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Preface to the Second Edition

The theory of graphs can be roughly partitioned into two branches: the areas
of undirected graphs and directed graphs (digraphs). While there are many
books on undirected graphs with new ones coming out regularly, the first
edition of Digraphs, which was published in 2000, is the only modern book
on graph theory covering more than a small fraction of the theory of directed
graphs.

Since we wrote the first edition, the theory of directed graphs has contin-
ued to evolve at a high speed; many important results, including some of the
conjectures from the first edition, have been proved and new methods were
developed. Hence a new completely revised version became necessary. Instead
of merely adding some new results and deleting a number of old ones, we took
the opportunity to reorganize the book and increase the number of chapters
from 12 to 18. This allows us to treat, in separate chapters, important topics
such as branchings, feedback arc and vertex sets, connectivity augmenta-
tions, sparse subdigraphs with prescribed connectivity, applications, as well
as packing, covering and decompositions of digraphs. We have added a large
number of open problems to the second edition and the book now contains
more than 150 open problems and conjectures, almost twice as many as the
first edition. In order to avoid the book becoming unacceptably long, we had
to remove a significant portion of material from the first edition. We have
tried to do this as carefully as possible so that most of the information in the
first edition is still available, along with a very large number of new results.

Even though this book should not be seen as an encyclopedia on directed
graphs, we included as many important results as possible. The book con-
tains a considerable number of proofs, illustrating various approaches and
techniques used in digraph theory and algorithms.

One of the main features of this book is the strong emphasis on algorithms.
This is something which is regrettably omitted in many books on graphs.
Algorithms on (directed) graphs often play an important role in problems
arising in several areas, including computer science and operations research.
Secondly, many problems on (directed) graphs are inherently algorithmic.
Hence, whenever possible we give constructive proofs of the results in the
book. From these proofs one can very often extract an efficient algorithm
for the problem studied. Even though we describe many algorithms, partly
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viii Preface

due to space limitations, we do not supply all the details necessary in order
to implement these algorithms. The latter (often highly nontrivial step) is
a science in itself and we refer the reader to books on data structures and
algorithms.

Another important feature is the large number of exercises which not
only helps the reader to improve his or her understanding of the material,
but also complements the results introduced in the text by covering even
more material. Attempting these exercises will help the reader to master the
subject and its main techniques.

Through its broad coverage and the exercises, stretching from easy to
quite difficult, the book will be useful for courses on subjects such as (di)graph
theory, combinatorial optimization and graph algorithms. Furthermore, it
can be used for more focused courses on topics such as flows, cycles and
connectivity. The book contains a large number of illustrations. This will
help the reader to understand otherwise difficult concepts and proofs.

To facilitate the use of this book as a reference book and as a graduate
textbook, we have added comprehensive symbol and subject indexes. It is
our hope that the organization of the book, as well as detailed subject index,
will help many readers to find what they are looking for without having to
read through whole chapters. Due to our experience, we think that the book
will be a useful teaching and reference resource for several decades to come.

Highlights

We cover the majority of important topics on digraphs ranging from quite
elementary to very advanced ones. One of the main features of the second
edition is the focus on open problems and the book contains more than 150
open problems or conjectures, thus making it a rich source for future research.
By organizing the book so as to single out important areas, we hope to make
it easy for the readers to find results and problems of their interest.

Below we give a brief outline of some of the main highlights of this book.
Readers who are looking for more detailed information are advised to consult
the list of contents or the subject index at the end of the book.

Chapter 1 contains most of the terminology and notation used in this
book as well as several basic results. These are not only used frequently in
other chapters, but also serve as illustrations of digraph concepts.

Chapter 2 is devoted to describing several important classes of directed
graphs, such as line digraphs, the de Bruijn and Kautz digraphs, digraphs
of bounded tree-width, digraphs of bounded directed widths, planar di-
graphs and generalizations of tournaments. We concentrate on characteri-
zation, recognition and decomposition of these classes. Many properties of
these classes are studied in more detail in the rest of the book.

Chapters 3 and 4 cover distances and flows in networks. Although the
basic concepts of these two topics are elementary, both theoretical and al-
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gorithmic aspects of distances in digraphs as well as flows in networks are
of great importance, due to their high applicability to other problems on di-
graphs and large number of practical applications, in particular, as a powerful
modelling tool.

The main part of Chapter 3 is devoted to minimization and maximization
of distance parameters in digraphs. In the self-contained Chapter 4, which
may be used for a course on flows in networks, we cover basic topics on flows
in networks, including a number of important applications to other (di)graph
problems. Although there are several comprehensive books on flows, we be-
lieve that our fairly short and yet quite detailed account of the topic will
give the majority of readers sufficient knowledge of the area. The reader who
masters the techniques described in this chapter will be well equipped for
solving many problems arising in practice.

Connectivity in (di)graphs is a very important topic. It contains numerous
deep and beautiful results and has applications to other areas of graph theory
and mathematics in general. It has various applications to other areas of
research as well. We give a comprehensive account of connectivity topics and
devote Chapters 5, 10, 12, 14 and parts of Chapter 11 to different aspects of
connectivity.

Chapter 5 contains basic topics such as ear-decompositions, Menger’s the-
orem, algorithms for determining the connectivity of a digraph as well as
advanced topics such as properties of minimally k-(arc)-strong digraphs and
critically k-strong digraphs.

Chapter 10 deals with problems concerning (arc-)disjoint linkings with
prescribed initial and terminal vertices in digraphs. We prove that the 2-
linkage problem is ANP-complete for arbitrary digraphs, but polynomially
solvable for acyclic digraphs. Results on linkings in planar digraphs, eulerian
digraphs as well as several generalizations of tournaments are discussed.

In Chapter 12 we study the problem of finding, in a k-(arc)-strong digraph,
a small set of arcs (called a certificate) so that these arcs alone show that the
digraph has the claimed connectivity. These problems are generally A/P-hard,
S0 we give various approximation algorithms as well as polynomial algorithms
for special classes of digraphs. We illustrate an application due to Cheriyan
and Thurimella of Mader’s results on minimally k-(arc)-strong digraphs to the
problem of finding a small certificate for k-(arc)-strong connectivity. Finally,
we also discuss recent results due to Gabow et al. on directed multigraphs.

In Chapter 14 we describe the splitting technique due to Mader and
Lovasz and illustrate its usefulness by giving an algorithm, due to Frank,
for finding a minimum cardinality set of new arcs whose addition to a di-
graph D increases its arc-strong connectivity to a prescribed number. We
also discuss a number of results related to increasing the connectivity by
reversing arcs.

In Chapter 11 the famous theorem by Nash-Williams on orientations pre-
serving a high degree of local arc-strong connectivity is described and the
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weak version dealing with uniform arc-strong connectivities is proved using
splitting techniques. We also discuss extensions of these results, including
recent ones by Kirdly and Szigeti. We give a proof a Jordan’s result that
every 18-connected graph has a 2-strong orientation. Submodular flows form
a powerful generalization of circulations in networks. We introduce submod-
ular flows and illustrate how to use this tool to obtain (algorithmic) proofs
of many important results in graph theory. Finally we describe in detail an
application, due to Frank, of submodular flows to the problem of orienting a
mixed graph in order to maintain a prescribed degree of arc-strong connec-
tivity.

In Chapter 6 we give a detailed account of results concerning the ex-
istence of hamiltonian paths and cycles in digraphs. Many results of this
chapter deal with generalizations of tournaments. The reader will see that
several of these much larger classes of digraphs share various nice properties
with tournaments. In particular the hamiltonian path and cycle problems are
polynomially solvable for most of these classes. The chapter illustrates various
methods (such as the multi-insertion technique) for proving hamiltonicity.

In Chapter 7 we describe a number of interesting topics related to re-
stricted hamiltonian paths and cycles. These include hamiltonian paths with
prescribed end-vertices and orientations of hamiltonian paths and cycles in
tournaments. We cover one of the main ingredients in the proof by Havet and
Thomassé of Rosenfeld’s conjecture on orientations of hamiltonian paths in
tournaments.

Chapter 8 describes results on (generally) non-hamiltonian cycles in di-
graphs. We cover pancyclicity and the colour-coding technique by Alon,
Yuster and Zwick and its application to yield polynomial algorithms for find-
ing paths and cycles of ‘logarithmic’ length. We discuss the even cycle prob-
lem, including Thomassen’s even cycle theorem. We also cover short cycles in
multipartite tournaments, the girth of a digraph, chords of cycles and Adém’s
conjecture. The chapter features various proof techniques including several
algebraic, algorithmic, combinatorial and probabilistic methods.

Chapter 9 is devoted to branchings, a very important structure general-
izing spanning trees in graphs. Branchings are not only of interest by them-
selves, they also play an important role in many proofs on digraphs. We prove
Tutte’s Matrix-Tree theorem on the number of distinct out-branchings in a
digraph. We give a number of recent results on branchings with bounds on
the degrees or extremal number of leaves. Edmonds’ theorem on arc-disjoint
branchings is proved and several applications of this important result are de-
scribed. The problem of finding a minimum cost out-branching in a weighted
digraph generalizes the minimum spanning tree problem. We describe algo-
rithms for finding such a branching.

Chapter 13 covers a number of very important results related to packing,
covering and decompositions of digraphs. We prove the Lucchesi-Younger
theorem on arc-disjoint directed cuts, and give a number of results on arc-
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disjoint hamiltonian paths and cycles. We discuss results on decomposing
highly connected tournaments into many spanning strong subdigraphs, in-
cluding a conjecture which generalizes the famous Kelly conjecture. We give
a number of results on cycle factors with a prescribed number of cycles. Fi-
nally, we give a full proof, due to Bessy and Thomassé, of Gallai’s conjecture
on the minimum number of cycles needed to cover all vertices in a strong
digraph.

Chapter 15 deals with another very important topic, namely, how to de-
stroy all cycles in a digraph by removing as few vertices or arcs as possible.
One of the main results in the chapter is that the feedback arc set problem is
N'P-hard already for tournaments. This was conjectured by Bang-Jensen and
Thomassen in 1992, but was proved only recently by three different sets of
authors. Another major result is the proof by Chen, Liu, Lu, O’Sullivan and
Razgon and that the feedback arc set problem and the feedback vertex set
problems are both fixed-parameter tractable. We also include a scheme of a
solution of Younger’s conjecture, by Reed, Robertson, Seymour and Thomas,
on the relation between the number of disjoint cycles and the size of a mini-
mum feedback vertex set in a digraph.

Chapter 16 deals with edge-coloured graphs, a topic which has a strong
relation to directed graphs. Alternating cycles in 2-edge-coloured graphs gen-
eralize the concept of cycles in digraphs. Certain results on cycles in bipartite
digraphs, such as the characterization of hamiltonian bipartite tournaments,
are special cases of results for edge-coloured complete graphs. There are use-
ful implications in the other direction as well. In particular, using results on
hamiltonian cycles in bipartite tournaments, we prove a characterization of
those 2-edge-coloured complete graphs which have an alternating hamilto-
nian cycle. We briefly describe one important recent addition to the topic,
i.e., a characterization by Feng, Giesen, Guo, Gutin, Jensen and Rafiey of
edge-coloured complete multigraphs containing properly coloured Hamilton
paths. This characterization was conjectured in the first edition.

Chapter 17 describes a number of different applications of directed and
edge-coloured graphs. Through the topics treated we illustrate the diversity
of the applications including some in quantum mechanics, bioinformatics,
embedded computing and the traveling salesman problem.

Chapter 18 is included to make the book self-contained, by giving the
reader a collection of the most relevant definitions and methods on algorithms
and related areas.

Technical Remarks

We have tried to rank exercises according to their expected difficulty. Marks
range from (—) to (++) in order of increasing difficulty. The majority of
exercises have no mark, indicating that they are of moderate difficulty. An
exercise marked (—) requires not much more than the understanding of the
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main definitions and results. A (4+) exercise requires a non-trivial idea, or
involves substantial work. Finally, the few exercises which are ranked (++)
require several deep ideas. Inevitably, this labelling is subjective and some
readers may not agree with this ranking in certain cases. Some exercises have
a header in boldface, which means that they cover an important or useful
result not discussed in the text in detail.

We use the symbol O to denote the end of a proof, or to indicate that
either no proof will be given or the assertion is left as an exercise.

A few sections of the book require some basic knowledge of linear pro-
gramming, while a few others require basic knowledge of probability theory.

We would be grateful to receive comments on the book. They may be sent
to us by email to jbj@imada.sdu.dk or gutin@cs.rhul.ac.uk. We plan to have
a web page containing information about misprints and other information

about the book; see http://www.cs.rhul.ac.uk/books/dbook/
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1. Basic Terminology, Notation and Results

In this chapter we will provide most of the terminology and notation used
in this book. Various examples, figures and results should help the reader to
better understand the notions introduced in the chapter. The results covered
in this chapter constitute a collection of simple yet important facts on di-
graphs. Most of our terminology and notation are standard. Therefore, some
readers may proceed to other chapters after a quick look through this chapter
(unfamiliar terminology and notation can be clarified later by consulting the
indices supplied at the end of this book).

In Section 1.1 we provide basic terminology and notation on sets and ma-
trices. Digraphs, directed pseudographs, subdigraphs, weighted directed pseu-
dographs, neighbourhoods, semi-degrees and other basic concepts of directed
graph theory are introduced in Section 1.2. Isomorphism and basic operations
on digraphs are considered in Section 1.3. In Section 1.4, we introduce walks,
trails, paths and cycles, and study some properties of tournaments and acyclic
digraphs. Basic notions and results on strong and unilateral connectivity are
considered in Section 1.5. Undirected graphs, biorientations and orientations
of graphs are considered in Section 1.6. In Section 1.7, we give character-
izations of eulerian directed multigraphs and digraphs with out-branchings
(in-branchings). Mixed graphs, orientations of digraphs, and hypergraphs are
discussed in Section 1.8. Finally, in Section 1.9 we will introduce a simple,
yet very important, technique in algorithmic graph theory called depth-first
search (DFS).

1.1 Sets, Matrices and Vectors

For the sets of real numbers, rational numbers and integers we will use R, Q
and Z, respectively. Also,let Zy ={z€Z: z>0}tand Zo={z€Z: z >
0}. The sets Ry, Ry, Q4 and Qp are defined similarly. For an integer n, [n]
will denote the set {1,2,...,n}.

The main aim of this section is to establish some notation and terminology
on finite sets used in this book. We assume that the reader is familiar with
the following basic operations for a pair A, B of sets: the intersection AN B,
the union AU B (if AN B = (), then we will often write A + B instead of
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AU B) and the difference A\B (often denoted by A — B). Sets A and B are
disjoint if AN B = 0.

Often we will not distinguish between a single element set (singleton) {z}
and the element x itself. For example, we may write AUb instead of AU {b}.
The Cartesian product of sets X, Xo,..., X, is X1 x Xo x ... x X, =
{(z1,22,...,2p) : z; € X;, 1 <i<p}

For sets A, B, A C B means that A is a subset of B; A C B stands for
A C Band A # B. A set B is a proper subset of a set A if B C A and
B # (). A collection Sy, Ss, ..., S; of (not necessarily non-empty) subsets of a
set S is a subpartition of S if S;NS; = P for all 1 < i # j < t. A subpartition
S1,Sa,...,8; is a partition of S if U!_,S; = S. We will often use the name
family for a collection of sets. A family F = {X1, Xo,..., X, } of sets is
covered by a set S if SN X; # () for every i € [n]. We say that S is a cover
of F. For a finite set X, the number of elements in X (i.e., its cardinality)
is denoted by |X|. We also say that X is an |X|-element set (or just an
| X |-set). A set S satisfying a property P is a maximum (maximal) set
with property P if there is no set S’ satisfying P and |S’| > |S] (S C §').
Similarly, one can define minimum (minimal) sets satisfying a property P.

In this book, we will also use multisets which, unlike sets, are allowed
to have repeated (multiple) elements. The cardinality |S| of a multiset M
is the total number of elements in S (including repetitions). Often, we will
use the words ‘family’ and ‘collection’ instead of ‘multiset’.

For an m X n matrix S = [s;;] the transposed matrix (of S) is the
n x m matrix ST = [ty] such that t;; = s;; for every i € [m] and j € [n].
Unless otherwise specified, the vectors that we use are column-vectors. The
operation of transposition is used to obtain row-vectors.

1.2 Digraphs, Subdigraphs, Neighbours, Degrees

A directed graph (or just digraph) D consists of a non-empty finite set
V(D) of elements called vertices and a finite set A(D) of ordered pairs of
distinct vertices called arcs. We call V(D) the vertex set and A(D) the
arc set of D. We will often write D = (V, A) which means that V and A
are the vertex set and arc set of D, respectively. The order (size) of D is
the number of vertices (arcs) in D; the order of D will sometimes be denoted
by |D|. For example, the digraph D in Figure 1.1 is of order and size 6;
V(D) = {u7 U, W, T, Y, Z}7 A(D) = {(u, v), (u, w), (w,u), (2,u), (z,2), (y, Z)}
Often the order (size, respectively) of the digraph under consideration is
denoted by n (m, respectively).

For an arc (u,v) the first vertex u is its tail and the second vertex v is its
head. We also say that the arc (u,v) leaves u and enters v. The head and
tail of an arc are its end-vertices; we say that the end-vertices are adjacent,
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Figure 1.1 A digraph D.

i.e., u is adjacent to! v and v is adjacent to u. If (u,v) is an arc, we also say
that © dominates v (v is dominated by u) and denote it by u—v. We say
that a vertex u is incident to an arc a if u is the head or tail of a. We will
often denote an arc (z,y) by xy.

For a pair X,Y of vertex sets of a digraph D, we define

(X, Y)p={zye€e A(D): z € X,y e Y},

i.e., (X,Y)p is the set of arcs with tail in X and head in Y. For example, for
the digraph H in Figure 1.2, ({u,v},{w,z})p = {vw}, {w, 2z}, {u,v} )y =
{wv} and ({u,v},{u,v})g = {uv,vu}.

H H’
Figure 1.2 A digraph H and a directed pseudograph H'.

For disjoint subsets X and Y of V(D), X—Y means that every vertex
of X dominates every vertex of Y, X=Y stands for (Y, X)p =0 and XY
means that both X—Y and X=Y hold. For example, in the digraph D of
Figure 1.1, u—{v,w}, {z,y, z}={u,v,w} and {z,y}—=.

The above definition of a digraph implies that we allow a digraph to have
arcs with the same end-vertices (for example, uwv and vu in the digraph H
in Figure 1.2), but we do not allow it to contain parallel (also called mul-
tiple) arcs, that is, pairs of arcs with the same tail and the same head, or

! Some authors use the convention that z is adjacent to y to mean that there is
an arc from x to y, rather than just that there is an arc xy or yz in D, as we
will do in this book.
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loops (i.e., arcs whose head and tail coincide). When parallel arcs and loops
are admissible we speak of directed pseudographs; directed pseudographs
without loops are directed multigraphs. In Figure 1.2 the directed pseu-
dograph H’ is obtained from H by appending a loop zz and two parallel arcs
from u to w. Clearly, for a directed pseudograph D, A(D) and (X,Y)p (for
every pair X,Y of vertex sets of D) are multisets (parallel arcs provide re-
peated elements). We use the symbol up(z,y) to denote the number of arcs
from a vertex z to a vertex y in a directed pseudograph D. In particular,
pp(x,y) = 0 means that there is no arc from z to y.

We will sometimes give terminology and notation for digraphs only, but we
will provide necessary remarks on their extension to directed pseudographs,
unless this is trivial.

Below, unless otherwise specified, D = (V, A) is a directed pseudograph.
For a vertex v in D, we use the following notation:

Ni(w)={ueV —v: vue A}, Ny(v)={weV —v: wv e A)}.

The sets N} (v), Np(v) and Np(v) = Np(v) U Nj(v) are called the
out-neighbourhood, in-neighbourhood and neighbourhood of v. We
call the vertices in Nj)(v), N5 (v) and Np(v) the out-neighbours, in-
neighbours and neighbours of v. In Figure 1.2, N7, (u) = {v,w}, N (u) =
{v}, Ng(u) = {v,w}, N& (w) = {v, 2}, N5, (w) = {u, 2}, Nit, (2) = {w}. For
aset W CV, we let

NEW) = | Niw) - W, NpW) = | Np(w) - W.
weW weW

That is, N, (W) consists of those vertices from V — W which are out-
neighbours of at least one vertex from W. In Figure 1.2, N ({w, 2}) = {v}
and Ny ({w, z}) = {u}.

For a set W C V, the out-degree of W (denoted by dj;(W)) is the num-
ber of arcs in D whose tails are in W and heads are in V. —W, i.e., d},(W) =
|(W,V —=W)p|. The in-degree of W, di,(W) = |(V—W, W)p|. In particular,
for a vertex v, the out-degree is the number of arcs, except for loops, with tail
v. If D is a digraph (that is, it has no loops or multiple arcs), then the out-
degree of a vertex equals the number of out-neighbours of this vertex . We call
out-degree and in-degree of a set its semi-degrees. The degree of W is the
sum of its semi-degrees, i.e., the number dp (W) = df, (W) +dp,(W). For ex-
ample, in Figure 1.2, dj; (u) = 2,d5; (u) = 1,dy (u) = 3, df, (w) = 2,dg, (w) =
4,d}(2) = dip.(2) = 1,d5({u,v,w}) = d({u,v,w}) = 1. Sometimes, it is
useful to count loops in the semi-degrees: the out-pseudodegree of a vertex
v of a directed pseudograph D is the number of all arcs with tail v. Simi-
larly, one can define the in-pseudodegree of a vertex. In Figure 1.2, both
in-pseudodegree and out-pseudodegree of z in H' are equal to 2. A vertex
v of a directed pseudograph D is called a sink (source) if it does not have
out-neighbours (in-neighbours).
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The minimum out-degree (minimum in-degree) of D is
§T(D) = min{d}(x) : x € V(D)} (6~ (D)=min{d,(z): € V(D)}).
The minimum semi-degree of D is
§°(D) = min{6T(D),5(D)}.

Similarly, one can define the maximum out-degree of D, AT (D), and the
maximum in-degree, A~ (D). The maximum semi-degree of D is

A%(D) = max{A* (D), A~(D)}.

We say that D is regular if 6°(D) = A%(D). In this case, D is also called
8%(D)-regular.

For degrees, semi-degrees as well as for other parameters and sets of di-
graphs, we will usually omit the subscript for the digraph when it is clear
which digraph is meant.

Since the number of arcs in a directed multigraph equals the number of
their tails (or their heads) we obtain the following very basic result.

Proposition 1.2.1 For every directed multigraph D we have

Ywev(p) @ (@) = Xoev(p) dt(z) = [AD)].
O

Clearly, this proposition is valid for directed pseudographs if in-degrees
and out-degrees are replaced by in-pseudodegrees and out-pseudodegrees.

A digraph H is a subdigraph of a digraph D if V(H) C V(D), A(H) C
A(D) and every arc in A(H) has both end-vertices in V(H). If V(H) =
V(D), we say that H is a spanning subdigraph (or a factor) of D. The
digraph L with vertex set {u,v,w, z} and arc set {uv, uw,wz} is a spanning
subdigraph of H in Figure 1.2. If every arc of A(D) with both end-vertices
in V(H) is in A(H), we say that H is induced by X = V(H) (we write
H = D(X)) and call H an induced subdigraph of D. The digraph G with
vertex set {u,v,w} and arc set {uw, wv, vu} is a subdigraph of the digraph H
in Figure 1.2; G is neither a spanning subdigraph nor an induced subdigraph
of H. The digraph G along with the arc wv is an induced subdigraph of H.
For a subset A" C A(D) the subdigraph arc-induced by A’ is the digraph
D(A") = (V', A"), where V' is the set of vertices in V' which are incident with
at least one arc from A’. For example, in Figure 1.2, H({zw, uw}) has vertex
set {u,w, z} and arc set {zw,uw}. If H is a subdigraph of D, then we say
that D is a superdigraph of H.

It is trivial to extend the above definitions of subdigraphs to directed
pseudographs. To avoid lengthy terminology, we call the ‘parts’ of directed
pseudographs just subdigraphs (instead of, say, directed subpseudographs).
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For vertex-disjoint subdigraphs H, L of a digraph D, we will often
use the shorthand notation (H,L)p, H—L, H=L and H—L instead of
(V(H),V(L))p, V(H)=V(L), V(H)=V (L) and V(H)—V(L).

A weighted directed pseudograph is a directed pseudograph D along
with a mapping ¢ : A(D)—R. Thus, a weighted directed pseudograph is
a triple D = (V(D), A(D), c). We will also consider vertex-weighted di-
rected pseudographs, i.e., directed pseudographs D along with a mapping
c¢: V(D)—R. (See Figure 1.3.) If a is an element (i.e., a vertex or an arc)
of a weighted directed pseudograph D = (V(D), A(D), ¢), then ¢(a) is called
the weight or the cost of a. An (unweighted) directed pseudograph can be
viewed as a (vertex-)weighted directed pseudograph whose elements are all of
weight 1. For a set B of arcs of a weighted directed pseudograph D = (V, A, ¢),
we define the weight of B as follows: ¢(B) = ), c(a). Similarly, one can
define the weight of a set of vertices in a vertex-weighted directed pseudo-
graph. The weight of a subdigraph H of a weighted (vertex-weighted)
directed pseudograph D is the sum of the weights of the arcs in H (vertices
in H). For example, in the weighted directed pseudograph D in Figure 1.3
the set of arcs {zy,yz, zz} has weight 9.5 (here we have assumed that we
used the arc zz of weight 1). In the directed pseudograph H in Figure 1.3
the subdigraph U = ({u, z, z}, {xz, zu}) has weight 5.

y(2-5)

z(2) z(0) u(3)

Figure 1.3 Weighted and vertex-weighted directed pseudographs (the vertex
weights are given in brackets).

1.3 Isomorphism and Basic Operations on Digraphs

Suppose D = (V, A) is a directed multigraph. A directed multigraph obtained
from D by deleting multiple arcs is a digraph H = (V, A’) where zy € A’
if and ounly if pup(z,y) > 1. Let xy be an arc of D. By reversing the
arc xy, we mean that we replace the arc zy by the arc yx. That is, in
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the resulting directed multigraph D’ we have up/(x,y) = pup(z,y) — 1 and
pp (y,x) = po(y,z) + 1.

A pair of (unweighted) directed pseudographs D and H are isomorphic
(denoted by D = H) if there exists a bijection ¢ : V(D)—V (H) such that
up(z,y) = pa(Pp(x),d(y)) for every ordered pair x,y of vertices in D. The
mapping ¢ is an isomorphism. Quite often, we will not distinguish between
isomorphic digraphs or directed pseudographs. For example, we may say that
there is only one digraph on a single vertex and there are exactly three
digraphs with two vertices. Also, there is only one digraph of order 2 and size
2, but there are two directed multigraphs and six directed pseudographs of
order and size 2. For a set ¥ of directed pseudographs, we say that a directed
pseudograph D belongs to ¥ or is a member of ¥ (denoted D € W) if
D is isomorphic to a directed pseudograph in ¥. Since we usually do not
distinguish between isomorphic directed pseudographs, we will often write
D = H instead of D = H for isomorphic D and H.

In case we do want to distinguish between isomorphic digraphs, we speak
of labeled digraphs. In this case, a pair of digraphs D and H is indistin-
guishable if and only if they completely coincide (i.e., V(D) = V(H) and
A(D) = A(H)). In particular, there are four labeled digraphs with vertex set
{1,2}. Indeed, the labeled digraphs ({1,2},{(1,2)}) and ({1,2},{(2,1)}) are
distinct, even though they are isomorphic.

The converse of a directed multigraph D is the directed multigraph H
which one obtains from D by reversing all arcs. It is easy to verify, using
only the definitions of isomorphism and converse, that a pair of directed
multigraphs are isomorphic if and only if their converses are isomorphic.
To obtain subdigraphs, we use the following operations of deletion. For a
directed multigraph D and a set B C A(D), the directed multigraph D — B
is the spanning subdigraph of D with arc set A(D) — B. If X C V(D), the
directed multigraph D — X is the subdigraph induced by V(D) — X, i.e.,
D - X = D(V(D) — X). For a subdigraph H of D, we define D — H =
D —V(H). Since we do not distinguish between a single element set {z} and
the element x itself, we will often write D — x rather than D — {z}. If H is
a non-induced subdigraph of D and xzy € A(D) — A(H) with z,y € V(H),
we can construct another subdigraph H' of D by adding the arc zy of H;
H = H + zy.

Let G be a subdigraph of a directed multigraph D. The contraction of
G in D is a directed multigraph D/G with V(D/G) = {9} U(V (D) -V (QG)),
where g is a ‘new’ vertex not in D, and up,q(z,y) = pp(z,y), and for all
distinct vertices z,y € V(D) — V(G) we have

ppja(.g) = Y pp(x,v), upcle.y) = > wp(v,y).
veV(Q) veV(G)

(Note that there is no loop in D/G.) Let G1,Ga,...,G: be vertex-disjoint
subdigraphs of D. Then
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D/{G1,Ga,...,G} = (...((D/G1)/G2)...)/G,.

Clearly, the resulting directed multigraph D/{G1,Ga,...,G:} does not de-
pend on the order of Gy, Ga,...,G;. Contraction can be defined for sets of
vertices, rather than subdigraphs. It suffices to view a set of vertices X as a
subdigraph with vertex set X and no arcs. Figure 1.4 depicts a digraph H
and the contraction H/L, where L is the subdigraph of H induced by the
vertices y and z.

Y l
T z x
v v
H T=H/L, L=H({y,z})

Figure 1.4 Contraction.

We will often use the following variation of the operation of contraction.
This operation is called path-contraction and is defined as follows. Let P be
an (z,y)-path in a directed multigraph D = (V, A). Then D/ /P stands for the
directed multigraph with vertex set V(D //P) = VU{z}—V(P), where z ¢ V,
and pp//p(uwv) = pp(w), ppy/p(uz) = pp(ux), pp,/p(zv) = pp(yv) for all
distinct u,v € V=V (P). In other words, D//P is obtained from D by deleting
all vertices of P and adding a new vertex z such that every arc with head x
(tail y) and tail (head) in V' — V(P) becomes an arc with head (tail) z and
the same tail (head). Observe that a path-contraction in a digraph results in
a digraph (no parallel arcs arise). We will often consider path-contractions of
paths of length one, i.e., arcs e. Clearly, a directed multigraph D has a k-cycle
(k > 3) through an arc e if and only if D//e has a cycle through z. Observe
that the obvious analogue of path-contraction for undirected multigraphs
does not have this nice property which is of use in this section. The difference
between (ordinary) contraction (which is also called set-contraction) and
path-contraction is reflected in Figure 1.5.

As for set-contraction, for vertex-disjoint paths Py, Ps,..., P; in D, the
path-contraction D//{Py,..., P} is defined as the directed multigraph
(...((D//P1)]]/P2)...)]/Ps; clearly, the result does not depend on the order
of Pl,PQ, .. .,Pt.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the
following operation called composition. Let D be a digraph with vertex set
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a
b d
T Yy
c
a D a
2
b d b > d
3
c c
D/{z,u,v,y} D//P, P = zuvy

Figure 1.5 The two different kinds of contraction, set-contraction and path-
contraction. The integers 2 and 3 indicate the number of corresponding parallel
arcs.

{vi : i € [n]}, and let G1,Gs,...,G, be digraphs which are pairwise vertex-
disjoint. The composition D[G1,Ga,...,G,] is the digraph L with vertex set
V(G1)UV(G2)U.. .UV (Gy) and arc set (Ul A(G;))U{gig; : 9; € V(Gi), g/ €
V(Gj),viv; € A(D)}. Figure 1.6 shows the composition T'[G,, G;, G|, where
G, consists of a pair of vertices and an arc between them, (G; has a single
vertex, G, consists of a pair of vertices and the pair of mutually opposite
arcs between them, and the digraph 7T is from Figure 1.4.

G

Figure 1.6 TG, G, Gy).

Let @ be a set of digraphs. A digraph D is #-decomposable if D is a
member of ¢ or D = H[Sy,...,S] for some H € ¢ with h = |V(H)| > 2
and some choice of digraphs S1,Ss,...,S (we call this decomposition a &-
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decomposition). A digraph D is called totally #-decomposable if either
D € & or there is a $-decomposition D = H|[Sy,...,Sy] such that h > 2, and
each S; is totally #-decomposable. In this case, if D ¢ &, a ¢-decomposition
of D, &-decompositions S; = H;[Si1,. .., Sik,] of all S; which are not in @, -
decompositions of those of S;; which are not in @, and so on, form a sequence
of decompositions which will be called a total #-decomposition of D. If
D € &, we assume that the (unique) total $-decomposition of D consists of
itself. o

To illustrate the last paragraph of definitions, consider ¥ = { K1, K2, D2},
where IH(l is the digraph with a single vertex, [H(g is the (complete) digraph
with two vertices and two arcs, and Dy has two vertices {1,2} and the arc
(1,2). Construct the digraph D by deleting from the digraph in Figure 1.6 the

pair of arcs going from Gy to G,. The digraph D is totally ¥-decomposable.
Indeed, D = Ds[D,Q)] is a ¥-decomposition of D, where @ is the sub-

digraph of D induced by V(G,) U V(G,). Moreover, @ = DQ[[H(l,IH{Q] is
a W-decomposition of ). The above two decompositions form a total &-
decomposition of D.

If D= H[Sy,...,Sk] and none of the digraphs Sy, ..., Sy, has an arc, then
D is an extension of H. Distinct vertices x,y are similar if x,y have the
same in- and out-neighbours in D. For every i € [h], the vertices of S; are
similar in D. For any set @ of digraphs, ®*** denotes the (infinite) set of all
extensions of digraphs in @, which are called extended &-digraphs. We say
that @ is extension-closed if @ = $°**,

The Cartesian product of a family of digraphs D1, Do, ..., D,, denoted
by Dy x Dy X ... x D,, or [[\_, D;, where n > 2, is the digraph D having

V(D) = V(Dy) x V(Ds) x ... x V(Dy)
= {(wl,wg, e ,wn) Dw; € V(Dz),l S [n]}

and a vertex (uj,us,...,u,) dominates a vertex (vi,vs,...,v,) of D if and
only if there exists an r € [n] such that w,v, € A(D,) and u; = v; for all
i € [n]\ {r}. (See Figure 1.7.)

The operation of splitting a vertex v of a directed multigraph D consists
of replacing v by two (new) vertices u, w so that uw is an arc, all arcs of the
form zv by arcs xu and all arcs of the form vy by wy. The subdivision of
an arc uv of D consists of replacing uv by two arcs ww,wv, where w is a
new vertex. If H can be obtained from D by subdividing one or more arcs
(here we allow subdividing arcs that are already subdivided), then H is a
subdivision of D. For a positive integer p and a digraph D, the pth power
DP of D is defined as follows: V(DP) = V(D), x—y in DP if x # y and
there are k < p — 1 vertices 21, 22, . .., 2z such that x—z1—20— ... =2 >y
in D. According to this definition D' = D. For example, for the digraph
H, = ([n],{(i,i+1): i€ [n—1]}), we have H2 = ([n],{(i,7): 1<i<j<
i+2<n}U{(n—1,n)}). See Figure 1.8 for the second power of a digraph.



1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs 11

(2,0)

(1,b) (3,)

(=

(2,a)

(1,a) (3,a)

D H DxH
Figure 1.7 The Cartesian product of two digraphs.

D D?

Figure 1.8 A digraph D and its second power D?.

Let H and L be a pair of directed pseudographs. The union H U L of H
and L is the directed pseudograph D such that V(D) = V(H) U V(L) and
up(z,y) = pu(z,y) + pr(x,y) for every pair x,y of vertices in V(D). Here
we assume that the function gy is naturally extended, i.e., gy (z,y) = 0 if at
least one of x,y is not in V(H) (and similarly for pr). Figure 1.9 illustrates
this definition.

1.4 Walks, Trails, Paths, Cycles and Path-Cycle
Subdigraphs

In the following, D is always a directed pseudograph, unless otherwise speci-
fied. A walk in D is an alternating sequence W = x1a1x2a223 ... Tp_105_1Tk
of vertices x; and arcs a; from D such that the tail of a; is x; and the head
of a; is x;41 for every i € [k — 1]. A walk W is closed if 21 = %, and open
otherwise. The set of vertices {x; : i € [k]} is denoted by V(WW); the set of
arcs {a; : j € [k — 1]} is denoted by A(W). We say that W is a walk from
x1 to zy or an (a1, xk)-walk. If W is open, then we say that the vertex x;
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b b b
e €
a c c f a ¢ f
d de~———eo g
d g
H L HUL

Figure 1.9 The union D = H U L of the directed pseudographs H and L.

is the initial vertex of W, the vertex xj is the terminal vertex of W, and
z1 and x are end-vertices of W. The length of a walk is the number of
its arcs. Hence the walk W above has length & — 1. A walk is even (odd) if
its length is even (odd). When the arcs of W are defined from the context or
simply unimportant, we will denote W by zixs ... xk.

A trail is a walk in which all arcs are distinct. Sometimes, we identify
a traill W with the directed pseudograph (V (W), A(W)), which is a subdi-
graph of D. If the vertices of W are distinct, W is a path. If the vertices
Z1,To,...,Tk—1 are distinct, k > 3 and x; = xp, W is a cycle. Since paths
and cycles are special cases of walks, the length of a path and a cycle is
already defined. The same remark is valid for other parameters and notions,
e.g., an (x,y)-path. A path P is an [z, y]-path if P is a path between x
and y, e.g., P is either an (z,y)-path or a (y, z)-path. A longest path (cycle)
in D is a path (cycle) of maximum length in D.

When W is a cycle and x is a vertex of W, we say that W is a cycle
through x. In a directed pseudograph D, a loop is also considered a cycle
(of length one). A k-cycle is a cycle of length k. The minimum integer % for
which D has a k-cycle is the girth of D; denoted by ¢g(D). If D does not
have a cycle, we define g(D) = oo. If g(D) is finite, then we call a cycle of
length g(D) a shortest cycle in D.

For subsets X,Y of V(D), an (z,y)-path P is an (X,Y)-path if z € X,
y €Y and V(P)N(XUY) = {z,y}. Note that if X NY # (), then a vertex
x € X NY forms an (X,Y)-path by itself. Sometimes we will talk about
an (H, H')-path when H and H' are subdigraphs of D. By this we mean a
(V(H),V(H'))-path in D.

For a cycle C = z122...xpx1, the subscripts are considered modulo p,
i.e., xs = x; for every s and 7 such that ¢ = s mod p. As pointed out above
(for trails), we will often view paths and cycles as subdigraphs. We can also
consider paths and cycles as digraphs themselves. Let B, (C_"n) denote a
path (a cycle) with n vertices, ie., P, = ([n],{(1,2),(2,3),...,(n — 1,n)})
and C,, = P, + (n,1).
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A walk (path, cycle) W is a Hamilton (or hamiltonian) walk (path, cy-
cle) it V(W) = V(D). A digraph D is hamiltonian if D contains a Hamilton
cycle; D is traceable if D possesses a Hamilton path. A trail W = z1x5 ... 2%
is an Euler (or eulerian) trail if A(W) = A(D), V(W) = V(D) and z1 = x;
a directed multigraph D is eulerian if it has an Euler trail.

To illustrate these definitions, consider Figure 1.10.

€2 T6

€3

b
Ts5 T4 X7

Figure 1.10 A directed graph H.

The walk x1x2z6x324T67242521 is a hamiltonian walk in D. The path
T5X1T2X3T4Tex7 1S hamiltonian path in D. The path xizox3zsxe is an
(x1,x¢)-path and xox3r4wers is an (xa, x3)-trail. The cycle xixor324T521
is a b-cycle in D. The girth of D is 3 and the longest cycle in D has length 6.

Let W = z129... 2k, Q@ = y1y2...y: be a pair of walks in a digraph D.
The walks W and @ are disjoint if V(W) NV(Q) = § and arc-disjoint if
AW)N A(Q) = 0. If W and Q are open walks, they are called internally
disjoint if {za,x3,...,2k—1} NV (Q) =0 and V(W) N {y2,93,...,yt—1} = 0.

We will use the following notation for a path or a cycle W = z1x5... 2%
(recall that z7 = xy if W is a cycle):

W[mial‘j] =TiTjt1..-Tj.

It is easy to see that Wx;, x;] is a path for ; # x;; we call it the subpath
of W from z; to z;. If 1 < ¢ < k, then the predecessor of x; on W is the
vertex z;_; and is also denoted by z; . If 1 < i < k, then the successor of z;
on W is the vertex z; 41 and is also denoted by z; . Similarly, one can define
T = (z7)* and z; ~ = (27)~, when these exist (which they always do if
W is a cycle).

Also, foraset X CV(W), weset XT ={2t: ze X}, X ={2": z¢€
X3}, Xt = (X*T)*T, etc. We will normally use such notation when a vertex
x under consideration belongs to a unique walk W, otherwise W is given as
a subscript, for example, x;rv

Proposition 1.4.1 Let D be a digraph and let x,y be a pair of distinct
vertices in D. If D has an (z,y)-walk W, then D contains an (z,y)-path P
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such that A(P) C A(W). If D has a closed (z,x)-walk W, then D contains
a cycle C through x such that A(C) C A(W).

Proof: Consider a walk P from z to y of minimum length among all (x, y)-
walks whose arcs belong to A(W). We show that P is a path. Let P =
T1T2...%, where x = 1 and y = 3. If x; = x; for some 1 < i < j <k,
then the walk P[z1,2;]P[xj41, %) is shorter than P; a contradiction. Thus,
all vertices of P are distinct, so P is a path with A(P) C A(W).

Let W = z125...2; be a walk from z = z; to itself (z = zj). Since D
has no loop, zp_1 # zx- Let y1y2...y: be a shortest walk from y; = 21 to
Yyt = 2p—1. We have proved above that y1ys ...y is a path. Thus, y1y2 ... yry1
is a cycle through y; = . a

An oriented graph is a digraph with no cycle of length two. A tourna-
ment is an oriented graph where every pair of distinct vertices are adjacent.
In other words, a digraph T with vertex set {v; : @ € [n]} is a tournament if
exactly one of the arcs v;v; and v;v; is in T for every i # j € [n]. In Figure
1.11, one can see a pair of tournaments. It is an easy exercise to verify that
each of them contains a Hamilton path. Actually, this is no coincidence by
the following theorem of Rédei [768]. (In fact, Rédei proved a stronger result:
every tournament contains an odd number of Hamilton paths.)

Figure 1.11 Tournaments.

Theorem 1.4.2 FEvery tournament is traceable.

Proof: Let T be a tournament with vertex set {v; : i € [n|}. Suppose that
the vertices of T' are labelled in such a way that the number of backward
arcs, i.e., arcs of the form wv;v;, j > ¢, is minimum. Then, vivs...v, is a
Hamilton path in 7. Indeed, if this is not the case, there exists a subscript
i < mn such that v;v;11 ¢ A(T). Thus, v;11v; € A(T). However, in this case we
can switch the vertices v; and v;11 in the labelling and decrease the number
of backward arcs; a contradiction. O

A g-path-cycle subdigraph F of a digraph D is a collection of ¢ paths
Py,..., P, and t cycles C4,...,C; such that all of P,...,FP,,C4,...,C; are
pairwise disjoint (possibly, ¢ = 0 or ¢ = 0). We will denote F by F =
PiU...UP,UCyU...UC; (the paths always being listed first). Quite
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often, we will consider g-path-cycle factors, i.e., spanning g¢-path-cycle
subdigraphs. If t = 0, F is a g-path subdigraph and it is a g-path factor
(or just a path-factor) if it is spanning. If ¢ = 0, we say that F is a t-cycle
subdigraph (or just a cycle subdigraph) and it is a t-cycle factor (or
just a cycle factor) if it is spanning. In Figure 1.12, abc U defd is a 1-path-
cycle factor, and abcea U dfd is a cycle factor (or, more precisely, a 2-cycle
factor).

a d

N

H

Figure 1.12 A digraph H.

The path covering number pc(D) of D is the minimum positive integer
k such that D contains a k-path factor. In particular, pc(D) = 1 if and only if
D is traceable. The path-cycle covering number pcc(D) of D is the min-
imum positive integer k£ such that D contains a k-path-cycle factor. Clearly,
pce(D) < pe(D). The proof of the following simple yet helpful assertion on
the path covering number is left as an easy exercise to the reader (Exercise
1.11).

Proposition 1.4.3 Let D be a digraph, and let k be a positive integer. Then
the following statements are equivalent:

1. pe(D) =k.

2. There are k — 1 (new) arcs ey,...,ex—1 such that D + {e1,...,ex_1} is
traceable, but there is no set of k — 2 arcs with this property.

3. k — 1 is the minimum integer s such that addition of s new vertices to
D together with all possible arcs between V(D) and these new vertices
results in a traceable digraph. a

1.5 Strong and Unilateral Connectivity
In a digraph D a vertex y is reachable from a vertex x if D has an (z,y)-

walk. In particular, a vertex is reachable from itself. By Proposition 1.4.1,
y is reachable from x if and only if D contains an (x,y)-path. A digraph D
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is strongly connected (or, just, strong) if, for every pair z,y of distinct
vertices in D, there exists an (z,y)-walk and a (y, z)-walk. In other words,
D is strong if every vertex of D is reachable from every other vertex of D.
We define a digraph with one vertex to be strongly connected. It is easy to
see that D is strong if and only if it has a closed Hamilton walk (Exercise
1.29). As C, is strong, every hamiltonian digraph is strong. The following
basic result on tournaments is due to Moon [703]. A digraph D is vertex-
pancyclic if for every € V(D) and every integer k € {3,4,...,n}, there
exists a k-cycle through x in D.

Theorem 1.5.1 (Moon’s theorem) [703] Every strong tournament is
vertez-pancyclic.

Proof: Let x be a vertex in a strong tournament 7" on n > 3 vertices.
The theorem is shown by induction on k. We first prove that T has a 3-
cycle through z. Since T is strong, both O = NT(x) and I = N~ (z) are
non-empty. Moreover, (O, I) is non-empty; let yz € (O, I). Then, zyzz is a
3-cycle through x. Let C' = zpx; ... x4 be a cycle in T with x = 9 = z; and
t e {3,4,...,n—1}. We prove that T has a (¢t + 1)-cycle through z.

If there is a vertex y € V(T) — V(C) which dominates a vertex in C
and is dominated by a vertex in C, then it is easy to see that there exists
an index ¢ such that z;—y and y—x; 1. Therefore, Clxg, z;]yClx;r1, x¢] is a
(t + 1)-cycle through z. Thus, we may assume that every vertex outside of
C either dominates every vertex in C' or is dominated by every vertex in C.
The vertices from V(T') — V(C') that dominate all vertices from V(C) form a
set R; the rest of the vertices in V(T') — V(C) form a set S. Since T is strong,
both S and R are non-empty and the set (S, R) is non-empty. Hence taking
sr € (S, R) we see that xosrClxa, xg] is a (¢ + 1)-cycle through © = 9. O

Corollary 1.5.2 (Camion’s theorem) [192] Every strong tournament is
hamiltonian. O

In fact, Moon’s theorem can be extended to semicomplete digraphs. A
digraph D is semicomplete if there is an arc between every pair of vertices
in D. The next result follows from Moon’s theorem due to Theorem 1.6.1.

Theorem 1.5.3 Every strong semicomplete digraph is vertex-pancyclic. 0O

A digraph D is complete if, for every pair x,y of distinct vertices of
D, both xy and yx are in D. The complete digraph on n vertices will be

denoted by I?n For a strong digraph D = (V, A), a set S C V is a separator
(or a separating set) if D — S is not strong. A digraph D is k-strongly
connected (or k-strong) if |[V| > k4 1 and D has no separator with less
than k vertices. It follows from the definition of strong connectivity that
a complete digraph with n vertices is (n — 1)-strong, but is not n-strong.
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The largest integer k such that D is k-strongly connected is the vertex-
strong connectivity of D (denoted by x(D)). If a digraph D is not strong,
we set k(D) = 0. For a pair s,t of distinct vertices of a digraph D, a set
S C V(D) — {s,t} is an (s, t)-separator if D — S has no (s,t)-paths. For
a strong digraph D = (V, A), a set of arcs W C A is a cut (or a cutset)
if D — A is not strong. A digraph D is k-arc-strong (or k-arc-strongly
connected) if D has no cut with less than k arcs. The largest integer k such
that D is k-arc-strongly connected is the arc-strong connectivity of D
(denoted by A(D)). If D is not strong, we set A(D) = 0. Note that \(D) > k
if and only if d*(X),d™ (X) > k for all proper subsets X of V.

A strong component of a digraph D is a maximal induced subdigraph
of D which is strong. If Dy,...,D; are the strong components of D, then
clearly V(Dy) U...UV(D;) = V(D) (recall that a digraph with only one
vertex is strong). Moreover, we must have V(D;) NV (D,) = 0 for every i # j
as otherwise all the vertices V(D;) U V(D;) are reachable from each other,
implying that the vertices of V(D;) UV (D,) belong to the same strong com-
ponent of D. We call V(Dy) U ...UV(D;) the strong decomposition of
D. The strong component digraph SC(D) of D is obtained by contract-
ing strong components of D and deleting any parallel arcs obtained in this
process. In other words, if D1,...,D; are the strong components of D, then
V(SC(D)) = {vi : i € [} and A(SC(D)) = {vgw; : (V(Di), V(D))o # 0}.
The subdigraph of D induced by the vertices of a cycle in D is strong, i.e., is
contained in a strong component of D. Thus, SC(D) is acyclic. By Proposi-
tion 2.1.3, the vertices of SC(D) have an acyclic ordering. This implies that
the strong components of D can be labelled Dy,...,D; such that there is no
arc from D; to D; unless j < i. We call such an ordering an acyclic ordering
of the strong components of D . The strong components of D corresponding
to the vertices of SC(D) of in-degree (out-degree) zero are the initial (ter-
minal) strong components of D. The remaining strong components of D
are called intermediate strong components of D. Figure 1.13 shows a
digraph D and its strong component digraph SC(D).

It is easy to see that the strong component digraph of a tournament 7T is
an acyclic tournament. Thus, there is a unique acyclic ordering of the strong
components of T', namely, T7,...,T; such that T;—T} for every ¢ < j. Clearly,
every tournament has only one initial (terminal) strong component.

A digraph D is unilateral if, for every pair x, y of vertices of D, either x
is reachable from y or y is reachable from z (or both). Clearly, every strong
digraph is unilateral. A path P, is unilateral; hence, being unilateral is a
necessary condition for traceability of digraphs. The following is a character-
ization of unilateral digraphs.

Proposition 1.5.4 A digraph D is unilateral if and only if there is a
unique acyclic ordering D1, Do, ..., Dy of the strong components of D and
(V(D;),V(Dit1)) # 0 for every i € [t —1].
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S1
S3
, %
52
D SC(D)

Figure 1.13 A digraph D and its strong component digraph SC(D). The vertices
S1, 82, 83, 84, S5 are obtained by contracting the sets {a, b}, {c,d, e}, {f, g, h,i}, {7, k}
and {l, m,n} which correspond to the strong components of D. The digraph D has
two initial components, D1, Dy with V(D1) = {a, b} and V(D2) = {c,d, e}. It has
one terminal component Ds with vertices V(Ds) = {l,m,n} and two intermediate
components D3, D4 with vertices V(Ds) = {f, g, h,i} and V(D4) = {j, k}.

Proof: The sufficiency is trivial. To see the necessity, observe that if
(V(D;),V(D;11)) = 0, then no vertex of V(D;41) is reachable from any ver-
tex of V(D;) and vice versa. Finally, observe that if (V(D;),V(D;y1)) # 0

for every i € [t — 1], then Dy, Ds,..., D, is the unique acyclic ordering of
the strong components of D, because SC(D) has a hamiltonian path (see
Exercise 2.1). O

1.6 Undirected Graphs, Biorientations and Orientations

An undirected graph (or a graph) G = (V, E) consists of a non-empty
finite set V' = V(G) of elements called vertices and a finite set E = E(G) of
unordered pairs of distinct vertices called edges. We call V(G) the vertex
set and F(G) the edge set of G. In other words, an edge {z,y} is a 2-
element subset of V(G). We will often denote {z,y} just by xzy. If zy € E(G),
we say that the vertices x and y are adjacent. Notice that, in the above
definition of a graph, we do not allow loops (i.e., pairs consisting of the same
vertex) or parallel edges (i.e., multiple pairs with the same end-vertices). The
complement G of a graph G is the graph with vertex set V(G) in which
two vertices are adjacent if and only if they are not adjacent in G.

When parallel edges and loops are admissible we speak of pseudographs;
pseudographs with no loops are multigraphs. For a pair u,v of vertices in
a pseudograph G, pa(u,v) denotes the number of edges between u and v. In
particular, pug(u,u) is the number of loops at w.
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A multigraph G is complete if every pair of distinct vertices in G are
adjacent. We will denote the complete graph on n vertices (which is unique
up to isomorphism) by K,,. Its complement K, has no edge.

A multigraph H is p-partite if there exists a partition Vi, Va,..., V], of
V(H) into p partite sets (i.e., V(H) =V1 U...UV,, V;NV,; =0 for every
i # j) such that every edge of H has its end-vertices in different partite
sets. The special case of a p-partite graph when p = 2 is called a bipartite
graph. We often denote a bipartite graph B by B = (V1, Va; E). A p-partite
multigraph H is complete p-partite if, for every pair x € V;, y € V} (i # j),
an edge xy is in H. A complete graph on n vertices is clearly a complete
n-partite graph for which every partite set is a singleton. We denote the
complete p-partite graph with partite sets of cardinalities nq,ng,...,n, by
_____ n,- Complete p-partite graphs for p > 2 are also called complete
multipartite graphs.

To obtain short proofs of various results on subdigraphs of a directed
multigraph D = (V, A) the following transformation to the class of bipartite
(undirected) multigraphs is extremely useful. Let BG(D) = (V/,V"; E) de-
note the bipartite multigraph with partite sets V' = {+/ : v € V}, V" =
{v": v € V} such that ppgpy(v'w”) = pp(uw) for every pair u,w of ver-
tices in D. We call BG(D) the bipartite representation of D; see Figure
1.14.

1/ 1//
1
4 2/ 2//
3/ 3//
5
4/ 4//
5/ 5//
D BG(D)

Figure 1.14 A directed multigraph and its bipartite representation.

For a pseudograph G, a directed pseudograph D is called a biorientation
of G if D is obtained from G by replacing each edge {x,y} of G by either
xy or yz or the pair xy and yx (except for a loop zx which is replaced by a
(directed) loop at z). Note that different copies of the edge zy in G may be
replaced by different arcs in D. Thus if ug(z,y) = 3, then we may replace
one edge {z,y} by the arc zy, another by the arc yx and the third by the pair
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of arcs xy and yz. An orientation of a graph G is a biorientation of G which
is an oriented graph (i.e., digraph having no 2-cycle and no loops). Clearly,
every digraph is a biorientation and every oriented graph an orientation of
some undirected graph. The underlying graph UG(D) of a digraph D is
the unique graph G such that D is a biorientation of G. The underlying
multigraph UMG(D) of a directed multigraph D is a multigraph obtained
from D by replacing every arc zy with the edge {z,y}. For example, for
a digraph H with vertices u,v and arcs wv,vu, UG(H) has one edge and
UMG(H) has two parallel edges.

For a graph G, the complete biorientation of G (denoted by 5) is a
biorientation D of G such that zy € A(D) implies yz € A(D). A digraph
D = (V, A) is symmetric if zy € A implies yz € A. Clearly, D is symmetric
if and only if D is the complete biorientation of some graph. An oriented
path (cycle) is an orientation of a path (cycle).

A pseudograph G is connected if its complete biorientation G is strongly
connected. Similarly, G is k-connected if G is k-strong. Strong components

in G are connected components, or just components in G. A bridge
in a connected pseudograph G is an edge whose deletion from G makes G
disconnected. A pseudograph G is k-edge-connected if the graph obtained
from G after deletion of at most & — 1 edges is connected. Clearly, a con-
nected pseudograph is bridgeless if and only if it is 2-edge-connected. The
neighbourhood N¢(z) of a vertex x in G is the set of vertices adjacent to
x. The degree d(z) of a vertex x is the number of edges except loops having
z as an end-vertex. The minimum (maximum) degree of G is

0(G) = min{d(z) : z € V(GQ)} (A(G) = max{d(z): x € V(G)}).

We say that G is regular (or 5(G) regular) if 6(G) = A(G). A pair of

graphs G and H is isomorphic if G and H are isomorphic.
A digraph is connected if its underlying graph is connected. The follow-
ing well-known theorem is due to Robbins.

Theorem 1.6.1 (Robbins’ theorem) [780] A connected graph G has a
strongly connected orientation if and only if G has no bridge.

Proof: Clearly, if G has a bridge, G has no strong orientation. So assume
that G is bridgeless. Then every edge wv is contained in some cycle (see
Exercise 1.21). Choose a cycle C in G. Orient C as a directed cycle Tj.
Suppose that 11,75, ..., T} are chosen and oriented in such a way that every
Ti+1 (1 < i < k) is either a cycle having only one vertex in common with
T =T, UTy,U...UT; or a path with only initial and terminal vertices in
common with 7. If UG(T*) = G, then we are done as a simple induction
shows that T* is strong. Otherwise, there is an edge zy which is not in
UG(T*) such that = is in UG(T*). Let C be a cycle containing zy. Orient
C to obtain a (directed) cycle Z. Let z be a vertex in UG(T*) which is first
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encountered while traversing Z (after leaving z). Then, set Ty11 = Z[z, 2].
The path (or cycle) Tj41 satisfies the above-mentioned properties. Since E(G)
is finite, after a certain number of iterations £ < m — 1 we have UG(T*) = G.

O

The notions of walks, trails, paths and cycles in undirected pseudographs
are analogous to those for directed pseudographs (we merely disregard ori-
entations). An xy-path in an undirected pseudograph is a path whose end-
vertices are x and y. When we consider a digraph and its underlying graph
UG(D), we will often call walks of D directed (to distinguish between them
and those in UG(D)). In particular, we will speak of directed paths, cycles
and trails. An undirected graph is a forest if it has no cycle. A connected for-
est is a tree. It is easy to see (Exercise 1.24) that every connected undirected
graph has a spanning tree, i.e., a spanning subgraph, which is a tree.

A matching M in a directed (an undirected) pseudograph G is a set of
arcs (edges) with no common end-vertices. We also require that no element
of M is a loop. If M is a matching, then we say that the edges (arcs) of
M are independent. A matching M in G is maximum if M contains the
maximum possible number of edges. A maximum matching is perfect if it
has n/2 edges, where n is the order of G. A set @ of vertices in a directed
or undirected pseudograph H is independent if the graph H{Q) has no
edges (arcs). The independence number, «(H), of H is the maximum
integer k such that H has an independent set of cardinality k. A (proper)
colouring of a directed or undirected graph H is a partition of V(H) into
(disjoint) independent sets. The minimum number, x (H ), of independent sets
in a proper colouring of H is the chromatic number of H.

In Section 1.3, the operation of composition of digraphs was introduced.
Considering complete biorientations of undirected graphs, one can easily de-
fine the operation of composition of undirected graphs. Let H be a graph
with vertex set {v; : ¢ € [n]}, and let G1,Ga,...,G, be graphs which are
pairwise vertex-disjoint. The composition H[G1,Ga,...,Gy] is the graph L
with vertex set V(G1) UV (G2) U...UV(G,) and edge set

U?:lE(Gi) @] {gigj L gi € V(Gi),gj S V(Gj),vivj S E(H)}

If none of the graphs Gi,...,G, in this definition of H[G,...,G,] have
edges, then H[G4,...,G,] is an extension of H.

1.7 Trees and Euler Trails in Digraphs

A digraph D is an oriented forest (tree) if D is an orientation of a forest
(tree). A digraph T is an out-tree (an in-tree) if T' is an oriented tree with
just one vertex s of in-degree zero (out-degree zero). The vertex s is the root
of T. If an out-tree (in-tree) T is a spanning subdigraph of D, T is called an
out-branching (an in-branching). (See Figure 1.15.) We will often use the
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notation B (B; ) to denote an out-branching (in-branching) rooted at s in
the digraph in question.

’" R /

D H L

Figure 1.15 The digraph D has an out-branching with root r (shown in bold);
H contains an in-branching with root s (shown in bold); L possesses neither an
out-branching nor an in-branching.

Since each spanning oriented tree R of a connected digraph is acyclic as
an undirected graph, R has at least one vertex of out-degree zero and at
least one vertex of in-degree zero (see Proposition 2.1.1). Hence, the out-
branchings and in-branchings capture the important cases of uniqueness of
the corresponding vertices. The following is a characterization of digraphs
with in-branchings (out-branchings).

Proposition 1.7.1 A connected digraph D contains an out-branching (in-
branching) if and only if D has only one initial (terminal) strong component.

Proof: We prove this characterization only for out-branchings since the sec-
ond claim follows from the first one by considering the converse of D.

Assume that D contains at least two initial strong components and sup-
pose that D has an out-branching 7T'. Observe that the root r of T' is an initial
strong component of D. Let x be a vertex in another initial strong component
of D. Since r is the root of T, there is a path from r to = in T and, thus, in
D, which is a contradiction to the assumption that r» and x are in different
initial strong components of D.

Now we assume that D contains only one initial strong component Dy,
and r is an arbitrary vertex of D;. We prove that D has an out-branching
rooted at r. In SC(D), the vertex = corresponding to D; is the only vertex
of in-degree zero and, hence, by Proposition 2.1.2; every vertex of SC(D) is
reachable from z. Thus, every vertex of D is reachable from r. We construct
an oriented tree T as follows. In the first step 71" consists of r. In Step ¢ > 2,
for every vertex y appended to T in the previous step, we add to T a vertex
z, such that y—z and z € V(T), together with the arc yz. We stop when no
vertex can be included in T'. Since every vertex of D is reachable from r, T
is spanning. Clearly, r is the only vertex of in-degree zero in T'. Hence, T' is
an out-branching. ad
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The oriented tree T' constructed in the proof of Proposition 1.7.1 is a
so-called BFS tree of D (see Chapter 3).

We formulate and prove the following well-known characterization of eu-
lerian directed multigraphs (clearly, the deletion of loops in a directed pseu-
dograph D does not change the property of D of being eulerian or otherwise).
The ‘undirected’ version of this theorem marks the beginning of graph theory
[303] (see the book [320] by Fleischner for a reprint of Euler’s original paper
and a translation into English, and see the book [160] by Biggs, Lloyd and
Wilson or Wilson’s paper [904] for a discussion of the historical record).

Theorem 1.7.2 (Euler’s theorem?) A directed multigraph D is eulerian
if and only if D is connected and d*(z) = d~(z) for every vertex z in D.

Proof: Clearly, both conditions are necessary. We give a constructive proof
of sufficiency by building an Euler trail T'. Let T be initially empty and we
may assume that D has at least two vertices. Choose an arbitrary vertex x
in D. Since D is connected, there is a vertex y € N*(z). Append = to T
as well as an arc from z to y. Since d™ (y) = d* (y), there is an arc yz with
tail y. Add both y and yz to T. We proceed similarly: after an arc uv is
included in T, we append v to T together with an arc a ¢ T whose tail is v.
Due to the condition d*(w) = d~(w) for every vertex w, the above process
can terminate only if the last arc appended to T is an arc whose head is the
vertex x and the arcs of D with tail x are already in T'. If all arcs of D are in
T, we are done. Assume it is not so. Since D is connected, this means that
T contains a vertex p which is a tail of an arc pg not in 7. ‘Shift’ cyclically
the vertices and arcs of T' such that T starts and terminates at p. Add the
arc pqg to T and apply the process described above. This can terminate only
when the last appended arc’s tail is p and all arcs leaving p are already in T'.
Again, either we are done (all arcs are already in T') or we can find a new
vertex to restart the above process. Since V(D) is finite, after several steps
all arcs of D will be included in T O

The algorithm described in this proof can be implemented to run in
O(|V(D)| + |A(D)|) time (see Exercise 18.3). A generalization of the last
theorem is given in Theorem 16.2.1. For eulerian directed multigraphs, the
following stronger condition on out-degrees and in-degrees holds.

Corollary 1.7.3 Let D be an eulerian directed multigraph and let § = W C
V(D). Then, dt (W) =d~(W).

Proof: Observe that

S dt(w) = (W, W) +dT (W), Y d(w) = [(W,W)|+d~(W). (1.1)
wew wew

2 Euler’s original paper [303] only dealt with undirected graphs, but it is easy to
see that the directed case generalizes the undirected case (see also Exercise 1.27).
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By Theorem 1.7.2, 3" o d¥(w) = 3 oy d” (w). The corollary follows from
this equality and (1.1). O

1.8 Mixed Graphs, Orientations of Digraphs, and
Hypergraphs

Mixed graphs are useful by themselves as a common generalization of undi-
rected and directed graphs. Moreover, mixed graphs are helpful in several
proofs on biorientations of graphs.

A mixed graph M = (V, A, E) contains both arcs (ordered pairs of
vertices in A) and edges (unordered pairs of vertices in E). We do not allow
loops or parallel arcs and edges, but M may have an edge and an arc with the
same end-vertices. For simplicity, both edges and arcs of a mixed graph are
called edges. Thus, an arc is viewed as an oriented edge (and an unoriented
edge as an edge in the usual sense). A biorientation of a mixed graph
M = (V, A E) is obtained from M by replacing every unoriented edge xy
of F by the arc zy, the arc yz or the pair zy,yx of arcs. If no unoriented
edge is replaced by a pair of arcs, we speak of an orientation of a mixed
graph®. The complete biorientation of a mixed graph M = (V, A, E) is a

biorientation ]\7 of M such that every unoriented edge zy € FE is replaced

in ]\7 by the pair zy, yx of arcs. Using the complete biorientation of a mixed
graph M, one can easily give the definitions of a walk, trail, path and cycle

in M. The only extra condition is that every pair of arcs in M obtained in
replacement of an edge in M has to be treated as two appearances of one
thing. For example, if one of the arcs in such a pair appears in a trail 7', then

the second one cannot be in 7. A mixed graph M is strong if ]\7 is strong.
Similarly, one can give the definition of strong components. A mixed graph

M is connected if ]\HJ is connected. An edge / in a connected mixed graph
M is a bridge if M — £ is not connected.

Figure 1.16 illustrates the notion of a mixed graph. The mixed graph
M depicted in Figure 1.16 is strong; u, (u,v),v,{v,u},u is a cycle in M;
M — x has two strong components: one consists of the vertex y, the other is
M'" = M{{u,v,w}); the edge {v,w} is a bridge in M’, the arc (u,v) and the
edge {u,v} are not bridges in M’; M is bridgeless.

Theorem 1.8.1 below is due to Boesch and Tindell [162]. This result is
an extension of Theorem 1.6.1. We give a short proof obtained by Volkmann
[889]. (Another proof which leads to a linear time algorithm is obtained by
Chung, Garey and Tarjan [218].)

3 Note that a mixed graph M = (V, A, E) may have a directed 2-cycle in which
case no orientation of M is an oriented graph (because some 2-cycles remain).
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Y
Figure 1.16 A mixed graph.

Theorem 1.8.1 Let e be an unoriented edge in a strong mixed graph M.
The edge e can be replaced by an arc (with the same end-vertices) such that
the resulting mized graph M' is strong if and only if € is not a bridge.

Proof: If e is a bridge, then clearly there is no orientation of e that results
in a strong mixed graph. Assume that e is not a bridge. Let M’ = M — e.
If M’ is strong, then any orientation of e leads to a strong mixed graph;
thus, assume that M’ is not strong. Since e is not a bridge, M’ is connected.
Let Li,Lo,...,L; be strong components of M’. Since M is strong, there
is only one initial strong component, say L1, and only one terminal strong
component, say L. Let u (v) be the end-vertex of e belonging to Ly (Lg).
By strong connectivity of Ly, Lo, ..., Li and Proposition 2.1.2 (applied to

the strong component digraph of M’), M’ + (v, u) is strong. O

An orientation of a digraph D is a subdigraph of D obtained from D
by deleting exactly one arc between x and y for every pair x # y of vertices
such that both xy and yx are in D. See Figure 1.17 for an illustration of this
definition.

YTy e

D H H/ H//

Figure 1.17 A digraph D and subdigraphs H, H and H" of D. The digraph H is
an orientation of D but neither of H’, H" is an orientation of D.
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Since we may transform a digraph to a mixed graph by replacing every
2-cycle with an undirected edge, we obtain the following reformulation of
Theorem 1.8.1.

Corollary 1.8.2 A strong digraph D has a strong orientation if and only if
UG(D) has no bridge. O

A hypergraph is an ordered set H = (V,€) such that V is a set (of
vertices of H) and &£ is a family of subsets of V' (called edges of H).
The rank of H is the cardinality of the largest edge of H. For example,
Hy = ({1,2,3,4},{{1,2,3},{2,3},{1,2,4}}) is a hypergraph. The rank of
Hy is three. The number of vertices in H is its order. We say that H is
2-colourable if there is a function f: V—{0,1} such that, for every edge
E € &, there exist a pair of vertices z,y € E such that f(x) # f(y). The
function f is called a 2-colouring of H. It is easy to verify that Hy is 2-
colourable. In particular, f(1) = f(2) =0, f(3) = f(4) =1 is a 2-colouring
of Hy. A hypergraph is uniform if all its edges have the same cardinality.
Thus an undirected graph is a 2-uniform hypergraph.

1.9 Depth-First Search

In this section we will introduce a simple, yet very important, technique in
algorithmic graph theory called depth-first search. While depth-first search
(DFS) has certain similarities with BFS (see Section 3.3.1), DFS and BFS
are quite different procedures, each with its own features.

Let D = (V, A) be a digraph. In DFS, we start from an arbitrary vertex of
D. At every stage of DF'S, we visit some vertex x of D. If  has an unvisited
out-neighbour y, we visit the vertex *. We call the arc 2y a tree arc. If x has
no unvisited out-neighbour, we call  explored and return to the predecessor
pred(x) of x (the vertex from which we have moved to z) . If = does not have
a predecessor, we find an unvisited vertex to ‘restart’ the above procedure.
If such a vertex does not exist, we stop.

In our formal description of DFS, each vertex x of D gets two time-stamps:
tvisit(x) once z is visited and texpl(z) once x is declared explored.

DFS
Input: A digraph D = (V, A).
Output: pred(v), tvisit(v) and texpl(v) for every v € V.

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. Set time := 0.
3. For each vertex v € V do: if tvisit(v) = 0 then perform DFS-PROC(v).

4 If z has more than one unvisited out-neighbour, we choose y as an arbitrary
unvisited out-neighbour.
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DFS-PROC(v)

1. Set time := time + 1, tvisit(v) := time.

2. For each u € NT(v) do: if tvisit(u) = 0 then pred(u) := v and perform
DFS-PROC(u).

3. Set time := time + 1, texpl(v) := time.

Clearly, the main body of the algorithm takes O(n) time. The total time
for executing the different calls of the procedure DFS-PROC is O(m) (as
> wev dT(z) = m by Proposition 1.2.1). As a result, the time complexity of
DFS is O(n +m).

Since each component of UG(F) is a tree, F is a forest. We call F' a DFS
forest; a tree in F' is a DFS tree; the root of a DFS tree is some vertex
v used in Step 3 of the main body of DFS to initiate DFS-PROC. Clearly,
the root r of a DFS tree T' is the only vertex of T whose in-degree is zero.
According to the above description of DFS every vertex in T' can be reached
from r by a path (hence T is an out-branching rooted at r in the subdigraph
induced by V(T')). We say that a vertex x in T is a descendant of another
vertex y in T (denoted by x > y) if y lies on the (r, z)-path in 7. In this case,
y is an ancestor of x. Note that in general there may be many different DF'S
forests for a given digraph D.

It is convenient to classify the non-tree arcs of a digraph D = (V, A) with
respect to a given DFS forest of D as follows. An arc zy is a forward arc
if y is a descendant of z; zy is a backward arc if y is an ancestor of z. All
other non-tree arcs are called cross arcs.

We illustrate the DFS algorithm and the above classification of arcs in
Figure 1.18. The tree arcs are in bold. The non-tree arcs are labelled B,C
or F depending on whether they are backward, cross or forward arcs. Every
vertex u is time-stamped by tvisit(u)/texpl(u) if one or both of them have
been changed from the initial value of zero.

Observe that, for every vertex v € V, we have tvisit(v) < texpl(v). There
is no pair u, v of vertices such that tvisit(u) = tvisit(v) or tvisit(u) = texpl(v)
or texpl(u) = texpl(v) due to the fact that before assigning any time to
tvisit(...) or texpl(...) the value of time is increased. We consider some
additional simple properties of DFS. We denote the interval from time ¢ to
time ¢ > t by [t,t'] and write I C I’ if the interval I is contained in the
interval I'.

Proposition 1.9.1 Let D = (V, A) and let the numbers tvisit(v), texpl(v),
v € V, be calculated using DFS. For every pair of vertices u and v, one of
the assertions below holds:

(1) The intervals [tvisit(u), texpl(u)] and [tvisit(v), texpl(v)] are disjoint;
(2) [tvisit(u), texpl(u)] C [tvisit(v), texpl(v)];
(3) [tvisit(v), texpl(v)] C [tvisit(u), texpl(w)].
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Figure 1.18 Some steps of DFS on a digraph starting from the vertex v.

Proof: Without loss of generality, we may assume that tvisit(u) < tvisit(v).
If texpl(u) < tvisit(v), then the first assertion is valid. So, assume that
texpl(w) > tvisit(v). This means that v was visited when u has been al-
ready visited but u was not explored yet. Thus, there is a directed path from
u to v in the DFS forest, implying that v > u. Since u cannot become ex-
plored when v is still unexplored, texpl(v) < texpl(w). This implies the third
assertion. a

This proposition implies immediately the following.

Corollary 1.9.2 For a pair x,y of distinct vertices of D, we have y > x if
and only if tvisit(z) < tvisit(y) < texpl(y) < texpl(z). O

Proposition 1.9.3 Let F be a DFS forest of a digraph D = (V, A) and let
x, y be vertices in the same DFS tree T of F. Then y = x if and only if,
at the time tvisit(z), the vertex y can be reached from x along a path all of
whose internal vertices are unvisited.

Proof: Assume that y > x. Let z be an internal vertex of the (x,y)-path in
T. Thus, z = x. By Corollary 1.9.2, tvisit(x) < tvisit(z). Hence, z is unvisited
at time tvisit(x).

Suppose that y is reachable from x along a path P of unvisited vertices
at time tvisit(z), but y  x. We may assume that z = y, (the predecessor
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of y on P) is a descendant of x in T, that is, z = z holds. By Corollary 1.9.2,
texpl(z) < texpl(z). Since y is an out-neighbour of z, y is visited before z is
explored. Hence, tvisit(y) < texpl(z). Clearly, tvisit(z) < tvisit(y). Therefore,
tvisit(z) < tvisit(y) < texpl(z). By Proposition 1.9.1, it means that the
interval [tvisit(y), texpl(y)] is contained in the interval [tvisit(z), texpl(z)].
By Corollary 1.9.2, we conclude that y > x; a contradiction. O

1.10 Exercises

1.1.
1.2.
1.3.

1.4.

1.5.

1.6.

1.7.

1.8.
1.9.
1.10.

Let X and Y be finite sets. Show that [ X UY |+ | X NY|=|X|+|Y].
Let X and Y be finite sets. Show that [ X UY]? +|X NY|* > | X2 + |V~

(=) Prove that every tournament on n > 2k + 2 vertices has a vertex of
out-degree at least k + 1.

(=) Transitivity of paths. Let D be a digraph and let z,y, z be vertices
in D, x # z. Prove that if D has an (z,y)-path and a (y, z)-path, then it
contains an (z, z)-path as well.

(—) Decomposing a closed walk into cycles. Prove that every closed
walk can be decomposed into a collection of (not necessarily disjoint) cycles.

Open walk decomposition. Prove that every open walk can be decom-
posed into a path and some cycles (not necessarily disjoint).

(=) Prove that if the in-degree of every vertex in a digraph D is positive,
then D has a cycle.

(=) Show that every digraph D contains a path of length at least §°(D).
Prove Proposition 1.4.3.

Show that a digraph D has a cycle factor if and only if its bipartite repre-
sentation BG(D) contains a perfect matching.

. Prove Proposition 1.4.3.

. Show that every oriented graph D on n vertices and with §°(D) > [(n—1)/4]

is strong. Show that this is best possible in terms of §°(D).

. Let T'= (V, A) be a tournament such that every vertex is on a cycle. Prove

that for every a € A the digraph T — a is unilateral.

. Prove that if a tournament 7" has a cycle, then it has two hamiltonian paths.

. Let G be an undirected graph. Prove that either G or its complement G is

connected.
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1.19.

1.20.

1.21.
1.22.
1.23.
1.24.
1.25.

1.26.

1.27.

1.28.

1.29.
1.30.

1.31.

1.32.

1. Basic Terminology, Notation and Results

. Prove that every strong tournament 7" on at least four vertices has two dis-

tinct vertices x,y such that 7' — x and T' — y are both strong.

. Strong connectivity is equivalent to cyclic connectivity in digraphs.

A digraph is cyclically connected if for every pair x,y of distinct vertices
of D there is a sequence of cycles C,...,Ck such that x is in C4, y is in Cj
and C; and C;11 have at least one common vertex for every i € [k — 1]. Prove
that a digraph D is strong if and only if it is cyclically connected.

. Prove that a connected digraph is strong if and only if every arc is contained

in a cycle. Hint: use the result of Exercise 1.17.

(4+) Preserving cycle subdigraphs. Let D be a strong digraph with the
property that, for every pair x,y of vertices, the deletion of all arcs between
x and y results in a connected digraph. Let 7 = C1 UC2 U ... U C} be a
cycle subdigraph in D such that every cycle C; has length at least three.
Prove that D has a strong spanning oriented subgraph containing JF. Hint:
use Corollary 1.8.2 (Volkmann [889]).

Prove that the number of vertices of odd degree in an undirected graph is
even.

Prove that every edge of a 2-edge-connected graph belongs to a cycle.
(—) Prove that an undirected tree of order n has n — 1 edges.

Prove that every undirected tree has a vertex of degree one.

Prove that every connected undirected graph G has a spanning tree.

Using the results of the last two exercises, prove that every connected undi-
rected graph G has a vertex x such that G — x is connected.

An undirected multigraph G is eulerian if it contains a closed trail 7" such
that E(T) = E(G). Prove without using Theorem 1.7.2 that G is eulerian if
and only if G is connected and d(x) is even for every vertex z of G.

Almost balanced orientation. Prove that every undirected graph G =
(V, E) has an orientation D = (V, A) such that |d}(v) — dp(v)| < 1 for all
v € V. Hint: use Exercises 1.20 and 1.26.

Let G = (V, E) be an eulerian graph. Using Exercise 1.26 and Corollary 1.7.3,
prove that d(W) is even for every proper subset W of V.

Prove that a digraph is strong if and only if it has a Hamilton closed walk.

Prove that every strong digraph H has an extension D = H[Kp,,..., Kn,],
h = |V (H)|, such that D is hamiltonian. Hint: consider a hamiltonian closed
walk in H.

A transitive triple in a digraph D is a set of three vertices x, y, z such that
zy,xz and yz are arcs of D. Prove that if a 2-strong digraph D contains a
transitive triple, then D has two cycles whose length differ by one.

Let D = C_”T.[?nl, ... ,?m,] be an extension of a cycle. Prove that k(D) =
min{n; : i € [r]}.



2. Classes of Digraphs

In this chapter we introduce several classes of digraphs. We study these classes
with respect to their properties, characterization, recognition and decompo-
sition. Further properties of the classes are studied in the following chapters
of this book.

In Section 2.1 we study basic properties of acyclic digraphs. Acyclic di-
graphs form a very important family of digraphs and the reader will often
encounter them in this book. Multipartite digraphs and extended digraphs are
introduced in Section 2.2. These digraphs are studied in many other sections
of our book. In Section 2.3, we introduce and study the transitive closure and
a transitive reduction of a digraph. We use the notion of transitive reduction
already in Section 2.6.

Several characterizations and a recognition algorithm for line digraphs are
given in Section 2.4. We investigate basic properties of de Bruijn and Kautz
digraphs and their generalizations in Section 2.5. These digraphs are extreme
or almost extreme with respect to their diameter and vertex-strong connectiv-
ity. Series-parallel digraphs are introduced and studied in Section 2.6. These
digraphs are of interest due to various applications such as scheduling. In the
study of series-parallel digraphs we use notions and results of Sections 2.3
and 2.4.

An interesting generalization of transitive digraphs, the class of quasi-
transitive digraphs, is considered in Section 2.7. The path-merging property
of digraphs which is quite important for investigation of some classes of di-
graphs including tournaments is introduced and studied in Section 2.8. Two
classes of path-mergeable digraphs, locally in-semicomplete and locally out-
semicomplete digraphs, both generalizing the class of tournaments, are de-
fined and investigated with respect to their basic properties in Section 2.9.
The intersection of these two classes forms the class of locally semicomplete
digraphs, which are studied in Section 2.10. There we give a very useful clas-
sification of locally semicomplete digraphs, which is applied in several proofs
in other chapters. A characterization of a special subclass of locally semicom-
plete digraphs, called round digraphs, is also proved.

In Section 2.11, we study three classes of totally decomposable digraphs
forming important generalizations of quasi-transitive digraphs as well as some
other classes of digraphs. The aim of Section 2.11 is to investigate recognition

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, 31
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of these three classes. Planar digraphs are discussed in Section 2.12. Digraphs
of restricted tree-width are considered in Section 2.13. We show the useful-
ness of this class of graphs in designing polynomial algorithms and proving
fixed-parameter tractability for some problems on digraphs. In Section 2.13,
we also introduce and study directed tree-width, directed path-width and
DAG-width. The last section is devoted to digraphs of three classes: circu-
lant digraphs, arc-locally semicomplete digraphs and intersection digraphs.

2.1 Acyclic Digraphs

A digraph D is acyclic if it has no cycle. Acyclic digraphs form a well-
studied family of digraphs of great interest in graph theory, algorithms and
applications (see, e.g., Sections 2.3, 2.6, 3.3.2, 7.3, 10.4, 10.7, 17.2, 17.11,
17.15).

Recall that a vertex z in a digraph is sink (source) if d*(z) =0 (d™ (z) =
0).

Proposition 2.1.1 Every acyclic digraph has a source and a sink.

Proof: Let D be a digraph in which all vertices have positive out-degrees.
We show that D has a cycle. Choose a vertex vy in D. Since d* (v1) > 0, there
is a vertex vy such that vi—wvy. As dt (v2) > 0, v dominates some vertex vs.
Proceeding in this manner, we obtain walks of the form vyvs ... vg. As V(D)
is finite, there exists the least & > 2 such that vy = v; for some 1 < i < k.
Clearly, v;v;41 ... v is a cycle.

Thus, an acyclic digraph D has a sink. Since the converse H of D is also
acyclic, H has a sink v. Clearly, v has a source in D. a

Proposition 2.1.1 allows one to check whether a digraph D is acyclic: if D
has a vertex of out-degree zero, then delete this vertex from D and consider
the resulting digraph; otherwise, D contains a cycle. In the end of this section,
we give another algorithm for verifying whether a digraph is acyclic.

Proposition 2.1.2 Let D be an acyclic digraph with precisely one source x
and one sink y in D. Then for every vertex v € V(D) there is an (x,v)-path
and a (v,y)-path in D.

Proof: A longest path starting at v (terminating at v) is certainly a (v, y)-
path (an (z,v)-path). O

Let D be a digraph and let x1,xs,...,x, be an ordering of its vertices.
We call this ordering an acyclic ordering' if, for every arc zix; in D, we

! Notice that in a majority of the literature an acyclic ordering is called a topo-
logical sorting. We feel that the name acyclic ordering is more appropriate, since
no topology is involved.
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have i < j. Clearly, an acyclic ordering of D induces an acyclic ordering of
every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph
with a cycle has an acyclic ordering. On the other hand, the following holds:

Proposition 2.1.3 Every acyclic digraph has an acyclic ordering of its ver-
tices.

Proof: We give a constructive proof by describing a procedure that generates
an acyclic ordering of the vertices in an acyclic digraph D. At the first step,
we choose a vertex v with in-degree zero. (Such a vertex exists by Proposition
2.1.1.) Set x; = v and delete x1 from D. At the ith step, we find a vertex u
of in-degree zero in the remaining acyclic digraph, set x; = u and delete z;
from the remaining acyclic digraph. The procedure has |V (D)] steps.
Suppose that z;—x; in D, but ¢ > j. As x; was chosen before z;, it
means that z; was not of in-degree zero at the jth step of the procedure; a
contradiction. O

Knuth [602] was the first to give a linear time algorithm for finding an
acyclic ordering. Now we will show how to find an acyclic ordering in linear
time using DF'S described in the previous chapter. Below we assume that the
input to the DFS algorithm is an acyclic digraph D = (V, A). In the formal
description of DF'S let us add the following: i := n + 1 in line 2 of the main
body of DFS and i := i —1, v; := v in the last line of DFS-PROC. We obtain
the following algorithm which we denote by DFSA:

DFSA(D)
Input: A digraph D = (V, A).
Output: An acyclic ordering vy, ...,v, of D.

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. Set time :=0,7:=n+ 1.
3. For each vertex v € V' do: if tvisit(v) = 0 then perform DFSA-PROC(v).

DFSA-PROC(v)

1. Set time := time + 1, tvisit(v) := time.
2. For each u € N*(v) do: if tvisit(u) = 0 then pred(u) := v and perform
DFSA-PROC(u).

3. Set time := time + 1, texpl(v) := time, i :=1 — 1, v; := v.

Theorem 2.1.4 The algorithm DFSA correctly determines an acyclic order-
ing of any acyclic digraph in time O(n +m).

Proof: Since the algorithm is clearly linear (as DFS is linear), it suffices to
show that the ordering vy, vo, ..., v, is acyclic. Observe that according to our
algorithm

texpl(v;) > texpl(v;) if and only if ¢ < j. (2.1)



34 2. Classes of Digraphs

Assume that D has an arc v,v, such that k& > s. Hence, texpl(vs) > texpl(vg).
The arc vivs is not a cross arc, because if it were, then by Proposition 1.9.1
and Corollary 1.9.2, the intervals for v and vs would not intersect, i.e., vg
would be visited and explored before v, would be visited; this and (2.1) make
the existence of viv, impossible. The arc v v, is not a forward arc, because if
it were, texpl(v,) would be smaller than texpl(vg). Therefore, vipvs must be
a backward arc, i.e., vg > vs. Thus, there is a (vs, vg)-path in D. This path
and the arc vivs form a cycle, a contradiction. a

Figure 2.1 illustrates the result of applying DFSA to an acyclic digraph.
The resulting acyclic ordering is z,w,u, y, ,v.

TN

T Cya > *C /120 23D

v C5/6 O 89 > 201D w

Figure 2.1 The result of applying DFSA to an acyclic digraph.

In Section 5.2 we apply DFSA to an arbitrary not necessarily acyclic
digraph and see that the ordering vy, vs, ..., v, obtained by DFSA is very
useful to determine the strong components of a digraph. DFSA allows us to
check, in time O(n + m), whether a digraph D is acyclic: we run DFSA and
then verify whether the obtained ordering of the vertices is acyclic. Thus, we
have the following;:

Proposition 2.1.5 One can check whether a digraph is acyclic in time O(n+
m). O

2.2 Multipartite Digraphs and Extended Digraphs

A p-partite digraph is a biorientation of a p-partite graph; see Figure
2.2(b). Bipartite (i.e., 2-partite) digraphs are of special interest. It is well-
known (and was proved already by Konig [618]) that an undirected graph is
bipartite if and only if it has no cycle of odd length. The obvious extension
of this statement to cycles in digraphs is not valid (the non-bipartite digraph
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with vertex set {z,y, 2z} and arc set {xy,xz,yz} is such an example that can
easily be generalized). However, the obvious extension does hold for strong
bipartite digraphs. Theorem 2.2.1 can be traced back to the book [503] by
Harary, Norman and Cartwright.

Theorem 2.2.1 A strongly connected digraph is bipartite if and only if it
has no cycle of odd length.

Proof: If D is bipartite, then it is easy to see that D cannot have an odd
cycle. To prove sufficiency suppose that D has no odd cycle. Fix an arbitrary
vertex x in D. We claim that for every vertex y € V(D) —x and every choice
of an (z,y)-path P and a (y,z)-path @, the length of P and @ are equal
modulo 2.

Suppose this is not the case for some choice of y, P and ). Then choose v,
P and @ such that the parity of the lengths of P and @ differ and |V (P)| +
|[V(Q)| is minimum among all such pairs of (x,y)- and (y,x)-paths whose
lengths differ in parity. If V(P) N V(Q) = {z,y}, then PQ is an odd cycle,
contradicting the assumption. Hence there is a vertex z ¢ {z,y} in V(P) N
V(Q). Let z be chosen as the first such vertex that we meet when we traverse
Q@ from y towards z. Then P[z,y]Q[yg ,z] is a cycle and it is even by our
assumption. But now it is easy to see that the parity of the paths P[z, 2]
and Qlz,z] are different and we get a contradiction to the choice of y, P
and @. This proves the claim and, in particular, it follows that for every
y € V(D) — x, the lengths of all paths from x to y have the same parity.

Now let U = {y : the length of every (z,y)-path is even} and U’ = {y :
the length of every (x,y)-path is odd}. This is a bipartition of V(D) and
neither U nor U’ contains two vertices which are joined by an arc, since that
would imply that some vertex had paths of two different parities from z. O

An extension of this theorem to digraphs whose cycles are all of length 0
modulo k > 2 is given in Theorem 17.8.1.

Recall that tournaments are orientations of complete graphs. Recall that
a semicomplete digraph is a biorientation of a complete graph (see Figure
2.2(a)) and a tournament is an orientation of a complete digraph. The
complete biorientation of a complete graph is a complete digraph (denoted

by [H(n) The notion of semicomplete digraphs and their special subclass,
tournaments, can be extended in various ways. A biorientation of a complete
p-partite (multipartite) graph is a semicomplete p-partite (multipartite)
digraph; see Figure 2.2(c). A multipartite tournament is an orientation
of a complete multipartite graph. A semicomplete 2-partite digraph is also
called a semicomplete bipartite digraph. A bipartite tournament is a
semicomplete bipartite digraph with no 2-cycles.

One can use the operation of extension introduced in Section 1.3 to de-
fine ‘extensions’ of the above classes of digraphs. We will speak of extended
semicomplete digraphs (i.e., extensions of semicomplete digraphs), ex-
tended locally in-semicomplete digraphs, extended locally semi-
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&

(a) K4 and a semicomplete digraph of order four.

VY

(b) A 3-partite graph G and a biorientation of G.

F <P

(c) The complete 3-partite graph Ks 1 2 and
a semicomplete 3-partite digraph D.

Figure 2.2 Multipartite digraphs.

complete digraphs, etc. Clearly, every extended semicomplete digraph is
a semicomplete multipartite digraph, which is not necessarily semicomplete,
and every extended semicomplete multipartite digraph is still a semicom-
plete multipartite digraph. Therefore, the class of semicomplete multipartite
digraphs is extension-closed, and the class of semicomplete digraphs is not.

2.3 Transitive Digraphs, Transitive Closures and
Reductions

A digraph D is transitive if, for every pair zy and yz of arcs in D with
x # z, the arc xz is also in D. Transitive digraphs form the underlying
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graph-theoretical model in a number of applications. For example, transitive
oriented graphs correspond very naturally to partial orders (see Section 13.5
for some terminology on partial orders, the correspondence between transitive
oriented graphs and partial orders and some basic results). The aim of this
section is to give a brief overview of some properties of transitive digraphs as
well as transitive closures and reductions of digraphs.

It is easy to show that a tournament is transitive if and only it is acyclic
(see Exercise 2.3) and a strong digraph D is transitive if and only if D is com-
plete?. We have the following simple characterization of transitive digraphs;
its proof is left as Exercise 2.4.

Proposition 2.3.1 Let D be a digraph with an acyclic ordering D1, D, .. .,
D, of its strong components. The digraph D is transitive if and only if each of
D; is complete, the digraph H obtained from D by contraction of Dq,...,D,
followed by deletion of multiple arcs is a transitive oriented graph, and D =
H[D1,Ds,...,D,|, where p= |V (H)|. O

The transitive closure TC(D) of a digraph D is a digraph with
V(TC (D)) = V(D) and, for distinct vertices u,v, the arc uv € A(TC(D))
if and only if D has a (u,v)-path. Clearly, if D is strong, then TC(D) is
a complete digraph. The uniqueness of the transitive closure of an arbitrary
digraph is obvious. To compute the transitive closure of a digraph one can ob-
viously apply the Floyd-Warshall algorithm in Chapter 3. To obtain a faster
algorithm for the problem one can use the fact discovered by a number of re-
searchers (see, e.g., the paper [318] by Fisher and Meyer, or [370] by Furman)
that the transitive closure problem and the matrix multiplication problem
are closely related: there exists an O(n®)-algorithm, with a > 2, to compute
the transitive closure of a digraph of order n if and only if the product of
two boolean n x n matrices can be computed in O(n®) time. Coppersmith
and Winograd [230] showed that there exists an O(n?37%)-algorithm for the
matrix multiplication. Goralcikova and Koubek [423] designed an O(nmcq)-
algorithm to find the transitive closure of an acyclic digraph D with n vertices
and myq arcs in the transitive reduction of D (the notion of transitive re-
duction is introduced below). This algorithm was also studied and improved
by Mehlhorn [691] and Simon [820].

An arc wv in a digraph D is redundant if there is a (u,v)-path in D
which does not contain the arc uv. A transitive reduction of a digraph
D is a spanning subdigraph H of D with no redundant arc such that the
transitive closures of D and H coincide. Not every digraph D has a unique
transitive reduction. Indeed, if D has a pair of hamiltonian cycles, then each
of these cycles is a transitive reduction of D. Below we show that a transitive
reduction of an acyclic digraph is unique, i.e., we may speak of the transitive

2 By the definition of a transitive digraph, a 2-cycle zyz does not force a loop at
x and y.
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reduction of an acyclic digraph. The intersection of digraphs D;,..., Dy,
with the same vertex set V is the digraph H with vertex set V' and arc set
A(D1) N ...N A(Dyg). Similarly one can define the union of digraphs with
the same vertex sets (see Section 1.3). Let S(D) be the set of all spanning
subdigraphs L of D for which TC(L) = TC(D).

Theorem 2.3.2 [10] For an acyclic digraph D, there exists a unique digraph
D’ with the property that TC(D') = TC(D) and every proper subdigraph H of
D’ satisfies TC(H) # TC(D'). The digraph D’ is the intersection of digraphs
in S(D).

The proof of this theorem, which is due to Aho, Garey and Ullman, follows
from Lemmas 2.3.3 and 2.3.4.

Lemma 2.3.3 Let D and H be a pair of acyclic digraphs on the same vertex
set such that TC(D) = TC(H) and A(D) — A(H) # 0. Then, for every
e € A(D) — A(H), we have TC(D —e) =TC(D).

Proof: Let e = zy € A(D) — A(H). Since e € A(H), H must have an (z,y)-
path passing through some other vertex, say z. Hence, D has an (z, z)-path
P,, and a (z,y)-path P,,. If P,, contains e, then D has a (y, z)-path. The
existence of this path contradicts the existence of P,, and the hypothesis that
D is acyclic. Similarly, one can show that P,, does not contain e. Therefore,
D — e has an (,y)-path. Hence, TC(D — e) = TC(D). O

Lemma 2.3.4 Let D be an acyclic digraph. Then the set S(D) is closed
under union and intersection.

Proof: Let G, H be a pair of digraphs in S(D). Since TC(G) = TC(H) =
TC(D), GU H is a subdigraph of TC(D). The transitivity of TC(D) now
implies that TC(G U H) is a subdigraph of TC(D). Since G is a subdigraph
of GU H, we have TC(D) (= TC(G)) is a subdigraph of TC(G U H). Thus,
we conclude that TC(GU H) = TC(D) and GU H € S(D).

Now let eq,..., e, be the arcs of G — A(G N H). By repeated application
of Lemma 2.3.3, we obtain TC(G —e; —ex — ... —ep) = TC(G). This means
that TC(G N H) = TC(G) = TC(D), hence GN H € S(D). 0

Aho, Garey and Ullman [10] proved that there exists an O(n%)-algorithm,
with a > 2, to compute the transitive closure of an arbitrary digraph D of
order n if and only if a transitive reduction of D can be constructed in time
O(n®). Therefore, we have

Proposition 2.3.5 For an arbitrary digraph D, the transitive closure and a
transitive reduction can be computed in time O(n%375). O

Simon [821] described an O(n+m)-algorithm to find a transitive reduction
of a strong digraph D. The algorithm uses DFS and two digraph transforma-
tions preserving T'C'(D). This means that to have a linear time algorithm for



2.4 Line Digraphs 39

finding transitive reductions of digraphs from a certain class D, it suffices to
design a linear time algorithm for the transitive reduction of strong compo-
nent digraphs of digraphs in D. (Recall that the strong component digraph
SC(D) of a digraph D is obtained by contracting every strong component
of D to a vertex followed by deletion of parallel arcs.) Such algorithms are
considered, e.g., in the paper [485] by Habib, Morvan and Rampon.

While Simon’s linear time algorithm in [821] finds a minimal subdigraph
D’ of a strong digraph D such that TC(D’) = TC(D), no polynomial algo-
rithm is known to find a subdigraph D" of a strong digraph D with minimum
number of arcs such that TC(D") = TC(D). This is not surprising due to the
fact that the corresponding optimization problem is AP-hard. Indeed, the
problem to verify whether a strong digraph D of order n has a subdigraph
D" of size n such that TC(D") = TC(D) is equivalent to the hamiltonian
cycle problem, which is N'P-complete by Theorem 6.1.1.

A subdigraph D” of a digraph D with minimum number of arcs such
that TC(D") = TC(D) is sometimes called a minimum equivalent sub-
digraph of D. By the above discussion, we see that a minimum equivalent
subdigraph of an acyclic digraph is unique and can be found in polynomial
time. This means that the main difficulty of finding a minimum equivalent
subdigraph of an arbitrary digraph D lies in finding such subdigraphs for
the strong components of D. This issue is addressed in Section 12.2 for some
classes of digraphs studied in this chapter. For the classes in Section 12.2,
the minimum equivalent subdigraph problem is polynomial time solvable.

2.4 Line Digraphs

For a directed pseudograph D, the line digraph @ = L(D) has vertex set
V(Q) = A(D) and arc set

A(Q) ={ab:a,b e V(Q), the head of a coincides with the tail of b}.

A directed pseudograph H is a line digraph if there is a directed pseudo-
graph D such that H = L(D). See Figure 2.3. Clearly, line digraphs do not
have parallel arcs; moreover, the line digraph L(D) has a loop at a vertex
a € A(D) if and only if a is a loop in D.

The following theorem provides a number of equivalent characterizations
of line digraphs. Of these characterizations, (ii) is due to Harary and Nor-
man [502], (iii) to Heuchenne [522] and (iv) and (v) to Richards [777]; condi-
tions (ii) and (iii) have each been rediscovered several times, see the survey
[516] by Hemminger and Beineke. The proof presented here is adapted from
[516]. For an n X n-matrix M = [m;x], a row i is orthogonal to a row j if
ZZ:1 m;rm;jr = 0. One can give a similar definition of orthogonal columns.

Theorem 2.4.1 Let D be a directed pseudograph with vertez set {1,2,...,n}
and with no parallel arcs and let M = [m;;] be its adjacency matriz (i.e., the
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25 54

H Q
Figure 2.3 A digraph H and its line digraph Q = L(H).

n x n-matriz such that m;; = 1, if ij € A(D), and m;; = 0, otherwise). Then
the following assertions are equivalent:

(i) D is a line digraph;
(i) there exist two partitions {A;}ier and {B;}icr of V(D) such that

A(D) = UjerA; x By;

(iti) if vw,vw and ux are arcs of D, then so is vx;
(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We show the following implications and equivalences: (i) < (ii), (ii)
= (iil), (iii) = (iv), (iv) & (v), (iv) = (ii).

(i) = (ii). Let D = L(H). For each v; € V(H), let A; and B; be the sets
of in-coming and out-going arcs at v;, respectively. Then the arc set of the
subdigraph of D induced by A; U B; equals A; x B;. If ab € A(D), then there
is an ¢ such that @ = vjv; and b = v;v,. Hence, ab € A; x B;. The result
follows.

(ii) = (i). Let @ be the directed pseudograph with ordered pairs (A;, B;)
as vertices, and with |A; N B;| arcs from (4, B;) to (A4;, B;) for each i and
j (including i = j). Let o;; be a bijection from A; N B; to this set of arcs
(from (A;, B;) to (A4;,B;)) of Q. Then the function ¢ defined on V(D) by
taking o to be 0;; on A;NB; is a well-defined function of V(D) into V(L(Q)),
since {A; N B;}; jer is a partition of V(D). Moreover, o is a bijection since
every o;; is a bijection. Furthermore, it is not difficult to see that o is an
isomorphism from D to L(Q) (this is left as Exercise 2.6).

(if) = (iil). If vw, uw and ux are arcs of D, then there exist ¢, j such that
{u,v} C A; and {w,z} C B;. Hence, (v,z) € A; x Bj and vx € D.

(iii) = (iv). Assume that (iv) does not hold. This means that some rows,
say 7 and j, are neither identical nor orthogonal. Then there exist k, h such
that m;r, = m;r = 1 and m;, = 1, m;p = 0 (or vice versa). Hence, ik, jk,ih
are in A(D) but jh is not. This contradicts (iii).
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(iv) & (v). Both (iv) and (v) are equivalent to the statement:

for all 7,7, h, k, if my, = my, = mj, = 1, then my, = 1.

(iv) = (ii). For each ¢ and j with m;; =1, let A;; = {h: my; = 1} and
B;; = {k: m;; = 1}. Then, by (iv), A;; is the set of vertices in D whose
row vectors in M are identical to the ith row vector, whereas B;; is the set
of vertices in D whose column vectors in M are identical to the jth column
vector (we use the previously proved fact that (iv) and (v) are equivalent).
Thus, A;; X B;; € A(D), and moreover A(D) = U{A;; x B;; : m;; =1}. By
the orthogonality condition, A;; and Ay are either equal or disjoint, as are
B;; and Bpy. For zero row vector ¢ in M, let A;; be the set of vertices whose
row vector in M is the zero vector, and let B;; = (). Doing the same with the
zero column vectors of M completes the partition as in (ii). O

The characterizations (ii)-(v) all imply polynomial algorithms to verify
whether a given directed pseudograph is a line digraph. This fact is obvious
regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to
construct a very effective polynomial algorithm. We actually design such an
algorithm for acyclic digraphs (as a pair of procedures illustrated by an exam-
ple) just after Proposition 2.4.3. The criterion (iii) also provides the following
characterization of line digraphs in terms of forbidden induced subdigraphs.
Its proof is left as Exercise 2.7.

Corollary 2.4.2 A directed pseudograph D is a line digraph if and only if D
does not contain, as an induced subdigraph, any directed pseudograph that can
be obtained from one of the directed pseudographs in Figure 2.4 (dotted arcs
are missing) by adding zero or more arcs (other than the dotted ones). O

Observe that the digraph of order 4 in Figure 2.4 corresponds to the
case of distinct vertices in Part (iii) of Theorem 2.4.1, and the two directed
pseudographs of order 2 correspond to the cases x = u # v = w and u = w #
v = x, respectively.

Clearly, Theorem 2.4.1 implies a set of characterizations of the line di-
graphs of digraphs (without parallel arcs and loops). This can be found in
[516]. Several characterizations of special classes of line digraphs and iterated
line digraphs can be found in surveys by Hemminger and Beineke [516] and
Prisner [755].

Many applications of line digraphs deal with the line digraphs of special
families of digraphs, for example regular digraphs, in general, and complete
digraphs, in particular, see, e.g., the papers [279] by Du, Lyuu and Hsu
and [316] by Fiol, Yebra and Alegre. In Section 2.6, we need the following
characterization, due to Harary and Norman, of the line digraphs of acyclic
directed multigraphs. It is a specialization of Parts (i) and (ii) of Theorem
2.4.1. The proof is left as (an easy) Exercise 2.8.
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Figure 2.4 Forbidden directed pseudographs.

Proposition 2.4.3 [502] A digraph D is the line digraph of an acyclic di-
rected multigraph if and only if D is acyclic and there exist two partitions
{A;}ier and {B;}icr of V(D) such that A(D) = UierA; X B;. O

We will now show how Proposition 2.4.3 can be used to recognize very
effectively whether a given acyclic digraph R is the line digraph of another
acyclic directed multigraph H, i.e., R = L(H). The two procedures, which
we construct and illustrate by Figure 2.7, can actually be used to recognize
and represent (that is, to construct H such that R = L(H)) arbitrary line
digraphs (see Theorem 2.4.1(i) and (ii)).

We first use Proposition 2.4.3 to check whether H above exists. The follow-
ing procedure Check-H can be applied. Initially, all arcs and vertices of R are
not marked. At every iteration, we choose an arc uv in R, which is not marked
yet, and mark all vertices in N7 (u) by ‘B’, all vertices in N~ (v) by ‘A’ and all
arcs in (N~ (v), N*(u))g by ‘C’. If (N~ (v), NT(u))gr # N~ (v) x N*(u) or if
we mark a certain vertex or arc twice (starting from another arc v'v’) by the
same symbol, then this procedure stops as there is no H such that L(H) = R.
(We call these conditions obstructions.) If this procedure is performed to
the end (i.e., every vertex and arc received a mark), then such H exists. It
is not difficult to see, using Proposition 2.4.3, that Check-H correctly verifies
whether H exists or not.

To illustrate Check-H, consider the digraph Ry of Figure 2.7(a). Suppose
that we choose the arc ab first. Then ab is marked, at the first iteration,
together with the arcs af and ag. The vertex a receives ‘A’, the vertices
b, f,g get ‘B’. Suppose that fi is chosen at the second iteration. Then the
arcs fh, fi,gh,gi are all marked at this iteration. The vertices f, g receive
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‘A’ the vertices h,i ‘B’. Suppose that bc is chosen at the third iteration.
We see that this arc is the only arc marked at this iteration. The vertex b
receives ‘A’, the vertex ¢ ‘B’. Finally, say, ce is chosen. Then both cd and ce
are marked. The vertex c gets ‘A’, the vertices d, e receive ‘B’. Thus, all arcs
have been marked and no obstruction has taken place. This means that there
exists a digraph Hy such that Hy = L(Rp).

Suppose now that H does exist. The following procedure Build-H con-
structs such a directed multigraph H. By Proposition 2.4.3, if H exists,
then all arcs of R can be partitioned into arc sets of bipartite tournaments
with partite sets A; and B; and arc sets A; x B;. Let us denote these di-
graphs by Ti,...,T. (They can be computed by Check-H if we mark every
(N~ (v), N*(u))g not only by ‘C’ but also by a second mark ‘i’ starting from
1 and increasing by 1 at each iteration of the procedure.) We construct H
as follows. The vertex set of H is {tg,t1,...,tk,tx+1}. The arcs of H are
obtained by the following procedure. For each vertex v of R, we append one
arc a, to H according to the rules below:

(a) If dr(v) =0, then a, := (to, tgt1);

(b) If df(v) > 0,dg(v) = 0, then a, := (to,t;), where i is the index of T}
such that v € A;;

(c) If df(v) = 0,dp(v) > 0, then a, := (t;,tg+1), where j is the index of T}
such that v € By;

(d) If df(v) > 0,dx(v) > 0, then a, := (t;,;), where i and j are the indices
of T; and T} such that v € A; N B;.

It is straightforward to verify that R = L(H). Note that Build-H always
constructs H with only one vertex of in-degree zero and only one vertex of
out-degree zero.

To illustrate Build-H, consider Ry of Figure 2.7 once again. Earlier we
showed that there exists Hy such that Rg = L(Hp). Now we will con-
struct Hy. The previous procedure applied to verify the existence of Hy
has implicitly constructed the digraphs Ty = ({a,b, f, g}, {ab,af,ag}), To =
({f7 9, h, i}v {fhv fi, gh7 gi})7 T = ({ba C}7 {bc})7 Ty = ({C7 d, 6}7 {Cd7 Ce})'
Thus, Hy has vertices tg, . ..,t5. Considering the vertices of Ry in the lex-
icographic order, we obtain the following arcs of Hy (in this order):

tot1,t1t3, t3ta, tats, tats, t1ta, t1ta, tals, tats.

The directed multigraph Hj is depicted in Figure 2.7(c). It is easy to check
that R() = L(H())

The iterated line digraphs are defined recursively: L'(D) = L(D),
LY (D) = L(L*(D)), k > 1. It is not difficult to prove by induction (Ex-
ercise 2.10) that L*(D) is isomorphic to the digraph H, whose vertex set
consists of walks of D of length k¥ and a vertex vgvy ...vg (which is a walk
in D) dominates the vertex vyvs ... v vE11 for every vy € V(D) such that
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vpVp+1 € A(D). New characterizations of line digraphs and iterated line di-
graphs are given by Liu and West [648].

The following proposition can be proved by induction on k > 1 (Exercise
2.12).

Proposition 2.4.4 Let D be a strong d-regular digraph (d > 1) of order n
and diameter t. Then L¥(D) is of order d*n and diameter t + k. O

Bermond, Munos and Marchetti-Spaccamela [150] proposed broadcasting
algorithms for line digraphs in the telephone mode. The protocols of [150] use
a broadcasting protocol for a digraph D to obtain a broadcasting protocol
for iterated line digraphs of D. As a consequence, improved bounds for the
broadcasting time in de Bruijn and Kautz digraphs were obtained.

2.5 The de Bruijn and Kautz Digraphs

The following problem is of importance in network design. Given positive in-
tegers n and d, construct a digraph D of order n and maximum out-degree at
most d such that diam(D) is as small as possible and the vertex-strong con-
nectivity x(D) is as large as possible. So we have a 2-objective optimization
problem. For such a problem, in general, no solution can maximize/minimize
both objective functions. However, for this specific problem, there are solu-
tions, which (almost) maximize/minimize both objective functions. The aim
of this section is to introduce these solutions, the de Bruijn and Kautz di-
graphs, as well as some of their generalizations. For more information on the
above classes of digraphs, the reader may consult the survey [276] by Du, Cao
and Hsu. For applications of these digraphs in design of parallel architectures
and large packet radio networks, see e.g. the papers [149] by Bermond and
Hell, [151] by Bermond and Peyrat and [792] by Samatan and Pradhan.

Let V be the set of vectors with ¢ coordinates, ¢ > 2, each taken from
{0,1,...d—1}, d > 2. The de Bruijn digraph Dp(d,t) is the directed pseu-
dograph with vertex set V' such that (x1, s, ..., x:) dominates (y1,y2, ..., yt)
if and only if xo = 41,23 = ya,..., T = yr—1. See Figure 2.5(a). Let Dp(d, 1)
be the complete digraph of order d with loop at every vertex.

These directed pseudographs are named after de Bruijn who was the
first to consider them in [252]. Clearly, Dp(d,t) has d* vertices and the
out-pseudodegree and in-pseudodegree of every vertex of Dg(d,t) equal d.
This directed pseudograph has no parallel arcs and contains a loop at every
vertex for which all coordinates are the same. It is natural to call Dg(d,t)
d-pseudoregular (recall that in the definition of semi-degrees we do not
count loops).

Since Dg(d,t) has loops at some vertices, the vertex-strong connectivity
of Dp(d,t) is at most d — 1 (indeed, the loops can be deleted without the
vertex-strong connectivity being changed). Imase, Soneoka and Okada [550]
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Figure 2.5 (a) The de Bruijn digraph Dg(2,2); (b) the Kautz digraph Dg(2,2).

proved that Dg(d,t) is (d — 1)-strong, and moreover, for every pair = # y
of vertices there exist d — 1 internally disjoint (z,y)-paths of length at most
t + 1. To prove this result we will use the following two lemmas. The proof
of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 2.13.

Lemma 2.5.1 [316] Fort > 2, Dgp(d,t) is the line digraph of Dp(d,t — 1).
O

Lemma 2.5.2 Let x,y be distinct vertices of Dg(d,t) such that x—y. Then,
there are d—2 internally disjoint (x,y)-paths different from xy, each of length
at most t 4 1.

Proof: Let # = (x1,22,...,2¢) and y = (x2,...,2 ). Consider the
walk Wy, given by Wy, = (z1, 22, ..., 2¢), (T2, ..., x4, k), (€3, .., 2, K, 22), . . .,
(k,xa,...,xt), (x2,..., 2, yt), where k # x1, y;. For each k, every internal ver-
tex of Wy has coordinates forming the same multiset My = {xa,..., 2, k}.
Since for different k, the multisets M), are different, the walks Wy are inter-
nally disjoint. Each of these walks is of length ¢t + 1. Therefore, by Propo-
sition 1.4.1, Dp(d,t) contains d — 2 internally disjoint (z,y)-paths P, with
A(P;) C A(Wy). Since k # x1,y:, we may form the paths Py, such that none
of them coincides with xy. O

Theorem 2.5.3 [550] For every pair x,y of distinct vertices of Dg(d,t),
there exist d — 1 internally disjoint (x,y)-paths, one of length at most t and
the others of length at most t + 1.

Proof: By induction on ¢ > 1. Clearly, the claim holds for ¢ = 1 since

Dpg(d, 1) contains, as spanning subdigraph, [H(d. For ¢t > 2, by Lemma 2.5.1,
we have that
Dg(d,t) = L(Dg(d,t — 1)). (2.2)
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Let x,y be a pair of distinct vertices in Dg(d,t) and let e,, e, be the arcs
of Dp(d,t— 1) corresponding to vertices z,y due to (2.2). Let u be the head
of e, and let v be the tail of e,.

If w # v, by the induction hypothesis, Dp(d,t — 1) has d — 1 internally
disjoint (u,v)-paths, one of length at most ¢t — 1 and the others of length at
most ¢t. The arcs of these paths together with arcs e, and e, correspond to
d — 1 internally disjoint (z,y)-paths in Dg(d,t), one of length at most ¢ and
the others of length at most ¢ + 1.

If u = v, we have —y in Dg(d,t — 1). It suffices to apply Lemma 2.5.2
to see that there are d — 1 internally disjoint (x,y)-paths in Dg(d,t), one of
length one and the others of length at most ¢ + 1. O

By this theorem and Corollary 5.4.2, we conclude that x(Dpg(d,t)) =
d— 1. From Theorem 2.5.3 and Proposition 3.4.3, we obtain immediately the
following simple, yet important property.

Proposition 2.5.4 The de Bruijn digraph Dp(d,t) achieves the minimum
value t of diameter for directed pseudographs of order dt and mazimum out-
degree at most d. ad

For t > 2, the Kautz digraph Dk (d,t) is obtained from Dg(d + 1,t)
by deletion of all vertices of the form (z1,zs,...,2:) such that x; = x;11

for some i. See Figure 2.5(b). Define Dg(d, 1) 1:f?d+1- Clearly, Dg(d,t)
has no loops and is a d-regular digraph. Since we have d 4+ 1 choices for the
first coordinate of a vertex in Dg(d,t) and d choices for each of the other
coordinates, the order of Dy (d,t) is (d+1)d'~ = d* + d'~L. It is easy to see
that Proposition 2.5.4 holds for the Kautz digraphs as well.

The following lemmas are analogous to Lemmas 2.5.1 and 2.5.2. Their
proofs are left as Exercises 2.14 and 2.15.

Lemma 2.5.5 Fort > 2, the Kautz digraph Dk (d,t) is the line digraph of
Dg(d,t —1). O

Lemma 2.5.6 Let xy be an arc in Di(d,t). There are d — 1 internally dis-
joint (x,y)-paths different from xy, one of length at most t+2 and the others
of length at most t + 1. O

The following result due to Du, Cao and Hsu [276] shows that the Kautz
digraphs are better, in a sense, than de Bruijn digraphs from the local vertex-
strong connectivity point of view. This theorem can be proved similarly to
Theorem 2.5.3 and is left as Exercise 2.16.

Theorem 2.5.7 [276] Let x,y be distinct vertices of Di(d,t). Then there
are d internally disjoint (x,y)-paths in D (d,t), one of length at most t, one
of length at most t + 2 and the others of length at most t + 1. O
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This theorem implies that D (d,t) is d-strong.

The de Bruijn digraphs were generalized independently by Imase and
Itoh [547] and Reddy, Pradhan and Kuhl [767] in the following way. We

can transform every vector (z1,%s,...,x;) with coordinates from Z; =
{0,1,...,d — 1} into an integer from Zz = {0,1,...,d" — 1} using the poly-
nomial P(x1,22,...,7) = x1d" "t + x2d' =2 + ... + 4. It is easy to see that

this polynomial provides a bijection from Z! to Zz. Moreover, for i, j € Zgt,
i—j in Dp(d,t) if and only if j = di + k (mod d*) for some k € Z,.

Let d,n be two natural numbers such that d < n. The generalized de
Bruijn digraph D¢g(d,n) is a directed pseudograph with vertex set Z,, and
arc set

{({,di +k (modn)): i,k € Zy}.

For example, V(D¢ (2,5)) = {0,1,2,3,4} and A(D¢(2,5)) = {(0,0),(0,1),
(1,2), (1,3), (2,4), (2,0, (3,1), (3,2), (4,3), (4,4)}.

Clearly, Dg( ,n) is d-pseudoregular. It is not difficult to show that
diam(Dg(d,n)) < [log,;n]. By Proposition 3.4.3, a digraph of maximum out-
degree at most d > 2 and order n has a diameter at least |log;n(d—1)+1].
Thus, the generalized de Bruijn digraphs are of optimal or almost optimal
diameter. It was proved, by Imase, Soneoka and Okada [549], that D¢(d, n)
is (d — 1)-strong. It follows from these results that the generalized de Bruijn
digraphs have almost minimum diameter and almost maximum vertex-strong
connectivity.

The Kautz digraphs were generalized by Imase and Itoh [548]. Let n,d
be two natural numbers such that d < n. The Imase-Itoh digraph D;(d,n)
is the digraph with vertex set {0,1,...,n — 1} such that i—j if and only if
j=—d(i+1)+k (mod n) for some k € {0,1,...,d — 1}. It has been shown
(for a brief account, see the paper [276]) by Du, Cao and Hsu, that Dj(d, n)
are of (almost) optimal diameter and vertex-strong connectivity.

Du, Hsu and Hwang [278] suggested a concept of digraphs extending both
the generalized de Bruijn digraphs and the Imase-Ito digraphs. Let d, n be two
natural numbers such that d < n. Given ¢ € [n—1]and r € {0,1,...,n—1},a
consecutive-d digraph D(d, n, q,r) is the directed pseudograph with vertex
set {0,1,...,n — 1} such that i—j if and only if j = ¢i + r + k (mod n) for
some k € {0,1,...,d—1}. Several results on diameter, vertex- and arc-strong
connectivity and other properties of consecutive-d digraphs are given in [276].
In Section 6.9, we provide results on hamiltonicity of consecutive-d digraphs.

2.6 Series-Parallel Digraphs

In this section we study vertex series-parallel digraphs and arc series-parallel
directed multigraphs. Vertex series-parallel digraphs were introduced by
Lawler [637] and Monma and Sidney [701] as a model for scheduling prob-
lems. While vertex series-parallel digraphs continue to play an important role
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for the design of efficient algorithms in scheduling and sequencing problems,
they have been extensively studied in their own right as well as in relations
to other optimization problems (cf. the papers [55] by Baffi and Petreschi,
[153] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [776] by Rendl
and [832] by Steiner). Arc series-parallel directed multigraphs were intro-
duced even earlier (than vertex series-parallel digraphs) by Duffin [281] as a
mathematical model of electrical networks.

For an acyclic digraph D, let Fp (Ip) be the set of vertices of D of
out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first
introduce minimal vertex series-parallel (M VSP) digraphs recursively.

The digraph of order one with no arc is an MVSP digraph. If D = (V, A),
H = (U, B) is a pair of MVSP digraphs (U NV = (), so are the acyclic
digraphs constructed by each of the following operations (see Figure 2.6):

(a) Parallel composition: P = (VUU, AU B);
(b) Series composition: S = (VUU, AUBU (Fp x Iy)).

It is interesting to note that we can embed every MVSP digraph D into
the Cartesian plane such that if vertices u,v have coordinates (z,v,) and
(v, Yv), respectively, then there is a (u,v)-path in D if and only if z,, < z,
and y, < y,. The proof of this non-difficult fact is given in the paper [883]
by Valdes, Tarjan and Lawler; see Exercise 2.17. See also Figure 2.8.

An acyclic digraph D is a vertex series-parallel (VSP) digraph if
the transitive reduction of D is an MVSP digraph (see Section 2.3 for the
definition of the transitive reduction). See Figure 2.7.

The following class of acyclic directed multigraphs, arc series-parallel
(ASP) directed multigraphs, is related to VSP digraphs. The digraph P,
is an ASP directed multigraph. If Dy, Dy is a pair of ASP directed multi-
graphs with V(D) N V(D3) = ), then so are acyclic directed multigraphs
constructed by each of the following operations (see Figure 2.9):

(a) Two-terminal parallel composition: Choose a vertex u; of out-degree
zero in D; and a vertex v; of in-degree zero in D; for i = 1, 2. Identify u;
with ug and vy with wvg;

(b) Two-terminal series composition: Choose u € Fp, and v € Ip, and
identify u with v.

Observe that every ASP directed multigraph has a unique vertex of out-
degree zero and a unique vertex of in-degree zero. We refer the reader to the
book [127] by Battista, Eades, Tamassia and Tollis for several algorithms for
drawing graphs nicely, in particular drawing of ASP digraphs.

The next result shows a relation between the classes of digraphs intro-
duced above.



2.6 Series-Parallel Digraphs 49

Figure 2.6 (De)construction of an MVSP digraph Ry by series and parallel
(de)compositions.

Theorem 2.6.1 An acyclic directed multigraph D with a unique vertex of
out-degree zero and a unique vertex of in-degree zero is ASP if and only if

L(D) is an MVSP digraph.

Proof: This can be proved easily by induction on |A(D)| using the following
two facts:

(i) L(P,) = Py, which is an MVSP digraph;
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Figure 2.7 Series-parallel directed multigraphs: (a) an MVSP digraph Ry, (b) a
VSP digraph Ry, (c) an ASP directed multigraph Ho.

x

Figure 2.8 The MVSP digraph Ry of Figure 2.6 embedded into the Cartesian
plane such that for every (u,v)-path in Ry we have z, < z, and y, < y, (and vice
versa).

(ii) The line digraph of the two-terminal series (parallel) composition of Dy
and Do is the series (parallel) composition of L(D;) and L(D3). O

It is easy to check that L(Hy) = Ry for directed multigraphs Hy and Ry
depicted in Figure 2.7. The following operations in a directed multigraph D
are called reductions:

(a) Series reduction: Replace a path uvw, where df,(v) = dj,(v) = 1 by
the arc uw;

(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just
one arc from wu to v.



2.6 Series-Parallel Digraphs 51

2 5
/\ 4 /\ /\
*«——o ———o
4 5

Figure 2.9 (De)construction of an ASP directed multigraph Hy by two-terminal
series and parallel (de)compositions.

The following proposition due to Duffin (see also the paper [883] by
Valdes, Tarjan and Lawler) gives a characterization of ASP directed multi-
graphs. Its proof is left as Exercise 2.18.

Proposition 2.6.2 [281] A directed multigraph is ASP if and only if it can
be reduced to Py by a sequence of series and parallel reductions. O

The reader is advised to apply a sequence of series and parallel reductions
to the directed multigraph H of Figure 2.7 to obtain a digraph isomorphic to
P,. From the algorithmic point of view, it is important that every sequence of
series and parallel reductions transforms a directed multigraph to the same
digraph. Indeed, this implies an obvious polynomial algorithm to verify if a
given directed multigraph is ASP. The proof of the following result, due to
Harary, Krarup and Schwenk, is left as Exercise 2.19.

Proposition 2.6.3 [500] For every acyclic directed multigraph D, the result
of application of series and parallel reductions until one can apply such re-
ductions is a unique digraph H. a
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In [883], Valdes, Tarjan and Lawler showed how to construct a linear-
time algorithm to recognize ASP directed multigraphs, which is based on
Propositions 2.6.2 and 2.6.3. They also presented a more complicated linear-
time algorithm to recognize VSP digraphs. Since we are limited in space,
we will not discuss the details of the linear-time algorithms. Instead, we
will consider the following simplified polynomial algorithm to recognize VSP
digraphs.

VSP recognition algorithm
Input: An acyclic digraph D.
Output: YES if D is VSP and NO, otherwise.

1. Compute the transitive reduction R of D.

2. Try to compute an acyclic directed multigraph H with |Iy| = |Fg| =1
such that L(H) = R. If there is no such H, then output NO.

3. Verify whether H is an ASP directed multigraph. If it is so, then YES,
otherwise, NO.

We prove first the correctness of this algorithm. If the output is YES,
then, by Theorem 2.6.1, R is MVSP and thus D is VSP. If H in Step 2 is not
found, then, by Theorem 2.6.1, R is not MVSP implying that D is not VSP.
If H is not ASP, then R is not MVSP by the same theorem.

Now we prove that the algorithm is polynomial. Step 1 can be performed
in polynomial time by Proposition 2.3.5. Step 2 can be implemented using
Procedure Build-H described at the end of Section 2.4. This procedure implies
that if there is an H such that L(H) = R, then there is such an H with
additional property that |Ig| = |Fg| = 1. The procedure is polynomial.
Finally, Step 3 is polynomial by the remark after Proposition 2.6.2.

2.7 Quasi-Transitive Digraphs

A digraph D is quasi-transitive if, for every triple z, y, z of distinct vertices
of D such that xy and yz are arcs of D, there is at least one arc between x and
z. Clearly, a semicomplete digraph is quasi-transitive. Note that if there is
only one arc between x and z, it can have any direction; hence quasi-transitive
digraphs are generally not transitive.

The aim of this section is to derive a recursive characterization of quasi-
transitive digraphs which allows one to show that a number of problems for
quasi-transitive digraphs including the longest path and cycle problems are
polynomial time solvable (see Sections 6.7 and 6.8). The characterization im-
plies that every quasi-transitive digraph is totally ¥-decomposable, where ¥
is the union of all transitive digraphs and all extended semicomplete digraphs.
Our presentation is based on the paper [103] by Bang-Jensen and Huang.
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N

T Q

Figure 2.10 A transitive digraph 7T and a quasi-transitive digraph Q.

An (x1,x,)-path P = 2125 ..., is minimal if, for every (x1,x,)-path
Q, either V(P) = V(Q) or @ has a vertex not in V(P).

Proposition 2.7.1 Let D be a quasi-transitive digraph. Suppose that P =
T1Tg ... Ty is a minimal (x1, zk)-path. Then the subdigraph induced by V (P)
is a semicomplete digraph and x;—x; for every 2 < i+ 1 < j < k, unless
k =4, in which case the arc between x1 and xx may be absent.

Proof: The cases k = 2,3,4,5 are easily verified. As an example, let us
consider the case k = 5. If x; and x; are adjacent and 2 < ¢+ 1 < j <5,
then z;—x; since P is minimal. Since D is quasi-transitive, z; and x;i2
are adjacent for ¢ = 1,2,3. This and the minimality of P imply that
r3—x1, x4—xo and xrs—x3. From these arcs and the minimality of P we
conclude that x5—x,. Now the arcs x425 and x5x, imply that z4—x. Sim-
ilarly, x5—x1—x2 implies xs—xs.

The proof for the case k > 6 is by induction on k with the case k = 5 as the
basis. By induction, each of D{{z1,x2,...,zk-1}) and D{{z2,x3,...,zx}) is
a semicomplete digraph and z;—x; for any 1 < j —i < k — 2. Hence 3
dominates 7 and x; dominates x3 and the minimality of P implies that xj
dominates 7. O

Corollary 2.7.2 If a quasi-transitive digraph D has an (x,y)-path but x does
not dominate y, then either y—x, or there exist vertices u,v € V(D) —{z,y}
such that t—u—v—y and y—u—v—r.

Proof: This is easy to deduce by considering a minimal (z,y)-path and
applying Proposition 2.7.1. O

Lemma 2.7.3 Suppose that A and B are distinct strong components of a
quasi-transitive digraph D with at least one arc from A to B. Then A—DB.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then for every choice of x € A and y € B there
exists a path from x to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 2.7.2 can hold and hence x—vy. a
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Lemma 2.7.4 [103] Let D be a strong quasi-transitive digraph on at least
two vertices. Then the following holds:

(a) UG(D) is disconnected;

(b) If S and S’ are two subdigraphs of D such that UG(S) and UG(S’) are
distinct connected components of UG(D), then either S—S’ or S'—S,
or both S—S" and S'—S in which case |V (S)| =|V(S")] = 1.

Proof: The statement (b) can be easily verified from the definition of a
quasi-transitive digraph and the fact that S and S” are completely adjacent
in D (Exercise 2.20). We prove (a) by induction on |V (D)|. Statement (a) is
trivially true when |V (D)| = 2 or 3. Assume that it holds when |V(D)| < n
where n > 3.

Suppose that there is a vertex z such that D — z is not strong. Then there
is an arc from (to) every terminal (initial) component of D — z to (from)
z. Since D is quasi-transitive, the last fact and Lemma 2.7.3 imply that
X —Y for every initial (terminal) strong component X (Y) of D — z. Similar
arguments show that each strong component of D — z either dominates some
terminal component or is dominated by some initial component of D — z
(intermediate strong components satisfy both). These facts imply that z is
adjacent to every vertex in D — z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected and (a)
follows.

Assume that there is a vertex v such that D — v is strong. Since D is
strong, D contains an arc vw from v to D — v. By induction, UG(D — v) is
not connected. Let connected components S and S’ of UG(D — v) be chosen
such that w € S, S—S" in D (here we use (b) and the fact that D — v is
strong). Then v is completely adjacent to S’ in D (as v—w). Hence UG(S)
is a connected component of UG(D) and the proof is complete. a

The following theorem completely characterizes quasi-transitive digraphs
in recursive sense (see also Figure 2.11).

Theorem 2.7.5 (Bang-Jensen and Huang) [103] Let D be a digraph
which is quasi-transitive.

(a) If D is not strong, then there exist a transitive oriented graph T with ver-
tices {u1,usa,...,ut} and strong quasi-transitive digraphs Hy, Ha, ..., H;
such that D = T[Hy, Ha,...,H;|, where H; is substituted for u;, i =
1,2,...,t.

(b) If D is strong, then there exists a strong semicomplete digraph S with

vertices {v1, va, ..., vs} and quasi-transitive digraphs Q1,Qa, ..., Qs such
that Q; is either a vertex or is non-strong and D = S[Q1,Qa,...,Qs],
where Q; s substituted for v;, i =1,2,...,s.

Proof: Suppose that D is not strong and let Hy, Ho, ..., H; be the strong
components of D. According to Lemma 2.7.3, if there is an arc between
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/

Figure 2.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs
between different boxed sets indicate that there is a complete domination in the
direction shown.

H; and Hj, then either H;—H; or Hj—H,. Now if H;— H;— H}, then, by
quasi-transitivity, H;— H}. So by contracting each H; to a vertex h;, we get
a transitive oriented graph T with vertices hi, hs,...,hs. This shows that
D =T[Hy, Hs,...,Hy.

Suppose now that D is strong. Let Q1,Qs, ..., Qs be the subdigraphs of
D such that each UG(Q);) is a connected component of UG(D). According
to Lemma 2.7.4(a), each @Q; is either non-strong or just a single vertex. By
Lemma 2.7.4(b) we obtain a strong semicomplete digraph S if each Q; is
contracted to a vertex. This shows that D = S[Q1,Qs, ..., Qs]. O

2.8 Path-Mergeable Digraphs

A digraph D is path-mergeable, if for any choice of vertices x,y € V(D)
and any pair of internally disjoint (z,y)-paths P, Q, there exists an (x, y)-path
R in D, such that V(R) = V(P)UV(Q). We will see, in several places of this
book, that the notion of a path-mergeable digraph is very useful for design
of algorithms and proofs of theorems. This makes it worthwhile studying
path-mergeable digraphs. The results presented in this section are adapted
from [72], where the study of path-mergeable digraphs was initiated by Bang-
Jensen.
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U1 U2 u3 U4q Us U6
4

Figure 2.12 A digraph which is path-mergeable. The fat arcs indicate the path
TUI ULV V20V3U3ULUSV4V5V6UeY from x to y which is obtained by merging the two
(z,y)-paths zurususususuey and xv1V2U3V4V5V6Y.

We prove a characterization of path-mergeable digraphs, which implies
that path-mergeable digraphs can be recognized efficiently.

Theorem 2.8.1 A digraph D is path-mergeable if and only if for every
pair of distinct vertices x,y € V(D) and every pair P = zxy...xz.y,
P =xy...ysy, 1,8 > 1 of internally disjoint (z,y)-paths in D, either there
exists an i € {1,...,r}, such that x;—y1, or there exists a j € [s], such that
Y;—x1-

Proof: We prove ‘only if’ by induction on r + s. It is obvious for r = s =
1, so suppose that r + s > 3. If there is no arc between {z1,...,z,} and
{y1,-..,Ys}, then clearly P, P’ cannot be merged into one path. Hence we
may assume without loss of generality that there is an arc x;y; for some 1, j,
1<i<nrl1<j<s If j=1, then the claim follows. Otherwise apply
induction to the paths Pz, x;]y;, P’ [y1,y;].

The proof of ‘if’ is left to the reader. It is similar to the proof of Proposition
2.8.3 below. O

The proof of the following result is left as Exercise 2.24.

Corollary 2.8.2 Path-mergeable digraphs can be recognized in polynomial
time. a

The next result shows that if a digraph is path-mergeable, then the merg-
ing of paths can always be done in a particularly nice way.

Proposition 2.8.3 Let D be a digraph which is path-mergeable and let P =
xxy ... xy, P = xyr...ysy, r,s > 0 be internally disjoint (z,y)-paths in
D. The paths P and P’ can be merged into one (x,y)-path P* such that
vertices from P (respectively, P') remain in the same order as on that path.
Furthermore the merging can be done in at most 2(r + s) steps.

Proof: We prove the result by induction on r 4 s. It is obvious if r = 0 or
s = 0, so suppose that r,s > 1. By Theorem 2.8.1 there exists an ¢ such that
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either x;—y; or y;—x1. By scanning both paths forward one arc at a time, we
can find 7 in at most 2i steps; suppose without loss of generality z;—y;1. By
applying the induction hypothesis to the paths Plz;, x|y and z; P'[y1, ys]y,
we see that we can merge them into a single path @ in the required order-
preserving way in at most 2(r +s—1) steps. The required path P* is obtained
by concatenating the paths zP[x1, x;] and @, and we have found it in at most
2(r + s) steps, as required. O

2.9 Locally In/Out-Semicomplete Digraphs

A digraph D is locally in-semicomplete (locally out-semicomplete) if,
for every vertex x of D, the in-neighbours (out-neighbours) of  induce a semi-
complete digraph. Clearly, the converse of a locally in-semicomplete digraph
is a locally out-semicomplete digraph and vice versa. A digraph D is locally
semicomplete if it is both locally in- and locally out-semicomplete. See
Figure 2.13. Clearly every semicomplete digraph is locally semicomplete. A
locally in-semicomplete digraph with no 2-cycle is a locally in-tournament
digraph. Similarly, one can define locally out-tournament digraphs and
locally tournament digraphs. For convenience, we will sometimes re-
fer to locally tournament digraphs as local tournaments and to locally
in-tournament (out-tournament) digraphs as local in-tournaments (local
out-tournaments).

N

(a) (0)
Figure 2.13 (a) A locally out-semicomplete digraph which is not locally in-
semicomplete; (b) a locally semicomplete digraph.

Proposition 2.9.1 by Bang-Jensen shows that locally in-semicomplete
and locally out-semicomplete digraphs form subclasses of the class of path-
mergeable digraphs. In particular, this means that every tournament is path-
mergeable. In many theorems and algorithms on tournaments this property
is of essential use. In some other cases, the very use of this property allows
one to simplify proofs of results on tournaments and their generalizations or
speed up algorithms on those digraphs.
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Proposition 2.9.1 [72] Every locally in-semicomplete (out-semicomplete)
digraph is path-mergeable.

Proof: Let D be a locally out-semicomplete digraph and let P = y1ys .. . yx,
Q = z129...7 be a pair of internally disjoint (z,y)-paths (i.e., y1 =21 =z
and y, = z; = y). We show that there exists an (z, y)-path R in D, such that
V(R) = V(P)UV(Q). Our claim is trivially true when |A(P)| + |A(Q)| = 3.
Assume now that |A(P)| + |A(Q)| > 4. Since D is out-semicomplete, either
Ya—29 Or 29—yo (or both) and the claim follows from Theorem 2.8.1.

The proposition holds for locally in-semicomplete digraphs as they are
the converses of locally out-semicomplete digraphs. a

The path-mergeability can be generalized in a natural way as follows. A di-
graph D is in-path-mergeable if, for every vertex y € V(D) and every pair
P, @Q of internally disjoint paths with common terminal vertex g, there is a
path R such that V(R) = V(P)UV(Q), the path R terminates at y and starts
at a vertex which is the initial vertex of either P or @ (or, possibly, both).
Observe that, in this definition, the initial vertices of paths P and () may coin-
cide. Therefore, every in-path-mergeable digraph is path-mergeable. However,
it is easy to see that not every path-mergeable digraph is in-path-mergeable
(see Exercise 2.21). A digraph D is out-path-mergeable if the converse of D
is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable)
digraph is locally in-semicomplete (locally out-semicomplete). The converse is
also true (hence this is another way of characterizing locally in-semicomplete
digraphs). The proof of Proposition 2.9.2 is left as Exercise 2.25.

Proposition 2.9.2 Fuvery locally in-semicomplete (out-semicomplete, respec-
tively) digraph is in-path-mergeable (out-path-mergeable, respectively). O

Some simple, yet very useful, properties of locally in-semicomplete di-
graphs are described in the following results (in [105], by Bang-Jensen, Huang
and Prisner, these results were proved for locally tournament digraphs only,
so the statements below are their slight generalizations first stated by Bang-
Jensen and Gutin [89]). Observe that a locally out-semicomplete digraph,
being the converse of a locally in-semicomplete digraph, has similar proper-
ties (see Exercise 2.28). The next lemma follows from Proposition 1.7.1 (see

[91)).

Lemma 2.9.3 FEvery connected locally in-semicomplete digraph D has an
out-branching. O

Theorem 2.9.4 is illustrated in Figure 2.14.

Theorem 2.9.4 Let D be a locally in-semicomplete digraph.

(i) Let A and B be distinct strong components of D. If a vertex a € A
dominates some vertexr in B, then a—B.

(i) If D is connected, then SC(D) has an out-branching.
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Proof: Let A and B be strong components of D for which there is an arc
(a,b) from A to B. Since B is strong, there is a (¥,b)-path in B for every
b € V(B). By the definition of locally in-semicomplete digraphs and the fact
that there is no arc from B to A, we can conclude that a—b’. This proves (i).

Part (ii) follows from the fact that SC(D) is itself a locally in-tournament
digraph and Lemma 2.9.3. O

Figure 2.14 The strong decomposition of a non-strong locally in-semicomplete
digraph. The big circles indicate strong components and a fat arc from a component
A to a component B between two components indicates that there is at least one
vertex a € A such that a— B.

2.10 Locally Semicomplete Digraphs

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [66].
As shown in several places in our book, this class of digraphs has many nice
properties in common with its proper subclass, semicomplete digraphs. The
main aim of this section is to obtain a classification of locally semicomplete
digraphs first proved by Bang-Jensen, Guo, Gutin and Volkmann [80]. In
the process of deriving this classification, we will show several important
properties of locally semicomplete digraphs. We start our consideration from
round digraphs, a nice special class of locally semicomplete digraphs.
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2.10.1 Round Digraphs

A digraph on n vertices is round if we can label its vertices vi,vo,..., v,
so that for each i, we have N*(v;) = {vig1,...,Vipa+(u)} and N~ (v;) =
{Vicd—(v)>--->vi—1} (all subscripts are taken modulo n). We will refer to
the ordering vy, vs,...,v, as a round labelling of D. See Figure 2.15 for
an example of a round digraph. Observe that every strong round digraph
D is hamiltonian, since vivs...v,v; form a hamiltonian cycle, whenever
v1,V2,...,U, is a round labelling. Round digraphs form a subclass of lo-
cally semicomplete digraphs. We will see below that round digraphs play an
important role in the study of locally semicomplete digraphs.

2 3

R
Figure 2.15 A round digraph with a round labelling.

Proposition 2.10.1 [5/1] Every round digraph is locally semicomplete.

Proof: Let D be a round digraph and let vy, vs, ..., v, be a round labelling of
D. Consider an arbitrary vertex, say v;. Let z,y be a pair of out-neighbours
of v;. We show that z and y are adjacent. Assume without loss of generality
that v;, z,y appear in that circular order in the round labelling. Since v;—y
and the in-neighbours of y appear consecutively preceding y, we must have
x—y. Thus the out-neighbours of v; are pairwise adjacent. Similarly, we can
show that the in-neighbours of v; are also pairwise adjacent. Therefore, D is
locally semicomplete. O

The main result of this subsection is Theorem 2.10.4 of Huang [541] that
gives a characterization of round locally semicomplete digraphs. This char-
acterization generalizes the corresponding characterizations of round local
tournaments and tournaments, due to Bang-Jensen [66] and Alspach and
Tabib [38], respectively.

An arc zy of a digraph D is ordinary if yx is not in D. A cycle or path
Q@ of a digraph D is ordinary if all arcs of @) are ordinary.

The following two lemmas due to Huang [541] imply the necessity part of
Theorem 2.10.4. A sufficiency proof can be found in [91, 541].

Lemma 2.10.2 Let D be a round digraph; then the following is true:
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Figure 2.16 Some forbidden digraphs in Huang’s characterization.

(a) Every induced subdigraph of D is round.

(b) None of the digraphs in Figure 2.16 is an induced subdigraph of D.

(c) For each x € V(D), the subdigraphs induced by NT(x) — N~ (z) and
N=(z) — N*(x) are transitive tournaments.

Proof: Exercise 2.31. O

Lemma 2.10.3 Let D be a round digraph. Then, for each vertex x of D, the
subdigraph induced by NT(z) N N~ (x) contains no ordinary cycle.

Proof: Suppose the subdigraph induced by some N (x) NN~ (x) contains an
ordinary cycle C. Let vy, vs,...,v, be a round labelling of D. Without loss
of generality, assume that = v;. Then C' must contain an arc v;v; such that
vjv; € A(D) and ¢ > j. We have vy € N~ (v;) but v; € N~ (v;), contradicting
the assumption that vy, vs,...,v, is a round labelling of D. a

Theorem 2.10.4 (Huang) [541] A connected locally semicomplete digraph
D is round if and only if the following holds for each vertex x of D:

(a) Nt(z) — N~ (z) and N~ (z) — NT(z) induce transitive tournaments and
(b) N*(z) N N~ (z) induces a (semicomplete) subdigraph containing no or-
dinary cycle. O

The proof of sufficiency of the conditions of this theorem in [91, 541] can
be transformed into a polynomial time algorithm to decide whether a digraph
D is round and to find a round labelling of D (if D is round).

Corollary 2.10.5 (Bang-Jensen) [66] A connected local tournament D is
round if and only if, for each vertex x of D, N*(z) and N~ (z) induce tran-
sitive tournaments. a

2.10.2 Non-Strong Locally Semicomplete Digraphs

The most basic properties of strong components of a connected non-strong
locally semicomplete digraph are given in the following result, due to Bang-
Jensen.
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Theorem 2.10.6 [66] Let D be a connected locally semicomplete digraph
that is not strong. Then the following holds for D.

(a) If A and B are distinct strong components of D with at least one arc
between them, then either A—B or B—A.

(b) If A and B are strong components of D, such that A—B, then A and B
are semicomplete digraphs.

(¢) The strong components of D can be ordered in a unique way D1, Da, ...,
D, such that there are no arcs from D; to D; for j > i, and D; dominates
Diyq foriep—1].

Proof: Recall that a locally semicomplete digraph is a locally in-semicomplete
digraph as well as a locally out-semicomplete digraph. Part (a) of this theo-
rem follows immediately from Part (i) of Theorem 2.9.4 and its analogue for
locally out-semicomplete digraphs. Part (b) can be easily obtained from the
definition of a locally semicomplete digraph. Finally, Part (c) follows from the
fact proved in Theorem 2.9.4 (and its analogue for locally out-semicomplete
digraphs) that SC(D) has an out-branching and an in-branching. Indeed, a
digraph which is both out-branching and in-branching is merely a hamilto-

nian path. a

A locally semicomplete digraph D is round decomposable if there exists
a round local tournament R on r > 2 vertices such that D = R[Sy,...,S,],
where each S; is a strong semicomplete digraph. We call R[Sy,...,S,] a

round decomposition of D. The following consequence of Theorem 2.10.6,
whose proof is left as Exercise 2.32, shows that connected, but not strongly
connected locally semicomplete digraphs are round decomposable.

Corollary 2.10.7 [66] Every connected, but not strongly connected locally
semicomplete digraph D has a unique round decomposition R[D1, Da, ..., D,],
where Dy, Ds, ..., D, is the acyclic ordering of strong components of D and
R is the round local tournament containing no cycle which one obtains by
taking one vertex from each D;. O

Now we describe another kind of decomposition theorem for locally semi-
complete digraphs due to Guo and Volkmann. The proof of this theorem is
left as Exercise 2.33. The statement of the theorem is illustrated in Figure
2.18.

Theorem 2.10.8 [440, 442] Let D be a connected locally semicomplete di-
graph that is not strong and let Dy, ..., D, be the acyclic ordering of strong

components of D. Then D can be decomposed into r > 2 induced subdigraphs
D}, D, ..., Dl as follows:

b Dll = Dpa >‘1 =D,
e N1 =min{ j | NT(D;)nV(D}) # 0}, for eachi € [r — 1],
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Figure 2.17 A round decomposable locally semicomplete digraph D. The big cir-
cles indicate the sets that correspond to the sets Wi, Wa, ..., Ws in the decompo-
sition D = R[W1,Wa, ..., Wg], where R is the round locally semicomplete digraph
one obtains by replacing each circled set by one vertex. Fat arcs indicate that there
is a complete domination in the direction shown.

. iv1 = D(V(Dx,,)UV(Dx,,,+1)U---UV(Dy,-1)), for each i€ [r—1].
The subdigraphs D, D}, ..., D) satisfy the properties below:

(a) D} consists of some strong components of D and is semicomplete for each
i€ [r]

(b) D;,, dominates the initial component of D; and there exists no arc from
Dj to Dj,, for anyi € [r—1]

(c) ifr > 3, then there is no arc between D; and D', fori, j satisfying |j—i| >
2. O

For a connected, but not strongly connected locally semicomplete digraph
D, the unique sequence D7, D}, ..., D, defined in Theorem 2.10.8 is called
the semicomplete decomposition of D.

2.10.3 Strong Round Decomposable Locally Semicomplete
Digraphs

In the previous subsection we saw that every connected non-strong locally
semicomplete digraph is round decomposable. This property does not hold
for strong locally semicomplete digraphs (see Lemma 2.10.14). The follow-
ing assertions, due to Bang-Jensen, Guo, Gutin and Volkmann, provide some
important properties concerning round decompositions of strong locally semi-
complete digraphs.
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Figure 2.18 The semicomplete decomposition of a non-strong locally semicomplete
digraph with 16 strong components (numbered 1-16 corresponding to the acyclic
ordering). Each circle indicates a strong component and each box indicates a semi-
complete subdigraph formed by consecutive components all of which dominate the
first component in the previous layer. For clarity arcs inside components as well
as some arcs between components inside a semicomplete subdigraph D; (all going
from top to bottom) are omitted.

Proposition 2.10.9 [80] Let R[H1, Ha, ..., H,| be a round decomposition of
a strong locally semicomplete digraph D. Then, for every minimal separating
set S, there are two integers i and k > 0 such that S = V(H;)U...UV (H;4k).

Proof: We will first prove that

if V(H;) NS # 0, then V(H;) C S. (2.3)

Assume that there exists H; such that V(H;) NS # 0 # V(H;) — S.
Using this assumption we shall prove that D — S is strong, contradicting the
definition of S.

Let s € V(H;) N S. To show that D — S is strong, we consider a pair
of different vertices  and y of D — S and prove that D — S has an (z,y)-
path. Since S is a minimal separating set, D’ = D — (S — §’) is strong.
Consider a shortest (z,y)-path P in D’ among all (z,y)-paths using at most
two vertices from each H;. The existence of such a path follows from the fact
that R is strong. Since the vertices of H; in D’ have the same in- and out-
neighbourhoods, P contains at most one vertex from H;, unless z,y € V(H;)
in which case P contains only these two vertices from H;. If s’ is not on
P, we are done. Thus, assume that s’ is on P. Then, since P is shortest
possible, neither x nor y belongs to H;. Now we can replace s’ with a vertex
in V(H;) — S. Therefore, D — S has an (x,y)-path, so (2.3) is proved.

Suppose that S consists of disjoint sets 77, ..., T, such that

T = V(HJI) U...u V(Hjﬁrkz) and (V(Hjifl) U V(Hji+ki+1)) ns =10
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for i € [¢]. If £ > 2, then D — T; is strong and hence it follows from the fact
that R is round that Hj,_; dominates Hj, 1,41 for every ¢ € [¢]. Therefore,
D — S is strong; a contradiction. a

Corollary 2.10.10 /80] If a locally semicomplete digraph D is round decom-
posable, then it has a unique round decomposition D = R[Dy, Da, ..., D,].

Proof: Suppose that D has two different round decompositions: D =
R[D:,...,D,]) and D = R'[H;, ..., Hgl.

By Corollary 2.10.7, we may assume that D is strong. By the definition
of a round decomposition, this implies that «,3 > 3. Let S be a minimal
separating set of D. By Proposition 2.10.9, we may assume without loss of
generality that S = V(D,U...UD;) = V(H; U...U Hj) for some i and j.
Since D — S is non-strong, by Corollary 2.10.7, D;11 = Hj41,..., Do = Hg
(in particular, o — i = 3 — 7). Now it suffices to prove that

Dy = Hy,...,D; = H; (in particular, i = j). (2.4)

If D(S) is non-strong, then (2.4) follows by Corollary 2.10.7. If D(S) is
strong, then first consider the case « = 3. Then S = V(D;), because D — S is
non-strong and a = 3. Assuming that j > 1, we obtain that the subdigraph of
D induced by S has a strong round decomposition. This contradicts the fact
that R’ is a local tournament, since the in-neighbourhood of the vertex r}

in R’ contains a cycle (where r; corresponds to Hy, p =1,...,3). Therefore,
(2.4) is true for @ = 3. If @ > 3, then we can find a separating set in D(S)
and conclude by induction that (2.4) holds. O

Proposition 2.10.9 allows us to construct a polynomial algorithm for
checking whether a locally semicomplete digraph is round decomposable.

Proposition 2.10.11 [80] There exists a polynomial algorithm to decide
whether a given locally semicomplete digraph D has a round decomposition
and to find this decomposition if it exists.

Proof: We only give a sketch of such an algorithm. Find a minimal separating
set S in D starting with S = NT(z) for a vertex € V(D) and deleting
vertices from S’ until a minimal separating set is obtained. Construct the
strong components of D(S) and D — S and label these Dy, Do, ..., D,, where
Dy,...,D,, p > 1, form an acyclic ordering of the strong components of
D(S) and Dpyq,...,D, form an acyclic ordering of the strong components
of D — S. For every pair D; and D; (1 <i# j < «), we check the following:
if there exist some arcs between D; and Dj, then either D;—D; or D;—D;.
If we find a pair for which the above condition is false, then D is not round
decomposable. Otherwise, we form a digraph R = D{{x1, 22, ...,Zs}), where
x; € V(D;) for each i € [a]. We check whether R is round using Corollary
2.10.5. If R is not round, then D is not round decomposable. Otherwise, D
is round decomposable and D = R[Ds,...,D,].
It is not difficult to verify that our algorithm is correct and polynomial.
O
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2.10.4 Classification of Locally Semicomplete Digraphs

We start this subsection with a lemma on minimal separating sets of locally
semicomplete digraphs. It will be shown in Lemma 5.8.4 that for a strong
locally semicomplete digraph D and a minimal separating set S in D, we
have that D — S is connected.

Lemma 2.10.12 [80] If a strong locally semicomplete digraph D is not semi-
complete, then there exists a minimal separating set S C V(D) such that
D — S is not semicomplete. Furthermore, if D1, Da,...,D, is the acyclic
ordering of the strong components of D and DY, D}, ... D! is the semicom-

plete decomposition of D — S, then r > 3, D(S) is semicomplete and we have
Dp'—>S0—>D1 .

Proof: Suppose D — S is semicomplete for every minimal separating set S.
Then D — S is semicomplete for all separating sets S. Hence D is semicom-
plete, because any pair of non-adjacent vertices can be separated by some
separating set S. This proves the first claim of the lemma.

Let S be a minimal separating set such that D — S is not semicomplete.
Clearly, if » = 2 (in Theorem 2.10.8), then D — S is semicomplete. Thus,
r > 3. By the minimality of S every vertex s € S dominates a vertex in D;
and is dominated by a vertex in D,,. Thus if some x € D, was dominated by
s € S, then, by the definition of a locally semicomplete digraph, we would
have D1—D,, contradicting the fact that » > 3. Hence (using that D, is
strongly connected) we get that D,—S and similarly S+ D;. From the last
observation it follows that S is semicomplete. a

Now we consider strongly connected locally semicomplete digraphs which
are not semicomplete and not round decomposable. We first show that the
semicomplete decomposition of D—.S has exactly three components, whenever
S is a minimal separating set such that D — S is not semicomplete.

Lemma 2.10.13 [80] Let D be a strong locally semicomplete digraph which
18 not semicomplete. Fither D is round decomposable, or D has a minimal
separating set S such that the semicomplete decomposition of D — S has
exactly three components D}, Dy, D5.

Proof: By Lemma 2.10.12, D has a minimal separating set S such that the
semicomplete decomposition of D — S has at least three components.

Assume now that the semicomplete decomposition of D — S has more
than three components Df, ..., D, (r > 4). Let Dy, Do, ..., D, be the acyclic
ordering of strong components of D — S. According to Theorem 2.10.8 (c),
there is no arc between D] and Dj if |i —j| > 2. It follows from the definition
of a locally semicomplete digraph that

NT(Dj)nS =0 fori>3and N~ (D;)NS =0 for j <r—2. (2.5)
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By Lemma 2.10.12, D(S) is semicomplete and S = N*(D,). Let Dp1, ...,
D, 4 be the acyclic ordering of the strong components of D(S). Using (2.5)
and the assumption r > 4, it is easy to check that if there is an arc be-
tween D; and D; (1 < i # j < p+ q), then D;—=D; or Dj—D;. Let
R = D({zx1,22,...,2p1q}) with x; € V(D;) for each ¢ € [p + ¢]. Now it
suffices to prove that R is a round local tournament.

Since R is a subdigraph of D and no pair D;, D; induces a strong di-
graph, we see that R is a local tournament. By Corollary 2.10.7 each of
the subdigraphs R’ = R — {Zpt1,...,%p1q}, R = R—=V(R)NV(D._,)
and R” = R — V(R) N V(D}) is round. Since N (v) N V(R) (as well as
N~=(v)NV(R)) is completely contained in one of the sets V(R'), V(R") and
V(R for every v € V(R), we see that R is round.

Thus if r > 4, then D is round decomposable. a

Our next result is a characterization of locally semicomplete digraphs
which are not semicomplete and not round decomposable. This character-
ization was proved for the first time by Guo in [432]. A weaker form was
obtained earlier by Bang-Jensen in [71]. Here we give the proof of this result
from [80].

Lemma 2.10.14 Let D be a strong locally semicomplete digraph which is not
semicomplete. Then D is not round decomposable if and only if the following
conditions are satisfied:

(a) There is a minimal separating set S such that D — S is not semicom-
plete and for each such S, D(S) is semicomplete and the semicomplete
decomposition of D — S has exactly three components D', D}, Dj;

(b) There are integers o, B, p,v with s < a < f<p—-1landp+1<p<
v < p+ q such that

N~ (Do) V(D) #0 and N*(Do)NV(D,) # 0,

or N7 (D,)NV(Dy)#0 and NT(D,)NV(Dg) # 0,

where Dy1,Ds,...,D, and Dpy1,...,Dpyq are the acyclic orderings of
the strong components of D — S and D(S), respectively, and D, is the
ingtial component of D}.

Proof: If D is round decomposable and satisfies (a), then we must have D =
R[D1,Da, ..., Dptq], where R is the digraph obtained from D by contracting
each D; into one vertex. This follows from Corollary 2.10.7 and the fact that
each of the digraphs D — S and D — V(D)) has a round decomposition that
agrees with this structure. Now it is easy to see that D does not satisfy (b).

Suppose now that D is not round decomposable. By Lemmas 2.10.12 and
2.10.13, D satisfies (a), so we only have to prove that it also satisfies (b).

If there are no arcs from S to D), then it is easy to see that D has a
round decomposition. If there exist components D,,; and D; with V(D;) C
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V(D4), such that there are arcs in both directions between D,y; and D;,
then D satisfies (b). So we can assume that for every pair of sets from the

collection D1, D», ..., Dy, cither there are no arcs between these sets, or
one set completely dominates the other. Then, by Corollary 2.10.5, D is
round decomposable, with round decomposition D = R[D1, Da, ..., Dy14] as

above, unless we have three subdigraphs X,Y,Z € {D1, Ds,...,Dpyq} such
that X+—Y —Z—X and there exists a subdigraph W € {D1, Ds, ..., Dpiq}—
{X,Y, Z} such that either W—X,Y,Z or XY, Z—W.

One of the subdigraphs X,Y, Z, say without loss of generality X, is a
strong component of D(S). If we have V(Y') C S also, then V(Z) C V(D))
and W is either in D(S) or in D} (there are four possible positions for W
satisfying that either W—X,Y,Z or XY, Z—W). In each of these cases
it is easy to see that D satisfies (b). For example, if W is in D(S) and
Ww—X)Y, Z, then any arc from W to Z and from Z to X satisfies the first part
of (b). The proof is similar when V(Y') C V(D}). Hence we can assume that
V(Y) CV(D)). If Z = D,, then W must be either in D(S) and X,Y, Z—W,
or V(W) C V(D5) and W—X,Y, Z (which means that W = D; and Y = D,
for some Ay <14 < j < p). In both cases it is easy to see that D satisfies (b).
The last case V(Y),V(Z) C V(D}) can be treated similarly. O

We can now state a classification of locally semicomplete digraphs.

Theorem 2.10.15 (Bang-Jensen, Guo, Gutin, Volkmann) [80] Let D
be a connected locally semicomplete digraph. Then exactly one of the following
possibilities holds.

(a) D is round decomposable with a unique round decomposition given by
D = R[D1,Ds,...,D,], where R is a round local tournament on o > 2
vertices and D; is a strong semicomplete digraph for each i € [a];

(b) D is not round decomposable and not semicomplete and it has the struc-
ture as described in Lemma 2.10.14;

(¢) D is a semicomplete digraph which is not round decomposable. a

We finish this section with the following useful proposition, whose proof
is left as Exercise 2.36.

Proposition 2.10.16 [80] Let D be a strong non-round decomposable locally
semicomplete digraph and let S be a minimal separating set of D such that
D — S is not semicomplete. Let Dy,...,D, be the acyclic ordering of the
strong components of D — S and Dpi1,...,Dpiq be the acyclic ordering of
the strong components of D(S). Suppose that there is an arc s — v from S

to Dy with s € V(D;) and v € V(D;), then

D;UD;41U...UD,y,—D5—Dy,U...UD;. O
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2.11 Totally #-Decomposable Digraphs

Theorem 2.7.5 is a very important starting point for construction of poly-
nomial algorithms for hamiltonian paths and cycles in quasi-transitive di-
graphs (see Chapter 6) and solving more general problems in this class of
digraphs. This theorem shows that quasi-transitive digraphs are totally @-
decomposable, where @ is the union of extended semicomplete and transitive
digraphs. Since both extended semicomplete digraphs and transitive digraphs
are special subclasses of much wider classes of digraphs, it is natural to study
totally @-decomposable digraphs, where @ is a much more general class of
digraphs than the union of extended semicomplete and transitive digraphs.
However, our choice of candidates for the class @ should be restricted in such
a way that we can still construct polynomial algorithms for some important
problems such as the hamiltonian cycle problem using properties of digraphs
in &.

This idea was first used by Bang-Jensen and Gutin [86] to introduce the
following three classes of digraphs:

(a) @¢ is the union of all semicomplete multipartite digraphs, all connected
extended locally semicomplete digraphs and all acyclic digraphs,

(b) @4 is the union of all semicomplete bipartite digraphs, all connected ex-
tended locally semicomplete digraphs and all acyclic digraphs, and

(¢c) P is the union of all connected extended locally semicomplete digraphs
and all acyclic digraphs.

The aim of this section is to show that totally @;-decomposable digraphs
can be recognized in polynomial time for ¢ = 0,1,2. (If these recognition
problems were not polynomial, then the study of the properties of totally
&,;-decomposable digraphs would be of much less interest.)

A set @ of digraphs is hereditary if D € @ implies that every induced
subdigraph of D is in @. Observe that every @;, ¢ = 0,1, 2, is a hereditary
set.

Lemma 2.11.1 Let @ be a hereditary set of digraphs. If a given digraph D
is totally @-decomposable, then every induced subdigraph D’ of D is totally
@-decomposable. In other words, total ®-decomposability is a hereditary prop-
erty.

Proof: By induction on the number of vertices of D. The claim is obviously
true if D has less than 3 vertices.

If D € &, then our claim follows from the fact that & is hereditary. So
we may assume that D = R[Hy,...,H,], r > 2, where R € ¢ and each of
H,, ..., H, is totally &-decomposable.

Let D’ be an induced subdigraph of D. If there is an index ¢ so that
V(D) C V(H;), then D’ is totally #-decomposable by induction. Otherwise,
D’ = R'[Ty,...,T], where ' > 2 and R’ € &, is the subdigraph of R
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induced by those vertices ¢ of R, whose H; has a non-empty intersection with
V(D') and the T}’s are the corresponding H;’s restricted to the vertices of
D'. Observe that R’ € @, since & is hereditary. Moreover, by induction, each
T; is totally @-decomposable, hence so is D’. a

Lemma 2.11.2 There exists an O(mn + n?)-algorithm for checking if a di-
graph D with n vertices and m arcs has a decomposition D = R[Hy, ..., H,],
r > 2, where H; is an arbitrary digraph and the digraph R is either acyclic
or semicomplete multipartite or semicomplete bipartite or connected extended
locally semicomplete.

Proof: If D is not connected and D;,...,D, are its components, then D =
K [Dy,...,D.]. Hence, in the rest of the proof we may assume that D is
connected. We consider the different possibilities for R we are interested in,

one by one.

Check whether R can be acyclic: First find the strong components
Dy,...,Dgof D.If k =1, then R cannot be acyclic and we can stop verifying
that possibility. So suppose k > 2.

If we find two strong components D; and D; such that there is an arc
between them but there are non-adjacent vertices x € D; and y € Dj, then
we replace D; and D; by their union. This is justified because D; and Dj;
cannot be in different sets Hy and H; in a possible decomposition. Repeat
this step but now check also the possibility for a pair D’ and D" of new
‘components’ to have arcs between D’ and D’ in different directions. In the
last case we also replace D’ and D’ by their union. Continue this procedure
until all remaining sets satisfy that either there is no arc between them,
or there are all possible arcs from one to the other. Let Vq,..., V., r > 1,
denote the distinct vertex sets of the obtained ‘components’. If » = 1, then
we cannot find an acyclic graph as R. Otherwise, D = R[V4,...,V,], r > 2,
and we obtain R by taking one vertex from each V;.

Check whether R can be a semicomplete multipartite digraph: Find
the connected components G1,...,G., ¢ > 1, of the complement of the un-
derlying graph UG(D) of D. If ¢ = 1, then R cannot be semicomplete mul-
tipartite. So we may assume that ¢ > 2 below. Let G; be the subgraph of
UG(D) induced by the vertices V; of the jth component @- of the comple-
ment of UG(D). Furthermore, let Gj1,...,Gjn,, n; > 1, be the connected
components of G;. Denote Vj, = V(Gj).

Starting with the collection W = {V1, ..., V.}, we identify two of the sets
Vi and Vj if there exist Vi, and Vj, a € [n;], b € [n;] such that we have none
of the possibilities Viq—Vjy, Vjp—Vie or Vie—Vj and Vj—Vi,. Clearly the
obtained set V; U Vj induces a connected subdigraph of D. Let Q1,...,Q,
denote the sets obtained, by repeating this process until no more changes
occur. If » = 1, then R cannot be semicomplete multipartite. Otherwise, R
is the semicomplete multipartite digraph obtained by set-contracting each
connected component of @Q; into a vertex.
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Checking whether R can be a semicomplete bipartite digraph or a con-
nected extended locally semicomplete digraph is left as Exercise 2.39.

It is not difficult to see that, for every R being either acyclic or semicom-
plete multipartite, the procedures above can be realized as an O(nm + n?)-
algorithm. The same complexity is proved for semicomplete bipartite digraphs
and extended locally semicomplete digraphs in Exercise 2.39. ad

Theorem 2.11.3 [86] There exists an O(n*m-+n3)-algorithm for checking if
a digraph with n vertices and m arcs is totally ®;-decomposable fori = 0,1, 2.

Proof: We describe a recursive algorithm to check @;-decomposability. We
have shown in Lemma 2.11.2 how to verify whether D = R[Hq,..., H,],
r > 2, where R is acyclic, semicomplete multipartite, semicomplete bipartite
or connected extended locally semicomplete. Whenever we find an R that
could be used, the algorithm checks total @;-decomposability of Hy,..., H,
in recursive calls.

Notice how the algorithm exploits the fact that total ®;-decomposability
is a hereditary property (see Lemma 2.11.1): if some R is found appropriate,
then R can be used, because if D is totally &;-decomposable, then each of
Hq,...,H, (being an induced subdigraph of D) must also be totally &;-
decomposable. Since there are O(n) recursive calls, the complexity of the
algorithm is O(n?*m + n?). O

2.12 Planar Digraphs

We now discuss planar (di)graphs, i.e., (di)graphs that can be drawn without
crossings between (arcs) edges (except at endpoints). Clearly this property
does not depend on the orientation of the arcs and hence we can ignore the
orientation below when we give a formal definition. Furthermore, most of the
results and definitions in this section are for undirected graphs, but are valid
also for planar digraphs as far as their underlying graphs are concerned.

An undirected graph G = (V, E) is planar if there exists a mapping f
which maps G to R? in the following way:

e Each vertex is mapped to a point in R? and distinct vertices are mapped
to distinct points.

e Each edge uv € E is mapped to a simple (that is, not self-intersecting)
curve Cy, from f(u) to f(v) and no two curves corresponding to distinct
edges intersect, except possibly at their endpoints.

For algorithmic purposes as well as for arguing about planar graphs, it is
inconvenient to allow arbitrary curves in the embeddings of planar graphs.
A polygonal curve from u to v is a piecewise linear curve consisting of
finitely many lines such that the first line starts at u, the last line ends at v
and each other line starts at the last point of the previous line. Since we can
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approximate any simple curve arbitrarily well by a polygonal curve we may
assume that the curves used in the embedding are always polygonal curves.

A planar graph G may have many different embeddings in the plane (each
embedding corresponds to a mapping f as above). Sometimes we wish to refer
to properties of a specific embedding f of G. In this case we say that G is
plane (that is, already embedded) with planar embedding f. A plane graph G
partitions R? into a finite number of (topologically) connected regions called
faces. Precisely one of these faces is unbounded and we call this the outer
face. It is easy to see that, for any fixed face F' of G, we may re-embed G in
R? in such a way that F' becomes the outer face. The boundary of a face F is
denoted by bd(F) and we normally describe a face by listing the vertices in
clockwise order around the face (for the unbounded face this corresponds to
listing the vertices on the boundary in the anti-clockwise order). See Figure
2.19 for an illustration of the definitions.

4 4
(a) (b) ()

Figure 2.19 (a) shows a non-planar embedding of a graph H; (b) shows a planar
embedding of H; (c) shows a planar embedding of H where all curves are polygonal.
With respect to the embedding in (c), the faces are 12341, 14561, 16321 and 36543.
The outer face is 36543.

Observe that if we add the edge 25 to the graph H in Figure 2.19, then
the resulting graph, which is isomorphic to K3 3, is no longer planar. In fact,
planar graphs have a famous characterization, due to Kuratowski:

Theorem 2.12.1 (Kuratowski’s theorem) [652] A graph has a planar
embedding if and only if it does not contain a subdivision® of K5 or K3 3. O

Based on this it is possible to show that planar graphs (and hence also
planar digraphs) can be recognized efficiently. In fact, Hopcroft and Tarjan

3 A subdivision H’ of a graph H is any graph that can be obtained from H by
replacing each edge by a path all of whose internal vertices have degree 2 in H’.
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[634] showed that it can be done in linear time and if the graph is planar,
one can find a planar embedding in the same time.

The following relation between the number of vertices, edges and faces in
a plane graph, known as Euler’s formula, is easy to prove by induction on
the number of faces.

Theorem 2.12.2 IfG is a connected plane graph on n vertices and m edges,
then n —m + ¢ = 2, where ¢ denotes the number of faces in the embedding
on G. In particular, the number of faces is the same in every embedding of
G. O

We leave it to the reader to derive the following easy consequence of
Theorem 2.12.2 (see Exercise 2.46):

Corollary 2.12.3 For every planar graph onn > 3 vertices and m edges we
have m < 3n — 6. O

If we allow multiple edges, then we cannot bound the number of edges
as we did above. However, for planar digraphs we have the following easy
consequence:

Corollary 2.12.4 No planar digraph on n > 3 vertices has more than 6n—12
arcs. O

We finish this section by a conjecture of Neumann-Lara first posed in 1982
[724] that links planar digraphs with acyclic digraphs.

Conjecture 2.12.5 The vertices of every planar digraph can be partitioned
into two sets such that each set induces an acyclic digraph.

2.13 Digraphs of Bounded Width

The tree-width is one of the most important parameters in the area of undi-
rected graphs [573]. It is a cornerstone of the Graph Minors Theory, it is used
to prove theorems in structural graph theory, and it has many algorithmic
applications due to the fact that many AP-hard problems can be solved in
linear time when restricted to graphs of bounded tree-width [573]. Naturally,
researchers tried to extend the notion of tree-width to digraphs. In particu-
lar, Johnson, Robertson, Seymour and Thomas [573] introduced and studied
the notion of the directed tree-width, and Berwanger, Dawar, Hunter and
Kreutzer [154] and Obdrzalek [731] came up with the notion of DAG-width.
There are several other directed width parameters, for example, Kelly-with
introduced by Hunter and Kreutzer [544].

While the authors of [154, 544, 573, 731] managed to obtain some ‘positive’
algorithmic results on digraphs of bounded directed tree-width, DAG-width
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and Kelly-width similar to those on undirected graphs with bounded tree-
width, there are several ‘negative’ complexity results obtained by Dankel-
mann, Gutin and Kim [241] and Kreutzer and Ordyniak [626] indicating
that the directed width parameters are of somewhat lesser interest than the
tree-width.

In the first subsection of this section we consider digraphs of bounded
tree-width and, in the second subsection, we study digraphs in which directed
width parameters are bounded.

2.13.1 Digraphs of Bounded Tree-Width

To illustrate the usefulness of tree-width, we will show that one can find, in
a linear time, a minimum size kernel* in a digraph whose underlying graph
is bounded by a constant tree-width. This result allows us to prove that, in
a planar digraph D of order n, one can check, in polynomial time, whether
D has a kernel of size O(log? n), and if D has such a kernel, then to find one
of minimal size.

A non-trivial use of the tree-width is given by Alon, Fomin, Gutin, Kriv-
elevich and Saurabh [21, 22] who proved fixed-parameter tractability of the
problem of verifying whether a digraph contains, as a subdigraph, an out-tree
with at least k leaves, i.e., vertices of in-degree zero (for the definition of fixed-
parameter tractability, see Section 18.4). A refinement of the approach in [21]
allowed Bonsma and Dorn [173, 174] to prove fixed-parameter tractability of
the problem of verifying whether a digraph has an out-branching with at
least k leaves. Another application of tree-width can be found in [472], where
Gutin, Razgon and Kim proved that the problem of checking whether a di-
graph has an out-branching with at least k non-leaves is also fixed-parameter
tractable.

A tree decomposition of an (undirected) graph G is a pair (S, T) where
T is a tree whose vertices we will call nodes and S = {S;: i € V(T)} is a
collection of subsets of V(G) (called bags) such that

L Uiev(r) Si =VI(G),
2. for each edge {v,w} € E(G), there is an i € V(T') such that v,w € S;,
and

3. for each v € V(G) the set of nodes {i: v € S;} forms a subtree of T

The width of a tree decomposition ({S; : ¢ € V(T')},T) is defined as the
number max;cy (7){|Si| — 1}. The tree-width of a graph G (tw(G)) is the
minimum width over all tree decompositions of G. The tree-width of a
digraph D (tw(D)) is the tree-width of its underlying graph.

It is not difficult to see that a connected digraph D is of tree-width one
if and only if D is a biorientation of a tree (Exercise 2.47). An undirected

4 A set S of vertices of a digraph D is a kernel if S is an independent set and
for each © € V(D) — S there is an out-neighbour in S. For more information on
kernels, see Section 3.8.
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graph G is called series-parallel if there is an ASP digraph D such that
G =UG(D). It is well-known (see, e.g., [253] by de Fluiter and Bodlaender)
that an undirected graph G has tree-width at most two if and only if each
block of G is series-parallel (a block of a graph G is a maximal connected
subgraph H of G such that H — z is connected for every z € V(H)).

There are several characterizations of undirected graphs of tree-width at
most k [601]. We will describe one of the most intuitive such characterizations.
A graph G is chordal, if every cycle in G of length at least four has a chord,
i.e., there is an edge connecting two non-consecutive vertices in the cycle. A
triangulation of a graph G is a spanning supergraph of G which is a chordal
graph.

Theorem 2.13.1 Let G be a graph with more than k vertices. The graph G
1s of tree-width at most k if and only if G has a triangulation whose mazimum
clique has at most k + 1 vertices. a

To facilitate our description below we make use of a nice tree decom-
position (see, e.g., [601] by Kloks). In a nice tree decomposition, we have
a binary rooted tree T, i.e., T' is a rooted tree such that every node has at
most two children. The nodes of T" are of four types:

e An insert node i. The node 7 in T has only one child j and there is a vertex
x € V not in S; such that S; = S; U {z}.

e A forget node i. The node ¢ in T has only one child j and there is a vertex
x € V not in S; such that S; = S; U {z}.

e A join node i has two children p and ¢. The bags S;, S, and S; are exactly
the same.

e A leaf node i is simply a leaf of T'.

It is not hard to transform a tree decomposition of G into a nice tree
decomposition. In fact, the following holds.

Lemma 2.13.2 [601] Given a tree decomposition of a graph G with n ver-
tices that has width k and O(n) nodes, we can find a nice tree decomposition
of G that also has width k and O(n) nodes in time O(n). O

We will use Lemma 2.13.2 in the following result by Gutin, Kloks, Lee
and Yeo [466].

Theorem 2.13.3 Let D be a digraph of order n. Let the underlying graph
G of D have a tree decomposition with O(n) nodes and of width at most t.
Then, in O(n4') time, we can either find a minimum size kernel in D or
determine that D has no kernel.

Proof: By Lemma 2.13.2, G has a nice tree decomposition with O(n) nodes
and of width at most ¢. Let (T, S) be such a nice tree decomposition of G.
Let S1,59,...,S, be the bags of the tree decomposition (i.e., the nodes of T'
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are 1,2,...,7). Let root denote the root node of T. Recall that every vertex
(and arc) in D lies in at least one of the bags.

Let Y; denote the union of the bags S; of the subtree of T with root
node i. For every i, consider a partition (K;, MC;, DC;) of S; (the three
sets of a partition are disjoint and every vertex of .S; is in one of the sets). A
(K;, MC;, DC;)-kernel is an independent set @ in D such that K; C Q C Y,
(DC; UMC;) N Q = 0 and every vertex in Y; — DC; either lies in Q or has
an out-neighbor in Q°.

The vertices in DC; may have an out-neighbor in @, or not. Since
(DC; UMC;)) N Q = 0, every vertex in MC; has an out-neighbor in Q.
We define k;(K;, MC;, DC;) as the minimal size of a (K;, MC;, DC;)-kernel,
if one exists. If it does not exist, then x,;(K;, MC;, DC;) = oc.

If we can compute k;(K;, MC;, DC;) for all partitions (K;, MC;, DC})
and all ¢, then

M= min{’{root(Kv Sroot - Ka 0) K C Sroot} (26)

gives us the size of a minimum size kernel in D.

Let i be a node of T. We show how to compute, in time O(4'), all pos-
sible x;(K;, MC;, DC;). In fact we can also compute the actual minimum
(K;, MC;, DC;)-kernels, for all possible partitions (K;, MC;, DC;) in O(4")
time, but we will leave the details of this to the reader. This will imply the
desired complexity above as T has O(n) vertices. We consider the cases when
1 is a leaf, ¢ has one child and ¢ has two children, separately. We assume that
if 4 does have some children, then all x;’s are known for these children. We
will for each step argue that we find the correct values.

Case 1: i is a leaf. There are O(3!%:!) distinct partitions (K;, MC;, DC;),
and we can easily find all of these in O(|S;|3/%!) time. For each partition
(K;, MC;, DC;) we can check whether K; is an independent set and every
vertex in MC; has an out-neighbor in K; in time O(|S;|?). If the outcomes
of both checks are positive, we have k;(K;, MC;, DC;) = | K;|. Otherwise, we
have x;(K;, MC;, DC;) = co. This gives us a time complexity of O(|Si\3|5i‘ +
155|235y € O(41%1) € O(4") (recall that |S;| <t 4+ 1).

Case 2: i has one child. Let j be the child of 7 in T". By the definition
of a nice tree decomposition, S; and S; are identical, except for one vertex,
say x, which lies in either \S; or S;. We consider the following cases.

If x € K;, then if z is adjacent to a vertex in K;, then k;(K;, MC;, DC})
00. Otherwise set DC; = DC; UN~(z), MC; = MC; — N~ (z) and K;
Ki — T. Clearly Iii(Ki, MCq,7D07) =1+ Hj(Kj, MCj,DOj) now holds.

If x € MC; and x has no out-neighbor in K, then x;(K;, MC;, DC;) = co.

If x € DC; or x € MC; and = has an out-neighbor in K;, then we have
Iii(Ki7 MCZ, DCZ) = Kj(KZ', ]\46’z — T, DOl — LL’)

If x € S, then we have the following:

5 MC and DC stand for Must Cover and Don’t Care if a vertex from the set has
an out-neighbor in the kernel.
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K,’(Ki7 MC,,DCZ) = min{/@j(Ki U{IZ?}, MC“ DC’,’)7 I{j(Ki7 MC’, U{JC}, DC’z)}

As all the above cases can be considered in O(|.S;|) time, we get the time
complexity O(|S;|3!:1) = O(4?) for computing k;’s for all possible partitions.

Case 3: 7 has two children. Let j and [ be the two children, and re-
call that S; = S; = ;. It is not difficult to see that x;(K;, MC;, DC;) is
equal to the minimum value of k;(K;, W, MC; U DC; — W) + r;(K;, MC; —
W,DC; U W) — |K;|, over all W C MC;. The above can be done in
O(2MCl) time and there are (I9:)218:/=m partitions (K;, MC;, DC;) with
|MC;| = m. Thus, we can compute k;’s for all possible partitions of S; in
time O(Y2I54 2m (15 lSil=m) — O(4t).

Since each k;(K;, MC;, DC;) is computed correctly above, we note that
our algorithm will return the correct value of p in (2.6). If we remem-
ber a minimum (K;, MC;, DC;)-kernel for every possible i and partition
(K;, MC;, DC};), then our algorithm can in fact return the minimum-sized
kernel, and not only its size. Certainly, if 4 = co, D has no kernel. a

A set S of vertices of an undirected graph G is called dominating if for
every € V(G)\ S there is a vertex s € S adjacent to z. The following result
was obtained by Fomin and Thilikos [328].

Theorem 2.13.4 Let G be a planar graph with n wvertices. There is an
O(n*)-time algorithm that either constructs a tree decomposition of G with
O(n) nodes and of width at most 9.55\/k, or determines that G has no dom-
inating set of size at most k. O

Observe that every kernel in a digraph D is a dominating set in UG(D).
This observation and Theorems 2.13.3 and 2.13.4 imply the following:

Theorem 2.13.5 [/66] Let D be a planar digraph of order n. There is an
O(n219'1‘/E + nt)-time algorithm that checks whether D has a kernel of size
at most k. Moreover, the algorithm finds a minimum size kernel in D, if D
has a kernel of size at most k. O

Theorem 2.13.5 implies that the problem to verify whether a planar graph
has a kernel with at most k vertices is fixed-parameter tractable.

Corollary 2.13.6 [/66] Let D be a planar digraph of order n. In polynomial
time, one can check whether D has a kernel of size O(log2 n), and if D has
such a kernel, then find one of minimal size. O

We conclude this subsection by briefly considering the complexity of
checking whether tw(G) < k for a graph G. Unfortunately, the problem is
NP-complete, but it is fixed-parameter tractable, and, provided, k is fixed,
there is a linear time algorithm for the problem (see [161, 601]).
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2.13.2 Digraphs of Bounded Directed Widths

In this subsection, we consider three of the most studied directed width pa-
rameters: DAG-widths, directed path-widths and directed tree-width. We will
start from the notion of DAG-width rather than that of directed tree-width
as the former seems easier to understand than the latter.

A DAG-decomposition (DAGD) of a digraph D is a pair (H, x) where
H is an acyclic digraph and x = {W}, : h € V(H)} is a family of subsets
of V(D) satisfying the following three properties: (i) V(D) = Uyev () Was
(ii) for all h,h', k" € V(H), if W' lies on a directed path from h to h”, then
WpNWhy € Wy, and (iil) if (u,v) € A(D), then there exist hy, he € V(H) (it
is possible that hy = hg) such that u € W),,, v € W}, and there is a directed
(h1,ho)-path in H. The width of a DAGD (H, x) is maxycy gy |[Wa| — 1.
The DAG-width of a digraph D (dagw(D)) is the minimum width over all
possible DAGDs of D.

A directed path decomposition (DPD) is a special case of DAGD
when H is a directed path. The directed path-width of a digraph D
(dpw(D)) is defined as the DAG-width above, but DAGDs are replaced by
DPDs.

The following notion of vertex separation allows one to evaluate the di-
rected path-width of a digraph without constructing any DPD. Let D be
a digraph and let 7 = (vy,v9,...,v,) be an ordering of V(D). We define
Vi=A{v,: 1 <j<itand 0V; = {v; € V; : (z,v;) € A(D) for some
z € V(D) \ V;}. With the vertex separation of D with respect to 7
given as vsr(D) = max; |0V}, the vertex separation of D is defined as
vs(D) = min{vs, (D) : = is an ordering of V(D)}.

It is well-known that, for undirected graphs, the path-width equals to
the vertex separation (see Kirousis and Papadimitriou [597]). We extend this
result to digraphs.

Theorem 2.13.7 For any digraph D, vs(D) = dpw(D).

Proof: Let m = (v1, v, . ..,v,) be an ordering of V(D) and suppose vs, (D) =
k. We will prove that dpw(D) < k. Set W; = {v;} UdV;_; for ¢ > 2 and
Wy = {v1}. We claim that (12...n,x), where x = {W1,Ws,..., W, }, is a
DPD of width k.

Obviously the property (i) of DPD is satisfied. To check the property
(ii), let us choose an arbitrary vertex v; € V(G) and see whether the sets
W; containing v; appear in a row. By the construction of W;’s, the vertex
v; appears in the set W; and does not appear in any W; with j < . If
there is no backward arc entering v;, this set is the only one containing v;
and there is nothing to prove. Otherwise let (v;/,v;) € A(D) is a backward
arc and let ¢ be the maximum such index. Observe that W,; and W; for
i < j <4’ contain v; and in fact no other set contains v;. To check the last
property (iii), it is enough to see that both end-vertices of every backward
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arc (v;,v;) € A(D) are in W;. It remains to observe that |W;| < k+ 1, which
implies that dpw(D) < k.

For the converse, let (12...1, x), where y = {W1, Wa,...,W;}, be a DPD
of width k. Without loss of generality we may assume that these sets are all
distinct. Let X3 = Wy and X; = W; \ W;_; for each ¢ > 2. Order the vertices
of V(D) as follows. We begin with the empty ordering (the 0-th iteration). At
the j-th iteration (1 < j <) we add a permutation of X to the end of the
previous iteration ordering. Suppose we have performed all [ iterations and
obtained an ordering m = (v1,va, ..., v,). We will prove that vs,(G) < k.

We will prove that |0V;| < k for each i. Consider an arbitrary vertex
v; € V(D) and suppose that v; was included in 7 at the j-th iteration, which
means v; € W;. Notice that V; C W; U ... U W;. We will first show that
0V; C W;. Consider an arbitrary backward arc (z,y) with x € V(D) \ V; and
y € Vi. Observe that y € W), for some p < j, and if x € W, then ¢ > j. By
the property (iii) of DPD, {z,y} C W for some s > j. Thus, by the property
(ii) of DPD, y € W,. Hence, we have shown that 0V; C W;, which implies
|0V;| < k 4 1. To improve this inequality, we will consider the following two
cases:

(a) V; is a proper subset of W7 U...UW);. Then 0V} is a proper subset of
W; and [0V;] < k.

(b) V; = Wy U...UW;. As above we can show that y € W, for some
j' > j. Thus, y € W41 and |0V;| < |[W; N W,41| < k. The last inequality
holds due to the fact that W; and W, are distinct.

In both cases we conclude that |0V;| < k, which completes the proof. O

It follows from Theorem 2.13.7 that each directed cycle is of directed
path-width 1.

Let Z be a set of vertices of a digraph D. A set S C V(D) — Z is Z-
normal if every directed walk that leaves and again enters S must traverse
a vertex of Z. For vertices r,r’ of an out-tree T" we write r < r’ if there is
a path from 7 to ' or r = r’. An arboreal decomposition of a digraph
D is a triple (R, X,W), where R is an out-tree (not a subdigraph of D),
X={Xe: ec A(R)} and W = {W, : r € V(R)} are sets of vertices
of D that satisfy two conditions: (1) {W, : r € V(R)} is a partition of
V(D) into nonempty sets, and (2) if for each e = (r',r"”) € A(R) the set
U{W, : r € V(R),r > 7"} is X.-normal. The width of (R, X, W) is the
least integer w such that for all » € V(R), W, UU,., X¢| < w + 1, where
e ~ r means that r is head or tail of e. The directed tree-width of D,
dtw(D), is the least integer w such that D has an arboreal decomposition of
width w.

Now we will study some basic results on the three directed width parame-
ters. The first lemma can be proved using only the definitions above (Exercise
2.48).

Lemma 2.13.8 Let D be a digraph. For d € {dag, dt,dp}, we have dw(D) =
0 if and only if D is acyclic. O
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Let D be a digraph. It is immediately follows from the definitions of
DAG-width and directed path-width that dagw(D) < dpw(D). It is easy
to show that dtw(D) < dpw(D) (Exercise 2.49) from the definitions of the
two parameters. Berwanger, Dawar, Hunter and Kreutzer [154] proved that
dtw(D) < 3-dagw(D) + 1. Thus, we have the following:

Lemma 2.13.9 For a digraph D, we have dagw(D) < dpw(D), dtw(D) <
dpw(D) and dtw(D) < 3 -dagw(D) + 1. O
The last two lemmas imply, in particular, that if dpw(D) = 1 then
dtw(D) = dagw(D) = 1. Thus, for every directed cycle C, we have
dpw(D) = dtw(C) = dagw(C) = 1. Lemma 2.13.9 has many applications
in this book.
Johnson, Robertson, Seymour and Thomas [573] proved that tw(G) =

—

dtw(@) for each undirected graph G and Obdrzilek [731] showed that

—

tw(G) = dagw (@) for each undirected graph G. Since the tree-width prob-
lem is N'P-hard, so are the problems of checking whether dtw(D) < k and
dagw(D) < k for a digraph D. However, there are O(n®*))-time algorithms
for the two problems [573, 731].

“— —

Since tw(G) = dtw(@) and tw(G) = dagw (@) for each undirected graph
G, it is easy to prove (Exercise 2.50) that dtw(D) < tw(D) and dagw(D) <
tw(D) for each digraph D.

2.14 Other Families of Digraphs

This section is devoted to digraphs of three classes: circulant digraphs, arc-
locally semicomplete digraphs and intersection digraphs.

2.14.1 Circulant Digraphs

For an integer n > 2 and a set S C {1,2,...,n — 1}, the circulant digraph
Cn(S) is defined as follows: V(C,(S)) ={1,2,...,n} and

A(Cn(8)) = {(iyi+j (mod n)): 1<i<mn,je S}

In particular, C,(1,2,...,n — 1) :IH(” and C,(1) = C, (it is customary
to omit the set brackets when S is given by a list of its elements). Also,
consecutive-1 digraphs introduced at the end of Section 2.5 are circulant
digraphs. Circulant digraphs are a special family of Caley digraphs, see, e.g.,
[568] and are of importance in many applications of graph theory, see, e.g.,
[269]. Circulant digraphs are of great interest in digraph theory as well, cf.
Sections 3.8.1, 6.9 and 15.6. We start from some basic properties of circulant
digraphs.
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Proposition 2.14.1 Let C,(S) be a circulant digraph. Then the following
holds:

(a) Cpn(S) has a 2-cycle if and only if there is a pair s,t of elements of S
such that s +t =n,

(b) the converse of Cp,(S) is isomorphic to Cy,(S),

(c) Cp(S) is strong if and only if ged(n, s1, S2,...,8p) = 1, where we have
{s1,82,...,8}=85. O

Part (a) is easy to see: if i—j and j—i, then we set s = i — j and
t=j—1;also, if s+t=mn,then (1,14+s)and (1+s,1+s+t)=(1+s,1)
are arcs. If n is odd |S| = (n — 1)/2, then C,,(S) is a tournament called a
rotational tournament by Alspach [35]. To prove (b) observe that C,,(—S5)
is the converse of C),(S), where —S = {—s: s € S}, and that the bijection
f(i) = n —1i of [n] to itself is an isomorphism of Cy,(S) to Cy,(—S). It seems
Ariyoshi [45] was the first to obtain Part (c); we leave the proof of (c¢) as an
exercise.

In applications it is important to know which circulant digraphs C), (S) are
|S|-strong [269] (since C.,(S) is |S|-regular, k(Cy,(S)) < |S| and so |S|-strong
connectivity is maximal possible for C,,(.5)). In [269] van Doorn obtained two
sufficient conditions:

Theorem 2.14.2 [269] A circulant digraph C,(S) is |S|-strong if at least
one of the following conditions holds:

(a) ged(n,s) =1 for each s € S,
(b) i €S for eachi=1,2,...,]|5]/2]. O

2.14.2 Arc-Locally Semicomplete Digraphs

A digraph D is arc-locally semicomplete if for every arc xzy of D, the
following two conditions hold:

(a) ifue N~ (x),v € N~ (y) and u # v, then u and v are adjacent,
(b) if u € Nt(z),ve Nt (y) and u # v, then u and v are adjacent.

This class of digraphs was introduced by Bang-Jensen in [70]. Clearly,
every semicomplete or semicomplete bipartite digraph is arc-locally semi-
complete. The same holds for extensions of cycles. Bang-Jensen [75] proved
that if we restrict ourselves to strong digraphs, the above three classes of
digraphs are, in fact, all arc-locally semicomplete digraphs.

Theorem 2.14.3 [75] A strong arc-locally semicomplete digraph is either
semicomplete or semicomplete bipartite or an extension of a cycle. a
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If an arc-locally semicomplete digraph D is non-strong, we do not have
a complete picture of how D ‘looks like’ apart from the case when every
vertex of D is on some cycle. In this case, Bang-Jensen [70] showed that
D is either semicomplete or semicomplete bipartite. The class of arc-locally
semicomplete digraphs was also studied by Galeana-Sanchez [381].

It is natural to define arc-in-locally (arc-out-locally) semicomplete
digraphs as digraphs satisfying the property (a) (the property (b)) above.
To the best of our knowledge, nobody has studied the structure of these two
classes of digraphs so far.

2.14.3 Intersection Digraphs

Let U and V be sets and let F = {(S,,Ty) : Sy, Ty C U and v € V} be
a family of ordered subsets of U (one for each v € V). The intersection
digraph corresponding to F is the digraph Dz = (V, A) such that vw € A
if and only if S, N T, # 0. The set U is called the universal set for Dr.
The above family of pairs form a representation of D. The concept of an
intersection digraph is a natural analogue of the notion of an intersection
graph and was introduced by Beineke and Zamfirescu [133] and Sen, Das,
Roy and West [806]. Since an arc is an ordered pair of vertices, every line
digraph L(D) is the intersection digraph of the family A(D’), where D’ is the
converse of D. It follows from the definition of an intersection digraph that
every digraph D is the intersection digraph of the family {(A™(v), A~ (v)) :
v € V(D)}, where AT (v) (A~ (v)) is the set of arcs leaving v (entering v).
Here the universal set is A(D).

Clearly, a digraph can be represented as the intersection digraph of various
families of ordered pairs. It is quite natural to ask how large the universal set
U has to be. For a digraph D the minimum number of elements in U such
that D = Dz for some family F of ordered pairs of subsets of U is called
the intersection number, in(D) of D. Sen, Das, Roy and West [806] prove
the following theorem for the intersection number of an arbitrary digraph D.
For a digraph D = (V| A), a set B C A is one-way if there is a pair of sets
X,Y C V (called a generating pair) such that B = (X,Y)p, that is, B is
the set of arcs from X to Y.

Theorem 2.14.4 [806] The intersection number of a digraph D = (V, A)
equals the minimum number of one-way sets required to cover A.

Proof: Let Bj,...,B; be a minimum collection of one-way sets covering
A and let (X1,Y7),...,(Xg, Yx) be the corresponding generating pairs. Let
Sy ={i: veX;},and T, = {i : v €Y;}. Then S, N T, # 0 if and only if
vw € A, showing that in(D) < k.

Now let U be a universal set of cardinality v = in(D) such that D has
a representation by a set of ordered pairs (S,,T) of subsets of U. We may
assume that U = [u]. Define u one-way sets covering A as follows: v € X if
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and only if 1 € S, and v € Y; if and only if i € T,,. Then vw € A if and only
if ve X;, weY; for some i. Thus, k < in(D). O

Notice that the minimum number of one-way sets required to cover A is
studied in Subsection 13.12.1.

A subtree intersection digraph is a digraph representable as the inter-
section digraph of a family of ordered pairs of subtrees in an undirected tree.
A matching diagram digraph is digraph representable as the intersection
digraph of a family of ordered pairs of straight-line segments between two par-
allel lines. An interval digraph is a digraph representable as the intersection
digraph of a family of ordered pairs of closed intervals on the real line. Sub-
tree intersection digraphs, matching diagram digraphs and interval digraphs
are ‘directed’ analogues of chordal graphs, permutation graphs and interval
graphs, respectively, where subtrees, straight-line segments and real line in-
tervals are also used for representation (see the book [421] by Golumbic).
While chordal graphs form a special family of undirected graphs, Harary,
Kabell and McMorris showed that every digraph is a subtree intersection
digraph.

Proposition 2.14.5 [/99] Every digraph is a subtree intersection digraph.

Proof: Let D = (V, A) be an arbitrary digraph. Let G = (U, E), U = VU{z},
E = {{z,v} : v eV}, x g V. Clearly, G is an undirected tree. Setting
Sy = G{v}) and T, = G{{z} U{w : wv € A}) provides the required
representation. O

The following construction by Miiller shows that every interval digraph
is a matching diagram digraph [708]. Let {([av,bo], [cv,dv]) : v € V(D)}
be a representation of an interval digraph D. To obtain a representation
{(Sy,Ty) : ve€V(D)} of D as a matching diagram digraph we set S, to be
the line segment between points (a,,0) and (b,, 1) in the plane, and T, to be
the line segment connecting the points (¢, 1) and (d,, 0).

There are several characterizations of interval digraphs, see, e.g., the pa-
pers [793] by Sanyal and Sen and [903] by West. We restrict ourselves to just
one of them.

Theorem 2.14.6 [806] A digraph D is an interval digraph if and only if
there exist independent row and column permutations of the adjacency matriz
M (D) of D which result in a matriz M’ satisfying the following property: the
zero entries of M’ can be labeled R or C such that every position above and
to the right of an R is an R and every position below and to the left of a C
is a C. O

None of the characterizations given in [793, 903] implies a polynomial
algorithm to recognize interval digraphs. Miiller [708] obtained such an algo-
rithm. A polynomial algorithm is also given in [708] to recognize unit interval
digraphs, i.e., interval digraphs that have interval representations, where all
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intervals are of the same length. Brown, Busch and Lundgren [182] showed
that a tournament of order n is an interval digraph if and only if it contains
a transitive tournament of order n — 1 (as a subdigraph).

2.15 Exercises

2.1.

2.2,

2.3.

2.4.
2.5.

2.6.
2.7.
2.8.
2.9.

2.10

2.11

2.12
2.13
2.14
2.15

Uniqueness of acyclic orderings. Prove that an acyclic digraph D has a
unique acyclic ordering if and only if D is traceable.

Linear time algorithm for finding an acyclic ordering of an acyclic
digraph. Verify that the algorithm given in the proof of Proposition 2.1.3
can be implemented as an O(n + m) algorithm using the adjacency list rep-
resentation (see Section 18.1).

Prove that a tournament is transitive if and only if it is acyclic. Hint: apply
Theorem 1.5.1.

Prove Proposition 2.3.1.

Let D be a semicomplete multipartite digraph such that every vertex of D
is on some cycle. Prove that D is unilateral.

In part (ii) = (i) of Theorem 2.4.1, prove that o(D) = L(Q).
Derive Corollary 2.4.2 from Theorem 2.4.1 (iii).
(=) Prove Proposition 2.4.3 using Theorem 2.4.1 (i) and (ii).

Prove the following simple properties of line digraphs:

(i) L(D) = P,—1 if and only if D & P,;

(ii) L(D) = C, if and only if D = C,.

Let D be a digraph. Show by induction that Lk(D) is isomorphic to the
digraph H, whose vertex set consists of walks of D of length k£ and a vertex

Vo1 ... v, dominates the vertex vivs ... vkVE4+1 for every vp41 € V(D) such
that vpvks+1 € A(D)

Using the results in Exercise 2.9, prove the following elementary properties
of iterated line digraphs: Let D be a digraph. Then

(i) LF(D) is a digraph with no arcs, for some k, if and only if D is acyclic;
(ii) if D has a pair of cycles joined by a path (possibly of length 0), then

lim ng = oo,
k— o0

where ny, is the order of LF(D);
(iii) if no pair of cycles of D is joined by a path, then for all sufficiently large
values of k, each connected component of L*(D) has at most one cycle.

Prove Proposition 2.4.4 by induction on k& > 1.
Prove Lemma 2.5.1.
Prove Lemma 2.5.5.

Prove Lemma 2.5.6.
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Prove Theorem 2.5.7.

Upwards embeddings of MVSP digraphs. Prove that one can embed
every MVSP digraph D into the Cartesian plane such that if vertices u, v have
coordinates (Zu,ys) and (Zv, Yo ), respectively, and there is a (u,v)-path in
D, then z, < z, and y, < y,. Hint: consider series composition and parallel
composition separately.

Prove Proposition 2.6.2. Hint: use induction on the number of reductions
applied for the ‘if’ part and the number of arcs for the ‘only if’ part.

Prove Proposition 2.6.3.

Prove part (b) of Lemma 2.7.4. Hint: if v and v are in S, then there is a

path from u to v in UG(S). Similarly, if z and y are in S’. Use these paths
(corresponding to sequences of non-adjacent vertices in D) to show that if
zu and vy are arcs, then u = v and x = y must hold if D is quasi-transitive.

(—) Construct an infinite family of path-mergeable digraphs, which are not
in-path-mergeable.

(=) Show that the following ‘claim’ is wrong. Let D be a locally in-
semicomplete digraph and let D contain internally disjoint paths Pi, P> such
that P; is an (x;,y)-path (i = 1,2) and 1 # x2. Then z1 and x2 are adjacent.

Orientations of path-mergeable digraphs. Prove that every orientation
of a path-mergeable digraph is a path-mergeable oriented graph.

(+) Prove Corollary 2.8.2.
Prove Proposition 2.9.2.

Path-mergeable digraphs which are neither locally in-semicomplete
nor locally out-semicomplete. Show by a construction that there ex-
ists an infinite class of path-mergeable digraphs, none of which is locally
in-semicomplete or locally out-semicomplete. Then extend your construction
to arbitrary degrees of vertex-strong connectivity. Hint: consider extensions.

(—) Path-mergeable transitive digraphs. Prove that a transitive digraph
D = (V, A) is path-mergeable if and only if for every z,y € V and every pair
zuy, zvy of (x,y)-paths of length 2, either u—v or v—u holds.

Prove Lemma 2.9.3.

Orientations of locally in-semicomplete digraphs. Prove that every
orientation of a digraph which is locally in-semicomplete is a locally in-
tournament digraph.

Strong orientations of strong locally in-semicomplete digraphs.
Prove that every strong locally in-semicomplete digraph on at least three
vertices has a strong orientation.

Prove Lemma 2.10.2.
Prove Corollary 2.10.7.
Prove Theorem 2.10.8.
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2.34.

2.35.

2.36.
2.37.

2.38.

2.39.
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2.42.

2.43.
2.44.

2.45.

2.46.

2.47.

2.48.
2.49.

2.50.

2.51.

2. Classes of Digraphs

(4+) Using Lemma 2.10.13, show that if D is a non-round decomposable
locally semicomplete digraph, then the independence number of UG(D) is at
most two.

(—) Give an example of a locally semicomplete digraph on 4 vertices with
no 2-king.

Prove Proposition 2.10.16.

Prove the assertion stated in Exercise 2.34 using Lemma 2.10.14 and Propo-
sition 2.10.16.

Extending in-path-mergeability. Prove that if P, Q are internally disjoint
(z, z)- and (y, z)-paths in an extended locally in-semicomplete digraph D and
no vertex on P — z is similar to a vertex of Q — z, then there is a path R
from either  or y to z in D such that V(R) = V(P) UV (Q).

Prove that there exists an O(mn + n?)-algorithm for checking if a digraph D
with n vertices and m arcs has a decomposition D = R[Hq,...,H,], r > 2,
where H; is an arbitrary digraph and the digraph R is either semicomplete
bipartite or connected extended locally semicomplete.

(=) Let D be a connected digraph which is both quasi-transitive and locally
semicomplete. Prove that D is semicomplete.

(—) Let D be a connected digraph which is both quasi-transitive and locally
in-semicomplete. Prove that the diameter of UG(D) is at most 2.

Traceable semicomplete bipartite digraph characterization. Prove
that a semicomplete bipartite digraph B is traceable if and only if it contains
a l-path-cycle factor F. Hint: demonstrate that if F consists of a path and
a cycle only, then B is traceable; use it to establish the desired result (Gutin
[445]). (See also Chapter 6.)

Prove that if a bipartite tournament has a cycle, then it has a 4-cycle.

Show that every orientation of a quasi-transitive digraph is a quasi-transitive
digraph.

(=) Prove that the intersection number in(D) < n for every digraph D of
order n. Show that this upper bound is sharp (Sen, Das, Roy and West [806]).

Prove Corollary 2.12.3. Hint: use that each edge is on the boundary of pre-
cisely two faces and that each face has at least three edges.

Using only the definition of tree-width prove that a connected digraph D is
of tree-width one if and only if D is a biorientation of a tree.

Prove Lemma 2.13.8.

Prove that dtw(D) < dpw(D) every digraph D using only the definitions of
directed tree-width and directed path-width.

(—) Using the fact that tw(G) = dtw(a) and tw(G) = dagw(a) for each
undirected graph G prove that dtw(D) < tw(D) and dagw(D) < tw(D) for
each digraph D.

Prove Proposition 2.14.1 (c).



3. Distances

In this chapter, we study polynomial algorithms which find distances in
weighted and unweighted digraphs as well as some related complexity re-
sults. We consider bounds on the diameter of a digraph and describe several
results on minimizing the diameter of an orientation of directed and undi-
rected graphs. We deal with kings, kernels and quasi-kernels in digraphs.

Additional terminology and notation are given in Section 3.1. Some basic
results on the structure of shortest paths in weighted digraphs are proved in
Section 3.2. In Section 3.3 we study algorithms for finding shortest paths from
a vertex to the rest of the vertices of weighted and unweighted digraphs. We
also consider the Floyd-Warshall algorithm to compute distances between all
pairs of vertices in a weighted digraph. In Section 3.4 we consider bounds on
the diameter of strong directed and oriented graphs. The problem of minimiz-
ing the diameter of an orientation of a bridgeless graph is studied extensively
in Section 3.5.

Section 3.6 is devoted to (almost) minimum diameter orientations of
graphs belonging to special families of directed and undirected graphs. Quasi-
transitive digraphs, semicomplete bipartite digraphs and locally semicom-
plete digraphs are considered in Subsection 3.6.1. We finish the subsection
with a conjecture for semicomplete multipartite digraphs. In Subsection 3.6.2,
we deal with extended digraphs. Cartesian products of undirected graphs are
considered in Subsection 3.6.3 and chordal graphs in Subsection 3.6.4.

The notion of kings is investigated in Section 3.7. This notion is related
to the study of domination in biology and sociology. We study kernels and
quasi-kernels in Section 3.8.

3.1 Terminology and Notation on Distances
Let D = (V, A) be a directed pseudo-graph. Recall that for a set W C V|

NiW) = |J Nt (w)-W, NpW) = |J N~ (w) - W.
weWw weWw

Let N),(W) =W, NA'(W) = NH (W), N5 (W) = N (W). For every posi-
tive integer p, we can define the pth out-neighbourhood of W as follows:
J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, 87
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NRP(W) = NSNSV (W) — pL_J N (W).
1=0

Similarly, one can define N,”(W) for every positive integer p. In par-
ticular, N*2(W) = NT(Nt(W)) — (W U N*(W)). Sometimes, N;?(W)
(NpP(W)) is called the open pth out-neighbourhood (open pth in-
neighbourhood) of W. We will also use the closed pth in- and out-
neighbourhoods of a set W of vertices of D which are defined as follows
(p>0):

NpW] =W, Ny’ [W]= ij NE(W), Np"W] = Np'(W).

To simplify the notation, we set NA[W] = NA'[W] and N[W] =
Ny [W]. See Figure 3.1.

VAVAN
VaY,

€

Figure 3.1 A digraph D. The out-neighbourhoods of the set W = {a,b} are

N™({a,0}) = {f,9}, N"*({a,b}) = {e}, N"*({a,b}) = {d} N*({a,b}) = {c}.
The closed out-neighbourhoods are NT[W] = {a,b, f,g}, NT2[W] = {a,b, e, f, g},
N [W] = {a,b,d.e, f,g}, N* W] = {a,b,c,de, f,g}.

Let D = (V, A, c) be a directed multigraph with a weight function c¢ :
A—TR on its arcs. Recall that the weight of a subdigraph D’ = (V, A’) of D is
given by c(A’) = >, 4 c(a). Whenever we speak about the length of a walk
we mean the weight of that walk (with respect to ¢). A negative cycle in a
weighted digraph D = (V| A, ¢) is a cycle W whose weight ¢(W) is negative.

We assume that D has no negative cycle, for otherwise the following def-
inition becomes meaningless. If = and y are vertices of D, then the distance
from x to y in D, denoted dist(x,y), is the minimum length of an (z,y)-
walk, if y is reachable from z, and otherwise dist(z,y) = oo. Since D has no
cycle of negative weight, it follows that dist(z,z) = 0 for every vertex € V.
It follows from Proposition 1.4.1 that there is a shortest (x,y)-walk which
is, in fact, a path (if D has no cycle of zero weight either, a shortest walk
is always a path). Furthermore, by Proposition 1.4.1, the distance function
satisfies the triangle inequality:

dist(x, z) < dist(z, y) + dist(y, z) for every triple of vertices z,y,z. (3.1)
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The above definitions are applicable to unweighted directed multigraphs
as well: simply take the weight of every arc equal to one (then, the length of
a walk in the ‘weighted’ and ‘unweighted’ cases coincide).

The distance from a set X to a set Y of vertices in D is

dist(X,Y) = max{dist(z,y) : z€ X,y Y}.! (3.2)

The diameter of D is diam(D) = dist(V, V). Clearly, D has finite diameter
if and only if D is strong. The out-radius rad* (D) and the in-radius
rad™ (D) of D are defined by

radt (D) = min{dist(z,V): 2 € V}, rad™ (D)= min{dist(V,z): = € V}.

Because of the obvious duality between out-radius and in-radius, in many
cases, we will consider only one of them. The radius of D is

rad(D) = min{(dist(z, V) + dist(V,2))/2: z € V}.

To illustrate the definitions above, consider the digraph D in Figure 3.1.
Here we have dist(a,V) = dist(b,V) = dist(e,V) = 4 and dist(c,V) =
dist(d, V) = dist(f,V) = dist(g, V) = 3. Furthermore, we have dist(V,¢) =
dist(V, f) = 4, dist(V,a) = dist(V,b) = dist(V,d) = 3 and dist(V,e) =
dist(V, g) = 2. Now we see that rad™ (D) = 3, rad™ (D) = 2, rad(D) = 2.5
and diam(D) = 4. Tt is also easy to see that dist({a,c},{d, f}) = 3.

The following proposition gives a characterization of weighted digraphs
D of finite out-radius.

Proposition 3.1.1 A weighted digraph D has a finite out-radius if and only
if D has a unique initial strong component.

Proof: A digraph with two or more initial strong components is obviously
of infinite out-radius. If D has only one initial strong component, then D
contains an out-branching (by Proposition 1.7.1). Thus, rad™ (D) < co. O

This proposition implies that a weighted digraph D has a finite in-radius if
and only if D has a unique terminal strong component. Notice that rad(D) <
oo if and only if D is strong.

For an undirected graph G, we can introduce the notions of distance

>
between pairs of vertices, vertex sets, radius, etc. by considering G.

3.2 Structure of Shortest Paths

In this section we study elementary, but very important properties of shortest
paths in weighted digraphs. We also consider some complexity results on
paths in directed and mixed weighted graphs.

! This definition may seem somewhat unnatural (with max instead of min), but it
simplifies some of the notation in this chapter and also appears quite useful.
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We assume that D = (V, A, ¢) is a weighted digraph with no negative
cycle.

Proposition 3.2.1 If P = zyxa ... 2 is a shortest (x1,xk)-path in D, then
Plx;,x;] is a shortest (z;, x;)-path for all 1 <i < j <k.

Proof: Suppose that z;Qx; is an (z;, z;)-path whose length is smaller than
that of P[z;,z;]. Then the weight of the walk W = Plz1,2;]QP[z;, zx] is
less than the length of P. However, by Proposition 1.4.1, and the fact that
D has no negative cycle, W contains an (z;,z;)-path R whose length is at
most that of W and hence is smaller than that of P, a contradiction. O

Let s be a fixed vertex of D such that dist(s, V') < co. Consider spanning
subdigraphs of D, each of which contains a shortest path from s to every
other vertex in D. The proof of the following theorem shows that given any
such subdigraph D’ of D, we can construct an out-branching of D rooted at
s, which contains a shortest (s, wu)-path for every u € V — s.

Theorem 3.2.2 Let D' and s be as above. There exists an out-branching
BF such that, for every u € V, the unique (s,u)-path in B is a shortest
(s,u)-path in D.

Proof: We will give a constructive proof showing how to build B} from any
collection {P, : v € V —s} of shortest paths from s to the rest of the vertices.

Choose a vertex u € V — s arbitrarily. Let initially B := P,. By Propo-
sition 3.2.1, for every x € V(B]), the unique (s,z)-path in B} is a shortest
(s,x)-path in D. Hence, if V(BS) = V, then we are done. Thus, we may
assume that there exists w ¢ V(B]). Let z be the last vertex on P, which
belongs to B . Define H as follows:

V(H) := V(B UV(P,[z,w]), A(H) := A(BI) U A(P,[z,w]).

We claim that, for every vertex z in P,[z,w], the unique (s,z)-path in H
is a shortest (s,x)-path in D. By Proposition 3.2.1, P,[s,z] is a shortest
(s,2z)-path in D. Since z € V(BY), the unique (s,z)-path @ in H has the
same length as P,[s, z]. Therefore, the length of the path QP, [z, z] is equal
to the length of the path P,[s, z]. Now observe that QP,[z,z] is the unique
(s,z)-path in H. We set BS := H and use an analogous approach to include
all vertices of D and preserve the desired property of B . a

Our constructive proof above implies the existence of a polynomial al-
gorithm to construct the final out-branching, starting from a collection of
shortest paths from s to all other vertices. We call such an out-branching a
shortest path tree from s. As we will see in Exercises 3.8 and 3.9, the
algorithms described in the next section can be easily modified so that they
construct a shortest path tree directly, while searching for the shortest paths.
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If we allow D to have negative weight cycles, then we obtain the following
result for shortest paths (recall that in the presence of negative cycles the
length of a shortest walk may not be defined, whereas the length of a shortest
path is still well-defined).

Proposition 3.2.3 It is N'P-hard to find a shortest path between a pair of
vertices of a given weighted digraph.

Proof: Let D = (V, A) be an (unweighted) digraph and let = # y be vertices
of D. Set c(uv) = —1 for every arc uv € A. We have obtained a weighted
digraph D’ = (V, A, ¢). Clearly, D' has an (z,y)-path of length 1 — n if
and only if D has a hamiltonian (x,y)-path. Since the problem of finding
a hamiltonian (z,y)-path is NP-complete (see Exercise 7.2) and D’ can be
constructed from D in polynomial time, our claim follows. a

Clearly D’ above has a negative cycle if and only if D has any directed
cycle. As we will show in Subsection 3.3.2, we can find a longest path in an
acyclic digraph in polynomial time, using a reduction to the shortest path
problem.

In Section 3.3, we will see that one can check whether a weighted digraph
has a negative cycle in polynomial time. However, unless P = NP, this
result cannot be extended to weighted mixed graphs, because of the following
theorem by Arkin and Papadimitriou [48].

Theorem 3.2.4 Given a weighted mized graph, it is N'P-complete to deter-
mine whether a negative cycle exists. a

It follows from Proposition 3.2.3 that it is NP-hard to find a shortest path
between a pair of vertices in a weighted mixed graph. More interestingly,
Arkin and Papadimitriou showed that the same is true even if we restrict
ourselves to weighted mixed graphs without negative cycles [48].

3.3 Algorithms for Finding Distances in Digraphs

In this section we describe well-known algorithms to find distances in weighted
and unweighted digraphs. Almost all algorithms which we describe are for
finding the distances from a fixed vertex of a digraph to the rest of the ver-
tices. If the given digraph is unweighted, then one can use the very simple
and fast breadth-first search algorithm that is introduced in Subsection 3.3.1.
If the given digraph D is weighted and acyclic, another fast and simple ap-
proach based on dynamic programming is provided in Subsection 3.3.2. When
D is an arbitrary digraph, but its weights are non-negative, Dijkstra’s algo-
rithm introduced in Subsection 3.3.3 solves the problem. When the weights
may be negative, but no negative cycle is allowed, the Bellman-Ford-Moore
algorithm given in Subsection 3.3.4 can be applied. This algorithm has the
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following additional useful property: it can be used to detect a negative cycle
(if one exists).

If we are interested in finding the distances between all pairs of vertices of
a weighted digraph D, we can apply the Bellman-Ford-Moore algorithm from
every vertex of D. However, there is a much faster algorithm, due to Floyd
and Warshall. We describe the Floyd-Warshall algorithm in Subsection 3.3.5.
The reader can find comprehensive overviews of theoretical and practical
issues on the topic in the papers [211] by Cherkassky and Goldberg and [212]
by Cherkassky, Goldberg and Radzik.

3.3.1 Breadth-First Search (BFS)

This approach allows one to find quickly the distances from a given vertex s
to the rest of the vertices in an unweighted digraph D = (V, A). BFS is based
on the following simple idea. Starting at s, we visit each vertex = dominated
by s. We set dist’(s,z) := 1 and s := pred(z) (s is the predecessor of ).
Now we visit all vertices y not yet visited and dominated by vertices x of
distance 1 from s. We set dist’(s,y) := 2 and = := pred(y). We continue
in this fashion until we have reached all vertices which are reachable from s
(this will happen after at most n— 1 iterations, by Proposition 1.4.1). For the
rest of the vertices z (not reachable from s), we set dist’(s, z) := oo. In other
words, we visit the first (open) out-neighbourhood of s, then its second (open)
out-neighbourhood, etc. A more formal description of BFS is as follows. At
the end of the algorithm, pred(v) = nil means that either v = s or v is not
reachable from s. The correctness of the algorithm is due to the fact that
dist(s, z) = dist'(s, z) for every = € V. This will be proved below.

BFS
Input: A digraph D = (V, A) and a vertex s € V.
Output: dist’(s,v) and pred(v) for all v € V.

1. For each v € V set dist’(s,v) := oo and pred(v) := nil.

2. Set dist/(s, s) := 0. Create a queue @ consisting of s.

3. While @ is not empty do the following. Delete a vertex u, the head of @,
from @ and consider the out-neighbours of u in D one by one. If, for an
out-neighbour v of u, dist’(s,v) = oo, then set dist’(s,v) := dist (s, u)+1,
pred(v) := u, and put v to the end of Q.

If D is represented by adjacency lists, the complexity of the above algo-
rithm is O(n + m). Indeed, Step 1 requires O(n) time. The time to perform
Step 3 is O(m) as the out-neighbours of every vertex are considered only once
and ), oy d*(x) = m, by Proposition 1.2.1.

To prove the correctness of BFS, it suffices to prove that dist(s,z) =
dist’(s,z) for every z € V. By Steps 2 and 3 of the algorithm, dist(s,z) <
dist’(s, ). Indeed, v1vy...vx, where v; = s, v, = 2 and v; = pred(v;y1)
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for every i € [k — 1], is an (s,z)-path. By induction on dist(s,z), we prove
that, in fact, the equality holds. If dist(s,z) = 0, then = s and the result
follows. Suppose that dist(s,z) = k > 0 and consider a shortest (s, z)-path
P. Let y be the predecessor of z, i.e., y = z. By the induction hypothe-
sis, dist’(s,y) = dist(s,y) = k — 1. Since y dominates x, by the algorithm,
dist’(s, ) < dist’(s,y) + 1 = k = dist(s, x). Combining dist(s, z) < dist'(s, z)
with dist’(s, z) < dist(s, ), we are done.

The BFS algorithm allows one to compute the radius, out-radius, in-
radius and diameter of a digraph in time O(n? + nm). Using the array pred
one can generate the actual paths. We finish this section with the following
two important observations which are stated as propositions. Proposition
3.3.1 follows from the description of BFS. Proposition 3.3.2 has already been
proved. In both propositions D = (V, A) is a directed multigraph with a
specified vertex s.

Proposition 3.3.1 Let U be the set of wvertices reachable from s. Then
(U, B), where B = {(pred(v),v) : v € U — s} is an out-branching in D(U)
with root s. O

We call the out-branching in the above proposition a BFS tree of D(U)
with root s, or simply a BFS tree from s. It is instructive to compare
Proposition 3.3.1 with Theorem 3.2.2.

Proposition 3.3.2 Let dist(s, V) < co. For every non-negative integer p <
dist(s, V'), we have NtP(s) ={v € V : dist(s,v) = p}. O

Given a directed multigraph D = (V, A) and a vertex s we call sets
NO(s), N+ (s), N+2(s), N¥3(s), ...

the distance classes from s. By the proposition above, N*%(s) consists

precisely of those vertices whose distance from s is i. See Figure 3.2 for an

illustration of a BFS tree and the corresponding distance classes.
Summarizing the discussion above we obtain the following.

Theorem 3.3.3 When applied to a directed multigraph D and a vertex s in
D, the BFS algorithm correctly determines a BFS tree T from s in D in time
O(n+m). Furthermore, the distance classes from s in D are the same as the
distance classes from s in T. a

3.3.2 Acyclic Digraphs

Let D = (V,A,c) be an acyclic weighted digraph. We will show that the
distances from a vertex s to the rest of the vertices can be found quite easily,
using dynamic programming. Without loss of generality, we may assume that
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w X z

Figure 3.2 A digraph D with a BFS tree indicated by the bold arcs. The distance
classes from s are N%(s) = s, N1 (s) = {u,w}, NT2(s) = {v,z,y} and NT3(s) =
{z}.

the in-degree of s is zero. Let £ = vy, vs, ..., v, be an acyclic ordering of the
vertices of D such that v; = s. Clearly, dist(s,v;) = 0. For every i, 2 <i <mn,
we have
dist(s, v) = {min{dist(s,vj) + c(vj,v;) 1 vj € N~ (v;)} if N*(Q.)i) #0
00 otherwise.

(3.3)
The correctness of this formula can be shown by the following argument.
We may assume that v; is reachable from s. Since the ordering L is acyclic,
the vertices of a shortest path P from s to v; belong to {vy,vs,...,v;}. Let
vg be the vertex dominating v; in P. By induction, dist(s,vy) is computed
correctly using (3.3). The term dist(s,vy) + ¢(vk, v;) is one of the terms on
the right-hand side of (3.3). Clearly, it provides the minimum.

The algorithm has two phases: the first finds an acyclic ordering, the
second implements (3.3). The complexity of this algorithm is O(n +m) since
the first phase runs in time O(n 4+ m) (see Section 2.1) and the second phase
requires the same asymptotic time due to the formula > _,,d~(z) = m in
Proposition 1.2.1. Hence we have shown the following:

zeV

Theorem 3.3.4 The shortest paths from a fized vertex s to all other vertices
can be found in time O(n + m) for acyclic digraphs. O

We can also find the length of longest (s,z)-paths in linear time in any
acyclic digraph, by replacing the weight c(uv) of every arc uv with —c(uv). In
particular, we can see immediately that the longest path problem for acyclic
digraphs is solvable in polynomial time. In fact, a longest path of an acyclic
digraph can always be found in linear time:

Theorem 3.3.5 For acyclic digraphs a longest path can be found in time
O(n+m).

Proof: Exercise 3.6. O

3.3.3 Dijkstra’s Algorithm

The next algorithm, due to Dijkstra [259], finds the distances from a given
vertex s in a weighted digraph D = (V, A,¢) to the rest of the vertices,
provided that all the weights of arcs are non-negative.
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In the course of the execution of Dijkstra’s algorithm, the vertex set of D
is partitioned into two sets, P and Q). Moreover, a parameter ¢, is assigned
to every vertex v € V. Initially all vertices are in @. In the process of the
algorithm, the vertices reachable from s move from @ to P. While a vertex
v is in @, the corresponding parameter 4, is an upper bound on dist(s,v).
Once v moves to P, we have §,, = dist(s,v). A formal description of Dijkstra’s
algorithm follows.

Dijkstra’s algorithm

Input: A weighted digraph D = (V] A, ¢), such that ¢(a) > 0 for every a € A,
and a vertex s € V.

Output: The parameter ¢, for every v € V such that §, = dist(s,v).

1. Set P:=0,Q:=V,d;:=0and §, := oo for every v € V — s.
2. While @ is not empty do the following.
Find a vertex v € @ such that §, = min{d, : u € Q}.
Set Q:=Q —v, P:=PUw.
8y == min{d,, d, + c(v,u)} for every u € Q N N T (v).

To prove the correctness of Dijkstra’s algorithm, it suffices to show that
the following proposition holds.

Proposition 3.3.6 At any time during the execution of the algorithm, we
have that

(a) For every v € P, §, = dist(s,v).
(b) For every u € Q, &, is the distance from s to u in the subdigraph of D
induced by P U u.

Proof: When P = ), §, = dist(s, s) = 0 and the estimates §, = co, u € V —s,
are also correct.

Assume that P = Py and Q = Qg are such that the statement of this
proposition holds. If Qg = @, we are done. Otherwise, let v be the next
vertex chosen by the algorithm. Since Part (b) follows from Part (a) and
the way in which we update §, in the algorithm, it suffices to prove Part
(a) only. Suppose that (a) does not hold for P = Py U v. This means that
dy > dist(s,v). Let W be a shortest (s,v)-path in D. Since §, > dist(s,v), W
must contain at least one vertex from ) = Qg — v. Let u be the first vertex
on W which is not in FPy. Clearly, u # v. By Proposition 3.2.1 and the fact
that u € W, we have dist(s, u) < dist(s, v). Furthermore, since the statement
of this proposition holds for Py and Qq, we obtain that dist(s,u) = §,. This
implies that §, = dist(s,u) < dist(s,v) < J,. In particular, §,, < d,, which
contradicts the choice of v by the algorithm. a

Each time a new vertex v is to be chosen we use O(n) comparisons to find
min{d, : u € @Q}. Updating the parameters takes O(n) time as well. Since
Step 2 is performed n—1 times, we conclude that the complexity of Dijkstra’s
algorithm is O(n?). In fact, Dijkstra’s algorithm can be implemented (using
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so-called Fibonacci heaps) in time O(nlogn + m) (see the paper [360] by
Fredman and Tarjan).

Summarizing the discussion above we obtain

Theorem 3.3.7 Dijkstra’s algorithm determines the distances from s to all
other vertices in time O(nlogn + m). O

Figure 3.3 illustrates Dijkstra’s algorithm.

Figure 3.3 Execution of Dijkstra’s algorithm. The white vertices are in Q; the
black vertices are in P. The number above each vertex is the current value of the
parameter §. (a) The situation after performing the first step of the algorithm. (b)—
(g) The situation after each successive iteration of the loop in the second step of
the algorithm. The fat arcs indicate the corresponding shortest path tree found by
the algorithm if extended as in Exercise 3.8.
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It is a challenging open question whether there exists a linear algorithm
for calculating the distances from one vertex to all other vertices in a given
digraph with no negative cycles. It is easy to see that Dijkstra’s algorithm
sorts the vertices according to their distances from s. Fredman and Tarjan
[360] showed that if Dijkstra’s algorithm can be implemented as a linear time
algorithm, then one can sort numbers in linear time. Thorup [870] showed
that the opposite claim holds as well: if one can sort numbers in linear time,
then Dijkstra’s algorithm can be implemented as a linear time algorithm.
Currently, no one knows how to sort in linear time?.

In the case when D is the complete biorientation of an undirected graph
G and c(u,v) = ¢(v,u) holds for every arc uv of D, Thorup [871] recently
gave a linear algorithm for calculating shortest paths from a fixed vertex to all
other vertices. Thorup’s algorithm avoids the sorting bottleneck by building a
hierarchical bucketing structure, identifying vertex pairs that may be visited
in any order.

3.3.4 The Bellman-Ford-Moore Algorithm

This algorithm originates from the papers [134] by Bellman, [330] by Ford
and [705] by Moore. Let D = (V, A, ¢) be a weighted digraph, possibly with
arcs of negative weight. The algorithm described below can be applied to find
the distances from a given vertex s in D to the rest of the vertices, provided
D has no negative cycle.

Let §(v,m) be the length of a shortest (s,v)-path that has at most m
arcs. Clearly, §(s,0) = 0 and d(v,0) = oo for every v € V —s. Let v € V. We
prove that for every m > 0,

0(v,m + 1) = min{o(v, m), min{d(u, m) + c(u,v) : v € N~ (v)}}. (3.4)

We show (3.4) by induction on m. For m = 0, (3.4) trivially holds. For
m > 1, (3.4) is valid due to the following argument. Assume that there is a
shortest (s,v)-path P with no more than m+1 arcs. If P has at most m arcs,
its length is d(v,m), otherwise P contains m + 1 arcs and, by Proposition
3.2.1, consists of a shortest (s,u)-path with m arcs and the arc uv for some
u € N~ (v). If every shortest (s, v)-path has more than m+1 arcs, then there
is no in-neighbour w of v such that §(u, m) < oo. Therefore, (3.4) implies
correctly that 6(v,m + 1) = oc.

Since no path has more than n — 1 arcs, 6(v,n — 1) = dist(s, v) for every
v € V — s. Thus, using (3.4) for m =0,1,...,n — 2, we obtain the distances
from s to the vertices of D. This results in the following algorithm.

2 Some readers may be confused about this as they may know of a lower bound
of 2(nlogn) for sorting a set of n numbers. However, this lower bound is only
valid for comparison based sorting. There are algorithms for sorting n numbers
that are faster than £2(nlogn), see e.g. the paper [41] by Andersson.
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The Bellman-Ford-Moore algorithm

Input: A weighted digraph D = (V, A, ¢) with no negative cycle, and a fixed
vertex s € V.

Output: The parameter §, for every v € V such that §, = dist(s,v) for all
velV.

1. Set d5 := 0 and &, := oo for every v € V — s.
2. For i = 1ton—1 do: for each vu € A update the parameter d,, by setting
0y = min{d,, §, + c(v,u)}.

It is easy to verify that the complexity of this algorithm is O(nm). Hence
we have

Theorem 3.3.8 When applied to a weighted directed graph D = (V, A, c)
with no negative cycle and a fized vertex s € V, the Bellman-Ford-Moore
algorithm correctly determines the distances from s to all other vertices in D
in time O(nm). O

Figure 3.4 illustrates the execution of the Bellman-Ford-Moore algorithm.

Checking whether D has no negative cycle can be accomplished as fol-
lows. Let us assume that D is strong (otherwise, we will consider the strong
components of D one by one; an effective algorithm to build the strong com-
ponents is described in Chapter 2). Let us append the following additional
step to the above algorithm:

3. For every arc vu € A do: if 6, > 0, + c(vu) then return the message ‘the
digraph contains a negative cycle’.

Theorem 3.3.9 A strong weighted digraph D has a negative cycle if and
only if Step 8 returns its message.

Proof: Suppose that D has no negative cycle. By the description of Step
2 and Proposition 3.2.1, §, < §, + c¢(vu) for every arc vu € A. Hence, the
message will not be returned.

Assume that D has a negative cycle Z = vivs...vxv1. Assume for the
purpose of contradiction that Step 3 of the Bellman-Ford-Moore algorithm
does not return the message. Thus, in particular, §,, < &,,_, + ¢(v;—1v;) for
every i € [k], where vy = vi. Hence,

k k k
Z by, < Z Oy, y + Z c(vi—1v;).
i=1 i=1 1

i=

Since the first two sums in the last inequality are equal, we obtain 0 <
Zle c(vi—1v;) = ¢(Z); a contradiction. O
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(e) (f)

Figure 3.4 Execution of the Bellman-Ford-Moore algorithm. The vertex labellings
and arc weights are given in the first digraph. The values of the parameter ¢ are
given near the vertices of the digraphs (a)—(f). In the inner loop of the second step
of the algorithm the arcs are considered in the lexicographic order: ab, ac, ba, bc,
¢cb, da, dc, ec, ed, sd, se. (a) The situation after performing the first step of the
algorithm. (b)—(f) The situation after each of the five successive executions of the
inner loop in the second step of the algorithm.

3.3.5 The Floyd-Warshall Algorithm

The above algorithms can be run from all vertices to find all pairwise dis-
tances between the vertices of a strong digraph D. However, if D has nega-
tive weight arcs, but does not contain a negative cycle, we may only use the
Bellman-Ford-Moore algorithm n times, which will result in O(n?m) time
(see Exercise 3.19 for a faster method). The Floyd-Warshall algorithm will
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find the required distances faster, in O(n?®) time. According to Skiena [822], in
practice, the algorithm even outperforms Dijkstra’s algorithm applied from n
vertices (when the weights in D are all non-negative) due to the simplicity of
its code (and, thus, smaller hidden constants in the time complexity). The al-
gorithm originates from the papers [324] by Floyd and [900] by Warshall. We
assume that we are given a strong weighted digraph D = (V, A, ¢) that has
no negative cycle. In this subsection, it is convenient to assume that V = [n].

Denote by 677 the length of a shortest (i,j)-path in D([m — 1] U {i, j}),
for all 1 < m < n — 1. In particular, §;; is the length of the path ij, if it
exists. Observe that a shortest (¢,7)-path in D([m] U {4, j}) either does not
include the vertex m, in which case 5;?“ = 67", or does include it, in which

ij
m+1l _ em m
case 0,77 = 0, + 05,5 Therefore,

5;}”1 = min{d;7, 07, + s }- (3.5)
Observe that 67" = 0 for all i € [n], and, furthermore, for all pairs i, j such
that i # j, 8;; = c(i,7) if ij € A and §j; = oo, otherwise. Formula (3.5) is
also correct when there is no (¢, j)-path in D{([m] U {7, j}). Clearly, 5;;“ is
the length of a shortest (i,7)-path (in D). It is also easy to verify that O(n?)
operations are required to compute 6;}“ for all pairs 4, j.

The above assertions can readily be implemented as a formal algorithm
(the Floyd-Warshall algorithm, see Exercise 3.14). The Floyd-Warshall al-
gorithm allows one to find the diameter and radius of a weighted digraph
without cycles of negative weight in O(n?) time. Using the algorithm, we
may check whether D has no negative cycle. For simplicity let us assume, as
above, that D is strong. Then the verification can be based on the following
theorem (see, e.g., Lawler’s book [636]) whose proof is left to the interested
reader as Exercise 3.15.

Theorem 3.3.10 A weighted digraph D has a negative cycle if and only if
0m < 0 for some m,i € [n]. O

3.4 Inequalities on Diameter

For a network representing a certain real-world system, it is desirable to have
a small diameter as it increases the reliability of the system (see, e.g., Fiol,
Yebra and Alegre [316]). However, networks representing real-world systems
normally do not have many arcs to avoid too costly constructions. The objec-
tives of minimizing the diameter and the size of a digraph clearly contradict
each other. Therefore, it is important for a designer to know what kind of
trade-off can be achieved. The inequalities of this section give some insight
into this problem.
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It is well-known that, in a connected undirected graph G, we have
rad(G) < diam(G) < 2rad(G). This inequality holds also for strong digraphs
(for our definition of radius).

Proposition 3.4.1 For a strong digraph D = (V, A), we have rad(D) <
diam(D) < 2rad(D).

Proof: Clearly, rad(D) < diam(D). Let = be a vertex of D such that
(dist(z, V) + dist(V, z))/2 = rad(D), and let y, z be vertices of D such that
dist(y, z) = diam(D). Since dist(y, z) < dist(y, z) + dist(z, 2) < 2rad(D), we
conclude that diam(D) < 2rad(D). O

The following simple bound (called the Mooore bound) on the order of a
strong digraph is important in certain applications [316]. We leave its proof
to the reader (Exercise 3.23).

Proposition 3.4.2 Let n, A and d be the order, the maximum out-degree
and the diameter, respectively, of a strong digraph D. Thenn < 14+ A+ A%+
coo 4+ AD O

The Moore bound is attained for A = 1 by the cycle éd+1 and for d = 1
by the complete digraph on A + 1 vertices. However, it is well-known (see
Bridges and Toueg [181] and Plesnik and Zndm [752]) that this bound cannot
be attained for A > 1 and d > 1. Therefore,

Ad+1 —1

S TAT

for A > 1 and d > 1. After simple algebraic transformations, we obtain the
following:

Proposition 3.4.3 Let n, A and d be the order, the maximum out-degree
and the diameter, respectively, of a strong digraph D. If A > 1 and d > 1,
then d > [log 5 (n(A —1) +1)]. O

The cases d = 2,3 have received special consideration. For A = 2, Miller
and Fris [699] proved that there is no 2-regular digraph of diameter d > 3 and
order n = A+A%+4...4 A%, 3-regular digraphs of order n = A+ A%+ ..+ A?,
with A = 3, have been studied by Baskoro, Miller, Plesnik and Zndm [126].

The following two theorems solve the problems of establishing lower and
upper bounds for the diameter of a strong digraph. Theorem 3.4.4 was proved
by Goldberg [418]; Theorem 3.4.5 was derived by Ghouila-Houri [402].

Theorem 3.4.4 Let D be a strong digraph of order n and size m, m > n+1,

and let g(n,m) = mef;iJ Then diam (D) > g(n,m). This bound is the best

possible. a
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Theorem 3.4.5 Let D be a strong digraph of order n and size m. Then
diam(D) < n—1, if n < m < (n? +n — 2)/2 and, otherwise, we have

diam(D) < [n+ 1 — \/Qm —n?—n+ 1], otherwise. O

<
<

Now we consider a more refined upper bound on the diameter of an eule-
rian digraph obtained by Soares [826].

Theorem 3.4.6 Let D = (V, A) be an eulerian digraph of order n, diameter
d and minimum in-degree r, and let

t
fln,rt) maX{Q t+3<7‘+1 1)}

where t = d mod 3 . Then d < f(n,r,t).

Proof: We may assume that d > 3. Let v,w € V such that dist(v,w) = d
and let V; = N*i(v) fori = 0,1,...,d. Clearly, Vo, Vi, ..., Vg is a partition of
V. Consider three consecutive sets V;_1, Vj, Vj41 of the partition. Recall that
(X,Y) denotes the set of arcs with tail in X and head in Y. By the definition
of the partition, we have

(Vjvv) = (Vj’Vj)U(VjJ/J'-‘rl)U(V W)v (36)

where W = VpUV1U...UV;_1. By Corollary 1.7.3, |(V;, W)| < |(V\W W)| =
|(W, V\W)|. By the definition of the partition (W, V\W) = (V;_1,V;). Since
the minimum out-degree of D is r, we have |(V}, V)| > r|V;|. Also, we have

[V, VL < V31V = 1), [(V5 Vie)l S VillVigal, [(Vien, Vi)l < Vil
Therefore it follows from (3.6) that
rlVil < [V3I(Vil = 1) + [V IVl + [V l[V]-

Thus,
\Vica| + Vi + |Viga] > r + 1. (3.7)

Since d* (v) > r and d~ (w) > r, we have |Vo|+|Vi| > r+1 and |Vy_1|+|Va| >
r+1. Adding these two inequalities to inequality (3.7) for j = 3,6,...,3|(d—
3)/3| and to the inequalities |V;| > 1 for the remaining ¢t = d mod 3 sets V;,

we obtain
4 d—t
= Vil > Nl —+1 t
n ;|J|(T+)( 3 +>+

which implies the desired inequality. a

Soares [826] showed that the bound of Theorem 3.4.6 is best possible by
constructing a strong r-regular digraph D of order n with diameter | f(n,r,t)]
for all integers n and r such that n — 1 > r > 2.
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For oriented digraphs the upper bound of Theorem 3.4.6 can be improved.
Let D be an eulerian oriented graph of order n. Dankelmann [240] proved that
that diam(D) < W + 2. For given n and 6°, Knyazev [603] constructed

strong 6°-regular oriented graphs of order n and of diameter larger than
ﬁﬁ-l — 4. This shows that Dankelmann’s upper bound is sharp modulo an
additive constant.

For a strong oriented graph D, an obvious upper bound on its diameter
is diam(D) < Ip(UG(D)), where 1p(G) denotes the length of a longest path
in a graph G. This bound is sharp due to the following result by Gutin [455].
A short proof of this result was given by Bondy [166].

Theorem 3.4.7 Let G be a connected bridgeless graph. Then
max{diam(D) : D € §(Q)} =1p(G),
where S(G) is the set of strong orientations of G. O

Oriented graphs of diameter 2 and minimum size (for fixed order n) were
discussed by Fiiredi, Horak, Pareek and Zhu [368]. (If we consider digraphs
instead of oriented graphs, the minimum size can be found trivially: it is

attained by I?l,n_l.) Let f(n) be the minimum size of a strong oriented
graph of diameter 2 and order n. The authors of [368] proved that

(I =o(1))nlogsn < f(n) < nlogyn+ O(nlog, log, n).
They stated the following:
Conjecture 3.4.8 We have f(n) > nlogyn + (3 + o(1))nlog, log, n.
We will finish this section by the following conjecture of Shen [815].

Conjecture 3.4.9 Let D be a strong digraph of order n, girth g and mini-
mum out-degree at least r. Then diam(D) <n — (r—1)(g—1) — 1.

Shen [815] showed that the bound in Conjecture 3.4.9 cannot be decreased.
The conjecture is trivial for either r = 1 or g = 2. Shen [815] proved the
conjecture for » = 2. It is easy to see that Conjecture 3.4.9 implies the
conjecture of Caccetta and Haggkvist (Conjecture 8.4.1).

3.5 Minimum Diameter of Orientations of Multigraphs

Readers may find the following complexity result surprising.

Theorem 3.5.1 (Chvatal and Thomassen) [22/] It is N'P-complete to
decide whether an undirected graph admits an orientation of diameter 2. O
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For a bridgeless multigraph G, let diamu,(G) denote the minimum di-
ameter of an orientation of G. We will present a minor modification of the
original proof of Theorem 3.5.1 by Chvétal and Thomassen [224]. The main
difference is in the use of Lemma 3.5.2 (which is applied to two different
results in this section). Define a bipartite tournament BT, with partite
sets U, W, each of cardinality s, as follows. Let U = {uj,us,...,us} and
W = {wy,ws,...,ws}. The vertex u; dominates only vertices w;, w;y1,...,
Wi |s/2)—1 (the subscripts are taken modulo s) for every i € [s].

Lemma 3.5.2 Let s > 2. The diameter diam(BTs) equals 3. In particular,
dist(U, U) = dist(W, W) = 2.

Proof: Clearly, it suffices to show that dist(U,U) = dist(W, W) = 2. This
follows from the fact that, for every i # j, we have Nt (u;) — N*(u;) # 0
and, hence, there is a vertex w € W such that u;—w—u;. a

Lovész [653] proved that it is NP-hard to decide whether a hypergraph of
rank? 3 is 2-colourable. By the result of Lovasz, Theorem 3.5.1 follows from
the next theorem.

Theorem 3.5.3 Given a hypergraph H of rank 3 and order n, one can con-
struct in polynomial time (inn) a graph G such that diamy,, (G) = 2 if and
only if H is 2-colourable.

Proof: Let k be the integer satisfying 8 < k < 11 and n + k is divisible by 4.
Let Hy be a hypergraph obtained from H by adding k new vertices vy, . .., k.
Moreover, append three new edges {{v;,vi+1}: i = 1,2,3} to Hy if H has an
odd number of edges, and add four new edges {{v;,vi+1}: i =1,2,3,4} to
Hj otherwise. Observe that Hy has an even number of edges, which is at least
four. To construct G, take disjoint sets R and @ such that the elements of R
(Q) are in a one-to-one correspondence with the vertices (the edges) of Hy.
Let G(R) and G(Q) be complete graphs, and p € R and ¢ € @ be adjacent if
and only if the vertex corresponding to p belongs to the edge corresponding
to ¢ (in Hp).

Append four new vertices wy, we, w3, w4 and join each of them to all the
vertices in R U @. Finally, add a new vertex x and join it to all the vertices
in R. We show that the obtained graph G has the desired property. (Clearly,
G can be constructed in polynomial time.)

Assume that G admits an orientation G* of diameter 2. For a vertex
u € R, set f(u) = 0 if and only if x—u in G*; otherwise, f(u) = 1. Since
distg= (z,q) = 2 (distg« (g, z) = 2, respectively) for each ¢ € @, every edge e
of H contains a vertex y such that f(y) = 0 (f(y) = 1, respectively). Thus
H is 2-colourable.

Now assume that H is 2-colourable. Then Hy admits a 2-colouring which
generates a partition R = Ry U Ry such that every edge of Hy has a vertex

3 Recall that the rank of a hypergraph is the cardinality of its largest edge.
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corresponding to an element from R; and |R;| > 4 (for every ¢ = 1,2). An
orientation G’ of G of diameter 2 is defined as follows. Orient the edges in
each complete graph G(L) € {G(R1), G(R2), G(Q)} such that the resulting
tournament contains the bipartite tournament BTjy,. Let A;, B; be the par-
tite sets of the bipartite tournaments in G(R;) (i = 1,2) and let A, B be the
partite sets of the bipartite tournament in G(Q). The rest of the edges in G
are oriented as follows:

z—R1—Ry—z, Ri—Q—Ry,
(A1 @] AQ)H’U)l‘)A, Bﬂwlﬂ(Bl @] BQ),
(Al @] AQ)"U/Q*)B, A*VIUQH(Bl U BQ),
(Bl @] Bg)—>'u}3—>A7 B—>U}3—>(A1 @] AQ),
(Bl @] Bg)—>U)4—>B, A—>’LU4—>< )

Using Lemma 3.5.2, it is not difficult to verify that diam(G’) = 2.
example, to show that dlStg/(Al,V(G,)) < 2 and distg (V(G'), 41) < 2,
suffices to observe that distg/ (A1, A1) =2 and

BiURyUQU {wy,we} € NT(Ay),
{z, w3, ws} € NT (B URy UQU {wy,ws}),
By U{z,ws,ws} C N~ (Ay),
N™(ByU{z,w3,ws}) C RoUQU {wy,ws}.

O

Chvétal and Thomassen [224] dealt with the following parameter which

we call the strong radius. The strong radius of a strongly connected digraph
D = (V, A), srad(D), is equal to

min{max{dist(v, V), dist(V,v)} : ve V}.

Chvéatal and Thomassen [224] showed that it is A'P-hard to decide whether
a graph admits a strongly connected orientation of strong radius 2. The
strong radius is of interest because, in particular, srad(D) < diam(D) <
2srad(D) for every strongly connected digraph D (this follows from the fact
that rad(D) < srad(D) for every strong digraph D and Proposition 3.4.1).
Following [224], we prove a sharp upper bound for the value of the strong
radius of a strong orientation of a bridgeless connected multigraph. The first
part of the proof of Theorem 3.5.4 is illustrated in Figure 3.5.

Theorem 3.5.4 [22/] Every bridgeless connected multigraph G = (V, E) ad-
mits an orientation of strong radius at most (rad(G))? + rad(Q).

Proof: We will show a slightly more general result. Let w € V be arbi-
trary and let distg(u, V') = r, then there is an orientation L of G such that
disty, (u, V) <72 47 and distp (V,u) <72 + 7.

Since G is bridgeless, every edge uv is contained in some undirected cycle;
let k(v) denote the length of a shortest cycle through wv. It is not difficult to
prove (see Exercise 3.24) that for every v € N(u), k(v) < 2r + 1.
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Figure 3.5 Constructing the orientation D of H in the proof of Theorem 3.5.4.
The integers on arcs indicate the step number in the process of obtaining D.

We claim that there is a subgraph H of G and an orientation D of H with
the following properties:

(a) No(u) C V(H).

(b) For each v € N(u), D has a cycle C, of length k(v) containing either uv
or vu.

(¢) D is the union of the cycles C,.

Observe that by this claim and k(v) <2r+1,
max{distp(u, V (D)), distp(V(D),u)} < 2r. (3.8)

We demonstrate the above claim by constructing H and D step by step.
Let uv be an edge in G and let Z, be an undirected cycle of length k(v)
through wv. Orient Z, arbitrarily as a directed cycle and let C,, denote the
cycle obtained this way. Set H := Z,, D := C,. This completes the first
step. At step i(> 2), we choose an edge uww such that w ¢ V(H) and an
undirected cycle Z = wjws ... wiw; in G such that w; = u, wey = w and
k = k(w). If no vertex in Z,, — u belongs to H, then append the directed
cycle C, = wiws ... wrwy to D and the cycle Z to H. Go to the next step.

Otherwise, there is a vertex w; (2 < i < k) such that w; € V(H) (and
hence w; € V(D)). Suppose that w; has the least possible subscript with this
property. Since w; € V(D), there is some neighbour v of u such that w; € C,.
(Recall that C, is a directed cycle.) Let C,, = vjva...vv1, where u = vy,
v € {vg,} and w; = v; for some j. By considering the converse of D, if
necessary, we may assume, without loss of generality, that v = v5. Now we
consider two cases.

Case 1: wp # wv. In this case, define the directed cycle C,, = wwsws
... w;Cy[vjy1,u] and observe that Cy, has length k(w). (Indeed, if C,, had
more than k(w) arcs, the path C\[w;,u] would be longer than the path
Py = wyw;4q ... wiu. In that case, the walk Z,[u, v;]Py[w;11,u] containing
uv would be of length less than k(v); a contradiction.) Let Z,, := UG(Cy).
Add C,, to D and Z,, to H. Go to the next step.

Case 2: wy = v. In this case, define the directed cycle C,, as follows: C,, =
Cylu, vjlwi—1w;—s ... wou and observe that Cy, has length k(w) (the proof of
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the last fact is similar to the one given in Case 1). Let Z,, :== UG(C,,). Add
Cy to D and Z,, to H. Go to the next step.

Since V(G) is finite and we add at least one new vertex to H at each step,
this process will terminate with the desired subgraph H and its orientation
D. Thus, the claim is proved.

Consider the directed multigraph D. In G, contract all the vertices of D
into a new vertex u* (the operation of contraction for undirected multigraphs
is similar to that for directed multigraphs) and call the resulting multigraph
G*. Note that G* is bridgeless and that by the property (a) of the above
claim, we obtain distg(u*,V(G*)) < r — 1. By the induction hypothesis,
there is an orientation L* of G* such that

distz- (u*, V(L*)) < 7? —r and distp- (V(L*),u*) < r? — 1. (3.9)

Consider an orientation L of G obtained by combining L* with D and
orienting the rest of the edges in G arbitrarily. By (3.8) and (3.9), we have

disty (u, V(L)) < r? 4+ and disty, (V(L),u) <72 + 7.

O
The sharpness of the bound in Theorem 3.5.4 is proved in [224]. Theorem
3.5.4 immediately implies the following.

Corollary 3.5.5 For every bridgeless connected multigraph G of radius 7,
diamuyn (G) < 2r2 + 2r. O

Plesnik [751] generalized Theorem 3.5.4 and Corollary 3.5.5 to orientations
of weighted multigraphs.

Theorem 3.5.6 Let G be a bridgeless connected multigraph in which every
edge has weight between 1 and W. If the radius of G is r, then G admits
an orientation of strong radius at most r* + rW and of diameter at most
2r% + 2rW. O

Plesnik [751] showed that the result of the previous theorem regarding
the strong radius is sharp.

Chung, Garey and Tarjan [218] generalized Corollary 3.5.5 to mixed
graphs. They proved the following.

Theorem 3.5.7 FEvery bridgeless connected mixzed graph G of radius v ad-
mits an orientation of diameter at most 8r2 +8r. Such an orientation can be
found in time O(r?(n +m)). O
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3.6 Minimum Diameter Orientations of Some Graphs
and Digraphs

Recall that an orientation of a digraph D is an oriented graph H obtained
from D by deleting one arc in every 2-cycle of D. For a strong digraph D
with bridgeless UG(D), let diamuyi, (D) denote the minimum diameter of an
orientation of D. By Corollary 1.8.2, the assumption that UG (D) is bridgeless
implies that diammi, (D) < oco. (If UG(D) has a bridge, no orientation of D
is strong.)

Many authors consider the following parameter p(D) := diamuy, (D) —
diam(D). It turns out that, for many interesting directed and undirected
graphs G, p(G) = 0, 1 or 2 (a result which is quite different from the ‘pes-
simistic’ bound proved in Theorem 3.5.4). In this section, we discuss results
on minimum diameter orientations of some special families of directed and
undirected graphs G for which p(G) is (very) small.

3.6.1 Generalizations of Tournaments

Recall that a digraph is semicomplete k-partite if it can be obtained from
a complete k-partite graph by replacing each edge zy with either arc xy or
arc yx or both zy and yx. Recall that a digraph D is quasi-transitive if the
existence of arcs xy,yz (z # z) in D implies that at least one of the arcs zz
and zz is in D.

Observe that, by Corollary 1.8.2, a strong semicomplete k-partite digraph
D, k > 2, has a strong orientation unless D is a semicomplete bipartite
digraph with a partite set consisting of a single vertex. This justifies the
consideration of the following two classes of digraphs. Let Dy be the set of
strong quasi-transitive digraphs of order n > 3. Let D; be the set of strong
semicomplete bipartite digraphs with at least two vertices in each partite set.

For digraphs from the class Dy UD; the following bound on the minimum
diameter of an orientation was obtained by Gutin and Yeo [478].

Theorem 3.6.1 If D € D; fori € {0,1}, then
diampi, (D) < max{3 + 2i,diam(D)}.

Proof: Assume that this theorem is false and that D is a counterex-
ample to the theorem with as few 2-cycles as possible. Let D € D; for
i € {0,1} and let v = 3 + 2i. Let zyz be a 2-cycle in D. Clearly, the di-
ameter of D increases by at least one when we delete either of the arcs
zy or yxr from D. Therefore, there exist vertices Sgy,tzy,Syz,tyz in D,
such that distp_zy(Szy,tey) > max{y,diam(D)} and distp_yz(Syz, tyz) >
max{vy,diam(D)}. Let P = pop1 ... p; be an (szy, tzy)-path in D of minimum
length (note that { < diam(D)) and let @ = qoqi .. . gm be an (syz, tyz)-path
in D of minimum length (note that m < diam(D)). Let p and 7 be defined



3.6 Minimum Diameter Orientations of Some Graphs and Digraphs 109

such that xy = p,p,+1 and yx = ¢, ¢,+1. We now consider the following cases,
which exhaust all possibilities:

Case 1: p+1 < [, 7+1 <mand D € DyUD;. We first show that p,» and
Qn+2 are adjacent. This is clearly true if D is semicomplete bipartite as these
two vertices belong to different partite sets of D. If D is quasi-transitive,
then p, and p,4o are adjacent. Therefore, p,12—p, by the minimality of
l. However, this implies that p,;2 and g¢,12 are adjacent, as p,j2—(p, =
qU+1)_’qU+2~

If ppro—qni2, then by ¢, = ppi1, Qa1 - - - GPpr2dnt2 - - Gm 15 a (0s Gm)-
path of length m < diam(D) in D — yx, a contradiction. The case when
Gn+2—Pp+2 can be considered analogously.

Case 2: p> 0,7 >0 and D € Dy UD;. This case can be transformed
into Case 1 by considering the converse of D.

Case 3: p=0,n7+1=m and D € Dy. We first prove that [ +m > 3.
Suppose that | = m =1, i.e., . = pg = 1,y = p1 = qo- Let 2921 ...2; be
a shortest (y,x)-path in D — yz. By the choice of z,y, we have k > 4. By
Proposition 2.7.1, zp—z; and zo—=zp. Hence, zxz122020 is an (x,y)-path in
D — xy of length three, a contradiction with the choice of . Thus, we may
assume, without loss of generality, that [ > 2.

Let R = rory...7s be a shortest path from ¢g to p; in D. The path R
can be chosen such that it does not contain yx. Indeed, if y = rj,z = 71
for some j, then ror1...7;peps ... p; is not longer than R (as pip2...p; is
a shortest (p1,p;)-path in D). So, we may assume that R does not contain
yx. It is not difficult to see that we may assume that R does not contain xy
either.

By Proposition 2.7.1, we obtain immediately that p;—py if [ # 3 and
p—py if 1 = 3. If [ = 3, then we have p3—p; and po—p;. Therefore, by the
minimality of I, p3—pg. Hence, we have shown that p;—pg for every [ > 2.

We have t > 2, for otherwise rgr1 ...7:pg would be a path from ¢g to g,
of length t +1 < 3 in D — yx. Since p;—po and r;_1—7r; = p;, we conclude
that r;_1 and pg are adjacent. If r,_1—pg, then rgr1 ... 7:_1pg is a path from
qo to ¢, of length ¢t < diam(D) in D — yz, a contradiction. If py—r;_1, then
pori—1p; is a path of length two from pg to p; in D — zy, a contradiction.

Case 4: =0, p+1=1and D € Dy. This case can be transformed into
Case 3 by considering the converse of D.

Case 5: p=0,n7+1=m and D € D;. Suppose that [ = m = 1. Let
2021 . - - 2, be a shortest (y, z)-path in D —yz. By the choice of z,y, k > 6. By
the minimality of k, 23—z (20 and z3 belong to different partite sets of D)
and zp—z9 (2 and 2y belong to different partite sets of D). Hence, 2222320
is an (z,y)-path in D — zy, a contradiction. So, we may assume, without loss
of generality, that m > 2.
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Let R = rgry...ry be a shortest path from ¢gg to p; in D. As in Case 3,
we may assume that R contains neither xzy nor yx.

Suppose that ¢t = 0, implying that ¢ = p; and [, m > 2. Assume that
[ > 3. If pg and p; belong to different partite sets of D, then, by the minimality
of | and the assumption that D is semicomplete bipartite, p;—pg, which is
impossible as p;pg is a (go, ¢m )-path of length one in D—yzx, a contradiction. If
po and p; belong to the same partite set of D, then p;—p; (by the minimality
of 1) and pyp1p2pspo is a (qo, ¢m )-path of length four in D—yz, a contradiction.
So, I = 2. Analogously, we can prove that m = 2. Since D —zy has a (po, p2)-
path and ps = goy—q1 = p1, there is a (pg, p1)-path S = sps1 ...8, in D —xy.
Assume that S has minimum length and observe that a > 5, as sg9s1 ... Sapi
is a (po, p1)-path in D — zy. Furthermore, s3—sg as so and s3 lie in different
partite sets of D and S is of minimum length. Observe that if po—s3, then
28380 18 & (qo, gm )-path in D —yz of length 2, and if s3—ps, then sgs15253p2
is a (po, pr)-path in D—2xy of length 4. In both cases we obtain a contradiction.
Hence, t > 0.

Suppose that 1 < ¢ < 2. Clearly 7o and r; lie in different partite sets, so
we may assume, without loss of generality, that ro and py are adjacent (the
case when 7 and pg are adjacent can be considered analogously). Clearly pg
dominates ro by the minimality of m. However, poro...7: is a (po, pr)-path
in D — zy of length of t + 1 < 3, a contradiction. Hence, ¢t > 3.

Clearly 1 and 79 lie in different partite sets, so we may assume, without
loss of generality, that r; and pg are adjacent (the case when ry and pg
are adjacent can be considered analogously). Clearly py dominates 1 by
the minimality of m. However, the path pgri...r in D — xy is of length
t < diam(D).

Case 6: =0, p+1=1[and D € D;. This case can be transformed into
Case 5 by considering the converse of D. O

The upper bound of this theorem is sharp as one can see from the following
examples given in [478]. Let Ty, k > 3, be a (transitive) tournament with
vertices x1,%2,...,2; and arcs x;x; for every 1 <4 < j < k. Let y be a
vertex not in T}, which dominates all vertices of Ty but z; and is dominated
by all vertices of T} but z;. The resulting semicomplete digraph Dy has
diameter 2. However, the deletion of any arc of Dy1 between y and the set
{za,23,..., 21} leaves a digraph with diameter 3. Indeed, if we delete yx;,
2 <2 < k—1, then a shortest (zy,x;)-path becomes of length 3.

Let H be a strong semicomplete bipartite digraph with the following
partite sets V4 and V3 and arc set A: Vi = {x1, 22,23}, Vo = {y1, y2,y3} and

A = {x1y1, 1121, 1Y2, Y31, T2Y1, Y22, Y3T2, Y143, T3Y3, T3Y2 }-

Let H = H—x1y; and H” = H —y 1. It is easy to verify that diam(H) = 4
(in particular, dist(y2,y3) = 4) and that diam(H') = diam(H") = 5 (a short-
est (z1,ys3)-path in H' and a shortest (ye2,21)-path in H” are of length 5).



3.6 Minimum Diameter Orientations of Some Graphs and Digraphs 111

The digraph H can be used to generate an infinite family of semicomplete
bipartite digraphs with the above property: replace, say, x3 by a set of inde-
pendent vertices.

The above theorem inspired the following conjecture by Gutin, Koh, Tay
and Yeo [467].

Conjecture 3.6.2 There is an absolute constant ¢ such that for every strong
semicomplete multipartite digraph D, we have diamy, (D) < diam(D) + c.

Recall that a digraph D is locally semicomplete if both of the digraphs
D(N*(z)) and D(N~(z)) are semicomplete digraphs for every vertex z €
V(D). The following theorem is an analog of Theorem 3.6.1 and was also
proved by Gutin and Yeo [478].

Theorem 3.6.3 If D is a strong locally semicomplete digraph of ordern > 3,
then

diampy,in (D) < max{5, diam(D) + 1}.

3.6.2 Extended Digraphs

Recall the notion of an extension of a digraph. The (s1, sa, . . ., s, )-extension
(or just extension) D(sq,sa,...,sy,) of a digraph D with vertices labelled,
say, 1,2,...,n is obtained from D by replacing every vertex ¢ by a set of s;
independent (i.e., with no arc between them) vertices; more formally,

V(D(s1,82,.--,8,)) ={(pi,1) : 1 <p; <s;, i €[n]}

and (p,1)—(q, ) in D(s1,sa,...,sy,) if and ounly if i—j in D.
Observe that complete p-partite graph is an extension of Kj,. The first
result on the topic of this subsection was obtained by Soltés [827].

Theorem 3.6.4 If ny > ny > 2, then p(Kp, n,) =1 forng < (Ln:?%)’ and
p(Kpn, ny) = 2, otherwise. O

The original proof of Theorem 3.6.4 is rather long. A shorter proof of this
result using the well-known Sperner’s lemma is given by Gutin [450]; Gutin’s
proof is given in Chapter 2 of [91].

The exact values of p(K, ny....n,) are unknown, but the following result
obtained independently by Plesnik [751] and Gutin [450] gives a sharp upper
bound on f(ni,...,nt) = diammin(Kny ny,...np)-

Theorem 3.6.5 For every k > 3 and all positive integers nq,...,ng, we
have 2 < f(ny,...,ng) < 3.
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Proof: Obviously, f(ny,...,ng) > 2.

If £ is odd, let R(ni,ne,...,ng) stand for a multipartite tournament
with partite sets V1,..., V) of cardinalities n1, ..., ny such that V;—Vj if and
only if j —i=1,2,...,k/2] (mod k). If k is even, then R(ny,na,...,ng)
is determined as follows: R(ni,ns,...,ng) — Vi = R(ni,no,...,ng_1),
Vi—Vi (i =1,3,5,...,k—1), V;=V; (j = 2,4,6,...,k —2). We show that
diam(R(ny,na,...,nk)) < 3 for every k > 3.

Case 1: k is odd, k > 3. It is sufficient to prove that dist(V1,V;) < 3
for all ¢ € [k]. f 1 < j < |k/2| + 1, then V13—V by the definition. If
|4] +1 < j <k, then V]j/2)41 — V;, hence dist(V7,V;) = 2. Since V; —
VUC/QJ_A'_l — VLk/2j+2_)Vl7 we have diSt(Vl, Vl) < 3.

Case 2: k is even, k > 4. Since R(ny,...,ng) — Vi 2 R(no, ..., ng_1), we
have dist(V;,V;) < 3 for all 1 <4, j < k — 1. Moreover, V;,—V;—V,44 for
i=1,3,5,...,k—3 and Vi, — Vi_1. Therefore dist(Vy, V;) < 2fort € [k—1].
Analogously, V;—V;; 11—V for i = 1,3,5,...,k — 3 and V_1—V1—Vo—V}.
Hence dist(V;, Vi) < 3 for ¢t € [k — 1]. Finally, V;—V;—V2—V;. Therefore
dist(Vg, Vi) < 3. O

The following main result of this subsection was obtained by Gutin, Koh,
Tay and Yeo [467].

Theorem 3.6.6 Let H be a strong digraph of order n > 3 and let D =
H(s1,82,...,8,) with s; > 2, 1 < i < n. Then diam(H) < diampyi, (D) <
diam(H) + 2.

Notice that Theorem 3.6.6 is a generalization of an analogous result for
extensions of graphs obtained by Koh and Tay [615, 846].

The requirement n > 3 is important as one can see from Theorem 3.6.4
that diam(K3) = 1, but diammin(Ks2) = 4 for s > 3. Clearly, diam(H) <
diam(D’) for every orientation D’ of D. To prove the more difficult part of
the inequality in Theorem 3.6.6, we will use the following lemma.

Lemma 3.6.7 Let t;,s; be integers such that 2 < t; < s; for 1 < i < n
and let H be a strong digraph with vertex set [n], n > 3. If the digraph
D’ = H(ty,ts,...,t,) admits an orientation F' in which every verter v =
(p,1), such that i belongs to a cycle in H of length two, lies on a cycle C,
of length not exceeding m, then D = H(sy, Sa,...,8y,) has an orientation F
with diameter at most max{m, diam(F")}.

Proof: Given an orientation F’ of D’, we define an orientation F' of D as
follows. We have (p,i)—(q,j) in F if and only if one of the following holds:

(
(
(
(

a) p<t; qg<t;and (p,i)—(¢g,7) in F'.
b) p <t;, q>t; and (p,i)—(t;,j) in F’.
c) p>ti, ¢ <t;and (¢;,7)—(q,7) in F’.
d) p>t; and ¢ > t; and (t;,i)—(t;,7) in F'.



3.6 Minimum Diameter Orientations of Some Graphs and Digraphs 113

Let u = (p,i) and v = (q,J) be a pair of distinct vertices in F. If i # j,
then it is clear that dist p(u,v) < diam(F") (we can use obvious modifications
of the corresponding paths in F”). We have the same result if i = j but p < ¢;
or ¢ < tj. Assume that ¢ = j, p > t; and ¢ > ¢;. If ¢ belongs to a cycle in
H of length two, then using the cycle C,, we conclude that distp(u,v) < m.
If ¢ belongs to no cycle in H of length two, then since u, v dominate and are
dominated by the same vertices and since distr((1,1),(2,4)) < diam(F'), we
have dist((p, 7), (¢,4)) < diam(F). O

Proof of Theorem 3.6.6: We prove that there exists an orientation D’ of D
such that diam(D’) < diam(H) + 2. If diam(H) = 1, then this claim follows
from Theorem 3.6.5. Thus, we may assume that diam(H) > 2.

Define an orientation F’ of H(t1,ts,...,t,), where every t; = 2, as follows:

(1,4)—(1,5)—(2,i)—(2,4)—(1,4) if and only if ¢ < j. (3.10)

Let w = (p,7) and v = (q,j) be a pair of distinct vertices in F’. We
show that distp/ (u,v) < diam(H) + 2. Suppose that ikiks ... ksj is a path of
length s + 1 = disty(4,5) in H. Then the path Q = (p,¢)(k}, k1)(k3, k2) ...
(k% ks)(5*,4), where x* = 1 or 2, is of length disty (4, j) in F”'. If j* = ¢, then
the last inequality follows. Otherwise, i.e., j* # ¢, the path Q(3—k¥, ks)(q,7)
is of length disty (4,5) + 2 in F’. Thus, distp (u,v) < diam(H) + 2. Hence,
diam(F’) < diam(H). By (3.10), every vertex (p,7) of F’, such that ¢ lies on
a cycle in H of length 2, belongs to a cycle of length 4. Now this theorem
follows from Lemma 3.6.7. O

We finish this subsection by the following conjecture from [467]. It is
unknown whether the conjecture is valid even for undirected graphs [615].

The conjecture is correct for H :?, where T is a tree [846], and some other
classes of digraphs, see [467].

Conjecture 3.6.8 Let H be a strong digraph of order n > 3 and let D =
H(s1,82,...,8,) with s; > 2, i € [n], be of diameter at least three. Then
diampip (D) < diam(H) + 1.

3.6.3 Cartesian Products of Graphs

The Cartesian product of a family of undirected graphs G1,Go,...,G,,
denoted by G = G; x G3 X ... x G, or H?:l G;, where n > 2, is the graph
G having V(G) = V(G1) x V(G2) x ... x V(Gy) = {(w1,wa,...,wy) 1 w; €
V(G)),i € [n]} and a pair of vertices (u,usg, ..., u,) and (v1,v2,...,v,) of G
are adjacent if and only if there exists an r € [n] such that u,v, € E(G,) and
u; = v; for all ¢ € [n]\ {r}. Let P, (Cy, K,) be the (undirected) path (cycle,
complete graph) of order n and let T,, stand for a tree of order n. Roberts
and Xu [781, 782, 783, 784] and Koh and Tan [606] evaluated the quantity
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p(Py, x Py). (We remark that Roberts and Xu [781, 782, 783, 784] considered
objective functions other than p for orientations of the Cartesian products of
undirected paths.) Koh and Tay [611] proved that most of those results can
be extended as follows.

Theorem 3.6.9 Forn > 2, k1 > 3, ka > 6 and (k1,k2) # (3,6), we have
p(Pk1XPk2X~-~><P]€n):O. (]

This, in particular, generalizes the main result of McCanna [688] on n-
cubes, i.e., the graphs []\—, P». Koh and Tay [610] have obtained the values
of q(r k) = p(Cop X Py) for r k> 2: q(r,k) =0if k >4, q(r,k) =2 if k =2
and r is even, ¢(r, k) = 1 in the remaining cases.

They have also evaluated p(K,, X Py), p(K; X Capr1) and p(K,, x K,)
[612], p(Kp, x Cap) [614] and p(Ty, x Ty,) [616]. Konig, Krumme and Lazard
[621] studied the Cartesian products of cycles. They proved the following
interesting result.

Theorem 3.6.10 Let p,q be integers with p,q > 6. If at least one of these
two integers is even, then p(Cp, x Cq) = 0. If both p and q are odd, then
p(Cp x Cy) = 1. O

Konig, Krumme and Lazard [621] evaluated p(C, x C;) in most cases
when the minimum of p and ¢ is smaller than 6. They also extended the
p(Cp x Cy) = 0 part of Theorem 3.6.10 to the Cartesian products of three
or more cycles. These results are described in more detail in [846]. Some of
the above results were extended by Koh and Tay [611], where the following
theorem was proved.

Theorem 3.6.11 Form > 2, r >0, k1 > 3, ko > 6 and (ky, k) # (3,6),
we have p(IT;~, Pr, x [[;—; Cn,) = 0. =

This result was further extended by Koh and Tay in [613]. For details, see
[613] or Chapter 2 in [91].

3.6.4 Chordal Graphs

An undirected graph G is chordal if each cycle C' of G of length at least 4
has a chord, i.e., an edge connecting two vertices of C' that are not neighbours
in C. Fomin, Matamala and Rapaport [327] proved the following:

Theorem 3.6.12 FEvery connected chordal graph G with no bridge has an
orientation of diameter at most 2diam(G) + 1. O

Better bounds for diampy,,(G) can be obtained for special families of
chordal graphs. An undirected graph G with V(G) = {v; : i € [n]} is called
an interval graph if there is a set {J; : i € [n]} of intervals on the real line
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such that v;v; is an edge if and only if J; N J; # (0. If the corresponding set
{J; : i € [n]} of intervals can be chosen such that no interval is contained
in another, then G is called a proper interval graph. The class of interval
graphs is of great importance for graph theory and its applications [421]. Tt
is easy to see that every interval graph is chordal.

Improving results of Fomin, Matamala, Prisner and Rapaport [326],
Huang and Ye [542] proved the following:

Theorem 3.6.13 We have diamy,, (G) < [3diam(G)]+1 for each bridgeless
connected interval graph G. If G is a 2-connected proper interval graph, then
diamy,in (G) < [2diam(G)] + k, where k = 0 if diam(G) < 3 and k = 1,
otherwise. O

It follows from examples in [326, 542] that the bounds of Theorem 3.6.13
are sharp.

3.7 Kings in Digraphs

In this section, we study r-kings in tournaments, semicomplete multipartite
digraphs and other generalizations of tournaments. The main emphasis is on
4-kings in semicomplete multipartite digraphs. The notion of a 2-king and
some results on 2-kings in tournaments will be generalized in Section 3.8.2.

3.7.1 2-Kings in Tournaments

Studying dominance in certain animal societies, the mathematical sociologist
Landau [634] observed that every tournament has a 2-king. In fact, in every
tournament 7', each vertex x of maximum out-degree is a 2-king. Indeed, for a
vertex y € T, y # x, either x—y or there is an out-neighbour of x which is an
in-neighbour of y. In both cases, dist(z,y) < 2. Observe that if a tournament
T has a vertex of in-degree zero, this vertex is the only r-king in T for every
positive integer r. Moon [702] proved the following.

Theorem 3.7.1 Every tournament with no vertex of in-degree zero has at
least three 2-kings.

Proof: Exercise 3.30. O

The following example shows that this bound on the number of 2-kings
by Moon is sharp. Let T, be a tournament with vertex set {z1,22,...,2Zn}
and arc set A = X UY U {z,_2z,}, where X = {z;z;41 : i € [n— 1]} and
Y ={zjz;: 1<i<j—-1<n-1,(j1) # (n,n—2)} It is easy to verify
that, for n > 5, &, _3,,—2,x,—1 are the only 2-kings in T,, (Exercise 3.32),
see Figure 3.6.
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Figure 3.6 An example of a tournament with exactly three 2-kings. The arcs which
are not shown are oriented from right to left.

Since the converse of a tournament is a tournament, the above two results
can be reformulated for 2-serfs. (A vertex z is a 2 serf if dist(V, z) < 2.) The
concepts of 2-kings and 2-serfs in tournaments were extensively investigated
by both mathematicians and political scientists (the latter have studied so-
called majority preferences). The interested reader is referred to Reid [774]
for a comprehensive recent survey on the topic.

3.7.2 Kings in Semicomplete Multipartite Digraphs

It is easy to see that Proposition 3.1.1 implies that a multipartite tourna-
ment T has a finite out-radius if and only if T' contains at most one vertex of
in-degree zero (Exercise 3.34). Moreover, the following somewhat surprising
assertion holds. If a multipartite tournament has finite out-radius, the out-
radius is at most four. In other words, every multipartite tournament with
at most one vertex of in-degree zero contains a 4-king. (Similar results hold
for quasi-transitive digraphs and a certain class of digraphs that includes
multipartite tournaments, see Subsection 3.7.3.) This result was proved in-
dependently by Gutin [446] and Petrovi¢ and Thomassen [749]. The bound
is sharp as there exist infinitely many p-partite tournaments without 3-kings
for every p > 2 [446]. Indeed, bipartite tournaments Cy[K 4, K 4, K 4, K 4] for
g > 2 do not have 3-kings (dist(u,v) = 4 for distinct vertices u,v from the
same fq). It is clear that every multipartite tournament, for which the initial
strong component is some C4[Ky, Kq, Kg, K4 (¢ > 2), has no 3-king either.

Thus, 4-kings are of particular interest in multipartite tournaments. In
a number of papers (see, e.g., Gutin [450], Koh and Tan [607, 608, 609],
Petrovi¢ [748] and the survey paper [774] by Reid) the authors investigate
the minimum number of 4-kings in multipartite tournaments without vertices
of in-degree zero. (If a multipartite tournament has exactly one vertex of in-
degree zero, it contains exactly one 4-king, so this case is trivial.) In our view,
the most interesting result in this direction was obtained by Koh and Tan in
[607].

Theorem 3.7.2 Let T be a k-partite tournament with no vertezx of in-degree
zero. If k = 2, T contains at least four 4-kings; it has exactly four 4-kings
if its initial strong component consists of a cycle of length four. If k > 3, T
contains at least three 4-kings; it has exactly three 4-kings if its initial strong
component consists of a cycle of length three. a
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This theorem can be considered as a characterization of bipartite (p-
partite, p > 3) tournaments with exactly k 4-kings for k£ € {1,2,3,4}
(k € {1,2,3}). The next theorem by Gutin and Yeo [474] goes further with
respect to both exact number of 4-kings and the class of digraphs under
consideration.

Theorem 3.7.3 Let D = (V, A) be a semicomplete multipartite digraph and
let k be the number of 4-kings in D. Then

1. k=1 if and only if D has ezxactly one vertex of in-degree zero.

2. k = 2,3 or 4 if and only if the initial strong component of D has k
vertices.

8. k =5 if and only if either the initial strong component Q of D has five
vertices or () contains at least sixz vertices and possesses a path P =
pop1P2p3pa such that dist(pg, ps) = 4 and {p1, p2,p3,pat=V —V(P). O

We have seen that a vertex of maximum out-degree in a tournament is
a 2-king. It is slightly more difficult to show that a vertex of maximum out-
degree in a bipartite tournament is a 4-king (Exercise 3.33). With 4-kings in
k-partite tournaments for k > 3, the situation is more complicated as can
be seen from the next theorem by Goddard, Kubicki, Oellermann and Tian
[412].

Theorem 3.7.4 Let T be a strongly connected 3-partite tournament of order
n > 8. If v is a vertex of mazimum out-degree in T, then dist(v, V(T)) <
|n/2| and this bound is best possible. O

In the rest of this subsection, we will prove the following theorem using
an argument adapted from [474].

Theorem 3.7.5 FEvery semicomplete multipartite digraph with at most one
vertex of in-degree zero has a 4-king.

For the proof we need the following lemmas:

Lemma 3.7.6 If P = pop1 ...pe is a shortest path from pg to pe in a semi-
complete multipartite digraph D, and ¢ > 3, then there is a (pg,po)-path of
length at most 4 in D(V(P)).

Proof: Since £ > 3 and P is a shortest path we have ({po,p1},pe) = 0. If
pe—po, we are done, so assume that p, and py belong to the same partite set
of D. This implies that py—p;. Analogously, (pg, {p2,p3}) = 0, which implies
that either pgp1papspo or pep1papo is a (pe, po)-path of length at most 4 in
D(V(P)). d

Lemma 3.7.7 Let D be a semicomplete multipartite digraph and let Q be an
initial strong component of D. If Q has at least two vertices, then D has only
one initial strong component. Every vertex in ), which is a 4-king in Q, is a

4-king in D.
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Proof: Assume that |V (Q)| > 2, but D has another initial strong component
@'. Since @ contains adjacent vertices, there is an arc between @ and @', a
contradiction.

Let x be a 4-king in @ and let y € V(D) — V(Q) be arbitrary. If  and y
are adjacent, then clearly z—y. Assume that z and y are not adjacent. Since
@ is strong, it contains a vertex z dominated by z. Clearly, x—z—y. Hence
dist(z,y) <2 and z is a 4-king in D. O

Lemma 3.7.8 Let D be a strong semicomplete multipartite digraph and let
w be a verter in D. Fori > 3, if Nti(w) # 0, then dist(N "¢ (w), N*¢[w]) < 4.

Proof: Let z € N*i(w) be arbitrary. Since a shortest path from w to z is
of length i > 3, by Lemma 3.7.6, dist(z,w) < 4. Let ¢ € N [w] — {w, z}
and let rory...7; be a shortest (w,q)-path in D. If 1 < j < 3, then, since z
dominates at least one of the vertices rg, 71, either zrory...7rj or zry...7; is
a (z,q)-path in D of length at most 4. If j > 4, then, since z dominates at
least one of the vertices Tj—3,Tj-2, either ZTj—3Tj—2Tj—1Tj Or 2ZTj_2T; 1T is
a (z,q)-path in D of length at most 4. O

Proof of Theorem 3.7.5: Let D be a semicomplete multipartite digraph
with at most one vertex of in-degree zero. If D has a vertex z of in-degree
zero, then clearly x is a 2-king in D. Thus, assume that D has no vertex of
in-degree zero. Then, every initial strong component Q) of D has at least two
vertices. By Lemma 3.7.7, @) is unique and every 4-king in @ is a 4-king in D.
It remains to show that @ has a 4-king. If every vertex in @) is a 4-king, then we
are done. Otherwise, let w be a vertex in () which is not a 4-king of ). Then,
r = distq(w, V(Q)) > 5. By Lemma 3.7.8, distq(N&" (w), N [w]) < 4, ie.,
every vertex in Nérr(w) is a 4-king in @ (since Ngr[w] =V(Q)). O

3.7.3 Kings in Generalizations of Tournaments

Bang-Jensen and Huang [104] considered kings in quasi-transitive digraphs.
The main result of [104] is the following.

Theorem 3.7.9 Let D be a quasi-transitive digraph. Then we have

(1) D has a 3-king if and only if it has a finite out-radius®.
(2) If D has a 3-king, then the following holds:

(a) FEvery vertex in D of maximum out-degree is a 3-king.

(b) If D has no vertex of in-degree zero, then D has at least two 3-kings.

(¢) If the unique initial strong component of D contains at least three vertices,
then D has at least three 3-kings. a

4 See Proposition 3.1.1.
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In the following falgilyi of quasi-transitive digraphs, every digraph has a
3-king but no 2-king: C5[Ky,, K,, Ki,] for every ki, ko, ks > 2.
In [749], Petrovi¢ and Thomassen obtained the following.

Theorem 3.7.10 Let G be an undirected graph whose complement is the
disjoint union of complete graphs, paths and cycles. Then every orientation
of G with at most one vertex of in-degree zero has a 6-king. O

3.8 (k,l)-Kernels

Galeana-Sanchez and Li [382] introduced the concept of a (k,l)-kernel in
a digraph. This concept generalizes several well-known notions of special
independent sets of vertices such as a kernel and a quasi-kernel. In this section,
we discuss (k, [)-kernels and their special important cases, kernels and quasi-
kernels, and study some basic properties of kernels and quasi-kernels. The
notion of a (k,1)-kernel has various applications, especially that of a (2,1)-
kernel.

Let k and [ be integers with k > 2,1 > 1, and let D = (V, A) be a digraph.
A set J C Vis a (k,l)-kernel of D if

(a) for every ordered pair x,y of distinct vertices in J we have dist(z,y) > k,
(b) for each z € V — J, there exists « € J such that dist(z,z) <.

A kernel is a (2, 1)-kernel and a quasi-kernel is a (2, 2)-kernel. Galeana-
Sénchez and Li [382] proved some results which relate (k,[)-kernels in a di-
graph D to those in its line digraph. In particular, they proved the following:

Theorem 3.8.1 Let D be a digraph with §— (D) > 1. Then the number of
(k,1)-kernels in L(D) is less than or equal to the number of (k,1)-kernels in
D. O

3.8.1 Kernels

We start with an equivalent definition of a kernel. A set K of vertices in a
digraph D = (V, A) is a kernel if K is independent and the first closed neigh-
bourhood of K, N™[K], is equal to V. This notion was introduced by von
Neumann in [723]; kernels have found many applications, for instance in game
theory (a kernel represents a set of winning positions, cf. [723] and Chapter
14 in the book by Berge [144]), in logic [146] and in list edge-colouring of
graphs (see Section 17.9). Chvatal (see [393], p. 204) proved that the prob-
lem to verify whether a given digraph has a kernel is N"P-complete. Several
sufficient conditions for the existence of a kernel have been proved. Many
of these conditions can be trivially extended to kernel-perfect digraphs,
i.e., digraphs for which every induced subdigraph has a kernel. The notion
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of kernel-perfect digraphs allows one to simplify certain proofs (due to the
possibility of using induction, see the proof of Theorem 3.8.2) and is quite
useful for applications (see Section 17.9).

Clearly, every symmetric digraph, i.e. digraph whose every arc belongs to
a 2-cycle, is kernel-perfect (every maximal independent set is a kernel). It was
proved by von Neumann and Morgenstern [723] that every acyclic digraph is
kernel-perfect. Richardson [778] generalized this result as follows:

Theorem 3.8.2 FEvery digraph with no odd cycle is kernel-perfect.

The proof of Theorem 3.8.2, which we present here, is an adaptation of
the one by Berge and Duchet [145]. A digraph which is not kernel-perfect
is called kernel-imperfect. We say that a digraph D is critical kernel-
imperfect if D is kernel-imperfect, but every proper induced subdigraph of
D is kernel-perfect.

Lemma 3.8.3 Fvery critical kernel-imperfect digraph is strong.

Proof: Assume the converse and let D = (V| A) be a non-strong critical
kernel-imperfect digraph. Let T be a terminal strong component of D and
let S; be a kernel of T. Since D has no kernel, the set M = V — N7[5]
is non-empty. Hence the fact that D is critical kernel-imperfect implies that
D(M) has a kernel Sy. The set S1 U S5 is independent since no arc goes from
S1 to Sy (by the definition of a terminal strong component) and no arc goes
from Sy to Sy (by the definition of M). Clearly, N~ [S; U S3] = V. Hence,
S1 U S5 is a kernel of D, a contradiction. O

Proof of Theorem 3.8.2: Let D be a kernel-imperfect digraph with no odd
cycle and let D’ be a critical kernel-imperfect subdigraph of D. By the lemma
above, D’ is strong. Since D’ is strong and has no odd cycles, by Theorem
2.2.1, D’ is bipartite. Let K be a partite set in D’. Since D’ is strong, K is
a kernel of D', a contradiction. a

This theorem has been strengthened in a number of papers. The condi-
tions (a) and (b) of the following theorem are due to Duchet (see the papers
by Berge [145]) and Galeana-Sénchez and Neumann-Lara [383], respectively).
Galeana-Sanchez showed that for every k > 2, there are non-kernel-perfect
digraphs for which every odd cycle has at least k chords [380].

Theorem 3.8.4 A digraph D is kernel-perfect if at least one of the following
conditions holds:

(a) Every odd cycle has two arcs belonging to 2-cycles;
(b) Every odd cycle has two chords whose heads are consecutive vertices of
the cycle. O
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There were other attempts to strengthen Richardson’s Theorem 3.8.2. In
particular, Duchet (see [176]) conjectured that every digraph D, which is not
an odd cycle and which does not have a kernel, contains an arc e such that
D — e has no kernel either. Apartsin, Ferapontova and Gurvich [42] found a
counterexample to this conjecture. They proved that the circulant digraph®
Cy3(1,7,8) has no kernel, but after deletion of any arc in this digraph a kernel
will appear.

Observe that by the symmetry of Cy3(1,7,8) one needs only to show that
Cy3(1,7,8) — (1,2), Cy3(1,7,8) — (1,8) and Cy3(1,7,8) — (1,9) have kernels.
This task is left as Exercise 3.37. We note that Cy3(1,7,8) is the only known
counterexample to the Duchet conjecture; Gurvich (private communication,
December 1999) suspects that there is an infinite family of such circulant
digraphs. It was also proved in [42] that C,,(1,7,8) has a kernel if and only
if n = 0 (mod 3) or n = 0 (mod 29). The following problem seems quite
natural:

Problem 3.8.5 Characterize circulant digraphs which have kernels.

A biorientation D of a graph G is called normal, if every subdigraph of
D which is a semicomplete digraph has a kernel. An undirected graph G is
kernel-solvable if every normal biorientation of G has a kernel. Boros and
Gurvich [176] showed that a slight modification of the above conjecture of
Duchet holds. They proved the following;:

Theorem 3.8.6 Let G be a connected non-kernel-solvable graph, which is
not an odd cycle of length at least 5. Then there exists an edge e in G such
that G — e is not kernel-solvable either. a

Berge and Duchet (see [678]) conjectured that a graph G is perfect® if and
only if G is kernel-solvable. Boros and Gurvich [175] proved one direction of
this conjecture, namely:

Theorem 3.8.7 Every perfect graph is kernel-solvable. a

The two original proofs of Theorem 3.8.7 are quite involved and lengthy.
Using the notion of a fractional kernel, Aharoni and Holzman [8] found a much
shorter proof of Theorem 3.8.7. The fact that every kernel-solvable graph is
perfect follows [177] from the following important result, the Strong Perfect
Graph Theorem proved by Chudnovsky, Robertson, Seymour and Thomas
[216]. An induced cycle of odd length at least 5 is called an odd hole. An
induced subgraph that is the complement of an odd hole is called an odd
anti-hole.

® Circulant digraphs are introduced in Section 2.14.1.
6 A graph G is perfect if, for every induced subgraph H of G, the chromatic number
of H is equal to the order of the largest clique of H.
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Theorem 3.8.8 A graph G is perfect if and only if G has no odd hole and
odd anti-hole. O

3.8.2 Quasi-Kernels

We start with an equivalent definition of a quasi-kernel. A set @Q of vertices in
a digraph D = (V, A) is a quasi-kernel if @ is independent and the second
closed in-neighbourhood of @, N~2[Q], is equal to V. The two results on 2-
kings (or, more precisely, 2-serfs) in tournaments mentioned in the beginning
of Section 3.7 have been extended to quasi-kernels in arbitrary digraphs as
follows. The first theorem is by Chvétal and Lovész [222]. We give a very
short proof by S. Thomassé (see [166]).

Theorem 3.8.9 FEvery digraph D has a quasi-kernel.

Proof: Let V = V(D). Consider an ordering z1,...,z, of V and two span-
ning subdigraphs of D, Dy = (V, A;) and Dy = (V, As), where A; = {z;z; :
zix; € A(D),i < j} and Ay = {z;z; : wz;2; € A(D),j < t}. By Theorem
3.8.2, Dy has a kernel K" and Dy[K'] has a kernel K”. Observe that K" is a
quasi-kernel of D. ]

The second theorem is by Jacob and Meyniel [559].

Theorem 3.8.10 If a digraph D = (V, A) has no kernel, then D contains at
least three quasi-kernels.

Proof: By Theorem 3.8.9, D has a quasi-kernel Q1. Since D has no kernel,
we have V # N7[Q1]. Let Q2 be a quasi-kernel of D— N~[Q1]. We will prove
that Q5 = Q2 U (Q1 — N~ (Q2)) is a quasi-kernel of D. It is straightforward
to see that Q% is independent and

V=V-NTQi)UNT[Qi NN (Q2)]UNT[Q1 — N (Q2)].

By the definition of @2, every vertex of V' — N~[Q1] is the initial vertex of
a path of length at most two terminating in Q2. Since N~ [Q1 N N~ (Q2)] C
N72[Q,], every vertex of N=[Q1 N N~ (Q2)] is the initial vertex of a path of
length at most two terminating in (2. Since N~ [Q1 — N~ (Q2)] C N~[Q1],
a vertex of N7[Q1 — N~ (Q2)] either belongs to Q1 or is the tail of an arc
whose head is in Q1 — N~ (Q2). Hence, Q- is a quasi-kernel.

Observe that Q1 N Q2 = 0 and Qo # 0. Thus, Q) # Q1.

As Q) is not a kernel of D, we have V # N7[Q5]. Let Q3 be a quasi-
kernel of D — N7[Q5] and let Q5 = Q3 U (Q5 — N~(Q3)). As above, we
can demonstrate that Q% is a quasi-kernel distinct from @Q%. It remains to
show that Q% # Q1. Observe that Q3 C V — N7[Q%] and @1 C N[Q%].
Thus, Q1 N Q3 = (). By this fact and since Q3 is non-empty, we conclude that
Q5 # Q1. O
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Gutin, Koh, Tay and Yeo [468] characterized digraphs with exactly one
and two quasi-kernels, and, thus, provided necessary and sufficient conditions
for a digraph to have at least three quasi-kernels. In particular, they proved
the following:

Theorem 3.8.11 FEwvery strong digraph of order at least three, which is not
a 4-cycle, has at least three quasi-kernels. a

3.9 Exercises

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

Formulate the shortest (s, t)-path problem as a linear programming problem
with integer variables. Hint: use a variable for each arc.

Show how to check whether an undirected graph is bipartite in linear time
using BFS. Does your method extend to strongly connected digraphs? That
is, can you check whether a strong digraph is bipartite using BFS? Hint:
consider the proof of Theorem 2.2.1.

Illustrate the shortest path algorithm for acyclic digraphs (Subsection 3.3.2)
on the acyclic digraph in Figure 3.7.

Figure 3.7 A weighted acyclic digraph.

Finding the longest paths from a fixed vertex to all other vertices
in a weighted acyclic digraph. Develop a polynomial algorithm for finding
the longest paths from a fixed vertex s to all other vertices in an arbitrary
weighted acyclic digraph. Preferably your algorithm should run in linear time.

Find the longest paths from s to all other vertices in the acyclic digraph in
Figure 3.7, e.g., using the algorithm that you designed in Exercise 3.4.

Finding a longest path in a weighted acyclic digraph in linear time.
Show how to find a longest path in a weighted acyclic digraph D in linear
time. Hint: use a variant of the dynamic programming approach taken in
(3.3), or construct a superdigraph D’ of D such that one can read out a
longest path in D from a shortest path tree from some vertex s in D’.

Execute Dijkstra’s algorithm on the digraph in Figure 3.8.
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3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.
3.16.

3. Distances

12

Figure 3.8 A digraph with non-negative weights on the arcs.

Complete the description of Dijkstra’s algorithm in Subsection 3.3.3 such
that not only the distances from s to the vertices of D are computed, but
also the actual shortest paths are found.

Complete the description of the Bellman-Ford-Moore algorithm in Subsec-
tion 3.3.4 such that not only the distances from s to the vertices of D are
computed, but also the actual shortest paths are found.

Execute the Bellman-Ford-Moore algorithm on the digraph in Figure 3.9.
Perform the scanning of arcs in lexicographic order.

Figure 3.9 A digraph with weights on the arcs and no negative cycles.

Negative cycle detection using the Bellman-Ford-Moore algorithm.
Prove Theorem 3.3.10.

Show how to detect a negative cycle in the digraph in Figure 3.10 using the
extension of the Bellman-Ford-Moore algorithm.

Show by an example that Dijkstra’s algorithm may not find the correct dis-
tances if it is applied to a weighted directed graph D where some arcs have
negative weights, even if there is no negative cycle in D.

Show how to implement the Floyd-Warshall algorithm so that it runs in time
o(n®).

Prove Theorem 3.3.10.

Re-weighting the arcs of a digraph. Let D = (V, A, ¢) be a weighted

digraph and let 7 : V' — R be a function on the vertices of D. Define a new
weight function ¢* by ¢*(u,v) = ¢(u,v) + m(u) — 7(v) for all v € V. Let dist”



3.17.

3.18.

3.19.

3.20.

3.21.

3.22.

3.23.
3.24.
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Figure 3.10 A weighted digraph with a negative cycle.

be the distance function with respect to D* = (V, A,c"), and let P be an
(z,y)-path in D. Prove that P is a shortest (z,y)-path in D (with respect
to ¢) if and only if P is a shortest (z,y)-path in D* (with respect to c¢*).
Hint: consider what happens to the length of a path after the transformation
above.

Consider the weights introduced in Exercise 3.16. Show that the weight of
a cycle in D is unchanged under the transformation from D = (V, A,c) to
D" = (V,A,c").

Getting rid of negative weight arcs by re-weighting. Let D = (V, A, ¢)
be a weighted digraph with some arcs of negative weight, but with no negative
cycle. Let D' = (V, A’, ') be obtained from D by adding a new vertex s and
all arcs of the form sv, v € V, and setting ¢'(s,v) = 0 for all v € V and
' (u,v) = c(u,v) for all u,v € V. Let w(v) = distp/ (s, v) for all v € V. Define
c* by ¢*(u,v) = ¢(u,v) + 7(u) — w(v) for all u,v € V. Prove that ¢*(u,v) > 0
for all u,v € V.

Johnson’s algorithm for shortest paths. Show that by combining the
observations of Exercises 3.16-3.18, one can obtain an O(n”logn + nm) al-
gorithm for the all pairs shortest path problem in digraphs with no negative
cycles (Johnson [569]).

Let M = [mg;] be the adjacency matrix of a digraph D = (V, A) with V = [n]
and let k be a natural number. Prove that there is an (i, j)-walk of length &
in D if and only if the (4, j) entry of the kth power of M is positive.

Show how to compute the kth power of the adjacency matrix of a digraph of
order n in time O(P(n)logk), where P(n) is the time required to compute
the product of two n X n matrices.

Finding a shortest cycle in a digraph. Describe a polynomial algorithm
to find the shortest cycle in a digraph. Hint: use Exercise 3.20.

Prove Proposition 3.4.2.

Short cycles through an edge. Let G = (V, E) be a 2-edge-connected
graph and let uv € E. Prove that G has a cycle of length at most 2dist(u, V)+
1 through the edge uv. Hint: use the (undirected) distance classes from u and
v as well as the fact that uv is not a bridge.



126

3.25.

3.26.

3.27.
3.28.

3.29.

3.30.
3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

3. Distances

We call a family F of subsets of [n] an antichain if no set in F is contained in
another. Prove Theorem 3.6.4 using the following lemma of Sperner. Let F
be an antichain on [n]. Then |F| < (MT/LQJ). The bound is attained by taking

F to be the family of all subsets of size |n/2]. (Gutin [450])

Prove that p(Cp x Cy) > 0 when both p and ¢ are odd (p,q > 3) (D.B. West,
see [621]).

Construct orientations of Pz x Ps and P3 x P; of diameter 8.

For every odd number n > 3, give an example of a tournament 7' of order n,
in which all vertices are 2-kings.

Let T be a tournament on 4 vertices. Show that T' contains a vertex which
is not a 2-king.

Prove Theorem 3.7.1 (Moon [704]).

Describe an infinite family of semicomplete digraphs, in which every member
has exactly two 2-kings.

Prove that the tournament 7}, in Subsection 3.7.1 has only three 2-kings for
n > 5.

4-kings in bipartite tournaments. Prove that a vertex of maximum out-
degree in a strong bipartite tournament is a 4-king. For all s, > 4 construct
strong bipartite tournaments with partite sets of cardinality s and ¢ which
do not have 3-kings. (Gutin [446])

Prove that a multipartite tournament 7" has a finite out-radius if and only if
T contains at most one vertex of in-degree zero. Hint: use Proposition 3.1.1.

3-kings in quasi-transitive digraphs. Show that every quasi-transitive
digraph of finite radius has a 3-king (Bang-Jensen and Huang [104]).

Give a direct proof that every acyclic digraph is kernel-perfect. Prove that an
acyclic digraph has a unique kernel (von Neumann and Morgenstern [723]).

Prove that C43({1,7,8}) — (1,2), Ca3({1,7,8}) — (1,8) and C43({1,7,8}) —
(1,9) have kernels, where Cy3({1,7,8}) is a circulant digraph.
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The purpose of this chapter is to describe basic elements of the theory and
applications of network flows. This topic is probably the most important
single tool for applications of digraphs and perhaps even of graphs as a whole.
At the same time, from a theoretical point of view, flow problems constitute
a beautiful common generalization of shortest path problems and problems
such as finding internally (arc)-disjoint paths from a given vertex to another.
The theory of flows is well understood and fairly simple. This, combined with
the enormous applicability to real-life problems, makes flows a very attractive
topic to study. From a theoretical point of view, flows are well understood
as far as the basic questions, such as finding a maximum flow from a given
source to a given sink or characterizing the size of such a flow, are concerned.
However, the topic is still a very active research field and there are challenging
open problems such as deciding whether an O(nm) algorithm?! exists for the
general maximum flow problem.

Several books deal almost exclusively with flows; see, e.g., the books [13]
by Ahuja, Magnanti and Orlin, [267] by Dolan and Aldous, the classical text
[331] by Ford and Fulkerson and [710] by Murty. In particular, [13] and [710]
contain a wealth of applications of flows. In this chapter we can only cover
a very small part of the theory and applications of network flows, but we
will try to illustrate the diversity of the topic and show several applications
of a practical as well as theoretical nature. Many of the results given in this
chapter will be used in several other chapters such as those on connectivity
and hamiltonian cycles.

4.1 Definitions and Basic Properties

A network is a directed graph D = (V, A) associated with the following
functions on V x V: a lower bound [;; > 0, a capacity u;; > [l;; and
a cost ¢;; for each (i,7) € V x V. These parameters satisfy the following
requirement:

! Here and everywhere in this chapter n is the number of vertices and m the
number of arcs in the network under consideration.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, 127
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1_4,
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For every (i,7) € V x V, if ij ¢ A, then l;; = u;; = 0. (4.1)

In order to simplify notation in this chapter we also make the assumption
that

Cij = —Cji V(i,j) € V x V. (4.2)

This assumption may seem restrictive but it is purely a technical con-
vention to make some of the following definitions simpler (in particular, the
definition of costs in the residual network in Subsection 4.1.2). When it comes
to implementing algorithms for various flow problems involving costs, this as-
sumption can easily be avoided (Exercise 4.2). Finally we assume that if there
is no arc between ¢ and j (in any direction, then ¢;; = 0.

In some cases we also have a function b : V' — R called a balance vector
which associates a real number with each vertex of D. We will always assume
that

> b(v) =0. (4.3)
veV
We use the shorthand notation N’ = (V, A,l,u,b,c) to denote a network
with corresponding digraph D = (V, A) and parameters [, u, b, c¢. If there are
no costs specified, or there is no prescribed balance vector, then we omit the
relevant letters from the notation. Note that whenever we consider a network
N = (V,A,l,u,b,c) we also have a digraph, namely, the digraph D = (V, A)
that we obtain from N by omitting all the functions I, u, b, c.
For a given pair of not necessarily disjoint subsets U, W of the vertex set
of a network ' = (V, A, ,u) and a function f on V' x V we use the notation
f(U, W) as follows (here f;; denotes the value of f on the pair (¢, j)):

fFOw)y= > fi. (4.4)

ielU,jew

We will always make the realistic assumption that n = O(m) which holds
for all interesting networks. In fact, almost always, the networks on which we
work will be connected as digraphs.

4.1.1 Flows and Their Balance Vectors

A flow in a network N is a function z : A — Ry on the arc set of A'. We
denote the value of = on the arc ij by x;;. For convenience, we will sometimes
think of = as a function of V' x V' and require that x;; = 0 if ij & A (see, e.g.,
the definition of residual capacity in (4.7)). An integer flow in N is a flow
x such that z;; € Z, for every arc ij. For a given flow = in A/ the balance
vector of z is the following function b, on the vertices:
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bx(v) = Z Toyw — Z Tyw Yv e V. (45)

VwEA uvEA

That is, b, (v) is the difference between the flow on arcs with tail v and the
flow on arcs with head v. We classify vertices according to their balance values
(with respect to x). A vertex v is a source if b, (v) > 0, a sink if b, (v) < 0
and otherwise v is balanced (b, (v) = 0). When there is no confusion possible
(in particular when there is only one flow in question) we may drop the index
x on b and say that b is the balance vector of .

A flow z in N' = (V,A,l,u,b,c) is feasible if [;; < z;; < u;; for all
ij € A and b, (v) = b(v) for all v € V. If no balance vector is specified for the
network, then a feasible flow « is only required to satisfy l;; < x;; < u;; for
all (,7) € A.

The cost of a flow z in N = (V, A,1,u,c) is given by

ch = Z CijLij- (46)
ijEA

See Figure 4.1 for an example of a feasible flow.

(2,4,5,6) (0,3,3,2)

(0,0,3,1)
(5,6,8,4)

(3,3,3,1)

(1,1,4,1) (4,5,7,8)

c (2,2,4,1) e

Figure 4.1 A network N' = (V, A,l,u,c) with a feasible flow x specified. The
specification on each arc ij is (lij, Tij, wij, cij). The cost of the flow is 109.

We point out that whenever the lower bounds are all zero (an assumption
that is not a restriction of the modelling power of flows as we shall see in
Section 4.2) we will always assume that if iji is a 2-cycle of a network A
and z is a flow in N, then at least one of x;;,z;; is equal to zero. We call
such a flow a netto flow in N. The practical motivation for this restriction
is that very often one uses flows to model items (water, electricity, telephone
messages, etc.) that move from one place to another in time. Here it makes
perfect sense to say that sending 3 units from ¢ to j and 2 units from j to
i is the same as sending 1 unit from ¢ to j and nothing from j to i (we say
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that 2 of the units cancel out). In some of the definitions below it is easier
to work with netto flows.

The notion of flows generalizes that of paths in directed graphs. Indeed,
if P is an (s,t)-path in a digraph D = (V, A), then we can describe a feasible
flow z in the network V' = (V, A,l = 0,u = 1) by taking x;; = 1 if 45 is an
arc of P and z;; = 0 otherwise. This flow has balance vector

1 ifvo=s
by(v) =< —1 ifv=t
0 otherwise.

We can also see that if there are weights on the arcs of D and we let A inherit
these weights as costs on the arcs, then the cost of the flow defined above
is equal to the length (weight) of P. Hence the shortest path problem is a
special case of the minimum cost flow problem (which is studied in Section
4.10) with respect to the balance vector described above (here we implicitly
used Theorem 4.3.1 for the other direction of going from a flow to an (s, t)-
path in D). In a very similar way we can also see that flows generalize cycles
in digraphs. It is an important and very useful fact about flows that in some
sense one can also go the other way. As we shall see in Theorem 4.3.1, every
flow in a network with n vertices and m arcs can be decomposed into no
more than n + m flows along simple paths and cycles. Furthermore, paths
and cycles play a fundamental role in several algorithms for finding optimal
flows where the optimality is with respect to measures we define later.

4.1.2 The Residual Network

The concept of a residual network was implicitly introduced by Ford and
Fulkerson [331].

For a given flow z in a network N' = (V, A,l,u,c), define the residual
capacity r;; from i to j as follows:

rij = (uij — wig) + (250 — Lji)- (4.7)

The residual network N (z) with respect to x is defined as N(z) =
(V,A(z),l = 0,r,¢c), where A(z) = {ij : ;; > 0}. That is, the cost function
is the same? as for A and all lower bounds are zero. See Figure 4.2 for an
illustration.

The arcs of the residual network have a natural interpretation. If ij € A
and z;; = 5 < 7 = u;;, then we may increase x by up to 2 units on the arc ij
at the cost of ¢;; per unit. Furthermore, if we also have [;; = 2, then we can
also choose to decrease x by up to 3 units along the arc 5. The cost of this
decrease is exactly cj; = —c;; per unit. Note that a decrease of flow along the

2 Note that this differs from definitions in other texts such as [13], but we can do
this since we made the assumption (4.2).
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(2, -3)

Figure 4.2 The residual network N (x) corresponding to the flow in Figure 4.1.
The data on each arc is (r,c).

arc ij may also be thought of as sending flow in the opposite direction along
the residual arc j4 and then cancelling out.

4.2 Reductions Among Different Flow Models

The purpose of this section is to show that one can restrict the general defi-
nition of a flow network considerably and still retain its modeling generality.
We also show that one can model networks with lower bounds, capacities and
costs on the vertices by networks, where all these numbers are on arcs only.

4.2.1 Eliminating Lower Bounds

We start with the following easy observation which shows that within the
general model the assumption that all lower bounds are zero does not limit
the model.

Lemma 4.2.1 Let N = (V, A,l,u,b,c) be a network.

(a) Suppose that the arc ij € A has l;; > 0. Let N” be obtained from N
by making the following changes: b(j) = b(j) + l;j, b(i) = b(i) — l;;,
wij = wi; — lij, lij := 0. Then every feasible flow x in N corresponds to
a feasible flow x' in N’ and vice versa. Furthermore, the costs of these
two flows are related by cTx = cTa' + lijeij.

(b) There exists a network Ni=o in which all lower bounds are zero such
that every feasible flow x in N corresponds to a feasible flow =’ in Ni=o
and vice versa. Furthermore, the costs of these two flows are related by

T, — T,/
crx=cta’+ 300 lijci;
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Proof: Part (a) is left to the reader as Exercise 4.3. Since we may eliminate
lower bounds one arc at the time, (b) follows from (a) by induction on the
number of arcs. O

It is also useful to observe that we can construct A from A in time
O(n + m) and reconstruct the flow z from 2’ in time O(m). Hence the time
for eliminating lower bounds and reconstructing a flow in the original network
is negligible since all algorithms on networks need O(n+m) time just to input
the network.

4.2.2 Flows with One Source and One Sink

Let s, t be distinct vertices of a network N' = (V, A,1 = 0,u, c). An (s, t)-flow
is a flow = satisfying the following for some k € Ry:

k ifv=s
by(v) =< —k ifv=t
0 otherwise.

The value of an (s, t)-flow x is denoted by |z| and is defined by

2] = ba(s). (48)

The next lemma combined with Lemma 4.2.1 shows that using only (s, t)-
flows, one can model everything which can be modeled via flows in the general
network model.

Lemma 4.2.2 Let N = (V,A,l = 0,u,b,c) be a network. Let*> M =
2 {wb(wy=0} 0(v) and let Ny be the network defined as follows: Ny = (V' U
{s,t}, A"l =0,u,b, ), where

(a) A" =AU {sr:b(r)>0}U{rt:b(r) <0},

(b) wi; = wij for allij € A, us = b(r) for all v such that b(r) > 0 and
uqt = —b(q) for all g such that b(q) < 0,

(¢) ci; = cij for allij € A and ¢’ =0 for all arcs leaving s or entering t,

(d) b'(v) =0 for allveV,b(s) =M, b(t)=—M.

Then every feasible flow x in N corresponds to a feasible flow =’ in Ny and
vice versa. Furthermore, the costs of x and ' are related by cTx = ¢Ta'. See
Figure 4.35.

Proof: Exercise 4.4. O

It follows from Lemma 4.2.2 that given any network N in which all lower
bounds are zero, we can check the existence of a feasible flow in N by con-
structing the corresponding network N;; and check whether this network has

3 Recall that we also have M = — 2 {oib(w)<oy b(v) by (4.3).
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an (s,t)-flow x such that |x| = M where M is defined in Lemma 4.2.2. This
latter task is precisely the problem of finding the maximum value of a feasible
(s,t)-flow in Ny, a problem which we study extensively in Sections 4.5-4.7.

See also Theorem 4.8.3.

3 (5, 5) s (5,5)
(3,1) (2,1 (3,1) (2,1
0 3,3)
(2, 1) (1, 1) .3 (2,1) (1,1) {
(4,3) (4,3) (4,3) (4,3 (4, 4
6 q —a (6.6
(1,0) (4,0) (1,0) (4,0
0
(7,2 (2,0) (6,6) 7.2 (2,0) s
(5,2) (5,2) (5,2 (5,2) .8
6 ¢ (6,6) s (6,6)
(a) (0)

Figure 4.3 Part (a) shows a network A with a feasible flow with respect to the
balance vector specified at each vertex. The numbers on each arc are (capacity,
flow). Costs are omitted for clarity. Part (b) shows the network Ny as defined in
Lemma 4.2.2 and a feasible flow 2’ in Ny;.

4.2.3 Circulations

A circulation is a flow z with b,(v) = 0 for all v € V. Combining our next
result with Lemmas 4.2.1 and 4.2.2 shows that one can also model everything
that can be modeled in the general (flow) network model by the seemingly
much more restricted circulations. Note that we cannot completely exclude
lower bounds in this reduction (see Exercise 4.5).

Lemma 4.2.3 Let N = (V,A,l = 0,u,b,c) be a network with distinct ver-
tices s,t and let the balance vector of N satisfy b(v) = 0 for allv € V —{s,t},
b(s) = M, b(t) = —M, for some M € Ry. Let N* = (V, AU {ts}, 1", u", ")
be the network obtained from N by adding a new arc ts with lower bound
lis = M, capacity ugs = M and cost ¢, = 0, keeping the lower bound, ca-
pacity and cost of each original arc and posing no restriction on the balance
vector of N*. Then every feasible (s,t)-flow x in N corresponds to a feasible
circulation ' in N* and vice versa. Furthermore, the costs of x and =" are

related by cTx = 'T2".

Proof: Exercise 4.5. a

The concept of a circulation is a very useful tool for applications to ques-
tions concerning sub(di)graphs of (di)graphs as we show in Section 4.11.
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4.2.4 Networks with Bounds and Costs on the Vertices

In some applications of flows one is not interested in imposing lower bounds
and capacities on arcs, but rather on vertices. One such example is when one
is looking for a cycle subdigraph that contains all vertices of a certain subset
X and possibly other vertices (see Section 4.11). Another example is when
one is looking for a path factor which covers all vertices of a digraph (see
Section 13.5). We show below how to model networks with lower bounds,
capacities and costs on vertices (and possibly also on arcs) by standard net-
works where all functions, other than the balance vectors, are on the arcs.
First we introduce a useful transformation of any digraph to a bipartite di-
graph which we will use not only for the problem above but also several other
places in the book.

b
a; @< @ ay
bs by
a® c
Cs @ Ct
[
d ds 4—. dt
D Dsr

Figure 4.4 The vertex splitting procedure.

Given a digraph D = (V, A), construct a new digraph Dgr as follows.
For each vertex v € V, Dgr contains two new vertices v,,v; and the arc
vws. For each arc zy € A(D), A(Dgr) contains the arc zy;. See Figure 4.4.
We say that the digraph Dgr is obtained from D by the vertex splitting
procedure.

Now suppose that N' = (V, A, 1, u, b, c,I*,u*, c*) is a network with a pre-
scribed balance vector b, lower bounds, capacities and costs [, u, c on the arcs
(the case when there are no such specifications can easily be modeled by
taking [ = 0,u = 0o, ¢ = 0) and lower bounds, capacities and costs I*, u*, ¢*
on the vertices. To be precise we have to define the meaning of these new
parameters. There is some freedom in such a definition, but for the applica-
tions we will need, it suffices to use the definition that {*(v) is the minimum
and u*(v) the maximum amount of flow that may pass through v and the
cost of sending one such unit through v is ¢*(v). By ‘passing through’ we
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mean the obvious thing when b(v) = 0 and if b(v) > 0 (b(v) < 0) we think of
I*(v),u*(v),c*(v) as bounds and costs per unit on the total amount of flow
out of (in to) v.

Let Dgr be the digraph obtained from D = (V, A) by performing the
vertex splitting procedure. Define a new network based on the digraph Dgrp
by adding lower bounds, capacities and costs as follows:

(a) For every arc igj; (corresponding to an arc ij of A) we let h'(isj;) = h(ij),
where h € {l,u,c}.

(b) For every arc i4is (corresponding to a vertex ¢ of V') we let h'(i+is) = h*(7),
where h* € {I*,u*, c*}.

Finally we define the function b’ as follows:

If b(i) = 0, then b/ (i5) = V(i) = 0;
If b(:) > 0, then b'(i;) = b(é) and b’ (i5) = 0;
If b(i) < 0, then b'(i;) = 0 and ¥ (is) = b(i).

(1,3,2)
_4 0
(0,3,4)
0 3
4 -1
(2,2,1) (0.3.0)
—1 0
0 2
2
(1,4,6)
N N’

Figure 4.5 The construction of N’ from N . The specification is the balance vector
and (I,u,c). For clarity only one arc of A/ has a description of bounds and cost.

See Figure 4.5 for an example of the construction. It is not difficult to
show the following result.

Lemma 4.2.4 Let N and N’ be as described above. Then every feasible flow
in N corresponds to a feasible flow in N = (V(Dgr), A(Dgr),l',u' b, )
and vice versa. Furthermore, the costs of these flows are the same.

Proof: Exercise 4.6. O
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4.3 Flow Decompositions

In this section we consider a network N' = (V, A,l = 0,u) and denote by
D = (V, A) the underlying digraph of A/. By a path or cycle in N' we mean
a directed path or cycle in D. We will show that every flow in a network
can be decomposed into a small number of very simple flows in the same
network. Besides being a nice elementary mathematical result, this also has
very important algorithmic consequences as will be clear from the succeeding
sections.

A path flow f(P) along a path P in N is a flow with the property that
there is some number k € Ry such that f(P);; = k if 4j is an arc of P and
otherwise f(P);; = 0. Analogously, we can define a cycle flow f(W) for any
cycle W in D. The arc sum of two flows z,2’, denoted x + 2, is simply the
flow obtained by adding the two flows arc-wise.

Theorem 4.3.1 Every flow z in N can be represented as the arc sum of
some path and cycle flows f(P1), f(Pa), ..., f(Pa), f(C1),..., f(Cg) with the
following two properties:

(a) Every directed path P;, 1 < i < «, with positive flow connects a source
vertex to a sink vertex.
(b) a+pB<n+mand < m.

Proof: Let x be a non-zero flow in N. Suppose first that b,(ig) > 0 for
some ig € V. Since by(ip) > 0 it follows from (4.5) that there is some arc
i0i1 leaving ip with x;,;, > 0. If b(i1) < 0, then we have found a path from
ip to the sink 41. Otherwise b(i1) > 0 and it follows from (4.5) and the fact
that z;,;, > 0 that ¢; has some arc ¢4y leaving it with x;,;, > 0. Continuing
this way, we either find a path P from ig to a sink vertex i, such that x
is positive on all arcs on P, or eventually some vertex that was examined
previously must be reached for the second time. In the latter case we have
detected a cycle C' = i,4,41 ...%p_11p%, such that z is positive on all arcs of
C. Now we change the flow x as follows:

(i) If we detected a path P from iy to a sink iy, then let § = min{z;;_,, :
igig+1 € A(P)} and define p by p = min{b, (ig), —b;(ix),d}. Let f(P) be
the path flow of value p along P. Decrease = by p units along P.

(ii) Otherwise we have detected a cycle C. Let p = min{xz; i, : iqiq41 €
A(C)} and let f(C) be a cycle flow of value p along C. Decrease x by
units along C.

If no arc carries positive flow after the changes made above, we are done.
Otherwise we repeat the process above. If every vertex v becomes balanced
with respect to the current flow z (i.e., b (v) = 0) before x is identically zero,
then just start from a vertex ip which has an arc igé; with positive flow. From
now on only cycle flows will be extracted in the subroutine described above.
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Since each of these iterations either results in a vertex becoming balanced
with respect to the current flow, or in an arc ij losing all its flow, i.e., x;;
becomes zero, the total number of iterations, extracting either a path flow
or a cycle flow from the current flow, is at most n + m. It follows from the
description above that (a) and the first part of (b) holds. The second part of
(b) follows from the fact that each time we extract a cycle flow at least one
arc loses all its flow. ad

The proof above immediately implies an algorithm for finding such a
decomposition in time O(m?) if one uses DFS to find the next path or cycle
flow to extract. However, if we use an appropriate data structure and a little
care, this complexity can be improved.

Lemma 4.3.2 Given an arbitrary flow x in N one can find a decomposition
of x into at most n +m path and cycle flows, at most m of which are cycle
flows, in time O(nm).

Proof: Exercise 4.7. a
The following useful fact is an easy consequence of Theorem 4.3.1.

Corollary 4.3.3 Let N be a network. Every circulation in N can be decom-
posed into no more than m cycle flows. a

4.4 Working with the Residual Network

Suppose N is a network and z,z’ are feasible flows in A. What can we say
about the relation between x and z’? Clearly one can be obtained from the
other by changing the flow along each arc appropriately, but we can reveal
much more interesting relations as we shall see below. In fact, it turns out
that if z is feasible in N and 2’ is any other feasible flow in A, then z’ can be
expressed in terms of x and some feasible flow in the residual network N (x).
The other direction holds as well: if x is feasible in A and y is feasible in
N (z), then we can ‘add’ y to x and obtain a new feasible flow in A. These
two properties imply that in order to study flows in a network N it suffices
to find one feasible flow = and then work in the residual network A (z). We
assume below that all lower bounds are zero. Recall that, according to the
results in Section 4.2, this restriction does not limit our modeling power.
The first result shows that if z is a feasible flow in N = (V, A,1 = 0,u, b, ¢)
and 7 is a feasible flow in NV(z), then one can ‘add’ Z to = and obtain a new
feasible flow in N. Here ‘adding’ is arc-wise and should be interpreted as
defined below. Recall that we may assume we are dealing with netto flows.

Definition 4.4.1 Let x be a feasible flow in N = (V, A,l = 0,u,c) and let
T be a feasible flow in N(x). Define the flow z* = x ® T as follows: Start by
letting x7; := x;; for every ij € A and then for every arc ij in N(z) such
that Z;; > 0 we modify x* as follows (see Figure 4.6).
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(a) If xj; =0, then x7; := xij + Tij.
(b) If x;; =0 and xj; < &;j;, then Ti; = Tij — xj; and xj; = 0.
(C) Ifl'ﬂ Z Lfij, then il';fi =T — Cf”

Note that by (4.7), if 0 < xj; < &;;, then ij € A. Using that x is a netto
flow it is easy to check that the resulting flow xz* is also a netto flow.

T x z*
(a) { i’ij >0 J i Tij >0 J T Tij +3~Zij J
0 o————0 o0
o) { Zi; >0 J { Tji < Tij J i Tij — Xji J
0 o0 o ———0
:Eij = 0
i ~ . : . - . . - .
(C) Tij > 0 J z Tji > Tij J 7 Tji — Tij J

Figure 4.6 The three different cases in Definition 4.4.1. The three columns shows
the flows Z, x and z*, respectively. An arc between i and j is shown unless the
corresponding flow on that arc is zero.

Theorem 4.4.2 Let x be a feasible flow in N = (V, A,l = 0,u,c) with bal-
ance vector by and I is a feasible flow in N'(x) = (V, A(x),r,c) with balance
vector bz. Then x* = 2 ® I is a feasible flow in N with balance vector by + b
and the cost of x* is given by c'x* = cTx +cT'%.

Proof: Let us first show that 0 < :C;fj < uy; for every ij € A. We started
the construction of z* by letting z}; := x;; for every arc. Hence it suffices to
consider pairs (4, j) for which &;; > 0. We consider the three possible cases
(a)-(c) in Definition 4.4.1. In Case (a) we have z}; = 0 and

X -
0 <ua; =i+ Tij < Tij + 714
=i + (uij — T + l‘ji)

= U4y,

since we have x;; = 0 in Case (a). In Case (b) we will have 7, = 0 and
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* —_— e — .. P p— ..
0< Lij = Tij Lj5 < Tij L5
= (uij — wij + 250) — @

= Uy,

since we have x;; = 0 in Case (b). In Case (c) it is easy to see that we get
zj; = 0 and that 0 < z%; < uj;.

Consider the balance vector of the resulting flow. We wish to prove that
x* has balance vector b, + bz, that is, for every i € V,

boe (i) = >l — Y aly = ba(i) + ba(i). (4.9)
ijEA jicA

This can be proved directly from the definitions of the balance expressions
for x and Z. However, this approach is rather tedious and there is a simple
inductive proof using Theorem 4.3.1. If 7 is just a cycle flow in N'(z), then it
is easy to see (Exercise 4.12) that the balance vector of x* equals that of x.
Similarly, if Z is just a path flow of value ¢ along a (p, ¢)-path, for some distinct
vertices p,q € V, then by« (v) = b, (v) for vertices v which are either internal
vertices on P or not on P and by« (p) = by (p) + 9, by (¢) = by(g) — I. In the
general case, when 7 is neither a path flow nor a cycle flow in A (z) we consider
a decomposition of Z into path and cycle flows in A/ (z) according to Theorem
4.3.1. Using the observation above and Theorem 4.3.1 (implying that when
adding all balance vectors of the paths and cycles in a decomposition, we
obtain the balance vector of Z) it is easy to prove by induction on the number

of paths and cycles in the decomposition that (4.9) holds.
We leave it to the reader to prove using the same approach as above that
the cost of 2* is given by ¢’ a* = ¢T'z + ¢T'% (see Exercise 4.12). O

The next theorem shows that the difference between any two feasible flows
in a network can be expressed as a feasible flow in the residual network with
respect to any of those flows.

Theorem 4.4.3 Let N' = (V,A,l = 0,u,c) be a network and let x and x’
be feasible netto flows in N with balance vectors b, and by:. There exists a
feasible flow T in N'(x) with balance vector by = by — by, such that 2’ = z® .
Furthermore, the costs of these flows satisfy ¢'z = ¢z’ — cTz.

Proof: Let x, 2’ be feasible netto flows in N' = (V, A,l = 0,u, c) and define
a flow in NV (x) as follows. For every arc pg € N (z) we let Zp, := 0 and then
for every arc ij € A such that either x;; > 0 or mgj > 0 holds, we modify z
as follows:

(a) If ;; > xi;, then Zj; = x5 — xj; + 2.
(b) If ZL’;j > Zij, then ifij = Zl'gj — Ty + Ty
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Using that z and 2’ are feasible netto flows in A\, one can verify that
is a feasible netto flow in N (x) (Exercise 4.13). It also follows easily from
Definition 4.4.1 that 2’ = 2 ® . Now the last two claims regarding balance
vector and cost follow from Theorem 4.4.2. O

The following immediate corollary of Theorem 4.4.3 and Corollary 4.3.3
will be useful when we study minimum cost flows in Section 4.10.

Corollary 4.4.4 Ifx and x’ are feasible flows in the network N = (V, A,l =
0,u,c) such that b, = by, then there exists a collection of at most m cycles
Wi, Wa, ..., Wy in N'(x) and cycle flows f(W1), ..., f(Wg) in N'(x) such that
the following holds:

(a) 2 =z&(f(Wi)+...+f(Wi)) = (.. (@af(W))af(Wa))e... )& f(Wk);
(b) T2’ =clo + Zle ' f(W5). O

4.5 The Maximum Flow Problem

In this and the next section we study (s, ¢)-flows in networks with all lower
bounds equal to zero. That is, we consider networks of the type N' = (V, A,l =
0,u) where s,t € V are special vertices and we are only interested in flows
x which satisfy b;(s) = —b,(t) and by (v) = 0 for all other vertices. We call
s the source and t the sink of N. By Theorem 4.3.1, every (s,t)-flow z
can be decomposed into a number of path flows along (s, t)-paths and some
cycle flows whose values do not affect the value of the flow x. Based on this
observation we also say that x is a flow from s to t.

Recall from (4.8) that the value |z| of an (s, t)-flow is |x| = by (s). We are
interested in determining the maximum value k for which N has a feasible
(s,t)-flow of value? k. Such a flow is called a maximum flow in A/. The
problem of finding a maximum flow from s to ¢ in a network with a specified
source s and sink ¢ is known as the MAXIMUM FLOW PROBLEM [331].

An (s,t)-cut is a set of arcs of the form (S, S) where S, S form a partition
of V such that s € S,t € S. The capacity of an (s, t)-cut (5, S) is the number
u(S,S), that is, the sum of the capacities of arcs with tail in S and head in
S (recall (4.4)). Cuts of this kind are interesting in relation to the maximum
flow problem as we shall see below.

Lemma 4.5.1 For every (s,t)-cut (S,S) and every (s,t)-flow z, we have
|z| = z(S,S) — z(S, S). (4.10)

Proof: Starting from the definition of |z| and the fact that b,(v) = 0 for all
v € S — s we obtain

4 Observe that there always exists a feasible flow in A since we have assumed
[=0.
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o] = ba(s) + D bali)

i€S—s

=Y (> wi— Y )

i€S ijeA jieA
=z(S,V)—xz(V,S5)
= (S, 9) + z(9,5) — (S, 5) — (5, 5)
= a:(S,?) - x(ga S),
where we also used (4.4). 0

Since a feasible flow x satisfies x < u, every feasible (s, t)-flow must satisfy
2(8,5) < u(S,S) for every (s,t)-cut (S,5). (4.11)
A minimum (s, t)-cut is an (s,t)-cut (S, 5) with
u(S,S) = min{u(S’,5) : ($',9) is an (s, t)-cut in N'}.

It follows from (4.11) and Lemma 4.5.1 that the capacity of any (s,t)-
cut provides an upper bound for the value |z| for any feasible flow z in the
network. We also obtain the following useful consequence.

Lemma 4.5.2 If a flow x has value |z| = u(S,S) for some (s,t)-cut (S, 5),
then z(S,S) =0, z is a mazimum (s,t)-flow and (S, S) is a minimum (s, t)-
cut. a

Suppose z is an (s, t)-flow in N and P is an (s, t)-path in A/ (z) such that
ri; > € > 0 for each arc ij on P. Let z” be the (s,t)-path flow of value e
in NV (x) which is obtained by sending € units of flow along the path P. By
Theorem 4.4.2, we can obtain a new flow =’ = z @ x” of value |z| + € in N,
implying that x is not a maximum flow in A/. We call a path P in N (z) as
above an augmenting path with respect to z. The capacity 6(P) of an
augmenting path P is given by

§(P) = min{r;; : ij is an arc of P}. (4.12)

We call an arc ¢j of P for which z;; < u;; a forward arc of P and an
arc ¢j of P for which z;; > 0 a backward arc of P.

When we ‘add’ the path flow 2" to x according to Definition 4.4.1 we
say that we augment along P by € units. It follows from the definition of
0(P) and Theorem 4.4.2 that 6(P) is the maximum value by which we can
augment x along P and still have a feasible flow in A/ after the augmentation.

Now we are ready to prove the following fundamental result, due to Ford
and Fulkerson, relating minimum (s, t)-cuts and maximum (s, t)-flows.
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Theorem 4.5.3 (Max-Flow Min-Cut theorem) [331] Let N = (V, Al =
0,u) be a network with source s and sink t. For every feasible (s, t)-flow x in
N the following are equivalent:

(a) The flow x is a mazimum (s,t)-flow.
(b) There is no (s,t)-path in N (z). _
(c) There exists an (s,t)-cut (S,S) such that || = u(S,S).

Proof: We show that (a)=(b)=-(c)=(a).

r=Uu
Tr=Uu
se S S et s& S _ S et
x=0
T =

Figure 4.7 Illustration of part (b)=-(c) in the proof of Theorem 4.5.3. The set S
consists of those vertices that are reachable from s in A(z). The left part shows
the situation in the residual network where we have S=S and the right part shows
the corresponding situation in N.

(a)=(b): Suppose z is a maximum flow in N and that A (z) contains an
(s,t)-path P. Let §(P) > 0 be the capacity of P and let ' be the (s, t)-
path flow in N (z) which sends 6(P) units of flow along P. By Theorem
4.4.2, x @2’ is a feasible flow in A of value |z|+46(P) > |z|, contradicting
the maximality of z. Hence (a)=-(b).

(b)=>(c): Suppose that N (z) contains no (s, t)-path. Let

S ={y €V :N(x) contains an (s,y)-path}.

By the definition of S, there is no arc from S to S in M (z). Thus the
definition of NV'(z) implies that for every arc ij € (9, S) we have z;; = u;;
and for every arc ij € (S, S) we have x;; = 0 (see Figure 4.7). This implies
that we have |z| = x(S,5) — 2(S,S9) = u(S,S) — 0 = u(S, S). Hence we
have proved that (b)=-(c).

(c)=>(a): This follows directly from Lemma 4.5.2. O

4.5.1 The Ford-Fulkerson Algorithm

The proof of Theorem 4.5.3 suggests the following simple method for finding
a maximum (s,t)-flow in a network where all lower bounds are zero. Start
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with & = 0. This is a feasible flow since 0 = [;; < u;; for all arcs ij € A. Try
to find an (s, t)-path P in M (x). If there is such a path P, then augment x by
§(P) units along P. Continue this way until there is no (s, ¢)-path in N (z)
where z is the current flow. This method, due to Ford and Fulkerson [331],
is called the Ford-Fulkerson (FF) algorithm.

Strictly speaking this is not really an algorithm if we do not specify how
we wish to search for an augmenting (s, t)-path. It can be shown (see Exercise
4.17) that when the capacities are allowed to take non-rational values and
there is no restriction on the choice of augmenting paths (other than the
restriction that one has to augment as much as possible along the current
path), then the process above may continue indefinitely and without even
converging to the right value of a maximum flow (see Exercise 4.17). In real-
life applications this problem cannot occur since all numbers represented in
computers are rational approximations of real numbers and in this case the
algorithm will always terminate (Exercise 4.18).

Theorem 4.5.4 If N = (V,A,l = 0,u) has all capacities integers, then
the Ford-Fulkerson algorithm finds a mazimum (s,t)-flow in time O(m|z*|),
where x* is a mazimum (s,t)-flow.

Proof: The following generic process called the labelling algorithm will
find an augmenting path in A'(x) in time O(n +m) if one exists®. Start with
all vertices unlabelled except s and every vertex unscanned. In the general
step we pick a labelled but unscanned vertex v and scan all its out-neighbours
while labelling (by backwards pointers showing where a vertex got labelled
from) those vertices among the out-neighbours of v that are unlabelled. If
t becomes labelled this way, the process stops and an augmenting path, de-
termined by the backwards pointers, is returned. If all vertices are scanned
and ¢t was not labelled, the process stops and the set of labelled vertices S
and its complement S correspond to a minimum (s,t)-cut (recall the proof
of Theorem 4.5.3).

Each time we augment along an augmenting path, the value of the current
flow increases by at least one, since the capacities in the residual network
are all integers (this is clear in the first iteration and easy to establish by
induction for the rest of the iterations of the algorithm). Hence there can be
no more than |z*| iterations of the above search for a path and the complexity
follows. O

To see that the seemingly very pessimistic estimate in Theorem 4.5.4
for the time spent by the algorithm may in fact be realized, consider the
network in Figure 4.8 and the sequence of augmenting paths specified there.
The reader familiar with the literature on flows may see that our example is
different from the classical example in books on flows. The reason for this is

5 We could also use path finding algorithms such as BFS and DFS, but the original
algorithm by Ford and Fulkerson uses only the generic labelling approach. See
also Section 4.6.
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Figure 4.8 A possibly bad network for the Ford-Fulkerson algorithm. The num-
ber M denotes a large integer. If we choose augmenting paths of the form sabeft
with augmenting capacity 1 in odd-numbered iterations and augmenting paths of
the form sdebct with augmenting capacity 1 in even-numbered iterations, then a
maximum flow = of value 2M will be found only after 2M augmentations. Clearly,
if instead we augment first along sabct and then along sdeft, each time by M units,
we can find a maximum flow after just two augmentations.

that if we interpret the Ford-Fulkerson algorithm precisely as it is described
in [331, page 18] (see also the proof of Theorem 4.5.4), then the algorithm
will not behave badly on the usual example, whereas it still will do so on the
example in Figure 4.8.

The value of the maximum flow in the example in Figure 4.8 is 2M. This
shows that the complexity of the Ford-Fulkerson algorithm is not bounded by
a polynomial in the size of the input (recall from Chapter 1 that we assume
that numbers are represented in binary notation). It is worth noting though
that Theorem 4.5.4 implies that if all capacities are small integers, then we
get a very fast algorithm which, due to its simplicity, is easy to implement.
The following is an easy but very important consequence of the proof of
Theorem 4.5.3:

Theorem 4.5.5 (Integrality theorem for maximum (s, t)-flows) [351]
Let N = (V, Al = 0,u) be a network with source s and sink t. If all capacities
are integers, then there exists an integer mazimum (s,t)-flow in N.

Proof: This follows from our description of the Ford-Fulkerson algorithm. We
start with = 0 and every time we augment the flow we do this by adding an
integer-valued path flow of value §(P) € Z,. Hence the new (s, t)-flow is also
an integer flow. It follows from the fact that all capacities are integers that in
a finite number of steps we will reach a maximum flow (by Lemma 4.5.1, |z|
cannot exceed the capacity of any cut). Now the claim follows by induction
on the number of augmentations needed before we have a maximum flow. 0O

An (s,t)-flow in a network N is maximal if every (s, t)-path in N uses at
least one arc pg such that z,, = u,, (such an arc is called saturated). That
is, either = is maximum or after augmenting along an augmenting path P the
resulting flow 2’ has :z:gj < x;; for some arc®. This is equivalent to saying that

6 Recall that we always work with netto flows.
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every augmenting path with respect to = contains at least one backward arc
when P is considered as an oriented path in . It is important to distinguish
between a maximal flow and a maximum flow. An (s,t)-flow = is maximal if
it is either maximum, or in order to augment it to a flow with a higher value,
we must reduce the flow in some arc. See also Figure 4.9.

c 0 q

Figure 4.9 A network N with flow  which is maximal but not maximum as the
path P = sabedt is an (s, t)-path in M (x). Note that the arc be is a backward arc
of P. The data on each arc is (capacity, flow).

4.5.2 Maximum Flows and Linear Programming

We digress for a short while to give some remarks on the relation between
maximum flows and linear programming. First observe that the maximum
flow problem (with lower bounds all equal to zero) is equivalent to the fol-
lowing linear programming problem:

maximize k

subject to
k ifv=s
be(v) =< —k ifv=t
0 otherwise.
0 <y < ugy for every ij € A.

The matrix T of the constraints of this linear program is given by T =
{“ﬂ, where S is the vertex-arc incidence matrix’ of the underlying directed

graph of the network (recall the definition of b,) and I is the m x m identity
matrix. The matrix S has the property that every column contains exactly
+1 and exactly one —1. This implies that S is totally unimodular, i.e., each

" The vertex-arc incidence matrix S = [s;;] of a digraph D = (V, A) has rows
labelled by the vertices of V' and columns labelled by the arcs of A and the entry
Svi,a; equals 1 if the arc a; has tail v;, —1 if a; has head v; and 0, otherwise.
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square submatrix of S has determinant 0, 1 or —1 (see, e.g., the book [229]
by Cook, Cunningham, Pulleyblank and Schrijver). Hence it follows from
Exercise 4.19 that the matrix T is also totally unimodular. Therefore the
integrality theorem for maximum flows (Theorem 4.5.5) follows immediately
from the Hoffman-Kruskal characterization of total unimodularity (see [229,
Theorem 6.25]).

Since the maximum flow problem is just a linear programming problem,
it follows that one can find a maximum flow using any method for solving
general linear programming problems. In particular, by the total unimodular-
ity of T', the Simplex algorithm will always return an integer maximum flow,
provided that all capacities are integers. However, due to the special nature
of the problem, more efficient algorithms can be found when we exploit the
structure of flow problems. Finally, we remark that the max-flow min-cut
theorem can be derived from the duality theorem for linear programming
(see, e.g., the book [742] by Papadimitriou and Steiglitz).

4.6 Polynomial Algorithms for Finding a Maximum
(s,t)-Flow

In this section and in some of the exercises we describe a number of polyno-
mial algorithms for the maximum flow problem. For a survey of complexities
of various maxflow algorithms see, e.g., Chapter 10 of Schrijver’s book [303].
The following problem has been folklore for many years.

Problem 4.6.1 Is there an O(mn) algorithm for the mazimum flow prob-
lem?

The Ford-Fulkerson algorithm can be modified in various ways to ensure
that it becomes a polynomial algorithm. We describe two such modifications
(see also Exercises 4.25 and 4.26). After doing so we describe a different
approach in which we do not augment the flow by just one path at the time.
For the first two subsections we need the following definition.

Definition 4.6.2 A layered network is a network N' = (V, A, = 0,u)
with the following properties:

(a) There is a partition V= Vo U Vi UVaU... UV, UVii1 such that Vo =
{s}, Vi1 = {t} and

(b) every arc of A goes from a layer V; to the next layer Viiq for some
i=0,1,....k

See Figure 4.10 for an example of a layered network.
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Figure 4.10 A layered network with source s and sink ¢. The numbers on the arcs
indicate the capacities.

4.6.1 Augmenting Along Shortest Augmenting Paths

Edmonds and Karp [288] observed that in order to modify the Ford-Fulkerson
algorithm so as to get a polynomial algorithm, it suffices to choose the aug-
menting paths as shortest paths with respect to the number of arcs on the
path.

Let = be a feasible (s, t)-flow in a network A. Denote by 8. (s, t) the length
of a shortest (s,t)-path in A (z). If no such path exists, we let d,(s,t) = oco.

Suppose that there is an augmenting path in A/(z) and let P be a shortest
such path. Let r be the number of arcs in P. Define the network LN (z) as
the network one obtains from N (z) by taking the vertices from the distance
classes Vo, Vi,..., Vp, ie., V; = {v : distpr(z)(s,v) = i}, and all arcs belonging
to (Vi, Vig1)n(a) fori = 0,1,...,r—1 along with their residual capacities 7;;.
Observe that, by the definition of distance classes, LN (z) contains all the
shortest augmenting paths with respect to x in N(x).

The crucial fact that makes augmenting along shortest paths a good ap-
proach is the following lemma.

Lemma 4.6.3 [288] Let : be a feasible (s,t)-flow in N and let 2’ be obtained
from x by augmenting along a shortest path in N (z). Then

Sor(,8) > 8,(s,1). (4.13)

Proof: Suppose this is not the case for some x, 2’ where 2’ is obtained from x
by augmenting along a shortest path P in A/(z). By the remark above, LA/ (x)
contains all the shortest augmenting paths (with respect to z) in N'(z). Let
r = 0,(s,t). By our assumption, N (z) contains an (s,t)-path P’ whose
length is less than r. Thus P’ must use an arc ij such that ij ¢ AN (x)).
However, every arc that is in M'(z') but not in LN (z) is of the form ji where
ij is an arc of P, or is inside a layer of LA/ (z). It follows that P’ has at least
r 4+ 1 arcs, contradicting the assumption. a
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Note that even if M (z') contains no (s,t)-path of length §,(s,t), it may
still contain a path of length d,(s,t) + 1, since we may use an arc which was
inside a layer of LN (z).

Theorem 4.6.4 (Edmonds, Karp) [288] If we always augment along
shortest augmenting paths, then the Ford-Fulkerson algorithm has complexity
O(nm?).

Proof: By Lemma 4.6.3, the length of the current augmenting path increases
monotonically throughout the execution of the algorithm. It follows from the
proof of Lemma 4.6.3 that if the length of the next augmenting path does not
go up, then that path is also a path in LA/ (z). Note also that at least one arc
from some layer V; to the next disappears after each augmentation®. Hence
the number of iterations in which the length of the current augmenting path
stays constant is at most m. Since the length can increase at most n—2 times
(the length of an (s,t)-path is at least 1 and at most n — 1) and we can find
the next augmenting path in time O(n+m) using BFS we obtain the desired
complexity. a

Zadeh [926] constructed networks with n vertices and m arcs for which the
Edmonds-Karp algorithm requires £2(nm) augmentations to find a maximum
flow. Hence the estimate on the worst case complexity is tight.

4.6.2 Maximal Flows in Layered Networks

Let L = (V=VWuWU... UV, Al = 0,u) be a layered network with
Vo = {s} and Vj, = {t}. By the definition of a maximal flow in Section 4.5,
an (s,t)-flow z in £ is maximal if there is no (s,t)-path of length & in the
residual network £(z). That is, every augmenting path with respect to x (if
there is any) must use at least one arc pg such that p € V},q € V; for some
j>i.

We saw above that if we always augment along shortest augmenting paths,
then the length of a shortest augmenting path is monotonically increasing.
Hence if we have a method to find a maximal flow in a layered network in
time O(p(n,m)), then we can use that method to obtain an O(np(n,m))
algorithm for finding a maximum (s, t)-flow in any given network.

The method of Edmonds and Karp above achieves a maximal flow in time
O(m?). Tt was observed by Dinic [262] (who also independently and earlier
discovered the method of using shortest augmenting paths) that a maximal
flow in a layered network can be obtained in time O(nm), thus resulting in
an O(n?m) algorithm for maximum flow.

The idea is to search for a shortest augmenting path in a depth-first search
manner. We modify slightly the standard DFS algorithm (see Section 1.9) as

8 Recall that in each augmentation we augment by §(P) units along the current
augmenting path P.
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shown below. The vector 7 is used to remember the arcs of the augmenting
path detected if one is found.

Dinic’s algorithm (one phase)
Input: A layered network £L=(V =VoUuViU... UV}, A 1 =0,u).
Output: A maximal flow z in L.

1. Initialization: z;; := 0 for every arc ij in A, let v := s be the current
vertex and let A’ := A.

2. Searching step: If there is no arc with tail v in A’ (from v to the next
layer among the remaining arcs), then if v = s, go to Step 5; otherwise
go to Step 4;

If there is an arc vw € A’, then let m(w) := v and let v := w. If v # ¢,
repeat Step 2.

3. Augmentation step: Using the « labels find the augmenting path P
detected and augment = along P by §(P) units. Delete all arcs ij of A’
for which z;; = u;;. Erase all labels on vertices (7 (i) := nil for all i € V).
Let v := s and go to Step 2.

4. Arc deletion step: (The search above has revealed that there is no
(v,t)-path in the current digraph D’ = (V, A’). Furthermore, v # s.)
Delete all arcs with head or tail v from A’, let v := 7(v) and go to Step
2.

5. Termination: Return the maximal flow x.

Theorem 4.6.5 Dinic’s algorithm (one phase of ) correctly determines a
mazimal flow in a given layered network L in time O(nm).

Proof: Let L= (V=VyuViU... UV, A/l =0,u). Each time the current
flow is augmented in the algorithm it is changed along an augmenting path
of length k. We only delete an arc from A’ when it is no longer present in
the residual network £(z) where z is the current flow. Hence no deleted arc
could be used in an augmenting path of length & with respect to the current
flow. Furthermore, when the algorithm terminates there is no (s, ¢)-path in
the current digraph D’ = (V, A’). Here A’ consists of those arcs from one
layer to the next which are still not filled to capacity by the current z. It
follows that the algorithm terminates with a maximal flow.

The complexity follows from the fact that we perform at most O(n) steps
between each deletion of an arc which is either saturated (via the actual
augmenting path P) or enters a vertex for which we deleted all arcs having
that vertex as the head or tail (see Step 4). O

4.6.3 The Push-Relabel Algorithm

The flow algorithms we have seen in the previous sections have the common
feature that they all increase the flow along one augmenting path at a time.
Very often, when searching for an augmenting path, one finds a path P con-
taining an arc rq whose capacity is relatively small compared to the capacity
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of the prefix P[s,r] of that path. This means that along P[s,r]| we were able
to augment by a large amount of flow, but due to the smaller capacity of the
arc rq we only augment by that smaller amount and start all over again. In
Dinic’s algorithm this could be taken into account by not starting all over
again, but instead backtracking until a new forward arc can be found in the
layered network. However, we are still limited to finding one path at a time.
Now we present a different approach, which allows one to work with more
than one augmenting path at a time. We will discuss an algorithm of Gold-
berg and Tarjan [415, 416] called the push-relabel algorithm. The basic
idea is to try to push as much flow towards ¢ as possible, by first sending the
absolute maximum possible, namely, > 4 us-, out of s and then trying to
push this forward to t. At some point no more flow can be sent to ¢ and the
algorithm returns the excess flow back to s again. This very vague description
will be made precise below (the reader should compare this with the so-called
MKM algorithm described in Exercise 4.25).

Let N = (V, A,1 = 0,u) be a network with source s and sink t. A feasible
flow z in NV is called a preflow if b, (v) < 0 for all v € V —s. Note that every
(s,t)-flow z is also a preflow since we have b,(v) = 0if v € V — {s,t} and
by (t) = —by(s) < 0. Hence preflows generalize (s,t)-flows, an observation
that we shall use below. Preflows were originally introduced by Karzanov
[586]. Let x be a preflow in a network A. A height function with respect
to x is a function h : V — Z; which satisfies

h(s)=n, h(t)=0; (4.14)
h(p) < h(g)+1 for every arc pq of N'(x).

The following useful lemma is an immediate consequence of Theorem
4.3.1(a).

Lemma 4.6.6 Let x be a preflow in a network N = (V,1 = 0,u) with source
s and sink t and let v be a vertex such that by(v) < 0. Then N(x) contains a
(v, s)-path.

Proof: By the definition of a preflow, s is the only vertex r for which we have
b.(r) > 0. Hence, by Theorem 4.3.1(a), every decomposition of z into path
and cycle flows contains an (s,v)-path P. Now it follows that N (x) contains
a (v, s)-path, since every arc of P has positive flow in A" and hence gives rise
to an oppositely oriented arc in N (z). O

Now we are ready to describe the (generic) push-relabel algorithm. During
the execution of the algorithm, a vertex v € V is called active if b,(v) < 0.
An arc pq of N(x) is admissible if h(p) = h(g) + 1. The algorithm uses two
basic operations push and lift.

push(pg): Let p be a vertex with b,(p) < 0 and let pg be an admissible
arc in N (z). The operation push(pg) changes x,, to z,, + p, where

p = min{—bz(p), pq}-
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lift(p): Let p be a vertex with b, (p) < 0 and h(p) < h(q) for every arc pq in
N (z). The operation lift(p) changes the height of p as follows:

h(p) := min{h(z) + 1 : pz is an arc of N'(z)}.

By the remark after the proof of Lemma 4.6.6, the number h(p) is well-
defined.

Lemma 4.6.7 Let x be a preflow in N and let h be defined as in (4.14).
If p € V satisfies by (p) < 0, then at least one of the operations push(pq),
lift(p) can be applied.

Proof: Suppose b, (p) < 0, but we cannot perform a push from p. Then there
is no admissible arc with tail p and hence we have h(p) < h(q) for every arc
pq in N(z). It follows from Lemma 4.6.6 that there is at least one arc out of
p in N(z) and hence we can perform the operation lift(p). O

The generic push-relabel algorithm

Input: A network A" = (V,1 = 0,u) with source s and sink ¢.
Output: A maximum (s, t)-flow in N.

Preprocessing step:

(a) For each p € V let h(p) := disty(p, t);

(b) Let h(s) :=mn;

(c) Let xy), := ug, for every arc out of s in NV;
(d) Let x;; := 0 for all other arcs in N.

Main loop:
While there is an active vertex p € V — t do the following;:
if N'(z) contains an admissible arc pq, then push(pq) else lift(p).

Theorem 4.6.8 The generic push-relabel algorithm correctly determines a
mazimum (s,t)-flow in N in time O(n?m).

Proof: We first show that the function h remains a height function through-
out the execution of the algorithm. Initially this is the case since we use
exact distance labels and there are no arcs out of s in N (z) (Exercise 4.20).
Observe that for every vertex p, h(p) is only changed when we perform the
operation lift(p) and then it is changed so as to preserve the condition (4.14).
Furthermore, the operation push(pg) may introduce a new arc gp in N(x),
but this arc will satisfy h(q) = h(p) — 1 and hence does not violate (4.14).
It follows that h remains a height function throughout the execution of the
algorithm.

It is easy to see that x remains a preflow throughout the execution of the
algorithm, since only a push operation affects the current z and by definition
a push operation preserves the preflow condition.
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Now we prove that if the algorithm terminates, then it does so with a
maximum flow z. Suppose that the algorithm has terminated. This means
that no vertex v € V' has b;(v) < 0. Thus it follows from the definition of a
preflow that x is an (s, t)-flow. To prove that z is indeed a maximum flow, it
suffices to show that there is no (s, t)-path in A(x). This follows immediately
from the fact that h remains a height function throughout the execution of
the algorithm. By (4.14), every arc pq in N(z) has h(p) < h(q) + 1 and we
always have h(s) = n, h(t) = 0. Since no (s, t)-path has more than n — 1 arcs,
there is no (s, t)-path in A'(z) and hence, by Theorem 4.5.3,  is a maximum
(s,t)-flow.

To prove that the algorithm terminates and to determine its complexity,
it is useful to distinguish between two kinds of pushes. An execution of the
operation push(pq) is a saturating push if the arc pq is filled to capacity
after the push and hence pq is not an arc of N'(z) immediately after that
push. A push which is not saturating is an unsaturating push.

We now establish a number of claims from which the complexity of the
algorithm follows.

(A) The total number of lifts is O(n?): By Lemma 4.6.6, every vertex
p with b, (p) < 0 has a path to s in M (z). Hence, we have h(p) < 2n—1,
by (4.14). Since the height of a vertex p increases by at least one every
time the operation lift(p) is performed, no vertex can be lifted more than
2n — 2 times and the claim follows.

(B) The total number of saturating pushes is O(nm): Let us consider
a fixed arc pg and find an upper bound for the number of saturating
pushes along this arc in the algorithm. When we perform a saturating
push along pg, we have h(p) = h(q) + 1 and the arc pg disappears from
the residual network. It can only appear again in the current residual
network after flow has been pushed from ¢ to p in some later execution
of the operation push(gp). At that time we have h(q) = h(p) + 1. This
and the fact that h remains a height function and never decreases at
any vertex, implies that before we can perform a new saturating push
along pg, h(p) has increased by at least two. We argued above that we
always have h(p) < 2n — 1 and now we conclude that there are at most
O(n) saturating pushes along any given arc. Thus the total number of
saturating pushes is O(nm).

(C) The total number of unsaturating pushes is O(n?m): Let & =
> b, (<0 1(v). Then @ > 0 during the whole execution of the algorithm
and since h(v) < 2n at any time during the execution we have ¢ < 2n?
after the preprocessing step. Let us examine what happens to the value
of @ after performing the different kinds of operations. A lift will increase
& by at most 2n — 1. Hence, by (A), the total contribution to @ from
lifts is O(n3). A saturating push from p to ¢ can increase @ by at most
h(q) < 2n —1 (it may also decrease @ if p becomes balanced, but we are
not concerned about that here). Hence, by (B), the total contribution to
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¢ from saturating pushes is O(n?m). An unsaturating push from p to

g will decrease @ by at least one, since p becomes balanced and h(p) =
h(q)+1 (if ¢ was balanced before, then & decreases by one and otherwise
it decreases by h(p)).

It follows from the considerations above that the total increase in @
during the execution of the algorithm is O(n?m). Now it follows from
the fact that @ is never negative that the total number of unsaturating
pushes is O(n?m). O

It is somewhat surprising that the simple approach above results in an
algorithm of such a low complexity. The complexity bound is valid no matter
which vertex we choose to push from or lift. This indicates the power of
the approach. However, the algorithm does have its drawbacks. If no control
is supplied to direct the algorithm (as to which vertices to push from or
lift), then a large amount of time may be spent without any effect on the
final maximum flow. In Exercise 4.21 the reader is asked to give an example
showing that a large amount of useless work may be performed if no extra
guidance is given to the choice of pushes. There are several approaches which
can improve the performance of the push-relabel algorithm, we mention just
two of these. For details see, e.g., the book by Ahuja, Magnanti and Orlin
[13].

(a) If we examine the active vertices in a first-in first-out (FIFO) order, then
we obtain an O(n?) algorithm [416].

(b) If we always push from a vertex p which has the largest height h(p) among
all active vertices, then we obtain an O(n?\/m) algorithm [207, 416].

Cheriyan and Maheshwari [207] have shown by examples that the worst
case bounds for the FIFO and maximum height variants are tight. For another
way to improve the performance of the generic algorithm in practice, see
Exercise 4.22.

4.7 Unit Capacity Networks and Simple Networks

In this section we consider two special cases of networks, both of which occur
in applications and for which, due to their special structure, one can obtain
faster algorithms for finding a maximum flow. All networks considered in this
section are assumed to have a source s and a sink ¢.

4.7.1 Unit Capacity Networks

A unit capacity network is a network N' = (V,;A,l = 0,u = 1), i.e,
all arcs have capacity equal to one. Unit capacity networks are important in
several applications of flows to problems such as finding a maximum matching
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in a bipartite graph (Subsection 4.11.1), finding an optimal path cover of an
acyclic digraph (Section 13.5) and finding cycle subdigraphs covering specified
vertices (Subsection 13.8).

Lemma 4.7.1 If N is a unit capacity network without cycles of length 2 and
x is a feasible (s,t)-flow, then N'(x) is also a unit capacity network.

Proof: Exercise 4.39. O

Let N = (V,A,l = 0,u = 1) be a unit capacity network with source
s and sink ¢. Since the value of a minimum (s,¢)-cut in A is at most n —
1 (consider the cut (s,V — s)), we see from Theorem 4.5.4 that the Ford-
Fulkerson algorithm will find a maximum (s,¢)-flow in time O(nm). The
purpose of this section is to show that one can obtain an even faster algorithm.
Our exposition is based on an idea due to Even and Tarjan [308].

Lemma 4.7.2 Let L=(V=VyUViU... UV, A l=0,u=1) be a layered
unit capacity network with Vo = {s} and Vi, = {t}. One can find a mazimal
(s,t)-flow in L in time O(m).

Proof: It suffices to see that the capacity of each augmenting path is 1 and
no two augmenting paths of the same length can use the same arc. Hence it
follows that Dinic’s algorithm will find a maximal flow in time O(m). O

Lemma 4.7.3 Let N = (V,A,l = 0,u = 1) be a unit capacity network and
let z* be a mazimum (s,t)-flow in N'. Then

distp(s, 1) < 2n/+/|z*]. (4.15)

Proof: Let w = distar(s,t) and let Vo = {s},V4,Va,...,V,, be the first w
distance classes from s. Since A/ contains no multiple arcs, the number of
arcs from V; to V41 is at most |V;||Viy1| for ¢ = 0,1,...,w — 1. Since the
arcs in (V;, Vi41) correspond to the arcs across an (s,t)-cut in N, we have
|x*| < |Vi||Viga| for i = 0,1,...,w — 1. Thus max{|V;|, |[Vit1|} > /|z*| for
1=0,1,...,w — 1. Now we easily see that

- w41
n=|V| 2 Vil > vz =), (4.16)
i=0

implying that w < 2n/+/|z*|. O

Theorem 4.7.4 [308] For unit capacity networks the complexity of Dinic’s
algorithm is O(n3m).

Proof: Let A/ be a unit capacity network with source s and sink t. We
assume for simplicity that A has no 2-cycles. The case when N does have
a 2-cycle can be handled similarly (Exercise 4.41). Let g be the number of
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phases performed by Dinic’s algorithm before a maximum (s, t)-flow is found
in M. Let 0 = 2@, 2 .. 29 denote the (s,t)-flows in N which have
been calculated after the successive phases of the algorithm. Thus z(?) is the
starting flow which is the zero flow and z(*) denotes the flow after phase i
of the algorithm. Let 7 = [n3] and let K = |2(?| denote the value of a
maximum (s,t)-flow in M.

By Lemmas 4.7.1 and 4.7.2, it suffices to prove that the total number of
phases, q, is O(né) This is clear in the case when K < 7, since we augment
the flow by at least one unit after each phase. So suppose that K > 7. Choose
j such that [2)| < K —7 and |#U*Y| > K — 7. By Theorems 4.4.2 and 4.4.3
the value of a maximum flow in N (%)) is K — [#0)| > 7.

Applying Lemmas 4.7.1 and 4.7.3 to N'(z())), we see that distxr(p0) (8, 1) <

23, Using Lemma 4.6.3 and the fact that each phase of Dinic’s algorithm
2
results in a maximal flow, we see that j < 2n3. Thus, since at most 7 phases
. . . 2
remain after phase j we conclude that the total number of phases ¢ is O(n3).
O

4.7.2 Simple Networks

A simple network is a network A" = (V, A,l = 0, u) with special vertices s, t
in which every vertex in V' — {s,t} has precisely one arc entering or precisely
one arc leaving. For an example see Figure 4.11.

Figure 4.11 A simple network. Capacities are not shown.
Below we assume that the simple network in question does not have any
2-cycles. It is easy to see that this is not a serious restriction (Exercise 4.42).

Lemma 4.7.5 Let N = (V,A,l = 0,u = 1) be a simple unit capacity network
on n vertices and let z* be a mazimum (s,t)-flow in N'. Then

distar(s, t) < n/|z*|. (4.17)

Proof: Let w = distpr(s, t) and Vy = {s}, V1, Vo, ..., V, be the first w distance
classes from s. Every unit of flow from s to ¢ passes through the layer V; for
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i=1,2,...,w— 1. Furthermore, since N is a simple unit capacity network,
at most one unit of flow can pass through each v € V. Thus |V;| > |z*|, for
i=1,2,...,w—1, and hence

w—1
V> Vil = (w = 1)]a7],
i=1
implying that w < |V|/|z*|. O

Lemma 4.7.6 If N is a simple unit capacity network, then N'(x) is also a
simple unit capacity network.

Proof: Exercise 4.40. O

Using Lemmas 4.7.5 and 4.7.6 one can prove the following result due to
Even and Tarjan. We leave the details as Exercise 4.43.

Theorem 4.7.7 [308] For simple unit capacity networks Dinic’s algorithm
has complexity O(y/nm). O

We point out that Dinic’s algorithm will also find a maximum (s, t)-flow in
time O(y/nm) in a simple network even if not all capacities are one, provided
that the network has the property that at most one unit of flow can pass
through any vertex v € V — {s,t}. In particular a vertex may be the tail of
an arc with capacity oo provided that it is the head of at most one arc and
this arc (if it exists) has capacity one. We use this extension of Theorem 4.7.7
in Section 4.11.

4.8 Circulations and Feasible Flows

We now return to the general flow model and consider the problem of deter-
mining whether a feasible flow exists with respect to the given lower bounds
and capacities on the arcs and a prescribed balance vector. As we showed in
Section 4.2, in order to study the general case, it suffices to study circula-
tions since we may use Lemmas 4.2.1-4.2.3 to transform the general case to
the case of circulations. Note that in this section we always assume that all
the data of the network are integers (that is, I and w are integers).

We need the following very simple observation. The proof is analogous to
that of Lemma 4.5.1.

Lemma 4.8.1 If z is a circulation in N, then for every partition S,S of V
we have x(5,S) = x(S5,9). O

The example in Figure 4.12 gives us a starting point for detecting what
can prevent the existence of a feasible circulation.
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(1,5)

Figure 4.12 A network with no feasible circulation. The specification on the arcs
is (I, u).

Let A be the network in Figure 4.12 and let S = {b} and S = {a,c}.
Then I(S5,S5) =3 > 2 = u(S,S5). Now using Lemma 4.8.1 we see that if = is
a feasible flow in N, we must have

2 = u(S,5) > (8, 5) = (S, 5) > (S, S) = 3,

implying that there is no feasible flow in A'. More generally, our argument
shows that if V' = (V, A,1,u) is a network for which some partition S, S of V
satisfies 1(S,S) > u(S,S), then N has no feasible circulation. Hoffman [531]
proved that the converse holds as well.

Before we prove Theorem 4.8.2, we remark that Theorem 4.4.2 remains
valid for networks with non-zero lower bounds provided that we modify the
definition of = @ Z slightly (see Exercise 4.30).

Theorem 4.8.2 (Hoffman’s circulation theorem) [531] A network N' =
(V, A, l,u) with non-negative lower bounds on the arcs has a feasible circula-
tion if and only if the following holds for every proper subset S of V:

1(S,9) <u(s,S). (4.18)

Proof: Let NV = (V,A,l,u) be a network. We argued above that if z is
a feasible circulation in A/, then for every partition (S,S5) of V we have
1(S,8) <u(S,S).

To prove the converse we assume that (4.18) holds for all S C V' and give
an algorithmic proof showing how to construct a feasible circulation starting
from the all-zero circulation. Clearly z = 0 is a circulation in N and if [ = 0,
then we are done. So we may assume that /;; > z;; for some ij € A.

We try to find a (j,7)-path in N(z). If such a path P exists, then we
let 6(P) > 0 be the minimum residual capacity of an arc on P. Let € =
min{d(P),l;; —x;; }. By Theorem 4.4.2 (which, as remarked earlier, also holds
when some lower bounds are non-zero), we can increase the current flow x
by € units along the cycle P and obtain a new circulation.

We claim that we can continue this process until the current circulation
x has l;; < x5 < uy; for all arcs ij € A, that is, we can obtain a feasible
circulation in A/ (observe that the procedure above preserves the inequality
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x < u). Suppose this is not the case and that at some point we have x4 < Iy
for some arc st and there is no (¢, s)-path in N'(z). Define T as follows:

T = {r: there exists a (t,r)-path in N'(x)}.

It follows from the definition of the residual network A(x) (in particular
(4.7)) that in N we have z;; = u;; for all arcs ij with i € T and j € T and
Zgr < lgr for all arcs gr with ¢ € T and r € T. Using that s € T and x4 < Ly
we obtain that

w(T,T) =z(T,T) = z(T,T) < (T, T),

contradicting the assumption that (4.18) holds. This and the fact that all
data are integers shows that the algorithm we described above will indeed
find a feasible circulation in N. O

It is not difficult to turn the proof above into a polynomial algorithm
which, given a network N' = (V, A, [, u), either finds a feasible circulation x
in AV, or a subset S violating (4.18) (Exercise 4.29).

We conclude with a remark on finding feasible flows with respect to arbi-
trary balance vectors in general networks. This problem is relevant as a start-
ing point for many algorithms on flows. It follows from the results in Section
4.2 and the fact that the push-relabel algorithm can be turned into an O(n?)
algorithm (using the FIFO implementation) that the following holds.

Theorem 4.8.3 There exists an O(n®) algorithm for finding a feasible flow
in a given network N' = (V, A,l,u,b). Furthermore, if l,u,b are all integer
functions, then an integer feasible flow can be found in time O(n?). O

Using Lemma 4.2.2 and Theorem 4.8.2 one can derive the following fea-
sibility theorem for flows by Gale (Exercise 4.44):

Theorem 4.8.4 [378] There emists a feasible flow in the network N =
(V, A1 =0,u,b) if and only if

Z b(s) < u(S,9) for every S C U. (4.19)
ses

O

4.9 Minimum Value Feasible (s, t)-Flows

Let N = (V,A,l,u) be a network with source s, sink ¢ and non-negative
lower bounds on the arcs. A minimum feasible (s,t)-flow in A is a feasible
(s,t)-flow whose value is minimum possible among all feasible (s,t)-flows.
Although at first glance this problem may seem somewhat artificial, it turns
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out that for many applications it is actually a minimum feasible flow that is
sought (see, e.g., Sections 6.7 and 13.5).

To estimate the value of a minimum (s, t)-flow, let us define the demand
7(S,S) of an (s,t)-cut (S,S) as the number

7(S,S) =1(S,S) —u(S, 9). (4.20)

Let x be a feasible flow. Then, by Lemma 4.5.1, for every (s,t)-cut (S, S) we
have

lz| = z(S,8) — x(S,S)
> 1(8,8) —u(S,9) (4.21)
= ’Y(Sv g)

Hence the demand of any (s,t)-cut provides a lower bound for the value of a
minimum feasible (s, )-flow. The next result shows that the minimum value
of an (s, t)-flow is exactly the maximum demand of an (s, ¢)-cut.

Theorem 4.9.1 (Min-Flow Max-Demand theorem) Suppose = is a
minimum feasible (s,t)-flow in a network N = (V, A,l,u) with non-negative
lower bounds on the arcs. Then

|z| = max{v(S,S) : s € S,t € S}. (4.22)

Furthermore we can find a minimum feasible (s,t)-flow by two applications
of any algorithm for finding a mazimum (s,t)-flow.

Proof: Suppose z is a feasible (s,t)-flow in . If |x| = 0, then z is clearly
a minimum (s,t)-flow (since all lower bounds are non-negative). Hence we
may assume that |z| > 0. Suppose that y is a feasible (¢, s)-flow in M (z). By
Theorem 4.4.2° & @ y is a feasible flow in A of value |x| — |y|. Now suppose
that y is a maximum (¢, s)-flow in N'(z). Apply Theorem 4.5.3 to y and N (z)
and let (7,T) be a minimum (¢, s)-cut in A(z). The capacity of (T,T) is by
definition equal to r(T,T), where r is the capacity function of N'(z). By the
choice of (T, T) and the definition of the residual capacities we have

lyl = (T, T)
= > (wi—wg)+ Y, (Tgp—lgp)
ij€(T,T) qpe(T,T)
=u(T,T)—U(T,T)+x(T,T) — x(T,T)
=u(T,T) — I(T,T) + |z, (4.23)

9 As we remarked in the last section, this theorem is also valid in the general case
of non-zero lower bounds.
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by Lemma 4.5.1. Rearranging this, we obtain that |z|—|y| = (T, T)—u(T,T).
This implies that the flow 2@y (whose value is |z| —|y|) is a minimum feasible
(s,t)-flow and proves (4.22).

It remains to prove the second claim on how to find a minimum (s, t)-
flow. It follows from the argument above that once we have any feasible (s, t)-
flow, we can find a minimum (s, ¢)-flow by just one max flow calculation. On
the other hand it follows from Lemmas 4.2.1 and 4.2.2 that we can find a
feasible (s, t)-flow in A/ (if any exists) by performing the two transformations
suggested in those lemmas and then using a max flow algorithm to check
whether there is a feasible flow in the last network constructed (now feasibility
is with respect to the value of b(s) and all lower bounds are zero). O

4.10 Minimum Cost Flows

We now turn to networks with costs on the arcs and study the follow-
ing problem called the MINIMUM COST FLOW PROBLEM: Given a network
N = (V,A,l,u,b,c) find a feasible flow of minimum cost!?. By the results
in Section 4.2, without loss of generality, we may treat the problem only for
networks with lower bound zero on all arcs and furthermore assume that we
are looking for either an (s, t)-flow of value b(s) or a circulation of minimum
cost. However, for different applications, different flow models may be more
convenient than others. Hence, except for always assuming that the lower
bounds are zero, we will treat the general case, and hence all the special
cases also, below.

We mentioned in Section 4.2 that the shortest path problem is a special
case of the minimum cost flow problem. To see this, let D = (V| A, ¢) be an
arc weighted digraph with special vertices s,t and assume that D has no cycle
of negative weight. Let ' = (V; A,l = 0,u = 1,¢) be the network obtained
from D by adding a lower bound of zero and a capacity of 1 to each arc of D
and interpreting the weight of an arc in D as its cost in A/. We claim that a
shortest (s, t)-path in D corresponds to a minimum cost integer (s, t)-flow of
value 1 in AV. Clearly, any (s, t)-path P of weight M in D can be transformed
into an (s, t)-flow of cost M just by sending one unit of flow along P in N.
Thus it suffices to prove that every (s,t)-flow x of value 1 and cost M can
be transformed into an (s,t)-path in D of weight at most M. By Theorem
4.3.1, we may decompose z into a path flow of value 1 along an (s, t)-path P’
and a number of cycle flows. All these cycles have non-negative cost since D
has no negative cycle. Hence it follows that P’ has cost at most M. It follows
from our observations above that every minimum cost (s,t)-flow of value 1
in NV can be decomposed into an (s, t)-path of the same cost and some cycle
flows along cycles of cost zero.

10 Recall that the cost of a flow is given by EijeA TijCij-
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In Exercise 4.47 the reader is asked to show that the maximum flow
problem is also a special case of the minimum cost flow problem. However,
the minimum cost flow problem is interesting not only because it generalizes
these two problems, but also because a large number of practical applications
can be formulated as minimum cost flow problems. The very comprehensive
book by Ahuja, Magnanti and Orlin [13] contains a large number of such
applications. We will discuss one of these in a reformulated form below.

A small cargo company uses a ship with a capacity to carry at most r units
of cargo. The ship sails on a long route (say from Southampton to Alexandria)
with several stops at ports in between. At these ports cargo may be unloaded
and new cargo loaded. At each port there is an amount b;; of cargo which is
waiting to be shipped from port ¢ to port j > ¢ (ports are numbered after
the order in which the ship visits them). Let f;; denote the income for the
company from transporting one unit of cargo from port ¢ to port j. The goal
for the cargo company is to plan how much cargo to load at each port so as
to maximize the total income while never exceeding the capacity of the ship.
We illustrate how to model this problem, which we call the SHIP LOADING
PROBLEM, as a minimum cost flow problem. The motivation for describing
this application is that it shows not only that sometimes it is easier to work
with the general model, but also that allowing negative costs on the arcs may
simplify the formulation.

Let n be the number of stops including the starting port and the terminal
port. Let N = (V, A,1 = 0,u,c) be the network defined as follows:

V ={v1,v9,...,0,} U{vs; : 1 <i<j<n},

A= {’01’[}2,’021}3, . ,vn_lvn} U {vijvi,vijvj 1<i<g < n}

The capacity of the arc v;v;41 isr fori =1,2,...,n—1 and all other arcs have
capacity co. The cost of the arc v;;v; is —fi; for 1 <4 < j < n. All other arcs
have cost zero (including those of the form v;;v;). The balance vector of v;; is
bi; for 1 <14 < j < n and the balance vector of v; is —(b1i+boi+... +bi—15)
fori=1,2,...,n. (See Figure 4.13.)

We claim that this network models the ship loading problem. Indeed,
suppose that ti9,%13,...,t1n,t23,...,tn—1n are cargo numbers, where t;;(<
b;;) denotes the amount of cargo the ship will transport from port ¢ to port j
and that the ship is never loaded above capacity. The total income from these
cargo loads is I = 33, ; ., tij fij. Let x be the flow in A defined as follows.
The flow on an arc of the form v;;v; is ¢;;, the flow on an arc of the form
V355 is by; —t;; and the flow on an arc of the form v;v;44,7=1,2,...,n—1,
is the sum of those t,, for which a < ¢ and b > ¢ + 1. It follows from the
fact that ¢;;, 1 <7 < j < n, are legal cargo numbers that x is feasible with
respect to the balance vector and the capacity restriction. It is also easy to
see that the cost of z is —1I.

Conversely, suppose that x is a feasible flow in A of cost J. We claim
that we get a feasible cargo assignment s;;, 1 < i < j < n with income —J
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Figure 4.13 The network for the ship loading problem with three intermediate
stops. For readability vertices are named by numbers only. The costs (capacities)
are only shown when non-zero (not infinite). The balance vectors are as specified
in the description in the text, i.e., the balance vector of the vertex 34 is bss4 and the
balance vector of the vertex 4 is —(b14 + b2a + bs4).

by letting s;; be the value of x on the arc v;;v;. This is easy to check and
we leave the details to the reader. It follows that a minimum cost flow in A/
corresponds to an optimal loading of the ship and vice versa.

Below we consider the minimum cost flow problem in some detail. Fur-
ther applications are given in Section 4.11. See also Section 4.10.3 for two
important special cases of the minimum cost flow problem.

We use the notion of the cost of a path or a cycle in a network. This is
simply the sum of the costs of all arcs in the path or cycle. An augmenting
path (cycle) with respect to a given flow = in a network A is a path (cycle)
in N (z). Whenever we speak about an augmenting cycle or path W we use
5(W) to denote the minimum residual capacity of an arc on W in N (z).
Furthermore, for every 8 < §(W) we denote by 2’ := z @& W the flow we
obtain from z by augmenting along W with 3 units.

Whenever we say that a flow z is optimal in a network N, we mean by
this that z is a minimum cost low among all flows in A/ with balance vector
by

4.10.1 Characterizing Minimum Cost Flows

Recall from Theorem 4.5.3 that, when we consider maximum (s, t)-flows, we
can verify optimality by showing that there is no (s, t)-path in the residual
network with respect to the current flow. It turns out that we can also use
the residual network to check whether a given feasible flow in a network A/ =
(V, A, 1, u, c) has minimum cost among all flows with the same balance vector.
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Suppose first that z is feasible in A and that there is some cycle W in AV (x)
such that the cost ¢(W) of W is negative. Let ¢ denote the minimum residual
capacity of an arc on W and let 2’ be the cycle flow in N'(x) which sends ¢
units around W. Then it follows from Theorem 4.4.2 that x®z’ is a flow in N
with the same balance vector as = and cost ¢’z +cTa’ = Tz +dc(W) < 'z
Thus if M (z) contains a cycle of negative cost, then z is not a minimum cost
feasible flow in A/ with respect to the balance vector b,.

The interesting thing is that the other direction holds as well. Indeed,
suppose z is feasible in N' = (V, A, 1, u, b, ¢) and that N'(z) contains no cycle
of negative cost. Let y be an arbitrary feasible flow in N. Since we have
specified a balance vector b for NV, it follows from Corollary 4.4.4 that there
exists a collection of at most m cycles Wy, Wa, ..., Wy in NM(z) and cycle
flows f(W1),..., f(Wy) in N(z) such that Ty = Tz + Zle c(W;)d;, where
§; > 0 is the amount of flow that f(W;) sends along W; in N (z). Since N (z)
has no negative cost cycle, ¢(W;) > 0 for i = 1,2,...,k and we see that'!
c¢Ty > cTx. Thus we have established the following important optimality
criterion for the minimum cost flow problem.

Theorem 4.10.1 Let x be a feasible flow in the network N' = (V, A, l,u,b,c).
Then z is a minimum cost feasible flow in N if and only if N'(x) contains
no directed cycle of negative cost. a

It is natural to ask how useful this optimality criterion is. First observe
that, using the Bellman-Ford-Moore algorithm (Subsection 3.3.4), we can
check whether an arbitrary given network contains a negative cycle in time
O(nm). Thus we obtain the following algorithm, due to Klein [598], for finding
a minimum cost feasible flow in a network.

The cycle canceling algorithm
Input: A network N = (V, A,l,u,b,c).
Output: A minimum cost feasible flow in V.

1. Find a feasible flow z in N.

2. Search for a negative cycle in N (z).

3. If such a cycle W is found, then augment z by §(W) units along W and
go to Step 2.

4. Return x.

Just as is the case for the Ford-Fulkerson algorithm, the cycle canceling
algorithm may never terminate if the capacities are non-rational numbers. It
is easy to modify the example in Exercise 4.17 to show this. However, if all
lower bounds and capacities are integers (or just rational numbers), then this
is indeed an algorithm, although not always a very fast one. See Figure 4.14
for an illustration of the algorithm.

1 In fact, our argument shows that ¢’y = ¢T if and only if y can be obtained
from z by ‘adding’ zero or more cycle flows, each of cost zero, in N (z).
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Figure 4.14 An illustration of the cycle canceling algorithm. (a) A network N
with a feasible flow z with respect to the balance vector (b(1),b(2),b(3),b(4)) =
(2,3,1,—6). The data on the arcs are (capacity, flow, cost). (b) The residual network
N (z). The data on the arcs are (residual capacity, cost). (c) The residual network
after augmenting by 2 units along the cycle 1421. (d) The residual network after
augmenting by 2 units along the cycle 2432. (e) The final optimal flow.

Let U and C denote the maximum capacity of N' and the maximum
numerical value among all costs of N.

Theorem 4.10.2 If all lower bounds, capacities, costs and balance vectors
of the input network N are integers, then the cycle canceling algorithm finds
an optimum flow in time O(nm?2CU).

Proof: By Theorem 4.8.3, we can find a feasible flow z in A/ in time O(n?).
Hence Step 1 can be performed within the promised time bound, since we
assume that all networks in this chapter have m = 2(n). The maximum
possible cost of a feasible flow in A is mUC and the minimum possible cost
is —mUC. Since we decrease the cost of the current flow by at least one
in Step 3, it follows that after at most O(mUC) executions of Step 3 we
obtain a minimum cost feasible flow. Now the complexity follows from the
fact that Step 2 can be performed in time O(nm), using the Bellman-Ford-
Moore algorithm. a
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Furthermore, just as it was the case for maximum flows, we have a nice
integrality property.

Theorem 4.10.3 (Integrality theorem for minimum cost flows) If all
lower bounds, capacities and balance vectors of the network N are integers,
then there exists an integer minimum cost flow.

Proof: This is an easy consequence of the proof of Theorem 4.10.2. By
Theorem 4.8.3, we may assume that the flow x after Step 1 is an integer flow.
Now the claim follows easily by induction of the number of augmentations
made by the cycle canceling algorithm, since in each augmentation we change
the current flow by an integer amount along the arcs of the augmenting cycle.

O

For arbitrary networks with integer-valued data, the complexity of the
cycle canceling algorithm is not very impressive and the algorithm is clearly
not polynomial since its running time is exponential in both the maximum
capacity and the maximum (absolute value of the) cost. It is easy to construct
examples for which the algorithm, without some guidance as to how the next
negative cycle should be chosen, may use O(mUC') augmentations before it
arrives at an optimum flow (Exercise 4.52). However, for several applications,
such as when we are looking for certain structures in digraphs, both U and
C are small and then the algorithm is quite attractive due to its simplicity
(see, e.g., some of the results in Section 4.11).

The problem of finding a strongly polynomial algorithm'? for the mini-
mum cost flow problem was posed by Edmonds and Karp [288] in 1972 and
remained open until Tardos [842] found the first such algorithm in 1985. We
mentioned above that if we use just any negative cycle in Step 3, then the
cycle canceling algorithm may use a non-polynomial number of iterations.
Goldberg and Tarjan showed that the following variant of the algorithm is
already strongly polynomial [417]. The mean cost of a cycle W is the number

c(W)/[AW)].

Theorem 4.10.4 [417] If we always augment along a cycle of minimum
mean cost (as negative mean cost as possible) in Step 3, then the cycle can-
celing algorithm has complexity O(n?*m3logn), even if some arcs have non-
rational data. O

The correctness of the algorithm, provided that it terminates, follows
from Theorem 4.10.1, since there is no negative cycle in the current residual
network at termination. Due to space considerations, we will not prove the
complexity part of the theorem here. We refer the interested reader to [13,
710] for nice accounts for the complexity of this algorithm. It is interesting to

12° A graph algorithm is strongly polynomial if (counting each arithmetic opera-
tion as constant time) the number of operations is bounded by a polynomial in
n and m.
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note that although the proof of the complexity statement of Theorem 4.10.4
is quite non-trivial, it uses just the basic definitions of flows along with some
new concepts which are used to make the proof smoother.

4.10.2 Building up an Optimal Solution

The cycle canceling algorithm starts from a (generally) non-optimal but fea-
sible flow and continues through a sequence of feasible flows until an optimal
flow is found (provided the algorithm ever terminates). In this subsection we
describe another approach, due to Jewell [565] and Busacker and Gowen [184],
in which we start from a (generally) infeasible flow which is optimal'® and
continue through a sequence of optimal but infeasible flows until a feasible
and optimal flow is reached.

Theorem 4.10.5 (The buildup theorem) [565, 184] Suppose that x is a
minimum cost feasible flow in a network N = (V, A,l = 0,u,c) with respect
to the balance vector b = b, and let P be a minimum cost (p, q)-path in N'(x).
Let o < §(P) and let f(P) be the path flow of value o in N (z). Then the
flow x' :==z @ f(P) is a minimum cost feasible flow in N with respect to the
balance vector b given by

b(v) if v {p,q}
V(v) =13 bp) +a ifv=p
b(g) —a ifv=gq.

Proof: By Theorem 4.10.1, it is sufficient to prove that there is no negative
cycle in M'(z'). Since z is optimal, there is no negative cycle in A (z). Suppose
that A (z') contains a negative cycle W. By the definition of z’, every arc
in NV(x') is either an arc of N'(x) or the opposite of an arc on P. Consider
the directed multigraph H that we obtain from A(P)U A(W), considered as
a multiset, by deleting all arcs a such that both a and the opposite arc are
in A(P)U A(W). It is easy to see that if we add the arc gp to H, then we
obtain a directed multigraph M such that each connected component of M is
eulerian. Hence, by Exercise 4.8, we can decompose A(H) into a (p, ¢)-path
P’ and a number of cycles Wy, Wy, ..., Wy. It follows from our remark above
and the way we defined H that all arcs of P', W1y, Wa,..., W} are arcs of
N (z). By (4.2) opposite arcs have costs which cancel and hence, using that
(W) < 0, we obtain

¢(P) > ¢(P) 4+ ¢(W)

> c(P'),

13 Recall that optimality is with respect to flows with the same balance vector.
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since the cost of each W; must be non-negative because W, is a cycle in
N (z). Thus we see that P’ is a (p, ¢)-path with a cost smaller than that of
P, contradicting the minimality of P. Hence W cannot exist and the proof
is complete. a

Based on Theorem 4.10.5 we can construct an algorithm, called the
buildup algorithm [565, 184], for finding an optimal feasible flow in a net-
work N/ = (V,; A,1 = 0,u,b,c). The algorithm described below only works if
there are no negative cycles in the starting network. This restriction poses no
practical problems since, according to Exercise 4.49, we may reduce the gen-
eral minimum cost flow problem to the case when all costs are non-negative.
Under the assumption that A has no negative cycles, the flow x = 0 is an
optimal circulation in A/. At any time during the execution of the buildup
algorithm the sets U,, Z, are defined with respect to the current flow z as
follows:

U, = {v]|bs(v) < b(v)}, Zy = {v|bg(v) > b(v)}.
Observe that U, = 0 if and only if Z, = 0.

The buildup algorithm

Input: A network N/ = (V, A,l =0,u,b,c).

Output: A minimum cost feasible flow in A with respect to b or a proof
that the problem is infeasible.

1. Let x;; := 0 for every ij € A;

2. If U, = (), then go to Step 8;

3. If there is no (U,, Z,,)-path in N'(z), go to Step 9;

4. Let p and g be chosen such that p € U,,q € Z, and N (x) contains a
(p, q)-path;

5. Find a minimum cost (p, ¢)-path P in N (z);

6. Let e = min{d(P),b(p) — bz (p), b(q) —b(q)} (6(P) is the residual capacity
of P);

7. Let x := x @ eP; modify U,, Z, and go to Step 2;

8. Return z;

9. Return ‘no feasible solution’.

See Figure 4.15 for an illustration of the algorithm.

Theorem 4.10.6 [565, 18/] Let N = (V, A,l = 0,u,b, c) have all data inte-
gers and no negative costs. The buildup algorithm correctly determines a min-
imum cost feasible flow x in N or detects that no feasible flow exists in N'. The
algorithm can be performed in time O(n*mM), where M = max,cy |b(v)|.
Furthermore, if there is a feasible flow in N, then the algorithm will find an
integer optimal feasible flow in N .

Proof: Exercise 4.50. a

The following result shows that when we consider minimum cost (s, t)-
flows, the cost of successive augmenting (s,t)-paths forms a monotonically
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(d) (¢)

Figure 4.15 The buildup algorithm performed on the network from Figure 4.14(a).
Parts (a)-(d) show the current residual network with respect to the flow x, starting
from z = 0 in (a). For each arc (u, ¢) is specified and in (a) b(v) is specified for each
vertex. White circles correspond to the set U, and white boxes correspond to Z,.
Black circles represent vertices that have reached the desired balance value. Part
(e) shows the final optimal flow.

increasing function. One can make a more general statement (Exercise 4.51),
but for simplicity we consider only (s,t)-flows here.

Proposition 4.10.7 Let N be a network with distinct vertices s,t and let x
be an optimal (s,t)-flow in N'. Suppose ' is obtained from x by augmenting by
one unit along a minimum cost (s,t)-path P in N'(x) and that "’ is obtained
from x’ by augmenting by one unit along a minimum cost (s,t)-path P’ in
N (z'). Then

o—cla >cla —cTa. (4.24)

Proof: Let z,2’, 2" and P, P’ be as described in the proposition. Analogously
to the way we argued in the proof of Theorem 4.10.5, we can show that the
directed multigraph H' obtained from the multiset of arcs from A(P)UA(P’)
by deleting arcs that are opposite in the two paths can be decomposed into
two (s,t)-paths @, R and some cycles W1,..., W, such that all arcs of these
paths and cycles are in '(x). Since z is optimal each cycle W;, i =1,2,...,p,
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has non-negative cost by Theorem 4.10.1. Using that P is a minimum cost
(s,t)-path in N (z), we conclude that each of R,Q has cost at least ¢(P)
implying that ¢(P’) > ¢(P). Hence (4.24) holds. O

4.10.3 The Assignment and the Transportation Problem

In this section we briefly discuss two special cases of the minimum cost flow
problem, both of which occur frequently in practical applications. For a more
detailed discussion see, e.g., [91, Section 3.12].

In the ASSIGNMENT PROBLEM, the input consists of a set of persons
Py, Ps,...,P,, aset of jobs Jy,Ja,...,J, and an n x n matrix M = [M,;]
whose entries are non-negative integers. Here M;; is a measure for the skill of
person P; in performing job J; (the lower the number the better P; performs
job J;). The goal is to find an assignment 7 of persons to jobs so that each
person gets exactly one job and the sum >, Mz iy is minimized. Given
any instance of the assignment problem, we may form a complete bipartite
graph B = (U,V; E) where U = {P, P,...,P,}, V. ={J1, Jo,...,J,} and
E contains the edge P;J; with the weight M;; for each i € [m], j € [n]. Now
the assignment problem is equivalent to finding a minimum weight perfect
matching in B. Clearly we can also go the other way and hence the assignment
problem is equivalent to the WEIGHTED BIPARTITE MATCHING PROBLEM. It
is also easy to see from this observation that the assignment problem is a
(very) special case of the minimum cost flow problem. In fact, if we think
of M;; as a cost and orient all edges from U to V in the bipartite graph
above, then what we are seeking is an integer-valued flow of minimum cost
so that the value of the balance vector equals 1 for each P;, i = 1,2,...,m,
and equals -1 for each J;, j =1,2,...,n.

Inspecting the description of the buildup algorithm above, it is not hard
to see that the following holds (Exercise 4.53).

Theorem 4.10.8 The buildup algorithm solves the assignment problem for
a bipartite graph on n vertices in time O(n?). O

In the TRANSPORTATION PROBLEM we are given a set of production plants
S1,59,...,5, that produce a certain product to be shipped to a set of re-
tailers 11, T5, ..., T,. For each pair (S;,T}) there is a real-valued cost ¢;; of
transporting one unit of the product from S; to Tj. Each plant produces a;,
i =1,2,...,m, units per time unit and each retailer needs b;, 7 =1,2,...,n,
units of the product per time unit. We assume below that Y ;" | a; = 2?21 b;
(this is no restriction of the model as shown in Exercise 4.54). The goal is
to find a transportation schedule for the whole production (i.e., how many
units to send from S; to Tj for i = 1,2,...,m, j = 1,2,...,n) in order to
minimize the total transportation cost.

Again the transportation problem is easily seen to be a special case of the
minimum cost flow problem. Consider a bipartite network A/ with partite sets
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S ={51,52,....,5.} and T = {T1,T>,...,T,} and all possible arcs from S
to T, where the capacity of the arc S;T} is oo and the cost of sending one unit
of flow along S;T) is c;;. Now it is easy to see that an optimal transportation
schedule corresponds to a minimum cost flow in A with respect to the balance
vectors

b(S;) =a;,i=1,2,...,m, and b(Tj) = —b;,j =1,2,...,n.

Again we could solve the transportation problem by the buildup algorithm
but in this case we would not be guaranteed a polynomial running time since
the running time would depend on the required balance values. Applying
Theorem 4.10.4, we obtain a strongly polynomial algorithm for the problem.
Clearly one would expect the existence of an algorithm of better complex-
ity for the transportation problem (being a restricted version of the general
minimum cost flow problem). Such an algorithm was given by Kleinschmidt
and Schannath.

Theorem 4.10.9 [600] The transportation problem with m suppliers and n
consumers can be solved in time O(min{n, m}(n +m)?log(n + m)). O

For much more material on the assignment and transportation problems,
including a survey of various complexities, the reader may consult Chapters
17 and 21 of Schrijver’s book [803].

4.11 Applications of Flows

In this section we illustrate the applicability of flows to a large spectrum of
problems both of theoretical and practical nature. For further applications
see, e.g., Chapters 5, 13 and 17. Since we will need these results in later
chapters the main focus is on finding certain substructures in digraphs.

4.11.1 Maximum Matchings in Bipartite Graphs

Let G = (V, E) be an undirected graph. Recall that a matching in G is a set
of edges from F, no two of which share a vertex, and a maximum match-
ing of G is a matching of maximum cardinality among all matchings of G.
Matching problems occur in many practical applications such as the following
scheduling problem. We are given a set T = {t1,a,...,t.} of tasks (such as
handling a certain machine) to be performed and a set P = {p1,p2,...,Ds}
of persons, each of which is capable of performing some of the tasks from
T. The goal is to find a maximum number of tasks such that each task can
be performed by some person who does not at the same time perform any
other task and no task is performed by more than one person. This can be
formulated as a matching problem as follows. Let B = (P,T; E) be the bi-
partite graph whose vertex set is P UT and such that for each i, j such that
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1 <i<s,1< 5 <r, B contains the edge p;t; whenever person p; can
perform task t;. Now it is easy to see that the answer to the problem above
is a matching in B which covers the maximum possible number of vertices in
T (see also Exercise 4.55). Finding a maximum matching in an arbitrary (not
necessarily bipartite) graph is quite complicated and it was a great break-
through when Edmonds [282] found a polynomial algorithm. For the case of
bipartite graphs we describe a simple algorithm based on flows.

Theorem 4.11.1 For bipartite graphs the mazimum matching problem is
solvable in time O(y/nm).

Proof: Let B = (X,Y; E) be an undirected bipartite graph with bipartition
(X,Y). Construct a network Np = (X UY U{s,t}, 4,1 = 0,u) as follows (see
Figure 4.16):

A={ij:ieX,jeYandije E}U{si:i € X}U{jt:jeY}, uj; =00
for all ij € (X,Y), ug; =1foralli e X and ujy =1forall j €Y.

B Ns

Figure 4.16 A bipartite graph and the corresponding network. Capacities are one
on all arcs of the form sv,ut and oo on all arcs corresponding to edges of B.

We claim that the value of a maximum (s, t)-flow in Ng equals the size
of a maximum matching in B. To see this, suppose that x is an integer flow
in NV of value k. Let M = {ij : i € X,j € Y and x;; > 0}. For each i € X
the flow on the arc x; is either zero or one. Furthermore, if x,; = 1, then
it follows from the fact that z is integer valued and b,(i) = 0 that precisely
one arc from ¢ to Y has non-zero flow. Similarly , for each j € Y, if z;; =1,
then precisely one arc from X to j has non-zero flow. It follows that M is a
matching of size k in B and hence, by Theorem 4.5.5, the size of a maximum
matching in B is at least the value of a maximum flow in Np.

On the other hand, if M’ = {¢;r; : ¢ € X,m; € Y,i = 1,2,...,h} is
a matching in B, then we obtain a feasible (s,t)-flow of value h in N by
sending one unit of flow along each of the internally disjoint paths sq;r;t,
i = 1,2,...,h. This shows that the opposite inequality also holds and the
claim follows.
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It follows from the arguments above that, given a maximum integer flow
x, we can obtain a maximum matching M of B by taking precisely those arcs
of the form u;v;, u; € X,v; € Y, which have flow value equal to 1. Note that
N3 is a simple network. Hence the complexity claim follows from the fact
that we can find a maximum flow in A/ in time O(y/nm), using the algorithm
of Theorem 4.7.7 (recall that this complexity is also valid for simple networks
where not all capacities are 1, provided that at most one unit of flow can pass
through any vertex distinct from s, t). a

In the case of dense graphs a slightly faster algorithm of complexity
O(n'®y/m/logn) was given by Alt, Blum, Mehlhorn and Paul in [39]. It
is still possible to obtain fast algorithms for finding a maximum matching
in general graphs, see, e.g., Tarjan’s book [845]. However, it does not seem
possible to formulate the maximum matching problem for an arbitrary graph
as an instance of the maximum flow problem in some network. In [604] a
generalization of flows which contains the maximum matching problem for
general graphs as a special case was studied by Kocay and Stone.

A vertex cover of an undirected graph G = (V, E) is a subset U C V
such that every edge e € F has at least one of its end-vertices in U. Since no
two edges of a matching share a vertex, it follows that for every vertex cover
U in G, the size of U is at least the size of a maximum matching. For general
graphs there does not have to be equality between the size of a maximum
matching and the size of a minimum vertex cover. For instance, if G is just
a 5-cycle, then the size of a maximum matching is 2 and no vertex cover
has less than 3 vertices. We now prove the following result, due to Konig
[619], which shows that for bipartite graphs equality does hold. The proof
illustrates the power of the max-flow min-cut theorem.

Theorem 4.11.2 (Ko6nig’s theorem) [619] Let B = (X,Y; E) be an undi-
rected bipartite graph with bipartition (X,Y). The size of a maximum match-
ing in B equals the size of a minimum vertex cover in B.

Proof: Let Np = (VU{s,t}, A,] = 0, u) be defined as in the proof of Theorem
4.11.1. Let = be a maximum flow in Nz and let (S,S) be the minimum cut
defined with respect to z, as in the proof of Theorem 4.5.3 (see Figure 4.17).
Recall that S is precisely those vertices of V' U {s,¢} which can be reached
from s in Np(z). Since the capacity of each arc from X to Y is oo, there is
no edge from SN X to SNY in G. Thus U = (X N S)U (Y N S) is a vertex
cover in B. Furthermore, it follows from the definition of S that we must
have 25 = 1 for all i € X NS and zj+ = 1 for all j € Y N S. This shows
that |z| = |X N S| +|Y NS|. We showed in the proof of Theorem 4.11.1 that
|IM*| = |z| = |X NS| +|Y NS|, where M* is a maximum matching in B.
Hence |M*| = |U]|, implying that U is a minimum vertex cover and the proof
is complete. a

We say that a matching M covers a set of vertices Z if every vertex in Z
is incident with an edge from M. Recall that a matching is perfect if it covers



4.11 Applications of Flows 173

XnSs Yns

XnSs Yns

Figure 4.17 The situation when a maximum flow has been found. The thick dotted
arc indicates that there is no arc between the two sets X NS and Y N S.

all vertices. We saw above that the simple proof of Theorem 4.11.1 was easily
modified to a proof of Konig’s theorem. We can also derive the following
classical result due to Hall [493]. For an undirected graph G = (V, E) and a
subset U C V, we denote by N(U) the set of vertices in V' — U which have
at least one edge to a vertex in U.

Theorem 4.11.3 (Hall’s theorem) [}93] A bipartite graph B = (X,Y; E)
has a matching covering X if and only if the following holds:

INU)| > |U] for every U C X. (4.25)

Proof: The necessity of (4.25) is clear since every vertex in U has a private
neighbour in Y if B has a matching covering X.

Suppose now that (4.25) holds. Then |Y| > |X| and by adding a set X’
of Y| — | X| vertices to X and joining each of these completely to Y we can
obtain a bipartite supergraph B’ of B for which (4.25) also holds. Clearly
B’ has a perfect matching if and only if B has a matching covering X. So
it suffices to prove that |X| = |Y| and (4.25) implies that B has a perfect
matching.

Let x be an integer maximum flow in the network N which is defined as
in the proof of Theorem 4.11.1. If we can prove that |z| = | X/, then it follows
from the proof of Theorem 4.11.1 that B has a perfect matching. So suppose
|z| < |X|. By the proof of Theorem 4.11.2, we have |z| = | X N S|+ Y N S|,
where S is the set of vertices that are reachable from s in Ng(z). Since (4.25)
holds and we argued in the proof of Theorem 4.11.2 that all neighbours of
XNSarein Y NS, we also have

IX|=|XNnS|+|XNnS|<|[yYnS|+|XNS|=|z| < |X],

a contradiction. Hence we must have || = |X| and the proof is complete. O
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The case |X| = |Y| in Hall’s theorem, the so-called marriage theorem,
was proved much earlier (in 1917) by Frobenius.

Corollary 4.11.4 (The Marriage theorem) [363] A bipartite graph B =
(X,Y; E) has a matching covering X if and only if |X| = |Y| and (4.25)
holds. O

4.11.2 The Directed Chinese Postman Problem

Suppose a postman has to deliver mail along all the streets in a small'* town.
Assume furthermore that on one-way streets the mail boxes are all on one
side of the street, whereas for two-way streets, there are mail boxes on both
sides of the street. For obvious reasons the postman wishes to minimize the
distance he has to travel in order to deliver all the mail and return home to
his starting point. We show below how to solve this problem in polynomial
time using minimum cost flows.

We can model the problem by a directed graph D = (V, A) and a cost
function ¢ : A—R, where V' contains a vertex for each intersection of streets
in the town and the arcs model the streets. A 2-cycle corresponds to a two-
way street and an arc which is not in a 2-cycle corresponds to a one-way
street in the obvious way. The cost of an arc corresponds to the length of
the corresponding street. Now it is easy to see that an optimal route for the
postman corresponds to a minimum cost closed walk in D which traverses
each arc at least once.

We have seen in Theorem 1.7.2 that if a digraph is eulerian, then it con-
tains a closed trail which covers all arcs precisely once. Thus if D is eulerian,
the optimal walk is simply a eulerian trail in D (using each arc exactly once).
Below we show how to solve the general case by reducing the problem to a
minimum cost circulation problem. First observe that there is no solution to
the problem if D is not strongly connected, since any closed walk is strongly
connected as a digraph. Hence we assume below that the digraph in question
is strong, a realistic assumption when we think of the postman problem.

Let D = (V, A) be a strong digraph and let ¢ be a cost function on A. The
cost c(W) of a walk Wis 3, 4 cijw;; where w;; denotes the number of times
the arc 75 occurs on W. Define N as the network N' = (V, A, = 1,u = oo, ¢),
that is, all arcs have lower bounds one, capacity infinity and cost equal to
the cost on each arc.

Theorem 4.11.5 The cost of a minimum cost circulation in N equals the
manimum cost of a Chinese postman walk in D.

Proof: Suppose W is a closed walk in D which uses each arc ij € A exactly
w;; > 1 times. Then it is easy to see that we can obtain a feasible circulation
of cost ¢(W) in NV just by sending w;; units of flow along each arc ij € A.

14 This assumption is to make sure that the postman can carry all the mail in his
backpack, say. Without this assumption the problem becomes much harder.
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Conversely, suppose z is an integer feasible circulation in N. Form a
directed multigraph D’ = (V, A") by letting A’ contain z;; copies of the arc
ij for each ij € A. It follows from the fact that = is an integer circulation that
D’ is an eulerian directed multigraph (see Figure 4.18). Hence, by Theorem
1.7.2, D’ has an eulerian tour 7. The tour T corresponds to a closed walk W

in D which uses each arc at least once and clearly we have ¢(W) = c¢Tz. O

(a) (b)

Figure 4.18 An instance of the directed Chinese postman problem. Part (a) shows
a digraph with cost 1 (not shown) on every arc. Part (b) shows the values of a min-
imum cost circulation in the corresponding network. This circulation corresponds
to the postman tour abdacdacbda.

The corresponding problem can be considered for a connected edge-
weighted undirected graph G = (V, E). Here the goal is to find a tour which
traverses all edges in E at least once and minimizes the total weight of the
tour. It is not hard to see that this problem is equivalent to finding a minimum
cost subset of E so that by duplicating these edges we obtain a supergraph G*
of G in which all vertices have even degree. This is equivalent to G* having an
orientation as a strongly connected eulerian directed multigraph. Edmonds
and Johnson showed how to solve this problem via matching techniques [287]
. Finally there is also the MIXED CHINESE POSTMAN PROBLEM (MCPP) in
which the input is a mixed graph M = (V, A, E) with weights on the arcs and
edges. Again the goal is to find minimum cost subsets £/ C E and A’ C A
so that duplicating these edges and arcs in M results in a mixed supergraph
M* of M which can be oriented as a strongly connected eulerian directed
multigraph. A necessary and sufficient condition for a mixed graph to have
an orientation as an eulerian directed multigraph is given in Corollary 11.7.4.
The MCCP is NP-hard [741]. From the point of view of practical relevance
the MCPP is probably the most important of the three variants as it directly
models situations such as garbage collection, snow removal, street sweeping,
etc. For an exact algorithm for the MCPP see, e.g., Nobert and Picard [730].
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4.11.3 Finding Subdigraphs with Prescribed Degrees

In some algorithms on directed multigraphs, an important step is to decide
whether a directed multigraph D contains a subdigraph with prescribed de-
grees on the vertices. One such example is when we are interested in checking
whether D contains a cycle factor (see Chapter 6). Below we show that such
problems and more general versions of these problems can be answered using
flows. See Exercise 4.60 for another application of flows to a similar question
involving construction of directed multigraphs with specified in- and out-
degrees. Other applications of the techniques illustrated in this subsection
can be found in Chapter 12.

Theorem 4.11.6 There exists a polynomial algorithm for the following prob-
lem. Given a directed multigraph D = (V, A) with V = {v1,va,...,v,} and
integers aj,as,...,an, bi,ba,... by, find a subdigraph D' = (V, A*) of D
which satisfies d}, (v;) = a; and dp, (v;) = b; for eachi=1,2,...,n, or show
that no such subdigraph exists. Furthermore, if there are costs specified for
each arc, then we can also find in polynomial time the cheapest (minimum
cost) subdigraph which satisfies the degree conditions.

Proof: We may assume that a; < dj;(v;), b; < dp(v;) for eachi = 1,2,...,n
and that ) ja; = Y., b;. Clearly each of these conditions is necessary
for the existence of D' and they can all be checked in time O(n). Let M =
>, a; and define a network N as follows: N' = (V'UV"U{s, t}, A", = 0, u),

where V' = {vi,vh,..., 0.}, V' = {vf,vf,...,0} and A" = {sv] : i =
L2,...,npufvit s j =1,2,...,n} U{vjp] : viv; € A}. Finally, we let
Usy, = Qj, Uyry = by for i = 17 2, ...,n and all other arcs have capacity one.

Clearly the maximum possible Value of an (s,t)-flow in N is M. We claim
that NV has an (s, t)-flow of value M if and only if D has the desired subdi-
graph.

Suppose first that D’ = (V, A*) is a subdigraph satisfying d}, (v;) = a;
and dp, (v;) = b; for each ¢ = 1,2,...,n. Then the following is an (s, t)-flow
of value M in N: Ty, = Ui, Tyry = b;, for each i« = 1,2,...,n and Loy
equals one if v;v; € A* and zero otherwise.

Suppose now that z is an integer (s,t)-flow of value M in A and let
A" ={vv; : @y = 1} Then D" = (V, A*) is the desired subdigraph.

It follows from our arguments above that we can find the desired subdi-
graph D’ in polynomial time using any polynomial algorithm for finding a
maximum flow in a network.

Observe also that if we have a cost function c on the arcs of D and let A/
inherit costs in the obvious way (arcs incident to s or ¢ have cost zero), then
finding a minimum cost subdigraph D’ can be solved using any algorithm for
minimum cost flows. O

It follows from Theorem 4.11.6 that we can decide whether a given digraph
has a spanning k-regular subdigraph for some specified natural number & in
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polynomial time. In fact, using minimum cost flows we can even find the
cheapest such subdigraph in the case that there are costs on the arcs. What
happens if we do not require the regular subdigraph to be spanning? If £ = 1,
then the existence version of the problem is trivial, since such a subdigraph
exists unless D is acyclic. Yannakakis and Alon observed that already when
k > 2 the existence version of the problem becomes NP-complete. For details
see [361].

4.11.4 Path-Cycle Factors in Directed Multigraphs

We start with three necessary and sufficient conditions for the existence of a
cycle factor in a directed multigraph. The reason for giving all three is that
in certain cases one of them provides a better way to deal with the problem
under consideration than the other two. The first two parts are given in Ore’s
book [733]; the last is due to Yeo [919].

Proposition 4.11.7 Let D = (V, A) be a directed multigraph.

(a) D has a cycle factor if and only if the bipartite representation BG(D) of
D contains a perfect matching.

(b) D has a cycle factor if and only if there is no subset X of V' such that
cither U, cx N* ()] < |X] or [U,cx N~(v)] < X].

(¢) D has a cycle factor if and only if V' cannot be partitioned into subsets
Y, Z, R1, Re such that (Y,R1) =0, (Re, R1UY) =0, |Y]|>|Z] and Y

s an independent set.

Proof: (a): Suppose BG(D) has a perfect matching consisting of edges
v’lv;(l), ...,v;vg(n), where 7 is a permutation of the set {1,...,n}. Then the
arcs V1vs(1), -+, UnVn(n) form a cycle factor. Indeed, in the digraph D’ induced
by these arcs every vertex v; has out-degree and in-degree equal to one and
such a digraph is precisely a disjoint union of cycles.

Conversely, if C;1 UCs U ... UCy is a cycle factor in D, then for every
v; € V let m(i) be the index of the successor of v; on the cycle containing
v;. Then 7 induces a permutation of V' and {v;v.;) : v; € V} is a perfect
matching in BG(D).

(b): Clearly D has a cycle factor if and only if the converse of D has
a cycle factor, so it suffices to show that D has a cycle factor if and only
if there is no subset X satisfying |{J,cx N7 (v)| < |X|. Necessity is clear
because if |J, . x N (v)| < |X] holds for some X, then there can be no cycle
subdigraph which covers all vertices of X (there are not enough distinct out-
neighbours). So suppose |J,cx N7 (v)] > |X| holds for all X C V. Then it
is easy to see that |N(X”’)| > |X’| holds for every subset X’ C V' of BG(D)
(where V(BG(D)) = V' U V", recall Section 1.6). It follows from Theorem
4.11.3 that BG(D) has a perfect matching and now we conclude from (a)
that D has a cycle factor.
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(c¢): We first prove the necessity. Suppose D has a cycle factor F and
yet there is a partition Y, Ry, Ro, Z as described in (c). By deleting suitable
arcs from the cycles in F we can find a collection of |Y| vertex-disjoint paths
such that all these paths start in Y and end at vertices of V' — Y each of
which dominates some vertex in Y (here we used that Y is an independent
set). However, this contradicts the existence of the partition Y, Ry, Ro, Z as
described in (c), since it follows from the fact that |Z| < |Y| that there can
be at most |Z]| such paths in D (all such paths must pass through 7).

Now suppose that D has no cycle factor. Then we conclude from (b) that
there exists a set X such that |{J,cx N (v)| < |X] holds. Let

Y ={ve X :dp () =0}, R = V-X-N"(X),Ry = X-Y,Z = N*(X).

Then (Y, Ry) =0, (R2, R1UY) = 0 and Y is an independent set. Furthermore,
since |U,ex NT(v)| < |X], we also have [Z] + | X — Y| = [U,ex NT(v)| <
|X| =|X = Y|+ Y], implying that |Z| < |Y|. This shows that Y, Z, Ry, Ry
form a partition as in (c). O

It is not difficult to show that Proposition 4.11.7 remains valid for directed
pseudographs (where we allow loops) provided that we consider a loop as a
cycle (Exercise 4.66). We will use that extension below.

Combining Proposition 4.11.7 with Theorem 4.11.1 we obtain

Corollary 4.11.8 The existence of a cycle factor in a digraph can be checked
and a cycle factor found (if one exists) in time O(y/nm). O

Recall that the path-cycle covering number pec(D) of a directed pseudo-
graph is the least positive integer k such that D has a k-path-cycle factor. The
next result (whose proof is left as Exercise 4.68) and Theorem 4.11.1 imply
that we can calculate pec(D) in polynomial time for any directed pseudo-
graph.

Proposition 4.11.9 Let n be the number of vertices in a directed pseudo-
graph D and let v be the number of edges in a mazimum matching of BG(D).
If v = n, then pce(D) = 1, otherwise pce(D) =n — v. O

The following result by Gutin and Yeo generalizes Proposition 4.11.7(c).

Corollary 4.11.10 [475] A digraph D has a k-path-cycle factor (k > 0) if
and only if V(D) cannot be partitioned into subsets Y, Z, Ry, Ro such that
(Y,R1)=0, (Ry,RyUY) =0, |Y| > |Z|+k and Y is an independent set.

Proof: Assume that &k > 1. Let D’ be an auxiliary digraph obtained from D
by adding k new vertices uq, ..., ur together with the arcs {u;w, wu; : w €
V(D), i =1,2,...,k}. Observe that D has a k-path-cycle factor if and only
if D’ has a cycle factor. By Proposition 4.11.7(c), D’ has a cycle factor if
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and only if its vertex set cannot be partitioned into sets Y, Z’, Ry, Ry that
satisfy (Y,R1) =0, (R2, R1UY) =0, Y| > |Z| and Y is an independent
set. Note that if Y, Z’, R, Ry exist in D’, then the vertices uq,...,u; are
in Z'. Let Z = Z' — {uy,...,u; }. Clearly, the subsets Y, Z, Ry, Ry satisfy
(Y,R1) =0, (Re, RiUY) =10, |Y| > |Z|+k and Y is an independent set. O

The proof above and Corollary 4.11.8 easily implies the first part of the
following proposition.

Proposition 4.11.11 Let D be a directed pseudograph and let k be a fized
non-negative integer. Then

(a) In time O(y/nm) we can check whether D has a k-path-cycle-factor and
construct one (if it exists).

(b) Given a k-path-cycle factor in D, in time O(m), we can check whether
D has a (k — 1)-path-cycle factor and construct one (if it exists).

Proof: Exercise 4.69. O
4.12 Exercises

Unless otherwise stated, all numerical data in the exercises below are integers.

4.1. Find a feasible flow in the network N of Figure 4.19.

10

Figure 4.19 A network N with balance vector b specified at each vertex. All lower
bounds and costs are zero and capacities are shown on the arcs.

4.2. Suppose the network N' = (V, A,l,u,b,c) has some 2-cycle iji for which
cij # —cji. Show how to transform N into another network N’ without 2-
cycles such that every feasible flow in A corresponds to a feasible flow in N’
of the same cost. What is the complexity of this transformation?

4.3. Prove Lemma 4.2.1(a).
4.4. Prove Lemma 4.2.2.
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4.5.

4.6.
4.7.
4.8.

4.9.

4. Flows in Networks

Prove Lemma 4.2.3. In particular, argue why we need to take l;s = M rather
than l;s = 0.

Prove Lemma 4.2.4.
(+) Fast decomposition of flows. Prove Lemma 4.3.2.

Decomposing an eulerian directed multigraph into arc-disjoint cy-
cles. Prove that the arc set of every eulerian directed multigraph can be
decomposed into arc-disjoint cycles. Hint: form a circulation in an appropri-
ate network and apply Theorem 4.3.1.

Find the residual network corresponding to the network and flow indicated
in Figure 4.20.

4 (0,3,4) 7

Figure 4.20 A network with a flow z. The notation for the arcs is (I, z, u).

4.10.
4.11.

4.12.

4.13.

4.14.

4.15.

Find the balance vector b, for the flow x in Figure 4.20.

Eliminating lower bounds on arcs in maximum flow problems. Show
how to reduce the maximum (s, t)-flow problem in a network N with some
non-zero lower bounds on the arcs to the maximum (s’,t')-flow problem in a
network A/ with source s’ and sink ¢’ and all lower bounds equal to zero.

Let z be a flow in N' = (V,A,l = 0,u,c) and let f(W) be a cycle flow of
value § in M (z). Show that the flow z* = z @ f(WW) has the same balance
vector as « in NV. Show also that the cost of z* is given by ¢« 4 T f(W).

Prove that the flow & defined in the proof of Theorem 4.4.3 is a feasible flow
in M(x).

Let  be a feasible flow in N/ = (V, A, = 0,u, ¢) and let y be a feasible flow in
N (z). Show that N (z @ y) = N (z)(y), where N(z)(y) denotes the residual
network of A (z) with respect to y. That is, show that the two networks
contain the same arcs and with the same residual capacities.

An alternative decomposition of a flow. Consider the proof of Theorem
4.3.1 and suppose that, instead of taking p = min{b,(i0), —b=(ix), 0}, we let
© = 9. What kind of decomposition into path and cycle flows will we get and
what is the bound on their number?
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Structure of minimum (s, t)-cuts. Decide which of the following is true

or false. In each case either give a counterexample or a proof of correctness.

(a) If all arcs have different capacities, then there is a unique minimum
(s, t)-cut.

(b) If we multiply the capacity of each arc by a constant k, then the structure
(as subset of the vertices) of the minimum (s, t)-cuts is unchanged.

(c) If we add a constant k to the capacity of each arc, then the structure (as
subset of the vertices) of the minimum (s, t)-cuts is unchanged.

4.17. (4) The Ford-Fulkerson algorithm may never terminate if capaci-

ties are real numbers.

s ' .@ t

Figure 4.21 A bad network for the generic Ford-Fulkerson algorithm. All arcs
except the three in the middle have capacity r + 2. Those in the middle have
capacities 1,7, 7%, where r is the golden ratio.

4.18.

4.19.

4.20.

4.21.

Let A be the network in Figure 4.21. Here r is the golden ratio, i.e., 7% = 1—r.

Observe that r"*2 =" — " forn =1,2,....

(a) Show that the value of a maximum flow in A is 1 +r + % = 2.

(b) Devise an infinite sequence of augmentations along properly chosen aug-
menting paths in the current residual network so that the flow value will
converge towards 1+ > 72, r* = 2. This shows that, when the capaci-
ties are non-rational numbers, the Ford-Fulkerson algorithm may never
terminate. Hint: first augment by one unit and then by r* units in the
ith augmentation step, ¢ > 2, along an appropriately chosen augmenting
path.

(4+) Prove that the Ford-Fulkerson algorithm will always terminate if all
capacities are rational numbers.

Let S be a totally unimodular p X ¢ matrix and I the p X p identity matrix.
Show that the matrix [S I] is also totally unimodular.

Exact distance labels give a height function for the push-relabel
algorithm. Let N be a network with source s and sink ¢ and let z be a
preflow in A such that there is no (s,t)-path in N'(z). Prove that if we let
h(i) equal the distance from i to ¢ in N (x) for i € V — s and h(s) = n, then
we obtain a height function.

Bad performance of the push-relabel algorithm. Give an example
which shows that the push-relabel algorithm may use many applications of
push and lift without sending any extra flow into ¢ or back to s.
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4.22.

4.23.

4.24.

4.25.

4. Flows in Networks

Eliminating some useless work in the push-relabel algorithm. Let

N = (V, Al = 0,u) be a network with source s and sink ¢. Suppose that we

execute the generic push-relabel algorithm on N. Let h be a height function

with respect to N' and x. We say that h has a hole at position i + 1, for
some ¢ < n at some point in the execution of the algorithm if at that time
the following holds:

{v: h(v) =j}| >0 for every j < i and

{v:h(v)=i+1} =0.
Let h' be defined as follows:

R (v)=h(@)if h(v) € {1,2,...;i}U{n,n+1,...,2n— 1}

R (v)=n+1ifi< h(v) <n.

(a) Prove that h’ is a height function, that is, (4.14) is satisfied.

(b) Describe how to implement this modification of the height function effi-
ciently so that it may be used as a subroutine in the push-relabel algo-
rithm.

(¢) Explain why changing the height function as above, when a hole is de-
tected, may help speed up the push-relabel algorithm.

Using the height function to detect a minimum cut after termina-
tion of the push-relabel algorithm. Suppose z is a maximum (s, ¢)-flow
that has been found by executing the push-relabel algorithm on a network
N = (V,A,l = 0,u). Describe a method to detect a minimum (s,t)-cut in
O(n) steps using the values of the height function upon termination of the
algorithm.

(+) Re-optimizing a maximum (s,t)-flow. Suppose z is a maximum

flow in a network ' = (V, A,l = 0, u). Show how to re-optimize z (that is, to

change it to a feasible flow of maximum value) in each of the following cases:

(a) Increase the capacity of one arc by k units. Show that the new optimal
solution can be found in time O(km).

(b) Decrease the capacity of one arc by k units. Show that new optimal
solution can be found in time O(km). Hint: use Theorem 4.3.1.

(+) Pulling and pushing flow, the MKM algorithm. The purpose of
this exercise is to introduce another, very efficient, method for finding a maxi-
mal (s, t)-flow in a layered network due to Malhotra, Kumar and Maheshwari
[679]. Let L= (V =VoUViU... UV, Al = 0,u) be a layered network with
Vo = {s} and Vi, = {¢}. Let y be a feasible (s, t)-flow which is not maximal
in L. For each vertex i € V — {s,t} let o, B:, p; be defined as follows:

a; = Z Uji — Yji, (4.26)

jicA
Bi= > wij— i (4.27)
ijeA
p; = min{ay, B; }. (4.28)

Let
P =D Usj —YsjrPr = Y Ujt — Yji- (4.29)
sjEA JteA

Finally let p = min;ev{pi}.
Suppose that p > 0 and let ¢ € V' be chosen such that p = p;.
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(a)

()

(d)
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Prove that it is possible to send an additional amount of p units from
to t (called pushing from ¢ to t) and p units of flow from s to i in £
(called pulling from s to ¢). Hint: use that the network is layered.

The observation above leads to the following algorithm A for finding a
maximal flow in a layered network. Below the p-values always refer to
the current flow.

The MKM algorithm

1. Start with the zero flow y = 0 and calculate p; for all ¢ € V. If some
i € V has p; = 0, then go to Step 6;

2. Choose ¢ such that p; = p;

3. Push p units of flow from ¢ to ¢ and pull p units from s to ;

4. Delete all arcs which are saturated with respect to the new flow. If
this results in some vertex of in- or out-degree zero, then also delete
that vertex and all incident arcs. Continue this until no more arcs
can be deleted;

5. Calculate p; for all vertices in the current layered network. If p; > 0
for all vertices, then go to Step 2. Otherwise go to Step 6.

6. If ps =0 or p; = 0, then halt;

7. If there is a vertex ¢ with p; = 0, then delete all such vertices and
their incident arcs;

8. Go to Step 5.

Prove that the algorithm above correctly determines a maximal flow in
the input layered network L.

The complexity of A depends on how we perform the different steps,
especially Step 3. Suppose we apply the following rule for performing
Step 3. We always push/pull p units one layer at a time. If j is the
current vertex from (to) which we wish to send flow to (from) the next
(previous) layer, then we always fill an arc with tail (head) j completely
if there is still enough flow left and then continue to fill the next arc as
much as possible.

Argue that, using the rule above, we can implement the algorithm to
run in O(n?) time. Hint: at least one vertex will be deleted between
two consecutive applications of Step 3. Furthermore, one can keep the
p-values effectively updated (explain how).

Illustrate the algorithm on the layered network in Figure 4.10.

Finding maximum (s, t)-flows by scaling. Let N’ = (V, A,l = 0,u) be a
network with source s and sink ¢ and let U denote the maximum capacity of
an arc in NV.

(a)
(b)

()

(—) Prove that the capacity of a minimum (s, t)-cut is at most U|A|.
Let C be a constant and let x be a feasible (s,t)-flow in . Show that in
time O(]A|) one can find an augmenting path of capacity at least C, or
detect that no such path exists in N (z). Hint: consider the subnetwork
of N(x) containing only arcs whose capacity is at least C.

Consider the following algorithm:

Max-flow by scaling
1. U := max{u; : ij € A};
2. x;; := 0 for every ij € A;
3. C:=2lls2Ul,
4. while C > 1 do
5. while NV(x) contains an augmenting path of capacity at least C
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do augment x along P;

6. c:=C/2

7. return x
Prove that the algorithm correctly determines a maximum flow in the
input network N
Argue that every time Step 4 is performed the residual capacity of every
minimum (s, t)-cut is at most 2C|A|.
Argue that the number of augmentations performed in Step 5 is at most
O(|A]) before Step 6 is executed again.
Conclude that Max-flow by scaling can be implemented so that its
complexity becomes O(|A|?logU). Compare this complexity to that of
other flow algorithms in this chapter.

4.27. Show how to find a maximum (s, ¢)-flow in the network of Figure 4.22 using

(a)
(b)
()
(d)
()

The Ford-Fulkerson method,;

Dinic’s algorithm;

The push-relabel algorithm;

The MKM algorithm described in Exercise 4.25;
The scaling algorithm described in Exercise 4.26.

Figure 4.22 A network with lower bounds and cost equal to zero on all arcs and
capacities as indicated on the arcs.

4.28. (+) Rounding a real-valued flow. Let N' = (V, A,l,u) be a network
with source s and sink ¢ and all data on the arcs non-negative integers (note
that some of the lower bounds may be non-zero). Suppose z is a real-valued
feasible flow in A such that z;; is a non-integer for at least one arc.

4.29.

4.30.

(a)
(b)
()

Prove that there exists a feasible integer flow 2’ in AN with the property
that |zi; — a};| < 1 for every arc ij € A.

Suppose now that |z| is an integer. Prove that there exists an integer
feasible flow 2" in A such that |z"| = |z].

Describe algorithms to find the flows z’,z” above. What is the best
complexity you can achieve?

Finding a feasible circulation. Turn the proof of Theorem 4.8.2 into a
polynomial algorithm which either finds a feasible circulation, or a proof that
none exists. What is the complexity of the algorithm?

Residual networks of networks with non-zero lower bounds. Show
how to modify the definition of = @ Z in order to obtain an analogue of
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Theorem 4.4.2 for the case of networks where some lower bounds are non-
Z€ero.

Show that a feasible circulation (if one exists) can always be found by just
one max flow calculation in a suitable network. Hint: transform the network
into an (s, t)-flow network with all lower bounds equal to zero.

(+) Flows with balance vectors within prescribed intervals. Let
N = (V,A,l,u) be a network where V = {1,2,...,n} and let a; < b;,

1=1,2...,n, be integers. Prove that there exists a flow x in A which satis-
fies
li]' < Tij < Uij VZ] S A, (430)
a; <bg(i) <b; VieV, (4.31)

if and only if the following three conditions are satisfied:

> ai <0, (4.32)

> b0, (4.33)
eV
uw(X,X) > (X, X) + max{a(X), —b(X)} VX CV, (4.34)

where a(X) =3, a;.
Hint: construct a network which has a feasible circulation if and only if (4.30)
and (4.31) hold. Then apply Theorem 4.8.2.

Submodularity of the capacity function for cuts. Let N' = (V, A, [, u)

be a network with source s and sink t. Prove that if (S,S) and (T,T) are
(s,t)-cuts, then

uw(S,S) +u(T,T)>u(SNT,SNT)+u(SUT,SUT).
Hint: consider the contribution of each arc in the network to the four cuts.

Show that if (S,5) and (T,T) are minimum (s,t)-cuts, then so are (S N
T,5NT)and (SUT,SUT). Hint: use Exercise 4.33.

(4+) Finding special minimum cuts. Suppose that z is a maximum (s, t)-
flow in a network N' = (V, A, [, u). Let

U = {i: there exists an (s,4)-path in N (z)},

W ={j: there exists a (j,t)-path in N'(z)}.
Prove that (U,U) and (W, W) are minimum (s, t)-cuts. Then prove that for
every minimum (s,t)-cut (S,7) we have U C S and W C T

(4) Let z be an (s, t)-flow in a network ' = (V| A, [, u). Explain how to find
an augmenting path of maximum capacity in polynomial time. Hint: use a
variation of Dijkstra’s algorithm.
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(+) Augmenting along maximum capacity augmenting paths. Show
that if we always augment along an augmenting path with the maximum
residual capacity, then the Ford-Fulkerson algorithm becomes a polynomial
algorithm (Edmonds and Karp [288]). Hint: show that the number of aug-
mentations is O(mlogU), where U is the maximum capacity of an arc.

Converting a maximum preflow to a maximum (s, t)-flow. Let N' =
(V,A,1 = 0,u) be a network with source s and sink ¢. A preflow z in N is
maximum if |b;(t)| equals the value of a maximum (s, t)-flow in V.

(a) Let N'=(V,A,l =0,u) be a network with source s and sink ¢ and let y
be a maximum preflow in A. Prove that there exists a maximum (s, t)-
flow z in N with the property that z;; < y;; for every arc ij € A. Hint:
use flow decomposition.

(b) How fast can you convert a maximum preflow to a maximum (s, t)-flow?

(=) Prove Lemma 4.7.1.
(=) Prove Lemma 4.7.6.

Show that the complexity of Dinic’s algorithm for unit capacity networks

remains O(ngm) even if we allow the network to have 2-cycles. Hint: prove a
modified version of Lemma 4.7.3 and apply that as we applied Lemma 4.7.3
in the proof of Theorem 4.7.4.

Elimination of 2-cycles from simple networks. Suppose that ' =
(V,A,l = 0,u = 1) is a simple unit capacity network with source s, sink
t and that uvu is a 2-cycle in /. Show that we may always delete one of the
arcs uv or vu without affecting the value of a maximum (s, ¢)-flow in A

Prove Theorem 4.7.7. Hint: see the proof of Theorem 4.7.4.
Show how to derive Theorem 4.8.4 from Lemma 4.2.2 and Theorem 4.8.2.

Scheduling jobs on identical machines. Let J be a set of jobs which are
to be processed on a set of identical machines (such as processors, airplanes,
trucks, etc.). Each job is processed by one machine. There is a fixed schedule
for the jobs, specifying that job j € J must start at time s; and finish at time
fj. Furthermore, there is a transition time ¢;; required to set up a machine
which has just performed job i to perform job j (e.g., jobs could be different
loads for trucks and t;; could be time to drive a truck from the position
of load 7 to that of load j). The goal is to find a feasible schedule for the
jobs which requires as few machines as possible. Show how to formulate this
problem as a minimum value (s, ¢)-flow problem.

(4+) Scheduling supervision of projects. This exercise deals with a prac-
tical problem concerning the assignment of students to various projects in
a course. All projects which are chosen by at least one student are to be
supervised by one or more qualified teachers. Each student is supervised by
one teacher only. There are n students, m different projects and t possible
supervisors for the projects.

Let b;, i = 1,2,...,m, denote the maximum number of students who may
choose the same project (they work alone and hence need individual super-
vision). For each project i, ¢ = 1,2,...,m, there is a subset A; C {1,...,t}
of the teachers who are capable of supervising the ith project. Finally each
teacher j, j = 1,2,...,¢, has an upper limit of k; on the number of students
(s)he can supervise.
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Every student must be assigned exactly one project. We also assume that
each student has ranked the projects from 1 to m according to the order of
preference. Namely, the project the student would like best is ranked one.
Denote the rank of project j by student i by r;;.

The goal is to find an assignment p(1),p(2),...,p(n) of students to projects
(that is, student 7 is assigned project p(z)) which respects the demands above
and at the same time minimizes the sum Y1 | 75,0

(a) Show how to formulate the problem as a minimum cost flow problem.

(b) If we only wish to find a feasible assignment (i.e., one that does not
violate the demands above), then which is the fastest algorithm you can
devise?

(¢) Which minimum cost flow algorithm among those in Section 4.10 will
give the fastest algorithm for the problem when formulated as in question
(a)?

(d) Let p(1),p(2),...,p(n) be an optimal assignment of students to projects.
Suppose that before the actual supervision of the projects starts, some
supervisor j € {1,2,...,t} lowers his/her capacity for supervision from
kj to k; < kj.

Describe a fast algorithm which either proves that no feasible assignment
exists or changes the assignment p(1),p(2),...,p(n) to a new optimal
assignment p’(1),p'(2),...,p (n) with respect to the new restrictions.

(e) Suppose now that the change in capacity only happens after the students
have started working on the projects. The goal now is to find a new
optimal and feasible solution or show that no feasible solution exists,
while at the same time rescheduling as few students as possible to new
projects (we assume that rescheduled students must start all over again).
Explain briefly how to solve this variant of the problem. Hint: devise
some measure of cost for rescheduling a student in a minimum cost flow
model.

(=) Let N = (V, A,l = 0,u) be a network with source s and sink ¢ and let
N = (V,A")l' =0,v,c) be obtained from N by adding a new arc ts with
uts = oo and c¢;s = —1 taking uj; = ug; for all 45 € A and ¢j; = 0 for all
ij € A. Prove that there is a 1-1 correspondence between the minimum cost
circulations in N and the maximum (s, ¢)-flows in N.

Let N = (V,A,l =0,u,b,c) be a network with some arcs of infinite capacity

and some arcs of negative cost.

(i) Show that there exists a finite optimal solution to the minimum cost
flow problem (finding a feasible flow in A/ of minimum cost) if and only
if A has no cycle C of negative cost such that all arcs of C have infinite
capacity. Hint: study the difference between an arbitrary feasible solution
and some fixed solution of finite cost.

(ii) Let K be the sum of all finite capacities and those b-values that are pos-
itive. Show that if there exists a finite optimal solution to the minimum
cost flow problem for NV, then there exists one for which no arc has flow
value more than K. Hint: use flow decomposition.

Eliminating negative cost arcs from minimum cost flow problems.
Suppose N = (V, A,l = 0,u,b,c) contains an arc uv of negative cost, but
no cycle of infinite capacity and negative cost (see Exercise 4.48). Derive a
result similar to Lemma 4.2.1 which can be used to transform N into a new
network N'* in which all costs are non-negative and such that given any
feasible flow ™ in AT we can obtain a feasible flow = in A and find the
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cost of z efficiently, given the cost of ™. Hint: reverse arcs of negative costs,
negate the costs of such arcs and update balance vectors.

Prove Theorem 4.10.6.

Try to generalize the statement of Proposition 4.10.7 to the case when the
paths P, P’ do not necessarily have the same end-vertices. Hint: consider the
network N; obtained as in Lemma 4.2.2.

Show by an example that the cycle canceling algorithm may use 2(mUC)
augmentations before arriving at an optimal flow.

Show that the buildup algorithm of Section 4.10 can be applied to solve the
assignment problem in time O(n®).

Show how to reduce the case when 37" a; # > "_, b; to the case when the
equality holds for the transportation problem. Hint: introduce new plants or
retailers.

(—) Show how to reduce the problem of finding a matching in a bipartite
graph B = (X,Y, E) which maximizes the number of edges incident to ver-
tices in X to the problem of finding a maximum matching in a bipartite
graph.

(+) Prove that if D is a k-regular semicomplete digraph on n vertices, then
D contains a spanning tournament 7" which is regular or almost regular
(|6T(T) — 6~ (T)| < 1) depending on whether n is odd or even. Observe
that every regular tournament has an odd number of vertices (Bang-Jensen
(69]).

(+) Generalized matchings in undirected graphs. Let G = (V, E)
be an undirected graph. Recall that for any subset S C V we denote by
N¢(S) the set of vertices in V' — S which have at least one edge to S. Prove
that every graph G either has a vertex disjoint collection of edges e1,...,ex
and odd cycles C1,...,Cr covering V, or a set S C V with |[Ng(S)| < |5]
and S is independent. Derive an algorithm from your proof which either
finds the desired generalized matching, or an independent subset S such that
|N(S)| < |S|. Hint: use Theorem 4.8.2 on an appropriate network.

Prove the following theorem due to Kénig [620].

Theorem 4.12.1 [620] Every regular bipartite graph has a perfect matching.

Find a minimum cost Chinese postman walk in the digraph of Figure 4.23.

Show how to formulate the following problem as a flow problem. Given
two sequences of non-negative integers a1, az, ..., an, and b1, ba, ..., b, decide
whether or not there exists a directed multigraph D = ({v1,v2,...,vn}, A)
such that dg(vi) = a; and dj(v;) = b; for each ¢ = 1,2,...,n. Hint: use
Theorem 4.11.3 or the proof idea of this theorem.

Tree solution to a flow problem. Let N' = (V,A,l = 0,u,b,c) be a
network with n vertices for which there exists a feasible flow and let D =
(V, A) be the underlying digraph of /. Prove that there exists a feasible flow
z in NV such that the number of arcs on which 0 < Tij < ug; is at most n — 1.
We call such a feasible flow a tree solution. Hint: show that if C is a cycle
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Figure 4.23 A digraph with costs on the arcs.

in UG(D) where 0 < x;; < u;; for every arc on the cycle, then we can change
the current flow such that the resulting flow z’ is either 0 or u;; for at least
one arc ij of C' and no new arc pg with 0 < z,, < upq is created.

Let N = (V,A,l = 0,u,b,c) be a network with n vertices for which there
exists a feasible flow. Prove that there exists an optimal feasible flow which
is a tree solution.

Vertex potentials and flows. Let NV = (V, A,l = 0,u,b,c) be a network
and z a feasible flow in /. Prove that z is an optimal flow if and only if there
exists a function 7 : V—R such that ¢j; > 0 for every arc ij in N (x). Here
¢y = cij — (i) + m(j) is the reduced cost function and the costs in N (z)
are with respect to ¢” instead of c. Hint: see Exercises 3.16-3.18.

Complementary slackness conditions for optimality of a flow. Let
N = (V,Al=0,u,b,c) be a network and z a feasible flow in N. Prove that
x is an optimal flow if and only if there exists a function 7 : V—R such that
the following holds where cj; = ¢i; — (i) + 7(j) as above. Hint: use Exercise
4.63.

C;rj >0 = x5 =0, (4.35)
¢y <0 = mij = uy, (4.36)
0<ziy <uyy = Czrj =0. (4.37)

(+) A primal-dual algorithm for minimum cost flows. Let N/ =
(V,A,l = 0,u,c) be a network with source s and sink ¢ for which the value
of a maximum (s,t)-flow is K > 0. Let = be an optimal (feasible) (s, t)-flow
of value k < K and let m : V—7R be chosen such that cj; > 0 for every arc
ij in N'(x) (see Exercise 4.63). Define Ay as those arcs ij of N(z) for which
we have ¢f; = 0 and let My be the subnetwork of A (z) induced by the arcs
of Ao.

(a) Show that if y is a feasible (s, t)-flow in A of value p, then 2’ = x @y is
an optimal (s, t)-flow of value k+ p in N. Hint: verify that ¢f; > 0 holds
for every arc ij in N'(z').

(b) Suppose y is a maximum (s,t)-flow in Ny, but 2’ = z @ y has value less
than K. Let S denote the set of vertices which are reachable from s in
No(y). Let €, €1, €2 be defined as follows. Here we let ¢; = co if there are
no arcs in the corresponding set, i = 1,2:

e1 = min{cj|i € 5,5 € S,cf; >0 and z5; < uis},
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€2 = min{—cfj|i € S,j € S, ¢j; <0 and z;; > 0}.

Let € = min{e1, e2}. Prove that € < oco.

(c) Now define n’ as follows: 7' (v) := 7(v) + € if v € S and 7' (v) := 7(v)
if v € S. Let N contain those arcs of A/(z') for which we have cfj/ =0
and let S’ denote the set of vertices which are reachable from s in N.
Show that S is a proper subset of S’ and that c?j, > 0 holds for all arcs
in A(z'). Hint: use Exercise 4.14.

(d) If t € S’, then we can change 7’ as above (based on the set S’ rather
than S). Conclude that after at most n — 1 such updates of the vector
7', the current network A/ contains an (s, t)-path.

(e) Use the observations above to design an algorithm that finds a minimum
cost (s, t)-flow of value K in N by solving a sequence of maximum flow
problems. What is the complexity of this algorithm?

Cycle factors of directed pseudographs. Prove that Proposition 4.11.7
also holds for directed pseudographs provided we consider a loop as a cycle.

(+) Calculating the path-cycle covering number of a digraph. Show
how to find in time O(y/nm) the minimum integer k such that a given digraph
D has a path-cycle factor with k paths. Hint: use minimum value flows in an
appropriately constructed simple network.

Prove Proposition 4.11.9.
Prove Proposition 4.11.11. Hint: use the same network as in Exercise 4.67.

(+) Path-cycle covering numbers of extensions of digraphs. Let R be
a digraph on r vertices, and let I; < u1,l2 < ua,...,lr < u, be 2r non-negative
integers. Let I, denote an independent set on p vertices. Show how to find
min{pcc(R[Ipy, s Ip,]) = 1 < pi < ugy @ = 1,...,r} in time O(r®). Hint:
generalize the network you used in Exercise 4.67 (Bang-Jensen and Gutin
[89, 454]).

Let k € Z4. Show that a directed graph D = (V, A) has a k-path-cycle factor
if and only if |U,cx NT(v)| > |X| =k and |U,cx N~ (v)] > | X| — k.



5. Connectivity of Digraphs

The concept of connectivity is one of the most fundamental concepts in (di-
rected) graph theory. There are numerous practical problems which can be
formulated as (local) connectivity problems for digraphs and hence a signif-
icant part of this theory is also important from a practical point of view.
Results on connectivity are often quite difficult and a deep insight may be
required before one can obtain results in the area. Because of the very large
number of important results on connectivity, we will devote this chapter as
well as Chapters 10, 11, 12 and 14 to this area. Several connectivity problems,
such as the connectivity augmentation problems in Sections 14.2 and 14.3,
are of significant practical interest. These chapters illustrate several impor-
tant topics as well as techniques that have been successful in solving local or
global connectivity problems.

We will often consider directed multigraphs rather than directed graphs,
since several results on arc-strong connectivity hold for this larger class and
also it becomes easier to prove many results. However, when we consider
vertex-strong connectivity, multiple arcs play no role and then we may as-
sume that we are considering digraphs. Note that, unless we explicitly say
otherwise, we will assume that we are working with a directed graph (i.e.,
there are no multiple arcs).

After introducing some new terminology, an efficient way of representing
a directed multigraph as a network and a fast algorithm for finding the strong
components of a digraph, we proceed to ear decompositions of strong directed
multigraphs. We show how to use ear decompositions to obtain short proofs
of several basic connectivity results. Then we state and prove Menger’s the-
orem which is one of the most fundamental results in graph theory. Based
on Menger’s theorem, we describe various algorithms to determine the arc-
strong and vertex-strong connectivity of a directed multigraph. In Section 5.6
we study the structure of directed multigraphs which are k-(arc)-strong but
removing any arc destroys that property. We prove deep results by Mader
on the structure of such directed multigraphs. Section 5.7 deals with di-
graphs which are k-strong but no vertex can be deleted without decreasing
the vertex-strong connectivity. In Section 5.8 we consider connectivity prop-
erties of special classes of digraphs.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, 191
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1_5,
(© Springer-Verlag London Limited 2010
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5.1 Additional Notation and Preliminaries

Let D = (V,A) be a directed multigraph and let X, Y C V be subsets
of V. We denote by d*(X,Y) the number of arcs with tail in X —Y and
head in Y — X, ie., d"(X,Y) = [(X = Y,Y — X)p|. Furthermore we let
d(X,Y)=d"(X,Y)+d"(Y,X). Hence we have d*(X) = d"(X,V — X) and
d~(X)=d"(V-X,X). An arc zy leaves aset X ifr € X andy e V — X.
The sets X,Y are intersecting if each of the sets X — Y, X NYY — X is
non-empty. If also V — (X UY) # (J, then X and Y are crossing.

Let F be a family of subsets of a set S. We call a set A € F a member of
F. The family F is an intersecting family (a crossing family) if A, B € F
implies AUB, AN B € F whenever A, B are intersecting (crossing) members
of F. A family F of subsets of a set S is laminar if it contains no two
intersecting members. That is, if A, B € F and ANB # (), then either A C B
or B C A holds. A family of sets is cross-free if it contains no two crossing
members.

For an arbitrary directed multigraph D = (V, A) and vertices =,y € V,
Mz, y) (k(z,y)) denote the maximum number of arc-disjoint (internally dis-
joint) (z,y)-paths in D. The numbers A(z,y), k(z,y) are called the local
arc-strong connectivity, respectively, the local vertex-strong connec-
tivity from z to y. Furthermore we let

N(D) = min A(z,y),

x,yeVv
/ .

k(D) = Join. k(z,y). (5.1)
Analogously to the way we defined a cut with respect to an (s,t)-flow in
Chapter 4 we define an (s,t)-cut to be a set of arcs of the form (U,U),
where U =V — U and s € U,t € U. Recall that an (s, t)-separator is a subset
X C V(D) — {s,t} with the property that D — X has no (s, t)-path. We also
say that X separates s from t. Thus a separator of D is a set of vertices
S such that S is an (s, t)-separator for some pair s,t € V(D) (recall the
definition of a separator from Section 1.5). A minimum separator of D is

a minimum cardinality separator X of D.

The following simple observation plays a central role in many proofs of
connectivity results.

Proposition 5.1.1 Let D = (V, A) be a directed multigraph and let X,Y be
subsets of V. Then the following holds:

dH(X)+d7(Y)=d"(XUY)+dT(XNY)+d(X,Y),
d(X)+d (V)=d (XUY)+d (X NY)+d(X,Y). (5.2)

Furthermore, if d-(X NY) =dT (X NY), then we also have
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dY (X)) +dT(Y)=dH (X -Y)+dT (Y — X) +e,
(X)) +d (V)=d (X -Y)+d (Y — X) +e, (5.3)

where e =d(X NY,V — (X UY)).

Proof: Each of these equalities can easily be proved by considering the con-
tribution of the different kinds of arcs that are counted on at least one side of
the equality. For example, Figure 5.1 shows the possible edges contributing
to at least one side of the first equality. O

Figure 5.1 The various types of arcs contributing to the out-degrees of the sets
X, Y, XNY and XUY.

A set function f on a ground-set S is submodular if f(X) + f(Y) >
FXUY)+ f(XNY) for all XY C S. The following easy corollary of
Proposition 5.1.1 is very useful, as we shall see many times in this chapter.

Corollary 5.1.2 For an arbitrary directed multigraph D, dB,dB are sub-
modular functions on V(D). O

Recall that for a proper subset X of V(D) we denote by N*(X) the set of
out-neighbours of X. The next result shows that the functions |[N~|,|NT|
are also submodular.

Proposition 5.1.3 Let D = (V, A) be a digraph and let X,Y be subsets of
V. Then the following holds:

INTX)|+ [N = INF(X NY)[+[NT(X UY)),
IN"(XO+IN"(V)| = [NT(XNY)[+ [NT(XUY)].

Proof: These inequalities can easily be checked by considering the contribu-
tions of the different kind of neighbours of the sets X, Y, X NY and X UY
(Exercise 5.1). O
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5.1.1 The Network Representation of a Directed Multigraph

In many proofs and algorithms concerning directed multigraphs, it is con-
venient to think of a directed multigraph as a (flow) network. Here we will
formalize this and prove an elementary result which will be applied in later
sections.

Definition 5.1.4 Let D = (V, A) be a directed multigraph. The network
representation of D, denoted N'(D), is the following network: N (D) =
(V,A' £ = 0,u) where A’ contains the arc ij precisely when D contains at
least one arc from i to j. For every arc ij € A’ u;; is equal to the number of
arcs from i to j in D. See Figure 5.2.

D N(D)

Figure 5.2 A directed multigraph D and its network representation N (D). Num-
bers on arcs indicate capacity in N (D).

The next lemma shows a useful connection between arc-disjoint paths in
D and flows in V(D).

Lemma 5.1.5 Let D = (V, A) be a directed multigraph and let s,t be distinct
vertices of V.. Then A(s,t) equals the value of a mazimum (s,t)-flow in N'(D).

Proof: Let Pi,..., P, be a collection of pairwise arc-disjoint (s,t)-paths in
D. These paths may use different copies of an arc between the same two
vertices ¢ and j, but, since the paths are arc-disjoint, in total they use no
more than w;; copies of the arc ij. Hence we can construct a feasible (s,t)-
flow of value r in N (D) just by sending one unit of flow along each of the
paths P, ..., P.. Conversely, if x is any integral (s, ¢)-flow of value k in N'(D)
(recall Theorem 4.5.5), then by Theorem 4.3.1, z can be decomposed into k
(s,t)-path-flows f(Py),..., f(Px) of value 1 (those that have a higher value
r > 1 can be replaced by r (s, t)-path-flows of value 1 along the same path)



5.2 Finding the Strong Components of a Digraph 195

and some cycle flows. By the capacity constraint on the arcs, at most u;; of
these path flows use the arc 5. Hence we can replace the arcs used by each
f(P;) by arcs in D in such a way that we obtain k arc-disjoint (s, t)-paths in
D. This completes the proof of the lemma. O

5.2 Finding the Strong Components of a Digraph

In many problems on digraphs it suffices to consider the case of strong di-
graphs. For example, if we wish to find a cycle through a given vertex x in a
digraph D, we need only consider the strong component of D containing x.
Furthermore, certain properties, such as being hamiltonian, imply that the
digraph in question must be strong. The aim of this section is to develop a
fast algorithm for finding strong components in a digraph and in particular
to recognize strong digraphs.

Tarjan [843] was the first to obtain an O(n 4+ m) algorithm to compute
the strong components of a digraph. We start this section by presenting a
simpler algorithm due to S. R. Kosaraju and M. Sharir, then we discuss its
complexity and prove its correctness. Our presentation is adapted from the
book [232] by Cormen, Leiserson, Rivest and Stein. The reader may wish to
recall the definition of the DFS and DFSA algorithms from Sections 1.9 and
2.1, respectively.

SCA(D)
Input: A digraph D.
Output: The vertex sets of strong components of D.

1. Call DFSA(D) to compute the ‘acyclic’ ordering vy, va, ..., Up.

2. Compute the converse D’ of D.

3. Call DFS(D'), but in the main loop of DFS consider the vertices accord-
ing to the ordering vy, vs,...,v,. In the process of DFS(D’) output the
vertices of each DFS tree as the vertices of a strong component of D.

Figure 5.3 illustrates the strong component algorithm (SCA). Clearly, the
complexity of SCA is O(n+m). It is more difficult to establish the correctness
of SCA. Several lemmas are needed.

The proof of our first lemma is simple and left as an exercise, Exercise
5.2.

Lemma 5.2.1 If a pair x,y of vertices belongs to the same strong component
S of a digraph D, then the vertices of every path between x and y are in S.
O

Lemma 5.2.2 In any execution of DFS on a digraph, all vertices of the same
strong component are placed in the same DFS tree.
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Figure 5.3 (a) A digraph D; the order of vertices found by DFSA is shown. (b)
The converse D’ of D; the bold arcs are the arcs of a DFS forest for D’.

Proof: Let S be a strong component of a digraph D, let r be the first vertex
of S visited by DFS and let = be another vertex of S. Consider the time
tvisit(r) of DFS. By Lemma 5.2.1, all vertices on an (r, z)-path belong to S
and apart from r are unvisited. Thus, by Proposition 1.9.3, = belongs to the
same DFS tree as r. |

In the rest of this section tvisit(u) and texpl(u) are the time-stamps cal-
culated during the first step of SCA (recall that these depend on the order in
which the DFS routine visits the vertices). The forefather ¢(u) of a vertex
u is the vertex w reachable from u such that texpl(w) is maximum.

Since u is reachable from itself, we have

texpl(u) < texpl(¢(u)). (5.4)
Clearly, by the definition of forefather
if v is reachable from wu, then texpl(¢(v)) < texpl(o(u)). (5.5)
The next lemma gives a justification for the term ‘forefather’.

Lemma 5.2.3 In any execution DFS on a digraph D, every vertexu € V(D)
is a descendant of its forefather ¢(u).

Proof: If ¢(u) = u, this lemma is trivially true. Thus, assume that ¢(u) # u
and consider the time tvisit(u) of DFS for D. Look at the status of ¢(u). The
vertex ¢(u) cannot be already explored as that would mean texpl(¢(u)) <
texpl(u), which is impossible. If ¢(u) is already visited but not explored, then,
by Corollary 1.9.2, u is a descendant of ¢(u) and the lemma is proved.

It remains to show that ¢(u) has been indeed visited before time tvisit(u).
Assume it is not true and consider a (u, ¢(u))-path P. If every vertex of P
except for u has not been visited yet (at the time tvisit(u)), then by Propo-
sition 1.9.3, ¢(u) is a descendant of u, i.e., texpl(¢(u)) < texpl(w), which is
impossible. Suppose now that there is a vertex = in P apart from w which
has been visited. Assume that z is the last such vertex in P (going from u
towards ¢(u)). Clearly, « has not been explored yet (as x dominates an unvis-
ited vertex). By Proposition 1.9.3 applied to P[z, ¢(u)], ¢(u) is a descendant
of z. Thus, texpl(¢(u)) < texpl(x), which contradicts the definition of ¢(u).



5.2 Finding the Strong Components of a Digraph 197

Thus, ¢(u) has been indeed visited before time tvisit(u), which completes
the proof of this lemma. O

Lemma 5.2.4 For every application of DFS to a digraph D and for every
u € V(D), the vertices u and ¢(u) belong to the same strong component of
D.

Proof: There is a (u, ¢(u))-path by the definition of forefather. The existence
of a path from ¢(u) to u follows from Lemma 5.2.3. O

Now we show a stronger version of Lemma 5.2.4.

Lemma 5.2.5 For every application of DFS to a digraph D and for every
pair u,v € V(D), the vertices u and v belong to the same strong component

of D if and only if p(u) = ¢(v).

Proof: If v and v belong to the same strong component of D, then every
vertex reachable from one of them is reachable from the other. Hence, ¢(u) =
¢(v). By Lemma 5.2.4, u and v belong to the same strong components as their
forefathers. Thus, ¢(u) = ¢(v) implies that u and v are in the same strong
component of D. O

Theorem 5.2.6 The algorithm SCA correctly finds the strong components
of a digraph D.

Proof: We prove, by induction on the number of DFS trees found in the
execution of DFS on D’, that the vertices of each of these trees induce a
strong component of D. Each step of the inductive argument proves that
the vertices of a DFS tree formed in D’ induce a strong component of D
provided the vertices of each of the previously formed DFS trees induce a
strong component of D. The basis for induction is trivial, since the first tree
obtained has no previous trees, and hence the assumption holds trivially.
Recall that by the description of SCA, in the second application of DFS, we
always start a new DF'S tree from the vertex which currently has the highest
value of texpl among vertices not yet in the DFS forest under construction.

Consider a DFS tree T with root r produced in DFS(D’). By the defini-
tion of a forefather ¢(r) = r. Indeed, r is reachable from itself and has the
maximum texpl among the vertices reachable from r. Let S(r) = {v € V(D) :
¢(v) = r}. We now prove that

V(T) = S(r). (5.6)

By Lemmas 5.2.2 and 5.2.5, every vertex in S(r) is in the same DFS tree.
Since r € S(r) and r is the root of T, every vertex in S(r) belongs to T.
To complete the proof of (5.6), it remains to show that if v € V(T'), then
u € S(r), namely, if texpl(¢(x)) # texpl(r), then z is not placed in T'. Suppose
that texpl(¢(x)) # texpl(r) for some vertex z. By induction hypothesis, we
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may assume that texpl(¢(z)) < texpl(r), since otherwise x is placed in the
tree with root ¢(x) # r. If  was placed in T', then r would be reachable from
x. By (5.5) and ¢(r) = r, this would mean texpl(z) > texpl(¢(r)) = texpl(r),
a contradiction. O

5.3 Ear Decompositions

In this section we study the structure of strongly connected digraphs by
introducing the concept of an ear decomposition (see Figure 5.4) and derive
a number of results from this definition. Among other things, we reprove
some of the results from Chapter 1.

Definition 5.3.1 An ear decomposition of a directed multigraph D is a
sequence € = {Py, P1, Py,..., P}, where Py is a cycle or a vertex and each
P; is a path, or a cycle with the following properties:

(a) P; and P; are arc-disjoint when i # j.
(b) Foreachi=0,1,...,t:let D; denote the digraph with vertices U;:o V(P;)

and arcs U;:o A(P;). If P; is a cycle, then it has precisely one vertex in
common with V(D;_1). Otherwise the end-vertices of P; are distinct ver-
tices of V(D;—1) and no other vertex of P; belongs to V(D;_1).

(¢) Ujo A(P}) = A(D).

FEach P;, 0 < i <'t, is called an ear of £. The size of an ear P; is the
number |A(P;)| of arcs in the ear. The number of ears in £ is the number
t+ 1. An ear P; is trivial if |A(P;)| = 1. All other ears are non-trivial.

Figure 5.4 An ear decomposition & = {Py, P1,..., Ps} of a digraph. The num-
ber on each arc indicates the number of the ear to which it belongs. The ears
Po, P1, P>, P5s are non-trivial and the ears Py, Ps, Ps are trivial.

It is easy to see from the definition above that parallel arcs play no role in
the structure of ear decompositions (if there is more than one copy of an arc,
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at most one copy will be part of a non-trivial ear). Hence we assume below
that we are dealing with digraphs.

Theorem 5.3.2 Let D be a digraph on at least two vertices. Then D 1is
strong if and only if it has an ear decomposition. Furthermore, if D is strong,
every cycle can be used as starting cycle Py for an ear decomposition of D.

Proof: We may assume that [V(D)| > 3 since otherwise the claim is trivial.
Suppose first that D has an ear decomposition & = { Py, Py, Ps, ..., P;}. Note
that the digraph P, is strong. Now it is easy to prove, by induction on the
number of ears in &, that D is strong. If D; is strong, then D, is also strong
since it is obtained by adding a path with two end-vertices x,y in D; and all
other vertices outside of V(D).

Conversely, assume that D is strong and let v be an arbitrary vertex in
V(D). Since |V(D)| > 3 and D is strong, there is some cycle C = ujus ... uy,
where u; = u, = v. Let Py := C, i := 0 and execute phases 1 and 2 below:

Phase 1:

1. If every vertex of V(D) is in V(D;), then go to Phase 2.

2. Let i := i+ 1 and let u be a vertex not in V(D;_1) such that there is
some arc zu from V(D;_1) to .

3. Let P; be a shortest path from u to V(D;_1).

4. Take zP; as the next ear and repeat Phase 1.

Phase 2:

1. For each remaining arc zw of D which was not included in A(D;) (i is
the counter above) do the following:

2. Let i := i+ 1 and let P, = zw (that is, include all these arcs as trivial
ears).

To see that the algorithm above finds an ear decomposition of D, it suffices
to check that we can always find an arc xu and a path from u to V(D;) as
claimed in Phase 1. This follows easily from the fact that D is strong. O

There are several interesting consequences of Theorem 5.3.2 and its proof.

Corollary 5.3.3 FEvery ear decomposition of a strong digraph on n vertices
and m arcs has m —n + 1 ears.

Proof: Exercise 5.3. O

The next lemma follows from Definition 5.3.1.

Lemma 5.3.4 Let &€ = {Py, P1, Ps,...,Py,a1,a2,...,a,} be an ear decom-
position of a strong digraph D such that Py is a cycle, each P; is a path of
length at least 2 and a1, ag, ... a, are arcs (the trivial ears). Then the digraph
induced by Py U Py U Py U...U Py is a strong spanning subdigraph of D with
K AR ares. O
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Lemma 5.3.5 Let D be a strong digraph on n vertices, let Py, Py, Ps, ..., P,
be the mon-trivial ears of an ear decomposition & of D and assume that
|A(P;)| > 3 for i =0,...,s(<r). Then D has a strong spanning subdigraph
D’ on at most 2n — (|[V(Py)| + s) arcs.

Proof: By Lemma 5.3.4, we can let D’ be the strong spanning subdigraph of
D formed by the union of Py, Py, ..., P., which implies that D’ has n vertices
and Zf:o |A(P;)| arcs. Note that Py contributes |V (FPp)| vertices and |V (Pp)]
arcs to D' and each P;, 1 < i < r, contributes |A(P;)|—1 vertices and |A(F;)|
arcs to D'. This implies that |A(D')| — |V(D’)| = r.

As P, P, ..., P, all contribute at least two vertices to D’ and each of
the paths Psi1, Psio,..., P contributes one vertex to D’ we get that n =
|[V(D")| > |V(Py)| +2s+ (r — s). This implies the claim as follows.

[AD)| =n+r<n+(n—|V(P)|—s) <2n— (V(P)+s).0

Corollary 5.3.6 Fvery strong digraph D onn vertices has a strong spanning
subdigraph with at most 2n—2 arcs and equality holds only if the longest cycle
in D has length 2 in which case UG(D) is a tree.

Proof: The 2n — 2 bound follows from Lemma 5.3.5 since |V (Py)| > 2. Tt
also follows from the same lemma that we only have equality if the longest
cycle in D has length two. As D is strong this only happens if UG(D) is a
tree. O

Corollary 5.3.7 There is a linear algorithm to find an ear decomposition of
a strong digraph D.

Proof: This can be seen from the proof of Theorem 5.3.2. The proof itself is
algorithmic and it is not too hard to see that if we use breadth-first search
(see Section 3.3.1) together with a suitable data structure to find the path
from u to V(D;_1), then we can obtain a linear algorithm. Details are left to
the interested reader as Exercise 5.18. O

Corollary 5.3.8 It is an N'P-complete problem to decide whether a given
digraph D has an ear decomposition with at most r non-trivial ears. It is
NP-complete to decide whether a given digraph D has an ear decomposition
with at most q arcs in the non-trivial ears.

Proof: Note that in both cases the numbers r (respectively ¢) are assumed
to be part of the input to the problem. A strong digraph D has an ear
decomposition with only one non-trivial ear (respectively, precisely n arcs in
the non-trivial ears) if and only if D has a Hamilton cycle. Hence both claims
follow from Theorem 6.1.1. O

The next two corollaries were proved in Chapter 1, but we reprove them
here to illustrate an application of ear decompositions. Recall that a bridge
of an undirected graph G is an edge e such that G — e is not connected.
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Corollary 5.3.9 [780] A strong digraph D contains a spanning oriented sub-
graph which is strong if and only if UG(D) has no bridge.

Proof: If UG(D) has a bridge, xzy, then D contains the 2-cycle zyz, since
D is strong. Observe that no matter which of these two arcs we delete we
obtain a non-strong digraph. Suppose conversely that UG(D) has no bridge.
Consider again the proof of Theorem 5.3.2. If we can always choose the path
from w to V(D;_1) in such a way that it does not end in z, or contains at least
one inner vertex, then it follows from the fact that we use shortest paths that
no ear P;, i > 1, contains a 2-cycle. In the remaining case, the only path from
u to V(D;_1) is the arc uxz and hence the 2-cycle zux is a bridge in UG(D).
It remains to avoid using a 2-cycle as starting point (that is, as the cycle
Py). This can be done, unless all cycles in D are 2-cycles. If this is the case,
then UG(D) is a tree and every edge of UG(D) is a bridge, contradicting the
assumption. a

Corollary 5.3.10 [162] A mized graph M has a strong orientation if and
only if M is strongly connected and has no bridge.

Proof: This follows from Corollary 5.3.9, since we may associate with any
mixed graph M = (V, A, E) the directed graph D one obtains by replacing
each edge in M by a 2-cycle. Clearly deleting an arc of a 2-cycle in D corre-
sponds to orienting the corresponding edge in M. O

Ear decompositions of undirected graphs can be similarly defined. These
play an important role in many proofs on undirected graphs, in particular in
Matching Theory; see, e.g., the book by Lovédsz and Plummer [657].

5.4 Menger’s Theorem

The following theorem, due to Menger [696], is one of the most fundamental
results in graph theory.

Theorem 5.4.1 (Menger’s theorem) [696] Let D be a directed multigraph
and let u,v € V(D) be a pair of distinct vertices. Then the following holds:

(a) The mazimum number of arc-disjoint (u,v)-paths equals the minimum
number of arcs covering all (u,v)-paths and this minimum is attained for
some (u,v)-cut (X, X).

(b) If the arc wv is not in A(D), then the mazimum number of internally
disjoint (u,v)-paths equals the minimum number of vertices in a (u,v)-
separator.

Proof: First let us see that version (b) involving vertex-disjoint paths can be
easily derived from the arc-disjoint version (a). Recall that multiple arcs play
no role in questions regarding (internally) vertex-disjoint paths and hence we
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can assume that the directed multigraph in question is actually a digraph.
Given a digraph D = (V, A) and w,v € V construct the digraph Dgr by
the vertex splitting procedure (see Section 4.2.4). Now it is easy to check
that arc-disjoint (us, v¢)-paths in Dgr correspond to internally disjoint (u, v)-
paths in D (if a (us,v;)-path in Dgr contains the vertex z; (xs) for some
x # u,v, then it must also contain =, (x;)). Furthermore, for any set of ¢
arcs that cover all (ug,v:)-paths in Dgp, there exists a set of £ arcs of the

form wlw!, ... wfw’ with the same property and such a set corresponds to
a (u,v)-separator X = {w',...,w’} in D. Hence it suffices to prove (a).

Because of the similarity between Menger’s theorem (in the form (a)) and
the max-flow min-cut theorem (Theorem 4.5.3), it is not very surprising that
we can prove Menger’s theorem in version (a) using Theorem 4.5.3. We did
part of the work already in Section 5.1.1 where we showed that A(u,v) equals
the value of a maximum (u,v)-flow in N'(D). Similarly it is easy to see that
every (u,v)-cut (X, X) in D corresponds to a (u,v)-cut (X, X) in N(D) of
capacity |(X, X)| and conversely. Now (a) follows from Theorem 4.5.3. O

As we shall see in Exercise 5.14, for networks where all capacities are
integers, we can also derive the max-flow min-cut theorem from Menger’s
theorem.

In order to illustrate the use of submodularity in proofs concerning con-
nectivity for digraphs we will give a second proof of Theorem 5.4.1(a) due to
Frank [344]%:

Second proof of Menger’s theorem part (a):

Clearly the maximum number of arc-disjoint (s, t)-paths can be no more
than the minimum size of an (s, t)-cut.

The proof of the other direction is by induction on the number of arcs in
D. Let k denote the size of a minimum (s, t)-cut. The base case is when D has
precisely k£ arcs. Then these all go from s to ¢ and thus D has k arc-disjoint
(s,t)-paths. Hence we can proceed to the induction step. Call a vertex set
U tight if s € U,t ¢ U and d™(U) = k. If some arc zy does not leave any
tight set, then we can remove it without creating an (s, t)-cut of size (k — 1)
and the result follows by induction. Hence we can assume that every arc in
D leaves a tight set.

Claim: If X and Y are tight sets, then the sets X NY and X UY are tight.

To see this we use the submodularity of d*. First note that each of XNY
and X UY contains s and none of them contains ¢. Hence, by our assumption,
they both have degree at least k£ in D. Now using (5.2) we conclude

k+k=d" (X)+dt(Y)>d"(XUY)+d" (XNY)>k+k (5.7

by the remark above. It follows that each of X UY and X NY is tight and
the claim is proved.

! Note that this proof requires no other prerequisites than Proposition 5.1.1.
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If every arc in D is of the form st, then we are done, so we may assume
that D has an arc su where u # t. Let T' be the union of all tight sets that
do not contain u. Then T # (), since the arc su leaves a tight set. By the
claim, T is also tight. Now consider the set T'U {u}. If there is no arc from u
to V =T, then d*(T U {u}) < k — 1, a contradiction since T'U {u} contains
s but not ¢. Hence there must be some v € V — T — u such that uv € A(D).
Now let D’ be the directed multigraph we obtain from D by replacing? the
two arcs su,uv by the arc sv. Suppose D’ contains an (s,t)-cut of size less
than k. That means that some set X containing s but not ¢ has out-degree
at most kK — 1 in D’. Since dB(X) > k it is easy to see that we must have
s,v € X and u ¢ X. Hence dj;(X) = k and now we get a contradiction to
the definition of T' (since we know that v ¢ T'). Thus every (s, t)-cut in D’
has size at least k. Since D’ has fewer arcs than D, it follows by induction
that D’ contains k arc-disjoint (s, t)-paths. At most one of these can use the
new arc sv (in which case we can replace this arc by the two we deleted).
Thus it follows that D also has k arc-disjoint (s, t)-paths. O

Corollary 5.4.2 Let D = (V, A) be a directed multigraph. Then the following
holds:

(a) D is k-arc-strong if and only if it contains k arc-disjoint (s,t)-paths for
every choice of distinct vertices s,t € V.

(b) D is k-strong if and only if |V(D)| > k+ 1 and D contains k internally
disjoint (s,t)-paths for every choice of distinct vertices s,t € V.

Proof: Recall that, by definition, a directed multigraph D = (V, A) is k-arc-
strong if and only if D — A’ is strong for every A’ C A with |A’| < k—1. Now
we see that (a) follows immediately from Theorem 5.4.1(a). To prove (b) we
argue as follows: By definition (see Chapter 1) D is k-strong if and only if
|[V(D)| > k+1and D — X is strong for every X C V such that | X| <k —1.
Suppose that D has at least k 4+ 1 vertices but is not k-strong. Then we can
find a subset X C V of size at most k — 1 such that D — X is not strong.
Let Dy,...,D,, r > 2, be any acyclic ordering of the strong components in
D — X. Taking s € V(D,) and t € V(Dy) it follows that there is no arc from
s to t and that X is an (s, t)-separator of size less than k. Now it follows from
Theorem 5.4.1(b) that D does not contain & internally disjoint paths from s
to t.

Suppose conversely that there exists s,t € V(D) such that there are no
k internally disjoint (s,¢)-paths in D. If there is no arc from s to ¢, then it
follows from Theorem 5.4.1(b) that D contains an (s, t)-separator X of size
less than k. Then D — X is not strong and, by definition, D is not k-strong.
Hence we may assume that there is an arc st in D. Let r be the number of
arcs from s to t in D (i.e., u(s,t) = r). If r > k, then k of these arcs form

2 We will return to this useful reduction technique, called splitting off the arcs
su, uv, in Chapter 14.
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the desired (s,t)-paths, so by our assumption on s,t we have r < k. Now
consider the digraph D’ obtained from D by removing all arcs from s to ¢. In
D’ there can be no k —r internally disjoint (s, t)-paths (since otherwise these
together with the r arcs from s to t would give a collection of k£ internally
disjoint (s, t)-paths). Thus, by Theorem 5.4.1(b), there exists a set X’ C V
of size less than k — r which forms an (s, t)-separator in D’'.

Let A, B denote a partition of V' — X’ in such a way that s € B, t € A
and there is no arc from B to A in D’. Since |V| > k + 1, at least one of the
sets A, B contains more than one vertex. Without loss of generality, we may
assume that A contains a vertex v distinct from t. Now we see that X’ U {t}
is an (s,v)-separator of size less than k —r 4+ 1 < k in D and there is no
arc from s to v in D. Applying Theorem 5.4.1(b) to this pair we conclude as
above that D is not k-strong. a

Recall the numbers X' (D), k(D) which were defined in (5.1).

Corollary 5.4.3 Let D be a directed multigraph. The number N (D) equals
the maximum number k for which D is k-arc-strong. The number k'(D) equals
the mazimum number k for which k <|V| —1 and D is k-strong. Hence we

have X' (D) = A(D) and ' (D) = k(D). O

5.5 Determining Arc- and Vertex-Strong Connectivity

In applications it is often important to be able to calculate the degree of
arc-strong or vertex-strong connectivity of a directed multigraph. We can re-
duce the problem of finding kp(x,y) to that of finding the local arc-strong
connectivity from x, to y; in the digraph Dgp which we obtain by applying
the vertex splitting procedure to D (see the proof of Corollary 5.4.2). Thus
it is sufficient to consider arc-strong connectivity. It follows from Menger’s
theorem and Lemma 5.1.5 that A(D) can be found using O(n?) flow calcula-
tions. Namely, determine A(z,y) for all choices of z,y € V(D). However, as
we shall see below we can actually find A(D) with just O(n) flow calculations.
For a similar result see Exercise 5.7.

Proposition 5.5.1 [796] For any directed multigraph D = (V, A) with V =
{v1,v9,...,v,} the arc-strong connectivity of D satisfies

A(D) = min {A(v1,v2), ..., AM(Vn—1,vs), Mvn,v1)}.

Proof: Let k = A(D). By (5.1) and Corollary 5.4.3, A(D) is no more than the
minimum of the numbers A(vy, v2), ..., A(Vn—1,Vn), A(vn, v1). Hence it suffices
to prove that k = A(v;,v;11) for some i = 1,2,...,n (where v,41 = v1). By
Corollary 5.4.3 and Theorem 5.4.1, some X C V has out-degree k. If there is
an index ¢ < n — 1 such that v; € X and v;41 € V — X, then, by Menger’s
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theorem, A(v;,v;11) < k and the claim follows. If no such index exists, then
we must have X = {v,,v,41,...,v,} for some 1 < r < n. Now we get by
Menger’s theorem that A(v,,v1) < k and the proof is complete. a

Combining this with Lemma 5.1.5, we get the following result due to
Schnorr:

Corollary 5.5.2 [796] We can calculate the arc-strong connectivity of a di-
rected multigraph by O(n) mazimum flow calculations in N (D). O

If D has no multiple arcs, then its network representation N (D) has all
capacities equal to 1 and it follows from Theorem 4.7.4 that we can find a
maximum flow in A(D) in time O(n3m) and hence we can calculate A(D)
in time O(n3m). Esfahanian and Hakimi [302] showed that the bound, n,
on the number of max-flow calculations that is needed can be improved by a
factor of at least 2.

Note that if we are only interested in deciding whether A\(D) > k, for
some value of k£ which is not too big compared to m, then it may be better
to use the simple labelling algorithm of Ford and Fulkerson (see Chapter 4).
In that case it is sufficient to check for flows of value at least k, which can be
done with &k flow-augmenting paths and hence in time O(km) per choice of
source and terminal. Thus the overall complexity of finding A(D) is O(knm)
(see also the book by Even [306]). This can be improved slightly; see the
paper [384] by Galil. For other connectivity algorithms based on flows, see,
e.g., [305, 308].

One may ask if there is a way of deciding whether a given directed multi-
graph D is k-(arc)-strong without using flows. Extending work by Linial,
Lovész and Wigderson [645] (see also [656]), Cheriyan and Reif [208] gave
Monte Carlo and Las Vegas® type algorithms for k-strong connectivity in
digraphs. Both algorithms in [208] are based on a characterization of k-strong
digraphs via certain embeddings in the Euclidean space R¥~1. The algorithms
are faster than the algorithms described above, but the price is the chance
of an error (for the Monte Carlo algorithm), respectively only the expected
running time can be given (for the Las Vegas algorithm). We refer the reader
to [208] for details.

The currently fastest algorithm to determine the arc-strong connectivity
uses matroid intersection® and is due to Gabow [374]. This algorithm finds
the arc-strong connectivity of a digraph D in time O(A(D)m log (n?/m)). It
is based on Edmonds’ branching theorem (Theorem 9.3.1). In Chapter 9 we
discuss the relation between arc-strong connectivity and arc-disjoint branch-
ings, which is used in Gabow’s algorithm. Gabow’s approach also works very

3 A Monte Carlo algorithm always terminates, but may make an error with some
small probability, whereas a Las Vegas algorithm may (with some small proba-
bility) never terminate, but if it does, then the answer it provides is correct; see
e.g., the book [180] by Brassard and Bratley.

4 See Section 18.8 for the definition of the matroid intersection problem.
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efficiently for the case when we want to decide whether \(D) > k for some
number k.

The currently fastest algorithm to determine k(D) is due to Gabow [377].
The complexity of the algorithm is O((n + min{x(D)?, x(D)ni})m).

Nagamochi and Ibaraki [712] found a very elegant and effective way to
calculate the edge-connectivity of an undirected graph without using flow
algorithms. We describe their method briefly below (see also [352, 713]).

A maximum adjacency ordering of an undirected graph G = (V, E)
is an ordering v1,vs, ..., v, of its vertices, satisfying the following property:

d(vit1,Vs) > d(v;, V;) for i € [n],i < j <n, (5.8)

where V; = {vy,v2,...,v;} and d(X,Y) denotes the number of edges with
one end in X —Y and the other in ¥ — X.

Theorem 5.5.3 [712]

(a) Given any undirected graph G on n wvertices, one can find a mazimum
adjacency ordering of G starting at a prescribed vertez vy in time O(n +

m).
(b) For every maximum adjacency ordering vi,vs,...,v, of G we have
/\(vn—lavn) = dG('Un)- O

Corollary 5.5.4 [712] There is an O(nm + n?) algorithm to determine the
edge-connectivity of a graph with n vertices and m edges.

Proof: This is an easy consequence of (b) and the fact that for every choice
of z,y € V(G):
AG) = min{A(z,y), MG /{z,y})}, (5.9)

where G/{x,y} is the graph we obtain from G by contracting the set {x,y}.
The equality (5.9) follows from the fact that A(G) equals the size of a mini-
mum cut (X,V — X) in G. If this cut separates x,y, then A(G) = A(z,y) by
Menger’s theorem, and otherwise X is still a cut in G/{z,y}, implying that
MG) = MG /{xz,y}) (contractions do not decrease edge-connectivity). Hence
we can start from an arbitrary maximum adjacency ordering vy, vs, ..., vy,.
This gives us A(vy,—1, v, ). Save this number, contract {v,,—1, v, } and continue
with a maximum adjacency ordering of G/{v,_1, v, }. The edge-connectivity
of G is the minimum of the numbers saved. We leave the remaining details
to the interested reader (see also the paper [714] by Nagamochi and Ibaraki).
O
It is an interesting open problem whether some similar kind of ordering
can be used to find the arc-strong connectivity of a directed multigraph.
Note that (5.9) does not hold for arbitrary directed multigraphs. To see this
consider Figure 5.5.
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D D/{z,y}

Figure 5.5 A digraph D with A\(D) =0, A(z,y) =2 and \(D/{z,y}) = 1.

5.6 Minimally k-(Arc)-Strong Directed Multigraphs

A directed multigraph D = (V, A) is minimally k-(arc)-strong if D is k-
(arc)-strong, but for every arc e € A, D — e is not k-(arc)-strong. From an
application point of view it is very important to be able to identify a small
subgraph of a k-(arc)-strong directed multigraph which is spanning and still
k-(arc)-strong. The reason for this could be as follows. If many arcs of D
are redundant, then it may make sense to discard these. If one is writing
an algorithm for finding a certain structure that is based on k-(arc)-strong
connectivity, then working with the smaller subgraph could speed up the
algorithm, especially if k is relatively small compared to n.

Note, however, that if we are given a k-(arc)-strong directed multigraph
D = (V,A) and ask for the smallest number of arcs in a spanning k-(arc)-
strong subgraph of D, then this is an A/P-hard problem. Indeed, a strong
digraph D on n vertices has a strong spanning subgraph on n arcs if and only
if D has a hamiltonian cycle. Hence, we must settle for finding spanning sub-
graphs with relatively few arcs. Since every k-arc-strong directed multigraph
on n vertices has at least kn arcs, the proof of Theorem 5.6.1 together with
Exercise 9.7 implies that there is a polynomial algorithm to find a spanning
k-arc-strong subgraph with no more than twice the optimum number of arcs.
We discuss this topic in more detail in Section 12.4.

5.6.1 Minimally k-Arc-Strong Directed Multigraphs

We start with a result by Dalmazzo which gives an upper bound on the
number of arcs in any minimally k-arc-strong directed multigraph of order n.

Theorem 5.6.1 [239] A minimally k-arc-strong directed multigraph has at
most 2k(n — 1) arcs and this is the best possible.

Proof: Let D = (V, A) be k-arc-strong and let s be a fixed vertex of V. By
Corollary 5.4.2, d™(U),d™ (U) > k for every ) # U C V. Hence, by Edmonds’
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branching theorem (Theorem 9.3.1), D contains k arc-disjoint in-branchings
B;l,...,B;k rooted at s and k arc-disjoint out-branchings B:l, .. .,B;k
rooted at s. Let A" = A(B,;)U...UA(B_,) UA(BIl) U... UA(B:k) and let
D' = (V,A"). Then D’ is k-arc-strong and has at most 2k(n — 1) arcs. Thus
if D is minimally k-arc-strong, then A = A’. To see that this bound cannot
be sharpened it suffices to consider the directed multigraph obtained from a
tree T (as an undirected graph) and replacing each edge uv of T by k arcs
from u to v and k arcs from v to u. O

Berg and Jordén [141] showed that for digraphs with sufficiently many
vertices the bound in Theorem 5.6.1 can be improved. The complete bipartite

digraph ]?k,n,k shows that the bound on the number of arcs in Theorem 5.6.2
cannot be improved.

Theorem 5.6.2 [1/1] There exists a function f(k) such that every mini-
mally k-arc-strong digraph on n > f(k) vertices has at most 2k(n — k) arcs.
O

We now present some important results by Mader [667]. Combining these
results with Theorem 14.1.2 we obtain a construction method (also due to
Mader) to generate all k-arc-strong directed multigraphs.

A set 0 # X C V is k-in-critical (k-out-critical) if d=(X) = k
(d*(X) = k). When we do not want to specify whether X is k-in-critical or
k-out-critical, we say that X is k-critical. It it easy to see that if D = (V| A)
is minimally k-arc-strong, then every arc uv leaves a k-out-critical set and
enters a k-in-critical set. Applying (5.2) we obtain Lemma 5.6.3 below, which
implies that every arc uv leaves precisely one minimal k-out-critical set X,
and enters precisely one minimal k-in-critical set Y,. Here minimal means
with respect to inclusion.

Lemma 5.6.3 If X,Y are crossing k-in-critical sets in D, then X NY and
X UY are also k-in-critical sets and d(X,Y) = 0.

Proof: Suppose X,Y are crossing and k-in-critical. Using (5.2) we get

k+k=d (X)+d (V)
=d (XUY)+d (XNY)+d(X,Y)
> k4 k,

implying that X NY and X NY are both k-in-critical and d(X,Y)=0. O

Intuitively, Lemma 5.6.3 implies that minimally k-arc-strong directed
multigraphs have vertices of small in-degree and vertices small out-degree.
The next result by Mader shows that this is indeed the case. In fact, a much
stronger statement holds.
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Theorem 5.6.4 [667] Every minimally k-arc-strong directed multigraph has
at least two vertices x,y with d¥(z) =d~ (z) =d*(y) = d~ (y) = k.

Proof: We give a proof due to Frank [344]. Let R be a family of k-in-critical
sets with the property that

every arc in D enters at least one member of R. (5.10)

By our remark above such a family exists since D is minimally k-arc-strong.
Our first goal is to make R cross-free (that is, we want to replace R
by a new family R* of k-in-critical sets such that R* still satisfies (5.10)
and no two members of R* are crossing). To do this we apply the so-called
uncrossing technique which is quite useful in several proofs. If there are
crossing members X, Y in R, then by Lemma 5.6.3, XNY and XUY are k-in-
critical and d(X,Y) = 0. Hence every arc entering X or Y also enters X UY,
or X NY. Thus we can replace the sets X, ¥ by XNY, X UY in R (we only
add sets if they are not already there). Since |[XNY |2+ |XUY |2 > | X|2+|Y|?
and the number of sets in R does not increase, we will end up with a family R
which is cross-free. Note that we could have obtained such a family directly by
choosing the members in R as the unique minimal k-in-critical sets entered by
the arcs of A. However, this choice would make the proof more complicated,
since we lose the freedom of just working with a cross-free family satisfying
(5.10). We shall use this freedom in Case 2 below. Assume below that

R is cross-free. (5.11)

Now the trick is to consider an arbitrary fixed vertex s and show that
V — s contains a vertex with in-degree and out-degree k. This will imply the
theorem.

Let s be fixed and define the families S, & and L as follows:

S={XeR:s¢ X}, (5.12)
U={V-X:s5e X eR} (5.13)
L=LMR)=SUU. (5.14)

Claim A: The family £ is laminar.

Proof of Claim A: We must show that no two members of £ are inter-
secting. Suppose X,Y € L are intersecting. Then X and Y cannot both be
from S since then they are crossing and this contradicts (5.11). Similarly X
and Y cannot both be from U, since then V — X,V — Y are crossing mem-
bers of R, a contradiction again. Finally, if X € S and Y € U, then X and
V — Y are crossing members of R, contradicting (5.11). This proves that £
is laminar. O

By the choice of S and U we have the following property:
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Every arc either enters a member of S or leaves a member of U (or both).
(5.15)
Suppose R is chosen such that (5.10) and (5.11) hold and furthermore

Z | X| is minimal. (5.16)
Xerl

To complete the proof of the theorem we consider two cases.

Case 1: Every member of £ has size one:

Let X ={z e V-s:{z}eStandY ={y e V-s:{y} €U}
Then X cannot be empty, since every arc leaving s enters X. Similarly Y is
non-empty. Now if X N'Y = (), then there can be no arc leaving X, by the
definition of X and (5.15). However, d*(X) > k, since D is k-arc-strong and
hence we have shown that X N'Y # (. Let ¢ be any element in X NY, then
we have d*(t) =d (t) = k.

Case 2: Some member Z of £ has size at least two:

Choose Z such that |Z| is minimal among all members of £ of size at
least two.

Note that if we consider the converse D* of D and let R* = {V — X :
X € R} and then define §*,U* as we defined S and U from R, then S* =U
and U* = S. Furthermore, the corresponding family £* satisfies (5.15) and
(5.16). This shows that we may assume without loss of generality that Z € S.
We claim that

the directed multigraph D(Z) is strongly connected. (5.17)

Suppose this is not the case and let Z1, Zs be a partition of Z with the
property that there are no arcs from Zs to Z;. Then we have k < d~(Z;) <
d=(Z) = k, implying that Z; is k-in-critical and that every arc that enters
Z also enters Z1. Let R = R —{Z} +{Z1}, &' =S —{Z} + {Z1} and let
L' =8"UU. Then L’ still satisfies (5.15) and

Do IXI< Y IX|
Xerr XeL

However, this contradicts the choice of R. Thus we have shown that D(Z) is
strongly connected. This establishes (5.17).

We return to the proof of the theorem. Let
A={zeZ:{z}eS},B={z€Z:{z} eU}.

If AN B # 0, then any vertex t € AN B has d*(t) = d~(t) and we are done.
Suppose AN B = (). Then we claim that
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A=0. (5.18)

Suppose A # ). By the choice of R so that L satisfies (5.16), we cannot
leave out any set without violating (5.15). Hence we cannot have A = Z, be-
cause then we could leave out Z without violating (5.15). Now (5.17) implies
that there is an arc wv from A to Z — A. Since L satisfies (5.15), the arc
uv either enters some member of S or leaves a member of . If it enters a
member M of S, then by the definition of A, M cannot be of size one. On
the other hand, by the fact that £ is laminar and the minimality of Z, M
also cannot have size at least two. Hence uv must leave a member W of U.
Since we have assumed A N B = (), this must be a set of size more than one.
Using that £ is laminar it follows that W C Z, contradicting the choice of
Z. Hence we must have A = ) and (5.18) is established. Next we claim that

B=27Z. (5.19)

Since A = () and Z is minimal among all members of L of size at least
2, every arc with both ends in Z must leave a member of B (using the same
arguments as above). Hence B # ) and we must have B = Z, since otherwise
(5.17) would imply the existence of an arc from Z — B to B, contradicting
what we just concluded.

Now we are ready to complete the proof of the theorem. Since B = Z,
every vertex in Z has out-degree k. Thus we have

k|Z| = d*(v)
veEZ
=d"(Z) +|A(D(Z))]
> k+|A(D(2))]

)
=k+ (> d (v)—d (2)
veEZ
= Z d=(v)
veZ
> k| Z].

Hence equality holds everywhere, in particular, every vertex in Z has in-
and out-degree k. a

When D is a k-arc-strong directed multigraph containing parallel arcs,
the number of vertices with in- and out-degree equal to k£ may be exactly
two, as shown by taking an undirected path vivs...v,., r > 3, and replacing
each edge v;v; 41 by k arcs from v; to v;1 and k arcs from v; 41 to v;. Here
only v; and v, have the desired semi-degrees [925].

Now we turn to digraphs. Let u* (D) (respectively, «=(D) and u~ (D))
denote the number of vertices v in D with d*(v) = k < d~(v) (respectively,
dt(v) =d (v) =k and d* (v) > k =d~ (v)).



212 5. Connectivity of Digraphs

Mader [675] gave examples showing that for k = 2, 3 there are even infinite
families of directed graphs (no multiple arcs) which are k-arc-strong and still
have v~ (D) + u=(D) 4+ u~ (D) bounded by a constant. However, for k > 4
such examples do not seem to exist.

Conjecture 5.6.5 [675] For every integer k > 4, there is a ¢, > 0 such that
every minimally k-arc-strong digraph D on n vertices has v~ (D)4 2u=(D) +
u (D) > ¢xn.

Verifying another conjecture of Mader [675], Yuan and Cai [925] proved
the following result.

Theorem 5.6.6 Let D be a minimally k-arc-strong digraph, then

ut (D) +2u=(D) +u~ (D) > 2k + 2.0

2 2 2
1
1 1
1
Figure 5.6 A construction of a 2-arc-strong directed multigraph starting from a
single vertex.

Using Corollary 14.1.3 and Theorem 5.6.4 one can obtain the following
complete characterization of k-arc-strong directed multigraphs, due to Mader
[669].

Theorem 5.6.7 [669] A directed multigraph D is k-arc-strong if and only if
it can be obtained by starting from a single vertex and applying the following
two operations (in any order):

Operation A: Add a new arc connecting existing vertices.
Operation B: Choose k distinct arcs uivy, ... upv, and replace these by 2k
new arcs uis,...,uS, Sv1,...,Svg, where s is a new vertex.

Proof: Clearly operation A preserves the property of being k-arc-strong. To
see that this also holds for operation B we apply Menger’s theorem. Suppose
D is k-arc-strong and D’ is obtained from D by one application of operation
B but D’ is not k-arc-strong. Let U C V(D’) be some subset such that
d5,(U) <k — 1. Then we must have U # {s} and U # V (D), since clearly s
has in- and out-degree k in D’. Now it is easy to see that the corresponding set
U —s has out-degree less than k in D, a contradiction. From these observations
it is easy to prove by induction on the number of vertices that every directed
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multigraph that can be constructed via operations A and B is k-arc-strong.
Here we assume by definition that every directed pseudograph having just
one vertex is k-arc-strong.

The other direction can be proved using induction on the number of arcs.
If D is k-arc-strong and not minimally k-arc-strong, then we can remove an
arc and apply induction. Otherwise it follows from Theorem 5.6.4 that D
contains a vertex s such that d*(s) = d=(s) = k. According to Theorem
14.1.3, this vertex and the 2k arcs incident with it can be replaced by k new
arcs in such a way that the resulting directed multigraph D’ is k-arc-strong.
By induction D’ can be constructed via operations A and B. Since we can go
from D’ back to D by using operation B once, D can be constructed using
operations A and B. O

See Figure 5.6 for an illustration of the theorem.

5.6.2 Minimally k-Strong Digraphs

In this section D = (V, A) is always a digraph (i.e., no multiple arcs) and
hence we know that d*(v) = |[NT(v)| for each v € V. Several results from
this section will be used in Section 12.4.

Mader [671] proved that when we consider vertex connectivity instead of
arc connectivity, the bound of Theorem 5.6.1 can be improved as follows. The

complete bipartite digraph ]?k,n,k shows that this bound on the number of
arcs is best possible.

Theorem 5.6.8 [671] Every minimally k-strong digraph on n > 4k + 3 ver-
tices has at most 2k(n — k) arcs. O

We saw in the last section that every minimally k-arc-strong directed
multigraph has at least two vertices with in- and out-degree equal to k.
Mader conjectures that this is also the case for vertex-strong connectivity in
digraphs.

Conjecture 5.6.9 [671] Every minimally k-strong digraph contains at least
two vertices such that both have in- and out-degree k.

This longstanding conjecture is still open and seems very difficult. For
k =1 the truth of Conjecture 5.6.9 follows from Theorem 5.6.4. Mader [676]
has proved the conjecture for k£ = 2. For all other values of k the conjecture
is open. Examples by Mader [667] show that one cannot replace two by three
in the conjecture.

Before reading the next couple of pages, the reader is advised to consult
Subsection 14.3.1 to understand the definition of a one-way pair. An arc e of
a k-strong digraph is k-critical if D — e is not k-strong. By Lemma 14.3.2,
for each k-critical arc uv we can associate sets Ty, Hyp such that (T, Hye)
is a one-way pair in D — wv and h(Ty,, Hyw) = k — 1. This one-way pair
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may not be unique, but below we always assume that we have chosen a fixed
one-way pair for each k-critical arc in D.

Lemma 5.6.10 Let D = (V, A) be a k-strong digraph. Then the following is
true:

(a) If D has two k-critical arcs ux,uy, such that d™(u) > k+1, then |Ty,| >

(b) If D has two k-critical arcs xu, yu, such that d~(u) > k+1, then |Hyy,| >
Tyul.
17 11
U ‘ , U 1
: M~ w : ~g—
,,,,,,,,,,,, Y 1 Yy
C JER PR Vi ---1 ¢
Sux a ” ””” e [T I a e
H. T 3 d o H,. T ( M
! z
Tuy Suyi Huy Tuy Huy
(4) (B)

Figure 5.7 Illustration of the proof of Lemma 5.6.10. Part (A) illustrates the case
when Hy,z N Hyy # 0. Part (B) illustrates the case when Hy,, N Hyy = 0. The first
row of each 3 x 3 diagram corresponds to the set T),,. The first column corresponds
to Tuy and so on. The positions of z,y indicate that they can be in either of the
two neighbouring cells. The numbers a, b, ¢, d, e denote the cardinality of the sets
corresponding to their cell.

Proof: Since (b) follows from (a) by considering the converse of D, it suffices
to prove (a). Hence we assume that ux,uy are k-critical arcs of D and that
dt(u) > k+1. Let (Tuw, Huz)s (Tuy, Huy) be the pairs associated with uz, uy
above. Note that these are not one-way pairs in D, since there is a (unique)
arc, namely, uxz (uy) which goes from T, (Tuy) to Hyy (Hyy). Let also
Sz =V —(Tyz UHy,) and Syy =V —(Tyyy UH,,). Then | Sy, | = |Suy| = k—1
and x € Hyy, — Hyy,y € Hyy — Hy,. It will be useful to study Figure 5.7
while reading the proof.

Let a,b,c,d, e be defined as in Figure 5.7. Since each of the sets Sy, Suy
has size k — 1 we see that
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a+b+2c+d+e=2k-2. (5.20)

We claim that H,, N H,, = 0. Suppose this is not the case and let
z € Hy; N Hy, be arbitrarily chosen. Now it follows from the fact that
(Tuz, Huz) is a one-way pair in D — ux and (Tyy, Hyy) is a one-way pair in
D —uy, that the set Cy, indicated by the line I in Figure 5.7, separates u from
z in D. Hence c+d+e > k, since D is k-strong. Now (5.20) implies that the
set Crr, indicated by the line II, has size at most k — 2. Since d* (u) >k + 1
and u has precisely two arcs, namely, ux,uy out of Ty, N T,y in D — Cyy,
we see that there is some out-neighbour w of u inside T\, N T},,. But now
it is easy to see that Cjy U {u} separates w from z, contradicting that D is
k-strong. Hence we have shown that Hy,, N H,, = 0.

To complete the proof, we only need to show that a > d. Suppose this
is not the case. Then in particular d > 1 and the size of the set Cjy is at
most |Syy| +a —d < k — 2. Thus as above we can argue that u has an out-
neighbour w inside Ty, N Ty Now Crr U {u} separates w from z in D, a
contradiction. a

An anti-directed trail is the digraph T one obtains from a closed undi-
rected trail T' of even length by fixing a traversal of T' and orienting the edges
so that every second vertex v has in-degree zero when we consider just the
two arcs between v and its successor and predecessor on 7. We denote the
anti-directed trail T by T = v101Va0s . . . U, U,v1, Where ¥; indicates that the
vertex v; is dominated by both its successor and its predecessor on the trail
T. A vertex which dominates (is dominated by) both its successor and its
predecessor on T is a source (sink) of T. Note that if a vertex v is repeated
on T, then v may be both a source and a sink. An anti-directed cycle is
an anti-directed trail in which no vertex occurs twice (that is, the underlying
graph is just a cycle). See Figure 5.8 for an illustration of the definitions.

V1 U1
V2 = U3
V3 V2

Figure 5.8 An anti-directed trail v171v2T2v303v1 on 6 vertices. The vertex va = U3
is both a source and a sink of T'. Note that 1" contains no anti-directed cycle.

Now we can prove the following important result due to Mader:
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Theorem 5.6.11 [671] Let D be a k-strong digraph containing an anti-
directed trail T = v101v203 . . . v,.0,v1. Then at least one of the following holds:

(a) Some arc e € A(T) is not k-critical in D.
(b) Some source v; of T has out-degree k in D.
(¢) Some sink v; of T has in-degree k in D.

Proof: If (b) or (c) holds there is nothing to prove so suppose that d* (v;) >
k + 1 for each source and d~(v;) > k + 1 for each sink of T. We shall prove
that (a) holds.

Suppose to the contrary that every arc e on T is k-critical. Applying
Lemma 5.6.10(a) to the arcs vy 9,,v101, we obtain [Ty, 5.| > |Hy, 5, |- Similarly,
we get from Lemma 5.6.10(b) that |H,,5,| > |T»,s, |- Repeating this argument
around the trail we reach the following contradiction:

|Tv117r| > |HU1171| > |Tv2771| > |HU2172| > > |Hvr17r| > |Tv117r|’

Hence we have shown that (a) holds. O
The following is an easy consequence.

Corollary 5.6.12 [671] Every minimally k-strong digraph contains a vertex
x of in-degree k, or a vertex y of out-degree k. O

Using Theorem 5.6.11, Mader proved the following much stronger state-
ment.

Theorem 5.6.13 [676] Every minimally k-strong digraph contains at least
k + 1 wvertices of out-degree k and at least k + 1 vertices of in-degree k. 0O

This is best possible for digraphs on at most 2k 4+ 1 vertices as shown

by I?k,kJrl. When the number of vertices becomes larger, the following result
gives a better bound and shows that the number of vertices of out-degree k
(and hence also the number of vertices of in-degree k) grows as n grows.

Theorem 5.6.14 [676] Every minimally k-strong digraph on n vertices con-
tains at least %, / k2—+"2 vertices of out-degree k. O

The following conjecture by Mader would imply that, in fact, the right
lower bound grows linearly with n.

Conjecture 5.6.15 [675] Every minimally k-strong digraph on n vertices

contains at least Z—I’f + k wvertices with out-degree equal to k.

Proposition 5.6.16 [676] For k > 2, every minimally k-strong digraph con-
tains a vertez v with min{d*(v),d™ (v)} = k and max{d*(v),d” (v)} < 2k—2.
O
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For more on the topic see the surveys [675] and [677] by Mader. Theorem
5.6.11 has many other nice consequences. Here is one for undirected graphs.

Corollary 5.6.17 [665] Let C be a cycle of a k-connected undirected graph
G. Then either C contains an edge e which can be removed without decreasing
the connectivity of G, or some vertex v € V(C) has degree k in G.

Proof: To see this, it suffices to consider the complete biorientation D of G
and notice that D — xy is k-strong if and only if D — {zy,yz} is k-strong
(Exercise 5.22) which happens if and only if G — e is k-connected, where
e = xy. Next, observe that in D, the cycle C' either corresponds to one anti-
directed trail C’, obtained by alternating the orientation on the arcs taken
twice around the cycle C, when |C| is odd, or to two anti-directed cycles
C’,C" when |C] is even. Now the claim follows from Theorem 5.6.11. O

One reason why Corollary 5.6.17 is important is the following easy con-
sequence concerning augmentations of undirected graphs, which was pointed
out by Jordan.

Corollary 5.6.18 [577] Let G = (V, E) be an undirected graph which is k-
connected, but not (k + 1)-connected. Then every minimal set of edges F
which augments the connectivity of G to (k + 1) induces a forest. O

For directed graphs one obtains the following result, due to Jordan, on
augmentations from k-strong to (k + 1)-strong connectivity. Compare this
with Theorem 14.3.8.

Corollary 5.6.19 [575] Let D = (V, A) be a directed graph which is k-strong,
but not (k+1)-strong and let F' be a minimal set of new arcs, whose addition
to D gives a (k + 1)-strong digraph. Then the digraph induced by the arcs in
F' contains no anti-directed traal. O

One can also apply Theorem 5.6.11 to questions like: how many arcs can
be deleted from a k-strong digraph, so that it still remains (k—1)-strong [675]
(for undirected graphs see [164])? One easy consequence is the following.

Corollary 5.6.20 [675] If D = (V,A) is minimally k-strong and D' =
(V,A") is a spanning (k — 1)-strong subgraph of D, then the difference
Dy = (V,A— A’) contains no anti-directed trail.

Proof: Suppose T' = v101027s . . . ;0,01 is an anti-directed trail in Dy. Since
D is minimally k-strong, (a) cannot hold in Theorem 5.6.11. Suppose without
loss of generality that (b) holds, then some source v; has d},(v;) = k. However,
since d;(vi) = 2, this implies that d}, (v;) = k — 2, contradicting the fact
that D" is (k — 1)-strong. O

Theorem 5.6.11 has many other important applications. We illustrate one
such application in Section 12.4.1.
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5.7 Critically k-Strong Digraphs

In this section we always consider directed graphs (no multiple arcs). A vertex
v of a digraph D is critical if k(D — v) < k(D). The goal of this section is
to illustrate some conditions under which we can always find a non-critical
vertex in a digraph D. First observe that there can be no function f(k) with
the property that every k-strong digraph D with at least f(k) vertices has
a vertex v such that D — v is still k-strong. This is not even the case for
tournaments. To see this consider the example due to Thomassen (private
communication, 1985) in Figure 5.9.

Figure 5.9 A family 7 of 3-strong tournaments (the three paths from left to right
can be arbitrary long). The big arc indicates that all arcs not explicitly shown go
from right to left. It can be verified (Exercise 5.26) that each tournament in 7 is
3-strong and has the property that every vertex other than x,y is critical. Thus
after removing at most two vertices we obtain a 3-strong tournament in which every
vertex is critical.

The example in Figure 5.9 can easily be generalized to arbitrary degrees
of vertex-strong connectivity, by replacing each of the tournaments on seven
vertices (right and left side of the figure) by the kth power of a (2k + 1)-cycle
and replacing the three long paths by k& long paths starting at the top k
vertices in the left copy and ending at the top k vertices in the right copy.

Below we discuss some results by Mader on sufficient conditions for a
k-strong digraph to contain a non-critical vertex.

Definition 5.7.1 Let D have k(D) = k. A fragment in D is a subset X C
V' with the property that either |INT(X)| = k and X U NT(X) # V, or
IN-(X)| =k and XUN—(X) #V.

Thus a fragment X corresponds to a one-way pair (X,Y) with A(X,Y) =
k. Mader proved the following important result:

Theorem 5.7.2 [672] Every critically k-strong digraph contains a fragment
of size at most k. O
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This was conjectured by Hamidoune [494, Conjecture 4.8.3] who also con-

jectured the next two results, both of which are easy consequences of Theorem
5.7.2.

Corollary 5.7.3 [672] Every critically k-strong digraph contains a vertex
with in-degree, or out-degree less than 2k.

Proof: Let D = (V, A) be a critically k-strong digraph. By Theorem 5.7.2,
D contains a fragment X with |X| < k. By considering the converse of D if
necessary, we may assume that |N*(X)| = k. We prove that every vertex of
X has out-degree at most 2k—1. Let © € X be arbitrary. Note that every out-
neighbour of x outside X contributes to |N*(X)|, implying that there are at
most k of these. Now the claim follows from the fact that dE<X>(:C) <k-1.

O

We leave the proof of the next easy consequence as Exercise 5.24.

Corollary 5.7.4 [672] Every critically k-strong oriented graph contains a
vertex x with in-degree, or out-degree less than |35 . O

In [677] Mader surveys a number of results on k-strong digraphs D with
the property that whenever we delete a set of vertices X of size at most
k' < k the resulting digraph D — X is only (k — | X|)-strong. Such digraphs
are also called (k, k')-critical and our discussion above on critically k-strong
digraphs correspond to the case k' = 1.

Among other things, Mader shows that for every prime power k there
exists a (k + 1, 2)-critical digraph without 2-cycles.

Conjecture 5.7.5 [677] For every k > 2, there is only a finite number of
(k, 2)-critical oriented graphs.

Mader also conjectured the following and showed by an example that this
does not hold for infinite digraphs (implying that also the conjecture above
is false for infinite oriented graphs).

Conjecture 5.7.6 [677] If D is a (k,r)-critical digraph with r > (2k+1)/3,
then D is the complete digraph Kpy1.

Conjecture 5.7.7 [677] For all k,r € N, there is an integer h(k,r) so that
every finite, k-strong digraph D = (V, A) on at least h(k,r) vertices contains
a set W CV with [W| =r such that k(D — W) > k — 2 holds.

The case r = 3 follows from the following result by Mader.

Theorem 5.7.8 [677] For every k € N only a finite number of (k, 3)-critical
finite digraphs exist. O
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5.8 Connectivity Properties of Special Classes of
Digraphs

In this section we describe a few results on the connectivity of various classes
of digraphs introduced in Chapter 2. Some of these results will be used in
other sections and chapters in this book.

17N\ % N
14 1

Figure 5.10 A 2-strong digraph D with decomposition D = Q[H1, H2, Hs, H4].
Bold arcs indicate that all possible arcs are present and have the direction shown.
The right figure shows the 2-strong digraph Do = Q[K 2, K3, K3, K3] obtained from
D by deleting all arcs inside each H;.

The first lemma, due to Bang-Jensen, implies that almost all minimally
k-strong decomposable digraphs are subdigraphs of extensions of digraphs.

Lemma 5.8.1 [7}] Let D = F[S1,S52,...,Sy] where F is a strong digraph
on f > 2 vertices and each S; is a digraph with n; vertices and let Dy =
FIK,, ,Kn,,-.. ,an] be the digraph obtained from D by deleting every arc
which lies inside some S;°. Let S be a minimal (with respect to inclusion)
separating set of Dy. Then S is also a separating set of D, unless each of the

following holds:

(a) S=V(S1)UV(S2)...UV(Sr)\V(S;) for some i€ [f],

(b) D(S;) is a strong digraph, and

(C) D= CQ[S, Sl]

In particular, if F' has at least three vertices, then D is k-strong if and only
if Do is k-strong.

Proof: Let S be a minimal separating set of Dy and assume S is not sep-
arating in D. It is easy to see that if x and y with z,y € S belong to

5 Recall that fni is the digraph on n; vertices and no arcs.
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different sets S;, then D — S has an (x,y)-path if and only if Dy — S has
such a path. Thus, since S is separating in Dy but not in D, we must have
S=V(51)UV(S2)...UV(Sf)\ V(S;) for some i € [f]. Note that here we
used the minimality of S to get that S N.S; = () for some j. Now it follows
trivially that D(S;) must be a strong digraph, since D — S is strong and the
minimality of S implies that D = C5[S,S;] (if some S; C S does not have
arcs in both directions to S;, then S —S; is also separating, contradicting the
choice of 5). O

See Figure 5.10 for an example illustrating the lemma.

Combining Lemma 5.8.1 with Theorem 2.7.5 we obtain:

Corollary 5.8.2 If D is a k-strong quasi-transitive digraph with decompo-
sition D = Q[W1y,...,W\q|], then the digraph Dy = Q[?‘Wl‘, .. ’Fllell}
(that is, the digraph obtained by deleting all arcs inside each W) is also k-
strong. O

Another easy consequence of Lemma 5.8.1 is the following result by Bang-
Jensen, Gutin and Yeo:

Theorem 5.8.3 [95] Suppose that D is a digraph which can be decomposed
as D = F[S1,Ss,...,S¢], where f = |V(F)| > 2, and define the digraph Dy
by Dy = D — U{Zl{uv : u,v € V(S;)}. Then D is strong if and only if Dy is
strong.

Here is a useful observation on locally semicomplete digraphs due to Bang-
Jensen. The proof is left as Exercise 5.25.

Lemma 5.8.4 [66] Let D be a strong locally semicomplete digraph and let S
be a minimal (not necessarily minimum) separating set of D. Then D — S is
connected. O

Proposition 5.8.5 Let D = (V, A) be a k-strong digraph and let D’ be o0b-
tained from D by adding a new set of vertices X and joining each vertex of
X to V in such a way that [N}, (v)], N5, (v)| > k+ 1 for each v € X. Then
D’ is k-strong. If D' is not (k + 1)-strong, then every minimum separating
set of D’ is also a minimum separating set of D.

Proof: Suppose D’ is not (k+ 1)-strong and let S’ be a minimum separating
set of D'. Then |S’| < k. Let S = S’ N V(D). Since every vertex of X — S’
has an in-neighbour and an out-neighbour in V' — S, we get that D — S is
not strong and hence S = S’ must hold and S’ is also separating in D. This
implies that |S’| = k, D’ is k-strong and every minimum separating set of D’
is a minimum separating set of D. a

Now we turn to a characterization of eulerian digraphs in terms of local
connectivities. We need the following result due to Lovész.



222 5. Connectivity of Digraphs

Theorem 5.8.6 [652] Let v be a vertex in a digraph D which satisfies
AMv,z) < XNz, v) for every x € V(D). Then d*(v) < d (v).

Proof: Call aset X C V —v full with respect to v if there exists an x € X so
that d=(X) = A(v,z) and call z a core of X. The following three properties of
full sets are easy consequences of the submodularity of the in-degree function
for sets (Corollary 5.1.2):

(a) If X and Y are full sets with cores x and y and we also have x € Y, then
XNY, XUY are full sets with cores z,y, respectively.

(b) For every x # v there exists a full set T}, with core = so that for every
full set X containing = we have T, C X (hence T, is the unique minimal
full set containing x).

(¢) Observation (b) implies that every € V — v is contained in a unique
maximal full set. Let X1, Xo,..., X} be the maximal full sets with cores
21,2, ..., %, respectively. Then x; ¢ X; whenever ¢ # j.

Now we are ready to prove the theorem. Let X1, X5,..., X} be the max-
imal full sets and let x; be a core of X;. Furthermore, let V; = X; — Uj# X;.
Observation (c) implies that z; € V; for every i € [k]. Thus d*(V;) >
AMzi,v) > Mo, z;) = d™ (X;) by the assumption of the theorem. Hence,

k

k
S At (V) =D dT(X). (5.21)
i=1

=1

By the remark in the beginning of (b), Ule X; =V —v. Hence every arc
contributing to the left-hand side of (5.21) either enters v or some Xj, j # i.
Each such edge is counted precisely once on the left-hand side of (5.21). On
the other hand, every arc leaving v or entering a set X; from somewhere
other than v is counted at least once on the right-hand side of (5.21). Thus,

k k
0< S (Vi) = S d (X)) < d(v) — d* (v),
i=1 i=1
which proves the theorem. a

Corollary 5.8.7 [652] A digraph D = (V,A) is eulerian if and only if
Mz, y) = My, z) for every pair of vertices x,y € V.

Proof: If D = (V, A) is eulerian, then, by Corollary 1.7.3, for every non-
empty proper subset X C V we have d*(X) = d~(X). By Menger’s theorem
(Theorem 5.4.1) this implies that A(z,y) = A(y,x) for every pair of vertices
x,y € V. The converse direction follows by applying Theorem 5.8.6 to D and
the converse of D. m]
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5.9 Disjoint X-Paths in Digraphs

A result of Gallai [385] states that if X is a subset of the vertices of an
undirected graph G = (V, E), then there exist k disjoint paths each of which
connects two distinct vertices in X if and only if |S| + Y 4[|C N X|| > k
holds for every S C V, where the sum is taken over connected components
Cof G-S.

Gallai’s result does not generalize to digraphs, no matter whether we re-
place connected component by strong component or by connected component
of the underlying graph: in the first case the condition will not be necessary
and in the later it will not be sufficient (take, for example, the digraph con-
sisting of three vertices x1,x2, s and arcs x1s,z2s) and X = {z1,z2}).

Kriesell [627] found a way to refine the definition of vertex separation
so that a necessary and sufficient condition can indeed be found. To state
the result we need some definitions. Let D = (V, A) be a digraph and let
X C V a subset of its vertices. An X-path is a path P whose initial and
terminal vertex are distinct vertices of X and all other vertices of P belong
to V(D) — X. We denote by A~ (X) (AT (X)) the set of all arcs in D whose
tail (head) belongs to X (note that arcs inside X contribute to both sets).

Theorem 5.9.1 [627] Let k be an integer, D = (V, A) a digraph and X C V.
There exist k pairwise disjoint X -paths if and only if

ST+ Y [ICN(XUSUT)|/2| >k (5.22)
cec(@)

for all S,T € V with SNX =TNX. Here C(G) denotes the set of connected
components in the graph G = UG(D — (A~ (S) U AT(T))). O

We will not give the proof here. Kriesell first shows that disjoint X-paths
in D correspond, in a natural way, to matchings® in the digraph Hp(X)
which we obtain by performing the vertex splitting procedure from Section
4.2.4 on D and then contracting each of the arcs z;zs, * € X in Dgr. Now
one can apply Tutte’s characterization for the existence of a matching of a
given cardinality in a graph and translate the characterization back to the
desired characterization for the existence of k disjoint X-paths in D.

5.10 Exercises

5.1. Submodularity of |N~| and |NT|. Prove Proposition 5.1.3.
5.2. Prove Lemma 5.2.1.

6 A matching in a digraph D is a collection of arcs which have no vertices in
common, i.e., the corresponding edges form a matching in UG(D).
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5.3.
5.4.

5.5.
5.6.
5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5. Connectivity of Digraphs

(=) Prove Corollary 5.3.3.

Complexity of converting between a directed multigraph and its
network representation. Show that given a directed multigraph D one
can construct its network representation N'(D) in polynomial time. Show
that converting in the other direction cannot always be done in a time which
is polynomial in the size of the network representation. Hint: recall that we
assume that capacities are represented as binary numbers.

Show that every k-regular tournament is k-arc-strong.
(—) Prove that every eulerian directed multigraph is strong.

Let D be a digraph, let s be a vertex of D and let k be a natural number.
Suppose that min{A(s,v), A(v,s)} > k for every vertex v € V(D) — s. Prove
that A\(D) > k.

(=) Vertex-strong connectivity of planar digraphs. In a planar undi-
rected graph G on n vertices and m edges we always have m < 3n — 6 by
Euler’s formula (see Corollary 2.12.3). Conclude that no planar digraph is
6-strong.

(=) Let D be a k-strong digraph and let a be an arbitrary arc of D. Let D’
be obtained from D by reversing a. Prove that D’ is (k — 1)-strong.

Connectivity of powers of cycles. Recall that the kth power of a cycle
C = v1...v,v1 is the digraph with vertex set {v1,...,vn} and arc set {v;v; :
i+1<j<i+k,i€[n]}. Prove that the kth power of a cycleon n > k+1
vertices is k-strong.

(=) For every natural number k describe a k-strong digraph D for which
reversing any arc of D results in a digraph with vertex-strong connectivity
less than k.

(4) Finding k arc-disjoint (x, y)-paths of minimum total weight. Let
D = (V, A, w) be a directed multigraph with weights on the arcs, let z,y € V'
be distinct vertices and let k£ be a natural number. Describe a polynomial
algorithm which either finds a minimum weight collection of k arc-disjoint
(z,y)-paths, or demonstrates that D does not have k arc-disjoint (z, y)-paths.
Hint: use flows. Argue that you can find k internally disjoint (z,y)-paths of
minimum total weight using a similar approach.

(+) Minimum augmentations to ensure k arc-disjoint (s, t)-paths.
Let D = (V, A, w) be a directed multigraph, let s,t be special vertices of D
and let k be a natural number such that D does not have k arc-disjoint (s, t)-
paths. Prove that it is possible to augment D optimally by adding new arcs
so that the new directed multigraph has k arc-disjoint (s, t)-paths and all new
arcs go from s to t. Now consider the same problem when there are weights
on the arcs. Devise an algorithm to find the cheapest set of new arcs whose
addition to D gives a directed multigraph with k arc-disjoint (s,t)-paths.
Hint: use min cost flows.

Relation between Menger’s theorem and the Max-Flow Min-Cut
theorem. Prove that Menger’s theorem implies the max-flow min-cut theo-
rem for network in which all capacities are integer valued.
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5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.
5.25.

5.26.
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Refining Menger’s theorem. Let D be a k-strong directed multigraph.
Let x1,x2,...,%r, Y1,Y2, . . ., Ys be distinct vertices of D and let a1, az,...,ar,
b1,ba,...,bs be natural numbers such that

iai = zs: bj = k.
i=1 j=1

Prove that D contains k internally disjoint paths Pi, P»,..., P, with the
property that precisely a; (b;) of these start at x; (end at y;). Argue that
the analogous statement concerning arc-disjoint paths is true if we replace
vertex-strong connectivity by arc-strong connectivity.

Refining Menger’s theorem for undirected graphs. Prove the analo-
gous statement of Exercise 5.15 for undirected graphs.

Menger’s theorem for sets of vertices. Let D be k-strong and let X,Y
be distinct subsets of V(D). Prove that D contains k internally disjoint paths
which start in X and end in Y and have only their starting (ending) vertex
in X (Y).

(+) Ear decomposition in linear time. Supply the algorithmic details
missing in the proof of Corollary 5.3.7. In particular, describe how to store
the arcs in such a way that the ear decomposition can be found in linear
time.

(4) Strong orientations of mixed multigraphs in linear time. Give
an O(n-+m) algorithm for finding a strong orientation of a mixed multigraph
or a proof that no such orientation exists (Chung, Garey and Tarjan [218]).

(4) Cycle subdigraphs containing specified arcs. Prove the following.
Suppose D is k-strong (respectively, k-arc-strong) and e1, e, ..., e are arcs
of D such that no two arcs have a common head or tail. Then D has a cycle
subgraph (respectively, a collection of arc-disjoint cycles) F = {C4,...,C\},
1 < r <k, such that each arc e; is an arc of precisely one of the cycles in F.
Hint: add two new vertices s,t, connect these appropriately to D and then
apply Menger’s theorem to s and ¢.

Prove the following: Every s-regular round digraph has strong vertex- and
arc-connectivity equal to s (Ayoub and Frisch [54]).

Connectivity of complete biorientations of undirected graphs. Let G
be a k-connected undirected graph for some k > 1 and let D be the complete
biorientation of G. Prove that for every arc zy of D the digraph D — zy is
k-strong if and only if D — {zy,yx} is k-strong.

Minimal k-out-critical sets are strongly connected. Prove that if D is
a directed multigraph and X is a minimal k-out-critical set, then the directed
multigraph D{X) is strongly connected.

Derive Corollary 5.7.4 from Theorem 5.7.2.

Removing a minimal separating set from a locally semicomplete
digraph. Prove Lemma 5.8.4.

Large 3-strong tournaments with every vertex critical. Prove that
every tournament in the class 7 from Figure 5.9 is 3-strong and that every
vertex different from x,y is critical.
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5.27. (=) Let D be a k-arc-strong semicomplete digraph on at least 2k+2 vertices.
Prove that there exists an arc a of D such that D — a is k-arc-strong. Hint:
prove that D cannot be minimally k-arc-strong.

5.28. (—) Describe a polynomial algorithm which, given a directed multigraph D,
decides whether A(D) = §°(D).



6. Hamiltonian, Longest and Vertex-Cheapest
Paths and Cycles

In this chapter we will consider the hamiltonian path and cycle problems
for digraphs as well as some related problems such as the longest or vertex-
heaviest path and cycle problems. We describe and prove a number of results
in the area as well as formulate several open questions.

In this edition of the book, we do not discuss some powerful necessary
conditions, due to Gutin and Yeo, for a digraph to be hamiltonian (see [91,
476]). These conditions are generalizations of the simple conditions that every
hamiltonian digraph is strong and contains a cycle factor.

Section 6.1 deals with the time complexity issues. In Section 6.2, we obtain
necessary and sufficient conditions by Bang-Jensen for a path-mergeable di-
graph to be hamiltonian. Since locally in-semicomplete and out-semicomplete
digraphs are proper subclasses (see Proposition 2.9.1) of path-mergeable di-
graphs, we may use these conditions, in Section 6.3, to derive a characteriza-
tion of hamiltonian locally in-semicomplete and out-semicomplete digraphs.
As corollaries, we obtain the corresponding results for locally semicomplete
digraphs. Digraphs with restricted degrees are considered in Section 6.4 where
a number of degree-related sufficient conditions for a digraph to be hamilto-
nian are described. In that section, we also consider a powerful proof tech-
nique, called multi-insertion, that can be applied to prove many theorems
on hamiltonian digraphs. Oriented graphs with restricted semi-degrees are
considered in Section 6.5, where six conjectures and some supporting results
are presented.

A number of papers were devoted to studying the structure of longest
cycles and paths of semicomplete multipartite digraphs. In Section 6.6, we
consider the most important results obtained in this area so far including
some important results by Yeo. The proofs in that section provide further
illustrations of the multi-insertion technique.

Sections 6.7 and 6.8 are devoted to quasi-transitive digraphs. We present
two interesting methods to tackle the hamiltonian path and cycle problems,
and the vertex-heaviest path and cycle problems, respectively, in this class
of digraphs. The second method by Bang-Jensen, Gutin and Yeo allows one
to find vertex-heaviest paths and cycles in vertex-weighted quasi-transitive
digraphs in polynomial time (where the weights are on the vertices). Since

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, 227
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1_6,
(© Springer-Verlag London Limited 2010


http://dx.doi.org/10.1007/978-1-84800-998-1_6

228 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

the weights can be positive and negative, the results can be formulated (and
are formulated) for vertex-cheapest paths and cycles.

The last section is devoted to results and open problems on hamiltonian
paths and cycles in some classes of digraphs not considered in the previous
sections. For additional information on hamiltonian and traceable digraphs,
see, e.g., the surveys [85, 90] by Bang-Jensen and Gutin, [169] by Bondy,
[457] by Gutin and [890, 888] by Volkmann.

6.1 Complexity

For arbitrary digraphs the hamiltonian path and hamiltonian cycle prob-
lems are very difficult and both are A'P-complete (see, e.g., the book [393]
by Garey and Johnson). For convenience of later referencing we state these
results as theorems.

Theorem 6.1.1 The problem to decide whether a given digraph has a hamil-
tonian cycle is N'P-complete. a

Theorem 6.1.2 The problem to decide whether a given digraph has a hamal-
tonian path is N'P-complete. a

It is worthwhile mentioning that the hamiltonian cycle and path problems
are N'P-complete even for some special classes of digraphs. Garey, Johnson
and Tarjan showed [395] that the problem remains N"P-complete even for pla-
nar 3-regular digraphs. We prove the following result due to A. Yeo (private
communication, 2003).

- PDUDDY

Figure 6.1 The gadget H(x,y, ). The vertices are ordered from the left to the
right and labelled as indicated in the left part of the figure.

Theorem 6.1.3 It is N'P-complete to decide whether a 2-reqular digraph D
has a hamiltonian cycle.

Proof: We will reduce 3-SAT (see Section 18.3) to the Hamilton cycle
problem for 2-regular digraphs. Consider the following digraph H(z,y, 2):
V(H(:L’,y, Z)) = {xivyivzi 1 1=1,2,3,4,5, 6}7
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A(H(z,y,2)) = {xyi,yizi, zixi 1 =1,2,3,4,5,6} U
{zj@it1, 959541, 22541 ¢+ §=1,2,3,4,5}

(see Figure 6.1). It is easy to verify that the digraph H(z,y, z) has the fol-
lowing properties:

(i) Every Hamilton path of H(z,y, z) starting at x; (y1, 21, respectively)
terminates at xg (ye, 26, respectively).

(ii) Let PUQ be a 2-path factor of H(z,y, z) such that the path P starts
at x7 and the path @ starts at y;. Then P terminates at x¢ and Q at yg.
Similarly for the pairs x1, 21 and y1, 21.

(iii) Let P UQ U R be a 3-path factor of H(x,y,z) such that the paths
P, @ and R start at z1, y; and 21, respectively. Then P, @ and R terminate
at xg, yg and zg, respectively.

Consider an instance Z of 3-SAT with variables v',...,v* and clauses
Ch,...,C,. We may assume that every variable and its negation appear in
7 as literals (if needed, add to Z clauses containing variables together with
their negations). Construct a digraph D as follows: start from a disjoint union
U=HUHyU...UH,, where H; = H(a, 3,7), o, 3 and ~y are literals in C;,
i € [p]. Since the same literals can occur in different clauses, we denote the
vertices of H; = H(a, 3,7) by o;(H;), B;(H;) and v;(H;), j = 1,2,3,4,5,6.

For each i € [k], let S; = {j{,j3, .-, Jh} (1 <Jjb <... <) beaset

defined as follows: [ € S, if and only if C; contains v* as a literal. Similarly,

for each i = 1,2,...,k, let ng{qi,qé,...,qé(i)} (¢ <qgb < ... <qz(i)) be a

set such that [ € S/ if and only if C; contains v as a literal.
Now we finish constructing D. Add to U vertices uy, wy, ug, wa, . . ., Uk, Wk
Each u; dominates the vertex v{(Hji-) and the vertex vi(H,:), i € [k]. Each

vertex vg(H;:) dominates vi(Hj; ), € [a(i) — 1], and each vertex 'U_é(Hqu)

3 (3
l Ji41

dominates vi (H, G ), 1 € [b(i)—1]. The vertex w; is dominated by two vertices,

v (eri”) and U—é(Hq&_)), for every i € [k]. Finally, w;—{u;_1, u;11} for every
i € [k], where ug = ug, ugt1 = uq.

It is easy to verify that D is 2-regular. Consider a truth assignment ¢ in
which v* = 1. We show how to construct the fragment! of a Hamilton cycle
Z in D corresponding to v*. The fragment contains the arc from wu; to v}

in Hj;, the arcs v(H;i)vi(Hyi ), 1 € [a(i) — 1], the arc from wj in Hj:

i Jti a(1)
to w; and the arc wyu;y. If v* = 1 in ¢, then we can similarly construct

the fragment of Z corresponding to v? (we use Hqiv , Hqé-, . ’Hqi(l) instead of
H]17H]%’ oo ,Hj’;“))

Since every clause is satisfied by ¢, the cycle Z uses vertices from each
digraph in the disjoint union H; UH,U...UH,. By the properties (i), (ii) and
(iil) of H(z,y, z) above, if s (1 < s < 3) literals are satisfied in a clause C; by

! Each fragment is not a path, but a collection of disjoint arcs.
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t, all vertices of the corresponding digraph H; can be used in Z due to the
existence of an appropriate s-path factor in H;. Thus, Z is indeed Hamilton.

Similarly, from a Hamilton cycle Z of D one can construct a truth assign-
ment ¢ satisfying 7 by finding which literals in ¢ are to be assigned 1. O

It follows easily from Theorems 6.1.1 and 6.1.2 that the longest path and
cycle problems are N'P-hard as optimization problems for arbitrary digraphs.
This is also true for several special classes of digraphs. However, for some
important special classes of digraphs these problems are polynomial time
solvable. We will discuss many such classes in the chapter.

One such important example is as follows. Johnson, Robertson, Seymour
and Thomas [573] proved the following theorem for directed tree-width. By
Lemma 2.13.9, this theorem holds also for directed path-width and DAG-
width (see Section 2.13 for definitions of directed width parameters).

Theorem 6.1.4 The Hamilton cycle and path problems are polynomial-time
solvable for digraphs of bounded directed tree-width (DAG-width, directed
path-width, respectively). O

Many sufficient conditions for the existence of a Hamilton cycle can be
transformed into sufficient conditions for the existence of a Hamilton path
using the following simple observation.

Proposition 6.1.5 A digraph D has a Hamilton path if and only if the di-
graph D* | obtained from D by adding a new vertex x* such that x* dominates
every vertex of D and is dominated by every vertex of D, is hamiltonian. O

6.2 Hamilton Paths and Cycles in Path-Mergeable
Digraphs

The class of path-mergeable digraphs was introduced in Section 2.8, where
some of its properties were studied. In this section, we prove a characteriza-
tion of hamiltonian path-mergeable digraphs due to Bang-Jensen [72].

We begin with a simple lemma which forms the basis for the proof of
Theorem 6.2.2. For a cycle C', a C-bypass is a path of length at least two
with both end-vertices on C' and no other vertices on C.

Lemma 6.2.1 [72] Let D be a path-mergeable digraph and let C be a cycle in
D. If D has a C-bypass P, then there exists a cycle in D containing precisely
the vertices V(C) UV (P).

Proof: Let P be an (x,y)-path. Then the paths P and C[z,y] can be merged
into one (x,y)-path R, which together with Cly, x] forms the desired cycle.
O
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Theorem 6.2.2 [72] A path-mergeable digraph D of order n > 2 is hamil-
tonian if and only if D is strong and UG(D) is 2-connected.

Proof: ‘Only if’ is obvious; we prove ‘if’. Suppose that D is strong, UG(D)
is 2-connected and D is not hamiltonian. Let C' = ujus ... upu; be a longest
cycle in D. Observe that, by Lemma 6.2.1, there is no C-bypass. For each
i € [p] let X; (respectively, Y;) be the set of vertices of D — V(C) that can
be reached from u; (respectively, from which w; can be reached) by a path in
D — (V(C) — u;). Since D is strong,

XiU...UX,=Y1U...UY,=V(D)-V(C).

Since there is no C-bypass, every path starting at a vertex in X; and ending
at a vertex in C must end at w;. Thus, X; C Y;. Similarly, ¥; C X, and,
hence, X; = Y;. Since there is no C-bypass, the sets X; are disjoint. Since
we assumed that D is not hamiltonian, at least one of these sets, say X7, is
non-empty. Since UG(D) is 2-connected, there is an arc with one end-vertex
in X; and the other in V(D) — (X7 Uuq), and no matter what its orientation
is, this implies that there is a C-bypass, a contradiction. a

Using the proof of this theorem, Lemma 6.2.1 and Proposition 2.8.3, it is
not difficult to show the following (Exercise 6.1):

Corollary 6.2.3 [72] There is an O(nm) algorithm to decide whether a given
strong path-mergeable digraph has a hamiltonian cycle and find one if it exists.
O

Clearly, Theorem 6.2.2 and Corollary 6.2.3 imply an obvious characteriza-
tion of longest cycles in path-mergeable digraphs and a polynomial algorithm
to find a longest cycle. Neither a characterization nor the complexity of the
hamiltonian path problem for path-mergeable digraphs is currently known.
The following problem was posed by Bang-Jensen and Gutin:

Problem 6.2.4 [89] Characterize traceable path-mergeable digraphs. Is there
a polynomial algorithm to decide whether a path-mergeable digraph is trace-
able?

For a related result, see Proposition 7.3.3. This result may be considered
as a characterization of traceable path-mergeable digraphs. However, this
characterization seems of not much value from the complexity point of view.

6.3 Hamilton Paths and Cycles in Locally
In-Semicomplete Digraphs

According to Proposition 2.9.1, every locally in-semicomplete digraph is path-
mergeable. By Exercise 6.2, every strong locally in-semicomplete digraph has
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a 2-connected underlying graph. Thus, Theorem 6.2.2 implies the following
characterization of hamiltonian locally in-semicomplete digraphs?.

Theorem 6.3.1 [105] A locally in-semicomplete digraph D of order n > 2
18 hamiltonian if and only if D is strong. O

This theorem generalizes Camion’s theorem on strong tournaments (Corol-
lary 1.5.2). Bang-Jensen and Hell [101] showed that for the class of locally
in-semicomplete digraphs Corollary 6.2.3 can be improved to the following
result.

Theorem 6.3.2 [101] There is an O(m + nlogn) algorithm for finding a
hamiltonian cycle in a strong locally in-semicomplete digraph. a

In Section 6.2, we remarked that the Hamilton path problem for path-
mergeable digraphs is unsolved so far. For a subclass of this class, locally
in-semicomplete digraphs, an elegant characterization, due to Bang-Jensen,
Huang and Prisner, exists.

Theorem 6.3.3 [105] A locally in-semicomplete digraph is traceable if and
only if it contains an in-branching.

Proof: Since a Hamilton path is an in-branching, it suffices to show that
every locally in-semicomplete digraph D with an in-branching T is traceable.
We prove this claim by induction on the number b of vertices of T of in-degree
zZero.

For b = 1, the claim is trivial. Let b > 2. Consider a pair of vertices x,y
of in-degree zero in T'. By the definition of an in-branching there is a vertex
z in T such that T contains both (z, z)-path P and (y, z)-path Q. Assume
that the only common vertex of P and () is z.

By Proposition 2.9.2, there is a path R in D that starts at x or y and
terminates at z and V(R) = V(P) U V(Q). Using this path, we may replace
T with an in-branching with b — 1 vertices of in-degree zero and apply the
induction hypothesis of the claim. O

Clearly, Theorem 6.3.3 implies that a locally out-semicomplete digraph is
traceable if and only if it contains an out-branching. By Proposition 1.7.1,
we have the following:

Corollary 6.3.4 A locally in-semicomplete digraph is traceable if and only
if it contains only one terminal strong component. O

Using Corollary 6.3.4, Bang-Jensen and Hell [101] proved the following:

2 Actually, this characterization, as well as the other results of this section, were
originally proved only for oriented graphs. However, as can be seen from Exercises
2.29 and 2.30, the results for oriented graphs immediately imply the results of
this section.
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Theorem 6.3.5 A longest path in a locally in-semicomplete digraph D can
be found in time O(m + nlogn). O

Corollary 6.3.4 and Lemma 2.9.3 imply the following:

Corollary 6.3.6 (Bang-Jensen) [66] A locally semicomplete digraph has
a hamiltonian path if and only if it is connected. O

Notice that there is a nice direct proof of this corollary (using Proposition
2.9.2), which is analogous to the classical proof of Rédei’s theorem displayed
in procedure HamPathTour in Section 18.1. See Exercise 6.4.

6.4 Hamilton Cycles and Paths in Degree-Constrained
Digraphs

In Subsection 6.4.1 we formulate certain sufficient degree-constrained condi-
tions for hamiltonicity of digraphs. Several of these conditions do not follow
from the others, i.e., there are certain digraphs that can be proved to be
hamiltonian using some condition but none of the others. (The reader will be
asked to show this in the exercises.)

In Subsection 6.4.3 we provide proofs to some of these conditions to il-
lustrate the power of the multi-insertion technique. (This technique can
be traced back to Ainouche [16] for undirected graphs and to Bang-Jensen
[70] for digraphs, see also the paper [93] by Bang-Jensen, Gutin and Huang).
The technique itself is introduced in Subsection 6.4.2. The strength of the
multi-insertion technique lies in the fact that we can prove the existence of a
hamiltonian cycle without actually exhibiting it. Moreover, our hamiltonian
cycles may have quite a complicated structure. For example, compare the
hamiltonian cycles in the proof of Theorem 6.4.1 to the hamiltonian paths
constructed in the inductive proof of Theorem 1.4.2. The multi-insertion tech-
nique is used in some other parts of this book, see e.g., Section 6.6.

Let x,y be a pair of distinct vertices in a digraph D. The pair {z,y} is
dominated by a vertex z if z—x and z—y; in this case we say that the
pair {z,y} is dominated. Likewise, {z,y} dominates a vertex z if x—z
and y—z; we call the pair {z,y} dominating.

6.4.1 Sufficient Conditions

Considering the converse digraph and using Theorem 6.3.1, we see that a
locally out-semicomplete digraph is hamiltonian if and only if it is strong.
This can be generalized as follows. We prove Theorem 6.4.1 in Subsection
6.4.3.
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Theorem 6.4.1 [9/] Let D be a strong digraph of order n > 2. Suppose that,
for every dominated pair of non-adjacent vertices {x,y}, either d(x) > n and
dly) >n—1ord(z)>n—1 and d(y) > n. Then D is hamiltonian. O

The following example shows the sharpness of the conditions of Theorem
6.4.1 (and Theorem 6.4.5), see Figure 6.2. Let G and H be two disjoint
transitive tournaments such that |V (G)| > 2, |V (H)| > 2. Let w be the vertex
of out-degree 0 in G and w’ the vertex of in-degree 0 in H. Form a new digraph
by identifying w and w’ to one vertex z. Add four new vertices x,y,u,v
and the arcs {zv,yv,uz,uy} U {zz,zz,yz,2y} U {rg : r € {x,y,v},9 €
V(G) —w}U{hs : h e V(H)—w,s € {u,x,y}}. Denote the resulting
digraph by @Q,, where n is the order of @Q,. It is easy to check that @,
is strong and non-hamiltonian (Exercise 6.7). Also, x,y is the only pair of
non-adjacent vertices which is dominating (dominated, respectively). An easy
computation shows that

d(z) =d(y) =n—1=d"(x) +d (y) =d (z) +d"(y).

G—w H—w'

Figure 6.2 The digraph @,,. The two unoriented edges denote 2-cycles.

Combining Theorem 6.4.1 with Proposition 6.1.5 one can obtain sufficient
conditions for a digraph to be traceable (see also Exercise 6.6). Theorem 6.4.1
also has the following immediate corollaries.

Corollary 6.4.2 (Ghouila-Houri) [403] If the degree of every vertex in a
strong digraph D of order n is at least n, then D is hamiltonian. a

Corollary 6.4.3 Let D be a digraph of order n. If the minimum semi-degree
of D, 6°(D) > n/2, then D is hamiltonian. O

It turns out that even a slight relaxation of Corollary 6.4.3 brings in non-
hamiltonian digraphs. In particular, Darbinyan [245] proved the following:
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Proposition 6.4.4 Let D be a digraph of even order n > 4 such that the
degree of every vertex of D is at least n — 1 and 6°(D) > n/2 — 1. Then
either D is hamiltonian or D belongs to a non-empty finite family of non-
hamiltonian digraphs. a

By Theorem 6.3.1, a locally semicomplete digraph is hamiltonian if and
only if it is strong [66]. This result was generalized by Bang-Jensen, Gutin
and Li [94] as follows.

Theorem 6.4.5 Let D be a strong digraph of order n. Suppose that D sat-
isfies min{d*(z) + d~ (y), d~(z) + d*(y)} > n for every pair of dominating
non-adjacent and every pair of dominated non-adjacent vertices {x,y}. Then
D is hamiltonian.

We prove this theorem in Subsection 6.4.3. Theorem 6.4.5 implies Corol-
lary 6.4.3 as well as the following theorem by Woodall [911]:

Corollary 6.4.6 Let D be a digraph of order n > 2. If d*(z) +d (y) > n
for all pairs of vertices x and y such that there is no arc from x to y, then
D is hamiltonian. a

The following theorem generalizes Corollaries 6.4.2, 6.4.3 and 6.4.6. The
inequality of Theorem 6.4.7 is best possible: Consider K, _o (n > 5) and fix
a vertex u in this digraph. Construct the digraph H,, by adding to I?n,g a

pair v, w of vertices such that both v and w dominate every vertex in K, o
and are dominated by only u, see Figure 6.3. It is easy to see that H, is
strong and non-hamiltonian (H,, — u is not traceable). However, v, w is the
only pair of non-adjacent vertices in H,, and d(v) + d(w) = 2n — 2.

g
S

Figure 6.3 The digraph H,.

Theorem 6.4.7 (Meyniel’s theorem) [698] Let D be a strong digraph of
order n > 2. If d(z) + d(y) > 2n — 1 for all pairs of non-adjacent vertices in
D, then D is hamiltonian. a
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Short proofs of Meyniel’s theorem were given by Overbeck-Larisch [735]
and Bondy and Thomassen [171]. The second proof is slightly simpler than
the first one and can also be found in the book [902] by West (see Theorem
8.4.38). Using Proposition 6.1.5 one can easily see that replacing 2n — 1 by
2n — 3 in Meyniel’s theorem we obtain sufficient conditions for traceability.
(Note that for traceability we do not require strong connectivity.) Darbinyan
[248] proved that by weakening the degree condition in Meyniel’s theorem
only by one, we obtain a stronger result:

Theorem 6.4.8 [2/8] Let D be a digraph of order n > 3. If d(x) + d(y) >
2n — 2 for all pairs of non-adjacent vertices in D, then D contains a hamil-
tonian path in which the initial vertex dominates the terminal vertex. a

Berman and Liu [147] extended Theorem 6.4.7 as formulated below. For
a digraph D of order n, a set M C V(D) is Meyniel if d(z) +d(y) > 2n —1
for every pair z,y of non-adjacent vertices in M. The proof of Theorem 6.4.9
in [147] is based on the multi-insertion technique.

Theorem 6.4.9 [1/7] Let M be a Meyniel set of vertices of a strong digraph
D of order n > 2. Then D has a cycle containing all vertices of M. O

Another extension of Meyniel’s theorem was given by Heydemann [527].

Theorem 6.4.10 [527] Let h be a non-negative integer and let D be a strong

digraph of order n > 2 such that, for every pair of non-adjacent vertices x

and y, we have d(x) +d(y) > 2n—2h+ 1. Then D contains a cycle of length
n—1

greater than or equal to h—H] + 1. a

Manoussakis [682] proved the following sufficient condition that involves
triples rather than pairs of vertices. Notice that Theorem 6.4.11 does not
imply either of Theorems 6.4.1, 6.4.5 and 6.4.7 [94].

Theorem 6.4.11 [682] Suppose that a strong digraph D of order n > 2
satisfies the following conditions for every triple x,y,z € V(D) such that x
and y are non-adjacent:

(a) If there is no arc from x to z, then d(z) +d(y) +d*(z)+d (z) > 3n—2.

(b) If there is no arc from z to x, then d(z)+d(y) +d~ (x)+d*(z) > 3n—2.

—~
8

Then D is hamiltonian. O

The next theorem, due to Zhao and Meng, resembles Theorems 6.4.5 and
6.4.7. However, Theorem 6.4.12 does not imply any of these theorems. The
sharpness of the inequality of Theorem 6.4.12 can be seen from the digraph
H,, introduced before Theorem 6.4.7.
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Theorem 6.4.12 [933] Let D be a strong digraph of order n > 2. If
dt(z) +d"(y)+d (u) +d (v) >2n—1

for every pair x,y of dominating vertices and every pair u,v of dominated
vertices, then D is hamiltonian. a

Theorems 6.4.5 and 6.4.12 support the following conjecture by Bang-
Jensen, Gutin and Li.

Conjecture 6.4.13 [94] Let D be a strong digraph of order n > 2. Suppose
that d(x)+d(y) > 2n—1 for every pair of dominating non-adjacent and every
pair of dominated non-adjacent vertices {x,y}. Then D is hamiltonian.

Bang-Jensen, Guo and Yeo [82] proved that if we replace the degree con-
dition d(z) 4 d(y) > 2n — 1 with d(z) + d(y) > 5n — 4 in Conjecture 6.4.13,
then D is hamiltonian. They also provided additional support for Conjecture
6.4.13 by showing that every digraph satisfying the condition of Conjecture
6.4.13 has a cycle factor.

Perhaps Conjecture 6.4.13 can even be generalized to the following which
was conjectured by Bang-Jensen, Gutin and Li:

Conjecture 6.4.14 [9/] Let D be a strong digraph of order n > 2. Suppose
that, for every pair of dominated non-adjacent vertices {x,y}, d(x) + d(y) >
2n — 1. Then D is hamiltonian.

Let F be the digraph obtained from the complete digraph I?n_g by
adding three new vertices {z, y, z} and the following arcs {zy, yz,yz, zy, z2 }U

{zu,uz,yu: u € V(I?n,g)}, see Figure 6.4. Clearly F' is strongly connected
and the underlying undirected graph of F' is 2-connected. However, F' is not
hamiltonian as all hamiltonian paths in F'— z start at z, but  does not dom-
inate z. The only pairs of non-adjacent vertices in D are z and any vertex

u € V([H(n_?,) and here we have d(z) + d(u) = 2n — 2. Thus both conjectures
above would be the best possible.

One of the oldest conjectures in the area of hamiltonian digraphs is the
following conjecture by Nash-Williams.

Conjecture 6.4.15 [719, 720] Let D be a digraph of order n > 3 satisfying
the following conditions:

1. For every positive integer k less than (n — 1)/2, the number of vertices
of out-degree less than or equal to k is less than k.

2. The number of vertices of out-degree less than or equal to (n — 1)/2 is
less than or equal to (n —1)/2.

3. For every positive integer k less than (n — 1)/2, the number of vertices
of in-degree less than or equal to k is less than k.
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Figure 6.4 The digraph F'.

4. The number of vertices of in-degree less than or equal to (n—1)/2 is less
than or equal to (n —1)/2.

Then D is hamiltonian.

Conjecture 6.4.15 seems to be very difficult (see comments by Nash-
Williams in [720, 721]). This conjecture was inspired by the corresponding
theorem by Pésa [753] on undirected graphs. Pdsa’s result implies that the as-
sertion of this conjecture is true at least for symmetric digraphs, i.e., digraphs
D such that zy € A(D) implies yx € A(D).

One may also try to obtain digraph analogues of various other sufficient
degree conditions for graphs, such as Chvdatal’s theorem [220], which asserts
that if the degree sequence diy < dy < ... < d, of an undirected graph
satisfies the condition dy < k < §=-d,,_ > n — k for each k, then the graph
is hamiltonian. Similarly, one may ask whether every strong digraph whose
non-decreasing degree sequence d; < dy < ... < d,, satisfies the following
condition is hamiltonian:

dp <2k <n=dn_p>2n—k), k=1,2,...,n— 1. (6.1)

For a digraph D we can obtain the non-decreasing out-degree and in-
degree sequences: d < dj <...<dt andd; <d, <...<d, (orderings
of vertices of D in these two sequences are usually different). Using the two
sequences, one may suggest conditions similar to (6.1):

d;gk<g;»d;kzn—kand

(6.2)

d, <k
k = <2

=d ,>n—k 1<k<(n-1)/2.
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It is not difficult to construct an infinite family of non-hamiltonian strong
digraphs that satisfy both (6.1) and (6.2) (Exercise 6.15). However, if we
‘mix’ the out-degrees with the in-degrees in (6.2), we obtain the following
conjecture due to Nash-Williams:

Conjecture 6.4.16 [721] A strong digraph D is hamiltonian, if the non-
decreasing out-degree and in-degree sequences of D satisfy the following:

d;gk<g:d;_kzn—kand

d’§k<g:>d:_k2n—k, 1<k<(n—1)/2

x>

6.4.2 The Multi-Insertion Technique

Let P = ujus...us be a path in a digraph D and let Q = viva...v; be a
path in D—V(P). The path P can be inserted into () if there is a subscript
i € [t — 1] such that v;—wu; and us—wv; 1. Indeed, in this case the path @
can be extended to a new (v1, v;)-path Q[v1, v;]PQ[vi+1, v¢]. The path P can

be multi-inserted into @ if there are integers i1 = 1 < i < ... < &y, =
s+ 1 such that, for every k = 2,3, ..., m, the subpath Plu;, ,,u;,—1] can be
inserted into Q). The sequence of subpaths Plu;, _,,ui—1], k = 2,...,m, is

a multi-insertion partition of P. Similar definitions can be given for the
case when @) is a cycle.

The complexity of algorithms in this subsection is measured in terms of
the number of queries to the adjacency matrix of a digraph. In this subsection
we prove several simple results, which are very useful while applying the
multi-insertion technique. Some of these results are used in this section, others
will be applied in other parts of this book. The following lemma is a simple
extension of a lemma by Bang-Jensen, Gutin and Li [94].

Lemma 6.4.17 Let P be a path in D and let Q = vivy...v; be a path (a
cycle, respectively) in D—V (P). If P can be multi-inserted into Q, then there
is a (v1,v¢)-path R (a cycle, respectively) in D so that V(R) = V(P)UV(Q).
Given a multi-insertion partition of P, the path R can be found in time

oV (PIIV(Q)D)-

Proof: We consider only the case when @ is a path, as the other case (Q is a
cycle) can be proved analogously. Let P = ujus ... us. Suppose that integers
i1 =1<idy <...<dy =s+1 are such that the subpaths Plu;,_,,u:,—1],
k=2,3,...,m, form a multi-insertion partition of P.

We proceed by induction on m. If m = 2, then the claim is obvious, hence
assume that m > 3. Let zy € A(Q) be such that the subpath Plu;,,%;,—1]
can be inserted between = and y on ). Choose r as large as possible such that
u;,.—1—y. Clearly, Plu;,,u; —1] can be inserted into @ to give a (v1, v¢)-path
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Q. Thus, if r = m, we are done. Otherwise apply the induction hypothesis
to the paths Plu; ,us] and Q* (observe that by the choice of r none of the
subpaths of the multi-insertion partition of Plu;, ,us] can be inserted between
x and y in @, and thus every such subpath can be inserted into @*).

If we postpone the actual construction of R till we have found a new
multi-insertion partition M of P and all (distinct) pairs of vertices between
which the subpaths of M can be inserted, then the complexity claim of this
lemma follows easily. O

The next two corollaries due to Bang-Jensen, Gutin and Huang, respec-
tively, Yeo can easily be proved using Lemma 6.4.17; their proofs are left as
an easy exercise (Exercise 6.11).

Corollary 6.4.18 [93] Let D be a digraph. Suppose that P = ujus ... u, is
a path in D and C is a cycle in D — P. Suppose that for each i € [r — 1],
either the arc u;u;41 or the vertex u; can be inserted into C, and, in addition,
assume that u,. can be inserted into C. Then D contains a cycle Z with the
vertex set V(P)UV(C) and Z can be constructed in time O(|V(P)||[V(C)]).

O

Corollary 6.4.19 [915] Let D be a digraph. Suppose that P = ujusg ... u, is
a path in D and C is a cycle in D — P. Suppose also that for each odd index
i the arc u;u;y1 can be inserted into C, and if r is odd, u, can be inserted
into C. Then D contains a cycle Z with the vertex set V(P)UV(C) and Z
can be constructed in time O(|V(P)||V(C))). O

Corollary 6.4.20 [93] Let D be a digraph. Suppose that C is a cycle of even
length in D and Q is a cycle in D — C'. Suppose also that for each arc uv of
C' either the arc uwv or the vertex u can be inserted into Q. Then D contains
a cycle Z with the vertez set V(Q)UV(C) and Z can be constructed in time

oV @IV

Proof: If there is a vertex x on C that can be inserted into @, then apply
Corollary 6.4.18 to Clxz*,x] and Q. Otherwise, all the arcs of C can be in-
serted into @ and we can apply Corollary 6.4.19 to Cly™,y] and Q, where y
is any vertex of C. a

6.4.3 Proofs of Theorems 6.4.1 and 6.4.5

The following lemma is a slight modification of a lemma by Bondy and
Thomassen [171]; its proof is not difficult and is left as an exercise to the
reader (Exercise 6.8).

Lemma 6.4.21 Let QQ = viva...v; be a path in D and let w,w’ be vertices
of V(D) = V(Q) (possibly w = w'). If there do not exist consecutive vertices
Vi, Vir1 on Q such that v;w,w'v,y1 are arcs of D, then dé(w)erg(w’) < t+€,
where £ = 1 if vi—w and 0, otherwise. O
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In the special case when w’' = w above, we get the following interpretation
of the statement of Lemma 6.4.21.

Lemma 6.4.22 Let Q = v1vy... v, be a path in D, and let w € V(D)-V(Q).
If w cannot be inserted into Q, then dg(w) <t + 1. If, in addition, v, does
not dominate w, then dg(w) < t. O

Let C be a cycle in D. Recall that an (z,y)-path P is a C-bypass if
|[V(P)| >3,z #yand V(P)NV(C) = {z,y}. The length of the path C[z,y]
is the gap of P with respect to C.

Proof of Theorem 6.4.1: Assume that D is non-hamiltonian and C' =
T1%2 ... Tm,mxy is a longest cycle in D. We first show that D contains a C-
bypass. Assume D does not have one. Since D is strong, D must contain a
cycle Z such that |V(Z) N V(C)| = 1. Without loss of generality, we may
assume that V(Z)NV(C) = {x1}. Let z be the successor of z; on Z. Since D
has no C-bypass, z and x5 are non-adjacent. Since z and x5 are a dominated
pair, d(z) + d(z2) > 2n — 1. On the other hand, since D has no C-bypass, we
have do_z, (2) = dz—z,(x2) = 0 and |({z, 22}, ) U (y, {z,22})| < 2 for every
ye V(D) — (V(C)uV(Z)). Thus, d(z) + d(xz2) < 2(n — 1); a contradiction.

Let P = wjusg...us be a C-bypass (s > 3). Without loss of generality,
let u1 = x1, us = 441, 0 < v < m. Suppose also that the gap v of P is
minimum among the gaps of all C-bypasses.

Since C' is a longest cycle of D, v > 2. Let C' = C[zg,2,], C" =
Clzy+1,21], R=D—-V(C), and let z; be any vertex in C’ such that z;—z;.
Let also xj be an arbitrary vertex in C’. We first prove that

dcw (LL'J) Z |V(CH)| + 2. (63)

Since C is a longest cycle and P has the minimum gap with respect to C,
ug is not adjacent to any vertex on C’, and there is no vertex y € V(R) —{uz}
such that either us—y—x) or xr—y—us. Therefore,

dor(ax) + des (uz) < 2(V(C')] - 1) (6.4)

and
dr(zr) + dr(u2) < 2(n—m —1). (6.5)

By the maximality of C, us cannot be inserted into C”, so by Lemma
6.4.22,
den(ug) < |V(C")| + 1. (6.6)

The fact that the pair of non-adjacent vertices {x;,us} is dominated by
x1 along with (6.4), (6.5) and (6.6), implies that

2n — 1 <d(z;) + d(uz) < der(z;) +2n — |V(C")| — 3.

This implies (6.3).



242 6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

By (6.3) and Lemma 6.4.22, 2 can be inserted into C”. Since C is a
longest cycle, it follows from Lemma 6.4.17 that there exists 8 € {3,...,v}
so that the subpath C|zs,x3_1] can be multi-inserted into C”, but Clxz, z4]
cannot. In particular, zg cannot be inserted into C”. Thus, by (6.3) and
Lemma 6.4.22, z1 does not dominate x5 and dev (xg) < |V(C”)|. This along
with (6.4)-(6.6) gives d(zg) + d(u2) < 2n — 3. Since us forms a dominated
pair with x5, we have that d(ug) > n — 1. Hence,

d(zg) <n—2. (6.7)

By the definition of multi-insertion, there are o € {2,3,...,5 — 1} and
i € {y+1,...,m} such that x;—z, and zg_1—x;4+1. Observe that the
pair {x3, 2,41} is dominated by xzg_1. Thus, by (6.7) and the assumption
of the theorem, either xg—x;41 or z;41—xg. If xg—x;41, then the path
Plza, ] can be multi-inserted into C”" which contradicts our assumption.
Hence, 2,11 —x3. Considering the pair 3, z; 12, we conclude analogously that
x;12—xg. Continuing this process, we finally conclude that z;—zg, contra-
dicting the conclusion above that the arc x;x3 does not exist. O

Proof of Theorem 6.4.5: Assume that D is not hamiltonian and C =
1Ty ...Tmay is a longest cycle in D. Set R = D — V/(C'). We first prove that
D has a C-bypass with 3 vertices.

Since D is strong, there is a vertex y in R and a vertex x in C such
that y—=x. If y dominates every vertex on C', then C is not a longest cycle,
since a path P from a vertex x; on C to y such that V(P) NV (C) = {z;}
together with the arc y—x;y; and the path C[z;41,2;] form a longer cycle
in D. Hence, either there exists a vertex x,, € V(C) such that z,—y—x,41,
in which case we have the desired bypass, or there exists a vertex z; €
V(C) so that y and z; are non-adjacent, but y—x;. Since the pair {y,z;}
dominates xj11, d*(z;) + d~ (y) > n. This implies the existence of a vertex
z € V(D) — {xj,xj41,y} such that z;—z—y. Since C is a longest cycle,
z € V(C). So, B = zyx ;41 is the desired bypass.

Without loss of generality, assume that z = x; and the gap j of B with
respect to C' is minimum among the gaps of all C-bypasses with three vertices.
Clearly, j > 2.

Let C' = Clzg,z;] and C” = Clxj41,x1]. Since C is a longest cycle,
C" cannot be multi-inserted into C”. It follows from Lemma 6.4.21 that
d&n(z;) + dgn(x2) < [V(C")| + 1. By Lemma 6.4.22 and the maximality
of C, der(y) < |V(C")| + 1. Analogously to the way we derived (6.4) in the
previous proof, we get that dr(y) +df(z;) +dg(z2) < 2(n—m —1). Clearly,
d&i(x;) +dg (v2) < 2|V(C")| — 2. Since de (y) = 0, the last four inequalities
imply
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Since y is adjacent to neither x, nor x;, the assumption of the theorem
implies that d* (y) + d~(z2) > n and d~ (y) + d* (z;) > n, which contradicts
(6.8). O

6.5 Longest Paths and Cycles in Degree-Constrained
Oriented Graphs

One may expect that for oriented graphs (i.e., digraphs with no 2-cycles)
a result much stronger than Corollary 6.4.3 holds. Thomassen [854] raised
the natural question of determining the minimum semi-degree that ensures a
Hamilton cycle in an oriented graph. The first attempt to answer this question
was made by Héggkvist [487] who proved that if 6°(D) > (3 —27'®)n, then D
is hamiltonian. Haggkvist [487] also constructed the following infinite family
of non-hamiltonian oriented graphs D of order n with 6°(D) = (3n — 5)/8.

Let n = 4p + 3, where p is an odd positive integer. Define a digraph D as
follows: V(D) is the disjoint union of four sets Y, Z, R; and R of cardinalities
p+2,p+1,p and p, respectively. The arc set A(D) = A(C4[Ry,Y, Ry, Z]) U
AR, UAR,UAy z, where Ar, and Ap, are the arcs sets of regular tournaments
on vertex sets R; and Ry, respectively, and Ay z is the arc set of a bipartite
tournament 7' with partite sets Y and Z in which |df(v) — d7(v)| < 1 for
each v € YUZ (such a bipartite tournament exists by Exercise 1.27). Observe
that 6+(D) = d(r) = &5t + p+ 1 = 222 for each r € Ry and D has no
cycle factor by Proposition 4.11.7(c).

In fact, the above construction was extended by Keevash, Kiihn and Os-
thus [587] to prove the following;:

Theorem 6.5.1 For any integer n > 3 there is an oriented graph D of order
n with minimum semi-degree [(3n —4)/8] — 1 which does not contain a cycle
factor. O

This theorem implies the right lower bound for the minimum semi-degree
that ensures hamiltonicity of an oriented graph at least for graphs of large
order. Indeed, Keevash, Kithn and Osthus [587] proved the following;:

Theorem 6.5.2 There exists an integer N such that every oriented graph D
of order n > N with §°(D) > [(3n — 4)/8] is hamiltonian. O

The proof of this theorem is quite involved and uses two powerful tools:
Young’s version of the Digraph Regularity Lemma [921] and Csaba’s version
of the so-called Blow-up Lemma [233].

The authors of [587] were unable to settle the following conjecture of
Héggkvist [487] even for large values of n.

Conjecture 6.5.3 Let D be an oriented graph of order n and let 6°(D) +
§T(D) 46 (D) > 22=2. Then D is hamiltonian.
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In support of this conjecture Kelly, Kithn and Osthus [588] proved the
following result.

Theorem 6.5.4 For every a > 0 there exists an integer N = N (&) such that
every oriented graph D of order n > N with §°(D)+6*(D)+6~ (D) > (2+a)n
s hamiltonian. O

Jackson conjectured that for regular oriented graphs the following strong
assertion holds.

Conjecture 6.5.5 [555] Fvery k-regular oriented graph of order at most
4k + 1, where k # 2, contains a Hamilton cycle.

Jackson [555] raised two more conjectures:

Conjecture 6.5.6 FEvery 2-strong oriented graph D has either a Hamilton
cycle or a cycle of length at least 20~ (D) + 2.

Conjecture 6.5.7 FEvery strong oriented graph D has a cycle of length at
least 26°(D) + 1.

In support of both conjectures, Jackson [555] proved that a strong oriented
graph D of minimum in-degree and out-degree k contains either a Hamilton
path or a path of length 2k + 2 and that an oriented graph D of minimum in-
degree and out-degree k contains a path of length 2k. The last result provides
support to the following conjecture of S. Thomassé (private communication,
2002). Recall that the girth g(D) of a digraph D is the length of a shortest
cycle of D.

Conjecture 6.5.8 Let D be a digraph containing a cycle and let g be the
girth of D. Then D has a path of length (g — 1)6T (D).

Even the special case of oriented graphs (i.e., g > 3 and, thus, the lower
bound is 261 (D)) remains open.

6.6 Longest Paths and Cycles in Semicomplete
Multipartite Digraphs

While both Hamilton path and Hamilton cycle problems are polynomial time
solvable for semicomplete multipartite digraphs (the latter was a difficult
open problem for a while and was proved by Bang-Jensen, Gutin and Yeo [97]
using several deep results on cycles and paths in semicomplete multipartite
digraphs, see also [917]), only a characterization of traceable semicomplete
multipartite digraphs is known. In Subsection 6.6.1, we give basic results
on hamiltonian and longest paths and cycles in semicomplete multipartite
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digraphs. Several results of Subsection 6.6.1 are proved in Subsection 6.6.3
using the most important assertion of Subsection 6.6.2. In Subsection 6.6.4,
we formulate perhaps the most important known result on cycles in semi-
complete multipartite digraphs, Yeo’s Irreducible Cycle Subdigraph Theo-
rem, and prove some interesting consequences of this powerful result. Due
to space limitations our treatment of hamiltonian semicomplete multipartite
digraphs is certainly restricted. The reader can find more information on the
topic in the survey papers [89, 90] by Bang-Jensen and Gutin, [457] by Gutin
and [890, 894] by Volkmann, the theses [436, 451, 847, 905, 916], by Guo,
Gutin, Tewes, Winzen and Yeo respectively and the papers cited there.

6.6.1 Basic Results

We start by considering the longest path problem for semicomplete multipar-
tite digraphs. The following characterization by Gutin is proved in Subsection
6.6.3.

Theorem 6.6.1 [//8, 452] A semicomplete multipartite digraph D is trace-
able if and only if it contains a 1-path-cycle factor. One can verify whether
D is traceable and find a hamiltonian path in D (if any) in time O(n?").

This theorem can be reformulated as pc(D) = 1 if and only if pce(D) =1
for a semicomplete multipartite digraph D. Using the result of Exercise 4.67,
the last statement can be easily extended to the following result by Gutin:

Theorem 6.6.2 [/51] For a semicomplete multipartite digraph D, pc(D) =
pce(D). The path covering number of D can be found in time O(n*?®). O

The non-complexity part of the next result by Gutin follows from Theorem
6.6.1. The complexity part is a simple consequence of Theorem 13.8.1.

Theorem 6.6.3 [/52] Let D be a semicomplete multipartite digraph of order
n.

(a) Let F be a 1-path-cycle subdigraph with maximum number of vertices in
D. Then D contains a path P such that V(P) = V(F).
(b) A longest path in D can be constructed in time O(n?). O

We see from Theorem 6.6.1 that the hamiltonian path problem for semi-
complete multipartite digraphs turns out to be relatively simple. The hamilto-
nian cycle problem for this class of digraphs seems to be much more difficult.
One could guess that similarly to Theorem 6.6.1, a semicomplete multipar-
tite digraph is hamiltonian if and only if it is strong and has a cycle factor.
Even though these two conditions (strong connectivity and the existence of a
cycle factor) are sufficient for semicomplete bipartite digraphs and extended
semicomplete digraphs (see Theorems 6.6.4 and 6.6.5), they are not sufficient
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for semicomplete k-partite digraphs (k > 3) (see, e.g., an example later in
this subsection). The following characterization was obtained independently
by Gutin [444] and Héggkvist and Manoussakis [488].

Theorem 6.6.4 A semicomplete bipartite digraph D is hamiltonian if and
only if D is strong and contains a cycle factor. One can check whether D

is hamiltonian and construct a Hamilton cycle of D (if one exists) in time
O(n2'5). O

Some sufficient conditions for the existence of a hamiltonian cycle in a
bipartite tournament are described in the survey paper [457] by Gutin.

Theorem 6.6.5 [/56] An extended semicomplete digraph D is hamiltonian
if and only if D is strong and contains a cycle factor. One can check whether

D is hamiltonian and construct a Hamilton cycle of D (if one exists) in time
O(n2'5). O

These two theorems were generalized by Gutin as follows.

Theorem 6.6.6 [//7, /51] Let D be a strong semicomplete bipartite digraph.
The length of a longest cycle in D is equal to the number of vertices in a cycle
subdigraph of D of mazimum order. One can find a longest cycle in D in time

O(n?).

Theorem 6.6.7 [/51] Let D be a strong extended semicomplete digraph and
let F be a cycle subdigraph of D. Then D has a cycle C which contains all
vertices of F. The cycle C can be found in time O(n3). In particular, if F is
mazximum, then V(C) = V(F), i.e., C is a longest cycle of D.

Proofs of the last two theorems are given in Subsection 6.6.3. One can see
that the statement of Theorem 6.6.7 is stronger than Theorem 6.6.6. In fact,
the analogue of Theorem 6.6.7 for semicomplete bipartite digraphs does not
hold [451], see Exercise 6.21. The following strengthening of Theorem 6.6.7
is proved by Bang-Jensen, Huang and Yeo [106].

Theorem 6.6.8 Let D = (V, A) be a strong extended semicomplete digraph
with decomposition given by D = S[Hy, Ha, ..., Hy], where s = |V(S)| and
every V(H;) is a mazimal independent set in V. Let m;, i € [s], denote
the mazimum number of vertices from H; which are contained in a cycle
subdigraph of D. Then every longest cycle of D contains precisely m; vertices
from each H;, i € [s]. O

One may ask whether there is any degree of strong connectivity, which
together with a cycle factor is sufficient to guarantee a hamiltonian cycle
in a semicomplete multipartite digraph (or a multipartite tournament). The



6.6 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 247

answer is negative. In fact, there is no s such that every s-strong multipartite
tournament with a cycle factor has a Hamilton cycle. Figure 6.5 shows a non-
hamiltonian multipartite tournament 7" which is s-strong (s is the number of
vertices in each of the sets A, B,C, D and X,Y, Z), and has a cycle factor. We
leave it to the reader to verify that there is no Hamilton cycle in T' (Exercise
6.20).

Figure 6.5 An s-strong non-hamiltonian multipartite tournament 7" with a cycle
factor. Each of the sets A, B,C, D and X,Y,Z induces an independent set with
exactly s vertices. All arcs between two sets have the direction shown.

We conclude the description of basic results on hamiltonian semicomplete
digraphs by the following important result which we mentioned above.

Theorem 6.6.9 (Bang-Jensen, Gutin and Yeo) [97] One can verify
whether a semicomplete multipartite digraph D has a hamiltonian cycle and
find one (if it exists) in time O(n"). O

Yeo [917] proved that the problem can be solved in time O(n?).

6.6.2 The Good Cycle Factor Theorem

The purpose of this subsection, based on the paper [93] by Bang-Jensen,
Gutin and Huang, is to prove some sufficient conditions for a semicomplete
multipartite digraph to be hamiltonian.

Let F = C7 U5 be a cycle factor or a 1-path-cycle factor in a digraph
D, where C is a cycle or a path in D and Cs is a cycle. A vertex v €
V(C;) is called out-singular (in-singular) with respect to C5_; if v=C3_;
(C3_;=v); v is singular with respect to C3_; if it is either out-singular or
in-singular with respect to Cs_;.
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Lemma 6.6.10 [93] Let Q U C be a cycle factor in a semicomplete multi-
partite digraph D. Suppose that the cycle @ has no singular vertices (with
respect to C') and D has no hamiltonian cycle, then for every arc xy of Q
either the arc xy itself can be inserted into C, or both vertices x and y can
be inserted into C.

Proof: Assume without loss of generality that there is some arc zy on
such that neither  nor xy can be inserted into C. Since D is a semicom-
plete multipartite digraph and « is non-singular and cannot be inserted into
C, there exists a vertex v on C which is not adjacent to x and v~ —z—v™.
Furthermore, v is adjacent to y since z and y are adjacent. Since zy can-
not be inserted into C, we have v—y. Then D contains a Hamilton cycle
Qly, z]Cv™, v]y, which contradicts the assumption. O

Lemma 6.6.11 [95] Let D be a semicomplete multipartite digraph contain-
ing a cycle factor C1 U Cy such that C; has no singular vertices with respect
to Cs3_;, for both i = 1,2; then D is hamiltonian. Given C1 and Cs, a hamil-
tonian cycle in D can be found in time O(|V(C1)||V(C2)]).

Proof: If at least one of the cycles C7, C5 is even, then by Corollary 6.4.20 and
Lemma 6.6.10 we can find a Hamilton cycle in D in time O(|V(C1)||V(C2)|)-
Thus, assume that both of Cy, Cs are odd cycles. If some vertex in C; can be
inserted into C3_; for some ¢ = 1 or 2, then by Corollary 6.4.18 and Lemma
6.6.10, we can construct a Hamilton cycle in D in time O(|V(Cy)||V(C2))).
Thus, we may also assume that no vertex in C; can be inserted into C5_; for
both ¢ = 1, 2. So, by Lemma 6.6.10, every arc of C; can be inserted into C3_;.

Now we show that either D is hamiltonian or we may assume that every
arc of C; can be inserted between two different pairs of vertices in Cs3_;
(i = 1,2). Cousider an arc z1xo of Cy. Since both 1 and x5 are non-singular
and cannot be inserted into Cs, there exist vertices v1 and v5 on Cy such that
v; is not adjacent to z; and v;—>xi—>v;r7 i =1,2. If v1—x5, then we obtain
a Hamilton cycle. So we may assume that the only arc between x5 and v; is
xov1. For the same reason, we may assume that vy dominates x; but is not
dominated by x;. Now the arc ;22 can be inserted between v; and v; and
between vy and vy .

Hence, z1z2 cannot be inserted between two pairs of vertices only in the
case that v{ = v9 and vy = v;r . We show that in this case D is hamiltonian.
Construct, at first, a cycle C* = Cj[rq,21]Ca[v], vy |z2 which contains all
the vertices of D but v ,v;. The arc v; v; can be inserted into Ci, by the
remark at the beginning of the proof. But v; v; cannot be inserted between
z1 and 9, since v; does not dominate x2 and v; = v2 is not dominated by
x1. Hence, the arc v; v; can be inserted into C* to give a hamiltonian cycle
of D. This completes the proof that either D is hamiltonian or every arc on
C; can be inserted between two different pairs of vertices in C3_;.

Assume without loss of generality that the length of Cy is not greater
than that of C;. Then Cy has two arcs z;y; (¢ = 1,2) that can be inserted
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between the same pair u, v of vertices in Cy. Since C] is odd, one of the paths
Q = Cilyf, 23] and Cy[ys, 7] has odd length. Without loss of generality,
suppose that @ is odd. Obviously, C* = Cs[v, u|C1[z2,y1]v is a cycle of D.
By the fact shown above each arc of the path @ can be inserted into Cs
between a pair of vertices different from wu,v. Therefore, each arc of @) can
be inserted into C*. Hence, by Corollary 6.4.19 we conclude that D has a
hamiltonian cycle H. It is not difficult to verify that H can be found in time

O(IV(C)[V(C2)))- O

Let D be a semicomplete multipartite digraph and let C U C’ be a cycle
subdigraph of D. We write that C~>C" if C' contains singular vertices with
respect to C” and they all are out-singular, and C’ has singular vertices with
respect to C' and they all are in-singular. A cycle factor F = C1UC2U...UC;
is good if for every pair 4, j, 1 <14 < j <t, neither C;~>C} nor Cj~>C;.

Since this definition and the proof of Lemma 6.6.12 are quite important,
we illustrate them in Figure 6.6. Observe that if C,C" are a pair of disjoint
cycles in a semicomplete multipartite digraph D, then (up to switching the
role of the two cycles) at least one of the following four cases applies (see
Figure 6.6):

(a) Every vertex on C has an arc to and from C’.

(b) There exist vertices z € V(C),y € V(C’) such that z=V(C’) and
y=V(C), or V(C")=z and V(C)=y.

(c) C contains distinct vertices x,y such that =V (C") and V(C")=y.

(d) C~=>C".

The alternatives (a)-(c) are covered by the definition of a good cycle factor
(for cycle factors containing only two cycles); the alternative (d) is not.

GO OO RO TR
(a) (b) (c) (d)

Figure 6.6 The four possible situations (up to switching the role of the two cycles or
reversing all arcs) for arcs between two disjoint cycles in a semicomplete multipartite
digraph. In (a) every vertex on C has arcs to and from C’. In (b)-(d) a fat arc
indicates that all arcs go in the direction shown from or to the specified vertex (i.e.,
in (b) all arcs between z and C’ leave x).

The following lemma gives the main result for a good cycle factor con-
taining two cycles.

Lemma 6.6.12 [93] If D is a semicomplete multipartite digraph containing
a good factor Cy U Cs, then D is hamiltonian. A Hamilton cycle in D can be
constructed in time O(|V(C1)||V(C2)]).
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Proof: The first case is that at least one of the cycles C; and Cs5 has no
singular vertices (Situation (a) in Figure 6.6). If both C1, Cs have no singular
vertices, then D is hamiltonian by Lemma 6.6.11 and we can find a Hamilton
cycle in D in time O(|V(C1)]|V(Cs2)]). Assume now that only one of them has
no singular vertices. Suppose without loss of generality that C; contains an
out-singular vertex x and Cy has no singular vertices. Since Cs contains no
singular vertices, C has at least one vertex which is not out-singular. Suppose
that « € V(C) was chosen such that ™ is not out-singular. Hence there is
a vertex y on Cy dominating x*. If z—y, then y can be inserted into C; and
hence, by Lemma 6.6.10 and Corollary 6.4.18, D is hamiltonian (consider
Cs[y™,y] and C4). Otherwise, z is not adjacent to y. In this case, z—y™ and
D has the hamiltonian cycle Cy [z, z]Cs[y™, y]z. The above arguments can
be easily converted into an O(|V(C1)||V(C2)|) algorithm.

Consider the second case: each of C7, Cy has singular vertices with respect
to the other cycle. Assume without loss of generality that C7 has an out-
singular vertex x1. If Cy also contains an out-singular vertex xzo (Situation
(b) in Figure 6.6), then 1 is not adjacent to x5 and x;—x3_, for both i = 1,2.
Hence D is hamiltonian. If Cy contains no out-singular vertices, then it has
in-singular vertices. Since Cy U Csy is a good factor, C7 contains both out-
singular and in-singular vertices (Situation (c¢) in Figure 6.6). Since both C}
and Cs have in-singular vertices, the digraph D’ obtained from D by reversing
the orientations of the arcs of D has two cycles C] and C) containing out-
singular vertices. We conclude that D’ (and hence D) is hamiltonian. Again,
the above arguments can be converted into an O(|V(Cy)||V (C3)|) algorithm.

O

The main result on good cycle factors is the following theorem by Bang-
Jensen, Gutin and Huang. This theorem can be proved by induction on ¢, the
number of cycles in a good cycle factor. We leave the details to the reader.

Theorem 6.6.13 (Bang-Jensen, Gutin and Huang) [93] If D is a
strong semicomplete multipartite digraph containing a good cycle factor F =
CiUCU...UCy (t > 1), then D is hamiltonian. Furthermore, given F one
can find a hamiltonian cycle in D in time O(n?). O

6.6.3 Consequences of Lemma 6.6.12

In this subsection mostly based on [93], we will show that several important
results on semicomplete multipartite digraphs are consequences of Lemma
6.6.12.

Proof of Theorem 6.6.1: It is sufficient to prove that if P is a path and
C is a cycle of D such that V(P)NV(C) = 0, then D has a path P’ with
V(P") = V(P)UV(C). Let P and C be such a pair, and let u be the initial and
v the terminal vertex of P. If w is non-singular or in-singular with respect
to C, then obviously the path P’ exists. Similarly if v is non-singular or
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out-singular with respect to C. Assume now that v is out-singular and v is
in-singular with respect to C.

Add a new vertex w to D and the arcs zw, for all z # u, and the arc wu
to obtain the semicomplete multipartite digraph D’. Then w forms a cycle C’
with P in D’ and C U C" is a good cycle factor of D’. Therefore, by Lemma
6.6.12, D’ has a hamiltonian cycle. Then D contains a hamiltonian path.

It is easy to see that the proof above supplies a recursive O(n?) algorithm
for finding a hamiltonian path in D given a 1-path-cycle factor F. Thus,
the complexity result of this theorem is due to the fact that we can either
construct a 1-path-cycle factor in a digraph or discover that it does not exist
in time O(n?®): see Exercise 4.67. O

To obtain the rest of the proofs in this subsection, we need the following:

Lemma 6.6.14 [93] Let D be a strong semicomplete multipartite digraph
containing a cycle subdigraph F = C1 U Cy U ... U Cy such that for every
pair i,j (1 < i < j <t) C;=C; or C;=C; holds. Then D has a cycle C
of length at least |V (F)| and one can find C in time O(n?) for a given F.
If D is an extended semicomplete digraph, then we can choose C such that

V(F) CV(C).

Proof: Define a tournament T'(F) as follows: {C1,...,C;} forms the vertex
set of T(F) and C;—C; in T'(F) if and only if C;=C; in D. Let H be the
subdigraph of D induced by the vertices of F and let W be a partite set of
D having a representative in Cf.

First consider the case that T'(F) is strong. Then it has a hamiltonian
cycle. Without loss of generality assume that C;Cy...CyC1 is a hamiltonian
cycle in T(F). If each of C; (i € [t]) has a vertex from W, then for every
i € [t] choose any vertex w; of V(C;) N W. Then

Cywy, wy |Calwa, wy ] ... Crlwe, wy |wy

is a hamiltonian cycle in H. If there exists a cycle C; containing no vertices of
W, then we may assume (shifting the cyclic order if needed) that C; has no
vertices from W. Obviously, H has a hamiltonian path starting at a vertex
w € WNV(Cy) and finishing at some vertex v of Cy. Since v—w, H is
hamiltonian.

Now consider the case where T(F) is not strong. Replacing in F every
collection X of cycles which induce a strong component in T'(F) by a hamilto-
nian cycle in the subdigraph induced by X, we obtain a new cycle subdigraph
L of D such that T'(£) has no cycles. The subdigraph T'(£) contains a unique
hamiltonian path Z,Z,...Z,, where Z; is a cycle of L. Since D is strong
there exists a path P in D with the first vertex in Z, and the last vertex in
Z, (1 < ¢ < s) and the other vertices not in £. Assume that ¢ is as small as
possible. Then we can replace the cycles Z,,..., Z, by a cycle consisting of
all the vertices of PU Z,U. ..U Zs except maybe one and derive a new cycle
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subdigraph with less cycles. Continuing in this manner, we obtain finally a
single cycle.

In the case of an extended semicomplete digraph D, if D(V(F)) is not
strong, then T'(F) is not strong. Also, C;=C; implies that C;—C;. This,
combined with the above argument on semicomplete multipartite digraphs,
allows one to construct a cycle C' such that V(F) C V(C).

Using the above proof together with an O(n?) algorithm for constructing
a hamiltonian cycle in a strong tournament (see Theorem 6.3.2 or Exercise
6.5) and obvious data structures one can obtain an O(n?) algorithm. O

Lemma 6.6.15 [93] Let C U C' be a cycle factor in a strong semicom-
plete multipartite digraph D of order n. Then D has a cycle Z of length
at least n — 1 containing all vertices of C. The cycle Z can be found in time

o(v OV

Proof: Suppose that the (existence) claim is not true. By Lemma 6.6.12, this
means that each of C' and C’ has singular vertices with respect to the other
cycle, and all singular vertices on one cycle are out-singular and all singular
vertices on the other cycle are in-singular. Assume without loss of generality
that C' has only out-singular vertices with respect to C’. Since D is strong
C has a non-singular vertex z. Furthermore we can choose x such that its
predecessor x~ on C' is singular. Let y be some vertex of C’ such that y—ux.
If z~ is adjacent to yT, the successor of y on C’, then D has a hamiltonian
cycle. Otherwise z~—y 7" and D has a cycle of length n — 1 containing all
vertices of C'. The complexity result easily follows from the above arguments.

O

The next two results due to Gutin are easy corollaries of Lemma 6.6.15:

Corollary 6.6.16 [///] Let CUC’ be a cycle factor in a strong semicomplete
bipartite digraph D. Then D has a hamiltonian cycle Z. The cycle Z can be
found in time O(|V(C)||[V(C"))).

Proof: Since D is bipartite, it cannot have a cycle of length n — 1. a

Corollary 6.6.17 [449] Let C U C’ be a cycle factor in a strong extended
semicomplete digraph D. Then D has a hamiltonian cycle Z. The cycle Z
can be found in time O(|V(C)||V(C"))).

Proof: If C and C’ have a pair z,y of non-adjacent vertices (z € V(C), y €
V(C")), then obviously z—y™, y—zT and D has a Hamilton cycle that can
be found in time O(|V(C)|V(C")|). Assuming that any pair of vertices from
C and (' is adjacent, we complete the proof as in Lemma 6.6.15. O

Corollaries 6.6.16 and 6.6.17 imply immediately the following useful result.

Proposition 6.6.18 If F = C;UCyU... UCy is a cycle factor in a digraph
which is either semicomplete bipartite or extended semicomplete and there is
no F' = CiUCyU... UC] such that for every i € [k], V(C;) C V(C}) for
some j € [r], then without loss of generality C;=C; for every i < j. O
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Lemma 6.6.15 implies immediately the following result first proved by
Ayel (see [555]).

Corollary 6.6.19 If C is a longest cycle in a strong semicomplete multipar-
tite digraph D, then D — V (C) is acyclic. a

Proof of Theorem 6.6.6: Let 7 = C; U...UC; be a cycle subdigraph of
maximum order in a strong semicomplete bipartite digraph D. We construct
a semicomplete digraph S, a generalization of the tournament 7" in Lemma
6.6.14, as follows. The vertices of S are the cycles in F, C;—Cj in S if and
only if there is an arc from C; to C; in D. Cycles of length two in S indicate
what cycles in F can be merged together by Corollary 6.6.16. Therefore, we
can merge cycles in F till S becomes oriented, i.e., without 2-cycles. Now we
can apply Lemma 6.6.14.

Complexity details are left to the reader. O

Proof of Theorem 6.6.7: The proof is similar to that of Theorem 6.6.6,
applying Corollary 6.6.17 instead of Corollary 6.6.16. Details are left to the
reader as Exercise 6.24. O

6.6.4 Yeo’s Irreducible Cycle Subdigraph Theorem and Its
Applications

While Lemma 6.6.12 is strong enough to imply short proofs of results on
longest cycles in some special families of semicomplete multipartite digraphs
such as semicomplete bipartite graphs and extended semicomplete digraphs,
this lemma does not appear strong enough to be used in proofs of longest cycle
structure results for other families of semicomplete multipartite digraphs. In
this subsection, we formulate the very deep theorem of Yeo on irreducible
cycle subdigraphs in semicomplete multipartite digraphs, the main theorem
in [915], that is more powerful than Lemma 6.6.12. We provide short proofs
of some important consequences of this theorem.

Recall that for two subdigraphs X, Y of D, a path P is an (X,Y)-path
if P starts at a vertex z € V(X), terminates at a vertex y € V(Y) and
V(P) N (V(X) UV(Y)) = {2y}

Theorem 6.6.20 (Yeo’s irreducible cycle subdigraph theorem) [915]
Let D be a semicomplete multipartite digraph with partite sets Vi, Va, ..., V..
Let X C V(D) and let F be a cycle subdigraph of D consisting of t cycles
that covers X, such that t is minimum. Then the following holds.

(a) We can label the cycles Cy,Co, ..., Cy of F, such that C;~>C);, whenever

1<i<j<t.
(b) Assume that Cy,Cs,...,Cy are ordered as stated in (a), then there are
cycles Cry, Cryy oo, Ch, (Mo =1, iy = t), and integers q1,q2, - .-, qm €

[c], such that the following is true. For every (C;,C;)-path P starting at
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u and terminating at v with V(P) NV (F) = {u,v} and 1 <i < j <,
there exists an integer k € [m|, such that nx_1 < i < j < ng and
{u, ve,} S Ve NX. O

By a careful analysis of the proof of Theorem 6.6.20 in [916] one can
obtain the following:

Theorem 6.6.21 [916] Let D be a semicomplete multipartite digraph, and
let X C V(D) be arbitrary. Let F be a cycle subdigraph of D that covers
X. Then in O(|V(D)[?) time we can find a new cycle subdigraph, F', of D,
that covers X, such that F' has the properties (a) and (b) given in Theorem
6.6.20. Furthermore we can find F', such that for every cycle C in F, the
vertices X NV (C) are included in some cycle of F'. O

Theorems 6.6.20 and 6.6.21 are very important starting points of [97],
where polynomial solvability of the Hamilton cycle problem for semicomplete
multipartite digraphs is established. We will prove some important conse-
quences of Theorem 6.6.20 and state several more of them.

Theorem 6.6.22 [915] Every regular semicomplete multipartite digraph is
hamiltonian.

Proof: Let D be a regular semicomplete multipartite digraph. By Exercise
13.17, D contains a cycle factor F = C7; U Cy U ... U C;. We may assume
that F is chosen, such that ¢ is minimum. If ¢ = 1, then D is hamiltonian, so
assume that ¢ > 1.

Let X = V(D). Let Cp,,Cpy,...,Cyp,, and q1,q2,...,qm be defined as
in Theorem 6.6.20. Let yz € A(D) be an arc from y € V(C;), with i €
{2,3,...,t} to x € V(Cy). Part (b) of Theorem 6.6.20 implies that 2, y* €
V,,- Now we define the two distinct arcs a;(yz) = zy™ and as(yx) = z7y.
By Theorem 6.6.20, a1(yx) and as(yz) are arcs in D. Indeed, = and y* (2~
and y) are adjacent. If y™—uaz, then y** € V,,, which is impossible.

If 4’2" and yx are distinct arcs from V(D) —V(Cy) to V(Ch), then we see
that a1 (yx), az(yx), a1(y'z’) and az(y'z’) are four distinct arcs from V(Ch)
to V(D) —V(C4). We have now shown that the number of arcs leaving V(C1)
is at least twice as large as the number of arcs entering V(C7). However, this
contradicts the fact that D is an eulerian digraph (see Corollary 1.7.3). O

Theorem 6.6.23 (Yeo) [915] Let D be a (|k/2] + 1)-strong semicomplete
multipartite digraph, and let X be an arbitrary set of vertices in D such that
X includes at most k vertices from each partite set of D. If there is a cycle
subdigraph F = C1 U . ..U Cy, which covers X, then there is a cycle C in D,
such that X C V(C).

Proof: We may clearly assume that F has the properties described in The-
orem 6.6.20, and t > 2, since otherwise we are done. Let Cy,,,C,,,,...,Cyp,,
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and ¢1,92,...,qm be defined as in Theorem 6.6.20. Since X contains at
most k vertices from each partite set, we have that min{|V,, N V(Cy) N
X|,|\Vy, NV(Chy) N X} = 7 < |k/2]. Assume without loss of generality
that |V, NV(C,,) N X| = r. Since D is (| k/2] + 1)-strong we get that there
exists a (V(Cp,) — (Vo NV(Chy) N X)~,V(Cy) U ... UV(Cp,—1))-path in
D—(Vy,NV(Cp,)NX)~, P =p1...p;. Assume that p; € V(C;) (1 <@ < nq).
By Theorem 6.6.20, the (C,,,C;)-path P contradicts the minimality of F,
since ng <1 < ny andpf%XﬂVql. a

A family of semicomplete multipartite digraphs described in [915] shows
that one cannot weaken the value |k/2| + 1 of strong connectivity in this
theorem. Using the fact that every k-strong digraph of independence number
at most k has a cycle factor (see Proposition 13.8.2) and applying Theorem
6.6.23, we obtain the following two corollaries:

Corollary 6.6.24 [915] If a k-strong semicomplete multipartite digraph D
has at most k vertices in each partite set, then D contains a Hamilton cycle.
O

Corollary 6.6.25 [915] A k-strong semicomplete multipartite digraph has a
cycle through any set of k vertices. O

Theorem 6.6.22 was generalized by Yeo [919] as follows (its proof also
uses Theorem 6.6.20). Let i;(D) = max{|d*(z) —d ™ (z)| : = € V(D)} and
ig(D) = AY(D) — §°(D) for a digraph D (the two parameters are called the
local irregularity and the global irregularity, respectively, of D [919)]).
Clearly, 4;(D) < i4(D) for every digraph D.

Theorem 6.6.26 [919] Let D be a semicomplete c-partite digraph of order n

with partite sets of cardinalities ny,na, ..., n. such that ny < ns < ... < ng.
Ifiy(D) < (n—ne—1 —2n.)/2+ 1 or 4y(D) < min{n —3n.+1,(n — ne_1 —
2n.)/2 + 1}, then D is hamiltonian. O

The result of this theorem is best possible in a sense: Yeo [919] constructed
an infinite family D of non-hamiltonian semicomplete multipartite digraphs
such that every D € D has (D) = ig(D) = (n —ne—1 —2n.+1)/24+1 <
n — 3n. + 2.

There are many corollaries of this theorem including the following one by
Volkmann and Yeo:

Theorem 6.6.27 [897] Every arc of a reqular multipartite tournament is
contained in a Hamilton path. a

Another generalization of Theorem 6.6.22, whose proof is based on The-
orem 6.6.20, was obtained by Guo, Tewes, Volkmann and Yeo [439]. For a
digraph D and a positive integer k, define
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f(D,k) = > (d¥(z) — k) + > (k —d~(2)).

zeV(D),dt (z)>k zeV(D),d~ (z)<k

Theorem 7.5.3 in Ore’s book [733] on the existence of a perfect matching in
a bipartite graph can easily be transformed into a sufficient condition for a
digraph to contain a cycle factor. This condition is as follows. If, for a digraph
D and positive integer k, we have f(D, k) < k—1, then D has a cycle factor.
For a positive integer k > 2, let G}, be a semicomplete 3-partite digraph with
the partite sets Vi = {a}, Vo = {y1,y2,. .-, yr—1} and V53 = {z1,29,..., 2}
and arc set

{yIL‘,%Z,Zy,yU IS va’z € Vg,U € VZ% - Zl} U {le}

The digraph G}, is the converse of G). We observe that f(G},k) = k —1
(Exercise 6.28), but G}, is not hamiltonian, as a hamiltonian cycle would
contain the arc xz; and every second vertex on the cycle would belong to the
partite set V3. Since = has no in-neighbour in V5 — z;, this is not possible.
Clearly, G/ is not hamiltonian either.

Theorem 6.6.28 [/39] Let D be a semicomplete multipartite digraph such
that f(D,k) < k — 1 for some positive integer k. If D is not isomorphic to
G or GY, then D is Hamiltonian. O

The authors of [439] introduced the following family of semicomplete mul-
tipartite digraphs. Let D be a semicomplete multipartite digraph with par-
tite sets V4, Va, ..., Vi. If min{|(z;, V;)|, |(Vj, i)} = 3|V;| for every ver-
tex x; € V; and for every 1 < 4,5 < k, j # i, then D is called a
semi-partitioncomplete digraph. Several sufficient conditions to guar-
antee hamiltonicity of semi-partitioncomplete digraphs were derived in [439].
In particular, the following result was proved.

Theorem 6.6.29 If a strong semi-partitioncomplete digraph D of order n
has less than n/2 vertices in every partite set, then D is hamiltonian. a

6.7 Hamilton Paths and Cycles in Quasi-Transitive
Digraphs

The methods developed in [103] by Bang-Jensen and Huang and [454] by
Gutin to characterize hamiltonian and traceable quasi-transitive digraphs
as well as to construct polynomial algorithms for verifying the existence of
Hamilton paths and cycles in quasi-transitive digraphs can be easily general-
ized to much wider classes of digraphs [89]. Thus, in this section, along with
quasi-transitive digraphs, we consider totally @-decomposable digraphs for
various sets @ of digraphs.
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By Theorem 2.7.5, every strong quasi-transitive digraph D has a decom-
position D = S[Q1,Q2,...,Qs], where S is a strong semicomplete digraph,
s = |V(9)|, and each Q;, i € [s], is either just a single vertex or a non-
strong quasi-transitive digraph. Also, a non-strong quasi-transitive digraph
D with at least two vertices has a decomposition D = T[Hy, Ho, ..., Hy],
where T is a transitive oriented graph, ¢t = |[V(T)|, and every H; is a strong
semicomplete digraph. These decompositions are called canonical decomposi-
tions. The following characterization of hamiltonian quasi-transitive digraphs
is due to Bang-Jensen and Huang [103].

Theorem 6.7.1 [103] A strong quasi-transitive digraph D with canonical
decomposition D = S[Q1,Qa, ..., Qs] is hamiltonian if and only if it has a
cycle factor F such that no cycle of F is a cycle of some Q;.

Proof: Clearly, a Hamilton cycle in D crosses every @Q;. Thus, it suffices to
show that if D has a cycle factor F such that no cycle of F is a cycle of some
Q;, then D is hamiltonian. Observe that V(Q;) N F is a path factor F; of Q;
for every i € [s]. For every i € [s], delete the arcs between end-vertices of all
paths in F; except for the paths themselves, and then perform the operation
of path-contraction for all paths in F;. As a result, one obtains an extended
semicomplete digraph S’ (since S is semicomplete). Clearly, S’ is strong and
has a cycle factor. Hence, by Theorem 6.6.5, S’ has a Hamilton cycle C. After
replacing every vertex of S’ with the corresponding path from F, we obtain
a Hamilton cycle in D. a

Similarly to Theorem 6.7.1, one can prove the following characterization
of traceable quasi-transitive digraphs (see Exercise 6.29).

Theorem 6.7.2 [103] A quasi-transitive digraph D with at least two vertices

and with canonical decomposition D = R|G1,Ga,...,G,] is traceable if and
only if it has a 1-path-cycle factor F such that no cycle or path of F is
completely in some D(V(G;)). O

It appears that Theorems 6.7.1 and 6.7.2 do not imply polynomial al-
gorithms to verify hamiltonicity and traceability, respectively. The following
characterization of hamiltonian quasi-transitive digraphs is given implicitly
in the paper [454] by Gutin:

Theorem 6.7.3 (Gutin) [/54] Let D be a strong quasi-transitive digraph
with canonical decomposition D = S[Q1,Qa2,...,Qs]. Let ny,...,ns be the
orders of the digraphs Q1,Q2,...,Qs, respectively. Then D is hamiltonian
if and only if the extended semicomplete digraph S' = S[K,,, Kny,s .-, Ky.]
has a cycle subdigraph which covers at least pc(Q);) vertices of fnj for every
J € [s].

Proof: Suppose that D has a Hamilton cycle H. For every j € [s], V(Q;)NH
is a kj-path factor F; of Q);. By the definition of the path covering number,
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we have k; > pc(Q;). For every j € [s], the deletion of the arcs between
end-vertices of all paths in F; except for the paths themselves, and then
path-contraction of all paths in F; transforms H into a cycle of S” having at
least pc(Q;) vertices of K, for every j € [s].

Suppose now that S’ has a cycle subdigraph £ containing p; > pc(Q;)
vertices of K, for every j € [s]. Since S’ is a strong extended semicomplete
digraph, by Theorem 6.6.7, S’ has a cycle C such that V/(C) = V(£). Clearly,
every Q; has a p;-path factor F;. Replacing, for every j € [s], the p; vertices
of Fnj in C' with the paths of F;, we obtain a hamiltonian cycle in D. a

Theorem 6.7.3 can be used to show that the Hamilton cycle problem for
quasi-transitive digraphs is polynomial time solvable.

Theorem 6.7.4 (Gutin) [45/] There is an O(n*) algorithm which, given a
quasi-transitive digraph D, either returns a hamiltonian cycle in D or verifies
that no such cycle exists. a

The approach used in the proofs of Theorems 6.7.3 and 6.7.4 in [454]
can be generalized to a much wider class of digraphs as was observed by
Bang-Jensen and Gutin [89]. We follow the main ideas of [89].

Theorem 6.7.5 Let @ be an extension-closed set of digraphs, i.e., D%t = &,
including the trivial digraph K, on one vertex. Suppose that for every digraph
H € & we have pcc(H) = pc(H). Let D be a totally @-decomposable digraph.
Then, given a total @-decomposition of D, the path covering number of D can
be calculated and a minimum path factor found in time O(n*).

Proof: We prove this theorem by induction on n. For n = 1 the claim is
trivial.

Let D be a totally $-decomposable digraph and let D = R[Hq,..., H,]
be a @-decomposition of D such that R € @, r = |V(R)| and every H; (of
order n;) is totally #-decomposable. A pc(D)-path factor of D restricted to
every H; corresponds to a disjoint collection of some p; paths covering V (H;).
Hence, we have pc(H;) < p; < n;. Therefore, arguing similarly to that in the
proof of Theorem 6.7.3, we obtain

pe(D) = min{pc(R[K,,,...,Kp,]) : pe(H;) <p; <n;, i€[r]}. (6.9)

Since @ is extension-closed, and since, for every digraph @ € @, pc(Q) =
pee(Q), we obtain

pC(D) = min{pCC(R[Kpu' .- afpr]) : pC(Hi) <pi<n;, i€ [7”}} (610)

By the result of Exercise 4.70, given the lower and upper bounds pc(H;)
and n; (¢ € [r]), we can find the minimum in (6.10) and thus pc(D) in time
O(n?). Let T(n) be the time needed to find the path covering number of a
totally @-decomposable digraph of order n. Then, by (6.10),
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T(n) = O(n®) + Z T(ny).

Furthermore, T'(1) = O(1). Hence T'(n) = O(n*). O

Recall (see Section 2.11) that @y (P2) is the family of all semicomplete
multipartite, extended locally semicomplete and acyclic digraphs (semicom-
plete bipartite, extended locally semicomplete and acyclic digraphs). Clearly,
both families of digraphs are extension-closed. As we know, pc(D) = pce(D)
for every semicomplete multipartite digraph D (see Theorem 6.6.2), for every
extended locally semicomplete digraph D (by Theorem 5.8.1 in [91]) and ev-
ery acyclic digraph D (which is trivial). Notice that one can check whether a
digraph D is totally @¢-decomposable (totally ®o-decomposable) and, if this
is the case, find a total ®p-decomposition ($o-decomposition) in time O(n*)
(see Section 2.11). Therefore, Theorem 6.7.5 implies the following theorem
by Bang-Jensen and Gutin:

Theorem 6.7.6 [90] The path covering number of a totally Py-decomposable
digraph can be calculated in time O(n?). O

Corollary 6.7.7 [90] One can verify whether a totally $o-decomposable di-
graph is hamiltonian in time O(n%).

Proof: Let D = R[Hy,...,H,], r = |R|, be a decomposition of a strong
digraph D (r > 2). Then, D is hamiltonian if and only if the following family
S of digraphs contains a hamiltonian digraph:

S ={R[K,,,..., K] : pe(H;) <p; <|V(H;)|, i€[r]}

Now suppose that D is a totally @s-decomposable digraph. Then, every
digraph of the form R[K,,,...,K,,] is in 3. We know (see Theorem 6.6.4
and Theorem 5.8.1 in [91]) that every digraph in @, is hamiltonian if and
only if it is strong and contains a cycle factor. Thus, all we need is to verify
whether there is a digraph in S containing a cycle factor. It is easily seen
that there is a digraph in S containing a cycle factor if and only if there is a
circulation in the network formed from R by adding lower bounds pc(H;) and
upper bounds |V (H;)| to the vertex v; of R for every i € [r]. Since the lower
bounds can be found in time O(n*) (see Theorem 6.7.5) and the existence of a
circulation checked in time O(n?) (see Exercise 4.31), we obtain the required
complexity O(n?). O

Since every quasi-transitive digraph is totally @s-decomposable this theo-
rem immediately implies Theorem 6.7.4. Note that the minimum path factors
in Theorem 6.7.5 can be found in time O(n?*). Also, a hamiltonian cycle in
a hamiltonian totally ®s-decomposable digraph can be constructed in time

O(n*).
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6.8 Vertex-Cheapest Paths and Cycles

In this section, we consider problems that generalize the Hamilton path and
cycle problems in a significant way. We prove that the problems of finding
vertex-cheapest paths and cycles in vertex-weighted quasi-transitive digraphs
are polynomial time solvable. The values of the weights can be any reals,
positive or negative. Thus, we can conclude that the longest and shortest
path and cycle problems for quasi-transitive digraphs are polynomial time
solvable. The same result holds for acyclic digraphs as the only non-trivial
problem from the above four is the longest path problem and it is well-known
that it can be solved in polynomial time, see Section 3.3.2. Notice that for
the quasi-transitive digraphs three of the above four problems are non-trivial
(the shortest and longest cycles and longest path) and, in fact, much more
difficult than the longest path problem for acyclic digraphs as the reader can
see in the rest of the section. It appears that the problems are non-trivial
even for semicomplete digraphs. The following results were proved by Bang-
Jensen, Gutin and Yeo for extended semicomplete and locally semicomplete
digraphs.

Theorem 6.8.1 [100] Let D = (V, A) be an extended semicomplete digraph
with a cycle and real-valued costs on the vertices. In time O(n*m + n*logn)
we can find a minimum cost cycle in D. a

Theorem 6.8.2 [98] Let D be a locally semicomplete digraph with real-
valued costs on the vertices. In time O(n(m+nlogn)) we can find a minimum
cost cycle of D. O

The approach described in the previous section seems too weak to allow
us to construct polynomial time algorithms for vertex-cheapest paths and
cycles in quasi-transitive digraphs. A more powerful method that leads to
such algorithms was first suggested by Bang-Jensen, Gutin and Yeo [100]
and, in the rest of this section, we describe this method.

6.8.1 Vertex-Cheapest Paths and Cycles in Quasi-Transitive
Digraphs

Recall that the cost of a subset of vertices is the sum of the costs of its
vertices and the cost of a subdigraph is the sum of the costs of its vertices.
For a digraph D of order n and i € [n] we define mp;(D) (mpc;(D)) to
be the minimum cost of an i-path (i-path-cycle) subdigraph of D. We set
mpo(D) = 0 and mpcy(D) is zero if D has no negative cycle and otherwise
it is the minimum cost of a cycle subdigraph in D. Note that mpo(D) and
mpco(D) always exist as we may take single vertices as paths and we always
have mpc; (D) < mp;(D). For any digraph D with at least one cycle we denote
by mc(D) the minimum cost of a cycle in D.
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Let D = (V, A) be a digraph and let X be a non-empty subset of V. We
say that a cycle C in D is an X-cycle if C' contains all vertices of X. In this
section, we consider the following problems for a digraph D = (V, A) with n
vertices and real-valued costs on the vertices:

(P1) Determine mp;(D) for all i € [n].
(P2) Find a cheapest cycle in D or determine that D has no cycle.

Clearly, problems (P1) and (P2) are NP-hard as determining the numbers
mp1(D) and mc(D) generalize the hamiltonian path and cycle problems (as-
sign cost —1 to each vertex of D). The problem (P2) can be solved in time
O(n?) when all costs are non-negative using an all pairs shortest path calcu-
lation. The problems (P1) and (P2) were solved in [87] for the special case
when all costs are non-negative. However, the approach of [87] cannot be used
or modified to work with negative costs. Bang-Jensen, Gutin and Yeo [100]
managed to obtain an approach suitable for arbitrary real costs.

6.8.2 Minimum Cost k-Path-Cycle Subdigraphs

In this subsection, we will use certain notions and results on network flows
from Chapter 4. As in Chapter 4, we will allow capacities and costs on the
vertices in our networks. This makes it easier to model certain problems
for digraphs and it is easy to transform such a network into one where all
capacities and costs are on the arcs (see Subsection 4.2.4 for details). With
these remarks in mind, the following lemma follows directly from Lemma
4.2.4 and Proposition 4.10.7.

Lemma 6.8.3 Let N = (V, A) be a network with source s and sink t, capac-
ities on arcs and vertices and a real-valued cost c(v) for each vertex v € V.
For all integers i such that there exists a feasible (s,t)-flow of value i in N,
let f; be a minimum cost (s,t)-flow in N of value i and let c¢(f;) be the cost
of fi. Then, for all i where all of fi_1, fi, fi+1 exist, we have

c(firr) = c(fi) = c(fi) — e(fim1)- (6.11)
O

Recall that a cycle subdigraph of a digraph D is a collection of vertex-
disjoint cycles of D.

Lemma 6.8.4 Let D = (V, A) be a digraph with real-valued cost function
¢ on the vertices. In time O(n(m + nlogn)) we can determine the number
mpco(D) and find a cycle subdigraph of cost mpcy(D) if mpey(D) < 0.

Proof: Let H(w) be the digraph on 4 vertices wy, wy, w3, w4 and the following
arcs wiws, Wal, Wols, Wy, Waws. Let D* = (V*, A*) be obtained from D
as follows: replace every vertex v by the digraph H(v). Furthermore, for
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every original arc uv € A, D* contains the arc uqv;. There are no costs on
the vertices and all arcs have cost 0 except the arcs of the form vovs which
have cost c(v). Observe that mpco(D) is precisely the minimum cost of a
spanning cycle subdigraph in D*. Let V* = {x1,x2,...,24,}. Construct a
bipartite graph B with partite sets L = {1,...,04,} and R = {ry,...,r4n},
in which ¢;r; is an edge if and only if x;2; € A*. Moreover, the cost of ¢;r;
is equal to the cost of x;x;. Observe that a minimum cost perfect matching
in B corresponds to a minimum cost cycle subdigraph in D*. We can find a
minimum cost perfect matching in B in time O(n(m-+nlogn)), see the remark
after the proof of Theorem 11.1 in [622]. Using the transformation from B to
D*, we can compute the minimum cost of a spanning cycle subdigraph F' in
D* in time O(n(m-+mnlogn)). If this cost is negative, we can find a minimum
cost cycle subdigraph of D within the same time. a

Lemma 6.8.5 Let D = (V, A) be a vertex-weighted digraph.

(a) In total time O(n?m + n3) we can determine the numbers
{mpci(D), mpea(D), ...,mpc, (D)} and find j-path-cycle subdigraphs F;,
j=1,2,...,n, where F; has cost mpc;(D).

(b) The costs mpc;(D) satisfy the following inequality for every i € [n — 1]:

mpci+1(D) — mpe; (D) > mpe; (D) — mpe;—1(D). (6.12)

Proof: Form a network N (D) from D by adding a pair s,t of new vertices
along with arcs {(s,v), (v,t): v € V}. Let all vertices and all arcs of D have
lower bound 0 and capacity 1. Let ¢(s) = ¢(t) = 0, let each other vertex of
N(D) inherit its cost from D and let all arcs have cost 0.

Suppose F} is a j-path-cycle subdigraph of D. Using F; we can obtain
a feasible flow f; of value j in N(D) if we assign f;(a) = 1 to all arcs a in
F; and those arcs a of N(D) that start (terminate) at s () and terminate
(start) at the initial (terminal) vertex of a path in Fj, and f;(a) = 0 for all
other arcs of N(D). Similarly, by Theorem 4.3.1, we can transform a feasible
integer-valued (s, t)-flow of value j in N(D) into a j-path-cycle subdigraph
of D.

Notice that N (D) has a feasible integer-valued (s,t)-flow of value k for
any integer k = 0,1,...,n. Thus it follows from the observations above that
for every j = 0,1,...,n the value mpc;(D) is exactly the minimum cost of
a flow of value j in N(D). Now (6.11) implies that the inequality (6.12) is
valid.

It remains to prove (a). It follows from Lemma 6.8.4 that we can find a
minimum cost flow f of value 0 in time O(n?®). Now we can use the Buildup
algorithm from Subsection 4.10.2 starting from f. Using the Buildup algo-
rithm we can find feasible integer-valued flows f; for all j € [n], such that
fj is a minimum cost feasible (s,t)-flow of value j in N(D), in total time
O(n*m) (the complexity of obtaining f;41 starting from f; is O(nm)). This
proves (a). O
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6.8.3 Cheapest i-Path Subdigraphs in Quasi-Transitive Digraphs

By Theorem 6.6.1, in a semicomplete multipartite digraph D all cycles of a
k-path-cycle subdigraph with & > 1 can be merged with one of the paths
to form a new path. This easily implies the following lemma which plays an
important role in our algorithms.

Lemma 6.8.6 Let D be a semicomplete multipartite digraph. Then for every
i € [n] we have mp;(D) = mpc;(D). O

The next theorem shows that (P1) is polynomially solvable for quasi-
transitive digraphs.

Theorem 6.8.7 Let D = (V, A) be a vertez-weighted quasi-transitive di-
graph. Then the following holds:

(a) In total time O(n*m + n3) we can find for every i € [n], the value of
mp; (D) and an i-path subdigraph F; of cost mp;(D).
(b) For all i € [n — 1] we have

mpit1(D) — mp;(D) = mp;(D) — mp;—1(D). (6.13)

Proof: We prove (b) by induction on n. The statement vacuously holds for
n = 1 and is easy to verify for n = 2 (recall that, by definition, mpo(D) = 0).
This proves the basis of induction and we now assume that n > 3.

By Theorem 2.7.5, D has a decomposition D = T[Q1,...,Q4], t =
|T| > 2, where T is an acyclic digraph or a semicomplete digraph. Let
D' =T[K,,,...,K,,] be obtained from D by deleting all arcs inside each

Qi, i € [t]. Assign costs to the vertices vf,...,vE of K,,, as follows:
¢ (v) = mp;(Qr) — mpj—1(Qr). (6.14)

By the induction hypothesis (b) holds for @ implying that we have

d(vf) < (v, ,) for every j > 1. (6.15)

Let F! be an i-path-cycle subdigraph of D’. If T is acyclic, then D’ is
acyclic and, thus, F/ is an é-path subdigraph of D’. If T' is semicomplete, then
D' is extended semicomplete and, thus, by Theorem 6.6.1 and Lemma 6.8.6,
we may assume that F/ is an i-path subdigraph of D’. Hence, mp;(D’) =
mpe;(D') and it follows from Lemma 6.8.5(b) that (6.13) holds for D’. Thus
it suffices to prove that mp;(D) = mp;(D’).

Let F/ be an i-path subdigraph of D’ and let py denote the number of
vertices from K,, which are covered by F/. Since all vertices of K, are
similar it follows from (6.15) that we may assume (by making the proper re-

k

placements if necessary) that F! includes v¥,.. ., Uy, - For each k, replace
k k

the vertices vf,...,v, in F! by a pp-path subdigraph of Q) with cost
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mpp,, (Qr) = Y05, /(vF). As a result, we obtain, from F}, an i-path subdi-

graph F; of D for which we have ¢/ (F/) = Y.t _, mp,, (Q1) = ¢(F;) and, thus,
c(F;) = ¢ (F). Reversing the process above it is easy to get, from an i-path
subdigraph of D, an i-path subdigraph F/ of D’ such that ¢(F;) = ¢/(F}).
This shows that mp;(D) = mp;(D’) and hence (6.13) holds for D by the
remark above.

We prove the complexity by induction on n. Let m’ be the number of arcs
in D’ and recall that all these arcs are also in D. Clearly when a digraph H has
|V (H)| < 2 we can choose a constant ¢; so that we can determine the numbers
mp;(H), i = 1,2,...,|V(H)|, in time at most ¢;|V(H)|?>(|A(H)| + |V (H)|).
Now assume by induction that for each @); we can determine the desired
numbers inside @); in time at most clng(mi + n;). This means that we can
find the numbers mp;(Q;) for all j € [¢] and i € [n;] in total time

¢ ¢
chn?(mj +n;) < cin? Z(mj +nj) = cin®(m —m’ +n).
j=1 j=1

By Lemma 6.8.5(a), Theorem 6.6.1 and Lemma 6.8.6, there is a constant ¢y
such that in total time at most con?(m’ + n) we can find, for every j € [n],
a j-path-cycle subdigraph of cost mp;(D’) in D’. It follows from the way
we construct F; above from F) that if we are given for each k € [t] and
each 1 < j < ny a j-path subdigraph in @ of cost mp;(Qy), then we can
construct all the path subdigraphs F,., 1 < r < n, in time at most c3n® for
some constant cz. Hence the total time needed by the algorithm is at most

cin?(m —m' +n) + con®(m/ +n) + czn® =
cin?(m+n) + (co — c)n’m/ + (co + c3)n®,
which is at most ¢;n?(m + n) for ¢; sufficiently large. O

The next theorem is an easy consequence of Theorem 6.8.7 (assign all
vertices cost —1).

Theorem 6.8.8 One can find a longest path in any quasi-transitive digraph
in time O(n*m + n?). O

Sometimes, one is interested in finding path subdigraphs that include
maximum number of vertices from a given set X or avoid as many vertices
of X as possible. We consider a minimum cost extension of this problem in
the next result.

Theorem 6.8.9 Let D = (V, A) be a vertez-weighted quasi-transitive digraph
and let X C V be non-empty. Let p; be the mazrimum possible number of
vertices from X in a j-path subdigraph and let g; be maximum possible number
of vertices from X not in a j-path subdigraph. In total time O(n*m +n3) we
can find, for all j € [n], a cheapest j-path subdigraph which includes p; (avoids
g;, respectively) vertices of X.



6.9 Hamilton Paths and Cycles in Various Classes of Digraphs 265

Proof: Let C' =} .y |c(v)| and subtract C'+1 from the cost of every vertex
in X. Now, for each j € [n], every cheapest j-path subdigraph F; must cover
as many vertices from X as possible, i.e., p; vertices. Furthermore, since
the new cost of Fj is exactly the original one minus p;(C + 1), cheapest
Jj-path subdigraphs covering p; vertices from X are preserved under this
transformation. Now the ‘including’ part of the claim follows from Theorem
6.8.7(a). The ‘avoiding’ part can be proved similarly, by adding C'+1 to every
vertex of X. O

6.8.4 Finding a Cheapest Cycle in a Quasi-Transitive Digraph

Bang-Jensen, Gutin and Yeo obtained the following;:

Theorem 6.8.10 [100] For quasi-transitive digraphs with vertez-weights the
minimum cost cycle problem can be solved in time O(n®logn).

Proof: Let D be a quasi-transitive digraph. If D is not strong, then we simply
look at the strong components, so assume that D is strong. By Theorem 2.7.5,
D =TI[Q1,...,Q:, where T is a strong semicomplete digraph, and each Q;
is either a single vertex or a non-strong quasi-transitive digraph.

Suppose we have found a minimum cost cycle C; in each (); which contains
a cycle. Then clearly the minimum cost of a cycle in D is the minimum cost
cycle among those cycles C; that exist and the minimum cost of a cycle C
which intersects at least two @Q;’s. Hence it follows that applying this approach
recursively we can find the minimum cost cycle in D. Now we show how to
compute a minimum cost cycle C' as above.

Let D’ be defined as in the proof of Theorem 6.8.7 including the vertex-
costs. It is easy to show using the same approach as when we converted
between i-path subdigraphs of D’ and D in the proof of Theorem 6.8.7, that
the cost of C' is precisely mc(D’). Now it follows from Theorem 6.8.1 that we
can find the cycle C in time O(n®*m + ntlogn).

Since we can construct D’ including finding the costs for all the vertices
in time O(n?m + n3) by Theorem 6.8.7 and there are at most O(n) recursive
calls, the approach above will lead to a minimum cost cycle of D in time
O(n*m-+nblogn). In fact, we can bound the first term as we did in the proof
of Theorem 6.8.7 and obtain O(n®*m + n’logn) = O(n®logn) rather than
O(n*m + n®logn). This completes the proof. O

6.9 Hamilton Paths and Cycles in Various Classes of
Digraphs
Let us start from the following simple observation.

Proposition 6.9.1 The line digraph L(D) is hamiltonian if and only if D
is eulertan. O
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Grotschel and Harary [427] showed that only very few bridgeless graphs
have the property that every strong orientation is hamiltonian.

Theorem 6.9.2 [/27] Let G be a bridgeless graph. If G is neither a cycle nor
a complete graph, then G contains a strong non-hamiltonian orientation. O

However, Thomassen proved in the following result that there are many
more graphs with the property that every strong orientation is traceable.

Theorem 6.9.3 [857] Let G be a 2-edge-connected undirected graph such
that every connected component of G is either bipartite or an odd cycle of
length at least 5. Also assume that G has at most one non-bipartite compo-
nent. Then every strong orientation of G is traceable.

To prove Theorem 6.9.3, we need the following lemma whose proof is left
as Exercise 6.32.

Lemma 6.9.4 Let L be the complement of an odd cycle ujus ... usgr1u1,
k > 2, and let F be an orientation of L. Then, there arei # j € {1,2,...,2k+
1} such that UUjUi41 O Uiy 1U;U; 95 a path in F. O

Proof of Theorem 6.9.3: Let Gq,...,G, be bipartite connected com-
ponents of G such that A;, B; are partite sets of Gy, i € [r]. Let Z =
ULUg . . . Ugg+1u1 be the odd cycle in G, if one exists.

Let H be a strong orientation of G. Define a partition A, B of V(G) as
follows. Let A* = A U...UA, and B* = By U...U B,. If Z does not exist
(in G), then A = A*, B = B*. Otherwise, by Lemma 6.9.4, without loss of
generality, we have that there exists a j such that uw;u;us is a directed path
in H. Let A = A*U{us,us,...,uspt1}, B=B*U{ug,uq,...,usr}tU{us}.
By this construction, H(A) is a tournament and H(B) is either a tournament
(if Z does not exist) or H has a path zzy such that x,y € B and zy € G(B).

We now show that H has a cycle C including all vertices of A. If H(A)
is strong, then C' exists by Camion’s theorem (Corollary 1.5.2). If H(A) is
not strong, then there is a shortest path P in H from the terminal strong
component of H(A) to its initial strong component. Let P start at u and
terminate at w. (Clearly, P does not have vertices other than u and w in
these two components.) It is easy to check that H((A — V(P)) U {u,w}) has
a hamiltonian (w, u)-path Q. The paths P and @ form a cycle containing A.
Let C be a longest cycle containing A.

If H—-V(C) is a tournament, then some vertex of C' dominates a vertex v
of the initial strong component of H —V(C'). The tournament H — V(C) has
a hamiltonian path starting at v; this path can be extended to a hamiltonian
path in H. Thus, we may assume that H — V(C) is not a tournament. In
particular, x,y € V(H) — V(C). Let C = vyvs...v,v1. We consider two
cases.
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Case 1: z € V(C). We first prove that C contains vertices v;, v;4; such
that v; dominates one of z,y and wv;1; is dominated by the other one and
1 < j <m — 1. Since G has no triangles, each of z* and 2~ is adjacent to at
least one of x,y. By the maximality of C, if 2% and y are adjacent, we must
have zt—y and then z, 27T is the desired pair. Hence, we may assume that
2T is adjacent to = and, hence, either z, 2T is the desired pair or z*—xz. Now
considering z~ one can prove that either 2, z is the desired pair or 2=, 2T
is the desired pair.

Among all pairs v;,v;4; satisfying the above property choose one such
that j is the smallest possible. We may assume (by interchanging x and y if
needed) that v;—z and y—wv;1;. We show that j = 1. Assume that j > 1.
Because of the minimality of j,  is not dominated by v;1s when 1 < s < j
and because of the maximality of C, x does not dominate v;;1. Hence, x is
not adjacent to v;41. Similarly, we can see that y is not adjacent to vi4;—1
and none of the vertices v;,,, 1 < s < j, is dominated by y. Since G has no
triangle, j > 3 and v;41—y and £—v;;_1; a contradiction to the minimality
of j. Thus, we may assume that v;—z, y—v;11.

We add to the oriented graph H—V (C') the arc yx obtaining a tournament
T. Let v be a vertex in the initial strong component of 7' dominated by a
vertex v in C. By Camion’s theorem, T" has a hamiltonian path P starting
at v and terminating at some vertex w. If yx is not on P, then Clu™t,u]P
is a hamiltonian path of H. If yz is on P, then Plv,y|C[vit1,v;|Plz,w] is a
hamiltonian path of H.

Case 2: z € V(C). If H—V(C) is strong, then we consider any arc of
H between x and C (such an arc exists as the degree of z in G equals 2). If
this arc starts (terminates) at x, we add to H — V(C) the arc zy (yr) and
consider a hamiltonian cycle in the resulting tournament. Using this together
with C' and the arc between x and C, it is easy to find a hamiltonian path
in H.

So we assume that H — V(C) is not strong. Let Hy, Ho, ..., H, be an
acyclic ordering of strong components of H — V(C'). We may assume without
loss of generality (consider the converse of H if needed) that at most one of
x,y belongs to V(H;). Clearly, some vertex v in H; is dominated by a vertex
in C. We can find a hamiltonian path in H as in the case when H — V(C)
is a tournament unless for some i, V(H;) = {z} and V(H;+1) = {y} or
V(H;—1) = {y}. But this is impossible due to the existence of xzy. O

In this theorem it is important that G does not contain a 3-cycle. Indeed,
let M be a multipartite tournament consisting of a strong tournament T'
with fixed vertex y and triple x1,x2, 3 of independent vertices such that
N+t (z;) = {y} for every i = 1,2,3. Since |[N T ({z1, 22, 23})| < 2 (see Exercise
4.71), M has no 1-path-cycle factor. (Recall that a multipartite tournament
is traceable if and only if it has a 1-path-cycle factor, see Theorem 6.6.1.)
However, Thomassen [857] remarks that Theorem 6.9.3 is perhaps far from
being the best possible. He claims that by using the method of the proof
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of this theorem, it is not difficult to show that any strong orientation of a
graph, whose complement is a disjoint union of two 5-cycles and independent
vertices, has a hamiltonian path.

Problem 6.9.5 Find a non-trivial extension of Theorem 6.9.3.

We recall that a digraph D is unilateral if for every pair z,y of distinct
vertices of D there is a path between z and y (not necessarily both (x, y)-path
and (y, x)-path). For some of the graphs in Theorem 6.9.3 not only all strong
orientations are traceable, but also all unilateral ones satisfy this property.
This was shown by Fink and Lesniak-Foster in the following theorem.

Theorem 6.9.6 [315] Let G be a graph and let F = Q1 U...UQy be a path
subgraph of G in which every path Q; is of length 1 or 2. Then an orientation
of G — UE_| E(Q;) is traceable if and only if it is unilateral. O

Erdds and Trotter [301] investigated when the Cartesian product of two
directed cycles is hamiltonian. They proved the following (gcd means the
greatest common divisor):

Theorem 6.9.7 Let d = ged(k, m). The Cartesian product CyxCy, is hamil-
tonian if and only if d > 2 and there exist positive integers di,ds such that
dy 4+ de = d and ged(k,dy) = ged(m, ds) = 1. O

For a generalization of Theorem 6.9.7, see Theorem 15.6.2.

In Section 2.5, we introduced de Bruijn digraphs Dg(d, t), Kautz digraphs
D (d,t) as well as their generalizations: Dg(d,n), Dr(d,n), D(d,n,q,r). The
consecutive-d digraphs D(d, n,q,r) are the most general among the digraphs
listed above. Thus, we restrict our attention to these digraphs. Du, Hsu and
Hwang [278] proved the following result for digraphs D(d, n,q,).

Theorem 6.9.8 If ged(n,q) > 2, or ged(n,g) = 1 and ¢ > 5, then

D(d,n,q,r) is hamiltonian. O

Hwang [545] as well as Du and Hsu [277] characterized hamiltonian di-
graphs D(d,n,q,r) for ged(n,q) =1 and d =1 (d = 2, respectively). Chang,
Hwang and Tong [195] showed that every digraph D(4, n, g, r) is hamiltonian.
They also gave examples of digraphs D(3,n, ¢, r), which are not hamiltonian
[194).

Several authors considered hamiltonicity for circulant digraphs. In partic-
ular, Rankin [763] proved the following classic result:

Theorem 6.9.9 A strong circulant digraph Cy(a,b) is hamiltonian if and
only if there are two non-negative integers s and t, such that s+t = ged(sa+
th,n) = ged(a — b,n). O
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Recall that according to Part (c) of Proposition 2.14.1 C, (a1, ag, ..., ap)
is strong if and only if ged(n, a1, as, ..., ap) = 1. There is no characterization
of hamiltonian circulant digraphs C,,(S) with |S| > 3 [568, 650]. Locke and
Witte [650] gave an infinite family of non-hamiltonian circulant digraphs of
out-degree 3. Curran and Witte [235] obtained sufficient conditions for a
circulant digraph of out-degree at least 3 to be hamiltonian and stated the
following conjecture:

Conjecture 6.9.10 Suppose that C,,(S) is strong and |S| > 3. If Cp,(B) is
not strong for every proper subset B of S, then C,,(S) is hamiltonian.

Jirdsek [568] showed that for infinitely many non-hamiltonian circulant
digraphs constructed by Locke and Witte [650] the reversal of any arc pro-
duces a Hamilton cycle. This solved a problem of C. Thomassen stated in
[169], whether there is a non-hamiltonian oriented graph in which the rever-
sal of any arc results in a hamiltonian graph.

In Section 2.14.2 we introduced arc-locally semicomplete (ALS) digraphs
and formulated the following characterization of strong ALS digraphs by
Bang-Jensen: a strong ALS digraph is either semicomplete or semicomplete
bipartite or an extended cycle. Clearly, an extended cycle is hamiltonian if
and only if it has a cycle factor. Thus, this characterization and Theorems
1.5.3 and 6.6.4 imply the following:

Corollary 6.9.11 [75] An ALS digraph is hamiltonian if and only if it is
strong and contains a cycle factor. a

Motivated by arc-locally semicomplete digraphs, Bang-Jensen [75] intro-
duced the following family of digraphs, which we will call Q-digraphs. A
digraph D is a Q-digraph if the following condition holds for every four dis-
tinct vertices x,y, z, w of D: if xy, zy and zw are arcs, then vertices x and w
are adjacent. There are Q-digraphs which are neither semicomplete digraphs
nor semicomplete bipartite digraphs nor extended cycles, see Figure 6.7.

Nevertheless, Bang-Jensen [75] raised the following two conjectures:

Conjecture 6.9.12 A Q-digraph is hamiltonian if and only if it is strong
and has a cycle factor.

Conjecture 6.9.13 The hamiltonian path and cycle problems are polyno-
mial time solvable for Q-digraphs.

Generalizing the notion of f-connectivity of undirected graphs introduced
in [179], Bang-Jensen and Brandt [77] came up with the following notion. Let
f be a monotone increasing function f : Z; — R (i.e., f(z) < f(y) for each
z < y). A digraph D = (V, A) is f-expanding if for every ) # X C V we
have the following: if |X| < |V — NT[X]|, then |[NT(X)| > f(|X]), and if
|X| < |V — N7[X]|, then [N~ (X)| > f(|X]). It is not difficult to show that
every f-expanding digraph D is [f(1)]-strong (Exercise 6.38) and, thus, if
f(1) > 0, then D is strong. Bang-Jensen and Brandt [77] proved the following:
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Figure 6.7 Two hamiltonian @Q-digraphs.

Theorem 6.9.14 If f(k) > 351, then every f-ewxpanding digraph of suffi-
ciently large order is hamiltonian. a

Bang-Jensen and Brandt believe that some degree of polynomial expan-
sion suffices for guaranteeing hamiltonicity of digraphs.

Conjecture 6.9.15 [77] There exists a natural number r so that if f(k) >
k", then every f-expanding digraph is hamiltonian.

Bang-Jensen and Brandt [77] proved that if f(k) > ck, ¢ > 0 and D is an

f-expanding digraph of order n, then D contains a path of length _F5n and

a cycle of length at least n( ).

For a digraph D = (V,A), a set S C V is called a ¢"-set (¢ -set,
respectively) if S has at least two vertices and, for every u € S, there exists
v € S,v # usuch that N*(u)NNT(v) # 0 (N~ (u)NN~(v) # 0, respectively).

A digraph D is called s-quadrangular if, for every ¢™-set S, we have
[JU{NT(u)NNT(v):u#v, u,ve S} >|9]

and, for every ¢~ -set S, we have
[U{N“(u)NN~(v) : u#v, u,v €S} >15|.

Gutin, Jones, Rafiey, Severini and Yeo formulated the following:

Conjecture 6.9.16 [4/6/] Every strong s-quadrangular digraph is hamilto-
nian.

It was shown by Severini [807] that the digraph of a unitary matrix is s-
quadrangular. It follows that if Conjecture 6.9.16 is true, then the digraph of
an irreducible unitary matrix is hamiltonian. Unitary matrices are important
in quantum mechanics and, at present, are central in the theory of quantum
computation [728].

It was proved in [464] that Conjecture 6.9.16 holds for each strong s-
quadrangular digraph D with A°(D) < 3 and every strong s-quadrangular
digraph D has a cycle factor.
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6.10 Exercises

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.
6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

Using the proof of Theorem 6.2.2, Lemma 6.2.1 and Proposition 2.8.3, prove
Corollary 6.2.3.

Prove that every strong locally in-semicomplete digraph has a 2-connected
underlying graph.

Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian cycle if and only if it is strong (Bang-Jensen [66]).

Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian path if and only if it is connected (Bang-Jensen [66]). Hint:
use Proposition 2.9.2.

Give a direct proof of the following result. One can find a longest cycle in
a semicomplete digraph in time O(n?) (Manoussakis [681]). Hint: start by
finding a hamiltonian path P and show that using P we can construct a
hamiltonian cycle in the desired time.

Using Proposition 6.1.5 and Theorem 6.4.1 prove the following:

Proposition 6.10.1 Let D be a digraph of order n. Suppose that, for every
dominated pair of non-adjacent vertices {x,y}, either d(x) > n—1 and d(y) >
n—2ord(zx) >n—2andd(y) >n—1. Then D is traceable.

Prove that the digraph @, introduced before Theorem 6.4.1 is strong and
non-hamiltonian.

Prove Lemma 6.4.21.

Find an infinite family of hamiltonian digraphs that satisfy the conditions of
both Theorems 6.4.1 and 6.4.5, but do not satisfy the conditions of Theorem
6.4.7 and are neither locally out-semicomplete nor locally in-semicomplete
(Bang-Jensen, Gutin and Li [94]).

Find an infinite family of hamiltonian digraphs that satisfy the conditions
of Theorem 6.4.12, but do not satisfy the conditions of Theorem 6.4.7 (Zhao
and Meng [933]).

Prove Corollaries 6.4.18 and 6.4.19.

Using Meyniel’s theorem, prove that if a strong digraph D has at least n? —
3n + 5 arcs, then D is hamiltonian (Lewin [641]).

Prove that every digraph with more than (n—1)? arcs is hamiltonian (Lewin
[641)).

Prove that if the minimum semi-degree of a digraph D of order n is at least
(n +1)/2, then every arc of D is contained in a Hamilton cycle of D.

Construct an infinite family of non-hamiltonian strong digraphs that satisfy
both (6.1) and (6.2) (Bermond and Thomassen [152]).

Let P = viv2...v, be a longest path in an oriented graph D. Prove that if
d~(v1) > 0, then D contains a cycle of length at least d™ (v1) 4+ 2. Deduce
from this that every oriented graph D of positive minimum in-degree contains
a cycle of length at least §~ (D) + 2 (Jackson [555]).
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6.17.

6.18.

6.19.

6.20.
6.21.

6.22.
6.23.

6.24.
6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.
6.33.

6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles

For each integer £ > 1, construct oriented graphs of minimum in-degree k
that have no cycle of length greater than k + 2 (Jackson [555]).

Prove that every vertex of a semicomplete multipartite digraph D belongs to
a longest path in D (Volkmann [888]).

(4+) Give a direct proof of the first (non-algorithmic) part of Theorem 6.6.1
(Gutin [448, 452]).

Show that the multipartite tournament in Figure 6.5 is non-hamiltonian.

Show that the analogue of Theorem 6.6.7 for semicomplete bipartite digraphs
does not hold, i.e., there are a strong semicomplete bipartite digraph D and
a maximum cycle subdigraph F in D such that D(V(F)) is not hamiltonian
(Gutin [451]).

Prove Theorem 6.6.13 by induction on ¢.

By inspecting all intermediate steps in the proof of Corollary 6.6.16, show
that the following statement holds. Let D be a bipartite digraph obtained
by taking two disjoint even cycles C = wjiuz...usx—1u2cu1 and 2 =
V1V2 . .. V2,—102,v1 and adding an arc between vg;—1 and ug; and between
vg; and ug;—1 (in any direction, possibly one in each direction) for all ¢ € [k]
and j € [r]. D is hamiltonian if and only if it is strong. Moreover, if D is
strong, then, given cycles C' and Z as above, a hamiltonian cycle of D can
be found in time O(|V(C)||V (Z)]) (Gutin [451]).

Prove Theorem 6.6.7.

Prove the following proposition. Let D be a strong semicomplete multipartite
digraph of order n and let r be the cardinality of minimum partite set of
D. If for each pair of dominated non-adjacent vertices z,y, d(z) + d(y) >
min{2(n — r) + 3,2n — 1}, then D is hamiltonian (Zhou and Zhang [934]).

Prove that every oriented graph of minimum in-degree and out-degree k > 2,
on at most 2k + 2 vertices, is a multipartite tournament with at most two
vertices in each partite set.

Prove the following theorem due to Jackson:

Theorem 6.10.2 [555] Every oriented graph of minimum in-degree and out-
degree k > 2, on at most 2k + 2 vertices, is hamiltonian.

Check that f(G%,k) = k — 1, where the digraph G, and the function f are
introduced after Theorem 6.6.26.

Characterization of traceable quasi-transitive digraphs. Prove The-
orem 6.7.2 using Theorem 6.6.1. Hint: see the proof of Theorem 6.7.1.

Another characterization of traceable quasi-transitive digraphs.
Formulate and prove a characterization of traceable quasi-transitive digraphs
similar to Theorem 6.7.3.

Prove that if D is a non-strong quasi-transitive digraph with a hamiltonian
path, then UG(D) is not connected.

Prove Lemma, 6.9.4.

Prove that if D is a strong oriented graph of order at least three and D
does not contain, as induced subdigraph, any digraph in Figure 6.8, then
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D is hamiltonian (Kemnitz and Greger [590]). Hint : show that D is locally
out-semicomplete and use the characterization of hamiltonian locally out-
semicomplete digraphs (Gutin and Yeo [477]).

Figure 6.8 Forbidden digraphs in Exercise 6.33. Unoriented arcs can be oriented
arbitrarily.

6.34.

6.35.

6.36.

A counterexample to a conjecture from [590]. Consider the tournament
D with V(D) = {x1,x2,x3, 4,25} and

A(D) = {w122, T2T3, T34, TaT5, T5T1, T1T3, T2T4, T3T5, TaT1, T5T2 }
and any 2-strong tournament 7', containing three vertices yi, y2, ys such that

{192, y2y3, yayn } € A(T).

Let us construct an oriented graph T with vertex set V(D) U V(T') and arc
set
A(D)U A(T) U {y12, Tay1, Y2T2, Tay2, Y34, T2Y3 }.
Prove that
(a) T* is strong.
(b) T does not contain, as induced subdigraph, any orientation of K 3.
(¢) For every vertex v in T, T*(N(v)) is strong.
(d) T™ is not hamiltonian.
(Gutin and Yeo [477])

Connected (g, f)-factors in some semicomplete multipartite di-
graphs. Given a digraph D and two positive integers f(x),g(x) for every
x € V(D), a subgraph H of D is called a (g, f)-factor if g(z) < df;(z) =
dg(z) < f(z) for every z € V(D). If f(z) = g(z) = 1 for every z, then a
connected (g, f)-factor is a hamiltonian cycle. Prove the following result by
Gutin [459]:

Theorem 6.10.3 Let D be a semicomplete bipartite digraph or an extended
locally in-semicomplete digraph. Then D has a connected (g, f)-factor if and
only if D is strongly connected and contains a (g, f)-factor. One can check
whether D has a connected (g, f)-factor in O(n®) time. O

Connected (g, f)-factors in quasi-transitive digraphs. The additional
terminology used in this exercise is introduced in the previous exercise. Prove
the following assertion. The connected (g, f)-factor problem is polynomial
time solvable for quasi-transitive digraphs (Gutin [459]).

6.37. Formulate and prove a ‘cycle’ analog of Theorem 6.8.9.
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6.38. Prove that every f-expanding digraph is [f(1)]-strong.

6.39. Prove that every strong s-quadrangular digraph D has a cycle factor. Hint:
use Proposition 4.11.7(b) (Gutin et al. [464]).



7. Restricted Hamiltonian Paths and Cycles

In this chapter we discuss results on hamiltonian paths and cycles with special
properties. We start by studying hamiltonian paths with one or more end-
vertices prescribed, that is, we study paths which start in a given vertex, paths
which connect two prescribed vertices and, finally, paths which start and end
in specified vertices. Not surprisingly, the level of difficulty of these problems
increases when we fix more and more end-vertices. Even for tournaments the
last problem is still not completely solved.

The next topic covered is hamiltonian cycles which either avoid or con-
tain certain prescribed arcs. These problems are very difficult even for tour-
naments. As we will show in Section 7.4, some of these results imply that
the problem of deciding the existence of a hamiltonian cycle in a digraph
obtained from a semicomplete digraph by adding just a few new vertices and
some arcs is already very difficult. In fact, the problem is highly non-trivial,
even if we add just one extra vertex.

The last topic covered in the chapter is orientations of hamiltonian cycles.
We discuss in some detail one of the main tools in a proof by Havet and
Thomassé of the deep result that every tournament on at least eight vertices
contains every orientation of a hamiltonian undirected path.

7.1 Hamiltonian Paths with a Prescribed End-Vertex

We begin with hamiltonian paths starting or ending at a prescribed vertex.
Besides being of independent interest, results of this type are also useful in
connection with results on hamiltonian paths with both end-vertices pre-
scribed (but the direction of the path is not necessarily given).

To get a feeling for arguing with extended tournament structure, we start
with the following easy result.

Proposition 7.1.1 Suppose that a strong extended tournament D has an
(z,y)-path P such that D — P has a cycle factor. Then D has a hamiltonian
path starting at x and a hamiltonian path ending at y.

Proof: Choose a path P’ starting at x to be as long as possible so that
D — P’ has a cycle factor consisting of the cycles C1,C5,...,Cy, ¢ > 0. By

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, 275
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1_7,
(© Springer-Verlag London Limited 2010
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Proposition 6.6.18, we may assume that C;=C; when 1 < ¢ < j < ¢. Let
P’ = wjusy...u, where u; = z. If ¢ # 0, then, by the choice of P/, u, is
completely dominated by C;. Since D is strong, there is an arc from P’ to
C1. Let u; be the vertex of P’ with largest index ¢ < r such that there is an arc
u;z from u; to Cq and let 2~ be the predecessor of z on Cy. Since ;41 has no
arc to C'1, we obtain 2~ —wu,;41. Here we used the property that nonadjacent
vertices of an extended semicomplete digraph are similar (defined in Chapter
1). Hence C[z,27] can be inserted between u; and u;11, contradicting the
choice of P’. So ¢ = 0 and P’ is a hamiltonian path starting at . An analogous
argument can be applied to show that D has a hamiltonian path ending at
Y. O

The following result, due to Bang-Jensen and Gutin, shows that, for di-
graphs that are either semicomplete bipartite or extended locally semicom-
plete, there is a nice necessary and sufficient condition for the existence of a
hamiltonian path starting at a prescribed vertex.

Theorem 7.1.2 [90] Let D = (V, A) be a digraph which is either semicom-
plete bipartite or extended locally out-semicomplete and let x € V. Then D
has a hamiltonian path starting at x if and only if D contains a 1-path-cycle
factor F of D such that the path of F starts at x, and, for every vertex y of
V —{x}, there is an (x,y)-path* in D. Moreover, if D has a hamiltonian path
starting at x, then, given a I-path-cycle factor F of D such that the path of
F starts at x, the desired hamiltonian path can be found in time O(n?).

Proof: As the necessity is clear, we will only prove the sufficiency. Suppose
that F = PUC1U...UC, is a 1-path-cycle factor of D that consists of a path
P starting at x and cycles C;, i =1,...,t. Suppose also that every vertex of
D is reachable from z. Then, without loss of generality, there is a vertex of P
that dominates a vertex of C;. Let P = z122...2p, C1 = y1¥2 . . . Yq¥1, Where
x = x1 and xp—y, for some k € [p], s € [¢]. We show how to find a new path
starting at = which contains all the vertices of V(P)UV (C1). Repeating this
process we obtain the desired path. Clearly, we may assume that k < p and
that z, has no arc to V(C).

Assume first that D is an extended locally out-semicomplete digraph. If P
has a vertex z; which is similar to a vertex y; in C1, then x;y;11,y;xi41 € A
and using these arcs we see that Plx1,2;]C[yj41,y;]P[Tit1,zp) is a path
starting from x and containing all the vertices of P U C;. If P has no vertex
that is similar to a vertex in C7, then we can apply the result of Exercise
2.38 to Plz, x| and x,C1[ys, ys—1] and merge these two paths into a path
R starting from z;, and containing all the vertices of Pz, z,] U C1. Now,
Plxy1,zr_1)R is a path starting at 2 and containing all the vertices of PUC}.

Suppose now that D is semicomplete bipartite. Then either ys_1—xk11,
which implies that Plz1,2]C1[ys, Ys—1]P[Tk+1,Zp] is a path starting at x

! This is equivalent to saying that D has an out-branching with root z.
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and covering all the vertices of P U C1, or xx11—ys—1. In the latter case,
we consider the arc between xj1o and ys_o. If ys_o—xk12, we can construct
the desired path, otherwise we continue to consider arcs between xyi3 and
ys—s3 and so on. If we do not construct the desired path in this way, then we
find that the last vertex of P dominates a vertex in (7, contradicting our
assumption above.

Using the process above and breadth-first search, one can construct an
O(n?) algorithm for finding the desired hamiltonian path starting at x. O

Just as the problem of finding a minimum path factor generalizes the
hamiltonian path problem, we may generalize the problem of finding a hamil-
tonian path starting at a certain vertex to the problem of finding a path factor
with as few paths as possible such that one of these paths starts at a specified
vertex x. We say that a path factor starts at « if one of its paths starts at
x and denote by pc, (D) the minimum number of paths in a path factor that
starts at x. The problem of finding a path factor with pc, (D) paths which
starts at « in a digraph D is called the PFz PROBLEM?.

Let @1 be the union of all semicomplete bipartite, extended locally semi-
complete and acyclic digraphs. Using an approach similar to that taken in
Section 6.8, Bang-Jensen and Gutin proved the following.

Theorem 7.1.3 [90] Let D be a totally @1-decomposable digraph. Then the
PFz problem for D can be solved in time O(|V (D)[*). O

7.2 Weakly Hamiltonian-Connected Digraphs

Recall that an [z,y]-path in a digraph D = (V,A) is a path which ei-
ther starts at x and ends at y or oppositely. We say that D is weakly
hamiltonian-connected if it has a hamiltonian [z, y]-path (also called an
[z, y]-hamiltonian path) for every choice of distinct vertices z,y € V. Ob-
viously, deciding whether a digraph contains an [z, y]-hamiltonian path for
some z, y is not easier than determining whether D has any hamiltonian path
and hence for general digraphs this is an A'P-complete problem by Theorem
6.1.2 (see also Exercise 7.2). In this section we discuss various results that
have been obtained for generalizations of tournaments. All of these results
imply polynomial algorithms for finding the desired paths.

7.2.1 Results for Extended Tournaments

We start with a theorem, due to Thomassen [856], which has been general-
ized to several super-classes of tournaments as will be seen in the following
subsections.

2 Observe that pc(D) < pc, (D) < pc(D) 4+ 1 holds for every digraph D.
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Theorem 7.2.1 [856] Let D = (V, A) be a tournament and let x1,x2 be
distinct vertices of D. Then D has an [x1, z2]-hamiltonian path if and only
if none of the following holds.

(a) D is not strong and either none of x1,xo belongs to the initial strong com-
ponent of D or none of x1,xo belongs to the terminal strong component
(or both).

(b) D is strong and fori=1 or 2, D — x; is not strong and x3_; belongs to
neither the initial nor the terminal strong component of D — x;.

(¢) D is isomorphic to one of the two tournaments in Figure 7.1 (possibly
after interchanging the names of 1 and xs).

Figure 7.1 The exceptional tournaments in Theorem 7.2.1. The edge between x;
and z2 can be oriented arbitrarily.

The following easy corollary is left as Exercise 7.4:

Corollary 7.2.2 [856] Let D be a strong tournament and let z,y,z be dis-
tinct vertices of D. Then D has a hamiltonian path connecting two of the
vertices in the set {x,y, z}. O

Thomassen [856] used a nice trick in his proof of Theorem 7.2.1 by using
Corollary 7.2.2 in the induction proof. We will give his proof below.

Proof of Theorem 7.2.1: Let z1, x5 be distinct vertices in a tournament
D. Tt is easy to check that if any of (a)-(c) holds, then there is no [z1, 23]
hamiltonian path in D.

Suppose now that none of (a)-(c) hold. We prove, by induction on n, that
D has an [z1,x2]-hamiltonian path. This is easy to show when n < 4, so
assume now that n > 5 and consider the induction step with the obvious
induction hypothesis. If D is not strong, then let D1, Do, ..., Dy, s > 2, be
the acyclic ordering of the strong components of D. Since (a) does not hold,
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we may assume without loss of generality that z1 € V(D7) and z5 € V(Dy).
Observe that D; has a hamiltonian path P; starting at z; and Ds has a
hamiltonian path P; ending at x5. Let P; be a hamiltonian path in D, for
eachi=2,3,...,s—1. Then P, P, ... P;_1 P, is an (21, z2)-hamiltonian path.

If D — z; is not strong for ¢ = 1 or 2, then we may assume without loss
of generality that i = 1. Let Dj,..., D}, p > 2, be the acyclic ordering of the
strong components of D — x;. Since (b) does not hold we may assume, by
considering the converse of D if necessary, that xo belongs to D]'D. Let y be
any out-neighbour of z; in Dj. Our argument for the previous case implies
that there is a (y, x2)-hamiltonian path P in D — z1, implying that x1 P is an
(21, z2)-hamiltonian path in D. Hence we may assume that D — z; is strong
for i =1,2.

If D — {x1,z2} is not strong, then it is easy to prove that D has an
(24, x3—;)-hamiltonian path for ¢ = 1,2 (Exercise 7.1). Hence we only need
to consider the case when D' = D — {x1, 22} is strong. Let ujus ... tup_ouy
be a hamiltonian cycle of D’. By considering the converse if necessary, we
may assume that x1 dominates u;. Then D has an (21, z2)-hamiltonian path
unless x5 dominates u,,_o so we may assume that is the case. By the same
argument we see that either the desired path exists or 1 dominates u,,_3 and
2o dominates u,_4. Now it is easy to see that either the desired path exists,
or n — 2 is even and we have xy—{uy, us, ..., Un—_3}, Ta—>{Ua, Ug, ..., Upn_2}.
If 21 or x5 dominates any vertex other than those described above, then, by
repeating the argument above, we see that either the desired path exists or
{21, 22—V (C), which is impossible since D is strong. Hence we may assume
that

{UQ,"U,4, sy un—Q}'_) x1 '_’{uhufia e 7un—3}7

{ur,ug, ..., up_3p— xo —{us, uy, ..., up_2}. (7.1)

If n = 6, then using that (c) does not hold, it is easy to see that the desired
path exists. So we may assume that n > 8. By induction, the theorem and
hence also Corollary 7.2.2 holds for all tournaments on n — 2 vertices. Thus
D’ has a hamiltonian path P which starts and ends in the set {uy,us,us}
and by (7.1), P can be extended to an (x1, z2)-hamiltonian path of D. O

We now turn to extended tournaments. An extended tournament D does
not always have a hamiltonian path, but, as we saw in Theorem 6.6.1, it
does when the following obviously necessary condition is satisfied: there is
a l-path-cycle factor in D. Thus if we are looking for a sufficient condition
for the existence of an [z, y]-hamiltonian path, we must require the existence
on an [z,y]-path P such that D — P has a cycle factor (this includes the
case when P is already hamiltonian). Checking for such a path factor in an
arbitrary digraph can be done in polynomial time using flows, see Exercise
7.3.
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The next result is similar to the structure we found in the last part of the
proof of Theorem 7.2.1.

Lemma 7.2.3 [92] Suppose that D is a strong extended tournament con-
taining two adjacent vertices x and y such that D — {x,y} has a hamilto-
nian cycle C' but D has no hamiltonian [z, y]-path. Then C is an even cycle,
Nt @) nV(C)=N"(y)ynV(C), N (z) nV(C) = N*(y) N V(C), and the
neighbours of x alternate between in-neighbours and out-neighbours around

C.

Proof: Exercise 7.5. O

Bang-Jensen, Gutin and Huang obtained the following characterization
for the existence of an [z, y]-hamiltonian path in an extended tournament.
Note the strong similarity with Theorem 7.2.1.

Theorem 7.2.4 [92] Let D be an extended tournament and x1,xo be distinct
vertices of D. Then D has an [x1, x3]-hamiltonian path if and only if D has
an [x1,x2)-path P such that D — P has a cycle factor and D does not satisfy
any of the conditions below:

(a) D is not strong and either the initial or the terminal component of D (or
both) contains none of 1 and xa;

(b) D is strong and the following holds fori =1 ori = 2: D—x; is not strong
and either x3_; belongs to neither the initial nor the terminal component
of D—x;, or xs_; does belong to the initial (terminal) component of D—x;
but there is no (x3_;, x;)-path ((x;,x3_;)-path) P' such that D — P’ has
a cycle factor.

(¢) D,D — 1 and D — x5 are all strong and D is isomorphic to one of the
tournaments in Figure 7.1. a

The proof of this theorem in [92] is constructive and implies the following
result (the proof is much more involved than that of Theorem 7.2.1). We point
out that the proof in [92] makes explicit use of the fact that the digraphs have
no 2-cycles. Hence the proof is only valid for extended tournaments and not
for general extended semicomplete digraphs, for which the problem is still
open.

Theorem 7.2.5 [92] There exists an O(y/nm) algorithm to decide if a given
extended tournament has a hamiltonian path connecting two specified vertices
x and y. Furthermore, within the same time bound a hamiltonian [z, y]-path
can be found if it exists. a

Theorem 7.2.4 implies the following characterization of extended tourna-
ments which are weakly hamiltonian-connected (see Exercise 7.7).
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Theorem 7.2.6 [92] Let D be an extended tournament. Then D is weakly
hamiltonian-connected if and only if it satisfies each of the conditions below.

(a) D is strongly connected.

(b) For every pair of distinct vertices x and y of D, there is an [z, y]-path P
such that D — P has a cycle factor.

(¢) For each vertex x of D, D — x has at most two strong components and
if D — x is not strong, then for each vertex y in the initial (respectively
terminal) strong component, there is a (y,x)-path (respectively an (z,y)-
path) P’ such that D — P’ has a cycle factor.

(d) D is not isomorphic to any of the two tournaments in Figure 7.1. O

The following result generalizes Corollary 7.2.2. Note that we must assume
the existence of the paths described below in order to have any chance of
having a hamiltonian path with end-vertices in the set {z,y, z}. The proof
below illustrates how to argue with extended tournament structure.

Corollary 7.2.7 [92] Let x,y and z be three vertices of a strong extended
tournament D. Suppose that, for every choice of distinct vertices u,v €
{z,y, 2}, there is a [u,v]-path P in D so that D — P has a cycle factor.
Then there is a hamiltonian path connecting two of the vertices in {x,y, z}.

Proof: If both D — z and D — y are strong, then, by Theorem 7.2.4, either
D has a hamiltonian path connecting = and y, or D is isomorphic to one
of the tournaments in Figure 7.1, in which case there is a hamiltonian path
connecting x and z. There is a similar argument if both D — z and D — z,
or D —y and D — z are strong. So, without loss of generality, assume that
neither D — x nor D — y is strong. Let S1,S3,...,5; be an acyclic ordering
of the strong components of D — x. Note that S; has an arc to x, since D is
strong.

Suppose first that y € V(S;) for some 1 < i < t. We show that this implies
that D — y is strong, contradicting our assumption. Consider an [z, y]-path
P and a cycle factor F of D — P. It is easy to see that P cannot contain
any vertex of S;y1,...,S5: Hence each of these strong components contains a
cycle factor consisting of those cycles from F that are in S; for j =i+1,...,¢.
In particular (since it contains a cycle), each S; has size at least 3 for j =
i+1,...,t. It also follows from the existence of P and F that every vertex in
S; is dominated by at least one vertex from U = V(S7)U. ..UV (S;_1). Indeed,
if some vertex z € V(5;) is not dominated by any vertex from U, then using
that S,=S5, for all 1 < r < p <t we get that z is similar to all vertices in
U. However, this contradicts the existence of P and F. Now it is easy to see
that D —y is strong since every vertex of S; —y is dominated by some vertex
from V(S1)U...UV(S;—1) and dominates a vertex in V(S;+1)U... UV (Sy).
Hence we may assume that y belongs to S or S;.

By considering the converse of D if necessary, we may assume that y €
V(S1). By Theorem 7.2.4(b), we may assume that there is no (y, z)-path W
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such that D — W has a cycle factor. Thus it follows from the assumption of
the corollary that there is an (z,y)-path P’ = vjvy... v, v1 = x, v, = y such
that D — P’ has a cycle factor F’. Since P’ — x is contained in S, we can
argue as above that each S;, ¢ > 1, has a cycle factor (inherited from F’) and
hence each S; contains a hamiltonian cycle C;, by Theorem 6.6.7.

Note that every vertex of S; which is not on P’ belongs to some cycle
of F' that lies entirely inside S;. Hence, if r = 2 (that is, P’ is just the
arc x—y), then it follows from Proposition 7.1.1 (which is also valid when
the path in question has length zero) that S; contains a hamiltonian path
starting at y. This path can easily be extended to a (y,z)-hamiltonian path
in D, since each S;, i > 1, is hamiltonian. Thus we may assume that r > 3.

If S1 — y is strong, then D — y is strong, contradicting our assumption
above. Let T1,T5s,...,Ts, s > 2, be an acyclic ordering of the strong compo-
nents of S; —y. Note that each V (T;) is either covered by some cycles from the
cycle factor F' of D — P’ and hence T; has a hamiltonian cycle (by Theorem
6.6.5), or is covered by a subpath of P’[vs,v,_1] and some cycles (possibly
zero) from F’ and hence T; has a hamiltonian path (by Theorem 6.6.1). Note
also that there is at least one arc from y to 77 and at least one arc from Tj
to y. If T} contains a portion of P’[vy, v,_1], then it is clear that T} contains
vg. But then D — y is strong since z—ws, contradicting our assumption. So
Ty contains no vertices of P’[v1,v,—1] and hence, by the remark above, T}
has a hamiltonian cycle to which there is at least one arc from y. Using the
structure derived above, it is easy to show that D has a (y,x)-hamiltonian
path (Exercise 7.6). O

It can be seen from the results above that when we consider weak
hamiltonian-connectedness, extended tournaments have a structure which is
closely related to that of tournaments. To see that Theorem 7.2.4 does not
extend to general multipartite tournaments, consider the multipartite tour-
nament D obtained from a hamiltonian bipartite tournament B with classes
X and Y, by adding two new vertices = and y along with the following arcs:
all arcs from = to X and from Y to z, all arcs from y to Y and X to y and an
arc between z and y in any direction. It is easy to see that D satisfies none
of the conditions (a)-(c) in Theorem 7.2.4, yet there can be no hamiltonian
path with end-vertices x and y in D because any such path would contain a
hamiltonian path of B starting and ending in X or starting and ending in Y.
Such a path cannot exist for parity reasons (| X| = |Y]). Note also that we can
choose B so that the resulting multipartite tournament is highly connected.

Bang-Jensen and Manoussakis [110] characterized weakly hamiltonian-
connected bipartite tournaments. In particular, they proved a necessary and
sufficient condition for the existence of an [z, y]-hamiltonian path in a bipar-
tite tournament. The statement of this characterization turns out to be quite
similar to that of Theorem 7.2.4. The only difference between the statements
of these two characterizations is in Condition (c): in the characterization for
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bipartite tournaments the set of forbidden digraphs is absolutely different
and moreover infinite.

7.2.2 Results for Locally Semicomplete Digraphs

Our next goal is to describe the solution of the [z, y]-hamiltonian path prob-
lem for locally semicomplete digraphs. Notice that this solution also covers
the case of semicomplete digraphs and so, in particular, it generalizes Theo-
rem 7.2.1 to semicomplete digraphs.

We start by establishing notation for some special locally semicomplete
digraphs. Up to isomorphism there is a unique strong tournament with four
vertices. We denote this by 7. It has the following vertices and arcs:

V(T}) = {a1,as,a3,a4}, A(T}) = {a1a2, azas, azas, asar, ajas, asay}.

The semicomplete digraphs 77, T, and T} are obtained from 7} by adding
some arcs, namely:

A(T7) = A(T}) U{asay, asas},

A(T}) = A(Ty) U{asar}, A(Ty) = A(Ty) U {aras}.

Let 7, = {T}, T? T}, T}}. It is easy to check that every digraph of 7; has
a unique hamiltonian cycle and has no hamiltonian path between two vertices
which are not consecutive on this hamiltonian cycle (two such vertices are
called opposite).

Let 75 be the set of semicomplete digraphs with the vertex set {z1, z2, a1,
ag,as,aqs} such that each member D of 7g has a cycle ajasagasaq and the
digraph D{{a1, as,as,as}) is isomorphic to one member of 74, in addition,
x; — {a1,a3} — w3_; — {ag,a4} — x; for i = 1 or ¢ = 2. It is straightfor-
ward to verify that 7 contains only two tournaments (denoted by T and
T¢'), namely, the ones shown in Figure 7.1, and that |7g| = 11. Since none
of the digraphs of 7; has a hamiltonian path connecting any two opposite
vertices, no digraph of 7 has a hamiltonian path between z; and xs.

For every even integer m > 4 there is only one 2-strong, 2-regular locally
semicomplete digraph on m vertices, namely, the second power C?, of an
m-cycle (Exercise 7.8). We define

T* ={ C? | mis even and m > 4}.

It is not difficult to prove that every digraph of 7* has a unique hamilto-
nian cycle and is not weakly hamiltonian-connected (Exercise 7.9, see also
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[69]). For instance, if the unique hamiltonian cycle of C_”g is denoted by
UL U2 U3 U4 U5 UUT, then ujuzusu; and usugugus are two cycles of C_"g and
there is no hamiltonian path between any two vertices of {uj,us,us} or of
{ug, ug,ug}.

Let T be the digraph consisting of C2 together with two new vertices
and x9 such that z1 — {u1,us,us} — x9 — {ua, us,ug} — 1. Furthermore,
T2 (T3, respectively) is defined as the digraph obtained from T3 by adding
the arc z1z2 (the arcs z1z2 and zaxq, respectively). Let 7z = {Tg, T2, T3}.
It is easy to see that every element of 7g is a 3-strong locally semicomplete
digraph and has no hamiltonian path between x; and zs.

Before we present the main result, we state the following two lemmas that
were used in the proof of Theorem 7.2.10 by Bang-Jensen, Guo and Volkmann
in [81]. The first lemma generalizes the structure found in the last part of the
proof of Theorem 7.2.1.

Lemma 7.2.8 [81] Let D be a strong locally semicomplete digraph on n > 4
vertices and x1,xo two distinct vertices of D. If D — {x1,x2} is strong, and
Nt(z1) NNt (x3) #0 or N~ (z1) N N~ (x2) # 0, then D has a hamiltonian
path connecting x1 and xs.

Proof: Exercise 7.10. O

Another useful ingredient in the proof of Theorem 7.2.10 is the following
linking result. An odd chain is the second power, P, | for some k > 1, of
a path on an odd number of vertices.

Lemma 7.2.9 [81] Let D be a connected, locally semicomplete digraph with
p > 4 strong components and acyclic ordering D1, Do, ..., D), of these. Suppose
that V(D1) = {w1} and V(D,) = {vi} and that D — x is connected for
every vertex x. Then, for every choice of ug € V(D3) and va € V(Dp_1),
D has two vertex disjoint paths Py from us to vy and Py from wy to vy with
V(P) UV (Py) =V(D) if and only if D is not an odd chain from uy to vy.

Proof: If D is an odd chain, it is easy to see that D has no two vertex-disjoint
(ui,v3—;)-paths, for i = 1,2 (Exercise 7.11). We prove by induction on p that
the converse is true as well. Suppose that D is not an odd chain from uy to
v1. Since the subdigraph D —z is connected for every vertex z, |[NT(D;)| > 2
for all i < p—2and [IN~(D;)| > 2 for all j > 3. If p = 4, then it is not
difficult to see that D has two vertex-disjoint paths P; from wuy to v and P
from wy to ve with V(P1) UV (Py) = V(D) (Exercise 7.13). If p = 5, it is
also not difficult to check that D has the desired paths, unless D is a chain
on five vertices. So we assume that p > 6. Now we consider the digraph D’,
which is obtained from D by deleting the vertex sets {u1,v1}, V(D2 — ug)
and V(Dp_l — 1]2).

Using the assumption on D, it is not difficult to show that D’ is a con-
nected, but not strongly connected locally semicomplete digraph with the
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acyclic ordering {us}, D3, Dy, ..., Dy_o,{v2} of its strong components. Fur-
thermore, for every vertex y of D’, the subdigraph D’ — y is still connected.
Let u be an arbitrary vertex of D3 and v an arbitrary vertex of D,_5. Note
that there is a (ug,u)-hamiltonian path P in D{{u,u} UV (D —ug)) and
similarly there is a (v, v1)-hamiltonian path @ in D({v,v1} UV (Dp_1 — v2)).
Hence if D’ has disjoint (us,v)-, (u, v)-paths which cover all vertices of D',
then D has the desired paths. So we can assume D’ has no such paths. By
induction, D’ is an odd chain from us to vg. Now using that D is not an odd
chain from u; to vp it is easy to see that D has the desired paths. We leave
the details to the reader. O

A weaker version of Lemma 7.2.9 was proved in [69, Theorem 4.5].

Below we give a characterization, due to Bang-Jensen, Guo and Volk-
mann, for the existence of an [z,y]-hamiltonian path in a locally semicom-
plete digraph. Note again the similarity to Theorem 7.2.1.

Theorem 7.2.10 [81] Let D be a connected locally semicomplete digraph
on n vertices and x1 and xo be two distinct vertices of D. Then D has no
hamiltonian [x1,zs]-path if and only if one of the following conditions is
satisfied:

(1) D is not strong and either the initial or the terminal component of D (or
both) contains none of x1,xs.
(2) D is strongly connected, but not 2-strong,
(2.1) thereis ani € {1,2} such that D—x; is not strong and x3_; belongs
to neither the initial nor the terminal component of D — x;;
(2.2) D — 21 and D — x4 are strong, s is a separating verter of D,
D1, Dy, ...,D, is the acyclic ordering of the strong components of
D —s, z; € V(D) and z3—; € V(Dg) with a < 3 — 2. Further-
more, V(Day1) UV (Dat2) U ... UV (Dg_1) contains a separating
vertez of D, or D' = D{(V(Dy) UV (Dgt1)U...UV(Dg)) is an odd
chain from x; to x3_; with N~ (Dys2) N V(D — V(D")) = 0 and
N*+(Ds_s) N V(D = V(D)) = 0.
(3) D is 2-strong and is isomorphic to T? or to one member of Te UTg UT*
and x1,xo are the corresponding vertices in the definitions. a

As an easy consequence of Theorem 7.2.10, we obtain a characterization
of weakly hamiltonian-connected locally semicomplete digraphs. The proof is
left to the interested reader as Exercise 7.12.

Theorem 7.2.11 [81] A locally semicomplete digraph D with at least three

vertices is weakly hamiltonian—connected if and only if it satisfies (a), (b) and
(c) below:

(a) D is strong,
(b) For every x € V(D), D — x has alt most two strong components,
(¢) D is not isomorphic to any member of Tg U Tg UT™. O
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7.3 Hamiltonian-Connected Digraphs

We now turn to hamiltonian paths with specified initial and terminal vertices.
An (z,y)-hamiltonian path is a hamiltonian path from z to y. Clearly,
asking for such a path in an arbitrary digraph is an even stronger require-
ment than asking for an [z,y]-hamiltonian path®. A digraph D = (V, A)
is hamiltonian-connected if D has an (z,y)-hamiltonian path for every
choice of distinct vertices z,y € V.

We can check, in polynomial time, whether a digraph of bounded directed
tree-width? is hamiltonian-connected due the the following theorem by John-
son, Robertson, Seymour and Thomas.

Theorem 7.3.1 [573] For a digraph D of bounded directed tree-width and a
pair x,y of distinct vertices of D, we can check, in polynomial time, whether
D has an (x,y)-hamiltonian path. O

By Lemma 2.13.9, all of the above holds for DAG-width and directed
path-width.

No characterization® for the existence of an (x,y)-hamiltonian path is
known, even for the case of tournaments. However, by Theorem 7.3.6, there
is a polynomial algorithm for the problem in the next section, so in the algo-
rithmic sense a good characterization does exist. The following very impor-
tant partial result, due to Thomassen, was used in the algorithm of Theorem
7.3.6.

Theorem 7.3.2 (Thomassen) [856] Let D = (V, A) be a 2-strong semi-
complete digraph with distinct vertices x,y. Then D contains an (x,y)-
hamiltonian path if either (a) or (b) below is satisfied.

(a) D contains three internally disjoint (x,y)-paths each of length at least
two,
(b) D contains a vertex z which is dominated by every vertex of V. —x and D
contains two internally disjoint (xz,y)-paths each of length at least two.
O

In his proof Thomassen explicitly uses the fact that the digraph is allowed
to have cycles of length 2. This simplifies the proof (which is still far from
trivial), since one can use contraction to reduce to a smaller instance and
then use induction.

3 We know of no class of digraphs for which the [z, y]-hamiltonian path problem is
polynomially solvable, but the (z, y)-hamiltonian path problem is NP-complete.
For arbitrary digraphs they are equivalent from a complexity point of view (see
Exercise 7.2).

4 See Section 2.13 for definitions of directed width parameters.

5 By this we mean a structural characterization involving only conditions that can
be checked in polynomial time.
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An important ingredient in the proof of Theorem 7.3.2, as well as in
several other proofs concerning the existence of an (z,y)-hamiltonian path
in a semicomplete digraph D, is to prove that D contains a spanning acyclic
graph in which x can reach all other vertices and y can be reached by all
other vertices. The reason for this can be seen from the following result which
generalizes an observation by Thomassen in [856].

Proposition 7.3.3 [72] Let D be a path-mergeable digraph. Then D has a
hamiltonian (x,y)-path if and only if D contains a spanning acyclic digraph
H in which dy(x) = df;(y) = 0 and such that, for every vertez z € V(D), H
contains an (x, z)-path and a (z,y)-path.

Proof: Exercise 7.15. O

Theorem 7.3.2 and Menger’s theorem (see Theorem 5.4.1) immediately
imply the following result. For another nice consequence see Exercise 7.16.

Theorem 7.3.4 [856] If a semicomplete digraph D is 4-strong, then D is
hamiltonian-connected. a

Thomassen constructed an infinite family of 3-strongly connected tour-
naments with two vertices x,y for which there is no (z,y)-hamiltonian path
[856]. Hence, from a connectivity point of view, Theorem 7.3.4 is the best
possible.

Theorem 7.3.4 is a very important result with several consequences.
Thomassen has shown in several papers how to use Theorem 7.3.4 to obtain
results on spanning collections of paths and cycles in semicomplete digraphs.
See, e.g., the papers [857, 859] by Thomassen and also Section 7.4.

The next theorem by Bang-Jensen, Manoussakis and Thomassen gener-
alizes Theorem 7.3.2. Recall that for specified distinct vertices s,t, an (s, t)-
separator is a subset S C V — {s,¢} such that D — S has no (s,t)-path. An
(s,t)-separator is trivial if either s has out-degree zero or ¢ has in-degree
zero in D — S.

Theorem 7.3.5 [111] Let T be a 2-strong semicomplete digraph on at least
10 vertices and let x,y be vertices of T such that y—x. Suppose that both of
T—x and T —y are 2-strong. If all (x,y)-separators consisting of two vertices
(if any exist) are trivial, then T has an (x,y)-hamiltonian path. O

Based on Theorem 7.3.5 and several other structural results on 2-strong
semicomplete digraphs Bang-Jensen, Manoussakis and Thomassen proved the
following.

Theorem 7.3.6 [111] The (x,y)-hamiltonian path problem is polynomially
solvable for semicomplete digraphs. a

The algorithm uses a divide-and-conquer approach and cannot be easily
modified to find a longest (z,y)-path in a semicomplete digraph. There also
does not seem to be any simple reduction of this problem to the problem of
deciding the existence of a hamiltonian path from x to y.
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Conjecture 7.3.7 [89] There exists a polynomial algorithm which, given a
semicomplete digraph D and two distinct vertices x and y of D, finds a longest

(z,y)-path.

Note that if we ask for the longest [z,y]-path in a tournament, then this
can be answered using Theorem 7.2.1 (see Exercise 7.18).

Conjecture 7.3.8 [89] There exists a polynomial algorithm which, given
a digraph D that is either extended semicomplete or locally semicomplete,
and two distinct vertices x and y of D, decides whether D has an (x,y)-
hamiltonian path and finds such a path if one exists.

The following extension of Theorem 7.3.4 to extended tournaments has
been conjectured by Bang-Jensen, Gutin and Huang:

Conjecture 7.3.9 [92] If D is a 4-strong extended tournament with an
(z,y)-path P such that D — P has a cycle factor, then D has an (z,y)-
hamiltonian path.

Guo [433] extended Theorem 7.3.4 to locally semicomplete digraphs.

Theorem 7.3.10 (Guo) [433] Let D be a 2-strong locally semicomplete di-
graph and let x,y be two distinct vertices of D. Then D contains a hamilto-
nian path from x to y if (a) or (b) below is satisfied.

(a) There are three internally disjoint (x,y)-paths in D, each of which is of
length at least 2 and D is not isomorphic to any of the digraphs Tg and
T? (see the definition in the preceding section,).

(b) The digraph D has two internally disjoint (x,y)-paths Py, Py, each of
which is of length at least 2 and a path P which either starts at x© or
ends at y and has only x or y in common with Py, Py such that V(D) =
V(P1)UV(Py) UV (P). Furthermore, for any vertex z ¢ V(P1) UV (P),
z has a neighbour on Py — {x,y} if and only if it has a neighbour on
Py, — {z,y}. O

Since neither of the two exceptions in (a) is 4-strong, Theorem 7.3.10
implies the following:

Corollary 7.3.11 [/33] Every 4-strong locally semicomplete digraph is
hamiltonian-connected. a

In [432] Guo used Theorem 7.3.10 to give a complete characterization of
those 3-strongly connected arc-3-cyclic (that is, every arc is in a 3-cycle) lo-
cally tournament digraphs with no hamiltonian path from x to y for specified
vertices  and y. In particular this characterization shows that there exist in-
finitely many 3-strongly connected digraphs which are locally tournament di-
graphs (but not semicomplete digraphs) and are not hamiltonian-connected.
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Thus, as far as this problem is concerned, it is not only the subclass of semi-
complete digraphs which contain difficult instances within the class of locally
semicomplete digraphs. It should be noted that Guo’s proof does not rely on
Theorem 7.3.4. However, due to the non-semicomplete exceptions mentioned
above, it seems unlikely that a much simpler proof of Corollary 7.3.11 can be
found using Theorems 7.3.4 and 2.10.15.

Not surprisingly, there are also several results on hamiltonian-connectivity
in digraphs with many arcs. One example is the following result by Lewin.

Theorem 7.3.12 [6/1] If a digraph on n > 3 vertices has (n — 1)2 + 1 or
more arcs, then it is hamiltonian-connected. a

If a digraph D is hamiltonian-connected, then D is also hamiltonian (since
every arc is in a hamiltonian cycle). The next result, due to Bermond, shows
that we only need a slight strengthening of the degree condition in Corollary
6.4.3 to get a sufficient condition for strong hamiltonian-connectivity.

Theorem 7.3.13 [144] Every digraph D on n vertices with minimum semi-
degree at least ”TH is hamiltonian-connected. O

Overbeck-Larisch showed that if we just ask for weak hamiltonian-
connectedness, then we can replace the condition on the semi-degrees by
a condition on the degrees:

Theorem 7.3.14 [735] Every 2-strong digraph on n vertices and minimum
degree at least n + 1 is weakly hamiltonian-connected. a

Thomassen asked whether all 3-strong digraphs D = (V, A) on n vertices
with d*(z) + d=(z) > n+ 1 for all x € V are necessarily hamiltonian-
connected. However, this is not the case, as was shown by Darbinyan [247].

For further results on hamiltonian cycles containing a subset of the ver-
tices in a prescribed order see Section 10.3.

7.4 Hamiltonian Cycles Containing or Avoiding
Prescribed Arcs

We now turn our attention to hamiltonian cycles in digraphs with the ex-
tra condition that these cycles must either contain or avoid all arcs from a
prescribed subset A’ of the arcs. Not surprisingly, problems of this type are
quite difficult even for semicomplete digraphs. If we have no restriction on the
size of A’, then we may easily formulate the hamiltonian cycle problem for
arbitrary digraphs as an avoiding problem for semicomplete digraphs. Hence
the avoiding problem without any restrictions is certainly NP-complete. Be-
low, we study both types of problems from a connectivity as well as from
a complexity point of view. We also show that when the number of arcs to
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be avoided, respectively, contained in a hamiltonian cycle, is some constant,
then, from a complexity point of view, the avoiding version is no harder than
the containing version. Finally, we show that for digraphs which can be ob-
tained from a semicomplete digraph by adding a few new vertices and some
arcs, the hamiltonian cycle problem is very hard and even if we just added
one new vertex, the problem is highly non-trivial.

7.4.1 Hamiltonian Cycles Containing Prescribed Arcs

We start by studying the problem of finding a hamiltonian cycle that con-
tains certain prescribed arcs e, es, ..., ex. This problem, which we call the
k-HCA PROBLEM, is clearly very hard for general digraphs. We show below
that even for semicomplete digraphs this is a difficult problem. For k£ = 1
the k-HCA problem is a special case of the (x,y)-hamiltonian path problem
and it follows from Theorem 7.3.6 that there is a polynomial algorithm to
decide the existence of a hamiltonian cycle containing one prescribed arc in
a semicomplete digraph.

Based on the evidence from Theorem 7.3.6, Bang-Jensen, Manoussakis
and Thomassen raised the following conjecture. As mentioned above, when
k =1 the conjecture follows from Theorem 7.3.6.

Conjecture 7.4.1 [111] For each fized k, the k-HCA problem is polynomi-
ally solvable for semicomplete digraphs.

When k = 2 the problem already seems very difficult. This is interesting,
especially in view of the discussion below concerning hamiltonian cycles in
digraphs obtained from semicomplete digraphs by adding a few new vertices.
Bang-Jensen and Thomassen proved that when k is not fixed the k-HCA
problem becomes N P-complete even for tournaments [118]. The proof of
this result in [118] contains an interesting idea which was generalized by
Bang-Jensen and Gutin in [84]. Consider a digraph D containing a set W of
k vertices such that D — W is semicomplete. Construct a new semicomplete
digraph Dy as follows. First, split every vertex w € W into two vertices
w1, wsy such that all arcs entering w now enter wy and all arcs leaving w now
leave wo. Add all possible arcs from vertices of index 1 to vertices of index 2
(whenever the arcs in the opposite direction are not already present). Add all
edges between vertices of the same index and orient them randomly. Finally,
add all arcs of the kind w;z and zws, where w € W and z € V(D) — W. See
Figure 7.2. It is easy to show that the following holds:

Proposition 7.4.2 [84] Let W be a set of k vertices of a digraph D such
that D — W is a semicomplete digraph. Then D has a cycle of length ¢ > k
containing all vertices of W, if and only if the semicomplete digraph Dw has
a cycle of length ¢ + k through the arcs {wiws : w € W}.
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w

S
D Dw

Figure 7.2 The construction of Dw from D and W. The bold arc from Wi to Wa
indicates that all arcs not already going from W2 to Wi (as copies of arcs in D) go
in the direction shown. The four other bold arcs indicate that all possible arcs are
present in the direction shown.

Proof: Exercise 7.20. O

Let D = (V, A) be a semicomplete digraph and A" = {ujvy,...,urvg}
be a subset of A. Let D’ be the digraph obtained from D by replacing each
arc uw;v; € A’ by a path ww;v;, i € [k], where w; is a new vertex. Then
every cycle C' in D that uses all arcs in A’ corresponds to a cycle C’ in
D’ which contains all vertices of W = {wy,ws,...,wx} and conversely. This
observation and Proposition 7.4.2 allows us to study cycles through a specified
set W of vertices in digraphs D such that D — W is semicomplete instead of
studying cycles containing k = |W| fixed arcs in semicomplete digraphs.

Note that if k is not fixed, then it is NP-complete to decide the existence
of a cycle through k given vertices in a digraph which can be obtained from a
semicomplete digraph by adding k new vertices and some arcs. Indeed, take
k = |V(D)|, then this is the Hamilton cycle problem for general digraphs.
This proves that the k-HCA is N'P-complete for semicomplete digraphs.

Now we can reformulate Conjecture 7.4.1 to the following equivalent state-
ment:

Conjecture 7.4.3 [84] Let k be a fired natural number. There exists a poly-
nomial algorithm to decide if there is a hamiltonian cycle in a given digraph
D which is obtained from a semicomplete digraph by adding at most k new
vertices and some arcs.

The truth of this conjecture when k = 1 follows from Proposition 7.4.2
and Theorem 7.3.6. Surprisingly, when |W| = 2 the problem already seems
very difficult.
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We conclude this subsection with some results on the k-HCA problem
for highly connected tournaments. Thomassen [859] obtained the following
theorem for tournaments with large strong connectivity (the function f(k) is
defined recursively by f(1) =1 and f(k) = 2(k —1)f(k—1) + 3 for k > 2).
The proof is by induction on k and uses Theorem 7.3.4 to establish the case
k =1 (this is another illustration of the importance of Theorem 7.3.4).

Theorem 7.4.4 [859] If {z1,y1, ..., Tk, Yk} is a set of distinct vertices in an
h(k)-strong tournament T, where h(k) = f(5k)+12k+9, then T has a k-path
factor Py U Py U ...U Py such that P; is an (x;,y;)-path fori=1,.. k. O

Theorem 7.4.4 implies the following:

Theorem 7.4.5 [859] If aq,...,ax are arcs with no common head or tail in
an h(k)-strong tournament T, then T has a hamiltonian cycle containing
ai, ..., ax in that cyclic order. a

Combining the ideas of avoiding and containing, Thomassen proved the
following (where the function h was defined in Theorem 7.4.4):

Theorem 7.4.6 [859] For any set Ay of at most k arcs in an h(k)-strong
tournament T and for any set Aa of at most k independent® arcs of T — Aq,
the digraph T — Ay has a hamiltonian cycle containing all arcs of As. O

7.4.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle

How many arcs can we delete from a strong tournament and still have a
hamiltonian cycle, no matter what set of arcs is deleted? This is a difficult
question, but it is easy to see that for some tournaments the answer is that
even one missing arc may destroy all hamiltonian cycles. If some vertex has
in- or out-degree 1, then deleting that arc clearly suffices to destroy all hamil-
tonian cycles. On the other hand, for every p, it is also easy to construct an
infinite set S of strong tournaments in which §°(T") > p for every T € S and
yet there is some arc of T which is on every hamiltonian cycle of T' (see Ex-
ercise 7.19). It follows from Theorem 7.4.7 below that all such tournaments
are strong but not 2-strong.

We can generalize the question to k-strong tournaments and again it is
obvious that if some vertex v has in- or out-degree k (this is the smallest
possible by the connectivity assumption), then deleting all k& arcs out of or
into v, we can obtain a digraph with no hamiltonian cycle. Thomassen [857]
conjectured that in a k-strong tournament, & is the minimum number of arcs
one can delete in order to destroy all hamiltonian cycles. The next theorem
due to Fraisse and Thomassen answers this in the affirmative.

5 A set of arcs is independent if no two of the arcs share a vertex.
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Theorem 7.4.7 [33}] For every k-strong tournament D = (V, A) and every
set A" C A such that |A| < k—1, there is a hamiltonian cycle C in D—A’. O

The proof is long and non-trivial; in particular it uses Theorem 7.3.4.
Below we describe a stronger result due to Bang-Jensen, Gutin and Yeo [96].
The authors proved Theorem 7.4.8 using results on irreducible cycle factors in
multipartite tournaments, in particular Yeo’s irreducible cycle factor theorem
(Theorem 6.6.20). This is just one more illustration of the power of Theorem
6.6.20.

Theorem 7.4.8 [96] Let T = (V, A) be a k-strong tournament on n vertices,
and let X1,Xo,...,X, (p > 1) be a partition of V' such that 1 < |X;] <
|Xo| < ... <|X,|. Let D be the digraph obtained from T by deleting all arcs
which have both head and tail in the same X; (i.e., D =T —UY_| A(T(X,))).
If | Xp] <n/2 and k > | X, —|—Zf:_11 || X:|/2], then D is hamiltonian. In other
words, T has a hamiltonian cycle which avoids all arcs with both head and
tail in some X;. O

We will not give the proof here since it is quite technical, but we give
the main idea of the proof. The first observation is that D is a multipartite
tournament, which follows from the way we constructed it. Our goal is to
apply Theorem 6.6.20 to D. Hence we need to establish that D is strong (see
Exercise 7.24) and has a cycle factor (Exercise 7.25). Now we can apply The-
orem 6.6.20 to prove that every irreducible cycle factor in D is a hamiltonian
cycle. This last step is non-trivial (Exercise 7.26).

The following result shows that the bound for & in Theorem 7.4.8 is sharp:

Theorem 7.4.9 [96] Let 2 < 1y <1y < ... <1, be arbitrary integers. Then
there exists a tournament T and a collection X1, Xo, ..., X, of disjoint sets of
vertices in T such that

(a) T is (rp — 1+ Zf;ll |r:/2])-strong;
(b) |X;| =r; fori € [p];
(¢) D=T —U'_| A(T(X;)) is not hamiltonian. O

In fact, the paper [96] is concerned with aspects of the following more
general problem:

Problem 7.4.10 [96] Which sets B of edges of the complete graph K,, have
the property that every k-strong orientation of K, induces a hamiltonian
digraph on K, — B?

The Fraisse-Thomassen theorem says that this is the case whenever B con-
tains at most k—1 edges. Theorem 7.4.8 says that a union of disjoint cliques of
sizes 71, . . ., rp has the property whenever 22:1 [7i/2] +maxy<;<i{[r:/2]} <
k. By Theorem 7.4.9, this is the best possible result for unions of cliques.

Let us show that Theorem 7.4.8 implies Theorem 7.4.7. Let T be a k-
strong tournament on n vertices and let A’ = {ej,ea,...,ex_1} be a given
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set of k — 1 arcs of T. In UG(T) these arcs induce a number of connected
components X1, Xo,...,Xp, 1 <p < k—1. Denote by a;, ¢ € [p], the number
of arcs from A’ which join two vertices from X;. Then we have Zle a; = k-1
and | X;| < a; + 1, i € [p]. We may assume that the numbering is chosen so
that | X;| < |Xo| < ... <|X,|. Note that | X,| < k < n/2. Furthermore, since
each a; > 1, we also have | X,| < (k—1)—(p—1)+ 1=k —p+ 1. Now we
can make the following calculation:

< f')gp'w + L%EIXZJ

< PR 2 w0,
i=1

_ |—k_§+11+Lk_;+pJ

=k.

Now it follows from Theorem 7.4.8 that 7' has a hamiltonian cycle which
avoids every arc with both head and tail in some X; and in particular it
avoids all arcs in A’. This shows that Theorem 7.4.8 implies Theorem 7.4.7.

Note that if A’ induces a tree and possibly some disjoint edges in UG(T),
then Theorem 7.4.8 is no stronger than Theorem 7.4.7. This can be seen
from the fact that in this case we have equality everywhere in the calculation
above. In all other cases Theorem 7.4.8 provides a stronger bound.

In relation to Problem 7.4.10, it seems natural to investigate bounds for
k in different cases of the set B. In particular, one may consider the following
problems.

Problem 7.4.11 What are sharp bounds for k in Problem 7.4.10 when B is
a spanning forest of K, consisting of m disjoint paths containing r1, ..., Tm
vertices, respectively?

Problem 7.4.12 What are sharp bounds for k in Problem 7.4.10 when B is
a spanning forest of K,, consisting of m disjoint stars containing ry, ..., Tm
vertices, respectively?

Problem 7.4.13 What are sharp bounds for k in Problem 7.4.10 when B is
a spanning cycle subdigraph of K, consisting of m disjoint cycles containing
r1, ..., T'm vertices, respectively?
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How easy is it to decide, given a semicomplete digraph D = (V, A) and
a subset A’ C A, whether D has a hamiltonian cycle C' which avoids all
arcs of A’? As we mentioned earlier, this problem is AP-complete if we
pose no restriction on the arcs in A’. In the case when A’ is precisely the
set of those arcs that lie inside the sets of some partition X7, Xs,..., X, of
V', then the existence of C' can be decided in polynomial time. This follows
from the fact that D(A — A’) is a semicomplete multipartite digraph and, by
Theorem 6.6.9, the hamiltonian cycle problem is polynomially solvable for
semicomplete multipartite digraphs. The same argument also covers the case
when k = 1 in the conjecture below.

Conjecture 7.4.14 For every k there exists a polynomial algorithm which,
for a given semicomplete digraph D = (V, A) and a subset A’ C A such that
|A’'| = k, decides whether D has a hamiltonian cycle that avoids all arcs in
A

At first glance, cycles that avoid certain arcs seem to have very little to do
with cycles that contain certain specified arcs. Hence, somewhat surprisingly,
if Conjecture 7.4.1 is true, then so is” Conjecture 7.4.14: Suppose that Con-
jecture 7.4.1 is true. Then it follows from the discussion of Subsection 7.4.1
that also Conjecture 7.4.3 holds. Hence, for fixed k, there is a polynomial
algorithm Aj which, given a digraph D = (V, A) and a subset W C V for
which D — W is semicomplete and |W| < k, decides whether or not D has a
hamiltonian cycle. Let k& be fixed and D be a semicomplete digraph and let
A’ |A'| <k, be a prescribed set of arcs in D. Let W be the set of all vertices
such that at least one arc of A’ has head or tail in W. Then |W| < 2| 4’| and
D has a hamiltonian cycle avoiding all arcs in A" if and only if the digraph
D — A’ has a hamiltonian cycle. By the remark above we can test this using
the polynomial algorithm A,., where r = |W¥V|.

7.4.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles

Recall from Chapter 2 that we call an arc zy ordinary if it is not contained in
a 2-cycle. Deciding whether a given digraph has a hamiltonian cycle C' such
that all arcs of C are ordinary is of course an N"P-complete problem since the
hamiltonian cycle problem for oriented graphs is NP-complete. This implies
that the problem is N'P-complete even for semicomplete digraphs.

Tuza [881] studied this problem for semicomplete digraphs and posed the
following conjecture:

Conjecture 7.4.15 [881] Let s be a positive integer and suppose that D =
(V, A) is a semicomplete digraph such that for every Y C V, |Y| < s, the

7 We thank Thomassen for pointing out this consequence to us (private commu-
nication, August 1999).
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induced semicomplete digraph D(V —Y') is strong and has at least one or-
dinary arc. Then there exists a hamiltonian cycle in D which has at least s
ordinary arcs.

The following result shows that it is enough to prove that there is a cycle
of length at least s + 1 with this property.

Proposition 7.4.16 [881] If a strong semicomplete digraph T has a cycle
of length at least s + 1 which contains at least s ordinary arcs, then T has a
hamiltonian cycle with at least s ordinary arcs. O

Tuza has proved the existence of such a cycle for s = 1,2, see [881]. It is
easy to see that s+ 1 cannot be replaced by s in Proposition 7.4.16 (Exercise
7.29).

7.5 Arc-Traceable Digraphs

A digraph D = (V, A) is arc-traceable if every arc xy € A is contained in
a hamiltonian path of D. In this short section we briefly discuss results on
semicomplete digraphs.

First observe that arc-traceable semicomplete digraphs can be recognized
in polynomial time. This follows from the fact that there is a polynomial
algorithm for checking whether there is a hamiltonian path through a given
arc in a semicomplete digraph (Exercise 7.28).

Since every strong in-semicomplete digraph is hamiltonian (Theorem
6.3.1) we easily get the following observation (Exercise 7.27).

Proposition 7.5.1 [693] Every 2-strong in-semicomplete digraph is arc-
traceable. ad

In [185] Busch, Jacobson and Reid studied strong tournaments which
are not arc-traceable. Although they were not able to characterize these,
they found some necessary conditions for a strong tournament to be non-arc-
traceable, one of which is the following.

Theorem 7.5.2 [185] Let T be a strong tournament containing an arc xy
which is not in any hamiltonian path of T. Then the following holds:

(1) T has a vertex z such that T — z is not strong.

(2) T has k strong components, Ty, T, ..., Ty, k > 4, where Ty is the initial
and Ty, the terminal strong component of T — z.

(3) The vertex x is in Ty and y is in Ty,.

(4) The vertex z has no arc to Ty and no arc from Ty_1. O
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T Y

Figure 7.3 A strong tournament 7" with no hamiltonian path including the arc
xy. The bold arcs indicate that all arcs between the three 3-cycles, except the arc
uv, have the direction shown.

Figure 7.3 illustrates the theorem. It also shows that the following nec-
essary condition for a tournament to be arc-traceable, is not sufficient: for
every arc zy, T contains a 1-path-cycle factor F in which zy is an arc of the
unique path in F.

Theorem 7.5.3 [185] If T is a strong tournament with §°(T) > 2 and for
every arc vy € A(T), d™(z) +d*(y) > 5 — 2, then T is arc-traceable. O

In [693] Meierling and Volkmann studied arc-traceable locally semicom-
plete digraphs and obtained a number of results which generalize those in
[185], including Theorem 7.5.2.

7.6 Oriented Hamiltonian Paths and Cycles

Since every tournament has a hamiltonian directed path, it is natural to
ask whether every tournament contains every orientation of a hamiltonian
undirected path. This is not true, as one can see from the examples in Figure
7.4.

Figure 7.4 The unique tournaments with no anti-directed hamiltonian path.
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A path is anti-directed if the orientation of each arc on the path is
opposite to that of its predecessor. The reader can easily verify that none
of the three tournaments in Figure 7.4 contains an anti-directed hamiltonian
path. Griinbaum [431] proved that, except for the three tournaments of Figure
7.4, every tournament contains an anti-directed hamiltonian path. Rosenfeld
[787] strengthened this to the following statement:

Theorem 7.6.1 [787] In a tournament on at least nine vertices, every vertex
1s the origin of an anti-directed hamiltonian path. a

Rosenfeld conjectured that there exists a natural number N such that ev-
ery tournament on at least N vertices contains every orientation of a hamilto-
nian undirected path. Griinbaum’s examples show that we must have N > 8.
Rosenfeld’s conjecture has been studied extensively and many partial results
were obtained until it was proved by Thomason [851] (see also Theorem
7.6.3). We will mention one of these partial results here (see also the papers
[37] by Alspach and Rosenfeld and [835] by Straight).

Forcade found the following beautiful result which generalizes Redei’s
theorem for tournaments whose number of vertices is a power of two.

Theorem 7.6.2 [329] If T is a tournament on n = 2" wvertices for some
r, then for every orientation P of a path on n wvertices, T contains an odd
number of occurrences of P. a

Thomason [851] proved Rosenfeld’s conjecture by showing that N is less
than 2'28. He also conjectured that N = 8 should be the right number. This
was confirmed by Havet and Thomassé [509].

Theorem 7.6.3 (Havet-Thomassé theorem) [509] Every tournament on
at least eight vertices contains every orientation of a hamiltonian path. O

The proof of Theorem 7.6.3 in [509] is very long (involving a lot of cases),
but it uses a very nice partial result which we shall describe below. First
we need some new notation. Let P = ujus...u, be an oriented path. The
vertex uy (uy) is the origin (terminus) of P. An interval of P is a maximal
subpath P’ = P[u;, u;]® such that P’ is a directed path (i.e., either a (u;, u;)-
path or a (uj,u;)-path). See an illustration in Figure 7.5. The intervals are
labeled Iy, I, ..., I; py starting from u;. The length ¢;(P) of the ith interval
is the number of arcs in the directed subpath corresponding to I;. If the
first interval of P is directed out of uq, then P is an out-path, otherwise
P is an in-path. Now we can describe any oriented path P by a signed
sequence sgn(P)(l1,Ls, ..., lyp)), where sgn(P) is ‘+’ if P is an out-path
and otherwise sgn(P) is ‘—’. We also use the notation *P to denote the
subpath Plug, uy].

8 We use the same notation here as for directed paths, i.e., Plu;, u;] = withit1 - - - u;
when ¢ < j.



7.6 Oriented Hamiltonian Paths and Cycles 299

1 2 3 4 5 6 7 8 9 10 11 12

Figure 7.5 An oriented path with intervals [1, 3], [3, 6], [6, 7], 7, 8], [8, 10], [10, 11],
[11,12).

For every set X C V in a tournament T = (V, A), we define the sets
RT(X) (R~ (X)) to be those vertices that can be reached from (can reach)
the set X by a directed path. By definition X C Rt (X)NR™ (X). A vertex u
is an out-generator (in-generator) of T'if R*(u) =V (R~ (u) = V). Recall
that by Theorem 1.4.2, every tournament 7" has at least one out-generator
and at least one in-generator. In fact, by Proposition 2.9.2, a vertex is an
out-generator (in-generator) if and only if it is the initial (terminal) vertex
of at least one hamiltonian path in T

The next result, due to Havet and Thomassé, deals with oriented paths
covering all but one vertex in a tournament. It plays an important role in the
proof of Theorem 7.6.3 in [509].

Theorem 7.6.4 [509] Let T = (V, A) be a tournament on n + 1 vertices.
Then

(1) For every out-path P on n wvertices and every choice of distinct vertices
x,y such that |RT({x,y})| > €1(P) + 1, either x or y is an origin of (a
copy of) P in T.

(2) For every in-path P on m vertices and every choice of distinct vertices
x,y such that |R~({z,y})| > ¢1(P) + 1, either x or y is an origin of (a
copy of) P in T.

The following is an easy corollary of Theorem 7.6.4. We state it now since
we shall use it in the inductive proof below.

Corollary 7.6.5 [851] Every tournament T on n vertices contains every
oriented path P on n—1 vertices. Moreover, every subset of ¢1(P)+1 vertices
contains an origin of P. In particular, there are at least two distinct origins
of PinT. O

Proof of Theorem 7.6.4: (We follow the proof in [509]). The proof is by
induction on n and clearly holds for n = 1. Now suppose that the theorem
holds for all tournaments on at most n vertices. It suffices to prove (1) since
(2) can be reduced to (1) by considering the converses of T and P.

Let P = ujus...u, be given and let x,y be distinct vertices such that
|[RT({x,y})| > ¢1(P) + 1. We may assume that z—y and hence RT(x) =
R*({x,y}). We consider two cases.
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Case 1 £1(P) > 2: If INT(z)] > 2, let 2 € NT(z) be an out-generator of
T(R"(xz) — ) and let t € NT(x) be distinct from z. By the definition of z
we have that |Rf__({t,2})] = |R*(z)| — 1 > ¢1(*P). Note that P is an
out-path, since ¢;(P) > 1. By the induction hypothesis, either z or ¢ is the
origin of *P in T — z, implying that x is an origin of P in 7.

Thus we may assume that N (x) = {y}. Since |RT ({z,y})| > (1 (P)+1 >
3 we see that N*(y) # (. Let ¢ be an out-generator of T(N*(y)). Then ¢
is also an out-generator of T(R*({z,y}) —y), ¢—z and |RJTr7y({x,q})| =
|[R*({z,y})| — 1 > £1(xP). By induction, either z or ¢ is the origin of *P in
T — y and since x has no out-neighbour in 7' — y it must be ¢ that is the
origin. Now we see that y is the origin of P in T.

Case 2 £1(P) = 1: We consider first the subcase when |[NT(z)| > 2. Let
X :=R;_,(N*(x)) and consider the partition (X,Y,{z}) of V, where ¥ =
V — X — z. By the definition of these sets, we have Yi—z, X+—Y and y € X.
If | X| > €2(P) 4+ 1, then we claim that z is an origin of P in T'; indeed, let
p € NT(z) be an in-generator of T(X) and take u € NT(z) — p. By the
induction hypothesis, either p or u is an origin of *P in T'— = and hence z is
an origin of P in T

So we may assume that |X| < £2(P). Note that ¢3(P) < n — 2 holds
always (remember we count arcs). Hence |Y| > 1, since T has n 4 1 vertices.
Let s be an in-generator of T(Y). Since d*(z) > 1 and X—Y we have
Ry_,(s) =V —y. Let w € Y — s be arbitrary. By the induction hypothesis
either w or s is an origin of *P in T' — y and hence y is an origin of P in T.

Now consider the case when N (z) = {y}. Suppose first that |N;_,(y)| >
n — 2. By induction, Theorem 7.6.4 and hence Corollary 7.6.5 holds for T —
{z,y}. Thus some vertex in N (y) is an origin of **P. Hence z is an origin
of Pin T (using x—y and an arc into y from the origin of #««P in T — {z,y}).
So we may assume that [N*(y)| > 2. Let U = Ry, (NT(y)) and W =
V —U — {x,y}. Then W—{z,y} and U—-W U {x}. If |U| > ¢2(P) + 1, then
by the same proof as we used above (beginning of Case 2), we get that y
is an origin of P. So suppose |U| < ¢3(P). This implies in particular that
0(P) > [N*(y)] = 2.

If W] > 2, then we let w € W be an in-generator of T — {z,y} and take
w’ € W —w arbitrary. By induction either w or w’ is an origin of the in-path
xx P (recall that £o(P) > 2 and hence P is an in-path). Thus using the arc
zy and an arc into y from the origin of +xP in W we see that z is the origin of
P. Finally consider the case when |W| =1 (note that [W|=n—-1-|U]| > 1,
since |U| < £o(P) <n —2). Then |[U| =n — 2 and ¢3(P) = n — 2 (since we
assumed above that ¢o(P) > |U]). Thus %P is a directed in-path. Using that
y is an in-generator of T'— x, we get that x is an origin of P. This completes
the proof of the theorem. O

If the path in Theorem 7.6.4 has n+1 vertices instead of n, then the state-
ment is no longer true. However, the exceptions (to the n+1,n+ 1 version of
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Theorem 7.6.4) can be characterized [509] and based on this characterization
Havet and Thomassé were able to prove that the tournaments in Figure 7.4
are indeed the only tournaments that do not contain every orientation of a
hamiltonian path.

In [509] Havet and Thomassé also proved the following result which is of
independent interest.

Proposition 7.6.6 [509] Let P be an out-path on ny vertices and @ an in-
path on ny vertices. Let T = (V, A) be a tournament on n = nj + ng vertices.
If x € V is the origin of a copy of P and of @ in T, then we may choose
copies of P and Q such that V(P)NV(Q) = {z} and x is the origin of both
COpIEs. a

How easy is it to find an occurrence of a prescribed orientation of a hamil-
tonian path P in a tournament? If P is a directed path, then this can be done
in time? O(nlogn) (see Section 18.1). Some patterns can be found faster;
Bampis, Hell, Manoussakis and Rosenfeld [64] showed that one can find an
anti-directed hamiltonian path in O(n) time. This is the best possible as
shown in [514]. The following somewhat surprising result by Hell and Rosen-
feld shows that finding distinct patterns requires quite different complexities:

Theorem 7.6.7 [51}] For every 0 < « < 1 there exists an orientation P of
a path on n vertices so that every algorithm which checks for an occurrence
of P in a tournament T with n vertices must make £2(nlog*n) references to
the adjacency matriz of T in the worst case. a

Based on Theorem 7.6.3 Havet proved the following result:

Theorem 7.6.8 [505] There is an O(n?) algorithm that takes as input a
tournament on n > 8 vertices and an oriented path P on at most n vertices
and returns an occurrence of P in T. a

It is not known whether there are orientations of paths that in the worst
case need 2(n'*¢) references (for some € > 0) to the adjacency matrix to be
found in a tournament. By this we mean that in some cases one needs that
many steps to either find the desired path or conclude that no such path
exists.

Instead of considering orientations of hamiltonian paths in tournaments,
one may just as well consider orientations of hamiltonian cycles in tourna-
ments. However, one particular cycle, namely, the directed hamiltonian cycle,
can only be found in strong tournaments. Rosenfeld [788] conjectured that
the directed hamiltonian cycle is the only orientation of a hamiltonian cy-
cle that can be avoided by tournaments on arbitrarily many vertices. This
conjecture was settled by Thomason who proved the following;:

9 We remind the reader that in measuring the complexity, we only count how many
times we have to ask about the orientation of a given arc.
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Theorem 7.6.9 [851] Every tournament on n > 2128 vertices contains every
oriented cycle of length n except possibly the directed hamiltonian cycle. O

Thomason also conjectured that the correct value of the lower bound on n
is 9. One easily obtains a tournament with 8 vertices having no anti-directed
hamiltonian cycle by adding a new vertex v to the tournament on 7 vertices
in Figure 7.4 and joining v arbitrarily to the other 7 vertices. Hence 9 would
be best possible if true.

Using the methods developed in [509] along with a number of new ideas,
Havet [506] proved the following result. Recall that every strong tournament
has a hamiltonian cycle.

Theorem 7.6.10 [506] Every tournament T on n > 68 wvertices contains
every oriented cycle of length n, except possibly the directed hamiltonian cycle.
O

Hell and Rosenfeld [515] gave a polynomial algorithm for testing the ex-
istence of an anti-directed hamiltonian path P with prescribed end-vertices
in a tournament. Note that it is not specified that P must be an out-path.

Problem 7.6.11 [515] Extend the method of [515] to obtain a polynomial
algorithm for deciding whether a given tournament T with vertices x,y has
an ADH-path P starting in x and ending in y such that P is an out-path
from x.

Bampis, Hell, Manoussakis and Rosenfeld proved that if the last vertex
is not specified, then the problem is polynomially solvable [64].

Problem 7.6.12 [515] Is it true that for any out-path P on n vertices such
that no interval of P is larger than k, any tournament T on n vertices and
any prescribed vertex x of T which has out-degree at least k + 1, there is an
occurrence of P in T which starts in x on a forward arc?

As mentioned in Section 7.3, Thomassen [856] proved that there are 3-
strong tournaments with no (z,y)-hamiltonian path for some choice of ver-
tices z and y, but that every 4-strong tournament contains such a path. As
pointed out in [515] a much weaker condition suffices to guarantee that a
tournament 7T contains an anti-directed hamiltonian path with prescribed
end vertices.

Theorem 7.6.13 [515] Every tournament T with §°(T) > 4 contains an
anti-directed hamiltonian path with prescribed end-vertices. a

Problem 7.6.14 [515] Can the minimum degree bound of 4 above be lowered
to 3 or even 27
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Problem 7.6.15 [76] Find a sufficient condition for a tournament to con-
tain two arc-disjoint ADH-paths with the same end-vertices.

Not surprisingly, if a digraph is almost complete, then it will contain all
orientations of a hamiltonian undirected path. The following result is due to
Heydemann, Sotteau and Thomassen:

Theorem 7.6.16 [526] Let D be a digraph on n vertices and at least (n —
1)(n —2) + 3 arcs and let C be an arbitrary orientation of a cycle of length
n. Then D contains a copy of C, except for the case when D is not strong
and C is a directed hamiltonian cycle. O

7.7 Exercises

7.1. Prove that if D is a strong semicomplete digraph with distinct vertices x,y
such that D — x and D — y are strong but D — {z,y} is not strong, then D
has an (z,y)-hamiltonian path and a (y, z)-hamiltonian path.

7.2. (=) Prove that, from a complexity point of view, the hamiltonian path prob-
lem, the [z,y]-hamiltonian path problem and the (z,y)-hamiltonian path
problem are all equivalent. That is, each of them can be reduced in polyno-
mial time to each of the two others.

7.3. Show how to decide in time O(y/nm) whether or not a given input digraph
D with special vertices x,y contains a 1-path-cycle factor such that the path
is a path between z and y. Hint: use flows.

7.4. Derive Corollary 7.2.2 from Theorem 7.2.1.

7.5. Prove Lemma 7.2.3.

7.6. Prove the last claim in the proof of Corollary 7.2.7.
7.7. Derive Theorem 7.2.6 from Theorem 7.2.4.

7.8. 2-regular 2-strong locally semicomplete digraphs. Prove that for every
n > 5 there exists (up to isomorphism) precisely one 2-strong and 2-regular

locally semicomplete digraph, namely, the second power C_’?L of an n-cycle.

7.9. Prove that the second power C?L of an n-cycle has a unique hamiltonian cycle.
Next, prove that C? is not weakly hamiltonian-connected.

7.10. Prove Lemma 7.2.8.

7.11. Prove that if D is the second power ﬁ§k+1 of an odd path P = wjus ... u2k+1,
then there is no pair of disjoint (u1, u2k)-, (u2, uzk+1)-paths in D.

7.12. Prove Theorem 7.2.11.

7.13. Suppose D = (V, A) is a non-strong locally semicomplete digraph with strong
decomposition D1, D2, D3, D4 such that D — x is connected for every x € V.
Let u; € V(D;) be specified for each i = 1,2,3,4. Prove that D contains
disjoint (u1,us)-,(u2, us)-paths P, Q so that V =V (P)UV(Q).
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7.14.

7.15.
7.16.

7.17.
7.18.

7.19.

7.20.
7.21.

7.22.

7.23.

7.24.

7.25.
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(+) Prove the following: Let T be a 2-strong semicomplete digraph and z,y
vertices of T, such that T'—z and T — y are both 2-strong, -4y, and neither
x nor y is contained in a 2-cycle. If T'— {z,y} is not 2-strong, then T has
an (z,y)-hamiltonian path. Hint: consider a minimal separator of the form

{u,z,y}.
(4+) Prove Proposition 7.3.3.

(—) Hamiltonian cycles containing a prescribed arc in semicomplete
digraphs. Use Theorem 7.3.2 to show that every 3-strong semicomplete di-
graph D = (V, A) has a cycle containing the arc a for any prescribed arc
a € A.

(+4) Prove Theorem 7.3.5.

Longest [z, y]-paths in tournaments. Find a characterization for the
length of a longest [z, y]-path in a tournament. Hint: use Theorem 7.2.1.

For every p > 1, construct an infinite family S of strong tournaments which
satisfy that §°(T) > p for each T € S and there is some arc a € A(T) which
belongs to every hamiltonian cycle of 7. Extend your construction to work
also for arbitrary high arc-strong connectivity.

Prove Proposition 7.4.2.

(+) Hamiltonian cycles in almost acyclic digraphs. Prove that for
every fixed k there is a polynomial algorithm to decide whether there is a
hamiltonian cycle in a given digraph D, which is obtained from an acyclic
digraph H = (V, A) by adding a set S of k new vertices and some arcs of
the form st where s € S and t € V' U S. Hint: use the fact that the k-linkage
problem is polynomial for acyclic digraphs (see Theorem 10.4.1).

Let D be constructed as in Exercise 7.21. Show that if & is not fixed (that is,
k is part of the input), then the problem above is N'P-complete.

Let T be a tournament, let Y1,Y2,...,Ys (s > 1) be disjoint sets of vertices in
T and let z and y be arbitrary distinct vertices in V(T') — (YiUY2U...UY5).
Prove that if there exist k disjoint (z,y)-paths in T', then there exist at least
k— 2, |Yil/2] disjoint (z,y)-paths in T — Ui_, A(T(Y;)).

(4+) Let X1, X2,...,X, and D be defined as in Theorem 7.4.8. Prove that D

is strong. Hint: first prove the following two claims and then combine them

into a proof that D is strong:

(a) Ifx € X;andy € X; (1 <i# j <I), then there are || X;|/2]+]|X;|/2]+
[1X:]/2] disjoint (z,y)-paths in D ;.

(b) If z,y € X; (z # y), then there are |X;| disjoint (z,y)-paths in D;.
Furthermore there is an (z,y)-path in D (Bang-Jensen, Gutin and Yeo
[96]).

(4) Prove that the digraph D in Theorem 7.4.8 has a cycle factor [96]. Hint:
let D’ be obtained from D by the vertex-splitting technique (Section 4.2).
Form a network from D’ by putting lower bound 1 on arcs of the kind v;vs,
v € V(D) and zero elsewhere. Put capacity 1 on arcs of the kind v:vs and oo
on all other arcs. Now apply Theorem 4.8.2 and deduce the result from the
structure one can derive using a presumed bad cut (5, 5).
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(4) Prove that the digraph D in Theorem 7.4.8 is hamiltonian [96]. Hint:
consider any irreducible factor. Apply Theorem 6.6.20 and conclude that the
cycle factor is a hamiltonian cycle.

Prove Proposition 7.5.1.

Show that there is a polynomial algorithm for checking whether a semicom-
plete digraph d has a hamiltonian path through a given arc xy. Hint: you
can reduce the problem to the problem of checking for a hamiltonian cycle
through a given arc in a semicomplete digraph.

Show by an example that s+ 1 cannot be replaced by s in Proposition 7.4.16.

Orientations of paths in strong tournaments. Prove the following state-
ment: Let T be a strong tournament on n vertices and P an out-path on n—1
vertices. Then

(a) every vertex of T except possibly one is an origin of P and

(b) if ¢1(P) > 2, then every vertex of out-degree at least 2 is an origin of P.

Orientations of paths in 2-strong tournaments. Let T be a 2-strong
tournament on n vertices and let P be an oriented path on n — 1 vertices.
Prove that every vertex of T' is an origin of P.



8. Paths and Cycles of Prescribed Lengths

In this chapter we study the following five topics:

e Pancyclicity, vertex-pancyclicity and arc-pancyclicity of digraphs (Section
8.1). Most of the results are on tournaments and their generalizations.

e Efficient algorithms for finding short paths and cycles (Section 8.2). We
demonstrate how the colour coding technique can be applied to design
efficient algorithms for short paths and cycles.

e Cycles of length & modulo p (Section 8.3). We discuss the even cycle prob-
lem and sufficient conditions for the existence of cycles of length £ modulo
D.

o Girth (Section 8.4). We present mainly results related to the Caccetta-
Héggkvist and Hodng-Reed conjectures.

e Short cycles in semicomplete digraphs (Section 8.5). We overview results
on k-cycles in p-partite tournaments for k < p.

8.1 Pancyclicity of Digraphs

A digraph D of order n is pancyclic if it has cycles of all lengths 3,4, ..., n.
We say that D is vertex-pancyclic (arc-pancyclic, respectively) if for
every v € V(D) (a € A(D), respectively) and every k € {3,4,...,n} there
is a cycle of length k containing v. We also say that D is (vertex-)m-
pancyclic if D contains a k-cycle (every vertex of D is on a k-cycle) for
each k. = m,m + 1,...,n. Note that some early papers on pancyclicity
in digraphs require that D is (vertex-)2-pancyclic in order to be (vertex-
)pancyclic (see e.g. the survey [152] by Bermond and Thomassen). We feel
that this definition is too restrictive, since often one can prove pancyclicity
results for much broader classes of digraphs when the 2-cycle is omitted from
the requirement.

In Subsection 8.1.1, we consider pancyclicity in degree-constrained di-
graphs. Pancyclicity in extended semicomplete, quasi-transitive and locally
semicomplete digraphs is studied in Subsections 8.1.2 and 8.1.3. Pancyclicity
in other classes of digraphs is overviewed in Subsection 8.1.4. Cycle extend-
ability is introduced in Subsection 8.1.5 and arc-pancyclicity is studied in
Subsection 8.1.6.

J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, 307
Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1_8,
(© Springer-Verlag London Limited 2010
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8.1.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs
The following assertion is due to Alon and Gutin:

Proposition 8.1.1 [2/] Every digraph D = (V, A) on n vertices for which
§%(D) > n/2 + 1 is vertez-2-pancyclic.

Proof: Let v € V be arbitrary. By Corollary 6.4.3 there is a Hamilton cycle
ULUg . . . Up—1u1 in D — v, If there is no cycle of length k£ through v, then
for every i, INT(v) N {u;}| + [N~ (v) N {u;yr—2}] < 1, where the indices are
computed modulo n — 1. By summing over all values of 7, 1 <i<n —1, we
conclude that |[N~(v)| 4+ |NT(v)| < n — 1, contradicting the assumption that
all in-degrees and out-degrees exceed n/2. O

The following analogue of Proposition 8.1.1 is an easy consequence of
Corollary 6.4.6. It was proved by Randerath, Schiermeyer, Tewes and Volk-
mann [762].

Proposition 8.1.2 FEvery digraph D = (V, A) on n > 3 wvertices for which
§%(D) > (n+1)/2 is vertez-pancyclic. O

Thomassen [853] proved that just by adding one to the degree condition
for hamiltonicity in Theorem 6.4.7 one obtains cycles of all possible lengths
in the digraphs satisfying the degree condition.

Theorem 8.1.3 [853] Let D be a strong digraph on n wvertices such that
d(x) + d(y) > 2n whenever x and y are nonadjacent. Then either D has
cycles of all lengths 2,3,...,n, or D is a tournament (in which case it has

cycles of all lengths 3,4,...,n) or n is even and D is isomorphic to ]H(%%
O

The following example from [853] shows that 2n cannot be replaced by
2n — 1 in Theorem 8.1.3. For some m < n let D, ,, = (V, A) be the digraph
with vertices V' = {v1,v9,...,v,} and arcs A = {vv;li < jori=j+ 1} —
{viVitm-1|1 <i<n—m+1}. We leave it as Exercise 8.1 to show that D,, ,,
is strong, has no m-cycle and if m > (n+1)/2, then D, ,, satisfies Meyniel’s
condition for hamiltonicity (Theorem 6.4.7). In [244] Darbinyan characterizes
those digraphs which satisfy Meyniel’s condition, but are not pancyclic.

Theorem 8.1.3 extends Moon’s theorem (Theorem 1.5.1) and Corollaries
6.4.2 and 6.4.6. However, as pointed out by Bermond and Thomassen in
[152], Theorem 8.1.3 does not imply Meyniel’s theorem (Theorem 6.4.7). The
following result is due to Haggkvist:

Theorem 8.1.4 [/90] Every hamiltonian digraph on n vertices and at least

in(n+1) —1 arcs is pancyclic. O

Song [830] generalized the result of Jackson given in Theorem 6.10.2 and
proved the following theorem.
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Theorem 8.1.5 [830] Let D = (V, A) be an oriented graph onn > 9 vertices
with minimum degree n — 2. Suppose that D satisfies the following property:

ry g A= d(z)+d (y) >n—3. (8.1)
Then D is pancyclic. a

Song [830] pointed out that if the minimum degree condition in Theorem
8.1.5 is relaxed, then it is no longer guaranteed that D is hamiltonian.

Using Theorems 8.1.5 and 8.5.3, Bang-Jensen and Guo proved that un-
der the same conditions as in Theorem 8.1.5 the digraph is in fact vertex-
pancyclic.

Theorem 8.1.6 [79] Let D be an oriented graph on n > 9 wvertices and
suppose that D satisfies the conditions in Theorem 8.1.5. Then D is vertex
pancyclic. a

It should be noted that every digraph which satisfies the condition of
Theorem 8.1.5 is a multipartite tournament with independence number at
most 2.

There are several other results on pancyclicity of digraphs with large
minimum degrees, see e.g. the papers [242, 243, 246] by Darbinyan.

8.1.2 Pancyclicity in Extended Semicomplete and
Quasi-Transitive Digraphs

In this subsection we show how to use the close relationship between the class
of quasi-transitive digraphs and the class of extended semicomplete digraphs
to derive results on pancyclic and vertex-pancyclic quasi-transitive digraphs
from analogous results for extended semicomplete digraphs.

A digraph D is triangular with partition Vj, V1, V5, if the vertex set of
D can be partitioned into three disjoint sets Vg, Vi, Vo with Vo—Vi—Vo—1.
Note that this is equivalent to saying that D = C5[D(Vp), D(V1), D(V5)].

Gutin [456] characterized pancyclic and vertex-pancyclic extended semi-
complete digraphs. Clearly no extended semicomplete digraph of the form
D=0, [Kn,, Kn,] with at least 3 vertices is pancyclic since all cycles are
of even length. Hence we must assume that there are at least 3 partite sets
in order to get a pancyclic extended semicomplete digraph. It is also easy
to see that the (unique) strong 3-partite extended semicomplete digraph on
4 vertices is not pancyclic (since it has no 4-cycle). These observations and
the following theorem completely characterize pancyclic and vertex-pancyclic
extended semicomplete digraphs.

Theorem 8.1.7 [/56] Let D be a hamiltonian extended semicomplete di-
graph of order n > 5 with k partite sets (k > 3). Then
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(a) D is pancyclic if and only if D is not triangular with a partition Vo, Vi, Va,
two of which induce digraphs with no arcs, such that either |Vy| = |V1| =
[Va| or no D{V;) (i =0,1,2) contains a path of length 2.

(b) D is vertex-pancyclic if and only if it is pancyclic and either k > 3 or
k =3 and D contains two cycles 7,7’ of length 2 such that Z U Z' has
vertices in the three partite sets. a

It is not difficult to see that Theorem 8.1.7 extends Theorem 1.5.1, since
no semicomplete digraph on n > 5 vertices satisfies any of the exceptions
from (a) and (b).

The next two lemmas by Bang-Jensen and Huang [103] concern cycles
in triangular digraphs. They are used in the proof of Theorem 8.1.10 which
characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs.

Lemma 8.1.8 [103] Suppose that D is a triangular digraph with a partition
Vo, Vi, Va and suppose that D is hamiltonian. If D{(V1) contains an arc zy
and D(V3) contains an arc uv, then every vertex of Vo U {x,y,u,v} is on
cycles of lengths 3,4, ... ,n.

Proof: Let C' be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D’ from D in the following way. For each of 4 = 0, 1, 2, first
path-contract! each maximal subpath of C' which is contained in D(V;) and
then delete the remaining arcs of D(V;). It is clear that D’ is a subdigraph of
D, and in this process, C is changed to a hamiltonian cycle C’ of D’. Hence D’
is also triangular with a partition Vjj, V{, V3 such that |Vj| = |V{| = |V5| =r,
for some r (the last fact follows from the existence of a hamiltonian cycle in
D’). Then each vertex of D is on a cycle of length k with 3r < k < |V(D)|
(to see this, just use suitable pieces of the r subpaths of C' in each V;).

Now we may assume that r > 2 and we show that each vertex of V{ U
{z,y,u,v} is on a cycle of length k with 3 < k < 3r—1. To see this, we modify
D’ to another digraph D" as follows. If x and y are in distinct maximal
subpaths P, P, of C'in D(Vj), then we add (in D’) an arc from the vertex to
which P, was contracted to the vertex to which P, was contracted. If z and
y are in the same maximal subpath P of C'in D(V7), then we add (in D’) an
arc from the vertex to which P was contracted to an arbitrary other vertex of
V. For the vertices u and v we make a similar modification. Hence we obtain
a digraph D" which is isomorphic to a subdigraph of D. The digraph D" is
also triangular with a partition Vy', V{’, V3’ such that |Vy'| = [V{'| = |[V5'| = 7.
Moreover D”(V}") contains an arc z'y’ and D”(V4’) contains an arc u'v’. It
is clear now that each vertex of Vy' U {z/,y’,u',v’'} is on a cycle of length k
where 3 < k < 3r — 1. Using the same structure as for these cycles we can
see that in D each vertex of Vo U {z,y,u,v} is on a cycle of length k with
3<k<3r—1. a

! Recall the definition of path-contraction from Section 1.3.
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Lemma 8.1.9 [103] Suppose that D is a triangular digraph with a partition
Vo, Vi, Vo and D has a hamiltonian cycle C. If D{Vy) contains an arc of C
and a path P of length 2, then every vertex of V1 U Vo UV (P) is on cycles of
lengths 3,4,...,n.

Proof: Exercise 8.5. O

It is easy to check that a strong quasi-transitive digraph on 4 vertices is
pancyclic if and only if it is a semicomplete digraph. For n > 5 we have the
following characterization due to Bang-Jensen and Huang;:

Theorem 8.1.10 [103] Let D = (V, A) be a hamiltonian quasi-transitive
digraph on n > 5 vertices.

(a) D is pancyclic if and only if it is not triangular with a partition Vo, Vi, Va,
two of which induce digraphs with no arcs, such that either |Vy| = |V1| =
[Val|, or no D(V;) (i =0,1,2) contains a path of length 2.

(b) D is not vertex-pancyclic if and only if D is not pancyclic or D is trian-
gular with a partition Vo, V1, Vo such that one of the following occurs:

(b1) |Vi| = |Val, both D(Vi) and D(Va) have no arcs, and there exists a
vertex x € Vy such that x is not contained in any path of length 2 in
D{(Vy) (in which case x is not contained in a cycle of length 5).

(b2) one of D(V1) and D{Va) has no arcs and the other contains no path of
length 2, and there exists a vertex x € Vy such that x is not contained
in any path of length 1 in D(Vy) (in which case x is not contained in
a cycle of length 5).

Proof: To see the necessity of the condition in (a), suppose that D is trian-
gular with a partition Vy, V1, V4, two of which induce digraphs with no arcs.
If |Vo| = |Vi| = |Ve|, then D contains no cycle of length n — 1. If no D(V})
(i =0,1,2) contains a directed path of length 2, then D contains no cycle of
length 5.

Now we prove the sufficiency of the condition in (a). According to Theo-
rem 2.7.5, there exists a semicomplete digraph T" on k vertices for some k > 3
such that D is obtained from T by substituting a quasi-transitive digraph H,
for each vertex v € V(T) (here H, is non-strong if it has more than one
vertex). Let C' be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D’ from D in the following way: for each H,,,v € V(T), first
path-contract each maximal subpath of C' which is contained in H, and then
delete the remaining arcs of H,. In this process C is changed to a hamiltonian
cycle C' of D'.

Suppose D is not pancyclic. Then it is easy to see that D’ is not pancyclic.
By Theorem 8.1.7, D’ is triangular with a partition V, V{,Vy. Let V; C V be
obtained from V/, i = 0,1, 2, by substituting back all vertices on contracted
subpaths of C. Then D is triangular with partition Vg, V1, V. Moreover each
D(V;) is covered by r disjoint subpaths of C for some r.
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By Lemma 8.1.8, two of Vg, Vi, Vs, say Vi and Vs, induce subdigraphs
with no arcs in D. If |Vj| = |Vi| = |Va| we have the first exception in (a).
Hence we may assume that |Vy| > V1| = |Va|. Then D(Vp) contains an arc of
C'. From Lemma 8.1.9, we see that D(V,) contains no path of length 2. This
completes the proof of (a).

The proof of (b) is left to the reader as Exercise 8.6. O

8.1.3 Pancyclic and Vertex-Pancyclic Locally Semicomplete
Digraphs

We saw in the last subsection how the structure theorem for quasi-transitive
digraphs (i.e., Theorem 2.7.5) was helpful in finding a characterization for
(vertex-)pancyclic quasi-transitive digraphs. Now we show that the structure
theorem for locally semicomplete digraphs (Theorem 2.10.15) is also very
useful for finding a characterization of those locally semicomplete digraphs
which are (vertex-)pancyclic. Our first goal (Lemma 8.1.14) is a characteri-
zation of those round decomposable locally semicomplete digraphs which are
(vertex-)pancyclic.

Lemma 8.1.11 Let R be a strong round local tournament and let C' be a
shortest cycle of R and suppose C' has k > 3 vertices. Then for every round
labelling vo,v1,...,vh—1 of R such that vog € V(C) there exist indices 0 <
a1 < az <...<ag—1 <n sothat C' = vV, Va, - - - Va,_,00-

Proof: Let C' be a shortest cycle and let £ = vy, v1,...,v,-1 be a round
labelling of R so that vy € V(C). If the claim is not true, then there exists a
number 2 <1 < k—1 so that C' = vgva,Va, - . . Va,_, V0, Where 0 < a; < ... <
a;j—1 and a; < a;—1. Now the fact that £ is a round labelling of R implies
that v;_1—wvg, contradicting the fact that C' is a shortest cycle. O

Recall that the girth g(D) of a digraph is the length of a shortest cycle in
D = (V, A). For a vertex v € V we let g,(D) denote the length of a shortest
cycle in D that contains v. The next lemma shows that every round local
tournament R is g(R)-pancyclic.

Lemma 8.1.12 A strong round local tournament digraph R on r vertices
has cycles of length k,k + 1,...,r, where k = g(R).

Proof: By Lemma 8.1.11 we may assume that R contains a cycle of the
form wv;, v;,...05,v;,, where 0 = 41 < iy < ... < i < r. Because D is strong,

v;,,, dominates all the vertices v;,, 41,...,4,,, for m =1,2,..., k. Now it is
easy to see that D has cycles of lengths k,k + 1, ..., through the vertices
Ui171}i2,...,’l)7;k. O

There is also a very nice structure on cycles through a given vertex in a
round local tournament digraph. We leave the proof as Exercise 8.7.
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Lemma 8.1.13 If a strong round locally tournament digraph with r vertices
has a cycle of length k through a vertex v, then it has cycles of all lengths
k.k+1,...,r through v. a

Lemma 8.1.14 [80] Let D be a strongly connected round decomposable lo-
cally semicomplete digraph with round decomposition D = R[Sh,...,Sp]. Let
V(R) = {r1,72,...,rp}, wherer; is the vertex of R corresponding to S;. Then

(1) D is pancyclic if and only if either the girth of R is 3 or g(R) <
maxi<i<p ‘V(SZ)| + 1.

(2) D is vertex-pancyclic if and only if, for eachi =1, ..., p, either g,,(R) = 3
or gr,(R) < [V(Si)| + 1.

Proof: As each S; is semicomplete, it has a hamiltonian path P;. Further-
more, since R is a strong locally semicomplete digraph, it is hamiltonian by
Theorem 6.3.1. Thus, starting from a p-cycle with one vertex from each 5,
we can get cycles of all lengths p+1,p+2, ..., n, by taking appropriate pieces
of hamiltonian paths Py, P,,..., P, in Sy,...,S,. Thus, if g(R) = 3, then D
is pancyclic by Lemma 8.1.12. If g(R) < maxi<i<, [V(S;)| + 1, then D is
pancyclic by Lemma 8.1.12 and the fact that (by Moon’s theorem) every S;
has cycles of lengths 3,4,...,|V(S;)|. If g(R) > 3 and, for every i = 1,...,7,
g(R) > |V(S;)| + 1, then D is not pancyclic since it has no (g(R) — 1)-cycle.
The second part of the lemma can be proved analogously by first proving

that for each ¢ = 1,2,...,p, every vertex in S; is on cycles of all lengths
9ri(R), gr,(R) + 1,...,n (using Lemma 8.1.13) and then applying Theorem
1.5.1. O

The main part of the characterization of (vertex-)pancyclic locally semi-
complete digraphs is to prove the following lemma (recall Theorem 2.10.15).

Lemma 8.1.15 [80] Let D be a strong locally semicomplete digraph on n
vertices which is not round decomposable. Then D is vertex-pancyclic.

Proof: If D is semicomplete, then the claim follows from Moon’s theorem. So
we assume that D is not semicomplete. Thus, D has the structure described
in Lemma 2.10.14.

Let S be a minimal separating set of D such that D — S is not semi-
complete and let Dy, D, ..., D, be the acyclic ordering of the strong compo-
nents of D — S. Since the subdigraph D(S) is semicomplete, it has a unique
acyclic ordering Dy41, ..., Dpq with ¢ > 1 of its strong components. Recall-
ing Lemma 2.10.14(a), the semicomplete decomposition of D — S contains
exactly three components Dj, D}, D}. Recall that the index of the initial
component of D is Ay. From Theorem 2.10.8 and Lemma 2.10.12, we see
that D) = D} = S = D; and there is no arc between D] and Dj.

We first consider the spanning subdigraph D* of D which is obtained by
deleting all the arcs between S and D). By Lemma 2.10.14, D* is a round
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decomposable locally semicompletedigraph and D* = R*[D1, Da, ..., Dpiq4l,
where R* is the round locally semicomplete digraph obtained from D* by
contracting each D; to one vertex (or, equivalently, R* is the digraph obtained
by keeping an arbitrary vertex from each D; and deleting the rest). It can
be checked easily that g,(R*) < 5 for every v € V(R*). Thus D* is vertex
5-pancyclic by the remark in the proof of Lemma 8.1.14 (in the case when
n = 4, D is easily seen to be vertex-pancyclic so we may assume n > 5). Thus,
it remains to show that every vertex of D lies on a 3-cycle and a 4-cycle.
We define

t=max{ i [N*(S)NV(D;) # 0, o < i < pl,

A=V(Dy,)U...uV(Dy),
¢ =min{ j [N"(D;) NV(D3) #0,p+1<j<p+q}
and B =V(Dy)U...UV(Dpiy).

It follows from Proposition 2.10.16 that B— Dj— A.

Since we have S—D;j+—Dy,—D}+—S, every vertex of S is in a 4-cycle
and since we have B Dj4i— A— DS, each vertex of V(D{)U AUV (D)) is
contained in a 4-cycle.

By the definition of ¢ and A, there is an arc sa from Dy to A. It follows
from Lemma 2.10.14(b) that there is an arc a's’ from A to B. Let v € V(D))
and w € V(D5) be arbitrarily chosen. Then savs and s'wa’s’” are 3-cycles.

Suppose D} contains a vertex z that is not in A, then A—xz. We also have
x,s' € NT(a’) and this implies that x—s’. From this we get that z— Dy, in
particular, x—s. Hence zsax is a 3-cycle and zvsax is a 4-cycle. Thus, there
only remains to show that every vertex of S U A is contained in a 3-cycle.

Let u be a vertex of S and let D, be the strong component containing w.
If D, has at least three vertices, then u lies on a 3-cycle by Theorem 1.5.1.
So we assume |V (Dy)| < 2. If £ < t/, then u and &' are adjacent because
D, dominates the vertex s’ of B. If £ > ¢/, then either u = s or s — u (if
V(Dy) = {s,u}, then usu is a 2-cycle) and hence u, a are adjacent. Therefore,
in any case, u is adjacent to one of {a,a’}. Assume without loss of generality
that a and u are adjacent. If w — a, then wavu is a 3-cycle. If a — u, then
uwau is a 3-cycle because of D — A. Hence, every vertex of S has the
desired property.

Finally, we note that S’ = N*(D}) is a subset of V(D)) and it is also a
minimal separating set of D. Furthermore, D — S’ is not semicomplete. From
the proof above, every vertex of S’ is also in a 3-cycle. So the proof of the
theorem is completed by the fact that A C 5’. O

Combining Lemmas 8.1.14 and 8.1.15 we have the following characteriza-
tion of pancyclic and vertex-pancyclic locally semicomplete digraphs due to
Bang-Jensen, Guo, Gutin and Volkmann:
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Theorem 8.1.16 [80] A strong locally semicomplete digraph D is pancyclic
if and only if it is not of the form D = R[S, ...,Sy], where R is a round local
tournament digraph on p vertices with g(R) > max{2, |V (S1)l,...,|V(Sp)|}+
1. D is vertex-pancyclic if and only if D is not of the form D = R[S, .., Sp),
where R is a round local tournament digraph with g,,(R) > max{2, |V (S;)|}+
1 for some i € {1,...,p}, where r; is the vertex of R corresponding to S;. O

8.1.4 Further Pancyclicity Results

To characterize pancyclic locally in-semicomplete digraphs seems a much
harder problem than that of characterizing pancyclic locally semicomplete
digraphs. Tewes [848] studied this problem and obtained several partial re-
sults of which we will state a few below.

Theorem 8.1.17 [8/8] Let D be a locally in-tournament digraph on n ver-
tices and let 3 < k <n be an integer such that 6= (D) > —on % Further-

2(k+1)
more, let D be strong if k > 20~ (D) +2. Then D has a cycle of length k. For
k > v/n+ 1 this bound is sharp. a

For further results on pancyclic and vertex-pancyclic locally in-tournament
digraphs, see [849, 850].
Let the function f(k) be defined as follows for fixed n:

n+1 k-1 i
nrl 1 B2 if £ is even
f(k) {71;:2+’fg5 if k is odd.

Theorem 8.1.18 [8/8] Let D be a strongly connected locally in-tournament
digraph on n wvertices such that 6= (D) > f(k) for some integer 3 < k <
vn+1. Then D has cycles of all lengths k,k+1,...,n. O

Since every regular tournament is strong (Exercise 8.4) it is also pancyclic
by Moon’s theorem. Note that by Theorem 6.6.22, every regular multipartite
tournament is hamiltonian. This motivated Volkmann to make the following
conjecture.

Conjecture 8.1.19 [890] Every regular p-partite tournament with p > 4 is
pancyclic.

Note that in the 3-partite tournament D = Cj [K1, K, K] all cycles
have length some multiple of 3. Hence the condition p > 4 above is necessary.
For p > 5 Conjecture 8.1.19 follows from the next result due to Yeo (for an
outline of Yeo’s proof see Volkmann [890]).

Theorem 8.1.20 [918] Every regular multipartite tournament with at least
5 partite sets is verter-pancyclic. O
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Yeo [920] also proved that all regular 4-partite tournaments with at least
13918 vertices are vertex-pancyclic.

Volkmann [893] raised the following conjecture for regular 3-partite tour-
naments:

Conjecture 8.1.21 FEvery regular semicomplete 3-partite digraph D con-
tains cycles of length 3,6,...,|V(D)].

The following results support this conjecture: by Theorem 6.6.22, D is
hamiltonian.

There are also many results on sufficient conditions in terms of the num-
ber of arcs for a digraph to contain a cycle of length precisely k. We refer
the reader to the survey of Bermond and Thomassen [152] for a number of
references to such results.

Recall that for a given directed pseudograph D = (V, A), the line digraph
L(D) of D has vertex set A and a—a’ is an arc in L(D) precisely when the
head of a equals the tail of a’ in D (note that a loop in D gives rise to a
loop in L(D)). Let D = (V, A) be a directed pseudograph; D is pancircular
if it contains a closed trail of length ¢ for every ¢ € {3,4,...,|A|}. Due to a
natural bijection between the set of closed trails in D and the set of cycles
in L(D), we obtain the following:

Proposition 8.1.22 L(D) is pancyclic if and only if D is pancircular. O

Imori, Matsumoto and Yamada [551], who introduced the notion of pan-
circularity, proved the following theorem.

Theorem 8.1.23 Let D be a reqular and pancircular directed pseudograph.
Then, L(D) is also regular and pancircular. O

This theorem was used in [551] to show that de Bruijn digraphs are pan-
cyclic and pancircular.

Theorem 8.1.24 [551] Every de Bruijn digraph Dg(d,t) is pancyclic and
pancircular.

Proof: de Bruijn digraphs Dg(d,t) were introduced for d > 2 and t > 1. Let
Dp(d,0) be the directed pseudograph consisting of a singular vertex and d
loops. Clearly, Dg(d,1) = L(Dg(d,0)). Since

Dp(d,t+1) = L(Dp(d, 1)) (8.2)

for t > 1 by Lemma 2.5.1, we conclude that (8.2) holds for all ¢ > 0. We
prove the theorem by induction on ¢ > 0. Clearly, Dp(d,0) is pancyclic and
pancircular. Assume that Dp(d,t) is pancyclic and pancircular. By Theorem
8.1.23, L(Dg(d,t)) is pancircular. By Proposition 8.1.22, L(Dp(d,t)) is pan-
cyclic. By (8.2), Dp(d,t + 1) = L(Dg(d,t)). Thus, Dp(d,t + 1) is pancyclic
and pancircular. a
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8.1.5 Cycle Extendability in Digraphs

The following definitions are due to Hendry [517]. A non-hamiltonian cycle
C in a digraph D is extendable if there is some cycle C' with V(C') =
V(C)U{y} for some vertex y € V—V(C). A digraph D which has at least one
cycle is cycle extendable if every non-hamiltonian cycle of D is extendable.
Clearly a cycle extendable digraph is pancyclic if and only if it contains a
3-cycle and vertex-pancyclic if and only if every vertex is in a 3-cycle.

The following is an easy consequence of the proof of Theorem 1.5.1:

Theorem 8.1.25 [704] A strong tournament T = (V, A) is cycle extendable
unless V' can be partitioned into sets U, W, Z such that W—U—Z and T{U)
18 strong. a

Hendry [517] studied cycle extendability in digraphs with many arcs and
obtained the next two results.

Theorem 8.1.26 [517] Every strong digraph on n vertices and at least n? —
3n+5 arcs is cycle extendable. a

Hendry showed that digraphs may have very large in- and out-degree and
still not be cycle extendable. This contrasts to the situation for undirected
graphs. Hendry has shown in [518, Corollary 8] that, apart from certain excep-
tions, every graph satisfying Dirac’s condition for hamiltonicity (d(x) > n/2
for every vertex [266]) is also cycle extendable (with the obvious analogous
definition of cycle extendability for undirected graphs). The main result of
[517] is the following.

Theorem 8.1.27 [517] Let D be a digraph on n > 7 vertices such that
(D) > @ Then D is cycle extendable unless n = 3r for some r and
D contains F,, as a spanning subdigraph and D is a spanning subdigraph of

Gy,. See Figure 8.1 for the definition of F,,Gy,. O

F3y, Gk

Figure 8.1 The digraphs F,, and G,. All arcs indicate complete domination in the
direction shown.
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A cycle C in a digraph D is 1-maximal if D has no cycle C’ such that
C — a is a subpath of C’ for some arc a of C' and |V (C")| > |V(C)|. Each of
the next two results generalizes Corollary 1.5.2.

Lemma 8.1.28 Let D be a strong digraph and let C be a 1-mazimal cycle
in D. Then no vertex of D — V(C) is adjacent to all vertices in C.

Proof: Exercise 8.12. O

Lemma 8.1.29 Given a strong digraph D and a vertex v € V(D) we can
find in polynomial time either a hamiltonian cycle of D or a 1-mazximal cycle
containing v.

Proof: Exercise 8.13. O

8.1.6 Arc-Pancyclicity

A digraph D of order n is arc-k-cyclic for some k € {3,4,...,n} if each arc of
D is contained in a cycle of length k. A digraph D = (V, A) is arc-pancyclic
if it is arc-k-cyclic for every k = 3,4,...,n. Demanding that a digraph is
arc-pancyclic is a very strong requirement, since in particular every arc must
be in a hamiltonian cycle. Hence it is not surprising that most results on arc-
pancyclic digraphs are for tournaments and generalizations of tournaments.
However, Moon proved that almost all tournaments are arc-3-cyclic [704], so
for tournaments this is not such a hard requirement, in particular in the light
of Theorem 8.1.30 below.

Tian, Wu and Zhang characterized all tournaments that are arc-3-cyclic
but not arc-pancyclic. See Figure 8.2 for the definition of the classes Dg, Dg.

Theorem 8.1.30 [873] An arc-3-cyclic tournament is arc-pancyclic unless
it belongs to one of the families Dg, Dg (in which case the arc yx does not
belong to a hamiltonian cycle). O

It is not difficult to derive the following two corollaries from this result:

Corollary 8.1.31 [873] Every arc-3-cyclic tournament has at most one arc
which is not in cycles of all lengths 3,4, ..., n.

Proof: Exercise 8.14. O

Corollary 8.1.32 [913] A tournament is arc-pancyclic if and only if it is
arc-3-cyclic and arc-n-cyclic.

Proof: Exercise 8.15. O

The following result due to Alspach is also an easy corollary:

Corollary 8.1.33 [3/] Every regular tournament is arc-pancyclic. a
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D¢ Dy

Figure 8.2 The two families of non-arc-pancyclic arc-3-cyclic tournaments. Each
of the sets U and W induces an arc-3-cyclic tournament. All edges that are not
already oriented may be oriented arbitrarily, but all arcs between U and W have
the same direction.

Finally, observe that since each tournament in the infinite family Dg is 2-
strong and the arc yx is not in any hamiltonian cycle we obtain the following
result due to Thomassen:

Theorem 8.1.34 [856] There exist infinitely many 2-strong tournaments
containing an arc which is not in any hamiltonian cycle. a

In [432, 434] Guo studied arc-pancyclic locally tournament digraphs and
obtained several results which generalize those above. In particular he made
the important observation that one can in fact get a more general result by
studying paths from x to y for all such pairs where the arc zy is not present
rather than just those for which the arc yx is present (which is the case for
tournaments of course).

Theorem 8.1.35 [43/] Let D be an arc-3-cyclic local tournament and let
x,y be distinct vertices such that there is no arc from x toy. Then D contains
an (x,y)-path of length k for every k such that 2 < k < n — 1 unless D is
isomorphic to one of the local tournaments T4, Ts (from Section 7.2) or D
belongs to one of the families Dg or Dg, possibly with the arc from y to x
missing. O

The proofs of Theorems 8.1.30 and 8.1.35 are very technical and consist
of a long case analysis. Hence it makes no sense to give any of these proofs
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here. However, we will finish the section with a proof of the following partial
result which Guo used in his proof of Theorem 8.1.35.

Theorem 8.1.36 [/3/] Let D be a connected, arc-3-cyclic local tournament
which is not 2-strong. Then D is isomorphic to Cs[Ty, Ty, {s}] where T} is
an arc-3-cyclic tournament for i = 1,2 and s is a vertex. Furthermore, D is
arc-pancyclic.

Proof: First observe that D is strongly connected since it is connected
and arc-3-cyclic. Since D is not 2-strong, it has a separating vertex s. Let
T1,T5, ..., Ty denote the acyclic ordering of the strong components of D — s.
If there is an arc xs from V(71) to s, then no arc from z to V(7T3) can be in
a 3-cycle. Hence we must have s—V (T7) and similarly V(T )—s. Since D is
arc-3-cyclic, each of T, Ty must be an arc-3-cyclic tournament.

If k > 3, then for every vertex u € V(T2), either no arc from V(T}) to u
or no arc from u to V(T3) can be in a 3-cycle, contradicting our assumption.
Thus we must have k = 2 and we have proved that D = C5[Ty, Tb, {s}].

It remains to prove that D is arc-pancyclic. Since 77 and 75 have hamil-
tonian paths, it is easy to see that each arc which does not belong to either
Ty or Ty is on cycles of all possible lengths. So we just have to consider arcs
inside T1,T». If |[V(T1)| = |V (T2)| = 1, there is nothing more to prove. So
suppose without loss of generality that |V (T1)| > 3. Let wjus - .. upug, r > 3,
be a hamiltonian cycle of T7. Let u;u; be an arbitrary arc of Ty. If Th — u; is
strong, then T7 — u; has a hamiltonian cycle and hence T; has a hamiltonian
path starting with the arc u;u;. Using this and a hamiltonian path in T5 we
can easily obtain cycles of all lengths 3,4, ...,n through w;u; in D. Suppose
now that 77 — w; is not strong. Then T; — u; satisfies the assumption of the
theorem, so by induction it has the same structure as D and u; must belong
to the initial component of 77 — u,;. Hence again we find a hamiltonian path
starting with the arc w;u; in 77 and finish as above.

Similarly, if |V (T%)| > 3, the same proof as above can be applied to every
arc of Ty. Thus we have shown that D is arc-pancyclic. a

The following natural and interesting problem remains open.
Problem 8.1.37 Characterize arc-pancyclic semicomplete digraphs.

A partial result on the problem was obtained by Darrah, Liu and Zhang [249].

8.2 Colour Coding: Efficient Algorithms for Paths and
Cycles

While it is N"P-complete to decide whether a digraph D of order n has a path
or cycle with n vertices, it is not trivial to see for what functions [,(n) and
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l.(n), one can verify in polynomial time whether D contains a path (cycle,
respectively) of length [,,(n) (I.(n), respectively). In particular, Papadimitriou
and Yannakakis [743] conjectured that one can determine in polynomial time
the existence of a path of length p;(n) = ©(logn). Alon, Yuster and Zwick
[31, 32] resolved this conjecture in the affirmative. They also proved that
one can check whether a digraph of order n has a Cr in polynomial time as
long as k = O(logn). In this section we will briefly consider certain elegant
ideas behind the algorithms designed in [31, 32]. Further developments on the
topic can be found in [33] and in the references therein. Various algorithmic
aspects on enumeration of short cycles are also discussed there. For other
applications of colour coding, see, e.g., Liu, Lu, Chen and Sze [649].

We start with a simple technical result on the expectation of a geometric
random variable. This result can be found in many books on probability the-
ory; we include its short proof for the sake of completeness. We use Prob(E)
to denote the probability of the event E.

Lemma 8.2.1 Let 0 < p < 1 and let x1,xs2,... be a sequence of random
boolean wvariables such that x; = 1 with probability p for each j > 1. A
random variable v is defined as follows: for j > 1, v = j if and only if x; =1
and x1 =29 = ... =x;_1 = 0. Then, the expectation of v is 1/p.

Proof: The expectation of v equals

oo

Zz’-Prob(zz =i)= ZProb(y >i)=> (1-pit=1/p

i=1
O

To design algorithms verifying the existence of paths and cycles, Alon,
Yuster and Zwick [31, 32] introduced two methods: the random acyclic sub-
digraph method and the colour-coding method. We consider first the random
acyclic subdigraph method and then the method of colour-coding. In the rest
of this section, we will follow [32].

Let D = (V, A) be a digraph with V' = {u1,us,...,u,}. Let M = [my]
be the adjacency matrix of D, i.e., m;; = 1 if u;—u; and m;; = 0, otherwise.
Tt is well known (see Exercise 3.20) that the (7, j)th entry of the kth power
of M is non-zero if and only if there is a (u;, u;)-walk of length k. However,
many of the (u;,u;)-walks of length k& can be with repeated vertices (and
even arcs). Thus, one naturally asks how we can get rid of walks that are
not paths or cycles. One such method is the random acyclic subdigraph
method: we choose randomly a permutation 7 on [n] and construct the
corresponding acyclic spanning subdigraph H of D by taking the following
arcs: Ur(j)Ur(;) € A(H) if and only if ur(;ur) € A and 7(i) < 7(j). Clearly,
every walk of H is a path in D (no vertices can be repeated as H is acyclic).
On the other hand, every path P with k arcs in D has a 1/(k + 1)! chance
to be a path in H as well (Exercise 8.18).
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Let O(n“) be the complexity of boolean matrix multiplication (i.e., of
the multiplication of two boolean n X n matrices). Due to Coppersmith and
Winograd [230], w < 2.376. Using random acyclic subdigraphs, one can prove
the following;:

Theorem 8.2.2 [31, 32] Let D = (V, A) be a digraph that contains a path
(a cycle, respectively) of length k. A path (a cycle, respectively) of length k in
D can be found in expected time O((k + 1)!-m) (O(k!logk-n®), respectively).

Proof: To find a path of length &k in D one can apply the following algorithm.
Choose randomly a permutation 7 of [n] and construct the corresponding
acyclic spanning subdigraph H of D as described above. Using the O(m)
algorithm of Subsection 3.3.2, find a longest path P in H. If the length of P
is less than k, then repeat the above procedure. Otherwise return a subpath
of P whose length is k.

Since D contains 131@+1, H has a path of length at least k with probability
at least 1/(k+1)!. Hence, by Lemma 8.2.1, the expected number of iterations
in the above algorithm is at most (k + 1)!. Thus, the expected running time
is O((k + 1)lm) as claimed.

To find a cycle of length k£ in D one can apply the following algorithm.
Choose randomly a permutation 7 on [n] and construct the corresponding
acyclic spanning subdigraph H of D as above. By computing (in time O(n* -
log k), see Exercise 3.21) the (k — 1)th power of the adjacency matrix of H,
we find all pairs of vertices which are end-vertices of (k — 1)-paths in H (see
Exercise 8.19). If the terminal vertex of one of the paths dominates the initial
vertex of the path in D, we construct the corresponding k-cycle and stop. If
no k-cycle is found, we repeat the above procedure.

Clearly, the expected number of iterations in the above algorithm is at
most k!. This implies the expected running time of O(k!logk-n®). a

Now we turn our attention to a more powerful approach, the colour-
coding method. Let ¢ : V—[k] be a colouring of the vertices of D. A path
P in D is colourful if no pair of vertices of P are of the same colour.

Lemma 8.2.3 Let D = (V, A) be a digraph and let ¢ : V—[k + 1] be a
colouring of the vertices of D. A colourful path of length k in D, if one
exists, can be found in time 2°0%).m.

Proof: Add to D a new vertex s of colour 0 that dominates all vertices of D
and is dominated by no vertex. As a result, we obtain a digraph D’, which
has a (k+1)-path starting at s if and only if D contains a path of length k. To
find a path of length &+ 1 in D’ starting at s we use dynamic programming.
Suppose that we have already found for each vertex v € V' the possible sets
of colours on colourful (s, v)-paths of length i as well as the corresponding
paths (just one path for every possible set). We also call such sets colourful.
Observe that for every v we have at most (kjl) colourful sets and (s, v)-paths,
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respectively. We inspect every colourful set C' that belongs to the collection of
v and every arc vu. Let P(C') be the corresponding colourful path. If ¢(u) & C,
then we add C'Uc(u) (P(C)u, respectively) to the collection of colourful sets
(paths, respectively) of u of cardinality (length, respectively) i + 1. Clearly,
D’ contains a colourful (k + 1)-path with respect to the colouring ¢ if and
only if the collection of colourful paths of length k 4 1 for some vertex is not
empty. The number of operations of this algorithm is at most

k+1
0 (iz(k;’— 1) m> — O((k + 1)25+1m).

i=0
O

The next lemma follows from Lemma 8.2.3 and is left as Exercise 8.21.

Lemma 8.2.4 Let D = (V, A) be a digraph and let ¢ : V—[k| be a colouring
of the vertices of D. For all ordered pairs x,y of distinct vertices colourful
(z,y)-paths of length k — 1 in D, if they exist, can be found in total time
20(F) .nm,. a

Actually, for dense digraphs the complexity of this lemma can be improved
to 290k . [32]. Clearly, Lemma 8.2.4 implies a 2°®).nm algorithm to find
a k-cycle in D.

If P is a path of order k£ in D whose vertices are randomly coloured from
a set of k colours, then P has a chance of k!/k¥ > =% to become colourful.
Thus, by Lemma 8.2.1, the expected number of times to randomly generate
k-colouring to detect P is at most |e¥|. This fact and Lemmas 8.2.3 and 8.2.4
imply the following:

Theorem 8.2.5 (Alon, Yuster and Zwick) [31, 32/ If a digraph D has
a path of length k (k-cycle, respectively), then a path of length k (k-cycle,
respectively) can be found in 200).m (200).nm, respectively) expected time.

O

The algorithms mentioned in this theorem are quite simple, but unfortu-
nately not deterministic. Fortunately, one can de-randomize these algorithms
to obtain deterministic algorithms with time complexity still linear in m. Ob-
serve that for a path P of order k in D = (V, A) many k-colourings of V' are
equally good or bad depending on P being colourful or not. This means that
we do not need to consider all k™ k-colourings of V' to detect a path of order
k in D; a subset S of colourings such that every path of order k is colourful
for at least one colouring of S is sufficient. In other words, we wish that for
every k-set W of vertices there is a colouring from S that assigns vertices of
W different colours.

This is captured in the notion of a k-perfect family of hash functions from
[n] to [k]. Schmidt and Siegel [795] following Fredman, Komlés and Szemerédi
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[359] gave an explicit construction of a k-perfect family from [n] to [k] in which
each function is specified by b = O(k) + 2log, log, n bits. Thus, the size of
the family is 20 = 20() logg n. The value of each of these functions on each
specified element of [n] can be computed in O(1) time. Using this family, the
algorithms of Theorem 8.2.5 can be de-randomized to obtain deterministic
algorithms running in time O(2°%).mlog?n) and, respectively, O(20*).
mnlog®n). Alon, Yuster and Zwick [31, 32] pointed out how to decrease
each of the above complexities by the multiplicative factor of logn. They
also showed how to de-randomize some versions of algorithms mentioned in
Theorem 8.2.2. This implies that the following two parameterized problems
are fixed parameter tractable: given an input digraph D and a parameter k,
check whether D has a path (cycle, respectively) with at least k vertices (for
an introduction to fixed parameter tractability, see Section 18.4).

8.3 Cycles of Length k& Modulo p

The linear-time algorithms for computing the period of a digraph described
in Section 17.8 show that the problem to verify whether all cycles of a digraph
are of length 0 modulo p for some p is polynomial time solvable. This problem
has the natural ‘existence’ analogue: given a (fixed) integer p > 2, verify
whether a digraph D has a cycle of length equal 0 modulo p. In this section,
we consider this and the more general problem of the existence of cycles of
lengths equal k£ modulo p. In Subsection 8.3.1, we study the complexity results
on these problems; Subsection 8.3.2 is devoted to some sufficient conditions
for the existence of cycles of lengths equal £ modulo p.

8.3.1 Complexity of the Existence of Cycles of Length k£ Modulo
p Problems

We start our consideration from the following problem. Given a (fixed) inte-
ger p > 2, verify whether a digraph D has a cycle of length equal 0 modulo p.
The case of p = 2 of this problem is called the EVEN CYCLE PROBLEM. The
even cycle problem has numerous applications (see e.g. Robertson, Seymour
and Thomas [786] and Thomassen [868] and the reference to further litera-
ture therein) and is related to several problems on permanents of matrices,
so-called Pfaffian orientations of graphs, colouring of hypergraphs, etc. The
complexity of the even cycle problem was an open problem for quite some
time: Thomassen [869] proved that the even cycle problem is polynomial time
solvable for planar digraphs and Galluccio and Loebl [390] extended this re-
sult to digraphs, whose underlying undirected graphs do not contain sub-
graphs contractible to either K5 or K3 3. Finally, independently McCuaig,
and Robertson, Seymour and Thomas (see [786]) found highly non-trivial
proofs of the following result:
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Theorem 8.3.1 The even cycle problem is polynomial time solvable. ad

We are not aware of any paper determining the complexity of the problem
to check whether a digraph has a cycle of length equal 0 modulo p for fixed
p> 2.

Problem 8.3.2 Is there a polynomial algorithm to check whether a digraph
has a cycle of length equal 0 modulo p for fized p > 27

The last problem can be naturally generalized to the problem to verify
whether a digraph D has a cycle of length equal £ modulo p for fixed k,p
such that 0 < k < p, p > 2. We have considered the case of k& = 0; the
case of k > 0 was studied by Arkin, Papadimitriou and Yannakakis [49], who
proved the following theorem (observe that the case of k = 1 and p = 2 is
polynomial time solvable since one can check whether a digraph is bipartite
in polynomial time):

Theorem 8.3.3 Let k,p be a pair of fized integers such that p > 2 and
k € [p— 1]. The problem to verify whether a digraph D has a cycle of length
k modulo p is N'P-complete.

Proof: Let D be a digraph and let & > 2. Choose k arbitrary arcs
ai,as,...,a; in D and replace every arc zy in A(D) — {a1,az,...,ar} by
an (z,y)-path of length p, whose intermediate vertices do not belong to D
(and the intermediate vertices of all such paths are distinct). Clearly, the
obtained digraph D’ has a cycle of length equal k modulo p if and only if D
has a cycle through all arcs ay,as,...,a;. For a fixed k > 2, the problem of
the existence of a cycle through k given arcs in a digraph is N'P-complete
(see Proposition 10.1.2 and Theorem 10.2.1); hence this theorem is proved for
k > 2. For k = 1, we choose a pair of arcs a, b, replace a by a path of length 2,
b by a path of length p— 1, and every ¢ € A(D) —{a,b} by a path of length p
such that all internal vertices of the paths are distinct and distinct from the
vertices of D. Clearly, the obtained digraph D’ has a cycle of length equal 1
modulo p if and only if D has a cycle through a and b; the last problem is
NP-complete as we remarked above. a

Because of this theorem, the following result of Galluccio and Loebl [389]
is of certain interest:

Theorem 8.3.4 Let k,p be a pair of fized integers such that p > 2 and
0 < k < p. There is a polynomial algorithm to verify whether a planar digraph
D has a cycle of length k modulo p. a
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8.3.2 Sufficient Conditions for the Existence of Cycles of Length k
Modulo p

A digraph D = (V, A) is called even if, for every B C A, the subdivision of all
arcs in B results in a digraph with an even cycle. A k-weak-double-cycle
is a digraph which is defined recursively as follows (see Figure 8.3):

Figure 8.3 The 5-double-cycle and a 5-weak-double-cycle.

1. The complete biorientation Ek of a k-cycle is a k-weak-double-cycle.
2. If H is a k-weak-double-cycle and D is obtained from H by subdividing
an arc or splitting a vertex 2, then D is a k-weak-double-cycle.

It is easy to see that for odd k a k-weak-double-cycle is even because it has
an odd number of cycles and every arc is in an even number of distinct cycles
(see Exercise 8.24). The following result is much more difficult to prove.

Theorem 8.3.5 (Seymour and Thomassen) [813] A digraph is even if
and only if it contains a k-weak-double-cycle for some odd k. O

Galluccio and Loebl [391] have extended this result. They call a digraph
D = (V, A) (k,p)-odd if, for every B C A, the subdivision of all arcs in B
results in a digraph with a cycle of length different from & modulo p.

Theorem 8.3.6 [391] A digraph is (k,p)-odd if and only if it contains a q-
weak-double-cycle, with (¢ — 2)k £ 0 (mod p). O

Using Theorem 8.3.5 and other results, Thomassen [868] proved the fol-
lowing very interesting theorem:

2 The operations of subdividing an arc and splitting a vertex are introduced at
the end of Section 1.3.
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Theorem 8.3.7 (Thomassen’s even cycle theorem) If D is a strong
digraph with §°(D) > 3, then D is even. O

Koh [605] constructed an infinite family of digraphs D with §°(D) > 2 and
with no even cycle. Thomassen [860] strengthened this result by exhibiting,
for every k > 2, a digraph Dy with §°(D;) > k and with no even cycle.
This implies that the strong connectivity requirement in Theorem 8.3.7 is
necessary. Theorem 8.3.7 implies that every 3-strong digraph has an even
cycle. Thomassen [863] pointed out that there exists a 2-strong digraph of
order 7 that has no even cycle, namely, the digraph in Figure 8.4.

Figure 8.4 A 2-strong digraph with no even cycle.

Thomassen [860] constructed infinitely many 2-strong digraphs that are
not even. However, the following question is still open:

Problem 8.3.8 [863] Are there infinitely many 2-strong digraphs with no
even cycle?

Theorem 8.3.7 was extended by Galluccio and Loebl [391], who proved
that every strong digraph D with 6°(D) > 3 contains a cycle of length dif-
ferent from k modulo p, for every 1 < k <p, p > 3.

Although we do not provide a proof of Theorem 8.3.7, we will prove
Theorem 8.3.11 which implies a result weaker than Theorem 8.3.7, i.e.m
Corollary 8.3.12, but its assertion is not only on even cycles but also on
cycles of length 0 modulo ¢(> 2). To prove Theorem 8.3.11, we need two
lemmas; the first lemma is the famous Lovész local lemma (cf. Alon and
Spencer [28] or McDiarmid [690]). For an event F, E means that £ does not
hold.

Lemma 8.3.9 (Lovasz local lemma) Let Ey,..., E, be events in an ar-
bitrary probability space. Suppose that each event E; is mutually independent
of all other events except for at most d events, and that Prob(E;) < p for
every i € [n]. If ep(d+ 1) < 1, where e is the basis of the natural logarithm,
then Prob(N?_, E;) > 0. O
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Lemma 8.3.10 [26] Let D be a digraph and let ¢ > 2 be an integer. Suppose
that every vertex x of D is assigned a colour ¢*(x), an integer in [q — 1], such
that for every u € V(D) there exists an out-neighbour v with c¢*(v) = ¢*(u)+1
(mod q), then D contains a cycle of length 0 (mod q).

Proof: Clearly, choosing an arbitrary vertex wg in V(D), we can find a
sequence ug,uy, ... of vertices such that wu; 41 € A(D) and c¢*(uj41) =
¢*(u;) + 1 (mod q) for every i > 0. Let s be the least integer such that
uj = u, for some j < s. It remains to observe that the cycle ujuj4q1 ... u, is
of length 0 (mod q). O

The following result is due to Alon and Linial:

Theorem 8.3.11 [26] For a digraph D = (V, A), if
e(A~(D)sT (D) + 1)1 —1/q)% ™ <1 (8.3)

or if
e(AT(D)s— (D) +1)(1—1/¢)% P) <1, (8.4)

then D contains a cycle of length 0 (mod q).

Proof: Since (8.4) transforms into (8.3) by replacing D by its converse, it
suffices to prove that (8.3) implies that D has a cycle of length 0 modulo g.

For every vertex u, delete d*(u) — §*(D) arcs with tail u and consider
the resulting digraph D’ = (V, A’). Assign to every vertex u of D’ a colour
c(u), an integer in {0,1,...,q — 1}, independently according to a uniform
distribution. For each v € V', let E, denote the event that there isnov € V
with uv € A’ and ¢(v) = ¢(u)+1 (mod q). Clearly, Prob(E,) = (1—1/¢)° ©).
It is not difficult to verify that each event F, is mutually independent of all
the events E, except for those satisfying

Nt (u)N (vUNT(v)) #0.

The number of such v’s is at most A~ (D)d+ (D) and hence, by our assumption
(8.3) and Lemma 8.3.9, Prob(NuecvE,) > 0. This means that there is a
colouring ¢* such that for every u € V there exists a v € V with uv € A" and
c*(v) = ¢*(u) + 1 (mod ¢q). Now it follows from Lemma 8.3.10 that D has a
cycle of length 0 modulo gq. O

The easy proof of the following corollary is left as Exercise 8.29.

Corollary 8.3.12 FEwvery k-regular digraph D with k > 8 contains an even
cycle. a

We have seen above that no constant k can guarantee that a digraph
of out-degree at least k contains an even cycle. This leads to the following
natural question (raised by Erdés, see [860]): what is the smallest integer h(n)



8.4 Girth 329

such that every digraph of order n and minimum out-degree h(n) contains
an even cycle? In order to prove an upper bound for h(n) we need a result on
hypergraph colouring. The following lemma is due to Beck [129]*: Recall that
a hypergraph H = (V, £) is 2-colourable if there is a function f: V—{0,1}
such that, for every edge F € &, there exist a pair of vertices =,y € F such

that f(x) # f(y).

Lemma 8.3.13 There exists an absolute constant d such that every m-
uniform hypergraph with at most |dm'/32™ | edges is 2-colourable. O

Lemma 8.3.14 [26] For every n > 2,
1
h(n) <logyn — 3 log, log, n 4+ O(1).

Proof: Let m > 2 be an integer and let d be a constant satisfying Lemma
8.3.13. Suppose that

n = |dm!/32™| (8.5)
and let D = (V, A) be a digraph of order n and §+(D) > m — 1. Let H be
the hypergraph on the set of vertices V', whose n edges are the sets N*[u] =
N7 (u)Uwu. Since every edge of H is of cardinality at least m, Lemma 8.3.13
implies that H is 2-colourable. This means that there exists a vertex colouring
¢* : V—{0,1} such that for every u € V there is v € N (v) with ¢*(v) =
c¢*(u)+1 (mod 2). Hence, by Lemma 8.3.10, D has an even cycle. Solving for
m from (8.5) we obtain that

1
h(n) <m —1 < logyn — log, logy n + O(1).
O

Clearly, if a digraph D contains cycles of length k& and k + 1 for some k,
then D has an even cycle. Deciding the existence of such cycles of consecutive
length in a strong digraph is N'P-complete (see Exercise 8.33). Furthermore,
it is easy to construct digraphs of arbitrary high vertex-strong connectivity
with no such cycles (Exercise 8.34). It would be interesting to find non-
trivial degree conditions (weaker than conditions implying pancyclicity, such
as those in Section 8.1) which guarantee that a non-bipartite digraph has
two cycles of consecutive lengths. See also Exercise 1.31 for another type of
sufficient condition for the existence of two cycles of consecutive lengths.

8.4 Girth

Recall that the girth g(D) of a digraph D is the length of a shortest cycle in
D. The girth is an important parameter of a digraph and has been studied
in a number of papers especially with respect to its extreme values.

3 Radhakrishnan and Srinivasan [758] improved the bound of this lemma to 0.7-
2™/m/Inm. Hence, the bound of Lemma 8.3.14 can be slightly improved.
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Theorem 6.4.10 claims that if the minimum degree of every vertex in a
strong digraph D is large enough, then the length of a longest cycle in D is
large as well. Caccetta and Haggkvist [186] conjectured a somewhat similar
result for girth (with obvious replacement of upper bound to a lower bound):

Conjecture 8.4.1 (Caccetta and Haggkvist) [186] Every digraph of
minimum out-degree k and order n has a cycle of length at most [n/k].

This conjecture is trivially true for k = 1; it was proved for k = 2 by
Caccetta and Haggkvist [186], for k = 3 by Hamidoune [496] and for k = 4
and 5 by Hoang and Reed [530]. Hamidoune [495] proved that the conjecture
is true for digraphs with transitive automorphism group. It follows from the
next result that there is only a finite number, if any, of counterexamples
to Conjecture 8.4.1. In particular, Conjecture 8.4.1 is proved for the case
n > 2k? — 3k + 1.

Theorem 8.4.2 (Shen) [815] For every digraph of order n and minimum
out-degree k, g(D) < max{[n/k],2k — 2}. O

For an arbitrary integer £ > 1, we have the following:

Theorem 8.4.3 (Chvatal and Szemerédi) [223] There is a constant ¢
such that every digraph of minimum out-degree k > 1 and order n contains
a cycle of length at most [n/k] + c¢. Moreover, ¢ < 2500. O

Refinements of the proof in [223] were used by Nishimura [729] to show
that ¢ < 304 and by Shen [816] to prove that ¢ < 73. For relatively small val-
ues of n/k, the following result of Chvatal and Szemerédi [223] is of interest.

Theorem 8.4.4 Every digraph of minimum out-degree k and order n has a
cycle of length at most [2n/(k 4+ 1)].

Proof: By induction on n > 2. For n = 2 or 3 and k > 1, the digraph in
question has either a 2-cycle or a 3-cycle and hence the claim holds. Let D be
a digraph of order n > 4 and minimum out-degree k£ > 1. Since the size of D
is at least kn, D contains a vertex v of in-degree at least k. If D has a 2-cycle,
we are done. So, assume that D is an oriented graph. Let D’ be the digraph
obtained from D by deleting the vertices of N~ [v] = N~ (v)U{v} and adding
the new arc xy for every ordered pair z,y such that zy ¢ A(D), y € N (v)
and x dominates an in-neighbour of v. Clearly, D’ is of order at most n—k—1
and minimum out-degree at least k. By the induction hypothesis, D’ contains
a cycle C of length at most 2(n —k — 1)/(k + 1). Replacing each of the new
arcs xy in C by the path xuwvy, we obtain a closed walk C* in D. If C has
precisely s new arcs, then v appears on C* exactly s times, and so C* is the
union of at least s cycles (see Exercise 1.5), whose total length is at most
2(n—k —1)/(k+ 1) + 2s. Clearly, the shortest of these cycles has length at
most 2n/(k + 1). O
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Searching for new approaches to the Caccetta-Haggkvist conjecture,
Hoang and Reed [530] came up with the following conjecture that implies
the Caccetta-Haggkvist conjecture (Exercise 8.35).

Conjecture 8.4.5 Every digraph D of minimum out-degree k contains a
sequence Cy, Ca, ..., Cy of cycles such that Ug;llCi and C; have at most one
vertexr in common.

In the case of k = 2, the last conjecture was proved by Thomassen [862].
The conjecture was verified for tournaments by Havet, Thomassé and
Yeo [510].

Theorem 8.4.6 [862] Every digraph D of minimum out-degree 2 contains a
pair of cycles with precisely one vertex in common.

Proof: By induction on n, the order of D. If n = 3, the claim trivially holds,
so assume that n > 4. Since the minimum out-degree in the terminal strong
component of D is at least 2, we may assume that D is strong. Moreover, since
dT(D) > 2, D has a vertex x such that D — z is strong (see Exercise 8.22).
If D{(N—(x)) contains a cycle C, then the required pair of cycles consists of
C and a cycle formed by a shortest path P from x to C and the arc from
the terminal vertex of P to . So, we may assume that D{N~(z)) is acyclic,
and, thus, D(N~(z)) has a vertex y of in-degree 0.

If we delete all arcs with tail y and identify = and y, we obtain the digraph
D’ of order n — 1 and minimum out-degree at least 2. By the induction
hypothesis, D’ has a pair of cycles with precisely a vertex in common; these
cycles correspond to cycles C; and Cs in D. We may assume that Cy and Co
have yz in common for otherwise they have precisely a vertex in common.
Since D —x is strong, y is in a cycle C5 of D —x. It is not difficult to see that
C1 UC5 U (5 contains a pair of cycles having precisely y in common. Indeed,
if C'5 has only y in common with Cj or Cs, then there is nothing to prove. If
C3 intersects with C7 U Cs at a vertex distinct from y, then let z be such a
vertex with C3y, z] being as short as possible (meaning that Cs[y, z] has only
y and z in common with V(C1)UV (Cs)). Choose i such that z is in C;, where
i =1 or 2. Then C3_; and C;[z,y]Cs[y, 2] is the required pair of cycles. O

The density of a digraph D is the ratio of its size and order (i.e., m/n).
Clearly, high density of a strong digraph D guarantees that g(D) is small.
Thomassen (see [148]) asked to determine the least number m(n, k) such that
every strong digraph of order n and size at least m(n, k) contains a cycle of
length at most k. Bermond, Germa, Heydemann and Sotteau [148] solved
this problem by proving the following:

Theorem 8.4.7 Let D be a strong digraph of order n and let k > 2. Then
n?+ (3 —2kn+k*—k
A(D)| > :
implies that g(D) < k. O
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This theorem is best possible since there exist strong digraphs of order n
and size (n? + (3 — 2k)n + k? — k)/2 — 1 with shortest cycle of length k + 1
(Exercise 8.36).

In many questions on properties of (di)graphs, one may ask whether all
(di)graphs satisfying a certain property must have cycles of length at most
a constant. Perhaps the most famous such question is the problem regard-
ing the chromatic number of an undirected graph: given k£ > 3 and g > 3, is
there an undirected graph of chromatic number k& and of girth at least g7 This
problem was resolved in the affirmative by Erdés [296] using probabilistic ar-
gument (a simplification of the original proof is given by Alon and Spencer
[28]). Clearly, many digraphs of large vertex-strong connectivity are quite
dense and, thus, of small girth. However, it is not difficult to construct di-
graphs of large vertex-strong connectivity and large girth. The ‘vertex-strong
connectivity’ and ‘girth’ parts of the next result were proved by Ayoub and
Frisch [54] (see Exercise 5.21) and Liu and Zhou [647] (see Exercise 8.37),
respectively.

Proposition 8.4.8 If n = gs, g > 2, then there exists an s-regular round
digraph of order n which is s-strong and has girth g. O

8.5 Short Cycles in Semicomplete Multipartite Digraphs

As we mentioned in Chapter 6 the hamiltonian cycle problem is N"P-complete
for arbitrary digraphs and polynomial time solvable for certain families of
digraphs including semicomplete multipartite digraphs. In this section we
consider the existence of ‘short’ cycles in semicomplete multipartite digraphs.
By short cycles in a semicomplete p-partite digraph we mean cycles of length
at most p.

The cycle structure of semicomplete bipartite digraphs is quite well un-
derstood due to Theorem 6.6.4 and Exercises 8.16, 8.17. The cycle structure
of semicomplete p-partite digraphs, p > 3, is less investigated especially for
cycles of length more than p. In this section, we will consider results on cy-
cles of length at most p. Most of the results on short cycles in semicomplete
multipartite digraphs were actually obtained for multipartite tournaments.
Therefore, we state them for multipartite tournaments. However, all of them
can be immediately extended to semicomplete multipartite digraphs due to
the following theorem of Volkmann.

Theorem 8.5.1 [890] Let D be a strong semicomplete p-partite digraph of
order m, p,n > 2, with a cycle C of length at least 3. Then D contains a

strong orientation containing the cycle C, if and only if D ?éf?l,n—l . a



8.5 Short Cycles in Semicomplete Multipartite Digraphs 333

Interestingly enough the analogue of this theorem does not hold for longest
paths, see Exercise 8.38 (some relaxation of the analogue still holds, see Exer-
cise 8.39). It is often more convenient to work with the following easy corollary
of this theorem.

Corollary 8.5.2 [890] Every strong semicomplete p-partite digraph, p > 3,
contains a spanning strong oriented subgraph. a

One of the most interesting results on the topic is the following theorem
of Guo and Volkmann.

Theorem 8.5.3 [//1] Let D be a strong p-partite tournament, p > 3, with
partite sets Vi,...,V,. For each i € [p], there exists a vertex v € V; belonging
to an s-cycle of D for every s € {3,4,...,p}.

Proof: It suffices to prove that V7 has a vertex v which is on an s-cycle of
D for every s € {3,4,...,p}. We proceed by induction on s.

We will first show that D has a 3-cycle through a vertex in V. Let C' =
v1V2 . .. Uxv1 be a shortest cycle through a vertex, say vy, in V5. Suppose that
k > 4. By the minimality of k, vs € V1, since otherwise v3—wv; implying the
3-cycle vivavzvy through a vertex in Vi, a contradiction. This means that
vy & Vi; without loss of generality assume that vy € V5. Since k > 4 is
minimal and vz € Vi, we conclude that v4—wvq, ie., kK = 4, and vy € V5.
If there is a vertex € V — (V4 U V,) which dominates a vertex of C' and
is dominated by a vertex in C|, then there exists i € {1,2,3,4} such that
vi+1—x—v; (indices modulo 4), which implies that there is a 3-cycle through
v1 or v3, a contradiction.

This means that the set V(D) —(V;UV2) can be partitioned into sets Sy, So
such that So—V(C)—S;. Assume without loss of generality that S; # 0.
Since D is strong there is a path from S; to C. Let P = x125...24 be a
shortest such path. Clearly, ¢ > 3. If P has no vertex in Ss, then one of the
vertices x2, 23 belongs to V7 and the other to V5 (V —(S1US3) C V1 UVL). By
the minimality of P, x3—x; implying that z;zox3x; is a 3-cycle containing
a vertex in Vi, a contradiction. Therefore, P has a vertex in S5. By the
minimality of P and S;—C, it follows that x,_; € Sy. If ¢ = 3, then vi2122v4
is a 3-cycle, a contradiction. So, assume that ¢ > 4. Since z,_2 cannot be
in S;1US, 42 € VI UV If 2,9 € V7, we have vo—2,_2 implying that
Tq_2Tq—1V2%q—2 is a 3-cycle, a contradiction. Finally, if z4,_o € Vb, then
V1Tq—2Tq—1v1 is & 3-cycle, a contradiction. We have shown that D has a
3-cycle containing a vertex in V.

Suppose now that 3 < s < p and some vertex u; of V; is contained in a
k-cycle for every k = 3,4, ...,s. Assume, on the other hand, that

no vertex of Vj is in a k-cycle for any k = 3,4,...,s,s+ 1. (8.6)

Let ujus...usu; be an s-cycle of D and let S be the union of partite
sets of D not represented in C'. We claim that there is no vertex in .S, which
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dominates a vertex in C' and is dominated by a vertex in C. Indeed, if such
a vertex existed, one could insert it into C, a contradiction with (8.6). This
means that S can be partitioned into sets S1,S2 such that So—C—S;. As-
sume without loss of generality that Sy # 0. Since D is strong there is a path
from S to C. Let P = y1y2 ...y, be a shortest such path. Clearly, ¢ > 3.

Assume that P has a vertex of Sy. Clearly, y4—1 € S2 and no other vertex
of Pisin Sy. If y,—o & Vi, then yg_oy,—1C[us, uilys—2 is an (s + 1)-path
containing ui, a contradiction with (8.6). Hence, y,—2 € Vi and ua—yq—2.
Now we see that ugy,—oyg—1P[ua, ua] (or ususyy—2ys—1u1, if s = 3) is an
(s + 1)-cycle containing uj, a contradiction with (8.6). Thus, we conclude
that P has no vertex of Ss.

Assume that P contains a vertex y; of V. Let | be chosen such that
{y1,y2,- -, y1—1 1NV = 0. Assume that ¢ < s. Due to the facts that every ver-
tex of C' dominates y;, for every k = 3,4,...,s+1, and y;—{y1, y2, ..., Yyi—2},
there is a k-cycle Cj containing parts of C and P; Cj includes y; € Vi, a
contradiction with (8.6). Therefore, ¢ > s + 1. Assume that | < s+ 1. Since
yi—y1, for every i = 3,4,...,s+ 1, we obtain that P[yi,y;]y1 is an i-cycle
containing y;, a contradiction with (8.6). Thus, we conclude that | > s+ 2. In
the cycle C' = Ply1, yi]y1, the vertex y; dominates every vertex. Hence, for
every i = 3,4,...,s+ 1 we can construct an i-cycle using part of the vertices
of C" including y;, a contradiction with (8.6).

Thus, P has no vertex in V4. Hence, u; dominates every vertex in P. If ¢ >
k+1, then w1 Plyq—k, Yq|Clurt1, u1] would be an (s+1)-cycle containing u., a
contradiction with (8.6). Therefore, ¢ < k. Since every vertex of C' dominates
y1, PClugy1, ug—qg+1]y1 is an (s+1)-cycle containing uq, a contradiction with

(8.6).
Thus, the assumption (8.6) has resulted in a contradiction. This proves
the theorem. ad

This theorem generalizes several other results on multipartite tourna-
ments and (ordinary) tournaments. Three of them are Moon’s theorem on
vertex pancyclic tournaments, Theorem 1.5.1, and the following extension of
Theorem 1.5.1 by Gutin.

Corollary 8.5.4 [/53] Let D be a strong p-partite tournament, p > 3, such
that one partite set of D consists of a single verter v. Then for each k €
{3,4,...,p}, D contains a k-cycle through v. O

By Theorem 8.5.1, Corollary 8.5.4 can be extended to semicomplete p-
partite digraphs, p > 3. Theorem 8.5.3 generalizes the following assertion,
due to Bondy, which was actually the first non-trivial result on cycles in
multipartite tournaments. Again, Corollary 8.5.5 can be extended to semi-
complete p-partite digraphs, p > 3.

Corollary 8.5.5 [167] A strong p-partite tournament contains an s-cycle for
every s € {3,4,...,p}. O
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The assertion of this corollary is the best possible in the sense that for
every p > 3 there exists a strong p-partite tournament with no cycle of length
more than p. The following example is due to Bondy [167]. Let H be a p-
partite tournament with partite sets V4 = {v}, Va,...,V, such that |V;| > 2
for each 2 < i < p. If Vo—sv— U§:3 V; and V;—V; for 2 <i < j <p, then H
is strong but does not have a k-cycle for every k > p.

Another interesting generalization of Moon’s theorem is due to Goddard
and Oellermann.

Theorem 8.5.6 [/13] Fvery vertex of a strong p-partite tournament D be-
longs to a cycle that contains vertices from exactly t partite sets of D for each
te{3,4,...,p} O

It is left as Exercise 8.40 to show that Theorem 8.5.3 is the best possible in
the following sense: for every p > 3 there exists a strong p-partite tournament
T such that some vertex v of T' is not contained in a k-cycle for some 3 <
k < p. If one wishes to consider only cycles through a given vertex of a
multipartite tournament, one perhaps should sacrifice the exactness. This is
illustrated by the following result due to Guo, Pinkernell and Volkmann.

Theorem 8.5.7 [/38] If D is a strong p-partite tournament and v an arbi-
trary vertex of D, then v belongs to either a k-cycle or a (k + 1)-cycle for
every k € {3,4,...,p}. O

For regular multipartite tournaments Guo and Kwak proved the following
much stronger result. Observe that the partite sets of a regular multipartite
tournament are of the same cardinality.

Theorem 8.5.8 [4/37] Let D be a regular p-partite tournament. If the cardi-
nality of the partite sets of D is odd, then every arc of D is on a cycle that
contains vertices from exactly k partite sets for each k € {3,4,...,p}. a

This theorem generalizes the corresponding result by Alspach [34] on reg-
ular tournaments. The next theorem is another generalization of Alspach’s
theorem.

Theorem 8.5.9 [/36] Let D be a regular p-partite tournament. If every arc
of D is contained in a 3-cycle, then every arc of D is on a k-cycle for each
ke{3,4,...,p}. |

Gutin and Rafiey [470] characterized strong p-partite tournaments in
which a longest cycle is of length p and, thus, settled a problem in [888]. This
characterization implies an O(pn?)-time algorithm for checking whether the
length of a longest cycle of a p-partite tournament on n vertices is p. Gutin,
Rafiey and Yeo [471] characterized strong p-partite tournaments, which are
not tournaments, that have a unique p-cycle. (Tournaments with unique
Hamilton cycle were characterized by Douglas [273].) The characterization
allowed the authors of [471] to enumerate such non-isomorphic p-partite tour-
naments for p > 5.
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8.6 Exercises

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.
8.10.

8.11.

8.12.
8.13.
8.14.
8.15.

Non-pancyclic digraphs satisfying Meyniel’s condition. Prove that if
m > (n+1)/2, then the digraph D, ,, described after Theorem 8.1.3 satisfies
Meyniel’s condition for hamiltonicity but has no m-cycle.

Pancyclic digraphs satisfying Woodall’s condition for hamiltonicity.
Prove that if D satisfies the condition in Corollary 6.4.6, then either D is

pancyclic, or n is even and D :I?%%, Hint: use Theorem 8.1.3.

Prove the following result due to Overbeck-Larisch [736]. If a digraph D =
(V, A) satisfies d(z) + d(y) > 2n + 1 for every pair of non-adjacent vertices
z,y € V, then D is pancyclic. Hint: use Theorem 8.1.3.

(=) Prove that every regular tournament is strong.

(4+) Prove Lemma 8.1.9. Hint: use a similar approach as that taken in the
proof of Lemma 8.1.8.

(4) Vertex-pancyclic quasi-transitive digraphs. Prove part (b) of The-
orem 8.1.10. Hint: use a similar approach as taken in the proof of (a) to reduce
the problem to one for extended semicomplete digraphs and then apply The-
orem 8.1.7.

Prove Lemma 8.1.13. Hint: consider a shortest cycle through v (which by the
assumption has length at most k).

[517} Prove the following: let C' = vyv2 ... vev1 be a non-extendable cycle in a
digraph D = (V, A) on n vertices where 2 < k <n—1andletu € V-V (C).
Then

(a) for every 1 <7 <k, D contains at most one of the arcs v;u and uv;41,

(b) [(u, V(O)|+ [(V(C),u)| <k,
(c) for every 1 <i <k, |(vi, V=V (O)|+ |(V—=V(C),vit1)] <n —k, and
(d) if vicru,uvit1 € A, then for 1 <h <i—2ori+1<h <k, D contains

at most one of the arcs vpv; and v;vp41 and hence |(v;, V(C) — v;)| +
(V(C) = vi,v0)| < .

Cycle extendable regular tournaments. Characterize these.

Cycle extendable locally semicomplete digraphs. Characterize cycle
extendable locally semicomplete digraphs.

(4+) Weakly cycle extendable digraphs. Call a digraph D weakly cycle
extendable if every cycle C' which is not a longest cycle of D is contained
in some larger cycle C’, i.e., V(C) C V(C"). For each of the following classes
characterize weakly cycle extendable digraphs:

e Extended semicomplete digraphs

e Path-mergeable digraphs

e In-semicomplete digraphs

Prove Lemma 8.1.28.
Prove Lemma 8.1.29.
Prove Corollary 8.1.31.
Prove Corollary 8.1.32.



8.16.

8.17.
8.18.

8.19.

8.20.
8.21.
8.22.

8.23.

8.24.

8.25.

8.26.

8.27.

8.28.

8.29.
8.30.
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(+) A bipartite digraph D = (V, A) on an even number n of vertices is even
(vertex-)pancyclic if it has cycles of all lengths 4,6, 8, ..., n (through every
vertex v € V). Prove the following theorem due to Zhang [929]:

Theorem 8.6.1 A bipartite tournament D is even vertez-pancyclic if and
only if D is hamiltonian and is not isomorphic to Ca [K K%K%, K%].

Extend Theorem 8.6.1 to semicomplete bipartite digraphs (Gutin [456]).

(=) Let 1 < k < n be integers. Let a1, az, . . ., axr be a sequence of objects and
let ¢ be a colouring that assigns one of the colours {1, 2,...,n} to every object
such that no colour is assigned to two objects. Prove that the probability of
the event c(a1) < c(az2) < ... < c(ax) equals 1/k!

(=) Let M be an n x n matrix and let k£ be a natural number. Describe an
algorithm that finds the kth power of M using only O(log k) multiplications
of two n X n matrices.

Prove the first equality in the proof of Lemma 8.2.1.
Prove Lemma 8.2.4 using Lemma 8.2.3.

Let D be a strong digraph of minimum out-degree 2. Prove that D contains
a vertex x such that D — x is strong. Hint: consider D’, a maximal strong
proper subdigraph of D. Prove that D’ contains all vertices of D but one.

(=) Prove that a digraph D is even if and only if, for every assignment of
weights 0 and 1 to its arcs, D contains a cycle of even weight.

Let D be a k-weak-double-cycle for some odd k. Prove that D has an odd
number of cycles and that every arc is in an even number of cycles. Hint: use
the recursive definition of a k-weak-double-cycle.

Let D be a k-weak-double-cycle for some odd k. Prove that D has an even
cycle. Hint: assume that all cycles in D are odd and use Exercise 8.24 to
obtain a contradiction.

Prove that given an arc e in a digraph D it is NP-complete to decide whether
D has an odd cycle through e (even cycle through e, respectively) (Thomassen
[860]).

Digraphs for which all cycles have the same parity. Show that there is
a polynomial algorithm to decide if the length of all cycles of a given digraph
have the same parity.

(—) Give a short direct proof that the problem to verify whether a digraph
D has cycle of length 0 modulo p, where both D and p form an input, is
NP-complete.

Prove Corollary 8.3.12.

(—) Prove the following generalization of Lemma 8.3.10. Let D = (V, A, w) be
a weighted digraph and let £ > 2 be an integer. If there is a vertex colouring
¢*: V—{0,1,...,k—1} of D such that for every u € V thereis av € N T (u)
with ¢*(v) = ¢"(u) + w(u,v) (mod k), then D has a cycle of weight 0 (mod
k) (Alon and Linial [26]).
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8.31.

8.32.

8.33.

8.34.

8.35.
8.36.

8.37.

8.38.

8.39.

8.40.
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Cycles modulo k in weighted digraphs. Using the result of the previous
exercise and the method of proof of Theorem 8.3.11 prove the following gen-
eralization of Theorem 8.3.11: Let D = (V, A, w) be a weighted digraph and
let k > 2 be an integer. If either (8.3) or (8.4) holds, then D contains a cycle
of weight 0 (mod k) (Alon and Linial [26]).

Prove that a 3-weak-double-cycle is (k,p)-odd for every pair k,p such that
1 <k <p, p>3 (Galluccio and Loebl [391]).

Prove that it is AP-complete to decide whether a strong digraph has two
cycles whose lengths differ by one. Hint: reduce the hamiltonian cycle problem
to this problem.

Construct for every k an infinite family of k-strong digraphs such that no
digraph in the family has two cycles whose lengths differ by one.

Prove that Conjecture 8.4.5 implies Conjecture 8.4.1.

For every k > 2, construct strong digraphs on n vertices such that the number

of arcs is w — 1 and the shortest cycle has length k£ + 1.

(=) Prove that if n = gs, then the s-regular round digraph of order n is of
girth g.

(4+) For p > 3, construct an infinite family F, of strong semicomplete p-
partite digraphs such that every digraph D in F, contains a hamiltonian
path, yet, a longest path of any strong orientation of D has n — 2 vertices,
where n is the order of D (Gutin, Tewes and Yeo [473]).

(++) Prove the following theorem. Let D be a strong semicomplete mul-

tipartite digraph of order n such that D #[H(n_m and let [ be the length of
a longest path in D. Then D contains a strong spanning oriented subgraph
with a path of length at least | — 2 (Gutin, Tewes and Yeo [473]).

For every p > 3 construct a strong p-partite tournament 7" such that some
vertex v of T is not contained in a k-cycle for some 3 < k < p.



9. Branchings

Recall that an in-tree (out-tree) is a oriented tree in which every vertex except
one, called the root, has out-degree (in-degree) one. This chapter deals with
spanning in- and out-trees in directed (multi)graphs. Some papers use the
name arborescence for spanning in- and out-trees but we will use the name
branching instead as this is also widely used and was used in the original
paper by Edmonds on arc-disjoint out-branchings (see Section 9.3 below).
Thus an out-branching (in-branching) of D is a spanning out-tree (in-
tree) in D.

Branchings play an important role in the theory of directed graphs and
have several important applications, which is why we have devoted a separate
chapter to branchings. We start with Tutte’s Matrix Tree theorem which gives
a formula for the number of out-branchings with a given root in a directed
multigraph. Then we discuss the minimum cost branching problem, a directed
analogue of the minimum spanning tree problem. After this we consider arc-
disjoint branchings and out-branchings with bounds on the out-degrees. Then
we move on to arc-disjoint in- and out-branchings and out-trees with extreme
numbers of leaves (many or few). Finally we give some results on the source
location problem and discuss a number of miscellaneous topics.

We will use the following notation: Bf, By, B and B~ denote respec-
tively an out-branching rooted at s, an in-branching rooted at s, an out-
branching with no root specified and an in-branching with no root specified.
Similarly T, T,, T+, T~ denote respectively an out-tree rooted at s, an
in-tree rooted at s, an out-tree with no root specified and an in-tree with no
root specified.

9.1 Tutte’s Matrix Tree Theorem

Counting spanning trees in graphs is a fundamental problem in graph theory
and dates back to Cayley’s famous formula [193] from 1889 stating that the
number of spanning trees in K, is n® 2. Actually, this formula follows from
the so-called Matrix Tree Theorem for graphs (Corollary 9.1.3) which is im-
plicit in the work of Kirchoff from 1847 [596]. In 1948 Tutte [876] proved a
generalization of this theorem to directed multigraphs (Theorem 9.1.2). He
proved that the number of out-branchings rooted at the same vertex r in a
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digraph D can be found efficiently by calculating the determinant of a certain
matrix derived from D. The purpose of this section is to derive this result.
Recall that for a directed multigraph D we denote by up(i, ) the number
of arcs from ¢ to j in D.
The so-called Kirchoff matrix K = K (D) of a directed multigraph D
on n vertices is defined as follows, where we assume that the vertices are
numbered 1,2,...,n:

d=(7) if i = j and

K;; = o e 9.1

Y {—up(m) ifi#j. ©-1)

Notice that the sum of the entries of any column of K is zero by the
definition above. Figure 9.1 shows a digraph and its Kirchoff matrix.

1 2
1 0 0 -1
=19 12 o
0 0 -1 2
4 3

Figure 9.1 A digraph D and its Kirchoff matrix K = K (D).

For i € [n] we denote by K3(D) the matrix obtained from K (D) by
deleting the ith row and the ith column.

Lemma 9.1.1 Let H be a directed multigraph with A~ (H) = 1 and let i be
a vertex of H. Then H has at most one out-branching rooted at i. Moreover,
det (KG(H)) € {0,1} and det (K3(H)) = 1 if and only if H has an out-
branching rooted in 1.

Proof: Suppose first that H contains an out-branching B;‘ rooted at 7. Then
every vertex except ¢ has its only incoming arc included in Bj' , showing that
H has no other out-branching rooted at i. Since application of the same
permutation to the rows and the columns to a matrix does not change the
value of its determinant, we may assume that ¢ = 1 and that the other vertices
are labelled according to a breadth-first order from vertex 1. With respect
to this ordering K;(H) is an upper triangular matrix, all of whose diagonal
elements are one, implying that det (K;(H)) = 1.

Now suppose that H has no out-branching rooted at i. If some vertex j # i
has d(j) = 0, then the jth column of K consists of zeros only, implying that
det (KG(H)) = 0. So we may assume that d—(j) = 1 for every j # i. Now the
fact that there is no out-branching from 7 implies that H has a cycle C' which
does not contain vertex i. It is easy to show that the columns corresponding
to the vertices of C' are linearly dependent and thus det (K3(H)) = 0. O
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Theorem 9.1.2 (Tutte’s Matrix Tree Theorem) [876] For every di-
rected multigraph D with Kirchoff matriz K(D) defined as in (9.1), the num-
ber of out-branchings rooted at vertex i equals det (K;(D)).

Proof: Recall the following basic identity for the determinant of a matrix
consisting of columns ¢y, cs, ..., ¢, each on n elements:

det(cy, ..., (ci+c}),. . cn) =det(cr, ... ciy.rnyen) +det(er, ... ¢yt cn).

Since the only entries in K (D) which are greater than zero occur in the
diagonal elements and each column sums to zero, we may decompose K (D)
into s = II* | Ky n x n matrices {K(H;)};e[s) by writing each column i as
the sum of K;; columns which correspond in a one-to-one fashion to the arcs
entering vertex i (see Figure 9.2).

1 0 0 -17 [1 0 0 01
11 -1 0 101 -1 -1
0 -1 1 0 0 -1 1 0

Lo o o 1] Lo o o 1 |

r1t o0 0 -17 [1 0 0 01
11 0 0 11 0 -1
0 -1 1 0 0 -1 1 0

Lo o -1 1] Lo o -1 1 |

Figure 9.2 The decomposition of K (D) into its four components. Here D is the
digraph in Figure 9.1.

We may assume w.l.o.g. that i = 1. We will now show how to express
det (K7(D)) in terms of the simpler matrices K (H;), ¢ € [s] above. Let D be
obtained from D by deleting all arcs into vertex 1. Then we have

d=(2)
det K1 Z det Kl 32))

J2=1

where ﬁjz is obtained from D by deleting all arcs entering vertex 2 apart
from one (the jaoth arc). Continuing this way we get

d(2)  d7(n)

det (Ki(D)) = » ... Y det(Ki(Dj,.j,))-

J2=1 Jn=1

Now the theorem follows from Lemma 9.1.1 applied to each term above and
the fact that K7(D) = K7 (D). O

Now we can prove Kirchoff’s famous formula for the number of spanning
trees in an undirected graph G.
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Corollary 9.1.3 (Kirchoff’s Matrix Tree Theorem) [596] The number
of spanning trees in an undirected graph G on n vertices is equal to any one

of the numbers det(K(ag)), i€ [n].

Proof: Fix an arbitrary vertex r in G and observe that every spanning tree T'

in G corresponds to a unique out-branching B, in 8 Now the claim follows
from Theorem 9.1.2. O

Since the determinant of a matrix can be calculated efficiently we obtain
the following (see, e.g., [405, page 53]).

Corollary 9.1.4 There is an O(n®) algorithm for finding the number of out-
branchings rooted at a given of a directed multigraph on n vertices. O

If we actually wanted to list all out-branchings in a digraph D, we clearly
have to spend time at least proportional to the number of such branchings in
D. In [582] Kapoor and Ramesh give an O(Nn + n?) algorithm for listing all
out-branchings in a directed multigraph on n vertices and N out-branchings.
The algorithm is based on generating one out-branching from another by a
series of arc swaps.

9.2 Optimum Branchings

Given a directed multigraph D = (V, A) a special vertex s and a non-negative
cost function w on the arcs. What is the minimum cost (measured as the sums
of the arc costs) of an out-branching B rooted at s in D? This problem,
which is a natural generalization of the minimum spanning tree problem for
undirected graphs (Exercise 9.6), is called the MINIMUM COST BRANCHING
PROBLEM. The problem arises naturally in applications where one is seeking a
minimum cost subnetwork which allows communication from a given source
to all other vertices in the network (see the discussion at the end of the
section).

It is easy to find a minimum spanning tree in an undirected graph. The
greedy approach works as follows: order the edges according to their weights
in increasing order £ = {ey, €2, ...,em}. Start from 7' = () and go through &
while always adding the next edge to T if it can be added without creating a
cycle. This is the so-called Kruskal algorithm (see, e.g., [232]). It is not difficult
to construct examples which show that using a similar greedy approach to
find a minimum cost out-branching in a directed multigraph may be incorrect
(Exercise 9.2).

The minimum cost branching problem was first shown to be polynomially
solvable by Edmonds [283]. Later Fulkerson [366] gave a two-phase greedy al-
gorithm which solves the problem very elegantly. The fastest algorithm for the
problem is due to Tarjan [844]. Tarjan’s algorithm solves the problem in time
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O(mlogn), that is, with the same time complexity as Kruskal’s algorithm for
undirected graphs [231]. The purpose of this section is to describe two differ-
ent algorithms for finding minimum cost out-branching in a weighted directed
multigraph. First we show how to solve the problem using matroids and then
we give a simple direct algorithm based on Edmonds’ original algorithm.

9.2.1 Matroid Intersection Formulation

To illustrate the generality of matroids, let us show how to formulate the
minimum cost branching problem as a weighted matroid intersection problem.
We refer to Section 18.8 for relevant definitions on matroids.

Let D = (V, A) be a directed multigraph and let » € V be a vertex which
can reach all other vertices by directed paths. We define M; = (A,Z;) and
My = (A, T,) as follows (here Z;,Z, C 24):

e A’ € 7; if and only if no two arcs in A’ have a common head and no arc
has head r,
o A" €I, if and only if UG(D(A”)) has no cycle.

It follows from the definition of My that My is the circuit matroid of
UG(D) (see Section 18.8). It is easy to show that M; satisfies the axioms
(I1)-(I3) and hence is a matroid. In particular, all maximal members of Z;
have the same size n — 1 (by our assumption, every vertex in V — r has at
least one in-neighbour) and thus the rank of M; is n — 1.

Since r can reach all other vertices, UG(D) is connected and hence the
rank of Ms is also n — 1. We claim that every common base of M; and My
is an out-branching with root r. This follows easily from the definition of an
out-branching and the fact that any common base corresponds to a spanning
tree in UG(D), since My has rank n — 1.

Thus we can find an out-branching with root r by applying the algorithm
for matroid intersection of Theorem 18.8.11 to the pair My, Ms. Of course
such an out-branching can be found much easier by using, e.g., DFS starting
from r. However, the point is that using the algorithm for weighted ma-
troid intersection, we can find a minimum cost out-branching B in D. It is
easy to see that the required oracles for testing independence in M; and M
can be implemented very efficiently (Exercise 9.3). In fact (and much more
importantly in the light of the existence of other and more efficient algo-
rithms for minimum cost branchings), using matroid intersection algorithms
we can even find a minimum cost subdigraph which has k out-branchings
with a specified root s in a directed multigraph with non-negative weights
on the arcs (Exercise 9.4). Furthermore, in Exercise 9.5, the reader is asked
to show that one can also solve the following problem, using matroid inter-
section: Given directed multigraphs D = (V, A) and D’ = (V, A’) on the
same vertices, a cost function ¢ on A’, a natural number k and a vertex
s € V. Find a minimum cost set of arcs A* C A’ such that the directed
multigraph D* = (V, AU A*) has k arc-disjoint out-branchings rooted at s.
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Clearly, the minimum cost branching problem corresponds to the case when
A = (). Hence, using matroid intersection formulations, one can in fact solve
problems which are much more general than the minimum cost branching
problem.

9.2.2 A Simple Algorithm for Finding a Minimum Cost
Out-Branching

Below we will often call a minimum cost out-branching an optimum out-
branching. Let D = (V, A) be a directed multigraph with a designated root
r € V and ¢ a non-negative cost vector on A. Denote by y,, v € V — r, the
minimum cost of an arc entering v. The following easy observation is the key
to the algorithm below.

Lemma 9.2.1 Let ¢ be the cost function on A defined by ¢’ (uwv) = c(uv) —
Yy Then B is an optimum branching with respect to c if and only if it is
optimum with respect to c .

Proof: Since every vertex except r has precisely one arc entering it in any
out-branching, ¢(B;") = ¢(B;) + >, cy_, Y holds for an arbitrary out-
branching B;" and the claim follows. O

For a given directed multigraph D and weight function ¢, let F* be a
subdigraph of D obtained by taking a minimum cost arc entering each vertex
except r, that is, dp.(v) = 1 for v # r. Note that the cost of F* is zero with
respect to ¢’ and hence the following holds, by Lemma 9.2.1.

Lemma 9.2.2 If F'* is an out-branching, then it is optimum. a

The following result is due to Karp.

Lemma 9.2.3 [584] There exists an optimum out-branching with root r
which contains all but one arc of every cycle C in F*.

Proof: Let B be an optimum out-branching which contains the maximum
number of arcs from F*. If F* is itself a branching, then, by Lemma 9.2.2,
we have B;f = F*, so assume that C is a cycle in F* and suppose A(C) —
A(BF) = {uyv1,ugva, ..., upvx} has at least 2 arcs and occurring in that
order on C. Consider an arbitrary vertex v;, ¢ € [k], and denote by a(v;) the
arc entering v; in B,". By the choice of B;Y, H; = B, +wu;v; — a(v;) is not an
out-branching. This implies that H; contains a cycle which consists of the arc
u;v; and a path P; which starts in v; and ends in u;. Consider the last arc zy
of P; which does not belong to C. As H; contains all the arcs of Clv;_1,u;]
and every vertex of C has in-degree one in H; it follows that y = v;_1 (indices
are taken modulo k). Thus we have shown that H; and hence B, contains
a (v;,v;—1)-path. However, this holds for every i € [k] and so B, contains a
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directed cycle!, a contradiction. Hence we have shown that B contains all
but one arc of C. O

When we contract the cycle C' below to get the weighted directed multi-
graph D/C, the arcs incident to v inherit the costs from the original arcs
between C and V — C.

Lemma 9.2.4 If C is a cycle in F* and W,F is an optimum out-branching
in D/C (the directed multigraph obtained by contracting C' to a vertexr ve ),
then we can obtain an optimum branching B in D by replacing ve by C
minus one arc.

Proof: Let zvc be the unique arc of W, entering ve and let y € V(C)
be chosen so that xy € A and has the same cost as zvg in D/C. Clearly
we can extend W' to an out-branching B;' of D by blowing up C' again
and deleting the unique arc of C' which enters y (arcs leaving ve in W,F are
replaced by corresponding arcs starting in vertices from C). By Lemma 9.2.3,
there exists an optimum out-branching B T containing all but one arc of C' and
contracting C' will transform B+ into an out-branching B+ in D/C. Now, by
Lemma 9.2.1, it follows from the fact that W,F is an optimum out-branching
in D/C and C has cost zero w.r.t. ¢ that ¢(B;") > ¢/(B;), implying that
B is an optimum out-branching. 0

Theorem 9.2.5 [283] There is a polynomial algorithm for the minimum cost
out-branching problem.

Proof: We may assume that the root r can reach every other vertex, as
otherwise no branching exists. The algorithm is very simple. First construct
F* and search for a cycle in it. If F'* is acyclic, it is the desired branching.
If F* contains a cycle C, let D’ = D/C and solve the problem recursively
in D’. Finally convert the optimum out-branching in D’ to an optimum out-
branching of D as described in the proof of Lemma 9.2.4. This algorithm can
easily be implemented as an O(n(n + m)) algorithm. O

9.3 Arc-Disjoint Branchings
This section is devoted to a very important result due to Edmonds [285].
The result can be viewed as just a fairly simple generalization of Menger’s

theorem. However, as will be clear from the next subsections, it has many
important consequences.

! Note that when k = 1 we do not get the contradiction since P; is simply Clvi, u1].
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Theorem 9.3.1 (Edmonds’ branching theorem) [285] A directed multi-
graph D = (V, A) with a special vertex z has k arc-disjoint out-branchings
rooted at z if and only® if

A (X)>kVO0£XCV -2 (9.2)

Proof: We give a short proof due to Lovész [654]. The necessity is clear, so
we concentrate on sufficiency. The idea is to grow an out-tree T from z in
such a way that the following condition is satisfied:

d U)y>k—1 foral AU CV — = (9.3)

D-A(T )(

If we can keep on growing T until it becomes spanning while always
preserving (9.3), then the theorem follows by induction on k. To show that
we can do this, it suffices to prove that we can add one more arc at a time
to TF until it is spanning. Let us call a set X C V — z problematic if
dB—A(Tj) (X) =k —1. It follows from the submodularity of dB_A(T;r) (recall
Corollary 5.1.2) that if X, Y are problematic and X N'Y # (), then so are
X NY,XUY. Observe also that if X is problematic, then X NV (T.}") # 0,
because X has in-degree at least k in D. If all problematic sets are contained
in V(T,), then let W = V. Otherwise let W be an inclusions-wise minimal
problematic set which is not contained in V(T3").

We claim that there exists an arc uv in D such that u € V(T,;F) N W and
v €W — V(T). Indeed if this was not the case, then W # V and every arc
that enters W — V(T7) also enters W. Hence we would have

dp(W=V(T.) =d (W—V(TF)) <d

D—A(T:) - 7—A(Ti)(W) k=1, (94)

contradicting the assumption of the theorem.

The arc uv cannot enter a problematic set X, since that would contradict
the definition of W (recall that u € W). Hence we can add the arc uv to T,
without violating (9.3) and now the claim follows by induction. O

Corollary 9.3.2 There exists a polynomial algorithm for finding k arc-
disjoint out-branchings from a given root s in a directed multigraph which
satisfies (9.2).

Proof: The proof above can be turned into a polynomial algorithm which,
given a directed multigraph D = (V| A) a vertex z € V and a natural number
k, either finds k arc-disjoint out-branchings from k, or a set X C V — 2z with
out-degree less than k (Exercise 9.7). O

2 By Menger’s theorem (Theorem 5.4.1), (9.2) is equivalent to the existence of k
arc-disjoint paths from z to every other vertex of D.
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The following possible generalization naturally emerges. In addition to
z, we are given a subset W C V — z so that d=(X) > k for every subset
X CV—2zXNW # 0 (by Menger’s theorem this is equivalent to saying
that there are k arc-disjoint (z,t)-paths for every ¢ € W). Is it true that there
are k arc-disjoint out-trees rooted at z so that each contains every element of
W? The answer is yes if W = V — 2z (by Edmonds’ theorem) or if |WW| =1 (by
Menger’s theorem). However, Lovész [652] found the example in Figure 9.3
which shows that such a statement is not true in general. This example can be
generalized to directed multigraphs with arbitrarily many vertices (Exercise
9.10).

Figure 9.3 A digraph with A(z,t) > 2, ¢ € W which has no two arc-disjoint out-
trees rooted at z and both containing every element of T. Here W consists of the
three black vertices ([652, Figure 1]).

Observe that in Figure 9.3 d~(z) = 1 < 2 = d*(z) holds for the only
vertex x not in T" and recall that the desired number of arc-disjoint out-trees
above was two. Bang-Jensen, Frank and Jackson proved that if A(z,z) > k
holds for those vertices x € V(D) for which d*(z) > d~ () (that is, the value
of k is restricted by the local arc-connectivities from z to these vertices), then
a generalization is indeed possible.

Theorem 9.3.3 [78] Let D = (V, A) be a directed multigraph with a special
verter z and let T' :={x € V — z : d~(z) < d(x)}. If M(z,2) > k(> 1) for
every x € T', then there is a family F of k arc-disjoint out-trees rooted at z

so that every vertex x € V belongs to at least r(x) := min(k, A(z, z)) members
of F. a

Clearly, if A(z,2) > k holds for every 2 € V in Theorem 9.3.3, then we are
back at Edmonds’ theorem. Another special case is also worth mentioning.
Call a directed multigraph D = (V, A) with root z a preflow directed
multigraph if d=(z) > d*(x) holds for every z € V — 2. (The name arises
from the max-flow algorithms of Karzanov [586] and Goldberg and Tarjan
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[415], see also the definition of a preflow in Chapter 4.) The following corollary
of Theorem 9.3.3 may be considered as a generalization of Theorem 4.3.1.

Corollary 9.3.4 [78] In a preflow directed multigraph D = (V, A) for any
integer k(> 1) there is a family F of k arc-disjoint out-trees with root z so
that every vertex x belongs to min(k, A(z, x; D)) members of F. In particular,
if k:=max(Ap(z,z) : ¢ € V — 2), then every x belongs to Ap(z,x) members
of F. O

Aharoni and Thomassen have shown that Edmonds’ branching theorem
cannot be generalized to infinite directed multigraphs [9].

9.4 Implications of Edmonds’ Branching Theorem

Below we give a number of consequences of Theorem 9.3.1 (for yet another
consequence see Theorem 10.7.3). The first result, due to Even, may be viewed
as a generalization of Menger’s theorem for global arc-strong connectivity.

Corollary 9.4.1 [306, Theorem 6.10] Let D = (V, A) be a k-arc-strong di-
rected multigraph and let x,y be arbitrary distinct vertices of V. Then for
every 0 < r < k there exist paths Py, Ps, ..., Py in D which are arc-disjoint
and such that the first v paths are (z,y)-paths and the last k — r paths are

(y, x)-paths.

Proof: Let [D,x,y] be as described above. Add a new vertex s and join
it to x by r parallel arcs of the form sz and to y by k — r parallel arcs
of the form sy. Let D’ denote the new directed multigraph. We claim that
D’ satisfies (9.2). To see this let X C V be arbitrary. If X # V, then we
have d,,(X) > dp(X) > k, since D is k-arc-strong. If X = V, we have
dp (V) = df,(s) = k. It follows from Theorem 9.3.1 that D’ contains k arc-
disjoint out-branchings all rooted at s. By the construction of D’, when we
restrict to D, these branchings must consist of r out-branchings rooted at
x and k — r out-branchings rooted at y. Take the r (z,y)-paths from those
rooted at = and the k — 7 (y, x)-paths from those rooted at y and we obtain
the desired paths. a

The next result, due to Nash-Williams, gives a sufficient condition for
the existence of k edge-disjoint spanning trees in an undirected graph. This
condition is the best possible in terms of the edge-connectivity (see the remark
after Theorem 9.4.3) and hence we see that for an undirected graph we may
need twice the obvious edge-connectivity requirement to guarantee k edge-
disjoint trees. This contrasts with the case for directed graphs where k-arc-
strong connectivity suffices by Edmonds’ theorem.

Theorem 9.4.2 [717] Every 2k-edge-connected undirected graph contains k
edge-disjoint spanning trees.
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Proof: Let G = (V, E) be a 2k-edge-connected undirected graph. By Nash-
Williams’ orientation theorem (Theorem 11.5.3), G has a k-arc-strong orien-
tation D = (V, A). Let z € V be arbitrary and note that d~—(X) > k holds
for each subset X C V — z of vertices. Hence by Theorem 9.3.1, D contains
k arc-disjoint out-branchings rooted at z. Suppressing the orientation of all
arcs on the branchings we obtain k edge-disjoint trees in G = UG(D). O

The following characterization, due to Tutte, of undirected graphs which
have k edge-disjoint spanning trees can also be derived from Edmonds’
branching theorem and Theorem 11.7.6 (see Exercise 9.19). See also Exercise
11.59 for a simpler orientation result which still implies Theorem 9.4.3.

Theorem 9.4.3 [879] An undirected graph G = (V, E) has k edge-disjoint
spanning trees if and only if

> e(Vi, Vi) = k(p—1), (9.5)

1<i<j<p

holds for every partition Vi, Va,...,V, of V. Here e(V;, V}) denotes the num-
ber of edges with one end in V; and the other in Vj. a

It is easy to derive Theorem 9.4.2 from Theorem 9.4.3. Furthermore, we
can use Theorem 9.4.3 to show that the condition in Theorem 9.4.2 is best
possible in terms of the edge-connectivity. Let Gy, be the graph obtained from
the complete graph on 2k + 2 vertices by removing the edges of a hamiltonian
cycle. Then it is easy to show that Gy is (2k — 1)-edge-connected and using
Theorem 9.4.3 on the partition corresponding to one vertex per set in the
partition we can see that G has no k edge-disjoint spanning trees (in fact
this partition has precisely one arc less than the required number). In order to
get an example with arbitrarily many vertices and no k edge-disjoint trees for
each k we let H be an arbitrary 2k-edge-connected graph and let Hy be the
graph consisting of 2k + 2 copies Hy, Ha, ..., Hapt2 of H and with one edge
between H; and H; just if the corresponding vertices v;, v; are adjacent in Gy,
(where we have assumed that the vertices of Gy, are labelled vy, v, ..., vagto
and H; corresponds to v; for ¢ € [2k + 2]). It is not difficult to prove that
Hj, is (2k — 1)-edge-connected and the partition corresponding to the 2k + 2
copies of H shows that Hy has no k edge-disjoint spanning trees. Note also
that Gy, above is (2k — 1)-edge-connected and (2k — 1)-regular. Furthermore,
a simple counting argument shows that all except finitely many (2k — 1)-
edge-connected and (2k — 1)-regular graphs have no k edge-disjoint spanning
trees (simply because they do not have enough edges).

In some applications (e.g., when a number of tasks have to be distributed
to different units who can cover part of the jobs or demands) one is interested
in covering all edges (arcs) of an undirected (a directed) graph by forests (in-
or out-trees).

Theorem 9.4.4 [718] Let G = (V, E) be an undirected graph. Then E can
be covered by k forests if and only if
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|E(G(X))| < k(X|-1) for all X C V. (9.6)

Proof: Since no forest can use more than |X|—1 edges with both ends inside
any set X, we see that the condition (9.6) is necessary. To prove sufficiency we
use Theorem 9.3.1 and the following result which follows easily from Theorem
11.7.3:

Proposition 9.4.5 A graph H = (V, E) has an orientation D = (V, A) such
that dy(v) < k for every vertex v € V' if and only if

|E(G(X))| < k| X]| forall X C V. O

Suppose now that G = (V, E) satisfies (9.6). By Proposition 9.4.5, G has
an orientation D such that d,(v) < k for every vertex v € V. Add a new
vertex s to D and add k — dp;(v) arcs from s to v for each v € V. Denote the
new directed multigraph by D’. We claim that

dp/(X) >k for all X C V. (9.7

This follows from the fact that for every X C V we have

dp (X) = 3 dp(v) ~ |B(G(X))]
veX
= k| X[ - [E(G(X))]
> k|X| - k(1 X] 1) = k.

By Theorem 9.3.1, D’ has k arc-disjoint out-branchings rooted at s. These
branchings must use all arcs of D since every vertex of V' has in-degree one
in each of these branchings and we have only added k& — d;(v) arcs from s
to v. Now delete the vertex s from each of the branchings and suppress the
orientations of all arcs. The resulting k forests cover E. a

The last part of the proof above also implies the sufficiency part of the
following theorem. The necessity of (9.8) follows from the fact that no vertex
of an out-branching has in-degree bigger than one. The necessity of (9.9) is
seen as in the proof above.

Theorem 9.4.6 [336] The arc set of a directed multigraph D = (V, A) can
be covered by k out-trees if and only if

d=(v) <k for allv eV and (9.8)

|[A(D(X))| < k(]X|—1) for all X C V. (9.9)
O
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9.5 Out-Branchings with Degree Bounds

Finding a spanning tree 7" with restrictions on the maximum degree of T'
in a graph is a well-known problem which has many practical applications,
e.g., in communications, design of reliable networks, etc. Such problems have
been studied extensively in both the mathematical and the computer science
literature (see, e.g., the references in [117]). If we wish to find a spanning tree
where the maximum degree is at most some given integer, then the problem
is NP-hard®, but Fiirer and Raghavachari [369] showed that, in polynomial
time, one can find in a given connected graph G a spanning tree of G whose
maximum degree is at most ¢(G) + 1, where ¢(G) is the least number k such
that G has a spanning tree T with A(T) = k. Czumaj and Strothmann [236]
showed that if the input graph G is k-connected and has maximum degree
at most k(r — 2) 4 2, then one can find, in polynomial time, a spanning tree
T of G such that A(T) < r, where A(T) denotes the maximum degree of
any vertex in 7. They also showed that for the special case of 2-connected
graphs one can obtain a stronger result: Every 2-connected graph G contains
a spanning tree 1" with the property that

dT(U) S %)—i_g

for every vertex v. (9.10)
Bang-Jensen, Thomassé and Yeo [117] studied analogous problems for
out-branchings in directed multigraphs. They made the following conjecture.

Conjecture 9.5.1 [117] Let D be a k-arc-strong directed multigraph. For
every verter s € V., there exists an out-branching BF such that d;+ (x) <
@ + 1 for all vertices x of D.

This would be best possible as there are k-arc-strong k-regular directed
multigraphs with no hamiltonian path (Exercise 9.11). Now let G be a 2k-
edge-connected graph. By Exercise 11.32, G has a k-arc-strong balanced*
orientation D. Hence, Conjecture 9.5.1 would imply the existence of a span-
ning out-branching B whose underlying tree T satisfies dr(z) < % +2
for all vertices z. Hence if A(G) < 2k(r—2)+2, Conjecture 9.5.1 would imply
that G contains a spanning tree with maximum degree at most r + % and
hence would strengthen the result of Czumaj and Strothmann (by showing
that we may replace k-connectivity by k-edge-connectivity when k is even).

By Theorem 9.3.1, every 2-arc-strong directed multigraph contains, in
particular, the union of two arc-disjoint out-branchings rooted at any given
vertex s. So the case k = 2 of Conjecture 9.5.1 follows from the next theorem.

Theorem 9.5.2 [117] Let D be a directed multigraph which is the union of
two arc-disjoint out-branchings rooted at s. There exists an out-branching BS

3 The hamiltonian path problem easily reduces to this problem.
4 Recall that this means that for every vertex v we have |df(v) — dp(v)| < 1.
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+
rooted at s such that d;+ (x) < dDT(I) +1 for all vertices x of D. Furthermore,

such an out-branching can be found in polynomial time.

Proof: Let T, be an out-tree rooted at s and let D’ = D(V(T;")). We say
that T is good if for all vertices x of T;” we have
+ xT + xT
A, (x) < 2257+ 1 when df, (x) = dfy(z) and di(x) < Do iher-
wise.

Clearly the out-tree consisting of just the vertex s is good and if one
can find a good spanning out-tree, the proof is completed. It suffices then
to prove that every non-spanning good out-tree T3 is strictly contained in a
good out-tree.

Call a vertex x of T;" an out-vertex if it has an out-neighbour in D
which belongs to V — V(7). It is clear that T, has at least one out-vertex.
Suppose one vertex z of T has precisely one out-neighbour y in D which
belongs to V — V(T;) (i.e., d}, (z) = dj,(x) —1). Then taking Tt = T Uzy
and letting D" be the subdigraph induced by V(T3) in D we have

dr, 1
D (127)+ 1

d;+ (z) = dJTr:r () +1<

dj(x)
= +1
_ d‘E;(x) 1,

implying that TS"’ is good. Hence we may assume that every out-vertex z € T."
has at least two out-neighbours belonging to V' — V(T;}) in D.

Start now from any out-vertex x; and denote by y; one of its out-
neighbours in V' — V(T;"). As D contains two arc-disjoint (s, y;)-paths, there
exists a path Py starting at some vertex zs of T~ and ending at y;, with all
internal vertices outside of T, and which does not use the arc z1y;. Since
To has at least two out-neighbours in V' — V(T;") it is the origin of an arc
e = Tayo, where yo ¢ T and e is not the first arc of P;. Applying the same
argument as above we see that ys is the end of a path P, starting at some
vertex z3 of T, with all internal vertices in V — V(T"), and which does not
use the arc e. We continue this construction, and let k be the largest integer
such that V(Py),...,V(Px—1) are pairwise disjoint. We denote by a the first
repeated vertex (which belongs to Py. Here, by the first repeated vertex, we
mean the first vertex among V(P;) U ... U V(P;_1) that we encounter by
moving backwards on Py starting in yi). If a = 1, we consider the out-tree
A* =TFUP U...UPgla,yx] and let D* be the subdigraph induced by the
vertices of A*. We claim that A* is good. To see this, it suffices to observe
the following: every new vertex that we add to T," has out-degree one and
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for each i € [k] the out-degree of x; is one larger in A* than in 7., while the
out-degree of x; in D* is at least two larger than in D’.

If a # x1, there exists a unique P;, i < k, such that a € P;. Again it is
easy to see that the out-tree ;" U P;[x;11,a] U Py U. ..U P,_1U Pyla, yg] is
good. The complexity claim follows from the constructive proof above. O

Using induction, with Theorem 9.5.2 as the base case, one can prove the
following result which provides some support for Conjecture 9.5.1. The proof
is left to the reader as Exercise 9.12.

Theorem 9.5.3 [117] If a vertex s has k arc-disjoint paths to every other
vertex in D, then D has an out-branching B} rooted at s such that d;;* (v) <

+
dDQSU) + r, where r = |logok]|. Furthermore, such an out-branching can be

found in polynomial time. a

For acyclic directed multigraphs Bang-Jensen, Thomassé and Yeo gave
a complete characterization for the existence of an out-branching satisfying
given (not necessarily uniform) restrictions on the out-degree of each vertex.
For a set of vertices X in D we denote by X~ the set of vertices with at least
one arc to a vertex in X. Thus X~ = (J, . x N7 (z).

Theorem 9.5.4 [117] Let D = (V, A) be an acyclic directed multigraph and
let f: V—Zy. Suppose that D has precisely one vertex s of in-degree zero.
Then D has an out-branching B} rooted at s satisfying

d;s+ (v) < f(v) forallveV (9.11)

if and only if

Z f@) > |X]| forall X CV —s. (9.12)
reX

Furthermore, there exists a polynomial algorithm which given an acyclic di-
rected multigraph and a non-negative integer assignment to its vertices, either
finds an out-branching satisfying (9.11) or a set X of vertices violating (9.12).

(]

In the case of tournaments we can get much more structure on an out-
branching as illustrated by the following theorem due to Lu [658].

Theorem 9.5.5 [658] Let T be a tournament and let v be a vertex of maxi-
mum out-degree. Then T contains an out-branching B}l such that

o cvery vertez in B except v has out-degree at most two;
e the distance from v to any other vertez in B} is at most 2.



354 9. Branchings

Proof: We give a proof due to Bondy [166]. Let Y = N*(v), X =V -Y —v
and form the undirected bipartite graph B with bipartition classes X,Y and
an edge between € X and y € Y for each yx € A(T). Now it is easy to see
that T has the desired out-branching if and only if we can find a subgraph of
B in which every vertex of X has degree one and no vertex in Y has degree
more than two. By Hall’s theorem (Theorem 4.11.3) such a subgraph exists
if and only if every subset S C X has at least %|S | neighbours in Y. (Indeed,
apply Hall’s theorem to the graph B’ that we obtain by substituting two
independent vertices for each y € Y.).

Let S C X be arbitrary. Since T is a tournament, some s € S dominates
at least 1(|S| — 1) vertices in S. Since sv € A(T) and v has maximum out-
degree it follows that s dominates at most |Y|—1(|S|41) vertices of Y. Thus
at least 1(|S| + 1) vertices of ¥ dominate s and hence S has at least 1|5|
neighbours in Y in B. a

9.6 Arc-Disjoint In- and Out-Branchings

We saw in Section 9.3 that the problem of deciding the existence of k arc-
disjoint out-branchings all with the same root could be solved efficiently and
in Section 9.4 we saw that many problems can be reformulated and solved us-
ing an algorithm for the k arc-disjoint out-branchings problem. In this section
we consider the following much harder problem called the ARC-DISJOINT IN-
AND OUT-BRANCHING PROBLEM: Given a digraph D and vertices u,v (not
necessarily distinct). Decide whether D has a pair of arc-disjoint branch-
ings B;f, B, such that B; is an out-branching rooted at v and B, is an
in-branching rooted at v.

Theorem 9.6.1 [68] The arc-disjoint in- and out-branching problem is N'P-
complete for arbitrary digraphs.

Proof: We give a proof due to Thomassen (see [68]). The problem belongs to
NP, since if the desired branchings exist, then such a pair forms a certificate
that the given instance is a ’yes’ instance. We show how to reduce the arc-
disjoint 2-path problem to the arc-disjoint in- and out-branching problem in
polynomial time.

Let [D,x1,22,y1,y2] be an instance of the arc-disjoint 2-path problem.
Construct a new digraph D’ by adding four new vertices z}, 25, ¥}, v5 and
the following arcs (see Figure 9.4):

{z121, T5m2, Y1y1, Y2us, THTY, Y121, YaW1, Yo, Yowy U {vah s v € V(D) =z JU
{ysv:v € V(D) —y2}.

The reader can easily verify that there exist arc-disjoint branchings B;cz,

By, in D’ if and only if D contains a pair of arc-disjoint (x1,y1)-, (22, y2)-

paths. Since we can construct D’ in polynomial time from D, it follows that
the arc-disjoint in- and out-branching problem is N'P- complete. a
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Figure 9.4 The construction of D’ in the proof of Theorem 9.6.1. The bold arcs
indicate that all the arcs have that direction, except the arcs zix1, y215.

For arbitrary digraphs it is easy to reduce the arc-disjoint in- and out-
branching problem for the case when u # v to the case when u = v by
a polynomial reduction (Exercise 9.13). Hence the problem remains NP-
complete when we ask for an out-branching and an in-branching that are arc-
disjoint and have the same root. However, Bang-Jensen and Huang showed
that if the vertex that is to be the root is adjacent to all other vertices in the
digraph and is not in any 2-cycle, then the problem becomes polynomially
solvable.

Theorem 9.6.2 [103] Let D = (V, A) be a strongly connected digraph and v
a vertex of D such that v is not on any 2-cycle and V(D) = {v} UN~(v) U
NT(). Let A= {Uy,Us, ..., Uy} (B={W1,Ws,...,W,.}) denote the set of
terminal (initial) components in D(NT(v)) (D{(N~(v))). Then D contains
a pair of arc-disjoint branchings B}, B, such that B} is an oul-branching
rooted at v and B is an in-branching rooted at v if and only if there exist
disjoint arc sets Ea, Eg C A such that all arcs in E4 U Eg go from NT(v)
to N~ (v) and every U; € A (W; € B) is incident with an arc from E4
(Eg). Furthermore, there exists a polynomial algorithm to find the desired
branchings, or demonstrate the non-existence of such branchings.

Proof: We prove the characterization and refer the reader to [103] and Ex-
ercise 9.14 for the algorithmic part.

First we note that if the branchings exist, then the arc sets £4 and Eg
exist. Indeed, if B;", B, are such branchings, then there must be an arc from
B, (B;) leaving (entering) every terminal (initial) component of D(N T (v))
(D{N~(v))) and since v is not on any 2-cycle, all these arcs go from N¥(v)
to N~ (v).

Suppose that there exist sets F4 and Eg as above. Every vertex = €
N*(v) has a path to one of the terminal components in A and every vertex
in N~ (v) can be reached by a path from one of the initial components in
B. Hence, we can choose a family of vertex-disjoint trees 17,7, ,...,T} ,
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T, Ty, ..., T such that T (Tj‘) is an in-tree (out-tree) rooted at a vertex
. k — T _

in U; (W;) and Ui, V(T;7) = N*(v), Uj—, V(T;r) = N~ (v). Let B} be the
out-branching induced by the arcs {vw : w € N*(v)} U Eg U, A(T)
and B, be the in-branching induced by the arcs {uv : v € N~ (v)} UE4 U
Ule A(T;). Then B and B, are the desired branchings. O

The following is an easy corollary of Theorem 9.6.2.

Corollary 9.6.3 [68] A tournament D = (V, A) has arc-disjoint branchings
B, B, rooted at a specified vertex v € V if and only if D is strong and for
every arc a € A the digraph D — a contains either an out-branching or an

in-branching with root v. a

There is a small inconsistency in the statement (and the proof) of The-
orem 9.6.2 in [103] as it was not mentioned that v is not on a 2-cycle and
the statement (the part involving the ends to the arcs in E4, Eg) becomes
slightly different when v is contained in a 2-cycle. However, as the reader is
asked to prove in Exercise 9.14, one can still describe a nice characterization
and prove that it can be checked in polynomial time whether the desired
branchings exist and to find such branchings if they exist.

When v is adjacent to all other vertices, one can prove the following, using
Theorem 9.6.2 and the extension in Exercise 9.14 (see Exercise 9.15).

Theorem 9.6.4 Let D be a 2-arc-strong digraph with a vertex v that is adja-
cent to all other vertices of D. Then D has arc-disjoint in- and out-branchings
rooted at v. O

Since the discussion above takes care of the semicomplete case, a possible
next step is to consider the following problem posed by Bang-Jensen.

Problem 9.6.5 [89] Characterize those locally semicomplete digraphs D that
have arc-disjoint branchings B, B, for a given vertex v € V(D).

When u # v, the arc-disjoint in- and out-branching problem becomes
much harder even for semicomplete digraphs. Bang-Jensen [68] found a com-
plete characterization for the case of tournaments. This characterization,
which is quite complicated, implies the tournament case of the following the-
orem by Bang-Jensen and Yeo.

Theorem 9.6.6 [120] Every 2-arc-strong semicomplete digraph T = (V, A)
contains arc-disjoint in- and out-branchings B, , BT for every choice of ver-
ticesr,s € V.

Proof: This follows easily from Theorem 13.10.3 since it is easy to show
that the semicomplete digraph S; which is the unique exception to that
theorem has arc-disjoint in- and out-branchings B, , B, for every choice of
u,v € V(Sy). O
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Theorem 9.6.7 [68] There is a polynomial algorithm for checking whether a
given tournament with specified distinct vertices u,v has arc-disjoint branch-
ings B, By and finding such branchings if they exist. O

This algorithm uses the polynomial algorithms from Corollary 10.7.22 and
Theorem 10.7.23.

The following conjecture, due to Bang-Jensen, was verified by Bang-
Jensen and Huang [103] for the special case when D is quasi-transitive and
u=wv.

Conjecture 9.6.8 [89] The arc-disjoint in- and out-branching problem is
polynomially solvable for locally semicomplete digraphs and quasi-transitive
digraphs.

Thomassen conjectured that there is some sufficient condition, in terms
of arc-strong connectivity, for the existence of arc-disjoint in- and out-
branchings rooted at the same vertex in a digraph (see also Conjecture
13.10.14).

Conjecture 9.6.9 [866] There exists a natural number N such that every di-
graph D which is N-arc-strong has arc-disjoint branchings B}, B, for every
choice of v € V(D).

Verifying a conjecture from [89] (see also [91, Conjecture 9.9.12]) Bang-
Jensen and Yeo proved that for tournaments the following much stronger
property holds. Note that if Conjecture 13.10.2 is true, then we may replace
74k by 2k.

Theorem 9.6.10 [120] Let T be a 74k-arc-strong tournament. Then T has

2k arc-disjoint branchings BIl, e ,sz, B, 1,..., B, such that B;ﬁl, cee
B:k are out-branchings rooted at v and B, ..., B, are in-branchings
rooted at v, for every vertex v € V(T). O

Conjecture 9.6.11 [120] Theorem 9.6.10 holds also if we replace 74k by 2k.

Now let us turn to the case of acyclic directed multigraphs. It is easy to see
that if an acyclic directed multigraph D has arc-disjoint branchings B, B;,
where B is an out-branching rooted at s and B; is an in-branching rooted
at ¢, then s (¢) must be the unique source (sink) in D. The following corollary
of Theorem 9.5.4 characterizes when an acyclic directed multigraph contains
such a pair of arc-disjoint branchings. Recall the definition of X~ from the
end of Section 9.5.

Corollary 9.6.12 [117] Let D be an acyclic directed multigraph such that
there is exactly one sink s of and exactly one sourcet in D. Then D contains
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arc-disjoint branchings B} and B; where the first is an out-branching rooted
at s and the second is an in-branching rooted at t if and only if we have

Z (dt(z) —1) > |X| for all X C V — s. (9.13)
reX—

Furthermore, there exists a polynomial algorithm which given D, s,t either
finds the desired branchings or set X of vertices violating (9.13).

Proof: As remarked above, an acyclic directed multigraph H has an in-
branching rooted at a vertex z if and only if z is the unique vertex of out-
degree zero in H. Now we see that D has the desired branchings if and only
if D has an out-branching rooted at s which satisfies (9.11) with respect to
f(v) =dt(v)—1for v #tand f(t) = 0. By Theorem 9.5.4 this is equivalent
to requiring that (9.13) must hold. The complexity claim follows from the
last part of Theorem 9.5.4. O

9.7 Out-Branchings with Extremal Number of Leaves

A vertex x of an out-branching B is called a leaf if df(z) = 0. For an
out-branching B, let L(B) denote the set of leaves of B. For a digraph D
containing an out-branching, let £, (D) and £yax(D) denote the minimum
and maximum number of leaves in an out-branching of D. If D has no out-
branching, we will write £pn(D) = 0 or £iax (D) = 0; recall that, by Propo-
sition 1.7.1, a connected digraph D contains an out-branching if and only if
D has only one initial strong component.

The problem of finding an out-branching with extremal number of leaves
is of interest in applications, e.g., the problem of finding an out-branching
with minimum number of leaves was considered in the US patent [256] by
Demers and Downing, where its application to the area of database systems
was described.

For general digraphs, the problems of finding an out-branching with
minimum/maximum number of leaves are A'P-hard: a digraph has an out-
branching with just one leaf if and only if it is traceable and by taking the
complete biorientation of an undirected graph, we can reduce the AP-hard
problem of finding a spanning tree with maximum number of leaves in a
connected undirected graph [393] to the problem of finding an out-branching
with the maximum number of leaves in a digraph.

Note that restricted to acyclic digraphs the problems of finding an out-
branching with minimum and maximum number of leaves are of different
complexity (provided P # NP): while the former is polynomial time solvable
(see Subsection 9.7.1), the latter is N"P-hard (see Exercise 9.21).
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9.7.1 Minimum Leaf Out-Branchings

In this subsection, we give upper bounds on £, (D) for general and strong
digraphs D and a polynomial algorithm for computing ¢, (D) for acyclic
digraphs D.

Recall that for a digraph D, a(D) denotes the independence number of
UG(D). Las Vergnas proved the following upper bound on ¢y,i, (D) for general
digraphs.

Theorem 9.7.1 (Las Vergnas’ theorem) [635] For every digraph D, we
have lmin(D) < a(D). O

We will prove the following proposition which immediately implies the
theorem.

Proposition 9.7.2 Let B be an out-branching of D with more than a(D)
leaves. Then D contains an out-branching B’ such that L(B') is a proper
subset of L(B).

Proof: We will prove this claim by induction on the number n of vertices in
D. For n < 2 the result holds; thus, we may assume that n > 3 and consider
an out-branching B of D with |L(B)| > a(D). Clearly, D has an arc zy such
that =,y are leaves of B. If the in-neighbor p of y in B is of out-degree at
least 2, then L(B’) C L(B), where B’ = B + zy — py. So, we may assume
that d;(p) = 1. Observe a(D — y) < (D) < |L(B)| = |L(B — y)|. Hence by
the induction hypothesis, D —y has an out-branching B” such that L(B") C
L(B—y). Notice that L(B—y) = L(B)U{p}\{y}. If p € L(B"), then observe
that L(B"” + py) C L(B). Otherwise, L(B" + zy) C L(B)\ {z} C L(B). O

It is easy to show that Las Vergnas’ theorem implies the Gallai-Millgram
theorem (see Section 13.5). Using Las Vergnas’ theorem, we can easily show
the following result which is equivalent to another important theorem, Dil-
worth’s theorem (see Section 13.5).

Theorem 9.7.3 If D if a transitive acyclic digraph with a unique source s,
then €min(D) = a(D).

Proof: By Las Vergnas’ theorem, D contains an out-branching B with k <
a(D) leaves. Observe that B is rooted at s and the vertices of every path in
B starting at s and terminating at a leaf induce a clique in UG(D). Thus, the
vertices of UG(D) can be covered by k cliques and, hence, a(UG(D)) < k.
We conclude that £y, (D) = a(D). O

Las Vergnas proved another upper bound on £y, (D).

Theorem 9.7.4 [635] Let D be a digraph on n vertices such that any two
distinct non-adjacent vertices have degree sum at least 2n — 2h — 1, where
1<h<n-—1. Then Lyin(D) < h. O
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Settling a conjecture of Las Vergnas [635], Thomassé [852] proved the
following:

Theorem 9.7.5 If D is a strong digraph, then £yin(D) < max{a(D)—1,1}.
O

Demers and Downing [256] suggested a heuristic approach for finding,
in an acyclic digraph, an out-branching with minimum number of leaves.
However, no argument or assertion has been made to provide the validity of
their approach and to investigate its computational complexity. Using another
approach, Gutin, Razgon and Kim [472] showed that a minimum leaf out-
branching in an acyclic digraph can be found in polynomial time.

The following algorithm MINLEAF introduced in [472] returns an out-
branching with minimum number of leaves in an acyclic digraph®. It is not
difficult to prove that MINLEAF is correct and of running time O(m +

n'5y/m/logn) (Exercise 9.24).

MINLEAF

Input: An acyclic digraph D with vertex set V.

Output: A minimum leaf out-branching T of D if £y, (D) > 0 and 'NO’,
otherwise.

1. Find a source r in D. If there is another source in D, return “no out-
branching”. Let V' = {+' : v € V}.

2. Construct a bipartite graph B = B(D) of D with partite sets V, V' — ¢/
and an edge zy’ for each arc xy € A(D).

3. Find a maximum matching M in B.

4. M* := M. For all y € V'’ not covered by M, set M* := M* U {an
arbitrary edge incident with y’}.

5. A(T) := 0. For all xy’ € M*, set A(T) := A(T) U {zy}.

6. Return 7.

Figure 9.5 illustrates MINLEAF. There M = {rz/,zy,2t'} and T =
D — zy.

r r

T Y x g z ’

o Y e J Y o Y

2 : t z 2 z [ I

T @ t @ t t :\0 t

Figure 9.5 Illustration for MINLEAF.

5 Observe that an acyclic digraph D has an out-branching if and only if it is
connected and has exactly one source.
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By Lemma 2.13.8, acyclic digraphs are the digraphs of directed tree-width
(DAG-width, directed path-width) 0. Dankelmann, Gutin and Kim proved
the following:

Theorem 9.7.6 [2/1] The problem of finding an out-branching with the min-
imum number of leaves is N'P-hard even for digraphs of directed tree-width
(DA G-width, directed path-width, respectively) 1. O

This theorem is in sharp contrast with the Hamilton path part of Theorem
6.1.4.

9.7.2 Maximum Leaf Out-Branchings

Bonsma and Dorn [173] showed that the problem of checking whether a di-
graph has an out-branching with at least k leaves is fixed-parameter tractable.
Lower bounds on the maximum number of leaves in an out-branching of a
digraph were investigated by Alon, Fomin, Gutin, Krivelevich and Saurabh
[22, 21] (there is extensive literature on the maximum number of leaves in a
spanning tree of a connected undirected graph [22]).

For a digraph D let ¢ (D), denote the maximum possible number of

max
leaves in an out-tree of D. Clearly Emax(a) = Efnax(a) if G is a connected
undirected graph, as any maximum leaf tree can be extended to a maximum
leaf spanning tree with the same number of leaves.

Notice that £, (D) > fmax(D) for every digraph D. Let £ be the family

max

of digraphs D for which either £,ax (D) = 0 or £ (D) = lpax(D). It is easy
to see that £ contains all strong and acyclic digraphs.

The following assertion, whose proof is left to the reader as Exercise
9.16, shows that £ includes a large number of digraphs including all strong
digraphs, acyclic digraphs, semicomplete multipartite digraphs and quasi-
transitive digraphs.

Proposition 9.7.7 [22] Suppose that a digraph D satisfies the following
property: for every pair R and Q of distinct strong components of D, if there
is an arc from R to Q, then each vertex of QQ has an in-neighbor in R. Then
DeL. O

Let P = ujus...uq be a directed path in a digraph D. An arc u;u; of D is
a forward (backward) arc for P if i < j — 2 (j < i, respectively). Every
backward arc of the type v;11v; is called double.

The following assertion is a slight refinement of a result by Alon, Fomin,
Gutin, Krivelevich and Saurabh [22]. For a better bound, see [21].

Lemma 9.7.8 Let D be an oriented graph of order n containing an out-
branching and with d~(z) = 2 for all x € V(D). If D has no out-tree with k
leaves, then n < k°.
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Proof: Assume that D has no out-tree with k leaves. Consider an out-
branching Bt of D with p leaves so that this is the maximum number of
leaves over all out-branchings in D. By the assumption p < k.

First observe that if Q = vivy...v, is an arbitrary path in BT from the
root to a leaf and v;v; is a forward arc, then, by the maximality of p, BT
must branch at v;_y, that is, dJE;Jr(vj_l) > 2. Since BT has at most k — 1
leaves and no two forward arcs end in the same vertex, this implies that
has at most (k — 2) forward arcs.

Now fix a path P = ujus...u, from the root to a leaf in B* which has
q > n/p vertices. When we delete all vertices of P from B we obtain a
collection of out-trees covering V(D) — V(P). It is easy to show by induction
on the number of leaves that Bt can be decomposed into a collection P =
{Py1, Ps,..., P} of vertex-disjoint directed paths covering all vertices of D so
that P = P;.

Let P’ € P\ {P} be arbitrary. There are at most k — 1 vertices on P
with in-neighbors on P’ since otherwise we could choose a set X of at least
k vertices on P for which there were in-neighbors on P’. The vertices of X
would be leaves of an out-tree formed by the vertices V (P’) U X. Thus, there
arem < (k—1)(p—1) < (k—1)(k—2) vertices of P with in-neighbors outside
P and at least ¢ — (k — 2)(k — 1) vertices of P have both in-neighbors on P.

Let f be the number of forward arcs for P. By the argument above f <
k — 2. Let uv be an arc of A(D) \ A(P) such that v € V(P). There are
three possibilities: (i) u ¢ V(P), (ii) v € V(P) and uv is forward for P,
(ili) w € V(P) and wov is backward for P. By the inequalities above for m
and f, we conclude that there are at most k(k — 2) vertices on P which
are not terminal vertices (i.e., heads) of a backward arc. Consider a path
R = wgvy ...v, formed by backward arcs. Observe that the arcs {v;v;41 :
0<i<r—1}U {vjvjf|r : 1 < j <r} form an out-tree with r leaves, where vj'
is the successor of v; on P. Thus, there is no path of backward arcs of length
more than k& — 1.

If the in-degree of w; in D[V (P)] is 2, remove one of the backward arcs
terminating at u;. Observe that now the backward arcs for P form a vertex-
disjoint collection of out-trees with roots at vertices that are not terminal
vertices of backward arcs. Therefore, the number of out-trees in the collection
is at most k(k — 2). Observe that each out-tree in the collection has at most
k—1 leaves and thus its arcs can be decomposed into at most k£—1 paths, each
of length at most k — 1. Hence, the original total number of backward arcs for
P is at most k(k —2)(k —1)2 41 (where the last one comes from the possible
extra arc into up ). On the other hand, it is at least ¢—k(k—2) as every vertex
on P is the head of an arc not in A(P). Thus, g—k(k—2) < k(k—2)(k—1)2+1.
Combining this inequality with ¢ > n/(k — 1), we conclude that n < k°. O

Theorem 9.7.9 [22] Let D be a digraph in L with (D) > 0.

(a) If D is an oriented graph with 6~ (D) > 2, then fpay (D) > n'/5 — 1.
(b) If D is a digraph with 6~ (D) > 3, then lymax(D) > n'/® — 1.
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Proof: Let BT be an out-branching of D. By deleting some arcs from A(D)\
A(B™), if necessary, we may assume that d~ (z) = 2 for every 2 € V(D). Now
the inequality £y ax (D) > nl/5—1 follows from Lemma 9.7.8 and the definition
of L.

Let BT be an out-branching of D. Let P be the path formed in the proof
of Lemma 9.7.8. (Note that A(P) C A(B™).) Delete every double arc of P, in
case there are any, and delete some more arcs from A(D)\ A(BY), if needed,
to ensure that the in-degree of each vertex of D becomes 2. It is not difficult
to see that the proof of Lemma 9.7.8 remains valid for the new digraph D.
Now the inequality max(D) > n'/5 — 1 follows from Lemma 9.7.8 and the
definition of L. O

It is not difficult to give examples showing that the restrictions on the
minimum in-degrees in Theorem 9.7.9 are optimal. Indeed, any directed cycle
C' is a strong oriented graph with all in-degrees 1 for which £,,x(C) = 1 and
the complete biorientation of any cycle is a strong digraph D with all in-
degrees equal to 2 and £, (D) = 2.

For some subfamilies of £, one can obtain better bounds on .y (D).
An example is the class of multipartite tournaments. Recall from Section
3.7 that every multipartite tournament D with at most one source has an
out-branching B such that the distance from the root of BT to any vertex
is at most 4. This implies that . (D) > ”T_l. Also for a tournament D
of order n, it is easy to prove that fnax(D) > n — logyn (Exercise 9.25).
This bound is essentially tight, i.e., we cannot replace the right-hand side by
n — logy n + 2(log, logy n) as shown by random tournaments; see [29, pages
3-4] for more details.

Solving an open problem from [21], Bonsma and Dorn proved the following
result.

Theorem 9.7.10 [17/] Let D be a digraph on n vertices with at least one
out-branching. If 5= (D) > 3 or if D is an oriented graph and 6~ (D) > 2,
then mqq(D) > Ly/n. i

Results in [21] imply that this bound is best possible modulo the coeffi-
cient, i.e., £nar(D) = O(y/n).

9.8 The Source Location Problem

Definition 9.8.1 Let D = (V, A) be a directed multigraph and let k,l be
non-negative integers. A subset S C V is a (k,l)-source for D if S has k
arc-disjoint paths to every vertex v € V.— S and every vertex v € V — S has
l arc-disjoint paths to S.

By Theorem 9.3.1, S is a (k,[)-source if and only if the digraph we obtain
by contracting S to a new vertex s has k arc-disjoint out-branchings rooted at
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s and [ arc-disjoint in-branchings rooted at s. It follows from this remark and
Menger’s theorem that if d=(X) < k or d™(X) < [, then every (k,l)-source
S must intersect X. Note that, trivially, V(D) is a (k,[)-source. The SOURCE
LOCATION PROBLEM is as follows: Given [D, k,l]; find a (k,)-source S of D
of minimum size.

Call a set X C V (k,1)-bad if d=(X) < k or d*(X) < [ and no proper
subset of X has this property. Clearly, S is a (k, [)-source if and only if it in-
tersects all (k,[)-bad sets. Now we can translate the source location problem
into a problem of finding transversals of hypergraphs as follows. Given D, k
and [ let H 1y (D) = (V, €) be the hypergraph with vertex set V' and £ con-
tains the hyperedge X for each (k,l)-bad set X. A transversal of H; ;) (D)
is a set of vertices containing at least one vertex from each edge. Hence the
source location problem is equivalent to finding a minimum size transversal
of H(k,l) (D)

Clearly the minimum size of a (k,[)-source is at least as big as the max-
imum number of disjoint (k,1)-bad sets. Ito, Makino, Arata, Honami, Itatsu
and Fujishige proved that the other direction also holds.

Lemma 9.8.2 [553] For every digraph D and non-negative numbers k,l the
size of a minimum (k,1)-source of D equals the mazimum number of disjoint

(k,1)-bad sets. O

A hypergraph H = (V, £) is a subtree hypergraph if there exists a tree
T on V such that each hyperedge of £ induces a subtree of T'.

In [523] van den Heuvel and Johnson proved the following result, implying
that a minimum size transversal of a subtree hypergraph can be found in
polynomial time, provided that an oracle for deciding, in polynomial time,

whether a subset is a transversal or not is given®.

Theorem 9.8.3 [523] Let H = (V, &) be a subtree hypergraph on n vertices.
If it is possible to check whether or not a subset S C V is a transversal in

time g(n), then it is possible to find a minimum size transversal of H in time
O(n’g(n)). O

Proposition 9.8.4 [553] For every digraph and non-negative integers k1
the hypergraph H 1y (D) is a subtree hypergraph. O

The next lemma follows easily from our remark just after the definition
of a (k,1)-source.

Lemma 9.8.5 [523] Using flows one can check, in polynomial time, whether
a given set of vertices is a (k,1)-source. O

Thus combining Proposition 9.8.4, Lemma 9.8.5 and Theorem 9.8.3 we
obtain the following.

6 Without this assumption the problem is NP-hard [523].
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Theorem 9.8.6 [523] The source location problem is solvable in polynomial
time. O

Using an entirely different approach, Bardsz, Becker and Frank [124] found
another polynomial algorithm for the source location problem. In [524] van
den Heuvel and Johnson studied a problem closely related to the source
location problem.

9.9 Miscellaneous Topics

9.9.1 Edge-Disjoint Mixed Branchings

We saw in the proof of Theorem 9.4.2 that we could use Edmonds’ branch-
ing theorem to prove that every 2k-edge-connected graph has k edge-disjoint
spanning trees. However, that proof does not imply an algorithm to check
whether a given undirected graph has k edge-disjoint spanning trees. In fact,
this problem is more complicated for undirected graphs than the problem of
finding k arc-disjoint out-branchings from a given root in a directed multi-
graph where the proof of Edmonds’ branching theorem provides the answer.
For undirected graphs the characterization, given in Theorem 9.4.3, is much
more complicated and does not imply a polynomial algorithm for the prob-
lem. Such an algorithm can be obtained from a formulation of the problem
as a matroid partition problem (see Exercise 18.27). See also the remark at
the end of the subsection.

A mixed multigraph is the same as a mixed graph, except that we allow
parallel arcs and parallel edges as well as arcs that are parallel to edges. We
say that two subgraphs of a mixed multigraph are edge-disjoint if they do
not share any arcs or edges (they may contain different copies of an arc/edge,
but not the same).

Definition 9.9.1 Let M = (V, E U A) be a mized multigraph with a special
vertex s. A mized oul-branching B with root s is a spanning tree in the
underlying undirected multigraph G of M with the property that there is a
path from s to every other vertex v in BY.

One reason why mixed out-branchings are of interest in relation to undi-
rected graphs can be seen from the following easy lemma (which in particular
covers the case when no arc of M is directed).

Lemma 9.9.2 Let M = (V,E U A) be a mized multigraph with a special
vertex s called root. There are k edge-disjoint mized out-branchings rooted
at s if and only if there exists an orientation D of M with k edge-disjoint
out-branchings at s.
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Proof: Exercise 9.17. O

The following characterization, due to Frank, generalizes Theorems 9.4.3
and 9.3.1.

Theorem 9.9.3 [336] Let M = (V,E U A) be a mized multigraph with a
special vertex s. There are k edge-disjoint mized out-branchings rooted at s,
if and only if the following holds for all subpartitions F = {V1,Va, ..., V;} of
V —s:

ar > kt, (9.14)

where ax denotes the number of edges, oriented or mot, which enter some
V. O

One can use submodular flows to decide in polynomial time whether a
given undirected graph G has k edge-disjoint spanning trees. By Lemma 9.9.2,
all we need to check is whether there is some orientation of G which has &
arc-disjoint out-branchings from a given vertex. Thus, given G we form an
arbitrary orientation D of G and then follow the approach in Exercise 11.67.
It is not hard to see that, with a slight modification, the same approach can
be used to determine the existence of k edge-disjoint mixed branchings from
a given root in a mixed graph (Exercise 9.18).

9.9.2 The Minimum Covering Out-Tree Problem

It is easy to decide whether a digraph D has some out-tree rooted at a pre-
scribed vertex s which covers (that is, contains the vertices of) a certain spec-
ified subset X C V(D) (Exercise 9.26). This makes it natural to consider the
following problem which we call the MINIMUM COVERING OUT-TREE PROB-
LEM. Given a digraph D = (V, A) with a non-negative integer-valued weight
function w on the arcs, some vertex s € V and a subset X C V. What is the
minimum cost of an out-tree T, rooted in s such that X C V(7T;)?

Theorem 9.9.4 The minimum covering out-tree problem is N'P-hard even
when w = 1.

Proof: The GRAPH STEINER PROBLEM is as follows (this is a special case’,
but already this is NP-complete, see Exercise 9.27). Given an undirected
graph G = (V| E) and a subset X C V, find a subtree of G which contains all
vertices of X and as few other vertices as possible. We show how to reduce
the graph Steiner problem to the special case w = 1 of the minimum covering
out-tree problem in polynomial time. Let [G, X] be an instance of the graph
Steiner problem and construct an instance [D, X, s] of the minimum covering

7 A more well-known version is the so-called STEINER TREE PROBLEM for graphs.
Here one is given an undirected graph G = (V, E') with non-negative cost on the
edges and a subset S C V and the goal is to find a minimum cost tree containing
all the vertices of S.
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out-tree problem by letting D be the complete biorientation of G, taking s
as some vertex from X and using the same X. Every tree T' which covers X
in G corresponds in the obvious way to an out-tree 7" in D which covers
X and vice versa. This completes the construction which can obviously be
performed in polynomial time. Since the graph Steiner problem is A/P-hard
[585], we conclude that so is the minimum covering out-tree problem. O

It follows from results by Frank in [349] that if all arcs whose head does
not belong to X have cost zero, then the problem can be solved in polynomial
time. In fact, the model in [349] shows that even the generalization where
one is seeking k arc-disjoint out-trees with a common root all of which cover
a prescribed subset X can be solved in polynomial time, provided the cost of
all arcs whose head do not belong to X is zero.

9.9.3 Minimum Cost Arc-Disjoint Branchings with Bandwidth
Constraints

Consider the following typical problem in network communications. A collec-
tion of k distinct messages is to be transferred from a source node s to all
other nodes in the network. Each message is transferred from the source to the
recipients via an out-branching in the network. A subset of  of these branch-
ings may overlap in a link (arc) a if the corresponding link (arc) has enough
bandwidth to send all r messages without interference at the same time. If we
also make the sensible assumption that using different links may have differ-
ent costs, then we see that we may model the problem above as an instance
of the so-called MINIMUM COST k OUT-BRANCHINGS WITH BANDWIDTH CON-
STRAINTS PROBLEM [187]. Here the goal is, given a digraph D = (V, A), a
root s € V, an integer-valued capacity function b and a cost function ¢, both
on A; find a collection of k out-branchings from s such that the arc a is used
by at most b(a) of the branchings for each a € A and the total cost® of the
branchings is as small as possible.

The problem can be solved using matroid techniques as follows: Construct
a new directed multigraph D* = (V, A*) by replacing each arc a € A by b(a)
copies, each of cost ¢(a). Clearly the desired branchings in D correspond to a
minimum cost set of arcs in D* which can be partitioned into k arc-disjoint
out-branchings rooted at s. Define two matroids My, My on the arc set of
D as follows. A subset A’ C A is independent in M if the corresponding
edges in UG(D) can be partitioned into k forests and a subset A” C A is
independent in My if s has in-degree zero and all other vertices have in-degree
at most %k in the subdigraph induced by A”. It is easy to show that Ms is
a matroid and the fact that M; is a matroid follows from the definition of
the union of matroids (see Section 18.8). Now we can solve the problem of
finding a minimum cost collection of k£ arc-disjoint out-branchings in D* as

8 Here the cost is the sum of the costs of all the branchings.
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an instance of the weighted matroid intersection problem for the matroids
M1 and MQ.

The approach above has several drawbacks: first the number of arcs may
increase drastically when we replace each arc a by b(a) copies and second we
need to apply an algorithm for matroid partitioning as a subroutine (to check
whether the current set of arcs is independent in Mj). In [187] Cai, Deng
and Wang showed how to formulate the minimum cost k out-branchings
with bandwidth constraints problem as the problem of finding an optimal
intersection of two weighted polymatroids on A. They also showed that this
leads to a more efficient algorithm for the problem.

9.9.4 Out-Forests

An out-forest in a digraph is a spanning collection of disjoint out-trees.
Below we describe a result due to El-Sahili and Kouider [294] which has
several implications as shown in Section 11.3. By a spanning out-forest in
D we mean a collection of disjoint out-trees which cover V(D). The level of
a vertex in an out-tree is its distance from the root. For a given out-forest F
we define the ith level L; of F to be the set of vertices whose level is 4 (in the
out-tree to which they belong). Thus Ly is the set of roots of out-trees in F,
L, is the set of out-neighbours of these roots in F and so on. Let ¢; = |L;| and
associate to each spanning out-forest F the vector v(F) = (lo, l1, ..., p(F)),
where p(F) denotes the length of the longest path in F.

Proposition 9.9.5 [294] Every digraph contains a spanning out-forest F
in which L; is an independent set for i =0,1,...,p(F). In particular, every
spanning out-forest F minimizing v(F) lexicographically (among all spanning
out-forests) has this property.

Proof: Let F* be chosen among all spanning out-forests so as to minimize
v(F*) lexicographically and let Lo, L1, ... be its levels defined as above. We
claim that each L; is an independent set in D. Suppose to the contrary that
uv is an arc of D such that u,v € L; for some i. Note that uv is not an arc
of F* as v and v have the same level. Thus we can modify the two out-trees
Ty, T, € F* containing v and v respectively by removing the part of T;, rooted
in v from T, and moving it to T; by adding the arc wv. Note that we may
have T,, = T,. The resulting out-forest F has v(F) < v(F*), contradicting
the choice of F*. O

9.9.5 The Maximum Weight Out-Forest Problem

The MAXIMUM WEIGHT OUT-FOREST PROBLEM is the problem of finding, in
a weighted digraph D = (V, A) (with weight function ¢ : A—R}), an out-
forest in D whose total arc weight is maximum. In the special case when
we want the forest to have only one out-tree we have the maximum weight
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out-branching problem. This is clearly equivalent to the minimum weight
out-branching problem since we can transform one to the other by modifying
the weights as follows: ¢/(a) = ¢(a*) — ¢(a), where a* is a maximum weight
arc.

To find a maximum weight out-forest in D, we can simply extend D to
a new weighted digraph D’ by adding a new vertex r which dominates all
vertices in V' and assign weight zero to all of these arcs. Clearly a maximum
weight out-branching rooted at 7 in D’ corresponds to a maximum weight out-
forest in D. As we have seen in Section 9.2, a maximum cost out-branching
can be found quite efficiently in an arc weighted digraph. However, in some
practical applications it is the calculation of the weight function ¢ which con-
sumes the most time. Such an example is given by Ouyang, Memon, Suel and
Trendafilov [734], where a problem related to data compression is formulated
as a maximum weight spanning out-forest problem. In this application, the
calculation of the optimum out-forest, once the weights are found, takes only
a very small fraction of the time it takes to calculate all arc weights (where
the weight of an arc corresponds to how well one file can be compressed with
respect to another file).

In the application above and others too, it is possible to estimate, for a
given positive integer k, which are the k£ incoming arcs at each vertex with the
highest weight. Thus it is relevant to see how well one can approximate the
cost of an optimum out-forest by making the calculation on the digraph Dy,
consisting only of the k& maximum weight arcs entering each vertex. Bagchi,
Bhargava and Suel proved the following result.

Theorem 9.9.6 [56] Let D = (V, A) be a digraph and let ¢ be a non-negative
cost function on A. Let k be a natural number and define Dy, = (V, Ag) to be
the subdigraph of D induced by the set of the k arcs of mazimum cost entering
each vertex in V. Denote by OPT(H) the mazimum weight of an out-forest
in the digraph H. Then we have

OPT(Dy) _ _k
OPT(D) ~ k+1

(9.15)
O

This is best possible as seen from the class of digraphs Hy = (V, A),
where V' = {u,v,v1,va,...,v;} and A = {uv, vvy, v1v,vU2, V20, ..., VUL, VRV }
and letting all arcs of the form v;v have cost 1 + ¢ and the remaining arcs
have cost 1. Here OPT(Dy) = k + ¢ and OPT(D) = k+ 1 so as ¢ — 0 we
get the ratio in the theorem [56].

We will not prove Theorem 9.9.6 here but just give a short argument
for k = 1. Let D, ¢ be given and define D’ as we did above by adding a
new vertex r and arcs of cost zero from r to all vertices of D. Let D} be
the digraph induced by the heaviest arc entering each vertex in D’ except
r (breaking ties arbitrarily). If D} is an out-branching (from r) it is clearly
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optimal. Otherwise we may discard the lowest weight arc from each cycle in
D} and add an arc from r to the head of the arc we remove. Clearly this
results in an out-branching from r whose cost is at least half of the optimum
one. Now we obtain the desired out-forest by deleting r.

If, instead of looking for an optimum out-forest, we want to find an op-
timum out-branching from a specified root in a given arc-weighted digraph,
then there can be no such approximation guarantee. It is easy to construct

examples for every k, where %&DD@) can be made arbitrarily small (Exercise

9.20). This does not contradict the argument above for k = 1, since generally
arcs leaving the root may have any non-negative cost.

9.9.6 Branchings and Edge-Disjoint Trees

Clearly, if a directed multigraph D has two arc-disjoint out-branchings
B, B, (possibly s; # s2), then each underlying multigraph UMG(D —

817
A(IB::)) is connected and hence has a spanning tree for i = 1,2. The follow-
ing problem attributed to Thomassé® can be seen as an attempt to find a
result linking Tutte’s characterization of graphs with two edge-disjoint trees
and a weakening of Edmonds’ branching theorem (for k& = 2).

Problem 9.9.7 Find a good characterization of directed multigraphs D for
which there exists an out-branching B rooted at some vertex of D so that

UMG(D — BY) is connected.

9.10 Exercises

9.1. Show how to derive Menger’s theorem (Theorem 5.4.1) from Edmonds’
branching theorem (Theorem 9.3.1).

9.2. Greedy min cost branching algorithms may fail. Construct examples of
weighted digraphs for which the natural generalization of Kruskal’s algorithm
for finding a minimum spanning tree to directed multigraphs will fail to find
a minimum cost out-branching from the specified root.

9.3. Efficient implementation of independence oracles for the matroid
intersection formulation of the minimum cost branching problem.
Show how to implement the necessary oracles for testing independence in the
two matroids M;, My which were used in Subsection 9.2.1. Your algorithms
should have complexity around O(m), where m is the number of arcs in the
directed multigraph.

9.4. (4+) Finding a minimum cost subdigraph which has k arc-disjoint
out-branchings rooted at s in a directed multigraph. Show how to
formulate this as a matroid intersection problem. Then sketch an algorithm
to find the desired branchings. Hint: modify the matroids M;, M> from Sub-
section 9.2.1.

9 Tt is mentioned on the URL http://www.cs.elte.hu/egres/



9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

9.10 Exercises 371

(+) Finding a minimum cost set of new arcs to add to a directed
multigraph in order to ensure the existence of k arc-disjoint out-
branchings with a specified root. Show how to solve this problem (for-
mulated just before Section 9.2.2) using an algorithm for weighted matroid
intersection. Hint: use a similar approach as that in Exercise 9.4. Compare
also with Exercise 11.67.

Formulating the minimum spanning tree problem as a minimum
cost branching problem. Show that the minimum spanning tree problem
(given a connected undirected graph with non-negative weights on the edges,
find a spanning tree of minimum weight) can be formulated and solved as a
minimum cost branching problem.

(+) A polynomial algorithm for finding k arc-disjoint out-
branchings from a specified root. Show how to turn the proof of The-
orem 9.3.1 into a polynomial algorithm which either finds a collection of k
arc-disjoint branchings with root z, or a proof that no such collection of
branchings exists. Hint: use flows.

Greedy algorithm for arc-disjoint branchings. Instead of applying the
algorithmic version of Theorem 9.3.1 to find k arc-disjoint out-branchings
with a given root, one may try a greedy approach: find an out-branching B
from z. Delete all arcs of B . Find a new out-branching, delete its arcs and so
on. Give an example of a digraph D which has 2 arc-disjoint out-branchings
with root z, but not every out-branching BJ can be deleted while leaving
another with root z.

(+) Arc-disjoint out-branchings with possibly different roots. Prove
the following result due to Frank [336]: In a directed multigraph D = (V, A)
there are k arc-disjoint out-branchings (possibly with different roots) if and
only if

Et:d_(Xi) > k(t—1) (9.16)

holds for every subpartition {X1, Xs,..., X} of V. Hint: add a new vertex
s and a minimal set of new arcs from s to V so that s is the root of k out-
branchings in the new graph. Prove that this minimal set of arcs has precisely
k arcs.

Generalize the example in Figure 9.3 to digraphs with arbitrarily many ver-
tices.

Construct, for every k > 2, a k-arc-strong and k-regular directed multigraph
which has no hamiltonian path. Hint: you may construct one which has two
vertices so that removing these the remaining graph has four connected com-
ponents.

Prove Theorem 9.5.3. Hint: use induction on r = | log k|. Show how to trans-
form your proof into a polynomial algorithm for finding the desired out-
branching.

Show how to reduce the arc-disjoint in- and out-branching problem for the
case u # v to the case u = v.

(4) Extend Theorem 9.6.2 to the case when v is on some 2-cycle. Hint: how
should the sets F 4, Ep and the branchings described be modified?
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Prove Theorem 9.6.4. Hint: use Theorem 9.6.2 and Exercise 9.14.
Prove Proposition 9.7.7.
Prove Lemma 9.9.2.

Show how to use submodular flows to decide in polynomial time whether a
mixed graph M has k edge-disjoint mixed branchings from a given root. Hint:
see Exercise 11.67 and adjust the upper/lower bounds on arcs appropriately.

(4) Prove Theorem 9.4.3. Hint: use Edmonds’ branching theorem and The-
orem 11.7.6.

For every choice of natural numbers k, K construct a digraph D = (V, A)
and a cost function ¢ on A so that for some vertex r the cost of a maximum
weight out-branching from r in D is at least K times higher than the cost of
a maximum weight out-branching from r in Dy, where Dy is as in Theorem
9.9.6. Hint: start with £ = 1 and generalize your construction to arbitrary k.
Also note that we do not require that every vertex has at least k arcs entering
in D (in which case Dj, will contain all arcs entering that vertex).

Prove that the problem of finding an out-branching with maximum number
of leaves in an acyclic digraph is NP-hard. Hint: transform to this problem
the set cover problem formulated as a bipartite graph problem, i.e., given a
bipartite graph B = (X,Y; E) find a minimum cardinality subset C' of X
such that N(C) =Y. (Alon, Fomin, Gutin, Krivelevich and Saurabh [23].)

Arc-disjoint out-branchings with few leaves in tournaments. Let T'
be a tournament with 3 arc-disjoint out-branchings rooted at s € V(7).
Prove that T' contains 3 arc-disjoint out-branchings B;fl, BIQ, B;fs such that
B:‘Z has at most 4 leaves for ¢ = 1,2, 3. Explain briefly how to obtain 3 arc-
disjoint out-branchings le, B:% BZ3 as above if we start from 3 arbitrary
arc-disjoint out-branchings from s in a tournament 7. Hint: consider the
independence number of 7' minus one or more branchings.

(=) Prove that the problem of checking whether a digraph has an out-
branching with at most k leaves is A"P-hard for each fixed natural number

k.

Prove that the algorithm MINLEAF described is correct and of running time
O(m~+n*®y/m/logn). Hint: use the fact that there is an algorithm of running
time O(n'®y/m/logn) for finding a maximum matching in a bipartite graph
of order n and size m [39].

For a tournament 7" of order n, prove that ¢max(T) > n—log, n (Alon, Fomin,
Gutin, Krivelevich and Saurabh [22]).

Finding an out-tree which covers a prescribed vertex set. Show how
to decide in polynomial time whether a digraph D = (V, A) has an out-tree
with root s which contains all vertices of a prescribed subset X C V (and
possibly other vertices).

Show that the graph Steiner problem is N"P-hard by describing a reduction
of the set covering problem to the graph Steiner problem.



10. Linkages in Digraphs

We saw in Chapter 5 that it is easy to check (e.g., using flows) whether a
directed multigraph D = (V, A) has k (arc)-disjoint paths Py, Py, ..., Py from
a subset X C V to another subset Y C V and we can also find such paths
efficiently. On many occasions (e.g., in practical applications) we need to be
able to specify the initial and terminal vertices of each P;, i = 1,2,...k,
that is, we wish to find a so-called linkage from X = {x1,22,...,21} to
Y = {y1,y2,-..,yx} such that P; is an (z;,y;)-path for every ¢ € [k]. This
problem is considerably more difficult and is in fact A/P-complete already
when k£ = 2. In this chapter we start by giving a proof of this fact and
then we discuss a number of results on sufficient conditions for the existence
of linkages, polynomial algorithms for special classes of digraphs, including
acyclic, planar and semicomplete digraphs in the case of vertex disjoint paths
and acyclic digraphs and some generalizations of tournaments in the case of
arc-disjoint paths. The reader will see that quite a lot can be said about the
linkage problems for special classes of digraphs and that still the problems
are not trivial for these classes of digraphs. Finally we briefly discuss topics
such as multi commodity flows and subdivisions of transitive tournaments in
digraphs with large out-degree.

10.1 Additional Definitions and Preliminaries

Recall from Chapter 5 that for a digraph D = (V, A) with distinct vertices
x,y we denote by kp(z,y) the largest integer k such that D contains k inter-
nally disjoint (z, y)-paths. When discussing intersections between paths P, Q)
we will often use the phrase ‘let u be the first (last) vertex on P which is on
@’. By this we mean that if, say, P is an (z,y)-path, then w is the only vertex
of Plz,u] (Plu,y]) which is also on Q.

Let x1,29,..., %k, Y1,Y2,- .-,y be distinct vertices of a digraph D. A
k-linkage from (z1,22,...,2x) to (y1,¥y2,-..,yk) in D is a system of vertex-
disjoint paths Py, P, ..., Py such that P; is an (z;, y;)-path in D'. A digraph

! Sometimes one allows that the paths may share one or both of their end-vertices,
ie, V(P)NV(P;) C{zi,vyi,z;,y;} whenever ¢ # j, where x; = y; or z; = x; is
possible.
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Springer Monographs in Mathematics, DOI 10.1007/978-1-84800-998-1_10,
(© Springer-Verlag London Limited 2010


http://dx.doi.org/10.1007/978-1-84800-998-1_10

374 10. Linkages in Digraphs

D = (V,A) is k-linked if it contains a k-linkage from (x1,x2,...,2%) to

(y1, 92, - . -, yr) for every choice of distinct vertices 1, xa, ..., Tk, Y1, Y2, - - -, Yk-
A digraph D is k-(arc)-cyclic if it has a cycle containing the vertices (arcs)
x1,ZTa,..., 2 (a1,a2,...,a;) for every choice of k vertices (arcs). The follow-

ing easy observation is left to the reader as Exercise 10.1.

Proposition 10.1.1 FEvery k-linked digraph is k-cyclic and every 2k-cyclic
digraph is k-linked. a

There is a close relation between linkage problems and problems con-
cerning cycles through prescribed vertices or arcs as can be seen from the
following complexity statement. The proof is left to the reader as Exercise
10.2.

Proposition 10.1.2 For general digraphs the following problems are equiva-
lent from a computational point of view (that is, if one is polynomially solvable
or N'P-complete, then so are each of the others).

(P1) Given four distinct vertices uy,us,v1,vs in a digraph D. Decide whether
or not D has disjoint paths connecting uy to v1 and us to vo. We call
this the 2-LINKAGE PROBLEM.

(P2) Given two distinct arcs ey, es in a digraph D. Does D have a cycle
through ey and es ?

(P3) Given two distinct vertices u and v in a digraph D. Does D have a
cycle through u and v?

(P4) Given two distinct vertices u and v in a digraph D. Does D have disjoint
cycles Cy, Cy such that x € Cyy and y € Cy?

(P5) Given three distinct vertices x,y,z. Does D have an (x, z)-path which
also contains the vertex y? O

We prove in Theorem 10.2.1 that the 2-linkage problem is A/P-complete.
Hence it follows from Proposition 10.1.2 that all the problems mentioned in
Proposition 10.1.2 are A'P-complete.

It is interesting to note that although problems (P1)-(P5) are all very hard
for general digraphs, the difficulty of these problems may vary considerably
for some classes of digraphs. For instance, problem (P3) is trivial for locally
semicomplete digraphs since such a cycle exists if and only if x and y are in
the same strong component of D. Problem (P4) is also easy for semicomplete
digraphs, since such cycles exist if and only if there exist disjoint 3-cycles
C, C' one containing x and the other containing y (Exercise 10.16). However,
problems (P1) and (P2) are considerably more difficult to prove polynomial,
even for tournaments (see Theorem 10.5.12). Note that (P2) and also (P5)
may be considered as special cases of (P1) if we drop the requirement that
the vertices must be distinct in (P1).

The k-LINKAGE PROBLEM is the following straightforward generaliza-
tion of the 2-linkage problem. Given a digraph D and distinct vertices
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1,22, Thky Y1,Y2,---, Y. Does D have a collection of disjoint paths
Py, Py, ..., P such that P; is an (z;, y;)-path, for every i € [k]?

10.2 The Complexity of the k-Linkage Problem

We start with the following result by Fortune, Hopcroft and Wyllie showing
that already for kK = 2 the k-linkage problem is very difficult for general
digraphs.

Theorem 10.2.1 [332] The 2-linkage problem is N'P-complete.

Since this theorem is very important and the gadget? construction used
in the proof is quite illustrative, we give the proof in detail below. We follow
the proof in [332].

First we need a lemma whose proof is left as Exercise 10.4.

(a) (c)

Figure 10.1 Part (a) shows a switch S. Parts (b) and (c) show schematic pictures
of a switch ([332, Fig. 1]). In (c) the two vertical arcs correspond to the paths
(8,9,10,4,11), respectively, (8°,97,10°,4’,11’). Note that for convenience, we label the
arcs, rather than the vertices, in this Figure.

2 Quite often N'P-completeness proofs are constructed by piecing together certain
gadgets about which one can prove certain properties. Based on these properties
one then shows that the whole construction has the desired properties. For other
instances of this technique, see e.g. Chapters 6 and 16.
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Lemma 10.2.2 [332] Consider the digraph S shown in Figure 10.1(a). Sup-
pose there are two disjoint paths P, Q passing through S such that P leaves
S at A and Q enters S at B. Then P must enter S at C' and QQ must leave
S at D. Furthermore, there exists exactly one more path R passing through
S which is disjoint from P,Q and this is either

(8,9,10,4,11) or  (8,9,10,4',11"),
depending on the actual routing of P. a

The digraph S in Figure 10.1 is called a switch. We can stack arbitrarily
many switches on top of each other and still have the conclusion on Lemma
10.2.2 holding for each switch. The way we stack is simply by identifying the
C and D arcs of one switch with the A and B arcs of the next (see Figure
10.2). A switch can be represented schematically as in Figure 10.1(c), or,
when we want to indicate stacking of switches, as in Figure 10.1(b).

Cs D3
Ss3
e e
Co = A3 Doy = Bs
Sa
/ \
Cl = A2 D1 = Bz
S
A/ \
A1 Bl

Figure 10.2 Stacking three switches on top of each other.

Proof of Theorem 10.2.1: The reduction is from 3-SAT (see the definition
in Section 17.5). Let F = C1xCyx. .. xC,. be an instance of 3-SAT with vari-
ables x1, 29, ..., 2. For each variable z; we let H; be the digraph consisting
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of two internally disjoint (u,v)-paths of length r (the number of clauses in
F). We associate one of these paths with the literal x; and the other with
the literal T;. We are now ready to explain the construction of the digraph
DI[F] and show that it contains disjoint (u1,v1)-, (u2, v2)-paths if and only if
F is satisfiable.

See Figure 10.3. We form a chain H;—Hs— ...— Hj on the subdigraphs
corresponding to each variable (see the middle of the figure, H; corresponds
to the variable z;). With each clause C; we associate three switches, one for
each literal it contains. The left paths of these switches (that is, the paths in
the left-hand part of the figure) all start at the vertex n;_; and end at n;.
The right path of each switch is substituted for a (private) arc of H; such that
the arc is taken from the path which corresponds to x; if the literal is x; and
from the path which corresponds to Z; if the literal is T;. The substitution
is shown for the clause C; = x1 + T2 + x5 in the figure. By the choice of the
lengths of the paths in H; we can make this substitution so that different arcs
in H; are substituted by different switches corresponding to several clauses,
all of which contain the literal z; or ;. The switches corresponding to the
clause C; are denoted S; 1,95, 2,5;3. We stack these switches in the order
S51,151,251,3...5715r25r,3 as shown in the right part of the figure. A two-
way arc between a clause and some H; (shown only for C;) indicates a switch
that is substituted for these arcs®. Finally, we join the D arc of the switch
Sr.3 to the vertex z; of Hy, add an arc from wy, in Hj, to ng and choose
vertices uy, ug, v1, vz as shown (that is, ug is the tail of the C arc for S, 3, uy
is the tail of the B arc of S1,; and vg is the head of the A arc of Sy ). This
completes the description of D[F].

We claim that D[F] contains disjoint (u1,v1)-, (u2,v2)-paths if and only
if F is satisfiable. Suppose first that D[F] has disjoint (u1,v1)-, (ug, v2)-paths
P, Q. It follows from the definition of D[F] that the paths P and @ will use
all the arcs that go between two switches (i.e., those arcs that are explicitly
shown in the right-hand side of Figure 10.3). Hence, by Lemma 10.2.2, after
removing the arcs of @) and the arcs of P from wu; to the first vertex z; of
H;, the only remaining way to pass through a switch S; ; is to use either the
right path or the left path of S; ; but not both! By the construction of D[F],
P must traverse the subdigraphs corresponding to the variables in the order
H,,H,..., H; and each time P uses precisely one of the two paths in H;
(recall again that some of the arcs in H; in Figure 10.3 correspond to the
right path of some switch). Let T be the truth assignment which sets x; := 1
if P uses the path corresponding to Z; and let z; := 0 in the opposite case.
We show that this is a satisfying truth assignment for F.

It follows from the construction of D[F] and the remark above on arcs
used by @ and the first part of P from u; to H; that the path P contains all
the vertices ng,n1,...,n, in that order. Since each of the paths from n; to

3 Note that this is the same switch which is shown in the right-hand side of the
figure!
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Figure 10.3 A schematic picture of the digraph D[F].

n;41 is part of a switch for every j =0,1,...r — 1, we must use the left path
of precisely one of these switches to go from n; to n;4;. By Lemma 10.2.2,
every time we use a left path of a switch, the right path cannot also be used.
From this we see that for each clause C}, j € [r], it must be the case that
at least one of the literals y (in particular the one whose left path we could
use) of C; becomes satisfied by our truth assignment. This follows because
P must use the path corresponding to 7 in the middle. Thus we have shown
that F is satisfiable.

Suppose now that T” is a satisfying truth assignment for F. Then for
every variable z; which is true (false) we can use the subpath corresponding
to T; (x;) in H;. For each clause C; we can fix one literal which is true and
use the left path of the switch that corresponds to that literal (that path
cannot be blocked by the way we chose subpaths inside the H;’s). By Lemma
10.2.2, we can find disjoint paths P, @ such that P starts in u; and ends in
the initial vertex z; of Hy and @ is a (uz, v2)-path in the right part of D[F].
Furthermore, by the same lemma, after removing the vertices of P and @,
we still have the desired paths corresponding to each literal available. This
shows that we can route the disjoint (u1,v1)-, (u2,v2)-paths in D[F]. O
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The digraph D[F] above is not strongly connected and one may ask
whether the problem becomes easier if we require high vertex-strong con-
nectivity. However, using Theorem 10.2.1, Thomassen [867] proved that the
2-linkage problem remains N P-complete even for highly connected digraphs.

Johnson, Robertson, Seymour and Thomas [573] proved the following
theorem for directed tree-width. By Lemma 2.13.9, this theorem holds also
for directed path-width and DAG-width (see Section 2.13 for definitions of
directed width parameters).

Theorem 10.2.3 [573] Let k be a fized positive integer. The k-linkage prob-
lem is polynomial-time solvable for digraphs of bounded directed tree-width
(DA G-width, directed path-width, respectively). O

Lynch proved that for undirected graphs the k-linkage problem is AP-
complete when k is part of the input [662]. The case k = 2 was proved to
be polynomially solvable by Seymour [808], Shiloach [819] and Thomassen
[855] and a complete characterization was obtained by Seymour [808] and
Thomassen [855]. The results in [808, 855] (see also Jung’s paper [580]) imply
that every 6-connected undirected graph is 2-linked (see also the remark
at the end of Section 10.6). For fixed k > 3 the k-linkage problem is also
polynomially solvable [785]. This is just one of many important consequences
of the deep work of Robertson and Seymour on Graph Minors. The interesting
thing is that [785] only proves the existence of an O(n?) algorithm for fixed k
(the constant depending heavily on k). As far as we know, no actual algorithm
has ever been published, even in the case k = 3.

The following result, due to Thomassen, shows that for directed graphs
the situation is quite different from the undirected case. Namely, there is no
degree of vertex-strong connectivity which will guarantee a directed graph to
be 2-linked.

Theorem 10.2.4 [867] For every natural number k there exists an infinite
family of k-strong and non-2-linked digraphs Dy,. O

In fact, Thomassen proved that even for the special case of cycles through
two fixed vertices (Problem (P3) of Proposition 10.1.2) no degree of vertex-
strong connectivity suffices to guarantee such a cycle. Recall that a digraph
D = (V,A) is 2-cyclic if it has a cycle containing z,y for every choice of
distinct vertices x,y € V.

Theorem 10.2.5 [867] For every natural number k there exists an infinite
family of k-strong digraphs D;, which are not 2-cyclic. O

10.3 Sufficient Conditions for a Digraph to Be k-Linked

In this section we briefly discuss some sufficient conditions for a digraph
to be k-linked for some (prescribed) k. It is easy to see that the complete



380 10. Linkages in Digraphs

digraph [?n is k-linked for all k < [n/2]. The next result due to Manoussakis
shows that digraphs which are close to being complete are k-linked whenever
|V(D)| > 2k. The proof is left as Exercise 10.6.

Theorem 10.3.1 [680] Let D = (V, A) be a digraph of order n and let k be
an integer such that n > 2k > 2. If |A| > n(n — 2) + 2k, then D is k-linked.
O

The proof of Theorem 10.3.1 in [680] is based on the following lemma.

Lemma 10.3.2 [680] If D — x is k-linked for some vertex x € V which
satisfies d*(z),d™ (x) > 2k — 1, then D is k-linked.

Proof: Exercise 10.8. O

The requirement on the number of arcs in Theorem 10.3.1 is very strong
and hence the result is not very useful. However, Manoussakis showed by an
example that the number of arcs in Theorem 10.3.1 is best possible [680].

The next result, due to Heydemann and Sotteau, shows that for 2-linkages
one can also get a sufficient condition in terms of 6°(D). The proof is easy
and is left as Exercise 10.7. See also Theorem 10.3.4 below.

Theorem 10.3.3 [525] If a digraph D satisfies 6°(D) > n/2 + 1, then D is
2-linked. O

The condition above is still quite restrictive and one would expect a
stronger result to hold. Examples from [525] show that we cannot weaken
the degree condition. However, we can strengthen the result in the following
way.

Theorem 10.3.4 If a digraph D satisfies 6°(D) > n/2 + 1, then for every
choice of distinct vertices x,y,u,v € V, D contains internally disjoint paths
P,Q such that P is an (x,y)-path, Q is a (u,v)-path and V(P)UV(Q)=V.

Proof: Let X =V — {z,y,u,v} and construct D’ from D — {x,y,u,v} by
adding two new vertices p and ¢ such that

Npi(p) = Np(v) N X, Np, (p) = N (2) N X,
Npi(9) = Np(y) N X, Nj(g) = Nj(u) N X.

It is easy to see that for every w € V — {z,y,u, v}, d, (w) > d(w) — 2 and
df, (w) > df,(w) — 2. Hence the resulting digraph D’ which has n’ = n — 2
vertices satisfies 6°(D’) > n’/2. By Corollary 6.4.3, D' has a hamiltonian
cycle C. Let pT,q" (p~,q~) denote the successors (predecessors) of p,q on
C. Then zC[p™, ¢ Jy and uC[q",p~|v are the desired paths which cover V.

(|

Manoussakis extended Theorem 10.3.3 to 3-linkages.
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Theorem 10.3.5 [680] If a digraph D has n > 9 wvertices and 6°(D) >
n/2+ 2, then D is 3-linked. O

Based on Theorems 10.3.3 and 10.3.5, Manoussakis posed the following
problem.

Problem 10.3.6 [680] Determine the minimum function f(n,k) such that
every digraph D on n vertices which satisfies 8°(D) > f(n, k) is k-linked.

Note that f(n,k) < n — 1 for n > 2k, since the complete digraph on
n > 2k vertices is k-linked. According to Manoussakis [680], Hurkens proved
that f(n,4) = n/2+3 when n > 13 and Manoussakis mentioned in [680] that
perhaps f(n,k) <n/2+k — 1 holds for n > 4k — 3. This was confirmed for
n sufficiently large by Kiithn and Osthus [628].

Theorem 10.3.7 [628] Let k > 2 be an integer. Every digraph D of order
n > 400k which satisfies 6°(D) > n/2 + k — 1 is k-linked. O

Kiihn and Osthus [628] also prove that the bound suggested by Manous-
sakis would be best possible for every k.

Proposition 10.3.8 [628] For every integer k > 2 and every n > 2k there
exists a digraph D on n vertices with §°(D) > [n/2] + k — 2 which is not
k-linked. O

By Proposition 10.1.1, the next result immediately implies Theorem
10.3.7.

Theorem 10.3.9 [628] Let k > 2 be an integer. Every digraph D of order
n > 200k® which satisfies °(D) > (n+ k)/2 — 1 is k-cyclic. O

A digraph D = (V, A) is k-cyclic hamiltonian if for every choice of dis-
tinct vertices x1, s, ...,z € V there is a hamiltonian cycle in D which visits
x1,Za,...,x) in that order. In [630] Kiithn, Osthus and Young use Theorem
10.3.9 to prove the following.

Theorem 10.3.10 [650] For every integer k > 3 there exists an integer
no(k) such that every digraph D on at least ng(k) vertices and minimum
semi-degree 6°(D) > [(n+ k)/2] — 1 is k-cyclic Hamiltonian. O

Clearly this result also implies a result on hamiltonian cycles containing
k prescribed arcs. We leave the details to the reader.

Let us conclude this section with a result in connection with problem (P3)
of Proposition 10.1.2. It is easy to see that if a digraph is 2-linked, then it
is also 2-arc-cyclic and hence 2-cyclic. Heydemann and Sotteau proved that
if we only want a digraph to be 2-cyclic, then it is possible to weaken the
condition in Theorem 10.3.1 somewhat.

Theorem 10.3.11 [525] Every strong digraph D = (V, A) with 6°(D) > 2
and |A| > n? — 5n + 15 is 2-cyclic. O
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10.4 The k-Linkage Problem for Acyclic Digraphs

When the digraph considered is acyclic, there is enough structure to allow an
efficient solution of the k-linkage problem for every fixed k. Perl and Shiloach
[746] proved that the 2-linkage problem is polynomially solvable for acyclic
digraphs. In their elegant proof they showed how to reduce the 2-linkage
problem for a given acyclic digraph to a simple path finding problem in
another digraph. Fortune, Hopcroft and Wyllie extended Perl and Shiloach’s
result to arbitrary k. The proof of this result below is an extension of the
proof by Perl and Shiloach (see also Thomassen’s survey [865]).

Theorem 10.4.1 [332] For each fized k, the k-linkage problem is polyno-
mially solvable for acyclic digraphs.

Proof: Let D = (V| A) be acyclic and let 21,29, ..., Tk, Y1, Y2, - - ., Yx be dis-
tinct vertices of D for which we wish to find a k-linkage from (21,2, ..., )
to (1,92, - --,yx). We may assume that dp(z;) = df,(y;) = 0 for all i € [K],
since such arcs play no role in the problem and can therefore be deleted.
Form a new digraph D’ = (V’, A’) whose vertex set is the set of all k-
tuples of distinct vertices of V. For any such k-tuple (v1,vs,...,vx) there is
at least one vertex, say v,, which cannot be reached by any of the other v;
by a path in D. (Here we used that D is acyclic.) For each out-neighbour

w of v, such that w & {vy,va,..., vk}, we let A’ contain an arc from
(U17U27 ey Ur 1, Upy Up g1,y - - 7vk) to (U17U27 sy Ur—1, Wy Upg 1y e -0y Uk)~ Only
arcs as those described above are in A’.

We claim that D’ has a directed path from the vertex (1,22, ...,2x) to

the vertex (y1,y2,...,yx) if and only if D contains disjoint paths Py, Pa, ...,
Py, such that P; is an (z;,y;)-path for each i € [k].

Suppose first that D’ has a path P from (z1, 22, ..., 2k) to (Y1, Y2, -, Yk)-
By definition, every arc of P corresponds to one arc in D. Hence we get a col-
lection of paths Py, Py, ..., Py such that P; is an («;, y;)-path for each i € [k]
by letting P; contain those arcs that correspond to a shift in the ith vertex of
a k-tuple. Suppose two of these paths, F;, P;, are not disjoint. Then it follows
from the assumption that dp(z;) = dj,(y;) = 0 for all i € [k] and the defi-
nition of D’ that there is some vertex u € V — {x1,Z2, ..., Tk, Y1, Y2, - - s Uk |
such that w € V(P;) N V(P;). Let w (z) be the predecessor of u on P; (P;).
We may assume without loss of generality that the arc on P corresponding
to wu is used before that corresponding to zu. This means that at the time
we change from w to u in the ith coordinate, the jth coordinate corresponds
to a vertex z’ which can reach v in D (through z). Now it follows from the
definition of the arcs in A’ that we could not have changed the ith coordinate
again before we have used the arc corresponding to zu in D’. However, that
would lead to a k-tuple which contains two copies of the same vertex u from
D, contradicting the definition of D’. Hence P; and P; must be disjoint.

Suppose now that D contains disjoint paths @Q1,Q2,...,Q such that
Q; is an (x;,y;)-path for all ¢ € [k]. Then we can construct a path from
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(z1,22,...,2k) to (y1,¥2,...,yx) in D’ as follows. Start with the tuple
(z1,22,...,2k). At any time we choose a coordinate j of the current k-tuple
(21, 22, ..., z) such that the vertex z; is not in {y1,y2,...,yr} and z; cannot
be reached in D by any other vertex from the tuple. Note that such a vertex
exists since D is acyclic and d*(y;) = 0 for all + € [k]. It is easy to show
by induction that we will always have z; € V(Q;). Now we use the arc z;w
corresponding to the arc out of z; on @); and change the jth coordinate from
zj to w. It follows from the fact that @1,...,Q are disjoint that this will
produce a path from (z1, za,...,zx) to (y1,y2,...,yx) in D’

Given any instance (D,x1,%2,...,%k, Y1,Y2, .., Yr) We can produce the
digraph D’ in time O(k!n**2) by forming all possible k-tuples and deciding
which arcs to add based on the definition of D’. Then we can decide the

existence of a path from (z1, z9,...,zk) to (y1,¥2,...,yx) in polynomial time
using BFS in D’. This proves that the k-linkage problem is polynomial for
each fixed k. 0

Note that we don’t actually have to construct D’ in advance. It suffices
to introduce the vertices and arcs when they become relevant for the search
for a path from (21, z9,...,2%) to (y1,¥2,...,yx) in D'

It is not difficult to see that we can also use the approach above to find
the cheapest collection of k disjoint paths where the ¢th path is an (x;,y;)-
path in a given acyclic digraph with non-negative costs on the arcs. Here the
goal is to minimize the total cost of the arcs used by the paths (see Exercise
10.11).

Suppose that D is an acyclic graph and v is a vertex of in-degree 1. Let
u be the unique in-neighbour of v. Then the digraph D’ = D//uv which we
obtain by path-contracting the arc uwv is also acyclic. Furthermore, contract-
ing such an arc can have no effect on the existence of a certain linkage in
the digraph since only one path in such a linkage may enter the vertex v.
This shows that we may assume that all vertices except the terminals have
in- and out-degree at least 2 when considering the 2-linkage problem (and
more generally the k-linkage problem) for acyclic graphs. Furthermore we
may assume that no arc enters x; and no arc leaves y;, 1 = 1, 2.

It is also easy to see that, given any acyclic digraph D with distinct
vertices x1, T2, Y1, Y2, in polynomial time, we can either decide the existence
of disjoint (x1,¥y1)-, (x2,y2)-paths, or obtain a new reduced digraph D* such
that dp,. (v1) = dp. (22) = dj- (y1) = df. (y2) = 0, every other vertex has in-
and out-degree at least 2 in D* and D* has the desired paths if and only if
D has such paths. Hence, from a computational point of view, the following
result due to Thomassen completely solves the 2-linkage problem for acyclic
digraphs.
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Theorem 10.4.2 [862] Let D be an acyclic digraph on at least five ver-
tices with vertices x1,2,y1,y2 such that d=(z1) = d~(x2) = 0, d*(y1) =
d™(y2) = 0 and every other vertex has in- and out-degree at least 2. Sup-
pose D does not contain disjoint (x1,y1)-, (T2, y2)-paths. Let H denote the
digraph one obtains from D by adding two new vertices xqy,yo and the arcs
TOT1, TT2, Y1Y0, Y2Yo, T1Y2, T2y1. Then H can be drawn in the plane such that
the outer cycle is formed by the two paths xox1Y2Yyo, ToTay1yo and every other
facial cycle* is the union of two directed paths in H (see Figure 10.4). a

Y2

xo Yo

X2 Y1

Figure 10.4 The digraph H obtained from the acyclic digraph D by adding o, yo
and arcs Toxi,ZoZ2,Y1Yo, Y2Y0,T1Y2,T2y1 (shown as bold arcs) as described in
Theorem 10.4.2.

Theorem 10.4.2 was generalized by Metzlar [697]. The following interest-
ing connection between the 2-linkage problem for undirected graphs and the
2-linkage problem for acyclic digraphs is a corollary of Theorem 10.4.2.

Corollary 10.4.3 [862] Let D = (V,A) be an acyclic digraph and sup-
pose that the vertices x1,x2,y1,Yy2 are all distinct and satisfy that d—(x;) =
d™(y;) = 0 for i = 1,2 and that all other vertices of D have in- and out-
degree at least 2. Then D contains disjoint (x1,y1)-, (x2,y2)-paths if and
only if UG(D) contains such paths. O

Thomassen [862] mentioned that it would be interesting to have a direct
proof of Corollary 10.4.3. Such a proof was given by Lucchesi and Giglio in
[660]. In that paper the connection between the 2-linkage problem for acyclic
digraphs and the 2-linkage problem for undirected graphs was studied. It was
shown that there is a very close connection between the two problems.

The example in Figure 10.5 shows that Corollary 10.4.3 has no analogue
when k > 2.

4 A cycle C in a plane graph G is facial with respect to a planar drawing of G if
C is the boundary of some face.
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Figure 10.5 An acyclic digraph D in which every non-special vertex has in- and
out-degree at least 2. There does not exist disjoint paths Pi, P2, Ps such that P; is
an (x;,y;)-path, i = 1,2, 3. However, UG(D) has such paths.

Theorem 10.4.4 The weak k-linkage problem and k-linkage problem are
W/1]-hard even for acyclic digraphs (k is the parameter). a

The fact that the weak k-linkage problem for acyclic digraphs is W[1]-hard
is proved in [824]. The k-linkage part of the theorem follows from the weak
k-linkage part and the transformation from a digraph D to its line digraph
L(D) (see also [425]).

10.5 Linkages in (Generalizations of) Tournaments

We now turn to linkage problems for tournaments and their generalizations.
It turns out that for semicomplete digraphs enough structure is present to
allow a polynomial algorithm for the 2-linkage problem (Theorem 10.5.12).
We show in Subsection 10.5.3 that this algorithm can be used as a subroutine
in a polynomial algorithm for the 2-linkage problem for a large super class of
the semicomplete digraphs.

We start out with some sufficient conditions in terms of the degree of
(local) strong connectivity.

10.5.1 Sufficient Conditions in Terms of (Local-)Connectivity

The following proposition was proved by Thomassen [859] in the case when
D is a tournament. By inspection of the proof in [859] one sees that the only
place there where it is used that one is dealing with a tournament, rather
than an arbitrary digraph, is to be sure that there is an arc between every
successor of x and every predecessor of y on the paths P, ..., P, below. Hence
we can state and prove Thomassen’s result in the following much stronger
form:
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Proposition 10.5.1 [74, 859] Let D be a digraph and x,y,u,v distinct ver-
tices of D such that k(u,v) > ¢+ 2 and Pi,..., P, are internally disjoint
(z,y)-paths such that the subdigraph D(V(P1)U...UV(PB,)) has no (z,y)-
path of length less than or equal to 8 and such that the successor of x on
P; is adjacent to the predecessor of y on P; for all i,j € [p]. Then D has g
internally disjoint (u,v)-paths, the union of which intersects at most 2q of
the paths Py,..., P,.

Proof: We may assume that p > 2¢+ 1, since otherwise the claim is trivially
true. Let Q@ = {Q1,Q2,...,Q4} be internally disjoint (u,v)-paths in D —
{z,y}. We define two collections of subpaths of the paths in Q as follows (in
Exercise 10.17 the reader is asked to describe an algorithm for constructing
such collections starting from Q).

Let Q7,Q3, ..., Q; be chosen such that either Q] = Q; or Q; = Q[u, 2]
for some vertex z € V(P;) where j € [p] and P;[z,y] has only the vertex z in
common with U = V(Q})U...UV(Q;). We also assume that [U] is minimum
subject to the conditions above. If some path P, contains a vertex w from U
and P, [w, y] contains no vertices from U —w, then the minimality of U implies
that one of the paths Q7,Q5, ..., Q; terminates in w. This implies that the
collection @1, @5, ..., Qy intersects at most g of the paths Pp, P, ..., P,

Analogously we can define a collection Q7, @5, ..., Qy where Q7 is either
Q; or QY = Q;[w,v] for a vertex w on some Py satisfying that Py[z,w] con-
tains only the vertex w from V(Q7)U. ..UV (Qy) and such that Qf, Q3 ..., Qy
intersect at most ¢ of the paths P, P, ..., Pp.

Now we construct the desired paths as follows. For each i € [¢], if Q; = Q;
or QY = @, then let R; := @;. Otherwise let z be the terminal vertex
of @}, let w be the initial vertex of @} and let r,j be chosen such that
z € V(Pj),w € V(P,). Let 2’ (y') be the successor (predecessor) of z (y) on
P, (P;). By the assumption that D contains no (z,y)-path of length 3 and
that every successor of z is adjacent to every predecessor of y on the paths
Py, ..., P, we get that y'z’ € A. Let R; := Q,Pj[z,y'|P-[2', w]Q} (see Figure
10.6).

Now R, Rs,..., R, are internally disjoint (u,v)-paths and by construc-
tion they contain no more than 2q vertices from the paths P, P,..., P,. O

Our proof above is constructive and can easily be turned into a fast algo-
rithm for finding the desired collection of paths (Exercise 10.18). The follow-
ing result by Thomassen is an easy corollary.

Corollary 10.5.2 [859] Every 5-strong semicomplete digraph is 2-linked.

Proof: Let D be a 5-strong semicomplete digraph and let x1,x2,y1,y2 be
arbitrary distinet vertices of D. If D — {x3_;,y3—;} has an (x;,y;)-path P
of length at most 3 for ¢ = 1 or ¢ = 2, then D — P is strong and hence
contains an (r3_;,ys—;)-path. Hence we may assume that every (z;,y;)-path
in D — {x3_;,y3—;} has length at least 4 for i = 1,2.
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Figure 10.6 How to obtain R; from Qj, Q7, P; and P.. The bold arcs indicate the
resulting (u, v)-path.

Let Py, P2, P3 be internally disjoint (x1,y;)-paths in D — {z2,y2}. Then
D and these paths satisfy the assumption of Theorem 10.5.1 for ¢ = 1 and
it follows that D has an (z2,y2)-path which intersects at most two of the
paths Py, P, P3. Since x1, 2, Y1, y2 were chosen arbitrarily, it follows that D
is 2-linked. a

Bang-Jensen [65] constructed the 4-strong non-2-linked semicomplete di-
graph in Figure 10.7, showing that 5-strong connectivity is best possible for
general semicomplete digraphs. We leave it to the reader to check that one
can generalize this example to an infinite family of 4-strong semicomplete
digraphs none of which is 2-linked.

We now turn our attention to special classes of generalizations of tour-
naments. The first lemma shows that for the class of round decomposable
locally semicomplete digraphs one can improve the bound from Corollary
10.5.2. The proof is left as Exercise 10.22.

Lemma 10.5.3 [7}] For each natural number k, every (3k —2)-strong round
decomposable locally semicomplete digraph is k-linked. a

In order to get a result on k-linkages for locally semicomplete digraphs
that are not round decomposable we use the following lemma which allows
us to apply Proposition 10.5.1. Recall that by Exercise 2.34, a(D) < 2 if D
is locally semicomplete but not round decomposable.

Lemma 10.5.4 [7}] Let x and y be distinct vertices in a locally semicomplete
digraph D such that o(D) < 2 and let Py, ..., P, be internally disjoint (x,y)-
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Figure 10.7 A 4-strong non-2-linked semicomplete digraph T'. All arcs not shown
go from left to right and x1y2x1, x2y1x2 are the only 2-cycles in T'. There is no pair
of disjoint (z1,y1)-,(x2,y2)-paths in T. The tournament which results from 7" by
deleting the arcs y2x1 and yix2 is also 4-strong.

paths such that the locally semicomplete digraph D' = D{V(Py)U.. .UV (P,))
has no (xz,y)-path of length less than 6. Then for all 1 < i,j < p, the prede-
cessor u of y on P; dominates the successor v of x on P;.

Proof: We may assume that each P; is a minimal (x, y)-path. Suppose there
exist ¢ and j such that the predecessor u of y on P; is not adjacent to the
successor v of x on P;. Note that the assumption of the lemma and Exercise
10.20 implies that y—z. Therefore D’ is strong and we conclude from Exercise
10.20 (applied to u,v) that D’ contains an (z,y)-path of length at most 5,
contradicting the assumption. Hence u—v must hold. O

The following theorem by Bang-Jensen gives a sufficient condition for the
existence of a specified k-linkage in a locally semicomplete digraph which is
not round decomposable in terms of local connectivities. It generalizes a result
by Thomassen for tournaments [859]. Bang-Jensen also proved an analogous
result for quasi-transitive digraphs, see [74] for details.

Theorem 10.5.5 [7/] There exists, for each natural number k, a natural
number f(k) such that the following holds. If D is a locally semicomplete
digraph with a(D) < 2 and x1,22,...,Zk, Y1, Y2, .., Yr are distinct vertices
in D such that k(z;,y;) > f(k) for all i € [k], then D has disjoint paths
Py, Ps,...,P; where P; is an (x;,y;)-path for all i € [k].
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Proof: Let f(1) = 1 and f(k) = 2(k —1)f(k — 1) + 2k + 1 for k > 2.
We prove by induction on k that this choice works for f. This is clear for
k = 1, so we proceed to the induction step assuming k > 2. Suppose that
T1,T2, ... ThyY1,Y2, - .., Yi are distinct vertices in a locally semicomplete di-
graph D for which «(D) < 2 and assume that s(z;,y;) > 2(k— 1) f(k—1) +
2k+1 for all i € [k]. We prove that D—{xs, ..., 2k, Y2, ..., yrt has an (z1, y1)-
path Py such that kg (2z;,y;) > f(k—1) fori =2,...,k, where H = D-V(P).
Then the result follows by induction. If D — {za,...,zk,y2,..., Y} has an
(21, y1)-path of length at most 5, then this can play the role of P;, so assume
that no such path exists. Let Q1,Q2, ..., Qak—1)f(k—1)+1 be internally dis-
joint (x1,y1)-paths in D —{xa, ..., Tk, Y2, ..., yr}. We show that one of these
can play the role of P;. First note that by Lemma 10.5.4 and the remark
above, we have that for all 1 < i,57 < 2(k —1)f(k — 1) + 1 the predeces-
sor of y; on (); dominates the successor of x; on @;. Hence, by Proposi-
tion 10.5.1, for each ¢ = 2,3, ..., k, there are internally disjoint (x;, y;)-paths
Py, P, ..., Pi—1),; which together intersect at most 2f(k—1) of the paths
Q1,Q2,. ., Qak—1)f(k—1)41- Hence there is at least one path @), which inter-
sects none of Pj;, 2 <i<k,1<j< f(k—1). Thus we can use that Q, as
Py. O

Combining Lemma 10.5.3, Theorem 10.5.5 and Theorem 2.10.15 we obtain
the following result by Bang-Jensen (extending a similar result for semicom-
plete digraphs by Thomassen [859]). Here and below f(k) is the function
which is defined in the proof of Theorem 10.5.5.

Theorem 10.5.6 [7/] There exists, for each natural number k, a natural
number f(k) such that every f(k)-strong locally semicomplete digraph is k-
linked. O

Corollary 10.5.7 [7/] Every f(k)-strong locally semicomplete digraph is k-
arc-cyclic. O

The function f(k) is probably far from best possible for Theorem 10.5.6
and Corollary 10.5.7. In particular, f(2) = 7, but, using Theorem 2.10.15, it
should be possible to prove that the following holds.

Conjecture 10.5.8 [7/] Every 5-strong locally semicomplete digraph is 2-
linked.

10.5.2 The 2-Linkage Problem for Semicomplete Digraphs

In the proof of Corollary 10.5.2 we really only used that kp_ (4, 4.3 (T3-i, y3-i)
was at least 3 for ¢ = 1,2 in order to ensure the existence of three internally
disjoint (z1, y1)-paths in D —{z2,y2} and then we applied Proposition 10.5.1.
Bang-Jensen strengthened this sufficient condition as follows.
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Theorem 10.5.9 [65] Let T be a semicomplete digraph and let x1,x2,y1, Y2
be distinct vertices of T'. Suppose that

min{HT—{xz,Zﬂ}(xh yl)a K:T—{afhyl}(xQ? yQ)} > 2 and (101)
maX{RT—{zg,yz}(xlv yl)a HT—{$1,y1}(z23 yQ)} > 37 (102)
then T has a pair of disjoint (x1,y1)-, (T2, y2)-paths. O

This is best possible with respect to local connectivities. The semicom-
plete digraph in Figure 10.7 shows that we cannot replace 3 by 2 above.
However, see Theorem 10.5.13 for a special case where we can do this.

Bang-Jensen showed that for cycles through two arcs (the special case
when y;—x2 and ys—x1), we can strengthen Corollary 10.5.2 in the case
of tournaments. The digraph in Figure 10.7 shows that for semicomplete
digraphs we cannot always weaken the connectivity requirement.

Theorem 10.5.10 [65] Every 3-strong tournament and every 5-strong semi-
complete digraph is 2-arc-cyclic. a

It follows from the proof of Theorem 10.5.10 in [65] that for a fixed pair of
arcs e, e’ we can replace the connectivity requirement that D is 5-strong by
(5 — 4)-strong provided that i of the arcs e, e’ are not in a 2-cycle (i = 1,2).

Conjecture 10.5.11 [74] Every 3-strong locally tournament digraph is 2-
arc-cyclic.

The example in Figure 10.7 indicates that finding a complete generaliza-
tion of those semicomplete digraphs that do not have disjoint (z,y)-, (u,v)-
paths for a given set of distinct vertices x,y, u, v may be very difficult. In the
special case where we allow v and y to be equal, that is, we are seeking an
(z,v)-path which passes through the vertex w (that is, the problem (P5) in
Proposition 10.1.2), it is indeed possible to give a characterization. Such a
characterization was given by Bang-Jensen in [67].

From the algorithmic point of view, the 2-linkage problem for semicom-
plete digraphs was solved by Bang-Jensen and Thomassen who proved the
following result:

Theorem 10.5.12 [118] The 2-linkage problem is solvable in time O(n®) for
semicomplete digraphs. a

The proof of this result in [118] is highly non-trivial. The basic approach
is divide and conquer and several non-trivial results and steps are needed to
make the algorithm work. We state the most important of these results below
since it is of independent interest.

Recall from Section 7.3 that an (s,t)-separator S is trivial if ¢ has in-
degree zero, or s has out-degree zero in D — S. The following result, which
complements Theorem 10.5.9, is very important for the proof of correctness
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of the algorithm of Bang-Jensen and Thomassen, since it corresponds to a
case where no problem reduction is possible (using the approach taken in the
algorithm).

Theorem 10.5.13 [118] Let x1,x2,y1,y2 be distinct vertices of a semicom-
plete digraph T, such that kp_gs, 4.3 (23—, y3-s) = 2 fori = 1,2. Suppose that
all (z;,y;)-separators of size 2 in T — {x3_;,ys—;} are trivial, for i = 1,2.
Then T has a pair of disjoint (x1,y1)-, (x2,y2)-paths. Furthermore such a
pair of paths can be constructed in time O(n?). O

Note that the semicomplete digraph in Figure 10.7 does not satisfy the
assumption of Theorem 10.5.13 since the two non-labeled vertices in the
middle form a non-trivial (2, y2)-separator of size 2 in T — {z1, y1 }.

10.5.3 The 2-Linkage Problem for Generalizations of Tournaments

Now we show that the 2-linkage problem can be solved in polynomial time
for quite large classes of digraphs which can be obtained by starting from
semicomplete digraphs and then performing certain substitutions. The algo-
rithm we describe uses the polynomial algorithm from Theorem 10.5.12 for
the case of semicomplete digraphs as a subroutine. The results in this section
are due to Bang-Jensen [74].

Theorem 10.5.14 [74] Let D = F[S1,S55,...,Sf] where F is a strong di-
graph on f > 2 wertices and each S; is a digraph with n; vertices and let
1,%2,Y1,Y2 be distinct vertices of D. There exist semicomplete digraphs
Ty,..., Ty such that V(T;) = V(S;) for all i € [f], and the digraph D' =
F[Ty, Ty, ..., Tf] has vertex-disjoint (x1,y1)-, (z2,y2)-paths if and only if D
has such paths. Furthermore, given D and x1,x2,y1,y2, D' can be constructed
in time O(n?), where n is the number of vertices of D.

Proof: If D has the desired paths, then so does any digraph obtained from D
by adding arcs. Hence if D has the desired paths, then trivially D’ exists and
can be constructed in time O(n?) once we know a pair of disjoint (z1,y1)-,
(z2,y2)-paths.

If no S; contains both of x1,y; or both of za,ys, then it is easy to see
that D has the desired paths if and only if it has such paths which do not
use an arc inside any S;. Thus in this case we can add arcs arbitrarily inside
each S; to obtain a D" which satisfies the requirement.

Suppose next that some .S; contains all of the vertices x1,x2,y1,y2. If
there is an (z;,y;)-path P in S; — {x3_;,y3—,}, j = 1 or 2, then it follows
from that fact that F is strong that D has the desired paths and we can find
such a pair in time O(n?). Thus, by our initial remark, we may assume that
there is no (z;,y,)-path P in S; — {xs_;,ys—;} for j = 1,2. Now it is easy to
see that D has the desired paths if and only if it has such paths which do not
use an arc inside any S;. Thus we can replace S; by a tournament in which
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x1 and x2 both have no out-neighbours in S; — {1, 22} and every other Sy
by an arbitrary tournament on the same vertex set. Clearly the digraph D’
obtained in this way satisfies the requirement.

Suppose now without loss of generality that z1,71 € V(S;) for some j
but z2 & V(S;). Suppose first that yo € V(S;). If there is no (z1, y1)-path in
S; — y2, then D has the desired paths if and only if it has such paths which
do not use an arc inside any S; and we can construct D’ by adding arcs in
S; in such a way that no (x1, y1)-path avoiding y» is created (that is, yo will
still separate z1 from y; in D’(V(S;))) and arbitrary arcs in every other S;.
On the other hand, if S; — yo contains an (z1,y1)-path avoiding ys, then it
follows from the fact that F is strong that D has the desired paths and hence
D’ exists as remarked above. Hence we may assume that yo ¢ V(S;).

If S; contains an (z1,y:1)-path which does not cover all the vertices of S;,
then it follows from the fact that F' is strong that D has the desired paths.
Thus we may assume that either S; has no (z1,y1)-path, or every (z1,y1)-
path in S; contains all the vertices of S;. In the last case we may assume that
V(S;) separates xo from ys. Now D has the desired paths if and only if it
has such a pair which does not use any arcs from S;. Thus in both cases we
can construct D’ by replacing S; by a tournament with no (z1,y1)-path and
every other S; by an arbitrary tournament on the same vertex set, except in
the case when x5 and ys belong to some S;, i # j. In this case we replace
that S; by a tournament with no (x2, y2)-path (by the remark above we may
assume that S; has no (22, y2)-path).

It follows from the considerations above that D’ can be constructed in
time O(n?). O

Recall that quasi-transitive digraphs can be decomposed according to
Theorem 2.7.5. Hence we can apply Theorem 10.5.14 to these digraphs.

Theorem 10.5.15 [74] There exists a polynomial algorithm for the 2-linkage
problem for quasi-transitive digraphs.

Proof: Let D be a quasi-transitive digraph and x1, s, y1,y2 specified dis-
tinct vertices for which we want to determine the existence of vertex-disjoint
(21,y1)-,(22, y2)-paths. First check that D —{z;,y;} contains an (z3_;, y3—;)-
path for i = 1, 2. If not, then we stop. Now it follows from Theorem 2.7.5 that
either x1,x2,y1,y2 are all in the same strong component of D, or the paths
exist. For example, if D is not strong and y;, say, is not in the same strong
component as x1 then, by Theorem 2.7.5, 1 and y; belong to different sets
Wi, W; in the canonical decomposition D = Q[W1,...,W|q|], where Q is a
transitive digraph. Hence x1—v; and the desired paths clearly exist.

Thus we may assume that D is strong. Let D = S[W1, Wy, ..., W|g|] be a
decomposition of D according to Theorem 2.7.5. Now apply Theorem 10.5.14
and construct the digraph D’ which has the desired paths if and only if D
does. As remarked in Theorem 10.5.14, D’ can be constructed in polynomial
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time. By the construction of D’ (replacing each W; by a semicomplete di-
graph) it follows that D’ is a semicomplete digraph and hence we can apply
the polynomial algorithm of Theorem 10.5.12 to D’ in order to decide the
existence of the desired paths in D. The algorithm of Theorem 10.5.12 can
be used to find vertex-disjoint (z1,y1)-, (22, y2)-paths in D’ if they exist and
given these paths it is easy to construct the corresponding paths in D (it
suffices to take minimal paths). O

By inspecting the proof of Theorem 10.5.14 it is not difficult to see that
the following much more general result is true. The main point is that in
the proof of Theorem 10.5.14 we either find the desired paths or decide that
they exist if and only if there are such paths that use no arcs inside any S;.
Hence instead of making each T; semicomplete, we may just as well make it
an independent set, by deleting all arcs inside .S;.

Theorem 10.5.16 [74] Let & be a class of strongly connected digraphs, let
@ denote the class of all extensions of graphs in @ and let

Q" ={F[Dy,...,D|p|] : F € ®, each D; is an arbitrary digraph}.

There is a polynomial algorithm for the 2-linkage problem in ®* if and only
if there is a polynomial algorithm for the 2-linkage problem for all digraphs
m @0. O

This result shows that studying extensions of digraphs can be quite useful.

One example of such a class @, for which Theorem 10.5.16 applies, is the
class of strong semicomplete digraphs. This follows from the fact that we
can reduce the 2-linkage problem for extended semicomplete digraphs to the
case of semicomplete digraphs in the same way as we did for quasi-transitive
digraphs in the proof of Theorem 10.5.15. Hence the 2-linkage problem is
polynomially solvable for all digraphs that can be obtained from strong semi-
complete digraphs by substituting arbitrary digraphs for vertices. It is im-
portant to note here that ¢ must consist only of strong digraphs, since it is
not difficult to reduce the 2-linkage problem for arbitrary digraphs (which
is A"P-complete by Theorem 10.2.1) to the 2-linkage problem for those di-
graphs that can be obtained from the digraph H consisting of just an arc uv
by substituting arbitrary digraphs for the vertex v.

The proof of the following easy lemma is left to the reader as Exercise
10.23. Note that four is best possible as can be seen from the complete biori-
entation of the undirected graph consisting of 4-cycle z1z2y1y221 and a vertex
z joined to each of the four other vertices.

Lemma 10.5.17 Let D be a digraph of the form D = 52[51,52], where S;
is an arbitrary digraph on n; vertices, i = 1,2. If D is 4-strong, then D is
2-linked. O

The following result generalizes Corollary 10.5.2.
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Theorem 10.5.18 [74] Let k > 4 be a natural number and let F' be a digraph
on f > 2 vertices with the property that every k-strongly connected digraph of
the form F[T1,Ts,..., Ty, where each T, i € [f], is a semicomplete digraph,
is 2-linked. Let D = F[S1,S2,...,S¢], where S; is an arbitrary digraph on n;
vertices for all i € [f]. If D is k-strongly connected, then D is 2-linked.

Proof: Let D = F[S1,Ss,...,5f], where S; is an arbitrary digraph on n;
vertices for each ¢ € [f], be given. By Lemma 10.5.17 we may assume that
D cannot be decomposed as D = ég[Rl, Rs], where Ry and Ry are arbitrary
digraphs. Construct D’ as described in Theorem 10.5.14. Note that by Lemma
5.8.1, k(D") = k(D). Thus D’ is k-strong and using Theorem 10.5.14 and the
assumption of the theorem we conclude that D is 2-linked. a

Corollary 10.5.19 [74] Every 5-strong quasi-transitive digraph is 2-linked.

Proof: By Theorem 2.7.5, every strong quasi-transitive digraph is of the form
D = F[51,52,...,8¢], f = |F|, where F is a strong semicomplete digraph
and each S; is a non-strong quasi-transitive digraph on n; vertices. By Lemma
2.7.4 and the connectivity assumption, |F| > 3. Note that for any choice
of semicomplete digraphs Ti,...,Ty the digraph D’ = F[T1,Ts,...,Ty] is
semicomplete. Hence the claim follows from Theorem 10.5.18 and the fact
that, by Corollary 10.5.2, every 5-strong semicomplete digraph is 2-linked.
(Since F has at least three vertices, it follows from Lemma 5.8.1 that x(D’) =
k(D).) O

10.6 Linkages in Planar Digraphs

In this section we briefly discuss the k-linkage problem for planar digraphs
(recall the definition of a planar digraph from Section 2.12). The constraint
that the digraph in question can be embedded in the plane clearly poses some
restrictions to the structure of vertex-disjoint paths. This is illustrated by the
following result.

Proposition 10.6.1 Suppose that D = (V, A) is a planar digraph with dis-
tinct vertices x,y,u,v € V and that D is embedded in the plane in such a
way that the vertices x,v,y,u appear on the bounding cycle C' of the outer
face in that order (see Figure 10.8). Then D does not have a pair of disjoint

(z,y)-, (u,v)-paths.

Proof: We first prove that no matter how we connect x and y by a simple
(that is, not self-intersecting) curve R and u,v by another simple curve R/,
both inside the bounded disc with boundary C (see Figure 10.8) the two
curves must intersect. Suppose we can choose simple curves R, R’ so that R
connects z and y and R’ connects u and v. Then we can add a new point z
in the interior of the outer face and join it to each of the vertices x,y, u,v
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T

Y

Figure 10.8 A topological obstruction for the existence of disjoint (z,y)- and
(u,v)-paths in a planar graph G. The cycle C is the boundary of the outer face of
G.

by disjoint simple curves which lie entirely in the closed disc formed by the
outer face and its boundary C'. This gives us an embedding of K5 in the
plane, contradicting Theorem 2.12.1.

Suppose now that P, @ are disjoint paths in D such that P is an (x,y)-
path and @ is a (u, v)-path. In the embedding of D these correspond to simple
curves and hence, by the argument above, they must intersect at some point
in the plane. Since D is planar, no two arcs intersect in the interior (as
curves) and hence we see that P and () must intersect in some vertex v of
D. However, this contradicts the assumption that they are disjoint. a

We point out that the first part of the proof above can be established using
the Jordan curve theorem directly to establish that R and R’ must intersect
somewhere in the disc with boundary C' (see, e.g., the book by Bondy and
Murty [170]).

It was shown by Lynch [662] that when k is part of the input, then the
k-linkage problem remains A/P-complete even for planar digraphs. For fixed
k, Schrijver has developed a polynomial algorithm.

Theorem 10.6.2 [799, 800] For every integer k > 1 the k-linkage problem
is polynomially solvable for planar digraphs®. a

The proof method is based on cohomology over free (non-abelian) groups,
a topic which would require too much space to cover in the present book.
Schrijver mentions that part of the group theory and topology is mainly used
to keep notation fairly simple, but in any case the proof is too complicated to
include here even as a (convincing) sketch. For additional discussion on and
applications (for digraphs embedded on surfaces) of this very powerful proof
technique we refer the reader to Schrijver’s papers [799, 800, 801]. We should

5 Note that & is not part of the input.
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mention though that arguments like those used in the proof of Proposition
10.6.1 play an important role in Schrijver’s approach.

To further illustrate how to use planarity in arguments in linkage prob-
lems, we consider a special case of the k-linkage problem for which a good
characterization for the existence of a prescribed linkage has been found by
Ding, Schrijver and Seymour [261].

Suppose that we are given a planar digraph D = (V, A) which is embedded
in the plane in such a way that the vertices si,ss,..., Sk, t1,t2,...,t; all
belong to the boundary of the outer face F' of D. Ding, Schrijver and Seymour
[261] proved that in this case there is a simple polynomial algorithm to decide
the existence of a collection of disjoint paths Py, Ps, ..., Py, where P; is an
(s4,t;)-path for every i € [k].

In fact, as we will see below, it turns out to be easier to describe an
algorithm for the following slight extension of the problem: in addition to the
vertices $1, 83, - - -, Sk, t1,to2, .. ., t; we are also given subsets Ay, As, ..., Ay of
A and we demand that P; can only use® arcs from A; for all i € [k].

Motivated by the example in Figure 10.8 we say that two pairs of terminals
(si,t;) and (s;,t;) on bd(F) cross if each simple curve from s; to t; in R? — F
(considered as a subspace of R?) crosses each simple curve from s; to ¢; in
R2 — F. By Proposition 10.6.1 a necessary condition for the existence of
disjoint (s1,t1),...,(Sk,tx)-paths in D is that the following cross-freeness
condition is satisfied:

for every i # j (s;,t;) and (s;,t;) do not cross. (10.3)

Using the cross-freeness condition we see that there is no solution unless
the terminals occur in the order uy, vy, ug, v, ... ug, vx around bd(F'), where
{ui, vi} = {8x(:), tr(s)} for some permutation 7 of [k]. Clearly this condition
can be checked in polynomial time if we are given the (polygonal) embedding
of D.

We measure closeness of two polygonal paths with the same end-points
by the area between the two paths. See Figure 10.9 for an illustration. The
proof of the following lemma is left as Exercise 10.25.

Lemma 10.6.3 Let R be a path from x to y along the boundary of the outer
face (ignoring the orientation of the arcs in D) and let D' be a subdigraph
of D which contains the vertices x and y. Then either D' has no (x,y)-path
or there exist a unique (x,y)-path Q in D' which is closest to R. Given the
embedding of D, we can find Q in polynomial time if it exists. Furthermore,
no other (x,y)-path ‘crosses over’ Q at any point (e.g., in Figure 10.9 the
path vgugvs crosses over the path vavguig at the vertex vg ). O

6 In [261] Ding, Schrijver and Seymour consider an even more general case where
not all paths linking different pairs of terminals must be disjoint, but for sim-
plicity we assume that they are all disjoint.
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Figure 10.9 Let R be the path svivevsvavsvet in the underlying graph of D. The
(s, t)-path svrvavgvsveu1rt is closer to R than the (s,t)-path svrvsvgvsveviit.

Now we are ready to describe a greedy algorithm which either finds the
desired paths in D, or a proof that no such paths exist (using only arcs from
the sets Ay, Aa, ..., Ag).

Start with sg, tg. Since D satisfies the cross-freeness condition, one of the
two paths between s, and t;, along bd(F') contains no other terminals. Denote
this path by P.

If D(A) contains no (sg, tx)-path, then there is no solution, so assume
below that such a path exists.

Let Py be the unique (s, tx)-path in D(A) which is closest to P. Modify
each A;, i € [k — 1], by removing from A; every arc that is incident to a
vertex on P. Now repeat the steps above for the pair s;_1,t,r_1 and continue
recursively.

After at most k iterations we either find the required linkage or conclude
that no such linkage exists.

To prove the correctness of the algorithm we observe that if Q1,Qs,...,
Q. is a solution, then so is Q1,Q2,...,Qk_1, P;. Indeed, if P intersects
some @;, then so does Q) because Py is either equal to @ or strictly closer
to P than Q. This shows that the greedy choice is legal and the correct-
ness follows. It also follows from Lemma 10.6.3 that the algorithm above is
polynomial in the size of D.

We finish this section with some remarks on the problem (P3) in Propo-
sition 10.1.2 for the case of planar digraphs. By Theorem 10.2.5 there is no
degree of vertex-strong connectivity which guarantees that a digraph is 2-
cyclic (that is, has a cycle containing z,y for every choice of vertices x,y).
For planar digraphs the maximum degree of vertex-strong connectivity is 5
(Exercise 5.8). One may ask whether there is some degree of vertex-strong
connectivity which suffices to guarantee that the planar digraph is 2-cyclic.
However, this is not the case as shown by the 5-strong non-2-cyclic planar di-
graph Dy, (k = 20) in Figure 10.10 (Exercise 10.27). This example arose from
a personal communication with B6hme and Harant (October 1999). The fact
that there exist 5-strong non-2-cyclic planar digraphs was also mentioned by
Bermond and Thomassen in the survey paper [152]. Note also that these ex-
amples of 5-strong non-2-cyclic planar digraphs show that for directed graphs
there is no analogue of Tutte’s theorem on hamiltonian planar graphs (every
4-connected planar graph is hamiltonian [878]).
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Using the same family of planar undirected graphs Gg, k£ > 20, as in
Figure 10.10 one can easily construct 5-strong planar graphs which do not
contain disjoint [s1,%1]-, [$2,t2]-paths, hence providing the proof that the
condition of being 6-connected cannot be lowered to being 5-connected for
undirected graphs (recall the discussion at the end of Section 10.2).

G4
(a) (b)

Figure 10.10 Part (a) shows a planar 5-connected graph Gj with k = 4; Part (b)
shows a 5-strong planar digraph Dy, that is obtained from the complete biorientation
of Gy, (shown for k = 20) by adding two new vertices z,y and joining these by the
arcs indicated. The digraph has no cycle through = and y.

10.7 Weak Linkages

Let D be a directed multigraph and let si,ss,...,8k,t1,t2,...,tx be a
collection of not necessarily distinct vertices of D. A weak k-linkage
from (s1,89,...,8%) to (t1,t2,...,tx) is a collection of k arc-disjoint paths
Py, ..., P, such that P; is an (s;,t;)-path for each ¢ € [k]. A directed
multigraph D = (V, A) is weakly k-linked if it contains a weak k-linkage
from (s1, s9,...,8k) to (t1,ta,...,tx) for every choice of (not necessarily dis-
tinct) vertices s1,...,Sg,t1,...,tx. The WEAK k-LINKAGE PROBLEM is the
following. Given a directed multigraph D = (V, A) and distinct vertices
T1,T2y -y ThyY1,Y2, - -, Yi; decide whether D contains k arc-disjoint paths
Py, ..., Py such that P; is an (x;, y;)-path.

In view of Theorem 10.7.3 below, the following result by Fortune, Hopcroft
and Wyllie may seem slightly surprising.

Theorem 10.7.1 [332] The weak k-linkage problem is N'P-complete already
for k =2.

Proof: Let [D, z,y,u,v] be an instance of the 2-linkage problem. Transform
D = (V, A) into the directed multigraph H by performing the vertex splitting



10.7 Weak Linkages 399

procedure (see Section 4.2). Then it is easy to show that H has a pair of
arc-disjoint (z, ys)-, (ut, vs)-paths if and only if D has disjoint (z,y)-, (u,v)-
paths (Exercise 10.28). Since H can be constructed from D in polynomial
time, the claim now follows from Theorem 10.2.1. a

The following problem is mentioned by Schrijver in [799, page 265] and
[801].

Problem 10.7.2 Does there exist a polynomial algorithm to decide the exis-
tence of two arc-disjoint paths with prescribed end-vertices in a planar directed
multigraph?

Even the complexity of the special case when we are looking for arc-
disjoint (z,y)- and (y, z)-paths is open! Hence we see from Theorem 10.6.2
that the weak 2-linkage problem is much more difficult for planar digraphs
than the 2-linkage problem. This is not really surprising since planarity cer-
tainly has implications on vertex-disjoint paths, whereas the implications on
arc-disjoint paths are not so obvious although there clearly are some.

Observe that if D is weakly k-linked, then D is k-arc-strong. To see this
it suffices to take s; = x and t; = y for each i, then there are k arc-disjoint
(z,y)-paths in D and since x,y may be chosen arbitrarily, it follows that D
is k-arc-strong.

Shiloach observed [818] that Edmonds’ branching theorem implies that
k-arc-strong connectivity is also sufficient for the existence of k arc-disjoint
paths with specified initial and terminal vertices:

Theorem 10.7.3 [818] A directed multigraph D is weakly k-linked if and
only if D s k-arc-strong.

Proof: Above we have argued on the necessity. To see the sufficiency, let
T1,T2,...,Tk, Y1,--.,Yr be given. Construct a new directed multigraph D’
by adding a new vertex s and arcs sx; for all i € [k] to D. Since D is k-arc-
strong, it is not difficult to check that d, (X) > k for every subset X of V.
Hence by Theorem 9.3.1, D’ has arc-disjoint out-branchings B:p ceey B:k all
rooted at s. Since s has out-degree k in D’, each B:i must use precisely one
arc out of s and without loss of generality B;i uses the arc sz;. Now it is

clear that Bii contains an (x;,y;)-path P; and the paths Py, ..., Py form the
desired linkage. O

Using Theorem 9.3.3 we can obtain, in an analogous way, the following
sufficient condition, due to Bang-Jensen, Frank and Jackson, for the existence
of k arc-disjoint paths with prescribed initial and terminal vertices (Exercise
10.29).

Theorem 10.7.4 [78] Let (s1,t1),. .., (Sk,tx) be k pairs of vertices in a di-
rected multigraph D = (V, A) so that for every verter x with d~(x) < d*(z)
or x = t; there are arc-disjoint paths from s; to x for every i € [k]. Then
there are arc-disjoint paths from s; tot; (i =1,2,...,k). O
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Note that if we only impose the condition in Theorem 10.7.4 on the
vertices ty,1s,...,t;, then D may not have arc-disjoint paths from s; to t;
(i=1,2,...,k). This can be seen from the example in Figure 10.11. The ex-
ample can easily be generalized to arbitrary local strong connectivities from
s; to t;, i = 1,2, while preserving planarity. We formulate this as a theorem
below.

Theorem 10.7.5 For every natural number k there exists a planar digraph
D with distinct vertices sy, Sa, t1,ta such that D has kp(s;, t;) > k fori=1,2,
but D has no arc-disjoint (s1,t1)-, (s2,t2)-paths. O

This shows that there is no sufficient condition for the existence of a weak
linkage from (s1,s2,...,8.) to (t1,ta,...,t,.) in terms of local vertex-strong
connectivities from s; to t;, 1 =1,2,...,7.

52

AN

s1 t1

to

Figure 10.11 An example of a planar digraph with k(s;,t;) = 2, ¢ = 1,2, and no
arc-disjoint (s1,t1)-, (s2,t2)-paths.

10.7.1 Weak Linkages in Acyclic Directed Multigraphs

The following easy observation, due to Fortune, Hopcroft and Wyllie, can be
used to reduce the weak k-linkage problem for acyclic directed multigraphs
to the k-linkage problem for the same class. We need the following lemma
whose proof is left as Exercise 10.30.

Lemma 10.7.6 If D is acyclic, then so is its line digraph L(D). a
Theorem 10.7.7 [332] For each k, there exists a polynomial algorithm for
the weak k-linkage problem for the class of acyclic directed multigraphs.

Proof: Let [D,x1,22,...,Zk,Y1,Y2,---,Yx] be an instance of the weak k-
linkage problem where D is an acyclic directed multigraph. If some xz; has
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out-degree zero or some y; has in-degree zero, then trivially the desired paths
do not exist. Hence we may assume that this is not the case.

Transform the instance [D,z1,%9,..., Tk, Y1,Y2,---,Yk] iNto a new in-
stance [D', zy,xh, ..., xL, Y1, Y5, - - ., y;] as follows. If z; has out-degree two or
more, we add a new vertex x; and the arc a}a; to D; otherwise let z} := x;,
i=1,2,..., k. Similarly, for each j € [k], if y; has in-degree more than one, we
add a new vertex y; and the arc y;y}; otherwise let y := y;. Clearly, D’ has
arc-disjoint paths Py, ..., P} such that P/ is an («,y;)-path, i = 1,2,... k,
if and only if D has arc-disjoint paths Py, ..., Py, where P; is an (x;, y;)-path,
i=1,2,....k

Now consider D* := L(D') and let s; (¢;) be the vertex of D* which
corresponds to the unique arc with tail (head) z} (y;). Then it is easy to
show that D* has a collection Q1,Qs,...,Qx of disjoint paths so that Q;
is an (s;,¢;)-path, i = 1,2,...,k, if and only if D’ has arc-disjoint paths
P{,..., P} such that P/ is an (z},y})-path, i =1,2,... k.

K3

Since we have transformed the instance [D,z1,Z2, ..., Tk, Y1, Y2, - - - Yk]
into [D*, s1, 82, ..., 8k, t1,t2,...,tx] by a polynomial algorithm, the theorem
now follows from Theorem 10.4.1. a

In [799], Schrijver shows how to apply a polynomial algorithm for the
weak k-linkage problem in acyclic digraphs to solve a scheduling problem in
the airline industry.

10.7.2 Weak Linkages in Eulerian Directed Multigraphs

As we will see below, questions about weak linkages are slightly easier for
eulerian directed multigraphs than for arbitrary directed multigraphs. How-
ever, the weak 2-linkage problem seems difficult and is still open. As we also
mention in Section 14.1, eulerian directed multigraphs often have properties
similar to those of undirected multigraphs. This is also illustrated by their
properties with respect to arc-disjoint paths as can be seen from some of the
results mentioned in this subsection (see, e.g., Figure 10.13).

We start with a very simple, yet quite important observation. As men-
tioned earlier the complexity version of the corresponding problem for planar
digraphs is still open (Problem 10.7.2).

Lemma 10.7.8 Let D be a eulerian directed multigraph and let s,t be dis-
tinct vertices of D. Then D has arc-disjoint (s,t)-, (t,s)-paths if and only if
D has an (s,t)-path.

Proof: Let P be an arbitrary (s,t)-path. Let D’ be obtained from D by
removing the arcs of P. In D’, every vertex distinct from s, ¢ has in-degree
equal out-degree and we have d,(s) = d},,(s) + 1, df,(t) = dp,(t) + 1. Let
N(D') be the network representation of D’ (recall Definition 5.1.4) and let
x be the flow that has value equal to the capacity on every arc. By the flow
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decomposition theorem (Theorem 4.3.1), x can be decomposed into a (¢, s)-
flow of value one and some cycle flows. Since the (¢, s)-path in N (D’) is also
a path in D', D’ contains a (¢, s)-path as claimed. O

Let 21, ..., 2k be a k-tuple of (not necessarily distinct) vertices, which will
be called terminals. We say that a trail T' = (vov1ve ... vi—1v;) Visits the
terminals in the order z1,zs,..., 2 if 21 = v, 22 = vy, ..., 25 = v;, for
some’ 0 < iy < ... < i, < t. Based on the following lemma (whose proof
is left as Exercise 10.34), we could restrict ourselves only to eulerian trails.
However, it is sometimes convenient to work also with non-eulerian trails.

Lemma 10.7.9 Let D be an eulerian directed multigraph. Assume that there

s a trail visiting some terminals in the order x1,x2, . ..,x,. Then there exists
an eulerian trail visiting the terminals in the same order. a
Given an eulerian directed multigraph and terminals z1, xs, ..., z) there

are at least three different problems one may consider [546):

SpECIFIC TRAIL (ST) PROBLEM

Instance: An eulerian directed multigraph G and an ordered k-tuple of ter-

minals x1,x2, ..., Tk.
Question: Does there exist a trail visiting the terminals in the order z, ...,
.Tk?

UNIQUE TRAIL (UT) PROBLEM

Instance: An eulerian directed multigraph G and an unordered k-tuple of
terminals z1, 2o, ..., Tk.
Question: Do all eulerian trails visit the terminals in the same cyclical order?

ALL TRAIL (AT) PROBLEM

Instance: An eulerian directed multigraph G and an unordered k-tuple of
terminals x1, zo, ..., Tk.

Question: Does there exist a trail T, visiting the terminals in the order
Tr(1),- - Ta(k) fOr every permutation 7 of [k]?

We will denote by k-ST, k-UT and k-AT the corresponding problems when
the number of terminals is exactly k. The ST-problem seems to be the most
important among these three problems, since it is equivalent to the eule-
rian weak linkage problem (see Lemma 10.7.10). However, the remaining two
problems occur naturally in the study of the ST-problem.

7 We do not exclude some additional occurrences of terminals in a trail. In general,
a trail may visit given terminals in several different orders.
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As we show below, results on these three problems for eulerian directed
multigraphs are, in fact, strongly related to weak linkages in directed multi-
graphs which are not eulerian, but become eulerian if we add the so-called de-
mand arcs. Let [D, s1, $2, ..., 8k, t1,t2, ..., tx] be an instance of the weak k-
linkage problem. The demand directed multigraph H associated with this
instance is the directed multigraph consisting of the arcs® ¢1s1,%252, ..., trSk.
The special case of the weak k-linkage problem when D + H is eulerian (here
H is the demand directed multigraph of D) is called the EULERIAN WEAK
k-LINKAGE PROBLEM. When, instead of being a fixed number k, the number
of demand arcs is part of the input, we call the above problem the EULERIAN
WEAK LINKAGE PROBLEM.

Lemma 10.7.10 The k-ST-problem is equivalent to the eulerian weak k-
linkage problem.

Proof: We show that the k-ST-problem is a special case of the eulerian
weak k-linkage problem using the following reduction. Let [D, z1,...,z;] be
an instance of the k-ST-problem. Define s1,t1,...,sk,tx by s; = x; and
t; = xiy1,0 = 1,2,... 0k, (xxg+1 = x1) and let H consist of the arcs t;s;,
1=1,2,...,k. Then D + H is eulerian and it is easy to see that D + H has
arc-disjoint paths Pi,..., Py, where P; is an (s;,t;)-path, i = 1,2,... k, if
and only if D has a trail visiting the terminals in the order z1, o, ..., Tk.
Conversely, given an instance [D, s1, ..., Sk, t1, . . ., tg] of the eulerian weak
k-linkage problem (thus D + H is eulerian), we construct an instance of the
k-ST-problem as follows. Let D be the directed multigraph obtained from
D by adding new vertices x1,...,2x, and arcs x;s;,t;x;4+1,t = 1,2,... k.
Clearly, D is an eulerian directed multigraph, and it admits a closed trail
visiting the terminals in the order x1, ...,z if and only if D admits a weak
k-linkage for the prescribed pairs (s;,t;), i = 1,2,...,k, of terminals. O

Now we see from Lemma 10.7.8 that the weak 2-linkage problem is easy
in the case when the directed multigraph in question becomes eulerian if we
add the two demand arcs t; $1, t2$2. This was also observed by Frank in [341].
The eulerian weak 3-linkage problem is already considerably harder. It was
solved by Ibaraki and Poljak [546]. We describe their main result in Theorem
10.7.11.

It is easy to see that for k£ = 3, the problems 3-ST, 3-UT, and 3-AT are
mutually equivalent from a complexity point of view. The reason is that for
k = 3 there are only two distinct cyclical orders of terminals, (x1,x2,x3)
and (x1,x3,x2). Moreover, we may assume that one eulerian trail 7' of G is
already given (since it may be constructed by a polynomial time algorithm
according to Exercise 18.3). The trail T visits the terminals in one of the
possible orders, say (x1,x2,x3). Hence it only remains to decide whether
there is a trail visiting the terminals in the other order.

8 Hence, if $1 = s2 = ... = sy and t; = t2 = ... = t, the demand directed
multigraph consists of k parallel arcs from ¢; to si.
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We recall the solution, due to Ibaraki and Poljak [546], of the UT-problem,
since it suggests a possible approach to the remaining two problems. Recall
that, for an arc a of D, D/a denotes the directed multigraph obtained from
D by (set-)contracting the arc a. We allow terminals to be identified by the
contraction. Below we denote the set of terminals by X and an instance of
the UT-problem by [D, X]. Clearly, if [D, X] admits several orders of visiting
terminals, then [D/a, X] admits several orders as well, but the converse need
not be true. We say that [D, X| is UT-minimal, if [D, X| admits unique
cyclical order of visiting terminals by an eulerian trail, but [D/a, X] admits
several orders whenever any arc a is contracted. Ibaraki and Poljak charac-
terized UT-minimal instances.

Theorem 10.7.11 [546] Let [D, X] be a UT-minimal instance. Then

(a) dT(x) = d=(x) = 1 for every terminal z, and d*(u) = d~(u) = 2 for
every non-terminal u,

(b) D can be embedded in the plane such that every face is a directed cycle,
and all terminals lie on one common face. a

Observe that the first part of the condition (b) is equivalent to the prop-
erty that the four edges incident to a non-terminal vertex u are oriented
alternatively out of and into the vertex w (in the planar representation). See
Figure 10.12.

€3

A\
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Figure 10.12 An eulerian digraph with no (eulerian) trail visiting x1,z2,x3 in
that order.

T

Theorem 10.7.12 [546] Both the UT-problem and the 3-ST-problem are
polynomially solvable. O

Furthermore, Ibaraki and Poljak proved that the eulerian weak linkage
problem and hence the ST-problem are A'P-complete.

Theorem 10.7.13 [546] The eulerian weak linkage problem is N'P-complete.
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Proof: We sketch the construction used in [546]. The reduction is from the
weak 2-linkage problem, which is N’P-complete by Theorem 10.7.1. Let [D =
(V, A), s1, 82,1, t2] be an instance of the weak 2-linkage problem. Let D* =
D + H be the directed multigraph we obtain from D by adding the two
demand arcs t1s; and t259.

Form a directed multigraph D’ from D by adding two new vertices s,t
and, for every v € V, appending max{0,d},. (v) — dp.(v)} arcs of the form
sv as well as max{0,d,.(v) — df.(v)} arcs of the form vt. Let p be the
sum of d},.(v) — dp.(v) taken over those vertices for which this number is
positive. Now let s; = sand t; =¢,7 = 3,4,...,p+2, be new terminals. Then
[D', s1,82,-..,Sp+2,t1,t2, ..., tptr2] is an instance of the eulerian weak linkage
problem and it is easy to show that D has arc disjoint (s1, t1)-, (s2, t2)-paths
if and only if D’ has arc-disjoint (s;,t;)-paths, i = 1,2,...,p + 2 (Exercise
10.35). 0

Ibaraki and Poljak posed the following conjecture:
Conjecture 10.7.14 [546] The k-ST-problem is polynomial for any fized k.

The condition of minimality which was used in Theorem 10.7.11 can be
replaced by a more technical notion of irreducibility. Let us say that an
instance [D, X] is 2-irreducible if there is no set S of vertices such that
|S| > 1 and one of the following holds:

(a) |(S,9)] =1(S,9)| <2, D(S) is connected and SN X = 0,
(b) (S,9)] =1(S,8)| =1, and |SN X| = 1.

Note that D/S (the directed multigraph obtained by contracting S) is
eulerian whenever D is eulerian. It is not difficult to see the following:

Lemma 10.7.15 Let [D, X] be an instance of the UT-problem which admits
a unique order, and let S satisfy one of the conditions (a) and (b) above.
Then [D/S, X] admits a unique order as well. O

It is also easy to see that D/S can be realized by a series of arc con-
tractions, and hence every minimal UT-instance is 2-irreducible. Thus, the
following theorem is a generalization of Theorem 10.7.11.

Theorem 10.7.16 [546] Let [D, X| be a UT-instance which is 2-irreducible
and admits eulerian trail with unique order of terminals. Then the conditions

(a) and (b) of Theorem 10.7.11 hold.

The polynomial time algorithm for the UT-problem is a consequence of
Theorem 10.7.16. The algorithm proposed in [546] consists of the following
steps:



406 10. Linkages in Digraphs

1. Reduce an instance [D, X] to a 2-irreducible one. This can be done by
applying network flow techniques.

2. Check the degree conditions.

3. Using a planarity test, decide whether D has a planar drawing, and if
yes, then test the remaining conditions of Theorem 10.7.16.

The notion of 2-irreducibility formulated here is weaker than the notion
of irreducibility used in [546] where it was required, in addition, that [D, X]
does not contain any non-terminal vertex of in- and out-degree one. However,
using the general definition of irreducibility given in [115, Section 3|, it can
be seen that this additional condition is automatically satisfied by any AT-
infeasible and irreducible instance.

Let [D, X] be an instance of AT-problem. Let us say that [D, X] is AT-
minimal, if [D, X] does not admit an eulerian trail visiting the terminals for
every given order, but [D/a, X| does whenever any arc a is contracted. The
following result by Bang-Jensen and Poljak shows that there are also degree
restrictions on AT-minimal instances.

Theorem 10.7.17 [115] Let [D, X] be k-AT-minimal. Then d*(u) <k —1
for every non-terminal u, and d™(z) < k — 2 for every terminal x. a

The weak 2-linkage problem for undirected graphs is polynomially solvable
and a complete characterization of undirected graphs having no edge-disjoint
s1t1 and soto-paths is available (Dinic and Karzanov [263, 264], Seymour
[808] and Thomassen [855]). Such a graph G can be reduced to a graph G’
that has a planar representation with the following properties (see Figure
10.13(a)):

(a) Each of the four terminals has degree 2 and all other vertices have degree
3, and
(b) the terminals are located on the outer face in the order s1, s2,t1, to.

x I u S p
— L] s q
& Y q t

(a) (0) (c)

Figure 10.13 Part (a) shows an infeasible instance for the edge-disjoint 2-linkage
problem for undirected graphs. The graph shown has no xy-path and uv-path which
are edge-disjoint; Parts (b) and (c) show infeasible instances of the arc-disjoint [s, t]-,
[p, q]-paths problem for eulerian directed multigraphs.
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The complete biorientation 5 of an undirected graph G is eulerian and
it contains arc-disjoint (s1,t1)-, (s2,t2)-paths if and only if G contains edge-
disjoint s1t1, sato-paths. Hence, the weak 2-linkage problem for eulerian di-
graphs generalizes the weak 2-linkage problem. So far the weak 2-linkage
problem for eulerian digraphs remains unsolved. However, even the simpler
version in which we just require arc-disjoint [s1, 1], [s2, t2]-paths (that is, the
order of s;,t; is not fixed in the ith path, i = 1,2) still generalizes the edge-
disjoint 2-linkage problem. This problem was solved by Frank, Ibaraki and
Nagamochi in [353]. They proved that the problem is solvable in polynomial
time. Furthermore they showed the following result. Below, by a reduction,
we mean a series of transformations such that the desired paths exist in the
new digraph if and only if they exist in the previous digraph (for details see
[353]).

Theorem 10.7.18 [353] Let D be an eulerian directed multigraph and let
S1, 89,t1,ta be mot mecessarily distinct vertices of D. Then D contains arc-
disjoint [s1,t1], [S2,t2]-paths, unless it can be reduced to an eulerian directed
multigraph D’ such that either D' has siz vertices and is isomorphic to the
digraph in Figure 10.13(c), or each of (a),(b) and (c) below hold.

(a) Each of s1, S2,t1,t2 has in- and out-degree one and all other vertices have
in- and out-degree two in D’.

(b) There is at most one cut vertex’ in UG(D').

(¢) D has a planar embedding such that every face is a directed cycle and
all terminals are located on the outer face in the order s,p,t,q where

{s,t} = {s1,t1} and {p,q} = {s2,t2}. o

10.7.3 Weak Linkages in Tournaments and Generalizations of
Tournaments

We now consider the weak 2-linkage problem for some generalizations of
tournaments. We prove that this problem and a related special case (the arc
version of problem (P5) from Proposition 10.1.2) are polynomially solvable for
semicomplete digraphs. The corresponding algorithms are used as subroutines
in a much more complicated algorithm by Bang-Jensen [68] for the problem
concerning arc-disjoint in- and out-branchings in tournaments. We prove the
first results for the class of extended locally in-semicomplete digraphs instead
of just for semicomplete digraphs. We do this to show that not much extra
effort is needed to obtain the result (which also has the same statement as
for semicomplete digraphs alone) for this much larger class of digraphs. The
results in this subsection are due to Bang-Jensen [68, 73]

9 Recall that a vertex « in a connected undirected graph G is a cut vertex if G —x
is not connected.
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Recall that two vertices are similar if and only if they are non-adjacent and
have the same in- and out-neighbours. Note that if x, y are non-adjacent ver-
tices with a common out-neighbour w in an extended locally in-semicomplete
digraph, then x and y are similar vertices, by the definition of an extension
and the definition of a locally in-semicomplete digraph.

The following lemma can be proved along the same lines as Lemma
10.7.20. The proof is left to the reader as Exercise 10.31.

Lemma 10.7.19 Let D be a strong extended locally in-semicomplete digraph
and let x,y be distinct vertices of D. Then D has arc-disjoint (x,y)-,(y, z)-
paths if and only if there is no arc a such that D — a contains no (x,y)-path
and no (y, z)-path. O

Lemma 10.7.20 [75] Let D = (V, A) be an extended locally in-semicomplete
digraph and x,y, z vertices of D such that x # z and D contains a path from
y to z. If D has arc-disjoint (x,y)-, (x, z)-paths, then D contains arc-disjoint
(z,9)-, (y, 2)-paths. Similarly, if an extended locally out-semicomplete digraph
D’ has a path from x to y and arc-disjoint (x, z)-, (y, z)-paths, then D' has
arc-disjoint (x,y)- and (y, z)-paths.

Proof: Let P, and P, be arc-disjoint paths such that P is an (x, z)-path
and P; is a minimal (z,y)-path. If y € V(P), or yx € A, then the claim is
trivial so we assume that none of these hold. We can also assume that z and
y are not similar vertices, because if they are, then y dominates the successor
of z on P, and again the claim is trivial.

If D has a (y, z)-path whose first intersection with V (P;)UV (P,) (starting
from y) is on Py, then the desired paths clearly exist. Hence we may assume
that D contains a path from y to V(P;) U V(P;) — y whose only vertex w
from V(P1) UV (P2) —y is in V(P1) — V(P;). Now choose P among all such
paths so that w is as close as possible to x on P;. By the assumption above
w # . Let u (v) denote the predecessor of w on Py (P), i.e., u = wp and
V= wWp.

Suppose first that v and v are not adjacent. Then, by the remark just
before Lemma 10.7.19, u and v are similar. Now the choice of P implies that
v = y (otherwise the predecessor of v on P dominates u, contradicting the
choice of P). By the assumption that x and y are not similar we conclude
that u # z, but then up y € A, contradicting the minimality of P;.

Thus we may assume that v and v are adjacent. By the choice of P, this
implies that uv € A. Choose r as the first vertex on P which is dominated by
u. By the minimality of Py, r # y. Let s be the predecessor of r on P. The
choice of r and P implies that v and s are similar. Thus as above, we must
have s = y, and since u # x we reach a contradiction as before.

The second half of the lemma follows from the first by considering the
converse and interchanging the names of = and z. a
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The digraph D = (V, A) with vertex set V = {z,u,v,y, 2} and arc set
A = {zu, uv, vy, yu, vz, xz} shows that the conclusion of Lemma 10.7.20 does
not hold for general digraphs.

Using Lemma 10.7.20 we can now characterize those extended locally in-
semicomplete digraphs which do not have arc-disjoint (z,y)-, (y,2)-paths.

Theorem 10.7.21 [753] An extended locally in-semicomplete digraph D has
arc-disjoint (x,y)-, (y, z)-paths if and only if it has an (x,y)-path and a (y, z)-
path and D has no arc e such that D — e has no (x,y)-path and no (y,z)-
path'©.

Proof: Clearly if D has such an arc e, then the paths cannot exist. Now
assume that D has no such arc and that D has an (z,y)-path and a (y, 2)-
path. We prove that D has the desired paths. By Lemma 10.7.19 we may
assume T # z.

By Lemma 10.7.20, we may assume that D contains no pair of arc-disjoint
(z,y)-,(x, z)-paths. Thus, by Menger’s theorem, there exists an arc e = uv
such that D — e has no path from z to {y,z}. Let X = {w : I(z,w) —
path in D —e} and B =V(D) — X. Then z € X, y,z € B and the only arc
from X to B is e.

Since D contains an (x,y)-path, D(X) has an (z,u)-path and D(B) has
a (v,y)-path. D(B) also has a (y, z)-path, since e does not destroy all paths
from y to z.

If v = y, the desired paths clearly exist (and can in fact be chosen vertex
disjoint). If v = 2, then it follows from our assumption that there is no arc
a in D(B) which separates y from z and also z from y. Now it follows from
Lemma 10.7.19 that D(B) contains arc-disjoint (z,y)-, (y, z)-paths and hence
D contains the desired paths. Thus we may assume v # y, z.

Now it is clear that the desired paths exist if and only if D(B) has arc-
disjoint (v,y)-, (y, z)-paths. By induction this is the case unless there exists
an arc ¢/ = ab in D(B) such that D(B) — ¢’ has no path from v to y and
no path from y to z, but then e’ separates z from y and y from z in D,
contradicting the assumption that D has no such arc. a

Our proof above is constructive and hence we have the following (see also
Exercise 10.32):

Corollary 10.7.22 [68] There exists a polynomial algorithm which, given
an extended in-semicomplete digraph D and distinct vertices x,y, z, either
returns a pair of arc-disjoint (x,y)-, (y, z)-paths or an arc a such that D —a
has no (x,y)-path and no (y, z)-path. O

We can now prove the main result of this section.

10 Figure 10.11 with s2 = t; shows that the theorem does not hold for planar
digraphs.
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Theorem 10.7.23 [68] The weak 2-linkage problem is polynomially solvable
for semicomplete digraphs.

Proof: (Sketch) Let [D,x1,x2,y1,y2] be an instance of the weak 2-linkage
problem for semicomplete digraphs. By relabelling if necessary, we can assume
that x1—xso. Below it is understood that we stop as soon as the existence of
the desired paths has been decided.

It is easy to check whether there is any arc e such that D—e has no (z;, y;)-
path for i = 1, 2. If such an arc exists, then D does not have the desired paths
and we stop. Now check whether D contains arc-disjoint (x2,y1)-, (z2,y2)-
paths P, P’. If this is the case, then either 21 P or Plz1,y1] (if 1 € V(P))
and P’ are the desired paths and we stop.

Hence, by Menger’s theorem, there is an arc e such that D — e has no
path from x2 to {y1,y2}. Let

Y :={v:v hasapathto {y;,92} in D—e} and X:=V(D)-Y.

Then zo € X and x7 € Y, because the arc e does not separate x; from
{y1,y2}. Furthermore, e is the only arc from X to Y. Let z be the head of
e and let w be its tail. Note that D(X) contains an (x9,w)-path @ since D
contains an (x2,ys)-path.

If z = x1, then the desired paths exist: We cannot have another arc e’
which separates x; from {y1,y2} in D’ = D(Y) because then e’ separates
{1, 22} from {y1,y2} and we would have stopped earlier. Thus, by Menger’s
theorem, D’ contains arc-disjoint (z1,y1)-, (z1,y2)-paths Pj, Py, implying
that P; and QQP» are the desired paths.

If 2 = yo, then the desired paths exist since any (x1,y;)-path in D’ and
Qy2 will work.

If z = y1, then the desired paths exist if and only if D’ contains arc-
disjoint (z1,y1)-, (y1,y2)-paths. This can be decided in polynomial time by
the algorithm whose existence follows from Corollary 10.7.22.

Finally, if z & {x1,y1,y2}, then the desired paths exist if and only if
D’ contains arc-disjoint (x1,41),- (2, y2)-paths. Hence we have reduced the
problem to a smaller one of the same kind.

We leave it to the reader to verify that our steps above can be performed
in polynomial time and to estimate the time complexity of the algorithm
(Exercise 10.33). O

10.8 Linkages in Digraphs with Large Minimum
Out-Degree

In this section we consider linkages in digraphs with lower bounds on the
out-degree, but no condition on the degree of (arc)-strong connectivity. By
Menger’s theorem, the following result due to Mader would be trivial if we
also required that D was k-arc-strong.
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Theorem 10.8.1 [670] For every integer k > 1, every digraph D with
dT(D) > k contains a pair of distinct vertices z,y so that X(z,y) > k—1. O

Mader [670] gave an example of a digraph D with §* (D) = 12k such that
no pair of distinct vertices are joined by more than 11k internally disjoint
paths. On the other hand, he proved the following:

Theorem 10.8.2 [673] There exists a function f(k) such that every digraph
D with 67 (D) > f(k) contains a pair of distinct vertices x,y such that
k(z,y) > k. Furthermore f(k) =k for k < 3. O

The value of f(k) above is not known for k > 4. Mader [673] proved that
f(4) < 40 and gave an example showing that f(9) > 9.

It is natural to ask whether one can also guarantee the existence of a pair
of vertices x,y so that min{x(x,y), x(y,x)} > k, provided that the minimum
out-degree is sufficiently high (as a function of k). However, already for k = 2
this is not true, as shown by a construction by Mader in [670]. The example
in [670] also shows that there is no function f(k) so that §(D) > f(k) implies
the existence of a pair of vertices x,y so that min{x(z,y), k(y,z)} > k.

10.8.1 Subdivisions of Transitive Tournaments in Digraphs of
Large Out-Degree

A fundamental result of Mader [663] states that for every integer k there is
a smallest integer d(k) such that every undirected graph of average degree
at least d(k) contains a subdivision of the complete graph on k vertices. The
following conjecture by Mader would provide a digraph analogue of this result
and would generalize Theorem 10.8.2.

Conjecture 10.8.3 [673] There exists a function h : Zy — Z4 such that
every digraph D with 5% (D) > h(k) contains a subdivision of TTy,.

The conjecture is easily seen to hold for k& < 3 with h(k) = k — 1 for
k < 3. For k = 2 this is trivial and for £ = 3 we can argue as follows: Let D
have minimum out-degree at least 2. Let v be an arbitrary vertex and start
growing a BFS tree from v. First observe that either we find a T75 or each
vertex in NT(v) has an out-neighbour in N*2(v). Now, if we do not find
the desired subdivision of 773 in D({v} U NT(v) U NT2(v) U...UNT"(v)),
then each vertex in N*7(v) must have a private out-neighbour in N+ +1 ().
Since D is finite, this process cannot continue indefinitely and hence we will
eventually find the desired subdivision of 773 in D.

Mader [674] proved that h(4) = 3. Even the existence of h(5) is open. It
is easy to see that we cannot replace the lower bound on the out-degree by a
lower bound on the average out-degree since the orientation of the complete
bipartite graph Kj j, where we orient all edges from the first colour class to
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the second, has average out-degree k/2 but no subdivision of TT5 and no
directed cycle.

In [629] Kiihn, Osthus and Young showed that if the minimum out-degree
of a digraph is sufficiently large compared to its order, then one can in fact
obtain a subdivision of a complete digraph.

Theorem 10.8.4 [629] Let D be a digraph on n wvertices and out-degree
at least d. Then D contains a subdivision of the complete digraph of order
|d?/(8n3/?)]. O

The bound in the theorem is non-trivial as soon as d > 4n3/4 which is
the bound for having a subdivision of a 2-cycle. Thomassen [860] gave a
construction of a digraph on n vertices and minimum out-degree at least
%logg n which has no even cycle and hence contains no subdivision of the
complete digraph on three vertices.

10.9 Miscellaneous Topics

10.9.1 Universal Arcs in 2-Cyclic Digraphs

Recall that a digraph D is 2-cyclic if the vertices x, y are on a common cycle
for every choice of vertices in z;,y € V(D). Adém [5] calls an arc a in digraph
D universal if D contains a cycle through a and z for every x € V(D).
He also asked which 2-cyclic digraphs have the property that they contain a
universal arc. Hetyei [521] conjectured that this always holds.

Conjecture 10.9.1 [521] Every 2-cyclic digraph has a universal arc.

Hubenko [543] proved that every 2-cyclic bipartite tournament has a uni-
versal arc. She also proved the following slightly stronger statement.

Theorem 10.9.2 [5/3] Let D be a 2-cyclic bipartite tournament such that
8%(D) > 2. Then every longest cycle contains a universal arc. a
Hubenko [543] also posed the following problem.

Problem 10.9.3 [543] Let D be a 2-cyclic bipartite tournament. Is it true
that for every maximal cycle!' C all arcs of C are universal?

Volkmann and Winzen generalized Hubenko’s results to arbitrary multi-
partite tournaments.

Theorem 10.9.4 [896] Every 2-cyclic multipartite tournament contains a

universal arc. O
Theorem 10.9.5 [896] Let D be a strong multipartite tournament with
8%(D) > 2. Then every longest cycle of D contains a universal arc. a

A cycle is maximal in D if there is no cycle C’ in D such that V(C) C V(C").
Note that maximal cycles are non-extendable, but the converse is not always the
case.
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10.9.2 Integer Multicommodity Flows

Recall the definition of a network and a flow from Chapter 4. In this section
we consider briefly the following common generalization of flows and weak
linkages called the INTEGER MULTICOMMODITY FLOW PROBLEM (if k is fixed
in advance, we call it the INTEGER k-COMMODITY FLOW PROBLEM): Given
a natural number k£ > 1, a network N' = (V, A, ¢ = 0,u), 2k not necessarily
distinct vertices s1, S92, ..., Sk, t1,%92,...,tr and integers ri,79,...,7%, decide
whether there exist integer-valued flows f1, f2,..., f* such that each of the
following holds (recall that |f?| is the value of the flow f?):

(i) f'isan (s;,t;)-flow in NV,

(ii) |f > r; for all i € [K],

(iii) 5- > 0 for every ij € A, p € [K],
(iv) For every ij € A: ZI;=1 I < wij.

A collection of flows f1, 2, ..., f¥ which satisfies (i)-(iv) is called a fea-
sible k-commodity flow with respect to (s;,t;), i = 1,2,..., k. We can
also consider the maximization version where no demands r1,7s,...,7%
are specified (or they are to be considered as lower bounds) and the goal is
to maximize the sum of the values of the flows.

If we take k = 1, we have the standard (maximum) (s, t)-flow problem for
which several polynomial algorithms were described in Chapter 4. However,
Even showed that already when k£ = 2 the problem becomes very hard.

Theorem 10.9.6 [307] The integer 2-commodity problem is N'P-complete.

Proof: The problem clearly belongs to A'P since given a feasible instance we
can take specifications of two feasible flows, one from s; to ¢; and the other
from ss to g, as a valid certificate.

Now let [D = (V, A),x1,22,y1,y2] be an instance of the weak 2-linkage
problem. Let N = (V, A, £ = 0,u = 1), take s; = x;,t; = y;, © = 1,2 and let
r1 = ro = 1. Then it is easy to see that D has arc-disjoint (z1,y1)-, (z2,¥y2)-
paths if and only if N has a feasible integer 2-commodity flow with respect
to the pairs (s;,t;), i = 1,2. Now the claim follows from Theorem 10.7.1. O

What we really observed above was simply that the weak 2-linkage prob-
lem is nothing but a very special case of the 2-commodity flow problem.
This is not surprising since if we concentrate on one of the two flows f* in a
feasible integer 2-commodity flow (with respect to the values r1,ry and the
capacities of the given network), then f? is just a normal (s;,t;)-flow and
hence can be decomposed into 7; (s;,t;)-paths and some cycle flows by The-
orem 4.3.1. Hence the integer multicommodity flow problem is nothing but
a generalization of weak linkage problems.

The name multicommodity flow comes from the interpretation of each
flow as representing a different commodity that has to be shipped from the
source of that commodity to its sink while respecting the total capacity of
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the network. Problems of this type are of importance in practical applications
such as telecommunications and routing problems. For a number of results
on how to solve multicommodity flow problems in practice see the book by
Gondran and Minoux [422]. See also the survey [52] by Assad and Chapter
70 of Schrijver’s book [805]

10.10 Exercises

10.1.
10.2.
10.3.

10.4.
10.5.

10.6.
10.7.
10.8.
10.9.

Prove Proposition 10.1.1.
Prove Proposition 10.1.2.

Prove that problem (P5) of Proposition 10.1.2 for semicomplete digraphs
can be reduced to the 2-linkage problem for semicomplete digraphs in poly-
nomial time.

Prove Lemma 10.2.2.

The 2-linkage problem is NP-hard for digraphs of maximum out-
degree 2. Prove this claim. Hint: modify the digraph D[F] in Figure 10.3.

Prove Theorem 10.3.1. Hint: use Lemma 10.3.2.
Prove Theorem 10.3.3 without using Theorem 10.3.4.
Prove Lemma 10.3.2.

Let D be the acyclic digraph in Figure 10.14. Show that the digraph D’ de-
fined as in the proof of Theorem 10.4.1 has a directed path from (z1, z2, z3)

to (y1,y2,ya3).

1 Y1

l‘<
<o
N b d N

Figure 10.14 An instance of the 3-path problem for acyclic digraphs.

10.10.

10.11.

(4+) Argue that in the algorithm which is implicit in the proof of Theorem
10.4.1 we do not really need to construct D’ when searching for a path from
(z1,22,...,2K) to (y1,Y2,...,yr). Does that lead to an improvement in the
complexity estimate?

Finding a cheapest collection of k disjoint paths with prescribed
ends in an acyclic digraph with costs on the arcs. Show that the
approach used in the proof of Theorem 10.4.1 can be modified so that one



10.12.

10.13.

10.14.

10.15.

10.16.

10.17.

10.18.

10.19.

10.20.

10.21.

10.22.
10.23.
10.24.
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can find the cheapest collection of disjoint paths joining x; to y; for i =
1,2,...,k.

(4) Prove that under the assumption of Corollary 10.4.3, for every non-
special vertex v, the digraph D contains directed (z1,v)-, (z2,v)-, (v,y1)-,
(v, y2)-paths such that the only common vertex of any two of these paths is
v (Lucchesi and Giglio [660]). Hint: use Menger’s theorem and the fact that
D is acyclic.

A sufficient condition for digraph to be 2-linked. Let D = (V, A)
satisfy d*(z) + d~(y) > n 4+ 2 whenever D does not contain the arc zy.
Prove that D is 2-linked. Hint: first show that if zy ¢ A, then there are three
internally disjoint (z,y)-paths of length 2 in D (Heydemann and Sotteau
[525]).

Prove that every k-linked digraph is also k-strong.

Prove that if a digraph D = (V, A) is 2-linked, then for every choice of dis-
tinct vertices z, y, D contains disjoint cycles Cy, Cy such that z € V(Cy),y €
V(Cy). Generalize this to k-linked digraphs and k vertices.

(—) Disjoint cycles containing prescribed vertices in tournaments.
Prove that a tournament 7' contains disjoint cycles C,Cy such that = €
V(Cs),y € V(Cy) if and only if T' contains disjoint 3-cycles such that one
contains x and the other contains y.

Describe how to construct the collection Q1,Q53, ..., Qy of subpaths in the
proof of Proposition 10.5.1. What is the complexity of your algorithm?

Show how to turn the proof of Proposition 10.5.1 into an algorithm which
takes as input a collection Pi, Ps,..., P, of internally disjoint (x,y)-paths
and a collection Q1,Q2,...,Qq of internally disjoint (u,v)-paths in D —
{z,y} and finds a collection of g (u,v)-paths which intersect no more than
2q vertices of Py, P, ..., Pp.

Let D be alocally semicomplete digraph and let x, y be distinct non-adjacent
vertices. Prove that every minimal (z,y)-path is an induced path (Bang-
Jensen [66]).

(=) Let D be a locally semicomplete digraph such that a(D) = 2. Prove
that if = and y are non-adjacent vertices of D and D has an (z,y)-path,
then there exists an (x,y)-path P of length at most 3.

(4) Prove the following statement. Let k > 3, let D be a k-strong lo-
cally semicomplete digraph which is round decomposable and let D =
R[S1,...,5Sr] be the round decomposition of D. Let z and y be vertices
such that € V(S;) and y € V(S;), where ¢ # j, and let P be a minimal
(z,y)-path. Then D — V(P) is (k — 2)-strong (Bang-Jensen [74]). Hint: use
Exercise 10.20.

(+) Prove Lemma 10.5.3. Hint: use Exercise 10.21.
Prove Lemma 10.5.17.
(++) Prove Theorem 10.5.13.
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Prove Lemma 10.6.3. Hint: show how to modify a given (z,y)-path which
is not closest to R into one which is closer by a stepwise (but finite and
polynomially bounded) improvement. For the algorithmic part you can use
that the embedding is with polygonal curves.

Prove that the graph G4 in Figure 10.10(a) is 5-connected.

Prove that the digraph Dy in Figure 10.10(b) is 5-strong and has no cycle
through x,y. Hint: use Exercise 14.8 and Proposition 10.6.1.

Supply the missing details in the proof of Theorem 10.7.1.
Prove Theorem 10.7.4.

(=) Prove Lemma 10.7.6.

Prove Lemma 10.7.19.

Determine the complexity of the algorithm of Corollary 10.7.22.

Fill in the missing details of the proof of Theorem 10.7.23. What is the
complexity of this recursive algorithm?

Prove Lemma 10.7.9.

Prove the last Claim in the proof of Theorem 10.7.13. Hint: use the same
approach as in the proof of Lemma 10.7.8.

Fan-in, fan-out in eulerian directed multigraphs. Let D be an eulerian
directed multigraph and suppose D has arc-disjoint paths Pi, P, ..., Py
such that P; starts at x; and ends at u for every ¢ € [k]. Prove that D
contains arc-disjoint paths P[, P, ..., P; such that P/ is a (u, z;)-path.

(+) Arc-disjoint (x,y)-, (y, z)-paths in quasi-transitive digraphs.
Prove that the characterization in Theorem 10.7.21 can be extended to
quasi-transitive digraphs.

Show that the 3-ST-problem for eulerian digraphs can be reduced in poly-
nomial time to the problem of deciding the existence of arc-disjoint [s1,t1]-,
[s2, t2]-paths in an eulerian digraph with specified vertices s1,t1, s2, t2. Hint:
use Exercise 10.36.

Prove that the arc-version of problem (P5) of Proposition 10.1.2 is N'P-
complete.



11. Orientations of Graphs and Digraphs

The purpose of this chapter is to discuss various aspects of orientations of
(multi)graphs. There are many ways of looking at such questions. We can
ask which graphs can be oriented as a digraph of a certain type (e.g., a
locally semicomplete digraph). We can try to obtain orientations containing
no directed cycles of even length, or no long paths. We can try to relate
certain parameters of a graph to the family of all orientations of this graph
(e.g., what does high chromatic number imply for orientations of a graph).
We can also look for conditions which guarantee orientations with high arc-
strong connectivity or high in-degree at every vertex, etc. There are hundreds
of papers dealing with orientations of graphs in one way or another and we
can only cover some of these topics. Hence we have chosen some of those
mentioned above. Finally, we also study briefly the theory of submodular
flows, which generalizes standard flows in networks and turns out to be a very
useful tool (not only theoretically, but also algorithmically) for certain types
of connectivity questions as well as orientation problems. We illustrate this
by applying the submodular flow techniques to questions about orientations
of mixed graphs and by giving a short proof of Nash-Williams’ orientation
theorem. In Section 13.1 we also use submodular flows to give an algorithmic
proof of the Lucchesi-Younger Theorem.

We also discuss orientations of digraphs and point out here that although
the concept of orienting mixed graphs and orienting digraphs (that is, deleting
one arc from every 2-cycle) are very closely related, they are actually different
problems in many cases. This is because a mixed graph may contain directed
2-cycles and when we orient a mixed graph M we only orient the undirected
part of M.

11.1 Underlying Graphs of Various Classes of Digraphs

In this section we discuss the underlying undirected graphs of some gener-
alizations of tournaments. As can be seen, these include important classes
of undirected graphs such as comparability graphs and proper circular arc
graphs. For much more information about these classes and their relations to
each other, the reader is encouraged to consult the books [178] by Brandstadt,
[421] by Golumbic, and [754] by Prisner. Here we will just define those classes
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that we need. A graph G is a circular arc graph if there exists a family of
circular arcs indexed by the vertices of the graph such that two vertices are
adjacent if and only if the two corresponding arcs intersect. This family of
circular arcs form a representation of G. A proper circular arc graph
is a circular arc graph which has a representation by circular arcs, none of
which is properly contained in another. A graph G is chordal if every cycle
of length at least 4 has a chord, that is, G has no induced cycle of length four
or more. Finally, G is a comparability graph if it has a transitive orienta-
tion (that is, there exists a transitive oriented graph T such that UG(T) is
isomorphic to G).

We will always use A to denote the maximum degree of the undirected
graph in question.

11.1.1 Underlying Graphs of Transitive and Quasi-Transitive
Digraphs

Since every transitive digraph is also quasi-transitive, every comparability
graph has a quasi-transitive orientation. The next theorem by Ghouila-Houri
shows that the other direction also holds.

Theorem 11.1.1 [/0/] A graph G has a quasi-transitive orientation if and
only if it has a transitive orientation.

Proof: To illustrate the usefulness of the decomposition theorem for quasi-
transitive digraphs (Theorem 2.7.5), we give a proof which is quite differ-
ent from the one in [404]. We prove the non-trivial part of the statement
by induction on the number of vertices. When n < 3 the claim is easily
verified, so we proceed to the induction step, assuming n > 4. Suppose D
is a quasi-transitive orientation of G and that D is not transitive. If D is
not strongly connected, then, by Theorem 2.7.5, we can decompose D as
D =T[Wy,Wa,...,W], t = |V(T)| > 2, where T is transitive and each W;
is a strong quasi-transitive digraph. As ¢ > 2 it follows by induction that
we can reorient each UG(W;) as a transitive digraph T;, ¢ = 1,2, ..., k. This
gives a transitive orientation D' = T[Ty, Ts,...,Tt] of G.

Suppose now that D is strong. By Theorem 2.7.5, D can be decomposed
as D = S[Wq,Wa,..., W], s = |V(S)| > 2, where S is a strong semicomplete
digraph and each W; is either a single vertex or a non-strong quasi-transitive
digraph. It follows by induction (as above) that we can orient each UG(W;) as

a transitive digraph T}, ¢ =1,2,...,s. Let TT; be the transitive tournament
on s vertices. Then D' = TT,[T{,T5,...,T"] is a transitive orientation of G.
O

The following construction is due to Ghouila-Houri [404]. Let G = (V, E
be an undirected graph. Construct a graph Gyq from G as follows: V(G q)
UweE(G){xm,xw} and there is an edge from %y, t0 @y, in Ggq precisely
if w=wvand uz ¢ E, or u = z and vw ¢ FE. In particular, there is an

~
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edge Tyyxy for each uwv € E. See Figure 11.1 for an illustration of this
construction. Note that if z,,Zyw is an edge of Ggq, then so is TyeTyu.
Every edge of G4q corresponds to a forbidden pair of oriented edges of G.
The interest in this construction lies in the following very useful fact.

ad

f e db be cb
o~
G ef fe
ed fd L
da thd
a

o ba bf fe ed de

be cd
ab fo ef de

Hqtd

Figure 11.1 An illustration of the construction of G 44 for two graphs. Due to space
considerations we have dropped the z’s in the name of the vertices of Ggta, Hgta-
The graph G is a comparability graph. The graph H is not a comparability graph.
Note that bf, cb,dc, ed, fe,bf is a 5-cycle in Hgq.

Theorem 11.1.2 [40/] A graph G is a comparability graph (and hence has
a transitive orientation) if and only if Gqa is bipartite.

Proof: Suppose G = (V, E) is a comparability graph and let T = (V, A) be
a transitive orientation of G. In Gy the vertices X; corresponding to the
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arcs of T' (that particular orientation of the edge uv for each uv € E) form
an independent set. By symmetry of the definition of the edges of G4, the
remaining vertices Xy of G4 also induce an independent set. Hence G4 is
bipartite with bipartition (X7, X5).

Conversely, suppose that Ggq is bipartite with bipartition (X,Y"). Be-
cause Gqtq contains a perfect matching consisting of edges of the form 2y
it follows that | X| = |Y| and X contains precisely one of the vertices ., Zyy
for each uv € E. It follows from the definition of G 44 that orienting the edges
corresponding to the vertices in X (V) results in a quasi-transitive orienta-
tion D of G'. By Theorem 11.1.1, G has a transitive orientation. a

Corollary 11.1.3 Comparability graphs can be recognized in time O(Am),
where m is the number of edges in the input graph.

Proof: This follows from Theorem 11.1.2 and the fact that the number of
edges in Gyq is O(A|E|). Note that we can check whether a given undirected
graph is bipartite in linear time using BFS (Exercise 3.2). O

For various results on recognition of comparability graphs see the papers
[420] by Golumbic, [513] by Hell and Huang, [706] by Morvan and Viennot
and [709] by Muller and Spinrad.

Consider the comparability graph G in Figure 11.1 and suppose that
our goal is to obtain a quasi-transitive orientation of G. If we choose the
orientation a—d, then this forces the edge between d and e to be oriented as
e—d. This in turn forces the orientations c—d and b—d and each of these
force f—d. Similarly it can be seen that the five edges ad, bd, cd, de, df force
each other. It is easy to see that the corresponding ten vertices in Ggq form
one connected component of Gygyq.

It is not difficult to see that this observation holds for arbitrary compa-
rability graphs, i.e., if x,, and x,,, are in the same connected component
of Ggtq and wz # vu, then, once we decide on an orientation for the edge
uv in G, that orientation forces one on the edge wz. An implication class
for G = (V, F) is a maximal set of edges E’ with the property that in every
orientation of G as a quasi-transitive digraph the choice of an orientation of
one edge e € E’ forces the orientation of all other edges in E'.

By our remark above the implication classes for G coincide with the con-
nected components of Gyq. More precisely the connected component C' of
Glta corresponds to the implication class E' = {uv € E : zy, € V(C)}.
It is not difficult to see that the implication classes form a partition of FE.
Given Gy we can obtain the implication classes of G just by finding the
connected components of Gg:q. Hence we can find the implication classes in
time O(Am) (recall that G4q has O(Am) edges).

Let G be a comparability graph and suppose we want to find a transitive
orientation of G. We can obtain a quasi-transitive orientation just by picking

LI 2y € X, then orient uv from u to v, otherwise orient it from v to wu.
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an arbitrary edge from each implication class, choosing an orientation for
this edge and then orient the remaining edges in that class the way they are
forced to be oriented. The problem is that this orientation will in general not
be transitive. Consider for example the graph G in Figure 11.1. Since each of
the edges ab, bc and ac forms an implication class of size one, there is nothing
that prevents us from orienting these three edges as the 3-cycle a—b—c—a.

We now describe a simple and very useful technique, due to Hell and
Huang [513], for obtaining a transitive orientation of a given comparability
graph G. Let 1,2,...,n be a fixed labelling of the vertices of G. We say that
a vertex x;; of G4 is lexicographically smaller than a vertex x,, if either
t<rori=randj<s.

The lexicographic 2-colouring of G4 is the unique 2-colouring (on
colours A, B) which is obtained as follows. Mark all vertices of Gg:q non-
coloured. Next, as long as there are uncoloured vertices, choose the lexico-
graphically smallest vertex x;; which is not coloured yet and colour it A.
Colour all other vertices in the same connected component as they are forced
(that is, by A if the distance from x;; is even and by B otherwise). When all
vertices of G4iq are coloured the process stops.

The usefulness of lexicographic 2-colourings comes from the following re-
sult (see also Theorem 11.1.9).

Theorem 11.1.4 [513] Let G be a comparability graph with vertex set
{1,2,...,n} and let f : V(Gua)—{A, B} be the lexicographic 2-colouring
of V(Gga). Define an orientation D of G such that an edge ij is oriented
as i—j precisely when x;; receives colour A by the colouring f. Then D is a
transitive orientation of G.

Proof: Exercise 11.3. O

Note that if we apply the lexicographic 2-colouring procedure to a non-
comparability graph, then this will be discovered after G4 has been formed
when we try to 2-colour a non-bipartite connected component H of G 4:q. The
algorithm will discover that H is not bipartite and hence G does not have
any orientation as a quasi-transitive digraph. Thus we have obtained another
proof of Theorem 11.1.1 (the lexicographic 2-colouring algorithm either finds
a transitive orientation of (G, or concludes that G has no quasi-transitive
orientation).

The whole algorithm (including the construction of Gg4) can be per-
formed in time O(Am), where m is the number of edges of G, since we can
find the connected components of G4 using BFS.

11.1.2 Underlying Graphs of Locally Semicomplete Digraphs

For a given proper circular-arc graph G, with a prescribed circular-arc rep-
resentation, we get a natural order on the vertices of G by fixing a point on
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the circle and labelling the vertices vy, v9, ..., v, according to the clockwise
ordering of the right endpoints of their intervals (circular arcs) on the circle
with respect to this point. Since every proper circular-arc graph has a repre-
sentation in which no two arcs cover the whole circle [421], we may assume
that we are working with such a representation. Now it is not difficult to
see that the following process leads to a round local tournament orientation
of G (see Chapter 2 for the definition of a round local tournament?): orient
the edge between v; and v; from v; to v; just if the left endpoint of the jth
interval is contained in the ith interval. Thus we have the following result
due to Skrien (see also [66, 512, 539]):

Proposition 11.1.5 [823] Every proper circular arc graph has an orienta-
tion as a round local tournament. ad

In fact, Hell and Huang showed that the other direction holds as well.

Theorem 11.1.6 [513] A connected graph is a proper circular arc graph if
and only if it is orientable as a round local tournament.

Proof: We proved one direction above. To prove the other direction assume
that D is a round local tournament and that vy, vs,...,v, is a round enu-
meration of V(D). If no such labelling is given, then we can find one in time
O(n+ m) (Exercise 11.5). Now represent UG(D) by circular arcs as follows.
Let € be a fixed number such that 0 < € < 1. Make an n-scale-clock on a cycle
and associate with the vertex v; the circular arc from i to i +d}, (i) + € in the
clockwise order for each i € [n] (indices modulo n). It is easy to check that
this gives a proper circular arc representation of UG(D). Note that here we
use the fact that the out-neighbours of every vertex of D induce a transitive
tournament (see Chapter 2) to see that no arc is properly contained in any
other arc. O

By Theorem 11.1.6, the class of underlying graphs of locally semicomplete
digraphs contains the class of proper circular arc graphs. The next result, due
to Skrien [823] (see also [512, 539]), says that there are no other graphs that
can be oriented as locally semicomplete digraphs.

Theorem 11.1.7 [823] The underlying graphs of locally semicomplete di-
graphs are precisely the proper circular arc graphs. a

Hell, Bang-Jensen and Huang [512] showed that, just as in the case of
comparability graphs, there is a useful auxiliary graph G4 related to orien-
tations as a local tournament digraph: Let G = (V, E) be given and define
Gitq as follows: V(Girq) = queE(G){xuw Ty} and there is an edge from @y,
t0 @y, precisely if v = z and uw € F, or u = w and vz ¢ E. Furthermore,
the edge TyyTyy is in E(Giq) for each wv € E. The proof of the following
result is left as Exercise 11.6.

2 Hell and Huang use the name local transitive tournament instead of round
local tournament [513].
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Theorem 11.1.8 [512] The graph G has an orientation as a local tourna-
ment digraph if and only if the graph Gq is bipartite. O

Suppose G is a proper circular arc graph. Then it follows from Theorems
11.1.7 and 11.1.8 that Gjq is bipartite. Again each connected component
of Gyiq corresponds to an implication class E’ of edges of GG. Hence we can
find a local tournament orientation of G by fixing the orientation of one arc
from each implication class arbitrarily and then giving all remaining arcs the
forced orientation.

If our goal is to find a representation of G as a proper circular arc graph,
then we are not interested in just any local tournament orientation of G, but
we need an orientation as a round local tournament (compare with Theorem
11.1.6). Again we can use the lexicographic method from Section 11.1.1: Since
Giq 1s bipartite, we can apply the lexicographic 2-colouring procedure which
was defined in Section 11.1.1. It follows from the next theorem and the proof
of Theorem 11.1.6 that the lexicographic method is also of use in recognition
of proper circular arc graphs.

Theorem 11.1.9 [513] Let G be a proper circular arc graph and let f :
V(Gia)—{A, B} be the lexicographic 2-colouring of V(Gisa). Define an ori-
entation D of G' such that an edge ij is oriented as i—j precisely when x;;
receives colour A by the colouring f. Then D is a round local tournament
orientation of G. O

This shows that using the lexicographic method one can obtain an O(Am)
algorithm for recognizing and representing proper circular arc graphs.

In fact an even faster and optimal algorithm for recognizing proper circu-
lar arc graphs has been found by Deng, Hell and Huang [257]. This algorithm
also uses the fact that a graph is a proper circular arc graph if and only if it
has an orientation as a round local tournament.

Theorem 11.1.10 [257] There is an O(n + m) algorithm to find a local
tournament orientation of a graph G or to report that G does not admit
such an orientation. Moreover, if a local tournament orientation exists, the
algorithm also identifies all balanced arcs. a

We will define the notion of a balanced arc in the next subsection.

11.1.3 Local Tournament Orientations of Proper Circular Arc
Graphs

In this subsection we describe a deep result by Huang [538, 539] which gives
a complete characterization of all the possible local tournament orientations
of a given proper circular arc graph. In order to state Theorem 11.1.12 below
we need several definitions.
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Let G = (V, E) be an undirected graph. An edge zy of G is balanced if
every vertex z € V — {z,y} is adjacent to both or none of x and y. An edge
is unbalanced if it is not balanced. If all edges of G are unbalanced, then
G is reduced and otherwise G is reducible . It follows from this definition
that a graph which is not reduced can be decomposed as described in the
next lemma. See Figure 11.2 for an illustration.

/ f de

e
G G’ H

Figure 11.2 A reduced graph G and a reducible graph G’. The graph G’ can be
reduced to the graph H by identifying the pairs {a,b}, {c, f/} and {d,e}.

Lemma 11.1.11 IfG is not a reduced graph, i.e., it has a balanced edge, then
there exist a reduced subgraph H of G and complete subgraphs K,,, Kq,, - . .,
K., of G such that® G = H[K,,,Ka,,...,Ka,], h = |V(H)|. Furthermore

we can find this (unique) decomposition in time O(n3).

Proof: We leave the easy proof to the reader. O

Actually such a decomposition can be found even faster in O(n?) time,
see the paper [290] by Ehrenfeucht, Gabow, McConnell and Sullivan.

Let G = (V, E) be a proper circular arc graph. As we mentioned in the last
subsection, one can partition E into disjoint non-empty subsets F1,..., E,
with the property that if we fix the orientation of one edge in each E;, then
there is precisely one way to orient all the remaining edges in E so that
the resulting digraph is a local tournament digraph. In other words, the
orientation of one edge in F; implies the orientation of all other edges in F;.
As in the last section we call the sets E, ..., E, the implication classes of G
(see Theorems 11.1.12 and 11.1.13 below).

Theorem 11.1.12 /539, Huang] Let G be a connected proper circular arc
graph and let Cy,...,Cy be the connected components of G. Then one of the
following two statements holds.

3 Here the composition H[G1,Gs, .. ., Gy (#)|] is defined analogously to the com-
position of digraphs in Section 1.3.
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Ci Cj Cp

Figure 11.3 Implication classes for orientations of a graph G as a local tournament
digraph.The sets C;, C;, C, denote distinct connected components of G. For each
component a bipartition A,, B, is shown. The edges shown inside C; form one
implication class and the edges shown between C; and C)}, form another implication
class.

(a) G is bipartite, the set of all unbalanced edges of G with both ends in a
fized C; form an implication class and the set of all unbalanced edges of
G between two distinct C; and C; form an implication class (see Figure
11.3).

(b) G is not bipartite, k = 1 and all unbalanced edges of G form one impli-
cation class. a

Observe that an edge forms an implication class by itself if and only if it
is balanced. Hence Theorem 11.1.12 can be reformulated as follows.

Theorem 11.1.13 (Huang) [539] Let G be a proper circular arc graph
which is reduced (that is, every edge is unbalanced), let G denote the com-
plement graph of G and let C1,...,Cy denote the connected components of
G.

(a) If G is not bipartite, then k = 1 and (up to a full reversal) G has only
one orientation as a locally tournament digraph, namely, the round ori-
entation.

(b) If G is bipartite, then every orientation of G as a locally tournament
digraph can be obtained from the round locally tournament digraph ori-
entation D of G by repeatedly applying one of the following operations:
(I) reverse all arcs in D that go between two different C;’s,

(II) reverse all arcs in D that have both ends inside some C;. O

It is also possible to derive a similar result characterizing all possible
orientations of GG as a locally semicomplete digraph. We refer the reader to
[539] for the details.

As an example of the power of Huang’s result (Theorems 11.1.12 and
11.1.13) we state and prove the following corollary which was implicitly stated
in [539] (see also Exercise 2.34).
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Corollary 11.1.14 If D is a locally tournament digraph such that UG(D) is
not bipartite, then D = R[S, ..., S|, where R is a round locally tournament
digraph on r vertices and each S; is a strong tournament.

Proof: If UG(D) is reduced, then this follows immediately from Theorem
11.1.13, because according to Theorem 11.1.13, there is only one possible
locally tournament digraph orientation of UG(D). So suppose that UG(D)
is not reduced. By Lemma 11.1.11, UG(D) = H[K,,,..., K], h = |V (H)|,
where H is a reduced proper circular arc graph, each K,, is a complete graph
and some a; > 2. Because we can obtain an isomorphic copy of H as a sub-
graph of UG(D) by choosing an arbitrary vertex from each K,,, we conclude,
from Theorem 11.1.12, that in D all arcs between two distinct K,,, K,; have
the same direction (note that H is non-bipartite). Thus D = R[S, ..., S,],
where (up to reversal of all arcs) R is the unique round locally tournament
digraph orientation of H and each S; is the tournament D(V(K,,)). Note
that D(V(K,,)) may not be a strong tournament, but according to Corol-
lary 2.10.7 we can find a round decomposition of D so that this is the case.

O

11.1.4 Underlying Graphs of Locally In-Semicomplete Digraphs

The structure of the underlying graphs of locally in-tournament digraphs is
more complicated than in the case of local tournaments and quasi-transitive
digraphs

In [882]* an algorithm is given for recognizing graphs orientable as locally
in-tournament digraphs (as well as finding a locally in-tournament digraph
orientation if one exists). The complexity is O(nm) which is worse than the
simple algorithm based on 2-satisfiability given in Proposition 11.1.15 below.

The proposition below gives an illustration that algorithms for the 2-SAT
problem (see Section 17.5) are useful for certain orientation problems.

Proposition 11.1.15 [105] There is an O(Am) algorithm for recognizing
graphs that are orientable as locally in-tournament digraphs.

Proof: Let a graph G = (V, E) be given, and let D = (V, A) be an arbitrary
orientation of the edges of G, where A = {ay,as,...,an}. If a; is an orienta-
tion of an edge yz of G, then the reverse orientation of that edge is denoted
by a;. We now construct an instance of the 2-SAT problem as follows. The set
of variables is X = {x1,..., 2, }. The variables are interpreted as follows. If
x; = 1, then we keep the orientation a;, otherwise we take the opposite orien-
tation a;. The clauses consist of those pairs of literals (¢; +¢;) for which 0, E
correspond to arcs with the same terminal vertex and non-adjacent initial

4 In [882] Urrutia and Gavril studied locally in-tournament digraphs under an-
other name, fraternally oriented graphs.
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vertices in D. It is easy to see that G is orientable as a locally in-tournament
digraph if and only if the above-defined instance of 2-SAT is satisfiable. By
Theorem 17.5.5 the complexity of 2-SAT is O(K), where K is the number of
clauses. Hence, it follows from the way we construct the clauses above that
we can recognize graphs orientable as locally in-tournament digraphs in time
O(Am). O

b f b f
c e c e
g a g
d d
(b) (c)
Figure 11.4 An undirected graph G and two orientations of G.

The construction used in the proof above is illustrated in Figure 11.4.
Part (a) shows an undirected graph G; part (b) an arbitrary orientation D of
G. The instance of 2-satisfiability corresponding to this orientation contains
one variable for each arc of D and the following clauses:

(jab + i‘cb), (i’ad + Teq), (Teb + Tee), (Ted + Tee), (i'ce + i‘fe)a
((Ece + (Ehe)a (:Efe + i'he)a (jfg + -i'hg)7 (i'ce + xeg)'

Part (c) shows an orientation of G as an in-tournament digraph corresponding
to the truth assignment (Zqp, Zad, Tebs Teds Tee, Tdb, Tegs Tfe, Lfg, Lhes Thg) =
(0,0,1,1,0,1,1,0,0,0,0).

In Exercise 18.13 a useful correspondence between the 2-SAT problem
and the problem of deciding the existence of an independent set of size n/2
in graphs with a perfect matching is indicated. Using this correspondence, it
is no surprise that for graphs which are orientable as in-tournament digraph
there is a construction similar to the one used in Theorem 11.1.2 for compa-
rability graphs. (In Theorem 11.1.8 we saw a similar one for the underlying
graphs of locally semicomplete digraphs.)

Let G = (V, E) be an undirected graph and define the undirected graph
Girq as follows: V(Giq) = queE(G){IW” Zyy t and there is an edge from .,
to x,,, precisely if w =v and z = u, or v = z and uw ¢ FE.
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The proof of the following lemma is left to the reader as Exercise 11.1. It
is useful to compare this lemma with Exercise 18.13.

Proposition 11.1.16 A graph G = (V,E) is orientable as a locally in-
tournament digraph if and only if the graph Guq has an independent set
of size |E|. O

B, By Bs
Figure 11.5 The digraphs Bi, B2, Bs.

Let B be the family of the three digraphs shown in Figure 11.5 and let F’
be any subset of B other than {B;} or {Ba}. Skrien [823] characterized the
classes of those graphs which can be oriented without a member of F' as an
induced subdigraph. These are the classes of complete graphs, comparability
graphs, proper circular arc graphs and nested interval graphs. Since each
of the forbidden configurations contains just two arcs, 2-SAT could be used
to solve the recognition problem for each of these four classes, all in time

O(Am).

11.2 Orientations with No Even Cycles

The problem of deciding whether a given digraph has an even cycle is poly-
nomially solvable, but very complicated (see Section 8.3). The corresponding
problem for undirected graphs is easy (see Exercise 11.14). Here we will con-
sider a somewhat opposite orientation problem where we wish to achieve
orientations with no even cycles. Since we can concentrate on strong com-
ponents when looking for even cycles, we only consider strong orientations
without even cycles. Clearly we can also concentrate on graphs that are non-
bipartite since otherwise every cycle will be even and the answer is trivial. It
is also clear that it suffices to consider graphs which are 2-connected.

Let G be an undirected graph and let us call an orientation D of G odd
if there is no directed cycle of even length in D. The following problem was
posed by Bang-Jensen in 1992 (see, e.g., [400]).

Problem 11.2.1 Is there a polynomial algorithm which given an undirected
graph G either returns a strong odd orientation D of G or a proof (in the
form of a certificate that can be checked in polynomial time) that G has no
such orientation?
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(a) (b)

Figure 11.6 Illustration of an odd-K4 and an odd necklace. Each of the six dashed
lines in the odd- K} in part (a) corresponds to internally disjoint paths and the word
odd inside a cycle in part (b) indicates that the length of the bounding cycle is odd.

This seems to be a very hard problem and so far only a partial answer
(Theorem 11.2.3 below) is known. In order to state Theorem 11.2.3, we need
the following definitions. An odd-K}y is an undirected graph which is a sub-
division of the complete graph on four vertices in which each of the four
3-cycles of K4 becomes odd cycles (see Figure 11.6(a)). An odd necklace is
any undirected graph which can be obtaine