ∪ L2 meets {u1, . . . , uk, w1, . . . , wk}.

Proof: Let l := (k − 1)2 + 1, r := max{2t0(c − 1), (k + 1)l}, q := (l! + 1)2,
and t := Rl(r, q) + l, where Rl(r, q) is as in Theorem 15.4.4. Then r ≥ l and
t ≥ 2r as clearly Rl(r, q) ≥ 2r−1. We will show that this choice for t satisfies
the lemma. Let D be a digraph satisfying ν0(D) < c and τ0(D) ≥ t. Choose
a feedback vertex set T of D of cardinality τ0(D) and an l-subset U of T . Let
Z := {z1, z2, . . . , z|Z|} := T − U . Thus, |Z| ≥ Rl(r, q).

For each X ⊆ Z, with X = {zi1 , . . . , zi|X|} where i1 < . . . < i|X|; we put
X̄ := (zi1 , . . . , zi|X|) and X̄(h) = zih

for h = 1, . . . , |X|.
Let X be an l-subset of Z. If there is an l-path subdigraph L1(X) in

D from U to X containing no vertex in Z − X, then there is a permutation
(u1, . . . , ul) of the vertices of U so that L1(X) is an l-linkage from (u1, . . . , ul)
to X̄, and we put p1(X) := (u1, . . . , ul); if no such path subdigraph exists, we
put p1(X) := ∅. Similarly, if there is an l-path subdigraph L2(X) from X to U
that is an l-linkage from X̄ to (w1, . . . , wl) containing no vertex in Z−X, we
put p2(X) := (w1, . . . , wl); if no such linkage exists, we put p2(X) := ∅. We
assign to X the colour (p1(X), p2(X)). Clearly, there are q possible colours
(q is defined in the beginning of this proof). By Theorem 15.4.4, there exist
an r-subset S of Z and a colour (u, w) such that every l-subset X of S is of
colour (u, w).

We claim that both u and w are non-empty. Indeed, suppose that u = ∅
and choose an r-set U ′ such that U ⊆ U ′ ⊆ T−S. By Lemma 15.4.5 there is an
r-path subdigraph L′ in D from U ′ to S containing no vertex in T − (U ′∪S).
The path subdigraph L′ includes a path subdigraph from U to some X ⊆ S
having no vertex in T − (U ∪ X). Thus, u = p1(X) �= ∅. Analogously, one
proves that w �= ∅.

Let u := (u1, . . . , ul) and w := (w1, . . . , wl) and let L1(X),L2(X) be the
corresponding l-linkages. We have already established that for every l-subset
X of S, L1(X) is an l-linkage from u to X̄ and L2(X) is an l-linkage from X̄
to w.

For i = 1, 2, . . . , l define ji as follows: wji = ui. By the definition of l and
Theorem 13.5.3 of Erdős and Szekeres, there are 1 ≤ i1 < i2 < . . . < ik ≤
l so that the sequence ji1 , ji2 , . . . , jik

either increases or decreases. Define

600 15. Feedback Sets and Vertex Orderings

(i′1, . . . , i
′
k) to be (ji1 , . . . , jik

) in the first case and (jik
, . . . , ji1) in the second.

Hence, i′1 < . . . < i′k.
Let G := {S̄(l), S̄(2l), . . . , S̄(kl)}. Choose an l-subset X of S so that

S̄(hl) = X̄(ih) for h ∈ [k]. Since L1(X) is an l-linkage from (u1, . . . , ul) to X̄,
it includes a path subdigraph L1 linking (ui1 , . . . , uik

) to Ḡ. Moreover, the
only vertices of T in L1 belong to U ∪G.

Analogously choose an l-subset Y of S so that S̄(hl) = Ȳ (i′h) for h ∈
[k]. Since L2(Y) is an l-linkage from Ȳ to (w1, . . . , wl), it includes a path
subdigraph L2 linking Ḡ to (wi′1

, . . . , wi′k
). Observe that (wi′1

, . . . , wi′k
) is

either (ui1 , . . . , uik
) or (uik

, . . . , ui1). Moreover, every (directed) cycle in L1∪
L2 meets T (since T is a feedback vertex set), and the only vertices of T in
V (L1 ∪ L2) are ui1 , . . . , uik

and the elements of G; and so L1,L2 satisfy the
lemma. ��

A digraph D is bivalent if, for every v ∈ V (D), d+(v) = d−(v) ∈ {1, 2}.
The following lemma is the most technically involved basic result in [769].

Lemma 15.4.7 For every integer c ≥ 1 there exists k ≥ 0 such that, for
every bivalent digraph D, if there exists a pair of k-path subdigraphs L1,L2

in D so that each path of L1 meets each path of L2 and L1 ∪ L2 has no
(directed) cycles, then ν0(D) ≥ c. ��

Using this lemma and Theorem 15.4.4, one can prove the following:

Lemma 15.4.8 For every integer c ≥ 1 there exists k ≥ 0 so that the follow-
ing holds. Let D be a digraph and let u1, . . . , uk, w1, . . . , wk be distinct vertices
of D. Let L1,L2 be path subdigraphs in D linking (u1, . . . , uk) to (w1, . . . , wk)
and (w1, . . . , wk) to one of (u1, . . . , uk), (uk, . . . , u1), respectively. If every (di-
rected) cycle of L1 ∪ L2 meets {u1, . . . , uk, w1, . . . , wk}, then ν0(D) ≥ c. ��

Theorem 15.4.9 (Reed, Robertson, Seymour and Thomas) [769] For
every integer c ≥ 1 there exists a (minimum) integer t0(c) such that, for every
digraph D with ν0(D) < c, we have τ0(D) ≤ t0(c).

Proof: We use induction on c ≥ 1. For c = 1, this theorem is trivially true.
Assume that c ≥ 2 and t0(c− 1) exists. Let k be as in Lemma 15.4.8, and let
t be as in Lemma 15.4.6. We prove that there is no digraph D with ν0(D) < c
and τ0(D) > t − 1 (i.e., t0(c) ≤ t − 1). Suppose that D is such a digraph.
By Lemma 15.4.6, there exist u1, . . . , uk, w1, . . . , wk and L1,L2 as in Lemma
15.4.6. This means, by Lemma 15.4.8, that ν0(D) ≥ c, a contradiction. ��

15.5 Optimal Orderings and Seymour’s Second
Neighbourhood Conjecture

Recall that for a vertex x in a digraph D, N+2(x) is the set of vertices of
distance two from x. Seymour posed the following conjecture (see [255] and

15.5 Optimal Orderings and Seymour’s Second Neighbourhood Conjecture 601

Problem 325, page 804 in volume 197/198 (1999) of Discrete Mathematics)
called Seymour’s Second Neighbourhood Conjecture.

Conjecture 15.5.1 Every oriented graph D = (V, A) has a vertex x such
that

|N+(x)| ≤ |N+2(x)|. (15.2)

Note that if we allow 2-cycles, then the conjecture is no longer true as can
be seen by taking the complete digraph

↔
Kn. Note also that if the oriented

graph has a vertex of out-degree zero, then this vertex satisfies the conjecture.
This observation implies that it is sufficient to consider the conjecture for
strong oriented graphs. Kaneko and Locke [581] proved the conjecture for
digraphs with minimum out-degree at most 6. Godbole, Cohn and Wright
[411] showed that the conjecture holds for almost all digraphs. Chen, Shen
and Yuster [202] proved that for every digraph, there is a vertex x such that
|N+(x)| ≤ r|N+2(x)|, where r is the solution of 2x3 + x2 = 1 (r > 0.657).

Conjecture 15.5.1 in the case of tournaments was also stated by Dean and
Latka [255]. This special case of the conjecture was proved by Fisher [317]
using an analytic approach. Fisher’s argument is non-trivial and involves the
use of a probability distribution on the vertices along with Farkas’ Lemma
and several other tools. Moreover, Fisher’s method does not explicitly identify
a vertex which satisfies (15.2).

Below we give an elementary proof, due to Havet and Thomassé [508],
of Conjecture 15.5.1 for the case of tournaments. Havet and Thomassé [508]
used the following relaxation of the concept of an optimal ordering, which
they called a local median order, but we will call a locally optimal ordering.
An ordering L = v1, v2, . . . , vn of the vertices of a tournament T = (V, A) is
locally optimal if the following holds for all 1 ≤ i ≤ j ≤ n. (Here and below
we use the notation [vi, vj] = {vi, vi+1, . . . , vj} for all 1 ≤ i ≤ j ≤ n.)

|N+(vi) ∩ [vi, vj]| ≥ |N−(vi) ∩ [vi, vj]| and (15.3)

|N−(vj) ∩ [vi, vj]| ≥ |N+(vj) ∩ [vi, vj]|. (15.4)

Note that if (15.3) does not hold, then the number of forward arcs in

L′ = v1, . . . , vi−1, vi+1, . . . , vj−1, vi, vj , . . . , vn

is larger than in L. Similarly if (15.4) does not hold, then we can obtain a
better ordering (with respect to the number of forward arcs) by moving vj

just after vi. Thus a locally optimal ordering is precisely a local optimum,
which cannot be improved by moving just one vertex in the ordering. Such
an ordering can be found in polynomial time for any given digraph by using
the 1-OPT procedure in Section 18.7.

The following is a direct consequence of the definition of a locally optimal
ordering:

602 15. Feedback Sets and Vertex Orderings

Lemma 15.5.2 Let L = v1, v2, . . . , vn be a locally optimal ordering of the
vertices of a tournament T . Then for every 1 ≤ i ≤ j ≤ n the ordering
Lij = vi, vi+1, . . . , vj is a locally optimal ordering of T 〈[vi, , vj]〉. ��

Lemma 15.5.2 provides us with a powerful inductive tool as we will see
below. Let T be a tournament and let L = v1, v2, . . . , vn be a locally optimal
ordering of V (T). We define a partition GL, BL of N−(vn) as follows:

GL = {vj : vj→vn and there exists i < j such that vn→vi→vj};

BL = N−(vn)− GL.

The vertices of GL are called good and those in BL bad vertices. Note that
|N+2(vn)| ≥ |GL|. The following result by Havet and Thomassé implies that
Conjecture 15.5.1 holds for tournaments.

Theorem 15.5.3 [508] Let T be a tournament and let L = v1, v2, . . . , vn be a
locally optimal ordering of T . Then the vertex vn has |N+2(vn)| ≥ |N+(vn)|.

Proof: Let L = v1, v2, . . . , vn be a locally optimal ordering of T . We prove
by induction on n that

|N+(vn)| ≤ |GL|. (15.5)

If n = 1, the claim is trivially true so suppose that n > 1. If BL = ∅,
then we have |GL| = |N−(vn)| ≥ |N+(vn)|, where the equality holds by the
definition of the good vertices and the inequality holds by the definition of
a locally optimal ordering. Hence we may assume that there is a bad vertex.
Choose i as small as possible so that vi is bad. Define the sets Gl

L, Gh
L, N l, Nh

as follows:

Gl
L = GL ∩ [v1, vi] and Gh

L = GL ∩ [vi+1, vn],
N l = N+(vn) ∩ [v1, vi] and Nh = N+(vn) ∩ [vi+1, vn].

Note that if a vertex is good with respect to the pair (T 〈{vi+1, . . . , vn}〉,
Lh), where Lh = vi+1, . . . , vn, then it is also good with respect to (T,L).
Hence, by the induction hypothesis (applied to T 〈{vi+1, . . . , vn}〉 and the
ordering Lh), we have |Nh| ≤ |Gh

L|. The minimality of i implies that every
vertex in {v1, . . . , vi−1} is either in Gl

L or N l. Furthermore, since vi is bad
we have N l ⊆ N+(vi) ∩ [v1, vi−1] and N−(vi) ∩ [v1, vi−1] ⊆ Gl

L. Now using
(15.4) we obtain

|Gl
L| ≥ |N−(vi) ∩ [v1, vi−1]| ≥ |N+(vi) ∩ [v1, vi−1]| ≥ |N l|.

Thus we have

|GL| = |Gl
L| + |Gh

L| ≥ |N l| + |Nh| = |N+(vn)|,

implying that (15.5) holds for all positive integers n. ��

15.6 Ádám’s Conjecture 603

If a tournament has a vertex of out-degree zero, then this vertex satisfies
(15.2) and the transitive tournament on n vertices shows that this vertex may
be the only vertex satisfying (15.2). Using locally optimal orderings Havet
and Thomassé [508] proved that unless there is a vertex of out-degree zero,
a tournament has at least two vertices satisfying (15.2).

Havet and Thomassé showed by an example that their method (just as
Fisher’s method [317]) will not suffice to prove Conjecture 15.5.1 in full.

Sullivan stated the following three conjectures similar to Conjecture
15.5.1, where he used |N−(v)| instead of or together with |N+(v)|.

Conjecture 15.5.4 [837] Every oriented graph D has a vertex v such that
|N+2(v)| ≥ |N−(v)|.

The inequality of Conjecture 15.5.1 can be written as |N+2(v)|+|N+(v)| ≥
2|N+(v)|. This inspires the following:

Conjecture 15.5.5 [837] Every oriented graph D has a vertex v such that
|N+2(v)| + |N+(v)| ≥ 2|N−(v)|.

The next conjecture is a weakening of the previous two.

Conjecture 15.5.6 [837] Every oriented graph D has a vertex v such that
|N+2(v)| + |N+(v)| ≥ 2·min{|N+(v)|, |N−(v)|}.

15.6 Ádám’s Conjecture

Ádám’s conjecture [3, 4] seems one of the most challenging conjectures on
cycles in digraphs.

Conjecture 15.6.1 (Ádám) Every digraph has an arc whose reversal de-
creases the total number of cycles.

Originally, Ádám formulated the conjecture for directed multigraphs. This
extension was disproved independently by Grinberg, Jirásek and Thomassen
(see [424, 566, 864]). Thomassen [864] used the following result of Penn and
Witte [745], which is of independent interest and was established with the
aid of knot theory on the torus. Note that this theorem generalizes Theorem
6.9.7.

Theorem 15.6.2 The Cartesian product 	Cp × 	Cq has a cycle of length k if
and only if there is a pair a, b of relatively prime natural numbers such that
ap + bq = k. ��

The main idea of Thomassen is to apply the following corollary:

604 15. Feedback Sets and Vertex Orderings

Corollary 15.6.3 [864] Infinitely many digraphs of the type 	Cp × 	Cq have
the property that the reversal of any arc increases the length of a longest cycle.

Proof: By the above theorem, 	C5 × 	C7+10k, k ≥ 0, has no cycle of length
35+50k or 34+50k (Exercise 15.15). However, the reversal of any arc creates
a (34 + 50k)-cycle. This is depicted in Figure 15.3 (due to Thomassen [864])
for k = 0 and a similar structure can be used to obtain a cycle of length
34 + 50k when k ≥ 1. (Actually, Figure 15.3 shows a 35-cycle, too, and this
cycle can be generalized for every k ≥ 0.) ��

Theorem 15.6.4 [864] There is an infinite family of counterexamples to
Ádám’s conjecture in the case of directed multigraphs.

Proof: Let D(k, f) be the directed multigraph obtained from 	C5 × 	C7+10k

by replacing each arc by f parallel arcs. Let t denote the maximum number
of cycles through an arc of 	C5 × 	C7+10k and let s be the length of a longest
cycle in 	C5× 	C7+10k. Then no arc of D(k, f) is contained in more than tfs−1

cycles, but if we reverse an arc a of 	C5 × 	C7+10k, then a is is contained in a
cycle of length at least s + 1 and hence a is contained in at least fs cycles.
Hence, if f > t, D(k, f) is a counterexample to Ádám’s conjecture. ��

Grinberg’s counterexamples were inspired by projective geometry. Study-
ing circulant digraphs, Jirásek proved the following result.

Theorem 15.6.5 [568] For any integer t ≥ 1 and all sufficiently large p,
the directed multigraph C

[p]
8t+4(2t + 1, 2, 4t + 4) obtained from the circulant

digraph C8t+4(2t + 1, 2, 4t + 4) by replacing each arc with p parallel ones is a
counterexample to Ádám’s conjecture. ��

Jirásek [568] also showed that C
[p]
12 (3, 2, 8) is a counterexample to Ádám’s

conjecture for each p ≥ 4. All the examples by Grinberg, Jirásek and
Thomassen have parallel arcs. At the same time, Ádám’s conjecture holds
for some families of digraphs. Actually, it holds when a digraph has a 2-cycle.

Proposition 15.6.6 [567] If a digraph D contains a 2-cycle, then D has an
arc whose reversal decreases the total number of cycles in D.

Proof: Let uvu be a 2-cycle in D and, for every a ∈ A(D), let ca be the
number of cycles in D containing a. Without loss of generality, we may assume
that cuv ≤ cvu. Then, the reversal of vu decreases the number of cycles in D
by cvu − cuv + 1 > 0. ��

Apart from this proposition, Jirásek proved several other assertions on
families of digraphs that satisfy Ádám’s conjecture. The most interesting is
the following:

Theorem 15.6.7 [567] If, after reversal of at most three arcs, a non-acyclic
digraph D becomes acyclic, then D has an arc whose reversal decreases the
total number of cycles in D. ��

15.7 Exercises 605

Figure 15.3 �C5 × �C7 and (directed) cycles of lengths 34 and 35 when an arc is
reversed. (All arcs represented by vertical or horizontal straight line segments are
directed upwards or to the right.)[864]

To the best of our knowledge, Ádám’s conjecture is still open for oriented
graphs.

Problem 15.6.8 [864] Verify Ádám’s conjecture for oriented graphs and, in
particular, for tournaments.

15.7 Exercises

15.1. Prove Proposition 15.0.1.

15.2. Prove Lemma 15.3.6.

15.3. The directed dual of a plane directed multigraph is planar. Show
that if D is a plane directed multigraph, then its directed dual D∗ is also
planar.

15.4. Taking duals repeatedly. Let D be a plane directed multigraph and
let D∗ be the directed dual of D. Show that the directed dual of D∗ is
isomorphic to the converse of D.

606 15. Feedback Sets and Vertex Orderings

15.5. Let D be a plane directed multigraph and let D∗ be the directed dual of D.
Show that if (S, S̄) is a directed cut in D∗, then the corresponding arcs in
D form a directed cycle.

15.6. Let D = (V, A) be the plane digraph in Figure 15.1(a). Find two arcs in
A whose deletion leaves an acyclic directed multigraph. Then check that
contracting the corresponding two arcs in D∗, the directed dual of D, results
in a strongly connected digraph.

15.7. Show that the problem of finding a maximum size acyclic subdigraph of a
directed multigraph D = (V, A) is equivalent to that of finding an ordering
v1, v2, . . . , vn of V such that the number of arcs vivj with i < j is maximum.

15.8. Prove Proposition 15.3.11.

15.9. Let D be an arbitrary directed multigraph. Prove that every minimum feed-
back arc set of D induces an acyclic subdigraph of D.

15.10. Show that the tournament T in Figure 15.4 has a minimum feedback arc
set which induces a transitive subtournament of T .

Figure 15.4 A tournament T on five vertices.

15.11. Show that if there exists a polynomial approximation algorithm with ap-
proximation guarantee ρ(n) for the feedback arc set problem, then there also
exists a polynomial approximation algorithm with approximation guarantee
ρ(n) for the feedback vertex set problem and vice versa.

15.12. Construct an infinite family of digraphs D such that ν0(D) < τ0(D).

15.13. Prove that if the functions t0(k) and t1(k) introduced in Subsection 15.4.1
exist, then they are equal.

15.14. (+) Prove Lemma 15.4.5. Hint: use Menger’s theorem.

15.15. Prove that �C5 × �C7+10k, k ≥ 0, has no cycle of length 35 + 50k or 34 + 50k.
Hint: apply Theorem 15.6.2.

16. Generalizations of Digraphs:
Edge-Coloured Multigraphs

In this chapter, we study the class of edge-coloured multigraphs which is one
of the most investigated generalizations of directed multigraphs. The fact
that edge-coloured multigraphs generalize directed multigraphs follows, in
particular, from Häggkvist’s transformation described in Section 16.1. Apart
from edge-coloured multigraphs, there are many other generalizations of di-
rected multigraphs such as arc-coloured digraphs, hypertournaments and star
hypergraphs.

The main results on arc-coloured digraphs and hypertournaments are
provided in Chapter 11 of [91]. As suggested by the name, arc-coloured
digraphs are digraphs in which all arcs are coloured; notions similar to
the ones studied in this paper are investigated in Chapter 11 of [91]. A k-
hypertournament on n vertices is a pair (V, A), where V = [n] and each
element of A is a permutation of a distinct k-subset of V (i.e., |A| =

(
n
k

)
).

A star hypergraph is a triple (V, A, r), where (V, A) is a hypergraph and
r : A→V is a function that identifies the initial vertex of each edge e ∈ A.
Basic results on star hypergraphs are proved in [116].

We concentrate on edge-coloured multigraphs for a number of reasons:
this generalization has been widely studied in graph theory, many concepts
and results can be extended from digraphs to edge-coloured multigraphs (see
Theorem 16.2.1 and many other results of this chapter) and there are several
interesting applications of edge-coloured multigraphs (see, e.g., Section 17.6).

In Section 16.2 we study properly coloured trails (i.e., trails whose con-
secutive edges differ in colour) in edge-coloured undirected multigraphs. We
prove Kotzig’s characterization of edge-coloured multigraphs containing prop-
erly coloured (PC) Euler trails and Pevzner’s theorem that shows how to
generate all PC Euler trails of an edge-coloured multigraph from some initial
one. Yeo’s theorem on PC cycles in edge-coloured graphs, which in a sense
characterizes edge-coloured graphs not having PC cycles, is proved in Sec-
tion 16.3. Section 16.4 is devoted to the problems of finding a PC cycle and
path with fixed end-vertices. It is shown that the shortest PC cycle (PC path
with fixed end-vertices) can be found in polynomial time (if one exists). Sec-
tion 16.6 is devoted to generalizations of strong connectivity to edge-coloured
multigraphs.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 16,
© Springer-Verlag London Limited 2010

607

http://dx.doi.org/10.1007/978-1-84800-998-1_16

608 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

We consider various interesting results on hamiltonian and longest PC
paths and cycles in 2-edge-coloured bipartite multigraphs in Section 16.7.
Many of these results can be easily obtained from the corresponding results
on digraphs using some transformations also described in this subsection. The
characterization of 2-edge-coloured complete graphs containing hamiltonian
PC cycles, due to Bankfalvi and Bankfalvi, is given in Section 16.8. Among
other things, we prove Saad’s theorem characterizing longest PC cycles in
2-edge-coloured complete graphs. PC paths and cycles in c-edge-coloured
complete graphs, c ≥ 3, are studied in Section 16.9. In particular, we give a
characterization of c-edge-coloured complete graphs containing PC Hamilton
paths obtained by Feng, Giesen, Guo, Gutin, Jensen and Rafiey.

The chapter contains several conjectures and open problems.

16.1 Terminology, Notation and Initial Observations

In this section we consider edge-coloured multigraphs, i.e., undirected
multigraphs such that each edge has a colour and no two parallel (i.e., joining
the same pair of vertices) edges have the same colour. If the number of colours
is restricted by an integer c, we speak about c-edge-coloured multigraphs.
We usually use the integers 1, 2, . . . , c to denote the colours in c-edge-coloured
multigraphs. In case c = 2, we also use the names red and blue for colours 1
and 2, respectively. The red subgraph (blue subgraph, respectively) of a
2-edge-coloured multigraph G consists of the vertices of G and all red (blue,
respectively) edges of G.

Let G be a c-edge-coloured multigraph (c ≥ 2). A trail T in G is properly
coloured (PC) if no two consecutive edges of T have the same colour. A PC
m-path-cycle subgraph Fm of G is a union of m PC paths and a number of
PC cycles in G, all vertex-disjoint. When m = 0, we will call F0 a PC cycle
subgraph . If G is 2-edge-coloured, then we call a properly coloured trail in
G alternating. To see that the alternating path and cycle structure of 2-
edge-coloured multigraphs generalizes the path and cycle structure of directed
multigraphs, we consider the following simple transformation attributed to
Häggkvist in [683]; see Figure 16.1. Let D be a directed multigraph. Replace
each arc xy of D by two (unoriented) edges xzxy and zxyy by adding a new
vertex zxy and then colour the edge xzxy red and the edge zxyy blue. Let G
be the 2-edge-coloured graph obtained in this way. It is easy to see that each
alternating cycle (path) in G corresponds to a directed cycle (path) in D and
vice versa. Hence, in particular, we obtain the following proposition.

Proposition 16.1.1 The following problems on paths and cycles in 2-edge-
coloured graphs are NP-complete:

(a) The alternating Hamilton cycle problem.
(b) The problem to find an alternating cycle through a prescribed pair of

vertices.

16.1 Terminology, Notation and Initial Observations 609

2

12

1

2

1

2

1

2

1

Figure 16.1 Häggkvist’s transformation.

Proof: Exercise 16.1. ��
Thus, we have established that the alternating path and cycle structure in

2-edge-coloured multigraphs generalizes the (directed) path and cycle struc-
ture of directed multigraphs. In fact, we will see, in this section, that the
former is certainly more complicated than the latter. Still, several methods
and results obtained for directed multigraphs can be adapted to edge-coloured
multigraphs.

Petersen’s famous paper [747] seems to be the first place where one can
find applications of PC trails (cf. [707]). Besides a number of applications in
graph theory and algorithms (cf. the papers [908, p. 58] by Woodall and [486]
by Häggkvist), the concept of PC trails and its special cases, PC paths and
cycles, appears in various other fields including genetics (cf. the papers [270,
271] by Dorninger, [272] by Dorninger and Timischl and [750] by Pevzner)
and social sciences (cf. the paper [214] by Chow et al.).

Let G be a c-edge-coloured multigraph and let v ∈ V (G). The jth
neighbourhood of v is Nj(v) = {u ∈ V (G) : uv ∈ E(G), χ(uv) = j}
(1 ≤ j ≤ c). The jth degree of v, dj(v) = |Nj(v)| and the colour set
of v is χ(v) = {i : 1 ≤ i ≤ c, Ni(v) �= ∅}. The maximum (minimum)
monochromatic degree of G = (V, E) is defined by

Δmon(G) = max{dj(v) : v ∈ V, 1 ≤ j ≤ c}
(δmon(G) = min{dj(v) : v ∈ V, 1 ≤ j ≤ c}).

The colour of an edge e in G will be denoted by χ(e). Let X and Y be two
sets of the vertices of G. Then XY denotes the set of all edges having one
end vertex in X and the other in Y and χ(XY) stands for the set of colours
of edges in XY . In case all the edges in XY have the same colour, say i, we
write χ(XY) = i.

Edge-coloured multigraphs G and H are colour-isomorphic if there ex-
ists an isomorphism f : V (G)→V (H) such that χ(xy) = χ(f(x)f(y)) for
every pair x, y of distinct vertices of G. Let T = p1p2 . . . pl be a trail in G.
Then, the trail plpl−1 . . . p1, called the reverse of T , will be denoted by T rev.
Also, if l ≥ 2, define

χend(T) = χ(pl−1pl), χstart(T) = χ(p1p2).

610 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

Let G be a 2-edge-coloured multigraph of even order n; G is alternating-
pancyclic if G has an alternating cycle of length 2k for every k = 2, 3, 4, . . . ,
n/2; G is vertex alternating-pancyclic if, for every vertex v ∈ V (G) and
every integer k ∈ {2, 3, 4, . . . , n/2}, G contains an alternating cycle through
v of length 2k.

16.2 Properly Coloured Euler Trails

In [624], Kotzig proved the following characterization of edge-coloured multi-
graphs which contain properly coloured Euler trails.

Theorem 16.2.1 (Kotzig) [624] An edge-coloured multigraph G has a
properly coloured Euler trail if and only if G is connected, each vertex of G is
of even degree, and for every vertex x and every colour i, di(x) ≤

∑
j �=i dj(x).

Proof: Obviously, the conditions above are necessary.
Suppose G satisfies the conditions of Theorem 16.2.1. We will first show

that, for every vertex x, the edges of G incident to x can be partitioned into
disjoint pairs of distinct edges so that the colours of the edges in each pair
are different. This guarantees that each time we enter x through an edge e
we can leave it through the edge f forming one of the above pairs with e.
(We will denote f by matchx(e).)

In order to determine this partition, for each vertex x we define an aux-
iliary graph Gx so that the vertices of Gx are the edges incident to x. Two
vertices are connected in Gx if their corresponding edges in G have different
colours. It is easy to see that the above partition exists if and only if each
Gx has a perfect matching. It remains to prove that each Gx indeed has a
perfect matching.

Observe that each Gx is a complete multipartite graph with partite sets
of some cardinalities n1, n2, . . . , nt satisfying the following inequality:

ni ≤
∑

j �=i

nj (16.1)

for every i = 1, 2, . . . , t. Choose an edge b between two largest partite sets of
Gx. Delete the vertices of b from Gx. Clearly, the partite sets of the obtained
graph satisfy the inequality (16.1). This means we can proceed by choosing
another edge as above. This process will clearly produce a perfect matching
of Gx. (One could easily arrive at the same conclusion using Tutte’s theorem
on perfect matchings in multigraphs, see e.g. the book [170] by Bondy and
Murty.)

Fix a perfect matching {(e,matchx(e)) : e ∈ V (Gx)} in Gx for every
x in G. We call a PC trail Q of G an M -trail if matchx(e) ∈ E(Q) for
every x ∈ V (Q) and every e ∈ E(Q) incident to x. Clearly, every M -trail
is closed. In the obvious way (see the construction of R below), one can

16.2 Properly Coloured Euler Trails 611

build an M -trail. Let T be an M -trail of G with maximum number of edges.
Assume that E(T) �= E(G). Since G is connected, G − E(T) contains an
edge e1 incident to a vertex x1 in T . We construct a trail R in G − E(T)
as follows: x1, e1, x2, e2 = matchx2(e1), x3, e3 = matchx3(e2), x4, . . . , xk, ek =
matchxk

(ek−1), xk+1, where ei = xixi+1 for every i = 1, 2, . . . , k, xk+1 =
x1 and e1 = matchx1(ek). Observe that T and R are edge-disjoint by the
definition of M -trails.

Since x1 is in T , we can write down T as . . . f, x1, g, Assume, without
loss of generality, that χ(f) = 1, χ(g) = 2 and χ(e1) �= 1. If χ(ek) �= 2, then
replace the appearance of x1 between f and g in T with the trail R obtaining,
as a result, an M -trail of G with more edges than T , a contradiction. If
χ(ek) = 2, then replace the appearance of x1 between f and g in T with the
trail Rrev obtaining, as a result, an M -trail (observe that χ(e1) > 2) of G
with more edges than T , a contradiction.

Thus, E(T) = E(G), i.e., T is eulerian. ��
Benkouar, Manoussakis, Paschos and Saad [137] described an O(n2 log n)

algorithm for finding a properly coloured eulerian trail in an edge-coloured
multigraph G on n vertices that satisfies the conditions of Theorem 16.2.1.
Pevzner [750] suggested the following simple and practical algorithm to find
a PC eulerian trail in G. Let P = x1x2 . . . xk be a PC trail. A colour χ′ is
critical with respect to P if it is the most frequent colour χ′ �= χ(xk−1xk)
of edges with one end at xk and the other in V (G)−V (P). Pevzner’s algorithm
for an edge-coloured multigraph G satisfying Theorem 16.2.1 proceeds as
follows. Let x1 be an arbitrary vertex in G. Put P1 = x1 and build up
Pk = x1x2 . . . xk by adding an arbitrary edge xkxk+1 of colour χ(x1x2), if
this colour is critical with respect to P , or of any critical colour with respect
to P , otherwise. We stop when no critical colour edge is available. Pevzner
[750] proved that this simple algorithm always produces a PC eulerian trail
if one exists (Exercise 16.3).

Using the above transformation by Häggkvist, one can readily obtain the
following result (see a direct proof of it in Theorem 1.7.2):

Corollary 16.2.2 A directed multigraph D is eulerian if and only if D is
connected and d+(x) = d−(x) for every vertex x in D. ��

Fleischner, Sabidussi and Wegner [322] and Pevzner [750] independently
investigated what operations can be used to transform an alternating eulerian
trail of a 2-edge-coloured multigraph to any other one. Interestingly enough,
while the first paper had a pure theoretical motivation, in the second paper,
the author showed some applications of alternating eulerian trails, in general,
and those transformations, in particular, to an important NP-hard problem
in genetics. We discuss below only the characterization of the transformations
in [750].

612 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

Let G be a 2-edge-coloured multigraph containing an alternating eulerian
trail. In the rest of this subsection, for the sake of convenience, we consider
alternating trails as ordered sets of edges. Let T = T1T2T3T4T5 be an alter-
nating trail (where Ti are fragments of T viewed as subsets of E(G)). The
transformation T→T ∗ = T1T4T3T2T5 is called an order exchange if T ∗ is
an alternating trail. Let T = T1T2T3 be an alternating trail. The transforma-
tion T→T ∗ = T1T

rev
2 T3 is an order reflection, if T ∗ is an alternating trail.

Let X and Y be a pair of alternating trails in G. The number of vertices in
the largest common subtrail of X and Y is the index ind(X, Y) of X and Y .

Theorem 16.2.3 (Pevzner) [750] Every pair of alternating eulerian trails
X and Y in a 2-edge-coloured multigraph can be transformed into each other
by means of a sequence of order transformations (exchanges and reflections).

Proof: In the set of alternating eulerian trails T , which can be obtained
from X by means of a sequence of order transformations, choose an element,
X∗ = x1x2 . . . xq, having the largest common subtrail with Y = y1y2 . . . yq.
(Clearly, x1 = xq and y1 = yq.) Let us assume that ind(X∗, Y) = � < q. Due
to the fact that both X∗ and Y are closed, without loss of generality, we may
assume that xi = yi for 1 ≤ i ≤ �.

Let e1 = x�x�+1 and e2 = y�y�+1. Clearly, χ(e1) = χ(e2). Since X∗

is eulerian, X∗ contains e2. There are two possibilities depending on the
direction in which we traverse the edge e2 in X∗ (going from x1 to xq).

Case 1: In X∗ the edge e2 is traversed from y�+1 to y�. In this
case,

X∗ = x1 . . . x�x�+1 . . . y�+1y� . . . xq.

Let T1 = x1 . . . x�, T2 = x�x�+1 . . . y�+1y� and T3 = y� . . . xq. Since χ(e1) =
χ(e2), the transformation X∗→X∗∗ = T1T

rev
2 T3 is an order reflection. But

X∗∗ ∈ T and ind(X∗∗, Y) > ind(X∗, Y), a contradiction to the choice of X∗.
Case 2: In X∗ the edge e2 is traversed from y� to y�+1. In this

case,
X∗ = x1 . . . x�x�+1 . . . (xp = y�)(xp+1 = y�+1) . . . xq.

Let X1 = x1 . . . x�, X2 = x�x�+1 . . . xp and X3 = xpxp+1 . . . xq.

Claim. The trail X3 contains a vertex xj (j > p) belonging to X2.
Proof of Claim: Let i > � be the minimum number fulfilling the following
condition: vertex yi of the trail Y is in X2. The existence of such an i follows
from the fact that Y contains the edge e1 = yt−1yt for some t > �. Due to
the minimality of i the edge yi−1yi does not belong to X2. Condition i > l
implies that this edge is not in X1. Hence, this edge is in X3 implying that
X2 and X3 have a common vertex. The claim is proved.

Due to the claim, the trail X∗ can now be rewritten as

X∗ = x1 . . . x�x�+1 . . . (xk = xj) . . . (xp = x�)(xp+1 = y�+1) . . . xj . . . xq.

16.3 Properly Coloured Cycles 613

Let T1 = x1 . . . x�, T2 = x�x�+1 . . . xk, T3 = xk . . . xp, T4 = xp . . . xj and
T5 = xj . . . xq. Consider the edges f1 = xk−1xk and f2 = xj−1xj . If χ(f1) =
χ(f2), then χ(f2) �= χ(xkxk+1) and X∗∗ = T1T4T3T2T5 is the alternating trail
obtained from X∗ by means of some order exchange. Clearly, ind(X∗∗, Y) >
ind(X∗, Y), a contradiction to the choice of X∗.

If χ(f1) �= χ(f2), then X∗∗ = T1T4T
rev
2 T rev

3 T5 is an alternating trail. This
trail is obtained from X∗ by means of two order reflections:

T1T2T3T4T5→T1T2(T3T4)revT5

= T1T2T
rev
4 T rev

3 T5→T1(T2T
rev
4)revT rev

3 T5

= T1T4T
rev
2 T rev

3 T5.

Clearly, ind(X∗∗, Y) > ind(X∗, Y), a contradiction to the choice of X∗. ��

16.3 Properly Coloured Cycles

Using Häggkvist’s transformation, we see that the problem to check whether
a c-edge-coloured graph has a properly coloured cycle is more general (even
for c = 2) than the simple problem to verify whether a digraph contains
a directed cycle (see Proposition 2.1.1 and the remark afterwards). In this
section we consider the following:

Problem 16.3.1 Given a c-edge-coloured graph G, check whether G contains
a properly coloured cycle.

Grossman and Häggkvist [426] were the first to study this problem. They
proved Theorem 16.3.2 below in the case c = 2. Yeo [914] showed Theo-
rem 16.3.2 for every c ≥ 2. Note that one can find a shortest PC cycle in
polynomial time, see Section 16.4.

Let G be a c-edge-coloured graph and let x, y be arbitrary distinct vertices
of G. We will use the following additional notation:

χend(x, y) = {χend(P) : P is a PC (x, y)-path};
χstart(x, y) = {χstart(P) : P is a PC (x, y)-path}.

Theorem 16.3.2 (Yeo) [914] Let G be a c-edge-coloured graph, c ≥ 2, with
no PC cycle. Then, G has a vertex z ∈ V (G) such that no connected compo-
nent of G − z is joined to z with edges of more than one colour.

Proof: Let G = (V, E) be an edge-coloured graph with no PC cycle. Let
p1 ∈ V be arbitrary. Set S = {p1} ∪ {s ∈ V − {p1} : |χend(p1, s)| = 1}. Now
let P = p1p2 . . . pl (l ≥ 1) be a PC path of maximum length such that pl ∈ S,
and set Tk = {t ∈ V − {pl} : k ∈ χstart(pl, t)} for every colour k ∈ [c]. If
l = 1, then let C∗ be the set of all colours in G, and if l ≥ 2 then let C∗

614 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

be the set of all colours in G except χend(P). We will prove this theorem in
three steps.

(1) V (P) ∩ Tk = ∅ for all k ∈ C∗.

If l = 1, then this statement is trivially true (since p� �∈ Tk), so as-
sume that l ≥ 2 and that the statement is false, which implies that there
is a PC (pl, pi)-path R = plr1r2 . . . rm−1rmpi (m ≥ 0) with χstart(R) = k,
i ∈ {1, 2, . . . , l−1} and V (R)∩V (P) = {pi, pl}. Clearly χ(pipi+1) = χend(R),
since otherwise we would obtain the PC cycle pipi+1 . . . plr1r2 . . . rm−1rmpi.
This implies that Q = p1p2 . . . pirmrm−1 . . . r1pl is a PC (p1, pl)-path,
with χend(Q) = χstart(R) = k �= χend(P). We have thus shown that
{χend(Q), χend(P)} ⊆ χend(p1, pl), which implies that |χend(p1, pl)| ≥ 2.
Therefore pl /∈ S, contradicting the definition of P .

(2) If xy ∈ E, x ∈ Tk, y /∈ Tk for some k ∈ C∗, then y = pl and χ(xy) = k.

First we claim that there is a PC (pl, x)-path R with χend(R) �= χ(xy)
and χstart(R) = k.

By the definition of Tk, there is a PC (pl, x)-path Q with χstart(Q) = k.
If χend(Q) �= χ(xy), we set R := Q, so assume that χend(Q) = χ(xy). By (1),
PQ is a PC (p1, x)-path, which is longer than P . This implies that x /∈ S, so
|χend(p1, x)| ≥ 2. Thus there is a PC (p1, x)-path L with χend(L) �= χ(xy).
Let w ∈ (V (L)∩V (P ∪Q))−{x} be chosen so that V (L[w, x])∩V (P ∪Q) =
{w, x}.

Suppose that w ∈ V (P) − {pl}. Then QLrev[x, w] is a PC (pl, w)-path
whose first edge has colour k. This implies that w ∈ Tk, which contradicts
(1). Hence w ∈ V (Q) and χstart(Q[w, x]) = χstart(L[w, x]), since otherwise
Q[w, x]Lrev[x, w] is a PC cycle. This implies that R = Q[pl, w]L[w, x] is a
PC (pl, x)-path with χstart(R) = k and χend(R) �= χ(xy). Thus, the claim is
proved.

Let R be as guaranteed by the claim. If y �= pl, then Ry is a PC (pl, y)-
path with χstart(Ry) = k, which contradicts the assumption that y /∈ Tk.
Thus y = pl. If χ(xy) �= k, then we obtain the PC cycle Ry, which is also a
contradiction. Thus χ(xy) = k.

(3) No connected component of G − pl is joined to pl with edges of more
than one colour.

Assume that the statement is false, and let plx and ply be a pair of distinct
edges in G such that x and y belong to the same connected component of
G− pl and χ(plx) �= χ(ply). Assume without loss of generality that χ(plx) ∈
C∗ (otherwise interchange x and y). In G− pl there is a (not necessarily PC)
path R = r1r2 . . . rm (m ≥ 2) between x = r1 and y = rm. If y ∈ Tχ(plx), then
since pl /∈ Tχ(plx), (2) implies that χ(ply) = χ(plx), which is a contradiction.
Therefore y /∈ Tχ(plx), which together with x ∈ Tχ(plx) implies that there
exists an i (1 ≤ i ≤ m − 1) such that ri ∈ Tχ(plx) and ri+1 /∈ Tχ(plx). This,
however, contradicts (2), since riri+1 ∈ E but pl �= ri+1. ��

16.3 Properly Coloured Cycles 615

One can see that Theorem 16.3.2 actually solves Problem 16.3.1. Indeed, if
G has no vertex z such that all edges from z to any of the components of G−z
are of the same colour, then Theorem 16.3.2 implies that G contains a PC
cycle. If G has such a vertex z, we may consider only G−z or its components
(if G − z is disconnected), since no PC cycle can contain z. (See also Figure
16.2.) This leads to an obvious polynomial recursive algorithm (for a vertex
x ∈ G, the components of G − x can be found in O(|V (G)| + |E(G)|) time).

3

3

1

3

1
2

3

1

2

3

2

2

v1

v2 v4

v7

v6v5

v3

Figure 16.2 An edge-coloured graph with no PC cycle. To see this, it suffices to
check that every vertex vi has only edges of the same colour to {v1, . . . , vi−1}.

Interesting corollaries of Theorem 16.3.2 are given as exercises (Exercises
16.7,16.8) in this chapter. Theorem 16.3.2 also implies:

Corollary 16.3.3 [132, 623, 666] There does not exist a bridgeless graph
that contains a unique perfect matching.

Proof: Exercise 16.6. ��
Let us consider the following function introduced by Gutin [460]: d(n, c),

the minimum number k such that every c-edge-coloured graph of order n and
minimum monochromatic degree at least k has a properly coloured cycle. It
was proved in [460] that d(n, c) exists and that

d(n, c) ≤ 1
�c/2� (log2 n − 1

3
log2 log2 n + Θ(1)). (16.2)

Abouelaoualim et al. [2] stated a conjecture which implies that d(n, c) = 1
for each c ≥ 2. Using a recursive construction inspired by Theorem 16.3.2 of
c-edge-coloured graphs with minimum monochromatic degree p and without
PC cycles, we show that

d(n, c) ≥ 1
c
(logc n − logc logc n) (16.3)

and, thus, the conjecture does not hold.

616 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

Theorem 16.3.4 [460] For each d ≥ 1 there is an edge-coloured graph G
with δmon(G) = d and with no PC cycle.

Proof: Let (p1, p2, . . . , pc) be a vector with non-negative integral coordinates
pi. For an arbitrary (p1, p2, . . . , pc), G(p1, p2, . . . , pc) is recursively defined as
follows: take a new vertex x and graphs H1 = G(p1 − 1, p2, p3, . . . , pc−1, pc)
if p1 > 0, H2 = G(p1, p2 − 1, p3, . . . , pc−1, pc) if p2 > 0, . . ., Hc =
G(p1, p2, p3, . . . , pc−1, pc − 1) if pc > 0 and add an edge of colour i be-
tween x and every vertex of Hi for each i such that pi > 0. In particular,
G(0, 0, . . . , 0) = K1.

It is easy to see, by induction on p1+p2+· · ·+pc, that G = G(p1, p2, . . . , pc)
has no PC cycle and δmon(G) = min{pi : i = 1, 2, . . . , c}. ��

In fact, for each d ≥ 1 there are infinitely many edge-coloured graphs
G with δmon(G) = d and with no PC cycle. Indeed, in the construction of
G(p1, p2, . . . , pc) above we may assume that G(0, 0, . . . , 0) is an edgeless graph
of arbitrary order.

Proposition 16.3.5 [460] Let n(p1, p2, . . . , pc) be the number of vertices in
graph G(p1, p2, . . . , pc) and let nc(p) = n(p1, . . . , pc) when pi = p for each
i ∈ [c]. Then n(p1, . . . , pc) ≤ s2s, where s = p1 + p2 + . . .+ pc, provided s > 0
and p ≥ 1

c (logc nc(p) − logc logc nc(p)).

Proof: We first prove n(p1, . . . , pc) ≤ s2s by induction on s ≥ 1. The in-
equality clearly holds for s = 1. By induction hypothesis, for s ≥ 2, we have

n(p1, . . . , pc) ≤ 1 +
c∑

i=1

{n(p1, . . . , pi−1, pi − 1, pi+1, . . . , pc) : pi > 0}

≤ 1 + c(s − 1)cs−1 ≤ scs.

Thus, nc(p) ≤ cp ·ccp. Observe that nc(p) > aca provided a = logc nc(p)−
logc logc nc(p) and, thus, cp ≥ logc nc(p) − logc logc nc(p). ��

The inequality (16.3) follows from Proposition 16.3.5 and the fact that
graphs G(p, p, . . . , p) have no PC cycles. The bounds (16.2) and (16.3) imply
that d(n, c) = Θ(log2 n) for every fixed c ≥ 2.

Conjecture 16.3.6 [460] There is a function s(c) dependent only on c such
that d(n, c) = s(c) log2 n(1 + o(1)).

In particular, it would be interesting to determine s(2).
We conclude this section by mentioning a paper [323] by Fleischner and

Szeider, where a characterization was obtained of edge-coloured graphs in
which every edge belongs to a PC cycle.

16.4 Gadget Graphs and Shortest PC Cycles and (s, t)-Paths 617

16.4 Gadget Graphs and Shortest PC Cycles and
(s, t)-Paths

In this section based on the paper [465] by Gutin and Kim, we consider a
family of transformations of an edge-coloured multigraph G into an ordinary
graph that allow us to check the existence PC cycles and PC (s, t)-paths in
G and, if they exist, to find shortest ones among them. We raise a problem
of finding the optimal transformation and consider a possible solution to the
problem.

In Subsection 16.4.1, we consider gadget constructions introduced in [85,
465, 838]. The P-gadget graphs G∗ and G∗∗ of an edge-coloured graph G
described in Subsection 16.4.2 allow one to transform several problems on
properly coloured subgraphs of G into perfect matching problems in G∗ or
G∗∗.

16.4.1 P-Gadgets

Let G be an edge-coloured multigraph and let G′ = G−{x ∈ V (G) : |χ(x)| =
1}. For each x ∈ V (G′) let Gx be an arbitrary (non-edge-coloured) graph with
the following four properties:

P1 {xq : q ∈ χ(x)} ⊆ V (Gx);
P2 Gx has a perfect matching;
P3 For each p �= q ∈ χ(x), if the graph Gx − {xp, xq} is not empty, it has a

perfect matching;
P4 For each set L ⊆ χ(x) with at least three elements; if the graph Gx−{xl :

l ∈ L} is not empty, it has no perfect matching.

Each Gx with the properties P1-P4 is called a P-gadget. Let us consider
the following three P-gadgets; the first two are known in the literature and
the third one is new.

1. One P-gadget is due to Szeider [838]:

V (Gx) = {xi, x
′
i : i ∈ χ(x)} ∪ {x′′

a, x′′
b } and

E(Gx) = {x′′
ax′′

b , x′
ix

′′
a, x′

ix
′′
b : i ∈ χ(x)} ∪ {xix

′
i : i ∈ χ(x)}.

We will call this the SP-gadget.
2. Another gadget is due to Bang-Jensen and Gutin [85]:

V (Gx) = {xj : j ∈ χ(x)} ∪ {yj : j ∈ χ(x) \ {m, M}},

where m = min χ(x), M = maxχ(x) and

E(Gx) = {xjyk : j ∈ χ(x), k ∈ χ(x)\{m, M}}∪{xjxk : j �= k ∈ χ(x)}.

We will call this the BJGP-gadget.

618 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

3. The following gadget introduced by Gutin and Kim [465] is a sort of
crossover of the above two and is called the XP-gadget:

V (Gx) = {xj : j ∈ χ(x)} ∪ {yj : j ∈ χ(x) \ {m, M}},

where m and M are defined above, and

E(Gx) = {xmxM} ∪ {xjyj , xmyj , xMyj : j ∈ χ(x) \ {m, M}}.

It is not difficult to verify that the tree P-gadgets indeed satisfy P1-P4
(Exercise 16.9). Let z = χ(x). Observe that the SP-gadget has 2z +2 vertices
and 3z + 1 edges, the BJGP-gadget 2z − 2 vertices and z(3z − 5)/2 edges,
the XP-gadget 2z−2 vertices and 3z−5 edges. Thus, the XP-gadget has the
minimum number of vertices and edges among the three P-gadgets. It is not
difficult to verify that the XP-gadget has the minimum number of vertices and
edges among all possible P-gadgets for z = 2, 3, 4 (Exercise 16.10). Perhaps,
this is true for every z.

Conjecture 16.4.1 [465] The XP-gadget has the minimum number of ver-
tices and edges among all possible P-gadgets for every z ≥ 2.

We will see in the next subsection why minimizing the numbers of vertices
and edges in P-gadgets is important for speeding up some algorithms on edge-
coloured multigraphs.

16.4.2 P-Gadget Graphs

Let G be a c-edge-coloured multigraph and let Gx be a P-gadget for x ∈
V (G′). The graph G∗ is defined as follows: V (G∗) = ∪x∈V (G′)V (Gx) and
E(G∗) = E1 ∪ E2, where E1 = ∪x∈V (G′)E(Gx) and E2 = {yqzq : y, z ∈
V (G′), yz ∈ E(G), χ(yz) = q, 1 ≤ q ≤ c}. This construction is illustrated
in Figure 16.3.

Let s, t be a pair of distinct vertices of G and let H = G − {s, t}. Let
G∗∗ be constructed from H∗ by adding s and t and edges E3 = {sxi : sx ∈
E(G), χ(sx) = i} ∪ {txi : tx ∈ E(G), χ(tx) = i}. This construction is
illustrated in Figure 16.4.

We will denote the number of vertices and edges in graphs G, G∗ and G∗∗

by n, m, n∗, m∗, n∗∗ and m∗∗, respectively.
The following result relates perfect matchings of G∗ with PC cycle sub-

graphs of G. PC cycle subgraphs are important in several problems on edge-
coloured graphs (for example, for the PC Hamilton cycle problem). Recall
that G′ = G − {x ∈ V (G) : |χ(x)| = 1}.

Theorem 16.4.2 [465] Let G be a connected edge-coloured multigraph such
that G′ is non-empty. Then G has a PC cycle subgraph with r edges if and
only if G∗ has a perfect matching with exactly r edges in E2.

16.4 Gadget Graphs and Shortest PC Cycles and (s, t)-Paths 619

2 3

3

1

1

x1
1

x1
2

x3
2

x3
3

x2
1

x2
3

x4
3

x4
1

x3
x4

x1
x2

Figure 16.3 The left figure shows a 3-edge-coloured graph G. The right figure
depicts G∗ with BJGP-gadget (XP-gadget).

1 1

1
2

x′′
a

x′′
b

x′
1

y′′
a

y2

y3
y′′

by′
3

x1

y′
2

y1 y′
1

ts

x

y

3
ts

Figure 16.4 A 3-edge-coloured graph G and G∗∗ with SP-gadget.

Proof: Let M be a perfect matching of G∗ with exactly edges

x1
p1

y1
q1

, . . . , xr
pr

yr
qr

in E2. For a vertex x of G′, let Qx be the set of edges in E2 adjacent to Gx.
By P2, each Gx has even number of vertices (x ∈ V (G′)) and since M is
a perfect matching in G∗, there is even number of edges in Qx. By P4, Qx

has either no edges or two edges for each x ∈ V (G′). Let X be the set of all
vertices x ∈ V (G′) such that |Qx| = 2. Then, by the definition of G∗, G〈X〉
contains a PC cycle factor. It remains to observe that |X| = r.

Now let F be a PC cycle subgraph of G with r edges. Observe that the
edges of F correspond to a set Q of r independent edges of G∗ and that
either no edges or two edges of Q are adjacent to Gx for each x ∈ V (G′).
Now delete the vertices adjacent with Q from each Gx and observe that

620 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

each remaining non-empty gadget has a perfect matching by P2 and P3.
Combining the perfect matchings of the non-empty gadgets with Q, we get
a perfect matching of G∗ with exactly r edges from E2. ��

The first part of the next assertion generalizes a result from [85]. The
second part is based on an approach which leads to a more efficient algorithm
than in [1].

Corollary 16.4.3 [465] One can check whether an edge-coloured multigraph
G has a PC cycle and, if it does, find a maximum PC cycle subgraph of G in
time O(n∗ · (m∗ + n∗ log n∗)). Moreover one can find a shortest PC cycle in
G in time O(n · n∗ · (m∗ + n∗ log n∗)).

Proof: We may assume that G is connected and that G′ is not empty. By
Theorem 16.4.2, it is enough to find a perfect matching of G∗ containing
the maximum number of edges from E2. Assign weight 0 (1, respectively) to
edges of G∗ in E1 (E2, respectively). Now we need to find a maximum weight
perfect matching of G∗ which can be done in time O(n∗ · (m∗ + n∗ log n∗))
by a matching algorithm in [373].

To find a shortest PC cycle in G, choose a vertex x ∈ V (G′). We will find
a shortest PC cycle in G traversing x. By Theorem 16.4.2, it is enough to
find a perfect matching of G∗ containing the minimum number of edges from
E2 while containing at least one edge from E2 so that the corresponding PC
cycle in G should be non-trivial. We define the weights on edges of G∗ as
follows. Assign M , where M is a sufficiently large number, to each edge in
E2 incident with Gx. For all other edges, assign weight 1 (0, respectively) to
edges of G∗ in E1 (E2, respectively). A maximum weight perfect matching of
G∗ contains exactly two edges of weight M by P4, and contains the minimum
number of edges in E2. Finding a maximum weight perfect matching of G∗

can be done in time O(n∗ · (m∗ + n∗ log n∗)) and we iterate the process for
each x ∈ V (G′). ��

The proof of the following result is analogous to the proof of Theorem
16.4.2 and is left as an exercise (Exercise 16.11).

Theorem 16.4.4 [465] Let G be an edge-coloured multigraph and let s, t be
a pair of distinct vertices of G. If G∗∗ is non-empty, then G has a PC 1-path-
cycle subgraph with r edges in which the path is between s and t if and only
if G∗∗ has a perfect matching with exactly r edges not in E1. ��

The next assertion generalizes a result from [1].

Corollary 16.4.5 [465] Let G be an edge-coloured multigraph. One can
check whether there is a PC (s, t)-path in G in time O(m∗∗) and if G has one,
a shortest PC (s, t)-path can be found in time O(n∗∗ · (m∗∗ + n∗∗ log n∗∗)).

Proof: Let L be a graph. Given a matching M in L, we call a path P in
L M-augmenting if, for any pair of adjacent edges in P , exactly one of

16.5 Long PC Cycles and Paths 621

them belongs to M and the first and last edges of P do not belong to M .
Consider a perfect matching M of H∗, where H = G − {s, t}, which is a
collection of perfect matchings of Gx for all x ∈ V (G′). The existence of a
perfect matching in Gx is guaranteed by P2. Observe that G has a PC (s, t)-
path if and only if there is an M -augmenting (s, t)-path P in G∗∗. Since an
M -augmenting path P can be found in time O(m∗∗) (see [845]), we can find
a PC (s, t)-path in G, if one exists, in time O(m∗∗).

To find a shortest PC (s, t)-path, we assign each edge in
⋃

x∈V (G′) E(Gx)
weight 0 and every other edge of G∗∗ weight 1. Observe that a minimum
weight perfect matching Q in the weighted G∗∗ corresponds to a shortest PC
(s, t)-path. Finding a minimum weight perfect matching can be done in time
O(n∗∗ · (m∗∗ + n∗∗ log n∗∗)). ��

We finish this section by the following result from the paper [85] by Bang-
Jensen and Gutin that will be used in various parts of this chapter.

Theorem 16.4.6 [85] One can construct a maximum PC cycle subgraph
and a maximum PC 1-path-cycle subgraph, respectively, in a c-edge-coloured
multigraph G on n vertices in time O((cn)3).

Proof: The assertion for a maximum PC cycle subgraph follows from Corol-
lary 16.4.3 (we can use any of the three P-gadgets). We can easily transform
the maximum PC 1-path-cycle subgraph problem to the maximum PC cycle
subgraph problem as follows. Add an extra vertex x to G and join x to every
vertex of G by two edges of colour c+1 and c+2, respectively (new colours).
Clearly, a maximum PC cycle subgraph of the new multigraph corresponds
to a maximum PC 1-path-cycle subgraph of G. ��

16.5 Long PC Cycles and Paths

The following interesting result and conjecture were obtained by Aboue-
laoualim, Das, Fernandez de la Vega, Karpinski, Manoussakis, Martinhon
and Saad [2].

Theorem 16.5.1 [2] Let G be a c-edge-coloured multigraph G with n vertices
and with δmon(G) ≥ �n+1

2 �. If c ≥ 3 or c = 2 and n is even, then G has a
PC Hamilton cycle. If c = 2 and n is odd, then G has a PC cycle of length
n − 1. ��

Conjecture 16.5.2 [2] Theorem 16.5.1 holds if we replace δmon(G) ≥ �n+1
2 �

by δmon(G) ≥ �n
2 �.

We cannot replace δmon(G) ≥ �n+1
2 � by δmon(G) ≥ �n−1

2 � due to the
following example. Let H1 and H2 be c-edge-coloured complete multigraphs
(for each pair x, y of vertices and each i ∈ [c] and j ∈ {1, 2}, Hj has an edge

622 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

between x and y of colour i) of order p + 1 that have precisely one vertex in
common. Clearly, a longest PC cycle in H1 ∪H2 is of length p + 1.

Since the longest PC path problem is NP-hard, it makes sense to study
lower bounds on the length of a longest PC path. The following result was
proved by Abouelaoualim, Das, Fernandez de la Vega, Karpinski, Manous-
sakis, Martinhon and Saad [2].

Theorem 16.5.3 Let G be a c-edge-coloured graph on n vertices and with
δmon(G) = d ≥ 1. Then G has a PC path of length at least min{n−1, 2� c

2�d}.
��

The authors of [2] raised the following two conjectures.

Conjecture 16.5.4 Let G be a c-edge-coloured graph of order n and let d =
δmon(G) ≥ 1. Then G has a PC path of length at least min{n − 1, 2cd}.

They also conjectured the following analog of Theorem 16.5.3 for multi-
graphs:

Conjecture 16.5.5 Let G be a c-edge-coloured multigraph of order n with
δmon(G) = d ≥ 1. Then G has a PC path of length at least min{n − 1, 2d}.

16.6 Connectivity of Edge-Coloured Multigraphs

Strong connectivity plays a central role in the study of digraphs. Hence, it
is natural to try to obtain some extensions of strong connectivity to edge-
coloured graphs. Such extensions have been introduced and studied in the
literature. In fact, there are two useful extensions of strong connectivity: one
of them generalizes the usual definition of strong connectivity that refers
to paths between pairs of vertices and the other extends the definition of
cyclic connectivity in digraphs (see Exercise 1.17), which is equivalent to
strong connectivity (for digraphs). However, for edge-coloured graphs these
two generalizations are not equivalent any more.

In this subsection we study the above-mentioned generalizations of strong
connectivity. We restrict ourselves to 2-edge-coloured multigraphs since we
will later use connectivity results only for 2-edge-coloured graphs. Also this
will make our arguments easier to follow. However, the reader should bear in
mind that some of the results below could be generalized to c-edge-coloured
multigraphs, c ≥ 2.

The following notion of colour-connectivity was introduced by Saad [791]
(he used another name for this notion). Let G be a 2-edge-coloured multi-
graph. A pair of vertices x, y of G are colour-connected if there ex-
ist alternating (x, y)-paths P and Q such that χstart(P) �= χstart(Q) and
χend(P) �= χend(Q). (Notice that P and Q are paths, not trails.) We define a

16.6 Connectivity of Edge-Coloured Multigraphs 623

vertex x to be colour-connected to itself. We say that G is colour-connected
if every pair of vertices of G is colour-connected.

Clearly, every alternating cycle is a colour-connected graph. This indi-
cates that colour-connectivity may be useful for solving alternating cycle
problems. We can use colour-connectivity more effectively if we know that
this is an equivalence relation on the vertices of the graph under considera-
tion. This leads us to the following definition: a 2-edge-coloured multigraph
G is convenient if colour-connectivity is an equivalence relation on the ver-
tices of G. Unfortunately, there are non-convenient multigraphs. Consider
the graph H in Figure 16.5. It is easy to check that the vertices x and y are
colour-connected to u, but x and y are not colour-connected in H.

2

2 1

2

x

y

u

v

z
1

1

Figure 16.5 A non-convenient 2-edge-coloured graph.

The following result due to Bang-Jensen and Gutin provides another way
of checking colour-connectivity. Its proof is left to the reader as Exercise
16.12.

Proposition 16.6.1 [88] A pair of vertices, x1, x2, in a 2-edge-coloured
multigraph G are colour-connected if and only if G has four (not necessar-
ily distinct) alternating (x1, x2)-paths, P1, P2, Q1, Q2, such that χstart(Pi) =
χend(Qi) = i, i = 1, 2. ��

The following proposition by Bang-Jensen and Gutin shows that we can
check whether a pair of vertices of a 2-edge-coloured multigraph are colour-
connected in polynomial time. To prove Proposition 16.6.2 we can use an easy
modification of the special graph F (G) introduced in the previous section: set
E2 =

⋃
x∈W ({sxi : sx ∈ E(G), χ(sx) = i} ∪ {txj : tx ∈ E(G), χ(tx) = j}).

Proposition 16.6.2 [88] Let G = (V, E) be a connected 2-edge-coloured
multigraph and let s and t be distinct vertices of G. For each choice of
i, j ∈ {1, 2} we can find an alternating (s, t)-path P with χstart(P) = i and
χend(P) = j in time O(|E|) (if one exists). ��

Since colour-connectivity is not an equivalence relation on the vertices
of every 2-edge-coloured multigraph, another notion of connectivity, cyclic

624 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

connectivity, introduced by Bang-Jensen and Gutin [85], is sometimes more
useful. Let P = {H1, . . . , Hp} be a set of subgraphs of a multigraph G.
The intersection graph Ω(P) of P has the vertex set P and the edge set
{HiHj : V (Hi) ∩ V (Hj) �= ∅, 1 ≤ i < j ≤ p}. A pair, x, y, of vertices in a
2-edge-coloured multigraph H is cyclic connected if H has a collection of
alternating cycles P = {C1, . . . , Cp} such that x and y belong to some cycles
in P and Ω(P) is a connected graph.

We formulate the following trivial but useful observation as a proposition.

Proposition 16.6.3 Cyclic connectivity is an equivalence relation on the
vertices of a 2-edge-coloured multigraph. ��

This proposition allows us to consider cyclic connectivity components
similar to strong connectivity components of digraphs.

The following theorem due to A. Yeo (private communication, 1998) shows
that cyclic connectivity between a pair of vertices can be checked in polyno-
mial time.

Theorem 16.6.4 For a pair x, y of vertices in a 2-edge-coloured multigraph
H = (V, E), one can check whether x and y are cyclic connected in time
O(|E|(|V |+ |E|)).

Proof: By Proposition 16.6.2, in time O(|E|), one can check whether H has
an alternating cycle through a fixed edge e ∈ E. This implies that, in time
O(|V ||E|), one can verify whether H has an alternating cycle through a fixed
vertex v ∈ V .

We now describe a polynomial algorithm to check whether x and y are
cyclic connected. Our algorithm starts by initiating X := {x}. Then, we find
an alternating cycle through x; let X ′ be the vertices except for x of such a
cycle. If y ∈ X ′, then we are done. Otherwise, delete the vertices of X from
H, set X := X ′ and X ′ := ∅. Then, for each edge e with one end-vertex in
X and the other not in X find an alternating cycle through the edge (if one
exists). Now append all the vertices, except for those in X, in the cycles we
have found to X ′ and check whether y ∈ X ′. If y /∈ X ′, then we continue
as above. We proceed until either y ∈ X ′ or there is no alternating cycle
through any edge with one end-vertex in X and the other not in X. Clearly,
if y ∈ X ′ at some stage, then x and y are cyclic connected, otherwise they
are not.

The total time required for the operation of deletion is O(|V ||E|). By the
complexity bounds above and the fact that we may want to find an alternating
cycle through an edge at most once, the complexity of the described algorithm
is O(|E|(|V | + |E|)). ��

The following theorem by Bang-Jensen and Gutin shows that cyclic con-
nectivity implies colour-connectivity.

16.7 Alternating Cycles in 2-Edge-Coloured Bipartite Multigraphs 625

Theorem 16.6.5 [88] If a pair, x, y, of vertices in a 2-edge-coloured multi-
graph G are cyclic connected, then x and y are colour-connected.

Proof: If x and y belong to a common alternating cycle, then they are
colour-connected. So, suppose that this is not the case.

Since x and y are cyclic connected, there is a collection P = {C1, . . . , Cp}
of alternating cycles in G so that x ∈ V (C1), y ∈ V (Cp), and, for every
i ∈ [p−1] and every j ∈ [p], |i−j| > 1, V (Ci)∩V (Ci+1) �= ∅, V (Ci)∩V (Cj) =
∅. (P corresponds to a (C1, Cp)-path in Ω(R), where R is the set of all
alternating cycles in G.) We traverse P as follows. We start at the red (blue,
respectively) edge of C1 incident to x and go along C1 to the first vertex u
that belongs to both C1 and C2. After meeting u, we go along C2 such that
the path that we are forming will stay alternating. We repeat the procedure
above when we meet the first vertex that belongs to both C2 and C3 and
so on. Clearly, we will eventually reach y. It follows that there is an (x, y)-
path that starts from a red (blue, respectively) edge. By symmetry, we can
construct an (x, y)-path that ends at a red (blue, respectively) edge. It follows
from Proposition 16.6.1 that x and y are colour-connected. ��

16.7 Alternating Cycles in 2-Edge-Coloured Bipartite
Multigraphs

The aim of this subsection is to describe two simple approaches which allow
one to obtain results for bipartite 2-edge-coloured multigraphs using results
on directed graphs.

Let D be a bipartite digraph with partite sets V1, V2. Define a 2-edge-
coloured bipartite multigraph CM(D) in the following way: CM(D) has the
same partite sets as D; every arc (v1, v2) from V1 to V2 is replaced with red
edge v1v2 and every arc (v2, v1) from V2 to V1 is replaced with blue edge v1v2.
Moreover, CM−1(G) = H if CM(H) = G. This simple correspondence which
we call the BB-correspondence leads us to a number of easy and some more
complex results which are described in this and the next subsections. (One
example is the fact that the alternating Hamilton cycle problem for bipartite
2-edge-coloured graphs is NP-complete.) In many of our results on cycles we
will exploit the following easily verifiable proposition (see Exercise 16.13).

Proposition 16.7.1 The following three claims are equivalent for a bipartite
digraph D:

(a) D is strongly connected.
(b) CM(D) is colour-connected.
(c) CM(D) is cyclic connected. ��

The following correspondence which we call the BD-correspondence
is less universal but may allow one to exploit the wider area of results on

626 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

2

1

2

2

1

1

1

2

2
1

2
v21

v22

v23

v24

4

v13

v12

v11

v14

1
2 3

D(G)G

Figure 16.6 An illustration of BD-correspondence.

arbitrary digraphs. The idea of the BD-correspondence can be traced back to
Häggkvist [486]. Let G be a 2-edge-coloured bipartite multigraph with partite
sets V1 and V2 so that |V1| = |V2| = m and let G′ be the red subgraph of
G. Suppose that G′ has a perfect matching v11v21, v12v22, . . . , v1mv2m, where
vij ∈ Vi (i = 1, 2 and 1 ≤ j ≤ m). Construct a digraph D = D(G) as follows:
V (D) = [m] and, for 1 ≤ i �= j ≤ m, (i, j) is an arc of D if and only if
v1iv2j ∈ E(G) − E(G′) (see Figure 16.6). It is easy to see that if D has a
Hamilton cycle, then G has a Hamilton alternating cycle including all the
edges of the perfect matching. Using the BD-correspondence and Corollary
6.4.3 Hilton [529] proved the following:

Theorem 16.7.2 Let G be a 2-edge-coloured r-regular bipartite graph such
that each of the partite sets of G has m vertices and let G′′ be the blue subgraph
of G. If r ≥ m

2 + 1 and G′′ is s-regular such that m
2 ≤ s ≤ r − 1, then G has

an alternating Hamilton cycle.

Proof: Exercise 16.14. ��
Although the last theorem is the best possible (consider two disjoint copies

of Km/2,m/2 with perfect matchings in both copies in red and all other edges in
blue), Hilton [529] believes that the bound on r could be lowered considerably
if we assume that G is connected. It was noticed by Chetwynd and Hilton [213]
that Theorem 16.7.2 follows easily from the following result by Häggkvist
[486] (using the BB-correspondence).

Theorem 16.7.3 Let G be a bipartite graph so that each of the partite sets
contains m vertices. If d(v) + d(w) ≥ m + 1 for every pair v, w of vertices
from different partite sets, then every perfect matching of G lies in a Hamilton
cycle of G. ��

The BB-correspondence is very useful when we consider 2-edge-coloured
complete bipartite multigraphs. In this case we can use the rich theory of

16.7 Alternating Cycles in 2-Edge-Coloured Bipartite Multigraphs 627

semicomplete bipartite digraphs (discussed in Chapters 6 and 8). By the
BB-correspondence, Proposition 16.7.1 and Theorem 6.6.4, we obtain the
following:

Theorem 16.7.4 A 2-edge-coloured complete bipartite multigraph contains
an alternating Hamilton cycle if and only if it is colour-connected and has an
alternating cycle factor. There is an algorithm for constructing an alternat-
ing Hamilton cycle in a colour-connected 2-edge-coloured complete bipartite
multigraph on n vertices in time O(n2.5) (if one exists). ��

Another condition for a 2-edge-coloured complete multigraph to contain
an alternating Hamilton cycle was obtained by Chetwynd and Hilton [213]:

Theorem 16.7.5 A 2-edge-coloured complete bipartite graph B with partite
sets U and W (|U | = |W | = n) has an alternating Hamilton cycle if and only
if B has an alternating cycle factor and, for every k = 2, . . . , n− 1 and every
pair of k-sets X and Y such that X ⊂ U , Y ⊂ W , we have

min{
∑

x∈X di(x) +
∑

y∈Y d3−i(y) : i = 1, 2} > k2.
��

We point out that the original proof of Theorem 16.7.5 is quite simi-
lar to that of Theorem 6.6.4. (Another proof of Theorem 16.7.5 is given by
Bang-Jensen and Gutin [85]; see also Exercise 16.17.) To see that the set of
inequalities of this theorem is necessary, observe that the number of edges
between X and Y is precisely k2. If B has a Hamilton cycle C, then C con-
tains an edge e1 from U − X to Y as well as an edge e2 from X to W − Y
such that χ(e1) = χ(e2). Precisely one of these edges contributes to the sum
in the corresponding inequality.

Using the corresponding result on longest cycles in semicomplete bipartite
digraphs (Theorem 6.6.6), one can obtain the following:

Theorem 16.7.6 The length of the longest alternating cycle in a colour-
connected 2-edge-coloured complete bipartite multigraph G is equal to the
number of vertices in maximum alternating cycle subgraph of G. There is
an algorithm for finding a longest alternating cycle in a colour-connected 2-
edge-coloured complete bipartite multigraph on n vertices in time O(n3). ��

Let Br and B′
r be 2-edge-coloured complete bipartite graphs with the

same partite sets {v1, . . . , v2r} and {w1, . . . , w2r}. The edge set of the red
(blue) subgraph of Br (B′

r) consists of

{viwj : 1 ≤ i, j ≤ r} ∪ {viwj : r + 1 ≤ i, j ≤ 2r}.

The following result is a characterization of vertex-alternating-pancyclic 2-
edge-coloured complete bipartite multigraphs that can be readily obtained

628 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

from the corresponding characterization for semicomplete bipartite digraphs
in Theorem 8.6.1.

Theorem 16.7.7 A 2-edge-coloured complete bipartite multigraph is vertex-
alternating-pancyclic if and only if it has an alternating Hamilton cycle and
is not colour-isomorphic to one of the graphs Br, B

′
r (r = 2, 3, . . .). ��

Since none of the graphs Br, B
′
r (r = 2, 3, . . .) is alternating-pancyclic, we

obtain the following:

Corollary 16.7.8 Let G be a 2-edge-coloured complete bipartite multigraph.
Then G is is alternating-pancyclic if and only if it has an alternating Hamil-
ton cycle and is not colour-isomorphic to one of the graphs Br, B

′
r (r =

2, 3, . . .). ��

This result was obtained by Das [250]. The equivalent (via the BB-
correspondence) claim was proved by Beineke and Little [131] for bipartite
tournaments. (Both results were published in the same year!)

To save space we will not give any other ‘BB-translations’ of results ob-
tained for cycles and paths in semicomplete bipartite digraphs (see Chapters
6 and 8) into the alternating cycles and paths language.

16.8 Paths and Cycles in 2-Edge-Coloured Complete
Multigraphs

Since the longest alternating path problem for 2-edge-coloured complete
multigraphs is much simpler than the longest alternating cycle problem, we
start our study from the former. Bang-Jensen and Gutin characterized 2-edge-
coloured complete multigraphs which have an alternating Hamilton path (see
Corollary 16.8.2).

Theorem 16.8.1 [85] Let G be a 2-edge-coloured complete multigraph with
n vertices. Then for any 1-path-cycle subgraph F of G there is an alternating
path P of G satisfying V (P) = V (F) (if F is a maximum alternating 1-path-
cycle subgraph of G, then P is a longest alternating path in G); there exists
an O(n3) algorithm for finding a longest alternating path in G.

Proof: Obviously, F is a 1-path-cycle factor of a complete bipartite subgraph
B of G. The factor F corresponds to a directed path together with a collection
of directed cycles, all vertex disjoint, F ′ of CM−1(B). Therefore, by Theorem
6.6.1 restricted to semicomplete bipartite digraphs, there is a path P ′ in
CM−1(B) such that V (P ′) = V (F ′). This path corresponds to an alternating
path P of B so that V (P ′) = V (P). Clearly, P is an alternating path in G
and, moreover, V (P) = V (F).

The complexity result easily follows from the construction above, and
Theorems 6.6.1 and 16.4.6. ��

16.8 Paths and Cycles in 2-Edge-Coloured Complete Multigraphs 629

Corollary 16.8.2 [85] A 2-edge-coloured complete multigraph has an alter-
nating Hamilton path if and only if it contains an alternating 1-path-cycle
factor. ��

It is not difficult to prove Corollary 16.8.2 directly (see Exercise 16.20).
Clearly, Corollary 16.8.2 implies immediately the first part of Theorem 16.8.1.
Thus, the first part of Theorem 16.8.1 and Corollary 16.8.2 are in fact equiv-
alent.

In 1968, solving a problem by Erdős, Bankfalvi and Bankfalvi [123] gave
the following characterization of 2-edge-coloured complete graphs which have
an alternating Hamilton cycle.

Theorem 16.8.3 (Bankfalvi and Bankfalvi) [123] A 2-edge-coloured
complete graph G of order 2n has an alternating Hamilton cycle if and only
if it has an alternating cycle factor and, for every k = 2, . . . , n− 1 and every
pair of disjoint k-subsets X and Y of V (G),

∑
x∈X d1(x)+

∑
y∈Y d2(y) > k2.

��

It is easy to see that the conditions of this theorem are necessary (Ex-
ercise 16.16). Saad [791] proved the following more general result, using the
notion of colour-connectivity rather than degree conditions. We provide a
proof of Theorem 16.8.4 at the end of this subsection after some discussion
of implications and generalizations of Theorem 16.8.4.

Theorem 16.8.4 (Saad) [791] The length of a longest alternating cycle
in a colour-connected 2-edge-coloured complete multigraph G is equal to the
number of vertices in a maximum alternating cycle subgraph of G.

Corollary 16.8.5 [791] A 2-edge-coloured complete multigraph G has an al-
ternating Hamilton cycle if and only if G is colour-connected and contains
an alternating cycle factor. ��

Corollary 16.8.5 and the fact that colour-connectivity can be checked in
polynomial time (see Propositions 16.6.1 and 16.6.2) shows that the alter-
nating hamiltonian cycle problem for 2-edge-coloured complete multigraphs
is polynomial time solvable. However, one cannot deduce the analogous re-
sult for the longest alternating cycle problem (for 2-edge-coloured complete
multigraphs) from Theorems 16.8.4 and 16.4.6 and Propositions 16.6.1 and
16.6.2, only. The reason is that we do not know how to obtain all maximal
colour-connected subgraphs of an arbitrary 2-edge-coloured multigraph in
polynomial time. Fortunately, for 2-edge-coloured complete multigraphs G,
colour-connectivity is an equivalence relation on the set of vertices (this was
first proved by Saad [791] and also follows from Proposition 16.6.3 and the
following deeper theorem by Bang-Jensen and Gutin [88]):

630 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

Theorem 16.8.6 [88] A 2-edge-coloured complete multigraph G is colour-
connected if and only if G is cyclic connected.

Proof: Exercise 16.18. ��
Thus, we can use Propositions 16.6.1 and 16.6.2 to obtain (vertex-disjoint)

colour-connected components of G. Hence, the longest alternating cycle prob-
lem for 2-edge-coloured complete multigraphs is also polynomial time solv-
able. In [88], Bang-Jensen and Gutin showed the following more general re-
sult. (Clearly, the case f(x) = 1 for every x ∈ V (G) corresponds to the
longest alternating cycle problem.)

Theorem 16.8.7 [88] The following problem is polynomial time solvable.
Given a function f from V (G), the vertex set of a 2-edge-coloured complete
multigraph G, to Z0, find a maximum size alternating closed trail H in G
such that d1,H(x) = d2,H(x) ≤ f(x) for every x ∈ V (G). ��

Das [250] and later Häggkvist and Manoussakis [488] observed that the
alternating hamiltonian cycle problem for 2-edge-coloured complete bipar-
tite multigraphs can be reduced to the same problem for 2-edge-coloured
complete multigraphs using the following simple construction. Consider a
2-edge-coloured complete bipartite multigraph L with bipartition (X, Y).
Add to L the edges {x′x′′, y′y′′ : x′, x′′ ∈ X, y′, y′′ ∈ Y } and set
χ(XX) = 1, χ(Y Y) = 2. Let K be the 2-edge-coloured complete multigraph
obtained in this way. It is not difficult to verify that K has no alternating
cycle containing any of the edges from XX ∪ Y Y . Hence, K contains an al-
ternating hamiltonian cycle if and only if L has one. Moreover, it is easy to
check that K is colour-connected if and only if L is colour-connected. In the
following, we will call the construction above the DHM-construction. The
DHM-construction shows that (the non-algorithmic part of) Theorem 16.7.4
follows immediately from Corollary 16.8.5. This illustrates the fact that many
problems on alternating cycles for 2-edge-coloured complete multigraphs are
more general than those for 2-edge-coloured complete bipartite multigraphs.

Consider the following Hamiltonian 2-edge-coloured complete graphs
which are not even-pancyclic (see the proof of this fact below). Let r ≥ 2
be an integer. Each of the graphs H(r), H ′(r), H ′′(r) has a vertex set
A ∪ B ∪ C ∪ D so that the sets A, B, C, D are pairwise disjoint and each
of these sets contains r vertices. Moreover, the edge set of the red subgraph
of H(r) consists of AA ∪ CC ∪ AC ∪ AD ∪ CB. The edge set of the red
(blue) subgraph of H ′(r) (H ′′(r)) consists of AC ∪ CB ∪ BD ∪ DA. By the
DHM-construction, the following result by Bang-Jensen and Gutin [85] is a
generalization of Theorem 16.7.7 (the proof is left as Exercise 16.19).

Theorem 16.8.8 Let G be a 2-edge-coloured complete multigraph. Then G
is vertex-alternating-pancyclic if and only if G has an alternating Hamilton

16.8 Paths and Cycles in 2-Edge-Coloured Complete Multigraphs 631

cycle and is not colour-isomorphic to the graphs H(r), H ′(r), H ′′(r) for
r = 2, 3, ��

Since the graphs H(r), H ′(r), H ′′(r) are not alternating-pancyclic for
r = 2, 3, . . ., we obtain the following characterization first proved by Das
[250].

Corollary 16.8.9 A 2-edge-coloured complete multigraph G is alternating-
pancyclic if and only if G has an alternating Hamilton cycle and is not colour-
isomorphic to the graphs H(r), H ′(r), H ′′(r) for r = 2, 3, ��

The rest of this subsection is devoted to the proof of Theorem 16.8.4
adapted from Bang-Jensen and Gutin [88]. In the statements and the proofs
of the rest of this subsection, we use the following notation: G is a 2-edge-
coloured complete multigraph with n vertices, Fp = C1 ∪ . . . ∪ Cp is an
alternating cycle subgraph in G consisting of p cycles, C1, . . . , Cp; for each
i = 1, 2, . . . , p, Ci = vi

1v
i
2 . . . vi

2k(i)v
i
1 such that χ(vi

1v
i
2) = 1, χ(vi

2k(i)v
i
1) = 2,

and Xi = {vi
1, v

i
3, . . . , v

i
2k(i)−1}, Yi = V (Ci)−Xi. We write Cj→Ci to denote

that

χ(XiXi) = χ(XiV (Cj)), χ(YiYi) = χ(YiV (Cj)) and χ(XiXi) �= χ(YiYi).

We point out that the meaning of Cj→Ci is that, for any choice of vertices
x ∈ V (Cj) and y ∈ V (Ci), there exist alternating (x, y)-paths P and P ′ such
that the colours of the edges incident with x in P and P ′ are distinct, but
for every such choice of paths P and P ′, the colours of the edges in P and
P ′ incident with y are equal. Hence, if Cj→Ci, then the multigraph induced
by the vertices of these two cycles is not colour-connected. (See Figure 16.7,
where C2→C3.)

Lemma 16.8.10 Suppose G has an alternating cycle factor F2 = C1 ∪ C2.
Then, G has an alternating Hamilton cycle if and only if neither C1→C2 nor
C2→C1. Given a pair C1 and C2 of cycles of G, so that neither C1→C2

nor C2→C1, an alternating Hamilton cycle of G can be found in time
O(|V (C1)||V (C2)|).

Proof: It is easy to see that if either C1→C2 or C2→C1, then G is not colour-
connected. Hence, G has no alternating Hamilton cycle. Assume that neither
C1→C2 nor C2→C1, but G has no alternating Hamilton cycle. Consider the
bipartite digraph T with partite sets V1 = X1∪X2 and V2 = Y1∪Y2 obtained
from G in the following way: delete all edges between vertices both on C1 or
on C2 except those edges that are on the cycles and delete all edges between
vertices both in the same partite set. Now make the following orientations
of the edges in the resulting bipartite multigraph. For i = 1, 2 and any pair
v1 ∈ V1, v2 ∈ V2, if there is an edge e between v1 and v2, then delete the
colour of the edge e and orient it as the arc (vi, v3−i) if and only if χ(e) = i.

632 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

Obviously, T has a spanning cycle subgraph consisting of two directed cycles
Z1, Z2 which are orientations of the cycles C1, C2, respectively. Similarly we
see that every directed cycle in T corresponds to an alternating cycle in G.
Thus, since G has no alternating Hamilton cycle, T is not hamiltonian. By
Exercise 6.23, this means that T is not strong, i.e., all arcs between Z1 and
Z2 have the same orientation. Without loss of generality we may assume that
all these arcs are oriented from Z1 to Z2. Then, by the definition of T , we
obtain that χ(X1Y2) = 1, χ(Y1X2) = 2.

Consider next the bipartite digraph T ′ with partite sets V ′
1 = X1∪Y2 and

V ′
2 = Y1 ∪ X2. The rest of the definition of T ′ coincides with that of T . T ′

also contains a spanning cycle subgraph consisting of orientations of C1 and
C2. Since G has no alternating Hamilton cycle, T ′ is not hamiltonian. By
Corollary 6.6.16, this means that T ′ is not strongly connected. This leads us
to the conclusion that either χ(X1X2) = 1 and χ(Y1Y2) = 2 or χ(X1X2) = 2
and χ(Y1Y2) = 1. The first possibility together with the conclusion of the
previous paragraph implies χ(X1V (C2)) = 1, χ(Y1V (C2)) = 2. The second
gives χ(X2V (C1)) = 2, χ(Y2V (C1)) = 1. Without loss of generality we may
assume that χ(X1V (C2)) = 1, χ(Y1V (C2)) = 2.

Suppose that, for some i �= j, there exists an edge v1
2i+1v

1
2j+1 of colour 2.

Then G has the alternating Hamilton cycle

v2
1v1

2jv
1
2j−1 . . . v1

2i+1v
1
2j+1 . . . v1

2k(1)v
1
1 . . . v1

2iv
2
2k(2) . . . v2

1 .

Hence, χ(X1X1) = 1. Analogously, χ(Y1Y1) = 2. Now C2 → C1 and we have
obtained a contradiction.

The complexity bound follows from that of Corollary 6.6.16. ��
An alternating cycle subgraph R of G is irreducible if there is no other

alternating cycle subgraph Q in G so that V (R) = V (Q) and Q has fewer
cycles than R. (See Figure 16.7.)

Theorem 16.8.11 Let G have an alternating cycle factor F consisting of
p ≥ 2 cycles. F is an irreducible alternating cycle factor of G if and only
if we can label the cycles in F as C1, . . . , Cp, such that, with the notation
introduced above, for every 1 ≤ i < j ≤ p, χ(XjV (Ci)) = 1, χ(YjV (Ci)) =
2, χ(XjXj) = 1, χ(YjYj) = 2. An irreducible alternating cycle factor of G (if
any) can be found in time O(n2.5).

Proof: If the edges have the structure described above, then Ci→Cj for all
i < j and each of the cycles in F forms a colour-connected component and
F is clearly irreducible.

To prove the other direction we let F be an irreducible alternating cy-
cle factor of G and let p ≥ 2 be the number of cycles in F . By Lemma
16.8.10, no two cycles in F induce a colour-connected subgraph. Thus, for
all 1 ≤ i < j ≤ p, either Ci→Cj or Cj→Ci. Therefore, the digraph with
vertex set {C1, . . . , Cp} and arc set {(Ci, Cj) : Ci→Cj ; 1 ≤ i �= j ≤ p}

16.8 Paths and Cycles in 2-Edge-Coloured Complete Multigraphs 633

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1

2

2

C1 C2 C3 C4

1

2

2

Figure 16.7 An irreducible PC cycle factor. The number s ∈ {1, 2} on the edge
emanating to the left from a vertex on Ci, 2 ≤ i ≤ 2, indicates that the colour of
all edges from that vertex to all the vertices of Cj with j < i is s. The vertices
are partitioned into two equal-sized sets indicated by black and white vertices. The
number r ∈ {1, 2} on an edge between two black (white vertices) on the same cycle
indicates that all edges between black (white) vertices on that cycle have the same
colour r.

is a tournament. So, if there exist cycles C ′
1, C

′
2, . . . , C

′
k from F such that

C ′
1→C ′

2→ . . .→C ′
k→C ′

1, then there also exists such a collection for k = 3 and
the reader can easily find an alternating cycle covering precisely the vertices
of those cycles, contradicting the irreducibility of F . Hence we can assume
that there is no such cycle. Thus there is a unique way to label the cycles
in F as C1, C2, . . . , Cp, so that Ci→Cj if and only if i < j. If there are
three cycles Ci, Cj and Ck from F such that Ci→Cj , Ck and Cj→Ck, but
χ(XkV (Ci)) �= χ(XkV (Cj)), then we can easily find an alternating cycle cov-
ering precisely the vertices of Ci, Cj and Ck, contradicting the irreducibility
of F . Hence we may assume that for all 1 ≤ i < j ≤ p, χ(XjV (Ci)) = 1 and
χ(YjV (Ci)) = 2. The fact that χ(XjXj) = 1, χ(YjYj) = 2 follows from the
proof of Lemma 16.8.10 and the minimality of F .

Using the proof of Lemma 16.8.10, the proof above can be converted into
an O(n2) algorithm for transforming any alternating cycle factor into an al-
ternating hamiltonian cycle or an irreducible alternating cycle factor. Now the
complexity bound of the lemma follows from a simple fact that one can find a
spanning alternating cycle subgraph (if any) in a 2-edge-coloured multigraph
L in time O(|V (L)|2.5). Indeed, find maximum matchings in the red and blue
subgraphs of L. Obviously, L has a spanning alternating cycle subgraph if
and only if both subgraphs have perfect matchings. The complexity bound
follows from that of the algorithm for finding a maximum matching in an
arbitrary graph described in the book [306] by Even. ��

We will make use of the following simple lemma.

634 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

Lemma 16.8.12 Let P = x1x2 . . . xk be an alternating path and C an al-
ternating cycle disjoint from P in G. Suppose χ(x1V (C)) = i �= χ(x1x2)
where i = 1 or i = 2 and that G contains an edge xkz, where z ∈ V (C) and
χ(xk−1xk) �= χ(xkz). If χ(xkz) = i, then G contains a cycle C ′ with V (C ′) =
V (P)∪ V (C). Otherwise G has a cycle C ′′ with V (C ′′) = V (P)∪ V (C)−w,
where w is the neighbour of z on C for which χ(wz) = 3− i.

Proof: Exercise 16.21. ��
Proof of Theorem 16.8.4: Let F = C1 ∪ . . . ∪ Cp be an alternating cycle
subgraph of G and let F ′ = C1 ∪ . . . ∪ Cp−1. We will show by induction on
p that G has an alternating cycle C∗ having at least the same number of
vertices as F . If p = 1, we are done. So, we may suppose that p ≥ 2. By
Theorem 16.8.11, we may assume, using the (obvious) induction hypothesis,
that, for all 1 ≤ i < j ≤ p,

χ(XjV (Ci)) = 1, χ(YjV (Ci)) = 2, χ(XjXj) = 1, χ(YjYj) = 2. (16.4)

Since G is colour-connected there is an alternating (x, y)-path R of min-
imum length such that x ∈ V (Cp), {y} = V (R) ∩ V (F ′) and χ(xx′) �=
χ(xV (F ′)), where x′ is the successor of x in R. We prove that (V (R) −
{x, y}) ∩ V (F) = ∅. Assume this is not so, that is, R contains at least two
vertices from Cp. Consider a vertex z in (V (R) ∩ V (Cp)) − x. Let z′ be the
successor of z in R. Clearly, χ(zz′) = χ(zV (F ′)) since the (z, y)-part of R
is shorter than R. On the other hand, by (16.4) x′ is not in Cp and by the
minimality of R, χ(x′V (F ′)) = χ(xx′). Then, the alternating path Qv, where
Q is the reverse of the (x′, z)-part of R and v is a vertex in Cp−1, is shorter
than R; a contradiction.

Now consider an alternating (x, y)-path R with the properties above in-
cluding (V (R)−{x, y})∩V (F) = ∅. We may assume without loss of generality
that x = vp

1 and χ(xV (F ′)) = χ(vp
2vp

1). Choose t such that y ∈ V (Ct). Apply
Lemma 16.8.12 to the path

vp
2k(p)v

p
2k(p)−1 . . . vp

2R′,

where R′ is the path R without y, and the cycle Ct. We get a new alternating
cycle C ′, with V (C ′) ⊂ V (R) ∪ V (Ct) ∪ V (Cp), covering at least as many
vertices as Ct and Cp together, so by replacing Ct and Cp by C ′ in F , we
obtain a new alternating cycle subgraph with fewer cycles which covers at
least as many vertices as F and the existence of C∗ follows by induction. ��

The proof above can be converted into an O(n3) algorithm for finding
a longest cycle in G, provided we are given a maximum cycle subgraph as
input.

16.9 PC Paths and Cycles in c-Edge-Coloured Complete Graphs, c ≥ 3 635

16.9 PC Paths and Cycles in c-Edge-Coloured Complete
Graphs, c ≥ 3

Let Kc
n denote a c-edge-coloured complete graph with n vertices. The prop-

erly coloured (PC) Hamilton path problem for c-edge-coloured complete
graphs is much more difficult in the case c ≥ 3, than in the case c = 2
treated above. However, a hamiltonian analog of Theorem 16.8.1 still holds
as was shown by Feng, Giesen, Guo, Gutin, Jensen and Rafiey.

Theorem 16.9.1 [313] A Kc
n (c ≥ 3) has a PC Hamilton path if and only

if Kc
n contains a PC spanning 1-path-cycle subgraph. ��

Observe that to prove Theorem 16.9.1 it suffices to show that given a
pair C = v1v2 . . . vnv1 (n ≥ 3) and P = u1u2 . . . um (m ≥ 1) of dis-
joint PC cycle and PC path in Kc

n (c ≥ 3) covering all vertices of Kc
n,

one can find a PC Hamilton path. If m = 1, at least one of the paths
u1v1v2 . . . vnv1 and u1v1vnvn−1 . . . v1 is PC. Thus, we may assume that
m ≥ 2. Let j ∈ {1, 2, . . . , n}. If χ(u1vj) �= χ(u1u2), then at least one of
the paths umum−1 . . . u1vjvj+1 . . . vj−1 and umum−1 . . . u1vjvj−1 . . . vj+1 is
PC. Similarly there exists a PC Hamilton path if χ(umvj) �= χ(um−1um−2).
So we may assume the following:

c(u1vj) = c(u1u2) and c(umvj) = c(um−1um) for each j ∈ [n]. (16.5)

Thus, to show Theorem 16.9.1 it suffices to prove the following claim:

Theorem 16.9.2 If (16.5) is satisfied, then there exists a PC Hamilton path
H in G with u1 as its first vertex, such that the initial edge of H is either
u1u2 or one of the edges u1vj (1 ≤ j ≤ n), and such that if m ≥ 2, then um

is the last vertex of H and the last edge of H is either um−1um or one of the
edges vjum (1 ≤ j ≤ n). ��

The proof of this theorem in the paper [313] is quite lengthy and, thus, is
not presented here.

By Theorems 16.4.6 and 16.9.2, the PC Hamilton path problem for c-edge-
coloured complete graphs is polynomial time solvable. The proof of Theorem
16.9.2 is constructive and can be turned into a polynomial time algorithm for
transforming a PC 1-path-cycle factor into a PC Hamilton path.

Benkouar, Manoussakis, Paschos and Saad posed the following problem:

Problem 16.9.3 [137] Determine the complexity of the PC Hamilton cycle
problem for c-edge-coloured complete graphs when c ≥ 3.

Gutin and Kim believe that the complexity is polynomial.

Conjecture 16.9.4 [465]For every c ≥ 3 the PC Hamilton cycle problem
for c-edge-coloured complete graphs is polynomial time solvable.

636 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

Another interesting problem is to find a non-trivial characterization of
c-edge-coloured (c ≥ 3) complete graphs containing PC hamiltonian cycles.
We consider results from [137] related to Problem 16.9.3. We give an example
showing that the obvious analogue of Corollary 16.8.5 is not valid for c ≥ 3.
Later we present some conditions which guarantee the existence of a PC
Hamilton cycle in a c-edge-coloured complete graph.

A strictly alternating cycle in Kc
n is a cycle of length pc (p is an inte-

ger) so that the sequence of colours (12. . . c) is repeated p times. Benkouar,
Manoussakis, Paschos and Saad [137] proved the following:

Theorem 16.9.5 [137] Let c ≥ 3. The problem of determining the existence
of a strictly alternating Hamilton cycle in Kc

n is NP-complete.

Proof: Exercise 16.22. ��
The following result shows that if we relax the property of colours to be

at strict places, but maintain the number of their appearances in a Hamilton
cycle, then we still have an NP-complete problem.

Theorem 16.9.6 [137] Given positive integers p and c ≥ 3, the problem of
determining the existence of a PC Hamilton cycle C of Kc

cp so that each
colour appears p times in C is NP-complete.

Proof: Exercise 16.23. ��
The following example shows that the obvious analogue of Corollary

16.8.5 is not valid for c ≥ 3. The graph G6 is a 3-edge-coloured complete
graph on vertices 1,2,3,4,5,6. All the edges of G6 have colour 1 except for
the following: the triangles 2342 and 2562 have colours 2 and 3, respectively,
χ(36) = χ(45) = 2, χ(12) = 3. It is easy to check that G6 is colour-connected
and has the alternating spanning cycle subgraph 1231 ∪ 4564, but G6 con-
tains no PC Hamilton cycle (Exercise 16.24). Note that alternating paths
showing that G6 is colour-connected may be chosen so that for each choice of
vertices x and y the two paths P and P ′ described in the definition of colour-
connectivity are internally disjoint. Hence it will not be enough to change this
definition to require that P and P ′ are disjoint, a condition which is obviously
necessary for the existence of a PC Hamilton cycle. For every even n, using
the definition of G6, one can easily construct a 3-edge-coloured complete
graph on n ≥ 8 vertices which is colour-connected and has a PC spanning
cycle subgraph, but contains no PC Hamilton cycle (see Exercise 16.25).

We start our consideration of sufficient conditions for an edge-coloured
complete graph to contain a PC Hamilton cycle with the following simple
result by Manoussakis, Spyratos, Tuza and Voigt:

Proposition 16.9.7 [684] If c ≥ 1
2 (n − 1)(n − 2) + 2, then every Kc

n has a
PC Hamilton cycle.

16.9 PC Paths and Cycles in c-Edge-Coloured Complete Graphs, c ≥ 3 637

Proof: Exercise 16.26. ��
To see that the bound of Proposition 16.9.7 is sharp consider the following

Kc
n. Assign colour 1 to all edges incident to a fixed vertex x ∈ V (Kc

n). Each
of the remaining edges has a distinct colour not equal 1. Clearly, such Kc

n

has no PC Hamilton cycle and c = 1
2 (n − 1)(n − 2) + 1.

In [251] Daykin posed the following interesting problem. Find a positive
constant d such that every Kc

n with Δmon(Kc
n) ≤ dn has a PC Hamilton

cycle. This problem was independently solved by Bollobás and Erdős [163]
and Chen and Daykin [200]. In [163] (in [200], respectively), it was proved
that if 69Δmon(Kc

n) < n (17Δmon(Kc
n) ≤ n, respectively), then Kc

n has
a PC Hamilton cycle. Shearer [814] improved the last result showing that
if 7Δmon(Kc

n) < n, then Kc
n has a PC Hamilton cycle. So far, the best

asymptotic estimate was obtained by Alon and Gutin [24].

Theorem 16.9.8 [24] For every ε > 0 there exists an n0 = n0(ε) so that for
each n > n0, every Kc

n satisfying

Δmon(Kc
n) ≤ (1 − 1√

2
− ε)n (= (0.2928 . . .− ε)n) (16.6)

contains a PC Hamilton cycle. ��

However, Theorem 16.9.8 seems to be far from the best possible, at least,
if the following conjecture by Bollobás and Erdős [163] is true.

Conjecture 16.9.9 Every Kc
n with Δmon(Kc

n) ≤ �n/2�−1 has a PC Hamil-
ton cycle.

The rest of this subsection is devoted to a probabilistic1 proof of Theorem
16.9.8. For simplicity we assume first that n = 2m is even, and remark at the
end of the subsection how to modify the argument for the case of odd n. Fix
a positive ε, and let K = Kc

n be an edge-coloured complete graph on n = 2m
vertices satisfying (16.6). We first prove the following lemma.

Lemma 16.9.10 For all sufficiently large m, K contains a spanning edge-
coloured complete bipartite graph Kc

m,m satisfying

Δmon(Kc
m,m) ≤ (1 − 1√

2
− ε

2
)m. (16.7)

Proof: Let uivi (1 ≤ i ≤ m) be an arbitrary perfect matching in K and
choose a random partition of the set of vertices of K into two disjoint subsets
A and B of cardinality m each by choosing, for each i, 1 ≤ i ≤ m, randomly
and independently, one element of the set {ui, vi} to be a member of A and

1 Probabilistic methods have proved to be very powerful for various problems (see
e.g. the book [28] by Alon and Spencer).

638 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

the other to be a member of B. Fix a vertex w of K and a colour, say red, that
appears in the edge-colouring of K. The number of neighbours a of w in A so
that the edge wa is red can be written as a sum of m independent indicator
random variables x1, . . . , xm, where xi is the number of red neighbours of w
in A among ui, vi. Thus each xi is either 1 with probability one (in case both
edges wui, wvi are red) or 0 with probability 1 (in case none of the edges
wui, wvi is red) or 1 with probability 1/2 (in case exactly one of these two
edges is red). It follows that if the total number of red edges incident with w is
r, then the probability that w is adjacent with more than (r+s)/2 vertices in
A by red edges is equal to the probability that more than (q+s)/2 flips among
q independent flips of a fair coin give ‘heads’, where q is the number of non-
constant indicator random variables among the xi’s. This can be bounded by
the well-known inequality of Chernoff (cf. e.g. [28, Theorem A.4, page 235])
by e−2s2/q < e−2s2/m. Since the same argument applies to the number of
‘red’ neighbours of w in B, and since there are less than 8m3 choices for a
vertex w, a colour in the given colouring of K and a partite set (A or B), we
conclude that the probability that there exists a vertex with more than

(1 − 1√
2
− ε

2
)m

neighbours of the same colour in either A or B is at most

8m3e−2ε2m,

which is (much) smaller than 1 for all sufficiently large m. Therefore, there
exists a choice for A and B so that the above does not occur, completing the
proof. ��

The next lemma can be proved by applying a large deviation result for
martingales, i.e., Azuma’s inequality [28].

Lemma 16.9.11 [24] Let U be a subset of M = [m − 1] and suppose that
for each u ∈ U there is a subset Su ⊂ M , where |Su| ≤ r for all u. Let
f : U �→ M be a random one-to-one mapping of U into M , chosen uniformly
among all one-to-one mappings of U into M , and define:

B(f) = |{u ∈ U : f(u) ∈ Su}|.

Then the expectation of B(f) is given by

E = E(B(f)) =
∑

u∈U

|S(u)|
m− 1

(≤ |U |r
m − 1

),

and the probability that B(f) is larger satisfies the following inequality. For
every λ > 0

Prob[B(f)−E > 4λ
√

m − 1] < e−λ2
.

��

16.9 PC Paths and Cycles in c-Edge-Coloured Complete Graphs, c ≥ 3 639

Corollary 16.9.12 Let Kc
m,m be an edge-coloured complete bipartite graph

on the partite sets A and B, and suppose that (16.7) holds. Then, for all
sufficiently large m, there exists a perfect matching aibi, 1 ≤ i ≤ m, in Kc

m,m

so that the following two conditions hold.
(i) For every i the number d+(i) of edges aibj between ai and B whose
colours differ from those of aibi and of ajbj is at least m/2 + 1.
(ii) For every j the number d−(j) of edges aibj between bj and A whose
colours differ from those of aibi and of ajbj is at least m/2 + 1.

Proof: Let aibi, 1 ≤ i ≤ m, be a random perfect matching between A
and B, chosen among all possible matchings with uniform probability. Put
r = Δmon(Kc

m,m) and notice that by (16.7)

r ≤ (1 − 1√
2
− ε

2
)m.

Fix an i, say i = m, and let us estimate the probability that the condition (i)
fails for i. Suppose the edge ambm has already been chosen for our random
matching, and the rest of the matching still has to be chosen randomly. There
are at most r edges amb (b ∈ B) having the same colour as ambm. Let U be
the set of all the remaining elements B. Then |U | ≥ m − r. For each u ∈ U ,
let Su denote the set of all elements a ∈ A−am so that the colour of the edge
au is equal to that of the edge amu. The random matching restricted to U
is simply a random one-to-one function f from U to A − am. Moreover, the
edge amu will not be counted among the edges incident with am and having
colours that differ from those of ambm and of the edge matched to u if and
only if the edge matched to u will lie in Su. It follows that the random variable
counting the number of such edges of the form amu behaves precisely like the
random variable B(f) in Lemma 16.9.11. By choosing say, λ =

√
log(4m) we

conclude that the probability that B(f) exceeds |U |r/(m − 1) + 4λ
√

m − 1
is smaller than 1/(4m). Therefore, with probability at least 1− 1

4m

d+(m) ≥ |U | − |U |r
m − 1

− 4
√

m
√

log(4m)

≥ (m − r)(m − r − 1)
m − 1

− 4
√

m
√

log(4m)

> m/2 + 1,

for all sufficiently large m (using the fact that r ≤ (1 − 1√
2
− ε

2)m).
Since there are m choices for the vertex ai (and similarly m choices for

the vertex bj for which the computation is similar) we conclude that with
probability at least a half d+(i) > m/2 + 1, and d−(j) > m/2 + 1 for all i
and j. In particular there exists such a matching, completing the proof of the
corollary. ��

Returning to the proof of Theorem 16.9.8 with n = 2m, and given an edge-
coloured Kc

n satisfying (16.6) apply Lemma 16.9.10 and Corollary 16.9.12 to

640 16. Generalizations of Digraphs: Edge-Coloured Multigraphs

obtain a matching aibi satisfying the two conditions in the corollary. Con-
struct a digraph D = (V, E) on the set of vertices V = {v1, v2, . . . , vm} by
letting vivj be a directed edge (for i �= j) if and only if the colour of aibj in Kc

n

differs from that of aibi and that of ajbj . By Corollary 16.9.12 the in-degree
and the out-degree of every vertex of D exceed m/2, implying, by Corol-
lary 6.4.3, that D contains a directed Hamilton cycle vπ(1)vπ(2) . . . vπ(m)vπ(1),
where π = π(1), π(2), . . . , π(m) is a permutation of {1, 2, . . . ,m}. The cycle
bπ(1)aπ(1)bπ(2)aπ(2) . . . bπ(m)aπ(m)bπ(1) is clearly a PC Hamilton cycle in Kc

n,
as needed.

In case n = 2m+1 is odd we fix a path P = a1c1b1 of length 2, so that the
edges a1c1 and c1b1 have distinct colours, choose a random perfect matching
a2b2, . . . , ambm in the rest of the graph and show that with high probability
there is a PC Hamilton cycle containing the path P and the matching by
applying Corollary 6.4.3 as before. Since the details are almost identical to
the ones for the even case, we omit them. This completes the proof of the
theorem. ��

16.10 Exercises

16.1. Prove Proposition 16.1.1. Hint: use the BB-correspondence, Häggkvist’s
transformation, Proposition 10.1.2 and Theorem 10.2.1.

16.2. (−) Deduce from Theorem 16.2.1 that an undirected multigraph G has an
eulerian trail if G is connected and each vertex of G is of even degree.

16.3. Prove the correctness of Pevzner’s algorithm described after Theorem 16.2.1.

16.4. (−) Every eulerian digraph has a cycle (unless it is the trivial digraph with
one vertex). Show that the corresponding claim is not valid for alternating
trails and cycles in 2-edge-coloured graphs.

16.5. Let G be a connected 2-edge-coloured graph. Let V (G) = X + Y such that
d1(x) = d2(x) for every x ∈ X, and d1(y) = d2(y)−1 for every y ∈ Y . What
is the minimum number of edge-disjoint alternating trails to cover E(G)?

16.6. Prove Corollary 16.3.3.

16.7. Every bridgeless graph G has an M -alternating cycle for a given
perfect matching M of G. Let M be a perfect matching in a graph G.
Using Theorem 16.3.2 prove that if no edge of M is a bridge of G, then G has
a cycle whose edges are taken alternatively from M and G−M (Grossman
and Häggkvist [426]).

16.8. (+) Let G be a 2-edge-coloured eulerian graph so that all monochromatic
degrees are odd. Using Theorem 16.3.2 demonstrate that G has an alternat-
ing cycle (Grossman and Häggkvist [426]).

16.9. (−) Show that the tree P-gadgets defined in Subsection 16.4.1 satisfy the
properties P1-P4 also defined in Subsection 16.4.1.

16.10. Prove that the XP-gadget defined in Subsection 16.4.1 has the minimum
number of vertices and edges among all possible P-gadgets for c = 2, 3, 4.

16.10 Exercises 641

16.11. Prove Theorem 16.4.4.

16.12. Prove Proposition 16.6.1.

16.13. Prove Proposition 16.7.1. Hint: see Exercise 1.17.

16.14. Prove Theorem 16.7.2 using the BD-correspondence and Corollary 6.4.3.

16.15. Deduce Theorem 16.7.2 from Theorem 16.7.3.

16.16. Show that the conditions of Theorem 16.8.3 are necessary. Hint: it is similar
to the remark after Theorem 16.7.5.

16.17. Derive Theorem 16.7.5 from Theorem 16.8.3. Hint: you may use the DHM-
construction.

16.18. (+) Prove Theorem 16.8.6.

16.19. (+) Prove Theorem 16.8.8.

16.20. Give a direct proof of Corollary 16.8.2.

16.21. Prove Lemma 16.8.12.

16.22. Prove Theorem 16.9.5.

16.23. Prove Theorem 16.9.6.

16.24. Check that G6 introduced after Theorem 16.9.6 is colour-connected and has
the alternating spanning cycle subgraph 1231 ∪ 4564, but does not contain
a PC Hamilton cycle.

16.25. Using the definition of G6 given after Theorem 16.9.6, construct, for ev-
ery even n, a 3-edge-coloured complete graph on n ≥ 8 vertices which is
colour-connected and has a PC spanning cycle subgraph, but contains no
PC Hamilton cycle.

16.26. Prove Proposition 16.9.7. Hint: consider the complete biorientation of a
maximum spanning subgraph G of Kc

n such that no pair of edges in G is of

the same colour. Apply Exercise 6.12 to see that
↔
G is hamiltonian.

17. Applications of Digraphs and
Edge-Coloured Graphs

In this chapter we study applications of directed and edge-coloured graphs to
quantum mechanics, embedded computing, the traveling salesman problem,
constraint satisfaction, genetics and other areas.

17.1 A Digraph Model in Quantum Mechanics

The class of mediated digraphs defined below was introduced by Jones, Lin-
den and Massar [574] as a model in quantum mechanics. In this section, we
define and study an extremal parameter of digraphs in this class, the nth
mediation number. The parameter is of interest in the study of quantum
non-locality, which we discuss in the last subsection.

A digraph D is mediated if for every pair x, y of vertices there is a
vertex z such that both x, y ∈ N−[z] (possibly z = x or y). Semicomplete di-
graphs and symmetric digraphs of diameter 2 are special families of mediated
digraphs. Figure 17.1 is another example of a mediated digraph.

Figure 17.1 A mediated digraph H of order 6. Undirected edges correspond to
directed 2-cycles.

The nth mediation number μ(n) is the minimum of Δ−(D) over all
mediated digraphs on n vertices. This parameter is of interest in quantum

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 17,
© Springer-Verlag London Limited 2010

643

http://dx.doi.org/10.1007/978-1-84800-998-1_17

644 17. Applications of Digraphs and Edge-Coloured Graphs

mechanics as explained in the last subsection. Figure 17.1 shows that μ(6) ≤
2. One can see that by Proposition 17.1.1 we have μ(6) ≥ 2. Thus, in fact,
μ(6) = 2 and H in Figure 17.1 is an ‘optimal’ mediated digraph.

This section is based on the paper [464] by Gutin, Jones, Rafiey, Severini
and Yeo. The rest of the section is organized as follows. In Subsection 17.1.1,
we obtain a lower bound f(n) for μ(n), which is proved to be sharp in the
next two subsections. In the next subsection, we obtain a characterization of
μ(n) as an extremal parameter of special families of sets. This allows us to use
some results from design theory. Subsection 17.1.3 provides upper bounds for
μ(n). We prove that μ(n) = f(n)(1 + o(1)), which is the central result of the
section and is of importance for quantum non-locality (see Subsection 17.1.5).
In Subsection 17.1.4 we show that μ(n) > f(n) for an infinite number of values
of n. It is conjectured in [464] that, in fact, there is a constant c such that
μ(n) ≤ f(n) + c for each n ≥ 1. The authors of [464] also posed the problem
of checking whether μ(n) is a monotonically increasing function. Subsection
17.1.5 provides a brief motivation for the study of mediated digraphs and the
nth mediation number.

17.1.1 Lower Bound for μ(n)

Let f(n) = � 1
2 (
√

4n − 3− 1)�. The following proposition gives a lower bound
for μ(n), which is the exact value of μ(n) for infinitely many values of n (see
Corollaries 17.1.6 and 17.1.8).

Proposition 17.1.1 [464] For each n ≥ 1, we have μ(n) ≥ f(n).

Proof: Let D be a mediated digraph and let d = Δ−(D). If D has just one
vertex, the bound holds, so we may assume that n ≥ 2. By the definition of
a mediated digraph, each pair x, y of vertices of D belongs to the closed in-
neighborhood of some vertex. Let d−1 , d−2 , . . . , d−n be the in-degrees of vertices
v1, v2, . . . , vn of D. Since a vertex vi has

(
d−

i
2

)
+ d−i pairs of vertices in its

closed in-neighborhood and since D has overall
(
n
2

)
pairs of vertices, we have

n∑

i=1

(
(

d−i
2

)
+ d−i) ≥

(
n

2

)
.

Therefore, we have
∑n

i=1((d
−
i)2 + d−i) ≥ n(n − 1). So, n(d2 + d) ≥ n(n − 1)

and d ≥ 1
2 (
√

4n − 3− 1) and the result follows by integrality of d. ��

17.1.2 Families of Sets and μ(n)

In this subsection we characterize μ(n) in terms of special families of sets.
Symmetric families, 2-covering families and families having a system of dis-
tinct representatives are of significant interest in the theory and applications
of combinatorics, see, e.g., [189, 579].

17.1 A Digraph Model in Quantum Mechanics 645

We consider families of subsets of a finite set X. Using block-design ter-
minology, we call the elements of X points and the subsets of X blocks.
Let F = {X1, X2, . . . , Xm} be a family of blocks of X. An m-tuple S =
(x1, x2, . . . , xm) is a system of distinct representatives (SDR) if all
points of S are distinct and xi ∈ Xi for each i = 1, 2, . . . , m. The family
F is symmetric if m = |X|. A family F is 2-covering if, for each pair
j, k ∈ X, there exists i ∈ {1, 2, . . . ,m} such that {j, k} ⊆ Xi. Let mcard(F)
be the maximum cardinality of a block in F . We call F mediated if it is sym-
metric, 2-covering and has an SDR. Let μ−(n) be the minimum mcard(F)
over all mediated families on the set [n].

We have the following:

Proposition 17.1.2 [464] For each n ≥ 1, μ(n) = μ−(n)− 1.

Proof: Let D be a mediated digraph on vertices [n] with Δ−(D) = μ(n). By
the definition of a mediated digraph, the family N = {N−[i] : i ∈ [n]} is
2-covering. Clearly, (1, 2, . . . , n) is an SDR of N . Thus, N is mediated and
μ−(n) ≤ μ(n) + 1.

Let F = {X1, X2, . . . , Xn} be a mediated family on [n] with mcard(F) =
μ−(n). Since F has an SDR (since it is mediated), without loss of generality,
we may assume that i ∈ Xi. Construct a digraph D with V (D) = {1, 2, . . . , n}
and N−[i] = Xi. Since F is 2-covering, D is mediated and μ(n) ≤ μ−(n)− 1.
This inequality and μ−(n) ≤ μ(n) + 1 imply that μ(n) = μ−(n)− 1. ��

Let n > k ≥ 2 and λ ≥ 1 be integers. A family F = {X1, X2, . . . , Xb} of
blocks on X is called an (n, k, λ)-design if |X| = n, each block has k points
and every pair of distinct points is contained in exactly λ blocks. Recall that
an (n, k, λ)-design is symmetric if it has n blocks, i.e., b = n. A projective
plane of order q is a symmetric (q2 + q +1, q +1, 1)-design for some integer
q > 1. For a family F of blocks and a point i, let d(i) denote the number
of blocks containing i. The following two theorems are well-known, see, e.g.,
[189, 579].

Theorem 17.1.3 For each prime power q, there exists a projective plane of
order q. ��

Theorem 17.1.4 Let S = {X1, X2, . . . , Xn} be a family of subsets of
{1, 2, . . . , n} and let r be a natural number such that |Xi| = d(i) = r for
each i = 1, 2, . . . , n. Then S has an SDR. ��

The last theorem can be used to prove the following:

Proposition 17.1.5 Every symmetric (n, k, λ)-design is a mediated family
of blocks.

Proof: Let F = {X1, X2, . . . , Xb} be an (n, k, λ)-design on X, |X| = n. It is
well-known (see, e.g., [189]) that, for all such designs, there is a constant r

646 17. Applications of Digraphs and Edge-Coloured Graphs

such that r = d(i) for each point i. The parameters n, k, λ, b and r also satisfy
the following two equalities: bk(k − 1) = λn(n − 1) and r(k − 1) = λ(b − 1).
Assume that F is symmetric. Using b = n and the two equalities, we easily
conclude that r = k. It now follows from Theorem 17.1.4 that F has an SDR.
Since F is symmetric and 2-covering (λ ≥ 1), F is mediated. ��

Now we are ready to compute an infinite number of values of μ(n).

Corollary 17.1.6 [464] For each prime power q, μ(q2 + q + 1) = f(q2 + q +
1) = q.

Proof: Let n = q2 + q + 1. By Theorem 17.1.3 and Propositions 17.1.1 and
17.1.5, we have f(n) ≤ μ(n) = μ−(n) − 1 ≤ q. However, one can trivially
verify that f(n) = q. ��

17.1.3 Upper Bounds for μ(n)

We give the next theorem without a proof.

Theorem 17.1.7 [464] Let n = q2 + q +1+m(q +1)− t, where q is a prime
power, 1 ≤ m ≤ q + 1 and 0 ≤ t ≤ q. Then μ(n) ≤ q + m. ��

Corollary 17.1.8 [464] Let q be a prime power. If s is an integer such that
q2 + q + 2 ≤ s ≤ q2 + 2q + 2, then μ(s) = f(s) = q + 1.

Proof: Let s be an integer such that q2+q+2 ≤ s ≤ q2+2q+2. By Theorem
17.1.7 for m = 1, μ(s) ≤ q + 1. By Proposition 17.1.1, q + 1 ≥ μ(s) ≥ f(s) ≥
f(q2 + q + 2). Thus, it suffices to show that f(q2 + q + 2) = q + 1, which is
easily verifiable. ��

The following number-theoretical result was proved by Baker, Harman
and Pintz [57].

Theorem 17.1.9 There is a real x0 such that for all x > x0 the interval
[x, x + xα], where α = 0.525, contains prime numbers. ��

The last two assertions imply the following:

Theorem 17.1.10 We have μ(n) = f(n)(1 + o(1)).

Proof: Let n be sufficiently large. Let p and q be a pair of consecutive
primes such that p2 + p + 1 ≤ n < q2 + q + 1, and let d = q2 + q − p2 − p.
By Theorem 17.1.7, μ(n) ≤ p + �d/(p + 1)�. By Theorem 17.1.9, q − p ≤ pα.
Thus, d = (q + p + 1)(q − p) ≤ 3pṗα = 3p1+α. So, μ(n) ≤ p + 3pα + 1 =
p(1 + o(1)) = f(p2 + p + 1)(1 + o(1)) ≤ f(n)(1 + o(1)). ��

The authors of [464] believe that the following holds for a small constant
c. If this conjecture holds, they would like to know the smallest value of c.

Conjecture 17.1.11 [464] There is a constant c such that μ(n) ≤ f(n) + c
for each n.

17.1 A Digraph Model in Quantum Mechanics 647

17.1.4 When μ(n) > f(n)

Corollaries 17.1.6 and 17.1.8 may prompt some to suspect that μ(n) = f(n)
holds for each n ≥ 1. However, this is not the case.

One of the best-known conjectures in combinatorics is that a projective
plane does not exist if q is not a prime power. The celebrated Bruck-Ryser
theorem (see, e.g., [189]) proves that if a projective plane of order q exists,
where q ≡ 1 or 2 (mod 4), then q is the sum of two squares of integers. This
gives infinitely many values of q for which there is no projective plane of
order q (for example, every number q = 2p, where p is a prime congruent to
3 mod 4). The fact that there are infinitely many primes congruent to 3 mod
4 follows from the famous Dirichlet’s theorem: every arithmetic progression
with common difference relatively prime to the initial term contains infinitely
many prime numbers (see, e.g., [715]). The above implies the following:

Theorem 17.1.12 There are infinitely many positive integers q for which
there is no projective plane of order q. ��

The proof of the following theorem can be found in [464] (it does not use
digraph theory).

Theorem 17.1.13 If there is no projective plane of order q, then μ(q2 + q +
1) > f(q2 + q + 1). ��

This theorem and Theorem 17.1.12 imply the following:

Corollary 17.1.14 For an infinite number of values of n, μ(n) > f(n). ��

The following problem is of definite interest.

Problem 17.1.15 [464] Is μ(n) ≤ μ(n + 1) for each n?

17.1.5 Mediated Digraphs in Quantum Mechanics

Non-locality is a fundamental, and curious, feature of quantum theory which
confused Albert Einstein and continues to yield exciting results in physics
(there are numerous popular explanations of non-locality, a more technical
review is [901]). The study of non-locality is sometimes helped by consider-
ing classical analogies: it was in this endeavor that mediated digraphs were
discovered (see [574] by Jones, Linden and Massar, where mediated digraphs
are called Totally Paired Graphs). Consider two objects which are connected
and then suddenly sent to such widely separated locations that they can
no longer influence each other on relevant time scales. The results of local
measurements on each member of a pair of classical objects, which have been
connected and separated in this fashion, can be correlated, depending on their

648 17. Applications of Digraphs and Edge-Coloured Graphs

relationship when they were together. Perhaps, when they were together, the
objects exchanged some information.

The correlations between the results of certain sets of local measurements
on some pairs of quantum objects, which have been connected and separated,
cannot be explained by allowing only an exchange of information when they
started together. This is an aspect of non-locality. Since it is the case that
measurements on quantum objects can show classical correlations but the
reverse is not true, there is a sense in which quantum objects have correlations
beyond allowed classical ones.

A standard classical analogy for quantum non-locality is as follows. Clas-
sical separated objects are allowed to cheat and exchange information, faster
than light, about the way they are to be measured. In this case the outcomes
of a measurement on one object could indeed depend on the way the other ob-
ject is measured. The correlations present in sets of quantum objects can now
be classically approximated. One can ask how many bits of information have
to be exchanged between classical objects in order to fool experimentalists
into thinking they are measuring a quantum state. The classical objects are
given an extra property; their characteristics can depend on the way other,
distant, objects are measured. How much of this freedom need one allow in
order to produce scenarios which can have the same measurement results as
measurements of quantum objects?

In the scenario considered in [574] each object (a vertex) knows how it is
to be measured and can send this information to other vertices (an arc from
source vertex to target vertex). This information stays put on receipt and
does not propagate around the graph. The measurement results of vertices,
given that their properties might now depend on the way their neighbors
are to be measured, are more general and now have a chance to reproduce
quantum correlations. It was shown that it is necessary that the vertices be
connected as a mediated digraph if they are to fool experimentalists into
thinking they are measuring a quantum state.

Given that n classical objects linked as any mediated digraph can some-
times be at least as non-local as n quantum mechanical objects, it is inter-
esting to find out how sparse these digraphs are. One would like to consider
the least sparse members of the set of mediated digraphs – the least sparse
digraphs that can still be at least as non-local as quantum states. In order to
achieve this one must have a good measure of sparsity: we consider Δ−(D).
If an n-vertex digraph contains a vertex which depends on the settings of lots
of other vertices, Δ−(D) will be large: this defines a highly non-local pattern
– one vertex is highly correlated with many others. If all vertices in a digraph
are only connected to a few others, Δ−(D) will be small: such digraphs seem
to have a form of short-range non-locality. Proving that, for any n, there are
mediated digraphs which have Δ−(D) scaling with

√
n (Theorem 17.1.10),

shows that each object need only be connected to a fraction of the set of
objects which diminishes as n increases (as 1/

√
n). As n increases there exist

17.2 Embedded Computing and Convex Sets in Acyclic Digraphs 649

mediated digraphs in which each vertex becomes increasingly localized with
respect to the whole – this must be telling us something about quantum
non-locality.

17.2 Embedded Computing and Convex Sets in Acyclic
Digraphs

In this section we will introduce convex sets in acyclic digraphs, give moti-
vation for studying them and consider algorithmic and theoretical results on
convex and connected convex sets.

A set X of vertices of an acyclic digraph D is convex if X �= ∅ and there
is no path between vertices of X which contains a vertex not in X. A set X
is connected if X �= ∅ and the underlying graph of D〈X〉 is connected. A
set is connected convex (a cc-set) if it is both connected and convex.

17.2.1 Embedded Computing Systems and Convex Sets

An embedded or application-specific computing system only ever executes a
single application. Examples include automobile engine management systems,
satellite and aerospace control systems and the signal processing parts of
mobile cellular phones. Significant improvements in the price-performance
ratio of such systems can be achieved if the instruction set of the application-
specific processor is specifically tuned to the application.

Suppliers of embedded processor architectures are now delivering extensi-
ble versions of their general-purpose processors. Examples include the ARM
OptimoDE, the MIPS Pro Series and the Tensilica Xtensa. Hardware devel-
opment has achieved a new level of flexibility, but sophisticated design tools
are required to exploit its potential. The goal of such tools is the identification
of time-critical or commonly occurring patterns of computation that could be
directly implemented in custom hardware, giving both faster execution and
reduced program size, because a sequence of base machine instructions is
being replaced by a single custom extension instruction. For example, a pro-
gram solving simultaneous linear equations may find it useful to have a single
instruction to perform matrix inversion on a set of values held in registers.

The approach proceeds by first locating the basic blocks of the program,
regions of sequential computation with no control transfers into them. For
each basic block we construct a data dependency graph (DDG) which
contains vertices for each base (unextended) instruction in the block, along
with a vertex for each initial input datum. Figure 17.2 shows an example of
a DDG. There is an arc to the vertex for the instruction u from each vertex
whose instruction computes an input operand of u. DDGs are acyclic because
execution within a basic block is by definition sequential.

Extension instructions are combinations of base machine instructions and
are represented by sets of vertices in the DDG. Consider sections A, B and

650 17. Applications of Digraphs and Edge-Coloured Graphs

VAR:a VAR:c INT:4 VAR:b

ROOTINT:2

MUL

MUL

MUL

SUB

MUL

ADD

NEG

DVI

� �

� �

�

	

��

��

�

�

A

C

B

Figure 17.2 Data dependency graph for
−b+

√
b2−4ac

2a
.

C in Figure 17.2 that represent candidate extension instructions. Observe
that A is a cc-set, B is convex but not connected and C is neither convex
nor connected. Note that every candidate extension instruction, viewed as a
set of DDG vertices, must be convex since an extension instruction cannot
perform computations that depend on instructions external to the extension
instruction. This means that there can be no data flows out of and then
back into the extension instruction: the set corresponding to an extension
instruction must be convex.

While for one-processor computing only cc-sets are of interest, for mul-
tiprocessor computing all convex sets might be of interest. Ideally we would
like to fully consider all possible candidate instructions and select the com-
bination which results in the most efficient implementation. In practice this
is unlikely to be feasible as, in the worst case, the number of candidates will
be exponential in the number of original program instructions. However, it
is useful to have a process which can find all the potential instructions, even
if the set of instructions used for final consideration has to be restricted.

17.2.2 Bounds for the Number of Convex Sets

In this subsection, we consider graph-theoretical results on convex and con-
nected convex sets which are of interest in designing and analyzing algorithms
for generating convex sets. Such algorithms are topic of the next subsection.

We start by discussing lower and upper bounds on the number cc(D)
of cc-sets in a connected acyclic digraph of order n.

The following two theorems by Gutin and Yeo give the bounds.

17.2 Embedded Computing and Convex Sets in Acyclic Digraphs 651

Theorem 17.2.1 [481] For every connected acyclic digraph D of order n,
cc(D) ≥ n(n + 1)/2. If an acyclic digraph D of order n has a Hamilton path,
then cc(D) = n(n + 1)/2.

Theorem 17.2.2 [481] Let f(n) = 2n + n + 1 − dn, where dn = 2 · 2n/2

for every even n and dn = 3 · 2(n−1)/2 for every odd n. For every connected
acyclic digraph D of order n, cc(D) ≤ f(n). Let 	Kp,q denote the digraph
obtained from the complete bipartite graph Kp,q by orienting every edge from
the partite set of cardinality p to the partite set of cardinality q. We have
cc(Ka,n−a) = f(n) provided |n − 2a| ≤ 1. ��

We will prove only Theorem 17.2.1 and leave the proof of Theorem 17.2.2
as an exercise. We start by showing the second part of Theorem 17.2.1. Let
Dn be a connected acyclic digraph and let Dn have a Hamilton directed path
x1x2 . . . xn. Observe that all cc-sets of Dn are of the form {xi, xi+1, . . . , xj},
where i ≤ j. Thus, cc(Dn) = n(n + 1)/2. The following result implies the
first part of Theorem 17.2.1.

Theorem 17.2.3 Let H be a connected acyclic digraph of order n and let z
be a vertex of H. Then cc(H) ≥ n(n + 1)/2 and the number of cc-sets of H
containing z, cc(H, z) is at least n.

Proof: We will show the theorem by induction on n. It clearly holds for n = 1
so let n > 1. Let x be any vertex in H with d+

H(x) = 0 and let H ′ = H − x.
Let R1, R2, . . . , Rk be the connected components of H ′, where k ≥ 1. Let
ni = |V (Ri)| and let Hi = H[V (Ri) ∪ {x}].

First assume that k ≥ 2. Let Si be any cc-set in Hi which contains x.
By the induction hypothesis, there are at least ni + 1 such cc-sets. Note that
S1∪S2∪ . . .∪Sk is a cc-set containing x. Since (n1 +1)(n2 +1) · · · (nk +1) ≥
n1 + n2 + . . . + nk + 1 = n we have shown that there are at least n cc-sets in
H containing x.

Let w ∈ V (H) \ {x} be arbitrary. Without loss of generality, we may
assume that w ∈ V (R1). By the induction hypothesis, there are at least
n1 cc-sets containing w which do not contain x (all are in R1). Note that
V (H1)∪S2∪. . .∪Sk is a cc-set containing w and x. Since (n2+1) · · · (nk+1) ≥
n2 + . . . + nk + 1 = n − n1, we have shown that there are at least n cc-sets
in H containing w.

We will now show that cc(H) ≥ n(n+1)/2. By the induction hypothesis,
there are at least ni(ni + 1)/2 cc-sets in Ri. Furthermore, we saw above that
we have at least (n1 +1)(n2 +1) · · · (nk +1) cc-sets in H containing x. Thus,
we get the following:

cc(H) ≥
k∑

i=1

ni(ni + 1)
2

+
k∏

i=1

(ni + 1)

≥
k∑

i=1

(n2
i + ni)/2 +

∑

1≤i<j≤k

ninj +
k∑

i=1

ni + 1

652 17. Applications of Digraphs and Edge-Coloured Graphs

=
1
2

⎡

⎣
(

k∑

i=1

ni

)2

+ 3

(
k∑

i=1

ni

)
+ 2

⎤

⎦

= [(n − 1)2 + 3(n − 1) + 2]/2 = n(n + 1)/2.

So now consider the case when k = 1.
Let w ∈ V (H ′) be arbitrary. By the induction hypothesis, there are at

least n − 1 cc-sets containing w in H ′. Since V (H) is also a cc-set we have
at least n cc-sets containing w. Let H∗ be the converse of H (recall that H∗

is obtained from H by reversing all arcs of H). Let y ∈ V (H∗) be arbitrary
with d+

H∗(y) = 0 (i.e., d−H(y) = 0). By considering H∗ − y instead of H ′ we
observe that there are also at least n cc-sets in H containing x (it does not
matter whether H∗ − y is connected or not since we have already looked at
the non-connected case).

Now we are able to show that cc(H) ≥ n(n + 1)/2. By the induction
hypothesis, there are at least (n−1)n/2 cc-sets in H ′ and they are all cc-sets
in H as d+

H(x) = 0. Since there are also at least n cc-sets containing x, we
conclude that cc(H) ≥ (n − 1)n/2 + n = n(n + 1)/2. ��

17.2.3 Algorithms for Generating Convex and Connected Convex
Sets

Let D be a connected acyclic digraph of order n. Let CO(D) (CC(D)) de-
note the family convex sets (cc-sets) of D and let co(D)=|CO(D)|. Gutin,
Johnstone, Reddington, Scott, Soleimanfallah and Yeo [463] conjectured that
the sum of the sizes of all convex sets (cc-sets) in D equals Θ(n · co(D))
(Θ(n · cc(D))). If the second part of the conjecture was true, then the cc-set
generating algorithm A of complexity O(n · cc(D)) introduced in [463] (see
also [63]) would be shown to be optimal with respect to its running time.

Balister, Gerke and Gutin [62] considered the following family of digraphs
which refutes the conjecture. Let t be a positive integer, let r = �

√
t�, and

let Dt be the digraph obtained from path P = x1x2 . . . x2t+3 by substituting
vertex xt+1 and vertex xt+3 by r independent vertices (i.e., Dt is an extension
of P). Let n be the order of Dt. Balister, Gerke and Gutin [62] proved that∑

C∈CO(Dt)
|C| = O(

√
n · co(Dt)) and

∑
C∈CC(Dt)

|C| = O(
√

n · cc(Dt)).
As of the time of writing we do not know whether A is optimal or there

is an asymptotically faster algorithm for cc-sets generation. It is not hard
to modify A such that the new algorithm will generate all convex sets of
an acyclic digraph D in time O(n · co(D)). However, a faster algorithm was
designed by Balister et al. [63] and we present it here.

To obtain all convex sets of D (and ∅, which is not convex by definition),
we call the following recursive procedure with the original digraph D and with
F = ∅. This call yields an algorithm whose properties are studied below.

17.2 Embedded Computing and Convex Sets in Acyclic Digraphs 653

Recall that a vertex x is a source (sink) if it has no in-neighbors (out-
neighbors). In general, the procedure CS takes as input an acyclic digraph
D = (V, A) and a set F ⊆ V and outputs all convex sets of D which contain F .
The procedure CS outputs V and then considers all sources and sinks of the
graph that are not in F . For each such source or sink s, we call CS(D− s, F)
and then add s to F . Thus, for each sink or source s ∈ V \ F we consider all
sets that contain s and all sets that do not contain s.

CS(D = (V, A), F)
1. output V ; set X := V \ F
2. for all s ∈ X with |N+(s)| = 0 or |N−(s)| = 0 do {
3. for all vertices v find N+

D−s(v) and N−
D−s(v)

4. call CS(D − s, F); set F := F ∪ {s}
5. for all vertices v find N+

D (v) and N−
D (v) }

Correctness of the procedure. Proposition 17.2.5 and Theorem 17.2.6
imply that the procedure CS is correct. We first show that all sets generated
in line 1 are, in fact, convex sets. To this end, we use the following lemma
whose proof is left as an exercise.

Lemma 17.2.4 Let D be an acyclic graph, let X be a convex set of D and
let s ∈ X be a source or sink of D〈X〉. Then X \{s} is a convex set of D. ��

Now we can prove the following proposition.

Proposition 17.2.5 Let D = (V, A) be an acyclic digraph and let F ⊆ V .
Then every set output by CS(D, F) is convex.

Proof: We prove the result by induction on the number of vertices of the
output set. The entire vertex set V is convex and is output by the procedure.
Now assume all sets of size n − i ≥ 2 that are output by the procedure are
convex. We will show that all sets of size n − i − 1 that are output are also
convex. When a set C is output the procedure CS(D〈C〉, F ′) was called for
some set F ′ ⊆ V . The only way CS(D〈C〉, F ′) can be invoked is that there
exist a set C ′ ⊂ V and a source or sink c of D〈C ′〉 with C = C ′ \ {c}.
Moreover C ′ will be output by the procedure and, thus, by our assumption
is convex. The result now follows from Lemma 17.2.4. ��

Theorem 17.2.6 Let D = (V, A) be an acyclic digraph and let F ⊆ V . Then
every convex set of D containing F is output exactly once by CS(D, F).

Proof: Let C be a convex set of D containing F . We first claim that there
exist vertices c1, c2, . . . , ct ∈ V with V = {c1, c2, . . . , ct}∪C and ci is a source
or sink of D〈C ∪ {ci, ci+1, . . . , ct}〉 for all i ∈ [t]. To prove the claim we will
show that for every convex set H with C ⊂ H ⊆ V , there exists a source
or sink s ∈ H \ C of the digraph D〈H〉. This will prove our claim as by
Lemma 17.2.4 H \ {s} is a convex set of D and we can repeatedly apply the
claim.

654 17. Applications of Digraphs and Edge-Coloured Graphs

If there exists no arc from a vertex of C to a vertex of D〈H \ C〉, then
any source of H \ C is a source of D〈H〉. Note that D〈H \ C〉 is an acyclic
digraph and, thus, has at least one source (and sink). Thus we may assume
that there is an arc from a vertex u of C to a vertex v of H \ C. Consider
a longest path v = v1v2 . . . vr in D〈H \ C〉 leaving v. Observe that vr is a
sink of D〈H \ C〉 and, moreover, there is no arc from vr to any vertex of C
since otherwise there would be a directed path from u ∈ C to a vertex in C
containing vertices in H \ C which is impossible as C is convex. Hence vr is
a sink of D〈H〉 and the claim is shown.

Next note that a sink or source remains a sink or source when vertices are
deleted. Thus when CS(D, F) is executed and a source or sink s is considered,
then we distinguish the cases when s = ci for some i ∈ [t] or when this is not
the case. If s = ci and we currently consider the digraph D′ and the fixed
set F ′, then we follow the execution path calling CS(D′ − s, F ′). Otherwise
we follow the execution path that adds s to the fixed set. When the last ci

is deleted, we call CS(D〈C〉, F ′′) for some F ′′ and the set C is output. It
remains to show that there is a unique execution path yielding C. To see
this, note that when we consider a source or sink s, then either it is deleted
or moved to the fixed set F . Thus every vertex is considered at most once
and then deleted or fixed. Therefore each time we consider a source or sink
there is a unique decision that finally yields C. ��

Running time of CS. We will use the following data structure for a set Y =
{y1, y2, . . . , y|Y |} ⊆ {1, 2, . . . , n} that supports unit time element insertion
and deletion, unit time checking whether Y is empty, and allows us to iterate
over the elements of Y in O(|Y |) time. We maintain arrays of integers succ

and pred indexed from 0 to |Y | where succk = k and predk = k if and only
if k �∈ Y . If Y = ∅, then pred0= succ0=0. If Y �= ∅, then predi (succi)
hold yi−1 (yi+1), where i − 1 and i + 1 are taken modulo |Y |, and we can
iterate over the elements of V by following the chain of links from succ0.
Notice that succ0 holds y1 and pred0 holds y|Y |.

By analogy with conventional doubly-linked list insertion and deletion,
we have

insert(k)
succk ← 0
predk ←pred0

succpred0 ← k
pred0 ← k

delete(k)
succpredk

← succk

predsucck
← predk

predk ← k
succk ← k

We can use this data structure for sets V , X, N+
D (v), N−

D (v), v ∈ V ,
and F for the input acyclic digraph D = (V, A) of order n. We can initialize
the data structures for all these sets in time O(n2) using, say, the adjacency
matrix of D. Observe that we output the vertex set of D as one convex
set. Thus, it suffices to show that the running time of CS(D, F) without the

17.3 When Greedy-Like Algorithms Fail 655

recursive calls is O(|V |). This will yield the running time O(
∑

C∈CO(D) |C|)
of CS by Theorem 17.2.6.

Using our data structure, we can determine all sources and sinks in O(|V |)
time. For the recursive calls of CS we delete one vertex and have to update the
number of in-, respectively, out-neighbours of all neighbours of the deleted
vertex s by iterating over V. The vertex s has at most |V |−1 neighbours and
we can charge the cost of the updating information to the call of CS(D−s, F).
Moreover we store the neighbours of s so that we can reintroduce them after
the call of CS(D − s, F). Moving the sinks and sources to F needs constant
time for each source or sink and thus we obtain O(|V |) time in total.

In summary we initially need O(n2) time, and then each call of CS(D, F) is
charged with O(|V |) before it is called and then additionally with O(|V |) time
during its execution. Since we output a convex set of size O(|V |), the total
running time is O(n2) + O(

∑
C∈CO(D) |C|). Since

∑
C∈CO(D) |C| = Ω(n2) by

Theorem 17.2.1, the running time of CS is O(
∑

C∈CO(D) |C|).

17.3 When Greedy-Like Algorithms Fail

The Asymmetric Travelling Salesman Problem (ATSP) is the prob-
lem of finding a minimum weight Hamilton cycle in a weighted complete
digraph. An instance of ATSP is depicted in Figure 17.3.

c d

ba

7, 2

3, 9

5, 1

3, 5

1, 8

4, 1

Figure 17.3 An ATSP instance on four vertices. The weights α, β of an edge xy
(x is lexicographically smaller than y) mean the following: α is the weight of the
arc (x, y) and β is the weight of the arc (y, x).

Greedy-like algorithms are among the simplest algorithms in combinato-
rial optimization. The greedy paradigm is often used in combinatorial opti-
mization theory and practice. This phenomenon can possibly be explained
by the fact that it is widely assumed that while greedy-like algorithms rarely
output optimal solutions, they often provide some kind of ‘approximation’,
i.e., they provide solutions that are significantly better than the worst ones.

656 17. Applications of Digraphs and Edge-Coloured Graphs

This assumption seem to be justified by numerous results on ‘good’ behavior
of greedy-like algorithms, see, e.g., [53]. However, several experimental and
theoretical results question this assumption. For example, the experimental
results for the ATSP presented in [571] led Johnson et al. to the conclusion
that the greedy algorithm ‘might be said to self-destruct’ and that it should
not be used even as ‘a general-purpose starting tour generator’. The nearest
neighbour algorithm produced mainly poor-quality Hamilton cycles as well.

In fact, as we see in this section some greedy-like algorithms may output
unique worst possible solutions for many problems. There are many other
combinatorial optimization heuristics that do not have this negative property;
we discuss such ATSP algorithms in Section 17.4.

The main practical message of this section is that greedy-like algorithms
should be used with great care, since for many optimization problems they
may produce very poor quality solutions at least for some ‘hard’ families of
instances. Whenever possible, more robust alternatives to simple greedy-like
approaches should be considered.

In Subsection 17.3.1, we give necessary and sufficient conditions for the
greedy algorithm for an optimization problem defined on a uniform indepen-
dence system to produce the unique worst possible solution (we say that the
algorithm fails). These conditions imply a threshold result for the greedy
algorithm for ATSP with restricted weights to fail. A greedy-like approach,
max-regret algorithms, is studied in Subsection 17.3.2. We see that max-
regret algorithms also fail for ATSP despite some computational experiments
that indicated that max-regret algorithms often outperform the greedy algo-
rithm.

17.3.1 Greedy Algorithm

The theorem in [483] on the greedy algorithm for ATSP confirms the above-
mentioned conclusion of Johnson et al. [571]: for every n ≥ 2 there exist
instances of ATSP with n vertices for which the greedy algorithm produces
the unique worst Hamilton cycle. In this subsection based on [99] by Bang-
Jensen, Gutin and Yeo we prove a stronger result: For every n ≥ 2 there exists
an instance of ATSP with weights restricted to the set {1, 2, . . . , �n+1

2 �} for
which the greedy algorithm may find the unique worst possible Hamilton
cycle. Before showing this result we state a complete characterization of uni-
form independence systems for which the well-known greedy algorithm may
produce the unique worst possible base.

The main result stated in this subsection, Theorem 17.3.2, is applicable
to many combinatorial optimization problems. However, we restrict ourselves
only to ATSP.

Definition 17.3.1 Let E be a finite set and let F be a collection of subsets
of E. The pair (E,F) is an independence system if (I1) and (I2) below
hold.

17.3 When Greedy-Like Algorithms Fail 657

(I1) ∅ ∈ F .
(I2) If Y ∈ F and X ⊆ Y , then X ∈ F .

Let (E,F) be an independence system. A set X ⊆ E such that X ∈ F
is called independent. All other sets are dependent. A base of M is a
maximal independent set. An independence system is uniform if all its bases
are of the same cardinality.

Many combinatorial optimization problems can be formulated as follows.
We are given a uniform independence system (E,F), a set W ⊆ R0 and a
weight function w that assigns a weight w(e) ∈ W to every element of E. The
weight w(S) of S ∈ F is defined as the sum of the weights of the elements of
S. It is required to find a base B ∈ F of minimum weight. We will consider
only such problems and call them the (E,F , W)-minimization problems.

For an independent set X ∈ F , let ext(X) = {x : X ∪ {x} ∈ F} − X.
Note that by (I2) ext(X) �= ∅ for every independent set X which is not a
base.

The following simple algorithm GA is known as the greedy algorithm
for independence systems:

Input: An independence system (E,F) and a weight function w : E → R0.
Output: a base of (E,F).

1. Set X := ∅;
2. While ext(X) �= ∅, choose an element x ∈ ext(X) such that w(x) =

min{w(y) : y ∈ ext(X)} and append it to X;
3. Return X.

It is well-known that for matroids (E,F), the algorithm GA always solves
the (E,F , R0)-minimization problem to optimality (see Chapter 18). Unfor-
tunately, this is far from being the case for general independence systems as
we will see below.

We assume that the greedy algorithm may choose any element among
equally weighted elements in ext(X). Thus, when we say that GA may con-
struct a base B, we mean that B is built provided the appropriate choices
between elements of the same weight are made. An ordered partitioning
of an ordered set Z = {z1, z2, . . . , zk} is a collection of subsets A1, A2, . . . , Aq

of Z satisfying that if zr ∈ Ai and zs ∈ Aj where 1 ≤ i < j ≤ q, then r < s.
Some of the sets Ai may be empty and ∪q

i=1Ai = Z.
In the following theorem Bang-Jensen, Gutin and Yeo [99] characterized

all independence systems (E,F) for which there is a finite range assignment
of weights to the elements of E such that GA for finding a base of minimum
weight may construct the unique worst possible solution.

Theorem 17.3.2 [99] Let (E,F) be a uniform independence system and let
r ≥ 2 be a natural number. There exists a weight assignment w : E → [r]
such that the greedy algorithm may produce the unique worst possible base if

658 17. Applications of Digraphs and Edge-Coloured Graphs

and only if F contains some base B with the property that for some ordering
x1, . . . , xk of the elements of B and some ordered partitioning A1, A2, . . . , Ar

of x1, . . . , xk the following holds for every base B′ �= B of F :

r−1∑

j=0

|ext(A0,j) ∩B′| <

r∑

j=1

j · |Aj |, (17.1)

where A0,j = A0 ∪A1 ∪ . . . ∪Aj and A0 = ∅. ��

Now we are ready to consider GA for ATSP. Recall that ATSP is the
problem of finding a minimum weight Hamilton cycle in a weighted complete
digraph. Notice that ATSP can be viewed as a uniform independence system
in which E = A(

↔
Kn) and a set of arcs is an independent set if and only if it

can be completed to a Hamilton cycle. Thus, every Hamilton cycle of
↔
Kn is

a base.

Theorem 17.3.3 [99] Consider ATSP with weights from the set W = [r].
Let n ≥ 3. For every r ≥ �n+1

2 � there exists a weight function w :

A(
↔
Kn)→[r] such that the greedy algorithm may produce the unique worst

possible base.

Proof: Consider a Hamilton cycle v1v2 . . . vnv1, and let xi = vivi+1 for each
i ∈ [n] and xn = vnv1. Fix the base B = {x1, x2, . . . , xn} and take the
ordered partition to be A1, A2, . . . , A�n+1

2 	, where Ai = {x2i−1, x2i}, i =
1, 2, . . . , �n−1

2 � and A�n+1
2 	 = {xn−1, xn} if n is even and A�n+1

2 	 = {xn} if
n is odd. Let also Aj = ∅ for each �n+1

2 � < j ≤ r. We will prove (17.1). By
the way we have defined the ordered partitioning, it suffices to show (17.1)
for r = �n+1

2 � and we assume that r = �n+1
2 �.

We assume that n is even since the case of odd n can be treated similarly.
Note that r = n/2. Let B′ be a base different from B. By the choice of the
ordering of B, it follows that

|ext(A0,j) ∩B| = n − 2j for j = 0, 1, . . . , n/2.

Thus,
n/2∑

j=1

j · |Aj | =
(n−2)/2∑

j=0

|ext(A0,j) ∩B|. (17.2)

Therefore, to prove (17.1), it suffices to show that

|ext(A0,j) ∩B′| ≤ |ext(A0,j) ∩B| (17.3)

for each j = 0, 1, . . . , (n− 2)/2 and one of these inequalities is, in fact, strict
(i.e., ≤ can be replaced by <). Suppose that all inequalities in (17.3) are
equalities. For j = (n − 2)/2 this means that {xn−1, xn} ⊂ B′. Continuing

17.3 When Greedy-Like Algorithms Fail 659

our analysis for j = (n− 4)/2, . . . , 1 of arcs in B′, we conclude that B′ = B,
a contradiction. ��

In fact, the choice of the lower bound for r in Theorem 17.3.3 is optimal.
The reader is asked to prove this in Exercise 17.1.

17.3.2 Max-Regret Algorithms

Balas and Saltzman [58] were the first to introduce a Max-Regret algorithm
as an alternative to the greedy algorithm; their Max-Regret algorithm is for
the 3-index assignment problem. Ghosh, Goldengorin, Gutin and Jäger [401]
introduced a Max-Regret algorithm for ATSP and studied it in a series of
computational experiments. The experiments indicated that the Max-Regret
algorithm outperformed several other algorithms including the greedy algo-
rithm. The authors of [401] asked what is the domination number of the
Max-Regret algorithm (see Section 17.4 for a definition of domination num-
ber). Surprisingly, Gutin, Goldengorin and Huang [461] proved that both the
Max-Regret algorithm and its modification are of domination number 1, i.e.,
they are no better than the greedy algorithm in the worst case. We give their
proof in this subsection.

We start by describing the two Max-Regret algorithms. Let V = [n] be
the vertex set of a weighted complete digraph

↔
Kn. The weight of an arc (i, j)

is denoted by wij . Let Q be a collection of disjoint paths in
↔
Kn. An arc ij is

a feasible addition to Q if Q + ij is either a collection of disjoint paths or
a Hamilton cycle in K∗

n.
ATSP-Max-Regret-FC proceeds as follows1. Set W = T = ∅. While

V �= W do the following: For each i ∈ V \ W , compute two lightest arcs
(i, j) and (i, k) that are feasible additions to T , and compute the difference
Λi = |wij − wik|. For i ∈ V − W with maximum Λi choose the lightest arc
(i, j), which is a feasible addition to T , and add ij to T and i to W. Return
T.

ATSP-Max-Regret proceeds as follows. Set W+ = W− = T = ∅. While
V �= W+ do the following: For each i ∈ V \ W+, compute two lightest arcs
(i, j) and (i, k) that are feasible additions to T , and compute the difference
Λ+

i = |wij − wik|; for each i ∈ V \ W−, compute two lightest arcs (j, i)
and (k, i) that are feasible additions to T , and compute the difference Λ−

i =
|wji −wki|. Compute i′ ∈ V \W+ with maximum Λ+

i′ and i′′ ∈ V \W− with
maximum Λ−

i′′ . If Λ+
i′ ≥ Λ−

i′′ choose the lightest arc i′j′, which is a feasible
addition to T and add (i′, j′) to T , i′ to W+ and j′ to W−. Otherwise, choose
the lightest arc (j′′, i′′), which is a feasible addition to T , and add j′′i′′ to T ,
i′′ to W− and j′′ to W+. Return T.

1 FC is an abbreviation for First Coordinate, which makes sense for the multi-
dimensional assignment problem for which ATSP-Max-Regret-FC was initially
introduced.

660 17. Applications of Digraphs and Edge-Coloured Graphs

Remark 17.3.4 In ATSP-Max-Regret-FC, if |V \ W | = 1, we set Λi = 0. A
similar remark applies to ATSP-Max-Regret.

Theorem 17.3.5 For every n ≥ 2, there exists a weight function w :
A(

↔
Kn)→Z such that both ATSP-Max-Regret-FC and ATSP-Max-Regret pro-

duce the unique heaviest possible Hamilton cycle.

Proof: Since the proofs for both algorithms use the same family of instances
and are similar, we restrict ourselves only to ATSP-Max-Regret-FC.

Consider an instance of ATSP on the complete digraph with vertex set
{1, 2, . . . , n}, n ≥ 2, and arc set A. Let the weights be as follows: wik =
min{0, i − k} for each 1 ≤ i �= k ≤ n, i �= n, and wnk = −k for each
1 ≤ k ≤ n−1. We will slightly modify the weights: w′

ij = wij unless j = i+1
modulo n. We set w′

i,i+1 = −1− 1
n+1 for 1 ≤ i ≤ n− 1 and w′

n,1 = −1− 1
n+1 .

ATSP-Max-Regret-FC will use the weight function w′.
ATSP-Max-Regret-FC constructs the Hamilton cycle TMR = 123 . . . n1

by first choosing the arc (n − 1, n), then the arc (n− 2, n− 1), etc. The last
two arcs are (1, 2) and (n, 1) (they must be included in the Hamilton cycle).
Indeed, initially Λn−1 = n+2

n+1 > Λi for each i �= n−1. Once (n−1, n) is added
to TMR, Λn−2 = n+2

n+1 becomes maximal, etc.
Let T ′, T ′′ be a pair of Hamilton cycles. Since

∑
ij∈A |wij − w′

ij | < 1,
w(T ′) < w(T ′′) implies w′(T ′) < w′(T ′′). Thus, to prove that w′(T) <
w′(TMR) for each Hamilton cycle T �= TMR, it suffices to show that
w(T) < w(TMR).

Observe that w(TMR) = −n. Let T = i1i2 . . . ini1 be an arbitrary Hamil-
ton cycle, where i1 = 1. Suppose that is = n. Observe that the weight of
the path P = i1i2 . . . is equals

∑s−1
k=1 min{0, ik − ik+1}. Thus, w(P) ≤ 1 − n

and w(P) = 1 − n if and only if i1 < i2 < . . . < is. Since is = n, the
weight of the arc (is, is+1) equals −is+1. Thus, w(T) ≤ 1 − n − is+1 and
w(T) ≥ w(TMR) if and only if is+1 = 1 and i1 < i2 < . . . < is. We conclude
that w(T) ≥ w(TMR) if and only if T = TMR. ��

17.4 Domination Analysis of ATSP Heuristics

Recall that in the Asymmetric Traveling Salesman Problem (ATSP) we are
required to find a minimum weight Hamilton cycle in a weighted complete
digraph. A heuristic for an optimization problem R is an algorithm which
given an instance R of R finds some solution s to R for which there is generally
no guarantee on the quality of s compared to an optimal solution s∗ to R.
So for the ATSP a heuristic is any algorithm which returns some Hamilton
cycle of the input complete digraph

↔
Kn.

Research on combinatorial optimization (CO) heuristics has produced a
large variety of heuristics especially for well-known CO problems and, thus,

17.4 Domination Analysis of ATSP Heuristics 661

it is important to develop ways of selecting the best ones among them. In
most of the literature, heuristics are compared by means of computational
experiments and, while experimental analysis is of definite importance, it
cannot cover all possible families of instances of the CO problem at hand and,
in particular, it normally does not cover the hardest instances. Worst-case
analysis is often performed by approximation analysis [53], where upper or
lower bounds for the worst-case performance ratio are of interest. Introduced
by Glover and Punnen [409], domination analysis provides an alternative
and a complement to approximation analysis. In domination analysis, we are
interested in the domination number or domination ratio of the heuristic
solution. We define these parameters below.

Pros and cons of domination analysis are discussed in [480] and, in our
view, it is advantageous to have bounds for both performance ratio and dom-
ination ratio of a heuristic whenever it is possible. Roughly speaking this
would enable us to see a 2D picture rather than a 1D picture.

Let P be a minimization CO problem, let I be an instance of P, let S(I)
denote the set of feasible solutions of I and let H be a heuristic for P. The
size of I is denoted by |I| and the solution obtained by H for I is denoted
by H(I). When considering the weight of a solution y we write w(y).

The domination number of a heuristic H is

domn(H, n) = min
I∈P: |I|=n

domn(H, I),

where domn(H, I) = |{y ∈ S(I) : w(H(I)) ≤ w(y)}|. In other words, the
domination number domn(H, n) is the maximum integer such that the solu-
tion H(I) obtained by H for any instance I of P of size n is not worse than
at least domn(H, n) feasible solutions of I (including H(I)). The domination
ratio of H is

domr(H, n) = min
I∈P: |I|=n

domn(H, I)
|S(I)| .

Clearly, the domination ratio is well defined for every heuristic and, for the
same optimization problem, a heuristic with higher domination ratio may be
considered a better choice than a heuristic with lower domination ratio. Ben-
Arieh et al. [135] compared two heuristics for the Generalized ATSP (given
a weighted complete k-partite digraph, find a minimum weight cycle con-
taining exactly one vertex from each partite set). The heuristics performed
equally well in computational experiments, but it was proved that one of
them has a significantly larger domination number. For the Symmetric TSP,
Punnen, Margot and Kabadi [757] showed that after a polynomial number of
iterations the domination number of the best improvement 2-Opt that uses
small neighbourhoods significantly exceeds that of the best improvement local
search based on neighbourhoods of much larger cardinality. Punnen, Margot
and Kabadi [757] and other papers have led Gutin and Yeo [480] to the con-
clusion that the cardinality of the neighbourhood used by a local search is

662 17. Applications of Digraphs and Edge-Coloured Graphs

not the right measure of the effectiveness of the local search. Domination
ratio, along with some other parameters such as the diameter of the neigh-
bourhood digraph (see Gutin, Yeo and Zverovitch [484]), provides a much
better measure.

There are many papers on domination analysis of various CO problems,
see, e.g., [25] by Alon, Gutin and Krivelevich, [139] by Berend, Skiena and
Twitto, [461] by Gutin, Goldengorin and Huang, [462] by Gutin, Jensen and
Yeo, [617] by Koller and Noble and [757] by Punnen, Margot and Kabadi.
For surveys on the topic, see [484] and [480].

In Section 17.3, we proved that several ATSP heuristics including the
greedy algorithm are of domination number 1. Clearly, every exact ATSP
algorithm has domination number (n − 1)!. Thus, the domination number
of an algorithm close to (n − 1)! may be taken as an indication that the
algorithm is of high quality.

In Subsection 17.4.1, we will see that there are ATSP heuristics of domi-
nation number at least (n− 2)! for each n ≥ 2, n �= 6. This follows from the
fact that if a heuristic H always produces a Hamilton cycle with weight not
worse than the average weight of a Hamilton cycle, then H is of domination
number at least (n− 2)! for each n ≥ 2, n �= 6. In Subsection 17.4.2, we will
consider upper bounds on the domination number of polynomial-time ATSP
heuristics.

17.4.1 ATSP Heuristics with Factorial Domination Numbers

Let (
↔
Kn, w) denote a complete digraph on n vertices whose arcs are weighted

according to a weight function w. The total cost of all Hamilton cycles in
(
↔
Kn, w) is denoted by σ(n, w). Denote the sum of the costs of all arcs in

(
↔
Kn, w) by w(

↔
Kn). The average cost of a Hamilton cycle in (

↔
Kn, w) is

denoted by τ(n, w). As every arc of
↔
Kn is contained in (n − 2)! Hamilton

cycles, τ(n, w) = σ(n, w)/(n−1)! = (n−2)!w(
↔
Kn)/(n−1)!, hence, τ(n, w) =

w(
↔
Kn)/(n−1). This formula can also be shown using linearity of expectation

(see [28]). An automorphism of a digraph D is a bijection φ : V (D)→V (D)
such that xy ∈ A(D) if and only if φ(x)φ(y) ∈ A(D).

The following result was first obtained by Sarvanov [794] when n is odd
and Gutin and Yeo [479] when n is even.

Theorem 17.4.1 Let H be a Hamilton cycle in
↔
Kn such that w(H) ≤

τ(n, w). If n �= 6, then there are at least (n − 2)! Hamilton cycles in
↔
Kn

whose cost is at least w(H).

Proof: The result is trivial for n = 2, 3. If n = 4, the result follows from
the obvious fact that the most expensive Hamilton cycle T in

↔
Kn has cost

w(T) ≥ w(H).

17.4 Domination Analysis of ATSP Heuristics 663

Assume that n ≥ 5 and n �= 6. Let D1 = {C1, C2, . . . , Cn−1} be a de-
composition of the arcs of

↔
Kn into Hamilton cycles (such a decomposition

exists by Theorem 13.4.3). Given a Hamilton cycle T in
↔
Kn, clearly there is

an automorphism of
↔
Kn that maps C1 into T . Therefore, if we consider D1

together with the decompositions (D1, D2, . . . , D(n−1)!) of
↔
Kn obtained from

D1 using all automorphisms of
↔
Kn which map the vertex 1 into itself, we will

have every Hamilton cycle of
↔
Kn in one of the Di’s. Moreover, every Hamilton

cycle is in exactly n− 1 of the decompositions D1, D2, . . . , D(n−1)! (by map-
ping a Hamilton cycle Ci into a Hamilton cycle Cj (i, j ∈ {1, 2, . . . , n − 1})
we fix the automorphism).

Choose the most expensive Hamilton cycle in each of Di and form a
set E from all distinct Hamilton cycles obtained in this manner. Clearly,
|E| ≥ (n− 2)!. Since

∑n−1
i=1 w(Ci) = w(

↔
Kn), every Hamilton cycle T of E has

weight w(T) ≥ τ(n, w). Therefore, w(H) ≤ w(T) for every T ∈ E . ��
Vertex insertion algorithms for the ATSP work as follows. First, we find

some ordering v1, v2, . . . , vn of vertices of (
↔
Kn, w). Then, we perform n − 1

steps. On the first step we form the cycle v1v2v1. On step k, 2 ≤ k ≤ n − 1,
given the k-cycle vπ(1)vπ(2) . . . vπ(k)vπ(1) from the previous step, we find j0,
which minimizes the expression

w(vπ(j)vk+1) + w(vk+1vπ(j+1)) − w(vπ(j)vπ(j+1)),

1 ≤ j ≤ k, and insert vk+1 between vπ(j0) and vπ(j0+1) forming a (k+1)-cycle.
The fastest such algorithm is the random insertion algorithm, in which the

initial vertex ordering is random (see the paper [407] by Glover, Gutin, Yeo
and Zverovich for computational experiments with this and other heuristics
for ATSP).

The following theorem was proved by Lifshitz for the Symmetric TSP (see
[790]) and, independently, by Punnen and Kabadi [756] for ATSP.

Theorem 17.4.2 Let Hn be a Hamilton cycle constructed by a vertex inser-
tion algorithm A for ATSP on (

↔
Kn, w). Then w(Hn) ≤ τ(n, w).

Proof: We prove this result by induction on n. The theorem is trivially true
for n = 2. Let Hn−1 = vπ(1)vπ(2) . . . vπ(n−1)vπ(1) be the cycle constructed in
Step n− 2 of the algorithm and assume that in Step n− 1, it was decided to
insert vn between vπ(j0) and vπ(j0+1) in order to obtain Hn. Then, we have

w(Hn) = w(Hn−1) + w(vπ(j0)vn) + w(vnvπ(j0+1)) − w(vπ(j0)vπ(j0+1))

≤ w(Hn−1) +
∑n−1

i=1 [w(vπ(i)vn) + w(vnvπ(i+1)) − c(vπ(i)vπ(i+1))]
n − 1

= w(Hn−1) +
w(V − vn, vn) + w(vn, V − vn)− w(Hn−1)

n − 1

664 17. Applications of Digraphs and Edge-Coloured Graphs

≤ (n − 2)τ(n − 1, w) + w(V − vn, vn) + w(vn, V − vn)
n − 1

=
w(

↔
Kn −vn) + w(V − vn, vn) + w(vn, V − vn)

n − 1

=
w(

↔
Kn)

n − 1
= τ(n, w),

where τ(n − 1, w) is the average cost of a Hamilton cycle in
↔
Kn −vn. ��

Theorems 17.4.1 and 17.4.2 imply the following result:

Theorem 17.4.3 For every vertex insertion algorithm A we have
domn(A, n) ≥ (n − 2)!. ��

Results similar to Theorem 17.4.3 have been obtained for other ATSP
heuristics (such as k-Opt, k ≥ 3), see, e.g., [479, 757].

17.4.2 Upper Bounds on Domination Numbers

It is realistic to assume that any ATSP algorithm spends at least one unit of
time on every arc of the weighted complete digraph

↔
Kn that it considers. We

use this assumption in the rest of this subsection. Let P be an (x, y)-path in
↔
Kn. The path-contraction of P is an operation of replacing

↔
Kn by

↔
Kn−p,

where p is the length of P , such that all vertices of P are replaced by a single
new vertex z, the weight of all arcs uv with no vertex from P are unchanged
and the weight of every arc of the form uz (zv) equals the weight of the arc
ux (yv). The following theorem was obtained by Gutin, Koller and Yeo [469].

Theorem 17.4.4 Let A be an ATSP heuristic that runs in time at most t(n).
Then the domination number of A does not exceed max1≤n′≤n(t(n)/n′)n′

.

Proof: Let D = (
↔
Kn, w) be an instance of ATSP and let H be the Hamilton

cycle that A returns, when its input is D. Let DOM(H) denote all Hamilton
cycles in D which are not lighter than H including H itself. We assume that
D is a worst instance for A, namely, domn(A, n) = |DOM(H)|. Since A
is arbitrary, to prove this theorem, it suffices to show that |DOM(H)| ≤
max1≤n′≤n(t(n)/n′)n′

.
Let E denote the set of arcs in D, which A actually examines; observe

that |E| ≤ t(n) by the assumption above. Let A(H) be the set of arcs in H.
Let F be the set of arcs in H that are not examined by A, and let G denote
the set of arcs in D − A(H) that are not examined by A.

We first prove that every arc in F must belong to each Hamilton cycle
of DOM(H). Assume that there is a Hamilton cycle H ′ ∈ DOM(H) that
avoids an arc a ∈ F. If we assign to a a very large weight, H ′ becomes lighter
than H, a contradiction.

17.4 Domination Analysis of ATSP Heuristics 665

Similarly, we prove that no arc in G can belong to a Hamilton cycle in
DOM(H). Assume that a ∈ G and a is in a Hamilton cycle H ′ ∈ DOM(H).
By making a very light (possibly negative), we can ensure that w(H ′) <
w(H), a contradiction.

Now let D′ be the digraph obtained by path-contracting the paths com-
prising F and deleting the arcs in G, and let n′ be the number of vertices in
D′. Note that every Hamilton cycle in DOM(H) corresponds to a Hamilton
cycle in D′ and, thus, the number of Hamilton cycles in D′ is an upper bound
on |DOM(H)|. In a Hamilton cycle of D′, there are at most d+(i) possibili-
ties for the successor of a vertex i, where d+(i) is the out-degree of i in D′.
Hence we obtain that

|DOM(H)| ≤
n′∏

i=1

d+(i) ≤

⎛

⎝ 1
n′

n′∑

i=1

d+(i)

⎞

⎠
n′

≤
(

t(n)
n′

)n′

,

where we applied the arithmetic-geometric mean inequality. ��

Corollary 17.4.5 [469] Let A be an ATSP heuristic that runs in time at
most t(n). Then the domination number of A does not exceed

max{et(n)/e, (t(n)/n)n},

where e is the basis of natural logarithms.

Proof: Let U(n) = max1≤n′≤n(t(n)/n′)n′
. By differentiating the func-

tion f(n′) = (t(n)/n′)n′
with respect to n′ we can readily obtain that

f(n′) increases for 1 ≤ n′ ≤ t(n)/e, and decreases for t(n)/e ≤ n′ ≤ n.
Thus, if n ≤ t(n)/e, then f(n′) increases for every value of n′ < n and
U(n) = f(n) = (t(n)/n)n. On the other hand, if n ≥ t(n)/e, then the maxi-
mum of f(n′) is for n′ = t(n)/e and, hence, U(n) = et(n)/e. ��

The next assertion follows directly from the proof of Corollary 17.4.5.

Corollary 17.4.6 [469] Let A be an ATSP heuristic that runs in time at
most t(n). For t(n) ≥ en, the domination number of A does not exceed
(t(n)/n)n. ��

Note that the restriction t(n) ≥ en is important since otherwise the bound
of Corollary 17.4.6 can be invalid. Indeed, if t(n) is a constant, then for n
large enough the upper bound becomes smaller than 1, which is not correct
since the domination number is always at least 1.

It is proved by Gutin [458] that there are O(n)-time ATSP algorithms of
domination number 2Θ(n). It follows from the last corollary that this result
cannot be improved.

The following result gives a better bound than Theorem 17.4.4 when we
do not restrict the running time of a polynomial-time ATSP heuristic.

666 17. Applications of Digraphs and Edge-Coloured Graphs

Theorem 17.4.7 [469] Unless P=NP, there is no polynomial time ATSP
algorithm of domination number at least (n−1)!−�n−nα�! for any constant
α < 1.

Proof: Assume that there is a polynomial time algorithm H with domination
number at least (n − 1)! − �n − nα�! for some constant α < 1. Choose an
integer s > 1 such that 1

s < α.

Consider a weighted complete digraph (
↔
Kn, w). We may assume that all

weights are non-negative as otherwise we may add a large number to each
weight. Choose any pair of distinct vertices u and v in

↔
Kn . Consider another

complete digraph D on ns−n vertices, in which all weights are 0 and which is
vertex disjoint from

↔
Kn. Add all possible arcs between

↔
Kn and D such that

the weights of all arcs coming into u and going out of v are 0 and the weights
of all other arcs are M , where M is larger than n times the maximum weight
in (

↔
Kn, w). Let the resulting weighted complete digraph be denoted by

↔
Kns

and note that we have now obtained an instance (
↔
Kns , w′) of ATSP.

Apply H to (
↔
Kns , w′) (observe that H is polynomial in n for (

↔
Kns , w′)).

Notice that there are exactly (ns−n)! Hamilton cycles in (
↔
Kns , w′) of weight

L, where L is the weight of a lightest Hamilton (u, v)-path in
↔
Kn. Each of the

(ns −n)! Hamilton cycles is obviously optimal. Observe that the domination
number of H on

↔
Kns is at least (ns − 1)! − �ns − (ns)α�!. However, for

sufficiently large n, we have

(ns − 1)! − �ns − (ns)α�! ≥ (ns − 1)!− (ns − n)! + 1

as nsα ≥ n + 1 for n large enough. Thus, a Hamilton cycle produced by H is
always among the optimal solutions (for n large enough). This means that we
can obtain a lightest Hamilton (u, v)-path in

↔
Kn in polynomial time, which

is impossible since the lightest Hamilton (u, v)-path problem is NP-hard. We
have arrived at a contradiction. ��

17.5 Solving the 2-Satisfiability Problem

In this section we deal with a problem that is not a problem on digraphs,
but it has applications to several problems on graphs, in particular when we
want to decide whether a given undirected graph has an orientation with
certain properties or whether there is a homomorphism from a digraph to a
digraph, see, e.g., Chapter 11 and the paper [309] by Feder. We will show how
to solve this problem efficiently using the algorithm for strong components
of digraphs from Chapter 2.

A boolean variable x is a variable that can assume only two values 0
and 1. The sum of boolean variables x1 + x2 + . . . + xk is defined to be 1 if

17.5 Solving the 2-Satisfiability Problem 667

at least one of the xi’s is 1 and 0 otherwise. The negation x of a boolean
variable x is the variable that assumes the value 1 − x. Hence x = x. Let X
be a set of boolean variables. For every x ∈ X there are two literals, over x,
namely, x itself and x. A clause C over a set of boolean variables X is a sum
of literals over the variables from X. The size of a clause is the number of
literals it contains. For example, if u, v, w are boolean variables with values
u = 0, v = 0 and w = 1, then C = (u + v + w) is a clause of size 3, its value
is 1 and the literals in C are u, v and w. An assignment of values to the set
of variables X of a boolean expression is called a truth assignment. If the
variables are x1, . . . , xk, then we denote a truth assignment by t = (t1, . . . , tk).
Here it is understood that xi will be assigned the value ti for i = 1, . . . , k.

The 2-satisfiability problem, also called 2-SAT, is the following prob-
lem. Let X = {x1, . . . , xk} be a set of boolean variables and let C1, . . . , Cr be
a collection of clauses, all of size 2, for which every literal is over X. Decide if
there exists a truth assignment t = (t1, . . . , tk) to the variables in X such that
the value of every clause will be 1. This is equivalent to asking whether or
not the boolean expression F = C1 ∗ . . . ∗Cp can take the value 1. Depending
on whether this is possible or not, we say that F is satisfiable or unsat-
isfiable. Here ‘∗’ stands for boolean multiplication, that is, 1 ∗ 1 = 1,
1 ∗ 0 = 0 ∗ 1 = 0 ∗ 0 = 0. For a given truth assignment t = (t1, . . . , tk) and
literal q we denote by q(t) the value of q when we use the truth assignment
t (i.e., if q = x3 and t3 = 1, then q(t) = 1 − 1 = 0).

To illustrate the definitions, let X = {x1, x2, x3} and let C1 = (x1 + x3),
C2 = (x2 +x3), C3 = (x1 +x3) and C4 = (x2 +x3). Then it is not difficult to
check that F = C1 ∗ C2 ∗ C3 ∗ C4 is satisfiable and that taking x1 = 0, x2 =
1, x3 = 1 we obtain F = 1.

If we allow more than 2 literals per clause, then we obtain the more general
problem Satisfiability (also called SAT) which is NP-complete, even if all
clauses have size 3, in which case it is also called 3-SAT (see e.g. page
359 in the book [742] by Papadimitriou and Steiglitz). (In his proof of the
existence of an NP-complete problem, Cook used the satisfiability problem
and showed how every other problem in NP can be reduced to this problem.)
Below we will show how to reduce 2-SAT to the problem of finding the strong
components in a certain digraph. We shall also show how to find a satisfying
truth assignment if one exists. This step is important in applications, such
as those in Chapter 11.

Let C1, . . . , Cr be clauses of size 2 such that the literals are taken among
the variables x1, . . . , xk and their negations and let F = C1 ∗ . . . ∗ Cr be
an instance of 2-SAT. Construct a digraph DF as follows. Let V (DF) =
{x1, . . . , xk, x1, . . . , xk} (i.e., DF has two vertices for each variable, one for
the variable and one for its negation). For every choice of p, q ∈ V (DF) such
that some Ci has the form Ci = (p + q), A(DF) contains an arc from p to
q and an arc from q to p (recall that x = x). See Figure 17.4 for examples

668 17. Applications of Digraphs and Edge-Coloured Graphs

of 2-SAT expressions and the corresponding digraphs. The first expression is
satisfiable, the second is not.

x2

x1

(a)

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

(b)

Figure 17.4 The digraph DF is shown for two instances of 2-SAT. In (a) F =
(x1 + x3) ∗ (x2 + x3) ∗ (x1 + x3) ∗ (x2 + x3) and in (b) F = (x1 + x2) ∗ (x1 + x2) ∗
(x2 + x3) ∗ (x2 + x3).

Lemma 17.5.1 If DF has a (p, q)-path, then it also has a (q, p)-path. In
particular, if p, q belong to the same strong component in DF , then p, q belong
to the same strong component in DF .

Proof: This follows easily by induction on the length of a shortest (p, q)-
path, using the fact that (x, y) ∈ A(DF) if and only if (y, x) ∈ A(DF). ��

Lemma 17.5.2 If DF contains a path from p to q, then, for every satisfying
truth assignment t, p(t) = 1 implies q(t) = 1.

Proof: Observe that F contains a clause of the form (a+ b) and every clause
takes the value 1 under any satisfying truth assignment. Thus, by the fact
that t is a satisfying truth assignment and by the definition of DF , we have
that for every arc (a, b) ∈ A(DF), a(t) = 1 implies b(t) = 1. Now the claim
follows easily by induction on the length of the shortest (p, q)-path in DF . ��

The following is an easy corollary of Lemmas 17.5.1 and 17.5.2.

Corollary 17.5.3 If t is a satisfying truth assignment, then for every strong
component D′ of DF and every choice of distinct vertices p, q ∈ V (D′) we
have p(t) = q(t). Furthermore we also have p(t) = q(t). ��

Lemma 17.5.4 F is satisfiable if and only if for every i = 1, 2, . . . , k, no
strong component of DF contains both the variable xi and its negation xi.

17.5 Solving the 2-Satisfiability Problem 669

Proof: Suppose t is a satisfying truth assignment for F and that there is
some variable xi such that xi and xi are in the same strong component in DF .
Without loss of generality xi(t) = 1 and now it follows from Lemma 17.5.2
and the fact that DF contains a path from xi to xi that we also have xi(t) = 1
which is impossible. Hence if F is satisfiable, then for every i = 1, 2, . . . , k,
no strong component of DF contains both the variable xi and its negation
xi.

Now suppose that for every i = 1, 2, . . . , k, no strong component of DF
contains both the variable xi and its negation xi. We will show that F is
satisfiable by constructing a satisfying truth assignment for F .

Let D1, . . . , Ds denote some acyclic ordering of the strong components of
DF (i.e., there is no arc from Dj to Di if i < j). Recall that by Proposition
2.1.3, such an ordering exists. We claim that the following algorithm will
determine a satisfying truth assignment for F : first mark all vertices ‘unas-
signed’ (meaning truth value still pending). Then going backwards starting
from Ds and ending with D1 we proceed as follows. If there is any vertex
v ∈ V (Di) such that v has already been assigned a value, then assign all
vertices in Di the value 0 and otherwise assign all vertices in Di the value 1.
Observe that this means that, for every variable xi, we will always assign the
value 1 to whichever of xi, xi belongs to the strong component with the high-
est index. To see this, let p denote whichever of xi, xi belongs to the strong
component of highest index j. Let i < j be chosen such that p ∈ Di. Suppose
we assign the value 0 to p. This means that at the time we considered p,
there was some q ∈ Dj such that q ∈ Df for some f > j. But then p ∈ Df ,
by Lemma 17.5.1, contradicting the fact that i < f .

Clearly all vertices in V (F) will be assigned a value, and by our previous
argument this is consistent with a truth assignment for the variables of F .
Hence it suffices to prove that each clause has value 1 under the assignment.
Suppose some clause Cf = (p + q) attains the value 0 under our assignment.
By our observation above, the reason we did not assign the value 1 to p
was that at the time we considered p we had already given the value 1 to p
and p belonged to a component Dj with a higher index than the component
Di containing p. Thus the existence of the arc (p, q) ∈ A(DF) implies that
q ∈ Dh for some h ≥ j. Applying the analogous argument to q we conclude
that q is in some component Dg with g > h. But then, using the existence
of the arc (q, p), we get that i ≥ g > h ≥ j > i, a contradiction. This shows
that we have indeed found a correct truth assignment for F and hence the
proof is complete. ��

In Chapter 2 we will see that for any digraph D one can find the strong
components of D and an acyclic ordering of these in O(n+m) time. Since the
number of arcs in DF is twice the number of clauses in DF and the number
of vertices in DF is twice the number of variables in DF , it is not difficult
to see that the algorithm outlined above can be performed in time O(k + r)
and hence we have the following result.

670 17. Applications of Digraphs and Edge-Coloured Graphs

Theorem 17.5.5 The problem 2-SAT is solvable in linear time with respect
to the number of clauses. ��

The approach we adopted is outlined briefly in Exercise 15.6 of the book
[742] by Papadimitriou and Steiglitz, see also the paper [307] by Even, Itai
and Shamir.

It is interesting to note that if, instead of asking whether F is satisfiable,
we ask whether there exists some truth assignment such that at least � clauses
will get the value 1, then this problem, which is called MAX-2-SAT, is NP-
complete as shown by Garey, Johnson and Stockmeyer [394] (here � is part
of the input for the problem).

17.6 Alternating Hamilton Cycles in Genetics

In [270, 271] Dorninger considers Bennett’s model (see Bennett’s book [138]
and the papers [519, 520] by Heslop-Harrison and Bennett) of chromosome
arrangement in a cell of a eukaryotic organism. In [271], the case of even
number, n, of chromosomes is studied. We consider here only this case as it
is more interesting. Every individual chromosome consists of a long arm and
a short arm, which are linked at the so-called centromere. At a certain stage
of cell division, which is of interest to biologists, the arms of n chromosomes
form an n-angle star whose internal points are the centromeres (see Figure
17.5) and external points created by the arms of ‘adjacent’ chromosomes. To

Figure 17.5 Chromosome arrangement.

find the order of the centromeres, Bennett [138] suggested that the external
points are formed by the most similar size arms. Bennett and Dorninger
(see [271]) generalized the notion of similarity to so-called k-similarity and
Dorninger [271] analyzed the consistency of this generalized notion. Let us
consider the following graph-theoretic model of this biological system. Let
si and li denote the short and long arm of chromosome number i. Let the
chromosomes be labelled 1,2,. . . ,n in such a way that si is longer than sj if

17.6 Alternating Hamilton Cycles in Genetics 671

i < j, and let π be a permutation of 1, 2, . . . , n such that lπ(i) is longer than
lπ(j) if i < j.

We call two short arms si and sj (long arms lπ(i) and lπ(j)), i �= j, k-
similar if |i− j| ≤ k. In this way, for k = 1, we obtain the original Bennett’s
notion of ‘most similar size’. Let G(n, k, π) be a 2-edge-coloured multigraph
with vertex set {1, 2, . . . , n}. The blue (red) subgraph G1(n, k, π) (G2(n, k, π))
of G(n, k, π) consists of edges pq (p �= q) such that sp and sq (lp and lq) are
k-similar. (See Figure 17.6.)

1

3 4

2

5 6

Figure 17.6 The 2-edge-coloured graph G(6, 2, τ), where τ(1) = 2, τ(2) =
1, τ(3) = 4, τ(4) = 3, τ(5) = 5, τ(6) = 6. The blue edges are shown by ordi-
nary lines. The red edges are indicated by fat lines.

According to one of Bennett’s assumptions, G(n, k, π) has an alternating
Hamilton cycle. Dorninger [271] analyzed when G(n, k, π) has an alternat-
ing Hamilton cycle for every permutation π. Clearly, for k = 1, the 2-edge-
coloured multigraph is a collection of t ≥ 1 alternating cycles and, when t ≥ 2,
Bennett’s assumption does not hold. Dorninger [271] proved that G(n, 2, π)
has an alternating Hamilton cycle for every π provided n ≤ 12. He [271] also
showed that for every n ≥ 14 there exists a permutation π such that G(n, 2, π)
has no alternating Hamilton cycle. Yeo (private communication, April 1999)
proved that the alternating Hamilton cycle problem for the graphs G(n, 2, π)
is NP-hard. Interestingly enough, G(n, 3, π) contains an alternating Hamil-
ton cycle for every permutation π. Thus, the notion of 3-similarity seems to
be most consistent with Bennett’s assumptions.

In the rest of this section we will prove the following two results:

Theorem 17.6.1 [271] For every even positive integer n ≤ 12 and every
permutation π of 1,2,. . . ,n, the 2-edge-coloured multigraph G(n, 2, π) has an
alternating Hamilton cycle.

Theorem 17.6.2 (Dorninger) [271] For every even positive integer n and
every permutation π of 1,2,. . . ,n, the 2-edge-coloured multigraph G(n, 3, π)
has an alternating Hamilton cycle.

672 17. Applications of Digraphs and Edge-Coloured Graphs

17.6.1 Proof of Theorem 17.6.1

In this subsection, which contains certain proofs suggested by Yeo (private
communication, April 1999), we consider multigraphs G = G(n, 2, π). We
recall that V (G) = V (G1) = V (G2) = {1, 2, . . . , n}, E(G1) = {ij : |i − j| ≤
2} and E(G2) = {π(i)π(j) : |i − j| ≤ 2} (see Figure 17.6). Clearly, every
alternating cycle factor F of G is the union of a perfect matching F1 of G1

and a perfect matching F2 of G2. We write F = C(F1, F2).
Suppose that e = ij and f = pq are in F1 and e and f belong to two

distinct cycles X and Y of F . Suppose also that i < j, p < q and edges ip
and jq are in G1. If we delete e and f in F1 and add edges ip and jq, we
obtain a new perfect matching F ′

1 of G1. Observe that C(F ′
1, F2) has one less

cycle than C(F1, F2) since the vertices of X and Y form a new alternating
cycle Z. We call F ′

1 the (e, f)-switch of F1; the operation to obtain F ′
1 from

F1 is a switch (or, the (e, f)-switch).
Let S = {{2t − 1, 2t} : t = 1, 2, . . . , n/2} and L = {π(2t − 1)π(2t) :

t = 1, 2, . . . , n/2}. Clearly, S and L are perfect matchings in G1 and G2,
respectively.

Lemma 17.6.3 Let C(S, L) contain m cycles. There is a sequence of switches
of edges in S, such that the resulting perfect matching F of G1 has the prop-
erty that C(F, L) has at most �(m + 1)/2� cycles. Furthermore, given any
cycle Ch in C(S, L) we may choose F , such that all cycles in C(F, L), except
possibly Ch, have length at least 4.

Proof: Let C(S, L) consist of cycles C1, C2, . . . , Cm. Let ei = {2ri−1, 2ri} be
an edge of Ci, such that ri is minimum. Assume that the cycles C1, C2, . . . , Cm

are labelled such that 1 = r1 < r2 < . . . < rm. Define qi to be the maximum
number such that {2ri − 1, 2ri}, {2ri + 1, 2ri + 2}, . . . , {2qi − 1, 2qi} belong
to Ci, for every i = 1, 2, . . . ,m. Observe that 1 = r1 ≤ q1 < r2 ≤ q2 < . . . <
rm ≤ qm = n.

Fix h ∈ {1, 2, . . . ,m}. We will now prove that by doing switches every
cycle, except possibly Ch, can be merged with another cycle. We perform the
switches recursively in the following way. While there is a cycle, Ci with i < h,
which has not been merged to another cycle do the following: choose i to be
the minimum such index and perform the ({2qi − 1, 2qi}, {2qi + 1, 2qi + 2})-
switch. While there is some cycle, Ci with i > h, which has not been merged
to another cycle do the following: choose i to be the maximum such index
and perform the ({2ri − 3, 2ri − 2}, {2ri − 1, 2ri})-switch. Note that all the
above switches use distinct edges.

Since every cycle, except possibly Ch, is merged to another cycle, we
must have performed at least �m/2� merges. Therefore there are at most
m − �m/2� = �(m + 1)/2� cycles left, which proves the first part of the
theorem. The second part follows immediately from the above construction.

��
Theorem 17.6.1 follows from the next lemma.

17.6 Alternating Hamilton Cycles in Genetics 673

Lemma 17.6.4 If C(S, L) has at most six cycles, then G has an alternating
Hamilton cycle.

Proof: By the previous lemma, the alternating cycle factor C(F, L) has at
most three cycles. Furthermore we may assume that all cycles in C(F, L)
have length at least 4, except possibly the cycle containing the vertex π(1).
If C(F, L) consists of a unique cycle, then we are done. Assume that C(F, L)
has three or two cycles. Label them D1, D2, D3 (or D1, D2) similarly to that
in the proof of Lemma 17.6.3. Let fi = π(2ri − 1)π(2ri) be an edge of Di,
such that ri is minimum. Assume that the cycles D1, D2, D3 are labelled such
that 1 = r1 < r2 < r3. Let f ′

i = π(2ri − 3)π(2ri − 2) for i ≥ 2.
Note that all cycles except possibly D1 have length at least 4. If C(F, L)

has two cycles (D1 and D2), then construct the (f ′
2, f2)-switch M of L.

Clearly, C(F, M) consists of a unique cycle. Assume that C(F, L) has three
cycles, D1, D2, D3. Perform the (f ′

2, f2)-switch. If f ′
3 �= f2, then perform

the (f ′
3, f3)-switch, which gives the desired cycle. If f ′

3 = f2, then let
g = π(2j − 1)π(2j) be the edge of minimum j > r3 which does not lie in
D3, and let g′ = π(2j − 3)π(2j − 2). Now perform the (g′, g)-switch, which
gives the desired cycle. ��

17.6.2 Proof of Theorem 17.6.2

In this subsection, we follow [271]. We consider multigraphs G = G(n, 3, π).
We recall that V (G) = V (G1) = V (G2) = {1, 2, . . . , n}, E(G1) = {ij :
|i− j| ≤ 3} and E(G2) = {π(i)π(j) : |i− j| ≤ 3}. We use the same notation
as in the previous subsection, in particular, the notation C1, C2, . . . , Cm and
e1, e2, . . . , em remain valid. Let Gk be the subgraph of G induced by the
vertices of the cycles C1, C2, . . . , Ck. Let Lk = L ∩ E(Gk

2).
We show that, for every k ≥ 1, there is a perfect matching F k of Gk

1

such that C(F k, Lk) consists of a single cycle. Clearly, the assertion implies
Theorem 17.6.2. Trivially, the assertion is true for k = 1. So let us assume
that the assertion holds for every i ≤ k − 1. Let ek = {s + 1, s + 2}, where s
is an appropriate even integer. Consider the following three cases.

Case 1: The edge e = {s, s − j}, where j = 1 or 2, is in F k−1.
Then, the desired F k is the (ek, e)-switch of F k−1 + ek. Indeed, C(F k, Lk)
consists of a single cycle.

Case 2: The edges e′ = {s, s − 3} and e′′ = {s − 1, s − 2} are in
F k−1. Let M1 (M2) be a perfect matching of Gk−1

1 obtained from F k−1 by
replacing edges e′, e′′ with {s, s− 1}, {s− 3, s− 2} ({s, s− 2}, {s− 3, s− 1}).
Clearly, for some i ∈ {1, 2}, C(Mi, L

k−1) consists of a single cycle H. Since
either {s, s−1} or {s, s−2} is in H, we can apply the transformation of Case
1 to the appropriate matching Mi.

Case 3: The edges e′ = {s, s − 3} and e′′ = {s − 1, s − 4} are in
F k−1. Then e = {s− 2, s− 5} must be in F k−1. Let H be the single cycle of
C(F k−1, Lk−1). Consider the following two subcases.

674 17. Applications of Digraphs and Edge-Coloured Graphs

Subcase 3.1: The vertices of e and e′ are in the cyclic order
s − 5, s − 2, s − 3, s in H. Replacing e and e′ with {s−5, s−3} and {s, s−
2}, we obtain a perfect matching M of Gk−1

1 such that C(M, Lk−1) consists
of a single cycle. Since {s, s − 2} ∈ M , we can apply the transformation of
Case 1 to M .

Subcase 3.2: The vertices of e and e′ are in the cyclic order
s − 2, s − 5, s − 3, s in H. If e′′ belongs to H[s−5, s−3], then by replacing
e, e′, e′′ with three edges, one of which is {s, s − 1}, we obtain a perfect
matching M of Gk−1

1 such that C(M, Lk−1) consists of a single cycle. Since
{s, s−1} ∈ M , we can apply the transformation of Case 1 to M . If e′′ belongs
to H[s, s−2], then by replacing e, e′, e′′ with three edges, one of which is {s, s−
2}, we obtain a perfect matching M of Gk−1

1 such that C(M, Lk−1) consists
of a single cycle. Since {s, s − 2} ∈ M , we can apply the transformation of
Case 1 to M . ��

17.7 Gaussian Elimination

In many applications, such as modeling a problem by a system of differential
equations and then solving this system by numerical methods (cf. the book
[280] by Duff, Erisman and Reid), the final step of the solution of the problem
under consideration consists of solving a system of linear equations: Ax = b,
where A = [aij] is an n × n matrix of coefficients, b is a given vector of
dimension n and x is a vector of unknowns. In a considerable number of
applications the matrix A is sparse, i.e., most entries of A are zero. The
system Ax = b is often solved by the Gaussian elimination method. To use
this method, the only requirement is that all diagonal elements aii of matrix
A can be made by non-zero row and column permutations.

In many cases in practice, a sparse matrix A has some special structure,
which allows one to solve the system much faster than just using Gaussian
elimination directly. One of the most important such structures is block-
triangular structure. Let n1, n2, . . . , nk be natural numbers such that 1 ≤
n1 < n2 < . . . < nk = n and let n0 = 0. We call the submatrices A(p) =
[aip,jp], with np−1 + 1 ≤ ip, jp ≤ np, the main (n1, . . . , np)-blocks (or just
main blocks). We say that A has (n1, . . . , np)-block-triangular structure
(or just block-triangular structure) if all entries of A below the main blocks
are zero. (More precisely, one should call this structure upper block-triangular
[280], but since we do not consider lower block-triangular structure here, we
will omit the word ‘upper’.) The matrix

⎡

⎢⎢⎣

3 2 4 1
5 6 0 0
3 0 7 9
0 0 0 3

⎤

⎥⎥⎦

17.7 Gaussian Elimination 675

n 0

n 1

n 2

n 3

n 4

Figure 17.7 An (n1, n2, n3, n4)-block-triangular structure. White space consists of
entries equal zero.

has (3, 4)-block-triangular structure. See also Figure 17.7.
If A has block-triangular structure, we solve first the system A(p)x(p) =

b(p), where x(p) (b(p)) is the vector consisting of np last coordinates of x (b).
The values of coordinates of x(p), which we found, equal the values of the
corresponding unknowns in the system Ax = b since in the last np rows of A
all coefficients except for some in the last np columns are zero. Taking into
consideration that the values of coordinates of x(p) are already found, we can
compute the values of coordinates of x(p−1) using the block A(p−1). Similarly,
using all blocks of A (in the decreasing order of their indices) we can compute
all coordinates in x.

However, quite often the block-triangular structure of A is hidden, i.e.,
A has no block-triangular structure, but A can be transformed into a matrix
with block-triangular structure after certain permutations π and τ of its
rows and columns, respectively. Here we are interested in using the Gaussian
elimination method and thus we assume that all diagonal entries of A are
non-zero (when it is possible, one can find permutations of rows and columns
of A, which bring non-zero diagonal to A using perfect matchings in bipartite
graphs, see [280]). Therefore, we do not wish to change the diagonal entries
of A. This can be achieved by using only simultaneous permutations of rows
and columns of A, i.e., π = τ .

To reveal hidden block-triangular structure of A, the following approach
can be used. Let us replace all non-zero entries of A by 1. We obtain matrix
B = [bij], which can be viewed as the adjacency matrix of some directed
pseudograph D with vertex set {v1, . . . , vn}, i.e., bij = 1 if and only if vi→vj

in D. (Clearly, D has no parallel arcs, but due to the assumption on the
diagonal elements it has a loop at every vertex.) Suppose that D is not
strong, D1, . . . , Dp is the acyclic ordering of the strong components of D
(i.e., there is no arc from Dj to Di if j > i) and the vertices of D are ordered
vπ(1), vπ(2), . . . , vπ(n) such that

V (Di) = {vπ(ni+1), vπ(ni+2), . . . , vπ(ni+1)}.

676 17. Applications of Digraphs and Edge-Coloured Graphs

It is easy to see that B has (n1, . . . , np)-block-triangular structure. This im-
plies that A has block-triangular structure. The above observation suggests
the following procedure to reveal hidden block-triangular structure of A.

1. Replace every non-zero entry of A by 1 to obtain a (0, 1)-matrix B.
2. Construct a directed pseudograph D with vertex set {v1, . . . , vn} such

that B is the adjacency matrix of D.
3. Find the strong components of D. If D is strong, then B (and thus A)

does not have hidden block-triangular structure2. If D is not strong, let
D1, . . . , Dp be the strong components of D (in acyclic order). Find a
permutation π on {1, . . . , n} such that

V (Di) = {vπ(ni+1), vπ(ni+2), . . . , vπ(ni+1)}.

This permutation reveals hidden block-triangular structure of B (and
thus A). Use π to permute rows and columns of A and coordinates of x
and b.

To perform Step 3 one may use Tarjan’s algorithm in Section 5.2.
We will illustrate the procedure above by the following example. Suppose

we wish to solve the system

x1 + 3x3 + 8x4 = 2,
x2 + 5x4 = 1,

2x1 + 2x2 + 4x3 + 9x4 = 6,
3x2 + 2x4 = 3.

We first construct the matrix B and the directed pseudograph D. We
have V (D) = {v1, v2, v2, v4} and

A(D) = {v1v3, v1v4, v2v4, v3v1, v3v2, v3v4, v4v2} ∪ {vivi : i = 1, 2, 3, 4}.

The digraph D has strong components D(1) and D(2), which are subdigraphs
of D induced by {v1, v3} and {v2, v4}, respectively. These components suggest
the following permutation π, π(i) = i for i = 1, 4, π(2) = 3 and π(3) = 2, of
rows and columns of A as well as elements of x and b, the right-hand side.
As a result, we obtain the following:

x′
1 + 3x′

2 + 8x′
4 = 2,

2x′
1 + 4x′

2 + 2x′
3 9x′

4 = 6,
x′

3 + 5x′
4 = 1,

3x′
3 + 2x′

4 = 3,

where x′
i = xi for i = 1, 4, x′

2 = x3 and x′
3 = x2.

2 Provided we do not change the set of entries of the diagonal of A.

17.8 Markov Chains 677

Solving the last two equations separately, we obtain x′
3 = 1, x′

4 = 0.
Now solving the first two equations, we see that x′

1 = 2, x′
2 = 0. Hence,

x1 = 2, x2 = 1, x3 = x4 = 0.

A discussion on practical experience with revealing and exploiting block-
triangular structures is given in [280].

17.8 Markov Chains

Markov chains are a special type of stochastic processes, which have numerous
applications in genetics, economics, sport science, etc. We will see in this
section that the corresponding digraph cycle structure is of great importance
to Markov chains.

Let S1, S2, . . . , Sn be all possible states of some system. The system is
initially in a state Si with probability p

(0)
i , i = 1, 2, . . . , n. At every step

the system moves from the state Si, which it is currently in, to a state Sj

with probability pij depending only on i and j. Clearly, for all i, j, we have
0 ≤ pij ≤ 1 and

∑n
j=1 pij = 1 for every i = 1, 2, . . . , n. The stochastic

process, which we have under these conditions, is called a Markov chain
(for more details on Markov chains, see e.g. Feller [312] and Kemeny and
Snell [589])3. Let π(0) = (p(0)

1 , . . . , p
(0)
n), let p

(k)
i be the probability of the

system to be in state Si after the kth step, and let π(k) = (p(k)
1 , . . . , p

(k)
n). It

is well-known that the vector π(k) can be found as follows: π(k) = π(0)P k,
where P = [pij]. However, this equality is difficult to use directly if we wish
to know the probability distribution π(k) after a large number of steps. In
fact, π = limn→∞ π(0)P k is often of interest (if it exists).

To investigate when this limit exists and to see what happens when this
limit does not exist, it is very useful to study directed pseudographs D as-
sociated with Markov chains. The vertex set of D is {v1, . . . , vn} and the
arc set is {vivj : pij > 0, 1 ≤ i, j ≤ n}; D has no parallel arcs but may
have loops. It is not difficult to see that for n→∞ with probability tending
to 1 the system will be in one of the stages corresponding to the vertices in
the terminal strong components of D (once the system is in such a ‘vertex’
it cannot escape the corresponding terminal strong component). This shows
that it suffices to study only strong directed pseudographs D correspond-
ing to Markov chains. When D is strong, the following parameter of D is
of interest. The period p(D) of D is the greatest common divisor of the
cycle lengths of D. If p(D) = 1, then it is well-known that the limit above
does exist and, moreover, does not depend on the initial distribution π(0). If

3 Some readers may find it useful to consider S1, . . . , Sn as water containers, p
(0)
i

as the fraction of water in Si initially, and pij as the fraction of water in Si to be
moved to Sj in one step. We are interested in how the water will be distributed
after a large number of steps.

678 17. Applications of Digraphs and Edge-Coloured Graphs

p(D) ≥ 2, then the situation is absolutely different since D has a quite special
structure. Actually, if p(D) is even, then by Theorem 2.2.1 we obtain that
D is bipartite. However, the following stronger assertion, which generalizes
Theorem 2.2.1, holds4:

Theorem 17.8.1 If a strong digraph D = (V, A) has period p ≥ 2, then V
can be partitioned into sets V1, V2, . . . , Vp such that every arc with tail in Vi

has its head in Vi+1 for every i = 1, 2, . . . , p, where Vp+1 = V1.

Proof: Let D = (V, A) have period p ≥ 2. Every closed walk W of D, being
an eulerian digraph, is the union of cycles (see Theorem 13.4.1); hence the
length of W equals 0 modulo p. Let x, y be a pair of distinct vertices of D
and let P, Q be a pair of distinct (x, y)-paths in D. We claim that the lengths
of P and Q are equal modulo p. Indeed, let R be a (y, x)-path in D. Both
P and Q form closed walks with R; hence our last claim follows from the
remark above.

Since D is strong, it can be constructed from a cycle using ear composition
(see Section 5.3). We start from a cycle C and in every iteration add to the
current digraph H a path whose vertices apart from the end-vertices do not
belong to H or a cycle with only one vertex in common with H. Initially,
all sets V1, V2, . . . , Vp are empty. We choose an arbitrary vertex x in C and
consider every vertex y in C; we put y in Vi if the length of C[x, y] equals i
modulo p. In the first iteration of ear composition, we add a path or cycle R
to C. Let z be the initial vertex of R if R is a path or the only vertex of R in
common with C if R is a cycle, and let z ∈ Vk. We consider every vertex y in
R and put y in Vk+i if the length of R[z, y] equals i modulo p. Note that if R
is a path, then its terminal vertex z′ will be put in the same set Vj , where it
has been already, since otherwise we could find a pair of (z, z′)-paths, whose
lengths are not equal modulo p. We proceed with ear composition as above
and in the end we will have V partitioned into V1, V2, . . . , Vp such that every
arc with tail in Vi has its head in Vi+1 for every i = 1, 2, . . . , p (by the way
we have formed Vi’s). ��

Clearly, when the period of the digraph of a Markov chain is larger
than 1, the limit introduced above does not exist; instead the Markov chain
moves ‘cyclically’. Theorem 17.8.1 shows that a strong digraph D of order
n and period p ≥ 2 is a spanning subdigraph of 	Cp[Kn1 , . . . ,Knp], for some
n1, n2, . . . , np such that

∑p
i=1 ni = n.

There are two algorithms to compute the period of a strong digraph in
optimal time O(n+m). The first algorithm is by Balcer and Veinott [59] and
based on the following idea. If, for a vertex x of d+(x) ≥ 2, we contract all
vertices in N+(x) and delete any parallel arcs obtained, then the resulting
digraph has the same period as the original digraph by Theorem 17.8.1.
4 We have been unable to trace the first paper, where this result was proved. Our

proof of this theorem makes use of some results considered in previous chapters.

17.9 List Edge-Colourings 679

Repeating this iteration, we will finally obtain a cycle C (see Exercise 17.6).
Clearly, the length of C is the desired period. For example, the digraph H
obtained from a 3-cycle and a 6-cycle by identifying one of their vertices
after five iterations above becomes a 3-cycle (see Figure 17.8). The second
algorithm is due to Knuth (see [49]) and based on DFS-trees.

ad

be

cf

a b

c

d

e

f

g

h

b

c

e

f

g

had

c

f

g

had

be

g

h h

cf

adg

be

cf

adg

beh

Figure 17.8 Illustrating the Balcer-Veinott algorithm.

17.9 List Edge-Colourings

The topic of this section may seem to have nothing to do with directed graphs,
but as we will see, directed graphs have been a useful tool for solving the so-
called Dinitz problem which we now describe. Our discussion in this section
is inspired by the book [14] by Aigner and Ziegler and Galvin’s paper [392].

An n × n matrix M over the integers {1, 2, . . . , n} is a Latin square
(of size n) if no two entries in the same row and no two entries in the same
column are equal. It is an easy exercise to show that for every integer n ≥ 1
there exists a Latin square (Exercise 17.8).

A proper edge-colouring of an undirected graph G = (V, E) is an
assignment of integers to the edges in such a way that no two edges with a

680 17. Applications of Digraphs and Edge-Coloured Graphs

common end-vertex receive the same colour. The smallest k such that a graph
G has a proper edge-colouring using only colours from the set {1, 2, . . . , k}
is called the chromatic index of G. Thus it is easy to see that there is a
1-1 correspondence between the set of Latin squares of size n and the set
of proper edge-colourings of the complete bipartite graph Kn,n using colours
{1, 2, . . . , n}.

Proper edge-colourings are useful for various practical applications such as
time table construction, see e.g. the book by Jensen and Toft [564]. In the rest
of this section we omit the word ‘proper’ since only proper edge-colourings
will be considered.

In 1979 Dinitz raised the following problem (see e.g. [297, 299]): suppose
we are given an n× n matrix whose (i, j) entry is a set C(i, j) of n integers,
1 ≤ i, j ≤ n, is it always possible to choose from each set C(i, j) one element
cij in such a way that the elements in each row are distinct and the elements
in each column are distinct?

The Dinitz problem can be reformulated in terms of edge-colourings of
complete bipartite graphs. Suppose that we are given, for each edge ij of the
complete bipartite graph Kn,n, a set C(i, j) of possible colours for that edge.
Does there always exist an edge-colouring of Kn,n so that for each edge ij
the colour cij of ij belongs to C(i, j)? In this formulation the Dinitz problem
is just a special case of the more general list colouring conjecture (see e.g.
the book by Jensen and Toft [564]) which states that if a graph G has an
edge-colouring with k colours, then no matter how we assign to each edge e
of G a set Ce of k arbitrary colours, G has an edge colouring such that the
colour of the edge e belongs to the set Ce for each e ∈ E. Such a colouring is
called a list edge-colouring of G. An important step towards settling the
Dinitz conjecture was made by Janssen [563] who proved that if all lists have
length n + 1 (instead of n), then a solution always exists.

In order to apply results on kernel in digraphs we study the line graph of
Kn,n. The definition of a line graph is analogous to that of a line digraph:
L(G) contains a vertex for each edge of G and two vertices in L(G) are
joined by an edge if and only if the corresponding edges have an end-vertex in
common. It is easy to see that every list edge-colouring of Kn,n corresponds to
a list vertex colouring (in short a list colouring) of L(Kn,n) using the same
sets (lists). Hence, in order to solve the Dinitz problem, it suffices to prove
that no matter which sets C11, C12, . . . , Cnn, each of size n, we associate with
the n2 vertices of L(Kn,n), there exists a proper vertex colouring of L(Kn,n)
such that the colour of the vertex i is chosen from the corresponding set Ci.

Now we return to digraphs. The following lemma is attributed to Bondy,
Boppana and Siegel in [30, Remark 2.4, p. 129] (see also [392]).

Lemma 17.9.1 Let D = (V, A) be a digraph and suppose that for each vertex
v ∈ V we are given a prescribed set C(v) of colours satisfying |C(v)| > d+(v).
If D is kernel perfect (i.e., every induced subdigraph of D has a kernel), then

17.9 List Edge-Colourings 681

there exists a list colouring of UG(D) which uses a colour from C(v) for each
v ∈ V .

Proof: The proof is by induction on n, the case n = 1 being trivially true.
Fix a colour c which belongs to at least one of the sets C(v), v ∈ V and let
X(c) := {v ∈ V |c ∈ C(v)}. By the assumption of the lemma the induced
subdigraph D〈X(c)〉 has a kernel Y . Now colour each vertex of V which
belongs to Y by colour c (which is a proper choice by the definition of X(c))
and consider the digraph D′ = D − Y with colour sets C ′(v) = C(v) − {c}.
Notice that for each vertex v ∈ X(c)−Y the out-degree of v in D′ is at least
one smaller than the out-degree of v in D and hence we have |C ′(v)| > d+

D′(v)
for all v ∈ V (D′). Furthermore, every vertex u that does not belong to
X(c) has |C(u)| = |C ′(u)|. Thus, by the induction hypothesis, there is a list
colouring of D′ which uses a colour from C ′(v) for each v ∈ V (D′). Using
that colouring along with the colour c for vertices in Y we achieve the desired
colouring. ��

From Lemma 17.9.1 we see that if we can establish the existence of an
orientation D of L(Kn,n) such that every induced subgraph of D has a kernel
and d+

D(v) ≤ n − 1 for each vertex v, then we have proved that L(Kn,n) has
list chromatic number at most n as desired.

We show below that in order to obtain such an orientation we can use any
n-edge-colouring of Kn,n and orient appropriately. To prove the existence of
a kernel in each induced subgraph we use the concept of stable matchings
which we discuss below.

Below we assume that we are given a bipartite graph B = (X ∪Y, E) and
that for each vertex u ∈ X∪Y there is a fixed ordering >u on the neighbours
of u. That is, >u induces an ordering v1 >u v2 >u . . . >u vdB(u) on NB(u).

A matching M in B = (X ∪ Y, E) is stable with respect to the family of
orderings {>u |u ∈ X ∪ Y } if the following holds for all uv ∈ E − M : either
uy ∈ M for some y such that y >u v or xv ∈ M for some x with x >v u.

Stable matchings have an amusing real-life interpretation. Consider X
as a set of men and Y as a set of women and let the existence of an edge
xy ∈ E, x ∈ X, y ∈ Y mean that person x and y might marry. As we saw in
Theorem 4.11.2, given B we can determine in polynomial time the maximum
number of men and women who can marry without anybody committing
bigamy. However, in practice the fact that a man x and a woman y might
marry does not mean that this particular choice is the optimal one for x or
y. Hence, in a more realistic setting each person has a list of possible spouses
and some ranking among these as to who would be the favorite choice down
to the least wanted spouse (but still a possible choice). Now we see that
this description corresponds to the orderings described above. Furthermore,
stability of a given matching corresponds to saying that among the men and
women who are paired for marriage there is no pair xy for which x prefers
some other woman y′ to y and at the same time woman y prefers some other

682 17. Applications of Digraphs and Edge-Coloured Graphs

man x′ to x. So in some sense a stable matching corresponds to a situation
where no pair is highly likely to split up.

The concept of stable matchings was introduced by Gale and Shapley who
proved the following slightly surprising fact. We leave the proof as Exercise
17.9.

Theorem 17.9.2 [379] For every bipartite graph B = (X ∪ Y, E) and every
family of orderings {>u |u ∈ X∪Y } which arises from a local linear ordering
of the neighbours of each vertex in B, there exists a stable matching with
respect to {>u |u ∈ X ∪ Y }. ��

In Exercise 17.10 the reader is asked to show by an example that it is not
always true that there exists a maximum matching which is stable.

For more information about stable matchings see e.g. the papers [60, 61]
by Balinski and Ratier. Now we are ready to describe Galvin’s proof of the
Dinitz conjecture.

Theorem 17.9.3 [392] For every n ≥ 1 the complete bipartite graph Kn,n

has list chromatic index n.

Proof: Denote the vertices of L(Kn,n) by (i, j), 1 ≤ i, j ≤ n, where (i, j) is
adjacent to (i′, j′) if and only if i = i′ or j = j′, but not both. Let Q be any
Latin square of size n (recall that this corresponds to a proper edge-colouring
of Kn,n) and denote by Qij the ijth entry of Q. Let Dn be the oriented graph
obtained from L(Kn,n) by orienting the edges as follows:

(i, j)→(i, j′) if and only if Qij < Qij′ and
(i, j)→(i′, j) if and only if Qij > Qi′j (see Figure 17.9).

2
3

3

21
1

1
2
3

Figure 17.9 The orientation of L(K3,3) based on a Latin square of size 3.

It is easy to see that D is (n−1)-regular (Exercise 17.11). Thus, by Lemma
17.9.1 we just have to prove that every induced subdigraph of D has a kernel.
To prove this we use Theorem 17.9.2.

17.10 Digraph Models of Bartering 683

Let D′ be an arbitrary induced subdigraph of D and let B = (X, Y, E)
be the corresponding bipartite subgraph of Kn,n induced by those edges for
which the corresponding vertex (i, j) belongs to D′. For each vertex i ∈ X we
define an ordering >i of the neighbours of i in B by letting j′ >i j whenever
(i, j)→(i, j′) in D. Similarly, for each j ∈ Y we define the ordering >j of the
neighbours of j in B by letting i′ >j i whenever (i, j)→(i′, j) in D.

According to Theorem 17.9.2 B has a stable matching M with respect to
{>u: u ∈ X ∪ Y }. Since M is also a matching in Kn,n the corresponding
vertices are independent in D. Furthermore, it follows from the fact that M
is stable with respect to {>u: u ∈ X ∪ Y } that for every (i, j) such that
ij �∈ M , either there exist j′ ∈ Y such that ij′ ∈ M and j′ >i j or there
exists an i′ ∈ X such that i′j ∈ M and i′ >j i. In the first case we have
(i, j)→(i, j′) and in the second case we have (i, j)→(i′, j) in D. Thus we have
shown that every vertex of D′ which is not in M dominates a vertex in M .
Hence M is a kernel and the proof is complete. ��

The idea of orienting L(Kn,n) as we did above is due to Maffray [678].

17.10 Digraph Models of Bartering

Recently Özturan [737, 739, 738] developed several models of bartering that
use digraphs or their generalizations. We restrict ourselves to the two models
that use digraphs.

In [737, 739, 738] Özturan discusses the importance of bartering and cer-
tain combinations of bartering and auctions in electronic commerce and other
applications. One example where bartering is more appropriate than usual
trading is in the area of Web domain names. Indeed, there is a high demand
for Web domain names and many domain names are put for sale. Neverthe-
less, the volume of sales is relatively low [738]. One possible reason for this
phenomenon is that the price of the domain names is rather high and the
buyers do not have enough money to buy them. However, often the buyers
also try to sell some domain names, so the deadlock could be broken if no-
money barter deals come into play. This seems to be possible because often
the domain names have similar prices. Other examples of practical necessity
of bartering are seen in countries with high inflation overall (recent examples
are Argentina and Turkey) or just in the housing market (one recent example
is UK). In such cases, selling a product may mean not being able to buy a
similar value product in just a few months. In bartering, if a person/company
sells a product, then it buys another one at the same time.

Consider Model 1 introduced by Özturan [737]. This model is simpler
than Model 2 which we consider afterwards. In both models we assume that
all products (called items) are of equal or almost equal value (i.e., people or
companies involved in bartering are ready to compensate for the difference
in value between any two items). The items can be viewed as vertices of a

684 17. Applications of Digraphs and Edge-Coloured Graphs

digraph D; there is an arc (i, j) in D if somebody is willing to exchange i
for j. It is natural to find as many items as possible that can be involved
in an exchange in which every person who gives an item receives another
one instead. (For example, in the case of a property agent who gets a fee
for every house he or she sells.) In terms of graph theory, we wish to find a
cycle subdigraph of maximum order. Such a subdigraph can be found in time
O(n3), see Theorem 13.8.1.

In Model 2, we consider a more complicated situation where people or
companies (called barterers) may have several instances of the same item
and each of the barterers wishes to receive as many instances as possible.
We will show how to find a solution in which the total number of exchanged
instances is maximum. Let I = {i1, i2, . . . , ip} be the set of items, let B =
{b1, b2, . . . , bq} be the set of barterers, let g(t, s) and r(t, s) denote the number
of copies of item is that barterer bt is ready to give and receive, respectively
(often one of two parameters is 0, but there is no need to assume that). The
network we introduce here for Model 2 is simpler than the one described by
Özturan [737], but the two are essentially equivalent.

Construct a bipartite network N with partite sets I and B. There is an arc
(bt, is), t ∈ [q], s ∈ [p], in N of capacity g(t, s) if g(t, s) > 0 and there is an arc
(is, bt) in N of capacity r(t, s) if r(t, s) > 0. We assign cost −1 to each vertex
in I and 0 to each vertex in B. Observe that the minimum cost of a circulation
in N is equal to the maximum total number of exchanged instances and a
minimum cost circulation can be transformed into an optimal bartering. The
network N is of interest since there are many efficient algorithms for finding
a minimum cost circulation, see Chapter 4. Figure 17.10 provides an example
of the bipartite network N . The first number on each arc gives its capacity
and the second number the amount of flow in the minimum cost circulation.
The costs of the vertices are not shown.

b1

b2

b3 i3

i2

i1

2, 2

4, 3

6, 3

1, 1

2, 2

1, 1

1, 1

1, 1

Figure 17.10 An example of network N .

17.11 PERT/CPM in Project Scheduling 685

17.11 PERT/CPM in Project Scheduling

Often a large project consists of many activities some of which can be done
in parallel, others can start only after certain activities have been accom-
plished. In such cases, the critical path method (CPM) and Program
Evaluation and Review Technique (PERT) are of interest. They allow
one to predict when the project will be finished and monitor the progress
of the project. They allow one to identify certain activities which should be
finished on time if the predicted completion time is to be achieved.

CPM and PERT were developed independently in the late 1950s. They
have many features in common and several others that distinguish them.
However, over the years the two methods have practically merged into one
combined approach often called PERT/CPM. This approach has been used
in a large number of projects including a new plant construction, NASA
space exploration, movie production and ship building (see, e.g., the book
[528] by Hillier and Lieberman). PERT/CPM has many tools for project
management, but we will restrict ourselves only to a brief introduction and
refer the reader to various books on operations research such as [528, 535, 710]
for more information on the method.

We will introduce PERT/CPM using an example. Suppose the tasks to
complete construction of a house are as follows (in brackets we give their
duration in days): Wiring (5), Plumbing (8), Walls & Ceilings (10), Floors (4),
Exterior Decorating (3) and Interior Decorating (12). We cannot start doing
Walls & Ceilings and Floors before Wiring and Plumbing are accomplished,
we cannot do Exterior Decorating before Walls & Ceilings are completed and
we cannot do Interior Decorating before Walls & Ceilings and Floors are
accomplished. How much time do we need to accomplish the construction?

To solve the problem we first construct a digraph N , which is called an
activity-on-node (AON) project network5. We associate the vertices of N
with the starting and finishing points of the projects (vertices S and F) and
with the activities described above, i.e., Wiring (Wi), Plumbing (Pl), Floors
(Fl), Walls & Ceiling (WC), Interior Decorating (ID) and Exterior Decorat-
ing (ED). The network N is a vertex-weighted digraph, where the weights
of S and F are 0 and the weight of any other vertex is the duration of the
corresponding activities. Observe that the duration of the house construction
project equals the maximum weight of an (S, F)-path.

As in the example above, in the general case, an AON network D is a
vertex-weighted digraph with the starting and finishing vertices S and F . Our
initial aim is to find the maximum weight of an (S, F)-path in D. Since D is an
acyclic digraph, this can be done in linear time using the algorithm mentioned
in Theorem 3.3.5 after the vertex splitting procedure (see Subsection 4.2.4).
5 Original versions of PERT and CPM used another type of network, activity-

on-arc (AOA) project network, but AOA networks are significantly harder to
construct and change than AON networks and it makes more sense to use AON
networks rather than AOA ones.

686 17. Applications of Digraphs and Edge-Coloured Graphs

S

P l

Wi F l

WC

ID

ED

F

8

5

4

10

12

3

0

Figure 17.11 House construction network.

We can also use dynamic programming directly: for a vertex x of D let t(x)
be the earlier time when the activity corresponding to x can be accomplished.
Then t(S) = 0 and for any other vertex x, we have t(x) = �(x) + max{t(y) :
y ∈ N−(x)}, where �(x) is the duration of the activity associated with x.
To ensure that we know the value of t(y) for each in-neighbour of y of x, we
consider the vertices of D in an acyclic ordering (see Section 2.1).

It is easy to see that the maximum weight of an (S, F)-path in N (our ex-
ample) is 27 days and the path is S, Wi, WC, ID, F . Every maximum weight
(S, F)-path is called critical and every vertex (and the corresponding activ-
ity) belonging to a critical path is critical. Observe that to ensure that the
project takes no longer than required, no critical activity should be delayed.
At the same time, delay with non-critical activities may not affect the dura-
tion of the project. For example, if we do Plumbing 13 days instead of 8 days,
the project will be finished in 27 days anyway. This means that the project
manager has to monitor mainly critical activities and may delay non-critical
activities in order to enforce critical ones (e.g., by moving workforce from a
non-critical activity to a critical one).

The manager may want to expedite the project (if, for example, earlier
completion will result in a considerable bonus) by spending more money on
it. This issue can be investigated using linear programming, see Hillier and
Lieberman [528].

17.12 Finite Automata 687

17.12 Finite Automata

In computer program compilation, we need to know which words in the pro-
gram are allowed by the grammar of the language the program is written in
and which are not allowed. This kind of recognition can be done efficiently
because the allowed words are strings of a regular language and one can effi-
ciently check whether a string belongs to a regular language (in other words,
to a regular expression) [12].

An alphabet (usually denoted by Σ) is any set of symbols called letters.
Strings (or, words) in an alphabet Σ are ordered sequences of letters. The
empty string is denoted by ε. For an alphabet Σ, a set of strings R is called
a regular language if either R = ∅ or R = {ε} or R = {s}, where s ∈ Σ
or there are regular languages P and Q such that either R = PQ (the set
of strings obtained by concatenating a string from P with a string from Q)
or R = P ∗ (the set of all strings obtained as concatenation of zero or more
strings from P) or R = P ∪ Q (this union is often denoted by P |Q). For
example, the set of integers can be given by the following regular language
(expression):

(−|ε)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗|0.

A (deterministic) finite automaton M is a 5-tuple (Q, q0, F, Σ, δ),
where Q is a finite set of states, q0 ∈ Q is a start state, F ⊂ Q is a set
of final (or, accepting) states, Σ is a finite input alphabet and δ is a
function from Q × Σ to Q called the transition function of M. A finite
automaton M scans an input string S of letters from Σ and moves according
to the transition function; M starts in q0 and moves from q0 to the state
δ(q0, s1), where s1 is the first letter in S. In Step i ≥ 1, if M is in a state q,
then it moves to the state δ(q, si), where si is the ith letter of S; M stops
after the last letter of S has been read and the corresponding move has been
performed. We say that a string S is accepted if M stops in a state belonging
to F. We denote by L(M) the set (language) of all strings accepted by M.

Consider, for example, a finite automation A with Q = {q0, q1, q2},
F = {q2}, Σ = {a, b} and δ defined as follows: δ(q0, a) = q2, δ(q0, b) = q1,
δ(q1, a) = q1, δ(q1, b) = q2, δ(q2, a) = q1, δ(q2, b) = q2. The automation
A can be depicted as a directed pseudograph D with arcs labeled by let-
ters from Σ, see Figure 17.12 (left). One can check (Exercise 17.13) that
L(A) = ab∗(aa∗bb∗)∗|ba∗b(aa∗bb∗)∗.

In general, a finite automaton M can be represented by a directed pseu-
dograph D(M) called the state diagram of M . Observe that D(M) may
have parallel arcs and/or loops as there may be a state q ∈ Q, and a let-
ter si in S and/or two distinct letters sj , sk in S such that δ(q, si) = q and
δ(q, sj) = δ(q, sk). Let S be an input string for an automaton M . The moves
of M from q0 to the state where M stops form a walk, which we call the
S-walk. Notice that S is accepted if and only if the S-walk terminates in a
vertex from F .

688 17. Applications of Digraphs and Edge-Coloured Graphs

�a a

� �
� �� �b

a a

b b

b b
a

q0 q0

q1 q1

q2 q2

� �
� �

ε
ε

�� b

Figure 17.12 Deterministic (left) and non-deterministic (right) finite automata.

It is well-known that a set R of strings is a regular language if and only
if there is a finite automaton M such that R = L(M) [533, 642]. Moreover,
for each finite automaton M , L(M) is a regular language.

Let M be a finite automaton. We call a string S synchronizing for
M if no matter which state of M is proclaimed a start state the S-walks
terminates in the same state. If an automaton M has a synchronizing string,
M is resistant against input errors in the following sense: after detection of an
error, we can reset M back to its original state using a synchronizing string.
The problem of existence of a synchronizing string is related to the following
Road Colouring Conjecture: Let D be a strong digraph in which every
vertex has the same out-degree k and let the period6 of D equal 1. Then
there is an assignment f : A(D)→[k] such that (D, f) is the state diagram
of a finite automaton for which there exists a synchronizing string. This
conjecture was stated by Adler, Goodwyn and Weiss [7] and solved recently
by Trahtman [875] (earlier Kari [583] solved the conjecture for the special
case of eulerian digraphs).

Figure 17.12 (right) depicts the state diagram of a non-deterministic finite
automaton B. In B, we do not demand that for every letter c and every vertex
(state) qi there is a unique arc from qi labelled by c. There may be several arcs
from qi labelled by c or none. Moreover, some arcs from qi may be labelled
by ε, the empty string, which means that the automaton is allowed to move
from qi along those arcs without reading the input string S. Formally, a non-
deterministic finite automaton M is a 5-tuple (Q, q0, F, Σ, Δ), where Q
is a finite set of states, q0 ∈ Q is a start state, F ⊂ Q is a set of final (or,
accepting) states, Σ is a finite alphabet and Δ is a subset of Q×(Σ∪{ε})×Q
called the transition relation of M. One can easily define the state diagram
D(M) of a non-deterministic finite automaton M.

Let us now replace every arc label ε in D(M) by a letter ω �∈ Σ and denote
the resulting directed pseudograph by D∗(M). Since D∗(M) may contain
arcs labelled by ω, accepted strings are defined in a more sophisticated way.
Perhaps the clearest way to define accepted strings is by considering S′-walks
6 Recall that the period of a digraph D is the greatest common divisor of the cycle

lengths of D, see Section 17.8.

17.13 Puzzles and Digraphs 689

in D∗(M), where S′ is a string of letters from Σ∪{ω} (S′-walks can be easily
defined). An input string S = s1s2 . . . sr is accepted by M if there exist non-
negative integers n1, n2, . . . , nr such that the S′-walk of D∗(M) terminates
in a vertex of F , where S′ = s1ω

n1s2ω
n2 . . . ωnr−1srω

nr and ωk denotes the
string consisting of k letters ω (in particular, ω0 = ε). We denote by L(M)
the set of strings accepted by M.

One may think that non-deterministic automata are more powerful than
deterministic ones, but this is not true.

Theorem 17.12.1 For every non-deterministic automaton M there is a de-
terministic automaton M ′ such that L(M) = L(M ′). ��

A complete proof of this theorem can be found in [642]; the proof is not
difficult, but rather lengthy and we will only consider briefly how to build
M ′ from M = (Q, q0, F, Σ, Δ). Let Dε(M) denote the transitive closure of
the subdigraph of the state diagram D(M) induced by the arcs labelled ε (for
the definition and results on transitive closure, see Section 2.3). For a state
qi let N+

ε [qi] be the set consisting of all states dominated by qi in Dε(M) and
the state qi itself. Then the states of M ′ are all subsets of Q, the start state
of M ′ is N+

ε [q0], the accepting states of M ′ are all subsets P of Q such that
P ∩ F �= ∅, and

δM ′(P, a) =
⋃

{N+
ε [qj] : qj ∈ Q and (qi, a, qj) ∈ Δ for some qi ∈ P}.

The above construction gives 2|Q| states in M ′ (including ∅). In fact, we
may well need less than 2|Q| states in M ′ because all vertices of D(M ′) not
reachable from the initial vertex N+

ε [q0] can be deleted from D(M ′) without
changing L(M ′). There are examples of non-deterministic finite automata M
for which any equivalent deterministic finite automata must have exponential
(in |Q|) number of states [533, 642].

17.13 Puzzles and Digraphs

There are several puzzles which can be solved using graph theory. Let us
consider an example of such a puzzle various versions of which can be found
in the literature and folklore. Suppose we have three buckets, X, Y and Z of
volumes 1 liter, 3 liters and 5 liters, respectively. Suppose that bucket X is
filled with water to its capacity, Y is empty and Z contains 4 liters of water.
In each move, we are allowed to pour water from a bucket A to a bucket B
(A, B ∈ {X, Y, Z}) such that in the end of the move either A is empty or B
is filled to its capacity. We wish to determine the minimum number of moves
required to get X empty, Y with 2 liters of water and Z with 3 liters of water.

To solve the puzzle we will use the digraph D depicted in Figure 17.13.
Each vertex of D is denoted (i, j), where i is the amount of water in X and

690 17. Applications of Digraphs and Edge-Coloured Graphs

j is the amount of water in Y (clearly, Z contains 5 − i − j liters of water).
The vertices (i, j) are states of the puzzle. In D, we have an arc from (i, j)
to (i′, j′) if the move from (i, j) to (i′, j′) is allowed. When there are arcs in
both directions between a pair of vertices, we replace the 2-cycle by an edge.
Notice that D cannot be replaced by an undirected graph as there are arcs
which are not in 2-cycles.

Clearly, to solve the puzzle it suffices to find a shortest path from (1, 0)
to (0, 2). It is not difficult to see that a shortest such path is of length 3 and,
thus, three is the minimum number of moves.

03

13

01

02

00

10 11

12

Figure 17.13 Digraph model of a puzzle. Here (i, j) is denoted by ij.

17.14 Gossip Problems

‘There are n ladies, and each one of them knows an item of scandal which is
not known to any of the others. They communicate by telephone, and when-
ever two ladies make a call, they pass on to each other, as much scandals
as they know at the time. How many calls are needed before all ladies know
every scandal?’ This is the way the so-called gossip problem (apparently due
to A. Boyd) was stated by Hajnal, Milner and Szemerédi [491] in 1972. Since

17.14 Gossip Problems 691

then numerous research papers on the topic have been published (see e.g.
surveys by Fraigniaud and Lazard [333], Hedetniemi, Hedetniemi and Liest-
man [511], Hromkovič, Klasing, Monien and Peine [536]). The main reason
for this popularity is a high applicability of the gossip problem, especially in
computer networks.

Actually the above quotation captures only a special case of the gossip
problem. In a more general setting, this problem can be formulated as follows.
Let G be a connected graph of order n. Every vertex v of G holds initially an
item I(v) (different from the items of other vertices). A vertex v can pass all
items it currently has to all or some of its neighbours at one step. The aim is
to calculate the minimum number of steps required to pass to every vertex u
the set {I(v) : v ∈ V (G)} of all items.

The problem can be specified by allowing only one-way communications
(like in radio communications over one frequency or email) when at every
given step, for every pair u, v of adjacent vertices, either u can pass all items
it holds to v, or v can pass all items it holds to u, but not both [333]. This
specification is often called half-duplex. The half-duplex gossip problem is
NP-hard [333]. On the other hand, this problem is normally of interest, from
the applications point of view, only for some special families of graphs such
as the Cartesian products of cycles used in practice to build the Intel Δ-
prototype (see Rattner [764]) and many transputer-based machines (see May
[687]). Several important families of graphs are discussed by Fraigniaud and
Lazard [333]. The solutions obtained for them are based on an upper bound
that includes, as the main term, the minimum diameter of an orientation of
a given undirected graph [333].

In the half-duplex gossip problem, we may consider symmetric digraphs
↔
G instead of undirected graphs G. The half-duplex model can be extended
from symmetric to arbitrary digraphs D, where a vertex v can pass all its
items only to vertices u such that vu is an arc in D. The use of arbitrary
digraphs may well be of interest when security concerns dictate that some of
the directions of communications are forbidden.

We consider only the half-duplex model for a strong digraph D. Let s(D)
stand for the minimum number of steps for gossiping in this model. Since the
minimum number of steps to pass all items of vertex u to another vertex v
is dist(u, v), we have s(D) ≥ diam(D).

Gutin and Yeo (see [91]) proved the following simple upper bound on
s(D), which is an improvement on the similar upper bound in [333] even in
the case of symmetric digraphs.

Theorem 17.14.1 Let D = (V, A) be a strong digraph. Then

s(D) ≤ min{2 rad(D), diammin(D)},

where diammin(D) is the minimum diameter of an orientation of D.

Proof: Let H be an orientation of D of minimum diameter. Let every vertex
in D pass its items to all out-neighbours in H. Repeat this iteration till every

692 17. Applications of Digraphs and Edge-Coloured Graphs

vertex holds all items. Clearly, the number of iterations required is the length
of the longest path in H, i.e., s(D) ≤ diam(H) = diammin(D).

Let x be a vertex of D such that rad(D) = (dist(x, V) + dist(V, x))/2.
Let F+

x (F−
x) be a BFS tree of D rooted at x (the converse of a BFS tree of

the converse of D rooted at x). In the first dist(V, x) steps pass items from
vertices to their out-neighbours along arcs of F−

x . Thus, in the end, x holds
all items. During the next dist(x, V) steps pass items from vertices to their
out-neighbours along arcs of F+

x . Hence, in the end, every vertex holds all
items. Thus, s(D) ≤ 2 rad(D). ��

The bound of Theorem 17.14.1 is of special interest when D satisfies
diam(D) = diammin(D). In this case, a minimum diameter orientation of D
provides an optimal solution to the gossip problem. Thus, an orientation H
of diameter possibly exceeding diam(D) by a small constant leads to a good
approximate solution for the gossip problem (see Section 3.6).

17.15 Deadlocks of Computer Processes

The (computer) process is a fundamental concept in all operation systems
[841]. A process is just an executing computer program including the current
values of registers, variables and program counter. To complete its task each
process requests some resources such as printers, scanners, plotters and files.
Sometimes, a process cannot receive the requested resource. For example,
suppose that two processes, p1 and p2, are working as photocopiers: each of
them scans and prints documents; when a process works with the scanner
or printer, it requires exclusive access to it. Each of the processes works as
follows: it grabs the scanner and the printer, scans the document and prints
it immediately (the data from the scanner are not stored but sent to the
printer directly).

Suppose also that the two processes are programmed in the following
unfortunate way: A first requests the printer and then the scanner, but B
first requests the scanner and then the printer. Suppose that A has requested
the printer and by the time it requests the scanner, it has been assigned to
B. Then we have deadlock, i.e., none of the two processes can complete its
task.

Let us first consider the case when each resource has only one copy (i.e.,
there is only one printer, scanner, etc.). To check whether process deadlock
will occur, one can use the following bipartite digraph model D [841]: Let
P and R be the sets of processes and resources, respectively; P and R are
bipartition of D. For resource r ∈ R and process p ∈ P , bipartite digraph
D has an arc rp when p holds r and D has an arc pr when p requests r.
Clearly, we have no deadlock if and only if D is acyclic. Using Proposition
2.1.5, we can check whether D is acyclic in time O(n+m) (n = |P |+ |R| and
m = |A(D)|).

17.15 Deadlocks of Computer Processes 693

Algorithm DFSA from Section 2.1 gives an acyclic ordering of V (D).
Restricting this ordering to P , we get p1, p2, . . . , ps. Notice that the resources
will always be available for the current process, if we execute the processes
as follows: ps, ps−1, . . . , p1. This ordering of P will allow the processor not
to move from one process to another without executing the former due to
non-availability of the requested resources.

Suppose D is not acyclic. Then it is natural to find the minimal number
of processes whose deletion will eliminate all directed cycles of D (to resolve
the deadlock optimally). We will call this problem the Optimal Deadlock

Resolution Problem (ODR). Observe that ODR is NP-hard due to the
NP-hardness of the Feedback Vertex Set Problem (FVS) (i.e., the
problem of finding the minimum number of vertices in a digraph H whose
deletion will make H acyclic; for more details, see Section 15.3). Indeed, let
H be an instance of FVS and let us split every vertex of H to obtain a new
digraph D. Recall that D has two vertices x1, x2 instead of every vertex x of
H, x1→x2 in D for each x ∈ V (H) and x2y1 ∈ A(D) if and only if xy ∈ A(H).
Now assign x1 to R and x2 to P for each x ∈ V (H). Then D is an instance
of the processes-resources model considered above (each resource x1 is given
to just one process x2). Clearly, a set X is an optimal solution of FVS on H
if and only if {x2 : x ∈ X} is an optimal process deletion.

It is not difficult to prove that (the following natural parameterization
of) ODR is fixed-parameter tractable: check whether deletion of k vertices
in P from D makes D acyclic. Indeed, consider an extension7 D∗ of D in
which each vertex in R is replaced by k + 1 independent vertices. Clearly,
there is a set X ⊂ V (D∗) of size at most k such that D∗ − X is acyclic if
and only if D − X is acyclic. Also, we may assume that X ⊆ P . Since FVS
is fixed-parameter tractable (see Section 15.3), we conclude that so is ODR.

If there are several copies of the same resource (e.g., two or more print-
ers), the situation with deadlocks becomes more complicated. Consider the
following simple example: Let V (D) = {p1, p2, r1, r

′
2, r

′′
2} (where r′2 and r′′2

are copies of the same resource r2) and A(D) = {r1p1, p1r
′
2, p1r

′′
2 , p2r1, r

′′
2p2}.

Suppose that p1 requests only one copy of r2. Observe that D has a directed
cycle, but there is no deadlock: first p1 uses resources r1 and r′2 and releases
them such that p2 can use r1 (together with r′′2) afterwards.

The deadlock detection problem, even for the case when processes may
need several copies of the same resource, is polynomial time solvable [841]: at
each iteration we simply find a process that can have all requested resources.
Such a process is executed and afterwards it releases all resources it has
used. If, as a result, all processes have been executed, there is no deadlock.
Otherwise, there is a deadlock. It is easy to show that this algorithm is
correct: observe that the set of the processes which can be executed or have
been executed does not decrease after each iteration and, thus, it does not
7 For the definition of a digraph extension, see Section 1.3.

694 17. Applications of Digraphs and Edge-Coloured Graphs

matter which one of the possible processes is executed first. However, the
following problem remains open:

Problem 17.15.1 Is the ODR problem fixed-parameter tractable when each
resource may have multiple copies and each process may use several copies of
the same resource?

17.16 Exercises

17.1. Show that Theorem 17.3.3 is not true for r ≤ �n−1
2
	. (Bang-Jensen, Gutin

and Yeo [99])

17.2. Prove Theorem 17.2.2. Hint: Assume that D has a path of length 2 and
prove that cc(D) ≤ f(n). (Gutin and Yeo [481])

17.3. Prove Lemma 17.2.4.

17.4. Construct an alternating hamiltonian cycle in the 2-edge-coloured graph of
Figure 17.6.

17.5. (−) Check which of the following 4×4 matrices A = [aij] have hidden block-
triangular structure (the entries not specified equal zero). Only simultaneous
permutations of rows and columns are allowed.

(a) a1i = i + 1 for i = 1, 2, 3, a2i = a3i = i for i = 2, 3 and a4i = 2 for
i = 2, 3, 4;

(b) a12 = a21 = a14 = a41 = a34 = a43 = 2 and aii = 1 for i = 1, 2, 3, 4.

17.6. (−) Prove that the Balcer-Veinott algorithm (in Section 17.8) terminates
with a cycle, whose length is the period of the input digraph.

17.7. (−) Prove that the period of a strong non-bipartite digraph D with δ0(D) ≥
3 equals 1. Hint: use Theorem 8.3.7.

17.8. (−) Give a construction of a Latin square of size n for each integer n ≥ 1.

17.9. (+) Prove Theorem 17.9.2.

17.10. Construct a bipartite graph B = (X ∪Y, E) with a family {>u |u ∈ X ∪Y }
of orderings induced from local orderings of the neighbours of each vertex,
such that no maximum matching of B is stable.

17.11. (−) Argue that the oriented graph D in the proof of Theorem 17.9.3 is
(n− 1)-regular.

17.12. Prove Theorem 17.12.1.

17.13. (−) For an automaton A depicted in Figure 17.12, show that L(A) =
ab∗(aa∗bb∗)∗|ba∗b(aa∗bb∗)∗.

17.14. For the non-deterministic automaton B depicted in Figure 17.12 (right),
construct a deterministic automaton B′ such that L(B) = L(B′).

18. Algorithms and Their Complexity

In this book we often describe and analyze algorithms on digraphs. We con-
centrate more on graph-theoretical aspects of these algorithms than on their
actual implementation on a computer. Thus, in many cases only the most ba-
sic knowledge on algorithms and complexity is required and many readers are
familiar with it. However, sometimes we use less familiar terminology and no-
tation. In particular, we sometimes say that some problem is fixed-parameter
tractable or W[1]-hard.

The objective of this chapter is to help the reader to refresh basic knowl-
edge on data structures and algorithms and give a brief introduction to less
familiar areas of algorithmics which are used in this book. We also briefly
discuss the satisfiability problem and its important subproblems as well as
matroids.

It is well-known that most computational optimization problems are NP-
hard. Thus, we cannot hope to design polynomial algorithms for them and
should try to find ways around the intractability. In fact, there are a num-
ber of ways around the intractability. They can be divided into two cate-
gories. The approaches of the first category try to solve interesting instances
of the problem under consideration to optimality either by considering only
polynomial-time-solvable special subproblems in the hope that the instances
belong to these subproblems (we consider many polynomial-solvable sub-
problems in this book), or by parameterizing the problem in such a way that
the computational complexity is mainly confined to some parameter and the
parameter is relatively small (for more details, see Section 18.4) or by using
exponential-time algorithms in the hope that certain instances of the problem
can be solved relatively quickly (see Section 18.5).

The approaches of the first category have proved to be very useful, but
they are somewhat unreliable in terms of running time especially for practical
problems and, thus, approaches of the second category are of interest. Here
we relax the optimality condition and consider approximation algorithms (see
Section 18.6) or their much less theoretically based, yet much more widely
used cousins, heuristics (see Section 18.7).

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1 18,
© Springer-Verlag London Limited 2010

695

http://dx.doi.org/10.1007/978-1-84800-998-1_18

696 18. Algorithms and Their Complexity

18.1 Combinatorial Algorithms

Recall that unless specified otherwise, n (m) denotes the number of vertices
(arcs) in the directed multigraph under consideration. In the following, all
logarithms whose base is unspecified are of base 2. For a pair of given functions
f(k), g(k) of a non-negative integer argument k, we say that f(k) = O(g(k))
if there exist positive constants c and k0 such that 0 ≤ f(k) ≤ cg(k) for all
k ≥ k0. If there exist positive constants c and k0 such that 0 ≤ cf(k) ≤ g(k)
for all k ≥ k0, we say that g(k) = Ω(f(k)). Clearly, f(k) = O(g(k)) if and
only if g(k) = Ω(f(k)). If both f(k) = O(g(k)) and f(k) = Ω(g(k)) hold,
then we say that f(k) and g(k) are of the same order and denote it by
f(k) = Θ(g(k)).

In the analysis of an algorithm, first of all we will be interested in its time
complexity which must reflect the running time of the corresponding com-
puter program on various computers. In order to make the time complexity
measure sufficiently universal, it is usually assumed that computations are
performed by some abstract computer. The computer executes elementary
operations, that is, arithmetical operations, comparisons, data movements
and control branching, each in constant time. Since we are interested only in
the asymptotics of the execution time, the number of elementary operations
of an algorithm will be considered as its time complexity. In the vast majority
of cases, the time complexity (which will often be called just the complex-
ity) of an algorithm depends on the size of its input. An algorithm A is an
O(g(n)) algorithm for some function g(n) of its input size if the running time
of A on inputs of size n never exceeds cg(n) for some constant c (depending
only on A).

Since the typical inputs to the algorithms considered in this book are
(weighted) directed multigraphs, the size of inputs will be measured by the
numbers of vertices and arcs, that is, by n and m, and, for digraphs with
weights on the arcs (vertices), by log |cmax|, where |cmax| is the maximum of
the absolute values of the weights of arcs (vertices). An algorithm of com-
plexity O(p(n, m, log |cmax|)), where p(n, m, log |cmax|) is a polynomial in n,
m and log |cmax|, is a polynomial-time (or just polynomial) algorithm.
The notion of equating efficient algorithms with polynomial algorithms is
due to Edmonds [282] and is at present the most popular formalization for
the intuitive notion of ‘efficient’ algorithms. Although we would normally not
call an algorithm of complexity Θ(n1000), where n is the size of the input, an
efficient algorithm, it is very rarely the case that polynomial algorithms have
such a high degree of their associated polynomials.

There are two well-known and often-used ways to represent a digraph
D = (V, A) for computational purposes: as a collection of adjacency lists and
as an adjacency matrix.

For the adjacency matrix representation of a directed multigraph
D = (V, A), we assume that the vertices of D are labelled v1, v2, . . . , vn in
some arbitrary but fixed manner. The adjacency matrix M(D) = [mij] of

18.1 Combinatorial Algorithms 697

a digraph D is an n × n matrix such that mij = 1 if vi→vj and mij = 0
otherwise. For directed pseudographs we let mij = μ(vi, vj), that is, mij is the
number of arcs from vi to vj . The adjacency matrix representation is a very
convenient and fast tool for checking whether there is an arc from a vertex
to another one. A drawback of this representation is the fact that to check
all adjacencies, without using any other information besides the adjacency
matrix, one needs Ω(n2) time. Thus, the majority of algorithms using the
adjacency matrix cannot have complexity lower than Ω(n2) (this holds in
particular if we include the time needed to construct the adjacency matrix).

b

e

g

h

a

c

d

f

ga

c

d

e

f

g

h

b c a f c

d f e g

e

f

g

f

g

/

/

/

/

/

/

/

h

/d

Figure 18.1 A directed multigraph and a representation by adjacency lists Adj+.

The adjacency list representation of a directed pseudograph D =
(V, A) consists of a pair of arrays Adj+ and Adj−. Each of Adj+ and Adj−

consists of |V | (linked) lists, one for every vertex in V . For each x ∈ V , the
linked list Adj+(x) (Adj−(x), respectively) contains all vertices dominated
by x (dominating x, respectively) in some fixed order (see Figure 18.1). Using
the adjacency list Adj+(x) (Adj−(x)) one can obtain all out-neighbours (in-
neighbours) of a vertex x in O(|Adj+(x)|) (O(|Adj−(x)|)) time. A drawback
of the adjacency list representation is the fact that one needs, in general,
more than constant time to verify whether x→y. Indeed, to decide this we
have to search sequentially through Adj+(x) (or Adj−(x)) until we either find
y (x) or reach the end of the list.

To illustrate the concepts described in this section, let us consider the
Hamilton path problem in tournaments. Theorem 1.4.2 states that every
tournament is traceable. However, the proof that we have presented is non-
constructive, i.e., it does not provide us with a polynomial algorithm to find
a Hamilton path in a tournament. Now we give two constructive proofs of
Theorem 1.4.2 and show how these lead to polynomial algorithms to construct
a Hamilton path in a tournament.

Inductive Proof of Theorem 1.4.2: Clearly, the one-vertex tournament
has a Hamilton path (the vertex itself). Assume that the theorem holds for

698 18. Algorithms and Their Complexity

every tournament with less than n(≥ 2) vertices. Consider a tournament T
with n vertices and a vertex x ∈ V (T). By induction, the tournament T − x
has a Hamilton path, P = y1y2 . . . yn−1. If x→y1, then xP is a Hamilton path
in T ; if yn−1→x, then Px is a Hamilton path in T . Assume that y1→x and
x→yn−1. Then, it is easy to show that there exists an index i < n − 1 such
that yi→x and x→yi+1. Thus, P [y1, yi]xP [yi+1, yn−1] is a Hamilton path in
T . ��

This constructive proof gives rise to the following simple algorithm to find
a Hamilton path in a tournament.

HamPathTour
Input: A tournament T on n vertices labelled x1, x2, . . . , xn and its adjacency
matrix M = [mij].
Output: A Hamilton path in T .

1. Let P := x1 and i := 2.
2. If i > n go to Step 7.
3. Let P = y1y2 . . . yi−1 be the current path.
4. If xi→y1 then P := xiP . Let i := i + 1 and go to Step 2.
5. If yi−1→xi then P := Pxi. Let i := i + 1 and go to Step 2.
6. For j = 1 to i− 2 do: If yj→xi→yj+1 then P := P [y1, yj]xiP [yj+1, yi−1].

Let i := i + 1 and go to Step 2.
7. Return the path P .

The correctness of this algorithm follows from the above proof. To see
that this algorithm can be implemented as an O(n2) algorithm, observe that
the algorithm has two nested loops, each of which performs O(n) operations
(we count queries to the adjacency matrix as constant time) and all other
steps take constant time. Thus, the complexity is O(n2).

The reader who is familiar with algorithms for sorting numbers might have
noticed that HamPathTour is very similar to the algorithm Insertion-Sort
which sorts numbers by inserting one at a time in a list (see e.g. [231, pp. 2-4]).
This resemblance is no coincidence. In fact, given any set S = {a1, . . . , an}
of n distinct real numbers we can form an acyclic tournament T (S) with
V (T (S)) = S and A(T (S)) = {aiaj : ai < aj , 1 ≤ i �= j ≤ n}. The
correct (sorted) increasing order on S corresponds to the unique Hamilton
path aπ(1)aπ(2) . . . aπ(n) of T (S) which again is the unique acyclic ordering of
V (T (S)) (see also Exercise 2.1). Thus any algorithm for finding a Hamilton
path in a tournament can be used for sorting numbers (we compare numbers,
by looking at the orientation of the arc between the corresponding vertices
in1 T (S)). Conversely, several sorting algorithms can be translated into al-
gorithms for solving the more general problem of finding Hamilton paths in
1 Note that this is only a virtual description, since we do not need to construct

the adjacency matrix in this case. We simply compare the two numbers x and y
and x→y holds if and only if x < y.

18.1 Combinatorial Algorithms 699

tournaments. One such example is the classical Mergesort algorithm (see
e.g.[232, pp. 28-36]), which we now translate into the language of tourna-
ments. For simplicity we shall assume that the number of vertices of the
input tournament is a power of two. The reader can easily extend the al-
gorithm to the general case, see Exercise 18.1. It is convenient to state the
algorithm as a recursive algorithm (which is the reason why we specify a
parameter for the algorithm). We assume that the tournament is available
through its adjacency matrix.

MergeHamPathTour(T)

1. Split T into two tournaments T1 and T2 on the same number of vertices.
2. Pi:= MergeHamPathTour(Ti), i = 1, 2.
3. P := MergePaths(P1, P2).
4. Return P.

Here MergePaths is a procedure which, given two disjoint paths P, P ′

in tournament T , merges these two into one path P ∗ such that V (P ∗) =
V (P) ∪ V (P ′). This can be done in the same way as one would merge two
sorted lists of numbers into one sorted list.

Procedure MergePaths(P, P ′)
Input: Paths P = x1x2 . . . xk and P ′ = y1y2 . . . yr.
Output: A path P ∗ such that V (P ∗) = V (P) ∪ V (P ′).

1. If P ′ is empty then P ∗:=P .
2. If P is empty then P ∗:= P ′.
3. If x1 dominates y1 then P ∗:=x1MergePaths(P − x1,P ′).
4. If y1 dominates x1 then P ∗:=y1MergePaths(P , P ′ − y1).
5. Return P ∗.

The classical analysis of the Mergesort algorithm (see e.g. [231]) shows
that the algorithm uses O(n log n) comparisons to sort n real numbers. Sim-
ilarly it follows from our description above that the algorithm MergeHam-
PathTour will find a Hamilton path in a tournament T with n vertices after
making O(n log n) queries about adjacencies of vertices in T . Note that to
implement the algorithm we do not need to construct the adjacency matrices
of each of the tournaments considered in the recursive calls. Indeed, all adja-
cencies can be checked using the adjacency matrix of the original tournament.
Hence, if we only count the number of times we need to check the direction of
an arc, then MergeHamPathTour is a faster algorithm than HamPathTour.

For more details on design and analysis of combinatorial algorithms, the
reader is directed to numerous books on the subject, e.g., to Aho, Hopcroft
and Ullman [11], Brassard and Bratley [180], Cormen, Leiserson, Rivest and
Stein [232] and Kleinberg and Tardos [599].

700 18. Algorithms and Their Complexity

18.2 NP-Complete and NP-Hard Problems

There are many interesting algorithmic problems concerning (di)graphs for
which no polynomial algorithm is known. Many of those problems (formulated
in their decision form) belong to the class NPC of so-called NP-complete
problems. For a detailed introduction to the class of NP-complete problems,
see the book by Garey and Johnson [393]. A problem is a decision problem
if it requires the answer ‘yes’ or ‘no’. By a problem we understand actually
a family of instances. For example, we will consider the Hamilton Cycle

Problem in a digraph: given a digraph, decide whether or not it has a Hamil-
ton cycle. Every digraph provides an instance of this problem. The so-called
Traveling Salesman Problem (TSP) is similar: given a weighted com-
plete digraph D and a real number B, decide whether D contains a Hamilton
cycle of weight at most B. An instance of the last problem consists of a com-
plete digraph and a specification of the weights of its arcs. For theoretical
and algorithmic results on TSP and its variations, see, e.g., an edited volume
[484].

A decision problem S belongs to the complexity class P if and only if there
exists a polynomial algorithm A which, given any instance of S, produces an
answer in the set {‘yes’,‘no’} such that the answer from A on input x is ‘yes’
if and only if x is a ‘yes’ instance for2 S. Since A is polynomial, it follows
that it produces its answer after at most p(|x|) steps, where |x| is the size of
the input x and p is a fixed polynomial (depending on S).

A decision problem belongs to the class NP (co-NP) if, for every ‘yes’
instance (‘no’ instance) of the problem, there exists a short ‘proof’, called a
certificate, of polynomial size (in n, m and log |cmax|) such that, using the
certificate, one can verify in polynomial time that the instance is indeed a
‘yes’ (‘no’) instance. The certificate depends on the instance of the problem,
but it must have the same structure for all instances of the problem. To
illustrate this definition, let us show that both the Hamilton cycle problem
and traveling salesman problem are in NP. Given a permutation π of the
vertices in a digraph D (π is the certificate for hamiltonicity of D), it is
easy to verify whether this permutation corresponds to a Hamilton cycle in
D (note that this certificate has the same structure for each instance of the
problem, namely, it is a permutation of the vertices). Indeed, assuming that
V (D) = [n], we simply have to check that π(i)π(i + 1) is an arc of D for
every i ∈ [n], where the vertex n + 1 is the same as the vertex 1. If we
also have weights on the arcs, then it is easy to verify that the weight of
the proposed Hamilton cycle is no more than B. Notice that the situation
here is not symmetric: it is unknown if the ‘complement’ of the Hamilton
cycle problem (given a digraph, check whether it has no Hamilton cycle) is
in NP. Indeed, it is difficult to imagine what kind of certificate will enable a
2 Thus a hypothetical polynomial algorithm for the Hamilton cycle problem must

produce the answer ‘yes’ precisely when the input digraph has a Hamilton cycle.

18.2 NP-Complete and NP-Hard Problems 701

polynomial algorithm to check that a digraph is not hamiltonian. Actually,
such a certificate would answer in the affirmative the well-known complexity
question: whether NP = co-NP (see e.g. [393, Theorem 7.2]). A positive
answer to this question seems to be unlikely with our current knowledge of
algorithms.

Given a pair of decision problems S, T , we say that S is polynomially
reducible to T (denoted S ≤P T) if there is a polynomial algorithm A that
transforms an instance x of S into an instance A(x) of T such that the second
instance has the same answer as the first one. That is, x is a ‘yes’ instance of
S if and only if A(x) is a ‘yes’ instance of T . Some polynomial reductions are
quite easy. For example, we can readily reduce the Hamilton cycle problem
to the traveling salesman problem: given a digraph D consider a copy of a
↔
Kn such that V (D) = V (

↔
Kn), and, for every arc e in

↔
Kn, its weight is 1 if

e ∈ A(D) and 2 otherwise. Let also B = n. Clearly, D is hamiltonian if and
only if with the prescribed weights

↔
Kn has a Hamilton cycle of weight not

exceeding B. Obviously, the above transformation can be carried out by a
polynomial algorithm.

A decision problem is NP-hard if all problems in NP can be polynomi-
ally reduced to this problem. If the problem is NP-hard and also belongs to
NP, then it is NP-complete. The class NPC consists of all NP-complete
problems. In order to show that a decision problem W is NP-hard, we must
show that every problem in NP can be polynomially reduced to W – a seem-
ingly impossible task. However, polynomial transformations are closed under
composition, that is, S ≤P T and T ≤P K implies that S ≤P K (see Exercise
18.4). Hence, in order to prove that W is NP-hard, it suffices to prove that
there is some NP-complete problem which is polynomially reducible to W
(see Exercise 18.6). Of course this only works if we already have established
that there is some problem that belongs to the class NPC of NP-complete
problems. This extremely important and non-trivial step was provided by
Cook in 1971 [228] (independently, a similar discovery was made by Levin
[640]).

Since there are a huge number of known NP-complete problems, the
task to prove that a given problem is NP-complete is sometimes not too
difficult. On the other hand, it is also highly non-trivial in many cases. We
will give a number of examples of NP-completeness and NP-hardness proofs
throughout this book. It is well-known that the Hamilton cycle problem is
NP-complete as shown by Karp in his classical paper [585]. It follows from the
above transformation that the traveling salesman problem is NP-complete
as well.

Quite often we will deal with optimization problems rather than deci-
sion problems. Since an optimization problem consists of finding an optimal
solution to a prescribed problem, such a problem very often has a decision
analogue. For example, in the usual formulation of the traveling salesman
problem the goal is to find a minimum weight Hamilton cycle in a weighted

702 18. Algorithms and Their Complexity

complete digraph. The decision analogue was stated above. If the decision
analogue of an optimization problem is NP-hard, then we will also say that
the optimization problem is NP-hard. So, the optimization version of the
traveling salesman problem is NP-hard. For a wealth of information on NP-
hard optimization problems and their approximability properties, see, e.g.,
the books [53] by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela
and Protasi and [884] by Vazirani.

From a complexity point of view, there is no significant difference between
a decision problem and its optimization analogue (if it exists). To illustrate
this statement, let us consider the problem of deciding whether a strong
digraph has a cycle of length at least k (here k is part of the input). The
optimization analogue is the problem of finding a cycle of maximum length
in a strong digraph. If we solve the optimization problem, we easily obtain a
solution to the decision problem: just check whether the length of the longest
cycle is at least k. On the other hand, using binary search one can find an
answer to the optimization problem by solving a number of decision problems.
In our example, we first check whether or not the digraph under consideration
has a cycle of length at least n/2. Then, solve the analogous problem with
n/4 (if D has no cycle of length at least n/2) or 3n/4 (if D has a cycle of
length at least n/2) instead of n/2, etc. So, we would need to solve O(log n)
decision problems, in order to obtain an answer to the optimization problem.

18.3 The Satisfiability Problem

In this subsection we deal with a problem called the Satisfiability Problem
or, briefly, SAT that is not a problem on digraphs, but it has applications to
many problems on graphs including several ones given in the book. SAT is a
classical NP-complete problem and contains subproblems 3-SAT and 2-SAT
defined later. Both subproblems are often used to establish computational
complexity of problems on graphs and other objects: While 3-SAT is NP-
complete and is very often used to prove that a certain problem is also NP-
complete, 2-SAT is polynomial time solvable and there are many examples
where 2-SAT is applied to show that a certain problem admits a polynomial
algorithm as well. In Chapter 17, we prove that 2-SAT is polynomial time
solvable, and in Chapter 11, we give examples of how 2-SAT can be used to
prove that a certain problem is polynomial time solvable.

A boolean variable x is a variable that can assume only two values 0
and 1. The sum of boolean variables x1 + x2 + . . . + xk is defined to be 1 if
at least one of the xi’s is 1 and 0 otherwise. The negation x of a boolean
variable x is the variable that assumes the value 1 − x. Hence x = x. Let X
be a set of boolean variables. For every x ∈ X there are two literals, over x,
namely, x itself and x. A clause C over a set of boolean variables X is a sum
of literals over the variables from X. The size of a clause is the number of
literals it contains. For example, if u, v, w are boolean variables with values

18.4 Fixed-Parameter Tractability and Intractability 703

u = 0, v = 0 and w = 1, then C = (u + v + w) is a clause of size 3, its value
is 1 and the literals in C are u, v and w. An assignment of values to the set
of variables X of a boolean expression is called a truth assignment. If the
variables are x1, . . . , xk, then we denote a truth assignment by t = (t1, . . . , tk).
Here it is understood that xi will be assigned the value ti for i ∈ [k].

The satisfiability problem, also called SAT, is the following problem.
Let X = {x1, . . . , xk} be a set of boolean variables and let C1, . . . , Cr be a
collection of clauses for which every literal is over X. Decide if there exists a
truth assignment t = (t1, . . . , tk) to the variables in X such that the value of
every clause will be 1. This is equivalent to asking whether or not the boolean
expression F = C1 ∗ . . . ∗Cp can take the value 1. Depending on whether this
is possible or not, we say that F is satisfiable or unsatisfiable. Here ‘∗’
stands for boolean multiplication, that is, 1∗1 = 1, 1∗0 = 0∗1 = 0∗0 = 0.
For a given truth assignment t = (t1, . . . , tk) and literal q we denote by q(t)
the value of q when we use the truth assignment t (i.e., if q = x3 and t3 = 1,
then q(t) = 1 − 1 = 0).

To illustrate the definitions, let X = {x1, x2, x3} and let C1 = (x1 + x3),
C2 = (x2 +x3), C3 = (x1 +x3) and C4 = (x2 +x3). Then it is not difficult to
check that F = C1 ∗ C2 ∗ C3 ∗ C4 is satisfiable and that taking x1 = 0, x2 =
1, x3 = 1 we obtain F = 1.

In this example every clause is of size 2, so the instance of SAT given
in the example is also an instance of 2-SAT: 2-SAT is SAT in which every
clause must be of size 2. If we require that every clause in SAT has size
exactly 3, we obtain 3-SAT. We have already mentioned that while 2-SAT is
polynomial time solvable, 3-SAT is NP-complete. For more details, see the
book by Garey and Johnson [393].

Consider an instance F of 2-SAT. It is interesting to note that if, instead
of asking whether F is satisfiable, we ask whether there exists some truth
assignment such that at least � clauses will get the value 1, then this problem,
which is called MAX-2-SAT, is NP-complete as shown by Garey, Johnson
and Stockmeyer [394] (here � is part of the input for the problem).

18.4 Fixed-Parameter Tractability and Intractability

Fixed-Parameter Algorithmics (FPA) is a relatively new approach for
dealing with intractable computational problems. In the framework of FPA
we try to introduce a parameter k, which is often a positive integer (but
may be a vector, graph or any other object for some problems) such that
the problem at hand can be solved in time O(f(k)nc), where n is the size
of the problem instance, c is a constant not dependent on n or k, and f(k)
is an arbitrary computable function not dependent on n. The ultimate goal
is to obtain f(k) and c such that for small or even moderate values of k
the problem under consideration can be completely solved in a reasonable
amount of time.

704 18. Algorithms and Their Complexity

As an example, consider the Vertex Cover problem (VC): given an
undirected graph G (with n vertices and m edges), find a minimum number of
vertices such that every edge is incident to at least one of these vertices. VC
with parameter k, (an upper bound on) the number of vertices in a vertex
cover, admits an algorithm of running time O(1.2738k + kn) obtained by
Chen, Kanj and Xia [204] that allows us to solve VC with k up to several
hundred. Without using FPA, we would be likely to end up with the obvious
algorithm of complexity O(mnk). This algorithm is far too slow even for small
values of k such as k = 10.

Parameterized problems that admit algorithms of complexity O(f(k)nc)
are called fixed-parameter tractable (FPT). Not all parameterized prob-
lems are FPT. Indeed, k-COL, the problem of checking whether a graph G
has a proper colouring with at most k colours, cannot be FPT as k-COL is
NP-complete for each fixed k ≥ 3. However, there are many parameterized
problems admitting an algorithm of complexity O(nf(k)), but very likely not
being FPT. A typical example is k-IS, the problem of checking whether a
graph G has an independent set with at least k vertices. k-IS is proved (see,
e.g., the book [274] by Downey and Fellows) to be in a special wide class
W[1] of parameterized problems and k-IS is among the hardest problems in
W[1], namely, k-IS is W[1]-complete. This means that every parameterized
problem in W[1] can be reduced to k-IS.

We do not define the class W[1] and the above-mentioned reduction as
we will not use them in this book (for these and other definitions and a large
number of results on FPA, see the monographs [274, 325, 727] by Downey
and Fellows, Flum and Grohe, and Niedermeier, respectively). Instead, we
would like to convey the following important message: we know that it is
very unlikely that P = NP, it is also highly unlikely that all parameter-
ized problems in W[1] are FPT. Thus, the fact that a certain problem is
W[1]-complete implies that it is highly unlikely that the problem is FPT.
To this end, it is sufficient to know that the parameterized problem under
consideration is W[1]-hard, i.e., every problem in W[1] can be reduced to the
problem.

We have a good understanding of many parameterized problems on undi-
rected graphs. However, research of FPA on digraphs is less advanced. How-
ever, recently several papers on the topic have been written: (i) Gutin and
Yeo [482] provided an overview of the topic, (ii) Gutin, Kloks, Lee and Yeo
[466] proved that the problem of checking whether a digraph has a kernel
with at most k vertices is FPT when restricted to planar digraphs and W[1]-
hard (in fact, W[2]-hard) for general digraphs, (iii) Chen, Liu, Lu, O’Sullivan
and Razgon [205] showed that the problem of checking whether a digraph
has a feedback vertex set of size k is FPT (see Subsection 15.3.4 for details),
(iv) Alon, Fomin, Gutin, Krivelevich and Saurabh [22] proved that the prob-
lem of verifying whether a digraph has an out-tree with at least k leaves
(i.e., vertices of out-degree zero) is FPT, (v) Bonsma and Dorn [173] (Gutin,

18.5 Exponential Algorithms 705

Razgon and Kim [472], respectively) showed that the problems of checking
whether a digraph has an out-branching with at least k leaves (with at least
k non-leaves) is FPT and (vi) Bang-Jensen and Yeo [122] proved that the
problem of verifying where a strong digraph of order n has a strong spanning
subdigraph of size at most 2(n− 1)− k is FPT. The results obtained in [22]
and [173] were improved by Bonsma and Dorn [174].

FPA provides us with some practical algorithms to solve NP-hard prob-
lems (e.g., in bioinformatics [727]), a significantly more refined view of the
class NPC (the classes W[1], W[2], etc.) and some theoretical basis of pre-
processing, a tool important for practical exact algorithms and heuristics.

18.5 Exponential Algorithms

In the VC problem given in Section 18.4, the parameter k ≤ n. Thus, the
complexity O(1.2738k + kn) of the algorithm by Chen, Kanj and Xia [204]
can be bounded by O(1.2738n) giving us an exponential-time algorithm for
VC, which is significantly faster than the obvious O(2n)-time algorithm. Of
course, if we could further reduce the time complexity to say O(1.1n), we
would have an algorithm that may well be more efficient than, say, an O(n5)-
time algorithm even for moderate values of n. This already indicates that
research into exponential-time algorithms is not a purely theoretical exercise.
The first interesting theoretical results are overviewed in the survey paper
[906] of Woeginger and there are several interesting further results, see, e.g.,
the papers [130] by Beigel and Eppstein and [238] by Dahllöf, Jonsson and
Wahlström.

In fact, the vast majority of exponential-time algorithms used in compu-
tational practice have never been analyzed theoretically with respect to their
running time. Nevertheless, such algorithms are often used to solve even
moderate-to-large instances of some NP-hard problems. One well-known ex-
ample is the symmetric TSP , where the Concorde TSP Solver (produced by
Applegate, Bixby, Chvátal and Cook [44]) can routinely solve TSP instances
of order from several hundred to a couple of thousands. The symmetric
(asymmetric) TSP is the problem to find a minimum weight Hamilton
cycle in a weighted complete undirected (directed) graph. Interestingly, cur-
rently the best way to solve the asymmetric TSP is to transform it to the
symmetric TSP, see the chapter [711] by Naddef.

Most practical exponential-time algorithms are based on the branch-
and-bound method (see, e.g., the book [742] by Papadimitriou and Stei-
glitz). In its simplest form, branch-and-bound is just an organized way of
taking a hard problem and splitting it into two or more smaller (and hence
easier) subproblems. If these subproblems are still too hard, we ’branch’ again
and further subdivide the problems. The process is repeated until each of the
subproblems can be easily solved. Branching is done in such a way that solving
each of the subproblems (and selecting the best answer found) is equivalent

706 18. Algorithms and Their Complexity

to solving the original problem. The process of branching can be viewed as a
tree.

Bounds are used to eliminate some branches of the tree. Consider a min-
imization problem such as TSP. If a lower bound of the cost of a solution
of one of the subproblems is higher than the currently best solution, then
the subproblem can be fathomed, i.e., no further branching from the sub-
problem is needed. Lower bounds are often easy to obtain. For example, for
TSP the minimum weight of a cycle factor is clearly a lower bound for the
minimum weight of a Hamilton cycle.

There are several variants of branch-and-bound such as branch-and-cut
[711], branch-and-price, branch-and-peg (see [419] by Goldengorin, Ghosh
and Sierksma), branch-and-win (see [744] by Pastor and Corominas) and
cut-and-solve (see [225] by Climer and Zhang). There are other methods to
construct practical and theoretical exponential algorithms. Perhaps the most
prominent of them is dynamic programming (also used to build polynomial-
time algorithms, see Section 3.3).

Computational experience shows that to construct a relatively fast expo-
nential algorithm one should study very well the underlying problem and,
possibly, some related problems as well. Among the best-known success sto-
ries in the area are TSP branch-and-cut algorithms obtained as a result of
extensive combinatorial studies, see e.g., the survey [711] by Naddef.

18.6 Approximation Algorithms

There are several situations when the use of exact optimization algorithms
does not seem to be a good idea. One is when the time is greatly limited
or the problem should be solved online. Another is when the data are not
exact or the objective function is not well-defined and, thus, we cannot get
an optimal solution even by exhaustive search. In such situations, we can use
approximation algorithms for finding a solution that is often not optimal, but
we have some performance guarantee in each case.

Let P be a combinatorial optimization problem, and let A be an approx-
imation algorithm for P . Let X(I) denote the set of all feasible solutions for
some instance I ∈ P and let |I| be the size of I. We denote the solution
obtained by A for an instance I of P by x(I). Furthermore let opt(I) denote
the optimal solution of I. When considering the weight of a solution y we
write w(y).

The theoretical performance of approximation algorithms is normally
measured by the (worst-case) performance ratio. Usually, upper or lower
bounds for the worst-case performance ratio are obtained, where the perfor-
mance ratio is defined as

max
I∈P :|I|=n

{
w(x(I))

w(opt(I))
,
w(opt(I))
w(x(I))

}
.

18.7 Heuristics and Metaheuristics 707

The performance ratio defined in this way has its advantage in the fact that
it is always at least 1 (for both minimization and maximization problems).

We normally require that an approximation algorithm has a polynomial
running time. Some approximation algorithms provide a good performance
guarantee. For example, the well-known Christofides algorithm [215] for the
symmetric TSP3 with triangle inequality (i.e., wij +wjk ≥ wik for every triple
i, j, k of vertices, where wij is the weight of an edge ij) has performance ratio
1.5. There are no approximation algorithms of constant performance ratio
for the (general) symmetric TSP. This is because the existence of such an
algorithm would imply that P=NP (see Exercise 18.17).

Sometimes, we can overcome the in-approximability, by using another
measure of performance guarantee. One such measure was defined by Zemel
[927] who provided some mathematical arguments to show that his measure
is better, in some sense, than the traditional performance ratio. Let A be
an approximate algorithm for TSP and I a problem instance. Then wmin(I),
wmax(I), wA(I) denote the weights, respectively, of an optimal Hamilton
cycle, a heaviest Hamilton cycle and a Hamilton cycle produced by algorithm
A for instance I. The Zemel measure of algorithm A, denoted ρz(A), is
the supremum of (wA(I)−wmin(I))/(wmax(I)−wmin(I)), taken over all TSP
instances I for which wmax(I) �= wmin(I). The following theorem was proved
by Hassin and Khuller [504].

Theorem 18.6.1 There is a polynomial-time approximate algorithm A for
TSP with ρz(A) ≤ 1

2 , and one for the symmetric TSP with ρz(A) ≤ 1
3 . ��

For many results on approximation algorithms and in-approximability, see
the book [53] by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela
and Protasi.

18.7 Heuristics and Metaheuristics

While approximation algorithms are of interest to practical applications, we
often cannot show any performance guarantee of some very useful practical
algorithms and, moreover, we know that several very useful practical algo-
rithms are of very poor performance guarantee in general case. It happens
that these algorithms perform quite well for the vast majority of interesting
instances. When we do not consider any performance guarantee, we speak of
heuristics. Metaheuristics are classes of heuristics based on a general idea
or approach.

Heuristics may not seem very interesting to the theoretician who wishes
to consider only methods that provably obtain the optimum or some approx-
imation guarantee for the solution. However, in practice the situation may
3 Recall that the symmetric TSP is the problem of finding a minimum weight

Hamilton cycle in a weighted complete undirected graph.

708 18. Algorithms and Their Complexity

well be entirely different: the engineer who has been asked to find a reason-
able solution to an instance of some optimization problem cannot really use
this attitude. What (s)he needs is a way to get a good solution and some
indication that this solution is much better than a random solution and can-
not be easily improved on (recall the discussion concerning the domination
number of algorithms for the TSP problem in Section 17.4).

There are many thousands papers on heuristics and metaheuristics as well
as several books treating the subject in great detail. In this section, we will
only consider a small number of ideas and give some references for further
reading. As an illustration, we will use the Feedback Arc Set (FAS) problem
as defined in Subsection 15.3.3: given a digraph D = (V, A), find an ordering
s = v1, v2, . . . , vn of V with minimum number of backward arcs, i.e., arcs of
the form vivj with i > j. We will consider some implemented FAS heuristics
and comment on their implementation and performance. We supplement our
comments on FAS heuristics with some comments on heuristics for TSP and
other optimization problems.

We start with a very simple method for finding an ordering which is locally
optimal. Let s = v1, v2, . . . , vn be an ordering of V . Now suppose that there
are indices i, j such that by deleting the vertex vj and reinserting it between
vi and4 vi+1 we obtain a smaller backward arc set. The effect on the value of
the backward arc set can be calculated easily without reconsidering all arcs
(Exercise 18.30).

To use a more general terminology, we call an ordering of V , a solution.
The value v(s) of a solution s is the number of backward arcs with respect
to s. We say that two solutions s, s′ are neighbours if we can obtain one
from the other by deleting one vertex and reinserting it somewhere else in
the ordering of the remaining vertices. The neighbourhood N(s) of s is the
set of solutions that are neighbours of s. Now we can describe a very simple
heuristic which we call 1-OPT for the FAS problem:

1-OPT
Input: A directed multigraph D = (V, A);
Output: An ordering of V (for which the backward arcs form a feedback arc
set in D).

1. Start with a solution s corresponding to a random permutation of V ;
2. If there exists a neighbour s′ of s such that v(s′) < v(s); then take s := s′

as the new current solution and repeat this step;
3. Output the locally optimal solution s and halt.

It is easy to show (Exercise 18.31) that the 1-OPT algorithm will halt
after finitely many steps with a solution that is locally optimal. Here locally
optimal means that the number of backward arcs cannot be decreased by
moving a single vertex.
4 We allow i = n and i = 0 with the obvious meaning of vi+1 and v0.

18.7 Heuristics and Metaheuristics 709

There are several other ways of defining interesting neighbourhoods of a
solution to the FAS problem. For example, one could consider all solutions
that can be obtained by interchanging the positions of two vertices in the
given ordering. Experimental evidence found by Olsen [732] suggests that
this last way of choosing the neighbourhood does not produce as high quality
solutions as the one above. Coleman and Wirth [226] came up with the same
conclusion for FAS on tournaments.

Although 1-OPT produces solutions that are in general much better than
a random choice, it only guarantees that the final solution found is locally
optimal. Furthermore, since a new solution is only taken if it improves the
objective function, the algorithm cannot escape a local minimum. This can
be remedied somewhat by restarting the algorithm several times from new
random orderings of V . Since the algorithm is usually very fast it is possi-
ble to restart it many times (from different random solutions) and then take
the best solution among the local optima which have been found. Computa-
tional experience with TSP and other optimization problems demonstrates
that chained local search is a better choice; in chained local search, each
iteration of local search starts from a somewhat perturbed local optimum
obtained in one of the previous iterations. It seems Baum [128] was the first
to introduce chained local search; the method proved to be very successful
for the symmetric TSP (see, e.g., Johnson and McGeoch [572]).

Another method to escape local minima would be to allow a neighbour s′

of the current solution s with v(s′) > v(s) to be chosen with some positive
probability. However, unless this probability decreases as the number of steps
increases the method may never converge towards a local minimum.

This problem is handled in the next method called simulated annealing.
The basic idea is to allow a neighbouring solution s′ with v(s′) > v(s) to be
chosen with a probability p which depends both on τ = v(s′)− v(s) and the
number of steps taken by the algorithm so far.

Below we describe the generic simulated annealing method for a minimiza-
tion problem over the set S of possible solutions and with objective function
f and neighbourhood structure N . Note that this is a metaheuristic, i.e., it
is a scheme that can be applied to many types of combinatorial optimization
problems rather than just one specific problem.

Generic Simulated Annealing

1. Select an initial solution s0;
2. Initialize control parameter t to a value t0;
3. Select a reduction method M for the control parameter t;
4. Repeat K(n) times:
5. Choose randomly a neighbour s ∈ N(s0);
6. Let η := f(s) − f(s0);
7. If η ≤ 0 then s0 := s
8. Else let s0 := s with probability exp (−η/t);
9. Let t := M(t);

710 18. Algorithms and Their Complexity

10. If the stopping condition is satisfied then return the best solution en-
countered and halt. Otherwise go to Step 4.

Although we did not write it above, it is understood that the algorithm
also keeps track of the best solution found so far (note that this may not
coincide with the current solution s0).

It is evident from the (loose) description above that any implementation
of the method involves making several choices about how to perform the
various steps. We discuss briefly the general idea below and refer to the survey
[275] by Dowsland and the experimental evaluation of simulated annealing by
Johnson, Aragon, McGeoch and Schevon described in [570] for more details. It
is important to note that finding a good set of values/methods to implement
the algorithm is by no means always a trivial task. Part of this process consists
of tuning the parameters t0, K(n), the method M for decreasing t and the
stopping criterion. This is done by performing a number of runs with all
but one parameter fixed and then selecting values that look promising. After
some stages of this process, one may arrive at a choice for the parameters
which does not seem easy to improve (based on the test data used). However,
experimental evidence reported by Hansen [497] and Olsen [732] indicate that
for a problem such as FAS it is not too hard to make a set of choices which
will make the algorithm perform quite well.

The initial solution can be chosen arbitrarily or it may be a local optima
found by 1-OPT, say. The control parameter t should be initialized so that in
the beginning there is a fair chance that the algorithm will accept a neighbour
with a higher f value than the current solution s0. Normally this is done
by starting from a random solution and then performing, say, 1000 steps
of the algorithm while keeping track of the number of neighbours who are
accepted as the new current solution5. The initial acceptance rate is the
fraction of accepted solutions over the total number of neighbours tested
(1000 above). Experiments reported in e.g. [570] suggest that acceptance
rates in the interval [0.3, 0.9] all work well (these experiments were not for
the FAS problem, but the conclusion also seems to hold for FAS [732]).

Experiments show that the actual reduction method used to reduce t after
every cycle of K(n) steps is not as important as the rate at which t is reduced.
This rate should be as slow as possible (that is, as time allows) [570]. In fact,
whereas in general no theoretical guarantee exists for the quality of a solution
found by local search heuristics such as 1-OPT, it can actually be shown (see
e.g. the book [51] by Arts and Korst) that under ideal conditions (such as
reducing the parameter t infinitely slowly, taking a very large number of steps
for each value of t and using a neighbour structure that allows one to reach
some optimal solution from an arbitrary solution) simulated annealing will
in fact find an optimal solution. Of course such a result is only of theoretical
interest, but the nice thing is that, since some of these results are based
5 This includes those that have a better (or equal) value than the current solution

as well as those that are worse, but are chosen in the probabilistic step 8.

18.8 Matroids 711

on Markov chains, the results suggest that the slower one reduces t and
the higher K(n) (as a function of the size of the neighbourhood), the better
results one should obtain. This thesis seems to be true for several applications
of simulated annealing (see e.g. [275, 570]).

It is common to use a simple geometric reduction method where we set
t := rt for some fixed number 0 < r < 1 which is close to one. Experiments
by Johnson et al. suggest that r = 0.95 is generally a good choice [570]. The
number of steps K(n) for each value assumed by t should be at least a linear
function in the size of the neighbourhood of an arbitrary solution. Finally it is
common to use as a stopping condition that there has been no improvement
in the current solution for some number N of moves. Another possibility
is to use the current acceptance rate (calculated similarly as the initial
acceptance rate by keeping track of the number of accepted moves over the
last, say, 1000 steps) as a measure and stop when this rate gets below, say 1
percent. One may also decide to stop when the control parameter becomes
smaller than a prescribed value ts. Note that in the last case, the number of
steps performed by the algorithm is always the same (for K(n) and M fixed).

Tabu search described in detail by Glover and Laguna [408] is a meta-
heuristic somewhat similar to simulated annealing, but based on an absolutely
different principle. Another popular metaheuristic is evolutionary method,
where many solutions are generated and used to produce new solutions (see
the book [291] by Eiben and Smith). For more information on heuristics and
metaheuristics, see, e.g., [291, 408, 410, 532, 572, 771, 772].

18.8 Matroids

In this section we give a short introduction to matroids. The motivation
for this is that algorithms for matroids are a useful tool for solving various
graph theoretical problems. For an example of this we refer to Section 9.2
and Exercise 18.27. Due to lack of space we will not be able to describe the
algorithms for 2-matroid intersection and matroid partition (those are the
ones used in the applications mentioned above). We refer the reader to the
books [229] by Cook, Cunningham, Pulleyblank and Schrijver and [766] by
Recski for detailed descriptions of these algorithms.

Definition 18.8.1 Let S be a finite set and let I be a collection of subsets
of S. Recall that M = (S, I) is an independence system if (I1) and (I2)
below hold (see Subsection 17.3.1). If also (I3) holds, M is called a matroid.

(I1) ∅ ∈ I.
(I2) If Y ∈ I and X ⊆ Y , then X ∈ I.
(I3) If X, Y ∈ I and |X| < |Y |, then there exists an element y ∈ Y −X such

that X ∪ {y} ∈ I.

712 18. Algorithms and Their Complexity

Let M = (S, I) be a matroid. A set X ⊆ S such that X ∈ I is called
independent. All other sets are dependent. A base of M is a maximal
independent set. A circuit is a minimal dependent set. Let B denote the set
of bases of M and C the set of circuits of M .

It follows directly from (I3) and the definition of a base that

all bases of a matroid have the same size. (18.1)

Below we list some important properties of the bases of a matroid: (B1)
follows from (I1), (B2) follows from (I3) and (B3) is left to the reader as
Exercise 18.18.

Proposition 18.8.2 Let M = (S, I) be a matroid. The set B of bases of M
satisfy the following:

(B1) B �= ∅.
(B2) For all B, B′ ∈ B we have |B| = |B′|.
(B3) Let B, B′ ∈ B. For every b ∈ B there exists an element b′ ∈ B′ such

that (B − b) ∪ {b′} ∈ B. ��

The other direction holds as well:

Proposition 18.8.3 Let S be a finite set and B a collection of subsets of
S which satisfies (B1)-(B3) above. Then there exists a matroid M = (S, I)
whose set of bases is precisely B. ��

If M = (S, I) is a matroid and X ⊆ S, then we say that a subset Y ⊆ X
is a maximal independent subset of X if Y ∈ I and Y ⊂ Z ⊆ X implies
Z �∈ I. Assertion (18.1) can be generalized as follows:

Proposition 18.8.4 Let M = (S, I) be a matroid and let X ⊆ S. All maxi-
mal independent subsets of X have the same size. ��

The following formula defines the rank function of a matroid:

r(X) = max{|Y | : Y ⊆ X and Y ∈ I}.

The rank of a matroid M = (S, I) is the number r(S), the size of a base
in M .

Examples of matroids:

(1) Let G = (V, E) be an undirected graph. Define M(G) as M(G) = (E, I),
where E′ ∈ I if and only if GE′ = (V, E′) has no cycle. Then M(G) is
a matroid (called the circuit matroid of G). To see this, it suffices to
check (I3), since (I1),(I2) trivially hold. Let X, Y be subsets of E such
that none of G〈X〉 and G〈Y 〉 has a cycle and |X| < |Y |. It is easy to
show that if Z is independent in M(G), then the number of connected

18.8 Matroids 713

components in G〈Z〉 is n − |Z|, where n is the number of vertices in
G. Thus |X| < |Y | implies that the number of connected components
of G〈X〉 is larger than that of G〈Y 〉. Hence Y contains an edge y such
that y joins two vertices which are in distinct components of G〈X〉. This
implies that G〈X ∪ {y}〉 is acyclic and hence X ∪ {y} ∈ I.
The bases of M(G) are the (sets of edges of) maximal forests of G and
a cycle of M(G) is a fundamental cycle of G with respect to a maximal
forest of G. The rank of M(G) is |V | minus the number of connected
components of G.

(2) Let S be a set on n elements, and define Un,k for k ≤ n as follows:
Un,k = (S, {X ⊆ S : |X| ≤ k}). This trivially gives a matroid called a
uniform matroid. If k = n, we obtain a very special case in which all
subsets are independent. This matroid is called the free matroid on n
elements.

(3) Let D = (V, A) be a digraph such that δ−(D) > 0 and define B as those
subsets A′ of A for which every vertex v ∈ V has in-degree precisely
one in D〈A′〉. We show that B satisfies (B1)-(B3) of Proposition 18.8.2
and hence, by Proposition 18.8.3, B forms the set of bases of a matroid
M−(D). Indeed, (B1) holds since δ−(D) > 0 and (B2) holds by the
definition of B. To see that (B3) is true consider sets A′, A′′ ∈ B and let
a′ ∈ A′. The arc a′ enters a vertex x and in A′′ there is exactly one arc
a′′ with head x. Now we see that (A′ − a′) ∪ {a′′} ∈ B.
Similarly, if δ+(D) > 0, then we may define a matroid M+(D) whose
bases are those subsets X of the arcs for which every vertex v ∈ V has
out-degree precisely one in D〈X〉. This follows from the argument above
by considering the converse of D.
The next result shows, in particular, that the rank function of a matroid

is submodular. This is one of the main reasons for the usefulness of matroids.

Proposition 18.8.5 The rank function of M = (S, I) satisfies the following:

(R1) 0 ≤ r(X) ≤ |X| for every X ∈ S.
(R2) X ⊆ Y implies r(X) ≤ r(Y).
(R3) For all X, Y ⊆ S: r(X) + r(Y) ≥ r(X ∩ Y) + r(X ∪ Y).

Proof: (R1) and (R2) follow from the definitions. To see that (R3) holds
consider two subsets X, Y of S. We may assume that X �= Y . Let A be a
maximal independent subset of X ∩ Y and let B be an extension of A to a
maximal independent subset of X ∪ Y . Now using (R2) we have

r(X) + r(Y) ≥ |B ∩X|+ |B ∩ Y | = |B|+ |A| = r(X ∪ Y) + r(X ∩ Y).
��

18.8.1 The Dual of a Matroid

The dual of a matroid M = (S, I) is the pair M∗ = (S, I∗), where I∗ =
{X ⊆ S : X ∩ B = ∅ for some base B of M}. In Exercise 18.19 the reader

714 18. Algorithms and Their Complexity

is asked to prove that M∗ is a matroid. Note that the bases of M∗ form
precisely the set B∗ = {S −B : B is a base of M}.

Proposition 18.8.6 For any matroid M we have

(a) (M∗)∗ = M .
(b) r∗(X) = |X|+ r(S −X)− r(S).

Proof: Exercise 18.20. ��
A circuit in M∗ is called a cutset or a cocircuit in M . It follows from

the definition of M∗ that a cocircuit of M is a minimal subset of S which
has a non-empty intersection with all bases of M .

18.8.2 The Greedy Algorithm for Matroids

Let M = (S, I) be a matroid. In Section 17.3, we described the greedy algo-
rithm GA for independence systems. The aim of this section is to prove that
GA always solves the (S, I, R0)-minimization problem (i.e., the problem of
finding a base of minimum weight) to optimality.

As in Section 17.3, for every X ∈ I we define ext(X) = {y ∈ S − X :
X ∪ {y} ∈ I}. Suppose that we are given a weight function w : S → R0 on
the elements of S. We let w(X) =

∑
x∈X w(x). The goal of the (S, I, R0)-

minimization problem is to find a base of M with minimum weight. An
optimal base is a base B such that w(B) ≤ w(B′) for every B′ ∈ B.

The greedy algorithm tries to construct a minimum weight base as
follows: it starts from an empty set X, and at every step it takes the current
set X and adds to it a minimum weight element e ∈ ext(X); the algorithm
stops when a base is built.

The following theorem was obtained by Rado [759].

Theorem 18.8.7 Applied to matroids the greedy algorithm always finds an
optimal base.

Proof: Let M = (S, I) be a matroid and let w be a weight function. Let
G be a base returned by the greedy algorithm and let B be another base.
Let G = {g1, g2, . . . , gr} and B = {b1, b2, . . . , br}, where w(gi) ≤ w(gi+1) and
w(bi) ≤ w(bi+1) for every i ∈ [r − 1]. Let Gj = {g1, g2, . . . , gj}. We may
assume that GA builds G starting from G0 = ∅ and forming first G1 then
G2, G3, etc.

To prove that w(G) ≤ w(B), we will prove that, in fact, w(gi) ≤ w(bi)
for each i ∈ [r]. For the definition of GA, the claim holds for i = 1. Suppose
that w(gi) ≤ w(bi) for each i ∈ [j], but w(gj+1) > w(bj+1).

Consider the set A = {s ∈ S : w(s) ≤ w(bj+1)}. Observe that Gj is a
maximal independent subset of A as otherwise there would be a ∈ ext(Gj)
with w(a) ≤ w(bj+1) < w(gj+1) and GA would append a instead of gj+1 to

18.8 Matroids 715

Gj . On the other hand, Bj+1 is an independent subset of A and |Bj+1| > |Gj |,
a contradiction with Proposition 18.8.4. ��

It is well-known that matroids are the only independence systems for
which the greedy algorithm always provides an optimal base, see Exercise
18.21.

18.8.3 Independence Oracles

What is a fast algorithm for matroids? How do we represent a matroid effi-
ciently? These are important questions. In particular, it should be clear that
in general it is infeasible to store information about a given matroid by a list
of its independent sets. For example, if M is the uniform matroid Un,k, we
would have to store all subsets of size at most k of [n]. On the other hand,
for Un,k it is very easy to decide whether a given subset of [n] is independent:
simply calculate its size and check whether this is at most k. This illustrates
that what is important is not having a list of all independent sets, but rather
to be able to determine whether a given subset X of the ground set S is
independent in M .

We shall assume that our matroids are always given in terms of the ground
set S and a subroutine OM which given X ⊆ S decides whether X is indepen-
dent in M or not. Such a subroutine OM is called an independence oracle
for M = (S, I). We say that a matroid algorithm A for a matroid M = (S, I)
with independence oracle OM is fast if the number of steps of A is polyno-
mial in |S| and any other inputs (such as a weight function), provided that
we consider each call to OM as taking constant time. With this assumption,
the greedy algorithm is a fast matroid algorithm.

18.8.4 Union of Matroids

Let Mi = (S, Ii), i ∈ [k], be matroids on the same ground set S. Define
∨k

i=1Mi = (S,∨k
i=1Ii) as follows. A set X ⊆ S is independent in ∨k

i=1Mi if
and only if X can be partitioned as X = X1 + X2 + · · ·+ Xk, where Xi ∈ Ii

for each i ∈ [k]. It is a non-trivial exercise (Exercise 18.23) to prove the
following:

Proposition 18.8.8 Let Mi = (S, Ii), i ∈ [k], be matroids on the same
ground set S. Then ∨k

i=1Mi is a matroid. ��

The Matroid Partition Problem: Let Mi = (S, Ii), i ∈ [k], be ma-
troids on the same ground set S and a set X ⊆ S. Do there exist subsets
X1, X2, . . . , Xk of S such that X =

∑k
i=1 Xi and Xi ∈ Ii for i ∈ [k]?

In Exercise 18.26 the goal is to show that the question of deciding whether
an undirected graph has k edge-disjoint spanning trees can be formulated as a
matroid partition problem. Hence the following theorem implies the existence

716 18. Algorithms and Their Complexity

of a polynomial algorithm for deciding whether an undirected graph has k
edge-disjoint spanning trees (see Exercise 18.27).

Theorem 18.8.9 The Matroid Partition Problem can be solved in polyno-
mial time, provided we are given polynomial time realizable independence or-
acles for each of the matroids Mi, i ∈ [k]. ��

We refer the reader to Recski’s book [766] for a description of a fast
algorithm for the Matroid Partition Problem. Note that if M = (S, I) is a
matroid and X is a subset of S, then M〈X〉 = (X, IX), where IX = {Y ∈
I : Y ⊆ X} is also a matroid (Exercise 18.24). Hence, the Matroid Partition
Problem is equivalent to the problem of deciding whether the ground set S
is independent in ∨k

i=1Mi. This is the problem solved in [766].

18.8.5 Intersection of Two Matroids

Another very useful topic on matroids is matroid intersection. By this we
do not mean that if M1, M2 are matroids on the same ground set S, then
M = (S, I1 ∩I2) is also a matroid. This is false as the reader can easily show
by an example (Exercise 18.28). Instead we are interested in the following:

Matroid Intersection Problem: Given matroids M1 = (S, I1) and M2 =
(S, I2), find a maximum cardinality subset T ⊆ S which is independent in
each of M1, M2.

We may assume that r1(S) = r2(S) as if t = r1(S) − r2(S) > 0, then we
can add t new elements to S and every independent set of M2. If we follow
this by appending to M2 every subset of the t elements, we get a new matroid
M2 such that r1(S) = r2(S).

The next result shows that the Matroid Intersection Problem and the
Matroid Partition Problem are closely related.

Theorem 18.8.10 Let M1 = (S, I1) and M2 = (S, I2) be matroids on the
same ground set S with r1(S) = r2(S) = r and let n = |S|. There is a
common base of M1, M2 if and only if M1 ∨M∗

2 = Un,n. ��

The following result is due to Edmonds [284].

Theorem 18.8.11 The Matroid Intersection Problem can be solved in poly-
nomial time, if polynomial time realizable independence oracles for M1, M2

are given. Furthermore, under the same assumptions, one can find in poly-
nomial time a maximum (or minimum) weight common independent subset
with respect to any given real-valued weight function w on S. ��

For a description of a polynomial algorithm for (weighted) matroid inter-
section see e.g. [229, 766]. Matroid intersection is a very useful tool for mod-
eling (and solving) many combinatorial optimization problems. For instance,

18.9 Exercises 717

the problem of finding a minimum weight cycle factor in an arc weighted
digraph can be formulated as a weighted two-matroid intersection problem.
Consider the intersection of the matroids M−(D), M+(D) which were defined
in the beginning of this section. There is a common base of these matroids
if and only if D has a cycle factor and furthermore, the minimum weight
of a common base equals the minimum weight of a cycle factor. Two more
examples are given in Section 9.2 and Exercise 18.29.

18.8.6 Intersections of Three or More Matroids

If we consider three or more matroids all on the same ground set and ask
for a common base of these, then this problem contains quite a few difficult
problems as special cases as we shall see below.

The K-matroid Intersection Problem: Given matroids Mi = (S, Ii),
i ∈ [k], on the same ground set. Does there exist a set X ⊆ S such that X is
a base of Mi for i = 1, 2, . . . , k?

Theorem 18.8.12 The k-matroid intersection problem is NP-complete for
each k ≥ 3.

Proof: It suffices to prove the theorem for k = 3 since the proof can easily
be extended to higher k by using several copies of the same matroid. We will
prove that the NP-complete problem of deciding the existence of a hamil-
tonian path which starts in a prescribed vertex u and ends in a prescribed
vertex v in a digraph (see Exercise 7.2) can be reduced to the 3-matroid
intersection problem in polynomial time.

Let D = (V, A) be a digraph with specified vertices u, v ∈ V . Define
Mi = (S, Ii), i = 1, 2, 3, as follows:

S = A; M1 = M(UG[D]);
X ∈ I2 if and only if there is no arc entering u in DX = (V, X) and every
other vertex has at most one arc entering it in DX .
Y ∈ I3 if and only if there is no arc leaving v in DY = (V, Y) and every
other vertex has at most one arc leaving it in DY .

We argued in Section 9.2 that M2 = (A, I2) is a matroid and, similarly,
M3 = (A, I3) is a matroid. It is easy to see that D has a Hamilton path P
from u to v if and only if M1, M2, M3 have a common base (the arcs of a
Hamilton path correspond to a common base of M1, M2, M3). ��

18.9 Exercises

18.1. Show how to extend the algorithm MergeHamPathTour (see Section 18.1)
so that it works for tournaments with an arbitrary number of vertices.

718 18. Algorithms and Their Complexity

18.2. Based on the proof of Theorem 1.5.1, give a polynomial algorithm to find
cycles of lengths 3, 4, . . . , n through a given vertex in a strong tournament T .
What is the complexity of your algorithm and how do you store information
about T and the cycles you find?

18.3. (+) Fast algorithm for Euler trails. Demonstrate how to implement the
algorithm in the proof of Theorem 1.7.2 as an O(n + m) algorithm. Hint:
use adjacency lists along with a suitable data structure to store the trail
constructed so far.

18.4. Suppose S, T ,K are decision problems such that S ≤P T and T ≤P K.
Prove that S ≤P K.

18.5. The independent set problem is as follows: Given a graph G = (V, E)
and natural number k, decide whether G has an independent set of size at
least k. Show that the independent set problem belongs to the complexity
class NP.

18.6. Suppose W is an NP-complete problem and that T is a decision problem
such that W ≤P T . Prove that T is NP-hard.

18.7. The acyclic subdigraph problem. Let S be the following decision prob-
lem. Given a digraph D and a natural number k, does D contain an induced
acyclic subdigraph on at least k vertices? Show that the independent set
problem polynomially reduces to S (the independent set problem is: given
a graph G and a number k, does G contain an independent set of size at
least k?).

18.8. Show that if a decision problem S belongs to the complexity class P, then
it also belongs to NP.

18.9. Show that P ⊆ NP ∩ co−NP.

18.10. Show that if there is some decision problem S which belongs to both of the
classes P and NPC, then P = NP.

18.11. (+) Reducing the Hamilton cycle problem to Satisfiability. Describe
a polynomial reduction from the Hamilton cycle problem to the Satisfiability
problem. Hint: model different attributes by different sets of clauses. For
example, you should use one family of clauses to ensure that every vertex
is the tail of at least one arc.

18.12. Describe a polynomial reduction from the problem of deciding whether an
undirected graph has a matching of size k to the problem MAX-2-SAT.

18.13. (+) A special case of the maximum independent set problem. The
maximum independent set problem is as follows. Given an undirected graph
G, find an independent set of maximum cardinality in G. The purpose of
this exercise is to show that a special case of the maximum independent
set problem is equivalent to the 2-satisfiability problem and hence can be
solved using any algorithm for 2-SAT.

(a) Let G = (V, E) be a graph on 2k vertices and suppose that G has a
perfect matching (i.e., a collection e1, . . . , ek of edges with no common
end-vertex). Construct an instance F of 2-SAT which is satisfiable if
and only if G has an independent set of k vertices. Hint: fix a perfect

18.9 Exercises 719

matching M of G and let each edge in M correspond to a variable and
its negation.

(b) Prove the converse, namely, if F is any instance of 2-satisfiability, then
there exists a graph G = (V, E) with a perfect matching such that G
has an independent set of size |V (G)|/2 if and only if F is satisfiable.

(c) Prove that it is NP-complete to decide if a given graph has an inde-
pendent set of size at least �, even if G has a perfect matching. Hint:
use a reduction from MAX-2-SAT.

18.14. Finding a 1-maximal cycle. A cycle C in a digraph D is 1-maximal if
D has no cycle C′ such that C − a is a subpath of C′ for some arc a of C.
Describe a polynomial algorithm for finding a 1-maximal cycle in a strong
digraph. What is the complexity of your algorithm? Hint: compare it with
the proof of Theorem 1.5.1.

18.15. Describe a linear time algorithm to check whether a given acyclic digraph
has more than one acyclic ordering. Hint: use the result of Exercise 2.1.

18.16. Transitive subtournaments in tournaments. Show that every tourna-
ment on 8 vertices contains a transitive tournament on 4 vertices (as an
induced subdigraph). Hint: start from a vertex of maximum out-degree.
Use the idea above to prove that every tournament on n vertices contains a
transitive tournament of size Ω(log n).

18.17. Let r > 1 be a real number. Prove that there is no polynomial-time ap-
proximation algorithm of performance ratio r for the symmetric TSP unless
P=NP.

18.18. Prove that (B3) holds for any matroid.

18.19. Prove that if M is a matroid, then the dual M∗ is also a matroid.

18.20. Prove Proposition 18.8.6.

18.21. (+) Prove the following result:

Theorem 18.9.1 Let M = (S, I) satisfy (I1),(I2). The greedy algorithm
GA finds an optimal base for M for every choice of non-negative real-valued
weight function w on S if and only if M is a matroid.

Hint: show that if A = {a1, . . . , ak} and B = {b1, . . . , bk, bk+1} both belong
to I, then one can choose a weight function w on the elements of S so that
GA will always choose A as the first k elements and unless there is a bi ∈ B
such that A ∪ {bi} ∈ I, GA will not reach an optimal base.

18.22. Describe an O(n + m) algorithm for deciding whether an undirected graph
on n vertices and m edges has a cycle.

18.23. (+) Prove Proposition 18.8.8. Hint: it suffices to prove the claim for two
matroids. Consider a counterexample X, Y to (I3) with X = X1 ∪X2 and
Y = Y1∪Y2, X1, Y1 ∈ I1, X2, Y2 ∈ I2 and |X1∩Y2|+ |X2∩Y1| is maximum.

18.24. Prove that M〈X〉 defined in Section 18.8 is a matroid.

18.25. Let D = (V, A) be a digraph with two vertices s, t such that λ(s, t) ≥ k for
some k. Define I by I = {X ⊆ A : λD−X(s, t) ≥ k}. Show by an example
that (A, I) is not always a matroid. (+) Can you characterize those digraphs
for which (A, I) is actually a matroid?

720 18. Algorithms and Their Complexity

18.26. (+) Testing for k edge-disjoint spanning trees in graphs. Show how
to formulate the problem of deciding whether an undirected graph G has k
edge-disjoint spanning trees as a matroid partition problem.

18.27. (+) An algorithm for deciding the existence of k edge-disjoint
spanning trees. Use the formulation in Exercise 18.26 to derive a polyno-
mial algorithm for deciding whether an undirected graph has k edge-disjoint
spanning trees. Remember to justify that the required oracles can be imple-
mented as polynomial algorithms.

18.28. Give an example of two matroids M1, M2 on the same ground set S for
which M = (S, I1 ∩ I2) is not a matroid.

18.29. (+) Formulating the maximum (weight) matching problem for a
bipartite graph as a (weighted) matroid intersection problem.
(a) Show how to formulate the question of deciding the existence of a

matching of size n in a bipartite graph G = (U, V, E) on 2n vertices
as a matroid intersection problem.

(b) Show how to solve the problem of finding a maximum weight matching
of size n in the graph G above if we are given non-negative weights on
the edges of G.

(c) Argue that one can in fact find a maximum matching in any bipartite
graph in polynomial time, using an algorithm for the matroid intersec-
tion problem.

18.30. Consider the 1-OPT method for the FAS problem. Describe how to de-
termine, in linear time, the number of backward arcs with respect to the
ordering we obtain from v1, v2, . . . , vn after removing one vertex from posi-
tion j and reinserting it between vi and vi+1.

18.31. Prove that the 1-OPT algorithm applied to the feedback arc set problem
will always halt. Then give a good bound on the number of steps taken by
the algorithm.

References

1. A. Abouelaoualim, K.Ch. Das, L. Faria, Y. Manoussakis, C.A. Martinhon,
and R. Saad. Paths and Trails in Edge-Colored Graphs. In Proc. LATIN’08,
volume 4957 of Lect. Notes Comput. Sci., pages 723–735. Springer-Verlag,
2008.

2. A. Abouelaoualim, K.Ch. Das, W. Fernandez de la Vega, M. Karpinski, Y.
Manoussakis, C.A. Martinhon, and R. Saad. Cycles and paths in edge-colored
graphs with given degrees. Manuscript, 2007.

3. A. Ádám. Problem, In ‘Theory Graphs Applications’, Proc. Coll. Smolenice,
pages 12–18, Czech. Acad. Sci. Publ., 1964.

4. A. Ádám. Bemerkungen zum graphentheoretischen Satze von I. Fidrich. Acta
Math. Acad. Sci. Hung., 16:9–11, 1965.

5. A. Ádám. On some cyclic connectivity properties of directed graphs. Acta
Cybernet., 14:1–12, 1999.

6. L. Addario-Berry, F. Havet, and S. Thomassé. Paths with two blocks in n-
chromatic digraphs. J. Combin. Theory Ser. B, 97:620–626, 2007.

7. R.L. Adler, L.W. Goodwyn, and B. Weiss. Equivalence of topological Markov
shifts. Israel J. Math., 27:48–63, 1977.

8. R. Aharoni and R. Holzman. Fractional kernels in digraphs. J. Combin. Theory
Ser. B, 73(1):1–6, 1998.

9. R. Aharoni and C. Thomassen. Infinite, highly connected digraphs with no
two arc-disjoint spanning trees. J. Graph Theory, 13(1):71–74, 1989.

10. A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed
graph. SIAM J. Comput., 1(2):131–137, 1972.

11. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of com-
puter algorithms. Addison-Wesley, Reading, Mass., 1975.

12. A.V. Aho, R. Sethi, and J.D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, Mass., 1986.

13. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows. Prentice Hall,
Englewood Cliffs, NJ, 1993.

14. M. Aigner and G. Ziegler. Proofs from the book. Springer-Verlag, Berlin, 1998.
15. N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:

ranking and clustering. In Proc. STOC’05: the 37th Annual ACM Symp. on
Theory of Computing, pages 684–693. ACM Press, 2005.

16. A. Ainouche. An improvement of Fraisse’s sufficient condition for hamiltonian
graphs. J. Graph Theory, 16:529–543, 1992.

17. N. Alon. Disjoint directed cycles. J. Combin. Theory Ser. B, 68(2):167–178,
1996.

18. N. Alon. Ranking tournaments. SIAM J. Discrete Math., 20:137–142, 2006.
19. N. Alon. Splitting digraphs. Combin. Probab. Comput., 15:933–937, 2006.
20. N. Alon, B. Bollobàs, A. Gyàrfàs, J. Lehel, and A. Scott. Maximum directed

cuts in acyclic digraphs. J. Graph Theory, 55:1–13, 2007.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1,
© Springer-Verlag London Limited 2010

721

http://dx.doi.org/10.1007/978-1-84800-998-1

722 References

21. N. Alon, F.V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Better algo-
rithms and bounds for directed maximum leaf problems. In Proc. Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2007, vol-
ume 4855 of Lect. Notes Comput. Sci., pages 316–327. Springer-Verlag, 2007.

22. N. Alon, F.V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Parameter-
ized Algorithms for Directed Maximum Leaf Problems. In Proc. ICALP’07:
34th Int. Colloquium on Automata, Languages and Programming, volume 4596
of Lect. Notes Comput. Sci., pages 352–362. Springer-Verlag, 2007.

23. N. Alon, F.V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning
directed trees with many leaves. Preprint arXiv:0803.0701, March 2008.

24. N. Alon and G. Gutin. Properly colored Hamilton cycles in edge colored com-
plete graphs. Random Struct. Algor., 11:179–186, 1997.

25. N. Alon, G. Gutin, and M. Krivelevich. Algorithms with large domination
ratio. J. Algor., 50(1):118–131, 2004.

26. N. Alon and N. Linial. Cycles of length 0 modulo k in directed graphs. J.
Combin. Theory Ser. B, 47(1):114–119, 1989.

27. N. Alon, C. McDiarmid, and M. Molloy. Edge-disjoint cycles in regular di-
rected graphs. J. Graph Theory, 22(3):231–237, 1996.

28. N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, New
York, 1992. With an appendix by Paul Erdős.

29. N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, New
York, 2nd edition, 2000.

30. N. Alon and M. Tarsi. Colourings and orientations of graphs. Combinatorica,
12:125–134, 1992.

31. N. Alon, R. Yuster, and U. Zwick. Color-coding: a new method for finding sim-
ple paths, cycles and other small subgraphs within large graphs, In Proc. 26th
Annual ACM Symp. Theory Computing, pages 326–335, Montreal, Canada,
1994, ACM Press.

32. N. Alon, R. Yuster, and U. Zwick. Color-coding. J. Assoc. Comput. Mach.,
42:844–856, 1995.

33. N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17:209–223, 1997.

34. B. Alspach. Cycles of each length in regular tournaments. Can. Math. Bull.,
10:283–285, 1967.

35. B. Alspach. On point-symmetric tournaments. Can. Math. Bull., 13:317–323,
1970.

36. B. Alspach, J.-C. Bermond, and D. Sotteau. Decomposition into cycles. I.
Hamilton decompositions. In Cycles and rays (Montreal, PQ, 1987), pages
9–18. Kluwer, Dordrecht, 1990.

37. B. Alspach and M. Rosenfeld. Realization of certain generalized paths in tour-
naments. Discrete Math., 34:199–202, 1981.

38. B. Alspach and C. Tabib. A note on the number of 4-circuits in a tournament.
In Theory and practice of combinatorics, volume 60 of North-Holland Math.
Stud., pages 13–19. North-Holland, Amsterdam, 1982.

39. H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardi-
nality matching in a bipartite graph in time O(n1.5

p

m/ log n). Inf. Process.
Lett., 37(4):237–240, 1991.

40. D. Amar and A. Raspaud. Covering the vertices of a digraph by cycles of
prescribed length. Discrete Math., 87:111–118, 1991.

41. A. Andersson. Sublogarithmic Searching without Multiplications. In Proc.
36th Symposium on Foundations of Computer Science, pages 655–663. IEEE
Computer Society Press, 1995.

http://arxiv.org/abs/0803.0701

References 723

42. A. Apartsin, E. Ferapontova, and V. Gurvich. A circular graph - counterex-
ample to the Duchet kernel conjecture. Discrete Math., 178:229–231, 1998.

43. K. Appel and W. Haken. Every planar map is four colorable. Bull. Amer.
Math. Soc., 82(5):711–712, 1976.

44. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the Dantzig-
Fulkerson-Johnson algorithm for large salesman problems. Math. Program.
Ser. B, 97(1-2):91–153, 2003.

45. H. Ariyoshi. Feedback arc sets of directed star polygons, In D.E. Kirk, edi-
tor, IEEE Conf. Record of the 14th Asilomar Conf. on Circuits, Systems and
Computers, pages 55–59, IEEE Computer Soc., New York, 1981.

46. E. M. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete
Appl. Math., 116(3):271–278, 2002.

47. E. M. Arkin, R. Hassin, and S. Shahar. Increasing digraph arc-connectivity by
arc addition, reversal and complement. Discrete Appl. Math., 122(1-3):13–22,
2002.

48. E.M. Arkin and C.H. Papadimitriou. On negative cycles in mixed graphs.
Oper. Res. Lett., 4:113–116, 1985.

49. E.M. Arkin, C.H. Papadimitriou, and M. Yannakakis. Modularity of cycles
and paths in graphs. J. Assoc. Comput. Mach., 31:255–274, 1991.

50. S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the as-
signment problem with applications to dense graph arrangement problems.
In Proc. 37th Annual Symposium on Foundations of Computer Science, pages
24–33. IEEE Computer Society Press, 1996.

51. E.H.L. Arts and J.H.M. Korst. Simulated Annealing and Boltzmann Machines.
Wiley, Chicester, 1989.

52. A.A. Assad. Multicommodity network flows – A survey. Networks, 8:37–91,
1978.

53. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation. Springer-Verlag, Berlin,
1999.

54. J. N. Ayoub and I.T. Frisch. Optimally invulnerable directed communication
networks. IEEE Trans. Commun. Technol., 18:484–489, 1970.

55. L. Baffi and R. Petreschi. Parallel maximal matching on minimal vertex series
parallel digraphs. In Algorithms, concurrency and knowledge (Pathumthani,
1995), pages 34–47. Springer-Verlag, 1995.

56. A. Bagchi, A. Bhargava, and T. Suel. Approximate maximum weight branch-
ings. Inf. Process. Lett., 99(2):54–58, 2006.

57. R.C. Baker, G. Harman, and J. Pintz. The difference between consecutive
primes, II. Proc. London Math. Soc., 83:532–562, 2001.

58. E. Balas and M.J. Saltzman. An algorithm for the three-index assignment
problem. Oper. Res., 39:150–161, 1991.

59. Y. Balcer and A.F. Veinott. Computing a graph’s period quadratically by
node condensation. Discrete Math., 4:295–303, 1973.

60. M. Balinski and G. Ratier. On stable marriages and graphs, and strategy and
polytopes. SIAM Rev., 39(4):575–604, 1997.

61. M. Balinski and G. Ratier. Graphs and marriages. Amer. Math. Mon.,
105(5):430–445, 1998.

62. P. Balister, S. Gerke, and G. Gutin. Convex sets in acyclic digraphs. Preprint
arXiv:0712.2678v1, December 2007.

63. P. Balister, S. Gerke, G. Gutin, A. Johnstone, J. Reddington, E. Scott, A.
Soleimanfallah, and A. Yeo. Algorithms for Generating Convex Sets in Acyclic
Digraphs. J. Discrete Algorithms, to appear:10 pp., 2008.

http://arxiv.org/abs/0712.2678v1

724 References

64. E. Bampis, P. Hell, Y. Manoussakis, and M. Rosenfeld. Finding an antidi-
rected hamiltonian path starting with a forward arc from a given vertex in
a tournament. In Proc. 8th Franco-Japanese and 4th Franco-Chinese Con-
ference on Combinatorics and Computer Science, volume 1120 of Lect. Notes
Comput. Sci., pages 67–73. Springer, 1995.

65. J. Bang-Jensen. On the 2-linkage problem for semicomplete digraphs. In
Graph theory in memory of G. A. Dirac (Sandbjerg, 1985), volume 41 of Ann.
Discrete Math., pages 23–37. North-Holland, 1989.

66. J. Bang-Jensen. Locally semicomplete digraphs: a generalization of tourna-
ments. J. Graph Theory, 14(3):371–390, 1990.

67. J. Bang-Jensen. A note on a special case of the 2-path problem for semi-
complete digraphs. In Graph theory, combinatorics, and applications, Vol. 1
(Kalamazoo, MI, 1988), pages 77–86. Wiley, 1991.

68. J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and re-
lated path problems. J. Combin. Theory Ser. B, 51(1):1–23, 1991.

69. J. Bang-Jensen. On the structure of locally semicomplete digraphs. Discrete
Math., 100(1-3):243–265, 1992.

70. J. Bang-Jensen. Arc-local tournament digraphs: a generalization of tourna-
ments and bipartite tournaments, Technical report 2, Department of Mathe-
matics and Computer Science, Odense University, Denmark, 1993.

71. J. Bang-Jensen. A reformulation of Huang’s structure theorem for local tour-
naments with some consequences, Technical report 13, Department of Math-
ematics and Computer Science, Odense University, Denmark, 1994.

72. J. Bang-Jensen. Digraphs with the path-merging property. J. Graph Theory,
20(2):255–265, 1995.

73. J. Bang-Jensen. Disjoint Paths with Prescribed Ends and Cycles through
Given Arcs in Locally Semicomplete Digraphs and Quasi-Transitive Digraphs,
Technical Report 22, Department of Mathematics and Computer Science,
Odense University, Denmark, 1996.

74. J. Bang-Jensen. Linkages in locally semicomplete digraphs and quasi-
transitive digraphs. Discrete Math., 196(1-3):13–27, 1999.

75. J. Bang-Jensen. The structure of strong arc-locally semicomplete digraphs.
Discrete Math., 283(1-3):1–6, 2004.

76. J. Bang-Jensen. Problems and conjectures concerning connectivity, paths,
trees and cycles in tournament-like digraphs. Discrete Math., to appear.

77. J. Bang-Jensen and S. Brandt. Expansion and hamiltonicity in digraphs. Sub-
mitted.

78. J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local
edge-connectivity in mixed graphs. SIAM J. Discrete Math., 8:155–178, 1995.

79. J. Bang-Jensen and Y. Guo. A note on vertex pancyclic oriented graphs. J.
Graph Theory, 31:313–318, 1999.

80. J. Bang-Jensen, Y. Guo, G. Gutin, and L. Volkmann. A classification of locally
semicomplete digraphs. Discrete Math., 167/168:101–114, 1997. 15th British
Combinatorial Conference (Stirling, 1995).

81. J. Bang-Jensen, Y. Guo, and L. Volkmann. Weakly Hamiltonian-connected
locally semicomplete digraphs. J. Graph Theory, 21(2):163–172, 1996.

82. J. Bang-Jensen, Y. Guo, and A. Yeo. A new sufficient condition for a digraph
to be Hamiltonian. Discrete Appl. Math., 95:61–72, 1999.

83. J. Bang-Jensen, Y. Guo, and A. Yeo. Complementary cycles containing pre-
scribed vertices in tournaments. Discrete Math., 214:77–87, 2000.

84. J. Bang-Jensen and G. Gutin. Paths, trees and cycles in tournaments. Congr.
Numer., 115:131–170, 1996. Surveys in graph theory (San Francisco, 1995).

References 725

85. J. Bang-Jensen and G. Gutin. Alternating paths and cycles in edge-coloured
multigraphs: a survey. Discrete Math., 165-166:39–60, 1997.

86. J. Bang-Jensen and G. Gutin. Paths and cycles in extended and decomposable
digraphs. Discrete Math., 164(1-3):5–19, 1997. The Second Krakow Conference
on Graph Theory (Zgorzelisko, 1994).

87. J. Bang-Jensen and G. Gutin. Vertex heaviest paths and cycles in quasi-
transitive digraphs. Discrete Math., 163(1-3):217–223, 1997.

88. J. Bang-Jensen and G. Gutin. Alternating cycles and trails in 2-edge-coloured
complete multigraphs. Discrete Math., 188:61–72, 1998.

89. J. Bang-Jensen and G. Gutin. Generalizations of tournaments: A survey. J.
Graph Theory, 28:171–202, 1998.

90. J. Bang-Jensen and G. Gutin. On the complexity of hamiltonian path and
cycle problems in certain classes of digraphs. Discrete Appl. Math., 95:41–60,
1999.

91. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer-Verlag, London, 2000.

92. J. Bang-Jensen, G. Gutin, and J. Huang. Weakly Hamiltonian-connected or-
dinary multipartite tournaments. Discrete Math., 138(1-3):63–74, 1995. 14th
British Combinatorial Conference (Keele, 1993).

93. J. Bang-Jensen, G. Gutin, and J. Huang. A sufficient condition for a semicom-
plete multipartite digraph to be Hamiltonian. Discrete Math., 161(1-3):1–12,
1996.

94. J. Bang-Jensen, G. Gutin, and H. Li. Sufficient conditions for a digraph to be
Hamiltonian. J. Graph Theory, 22(2):181–187, 1996.

95. J. Bang-Jensen, G. Gutin, and A. Yeo. On k-strong and k-cyclic digraphs.
Discrete Math., 162(1-3):1–11, 1996.

96. J. Bang-Jensen, G. Gutin, and A. Yeo. Hamiltonian cycles avoiding prescribed
arcs in tournaments. Combin. Probab. Comput., 6(3):255–261, 1997.

97. J. Bang-Jensen, G. Gutin, and A. Yeo. A polynomial algorithm for the Hamil-
tonian cycle problem in semicomplete multipartite digraphs. J. Graph Theory,
29:111–132, 1998.

98. J. Bang-Jensen, G. Gutin, and A. Yeo. Steiner type problems for digraphs
that are locally semicomplete or extended semicomplete. J. Graph Theory,
44(3):193–207, 2003.

99. J. Bang-Jensen, G. Gutin, and A. Yeo. When the greedy algorithm fails. Dis-
crete Optim., 1:121–127, 2004.

100. J. Bang-Jensen, G. Gutin, and A. Yeo. Finding a cheapest cycle in a quasi-
transitive digraph with real-valued vertex costs. Discrete Optim., 3:86–94,
2006.

101. J. Bang-Jensen and P. Hell. Fast algorithms for finding Hamiltonian paths and
cycles in in-tournament digraphs. Discrete Appl. Math., 41(1):75–79, 1993.

102. J. Bang-Jensen, P. Hell, and J. Huang. Optimal recognition of local tourna-
ments. Congr. Numer., 100:141–146, 1994.

103. J. Bang-Jensen and J. Huang. Quasi-transitive digraphs. J. Graph Theory,
20(2):141–161, 1995.

104. J. Bang-Jensen and J. Huang. Kings in quasi-transitive digraphs. Discrete
Math., 185(1-3):19–27, 1998.

105. J. Bang-Jensen, J. Huang, and E. Prisner. In-tournament digraphs. J. Combin.
Theory Ser. B, 59(2):267–287, 1993.

106. J. Bang-Jensen, J. Huang, and A. Yeo. Strongly connected spanning sub-
graphs with the minimum number of arcs in quasi-transitive digraphs. SIAM
J. Discrete Math., 16:335–343, 2003.

726 References

107. J. Bang-Jensen, J. Huang, and A. Yeo. Spanning k-arc-strong subdigraphs
with few arcs in k-arc-strong tournaments. J. Graph Theory, 46(4):265–284,
2004.

108. J. Bang-Jensen and T. Jordán. Spanning 2-strong subtournaments in 3-strong
semicomplete digraphs. Unpublished manuscript, November 1995. Depart-
ment of Mathematics and Computer Science, Odense University, Denmark.

109. J. Bang-Jensen and T. Jordán. Adding and reversing arcs in semicomplete
digraphs. Combin. Probab. Comput., 7(1):17–25, 1998.

110. J. Bang-Jensen and Y. Manoussakis. Weakly Hamiltonian-connected vertices
in bipartite tournaments. J. Combin. Theory Ser. B, 63(2):261–280, 1995.

111. J. Bang-Jensen, Y. Manoussakis, and C. Thomassen. A polynomial algo-
rithm for Hamiltonian-connectedness in semicomplete digraphs. J. Algor.,
13(1):114–127, 1992.

112. J. Bang-Jensen and M. H. Nielsen. Finding complementary cycles in locally
semicomplete digraphs. Discrete Appl. Math., 146(3):245–256, 2005.

113. J. Bang-Jensen and M.H. Nielsen. Minimum cycle factors in quasi-transitive
digraphs. Discrete Optim., 5:121–137, 2008.

114. J. Bang-Jensen, M.H. Nielsen, and A. Yeo. Longest path partitions in gener-
alizations of tournaments. Discrete Math., 306(16):1830–1839, 2006.

115. J Bang-Jensen and S. Poljak. Eulerian trails through a set of terminals in
specific, unique and all orders. Contemp. Math., 147:247–258, 1993.

116. J. Bang-Jensen and S. Thomassé. Highly connected hypergraphs containing no
two edge-disjoint spanning connected subhypergraphs. Discrete Appl. Math.,
131(2):555–559, 2003.

117. J. Bang-Jensen, S. Thomassé, and A. Yeo. Small degree out-branchings. J.
Graph Theory, 42(4):297–307, 2003.

118. J. Bang-Jensen and C. Thomassen. A polynomial algorithm for the 2-path
problem for semicomplete digraphs. SIAM J. Discrete Math., 5:366–376, 1992.

119. J. Bang-Jensen and A. Yeo. The minimum spanning strong subdigraph prob-
lem for extended semicomplete digraphs and semicomplete bipartite digraphs.
J. Algor., 41(1):1–19, 2001.

120. J. Bang-Jensen and A. Yeo. Decomposing k-arc-strong tournaments into
strong spanning subdigraphs. Combinatorica, 24(3):331–349, 2004.

121. J. Bang-Jensen and A. Yeo. Making a tournament k-arc-strong by revers-
ing or deorienting arcs. Discrete Appl. Math., 136(2-3):161–171, 2004. The
1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization
(CTW 2001).

122. J. Bang-Jensen and A. Yeo. The minimum spanning subdigraph problem is
fixed parameter tractable. Discrete Appl. Math., to appear.

123. M. Bankfalvi and Zs. Bankfalvi. Alternating hamiltonian circuit in two-
coloured complete graphs. In Proc. Colloq. Tihany 1968, pages 11–18. Aca-
demic Press, 1968.

124. M. Bárász, J. Becker, and A. Frank. An algorithm for source location in di-
rected graphs. Oper. Res. Lett., 33:221–230, 2005.

125. J.-P. Barthélémy, O. Hudry, G. Isaak, F.S. Roberts, and B. Tesman. The
reversing number of a digraph. Discrete Appl. Math., 60(1-3):39–76, 1995.
ARIDAM VI and VII (New Brunswick, NJ, 1991/1992).

126. E.T. Baskoro, M. Miller, J. Plesńık, and S. Znám. Digraphs of degree 3 and
order close to the Moore bound. J. Graph Theory, 20:339–349, 1995.

127. G. Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing. Prentice
Hall, Englewood Cliffs, NJ, 1999.

128. E.B. Baum Iterated descent: A better algorithm for local search in combina-
torial optimization problems, 1986. Unpublished manuscript.

References 727

129. J. Beck. On 3-chromatic hypergraphs. Discrete Math., 24(2):127–137, 1978.
130. R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). J. Algor., 54(2):168–

204, 2005.
131. L.W. Beineke and C.H.C. Little. Cycles in bipartite tournaments. J. Combin.

Theory Ser. B, 32(2):140–145, 1982.
132. L.W. Beineke and M.D. Plummer. On the 1-factors of a nonseparable graph.

J. Combin. Theory Ser. B, 2:285–289, 1967.
133. L.W. Beineke and C.M. Zamfirescu. Connection digraphs and second order

line graphs. Discrete Math., 39:237–254, 1982.
134. R.E. Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.
135. D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovich. Transformations

of Generalized ATSP into ATSP: experimental and theoretical study. Oper.
Res. Lett., 31:357–365, 2003.

136. A. Benhocine and A.P. Wojda. On the existence of specified cycles in a tour-
nament. J. Graph Theory, 7:469–473, 1983.

137. A. Benkouar, Y. Manoussakis, V. Paschos, and R. Saad. On the Complexity of
Some Hamiltonian and Eulerian Problems in Edge-Colored Complete Graphs.
In Proc. the 2nd International Symposium on Algorithms, volume 557 of Lect.
Notes Comput. Sci., pages 190–198. Springer-Verlag, 1991.

138. M.D. Bennett. Nucleotypic basis of the spacial ordering of chromosomes in
eucariotes and the implications of the order for genome and phenotypic vari-
ation. In Genome Evolution, pages 239–261. Academic Press, London, 1982.

139. D. Berend, S. Skiena, and Y. Twitto. Combinatorial dominance guarantees
for heuristic algorithms, In Proc. International Conference on Analysis of Al-
gorithms, 2007.

140. A. R. Berg, B. Jackson, and T. Jordán. Edge splitting and connectivity aug-
mentation in directed hypergraphs. Discrete Math., 273(1-3):71–84, 2003. Eu-
roComb’01 (Barcelona).

141. A. R. Berg and T. Jordán. Minimally k-edge-connected directed graphs of
maximal size. Graphs Combin., 21(1):39–50, 2005.

142. A. R. Berg and T. Jordán. Two-connected orientations of Eulerian graphs. J.
Graph Theory, 52(3):230–242, 2006.

143. C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 2nd edition,
1976.

144. C. Berge. Graphs. North-Holland, Amsterdam, 1985. Second revised edition
of part 1 of the 1973 English version.

145. C. Berge and P. Duchet. Recent problems and results about kernels in directed
graphs. Discrete Math., 86(1-3):27–31, 1990.

146. C. Berge and A.R. Rao. A combinatorial problem in logic. Discrete Math.,
17:23–26, 1977.

147. K.A. Berman and X. Liu. Cycles through large degree vertices in digraphs:
a generalization of Meyniel’s theorem. J. Combin. Theory Ser. B, 74:20–27,
1998.

148. J.-C. Bermond, A. Germa, M.-C. Heydemann, and D. Sotteau. Girth in di-
graphs. J. Graph Theory, 4(3):337–341, 1980.

149. J.-C. Bermond and P. Hell. On even factorizations and the chromatic index
of the Kautz and de Bruijn digraphs. J. Graph Theory, 17:647–655, 1993.

150. J.-C. Bermond, X. Munos, and A. Marchetti-Spaccamela. A Broadcasting
Protocol in Line Digraphs. J. Parallel Distributed Comput., 61(8):1013–1032,
2001.

151. J.-C. Bermond and C. Peyrat. De Bruijn and Kautz networks: A competi-
tor for the hypercube? In F. André and J.P. Verjus, editors, Hypercube and
distributed computers, pages 279–493. Elsevier, North-Holland, 1989.

728 References

152. J.-C. Bermond and C. Thomassen. Cycles in digraphs—a survey. J. Graph
Theory, 5(1):1–43, 1981.

153. P. Bertolazzi, R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis. How
to draw a series-parallel digraph. Int. J. Comput. Geom. Appl., 4(4):385–402,
1994.

154. D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and parity
games. In STACS 2006, Proc. 23rd Symposium on Theoretical Aspects of
Computer Science, volume 3884 of Lect. Notes Comput. Sci., pages 524–436.
Springer-Verlag, 2006.

155. S. Bessy. Stabilité et décomposition en circuits d’un digraphe, Phd thesis, Uni-
versité Lyon 1, December 2003.

156. S. Bessy. Paths partition with prescribed beginnings in digraphs: A Chvátal
Erdős condition approach. Discrete Math., 2007.

157. S. Bessy and S. Thomassé. Every strong digraph has a spanning strong sub-
graph with at most n+2α−2 arcs. J. Combin. Theory Ser. B, 87(2):289–299,
2003.

158. S. Bessy and S. Thomassé. Spanning a digraph by α(D) circuits: a proof of
Gallai’s conjecture. Combinatorica, 27:659–667, 2007.

159. W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebö, and M. Tarsi. Flows, view
obstructions, and the lonely runner. J. Combin. Theory Ser. B, 72(1):1–9,
1998.

160. N.L. Biggs, E.K. Lloyd, and R.J. Wilson. Graph Theory 1736-1936. Clarendon
Press, London, 1976.

161. H.L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput., 25:1305–1317, 1996.

162. F. Boesch and R. Tindell. Robbins’s theorem for mixed multigraphs. Amer.
Math. Mon., 87(9):716–719, 1980.

163. B. Bollobás and P. Erdős. Alternating Hamiltonian cycles. Israel J. Math.,
23:126–131, 1976.

164. B. Bollobás, D.L. Goldsmith, and D.R. Woodall. Indestructive deletions of
edges from graphs. J. Combin. Theory Ser. B, 30(3):263–275, 1981.

165. B. Bollobás and R. Häggkvist. Powers of Hamilton cycles in tournaments. J.
Combin. Theory Ser. B, 50(2):309–318, 1990.

166. J. A. Bondy. Short proofs of classical theorems. J. Graph Theory, 44(3):159–
165, 2003.

167. J.A. Bondy. Diconnected orientations and a conjecture of Las Vergnas. J.
London Math. Soc. (2), 14(2):277–282, 1976.

168. J.A. Bondy. A short proof of the Chen-Manalastas theorem. Discrete Math.,
146(1-3):289–292, 1995.

169. J.A. Bondy. Basic graph theory: paths and circuits. In Handbook of combina-
torics, Vol. 1, 2, pages 3–110. Elsevier, Amsterdam, 1995.

170. J.A. Bondy and U.S.R. Murty. Graph theory with applications. American El-
sevier Publishing Co., New York, 1976.

171. J.A. Bondy and C. Thomassen. A short proof of Meyniel’s theorem. Discrete
Math., 19(2):195–197, 1977.

172. J.A. Bondy and A. Vince. Cycles in a graph whose lengths differ by one or
two. J. Graph Theory, 27(1):11–15, 1998.

173. P. Bonsma and F. Dorn. An FPT Algorithm for Directed Spanning k-Leaf.
Preprint arXiv:0711.4052, November 2007.

174. P. Bonsma and F. Dorn. Tight Bounds and Faster Algorithms for Directed
Max-Leaf Problems. In Proc. ESA’08, volume to appear of Lect Notes Com-
puter Sci. Springer, 2008.

http://arxiv.org/abs/0711.4052

References 729

175. E. Boros and V. Gurvich. Perfect graphs are kernel-solvable. Discrete Math.,
159:35–55, 1996.

176. E. Boros and V. Gurvich. A corrected version of the Duchet kernel conjecture.
Discrete Math., 179(1-3):231–233, 1998.

177. E. Boros and V. Gurvich. Perfect, Partitionable, and Kernel-Solvable Graphs.
In The Perfect Graph Conjecture. American Institute of Mathematics, Palo
Alto, www.aimath.org/pastworkshops/perfectgraph.html, Oct-Nov 2002.

178. A. Brandstädt. Graphen und Algorithmen. B. G. Teubner, Stuttgart, 1994.
179. S. Brandt, H. Broersma, R. Diestel, and M. Kriesell. Global connectivity

and expansion: long cycles and factors in f -connected graphs. Combinator-
ica, 26:17–36, 2006.

180. G. Brassard and P. Bratley. Fundamentals of algorithmics. Prentice Hall Inc.,
Englewood Cliffs, NJ, 1996.

181. W.G. Bridges and S. Toueg. On the impossibility of directed Moore graphs.
J. Combin. Theory Ser. B, 29:339–341, 1980.

182. D.E. Brown, A.H. Busch, and J.R. Lundgren. Interval tournaments. J. Graph
Theory, 56:72–81, 2007.

183. S.A. Burr. Subtrees of directed graphs and hypergraphs. Congr. Numer.,
28:227–239, 1980.

184. R.G. Busacker and P.J. Gowen. A procedure for determining a family of min-
imal cost network flow patterns, Technical Report 15, ORO Tech. Report,
Johns Hopkins University, 1961.

185. A.H. Busch, M.S. Jacobson, and K.B. Reid. On arc-traceable tournaments. J.
Graph Theory, 53:157–166, 2006.

186. L. Caccetta and R. Häggkvist. On minimal digraphs with given girth. Congr.
Numer., 21:181–187, 1978.

187. M. Cai, X. Deng, and L. Wang. Minimum k arborescences with bandwidth
constraints. Algorithmica, 38:529–537, 2004.

188. K. Cameron. Polyhedral and algorithmic ramifications of antichains, PhD the-
sis, University of Waterloo, 1982.

189. K. Cameron. On Gallai-type min-max inequalities. In Combinatorics, graph
theory, algorithms and applications (Beijing, 1993), pages 7–16. World Sci.,
River Edge, NJ, 1994.

190. K. Cameron and J. Edmonds. Coflow polyhedra. Discrete Math., 101:1–21,
1992.

191. K. Cameron and J. Edmonds. The travelling preacher, projection, and a lower
bound for the stability number of a graph. Discrete Optim., 5:290–292, 2008.

192. P. Camion. Chemins et circuits hamiltoniens des graphes complets. C. R.
Acad. Sci. Paris, 249:2151–2152, 1959.

193. A. Cayley. A theorem on trees. Quart. J. Pure Appl. Math., 23:376–378, 1889.
194. G.J. Chang, F.K. Hwang, and L.D. Tong. The Hamiltonian property of the

consecutive-3 digraphs. Math. Comput. Modelling, 25:83–88, 1997.
195. G.J. Chang, F.K. Hwang, and L.D. Tong. The consecutive-4 digraphs are

Hamiltonian. J. Graph Theory, 31:1–6, 1999.
196. P. Charbit and A. Sebö. Cyclic orders: equivalence and duality. Combinatorica,

28:131–143, 2008.
197. P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem

is NP-hard for tournaments. Combin. Probab. Comput., 16:1–4, 2007.
198. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li.

Approximation algorithms for directed Steiner problems. J. Algor., 33:73–91,
1999.

199. G. Chartrand, D. Geller, and S. Hedetniemi. Graphs with forbidden sub-
graphs. J. Combin. Theory Ser. B, 10:12–41, 1971.

http://www.aimath.org/pastworkshops/perfectgraph.html

730 References

200. C.C. Chen and D.E. Daykin. Graphs with Hamiltonian cycles having adjacent
lines of different colors. J. Combin. Theory Ser. B, 21:135–139, 1976.

201. C.C. Chen and P. Manalastas, Jr. Every finite strongly connected digraph of
stability 2 has a Hamiltonian path. Discrete Math., 44(3):243–250, 1983.

202. G. Chen, J. Shen, and R. Yuster. Second neighborhood via first neighborhood
in digraphs. Ann. Combin., 7(1):15–20, 2003.

203. G.-T. Chen, R.J. Gould, and H. Li. Partitioning vertices of a tournament into
independent cycles. J. Combin. Theory Ser. B, 83(2):213–220, 2001.

204. J. Chen, I.A. Kanj, and G. Xia. Simplicity is beauty: Improved upper bounds
for vertex cover, Technical Report TR05-008, DePaul University, Chicago,
2005.

205. J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. Directed Feedback
Vertex Set is Fixed-Parameter Tractable. In Proc. STOC’08: the 40th Annual
ACM Symposium on Theory of Computing. ACM Press, 2008.

206. E. Cheng and T. Jordán. Successive edge-connectivity augmentation problems.
Math. Program. Ser. B, 84:577–593, 1999.

207. J. Cheriyan and S.N. Maheshwari. Analysis of preflow push algorithms for
maximum network flow. SIAM J. Comput., 18:1057–1086, 1989.

208. J. Cheriyan and J.H. Reif. Directed s-t numberings, rubber bands, and testing
digraph k-vertex connectivity. Combinatorica, 14(4):435–451, 1994.

209. J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching (extended abstract). In 37th Annual Sym-
posium on Foundations of Computer Science (Burlington, VT, 1996), pages
292–301. IEEE Computer Society Press, 1996.

210. J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM J. Comput., 30(2):528–560, 2000.

211. B.V. Cherkassky and A.V. Goldberg. Negative-cycle detection algorithms.
Math. Program., 85:277–311, 1999.

212. B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths algorithms:
theory and experimental evaluation. Math. Program., 73:129–174, 1996.

213. A.G. Chetwynd and A.J.W. Hilton. Alternating Hamiltonian cycles in two
colored complete bipartite graphs. J. Graph Theory, 16:153–158, 1992.

214. W.S. Chow, Y. Manoussakis, O. Megalakaki, M. Spyratos, and Zs. Tuza.
Paths through fixed vertices in edge-colored graphs. Math. Inf. Sci. Hum.,
127(32):49–58, 1994.

215. N. Christofides. Worst-case analysis of a new heuristic for the traveling sales-
man problem, Technical Report CS-93-13, Carnegie Mellon University, 1976.

216. M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong per-
fect graph theorem. Ann. Math., 164:51–229, 2006.

217. M. Chudnovsky, P. Seymour, and B. Sullivan. Cycle in dense digraphs.
Preprint arXiv:math/0702147v1, December 2007.

218. F.R.K. Chung, M.R. Garey, and R.E. Tarjan. Strongly connected orientations
of mixed multigraphs. Networks, 15(4):477–484, 1985.

219. F.R.K. Chung, W. Goddard, and D.J. Kleitman. Even cycles in directed
graphs. SIAM J. Discrete Math., 7(3):474–483, 1994.

220. V. Chvátal. On Hamilton’s ideals. J. Combin. Theory Ser. B, 12:163–168,
1972.

221. V. Chvátal and P. Erdős. A note on Hamiltonian circuits. Discrete Math.,
2:111–113, 1972.

222. V. Chvátal and L. Lovász. Every directed graph has a semi-kernel. Lect. Notes
Math., 411:175, 1974.

223. V. Chvátal and E. Szemerédi. Short cycles in directed graphs. J. Combin.
Theory Ser. B, 35(3):323–327, 1983.

http://arxiv.org/abs/math/0702147v1

References 731

224. V. Chvátal and C. Thomassen. Distances in orientations of graphs. J. Combin.
Theory Ser. B, 24(1):61–75, 1978.

225. S. Climer and W. Zhang. Cut-and-solve: an iterative search strategy for com-
binatorial optimization problems. Artif. Intell., 170:714–738, 2006.

226. T. Coleman and A. Wirth. Ranking tournaments: local search and a new
algorithm. In Proc. ALENEX’08: 10th Workshop on Algorithm Engineering
and Experimentation, pages 133 – 141. SIAM, 2008.

227. V. Conitzer. Computing Slater rankings using similarities among candidates,
In 21st National Conference on Artificial Intelligence (AAAI-06), pages 613–
619, 2006.

228. S.A. Cook. The complexity of theorem-proving procedures, In Proc. 3rd Ann.
ACM Symp. on Theory of Computing, pages 151–158, 1971.

229. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combi-
natorial Optimization. John Wiley & Sons, New York, 1998.

230. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions, In Proc. 19th Ann. ACM Symp. on Theory of Computation, pages
1–6, ACM Press, 1987.

231. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms,
The MIT Electrical Engineering and Computer Science Series. MIT Press,
Cambridge, MA, 1990.

232. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Al-
gorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

233. B. Csaba. On the Bollobás-Eldridge conjecture for bipartite graphs. Combin.
Probab. Comput., 16:661–691, 2007.

234. W.H. Cunningham and A. Frank. A primal-dual algorithm for submodular
flows. Math. Oper. Res., 10(2):251–262, 1985.

235. S.J. Curran and D. Witte. Hamilton paths in Cartesian products of directed
cycles. In Cycles in graphs (Burnaby, B.C., 1982), volume 115 of North-
Holland Math. Stud., pages 35–74. North-Holland, 1985.

236. A. Czumaj and W.B. Strothmann. Bounded degree spanning trees. In
Algorithms–ESA’97, volume 1284 of Lect. Notes Comput. Sci., pages 104–117.
Springer, 1997.

237. G. Dahl. Directed Steiner problems with connectivity constraints. Discrete
Appl. Math., 47:109–128, 1993.

238. V. Dahllöf, P. Jonsson, and M. Wahlström. Counting models for 2SAT and
3SAT formulae. Theor. Comput. Sci., 332(1-3):265–291, 2005.

239. M. Dalmazzo. Nombre d’arcs dans les graphes k-arc-fortement connexes min-
imaux. C.R. Acad. Sci. Paris A, 2853:341–344, 1977.

240. P. Dankelmann. The diameter of directed graphs. J. Combin. Theory Ser. B,
94(1):183–186, 2005.

241. P. Dankelmann, G. Gutin, and E.J. Kim. On Complexity of Minimum Leaf
Out-Branching Problem. Preprint arXiv:0808.0980, August 2008.

242. S.K. Darbinyan. Cycles of any length in digraphs with large semidegrees. Akad.
Nauk Armyan. SSR Dokl., 75(4):147–152, 1982.

243. S.K. Darbinyan. Pancyclicity of digraphs with large semidegrees. Akad. Nauk
Armyan. SSR Dokl., 80(2):51–54, 1985.

244. S.K. Darbinyan. Pancyclicity of digraphs with the Meyniel condition. Stud.
Sci. Math. Hung., 20(1-4):95–117, 1985.

245. S.K. Darbinyan. A sufficient condition for the Hamiltonian property of di-
graphs with large semidegrees. Akad. Nauk Armyan. SSR Dokl., 82(1):6–8,
1986.

246. S.K. Darbinyan. On the pancyclicity of digraphs with large semidegrees. Akad.
Nauk Armyan. SSR Dokl., 83(3):99–101, 1986.

http://arxiv.org/abs/0808.0980

732 References

247. S.K. Darbinyan. Hamiltonian and strongly Hamilton-connected digraphs.
Akad. Nauk Armyan. SSR Dokl., 91(1):3–6, 1990.

248. S.K. Darbinyan. On hamiltonian bypasses in digraphs satisfying Meyniel-like
conditions (in Russian). Math. Probl. Comput. Sci., 20:7–19, 1998.

249. M. Darrah, Y.-P. Liu, and C.-Q. Zhang. Cycles of all lengths in arc-3-cyclic
semicomplete digraphs. Discrete Math., 173(1-3):23–33, 1997.

250. P. Das. Pan-alternating cyclic edge-partitioned graphs. Ars Combin., 14:105–
114, 1982.

251. D.E. Daykin. Graphs with cycles having adjacent lines of different colors. J.
Combin. Theory Ser. B, 20:149–152, 1976.

252. N.G. de Bruijn. A combinatorial problem. Ned. Akad. Wet. Proc., 49:758–764,
1946.

253. B. de Fluiter and H.L. Bodlaender. Parallel algorithms for treewidth two. In
Workshop on Graph-Theoretic Concepts in Computer Science, volume 1335 of
Lect. Notes Comput. Sci., pages 157–170. Springer, 1997.

254. W.F. de la Vega. On the maximum cardinality of a consistent set of arcs in a
random tournament. J. Combin. Theory Ser. B, 35:328–332, 1983.

255. N. Dean and B.J. Latka. Squaring the tournament—an open problem. Congr.
Numer., 109:73–80, 1995.

256. A. Demers and A. Downing Minimum leaf spanning tree. US Patent no.
6,105,018, August 2000.

257. X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for
proper circular-arc graphs and proper interval graphs. SIAM J. Computing,
25(2):390–403, 1996.

258. R. Diestel. Graph theory. Springer-Verlag, New York, 2nd edition, 2000.
259. E.W. Dijkstra. A note on two problems in connection with graphs. Numer.

Math., 1:269–271, 1959.
260. R.P. Dilworth. A decomposition theorem for partially ordered sets. Ann.

Math., 51:161–166, 1950.
261. G. Ding, A. Schrijver, and P.D. Seymour. Disjoint paths in a planar graph –

a general theorem. SIAM J. Discrete Math., 5(1):112–116, 1992.
262. E.A. Dinic. An algorithm for the solution of the problem of maximal flow in a

network with power estimation. Dokl. Akad. Nauk SSSR, 194:754–757, 1970.
263. E.A. Dinits and A.V. Karzanov. On the existence of two edge-disjoint chains in

multi-graph connecting given pairs of its vertices. Graph Theory Newsletters,
8:2–3, 1979.

264. E.A. Dinits and A.V. Karzanov. On two integer flows of value 1. In A.V.
Karzanov, editor, Combinatorial methods for network flow problems, pages
127–137. Institute for System Studies, Moscow, 1979.

265. I. Dinur and S. Safra. The importance of being biased. In Proc. STOC’02:
34th Annual ACM Symposium on Theory of Computing, pages 33–42. ACM
Press, 2002.

266. G.A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc.,
2(3):69–81, 1952.

267. A. Dolan and J. Aldous. Networks and algorithms. John Wiley & Sons, Chich-
ester, 1993. An introductory approach.

268. J. Donadelli and Y. Kohayakawa. A density result for random sparse oriented
graphs and its relation to a conjecture of Woodall. Electron. J. Combin.,
9(1):Research Paper 45, 10 pp. (electronic), 2002.

269. E.A. van Doorn. Connectivity of circulant digraphs. J. Graph Theory, 10(1):9–
14, 1986.

270. D. Dorninger. On permutations of chromosomes. In Contributions to General
Algebra, volume 5, pages 95–103. Teubner-Verlag, Stuttgart, 1987.

References 733

271. D. Dorninger. Hamiltonian circuits determining the order of chromosomes.
Discrete Appl. Math., 50:159–168, 1994.

272. D. Dorninger and W. Timischl. Geometrical constraints on Bennett’s predic-
tions of chromosome order. Heredity, 58:321–325, 1987.

273. R.J. Douglas. Tournaments that admit exactly one Hamiltonian circuit. Proc.
London Math. Soc. (3), 21:716–730, 1970.

274. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag,
New York, 1999.

275. K. Dowsland. Simulated Annealing. In C.R. Reeves, editor, Modern heuristic
techniques for combinatorial problems, pages 20–69. McGraw-Hill, 1995.

276. D.-Z. Du, F. Cao, and D.F. Hsu. De Bruijn digraphs, and Kautz digraphs,
and their generalizations. In D.-Z. Du and D.F. Hsu, editors, Combinatorial
network theory, pages 65–105. Kluwer, Dordrecht, 1996.

277. D.-Z. Du and D.F. Hsu. On Hamiltonian consecutive-d digraphs. Banach Cen-
ter Publ., 25:47–55, 1989.

278. D.-Z. Du, D.F. Hsu, and F.K. Hwang. Hamiltonian property of d-consecutive
digraphs. Math. Comput. Modeling, 17:61–63, 1993.

279. D.Z. Du, Y.-D. Lyuu, and D.F. Hsu. Line digraph iterations and the spread
concept—with application to graph theory, fault tolerance, and routing. In
Graph-theoretic concepts in computer science (Fischbachau, 1991), volume 570
of Lect. Notes Comput. Sci., pages 169–179. Springer, 1992.

280. I.S. Duff, A.M. Erisman, and J.K. Reid. Direct methods for sparse matrices.
Oxford University Press, 1997.

281. R.J. Duffin. Topology of series-parallel networks. J. Math. Anal. Appl., 10:303–
318, 1965.

282. J. Edmonds. Paths, trees, and flowers. Can. J. Math., 17:449–467, 1965.
283. J. Edmonds. Optimum branchings. J. Res. Natl. Bur. Stand. Sect. B, 71B:233–

240, 1967.
284. J. Edmonds. Submodular functions, matroids, and certain polyhedra. In

Combinatorial Structures and their Applications (Proc. Calgary Int. Conf.,
Calgary, Alta., 1969), pages 69–87. Gordon and Breach, 1970.

285. J. Edmonds. Edge-disjoint branchings. In B. Rustin, editor, Combinatorial
Algorithms, pages 91–96. Academic Press, 1973.

286. J. Edmonds and R. Giles. A min-max relation for submodular functions on
graphs. In Studies in integer programming (Proc. Workshop, Bonn, 1975),
pages 185–204. Ann. Discrete Math., Vol. 1. North-Holland, 1977.

287. J. Edmonds and E.L. Johnson. Matching, Euler tours and the Chinese post-
man. Math. Program., 5:88–124, 1973.

288. J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. Assoc. Comput. Mach., 19:248–264, 1972.

289. C.S. Edwards. Some extremal properties of bipartite subgraphs. Can. J.
Math., 25:475–485, 1973.

290. A. Ehrenfeucht, H.N. Gabow, R.M. McConnell, and S.J. Sullivan. An O(n2)
divide-and-conquer algorithm for the prime tree decomposition of two-
structures and modular decomposition of graphs. J. Algor., 16(2):283–294,
1994.

291. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,
2003.

292. A. El-Sahili. Paths with two blocks in k-chromatic digraphs. Discrete Math.,
287:151–153, 2004.

293. A. El-Sahili. Trees in tournaments. J. Combin. Theory Ser. B, 92:183–187,
2004.

734 References

294. A. El-Sahili and M. Kouider. About paths with two blocks. J. Graph Theory,
55:221–226, 2007.

295. S. Enni. A note on mixed graphs and directed splitting off. J. Graph Theory,
27(4):213–221, 1998.

296. P. Erdős. Graph theory and probability. Can. J. Math., 11:34–38, 1959.
297. P. Erdős. Some old and new problems in various branches of combinatorics.

Congr. Numer., 23:19–37, 1979.
298. P. Erdős and J.W. Moon. On sets of consistent arcs in a tournament. Can.

Math. Bull., 8:269–271, 1965.
299. P. Erdős, A.L. Rubin, and R.W. Irwing. Choosability in graphs. Congr. Nu-

mer., 26:122–157, 1980.
300. P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compos.

Math., 2:463–470, 1935.
301. P. Erdős and W.T. Trotter. When the Cartesian product of directed cycles is

Hamiltonian. J. Graph Theory, 2:137–142, 1978.
302. A.H. Esfahanian and S.L. Hakimi. On computing the connectivities of graphs

and digraphs. Networks, 14(2):355–366, 1984.
303. L. Euler. Solutio problematis ad geometriam situs pertinentis. Comment.

Acad. Sci. Imperialis Petropolitanae, 8:128–140, 1736.
304. G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feed-

back sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.
305. S. Even. An algorithm for determining whether the connectivity of a graph is

at least k. SIAM J. Comput., 4(3):393–396, 1975.
306. S. Even. Graph algorithms. Computer Science Press, Woodland Hills, 1979.
307. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multi-

commodity flow problems. SIAM J. Comput., 5(4):691–703, 1976.
308. S. Even and R.E. Tarjan. Network flow and testing graph connectivity. SIAM

J. Comput., 4(4):507–518, 1975.
309. T. Feder. Classification of Homomorphisms to Oriented Cycles and of k-

Partite Satisfiability. SIAM J. Discrete Math., 14(4):471–480, 2001.
310. U. Feige. A threshold of ln n for approximation set-cover. In Proc. STOC

28: 28th Annual ACM Symp. on Theory of Computing, pages 314–318. ACM
Press, 1996.

311. J. Feldman and M. Ruhl. The directed Steiner network problem is tractable
for a constant number of terminals. In Proc. 40th Annual Symposium on
Foundations of Computer Science, pages 299–308. IEEE Computer Society
Press, 1999.

312. W. Feller. An introduction to probability theory and its applications. Vol. I.
John Wiley & Sons, New York, 3rd edition, 1968.

313. J. Feng, H.-E. Giesen, Y. Guo, G. Gutin, T. Jensen, and A. Rafiey. Char-
acterization of edge-colored complete graphs with properly colored Hamilton
paths. J. Graph Theory, 53(4):333–346, 2006.

314. P. Feofiloff and D. H. Younger. Directed cut transversal packing for source-sink
connected graphs. Combinatorica, 7(3):255–263, 1987.

315. J.F. Fink and L. Lesniak-Foster. Graphs for which every unilateral orientation
is traceable. Ars Combin., 9:113–118, 1980.

316. M.A. Fiol, J.L.A. Yebra, and I. Alegre. Line digraph iteration and the (d, k)
digraph problem. IEEE Trans. Comput., C-33:400–403, 1984.

317. D.C. Fisher. Squaring a tournament: a proof of Dean’s conjecture. J. Graph
Theory, 23(1):43–48, 1996.

318. M.J. Fisher and A.R. Meyer. Boolean matrix multiplication and transitive
closure. In Proc. 12th Ann. ACM Symp. on Switching and Automata Theory,
pages 129–131. ACM Press, 1971.

References 735

319. H. Fleischner. Eine gemeinsame Basis für die Theorie der Eulerschen Graphen
und den Satz von Petersen. Monatsh. Math., 81(4):267–278, 1976.

320. H. Fleischner. Eulerian graphs and related topics. Part 1. Vol. 1. North-
Holland, Amsterdam, 1990.

321. H. Fleischner. Eulerian graphs and related topics. Part 1. Vol. 2. North-
Holland, Amsterdam, 1991.

322. H. Fleischner, G. Sabidussi, and E. Wegner. Transforming eulerian trails. Dis-
crete Math., 109:103–116, 1992.

323. H. Fleischner and S. Szeider. On edge-colored graphs covered by properly
colored cycles. Graphs Combin., 21:301–306, 2005.

324. R.W. Floyd. Algorithm 97, shortest path. Commun. ACM, 5:345, 1962.
325. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag,

2006.
326. F.V. Fomin, M. Matamala, E. Prisner, and I. Rapaport. AT-free graphs: linear

bounds for the oriented diameter. Discrete Appl. Math., 141:135–148, 2004.
327. F.V. Fomin, M. Matamala, and I. Rapaport. Complexity of approximating

the oriented diameter of chordal graphs. J. Graph Theory, 45:255–269, 2004.
328. F.V. Fomin and D.M. Thilikos. Dominating sets in planar graphs: branch-

width and exponential speed-up, In SODA’03: Proc. 14th Annual ACM-SIAM
Symp. on Discrete Algorithms, pages 168–177, Philadelphia, 2003, SIAM.

329. R. Forcade. Parity of paths and circuits in tournaments. Discrete Math., 6:115–
118, 1973.

330. L.R. Ford, Jr.. Network flow theory, Technical Report P-923, The Rand Corp.,
1956.

331. L.R. Ford, Jr. and D.R. Fulkerson. Flows in networks. Princeton University
Press, Princeton, NJ, 1962.

332. S. Fortune, J.E. Hopcroft, and J. Wyllie. The directed subgraph homeomor-
phism problem. Theor. Comput. Sci., 10:111–121, 1980.

333. P. Fraigniaud and E. Lazard. Methods and problems of communication in
usual networks. Discrete Appl. Math., 53:79–133, 1994.

334. P. Fraisse and C. Thomassen. Hamiltonian dicycles avoiding prescribed arcs
in tournaments. Graphs Combin., 3(3):239–250, 1987.

335. A. Frank. On the orientation of graphs. J. Combin. Theory Ser. B, 28(3):251–
261, 1980.

336. A. Frank. On disjoint trees and arborescences. In Algebraic methods in graph
theory, Vol. I, II (Szeged, 1978), pages 159–169. North-Holland, 1981.

337. A. Frank. A note on k-strongly connected orientations of an undirected graph.
Discrete Math., 39(1):103–104, 1982.

338. A. Frank. An algorithm for submodular functions on graphs. In Bonn Work-
shop on Combinatorial Optimization (Bonn, 1980), volume 16 of Ann. Dis-
crete Math., pages 97–120. North-Holland, 1982.

339. A. Frank. Finding feasible vectors of Edmonds-Giles polyhedra. J. Combin.
Theory Ser. B, 36(3):221–239, 1984.

340. A. Frank. Submodular flows. In Progress in combinatorial optimization (Wa-
terloo, Ont., 1982), pages 147–165. Academic Press, 1984.

341. A. Frank. On connectivity properties of Eulerian digraphs. In Graph theory in
memory of G. A. Dirac (Sandbjerg, 1985), volume 41 of Ann. Discrete Math.,
pages 179–194. North-Holland, 1989.

342. A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
J. Discrete Math., 5(1):25–53, 1992.

343. A. Frank. Applications of submodular functions. In Surveys in combinatorics,
1993 (Keele), volume 187 of London Math. Soc. Lect. Note Ser., pages 85–136.
Cambridge University Press, 1993.

736 References

344. A. Frank. Submodular functions in graph theory. Discrete Math., 111(1-
3):231–243, 1993. Graph theory and combinatorics (Marseille-Luminy, 1990).

345. A. Frank. Connectivity augmentation problems in network design. In J.R.
Birge and K.G. Murty, editors, Mathematical Programming: State of the art,
pages 34–63. The University of Michigan, 1994.

346. A. Frank. Connectivity and network flows. In Handbook of combinatorics, Vol.
1, 2, pages 111–177. Elsevier, Amsterdam, 1995.

347. A. Frank. Orientations of graphs and submodular flows. Congr. Numer.,
113:111–142, 1996.

348. A. Frank. Applications of relaxed submodularity. Doc. Math., Extra Vol.
III:343–354, 1998.

349. A. Frank. Increasing the rooted-connectivity of a digraph by one. Math. Pro-
gram. Ser. B, 84:565–576, 1999.

350. A. Frank and A. Gyárfás. Directed graphs and computer programs. In
Problémes Combinatoires et Théorie des Graphes, Colloque Internationaux
C.N.R.S., 260, pages 157–158, 1976.

351. A. Frank and A. Gyárfás. How to orient the edges of a graph? In Combina-
torics (Proc. 5th Hung. Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq.
Math. Soc. János Bolyai, pages 353–364. North-Holland, 1978.

352. A. Frank, T. Ibaraki, and H. Nagamochi. On sparse subgraphs preserving
connectivity properties. J. Graph Theory, 17(3):275–281, 1993.

353. A. Frank, T. Ibaraki, and H. Nagamochi. Two arc-disjoint paths in Eulerian
digraphs. SIAM J. Discrete Math., 11(4):557–589 (electronic), 1998.

354. A. Frank and T. Jordán. Minimal edge-coverings of pairs of sets. J. Combin.
Theory Ser. B, 65(1):73–110, 1995.

355. A. Frank and T. Jordán. Directed vertex-connectivity augmentation. Math.
Program. Ser. B, 84:537–553, 1999.

356. A. Frank, T. Király, and Z. Király. On the orientation of graphs and hyper-
graphs. Discrete Appl. Math., 131(2):385–400, 2003. Submodularity.

357. A. Frank and É. Tardos. Generalized polymatroids and submodular flows.
Math. Program. Ser. B, 42(3):489–563, 1988.

358. A. Frank and É. Tardos. An application of submodular flows. Linear Algebra
Appl., 114/115:329–348, 1989.

359. M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. J. Assoc. Comput. Mach., 31:538–544, 1984.

360. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. Assoc. Comput. Mach., 34(3):596–615,
1987.

361. S. Friedland. Every 7-regular digraph contains an even cycle. J. Combin. The-
ory Ser. B, 46(2):249–252, 1989.

362. A. Frieze and R. Kannan. Quick approximation to matrices and applications.
Combinatorica, 19(2):175–220, 1999.

363. G. Frobenius. Über zerlegbare Determinanten. Sitzungsber. König. Preuss.
Akad. Wiss., XVIII:274–277, 1917.

364. S. Fujishige. Submodular functions and optimization, 2nd Edition, volume 58
of Ann. Discrete Math. North-Holland, 2005.

365. S. Fujishige, H. Röck, and U. Zimmermann. A strongly polynomial algorithm
for minimum cost submodular flow problems. Math. Oper. Res., 14(1):60–69,
1989.

366. D.R. Fulkerson. Packing rooted directed cuts in a weighted directed graph.
Math. Program., 6:1–13, 1974.

References 737

367. M. Funke and G. Reinelt. A polyhedral approach to the feedback vertex set
problem. In Integer programming and combinatorial optimization (Vancouver,
BC, 1996), pages 445–459. Springer, 1996.

368. Z. Fűredi, P. Horak, C.M. Pareek, and X. Zhu. Minimal oriented graphs of
diameter 2. Graphs Combin., 14:345–350, 1998.

369. M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner
tree to within one of optimal. J. Algor., 17:409–423, 1994.

370. M.E. Furman. Application of a method of fast multiplication of matrices in
the problem of finding the transitive closure of a graph. Sov. Math. Dokl.,
11:1252, 1970.

371. H. N. Gabow and T. Jordán. Incrementing bipartite digraph edge-
connectivity. J. Combin. Optim., 4(4):449–486, 2000.

372. H. N. Gabow and T. Jordán. Bipartition constrained edge-splitting in directed
graphs. Discrete Appl. Math., 115(1-3):49–62, 2001. 1st Japanese-Hungarian
Symposium for Discrete Mathematics and its Applications (Kyoto, 1999).

373. H.N. Gabow. Data structures for weighted matching and nearest common
ancestors with linking. Proc. SODA’90, pages 434–443, 1990.

374. H.N. Gabow. A matroid approach to finding edge connectivity and packing
arborescences. J. Comput. System Sci., 50(2):259–273, 1995. 23rd Symposium
on the Theory of Computing (New Orleans, LA, 1991).

375. H.N. Gabow. Better performance bounds for finding the smallest k-edge con-
nected spanning subgraph of a multigraph, In SODA, pages 460–469, 2003.

376. H.N. Gabow. Special edges, and approximating the smallest directed k-
edge connected spanning subgraph, In SODA ’04: Proc. 15th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 234–243, Philadelphia, 2004,
SIAM.

377. H.N. Gabow. Using expander graphs to find vertex connectivity. J. Assoc.
Comput. Mach., 53(5):800–844, 2006.

378. D. Gale. A theorem on flows in networks. Pac. J. Math., 7:1073–1082, 1957.
379. D. Gale and L.S. Shapley. College admissions and the stability of marriage.

Amer. Math. Mon., 69:9–15, 1962.
380. H. Galeana-Sánchez. A counterexample to a conjecture of Meyniel on kernel-

perfect graphs. Discrete Math., 41:105–107, 1982.
381. H. Galeana-Sánchez. Kernels and perfectness in arc-local tournament di-

graphs. Discrete Math., 306(19-20):2473–2480, 2006.
382. H. Galeana-Sánchez and X. Li. Semikernels and (k, l)-kernels in digraphs.

SIAM J. Discrete Math., 11(2):340–346, 1998.
383. H. Galeana-Sánchez and V. Neumann-Lara. On kernels and semikernels of

digraphs. Discrete Math., 48:67–76, 1984.
384. Z. Galil. Finding the vertex connectivity of graphs. SIAM J. Comput.,

9(1):197–199, 1980.
385. T. Gallai. Maximum-minimum Sätze und verallgemeinerte faktoren in

graphen. Acta Math. Acad. Sci. Hung., 12:131–173, 1961.
386. T. Gallai. Problem 15. In M. Fiedler, editor, Theory of Graphs and its Appli-

cations, page 161. Czech. Acad. Sci. Prague, 1964.
387. T. Gallai. On directed paths and circuits. In Theory of Graphs (Proc. Colloq.,

Tihany, 1966), pages 115–118. Academic Press, 1968.
388. T. Gallai and A.N. Milgram. Verallgemeinerung eines graphentheoretischen

Satzes von Rédei. Acta Sci. Math. Szeged, 21:181–186, 1960.
389. A. Galluccio and M. Loebl. Cycles of prescribed modularity in planar digraphs.

J. Algor., 21(1):51–70, 1996.
390. A. Galluccio and M. Loebl. Even directed graphs in H-free digraphs. J. Algor.,

27, 1996.

738 References

391. A. Galluccio and M. Loebl. (p, q)-odd digraphs. J. Graph Theory, 23(2):175–
184, 1996.

392. F. Galvin. The list chromatic index of a bipartite multigraph. J. Combin.
Theory Ser. B, 63:153–158, 1995.

393. M.R. Garey and D.S. Johnson. Computers and intractability. W. H. Freeman,
San Francisco, 1979.

394. M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theor. Comput. Sci., 1(3):237–267, 1976.

395. M.R. Garey, D.S. Johnson, and R.E. Tarjan. The planar hamiltonian circuit
problem is NP-complete. SIAM J. Comput., 5:704–714, 1976.

396. F. Gavril. Some NP-complete problems on graphs, In Proc. 11th Conf. on
Information Sciences and Systems, pages 91–95, 1977.

397. A.M.H. Gerards. Homomorphisms of graphs into odd cycles. J. Graph Theory,
12(1):73–83, 1988.

398. A.M.H. Gerards. Graphs and polyhedra. Binary spaces and cutting planes.
Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica,
Amsterdam, 1990.

399. A.M.H. Gerards. An orientation theorem for graphs. J. Combin. Theory Ser.
B, 62(2):199–212, 1994.

400. A.M.H. Gerards and F.B. Shepherd. Strong orientations without even directed
circuits. Discrete Math., 188(1-3):111–125, 1998.

401. D. Ghosh, B. Goldengorin, G. Gutin, and G. Jäger. Tolerance-based greedy
algorithms for the traveling salesman problem. Commun. DQM, 10:52–70,
2007.

402. A. Ghouila-Houri. Diametre maximal d’un graphe fortement connexe. C.R.
Acad. Sci. Paris, 250:254–256, 1960.

403. A. Ghouila-Houri. Une condition suffisante d’existence d’un circuit hamil-
tonien. C.R. Acad. Sci. Paris, 25:495–497, 1960.

404. A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut ori-
enter les arětes de manière à obtenir le graphe d’une relation d’ordre. C. R.
Acad. Sci. Paris, 254:1370–1371, 1962.

405. A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, Cam-
bridge, 1985.

406. P. Gibbons, R. Karp, V. Ramachandran, D. Soroker, and R. Tarjan. Transitive
compaction in parallel via branchings. J. Algor., 12(1):110–125, 1991.

407. F. Glover, G. Gutin, A. Yeo, and A. Zverovich. Construction heuristics and
domination analysis for the asymmetric TSP. Eur. J. Oper. Res., 129:555–568,
2001.

408. F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, 1997.
409. F. Glover and A.P. Punnen. The traveling salesman problem: new solvable

cases and linkages with the development of approximation algorithms. J. Oper.
Res. Soc., 48:502–510, 1997.

410. F.W. Glover and G.A. Kochenberger, editors. Handbook of Metaheuristics.
Springer, 2003.

411. A. Godbole, Z. Cohn, and E. Wright. Probabilistic Versions of Seymour’s
Distance Two Conjecture. Manuscript, 2008.

412. W.D. Goddard, G. Kubicki, O.R. Oellermann, and S.L. Tian. On multipartite
tournaments. J. Combin. Theory Ser. B, 52(2):284–300, 1991.

413. W.D. Goddard and O.R. Oellermann. On the cycle structure of multipartite
tournaments. In Graph Theory Combin. Appl. 1, pages 525–533. Wiley, New
York, 1991.

414. M.X. Goemans and D. Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica, 18:37–59, 1998.

References 739

415. A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow prob-
lem. In Proc. 18th ACM Symposium on the Theory of Computing, pages
136–146. ACM Press, 1986.

416. A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow prob-
lem. J. Assoc. Comput. Mach., 35(4):921–940, 1988.

417. A.V. Goldberg and R.E. Tarjan. Finding minimum-cost circulations by can-
celing negative cycles. J. Assoc. Comput. Mach., 36(4):873–886, 1989.

418. M.K. Goldberg. The diameter of a strongly connected graph. Dokl. Akad.
Nauk SSSR, 170:767–769, 1966.

419. B. Goldengorin, D. Ghosh, and G. Sierksma. Branch and peg algorithms for
the simple plant location problem. Comput. Oper. Res., 31:241–255, 2004.

420. M.C. Golumbic. The complexity of comparability graph recognition and col-
oring. Computing, 18(3):199–208, 1977.

421. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1980. With a foreword by Claude Berge.

422. M. Gondran and M. Minoux. Graphs and algorithms. John Wiley & Sons,
Chichester, 1984.

423. A. Goralcikova and V. Koubek. A reduct-and-closure algorithm for graphs.
In Proc. 8th Symp. on Math. Foundations of Computer Science, volume 74 of
Lect. Notes Comput. Sci., pages 301–307. Springer-Verlag, 1979.

424. È.Y. Grinberg. Examples of non-Ádám multigraphs. Latv. Mat. Ezhegodnik,
31:128–138, 253, 1988.

425. M. Grohe and M. Grüber. Parameterized approximability of the disjoint cycle
problem. In Proc. ICALP’07: 34th Int. Colloquium on Automata, Languages
and Programming, volume 4596 of Lect. Notes Comput. Sci., pages 363–374.
Springer-Verlag, 2007.

426. J.W. Grossman and R. Häggkvist. Alternating cycles in edge-partitioned
graphs. J. Combin. Theory Ser. B, 34:77–81, 1983.

427. M. Grötschel and F. Harary. The graphs for which all strong orientations are
hamiltonian. J. Graph Theory, 3:221–224, 1979.

428. M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the
linear ordering problem. Oper. Res., 32(6):1195–1220, 1984.

429. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its con-
sequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

430. M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combi-
natorial optimization. Springer-Verlag, 1988.

431. B. Grünbaum. Antidirected Hamiltonian paths in tournaments. J. Combin.
Theory Ser. B, 11:249–257, 1971.

432. Y. Guo. Locally semicomplete digraphs, PhD thesis, RWTH Aachen, Germany,
1995.

433. Y. Guo. Strongly Hamiltonian-connected locally semicomplete digraphs. J.
Graph Theory, 22(1):65–73, 1996.

434. Y Guo. Path-connectivity in local tournaments. Discrete Math., 167/168:353–
372, 1997. 15th British Combinatorial Conference (Stirling, 1995).

435. Y. Guo. Spanning local tournaments in locally semicomplete digraphs. Dis-
crete Appl. Math., 79(1-3):119–125, 1997. 4th Twente Workshop on Graphs
and Combinatorial Optimization (Enschede, 1995).

436. Y. Guo. Semicomplete Multipartite Digraphs: A Generalization of Tourna-
ments. German Habilitation Thesis, RWTH Aachen, Germany 1998.

437. Y. Guo and J.H. Kwak. The cycle structure of regular multipartite tourna-
ments. Discrete Appl. Math., 120:109–116, 2002.

740 References

438. Y. Guo, A. Pinkernell, and L. Volkmann. On cycles through a given vertex in
multipartite tournaments. Discrete Math., 164(1-3):165–170, 1997. The Sec-
ond Krakow Conference on Graph Theory (Zgorzelisko, 1994).

439. Y. Guo, M. Tewes, L. Volkmann, and A. Yeo. Sufficient conditions for semi-
complete multipartite digraphs to be hamiltonian. Discrete Math., 212(1-
2):91–100, 2002.

440. Y. Guo and L. Volkmann. Pancyclic locally semicomplete digraphs. Unpub-
lished manuscript 1992.

441. Y. Guo and L. Volkmann. Cycles in multipartite tournaments. J. Combin.
Theory Ser. B, 62(2):363–366, 1994.

442. Y. Guo and L. Volkmann. On complementary cycles in locally semicomplete
digraphs. Discrete Math., 135(1-3):121–127, 1994.

443. Y. Guo and L. Volkmann. Locally semicomplete digraphs that are comple-
mentary m-pancyclic. J. Graph Theory, 21(2):121–136, 1996.

444. G. Gutin. Criterion for complete bipartite digraphs to be Hamiltonian. Vests̄ı
Akad. Navuk BSSR Ser. F̄ız.-Mat. Navuk, no. 1:109–110, 1984.

445. G. Gutin. Effective characterization of complete bipartite digraphs that have
a Hamiltonian path. Kibernetika (Kiev), no. 4:124–125, 1985.

446. G. Gutin. The radii of n-partite tournaments. Mat. Zametki, 40(3):414–417,
430, 1986.

447. G. Gutin. Finding the largest contour in a complete bipartite digraph. Kiber-
netika, no. 2:117–118, 1987.

448. G. Gutin. Characterization of complete n-partite digraphs that have a Hamil-
tonian path. Kibernetika (Kiev), no. 1:107–108, 136, 1988.

449. G. Gutin. Characterization of vertex pancyclic partly oriented k-partite tour-
naments. Vests̄ı Acad. Navuk BSSR Ser.Fiz.-Mat., no. 2:41–46, 1989.

450. G. Gutin. m-sources in complete multipartite digraphs. Vests̄ı Akad. Navuk
BSSR Ser. F̄ız.-Mat. Navuk, no. 5:101–106, 128, 1989.

451. G. Gutin. Cycles and paths in directed graphs, PhD thesis, School of Mathe-
matics, Tel Aviv University, 1993.

452. G. Gutin. Finding a longest path in a complete multipartite digraph. SIAM
J. Discrete Math., 6:270–273, 1993.

453. G. Gutin. On cycles in multipartite tournaments. J. Combin. Theory Ser. B,
58(2):319–321, 1993.

454. G. Gutin. Polynomial algorithms for finding Hamiltonian paths and cycles in
quasi-transitive digraphs. Australas. J. Combin., 10:231–236, 1994.

455. G. Gutin. Minimizing and maximizing the diameter in orientations of graphs.
Graphs Combin., 10(3):225–230, 1994.

456. G. Gutin. Characterizations of vertex pancyclic and pancyclic ordinary com-
plete multipartite digraphs. Discrete Math., 141(1-3):153–162, 1995.

457. G. Gutin. Cycles and paths in semicomplete multipartite digraphs, theorems,
and algorithms: a survey. J. Graph Theory, 19(4):481–505, 1995.

458. G. Gutin. Exponential neighbourhood local search for the traveling salesman
problem. Comput. Oper. Res., 26:313–320, 1999.

459. G. Gutin. Connected (g, f)-factors and supereulerian digraphs. Ars Combin.,
54:311–317, 2000.

460. G. Gutin. Note on edge-colored graphs and digraphs without properly colored
cycles. Australas. J. Combin., 42:137–140, 2008.

461. G. Gutin, B. Goldengorin, and J. Huang. Worst Case Analysis of Max-Regret,
Greedy and Other Heuristics for Multidimensional Assignment and Traveling
Salesman Problems. J. Heuristics, pages 169–181, 14.

462. G. Gutin, T. Jensen, and A. Yeo. Domination analysis for minimum multi-
processor scheduling. Discrete Appl. Math., 154:2613–2619, 2006.

References 741

463. G. Gutin, A. Johnstone, J. Reddington, E. Scott, A. Soleimanfallah, and A.
Yeo. An algorithm for finding connected convex subgraphs of an acyclic di-
graph, In Algorithms and Complexity in Durham 2007, College Publications,
London, 2007.

464. G. Gutin, N. Jones, A. Rafiey, S. Severini, and A. Yeo. Mediated digraphs and
quantum nonlocality. Discrete Appl. Math., 150(1-3):41–50, 2005.

465. G. Gutin and E.J. Kim. Properly Coloured Cycles and Paths: Results and
Open Problems. Preprint arXiv:0805.3901v3, May 2008.

466. G. Gutin, T. Kloks, C.-M. Lee, and A. Yeo. Kernels in planar digraphs. J.
Comput. Syst. Sci., 71(2):174–184, 2005.

467. G. Gutin, K. M. Koh, E. G. Tay, and A. Yeo. Almost minimum diameter orien-
tations of semicomplete multipartite and extended digraphs. Graphs Combin.,
18(3):499–506, 2002.

468. G. Gutin, K. M. Koh, E. G. Tay, and A. Yeo. On the number of quasi-kernels
in digraphs. J. Graph Theory, 46(1):48–56, 2004.

469. G. Gutin, A. Koller, and A. Yeo. Note on Upper Bounds for TSP Domination
Number. Algor. Oper. Res., 1(1):52–54, 2006.

470. G. Gutin and A. Rafiey. When n-cycles in n-partite tournaments are longest
cycles. Discrete Math., 289(1-3):163–168, 2004.

471. G. Gutin, A. Rafiey, and A. Yeo. On n-partite tournaments with unique n-
cycle. Graphs Combin., 22(2):241–249, 2006.

472. G. Gutin, I. Razgon, and E.J. Kim. Minimum leaf out-branching problems.
In Proc. AAIM’08, volume 5034 of Lect. Notes Comput. Sci., pages 235–246.
Springer, 2008.

473. G. Gutin, M. Tewes, and A. Yeo. Longest paths in strong spanning ori-
ented subgraphs of strong semicomplete multipartite digraphs. Discrete Math.,
222:269–274, 2000.

474. G. Gutin and A. Yeo. Kings in semicomplete multipartite digraphs. J. Graph
Theory, 33:177–183, 2000.

475. G. Gutin and A. Yeo. Note on the path covering number of a semicomplete
multipartite digraph. J. Combin. Math. and Combin. Computing., 32:231–237,
2000.

476. G. Gutin and A. Yeo. Quasi-hamiltonicity: a series of necessary conditions for
a digraph to be hamiltonian. J. Combin. Theory Ser. B, 78:232–242, 2000.

477. G. Gutin and A. Yeo. Remarks on hamiltonian digraphs. Australas. J. Com-
bin., 23:115–118, 2001.

478. G. Gutin and A. Yeo. Orientations of digraphs almost preserving diameter.
Discrete Appl. Math., 121(1-3):129–138, 2002.

479. G. Gutin and A. Yeo. Polynomial approximation algorithms for the TSP and
the QAP with factorial domination number. Discrete Appl. Math., 119:107–
116, 2002.

480. G. Gutin and A. Yeo. Domination Analysis of Combinatorial Optimization
Algorithms and Problems. In M.C. Golumbic and I.B.-A. Hartman, editors,
Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications.
Springer-Verlag, 2005.

481. G. Gutin and A. Yeo. On the number of connected convex subgraphs of a
connected acyclic digraph. Discrete Appl. Math., to appear:5 pp., 2008.

482. G. Gutin and A. Yeo. Some Parameterized Problems on Digraphs. Comput.
J., 51:363–371, 2008.

483. G. Gutin, A. Yeo, and A. Zverovich. Traveling salesman should not be greedy:
domination analysis of greedy-type heuristics for the TSP. Discrete Appl.
Math., 117:81–86, 2002.

http://arxiv.org/abs/0805.3901v3

742 References

484. G. Gutin, A. Yeo, and A. Zverovitch. Exponential neighborhoods and domina-
tion analysis for the tsp. In G. Gutin and A.P. Punnen, editors, The Traveling
Salesman Problem and its Variations. Kluwer, Dordrecht, 2002.

485. M. Habib, M. Morvan, and J.-X. Rampon. On the calculation of transitive
reduction-closure of orders. Discrete Math., 111:289–303, 1993.

486. R. Häggkvist. On F -Hamiltonian graphs. In Graph Theory and Related Topics,
pages 219–231. Academic Press, New York, 1979.

487. R. Häggkvist. Hamilton cycles in oriented graphs. Combin. Probab. Comput.,
2(1):25–32, 1993.

488. R. Häggkvist and Y. Manoussakis. Cycles and paths in bipartite tournaments
with spanning configurations. Combinatorica, 9(1):33–38, 1989.

489. R. Häggkvist and A. Thomason. Trees in tournaments. Combinatorica,
11(2):123–130, 1991.

490. R. Häggkvist and C. Thomassen. On pancyclic digraphs. J. Combin. Theory
Ser. B, 20(1):20–40, 1976.

491. A. Hajnal, E.C. Milner, and E. Szemerédi. A cure for the telephone disease.
Can. Math. Bull., 15:447–450, 1972.

492. S.L. Hakimi, E.F. Schmeichel, and N.E. Young. Orienting graphs to optimize
reachability. Inf. Process. Lett., 63(5):229–235, 1997.

493. P. Hall. On representation of subsets. J. London Math. Soc., 10:26–30, 1935.
494. Y.O. Hamidoune. Contribution a l’ étude de la connectivité d’un graphe, PhD

thesis, Université Paris VI, 1980.
495. Y.O. Hamidoune. An application of connectivity theory in graphs to factor-

izations of elements in finite groups. Eur. J. Combin., 2:349–355, 1981.
496. Y.O. Hamidoune. A note on minimal directed graphs with given girth. J.

Combin. Theory Ser. B, 43:343–348, 1987.
497. S. Hansen. Heuristic and exact methods for solving the feedback arc set prob-

lem. Master’s thesis, Department of Mathematics and Computer Science, Uni-
versity of Southern Denmark, Odense, 1999.

498. F. Harary. The maximum connectivity of a graph. Proc. Natl. Acad. Sci.
U.S.A., 48:1142–1146, 1962.

499. F. Harary, J.A. Kabell, and F.R. McMorris. Bipartite intersection graphs.
Comment. Math. Univ. Carolin., 23:739–745, 1982.

500. F. Harary, J. Krarup, and A. Schwenk. Graphs suppressible to an edge. Can.
Math. Bull., 15:201–204, 1971.

501. F. Harary and L. Moser. The theory of round robin tournaments. Amer. Math.
Mon., 73:231–246, 1966.

502. F. Harary and R.Z. Norman. Some properties of line digraphs. Rend. Circ.
Mat. Palermo, 9(2):161–168, 1960.

503. F. Harary, R.Z. Norman, and D. Cartwright. Structural Models. John Wiley
& Sons, 1965.

504. R. Hassin and S. Khuller. z-Approximations. J. Algor., 41:429–442, 2001.
505. F. Havet. Finding an oriented hamiltonian path in a tournament. J. Algor.,

36:253–275, 2000.
506. F. Havet. Oriented Hamiltonian cycles in tournaments. J. Combin. Theory,

80:1–31, 2000.
507. F. Havet. Stable set meeting every longest path. Discrete Math., 289:169–173,

2004.
508. F. Havet and S. Thomassé. Median orders of tournaments: a tool for the second

neighborhood problem and Sumner’s conjecture. J. Graph Theory, 35(4):244–
256, 2000.

509. F. Havet and S. Thomassé. Oriented hamiltonian paths in tournaments: a
proof of Rosenfeld’s conjecture. J. Combin. Theory Ser. B, 78:243–273, 2000.

References 743

510. F. Havet, S. Thomassé, and A. Yeo. Hoàng-Reed Conjecture holds for tour-
naments. Discrete Math., 308:3412–3415, 2008.

511. S.M. Hedetniemi, S.T. Hedetniemi, and A. Liestman. A survey of gossiping
and broadcasting in communication networks. Networks, 18:129–134, 1988.

512. P. Hell, J. Bang-Jensen, and J. Huang. Local tournaments and proper circular
arc graphs. In Algorithms (Tokyo, 1990), volume 450 of Lect. Notes Comput.
Sci., pages 101–108. Springer, 1990.

513. P. Hell and J. Huang. Lexicographic orientation and representation algorithms
for comparability graphs, proper circular arc graphs, and proper interval
graphs. J. Graph Theory, 20(3):361–374, 1995.

514. P. Hell and M. Rosenfeld. The complexity of finding generalized paths in
tournaments. J. Algor., 4(4):303–309, 1983.

515. P. Hell and M. Rosenfeld. Antidirected hamiltonian paths between specified
vertices of a tournament. Discrete Appl. Math., 117:87–98, 2002.

516. R.L. Hemminger and L.W. Beineke. Line graphs and line digraphs. In L.W.
Beineke and R.J. Wilson, editors, Selected Topics in Graph Theory, pages
271–305. Academic Press, London, 1978.

517. G.R.T. Hendry. Extending cycles in directed graphs. J. Combin. Theory Ser.
B, 46(2):162–172, 1989.

518. G.R.T. Hendry. Extending cycles in graphs. Discrete Math., 85(1):59–72,
1990.

519. J.S. Heslop-Harrison and M.D. Bennett. Prediction and analysis of spacial
order in haploid chromosome complements. Proc. R. Soc. London, B:211–223,
1983.

520. J.S. Heslop-Harrison and M.D. Bennett. The spacial order of chromosomes in
root-tip metaphases of Aegilops umbellulata. Proc. R. Soc. London, B:225–
239, 1983.

521. G. Hetyei. Cyclic connectivity classes of directed graphs. Acta Math. Acad.
Paedagog. Nyházi., 17:47–59, 2001.

522. C. Heuchenne. Sur une certaine correspondance entre graphs. Bull. Soc. R.
Sci. Liége, 33:743–753, 1964.

523. J. van den Heuvel and M. Johnson. Transversals of subtree hypergraphs
and the source location problem in digraphs, CDAM Research Report LSE-
CDAM-2004-10, London School of Economics, 2004.

524. J. van den Heuvel and M. Johnson. The external network problem with edge-
or arc-connectivity requirements, In Proc. CAAN 2004, volume 3405 of Lect.
Notes Comput. Sci., pages 114–126, 2005.

525. M.-C. Heydemann and D. Sotteau. About some cyclic properties in digraphs.
J. Combin. Theory Ser. B, 38(3):261–278, 1985.

526. M.-C. Heydemann, D. Sotteau, and C. Thomassen. Orientations of Hamilto-
nian cycles in digraphs. Ars Combin., 14:3–8, 1982.

527. M.C. Heydemann. On cycles and paths in digraphs. Discrete Math., 31:217–
219, 1980.

528. F.S. Hillier and G.J. Lieberman. Introduction to Operations Research. Mc-
Graw Hill, 2001.

529. A.J.W. Hilton. Alternating Hamiltonian circuits in edge-coloured bipartite
graphs. Discrete Appl. Math., 35:271–273, 1992.

530. C.T. Hoang and B. Reed. A note on short cycles in digraphs. Discrete Math.,
66(1-2):103–107, 1987.

531. A.J. Hoffman. Some recent applications of the theory of linear inequalities to
extremal combinatorial analysis. In R. Bellman and M. Hall, editors, Combina-
torial Analysis, pages 113–128. American Mathematical Society, Providence,
RI, 1960.

744 References

532. H.H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applica-
tions. Morgan Kaufmann, San Francisco, 2004.

533. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 1979.

534. J.E. Hopcroft and R.E. Tarjan. Efficient planarity testing. J. Assoc. Comput.
Mach., 21:549–568, 1974.

535. F.W. Horsley. Means Scheduling Manual: On-Time, On-Budget Construction
Up-To-Date Computerized Scheduling. Roberts Means Co., 1991.

536. J. Hromkovič, R. Klasing, B. Monien, and R. Peine. Dissemination of informa-
tion in interconnection networks (broadcasting & gossiping). In Combinatorial
network theory, pages 125–212. Kluwer, Dordrecht, 1996.

537. H.T. Hsu. An algorithm for finding a minimal equivalent graph of a digraph.
J. Assoc. Comput. Mach., 22:11–16, 1975.

538. J. Huang. Tournament-like oriented graphs, PhD thesis, School of Computing
Science, Simon Fraser University, Canada, 1992.

539. J. Huang. On the structure of local tournaments. J. Combin. Theory Ser. B,
63(2):200–221, 1995.

540. J. Huang. A note on spanning local tournaments in locally semicomplete di-
graphs. Discrete Appl. Math., 89:277–279, 1998.

541. J. Huang. Which digraphs are round? Australas. J. Combin., 19:203–208,
1999.

542. J. Huang and D. Ye. Sharp Bounds for the Oriented Diameters of Interval
Graphs and 2-Connected Proper Interval Graphs. In Computational Science
- ICCS 2007, 7th International Conference, Beijing, China, Proceedings, Part
III, volume 4489 of Lect. Notes Comput. Sci., pages 353–361. Springer, 2007.

543. A. Hubenko. On a cyclic connectivity property of directed graphs. Discrete
Math., 308:1018–1024, 2008.

544. P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games,
and orderings, In SODA’07: Proc. 18th annual ACM-SIAM symposium on
Discrete algorithm, pages 637–644, New York, NY, USA, 2007, ACM.

545. F.K. Hwang. The Hamiltonian property of linear functions. Oper. Res. Lett.,
6:125–127, 1987.

546. T. Ibaraki and S. Poljak. Weak three-linking in Eulerian digraphs. SIAM J.
Discrete Math., 4(1):84–98, 1991.

547. M. Imase and M. Itoh. Design to minimize a diameter on building block net-
works. IEEE Trans. Comput., C-30:439–443, 1981.

548. M. Imase and M. Itoh. Design for directed graphs with minimum diameter.
IEEE Trans. Comput., C-32:782–784, 1983.

549. M. Imase, I. Soneoka, and K. Okada. Connectivity of regular directed graphs
with small diameter. IEEE Trans. Comput., C-34:267–273, 1985.

550. M. Imase, I. Soneoka, and K. Okada. A fault tolerant processor interconnection
network. Syst. Comput. Japan, 17:21–30, 1986.

551. M. Imori, M. Matsumoto, and H. Yamada. The line digraph of a regular and
pancircular digraph is also regular and pan circular. Graphs Combin., 4:235–
239, 1988.

552. G. Isaak. Tournaments as feedback arc sets. Electron. J. Combin., 2:19pp,
1995.

553. H. Ito, K. Makino, K. Arata, S. Honami, Y. Itatsu, and S. Fujishige. Source
location problem with flow requirements in directed networks. Optimization
Methods and Software, 18:427–435, 2003.

554. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. J. Assoc. Comput. Mach.,
48:761–777, 2001.

References 745

555. B. Jackson. Long paths and cycles in oriented graphs. J. Graph Theory,
5(2):145–157, 1981.

556. B. Jackson. Some remarks on arc-connectivity, vertex splitting, and orientation
in graphs and digraphs. J. Graph Theory, 12(3):429–436, 1988.

557. B. Jackson and O. Ordaz. A Chvátal-Erdős condition for (1, 1)-factors in di-
graphs. Discrete Math., 57(1-2):199–201, 1985.

558. B. Jackson and O. Ordaz. Chvátal-Erdős conditions for paths and cycles in
graphs and digraphs. A survey. Discrete Math., 84(3):241–254, 1990.

559. H. Jacob and H. Meyniel. About quasi-kernels in a digraph. Discrete Math.,
154(1-3):279–280, 1996.

560. F. Jaeger. On nowhere-zero flows in multigraphs. Congr. Numer., 15:373–378,
1976.

561. F. Jaeger. On five-edge-colorings of cubic graphs and nowhere-zero flow prob-
lems. Ars Combin., 20(B):229–244, 1985.

562. F. Jaeger. Nowhere-zero flow problems. In Selected Topics in Graph Theory,
3, pages 71–95. Academic Press, 1988.

563. J. Janssen. The Dinitz problem solved for rectangles. Bull. Amer. Math. Soc.,
29:243–249, 1993.

564. T.R. Jensen and B. Toft. Graph coloring problems. John Wiley & Sons, Inc.,
New York, 1995. A Wiley-Interscience Publication.

565. W.S. Jewell. Optimal flow through networks, Technical Report 8, OR Center,
MIT, Cambridge, 1958.

566. J. Jirásek. On a certain class of multidigraphs, for which reversal of no arc
decreases the number of their cycles. Comment. Math. Univ. Carolin., 28:185–
189, 1987.

567. J. Jirásek. Some remarks on Ádám’s conjecture for simple directed graphs.
Discrete Math., 108:327–332, 1992.

568. J. Jirásek. Arc reversal in nonhamiltonian circulant oriented graphs. J. Graph
Theory, 49(1):59–68, 2005.

569. D.B. Johnson. Efficient algorithms for shortest paths in sparse networks. J.
Assoc. Comput. Mach., 24:1–13, 1977.

570. D.S. Johnson, C.R. Aragon, L. McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; part 1, Graph partitioning.
Oper. Res., 37:865–892, 1989.

571. D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo, X. Zhang, and A. Zverovitch.
Experimental analysis of heuristics for the atsp. In G. Gutin and A.P. Punnen,
editors, The Traveling Salesman Problem and its Variations, pages 445–487.
Kluwer, Dordrecht, 2002.

572. D.S. Johnson and L.A. McGeoch. Experimental Analysis of Heuristics for the
STSP. In G. Gutin and A.P. Punnen, editors, The Traveling Salesman Problem
and its Variations, pages 369–443. Kluwer, Dordrecht, 2002.

573. T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Directed Tree-
Width. J. Combin. Theory Ser. B, 82(1):138–154, 2001.

574. N.S. Jones, N. Linden, and S. Massar. The Extent of Multi-particle Quantum
Non-locality. Phys. Rev. A, 71:042329, 2005.

575. T. Jordán. Increasing the vertex-connectivity in directed graphs. In
Algorithms—ESA ’93 (Bad Honnef, 1993), volume 726 of Lect. Notes Comput.
Sci., pages 236–247. Springer, 1993.

576. T. Jordán. Connectivity augmentation problems in Graphs, PhD thesis, De-
partment of Computer Science, Eötvös University, Budapest, 1994.

577. T. Jordán. On the optimal vertex-connectivity augmentation. J. Combin. The-
ory Ser. B, 63:8–20, 1995.

746 References

578. T. Jordán. On the existence of k edge-disjoint 2-connected spanning sub-
graphs. J. Combin. Theory Ser. B, 95(2):257–262, 2005.

579. S. Jukna. Extremal Combinatorics with Applications in Computer Science.
Springer, Berlin, 2001.

580. H.A. Jung. Eine Verallgemeinerung des n-fachen zusammenhangs für
Graphen. Math. Ann., 187:95–103, 1970.

581. Y. Kaneko and S.C. Locke. The minimum degree approach for Paul Seymour’s
distance 2 conjecture. Congr. Numer., 148:201–206, 2001.

582. S. Kapoor and H. Ramesh. An Algorithm for Enumerating All Spanning Trees
of a Directed Graph. Algorithmica, 27(2):120–130, 2000.

583. J. Kari. Synchronizing finite automata on Eulerian digraphs. Theor. Comput.
Sci., 295:223–232, 2003.

584. R.M. Karp. A simple derivation of Edmonds’ algorithm for optimum branch-
ing. Networks, 1:265–272, 1971/72.

585. R.M. Karp. Reducibility among combinatorial problems. In Complexity of
computer computations (Proc. Symp., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, 1972.

586. A.V. Karzanov. The problem of finding the maximal flow in a network by the
method of preflows. Dokl. Akad. Nauk SSSR, 215:49–52, 1974.

587. P. Keevash, D. Kühn, and D. Osthus. An exact minimum degree condition for
Hamilton cycles in oriented graphs. Submitted 2007.

588. L. Kelly, D. Kühn, and D. Osthus. A Dirac type result on Hamilton cycles in
oriented graphs. http://arxiv.org/abs/0709.1047, 2007.

589. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, New
York, 1976.

590. A. Kemnitz and B. Greger. A forbidden subdigraph condition implying an
oriented graph to be Hamiltonian. Congr. Numer., 130:127–131, 1998.

591. C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proc.
STOC’07: 39th Annual ACM Symposium on Theory of Computing, pages 95–
103. ACM Press, 2007.

592. S. Khuller, B. Raghavachari, and N. Young. Approximating the minimum
equivalent digraph. SIAM J. Comput., 24(4):859–872, 1995.

593. S. Khuller, B. Raghavachari, and N. Young. On strongly connected digraphs
with bounded cycle length. Discrete Appl. Math., 69(3):281–289, 1996.

594. S. Khuller, B. Raghavachari, and A. Zhu. A uniform framework for approx-
imating weighted connectivity problems, In SODA’99: Proc. 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, Maryland), pages
937–938, Philadelphia, 1999, SIAM.

595. Z. Király and Z. Szigeti. Simultaneous well-balanced orientations of graphs.
J. Combin. Theory Ser. B, 96(5):684–692, 2006.

596. G. Kirchoff. Über die Ausflösung der Gleichungen auf welsche man bei der
Untersuchungen der Linearen Verteilung Galvanisher Ströme geführt wird.
Poggendorf Ann. Phys., 72:497–508, 1847.

597. L.M. Kirousis and C.H. Papadimitriou. Interval graphs and searching. Discrete
Math., 55:181–184, 1985.

598. M. Klein. A primal method for minimum cost flows with applications to the
assignment and transportation problems. Manage. Sci., 14:205–220, 1967.

599. J. Kleinberg and É. Tardos. Algorithm Design. Pearson Education, Inc., Ad-
dison Wesley, Boston, 2006.

600. P. Kleinschmidt and H. Schannath. A strongly polynomial algorithm for the
transportation problem. Math. Program., 68:1–13, 1995.

601. T. Kloks. Treewidth: computations and approximations, volume 842 of Lect.
Notes Comput. Sci. Springer-Verlag, 1994.

http://arxiv.org/abs/0709.1047

References 747

602. D.E. Knuth. The art of computer programming. Vol. 1: Fundamental algo-
rithms. Addison-Wesley, Reading, 1968. Second printing.

603. A.V. Knyazev. Diameters of Pseudosymmetric Graphs. Math. Notes, 41(5-
6):473–482, 1987.

604. W. Kocay and D. Stone. An algorithm for balanced flows. J. Combin. Math.
Combin. Comput., 19:3–31, 1995.

605. K.M. Koh. Even circuits in directed graphs and Lovasz’s conjecture. Bull.
Malays. Math. Soc., 7(3):47–52, 1976.

606. K.M. Koh and B.P. Tan. The diameters of a graph and its orientations, Tech-
nical report, Department of Mathematics, National University of Singapore,
1992.

607. K.M. Koh and B.P. Tan. Kings in multipartite tournaments. Discrete Math.,
147:171–183, 1995.

608. K.M. Koh and B.P. Tan. Number of 4-kings in bipartite tournaments with no
3-kings. Discrete Math., 154(1-3):281–287, 1996.

609. K.M. Koh and B.P. Tan. The number of kings in a multipartite tournament.
Discrete Math., 167/168:411–418, 1997.

610. K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of
even cycles and paths. Networks, 30(1):1–7, 1997.

611. K.M. Koh and E.G. Tay. Optimal orientations of products of paths and cycles.
Discrete Appl. Math., 78(1-3):163–174, 1997.

612. K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of
graphs (I). Discrete Math., 190:115–136, 1998.

613. K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products with
a bipartite graph. Discrete Appl. Math., 98:103–120, 1999.

614. K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of
graphs (II): complete graphs and even cycles. Discrete Math., 211:75–102,
2000.

615. K.M. Koh and E.G. Tay. On optimal orientations of G vertex-multiplications.
Discrete Math., 219:153–171, 2000.

616. K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of
trees. Graphs Combin., 17:79–97, 2001.

617. A.E. Koller and S.D. Noble. Domination Analysis of Greedy Heuristics for the
Frequency Assignment Problem. Discrete Math., 275(1-3):331–338, 2004.

618. D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre. Math. Ann., 77:454–465, 1916.

619. D. König. Graphs and matrices (in Hungarian). Mat. Fiz. Lapok, 38:116–119,
1931.

620. D. König. Theorie der endlichen und unendlichen Graphen. Akademische
Verlagsgesellschaft, 1936.

621. J.-C. König, D.W. Krumme, and E. Lazard. Diameter preserving orientation
of the torus. Networks, 32:1–11, 1998.

622. B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, 2000.
623. A. Kotzig. On the theory of finite graphs with a linear factor II. Math. Fyz.

C̆azopis, 9:73–91, 1959.
624. A. Kotzig. Moves without forbidden transitions in a graph. Math. Fyz.

C̆azopis, 18:76–80, 1968.
625. A. Kotzig. The decomposition of a directed graph into quadratic factors con-

sisting of cycles. Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ., 22:27–
29, 1969.

626. S. Kreutzer and S. Ordyniak. Digraph decomposition and monotonicity in
digraph searching. Manuscript, March 2008.

748 References

627. M. Kriesell. Disjoint A-paths in digraphs. J. Combin. Theory Ser. B,
95(1):168–172, 2005.

628. D. Kühn and D. Osthus. Linkedness and ordered cycles in digraphs. Combin.
Probab. Comput., 17:411–422, 2008.

629. D. Kühn, D. Osthus, and A. Young. A note on complete subdivisions in di-
graphs of large out-degree. J. Graph Theory, 57:1–6, 2008.

630. D. Kühn, D. Osthus, and A. Young. k-Ordered Hamilton cycles in digraphs.
J. Combin. Theory Ser. B, to appear, 2008.

631. A. Kunzmann and H.J. Wunderlich. An analytical approach to the partial
scan problem. J. Electron. Testing Theory Appl., 1:163–174, 1990.

632. C. Kuratowski. Sur le probléme des courbes gauches en topologie. Fund. Math.,
15:271–283, 1930.

633. J.M. Laborde, C. Payan, and N.H. Xuong. Independent sets and longest di-
rected paths in digraphs. Teubner-Texte Math., 59:173–177, 1983.

634. H.G. Landau. On dominance relations and the structure of animal societies
III. The condition for a score structure. Bull. Math. Biophys., 15:143–148,
1953.

635. M. Las Vergnas. Sur les arborescences dans un graphe orienté. Discrete Math.,
15(1):27–39, 1976.

636. E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart & Winston, New York, 1976.

637. E.L. Lawler. Sequencing jobs to minimize total weighted completion time sub-
ject to precedence constraints. Ann. Discrete Math., 2:75–90, 1978. Algorith-
mic aspects of combinatorics (Conf., Vancouver Island, B.C., 1976).

638. O. Lee and Y. Wakabayashi. Note on a min-max conjecture of Woodall. J.
Graph Theory, 38(1):36–41, 2001.

639. C.E. Leiserson and J.B. Saxe. Retiming synchronous circuitry. Algoritmica,
6:5–35, 1991.

640. L.A. Levin. Universal sorting problems. Probl. Inf. Transm., 9:265–266, 1973.
641. M. Lewin. On maximal circuits in directed graphs. J. Combin. Theory Ser.

B, 18:175–179, 1975.
642. H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation.

Prentice Hall, 1998.
643. H. Li and J. Shu. The partition of a strong tournament. Discrete Math.,

290:211–220, 2005.
644. N. Lichiardopol, A. Pór, and J.-S. Sereni. A step towards the Bermond-

Thomassen conjecture about disjoint cycles in digraphs. Manuscript 2007.
645. N. Linial, L. Lovász, and A. Wigderson. Rubber bands, convex embeddings

and graph connectivity. Combinatorica, 8(1):91–102, 1988.
646. C. Little, K. Teo, and H. Wang. On a conjecture on directed cycles in a directed

bipartite graph. Graphs Combin., 13(3):267–273, 1997.
647. J. Liu and H.S. Zhou. Graphs and digraphs with given girth and connectivity.

Discrete Math., 132(1-3):387–390, 1994.
648. X. Liu and D.B. West. Line digraphs and coreflexive vertex sets. Discrete

Math., 188(1-3):269–277, 1998.
649. Y. Liu, S. Lu, J. Chen, and S.-H. Sze. Greedy localization and color-coding:

Improved matching and packing algorithms. In Proc. IWPEC 2006, volume
4169 of Lect. Notes Comput. Sci., pages 84–95. Springer, 2006.

650. S.C. Locke and D. Witte. On non-Hamiltonian circulant digraphs of out-degree
three. J. Graph Theory, 30:319–331, 1999.

651. L. Lovász. On decompositions of graphs. Stud. Sci. Math. Hung., 1:237–238,
1966.

References 749

652. L. Lovász. Connectivity in digraphs. J. Combin. Theory Ser. B, 15:174–177,
1973.

653. L. Lovász. Coverings and coloring of hypergraphs. Congr. Numer., 8:3–12,
1973.

654. L. Lovász. On two min–max theorems in graph theory. J. Combin. Theory
Ser. B, 21:96–103, 1976.

655. L. Lovász. Combinatorial problems and exercises. North-Holland, Amsterdam,
1979.

656. L. Lovász. Connectivity algorithms using rubber bands. In Foundations of
software technology and theoretical computer science (New Delhi, 1986), pages
394–411. Springer, 1986.

657. L. Lovász and M.D. Plummer. Matching theory, volume 29. North-Holland,
1986. Ann. Discrete Math.

658. X. Lu. On avoidable and unavoidable trees. J. Graph Theory, 22:335–346,
1996.

659. C.L. Lucchesi. A minimax equality for directed graphs, PhD thesis, University
of Waterloo, Ontario, Canada, 1976.

660. C.L. Lucchesi and M.C.M.T. Giglio. On the connection between the undirected
and the acyclic directed two disjoint paths problem. Ars Combin., 47:191–200,
1997.

661. C.L. Lucchesi and D.H. Younger. A minimax theorem for directed graphs. J.
London Math. Soc. (2), 17(3):369–374, 1978.

662. J.F. Lynch. The equivalence of theorem proving and the interconnection prob-
lem. (ACM) SIGDA Newsl., 5(3):31–36, 1975.

663. W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von
Graphen. Math. Ann., 174:265–268, 1967.

664. W. Mader. Minimale n-fach kantenzusammenhängende Graphen. Math. Ann.,
191:21–28, 1971.

665. W. Mader. Ecken vom Grad n in minimalen n-fach zusammenhängenden
Graphen. Arch. Math. (Basel), 23:219–224, 1972.

666. W. Mader. 1-factoren von Graphen. Math. Ann., 201:269–282, 1973.
667. W. Mader. Ecken vom Innen- und Aussengrad n in minimal n-fach kanten-

zusammenhängenden Digraphen. Arch. Math. (Basel), 25:107–112, 1974.
668. W. Mader. A reduction method for edge-connectivity in graphs. Ann. Discrete

Math., 3:145–164, 1978. Advances in graph theory (Cambridge Combinatorial
Conf., Trinity College, Cambridge, 1977).

669. W. Mader. Konstruktion aller n-fach kantenzusammenhängenden Digraphen.
Eur. J. Combin., 3(1):63–67, 1982.

670. W. Mader. Degree and local connectivity in digraphs. Combinatorica,
5(2):161–165, 1985.

671. W. Mader. Minimal n-fach zusammenhängende Digraphen. J. Combin. Theory
Ser. B, 38(2):102–117, 1985.

672. W. Mader. Ecken von kleinem Grad in kritisch n-fach zusammenhängenden
Digraphen. J. Combin. Theory Ser. B, 53(2):260–272, 1991.

673. W. Mader. Existence of vertices of local connectivity k in digraphs of large
outdegree. Combinatorica, 15(4):533–539, 1995.

674. W. Mader. On topological tournaments of order 4 in digraphs of outdegree 3.
J. Graph Theory, 21(4):371–376, 1996.

675. W. Mader. On vertices of degree n in minimally n-connected graphs and
digraphs. In Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993),
pages 423–449. János Bolyai Math. Soc., Budapest, 1996.

676. W. Mader. On vertices of out-degree n in minimally n-connected digraphs. J.
Graph Theory, 39:129–144, 2002.

750 References

677. W. Mader. High connectivity keeping sets in graphs and digraphs. Discrete
Math., 302:173–187, 2005.

678. F. Maffray. Kernels in perfect line graphs. J. Combin. Theory Ser. B, 55:1–8,
1992.

679. V.M. Malhotra, M.P. Kumar, and S.N. Maheshwari. An O(n3) algorithm for
finding maximum flows in networks. Inf. Processing Lett., 7:277–278, 1978.

680. Y. Manoussakis. k-linked and k-cyclic digraphs. J. Combin. Theory Ser. B,
48(2):216–226, 1990.

681. Y. Manoussakis. A linear-time algorithm for finding Hamiltonian cycles in
tournaments. Discrete Appl. Math., 36(2):199–201, 1992.

682. Y. Manoussakis. Directed Hamiltonian graphs. J. Graph Theory, 16(1):51–59,
1992.

683. Y. Manoussakis. Alternating paths in edge-coloured complete graphs. Discrete
Appl. Math., 56:297–309, 1995.

684. Y. Manoussakis, M. Spyratos, Zs. Tuza, and M. Voigt. Minimal colorings for
properly colored subgraphs. Graphs Combin., 12:345–360, 1996.

685. S. Martello and P. Toth. Finding a minimum equivalent graph of a digraph.
Networks, 12:89–100, 1982.

686. T. Masuzawa, K. Hagihara, and N. Tokura. An optimal time algorithm for the
k-vertex-connectivity unweighted augmentation problem for rooted directed
trees. Discrete Appl. Math., 17(1-2):67–105, 1987.

687. D. May. The next generation transputers and beyond. In Distributed Memory
Computing, volume 487 of Lect. Notes Comput. Sci., pages 7–22. Springer-
Verlag, 1991.

688. J.E. McCanna. Orientations of the n-cube with minimum diameter. Discrete
Math., 68(2-3):309–310, 1988.

689. W. McCuaig. Intercyclic digraphs. In Graph structure theory (Seattle, WA,
1991), volume 147 of Contemp. Math., pages 203–245. American Mathematical
Society, 1993.

690. C. McDiarmid. Probability. In L.W. Beineke et al., editor, Graph connections.
Relationships between graph theory and other areas of mathematics, pages 194–
207. Oxford University Press, Oxford, 1997.

691. K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-
completeness. Springer-Verlag, Berlin, 1984.

692. D. Meierling and L. Volkmann. All 2-connected in-tournaments that are cycle
complementary. Discrete Math., 308:2115–2133, 2008.

693. D. Meierling and L. Volkmann. On arc-traceable local tournaments. Discrete
Math., to appear, 2008.

694. V. Melkonian and É. Tardos. Algorithms for a network design problem with
crossing supermodular demands. Networks, 43(4):256–265, 2004.

695. V. Melkonian and É. Tardos. Primal-dual-based algorithms for a directed
network design problem. INFORMS J. Comput., 17(2):159–174, 2005.

696. K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96–115, 1927.
697. A. Metzlar. Disjoint paths in acyclic digraphs. J. Combin. Theory Ser. B,

57(2):228–238, 1993.
698. H. Meyniel. Une condition suffisante d’existence d’un circuit hamiltonien dans

un graphe orienté. J. Combin. Theory Ser. B, 14:137–147, 1973.
699. M. Miller and I. Fris. Maximum order digraphs for diameter 2 or degree 2.

In Pullman Volume of Graphs and Matrices, volume 139 of Lect. Notes Pure
Appl. Math., pages 269–278. Pullman, New York, 1992.

700. G.J. Minty. A theorem on n-colouring the points of a linear graph. Amer.
Math. Mon., 69:623–624, 1962.

References 751

701. C.L. Monma and J.B. Sidney. A general algorithm for optimal job sequencing
with series-parallel constraints. Math. Oper. Res., 4:215–224, 1977.

702. J.W. Moon. Solution to problem 463. Math. Mag., 35:189, 1962.
703. J.W. Moon. On subtournaments of a tournament. Can. Math. Bull., 9:297–

301, 1966.
704. J.W. Moon. Topics on tournaments. Holt, Rinehart & Winston, New York,

1968.
705. E.F. Moore. The shortest path through a maze. In Proc. Int. Symp. on the

Theory of Switching, pages 285–292. Harward University Press, 1959.
706. M. Morvan and L. Viennot. Parallel comparability graph recognition and

modular decomposition. In STACS 96, pages 169–180. Springer, 1996.
707. H.M. Mulder. Julius Petersen’s theory of regular graphs. Discrete Math.,

100:157–175, 1992.
708. H. Müller. Recognizing interval digraphs and interval bigraphs in polynomial

time. Discrete Appl. Math., 78:189–205, 1997.
709. J.H. Muller and J. Spinrad. Incremental modular decomposition. J. Assoc.

Comput. Mach., 36(1):1–19, 1989.
710. K.G. Murty. Network programming. Prentice Hall, Englewood Cliffs, NJ, 1992.
711. D. Naddef. Polyhedral Theory and Branch-and-Cut Algorithms for the Sym-

metric TSP. In G. Gutin and A.P. Punnen, editors, The Traveling Salesman
Problem and its Variations, pages 29–116. Kluwer, Dordrecht, 2002.

712. H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5-
6):583–596, 1992.

713. H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs
and capacitated graphs. SIAM J. Discrete Math., 5(1):54–66, 1992.

714. H. Nagamochi and T. Ibaraki. Deterministic eO(nm) time edge-splitting in
undirected graphs. J. Combin. Optim., 1(1):5–46, 1997.

715. W. Narkiewicz. Number Theory. World Scientific, Singapore, 1983.
716. C.St.J.A. Nash-Williams. On orientations, connectivity and odd-vertex-

pairings in finite graphs. Can. J. Math., 12:555–567, 1960.
717. C.St.J.A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. Lon-

don Math. Soc., 36:445–450, 1961.
718. C.St.J.A. Nash-Williams. Decomposition of finite graphs into forests. J. Lon-

don Math. Soc., 39:12, 1964.
719. C.St.J.A. Nash-Williams. Problem 47. In Proc. Colloq. Tihany 1966, page

366. Academic Press, 1968.
720. C.St.J.A. Nash-Williams. Hamilton circuits in graphs and digraphs. In The

many facets of graph theory, volume 110 of Springer-Verlag Lect. Notes, pages
237–243. Springer-Verlag, 1969.

721. C.St.J.A. Nash-Williams. Hamilton circuits. In Studies in Graph Theory Part
II, Studies in Mathematics 12, pages 301–360. Mathematical Association of
America, Washington, DC, 1975.

722. M. Natu and S.-C. Fang. The point-to-point connection problem–analysis and
algorithms. Discrete Appl. Math., 78:207–226, 1997.

723. J. von Neumann and O. Morgenstern. Theory of Games and Economic Be-
havior. Princeton University Press, Princeton, NJ, 1944.

724. V. Neumann-Lara. The acyclic disconnection of a digraph. Talk at the 16th
British Combin. Conference 1997.

725. L.L. Ng. Hamiltonian decomposition of complete regular multipartite di-
graphs. Discrete Math., 177(1-3):279–285, 1997.

726. L.L. Ng. Hamiltonian decomposition of lexicographic products of digraphs. J.
Combin. Theory Ser. B, 73(2):119–129, 1998.

752 References

727. R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University
Press, Oxford, 2006.

728. M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, 2000.

729. T. Nishimura. Short cycles in digraphs. Discrete Math., 72(1-3):295–298, 1988.
730. Y. Nobert and J.-C. Picard. An optimal algorithm for the mixed Chinese

postman problem. Networks, 27(2):95–108, 1996.
731. J. Obdržálek. DAG-width: connectivity measure for directed graphs, In

SODA’06: Proc. 17th annual ACM-SIAM symposium on Discrete algorithm,
pages 814–821, New York, NY, USA, 2006, ACM.

732. C. Olsen. Heuristics for combinatorial optimization problems. Course project
1998.

733. O. Ore. Theory of graphs. American Mathematical Society, Providence,
RI, 1962. American Mathematical Society Colloquium Publications, Vol.
XXXVIII.

734. Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov. Cluster-based delta com-
pression of a collection of files, In Proc. 3rd International Conf. on Web In-
formation Systems Engineering (WISE 2002), pages 257–268, 2002.

735. M. Overbeck-Larisch. Hamiltonian paths in oriented graphs. J. Combin. The-
ory Ser. B, 21(1):76–80, 1976.

736. M. Overbeck-Larisch. A theorem on pancyclic-oriented graphs. J. Combin.
Theory Ser. B, 23(2-3):168–173, 1977.

737. C. Özturan. Network flow models for electronic barter exchange. J. Org. Com-
put. Electron. Commer., 14(3):175–194, 2004.

738. C. Özturan. Resource bartering in data grids. Sci. Program., 12:155–168,
2004.

739. C. Özturan. Used car salesman problem: a differential auction-barter market.
Ann. Math. Artif. Intell., 44(3):255–267, 2005.

740. A. Palbom. Complexity of the directed spanning cactus problem. Discrete
Appl. Math., 146(1):81–91, 2005.

741. C.H. Papadimitriou. On the complexity of edge-traversing. J. Assoc. Comput.
Mach., 23:544–554, 1976.

742. C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms
and complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

743. C.H. Papadimitriou and M. Yannakakis. On limited nondeterminism and the
complexity of the V-C dimension, In Proc. 8th Annual Symp. Structure in
Complexity Theory, pages 12–18, San Diego, 1993.

744. R. Pastor and A. Corominas. Branch and win: OR tree search algorithm for
solving combinatorial optimization problems. Top, 1:169–192, 2004.

745. L.E. Penn and D. Witte. When the Cartesian product of two directed cycles
is hypohamiltonian. J. Graph Theory, 7:441–443, 1983.

746. Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs of
vertices in a graph. J. Assoc. Comput. Mach., 25:1–9, 1978.

747. J. Petersen. Die Theorie der regulären graphs. Acta Math., 15:193–220, 1891.
748. V. Petrović. Kings in bipartite tournaments. Discrete Math., 173(1-3):187–

196, 1997.
749. V. Petrović and C. Thomassen. Kings in k-partite tournaments. Discrete

Math., 98(3):237–238, 1991.
750. P.A. Pevzner. DNA physical mapping and alternating eulerian cycles in col-

ored graphs. Algorithmica, 13, 1995.
751. J. Plesńık. Remarks on diameters of orientations of graphs. Acta Math. Univ.

Comenian., 46/47:225–236 (1986), 1985.

References 753

752. J. Plesńık and S. Znám. Strongly geodetic directed graphs. Acta Fac. Rerum
Nat. Univ. Comenianae Math., 29:29–34, 1975.

753. L. Pósa. A theorem concerning Hamiltonian lines. Publ. Math. Inst. Hung.
Acad. Sci., 7:225–226, 1962.

754. E. Prisner. Graph dynamics. Longman, Harlow, 1995.
755. E. Prisner. Line graphs and generalizations—a survey. Congr. Numer.,

116:193–229, 1996. Surveys in graph theory (San Francisco, 1995).
756. A.P. Punnen and S. Kabadi. Domination analysis of some heuristics for the

asymmetric traveling salesman problem. Discrete Appl. Math., 119(1):117–
128, 2001.

757. A.P. Punnen, F. Margot, and S.N. Kabadi. TSP heuristics: domination anal-
ysis and complexity. Algorithmica, 35:111–127, 2003.

758. J. Radhakrishnan and A. Srinivasan. Improved bounds and algorithms for
hypergraph 2-colouring. Random Struct. Algor., 16:4–32, 2000.

759. R. Rado. Note on independence functions. Proc. London Math. Soc., 7:300–
320, 1957.

760. V. Ramachandran. A minimax arc theorem for reducible flow graphs. SIAM
J. Discrete Math., 3:554–560, 1990.

761. F.P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264–
286, 1930.

762. B. Randerath, I. Schiermeyer, M. Tewes, and L. Volkmann. Vertex pancyclic
graphs. Discrete Appl. Math., 120(1-3):219–237, 2002.

763. R.A. Rankin. A campanological problem in group theory. Proc. Cambridge
Philos. Soc., 44:17–25, 1948.

764. J. Rattner. The new age of supercomputing. In Distributed Memory Com-
puting, volume 487 of Lect. Notes Comput. Sci., pages 1–6. Springer Verlag,
1991.

765. I. Razgon. Parameterized DFVS and multicut problems on DAGs. In
H. Broersma, S. Dantchev, M. Johnson, and S. Szeider, editors, Proc.
ACiD’07, Algorithms and Complexity in Durham 2007, Texts in Algorithmics.
College Publications, 2007.

766. A. Recski. Matroid theory and its applications in electric network theory and
in statics. Springer-Verlag, Berlin, 1989.

767. S. M. Reddy, D.K. Pradhan, and J. G. Kuhl. Directed graphs with minimal di-
ameter and maximal connectivity, Tech. Rep., School of Engineering, Oakland
University, 1980.

768. L. Rédei. Ein kombinatorischer Satz. Acta Litt. Szeged, 7:39–43, 1934.
769. B. Reed, N. Robertson, P.D. Seymour, and R. Thomas. Packing directed cir-

cuits. Combinatorica, 16(4):535–554, 1996.
770. B.A. Reed and F.B. Shepherd. The Gallai-Younger conjecture for planar

graphs. Combinatorica, 16(4):555–566, 1996.
771. C.R. Reeves (editor). Modern heuristic techniques for combinatorial problems.

McGraw-Hill, 1995.
772. C. Rego and F. Glover. Local Search and Metaheuristics. In G. Gutin and

A.P. Punnen, editors, The Traveling Salesman Problem and its Variations,
pages 309–368. Kluwer, Dordrecht, 2002.

773. K.B. Reid. Two complementary circuits in two-connected tournaments. In
Cycles in graphs (Burnaby, B.C., 1982), volume 115 of North-Holland Math.
Stud., pages 321–334. North-Holland, 1985.

774. K.B. Reid. Tournaments: scores, kings, generalizations and special topics.
Congr. Numer., 115:171–211, 1996. Surveys in graph theory (San Francisco,
1995).

754 References

775. G. Reinelt. The linear ordering problem: algorithms and applications. Helder-
mann Verlag, Berlin, 1985.

776. F. Rendl. Quadratic assignment problems on series-parallel digraphs. Z. Oper.
Res. Ser. A-B, 30(3):161–173, 1986.

777. P.I. Richards. Precedence constraints and arrow diagrams. SIAM Rev., 9:548–
553, 1967.

778. M. Richardson. Solution of irreflective relations. Ann. Math., 58:573–580,
1953.

779. M.B. Richey, R.G. Parker, and R.L. Rardin. An efficiently solvable case of
the minimum weight equivalent subgraph problem. Networks, 15(2):217–228,
1985.

780. H.E. Robbins. A theorem on graphs with an application to a problem on traffic
control. Amer. Math. Mon., 46:281–283, 1939.

781. F.S. Roberts and Y. Xu. On the optimal strongly connected orientations of
city street graphs I: Large grids. SIAM J. Discrete Math., 1:199–222, 1988.

782. F.S. Roberts and Y. Xu. On the optimal strongly connected orientations of
city street graphs II: Two east-west avenues or north-south streets. Networks,
19:221–233, 1989.

783. F.S. Roberts and Y. Xu. On the optimal strongly connected orientations of city
street graphs III: Three east-west avenues or north-south streets. Networks,
22:109–143, 1992.

784. F.S. Roberts and Y. Xu. On the optimal strongly connected orientations of
city street graphs IV: Four east-west avenues or north-south streets. Discrete
Appl. Math., 49:331–356, 1994.

785. N. Robertson and P.D. Seymour. Graph minors. XIII: The disjoint paths prob-
lem. J. Combin. Theory Ser. B, 63:65–110, 1995.

786. N. Robertson, P.D. Seymour, and R. Thomas. Permanents, Pfaffian orienta-
tions, and even directed circuits. Ann. Math., 150:929–975, 1999.

787. M. Rosenfeld. Antidirected Hamiltonian paths in tournaments. J. Combin.
Theory Ser. B, 12:93–99, 1971.

788. M. Rosenfeld. Antidirected Hamiltonian cycles in tournaments. J. Combin.
Theory Ser. B, 16:234–242, 1974.

789. B. Roy. Nombre chromatique et plus longs chemins d’un graphe. Rev. Fr. Inf.
Rech. Opér., 1(5):129–132, 1967.

790. V.I. Rublineckii. Estimates of the Accuracy of Procedures in the Traveling
Salesman Problem. Numer. Math. Comput. Technol., no. 4:18–23, 1973. (in
Russian).

791. R. Saad. Finding a longest alternating cycle in a 2-edge-coloured complete
graph is in RP. Combin. Probab. Comput., 5:297–306, 1996.

792. M.R. Samathan and D.K. Pradhan. The de Bruijn multiprocessor network:
a versatile parallel processing and sorting network for VLSI. IEEE Trans.
Comput., C-38:567–581, 1989.

793. B.K. Sanyal and M.K. Sen. New characterization of digraphs represented by
intervals. J. Graph Theory, 22:297–303, 1996.

794. V.I. Sarvanov. The mean value of the functional of the assignment problem.
Vestsi Akad. Navuk BSSR Ser. Fiz. Mat. Navuk, no. 2:111–114, 1976. (in
Russian).

795. J.P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM J. Comput., 19(5):775–786, 1990.

796. C.-P. Schnorr. Bottlenecks and edge connectivity in unsymmetrical networks.
SIAM J. Comput., 8(2):265–274, 1979.

References 755

797. A. Schrijver. Min-max relations for directed graphs. In Bonn Workshop on
Combinatorial Optimization (Bonn, 1980), volume 16 of Ann. Discrete Math.,
pages 261–280. North-Holland, 1982.

798. A. Schrijver. Total dual integrality from directed graphs, crossing families, and
sub- and supermodular functions. In Progress in combinatorial optimization
(Waterloo, Ont., 1982), pages 315–361. Academic Press, 1984.

799. A. Schrijver. A group-theoretical approach to disjoint paths in directed graphs.
CWI Quarterly, 6(3):257–266, 1993.

800. A. Schrijver. Finding k disjoint paths in a directed planar graph. SIAM J.
Comput., 23(4):780–788, 1994.

801. A. Schrijver. Paths in graphs and curves on surfaces., In First European
congress of mathematics (ECM), Paris, France, July 6-10, 1992. Volume II:
Invited lectures (Part 2). Basel: Birkhauser.[ISBN 3-7643-2799-5/hbk], pages
381–406, 1994.

802. A. Schrijver. A combinatorial algorithm for minimizing submodular functions
in strongly polynomial time. J. Combin. Theory Ser. B, 80:346–355, 2000.

803. A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A,
volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.
Paths, flows, matchings, Chapters 1–38.

804. A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B,
volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.
Matroids, trees, stable sets, Chapters 39–69.

805. A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. C,
volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.
Disjoint paths, hypergraphs, Chapters 70–83.

806. M. Sen, S. Das, A.B. Roy, and D.B. West. Interval digraphs: an analogue of
interval graphs. J. Graph Theory, 13(2):189–202, 1989.

807. S. Severini. On the Digraph of a Unitary Matrix. SIAM J. Matrix Anal. Appl.,
25(1):295–300, 2003.

808. P.D. Seymour. Disjoint paths in graphs. Discrete Math., 29:293–309, 1980.
809. P.D. Seymour. Nowhere-zero 6-flows. J. Combin. Theory Ser. B, 30(2):130–

135, 1981.
810. P.D. Seymour. Nowhere-zero flows. In Handbook of combinatorics, Vol. 1, 2,

pages 289–299. Elsevier, Amsterdam, 1995. Appendix: Colouring, stable sets
and perfect graphs.

811. P.D. Seymour. Packing directed circuits fractionally. Combinatorica,
15(2):281–288, 1995.

812. P.D. Seymour. Packing circuits in Eulerian digraphs. Combinatorica,
16(2):223–231, 1996.

813. P.D. Seymour and C. Thomassen. Characterization of even directed graphs.
J. Combin. Theory Ser. B, 42(1):36–45, 1987.

814. J. Shearer. A property of the colored complete graph. Discrete Math., 25:175–
178, 1979.

815. J. Shen. On the girth of digraphs. Discrete Math., 211(1-3):167–181, 2000.
816. J. Shen. On the Caccetta-Häggkvist conjecture. Graphs Combin., 18(3):645–

654, 2002.
817. F. B. Shepherd and A. Vetta. Visualizing, finding and packing dijoins. In

Graph theory and combinatorial optimization, volume 8 of GERAD 25th An-
niv. Ser., pages 219–254. Springer, 2005.

818. Y. Shiloach. Edge-disjoint branching in directed multigraphs. Inf. Process.
Lett., 8(1):24–27, 1979.

819. Y. Shiloach. A polynomial solution to the undirected two paths problem. J.
Assoc. Comput. Mach., 27:445–456, 1980.

756 References

820. K. Simon. An improved algorithm for transitive closure on acyclic digraphs.
Theoretical Computer Science, 58:325–346, 1988.

821. K. Simon. Finding a minimal transitive reduction in a strongly connected
digraph within linear time. In Graph-theoretic concepts in Computer Science
(Kerkrade, 1989), Lect. Notes Comput. Sci., pages 245–259. Springer-Verlag,
1990.

822. S.S. Skiena. The Algorithm Design Manual. Springer-Verlag, New York, 1997.
823. D.J. Skrien. A relationship between triangulated graphs, comparability

graphs, proper interval graphs, proper circular-arc graphs, and nested interval
graphs. J. Graph Theory, 6(3):309–316, 1982.

824. A. Slivkins. Parameterized tractability of edge-disjoint paths on directed
acyclic graphs, In Proc. 11th Annual Eur. Symp. Algorithms, EAS’03, vol-
ume 2832 of Lect. Notes Comput. Sci., pages 482–493, 2003.

825. B. Smetaniuk. A new construction on Latin squares. Ars. Combin., 11:155–
172, 1981.

826. J. Soares. Maximum diameter of regular digraphs. J. Graph Theory, 16(5):437–
450, 1992.

827. L. Šoltés. Orientations of graphs minimizing the radius or the diameter. Math.
Slovaca, 36(3):289–296, 1986.

828. Z.M. Song. Complementary cycles in bipartite tournaments. J. Nanjing Inst.
Tech., 18:32–38, 1988.

829. Z.M. Song. Complementary cycles of all lengths in tournaments. J. Combin.
Theory Ser. B, 57(1):18–25, 1993.

830. Z.M. Song. Pancyclic oriented graphs. J. Graph Theory, 18(5):461–468, 1994.
831. E. Speckenmeyer. On feedback problems in digraphs. In Proc. 15th WG ,

volume 411 of Lect. Notes Comput. Sci., pages 218–231. Springer, 1989.
832. G. Steiner. A compact labeling scheme for series-parallel graphs. Discrete

Appl. Math., 11(3):281–297, 1985.
833. M. Stiebitz. Decomposition of graphs and digraphs. KAM Series in

Discrete Mathematics-Combinatorics-Operations Research-Optimization, 95-
309:56–59, 1995.

834. M. Stiebitz. Decomposing graphs under degree constraints. J. Graph Theory,
23:321–324, 1996.

835. H.J. Straight. The existence of certain type of semi-walks in tournaments.
Congr. Numer., 29:901–908, 1980.

836. X.Y. Su. Paths, cycles, and arc-connectivity in digraphs. J. Graph Theory,
19(3):339–351, 1995.

837. B. Sullivan. A summary of results and problems related to the Caccetta-
Häggkvist conjecture. Preprint arXiv:math.CO/0605646v1, May 2006.

838. S. Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete
Appl. Math., 126(2-3):261–273, 2003.

839. J. Szigeti and Z. Tuza. Generalized colorings and avoidable orientations. Dis-
cuss. Math. Graph Theory, 17(1):137–145, 1997.

840. J.L. Szwarcfiter. On minimum cuts of cycles and maximum disjoint cycles. In
Graphs and algorithms (Boulder, CO, 1987), volume 89 of Contemp. Math.,
pages 153–166. Amer. Math. Soc., 1989.

841. A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition,
2001.

842. É. Tardos. A strongly polynomial minimum cost circulation algorithm. Com-
binatorica, 5(3):247–255, 1985.

843. R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
put., 1(2):146–160, 1972.

844. R.E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

http://arxiv.org/abs/math.CO/0605646v1

References 757

845. R.E. Tarjan. Data structures and network algorithms. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, 1983.

846. E.G. Tay. Optimal orientations of graphs, PhD thesis, National University of
Singapore, Department of Mathematics, 1999.

847. M. Tewes. In-tournaments and Semicomplete Multipartite Digraphs, PhD the-
sis, Lehrstuhl II für Mathematik, RWTH Aachen, 1998.

848. M. Tewes. Pancyclic in-tournaments. Discrete Math., 233(1-3):193–204, 2001.
849. M. Tewes and L. Volkmann. On the cycle structure of in-tournaments. Aus-

tralas. J. Combin., 18:293–301, 1998.
850. M. Tewes and L. Volkmann. Vertex pancyclic in-tournaments. J. Graph The-

ory, 36(2):84–104, 2001.
851. A. Thomason. Paths and cycles in tournaments. Trans. Amer. Math. Soc.,

296(1):167–180, 1986.
852. S. Thomassé. Covering a strong digraph by α − 1 disjoint paths: a proof of

Las Vergnas’ conjecture. J. Combin. Theory Ser. B, 83(2):331–333, 2001.
853. C. Thomassen. An Ore-type condition implying a digraph to be pancyclic.

Discrete Math., 19(1):85–92, 1977.
854. C. Thomassen. Long cycles in digraphs with constraints on the degrees. In

Surveys in combinatorics (Proc. Seventh British Combinatorial Conf., Cam-
bridge, 1979), volume 38 of London Math. Soc. Lect. Note Ser., pages 211–228.
Cambridge University Press, 1979.

855. C. Thomassen. 2-linked graphs. Eur. J. Combin., 1:371–378, 1980.
856. C. Thomassen. Hamiltonian-connected tournaments. J. Combin. Theory Ser.

B, 28(2):142–163, 1980.
857. C. Thomassen. Edge-disjoint Hamiltonian paths and cycles in tournaments.

Proc. London Math. Soc. (3), 45(1):151–168, 1982.
858. C. Thomassen. Disjoint cycles in digraphs. Combinatorica, 3(3-4):393–396,

1983.
859. C. Thomassen. Connectivity in tournaments. In Graph theory and combina-

torics (Cambridge, 1983), pages 305–313. Academic Press, 1984.
860. C. Thomassen. Even cycles in directed graphs. Eur. J. Combin., 6(1):85–89,

1985.
861. C. Thomassen. Hamilton circuits in regular tournaments. In Cycles in graphs

(Burnaby, B.C., 1982), volume 115 of North-Holland Math. Stud., pages 159–
162. North-Holland, 1985.

862. C. Thomassen. The 2-linkage problem for acyclic digraphs. Discrete Math.,
55(1):73–87, 1985.

863. C. Thomassen. Sign-nonsingular matrices and even cycles in directed graphs.
Linear Algebra Appl., 75:27–41, 1986.

864. C. Thomassen. Counterexamples to Adám’s conjecture on arc reversals in
directed graphs. J. Combin. Theory Ser. B, 42(1):128–130, 1987.

865. C. Thomassen. Paths, circuits and subdivisions. In Selected topics in graph
theory Vol. 3, pages 97–131. Academic Press, 1988.

866. C. Thomassen. Configurations in graphs of large minimum degree, connec-
tivity, or chromatic number. Annals of the New York Academy of Sciences,
555:402–412, 1989.

867. C. Thomassen. Highly connected non-2-linked digraphs. Combinatorica,
11(4):393–395, 1991.

868. C. Thomassen. The even cycle problem for directed graphs. J. Amer. Math.
Soc., 5(2):217–229, 1992.

869. C. Thomassen. The even cycle problem for planar digraphs. J. Algor., 15:61–
75, 1993.

758 References

870. M. Thorup. On RAM priority queues, In Proc. 7th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 59–67, New York, 1996, ACM Press.

871. M. Thorup. Undirected single-source shortest paths with positive integer
weights in linear time. J. Assoc. Comput. Mach., 46:362–394, 1999.

872. K. Thulasiraman and M.N.S. Swamy. Graphs: theory and algorithms. John
Wiley & Sons, New York, 1992.

873. F. Tian, Z.S. Wu, and C.Q. Zhang. Cycles of each length in tournaments. J.
Combin. Theory Ser. B, 33(3):245–255, 1982.

874. T.W. Tillson. A Hamiltonian decomposition of K
∗
2m, 2m ≥ 8. J. Combin.

Theory Ser. B, 29(1):68–74, 1980.
875. A. Trahtman. The road coloring problem. Israel J. Math., to appear, 2008.
876. W.T. Tutte. The dissection of equilateral triangles into equilateral triangles.

Proc. Cambridge Philos. Soc., 44:463–482, 1948.
877. W.T. Tutte. A contribution to the theory of chromatic polynomials. Can. J.

Math., 6:80–91, 1954.
878. W.T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99–116,

1956.
879. W.T. Tutte. On the problem of decomposing a graph into n connected factors.

J. London Math. Soc., 36:221–230, 1961.
880. Z. Tuza. Graph coloring in linear time. J. Combin. Theory Ser. B, 55(2):236–

243, 1992.
881. Z. Tuza. Characterization of (m, 1)-transitive and (3, 2)-transitive semi-

complete directed graphs. Discrete Math., 135(1-3):335–347, 1994.
882. J. Urrutia and F. Gavril. An algorithm for fraternal orientation of graphs. Inf.

Process. Lett., 41(5):271–274, 1992.
883. J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel

digraphs. SIAM J. Comput., 11(2):298–313, 1982.
884. V.V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.
885. L.A. Végh and A.A. Benczúr. Primal-dual approach for directed vertex con-

nectivity augmentation and generalizations. ACM Trans. Algor., 4:1–21, 2008.
886. A. Vetta. Approximating the minimum strongly connected subgraph via a

matching lower bound. In Proc. 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (Washington, DC, 2001), pages 417–426. SIAM, 2001.

887. L.M. Vitaver. Determination of minimal coloring of vertices of a graph by
means of Boolean powers of the incidence matrix. Dokl. Akad. Nauk SSSR,
147:758–759, 1962.

888. L. Volkmann. Longest paths in semicomplete multipartite digraphs. Discrete
Math., 199:279–284, 1999.

889. L. Volkmann. Spanning multipartite tournaments of semicomplete multipar-
tite digraphs. Ars Combin., 58:271–278, 2001.

890. L. Volkmann. Cycles in multipartite tournaments: results and problems. Dis-
crete Math., 245(1):19–53, 2002.

891. L. Volkmann. Complementary cycles in regular multipartite tournaments,
where one cycle has length four. Kyungpook Math. J., 44:219–247, 2004.

892. L. Volkmann. Complementary cycles in regular multipartite tournaments.
Australas. J. Combin., 31:119–134, 2005.

893. L. Volkmann. On cycles in regular 3-partite tournaments. Discrete Math.,
306(12):1198–1206, 2006.

894. L. Volkmann. Multipartite tournaments: a survey. Discrete Math.,
307(24):3097–3129, 2007.

895. L. Volkmann and S. Winzen. Almost regular c-partite tournaments with c ≥ 8
contain an n-cycle through a given arc for 4 ≤ n ≤ c. Australas. J. Combin.,
31:61–84, 2005.

References 759

896. L. Volkmann and S. Winzen. Every cycle-connected multipartite tournament
has a universal arc. Discrete Math., to appear, 2008.

897. L. Volkmann and A. Yeo. Hamiltonian paths, containing a given path or col-
lection of arcs, in close to regular multipartite tournaments. Discrete Math.,
281(1-3):267–276, 2004.

898. C. Wang, E.L. Floyd, and M.L. Soffa. Feedback vertex sets and cyclically
reducible graphs. J. Assoc. Comput. Mach., 32:296–313, 1985.

899. H. Wang, C. Little, and K. Teo. Partition of a directed bipartite graph into
two directed cycles. Discrete Math., 160(1-3):283–289, 1996.

900. S. Warshall. A theorem on boolean matrices. J. Assoc. Comput. Mach., 9:11–
12, 1962.

901. R.F. Werner and M.M. Wolf. Bell Inequalities and Entanglement. Quantum
Inf. Comput., 1:1–25, 2001.

902. D.B. West. Introduction to graph theory. Prentice-Hall, 1996.
903. D.B. West. Short proofs for interval digraphs. Discrete Math., 178(1-3):287–

292, 1998.
904. R.J. Wilson. An Eulerian trail through Königsberg. J. Graph Theory, 8:265–

275, 1986.
905. S. Winzen. Close to Regular Multipartite Tournaments, PhD thesis, Aachen

University, 2004.
906. G. Woeginger. Exact algorithms for NP-hard problems: A survey. In Com-

binatorial Optimization - Eureka! You shrink!, Lect. Notes Comput. Science,
pages 185–207. Springer-Verlag, 2003.

907. D.R. Wood. Bounded degree acyclic decompositions of digraphs. J. Combin.
Theory, 90:309–313, 2004.

908. D. Woodall. Improper colourings of graphs. In Graph Colourings, volume 218
of Pitman Research Notes in Math. Series, pages 45–63. Longman, 1990.

909. D. R. Woodall. Menger and König systems. In Theory and applications of
graphs (Proc. Int. Conf., Western Mich. Univ., Kalamazoo, 1976), volume
642 of Lect. Notes Math., pages 620–635. Springer, 1978.

910. D. R. Woodall. Minimax theorems in graph theory. In L.W. Beineke and
R. Wilson, editors, Selected topics in graph theory, pages 237–270. Academic
Press, 1978.

911. D.R. Woodall. Sufficient conditions for cycles in digraphs. Proc. London Math.
Soc., 24:739–755, 1972.

912. N.C. Wormald. Subtrees of large tournaments. Lect. Notes Math., 1036:417–
419, 1983.

913. Z.S. Wu, K.M. Zhang, and Y. Zou. A necessary and sufficient condition for
arc-pancyclicity of tournaments. Sci. Sinica Ser. A, 25:249–254, 1982.

914. A. Yeo. A note on alternating cycles in edge-coloured graphs. J. Combin.
Theory Ser. B, 69:222–225, 1997.

915. A. Yeo. One-diregular subgraphs in semicomplete multipartite digraphs. J.
Graph Theory, 24(2):175–185, 1997.

916. A. Yeo. Semicomplete Multipartite Digraphs, PhD thesis, Department of Math-
ematics and Computer Science, Odense University, Denmark, 1998.

917. A. Yeo. A polynomial time algorithm for finding a cycle covering a given set
of vertices in a semicomplete multipartite digraph. J. Algor., 33(1):124–139,
1999.

918. A. Yeo. Diregular c-partite tournaments are vertex-pancyclic when c ≥ 5. J.
Graph Theory, 32:137–152, 1999.

919. A. Yeo. How close to regular must a semicomplete multipartite digraph be to
secure Hamiltonicity? Graphs Combin., 15:481–493, 1999.

760 References

920. A. Yeo. Paths and cycles containing given arcs, in close to regular multipartite
tournaments. J. Combin. Theory Ser. B, 97(6):949–963, 2007.

921. A. Young. Extremal problems for dense graphs and digraphs, Master’s thesis,
School of Mathematics, University of Birmingham, 2005.

922. D.H. Younger. Graphs with interlinked directed circuits, In Proc. Midwest
symposium on circuit theory 2, pages 2–1–XVI 2.7, 1973.

923. D.H. Younger. Integer flows. J. Graph Theory, 7(3):349–357, 1983.
924. D.A. Youngs. Minimal orientations of colour critical graphs. Combinatorica,

15(2):289–295, 1995.
925. X.-D. Yuan and M.-C. Cai. Vertices of degree k in a minimally k-edge-

connected digraph. Discrete Math., 218:293–298, 2000.
926. N. Zadeh. Theoretical efficiency of the Edmonds-Karp algorithm for comput-

ing maximal flows. J. Assoc. Comput. Mach., 19:184–192, 1972.
927. E. Zemel. Measuring the quality of approximate solutions to zero-one pro-

gramming problems. Math. Oper. Res., 6:319–332, 1981.
928. C.Q. Zhang. Every regular tournament has two arc-disjoint hamiltonian cy-

cles. J. Qufu Normal College, Special Issue Oper. Res.:70–81, 1980.
929. K.-M. Zhang. Vertex even-pancyclicity in bipartite tournaments. J. Nanjing

Univ. Math. Biquarterly, 1:85–88, 1981.
930. K.M. Zhang, Y. Manoussakis, and Z.M. Song. Complementary cycles con-

taining a fixed arc in diregular bipartite tournaments. Discrete Math., 133(1-
3):325–328, 1994.

931. K.M. Zhang and J.-Z. Wang. Complementary cycles containing a fixed arc
and a fixed vertex in bipartite tournaments. Ars Combin., 35:265–269, 1993.

932. L. Zhao, H. Nagamochi, and T. Ibaraki. A linear time 5/3-approximation for
the minimum strongly-connected spanning subgraph problem. Inf. Process.
Lett., 86:63–70, 2003.

933. L.-C. Zhao and J.-H. Meng. A sufficient condition for hamiltonian cycles in
digraphs. Ars Combin., 32:335–338, 1991.

934. G. Zhou and K. Zhang. A sufficient condition for a semicomplete multipartite
digraph to be hamiltonian. Australas. J. Combin., 19:231–234, 1999.

Symbol Index

To shorten and unify notation, in this index we use the following convention:
B denotes a bipartite (di)graph.
C, Ci denote cycles (directed, undirected, edge-coloured, oriented).
D, Di denote digraphs, directed multigraphs and directed pseudographs.
G, Gi denote undirected graphs and undirected multigraphs.
H denotes a hypergraph.
M denotes a mixed graph or a matroid.
P , Pi denote path (directed, undirected, edge-coloured, oriented).
S denotes a matrix or a multiset.
X, Xi denote abstract sets or sets of vertices.
Y , Yi denote sets of arcs.

(D1, D2)D: set of arcs with tails in
V (D1) and heads in V (D2),
6

(E,F): specification of independence
system, 656

(X,≺): partial order on X, 521
(X1, X2)D: set of arcs with tail in X1

and head in X2, 3
(Γ , +): an additive group, 436
(F , b): pair of a family F and a sub-

modular function b on F ,
454

∗P : P minus the first vertex on P ,
298

>u: ordering of neighbours of u, 681
A(D): arc set of D, 2
A(x): arc set of residual network

w.r.t. x, 130
B = (X1, X2; E): specification of a

bipartite graph with bipar-
tition X1, X2, 19

BG(D): bipartite representation of
D, 19

B+, B−: out- and in-branching with
no root specified, 339

B+
s , B−

s : out- and in-branching
rooted at s, 22

BL: bad vertices with respect to the
locally optimal ordering L,
602

CM(D): the 2-edge-coloured bi-
partite multigraph corre-
sponding to the bipartite
digraph D, 625

CM−1(B): the bipartite digraph cor-
responding to the 2-edge-
coloured bipartite multi-
graph B, 625

C[xi, xj]: subpath of C from xi to xj ,
13

C1�>C2: C1 contains singular ver-
tices with respect to C2 and
they all are out-singular,
and C2 has singular ver-
tices with respect to C1 and
they all are in-singular, 249

D(G): digraph obtained from G via
BD-correspondence, 626

D(d, n, q, r): consecutive-d digraph,
47

D −X: deleting the vertices of X ⊆
V (D) from D, 7

D − Y : deleting the arcs of Y ⊆
A(D) from D, 7

D//P : path-contraction, 8
D/D1: contracting the subdigraph

D1 in D, 7
D = (V + s, A), D = (V + s, E ∪ F):

specification of D with spe-
cial vertex s, 553

D = (V, A): specification of D, 2
D = (V, A, c): specification of weight-

ed D, 6
D[D1, D2, . . . , Dn]: composing D

with D1, D2, . . . , Dn, 9
Dp: pth power of D, 10
D1 ⇒ D2: no arc from V (D2) to

V (D1), 6

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1,
© Springer-Verlag London Limited 2010

761

http://dx.doi.org/10.1007/978-1-84800-998-1

762 Symbol Index

D1
∼= D2: D1 is isomorphic to D2, 7

D1 ∪D2: union of D1 and D2, 11
D1 �→ D2: V (D1) dominates V (D2)

and no arc from V (D2) to
V (D1), 6

D1 → D2: V (D1) dominates V (D2),
6

D1 ×D2 × . . .×Dn,
Qn

i=1 Di:
Cartesian product of di-
graphs, 10

DB(d, t): the de Bruijn digraph, 44
DG(d, n): generalized de Bruijn di-

graph, 47
DK(d, t): the Kautz digraph, 46
DST : digraph obtained from D by the

vertex splitting procedure,
134

DF : digraph associated with a 2-SAT
expression, 667

D〈X〉: subdigraph of D induced by
X, 5

E(G): edge set of the graph G, 18
G = (V + s, E): specification of undi-

rected graph with special
vertex s, 442

G1 ×G2 × . . .×Gn: Cartesian prod-
ucts of graphs, 113

GL: good vertices with respect to the
locally optimal ordering L,
602

Gitd: graph corresponding to ori-
entability as a locally in-
tournament digraph, 427

Gltd: graph corresponding to ori-
entability as a locally tour-
nament digraph, 422

Gqtd: graph corresponding to ori-
entability as a quasi-
transitive digraph, 418

H = (V, E): specification of the hy-
pergraph H, 26

K(D) : the Kirchoff matrix of D, 340
Kc

n: c-edge-coloured complete graph
of order n, 635

Kn: complete graph of order n, 19
Kn1,n2,...,np : complete multipartite

graph, 19
L(B): set of leaves of B, 358
L(D): line digraph of D, 39

Lk(D): iterated line digraph of D, 43
M = (S, I): specification of matroid,

711

M = (V, A, E): specification of the
mixed graph M , 24

M∗: dual of the matroid M , 713
M1 ∨M2: union of matroids M1 and

M2, 715
N+p

D (X), N−p
D (X): pth out- and in-

neighbourhood of X, 88
N+p

D [X], N−p
D [X]: closed pth out- and

in-neighbourhood of X, 88
ND(v): neighbourhood of v, 4
N+

D (X), N−
D (X): out-neighbourhood,
in-neighbourhood of X, 4

N+
D (v), N−

D (v): out-neighbourhood
and in-neighbourhood of v,
4

NG(x): neighbourhood of x in G, 20
O(f(k)): O-notation, 696
P (k, l): path with two blocks of

length k, l, respectively,
434

P [xi, xj]: subpath of P from xi to xj ,
i ≤ j, 13

R+(X): vertices that can be reached
from X, 299

R−(X): vertices that can reach X,
299

Rl(r, q): Ramsey number for l-
uniform hypergraphs, 598

S = [sij]: matrix, 2
SC(D): strong component digraph of

D, 17
ST : transpose of matrix S, 2
TC(D): transitive closure of D, 37
TTs: transitive tournament on s ver-

tices, 418
T+

s , T−
s : out- and in-tree rooted at

s, 339
T rev: reverse of T , 609
UG(D): underlying graph of D, 20
UMG(D): underlying multigraph of

D, 20
Un,k: uniform matroid, 713
V (D): vertex set of D, 2
V (G): vertex set of the graph G, 18
X+, X−: successors and predecessors

of vertices in X, 13
X1 ⇒ X2: no arc from X2 to X1, 3
X1 �→ X2: X1 → X2 and X1 ⇒ X2, 3
X1 → X2: X1 dominates X2, 3
X1 ×X2 × . . .×Xp: Cartesian prod-

uct of sets, 2
[n]: the set {1, 2, . . . , n}, 1
Δ(G): maximum degree of G, 20

Symbol Index 763

Δ+(D), Δ−(D): maximum out- and
in-degree of D, 5

Δ0(D): maximum semi-degree of D,
5

Δmon(G): maximum monochromatic
degree of G, 609

Ω(f(k)): Ω-notation, 696
Ω(P): intersection graph of the fam-

ily P of subgraphs, 624
Ω(D): maximum number of arc-

disjoint dicuts in D, 505
Φext: set of extended Φ-digraphs, 10
Φ0: union of semicomplete multipar-

tite, connected extended
locally semicomplete di-
graphs and acyclic di-
graphs, 69

Φ1: union of semicomplete bipartite,
connected extended locally
semicomplete and acyclic
digraphs, 69

Φ2: union of connected extended
locally semicomplete and
acyclic digraphs, 69

Ψ : union of transitive and extended
semicomplete digraphs, 52

Θ(f(k)): Θ-notation, 696
α(D): independence number of D, 21
β(T): the maximum number of arcs

in an acyclic subdigraph of
T , 585

χ(X1X2): colour of edges between X1

and X2, 609
χ(e): colour of edge e, 609
χ(v): colour set of v, 609
χend(P): colour of last edge of P , 609
χstart(P): colour of first edge of P ,

609
χ(H): chromatic number of D, 21
δ(G): minimum degree of G, 20
δ+(D), δ−(D): minimum out- and in-

degree of D, 5
δ0(D): minimum semi-degree of D, 5
δm

ij : length of a shortest (i, j)-path
using only internal vertices
from [m− 1], 100

δ≥k(D): the minimum number of
arcs in a spanning subdi-
graph D′ of D which has
δ0(D′) ≥ k, 479

δmon(G): minimum monochromatic
degree of G, 609

δ(P): capacity of augmenting path P ,
141

δx(s, t): length of a shortest (s, t)-
path in N (x), 147

�t
max(D): maximum number of leaves

in an out-tree of D, 361
�max(D): maximum number of leaves

in an out-branching of D,
358

�min(D): minimum number of leaves
in an out-branching of D,
358

ε(D): size of a minimum dijoin of D,
505

ηk(F): deficiency of the family F of
one-way pairs, 564

ηk(X, Y): deficiency of the one-way
pair (X, Y), 563

γ(S, S): flow demand of the (s, t)-cut

(S, S), 159
γ∗

k(D): subpartition lower bound
for augmenting the vertex-
strong connectivity of D to
k, 562

γk(D): subpartition lower bound for
augmenting the arc-strong
connectivity of D to k, 557

κ(D): vertex-strong connectivity of
D, 17

κ(x, y): local vertex-strong connectiv-
ity from x to y, 192

λ(D): arc-strong connectivity of D,
17

λ(x, y): local arc-strong connectivity
from x to y, 192

CC(D): the family of cc-sets in D, 652
CO(D): the family of convex sets in

D, 652
↔
G: complete biorientation of G, 20
↔
Kn: complete digraph of order n, 35
μ(n): the nth mediation number, 643
μD(x, y): number of arcs with tail x

and head y, 4
μG(u, v): number of edges between u

and v in G, 18
ν0(D): maximum number of vertex-

disjoint cycles in D, 512
ν1(D): maximum number of arc-

disjoint cycles in D, 512
G: complement of G, 18
Kn: graph of order n with no edges,

19

764 Symbol Index

x: negation of boolean variable x,
667, 702

φ(u): forefather of u, 196
ρ(G): diammin(G)− diam(G), 108
τ0(D): size of a minimum feedback

vertex set of D, 583
τ1(D): size of a minimum feedback

arc set of D, 583
θ(D): minimum number of arcs

whose contraction in D
leads to a strong directed
multigraph, 506

�Cn: directed cycle on n vertices, 12
�Pn: directed path on n vertices, 12
ak(D): k-strong augmentation num-

ber of D, 563
aF : the number of edges, oriented

or not, which enter some
X ∈ F , 366

b(v): balance prescription for the ver-
tex v, 128

bx: balance vector of the flow x, 128
bd(F): boundary of face F , 72
c(G): the number of connected com-

ponents of G, 449
c(Y): sum of costs/weights of arcs in

Y , 6
c(a): cost/weight of the arc a, 6
d(X, Y): d+(X, Y) + d+(Y, X), 191,

192
d(x): degree of x, 20
d+(X, Y): number of arcs with tail in

X − Y and head in Y −X,
192

dD(X): degree of X, 4

d+
D(X), d−

D(X): out- and in-degree of
X, 4

dj(v): jth degree of of v, 609
deorarc

k (D): the minimum number of
arcs to deorient in D to get
a digraph with λ ≥ k, 574

deordeg
k (D): the minimum number of

arcs to deorient in D to get
minimum degree at least k,
574

e(X1, X2): number of edges between
X1 and X2, 349

eG(X): number of edges of G with at
least one end in X, 449

eF : number of edges connecting dif-
ferent sets of partition F ,
453

f(X1, X2): sum of f -values over arcs
with tail in X1 and head in
X2, 128

g(D): girth of D, 12
gv(D): length of a shortest cycle

through v in D, 312
h(X, Y): number of vertices not in

the one-way pair (X, Y),
563

h(p): height of vertex p, 150
iG(X): number of edges of G with

both ends in X, 449
ig(D): global irregularity of D, 255
il(D): local irregularity of D, 255

l(S, S): lower bound of the cut (S, S),
157

lij : lower bound of the arc ij, 127
p(D): period of D, 677
r(X): rank of X, 712
r∗(X): dual rank of X, 714
r+(U): sum of function values of r on

arcs in (U, U), 453
r−(U): sum of function values of r on

arcs in (U, U), 453
rk(D): minimum number of arcs to

reverse in D to obtain a k-
strong digraph, 568

rarc
k (D): minimum number of arcs

one needs to reverse in D
in order to obtain a k-arc-
strong directed multigraph,
570

rdeg
k (D):minimum number of arcs

one needs to reverse in D
in order to obtain a di-
rected multigraph D′ with
δ0(D′) ≥ k, 570

rij : residual capacity of the arc ij,
130

s(D): minimum number of steps for
gossiping in D, 691

sgn(P): − if P is an in-path and + if
P is an out-path, 298

u(S, S): capacity of the (s, t)-cut

(S, S), 140
uij : capacity of the arc ij, 127

x(S, S): flow across the (s, t)-cut

(S, S), 141
x(uv): value of integer flow x on the

arc uv, 436
x + x′: arc-sum of flows x and x′, 136
x → y: x dominates y, 3

Symbol Index 765

x y: x is a descendant of y in a DFS
tree, 27

x∗ = x⊕ x̃: adding the residual flow
x̃ to x, 137

x+
i , x−

i : successor and predecessor of
xi, 13

xij : flow value on the arc ij, 128
D6,D8: classes of non-arc-pancyclic

arc-3-cyclic tournaments,
318

F = P1 ∪ . . . ∪ Pq ∪ C1 ∪ . . . ∪ Ct: q-
path-cycle subdigraph, 14

N (D): network representation of D,
194

N (x): residual network w.r.t. x, 130
N = (V, A, l, u, b, c): specification of

the flow network N , 128
NB : network corresponding to the bi-

partite graph B, 171
NS = (V, A, f, g, (B, b), c): submodu-

lar flow network, 458
S ≤P T : S polynomially reducible to

T , 701
T ∗: set of second powers of even cy-

cles of length at least 4, 283
T4, T6: classes of semicomplete di-

graphs, 283
Q+: set of positive rational numbers,

1
Q0: set of non-negative rational num-

bers, 1
Q: set of rational numbers, 1
R+: set of positive reals, 1
R0: set of non-negative reals, 1
R: set of reals, 1
Z+: set of positive integers, 1
Z0: set of non-negative integers, 1
Z: set of integers, 1
Prob(E): probability of the event E,

321
cc(D): the number of connected con-

vex sets in D, 650
co(D): the number of convex sets in

D, 652
dagw(D): the DAG-width of a di-

graph D, 78
diam(D): diameter of D, 89
diammin(G): minimum diameter of an

orientation of G, 104
dist(X1, X2): distance from X1 to X2,

89
dist(x, y): distance from x to y, 88

domn(H, n): domination number of
heuristic H, 661

domr(H, n): domination ratio of
heuristic H, 661

dpw(D): the directed path-width of a
digraph D, 78

dtw(D): the directed tree-width of a
digraph D, 79

ext(X): set of elements each of which
can extend X to an inde-
pendent set, 657

in(D): intersection number of D, 82
lp(D): length of a longest path in D,

431
lpk(D): maximum number of vertices

in a k-path subdigraph of
D, 543

pcc(D): path-cycle covering number
D, 15

pcc∗(D): 0 if D has a cycle factor and
pcc(D) otherwise, 481

pc(D): path covering number of D,
15

pcx(D): minimum number of paths in
a path factor which starts
at x, 277

pc∗(D): 0 if D is hamiltonian and
pc(D) otherwise, 485

pred(x): predecessor of x w.r.t. a DFS
search, 26

rad(D): radius of D, 89
rad+(D): out-radius of D, 89
rad−(D): in-radius of D, 89
srad(D): strong radius of D, 105
texpl(x): time when x is explored by

a DFS search, 26
tvisit(x): time when x is visited in a

DFS search, 26
tw(D): the tree-width of a digraph D,

74
tw(G): the tree-width of a graph G,

74
vs(D): the vertex separation of a di-

graph D, 78
|D|: the order of the digraph D, 2
|S|: cardinality of the multiset S, 2
|x|: value of flow x, 132

co-NP: class of co-NP decision prob-
lems, 700

NP: class of NP decision problems,
700

Author Index

Abouelaoualim, A., 615, 621, 622

Ádám, A., 412, 603
Addario-Berry, L., 434
Adler, R.L., 688
Aharoni, R., 121, 348
Aho, A.V., 38, 699
Ahuja, R.K., 127, 153, 161
Aigner, M., 679
Ailon, N., 587
Ainouche, A., 233
Aldous, J., 127
Alegre, I., 41, 45, 100
Alon, N., 74, 177, 308, 321–323, 327,

328, 332, 337, 361, 372, 467,
513, 514, 528, 547, 550, 585,
587, 598, 637, 662, 704, 705

Alspach, B., 60, 81, 298, 318, 335, 516
Alt, H., 172
Amar, D., 527
Andersson, A., 97
Apartsin, A., 121
Appel, K., 432
Applegate D., 705
Aragon, C.R., 710, 711
Arata, K., 364
Ariyoshi, H., 81
Arkin, E.M., 91, 325, 578
Arora, S., 592
Arts, E.H.L., 710
Assad, A.A., 414
Ausiello, G., 702, 707
Ayel, J., 253
Ayoub, J.N., 225, 332

Baffi, L., 48
Bagchi, A., 369
Baker, R.C., 646
Balas, E., 659
Balcer, Y., 678
Balinski, M., 682
Balister, P., 652
Bampis, E., 302
Bang-Jensen, J., 52–55, 57–63, 65–

69, 71, 81, 118, 126, 188,
190, 220, 221, 228, 230–
233, 235, 237, 239, 240,
244–250, 252, 256–260, 265,
269, 271, 276, 277, 279–295,
304, 309–315, 347, 353–358,

385–394, 399, 406–410, 415,
422, 426, 428, 468, 481,
482, 484–487, 492–494, 502,
518, 522–524, 526, 528, 536,
542–546, 549, 557, 567, 569,
572–576, 587, 617, 621, 623,
624, 627–631, 641, 656, 657,
694, 705

Bankfalvi, M., 629
Bankfalvi, Z., 629
Bárász, M., 365
Barthélémy, J.-P., 598
Baskoro, E. T., 101
Battista, G., 48
Baum, E.B., 709
Beck, J., 329
Becker, J., 365
Beigel, R., 705
Beineke, L.W., 39, 41, 82, 628
Ben-Arieh, D., 661
Benczúr, A.A., 565
Benkouar, A., 611, 635, 636
Bennett, M.D., 670
Berend, D., 662
Berg, A.R., 208, 447, 578
Berge, C., 119–121, 514
Berman, K.A., 236
Bermond, J.-C., 44, 271, 289, 307,

308, 316, 331, 397, 513, 516
Bertolazzi, P., 48
Berwanger, D., 73, 80
Bessy, S., 519, 527, 530
Bhargava, A., 369
Bienia, W., 441
Biggs, N.L., 23
Bixby, R., 705
Blum, N., 172
Bodlaender, H.L., 75, 77
Boesch, F., 24, 201
Böhme, T., 397
Bollobás, B., 517, 527, 547, 637
Bondy, J.A., 103, 228, 236, 240, 334,

354, 431, 434, 530, 543, 610
Bonsma, P., 361, 363, 704
Boppana, R., 680
Boros, E., 121
Boyd, A., 690
Brandstädt, A., 417
Brandt, S., 269

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1,
© Springer-Verlag London Limited 2010

767

http://dx.doi.org/10.1007/978-1-84800-998-1

768 Author Index

Brassard, G., 205, 699
Bratley, P., 205, 699
Bridges, W.G., 101
Brown, D.E., 84
Bruck, R., 647
Burr, S.A., 433
Busacker, R.G., 166
Busch, A.H., 84, 296

Caccetta, L., 329
Cai, M., 212, 368
Cameron, K., 535
Camion, P., 16
Cao, F., 44, 46, 47
Cartwright, D., 35
Cayley, A., 339
Chang, G.J., 268
Charbit, P., 535, 587
Charikar, M., 499, 587
Chartrand, G., 597
Chekuri, C., 499
Chen, C.C., 529, 536, 637
Chen, G., 527, 601
Chen, J., 321, 593, 704, 705
Cheng, E., 561
Cheriyan, J., 153, 205, 489, 490, 492
Cherkassky, B.V., 92
Chetwynd, A.G., 626, 627
Cheung, T., 499
Chow, W.S., 609
Christofides, N., 707
Chudnovsky, M., 121, 584
Chung, F.R.K., 24, 107, 225, 430
Chvátal, V., 103, 105, 119, 122, 238,

330, 705
Climer, S., 706
Cohen, R. F., 48
Cohn, Z., 601
Coleman, T., 709
Conitzer, V., 587
Cook, S.A., 701
Cook, W.J., 145, 705, 711
Coppersmith, D., 37, 322
Cormen, T.H., 195, 699
Corominas, A., 706
Crescenzi, P., 702, 707
Csaba, B., 243
Cunningham, W.H., 145, 459, 711
Curran, S.J., 269
Czumaj, A., 351

Dahl, G., 499
Dahllöf, V., 705

Dai, Z., 499
Dalmazoo, M., 207
Dankelmann, P., 74, 103, 361
Darbinyan, S.K., 234, 236, 289, 308,

309
Darrah, M., 320
Das, K.Ch., 615, 621, 622
Das, P., 628, 630, 631
Das, S., 82, 86
Dawar, A., 73, 80
Daykin, D.E., 637
de Bruijn, N. G., 44
de Fluiter, B., 75
de Werra, D., 426
Dean, N., 601
Demers, A., 358, 360
Deng, X., 368, 423, 472
Di Battista, G., 48
Diestel, R., 441
Dijkstra, E.W., 94
Dilworth, R.P., 521
Ding, G., 396
Dinic, E.A., 148, 406
Dinitz, J., 679, 680
Dinur, I., 593
Dolan, A., 127
van Doorn, E.A., 81
Dorn, F., 361, 363, 704
Dorninger, D., 609, 670, 671
Douglas, R.J., 335
Downey, R.G., 704
Downing, A., 358, 360
Dowsland, K., 710
Du, D.-Z., 41, 44, 46, 47, 268
Duchet, P., 120, 121
Duff, I. S., 674, 675, 677
Duffin, R. J., 48, 51

Eades, P., 48
Edmonds, J., 147, 165, 171, 175, 186,

342, 345–350, 453, 454, 509,
535, 696, 716

Ehrenfeucht, A., 424
Eiben, A.E., 711
El-Sahili, A., 368
Enni, S., 462, 557
Eppstein, D., 705
Erdős, P., 268, 328, 332, 432, 518,

519, 585, 629, 637
Erisman, A. M., 674, 675, 677
Esfahanian, A.H., 205
Euler, L., 23
Even, G., 593
Even, S., 154, 205, 348, 413, 633, 670

Author Index 769

Favaron, O., 536
Feder, T., 666
Feldman, J., 499
Feller, W., 677
Fellows, M.R., 704
Feng, J., 635
Feofiloff, P., 511
Ferapontova, E., 121
Fernandez de la Vega, W., 586, 615,

621, 622
Fink, J.F., 268
Fiol, M.A., 41, 45, 100
Fisher, D.C., 601
Fisher, M.J., 37
Fleischer, L., 457, 458
Fleischner, H., 23, 440, 441, 476, 611,

616
Floyd, E.L., 597
Floyd, R.W., 100
Flum, J., 704
Fomin, F.V., 74, 77, 115, 361, 372,

704, 705
Forcade, R., 298
Ford, L.R., Jr., 127, 130, 141, 143,

205, 451
Fortune, S., 375, 382, 398, 400
Fraigniaud, P., 691
Fraisse, P., 292
Frank, A., 202, 209, 347, 350, 365–

367, 371, 399, 407, 443, 447,
450–466, 477, 511, 554, 555,
557–567, 577, 580, 597

Fredman, M.L., 96, 97, 323
Frieze, A., 592
Fris, I., 101
Frisch, I.T., 225, 332
Frobenius, G., 174
Fujishige, S., 364, 455, 457–461
Fulkerson, D.R., 127, 130, 141, 143,

205, 342, 451
Funke, M., 592
Fűredi, Z., 103
Fürer, M., 351
Furman, M.E., 37

Gabow, H.N., 205, 424, 494–496, 557,
576

Gale, D., 158, 682
Galeana-Sánchez, H., 82, 119, 120,

426
Galil, Z., 205
Gallai, T., 432, 519, 530, 597
Galluccio, A., 324–327, 338

Galvin, F., 682
Gambosi, G., 702, 707
Garey, M.R., 24, 38, 107, 225, 228,

551, 587, 670, 700, 703
Gavril, F., 426, 587
Geller, D., 597
Gerards, A.M.H., 430, 473
Gerke, S., 652
Germa, A., 331
Ghosh, D., 659, 706
Ghouila-Houri, A., 101, 234, 418
Giesen, H.-E., 635
Giglio, M.C.M.T., 384, 415
Giles, R., 453, 454, 509
Glover, F., 661, 663, 711
Godbole, A., 601
Goddard, W.D., 117, 335, 430
Goddyn, L., 441
Goel, A., 499
Goemans, M.X., 496, 598
Goldberg, A.V., 92, 150, 153, 165
Goldberg, M.K., 101
Goldengorin, B., 659, 662, 706
Golumbic, M.C., 83, 417, 420
Gondran, M., 414
Goodwyn, L.W., 688
Goralcikova, A., 37
Gould, R., 527
Gowen, P.J., 166
Grötzsch, H., 473
Grünbaum, B., 298
Greger, B., 272

Grinberg, È.Y., 603
Grohe, M., 704
Grossman, J.W., 613, 640
Grötschel, M., 266, 457, 565, 592
Guha, S., 499
Guo, Y., 59, 62, 63, 65–68, 237,

245, 255, 256, 283–289, 309,
312–315, 319, 333, 335, 468,
526, 549, 635

Gurvich, V., 121
Gutin, G., 58, 59, 63, 65–69, 71,

74, 75, 86, 103, 108, 111,
112, 116, 117, 123, 126, 178,
190, 221, 228, 231, 233, 235,
237, 239, 240, 244–250, 252,
256–260, 265, 270–273, 276,
277, 280, 281, 288, 290–
295, 304, 308, 309, 312–315,
334, 335, 337, 357, 361, 372,
528, 593, 615, 617–621, 623,
624, 627–631, 635, 637, 641,

770 Author Index

644–664, 691, 694, 700, 704,
705

Gvozdjak, P., 441
Gyárfás, A., 435, 450, 452, 547, 597

Habib, M., 39
Häggkvist, R., 243, 246, 308, 329,

516, 517, 608, 609, 613, 626,
630, 640

Hagihara, K., 566
Hajnal, A., 690
Haken, W., 432
Hakimi, S.L., 205
Hall, P, 173
Hamidoune, Y.O., 219, 330
Hansen, S., 710
Harant, J., 397
Harary, F., 35, 39, 41, 51, 83, 266, 477
Harman, G., 646
Hassin, R., 578, 707
Havet, F., 298–302, 331, 434, 542, 601
Hedetniemi, S.M., 691
Hedetniemi, S.T., 597, 691
Hell, P., 44, 232, 301, 302, 420–423,

472
Hemminger, R.L., 39, 41
Hendry, G.R.T., 317, 336
Heslop-Harrison, J.S., 670
Hetyei, G., 412
Heuchenne, C., 39
van den Heuvel, J., 363–365
Heydemann, M.-C., 236, 303, 331,

380, 381, 415
Hillier, F.S., 685, 686
Hilton, A.J.W., 626, 627
Hoang, C.T., 330, 331
Hoffman, A.J., 157
Holzman, R., 121
Honami, S., 364
Hoos, H.H., 711
Hopcroft, J.E., 73, 375, 382, 398, 400,

699
Horak, P., 103
Hromkovič, J., 691
Hsu, D.F., 41, 44, 46, 47, 268
Huang, J., 52–54, 58, 60, 61, 115, 118,

126, 232, 233, 240, 246–250,
252, 256, 257, 280, 281, 288,
310–312, 355, 357, 420–426,
468, 472, 482, 485, 492–494,
659, 662

Hubenko, A., 412
Hudry, O., 598

Hunter, P., 73, 80
Hurkens, C., 381
Hwang, F.K., 47, 268

Ibaraki, T., 206, 403, 404, 407
Imase, M., 44, 45, 47
Imori, M., 316
Isaak, G., 597, 598
Itai, A., 670
Itatsu, Y., 364
Ito, H., 364
Itoh, M., 47
Iwata, S., 457, 458

Jackson, B., 244, 271, 272, 347, 399,
446, 459, 461, 467, 516, 528,
557, 578

Jacob, H., 122
Jacobson, M.S., 296
Jaeger, F., 439–441
Jäger, G., 659
Janssen, J., 680
Jensen, T.R., 432, 441, 635, 662
Jewell, W.S., 166
Jirásek, J., 269, 603, 604
Jocke, S.C., 269
Johnson, D.B., 125
Johnson, D.S., 228, 551, 587, 670,

700, 703, 709–711
Johnson, E.L., 175
Johnson, M., 363–365
Johnson, T., 73, 80, 230, 286, 379
Johnstone, A., 652
Jones, N., 270, 643, 644, 648
Jonsson, P., 705
Jordán, T., 208, 217, 447, 557, 561–

567, 569, 576, 578
Jung, H.A., 379
Jünger, M., 592

Kabadi, S., 663, 664
Kabell, J. A., 83
Kaneko, Y., 601
Kanj, I.A., 704, 705
Kann, V., 702, 707
Kannan, R., 592
Kaplan, H., 592
Kapoor, S., 342
Kari, J., 688
Karp, R.M., 147, 165, 186, 344, 432,

587, 701
Karpinski, M., 615, 621, 622
Karzanov, A.V., 150, 406
Keevash, P., 243, 517

Author Index 771

Kelly, L., 244
Kelly, P.J., 516
Kemeny, J.G., 677
Kemnitz, A., 272
Kenyon-Mathieu, C., 593
Khuller, S., 483, 497–498, 707
Kim, E.J., 74, 361, 617–621, 705
Király, Z., 443–446
Kirchoff, G., 341
Kirousis, L.M., 78
Klasing, R., 691
Klein, M., 163
Kleinberg, J., 699
Kleinschmidt, P., 170
Kleitman, D., 430
Kloks, T., 75, 77, 704, 705
Knuth, D.E., 33
Knyazev, A.V., 103
Kocay, W., 172
Koh, K.-M., 111, 112, 114, 116, 123,

327
Koller, A.E., 662, 664
Komlós, J., 323
König, D., 34, 172, 188
König, J-C., 114
Korst, J.H.M., 710
Kostochka, A, 585
Kotzig, A., 515, 610
Koubek, V., 37
Kouider, M., 368
Krarup, J., 51
Kreutzer, S., 73, 74, 80
Kriesell, M., 223
Krivelevich, M., 74, 361, 372, 662,

704, 705
Krumme, D.W., 114
Kubicki, G., 117
Kuhl, J. G., 47
Kühn, D., 243, 244, 381, 412, 517
Kumar, M.P., 182
Kunth, D.E., 679
Kunzmann, A., 583
Kuratowski, C., 72
Kwak, J.H., 335

Laborde, J.M., 542
Laguna, M., 711
Landau, H.G., 115, 449
Las Vergnas, M., 359
Latka, B.J., 601
Lawler, E.L., 47, 48, 51, 52, 100
Lazard, E., 114, 691
Lee, C.M., 75, 704, 705

Lee, O., 512
Lehel, J., 547
Leiserson, C.E., 195, 583, 699
Lesniak-Foster, L., 268
Levin, L.A., 701
Lewin, M., 271, 289
Li, H., 233, 235, 237, 239, 271, 525,

527
Li, M., 499
Li, X., 119
Lichiardopol, N., 513
Lieberman, G.J., 685, 686
Liestman, A., 691
Lifshitz, E.M., 663
Linden, N., 643, 648
Linial, N., 205, 328, 337
Little, C., 527, 628
Liu, J., 332
Liu, X., 44, 236
Liu, Y., 320, 321, 593, 704, 705
Lloyd, E.K., 23
Locke, S.C., 601
Loebl, M., 324–327, 338
Lovász, L., 104, 122, 201, 205, 221,

346, 442, 457, 460, 506, 565
Lu, S., 321, 593, 704, 705
Lu, X., 353
Lucchesi, C.L., 384, 415, 506, 590
Lundgren, J.R., 84
Lynch, J.F., 379, 395
Lyuu, Y.-D., 41

Mader, W., 207, 208, 212, 213, 215–
219, 410, 411, 442, 443, 555,
557

Maffray, F., 683
Magnanti, T.L., 127, 153, 161
Maheshwari, S.N., 153, 182
Makino, K., 364
Malhotra, V.M., 182
Manalastas, P., Jr., 529, 536
Manoussakis, Y., 236, 246, 271, 282,

287, 290, 302, 380, 525, 609,
611, 615, 621, 622, 630, 635,
636

Marchetti-Spaccamela, A., 44, 702,
707

Margot, F., 664
Martinhon, C.A., 615, 621, 622
Massar, S., 643, 648
Masuzawa, T., 566
Matamala, M., 115
Matsumoto, M., 316
May, D., 691

772 Author Index

McCanna, J.E., 114
McConnell, R.M., 424
McCuaig, W., 324, 598
McDiarmid, C., 327, 513
McGeoch, L., 711
McGeoch, L.A., 709–711
McMorris, F. R., 83
Megalakaki, O., 609
Mehlhorn, K., 37, 172
Meierling, D., 297, 526
Melkonian, V., 500
Memon, N., 369
Meng, J.-H., 236, 271
Menger, K., 201
Metzlar, A., 384
Meyer, A.R., 37
Meyniel, H., 122, 235
Milgram, A.N., 519
Miller, M., 101
Milner, E. C., 690
Minoux, M., 414
Minty, G.J., 435
Molloy, M., 513
Monien, B., 691
Monma, C.L., 47
Moon, J.W., 16, 115, 126, 318, 585
Morgenstern, O., 120, 126
Morvan, M., 39, 420
Müller, H., 83
Muller, J.H., 420
Munos, X., 44
Murty, K.G., 127
Murty, U.S.R., 610

Naddef, D., 705, 706
Nagamochi, H., 206, 407
Naor, J., 593
Nash-Williams, C.St.J.A., 237–239,

348, 349, 442–444
Neumann-Lara, V., 73, 120, 548
Newman, A., 587
Ng, L.L., 516
Niedermeier, R., 704
Nielsen, M.H., 522–524, 542–546
Nishimura, T., 330
Noble, S.D., 662
Norman, R.Z., 35, 39, 41

Obdržálek, J., 73, 80
Oellermann, O.R., 117, 335
Okada, K., 44, 45, 47
Olsen, C., 709, 710
Ordaz, O., 528

Ordyniak, S., 74
Ore, O., 177
Orlin, J.B., 127, 153, 161
Osthus, D., 243, 244, 381, 412, 517
O’Sullivan, B., 593, 704, 705
Ouyang, Z., 369
Overbeck-Larisch, M., 236, 289, 336
Özturan, C., 683

Palbom, A., 501
Papadimitriou, C.H., 78, 91, 146, 321,

325, 667, 670, 706
Pareek, C.M., 103
Paschos, V., 611, 635, 636
Pastor, R., 706
Paul, M., 172
Payan, C., 542
Peine, R., 691
Pekéc, A., 470
Penn, L.E., 603
Penn, M., 661
Perl, Y., 382
Petersen, J., 431, 609
Petreschi, R., 48
Petrović, V., 116, 119
Pevzner, P.A., 609, 611
Peyrat, C., 44
Pinkernell, A., 335
Pintz, J., 646
Plesńık, J., 101, 107, 111
Plummer, M., 201
Poljak, S., 403, 404, 406
Pór, A., 513
Pradhan, D.K., 44, 47
Prisner, E., 41, 58, 115, 232, 417, 426
Protasi, M., 702, 707
Pulleyblank, W.R., 145, 711
Punnen, A.P., 661, 663, 664, 700
Pósa, L., 238

Radhakrishnan, J., 329
Rado, R., 714
Radzik, T., 92
Rafiey, A., 270, 335, 635, 644
Raghavachari, B., 351, 483, 497–498
Ramachandran, V., 597
Raman, V., 704, 705
Ramesh, H., 342
Rampon, J.-X., 39
Ramsey, F.P., 598
Randerath, B., 308
Rankin, R.A., 268
Rapaport, I., 115
Raspaud, A., 527

Author Index 773

Ratier, G., 682
Rattner, J., 691
Razgon, I., 74, 593, 705
Recski, A., 711, 716
Reddington, J., 652
Reddy, S. M., 47
Rédei, L., 14
Reed, B., 330, 331, 597, 598, 600
Reeves, C.R., 711
Rego, C., 711
Reid, J. K., 674, 675, 677
Reid, K.B., 116, 296, 449, 525
Reif, J.H., 205
Reinelt, G., 592
Rendl, F., 48
Richards, P.I., 39
Richardson, M., 120
Rivest, R.L., 195, 699
Robbins, H.E., 20, 200
Roberts, F.S., 113, 598
Robertson, N., 73, 80, 121, 230, 286,

324, 379, 597, 600
Rosenfeld, M., 298, 301, 302
Roy, A.B., 82, 86
Roy, B., 432
Ruhl, M., 499
Ryser, H., 647

Saad, R., 611, 615, 621, 622, 629, 635,
636

Sabidussi, G., 611
Safra, S., 593
Saltzman, M.J., 659
Samathan, M. R., 44
Sanyal, B.K., 83
Sarvanov, V.I., 662
Saurabh, S., 74, 361, 372, 704, 705
Saxe, J.B., 583
Schannath, H., 170
Schevon, C., 710, 711
Schieber, B., 593
Schiermeyer, I., 308
Schmidt, J.P., 323
Schnorr, C.-P., 204
Schrijver, A., 145, 395, 396, 401, 455,

457, 458, 461, 511, 565, 711
Schudy, W., 593
Schwenk, A., 51
Scott, A., 547
Scott, E., 652
Sebő, A., 441, 535
Sen, M.K., 82, 83, 86
Sereni, J.-S., 513

Severini, S., 270, 644
Seymour, P.D., 73, 80, 121, 230, 286,

324, 326, 379, 396, 406, 439,
441, 584, 593, 597, 598, 600,
601

Shahar, S., 578
Shamir, A., 670
Shapley, L.S., 682
Shearer, J., 637
Shen, J., 103, 330, 601
Shepherd, F.B., 430, 473, 598
Shiloach, Y., 379, 382, 399
Shu, J., 525
Sidney, J.B., 47
Siegel, A., 323, 680
Sierksma, G., 706
Simon, K., 37–39
Skiena, S.S., 100, 662
Škrekovski, R., 548
Skrien, D.J., 422, 428
Smith, J.E., 711
Snell, J.L., 677
Soares, J., 102
Soffa, M.L., 597
Soleimanfallah, A., 652
Šoltés, L., 111
Soneoka, I., 44, 45, 47
Song, Z.M., 308, 525, 527
Sotteau, D., 303, 331, 380, 381, 415,

516
Spencer, J.H., 327, 332, 637
Spinrad, J., 420
Spyratos, M., 609, 636
Srinivasan, A., 329
Steiglitz, K., 146, 667, 670, 706
Stein, C., 195, 699
Steiner, G., 48
Stiebitz, M., 549, 585
Stockmeyer, L., 670, 703
Stone, D., 172
Straight, H.J., 298
Strothmann, W.B., 351
Stützle, T., 711
Su, X., 557
Sudan, M., 593
Suel, T., 369
Sullivan, B., 584
Sullivan, S.J., 424
Sze, S.-H., 321
Szeider, S., 616, 617
Szekeres, G., 519
Szemerédi, E., 323, 330, 690
Szigeti, J., 435

774 Author Index

Szigeti, Z., 443–446
Szwarcfiter, J.L., 597

Tabib, C., 60
Tamassia, R., 48
Tan, B.P., 116

Tardos, É., 165, 461, 496, 500, 699
Tarjan, R.E., 24, 48, 51, 52, 73, 96,

97, 107, 150, 153, 154, 165,
172, 195, 225, 228, 342

Tarsi, M., 441
Tay, E.G., 111, 112, 114, 123
Teo, K., 527
Tesman, B., 598
Tewes, M., 245, 255, 256, 308, 315
Thilikos, D.M., 77
Thomas, R., 73, 80, 121, 230, 286,

324, 379, 597, 600
Thomason, A., 298, 302
Thomassé, S., 122, 244, 298–301, 331,

353, 357, 360, 370, 434, 530,
548, 587, 601

Thomassen, C., 103, 105, 116, 119,
218, 236, 240, 243, 266, 268,
271, 277, 286, 287, 289, 290,
292, 295, 302, 303, 307, 308,
316, 319, 324, 326, 327, 331,
337, 348, 354, 357, 379, 382,
384–388, 390, 397, 406, 412,
435, 446, 467, 468, 511, 513,
514, 516–518, 548, 550, 587,
603, 604

Thorup, M., 97
Thurimella, R., 489, 490, 492
Tian, F., 318
Tian, S.L., 117
Tillson, T.W., 516
Timischl, W., 609
Tindell, R., 24, 201
Toft, B., 432, 441
Tokura, N., 566
Toledano Laredo, V., 426
Tollis, I.G., 48
Tong, L.D., 268
Toueg, S., 101
Trahtman, A., 688
Trendafilov, D., 369
Trotter, T., 268
Tutte, W.T., 339, 349, 397, 437, 439
Tuza, Z., 295, 432, 435, 609, 636
Twitto, Y., 662

Ullman, J.D., 38, 699

Urrutia, J., 426

Valdes, J., 48, 51, 52
Vazirani, V.V., 702
Veblen, O., 515
Végh, L.A., 565
Veinott, A.F., 678
Viennot, L., 420
Vince, A., 431
Vitaver, L.M., 432
Voigt, M., 636
Volkmann, L., 24, 30, 59, 62, 63, 65–

68, 228, 245, 255, 256, 272,
283–285, 297, 308, 312–315,
332, 333, 335, 412, 526

von Neumann, J., 119, 126

Wahlström, M., 705
Wakabayashi, Y., 512
Wang, C., 597
Wang, H., 527
Wang, J.Z., 525
Wang, L., 368
Warshall, S., 100
Wegner, E., 611
Weiss, B., 688
West, D.B., 44, 82, 83, 86, 126, 236
Wigderson, A., 205
Williamson, D.P., 496, 598
Wilson, R.J., 23
Winograd, S., 37, 322
Winzen, S., 245, 412
Wirth, A., 709
Witte, D., 269, 603
Woeginger, G., 705
Woodall, D.R., 235, 511, 609
Wright, E., 601
Wu, Z.S., 318
Wunderlich H.J., 583
Wyllie, J., 375, 382, 398, 400

Xia, G., 704, 705
Xu, Y., 113
Xuong, N.H., 542

Yamada, H., 316
Yannakakis, M., 177, 321, 325
Ye, D., 115
Yebra, J.L.A., 41, 45, 100
Yeo, A., 75, 108, 111, 112, 117, 123,

177, 178, 221, 237, 240,
244–247, 253–256, 260, 265,
270, 273, 293–295, 304, 315,
331, 335, 353, 356, 357, 481,

Author Index 775

482, 484–487, 492–494, 502,
518, 525, 528, 536, 542–546,
549, 551, 572–576, 587, 593,
613, 624, 641, 644–659, 661,
662, 664, 671, 672, 691, 694,
704, 705

Young, A., 243, 381, 412
Young, N., 483, 497
Younger, D.H., 441, 506, 511, 597
Youngs, D.A., 432
Yuan, X.-D., 212
Yuster, R., 321–323, 601

Zadeh, N., 148
Zamfirescu, C.M., 82

Zemel, E., 707
Zhang, C.Q., 318, 320, 516
Zhang, K.-M., 272, 337, 525
Zhang, W., 706
Zhao, L.-C., 236, 271
Zhou, G., 272
Zhou, H.S., 332
Zhu, A., 497–498
Zhu, X., 103
Ziegler, G., 467, 679
Znám, S., 101
Zverovich, A., 663
Zverovitch, A., 661
Zwick, U., 321–323

Subject Index

abelian group, 436
activity-on-node (AON) project net-

work, 685
acyclic

arc-decomposition, 548
orientation, 473
spanning subdigraph, 322
subdigraph problem, 606, 718

acyclic digraph, 32–34, 36, 38, 48, 69,
93, 120, 123, 126, 154, 253,
277, 287, 304, 353, 382–385,
400, 430, 480, 486, 520, 521,
550, 566, 567, 580

acyclic ordering, 33, 195, 278, 284
of strong components, 17
unique, 84

Ádám’s conjecture, 603
adjacency list representation, 84, 697
adjacency matrix, 697
adjacent vertices, 2, 18
admissible pair, 554
all trail (AT) problem, 402, 406
almost

regular digraph, 516
transitive tournament, 517

alternating
cycle subgraph, 632
Hamilton cycle, 608, 626–631,

670–674
Hamilton path, 628
trail in a 2-edge-coloured multi-

graph, 608
alternating-pancyclic, 610, 628, 630

2-edge-coloured multigraph, 610
anti-directed

cycle, 215
path, 297
trail, 215, 490

antichain
of a family of sets, 126, 547
of a partial order, 521

application of flows, 170–179, 194,
204–206, 224, 279, 303, 304,
448, 451, 476, 478, 480, 504,
520, 534, 561, 580

approximation algorithm, 497, 592
f(n)-approximation algorithm,

592

feedback arc set problem, 593
for MSSS problem, 488
via iterative rounding, 500
via LP-rounding, 496

arboreal decomposition, 79
arc, 2

k-critical, 216
backward with respect to an or-

dering, 592
cost, 6
forward with respect to an or-

dering, 592
head, 2
leaving a set, 192
ordinary, 295
tail, 2
tight, 456
weight, 6

arc reversal, 6
effect on vertex-strong connec-

tivity, 568–570
increasing arc-strong connectiv-

ity, 460, 570
versus augmentation, 569

arc series-parallel (ASP) directed
multigraph, 48

arc-k-cyclic, 318, 517
arc-coloured digraph, 607
k-arc-cyclic, 374, 390
arc-disjoint

(s, t)-paths, 201
(x, y)-,(y, z)-paths, 409
2-path problem, 354
branchings, 205, 345–350, 354–

358, 371, 477, 580
cycles, 13, 513
dicuts, 505, 507, 510
dijoins, 511
feedback arc sets, 511
hamiltonian cycles, 515, 536
hamiltonian path and hamilto-

nian cycle, 517
in- and out-branchings, 354–358
paths, 13, 194
strong subdigraphs, 536

arc-in-locally semicomplete digraph,
82

arc-induced subdigraph, 5

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1,
© Springer-Verlag London Limited 2010

777

http://dx.doi.org/10.1007/978-1-84800-998-1

778 Subject Index

arc-linkages, 398–410
arc-locally semicomplete digraph,

81–82, 269
arc-out-locally semicomplete di-

graph, 82
arc-pancyclic digraph, 318–320
k-arc-strong, 17
arc-strong connectivity, 17, 191–226

k-arc-strong in V , 554
algorithms, 204
augmentation, 559, 560
certificate, 491

k-arc-strong orientation, 476
of a mixed graph, 477

arc-traceable digraph, 296
arms of chromosome, 670
augmenting, 217

(s, t)-flow along a path, 141
arc-strong connectivity, 557–562
connectivity of a graph, 217
cycle, 162
path, 141, 185

with respect to a matching,
623

rooted arc-strong connectivity,
370, 580

set of arcs, 557, 569
successive arc-connectivity aug-

mentation property, 561
vertex-strong connectivity, 562,

565–567, 580
automorphism of a digraph, 662
average cost of a hamiltonian cycle,

662

backward arc, 708
for a path, 361
on an augmenting path, 141
with respect to an ordering, 14,

530, 583, 592, 708
bad vertex with respect to a locally

optimal ordering, 602
bags, 74
balance vector

of a flow, 128, 437
of a network, 128

balanced edge, 424
Balcer-Veinott algorithm, 679, 694
bartering, 683
base

of a matroid, 712
of an independence system, 657

BB-correspondence, 625

BD-correspondence, 625
Bellman-Ford-Moore algorithm, 97–

98, 124
best-balanced orientation, 443
BFS, see breadth-first search
BFS tree, 692

from a root s, 93
bi-submodular function, 581
biorientation of a mixed graph, 24
bipartite digraph, see also semicom-

plete bipartite digraph, 34
versus bipartite 2-edge-coloured

graph, 625
bipartite graph, 19, 419, 423

matching, 170
maximum matching, 170
perfect matching, 173, 177
regular, 188
vertex cover in, 172

bipartite representation, 19, 177, 490,
504

bipartite tournament, see also semi-
complete bipartite digraph,
35, 104, 246, 282, 336, 431,
525, 628

bivalent digraph, 600
block, 645
(n1, . . . , np)-block-triangular struc-

ture, 675
boolean

matrix multiplication, 321
multiplication, 667, 703
variable, 666, 702

branch-and-bound, 706
branchings, 208, 345–372, 495, 566

application in approximation al-
gorithm, 497

application of, 205, 358, 497,
519, 538

arc-disjoint, 205, 345–350
arc-disjoint in- and out-

branchings, 354–358
minimum cost branchings, 342–

345
breadth-first search, 92–93
bridge of a graph, 20, 201, 266
bridgeless graph, 615, 640
buildup algorithm, 166, 167
C-bypass, 230

Caccetta-Häggkvist conjecture, 330
Camion’s theorem, 16, 232
canonical minimum cycle factor, 523
capacity

Subject Index 779

of an (s, t)-cut, 140
of an arc, 127
of an augmenting path, 141

Cartesian product
of digraphs, 10, 268
of sets, 2

certificate
for k-(arc)-strong connectivity,

479–492
for an instance of a decision

problem, 700
for strong connectivity

via contraction, 488
for vertex-strong connectivity,

490
chain of a partial order, 521
Chinese postman problem, 174
chordal graph, 83, 114, 115, 418
chromatic index, 680
chromatic number of a (di)graph, 21,

121, 431
chromosome arrangement, 670
Chvátal-Erdős condition, 519
circuit matroid, 713
circuit of a matroid, 712
circulant digraph, 80–81, 268
circular arc graph, 418
circulation, 133, 435, 453

decomposition into cycle flows,
137

feasible, 156
Hoffman’s circulation theorem,

157
reducing (s, t)-flow to, 133

clause, 667, 702
closed

pth in-neighbourhood, 88
pth out-neighbourhood, 88
walk, 11

closeness among polygonal paths, 396
co-NP, 718
co-disjoint sets, 458
cocircuit of a matroid, 714
coherent cyclic order, 531
colour-coding, 322
colour-connectivity, 622, 623, 627,

629
colour-isomorphic, 609
colourful

path, 322
set, 322

colouring, 21
k-colouring, 431

and orientations, 431
proper, 431

comparability graph, 418, 419
complement of an undirected graph,

18
complementary cycles, 525, 526, 549
complete

p-partite graph, 19
biorientation, 20, 225, 326, 467

of a mixed graph, 24
bipartite graph, 680
digraph, 16, 35
graph, 18
multipartite graph, 19

composition
of digraphs, 9
of graphs, 21, 424

Conjecture, 73, 103, 111, 113, 212,
213, 216, 219, 237–239, 244,
269, 270, 288, 290, 291, 295,
296, 315, 316, 330, 331, 351,
357, 389, 390, 405, 411, 412,
433, 439, 446, 447, 467, 494,
499, 500, 503, 511, 513, 516,
518, 520, 524, 526, 527, 536,
537, 541–543, 548, 549, 566,
567, 569, 570, 601, 603, 616,
618, 621, 622, 635, 637, 646

connected
(g, f)-factor, 273
component, 20
convex (cc) set, 649–652
digraph, 20
graph, 20

k-connected graph, 20
consecutive-d digraph, 47
consistent cycles, 529

spanning pair of, 530
contraction, 7, 405

of a subdigraph, 7
of an arc, 383, 403, 405, 506
of an edge, 206
of cycles, 488

convenient multigraph, 623
converse

of a digraph, 58, 210
of a directed multigraph, 7

convex set, 649–655
cost

of a branching, 342
of a path/cycle, 162
of a vertex, 6
of an arc, 6, 127

780 Subject Index

cover of a family of sets, 2
covering

all vertices by cycles, 529–536
by disjoint paths, 519
by out-trees, 350
path covering number, 519

critical
k-critical arc, 213
k-critical set, 208
activities, 686
colour with respect to a PC

trail, 611
kernel-imperfect, 120
path, 686
vertices, 218, 686

critically k-strong digraph, 218–219
cross-free family, 192
crossing

G-supermodular function, 452,
462

dicuts, 507
family, 192
family of pairs of sets, 581
pair, 454
paths, 396
submodular function, 454, 459

cubic (multi)graph, 438, 473
cut, 17

(s, t)-cut
in a graph, 192
in a network, 140

(s, t)-cut
in a network

minimum, 141
cutset, 17

of a matroid, 714
cycle, see also hamiltonian cycle, 12

k-cycle, 12, 321
1-maximal, 318, 719
alternating, 608
augmenting, 162
avoiding/containing prescribed

arcs, 295
even, 12
even cycle problem, 324
extendable, 317
finding a cycle of prescribed

length, 322
flow, 136
length, 12
longest, 12
mean cost of a cycle, 165
modulo k, 337

negative, 88, 160, 163, 165
odd, 12
odd through a fixed arc, 337
of length Θ(log n), 321
of length k modulo p, 324–329
of length 0 (mod q), 328
of minimum mean cost, 165
ordinary, 60
oriented, 20
shortest, 12, 125
simple with respect to cyclic or-

der, 531
through a vertex, 12
with two blocks, 435

cycle canceling algorithm, 163, 188
cycle extendable digraph, 317, 336
cycle factor, 15, 237, 244–259, 481

k-cycle factor, 527
with prescribed cycle lengths,

527
canonical minimum cycle factor,

523
complexity of finding, 178
existence of, 177
good, 249–253
in regular directed multigraph,

551
irreducible, 522
minimum, 521–524
sufficient condition in terms of

independence number, 528
2-cycle factor, see complementary cy-

cles
cycle subdigraph, see also cycle fac-

tor, 15
t-cycle subdigraph, 15
covering a prescribed vertex set,

528, 529
covering specified arcs, 225
of maximum cardinality, 528

cyclic connectivity, 624
cyclic digraph, 536

k-cyclic digraph, 255, 374
cyclic independence number, 532
cyclic independent set, 532
cyclic order, 531

coherent, 531
simple cycle, 531

cyclically connected digraph, 30
cyclomatic number, 536

DAG, see acyclic digraph
DAG-decomposition, 78
DAG-width, 78

Subject Index 781

k-dangerous set, 475
data compression, 369
data dependency graph (DDG), 649
de Bruijn digraph, 44–47, 316
de-randomizing, 323
decision problem, 700
decomposable digraph, see also

quasi-transitive digraph,
9, 220, 277

decomposition
Φ-decomposition of a digraph,

10
into acyclic digraphs, 548
into arc-disjoint hamiltonian cy-

cles, 515, 516
into strong spanning subdi-

graphs, 536–542
into strong subdigraphs, 548
of a graph into cliques, 424
of the arc set of regular tourna-

ments, 516
decreasing subsequence, 519
deficiency

of a one-way pair, 563, 564
k-degenerate graph, 433
degree of a vertex

jth degree, 609
in a digraph, 4
in a graph, 20

degree-constrained digraphs, 504
hamiltonian cycles, 233–243

deletion
of a subdigraph, 7
of arcs from a digraph, 7
of multiple arcs, 6
of vertices from a digraph, 7

demand arc, 402
demand directed multigraph, 403
density of a digraph, 331
deorienting an arc, 574
dependent set

of a matroid, 712
of an independence system, 657

depth-first search, 26–29
descendant in a DFS tree, 27
design, 645
deterministic finite automaton, 687
DFS, see also depth-first search, 195
DFS forest, 27
DFS tree, 27

backward arc, 27
cross arc, 27
descendant of a vertex in, 27

forward arc, 27
root of, 27

DHM-construction, 630
diameter, 89, 100–115

minimizing, 101
minimum in orientation, 103
Moore bound on number of ver-

tices, 101
versus degree, 44

dicut, 505
arc-disjoint, 506
crossing dicuts, 507
Woodall’s conjecture, 511

difference between two sets, 2
digraph, 2

corresponding to instance of 2-
SAT, 667

Dijkstra’s algorithm, 94–97, 123
dijoin, 505

disjoint dijoins, 511
Dilworth’s theorem, 521
3-dimensional matching problem, 551
Dinic’s algorithm, 148

for simple networks, 156
on unit capacity networks, 154

Dinitz conjecture, proof using ker-
nels, 679–683

directed
cactus, 501
cut, see dicut
dual of a planar digraph, 590,

605
graph, see also digraph, 2
multigraph, 4
pseudograph, 4, 513

associated with a Markov
chain, 677

directed path decomposition, 78
directed path-width, 78
directed Steiner problem with con-

nectivity constraints, 499
directed tree-width, 79
disjoint cycles, 415, 513, 550, 596–600

versus feedback sets, 596
disjoint paths, 374
disjoint sets, 2
distance

from a set to another, 89
from a vertex to another, 88

distance classes from a vertex, 93
distances

acyclic digraphs, 94
algorithms for finding, 91–100

782 Subject Index

Bellman-Ford-Moore algorithm,
97–98

Dijkstra’s algorithm, 94–97
in complete biorientations, 97

dominated, 3
dominated pair of vertices, 233
dominates, 3
dominating pair of vertices, 233
drop algorithm, 497
dual of a matroid, 713
dynamic programming, 322

ear decomposition, 198, 481, 678
application of, 200, 487
ear of, 198
linear algorithm for, 200

edge of an undirected graph, 18
edge-coloured multigraph, 608, 625–

628
2-edge-coloured complete multi-

graph, 628–634
edge-colouring, 438
k-edge-connected, 20, 442
edge-connectivity, 206

algorithm to determine, 206
maximum adjacency ordering,

206
edge-cover, 483
edge-disjoint

2-linkage problem, 406
mixed branchings, 365
paths, 406
spanning trees, 348
trees, 478

Edmonds’ branching theorem, 205,
208, 346–350, 370, 372, 399

generalization of, 347
Edmonds-Giles theorem, 454
electronic circuit design, 583
element of a directed pseudograph, 6
elementary operation, 696
ellipsoid method, 457, 565
embedding of a planar (di)graph in

the plane, 72
end-vertex

of a walk, 12
of an arc, 2

entering arc, 2
Euler trail, see eulerian trail

properly coloured, 610
Euler’s formula, 73
Euler’s theorem, 23
eulerian

(multi)graph, 441, 443
digraph, 102
directed multigraph, 13, 23,

401–407
orientation of a mixed graph,

452
oriented graph, 103
subgraph, 438
trail, 13, 718
weak linkage problem, 403

eulerian directed multigraph, see also
regular digraph, 166, 174,
175, 180, 254, 416, 513, 557

decomposition into cycles, 180
Evans Conjecture, 537
even cycle, 12, 35, 428

in a k-regular digraph, 328
oriented graphs with many arcs,

430
even cycle problem, 324
even digraph, 326
even pancyclic, 336
even vertex-pancyclic digraph, 336
exponential-time algorithm, 705
extended Φ-digraph, 10
extended locally in-semicomplete di-

graph, 35, 86, 407, 409
extended locally out-semicomplete

digraph, 276
extended locally semicomplete di-

graph, 35, 69, 276, 277
extended semicomplete digraph, 35,

52, 69, 246, 251, 252, 276,
280, 288, 309, 310, 336, 393,
481, 484–487, 501, 503, 521

hamiltonian cycle, 246
longest cycle, 246
MSSS problem, 484, 485

extended tournament, 275, 279–281,
288, 470

hamiltonian [x, y]-path, 280
proof using the structure of, 275
weakly hamiltonian-connected,

281
extension

of a digraph, 10, 111, 393
of a graph, 21

extension-closed class of digraphs, 10,
36

face of a plane (di)graph, 72
facial cycle, 384, 590
factor of a digraph, 5
family

Subject Index 783

2-covering, 645
cross-free, 192, 209
crossing, 192
has an SDR, 645
intersecting, 192
laminar, 192, 209
mediated, 645
of sets, 2
symmetric, 645

fan-in, fan-out in eulerian directed
multigraphs, 416

feasibility theorem
for circulations, 157
for crossing submodular flows,

458
for flows, 158
for fully submodular flows, 455

feasible
k-commodity flow, 413
flow, 129

with balance vectors within
intervals, 185

pairing, 444
submodular flow, 454–458

feedback arc set, 511, 583, 593, 606,
708

feedback arc set problem, 587, 707–
711

approximation algorithm, 593,
606

planar digraph, 590
feedback sets, 583–600

versus (arc)-disjoint cycles, 596
feedback vertex set, 583, 705
feedback vertex set problem, 587
Fibonacci heap, 96
finite automaton, 687
fixed-parameter algorithmics, 703
fixed-parameter tractable (FPT), 704
flow, 128

across a cut, 140
adding a residual flow, 138
application, see application of

flows
arc sum of two flows, 136
augmenting path, 141
balance vector of, 128
circulation, 133
cost of, 129
cycle flow, 136
decomposition, 136, 140, 180
demand of a cut, 159

difference between two flows,
139

feasibility theorem, 158
feasible, 129, 156, 185, 449
integer, 128
maximal, 144, 148
maximum, see maximum flow

problem
maximum capacity augmenting

path method, 185
netto flow, 129
optimal, 162
path flow, 136
residual network with respect

to, 130
(s, t)-flow, 132

(s, t)-cut, 140
minimum value, 158
reducing general flows to, 132
relation to arc-strong connectiv-

ity in directed multigraphs,
194

value of, 132
Floyd-Warshall algorithm, 37, 99
Ford-Fulkerson algorithm, 142, 205

on real valued instances, 181
forefather, 196
forest, 21
forward arc

for a path, 361
on an augmenting path, 141
with respect to an ordering, 530,

583, 592
fragment, 218
Frank’s orientation theorem, 452, 465
Frank-Jordán vertex-connectivity

augmentation theorem,
565

free matroid, 713
fully G-supermodular function, 452
fully submodular function, 454

gadget for NP-completeness proof,
228, 375, 551

Gallai-Milgram theorem, 519
Gallai-Roy-Vitaver theorem, 432
game theory, 119
gap of a C-bypass, 241
Gaussian elimination, 674
generalized de Bruijn digraph, 47
generalized matching, 188
generating pair, 82
genetics, 670

784 Subject Index

geometric random variable, 321
girth, 12, 125, 312, 329–332
global irregularity, 255
good cycle factor, 249–253

theorem, 250
good vertex with respect to a locally

optimal ordering, 602
gossip problem, 690
Grötzsch graph, 473
graph, see also undirected graph, 18
graph Steiner problem, 366
greedy algorithm, 371

for independence systems, 657,
714

for matroids, 719
group flow, 436

half-duplex gossip problem, 691
Hall’s theorem, 173
Hamilton cycle, see hamiltonian cy-

cle
Hamilton Cycle Problem, 39, 700
Hamilton path, see hamiltonian path
Hamilton walk, see hamiltonian walk
hamiltonian (x, y)-path, 286, 288
hamiltonian [x, y]-path, 277, 280,

283, 285
hamiltonian connected, 286–289
hamiltonian cycle, 13, 37, 60, 207,

228, 230, 231, 257, 258, 268,
289–296, 303–305, 308–311,
315, 318, 319, 337, 480, 483,
485, 515–518, 529, 552, 662

alternating in 2-edge-coloured
multigraph, 608

arc-disjoint hamiltonian cycles,
515, 536

avoiding prescribed arcs, 292–
296

containing prescribed arcs, 290,
292

in almost acyclic digraph, 304
in almost semicomplete digraph,

290
in undirected graph, 238
multipartite tournament, 293
power of a hamiltonian cycle,

517
properly coloured, 621, 635–640
quasi-transitive digraph, 256–

259, 485
semicomplete multipartite di-

graph, 244–256

sufficient conditions in terms of
degrees, 233–243

hamiltonian digraph, 13
hamiltonian path, 13, 62, 91, 228,

231, 232, 245, 257, 275–289,
304, 313, 515–518, 530

alternating in 2-edge-coloured
multigraph, 608

between two prescribed vertices,
277

in a tournament, 14, 697
in semicomplete bipartite di-

graph, 86
one end vertex prescribed, 275–

277
oriented, 297
properly coloured, 635
Rédei’s theorem, 14

hamiltonian walk, 13
Havet-Thomassé theorem, 298
k-HCA problem, 290–292
head

of a one-way pair, 563
of an arc, 2

height function with respect to a pre-
flow, 150, 182

hereditary set of digraphs, 69
heuristics, 660, 707

domination number, 661
domination ratio, 661
for NP-hard problems, 660,

707–711
Hoffman’s circulation theorem, 157,

457
hypergraph, 26, 104, 328

2-colourable, 26
2-colouring of, 26
edge of, 26
order of, 26
rank of, 26
transversal of edges, 364
uniform, 26
vertex of, 26

hypertournament, 607

implication class, 420, 423, 424
in-branching, see also out-branching,

22, 232
minimum cost, 497

k-in-critical set, 208, 209
in-degree of a vertex, 4
in-generator of a digraph, 299
in-neighbour, 4
in-neighbourhood, 4

Subject Index 785

pth in-neighbourhood, 88
in-path, 298
in-path-mergeable digraph, 58, 86
in-pseudodegree of a vertex, 4
in-radius, 89
in-singular vertex with respect to a

cycle, 247
in-tree, 22
incident to an arc, 3
incomparable elements with respect

to a partial order, 521
increasing subsequence, 519
independence number, 21, 85, 254,

519
effect on cycle factors, 530

independence oracle for a matroid,
343, 715

independence system, 657
base, 657
dependent set, 657
independent set, 657
uniform, 657

independent arcs (edges), 21
independent set, 427, 519, 718

of a matroid, 712
of an independence system, 657

independent set problem, 718
independent vertices, 21
index of a pair of alternating trails,

612
index-bounded weighting, 535
induced subdigraph, 5
initial strong component, 17
initial vertex of a walk, 12
inserting one path into another, 239
instance of a problem, 700
integer multicommodity flow prob-

lem, 413
integrality theorem for maximum

flows, 144
Intel Δ-prototype, 691
intercyclic digraph, 598
intermediate strong component, 17
internally disjoint paths, 13, 201, 224,

374
intersecting

G-supermodular function, 452
family, 192
pair, 454
submodular function, 454

intersection
digraph, 82
graph, 624

number of a digraph, 82, 86
of digraphs, 38

interval digraph, 83
interval graph, 83, 115
interval of an oriented path, 298

length, 298
2-irreducible instance of k-ST prob-

lem, 405
irreducible alternating cycle sub-

graph, 632
irreducible cycle factor, 522
isomorphic

directed pseudographs, 7
graphs, 20

isomorphism, 7
iterated line digraph, 43, 44
iterative compression, 594
iterative rounding of an LP solution,

500

Jordan curve theorem, 395

Kautz digraph, 46
Kelly’s conjecture, 516
kernel, 119–122

(k, l)-kernel, 119
kernel-imperfect digraph, 120
kernel-perfect digraph, 119, 680
kernel-solvable graph, 121

king, 115–119, 126
Kirchoff matrix, 340
König’s theorem, 172
Kruskal’s algorithm, 342
Kuratowski’s theorem, 72

labelled digraph, 7
labelling algorithm for maximum

flow, 143
laminar family, 192, 209
Landau’s theorem, 449, 476
large packet radio network, 44
Las Vegas algorithm, 205
Latin square, 679
layered network, 146
leaving arc, 2
length

of a cycle, 12
of a path, 12
of a walk, 12

lexicographic 2-colouring, 421, 423
lexicographically smaller vertex, 421
line digraph, 39–44, 119, 316

iterated, 43
obstructions for, 42

786 Subject Index

recognition, 41
linear ordering problem, 592
linear programming, 123, 145, 454,

457, 496, 500, 509, 535
k-linkage, 373, 598

k-linkage problem, 304, 374–
395, 398, 414

k-linked digraph, 373, 375, 379–398,
415

linking principle, 450, 461
list chromatic index, 682
list colouring, 680
list edge-colouring, 120, 679–683
literal, 667, 702
local arc-strong connectivity, 192
local edge-connectivity, 443
local in-tournament, see locally in-

tournament digraph
local irregularity, 255
local tournament, see locally tourna-

ment digraph
local vertex-strong connectivity, 192
locally in-semicomplete digraph,

see also locally out-
semicomplete digraph, 57–
59, 85, 86, 231–233, 271,
273, 315, 426, 427

strong decomposition, 59
structure of non-strong, 59

locally in-tournament digraph, 57
locally optimal ordering, 601
locally optimal solution of an opti-

mization problem, 708
locally out-semicomplete digraph,

see also locally in-
semicomplete digraph

locally semicomplete digraph, 57, 59–
68, 111, 221, 225, 233, 283–
285, 288, 303, 312–315, 336,
356, 357, 374, 387–389, 415,
421, 422, 425, 526

classification theorem, 68
complementary cycles, 526
extended, 276
generalization, 235
hamiltonian (x, y)-path, 288
hamiltonian [x, y]-path, 283, 285
hamiltonian connected, 288
independence number, 85
minimal separating set in, 225
non-round decomposable, 67
orientation of, 468
round decomposable, 62

semicomplete decomposition, 63
structure of non-strong, 61
weakly hamiltonian-connected,

285
locally tournament digraph, see also

locally semicomplete di-
graph, 57, 289, 312, 313,
315, 319, 390, 422, 423, 425,
426, 468, 472, 473

characterization through orien-
tations, 425

round, 61
longest

(x, y)-path problem, 287
[x, y]-path problem, 288
alternating cycle, 627, 629
cycle

extended semicomplete di-
graph, 484, 486

relation to chromatic number,
434

cycle problem, 53
path, 232

relation to chromatic number,
432

path problem, 53
acyclic digraph, 94, 123

loop, 4
Lovász’s local lemma, 327
Lovász’s splitting theorem, 442, 475
lower bound on an arc, 127

removing from a network, 131
Lucchesi-Younger theorem, 506, 509

Mader’s directed splitting theorem,
555

main (n1, . . . , np)-blocks, 674
Markov chain, 677
marriage theorem, 174, 451, 476
matching, 21, 223, 443

perfect, 21, 427
matching diagram digraph, 83
matrix multiplication, 37
Matrix-tree theorem, 339
matroid, 343, 711–717, 719
matroid intersection problem, 343,

367, 461, 716, 717, 720
matroid partition problem, 715, 720
MAX-2-SAT, 670, 703, 718
Max-Flow Min-Cut theorem, 141,

172
relation to Menger’s theorem,

202
1-maximal cycle, 719

Subject Index 787

maximal flow, 144, 148
maximal with respect to property P,

2
maximum

k-path subdigraph, 543
acyclic subdigraph problem, 592
adjacency ordering, 206
in-degree of a digraph, 5
matching in bipartite graphs,

170, 171
monochromatic degree, 609
out-degree of a digraph, 5
semi-degree of a digraph, 5
with respect to property P, 2

maximum flow algorithms, 142–156
capacity scaling algorithm, 183
Dinic’s algorithm, 148
for unit capacity networks, 154
Ford-Fulkerson algorithm, 142
maximum capacity augmenting

path method, 186
MKM algorithm, 182
on simple networks, 156
push-relabel algorithm, 150
shortest augmenting paths, 147

maximum flow problem, 140–156
and arc-strong connectivity, 204
in unit capacity networks, 154
integrality theorem, 144
re-optimizing after small pertur-

bation, 182
mean cost of a cycle, 165
mediated digraph, 644
mediation number, 644
member

of a family of digraphs, 7
of a family of sets, 192

Menger’s theorem, 201–206, 212, 224,
225, 287, 345, 347, 348, 370,
409, 410, 415, 443, 459, 469,
529, 557, 562, 580, 606

applied to sets of vertices, 225
refinement of, 224
relation to the Max-Flow Min-

Cut theorem, 224
Mergesort, 699
merging paths in a digraph, see path-

mergeable digraph
meta-heuristics, 707, 709
Meyniel set, 236
Min-Flow Max-Demand theorem,

159
minimal

(x, y)-path, 53
vertex series-parallel digraphs,

48
minimally

k-arc-strong directed multi-
graph, 207–213

k-edge-connected multigraph,
442, 475

k-strong digraph, 213–217
minimizing a submodular function,

457, 459, 478
minimum

covering out-tree problem, 366
cycle factor problem, 521
diameter orientation, 103–115
diameter versus degree, 44
dijoin, 510
equivalent subdigraph, 39, 480
flow, 158
in-degree of a digraph, 5
monochromatic degree, 609
out-degree of a digraph, 5
path factor problem, 520
semi-degree of a digraph, 5
spanning tree, 342, 371

minimum cost
branching problem, 342
cover of directed cuts, 510
submodular flows, 458, 478, 509

minimum cost flows, 160–170
application to Chinese postman

problem, 174
applied to a branching problem,

224
assignment problem, 169
buildup algorithm, 167
buildup theorem, 166
characterization, 163
cycle canceling algorithm, 163
integrality theorem, 165
strongly polynomial algorithm,

165
transportation problem, 169

minimum equivalent subdigraph, see
MSSS problem

minimum spanning strong subgraph
problem, see MSSS prob-
lem

mixed (multi)graph, 24, 225, 365, 451
mixed branchings, 365
mixed Chinese postman problem, 175
mixed graph

arc of, 24

788 Subject Index

biorientation of, 24
branchings, 365
bridge of, 24
complete biorientation of, 24
connected, 24
edge of, 24
orientation of, 24, 461–466
strong, 24

modular function, 448
monochromatic complete subgraph,

598
Monte Carlo algorithm, 205
Moon’s theorem, 16
Moore bound, 101
MSSS problem, 480–489
multi-insertion technique, 239
multicommodity flow, 413
multigraph, 18
multipartite digraph, 34–36
multipartite tournament, see also

semicomplete multipartite
digraph, 35, 112, 116, 117,
126, 247, 267, 272, 282, 293,
315, 316, 333, 526

multiple arcs, 3
multiset, 2

Nash-Williams’ orientation theorem,
442, 443, 459, 461, 475

negation, 667, 702
negative cycle, 88

detection, 98
effect on shortest path problems,

91
in residual network, 163

neighbour, 4
neighbourhood, 4, 20
neighbourhood of a solution, 708
neighbouring solutions, 708
nested interval graph, 428
network, 127

augmenting path in, 141
balance vector of, 128
balanced vertex in, 129
capacity of arcs, 127
circulation in, 133
cost of arcs, 127
flow in, 128
layered, 146
lower bound on arcs, 127
maximum flow in, 140
residual with respect to a flow,

130

simple, 155
sink vertex in, 129
source vertex in, 129
unit capacity, 153
with bounds/costs on vertices,

134
network design, 44
network representation, 194, 202
nice tree decomposition, 75
non-deterministic finite automaton,

688
non-trivial λ-cut, 537
normal biorientation, 121
nowhere-zero flow

Γ -flow, 436
k-flow, 435–441
Zk-flow, 437

2-objective optimization problem, 44
odd

K4, 429, 473
chain, 284
cycle, 12, 35
cycle through a fixed arc, 337
digraph

(k, p)-odd digraph, 326
necklace, 473
orientation, 428, 430

one-way
communication, 691
cut, 546
pairs, 214, 563–566, 581
set of arcs, 82

O, Ω, Θ-notation, 696
open pth in-neighbourhood, 88
open pth out-neighbourhood, 88
open problem, 121, 146, 206, 231,

268, 280, 292–295, 302, 303,
320, 325, 327, 329, 354, 356,
370, 379, 381, 399, 412, 429,
431, 435, 470–472, 491, 497,
500–502, 515, 518, 523, 524,
527, 547–549, 568, 575, 576,
597, 605, 613, 635, 647, 680,
694

opposite vertices, 283
1-OPT, 708, 720
optimal

augmentation, 557
base of a matroid, 714
flow, 162
submodular flow, 459

optimization problem, 701
order

Subject Index 789

of a digraph, 2
of functions, 696

order exchange, 612
order reflection, 612
ordered partitioning, 657
ordinary

arc, 60, 295, 574
cycle, 60
path, 60

orientation, 473
as a local tournament, 422
as a quasi-transitive digraph,

418
as a transitive digraph, 418
as an in-tournament digraph,

428
best-balanced, 443
nowhere-zero flows, 435–441
odd, 428
of a graph, 417–453
respecting degree constraints,

448–453
smooth, 443, 475
strong, 20

of mixed graph, 201
well-balanced, 443

orientation of a digraph, 25, 85, 467,
468, 691

orientation of a graph, see also ori-
entation, 20, 121, 201, 266,
268, 293, 349, 350, 365, 366,
417–453, 459, 460, 472, 473,
475–478, 631, 681, 682

minimum diameter, 103, 104,
691

with high arc-strong connectiv-
ity, 476

with small strong radius, 105
orientation of a mixed graph, 24, 452,

461–466
with small diameter, 107

orientation of a mixed multigraph,
225

orientation of a multigraph, 441
oriented

cycle, 20
forest, 21
graph, 14
hamiltonian cycle in a tourna-

ment, 301–303
hamiltonian path, 297–301
path, 20, 298
tree, 21

origin of an oriented path, 298
orthogonal rows in a matrix, 39
out-branching, see also in-branching,

22, 58, 339, 519, 705
arc-disjoint, 580
BFS tree, 93
minimum cost, 497
of shortest paths, 90

out-branchings
min/maxleaf problems, 358–363
with bandwidth constraints, 367

k-out-critical set, 208
out-degree of a vertex, 4
out-forest, 368
out-generator of a digraph, 299
out-neighbour, 4
out-neighbourhood, 4
pth out-neighbourhood, 88
out-path, 298
out-path-mergeable digraph, 58
out-pseudodegree of a vertex, 4
out-radius, 89

finite in a weighted digraph, 89
out-singular vertex with respect to a

cycle, 247
out-tree, 22, 346, 705
outer face of a plane (di)graph, 72

P, 700
P-gadget, 617–621
P-gadget graph, 618–621
packing cuts, 505
pancircular digraph, 316
pancyclic digraph, 307–316, 336
parallel

architectures, 44
arcs, 3
composition of digraphs, 48
reduction, 50

partial order, 521
comparable elements, 521

p-partite digraph, 34
p-partite graph, 19
partite sets, 19
partition, 2
path, 12

(X, Y)-path, 12
(x, y)-path, 12
[x, y]-path, 12
xy-path, 21
anti-directed, 297
arc-disjoint, 201, 374
colourful, 322
crossing, 396

790 Subject Index

edge-disjoint, 406
even, 12
finding a colourful path of pre-

scribed length, 322
finding a path of prescribed

length, 322
good reversal, 476
internally disjoint paths, 374
length, 12
longest, 12
odd, 12
of length Θ(log n), 321
ordinary, 60
oriented, 20
vertex-disjoint, 201, 374

path covering number, 15, 245, 258,
519, 521

path factor, 15, 277, 486, 520
path flow, 136
path partition conjecture, 542–546
q-path subdigraph, 15
path-contraction, 8, 310, 664

versus set-contraction, 8
path-cycle covering number, 15, 245,

481, 519
path-cycle factor, 178, 303, 485
q-path-cycle factor, 15
q-path-cycle subdigraph, 14
path-mergeable digraph, 55–57, 85,

230, 231, 271, 287
hamiltonian (x, y)-path, 287

(s, t)-paths
arc-disjoint, 201
internally disjoint, 201

PC, see properly coloured
k-perfect family of hash functions,

323
perfect graph, 121
perfect matching, 21, 188, 451, 610,

615, 617–621, 626, 639, 640,
672

in a bipartite graph, 174
of minimum weight in a bipar-

tite graph, 169
period of a directed pseudograph, 677
permutation graph, 83
PERT/CPM , 685–686
Petersen graph, 439, 473, 474
PFx problem, 277
planar digraph, 71–73, 224, 228, 384,

394–401, 404, 406, 407, 416,
511

feedback arc set problem, 590

linkage problem, 395
recognition, 72
vertex-strong connectivity of,

224
planar graph, 71
plane (di)graph, 72
point, 645
polygonal curve, 71
polymatroid, 368, 561
polynomial algorithm, 696
polynomial reduction, 701
polynomial-time approximation

scheme (PTAS), 592, 593
power

of a cycle, 224, 283, 303, 526
of a digraph, 10
of a hamilton cycle, 517
of a matrix, 337
of a path, 284, 303, 505

predecessor of a vertex on a
path/cycle, 13

preflow, 150, 186, 347
preflow directed multigraph, 347
problem, 700
project scheduling, 685
projective plane, 645
proof technique

BB-correspondence, 627
BD-correspondence, 641
colour-coding, 322
contraction, 506
DHM-construction, 630
divide and conquer, 699
gadgets for NP-completeness

proofs, 228, 376, 551
insertion method, 697
iterative rounding, 500
matroid intersection, 461, 720
matroid partition, 720
multi-insertion, 239–243
one-way pairs, 214, 566, 567
probabilistic method, 328, 514,

548, 585, 637–640
random acyclic subdigraph

method, 321
reduction to a flow problem,

202, 449, 579, 580
reversing arcs, 469
splitting off arcs, 559
splitting off edges, 441
submodular flows, 366, 459–466,

509
transversals in hypergraphs, 364

Subject Index 791

uncrossing, 209, 507
using orientations of undirected

graphs, 350
using recursive formulas, 45
using submodularity, 202, 346,

554, 555, 559
using the bipartite representa-

tion of a directed multi-
graph , 19

vertex splitting procedure, 201
proper

circular arc graph, 418, 424
orientation as a round local

tournament, 422
recognition in linear time, 423

colouring, 21, 431
edge-colouring, 680
interval graph, 115, 472
subset, 2

properly coloured
m-path-cycle subgraph, 608
1-path-cycle subgraph, 620, 621
cycle, 613, 620
cycle subgraph, 608, 618–620
Euler trail, 610
hamiltonian cycle, 621, 635–640
hamiltonian path, 635
path, 620, 621
trail, 608

pseudograph, 18
pseudoregular directed pseudograph,

44, 47
push-relabel algorithm, 150–152, 181

quasi-kernel, 119, 122
quasi-transitive digraph, 52–55, 108–

111, 118, 257, 258, 265, 272,
273, 309, 311, 336, 357, 392,
394, 416, 418, 420, 421, 469,
485, 486, 503

hamiltonian cycle, 256–259
highly connected orientation of,

469
minimum cycle factor, 521–524
MSSS problem, 485
path-partition problem, 544–

546
recursive characterization, 54
vertex-heaviest paths and cy-

cles, 260–265
quasi-transitive orientation, 418
queue, 92

radius, 89, 100–101

Ramsey’s theorem, 598
random acyclic subdigraph method,

321
rank function of a matroid, 712
rank of a matroid, 712
re-weighting the arcs of a digraph,

124, 125, 344
reachable from a vertex, 15
recognition

interval digraphs, 83
line digraph, 41
path-mergeable digraph, 56
planar digraph, 72
round decomposable locally

semicomplete digraph, 65
round local tournament di-

graphs, 472
totally Φ-decomposable di-

graph, 70
vertex series-parallel digraph, 52

red/blue subgraph of a 2-edge-
coloured multigraph, 608

Rédei’s theorem, 14, 298
reducible graph, 424
reduction among flow models, 131
redundant arc of a digraph, 37
reference orientation, 448, 459
regular digraph, 5, 46, 102, 225, 228,

254, 525, 536
arc-disjoint cycles in, 513

regular graph, 20
regular oriented graph, 103
reorienting arcs, 459
representation

of a digraph, 82
of a graph, 418

residual network, 130, 137
reversal of a path, 476
reverse of a trail, 609
reversing an arc, 6
reversing arcs, see arc reversal
reversing arcs to obtain arc-disjoint

branchings, 478
Road Colouring Conjecture, 688
Robbins’ theorem, 20, 201, 441, 452
root

of a branching, 22
of a DFS tree, 27

round
decomposition, 62
digraph, 60–61, 332
labelling, 60

792 Subject Index

round decomposable locally semi-
complete digraph, 62–65

routing problems, 414

SAT, 703
2-SAT, 666–670, 702–703

application to orientability as
in-tournaments, 426

3-SAT, 667, 703
Satisfiability, see also SAT, 667
satisfiable boolean expression, 667,

703
saturated arc, 144
scaling algorithm for maximum flow,

183
scan register, 583
scheduling problems, 47, 186, 520
score of a vertex, 449
score sequence, 449
semi-degree of a vertex, 4
semi-partitioncomplete digraph, 256
semicomplete p-partite digraph, see

semicomplete multipartite
digraph

semicomplete bipartite digraph, 35,
86, 108–111, 246, 252, 272,
276, 277, 337, 525, 528, 627,
628

even pancyclic, 336
hamiltonian cycle, 246
hamiltonian path with one end

vertex specified, 276
longest cycle, 246

semicomplete decomposition of a
locally semicomplete di-
graph, 63, 67

semicomplete digraph, 35, 53, 54,
115, 121, 126, 188, 225, 271,
283, 286, 287, 290, 291, 295,
296, 304, 314, 320, 385, 386,
388–391, 393, 394, 407, 410,
414, 468, 469, 516, 528, 548,
551, 567–569

2-linkage problem, 389
hamiltonian (x, y)-path, 286
hamiltonian connected, 287
hamiltonian-connected, 287
highly connected orientation of,

468
vertex-heaviest paths and cy-

cles, 260–265
semicomplete multipartite digraph,

35, 71, 111, 116–118, 244,

245, 247, 249, 251, 253–256,
272, 273, 295, 315, 316, 481,
525, 526

‘short’ cycles, 332–335
hamiltonian cycle, 244–256
hamiltonian path, 245
longest path, 245
path covering number, 245
regular, 254

separator, 16
(s, t)-separator, 17
minimum, 192
trivial, 287, 391

sequencing problems, 47
2-serf, 116
series composition of digraphs, 48
series reduction, 50
series-parallel digraph, 47–52
k-set, 2
set covering problem, 582
set-contraction, see contraction
Seymour’s second neighbourhood

conjecture, 600
ship loading problem, 161
short cycle in a digraph, 321
shortest

cycle, see also girth, 125
path tree form s, 90
paths, 90, 130

k-similar arms of chromosomes, 671
similar size arms of chromosomes, 670
similar vertices, 10, 407
simple network, 155
simulated annealing, 709–711
singular vertex, 247
sink

of a network, 129
of an anti-directed trail, 215
vertex with respect to a flow,

129
sink in a digraph, 4
size of a digraph, 2
smooth orientation, 443, 475
solution of an optimization problem,

708
sorting versus distances in digraphs,

97
source

in a digraph, 4
of a network, 129
of an anti-directed trail, 215
vertex with respect to a flow,

129

Subject Index 793

source location problem, 363
source-sink connected digraph, 511
spanning out-forest, 368
spanning tree, 21
specific trail (ST) problem, 402, 405
Sperner’s lemma, 126, 547
splitting, 554

vertices, see vertex splitting pro-
cedure

splitting a vertex, 10
splitting off, 475, 553–562, 580

admissible, 554
complete, 556
in eulerian directed multigraphs,

557
in mixed graphs, 557
in undirected graphs, 441
in undirected multigraphs, 442
preserving local arc-strong con-

nectivity, 557
splitting off arcs, 213

stable matching, 681
star hypergraph, 577, 607
state diagram, 687
Steiner tree problem, 366
straight

digraph, 472
ordering, 472

strictly alternating cycle, 636
strong

k-strong, 16
digraph, 16, 195–198
orientation, 20, 201, 452

k-strong augmentation number of a
digraph, 563, 565

strong component digraph, 17
strong components, 17, 232, 668

algorithm for finding, 195
application to finding block-

triangular structure in ma-
trices, 676

strong decomposition of a digraph,
17, 59

Strong Perfect Graph theorem, 122
strong radius, 105
strongly connected, see strong
strongly polynomial algorithm, 165
subdigraph, 5

spanning, see also factor of a di-
graph, 5

with prescribed degrees, 176
minimum cost, 176

subdivision

of a digraph, 10, 411
of an arc, 10, 326, 483, 507

submodular flows, 453–466, 477, 478,
509, 570, 582

submodular function, 193
minimizing, 457

submodularity
of (s, t)-cuts, 185
of matroid rank functions, 713

subpartition, 2
subpartition lower bound, 558, 563,

565
subpath, 13
subtree intersection digraph, 83
successive arc-connectivity augmen-

tation property, 561
successor of a vertex on a path/cycle,

13
sum of boolean variables, 667, 702
superdigraph, 5
supermodular function, 448, 455

G-supermodular function, 452
switch, 376
(e, f)-switch, 672
symmetric

design, 645
digraph, 20
function, 452

synchronizing string, 688
system of distinct representatives

(SDR), 645
Szemerédi regularity lemma

directed version, 512

tail
of a one-way pair, 563
of an arc, 2

telecommunications, 414, 499
terminal strong component, 17
terminal vertex of a walk, 12
terminals of a trail in eulerian di-

rected multigraph, 402
terminus of an oriented path, 298
Thomassen’s even cycle theorem, 326
tight

arc, 456
set, 202, 456

Tillson’s decomposition theorem, 516
time complexity of an algorithm, 696
topological obstruction for linkages,

394
topological sorting, see acyclic order-

ing
total unimodularity, 535

794 Subject Index

totally Φ-decomposable digraph, 10,
52, 69–71

hamiltonian cycle, 259
hamiltonian path, 259
recognition, 70
total Φ-decomposition, 10

totally unimodular matrix, 145
tournament, see also semicomplete

digraph, 14, 84, 104, 115,
117, 122, 126, 188, 218,
224, 225, 278, 279, 286–288,
290, 292, 293, 297–299, 301,
302, 304, 305, 317, 318, 336,
356, 357, 385, 390–392, 407,
415, 449, 467–469, 473, 492,
516–518, 527, 548, 549, 552,
567, 569, 580, 581, 592, 601,
602, 697, 709

arc-3-cyclic, 318, 517
complementary cycles, 525, 549
decomposition into strong sub-

digraphs, 536
feedback vertex set problem, 587
hamiltonian [x, y]-path, 277
weakly hamiltonian-connected,

277
traceable, see also hamiltonian path,

13, 14, 236, 530, 697
arc-traceable digraph, 296

trail, 12
alternating, 608

M -trail, 610
transitive

closure, 37, 38
versus transitive reduction, 38

digraph, 36, 54, 85, 521, 533
reduction, 37, 48
tournament, 84, 597, 719
triple, 30

transputer-based machine, 691
transversal of a hypergraph, 364
travelling salesman problem, see TSP
tree, 21
tree decomposition, 73–77
tree solution to a flow problem, 188
tree-width, 73–77
triangular digraph, 309, 311
trivial (s, t)-separator, 287
trivial separator, 391
truth assignment, 667, 703
TSP, 655, 658–666, 694, 700, 705, 707
k-tuple, 382
Tutte’s 5-flow conjecture, 439, 475

two-terminal
parallel composition, 48
series composition, 48

unbalanced edge, 424
uncrossing technique, 209, 507
underlying graph, 418–428, 467
underlying graph of a digraph, see

also underlying graph, 20,
27, 53–55, 70, 85, 201, 231,
294, 343, 349, 384, 396, 407,
417–428, 431, 432, 446, 467,
472, 509, 536, 681, 717

underlying multigraph of a digraph,
20

undirected graph, 18
non-critical edge of, 217

uniform
independence system, 657
matroid, 713

unilateral digraph, 17
union

of digraphs, 11, 38
of matroids, 715

unique trail (UT) problem, 402, 404
unit capacity network, 153
universal

arc, 412
set, 82

k-universal digraph, 432
upward embedding, 85

value
of a flow, 132
of a solution, 708

vertex, 2
cost, 6
weight, 6

vertex cover of a bipartite graph, 172
vertex cover problem (VC), 172, 704
vertex even pancyclic digraph, 336
vertex separation, 78
vertex series-parallel (VSP) digraph,

48
vertex series-parallel digraph

recognition algorithm, 52
vertex splitting, 202
vertex splitting procedure, 134, 202,

398, 512, 685
vertex-arc incidence matrix, 145
vertex-cheapest

k-path subdigraph, 261
cycle, 261

Subject Index 795

vertex-pancyclic digraph, 307, 309,
311, 313, 314

vertex-strong connectivity, 17, 191–
226

algorithms, 204
certificate, 490
of complete biorientations, 225
of extensions of digraphs, 220
of special classes of digraphs,

220
vertex-weighted directed pseudo-

graph, 6
Volkmann’s meta-conjecture, 526

W[1] problems, 704
W[1]-complete, 704
W[1]-hard, 704

walk, 11–13
(x, y)-walk, 11
Chinese postman walk, 174

weak k-linkage problem, 398–414
semicomplete digraphs, 409

weak linkages, 373, 374, 398–414
acyclic digraphs, 400
eulerian directed multigraphs,

401–407

generalizations of tournaments,
407–414

k-weak-double-cycle, 326, 337
weakly k-linked

digraph, 398, 399
directed multigraph, 373

weakly cycle extendable, 336
weakly hamiltonian-connected, 277–

285, 289
weight

of a subdigraph, 6, 260
of a vertex, 6
of an arc, 6

weighted arc-strong connectivity aug-
mentation problem, 561

weighted directed pseudograph, 6
well-balanced orientation, 443
Woodall’s conjecture, 511

Yeo’s irreducible cycle subdigraph
theorem, 253, 293

Younger’s conjecture, 597–600

Zemel measure, 707

	Preface
	Contents
	Basic Terminology, Notation and Results
	Sets, Matrices and Vectors
	Digraphs, Subdigraphs, Neighbours, Degrees
	Isomorphism and Basic Operations on Digraphs
	Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs
	Strong and Unilateral Connectivity
	Undirected Graphs, Biorientations and Orientations
	Trees and Euler Trails in Digraphs
	Mixed Graphs, Orientations of Digraphs, and Hypergraphs
	Depth-First Search
	Exercises

	Classes of Digraphs
	Acyclic Digraphs
	Multipartite Digraphs and Extended Digraphs
	Transitive Digraphs, Transitive Closures and Reductions
	Line Digraphs
	The de Bruijn and Kautz Digraphs
	Series-Parallel Digraphs
	Quasi-Transitive Digraphs
	Path-Mergeable Digraphs
	Locally In/Out-Semicomplete Digraphs
	Locally Semicomplete Digraphs
	Round Digraphs
	Non-Strong Locally Semicomplete Digraphs
	Strong Round Decomposable Locally Semicomplete Digraphs
	Classification of Locally Semicomplete Digraphs

	Totally -Decomposable Digraphs
	Planar Digraphs
	Digraphs of Bounded Width
	Digraphs of Bounded Tree-Width
	Digraphs of Bounded Directed Widths

	Other Families of Digraphs
	Circulant Digraphs
	Arc-Locally Semicomplete Digraphs
	Intersection Digraphs

	Exercises

	Distances
	Terminology and Notation on Distances
	Structure of Shortest Paths
	Algorithms for Finding Distances in Digraphs
	Breadth-First Search (BFS)
	Acyclic Digraphs
	Dijkstra's Algorithm
	The Bellman-Ford-Moore Algorithm
	The Floyd-Warshall Algorithm

	Inequalities on Diameter
	Minimum Diameter of Orientations of Multigraphs
	Minimum Diameter Orientations of Some Graphs and Digraphs
	Generalizations of Tournaments
	Extended Digraphs
	Cartesian Products of Graphs
	Chordal Graphs

	Kings in Digraphs
	2-Kings in Tournaments
	Kings in Semicomplete Multipartite Digraphs
	Kings in Generalizations of Tournaments

	(k,l)-Kernels
	Kernels
	Quasi-Kernels

	Exercises

	Flows in Networks
	Definitions and Basic Properties
	Flows and Their Balance Vectors
	The Residual Network

	Reductions Among Different Flow Models
	Eliminating Lower Bounds
	Flows with One Source and One Sink
	Circulations
	Networks with Bounds and Costs on the Vertices

	Flow Decompositions
	Working with the Residual Network
	The Maximum Flow Problem
	The Ford-Fulkerson Algorithm
	Maximum Flows and Linear Programming

	Polynomial Algorithms for Finding a Maximum (s,t)-Flow
	Augmenting Along Shortest Augmenting Paths
	Maximal Flows in Layered Networks
	The Push-Relabel Algorithm

	Unit Capacity Networks and Simple Networks
	Unit Capacity Networks
	Simple Networks

	Circulations and Feasible Flows
	Minimum Value Feasible (s,t)-Flows
	Minimum Cost Flows
	Characterizing Minimum Cost Flows
	Building up an Optimal Solution
	The Assignment and the Transportation Problem

	Applications of Flows
	Maximum Matchings in Bipartite Graphs
	The Directed Chinese Postman Problem
	Finding Subdigraphs with Prescribed Degrees
	Path-Cycle Factors in Directed Multigraphs

	Exercises

	Connectivity of Digraphs
	Additional Notation and Preliminaries
	The Network Representation of a Directed Multigraph

	Finding the Strong Components of a Digraph
	Ear Decompositions
	Menger's Theorem
	Determining Arc- and Vertex-Strong Connectivity
	Minimally k-(Arc)-Strong Directed Multigraphs
	Minimally k-Arc-Strong Directed Multigraphs
	Minimally k-Strong Digraphs

	Critically k-Strong Digraphs
	Connectivity Properties of Special Classes of Digraphs
	Disjoint X-Paths in Digraphs
	Exercises

	Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles
	Complexity
	Hamilton Paths and Cycles in Path-Mergeable Digraphs
	Hamilton Paths and Cycles in Locally In-Semicomplete Digraphs
	Hamilton Cycles and Paths in Degree-Constrained Digraphs
	Sufficient Conditions
	The Multi-Insertion Technique
	Proofs of Theorems 6.4.1 and 6.4.5

	Longest Paths and Cycles in Degree-Constrained Oriented Graphs
	Longest Paths and Cycles in Semicomplete Multipartite Digraphs
	Basic Results
	The Good Cycle Factor Theorem
	Consequences of Lemma 6.6.12
	Yeo's Irreducible Cycle Subdigraph Theorem and Its Applications

	Hamilton Paths and Cycles in Quasi-Transitive Digraphs
	Vertex-Cheapest Paths and Cycles
	Vertex-Cheapest Paths and Cycles in Quasi-Transitive Digraphs
	Minimum Cost k-Path-Cycle Subdigraphs
	Cheapest i-Path Subdigraphs in Quasi-Transitive Digraphs
	Finding a Cheapest Cycle in a Quasi-Transitive Digraph

	Hamilton Paths and Cycles in Various Classes of Digraphs
	Exercises

	Restricted Hamiltonian Paths and Cycles
	Hamiltonian Paths with a Prescribed End-Vertex
	Weakly Hamiltonian-Connected Digraphs
	Results for Extended Tournaments
	Results for Locally Semicomplete Digraphs

	Hamiltonian-Connected Digraphs
	Hamiltonian Cycles Containing or Avoiding Prescribed Arcs
	Hamiltonian Cycles Containing Prescribed Arcs
	Avoiding Prescribed Arcs with a Hamiltonian Cycle
	Hamiltonian Cycles Avoiding Arcs in 2-Cycles

	Arc-Traceable Digraphs
	Oriented Hamiltonian Paths and Cycles
	Exercises

	Paths and Cycles of Prescribed Lengths
	Pancyclicity of Digraphs
	(Vertex-)Pancyclicity in Degree-Constrained Digraphs
	Pancyclicity in Extended Semicomplete and Quasi-Transitive Digraphs
	Pancyclic and Vertex-Pancyclic Locally Semicomplete Digraphs
	Further Pancyclicity Results
	Cycle Extendability in Digraphs
	Arc-Pancyclicity

	Colour Coding: Efficient Algorithms for Paths and Cycles
	Cycles of Length k Modulo p
	Complexity of the Existence of Cycles of Length k Modulo p Problems
	Sufficient Conditions for the Existence of Cycles of Length k Modulo p

	Girth
	Short Cycles in Semicomplete Multipartite Digraphs
	Exercises

	Branchings
	Tutte's Matrix Tree Theorem
	Optimum Branchings
	Matroid Intersection Formulation
	A Simple Algorithm for Finding a Minimum Cost Out-Branching

	Arc-Disjoint Branchings
	Implications of Edmonds' Branching Theorem
	Out-Branchings with Degree Bounds
	Arc-Disjoint In- and Out-Branchings
	Out-Branchings with Extremal Number of Leaves
	Minimum Leaf Out-Branchings
	Maximum Leaf Out-Branchings

	The Source Location Problem
	Miscellaneous Topics
	Edge-Disjoint Mixed Branchings
	The Minimum Covering Out-Tree Problem
	Minimum Cost Arc-Disjoint Branchings with Bandwidth Constraints
	Out-Forests
	The Maximum Weight Out-Forest Problem
	Branchings and Edge-Disjoint Trees

	Exercises

	Linkages in Digraphs
	Additional Definitions and Preliminaries
	The Complexity of the k-Linkage Problem
	Sufficient Conditions for a Digraph to Be k-Linked
	The k-Linkage Problem for Acyclic Digraphs
	Linkages in (Generalizations of) Tournaments
	Sufficient Conditions in Terms of (Local-)Connectivity
	The 2-Linkage Problem for Semicomplete Digraphs
	The 2-Linkage Problem for Generalizations of Tournaments

	Linkages in Planar Digraphs
	Weak Linkages
	Weak Linkages in Acyclic Directed Multigraphs
	Weak Linkages in Eulerian Directed Multigraphs
	Weak Linkages in Tournaments and Generalizations of Tournaments

	Linkages in Digraphs with Large Minimum Out-Degree
	Subdivisions of Transitive Tournaments in Digraphs of Large Out-Degree

	Miscellaneous Topics
	Universal Arcs in 2-Cyclic Digraphs
	Integer Multicommodity Flows

	Exercises

	Orientations of Graphs and Digraphs
	Underlying Graphs of Various Classes of Digraphs
	Underlying Graphs of Transitive and Quasi-Transitive Digraphs
	Underlying Graphs of Locally Semicomplete Digraphs
	Local Tournament Orientations of Proper Circular Arc Graphs
	Underlying Graphs of Locally In-Semicomplete Digraphs

	Orientations with No Even Cycles
	Colourings and Orientations of Graphs
	Orientations and Nowhere-Zero Integer Flows
	Orientations Achieving High Arc-Strong Connectivity
	k-Arc-Strong Orientations
	Well-Balanced and Best-Balanced Orientations
	Simultaneous Best-Balanced Orientations
	Best-Balanced Orientations of Eulerian Multigraphs

	k-Strong Orientations
	Orientations Respecting Degree Constraints
	Orientations with Prescribed Degree Sequences
	Restrictions on Subsets of Vertices

	Submodular Flows
	Submodular Flow Models
	Existence of Feasible Submodular Flows
	Minimum Cost Submodular Flows
	Applications of Submodular Flows

	Orientations of Mixed Multigraphs
	k-(Arc)-Strong Orientations of Digraphs
	Miscellaneous Topics
	Another Measure of Well-Balancedness
	Orienting to Preserve Reachability for Prescribed Pairs

	Exercises

	Sparse Subdigraphs with Prescribed Connectivity
	Minimum Strong Spanning Subdigraphs
	Digraphs with High Minimum Degree

	Polynomially Solvable Cases of the MSSS Problem
	The MSSS Problem for Extended Semicomplete Digraphs
	The MSSS Problem for Quasi-Transitive Digraphs

	Approximation Algorithms for the MSSS Problem
	A Simple 74-Approximation Algorithm
	Better Approximation Algorithms

	Small Certificates for k-(Arc)-Strong Connectivity
	Small Certificates for k-Strong Connectivity
	Small Certificates for k-Arc-Strong Connectivity
	Certificates for Directed Multigraphs

	Minimum Weight Strong Spanning Subdigraphs
	Directed Steiner Problems
	Miscellaneous Topics
	The Directed Spanning Cactus Problem
	An FTP Algorithm for the MSSS Problem
	Minimum Cost Strong Subdigraphs

	Exercises

	Packings, Coverings and Decompositions
	Packing Directed Cuts: The Lucchesi-Younger Theorem
	Packing Dijoins: Woodall's Conjecture
	Packing Cycles
	Arc-Disjoint Hamiltonian Paths and Cycles
	Path Factors
	Cycle Factors with the Minimum Number of Cycles
	Cycle Factors with a Fixed Number of Cycles
	Cycle Subdigraphs Covering Specified Vertices
	Proof of Gallai's Conjecture
	Decomposing a Tournament into Strong Spanning Subdigraphs
	The Directed Path-Partition Conjecture
	Miscellaneous Topics
	Maximum One-Way Cuts and Covering by One-Way Cuts
	Acyclic Decompositions of Digraphs
	Decomposing Tournaments into Strong Subtournaments
	Decomposing Digraphs under Degree Constraints

	Exercises

	Increasing Connectivity
	The Splitting Off Operation
	Increasing the Arc-Strong Connectivity Optimally
	Increasing the Vertex-Strong Connectivity Optimally
	One-Way Pairs
	Optimal k-Strong Augmentation
	Special Classes of Digraphs

	Arc Reversals and Vertex-Strong Connectivity
	Arc-Reversals and Arc-Strong Connectivity
	Determining rkdeg(D) Efficiently
	Reversals of Arcs to Achieve High Arc-Strong Connectivity in Tournaments

	Increasing Connectivity by Deorienting Arcs
	Miscellaneous Topics
	Increasing Arc-Strong Connectivity of a Bipartite Digraph
	Augmenting Arc-Strong Connectivity in Directed Hypergraphs
	Weighted Versions of Local Arc-Connectivity Problems

	Exercises

	Feedback Sets and Vertex Orderings
	Two Conjectures on Feedback Arc Sets
	Optimal Orderings in Tournaments
	Complexity of the Feedback Set Problems
	NP-Completeness Results
	FAS for Planar Digraphs
	Approximation Algorithms
	Fixed-Parameter Tractability Results

	Disjoint Cycles Versus Feedback Sets
	Relations Between Parameters i and i
	Solution of Younger's Conjecture

	Optimal Orderings and Seymour's Second Neighbourhood Conjecture
	Ádám's Conjecture
	Exercises

	Generalizations of Digraphs: Edge-Coloured Multigraphs
	Terminology, Notation and Initial Observations
	Properly Coloured Euler Trails
	Properly Coloured Cycles
	Gadget Graphs and Shortest PC Cycles and (s,t)-Paths
	P-Gadgets
	P-Gadget Graphs

	Long PC Cycles and Paths
	Connectivity of Edge-Coloured Multigraphs
	Alternating Cycles in 2-Edge-Coloured Bipartite Multigraphs
	Paths and Cycles in 2-Edge-Coloured Complete Multigraphs
	PC Paths and Cycles in c-Edge-Coloured Complete Graphs, c3
	Exercises

	Applications of Digraphs and Edge-Coloured Graphs
	A Digraph Model in Quantum Mechanics
	Lower Bound for (n)
	Families of Sets and (n)
	Upper Bounds for (n)
	When (n)>f(n)
	Mediated Digraphs in Quantum Mechanics

	Embedded Computing and Convex Sets in Acyclic Digraphs
	Embedded Computing Systems and Convex Sets
	Bounds for the Number of Convex Sets
	Algorithms for Generating Convex and Connected Convex Sets

	When Greedy-Like Algorithms Fail
	Greedy Algorithm
	Max-Regret Algorithms

	Domination Analysis of ATSP Heuristics
	ATSP Heuristics with Factorial Domination Numbers
	Upper Bounds on Domination Numbers

	Solving the 2-Satisfiability Problem
	Alternating Hamilton Cycles in Genetics
	Proof of Theorem 17.6.1
	Proof of Theorem 17.6.2

	Gaussian Elimination
	Markov Chains
	List Edge-Colourings
	Digraph Models of Bartering
	PERT/CPM in Project Scheduling
	Finite Automata
	Puzzles and Digraphs
	Gossip Problems
	Deadlocks of Computer Processes
	Exercises

	Algorithms and Their Complexity
	Combinatorial Algorithms
	NP-Complete and NP-Hard Problems
	The Satisfiability Problem
	Fixed-Parameter Tractability and Intractability
	Exponential Algorithms
	Approximation Algorithms
	Heuristics and Metaheuristics
	Matroids
	The Dual of a Matroid
	The Greedy Algorithm for Matroids
	Independence Oracles
	Union of Matroids
	Intersection of Two Matroids
	Intersections of Three or More Matroids

	Exercises

	References
	Symbol Index
	Author Index
	Subject Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

