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Preface

Discrete geometry is the study of the geometric properties of discrete objects includ-
ing lines, triangles, rectangles, circles, cubes, and spheres. These shapes are usually
subsets of Euclidean space. On the other hand, digital geometry has two meanings:
(1) The objects are formed by digital or integer points, more narrow digital geometry;
and (2) The objects are computerized formations of geometric data. Sometimes we
can view digital geometry as a subcategory of discrete geometry.

While discrete geometry has a long history, it has recently garnered much attention
due to its large role in fulfilling computer vision and image processing needs. Such a
need is the motivation behind the creation of digital geometry. The subject provides
tremendous new research areas within discrete geometry. In the past, geometric tiling
and counting were the primary research topics in discrete geometry.

Digital geometry mainly comes from two areas: image processing and computer
graphics. A digital image in 2D is in the form of digital grid points; it is a natural
treatment of using geometry in image processing including segmentation, recogni-
tion, and reconstruction. On the other hand, computer graphics use geometric design,
object dynamics, and modification.

Computerized geometry must deal with efficient algorithms for many applications
including classifications of digital objects, which also uses topological properties
and geometry processing. It can be applied to a vast number of areas including
biomathematics, medical imaging, the film industry, etc.

Digital geometry is also highly related to algorithmic geometry (computational
geometry), which is more focused on algorithm design for discrete objects in Eu-
clidean space. However, digital geometry has its own set of problems and challenges
including those involving distance measure and the formatting of digital objects,
which are different than that of discrete objects. Digital geometry also has some
advantages since sampling the data can usually be directly applied in its digital form.
There is no need to do a conversion from discrete forms.

This book provides detailed methods and algorithms in discrete geometry, espe-
cially digital geometry. We also provide the necessary knowledge in its connections
to other types of geometry such as differential geometry and algebraic topology.
In addition, there is much discussion on the recent development of applications in
variety of methods of image processing, computer vision, and computer graphics.
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viii Preface

This book is intended to offer comprehensive coverage of the modern methods for
geometric problems in the computing sciences. We also discuss concurrent topics in
BigData and data science as well.

This book is written to be suitable to different groups of readers. Chapters 1–
6 are for junior and senior college students in computer science and mathematics;
Chaps. 7–12 are for graduate students. Chapters 13–15 are written for researchers or
students with advanced knowledge in geometry and topology.

This book can also be categorized into three parts: (a) Chaps. 1–9 are introduc-
tions to digital and discrete geometry, (b) Chaps. 10–12 mainly deal with geometric
processing for readers interested in applications, and (c) Chaps. 13–15 present topics
in high level mathematics that are related to discrete geometry. The sections marked
with “*” may require some advanced knowledge. The book is also self-contained.

Acknowledgments: Many thanks to my daughter Boxi Cera Chen who helped me
correct my grammar for the whole book.

Many thanks to my wife Lan Zhang and my son Kyle Chen for their patience
and support while I was working on this book. I never thought that I had to put
increasingly more effort into completing this book. Many thanks to my colleagues
Professors Feng Luo, Petra Wiederhold, and Sherali Zeadally for their continued
support and encouragement. Many thanks to my colleagues in digital topology for
their help and support, Professors Reinhard Klette, Reneta Barneva, Jacques-Olivier
Coeurjolly, Tae Yung Kong, and Konrad Polthier, just name a few. Thanks also to
UDC for giving me one semester of sabbatical to work on this project.

My goal was set to write a complete introductory and comprehensive book to
digital and discrete geometry. As I was reviewing my writing today, I found that
it is still too far from reaching this initial vision. I hope that this book has laid a
good foundation for learning digital and discrete geometry, as well as linking to
various topics as a stepping stone to future research in this relatively new discipline
of computer science and mathematics.

Aug., 2014 Li M. Chen
Washington, DC
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Chapter 1
Introduction

Abstract Geometry comes from measurements of visible shapes, sizes, patterns,
and positions. It is one of the most basic human subjects in civilization. Through
thousands of years, humans have developed different types of geometry including:
elementary geometry, analytic geometry, differential geometry, topology, algebraic
geometry, and many other related research areas. Along with the fast development
of digital computers, in recent years, people have been studying digital geometry.

Digital geometry focuses on digital objects, which are usually represented by a
finite number of integer points or vectors. However, in a much larger sense, digital
objects could be digital data saved in computers or data sets in electronic form. Digital
geometry comes from two primary sources: digital images and digital data displays
of computer graphics. Computer memory is the primary domain of digital geometry.
Since computer memory is arranged by arrays, its location (called address) in the
arrangement is similar to n-dimensional grid points in Euclidean space. Therefore,
digital geometry can also be viewed as geometry of grid space. The main difference
between digital space and Euclidean space is how we measure the distance between
two points. Digital geometry is a branch of discrete geometry that mainly consists
of the study of geometric relationships among discrete objects. In this chapter, we
will give a brief introduction to the different types of geometry, especially digital
and discrete geometry.

Keywords Geometry · Digital geometry · Discrete geometry · Computer graphics ·
Image processing · Introduction

1.1 What is Geometry

In general, geometry meaning measurement of the earth, is the study of spatial figures
and their relationships. The figures can be lines, surfaces, and solids in space. In a flat
surface (plane), describing the relationship between two lines introduces the concept
of angles. If the space is a sphere, a “line” that is the shortest path on the surface of
sphere, becomes an arc or a circle. Therefore, different geometric systems exist.

Geometry is one of three major branches of mathematics. The other two are
algebra and analysis. In geometry, Euclidean geometry is the most common [17].
Some rules (also called axioms or postulates) are first assumed. In other words, in

© Springer International Publishing Switzerland 2014 3
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Euclidean geometry, the axioms are made to describe relationships among points,
lines, and circles in a flat surface or plane. Based on these axioms, we can define
basic objects such as points, lines, triangles, etc. The induced relationship of those
objects are called theorems, which are self-consistence conclusions. For instance,
the sum of the interior angles in a triangle is 180◦.

Analytic geometry was first introduced by Rene Descartes. A figure can be speci-
fied relative to the coordinate systems by a set of numbers or equations. They usually
involve a system of linear equations for geometric transformation. Projective geom-
etry was established by Jean-Victor Poncelet. It is a modification of Euclidean space
by including points at infinity. Differential geometry was started by Karl Gauss who
treated the local curvature as the central concept of a surface. Naturally, the length,
area, and volume of randomly shaped objects are also topics of differential geometry.
However, in most of cases, these topics are covered in calculus, i.e. analysis since
these are classical geometries. Canadian mathematician H.S.M. Coxeter’s classic
book, Introduction to Geometry, includes a concise and comprehensive introduction
to those topics [14].

The existence of Non-Euclidean geometry was first observed a long time ago as
the geometry on a sphere. However Non-Euclidean geometry is based on axioms
that differ from those of Euclidean geometry. This branch of geometry was founded
by Nikolai Lobachevski, Janos Bolyai, and G. F. B. Riemann. They verified the
existence of self-consistent systems based on all of Euclidean’s axioms, except the
one concerning parallel lines. It is very interesting that the classification of different
geometries is dominated by how many parallel lines we can make at a point that is
not on a target line. In 2D Euclidean geometry, we can just make one. In elliptical
geometry, we cannot make any since any two big circles on the surface of a sphere
must intersect. In hyperbolic geometry, we can make more than two parallel lines.

Due to the fact that non-Euclidean geometry exists, the basic measurement of
Euclidean distance has also changed in that the space can be bent. In general, a
space can be made by any shape, circle, ellipse, donut, etc. These are examples of
manifolds, which is the extension of arbitrary shapes.

The goal of geometry is to study the manifold. A manifold could be as big as an
entire universe or as small as a unit circle. Similar to Euclidean space, a manifold is
usually assigned a dimension. Basically, a k-dimensional manifold means that for any
point in the manifold, there is a neighborhood that is the “same” as a k-dimensional
cube in Euclidean space.

Topology is a special type geometry that concerns visual objects that remain
unchanged upon deformation. Topology first began with combinatorial topology by
Henri Poincare [2], where the key concept is to use triangles to represent a surface
and then extend the surface using k-simplexes to represent k-manifolds.

Graph theory can also be viewed a type of geometry that deals with the relationship
among vertices and the edges between vertices [23].

There are many other types of geometry such as differential geometry, differential
topology, algebraic geometry, and algebraic topology [2, 28]. The most impressive
result in resent years is the positive solution for the 3D Poincare conjecture concluded
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by Grigori Perelman [33]. In this book, we mainly discuss the theory and problems
in computer related geometry: digital and discrete geometry.

The basic references for classical geometric theories are: H.S.M. Coxeter, In-
troduction to Geometry, Wiley; 2nd edition, 1989. P.S. Alexandrov, Combinatorial
Topology, NewYork: Dover, 1998. E. Kreyszig, Differential Geometry, Dover, 1991.

For graph theory, we recommend the book: F. Harary, Graph theory, Addison-
Wesley, Reading, Mass., 1969.

1.2 Contemporary Geometries in Modern Computer Times

Digital geometry can be traced back over 120 years to the geometry of numbers. It
was initiated for number theory by Hermann Minkowski [31]. Minkowski ’s theorem
states that an integer grid point other than the origin point must be involved in a special
convex region if it has a certain amount of sufficient volume.

Modern digital geometry is due to the development of digital image processing and
computer graphics. It overlaps with numerical geometry and algorithmic geometry
(also called computational geometry).

In image processing, digital geometry is usually used in image segmentation,
edge detection, thinning, and transformation. The basic display methods in computer
graphics use digital methods such as Bresenham’s line algorithm, polygon clipping,
and 3D rendering.

The measurement of digital objects is also a research topic in those geometries.
Classic topics, such as the shortest path, are part of graph theory, but the shortest path
on a surface is a topic in differential geometry. It is sometimes difficult to separate
these categories for special problems in the real world. This book will cover all the
essential background materials while focusing on newer concepts and methodologies.

1.2.1 Discrete Geometry

Discrete geometry mainly deals with the geometry among discretely represented
objects. Before the computer age, discrete geometry was called combinatorial ge-
ometry [9]. For instance, the geometry of numbers has combinatorial properties
used in number theory. Discrete geometry also deals with combinatorial problems,
especially counting and tiling problems.

A famous example of discrete geometry is how to calculate the area for irregular
polygon shapes. The simple formula is called Peak’s theorem on grid or lattice planes.
We will discuss this result in Chap. 4. Another interesting result is called the Catalan
number for counting the number of triangulations if given n points on the edge of a
convex. The answer is 1

(n−1)C(2n − 4, n − 2) (called the (n − 2)-th Catalan number)
[6], where C(n, m) = n!/((n−m)!m!). This formula tells us we can not practically go
through all triangulation to pick a best one. We can only look for the most reasonable
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triangulation when it is needed. This fact also gives a good reason for why we want
to develop digital geometry.

1.2.2 Digital Geometry

Digital geometry focuses on the properties and applications in digital, or grid, space
[9, 25, 29]. It was created due to the development of image processing, computer
vision, and computer graphics [10, 21, 36]. A good example is how to draw a digital
line.

Digital geometry also deals with the modeling and recognition of curves and
surfaces that are stored in computers, since objects can only be represented digitally
in computers. Because the memory address system is assigned as an array, this
performs best if we use an integer grid system as the foundation. In this case, space
usually means memory space, which is why we call it digital space.

The main difference between digital space and Euclidean space is how we mea-
sure the distance between two points. In Euclidean space, for points u = (x1, y1),
v = (x2, y2), we are mainly interested in d(u, v) = √

(x1 − x2)2 + (y1 − y2)2 as the
metric. In digital geometry, we are more interested in d1(u, v) = |x1 −x2|+ |y1 −y2|
and d∞(u, v) = max{|x1 − x2|, |y1 − y2|}. Digital geometry is a branch of discrete
geometry that mainly consists of the study of geometric relationships among discrete
objects.

Another challenge is that digital space does not always hold the Jordan curve
theorem: A closed simple curve always separate a plane into to components [2, 35].

1.2.3 Computational Geometry and Numerical Geometry

Another type of modern geometry is called computational geometry, the purpose of
which is to consider the computational cost to design an algorithm to complete a
geometrical task, such as finding the maximum circle in a polygon. It is sometimes
called algorithmic geometry [15, 22].

The name computational geometry was first used by Hyman Minsky and Sey-
mour Papert in 1969 [32]. Afterwards, Forrest (1972) and Su and Liu (1981) used
it for curve and surface fitting in numerical methods [19, 45]. Today, the name of
computational geometry should covers a vast area. The curve and surface fittings
using numerical methods, especially in computer graphics, which can be viewed as
part of computational geometry.

Numerical geometry refers to using numerical methods in geometry problems.
This usually means using constructive methods for curves and surfaces, many of
which are used in computer graphics. Bezier and B-spline methods are popular
examples [38].
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Fig. 1.1 Example of an image and its components made by P. Arbelaez et al [1]: a Original image,
b human segmentation, and c machine segmentation

1.3 Geometry and Topology in Image Processing
and Computer Graphics

In order to transfer a continuous picture or image to be stored in computers, we
usually partition the image into a number of small, square regions. This process is
called digitization. Each of the small regions is called a pixel element, or pixel as
it is known colloquially today. A pixel is the combination of a small region and its
value.

In three-dimensional (3D) space, we use the volume element instead of the picture
element, so we have voxels. Sometimes people call the voxel a 3D pixel. In other
words, these pixels are arranged as 2D or 3D arrays.

The goal of image processing is to extract information from digital images, which
is why digital geometry is one of the fundamental research areas in digital image
processing. See Fig. 1.1.

A basic problem of digital geometry related to image processing is identifying a
region that indicates an object in a digital image and extracting this region as a set
of pixels. This problem relates to image segmentation. Another popular example is
when we recognized an object and we want to find the orientation of the object. The
principal component analysis in statistics can be used to find the major and minor
axis of the object.

Another very interesting and useful information about an image is the number of
holes in a region of the image. This refers to the topological properties of digital
spaces. This problem becomes more complex when we deal with 3D digital images.
There are many applications of this in medical imaging and informatics [11]. This
research area is called digital topology as suggested by Rosenfeld [41, 42].
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Fig. 1.2 Example of
computer graphics made by
Krystina Dizayas

On the other hand, in computer graphics, we want to display 2D or 3D pictures
using digital display devices such as TVs or computer monitors. See Fig. 1.2. A
display device normally has the pixel dimensions 1280×1024 for monitor resolution.
This means that the monitor contains 1280 × 1024 pixels. We then have to arrange a
picture inside of the array. Some parts of the picture will not be seen and some parts
are shaded so there are many geometry technologies involved. For instance, how is a
3D object displayed in an 1280 × 1024 digital array? This is called image rendering
[18].

To solve a problem that cannot be represented as a formula, we usually use several
instruction-type steps, called an algorithm [13]. The first famous algorithm related
to computer graphics is to find the best algorithm to draw a line in 2D digital space.
This algorithm was found by Bresenham and is called the Bresenham line drawing
algorithm.

Objects in computer graphics are usually represented by triangles and not individ-
ual image points. This is because the zoom-in and zoom-out display functions would
take up too much space when we store an object in its pixel format. In computer
graphics, when two objects in 3D space are viewed from an angle, the problem of
finding the intersection line of two or more triangles (or polygons) becomes a basic
problem as well. This issue is called clipping.

Researchers today use differential geometry for deformation of objects in graph-
ics. The process called morphing is also a profound topic. In this book, we will give
brief introductions to discrete differential geometry in Chap. 13.

Researchers in computer graphics referred to digital geometry as the fourth wave
of computer graphics. Note that the digital geometry they refer to is also the general
geometric method for computer graphics, called discrete geometry in this book, and
is not limited to geometry in grid space.
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Fig. 1.3 Digital lines: only few can be considered to be straight lines drawn by Tim Bell

1.4 Problems and Concepts of Digital and Discrete Geometry

As we discussed above, an object in image processing and computer vision is a set
of pixels that is used to approximate the original object [25, 26, 29].

How to describe and distinguish different digital objects is a difficult task. For
instance, what is a digital line? What is the distance between two digital points or
two pixels? The answers will be based on the specific problems. We still do not
have perfect or unique answers to those questions. This is because there are only few
perfect digital lines in a plane: vertical, horizontal, and diagonal. All other digital
lines do not look like straight lines at the pixel level, meaning that we examine each
of the pixels in the “line.” See Fig. 1.3.

Therefore, we can only define digital curves. Rosenfeld first studied digital curves
and its topological properties in the early 70’s [39–44]. For digital images, the
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Fig. 1.4 A medical CT image
of brain. (From standard
medical imaging library)

boundary of an object is a digital curve, or several curves if the object does not
contain any holes. One can count the area of the object and extract this object using
algorithms. It is interesting that the best algorithm for extracting such an object
is called breadth-first-search or depth-first-search, the famous methods in graph-
theoretic algorithms [13]. This fact was first found in [36].

This example tells us that digital geometry has great deal of connections to graph
theory, along with the fast development of medical imaging technology such as CT
and MRI. In the early 1980s, researchers started to consider the problems related to
digital surfaces since a boundary of 3D objects is a surface in 3D images (Fig. 1.4).

Artzy, Frieder and Herman [3] designed a tracking algorithm in medical image
processing. One year later, Morgenthaler and Rosenfeld [34] gave a first definition of
digital surfaces in 3D array mathematically. Unlike digital curves, the digital surface
is much complex.

In terms of the developments of digital geometry, two major directions have gained
considerable interest with researchers:

(1) Some practical methods and algorithms have developed in digital geometry and
topology such as object labeling, thinning, shrinking, and boundary tracking and
extraction. The two good examples are the 2D and 3D thinning algorithms [47].

(2) Special properties and theorems are found for digital objects in digital space.
The development of the theory includes the finite topological spaces studied by
Khalimsky, Kopperman, and Meyer [24], and Kovalevsky [27]. The definitions
of digital manifolds given by Chen and Zhang [9, 12].

On the other hand, discrete geometry that mainly use graph and triangulations has
raised importance in recent years due to the cloud data processing (random scattered
data samples). We can ask: Is there a topological structure of the massive cloud data
set?

Researchers are also interested in finding the lower dimensional information of
a data set in a high dimension space. This research relates to manifold learning,
dimension reduction, and persistent analysis. So, manifold learning is to find the
shape of an unknown data set. For instance, we want to know if the data points
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Fig. 1.5 Modern geometric data processing: a Manifold learning, and b Persistent analysis

represent a sphere or a spiral shape [30, 46]. The example of manifold learning is
shown in Fig. 1.5a [30].

To learn a data set that will most likely represent a random shape is a very difficult
task. So there are many tasks to be complete in manifold learning.

Persistent analysis is used to find out how many holes and possibly locations of
these holes consistently appear when we enlarge the coverage of each data point
[7, 20], see Fig. 1.5b [20]. These topics relate to geometric processing, and we will
discuss them in Chap. 9.

Even though, considerable significant results have been discovered in digital and
discrete geometry. There are still many concerns and new developments for the
future, we just list a few here.

(1) More significant discoveries including the problem of digital form of the Poincare
conjucture.

(2) More dispensable technologies include image processing and computer vision,
such as 3D thinning.

(3) Mathematical fascination means that more beautiful results can be found when
comparing to the existing Pick’s theorem and hole counting.

For the first problem, if one can solve a very famous mathematical problem such as
“four color problem” in digital geometry and topology, then digital geometry and
topology will make a great impact. For the second problem, if we can find an efficient
digital geometry method to track and register moving objects in computer vision, it
will help to build the reputation of digital geometry and topology.
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Fig. 1.6 An example in
discrete differential geometry
where the curvature drawn on
a triangulated surface in [37]

Fig. 1.7 Data fitting on manifolds: a A curve function on a 3D digital manifold, b another view of
the curve, c a digital function fitting, and d the harmonic function fitting

For the third problem, if we could simplify the terminology of digital geome-
try and topology, make its methods easier to understand, to use, and to implement,
along with making it closer to traditional research fields such as discrete and compu-
tational geometry, then digital geometry and topology will surely be more attractive
to scientists and engineers in terms of scientific study.

Recent developments in discrete differential geometry has merged profound
knowledge and results in differential geometry with computer graphics. Researchers
found great potential in image science research. The research relates to minimal
surface computing, circle packing, and Ricci flow [5, 37]. We will discuss them in
Chap. 13 (Fig. 1.6).

In data reconstruction, merging digital methods such as digital functions with
classical harmonic analysis for surface fitting on discrete manifolds has also been in-
vestigated, and the results are very promising. See Fig. 1.7 [10]. A brief introduction
is presented in Chap. 11.

1.4.1 Some Developments in Digital Geometry

Since this book mainly deals with digital geometry, the following is a list of important
developments in digital geometry and topology.
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1. The need for digital geometry, especially digital curves in digital image process-
ing, inspired work by Rosenfeld, Mylopoulos, and Pavlidis in 1970–1971, along
with Herman’s initiative on digital surfaces in 1980.

2. The definition of digital surfaces by Morgenthaler and Rosenfeld was the first
mathematical definition of digital surfaces.

3. Research by Kong and Roscoe on plate surface points and compound cells
provided a detailed articulation for most of the cases of digital surfaces.

4. Kovalevsky’s finite topology became a type of digital topology based on the analog
of classical topology.

5. Chen and Zhang’s work on the six types of digital surface points in 3D and Chen
and Rong’s theorem on genus in 3D were solid and definitive results in digital
topology.

6. Chen and Zhang’s definition of digital manifolds using parallel-moves was a more
practical definition of digital manifolds and storage-saving methods compared to
classical topology, including simplicial and cell complexes.

7. Thinning algorithms, considered one of the best practical uses of digital topology,
were the work of Zhang and Sun’s methods, which consisted of methods in 2D
and 3D.

8. Kong and Rosenfeld’s survey paper on digital topology and Klette and Rosenfeld’s
book on digital geometry popularized digital geometry and topology.

9. Rosenfeld’s digital continuous functions and Chen’s extension theorem on the
gradually varied extension of digital functions connected digital geometry to
classical calculus [8, 41].

In terms of discrete geometry in computer graphics, remarkable developments
include circle packing, minimal surface calculation, and Ricci flow calculation.
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Chapter 2
Discrete Spaces: Graphs, Lattices,
and Digital Spaces

Abstract The best way to describe discrete objects is to use graphs. A graph consists
of vertices and edges. The vertex usually represents a part of an object, an whole
object, or the location of an object; the edge represents a relationship between two
vertices. A graph can be defined as G = (V , E) where V is a set of vertices and E

is a set of edges, each of which links two vertices. For a certain geometric object,
e.g. a rectangle, one can draw four points on the corners and link them using four
edges. The drawback of using edges is that the edge is not a geometric line and it
usually does not carry a distance. A geometric space also requires a measurement of
distance (the length between two points), called a metric. Therefore, people prefer
to use specialized graphs such as triangulated graphs and grid graphs, to represent
an object in discrete space. In this chapter, we introduce the discrete spaces made
by graphs, lattices, and grid points. We briefly review some of the basic concepts
related to discrete objects and discrete spaces.

Keywords Graph · Lattice · Space · Digital space · Discrete space · Algorithms

2.1 Objects in Discrete Spaces

Objects are things that are visible or tangible. An object usually has a form that is
relatively stable. Geometry is the study of objects and their properties in space. Due
to the fact that computers can only take a discrete or finite number of objects, discrete
geometry has become more important in recent years.

There are always two ways to view an object: (1) A contiguous interpolation of
discrete points to from a continuous object, (2)A discretizing or sampling of a contin-
uous object to get its discrete representation. In this chapter, we assume that our space
is discrete. In the next chapter, we discuss spaces and objects that are continuous.

The recent motivation behind studies in discrete geometry is due to the need
of computer graphics and computer vision. There are a great deal of applications,
especially in medical imaging, that require a high level of math including topology
in a digital format. Images are stored in digital spaces, discrete spaces, and even with
finite topologies.

The simplest way to describe a discrete object is to use graphs. A graph consists of
vertices and edges. The vertex usually represents a part of an object, a whole object,

© Springer International Publishing Switzerland 2014 17
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or the location of an object; the edge represents a relationship between two vertices.
For instance, a rectangle can be represented by drawing four points on the corners
and linking them using four edges.

In this chapter, we start with an introduction of an undirected graph G = (V , E),
where V denotes the set of vertices and E denotes the edges between the vertices.
Then we introduce the lattice that has geometrically regular assigned locations for
each vertex. The edge in lattices is typically assumed. Note, the lattice we deal with
here differs from an algebraic lattice, which has a partial order assigned on each
vertex.

Then, we focus on the grid space that is the simplest lattice, similar to arrays in
computers. This grid space is called digital spaces.

Another popular discrete space is called the triangulated space in two-dimensional
spaces (2D). This space contains only triangles as 2D elements. In mathematics, a
triangle is called a two-dimensional simplex (2-simplex), while a point is called a
0-simplex and a line-segment is called 1-simplex.

In undirected graphs, we can view that vertices are 0-simplices, and edges are
1-simplices. However, to describe 2-simplices, one needs special structures to define
it. On the other hand, edges in a graph cannot just be viewed as line-segments because
edges in graphs can have more general meanings.

2.2 Graphs and Simple Graphs

A graph G consists of two sets V and E, where V is the set of vertices and E is the
set of pairs of vertices called edges. An edge is said to be incident to the vertices if
it joins [2, 11, 16]. In this book, assume that G = (V , E) is an undirected graph,
which means that if (a, b) ∈ E then (b, a) ∈ E, or (a, b) = (b, a). a, b are also called
ends, endpoints, or end vertices of edge (a, b). It is possible for a vertex in a graph
to not belong to any edge. V and E are usually finite, and the order of a graph is
|V |, which is the number of vertices. The size of a graph is linear to max{|V |, |E|},
meaning that it requires this much memory to store the graph.

The degree of a vertex is the number of edges that incident with (or link to) it.
A loop is an edge that links to the same vertex. In such a case, the degree would
be counted twice. Figure 2.1 shows two examples of graphs. Figure 2.1a shows a
directed graph, where the edge has an arrow. Figure 2.1b shows an undirected graph.

2.2.1 Basic Concepts of Graphs

Graph G = (V , E) is called a simple graph if every pair of vertices has at most one
edge that is incident to these two vertices and there is no loop (a, a) ∈ E for any
a ∈ V . See Fig. 2.2.

If (p, q) is in E, then p is said to be adjacent to q. Let p0, p1, ..., pn−1, pn be n+1
vertices in V . If (pi−1, pi) is in E for all i = 1, ..., n, then {p0, p1, ..., pn−1, pn} is
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a b

Fig. 2.1 Example of graphs: a A directed graph, and b An undirected graph

Fig. 2.2 Paths: A path
{A, C, D, B, C, E}; A simple
path {A, B, D, F }; and A loop
at F

A

B

C

D

E

F

called a path. If p0, p1, ..., pn−1, pn are distinct vertices, the path is called a simple
path.

A simple path {p0, p1, ..., pn−1, pn} is closed if (p0, pn) is an edge in E. A closed
path is also called a cycle. Two vertices p and q are connected if there is a path
{p0, p1, ..., pn−1, pn} where p0 = p and pn = q. G is called connected if every pair
of vertices in G is connected. In this book, it is always assumed that G is connected
(unless otherwise specified).

Let S be a set. If S′ is a subset of S, then their relationship is denoted by S′ ⊆ S.
If S is not a subset of S ′, then S ′ is called a proper-subset of S, denoted by S′ ⊂ S.

Suppose G′ = (V ′, E ′) is a graph where V ′ ⊆ V and E′ ⊆ E for graph G =
(V , E). Then, G′ = (V ′, E′) is called a subgraph of G.

If E′ consists of all edges in G whose joining vertices are in V ′, then the sub-
graph G′ = (V ′, E′) is called a partial-graph of G and their relationship is denoted by
G′ 	 G. If V ′ is a proper-subset of V , then the relationship is denoted by G′ ≺ G. It is
noted that for a certain subsetV ′ ofV , the partial-graphG′ with verticesV ′ is uniquely
defined. 1 A path is a subgraph. For example in Fig. 2.2, {A, B, D, C, E} is a path.
Let V ′ = {A, B, D, C, E} and E′ = {(A, B), (B, D), (D, C), (C, E)}. G′ = (V ′, E′)
is a subgraph, but it is not a partial graph because it does not include the edge (D, E).
So, G′′ = (V ′, E ′ ∪ {(D, E)}) is a partial graph.

1 In [6], we made an error in revising the meanings of the two concepts: Subgraphs and Partial
graphs.



20 2 Discrete Spaces: Graphs, Lattices, and Digital Spaces

2.2.2 Special Graphs

In this subsection, we present some examples of special graphs that may be used
later in this book. The detailed description for these concepts can also be found in
[2, 11].

Complete Graph In a complete graph, each pair of vertices is joined by an edge. A
triangle is a complete graph with three vertices. A complete graph with five vertices
contains 10 edges. See Fig. 2.3a. A complete graph with n vertices is denoted as Kn.

Bipartite Graph In a bipartite graph, the vertices can be divided into two sets, X

and Y , so that every edge has one vertex in each of the two sets, i.e. no edge is
inside set X (or Y ) alone. See Fig. 2.3b. A Bipartite graph with n vertices in X and
m vertices in Y is denoted as Kn,m.

Weighted Graph In a weighted graph, each edge can be assigned a weight. The
weights are usually real numbers that could indicate distance if the vertices are cities.
See Fig. 2.3c.

Planar Graph A planar graph is a graph that can be drawn in a plane with no
crossing edges. A graph with crossing edges may or may not be a planar (plane-able)
graph. In the following subsection, we present a theorem related to planar graphs.
See Fig. 2.3d.

Tree A tree is a connected graph with no cycles. A forest is a graph with no cycles.
See Fig. 2.3e.

2.3 Basic Topics and Results in Graph Theory

Graph theory was established by Euler, who solved the well-known —Seven Bridges
of Konigsberg problem in his time. See Fig. 2.4a. In this map, Euler was asked to
draw a path where each bridge would be traveled just once. Euler found that it was
impossible, since he represented this problem as a 4 vertices and 7 edges graph,
Fig. 2.4b. When one passes a vertex, he must go through two edges, one in and one
out. That is to say, if such a path exists, each vertex must contain even number of
edges. This property became the first theorem in graph theory.

Two of the most famous problems in graph theory are the Four Color Problem and
the Traveling Salesman Problem. The former deals with a well-known “rule” in map
printing. Only four colors are needed in a map, a planar graph, in which all adjacent
points are colored by different colors. It is believed that this problem was solved
positively by a computer program. However, even now, no one is able to verify the
correctness of the computer program [2].

As for the Traveling Salesman Problem, its goal is to find the shortest path (for n

cities) when a salesperson only travels to each city once. The path finding procedure
exists but any of these solutions require extremely long computation time to complete
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Fig. 2.3 Some special graphs: a A complete graph K3, K4, K5, b A bipartite graph K3,3, c A
weighted graph, d A planar graph K4, and e A tree

the job. Today, no one knows if there is an efficient algorithm to solve this problem.
It is related to the P =?NP problem [8].

2.3.1 Graph Representation, Searching Graph,
and Graph Coloring

To solve a complex problem in graphs, for example the graph contains hundreds or
even thousands of vertices, we must rely on computers. But how do we represent a
certain graph in the computer? There are two ways to do this: the adjacency matrix
and the adjacency list.
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Fig. 2.4 Seven Bridges of Konigsberg: a An original map, and b The equivalent representation in
graphs

In the adjacency matrix, we assume Graph G has n vertices. An n×n {0, 1} matrix
M = {mij } is used to hold the information of adjacency: mij = 1 if and only if vertex
i and j are adjacent. This is the simplest way, but if there are not many edges in G,
then there needs to be a large amount of storage space to represent matrix M . For
instance, if n = 100, we need 10,000 memory units to represent M .

Another way that could save storage space is called the adjacency list. For vertex
v in G, we just attach all adjacent points of v to v. So each link becomes a linked list
that is lead by v.

vi → ui1 → ui2 · · · → uik

vi represents the ith vertex. The length of each list is not the same, so we can save a
lot of space. However, the process of calculating may become a little more difficult.

To find whether a graph G is connected, we need to search the graph. The best
way is called the depth-first search or breadth-first search technique. In mathematics
and computer science, if one needs a procedure to solve a problem, the procedure
is called an algorithm. An algorithm usually contains several steps of instructions
that solves a problem. The basic idea of the depth first search algorithm is to find the
set of connected vertices until no more vertices can be found. Then, we go back to
each vertex we visited to see if there are any other ways to go. We continue, where
possible, until there are no possible ways left. This procedure requires a special data
structure to hold the vertices we visited. We discuss this further in Chaps. 4–6.

Graph coloring assigns different colors to adjacent vertices. It usually tries to
assign the minimum number of colors. The most famous problem is called the four
color problem for planar graphs, as we have mentioned before. This problem was
believed to be solved in 1975 with the help of computer programs. Since some errors
were found and fixed in the program, some mathematicians are still looking for pure,
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Fig. 2.5 Find a minimum
spanning tree T

23

4

6

5

2
3

A B

C

D

E

mathematical proofs. However, a famous theorem states: Five colors are enough for
a planar graph [11].

2.3.2 The Minimum Spanning Tree

Given a connected graph G = (V , E), a spanning tree is a subgraph of G, which is
a tree and contains all the vertices of G. This special tree is called a spanning tree
since it spans every vertex.

A graph may have several different spanning trees. If G is a weighted graph, a
minimum spanning tree (MST) is the one that has the minimum total weight. The
simplest method for finding a MST is called Kruskal’s Algorithm. Its principles are
as follows (Fig. 2.5):

Algorithm 2.1: Kruskal’s Algorithm. Find a minimum spanning tree T for graph G.

Step 1 Sort the edges based on the weights of the edges from smallest to largest.
Step 2 Set initial tree T to be empty.
Step 3 Select an edge from the sorted edge list and add it to T if such an added

edge does not generate a cycle.
Step 4 T would be the minimal spanning tree if |V | − 1 edges are added to T .

The proof of Algorithm 2.1 can be found in [8].

2.3.3 The Shortest Path*

Finding the shortest path for each pair of vertices in a graph is one of the most
common problems in the real world. A method of finding the shortest paths from a
single source vertex to all of the other vertices in a weighted directed graph is called
the Bellman–Ford algorithm.

Let G = (V , E) and |V | = n. We use W(e)=W(u,v) to represent the weight on
an edge e = (u, v). The principle of the algorithm is to reach a vertex v using k edges
from the source vertex S and maintain the shortest path using at most k edges. In
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Fig. 2.6 Bellman-Ford Algorithm for finding the shortest paths: a Original graph, b Move to the
direct neighbors and no change in relaxation, c Move to the next neighbors, and d Value changed
in relaxation

other words, from S, if we use one edge, we can only get to the neighboring cities.
If we use two edges, we can get to the neighboring cities of the neighboring cities.
Then, we update the shortest distance on all vertices we can reach on the path with
at most two edges. Continuing this idea, we can reach all vertices by using at most
n − 1 edges and we can finish our task.

In the detailed algorithm, we always mark or record the distance from the source
to every other vertex at the vertex. It is obvious that we always mark the smallest
value (the shortest one, by using k edges). When we have used (n − 1) edges, we
would have the solution.

Algorithm 2.2 : (The Bellman–Ford Algorithm) Find the shortest paths from a
vertex S to all vertices in graph G (Fig. 2.6).

Step 1 Mark all vertices other than S as ∞, where d(v) is the distance from S to v
and d(S) = 0.

Step 2 For each vertex, follow an iterative procedure called relaxation: for each
v where u is adjacent to v, check if d(v) > d(u) + W (u, v). If so, then
d(v) = d(u) + W (u, v). Repeat Step 2 for (n − 1) times.

Another algorithm is called Dijkstra’s algorithm. Dijkstra’s algorithm runs faster
than the Bellman–Ford algorithm, but Dijkstra’s algorithm is unable to deal with
graphs that have some negative weight edges. The Bellman–Ford algorithm is also
easier to understand. It checks all possible links n − 1 times. During each iteration,
we get the shortest path passing through k edges. Until we pass n− 1 edges, we nat-
urally get the shortest path from S. The idea behind this algorithm is called dynamic
programming, which means dynamically using the results already calculated.
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a b c

Fig. 2.7 Lattice graphs: a Squares, b Parallelograms, and c Triangles

2.3.4 Graph Homomorphism and Graph Isomorphism*

Homomorphism and isomorphism are related to functions between to two graphs. A
graph homomorphic mapping is a function from the vertex set of G to the vertex set
of G′ so that if (a, b) is an edge of G, then (f (a), f (b)) is an edge of G′. If such a
mapping exists, we say that G, G′ are homomorphic.

If f is a 1-to-1 mapping (bijection), then f is called isomorphic. Homomorphism
is called an edge-preserving mapping whereas isomorphism is an edge-preserving
bijection.

Graph homomorphism has some applications to graph coloring problems. How-
ever, graph isomorphism mainly describes two graphs having “the same structure.”

When the preserving edge can be allowed to shrink into a vertex, the func-
tion/mapping is called immersion and embedding. Graph immersion is an important
concept to discrete surface reconstruction in this book. See Chap. 11.

A famous unsolved problem in computer science states: Given two graphs with
the same number of vertices, is there a polynomial time algorithm to decide if these
two graphs are isomorphic? This problem is called the graph isomorphism problem
[1, 5].

2.4 Lattice Graphs, Triangulated Space, and Grid Space

To view a general graph as a discrete space is sometime too general. There are much
more specific graphs that are better for the purpose of defining discrete spaces. These
are called lattice graphs.A lattice graph is a simple graph with a distance measurement
(called metric) of a geometric object. Lattice graphs are regular graphs, meaning that
each edge has the same weight or represents the same distance in Euclidean space
as in other spaces.

For instance, in regular triangles, each edge has the same length as in hexagons
and parallelograms. (See Fig. 2.7) A more general 2D shape is called a polygon,
which is formed by multiple edges as a closed boundary. In Chap. 5, we show more
examples of these shapes.
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A metric used to measure distances is dependent on geometric objects. For in-
stance, the metrics on the plane and the sphere are different. The weight of an edge
usually means the length of the shortest path between the two lattice points. In other
words, the edge is usually the minimum distance curve in the space, called the
geodesic curves between two adjacent lattice points. In computer graphics, we call
lattices the meshes. Therefore, meshes on surfaces are good examples of lattices.

Two of the most popular lattice graphs are the triangulated space and the grid
space. See Fig. 2.7b and c. Since the triangle is the simplest shape containing 2D
information. It is called a 2D simplex. Adding another point in a new dimension,
we will have a 3D simplex that contains four end points. Any geometric shape can
be partitioned using simplexes in general. So mathematicians treat the simplex as
the most significant discretization unit. However, this is difficult to represent in
computers since the computer memory or disk storage are arranged as arrays, which
is similar to grid spaces.

A grid space is a special lattice in which each point is at the integer coordinate
location in Euclidean space and the edges are usually parallel to the coordinate lines.
In other words, a grid graph is a graph whose vertices correspond to the points with
integer coordinates. For instance, in a 2D plane, x-coordinates are in the range 1,...,n,
and y-coordinates are in the range 1,...,n. A grid space is similar to a TV screen or a
mathematical 2D array.

The grid space is also called the grid-cell space, which is the main topic of concern
in this book—digital space. However, digital space has more inner-meanings than
a grid graph, and we discuss it in further details in the following sections of this
chapter.

In summary, we can usually view a lattice as a graph embedded in Euclidean
space. Lattices only contain points and edges, where edges are usually straight lines.
Examples, including meshes for computer graphics, are very popular. The lattice
graph differs from the algebraic lattice, which is defined on a partially ordered set
where any two elements have a supremum and infimum in the algebraic lattice [15].

2.5 Basic Concepts of Digital Spaces

Digital space has two definitions. First, in the narrow sense, a digital space is a
discrete space in which each point can be defined as an integer vector, i.e. each
component of the vector is an integer. Second, in the general sense, the space is a
digitized space or discretely sampled space that is saved in digital form. In this book,
we usually reference the first definition of grid space when discussing digital space.

2.5.1 2D and 3D Digital Spaces

Let us consider a two-dimensional digital space Σ2. It contains all integer points of
a Euclidean plane, E2. A point P (x, y) in Σ2 has two horizontal (x, y ± 1) and two
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Fig. 2.8 2D digital spaces:
a Direct adjacency
(4-adjacency), and b Indirect
Adjacency (8-adjacency)

a b

p

ab

c

p

a b

Fig. 2.9 3D digital spaces: a Direct adjacency (6-adjacency), and b Indirect Adjacency (26-
adjacency)

vertical neighbors (x ±1, y). These four neighbors are called directly adjacent points
of p called 4-adjacency. p also has four diagonal neighbors: (x ± 1, y ± 1). These
eight (horizontal, vertical and diagonal) neighbors are called general (or indirect)
adjacent points of p, which is called 8-adjacency. (Fig. 2.8 shows the digital points
and their neighborhood.) In 2D, a connected component based on 4-adjacency is
called 4-connected component while a component based on 8-adjacency is called
8-connected. Digital spaces can be represented as a graph. However, digital space
has its own meaning in Euclidean space, it contains all meanings of the digitization of
Euclidean space. Indirect adjacency also includes the property of non-Jordan space
(a closed curve might not separate a plane into two parts), and is therefore more
complicated than it appears.

We can extend the definition of Σ2 to Σ3. Σ3 is formed by all integer points of
3D Euclidean space, E3.

In Σ3, a point has 6 directly adjacent points and 26 indirectly adjacent points.
Therefore, saying that two points in Σ3 are connected has two definitions for a path:
(1) Using directly adjacent points is called 6-connected, and (2) Using indirectly
adjacent points is called 26-connected (Fig. 2.9).
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2.5.2 mD Digital Spaces*

In general, Σm represents a special graph Σm = (V , E). V contains all integer grid
points in the m dimensional Euclidean space. The edge set E of Σm is defined as
E = {(a, b)|a, b ∈ V &d(a, b) = 1}, where d(a, b) is the distance between a and b.
In fact, E contains all pairs of adjacent points. Because a is an m-dimensional vector,
(a, b) ∈ E means that only one component, the i-th component, is different in a and
b, |xi − yi | = 1, and the rest of the components are the same where a = (x1, ..., xm)
and b = (y1, ..., ym). This is known as direct adjacency. One can define indirect
adjacency as maxi |xi − yi | = 1. Σm is usually called an m-dimensional digital
space.

Formally, two points a = (x1, x2, ..., xm) and b = (y1, y2, ..., ym) in Σm are directly
adjacent points, or we say that p and q are direct neighbors if

dD(a, b) =
m∑

i=1

|xi − yi| = 1. (2.1)

a and b are indirectly adjacent points if

dI (a, b) = max
1≤i≤m

|xi − yi | = 1. (2.2)

Note: “Indirectly adjacent points” include all directly adjacent points here. We use
general adjacency instead of indirect adjacency in most cases. Since direct adjacency
is more stringent than indirect adjacency, in this book, when we discuss adjacency
without further specifications, we are referring to direct adjacency [7].

In real world problems, digital space cannot just be viewed as a graph or a digi-
tization. The meanings of and how to choose connectivity of digital space is much
more complex.

2.5.3 Points, Line-cells, and Surface-cells in Digital Space

In digital space, the point (0-cell) is the basic element. This is because our devices can
only collect points, but other information such as connectivity (edges) are human’s
interpretations.

As we can see, a line-segment is a line-cell or 1-cell, and a triangle is a 2-cell.
In topology, cells are the basic unit in forming a complex shape or object. A k-
dimensional cell is usually called a k-cell. In order to consider more complex shapes
or objects in digital space, we need to define cells in each dimensions. In this section,
we only include point-cell, surface-cell, and 3-cell. We discuss general k-cells in
Chap. 5.

A surface-cell is a set of 4 points which form a unit square parallel to the coordinate
plane. A 3-dimensional cell (or 3-cell) is a unit cube which includes eight points.
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Fig. 2.10 Examples of basic unit cells and their connections: a 0-cells, b 1-cells, c 2-cells, d 3-cells,
e Point-connected 1-cells, f Point-connected 2-cells, and g Line-connected 2-cells

By the same reasoning, we may define a k-cell. Fig.-2.5(a–d) shows a point-cell,
line-cell, surface-cell, and 3-cell, respectively.

Now, let us consider the concepts of adjacency and connectedness of (unit) cells.
Two points p and q (point-cells, or 0-cells) are connected if there exists a simple
path p0, p1, ..., pn, where p0 = p and pn = q, and pi and pi+1 are adjacent for
i = 1, ..., n − 1.

Two cells are point-adjacent or 0-adjacent if they share a point. For example,
line-cells C1 and C2 are point-adjacent in Fig. 2.10e, and surface-cells s1 and s2 are
point-adjacent in Fig. 2.10f. Two surface-cells are line-adjacent or 1-adjacent if they
share a line-cell. For example, surface-cells s1 and s3 in Fig. 2.10g are line-adjacent.

Two line-cells are point-connected or 0-connected if they are two end elements
of a line-cell path in which each pair of adjacent line-cells is point-adjacent. For
example, line-cells C1 and C3 in Fig. 2.10e are point-connected. Two surface-cells
are line-connected or 1-connected if they are two end elements of a surface-cell path
in which each pair of adjacent surface-cells are line-adjacent. For example, s1 and
s2 in Fig. 2.10g are line-connected.

2.5.4 Points in Digital Space and Data in Real World

What are digital objects such as curves and surfaces in digital space? Not only we see
and recognize when they are drawn out. but we also want the computer or algorithms
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Fig. 2.11 a Curves in continuous space, and b curves in Σ2 represented by dots

to be able to recognize them automatically. This is a key motivation to this new
research area, digital geometry: Not only to digitize a continuous object, but also
use procedures to generate a set that has the properties of digital curves/surfaces or
more importantly recognize them when an arbitrary set is given.

Curves and surfaces in discrete spaces are different than they are in continuous
spaces. Most of the related research work deals with curves and surfaces in Σm, the
m-dimensional grid space. This space contains all integer grid points, we usually
call such a space a digital space.

In Fig. 2.11, without looking at the curve (a), how does one know that digital
points (b) is a digitization of the curve (a) and not some curve from elsewhere? In
other words, there are hundreds of continuous curves have the same digitization. No
one can answer this question. We can only say that a digital object is a set of points.
What makes the set look a certain way is just human interpretation. The interpretation
is the topological geometric structure of this point set. This argument shows us the
demand of studies on digital objects in mathematics, not only the digitization of the
continuous object.

2.6 Characteristics of General Discrete Spaces

In 2D, the simplest 2D discrete space is triangulated space, where the graph is
made by a collection of triangles. We call the process of making the decomposition
(triangulation).

Therefore, a 2-cell can be a triangle. It can also be a rectangle and also be any type
of polygon. A polygon can be viewed as a simple closed path in a graph, but each
edge is a straight line segment in 2D Euclidean space. So the most general type of
2D discrete space is the graph that consists of a number of polygons that may have
different sizes (Fig. 2.12).
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a b

Fig. 2.12 Decompositions of 2D space and 3D Space: a 2D decomposition, and b 3D decomposition

In this section, we investigate the basic characteristics of a general discrete space.
First we show the triangulation in Fig. 2.12.

In this example, we can see that each 1-cell is contained by two 2-cells. There
are no 3-cells. If a 1-cell is contained by only one 2-cell, then this 1-cell must be on
the boundary. This is true for any polygonal representation of a surface. A discrete
surface is closed if each 1-cell in the object is contained within exactly two 2-cells.

When we fill the closed surface with water or other substances, we will have a 3D
object, or 3-cell if it is small enough such as a unit ball or a cube.

Let us use the following definition for digital or discrete space (in 2D) as the
conclusion of this section. One of the major topics of this book is the general discrete
space in relation to discrete manifolds. We only present preliminary consideration
here.

Definition 2.1 Let M be a set of vertices. M is connected in terms of using point-
paths. A 1-cell is an edge or line-segment. A 2-cell is a simple polygon (that does not
contain any other polygons). M is said to be a 2D space if each 1-cell is contained
within one or two 2-cells.

Definition 2.2 Let M be a set of vertices. M is connected in terms of using point-
paths. A 3-cell is a polyhedron. M is said to be a 3D space if each 2-cell is contained
within one or two 3-cells.

The above definition can be extended to define kD discrete spaces in a recursive
way. We discuss this in Chap. 7. We need to note that the above two definitions
are not very strict. We give more precise definitions in Chaps. 5 and 7. A discrete
manifold can also be described by simplicial complexes [3, 10] and finite topologies
introduced by Kovalevsky [13]. We discuss this in Chap. 9.

2.7 Historical Remarks on Digital Space

A new branch of mathematics is usually established or invented to fit the needs
of the time, especially the need to solve real world problems. Digital images and
computer graphics are both based on digital pixels or voxels. The pixels and voxels
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are arranged in two and three dimensional spaces that usually correspond to two
and three dimensional arrays. The geometric relationship among pixels and voxels
forms a new geometry: digital geometry. More generally, digital geometry mainly
deals with finite sets in grid space within Euclidean space. It has a closer connection
to discrete (or combinatorial) geometry, which studies discrete sets in Euclidean or
measured space.

Why is a geometric object in digital space important to us? In computer vision, an
image (or picture) is stored in the memory. To analyze the image, one usually needs
to find each object in the image. The easiest way to describe an object is to find its
boundary, which is a set of dots. Since every object in digital space is a set of dots,
we refer the boundary dots as digital boundary curves. A problem occurs: what is a
digital curve mathematically or formally?

For instance, a binary image is a {0, 1}-function. It can be stored in an array. So,
studying geometric and topological properties for a connected “0” or “1” point set
in a 2D or 3D array has become an interesting research topic [12, 20].

In the early 1970s, Rosenfeld started the study of digital curves [17, 18]. In 1979,
Rosenfeld suggested the study of digital topology [19]. He tried to use topological
properties of digital spaces to build a solid foundation for image processing and
computer vision [9, 15, 21]. However, in the early days of digital geometry and
topology, at least in image processing and computer vision, researchers studied
some useful properties of geometry and topology in digital space. The research was
mostly isolated in the image processing community; it was not closely related to
advanced geometry and topology.

Due to the fact that most researchers in image processing were more familiar
with discrete mathematics rather than continuous mathematics, the methodology of
digital space was more related to set theoretical methods and not the simulation of
continuous methods. In other words, an object is viewed as a set of digital points.
Therefore, there were no attempts to define digital curves and digital surfaces directly,
tracking boundaries of a 3D solid digitally and finding the thinning of a digital object
became the central topics.

Because of this, the independent work on digital surfaces and digital manifolds
were remarkable compared to the ordinary digitization of a surface or manifold in
continuous space. These definitions lead to some of the fast tracking algorithms and
recognition algorithms, which were impossible when based on only their continuous
counterparts.

To establish a new theory, there must be considerable independent work that
compliments existing research areas. In Chaps. 4, 5, and 6, we examine the digital
curve, surface, 3D solid, and k-manifolds in digital space.

Of course, to define a k-manifold, one must first define k-cells. A kD digital space
is formed by individual k-cells. Therefore, this chapter gives an introduction to the
basic concepts.

However, for general discrete space, and not digital space, the k-cell is much more
difficult to deal with. In continuous space, we use k-simplex. We know a k-simplicial
complex or CW-complex were defined by topologists many years ago. However, the
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k-simplicial complex cannot just be viewed as a discrete manifold. In Chap. 7, we
mainly focus on discrete manifolds.

The key for both computer scientists and mathematicians is to find the best tri-
angulation. Basically, a discrete manifold means the discretization of a continuous
manifold. For example, the simplex decomposition of a manifold is a discrete man-
ifold. However, a manifold may have thousands of different discretizations. For
computer scientists, it is important to define what a discrete manifold is; otherwise,
there is no way to track or search a discrete manifold using computers.

The definition of a discrete manifold must not contradict unreasonably that of a
continuous manifold. However, their differences are obvious. For example, a neigh-
borhood of a point in a continuous manifold contains an infinite number of points,
but a discrete manifold itself may only contain a finite number of points. There are
many real discrete manifolds. For instance, the set Σm containing all integer coor-
dinate points of an m-dimensional Euclidean space is a discrete manifold [14]. We
sometimes call this manifold a digital manifold. A simplex decomposition Δn of an
n-dimensional manifold is also a discrete manifold.

There is a recursive way of defining k-cells. Roughly speaking, we can see that
a discrete k-cell is a set of (k − 1)-cells. Those (k − 1)-cells are joined in a closed
way, meaning that each of the (k − 2)-cells contained by the (k − 1)-cells is only
exactly two (k − 1)-cells. This k-cell also maintains a minimal volume. Plus, there
is no hole inside the k-cell. This is the idea of defining the k-cell.

A discrete k-manifold can be defined by k-cells: Each (k − 1)-cell is contained
by one or two k-cells. These k-cells are connected, and there are no (k + 1) cells in
the union of the k-cells.

Generally, a discrete manifold is a graph with some additional geometric and
topological structures. The general definition of discrete manifolds was given by
Chen [4–6].

In summary, the strict mathematical definition of discrete manifolds must not
depend on continuous manifolds, because it is impossible to determine an infinite
number of elements by an algorithm that only uses a finite set of actions.
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Chapter 3
Euclidean Space and Continuous Space

Abstract This chapter introduces Euclidean spaces, topological spaces, and their re-
lationships to discrete spaces. We first introduce the concept of metrics, the distance
measure of Euclidean spaces. Then, we introduce general continuous spaces—
topological space. At the end, we discuss the relationship between continuous spaces
and discrete spaces.

In continuation of the previous chapter, but in the opposite direction, we present
the basic formulas for Euclidean space, functions, and linear transformations in this
space. For the relationship of discrete and continuous space, triangulation (simplicial
decomposition) plays an important role. We give a brief introduction to the method.
In addition, we also discuss some other decomposition methods. Decomposition is
the method of making continuous spaces into discrete spaces. Changing from discrete
spaces to continuous spaces is called fitting or reconstruction, which we discuss in
Chap. 11.

Keywords Euclidean space · Metric · Distance · Function · Calculus · Topology

3.1 Euclidean Space and Properties

In mathematics, Euclidean space came from Euclidean geometry, which is usually
planar and three-dimensional geometry. It is named after the Greek mathematician
Euclid of Alexandria who authored the book Elements. Euclidean geometry uses cer-
tain postulates or axioms. Then, based on those postulates, the other properties, called
theorems, can be deduced. Modern mathematics uses Cartesian coordinates to define
Euclidean space. This was because mathematicians found that the most important
thing in Euclidean space was the measure of distance. This allows mathematicians
to use algebra to solve problems and extend Euclidean space to any dimensions.
Euclidean space is the most important continuous space.
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3.1.1 Euclidean Spaces

Let R be the real number set. An n-tuples of real numbers, (x1, x2, ..., xn), is called
a vector on R. An n dimensional (nD) Euclidean space is defined on Rn, an nD real
number vector space, where

Rn = R × R × · · · × R = {(x1, x2, ..., xn)|xi ∈ R}, (3.1)

is called the Cartesian product on R. The measure of distance between two points
x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is defined as

d(x, y) =
√√√√

n∑

i=1

(xi − yi)2. (3.2)

x and y can also be viewed by two vectors from origin to points (x1, x2, ..., xn) and
(y1, y2, ..., yn). d is called the metric (of the space), or Euclidean metric. Thus, the
n-D Euclidean space can be written as En = (Rn, d), or simply Rn with default
distance measure.

Based on the metric, we can define the length of a vector as the distance from the
origin (i.e. (0, 0, ..., 0)) as

‖x‖ =
√√√√

n∑

i=1

(xi)2,

which is called the Euclidean norm, i.e.

‖x‖2 =
(

n∑

i=1

x2
i

)1/2

.

Based on these simple definition, the angle of two vectors x and y, θ , can be
determined by

cos(θ ) =
(∑n

i=1 xiyi

‖x‖‖y‖
)

. (3.3)

For further simplicity, we define the inner product (also called dot product) of x

and y as

x · y = x1y1 + · · · + xnyn. (3.4)

Therefore,

cos (θ ) =
(

x · y

‖x‖‖y‖
)

. (3.5)
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Fig. 3.1 The inner product and the vector product of vectors: a The inner product, and b The vector
product

The meaning of the dot product is a projection from x to y, in particular, x
‖x‖ is a unit

vector on the x axis, so y · x
‖x‖ = ‖y‖ cos (θ ) is the length of the project from y to x.

See Fig. 3.1a.
Since cos (θ ) ≤ 1, x ·y ≤ ‖x‖‖y‖. This is called the Cauchy–Schwartz inequality,

a very important inequality in Euclidean space. Using this inequality, we can prove
the triangle inequality:

‖x‖ + ‖y‖ ≥ ‖x + y‖. (3.6)

The vector product (cross product) of two vectors x and y is a vector that is
perpendicular to the plane determined by x and y. Let n be the unit vector of this
vector product, then

x × y = ‖x‖‖y‖ sin (θ ) · n. (3.7)

The norm of x × y, ‖x × y‖ is the positive area of the parallelogram having x and y

as sides. See Fig. 3.1b. In 3D, we can use a matrix and its determinant to represent
the vector product.

The cross product can also be expressed by the following determinant:

x × y =

∥∥∥∥∥∥∥∥

i j k

x1 x2 x3

y1 y2 y3

∥∥∥∥∥∥∥∥

(3.8)

where i, j, and k are three unit vectors in three dimensions. That is,

x × y = ((x2y3 − x3y2), (x3y1 − x1y3), (x1y2 − x2y1)). (3.9)
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3.1.2 Definition of Metrics

The standard Euclidean distance in Rn can also be given by d(p, q) := ‖p − q‖.
Another form of the triangle inequality is the following.

d(p, q) + d(q, r) ≥ d(p, r)

A metric for any space, not only Euclidean Space, can be defined as follows:

Definition 3.1 A metric on a set X is a mapping d : X × X → R such that:
(1) d(p, q) ≤ 0, with equality if and only if p = q. (2) d(p, q) = d(q, p). (3)

d(p, q) + d(q, r) ≥ d(p, r).
A metric usually means the measure of distance between two points. It can also

mean the shortest path between two vertices in a graph as defined in Chap. 2. In other
words, the distance between two vertices can be defined as the shortest path.

3.1.3 Spheres and Distance on Spheres

The sphere is a special geometric shape that can be in any dimension. A circle is a
1D sphere. We define an arc as part of a circle. It has two end points p and q on
the circle. Let o be the centre (origin) of the circle. The angle of the arc is the angle
of two line-segments ōp and ōq The length of the arc on the circle is the distance
between two points when we travel on the circle. We have,

arcLength = r · θ

where θ is the angle of the arc.
A sphere in 3D Euclidean space can be described as a set of points where every

point on the sphere has the same distance to its origin, namely r , the radius of the
sphere. A great circle of a sphere is defined as the circle that cuts the sphere into two
equal parts.

The shortest path between two points on the sphere is always along a great circle.
In other words, distance on the sphere is defined as the shortest length of all arcs

from one point to another on the sphere. See Fig. 3.2. This equals the length of the
arc in the great circle of the sphere.

The length of the arc is dsphere(X, Y ) = Rθ , where R is the radius of the great cir-

cle. According to the cosine formula given in the last subsection, θ = arccos XẎ
‖X‖‖Y‖ .

Since ‖X‖ = ‖Y‖ = R, therefore,

dsphere(X, Y ) = R · arccos

(
x1x2 + y1y2 + z1z2

R2

)
(3.10)
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Fig. 3.2 The shortest path
between two points on the
sphere

R

X
Y

θ

This distance measure, a metric on sphere dsphere(X, Y ), is one of the general
forms of the Riemann metric. The distance on the sphere, here a 2D sphere, is an
example of non-Euclidean space. It also satisfies Definition 3.1.

3.1.4 Two Inequalities of Euclidean Space*

Two inequalities are important in Euclidean space. First, the Cauchy−Schwarz
inequality states

(
n∑

i=1

xiyi

)2

≤
(

n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)

. (3.11)

We can see that
∑n

i=1 xiyi is the inner product of two vectors x and y in Euclidean
space. It is denoted as x · y or < x, y >. To understand this formula, we can see the
definition of the angle of two vectors x and y as we have defined above:

|x · y| = ‖x‖‖y‖| cos θ |.
Because | cos θ | is always less than or equal to 1, therefore,

|x · y| ≤ ‖x‖‖y‖.
Second, the Minkowski’s inequality is:

(
n∑

i=1

|xi + yi|2
)1/2

≤
(

n∑

i=1

|xi |2
)1/2

+
(

n∑

i=1

|yi |2
)1/2

(3.12)
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This inequality can be proven based on the Cauchy−Schwarz inequality. The
complete proofs of these two inequalities can be found in [11]. Generally, for any
p = 1, 2, ..., n, ..., we have the general triangle inequality:

(
n∑

i=1

|xi + yi |p
)1/p

≤
(

n∑

i=1

|xi|p
)1/p

+
(

n∑

i=1

|xi |p
)1/p

(3.13)

If we define p-norm as follows:

‖x‖p =
(

n∑

i=1

|xi |p
)1/p

(3.14)

then we have a short representation of Minkowski’s inequality:

‖x + y‖p ≤ ‖x‖p + ‖y‖p. (3.15)

It is interesting to indicate that the direct adjacency in digital space is equivalent
to 1-norm and the general (indirect) adjacency is p = ∞-norm.

3.2 Functions on Euclidean Space

A function is a mapping from one set to another. For example, the polynomial
f (x) = x2 + x + 1 is a function that maps En to R if x is an n dimensional vector.
A function is called a one-to-one function if no two elements in X map to the same
element in Y . A function is called onto if all elements in Y have been mapped,
meaning that for y ∈ Y , there exists an x ∈ X, such that f (x) = y. A function f

that is both one-to-one and onto is called invertible, its inversion is denoted by f −1.
So we can see that arccos is cos−1.

If a function does not have any jumps or gaps, it is called a continuous function.
In mathematics, we use limits to define a continuous function.

f (x) is said to be continuous at x0 ∈ R if

f (x0) = lim
δ→0

f (x0 + δ) = lim
δ→0

f (x0 − δ). (3.16)

The differentiation of a function is introduced by the derivatives as defined below:

f ′(x) = lim
y→x

f (y) − f (x)

y − x
(3.17)

f (x) is said to be differentiable in the first order if f ′(x) is continuous. We can
further define nth order differential functions. A function is said to be infinitely
differentiable if it has any order of differentiation. Such a function is called a smooth
function. We use Ck to represent all functions whose kth derivative is continuous.
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We usually use dy

dx
or Δy

Δx
to represent f ′(x). dy and dx are symbolic representa-

tions of differentiation. The second order of the derivative can be represented as d2y

dx2 ,

which is the short representation of d( dy

dx
)/dx.

For the function in n-dimensional space, f (x1, x2, ..., xn), we will have a derivative
in each direction, that can be represented by ∂f

∂xi
. These are all very basic concepts

in calculus [16, 18].
In common sense terms, a curve is a function with only one variable on the X-axis

and a surface is a function on the XY -plane. However this type of function cannot
be used to represent a sphere since, for a domain point in XY -plane, a spheres has
two values that share this domain point. A curve (or surface), that can be written as
f (x), is called a non-parametric curves (or surface). The more precise definition of
curves in parametric form is presented in Chap. 4.

When we view a function in Euclidean space, such as a surface, then the surface is
also a continuous space. The definition of metric on a surface (function) has particular
importance since it will lead a new type of geometry called Riemannian geometry.
We discuss this further in Chap. 13.

3.2.1 Geometric Transformation, Linear Transformation,
and Matrix Algebra

The simplest geometric transformation is used to transform an object from one coor-
dination system to another. Translation and rotation are the two basic moves. This is
called isometric (congruent) transformation since the distance between two points in
the original object will not be changed after the transformation. This type is popular
in computer graphics since people want to observe an object from different angles.

The formula of translation is simple. It can be represented by
⎧
⎨

⎩
u = x − u0

v = y − v0

(3.18)

To rotate by an angle θ clockwise at from the origin, the equation is
⎧
⎨

⎩
u = x cos θ + y sin θ

v = −x sin θ + y cos θ
(3.19)

In matrix form, the same equation is
⎛

⎝u

v

⎞

⎠ =
⎛

⎝cos θ sin θ

− sin θ cos θ

⎞

⎠

⎛

⎝x

y

⎞

⎠

We can see examples of the translation and rotation in Fig. 3.3:
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Fig. 3.3 The shortest path between two points on the sphere

Translations and rotations are linear transformations. A linear transformation
between two Euclidean spaces X and Y is a function f : X → Y satisfying:

(1) f (u + v) = f (u) + f (v) for u, v ∈ X, and
(2) f (λu) = λf (v) for any scalar number λ (i.e. λ ∈ R).

This definition can be extended to vector spaces. In general, a linear transformation
f : X → Y can be done using matrix multiplication. Let u ∈ X be an m-dimensional
vector and v ∈ Y be an n-dimensional vector. We can define an n × m matrix A as

⎛

⎜⎜⎜⎜⎜
⎝

a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m

...
...

. . .
...

an,1 an,2 . . . an,m

⎞

⎟⎟⎟⎟⎟
⎠

(3.20)

Then,

v = Au, (3.21)

We transform vector u with m coordinates into vector v with n coordinates.
One of the most important concepts of linear or matrix algebra is that of the eigen-

values and eigenvectors, In this book, we will need to use these concepts multiple
times. A brief introduction is as follows. For more details, refer to [8].

For an n × n matrix A, if we can find a real number λ and a vector x =
(x1, x2, · · · , xn) such that,

Ax = λx, (3.22)

then the multiplier λ is called an eigenvalue of A and x is an eigenvector. This formula
is equivalent to

(A − λI )x = 0, (3.23)
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where I is the identity matrix, an n × n matrix with all diagonal elements assigned
as 1 and all other elements as zero. Therefore, the determinant of (A − λI ) is zero.
Theoretically, |(A − λI )| is a polynomial of λ with n number of roots possible. For
each root λi , we can solve the Eq (3.23) to get the eigenvectors.

We introduce other transformations such as the Fourier transform and the Radon
transform in Chap. 11 when we discuss data analysis and reconstruction.

3.3 Topological Spaces and Manifolds

Topological space is a generalization of Euclidean space. Topology refers to the
most general structure in geometry. A 2D or 3D object can be described using the
terminology of a topological structure or topology.

The mathematical definition of topological space is abstract. The definition of a
topological space is very general. It is based on the definition of topology on sets
[1, 2].

Definition 3.2 Let X be a set and τ be a collection of subsets of X. (X, τ ) is said
to be a topological space if (X, τ ) satisfies the following axioms: (1) The empty set
and X are in τ . (2) The union of an arbitrary number of elements of τ is in τ (τ is
closed under arbitrary union). (3) The intersection of any finite number of elements
of τ is in τ (τ is closed under finite number of intersections).

In mathematics, τ is called a topology on X. The elements of X are called points,
the elements of τ are called open sets. The complement of an open set A in X,
denoted X − A, is called a closed set.

Almost all geometric objects or spaces we deal with are topological spaces. For a
finite set X, the open set is also the closed set. A topological space can also refer to
a function space in which each element of X is a function.

Functions on topological spaces usually mean that the function is on the base set
X. We can also define a function between two topological spaces (X, τ ) and (Y , τ ′).
For instance, f : X → Y .

Intuitively, we say that two objects are topologically equivalent if there is a process
that can continuously change one object into another. It can be defined as a continuous
one-to-one onto function. We also say that these two objects have homeomorphism.

Definition 3.3 (X, τ ) and (Y , τ ′) are said to be homeomorphic or topologically
equivalent if there exists a continuous and invertible function f .

A (topological) n-manifold is a topological space M = (X, τ ). Each of element
(point) of X has an open nD neighborhood Ux that is continuously equivalent or
homeomorphic to an nD Euclidean space. In other words, there is a continuous
function fx : Ux → En where its inversion f −1

x is also continuous.
A smooth n-manifold is a manifold where for any two open sets Ux and Uy in M ,

fy ·f −1
x on fx(Ux∩Uy) is smooth or Ck-continuous. Smoothness is defined on En and

through M . The intuitive meaning of this definition is that the local homeomorphic



44 3 Euclidean Space and Continuous Space

functions fy and fx on intersection Ux ∩ Uy guarantees that it can be smoothly put
on Ux ∩ Uy without creating a bent angle in each local space.

Almost all geometric objects or spaces we deal with are topological spaces.
Euclidean space is a topological space if we use natural open sets as elements in
τ .

Example 3.1. In R, a line segment [a, b] is a close set. (0, 1) = [0, 1] − {0, 1} is
an open set. If we have E1 = (R, τ ), then τ = {s|s is an open set} is a topological
space.

In general, a neighborhood in En can be defined as follows: for an element a ∈ En,
if we define a neighborhood of a in En as all elements x ∈ En such that ‖x −a‖ < d ,
where d is any number in R, then such a neighborhood is an open set. We also can
define the union and the intersection of two balls are in τ .

Example 3.2 Euclidean metric induces a topology in (R, d). We can examine all
three criterion of topology as follows: < R, τ > where τ is the collection of all open
sets. According to the definition 3.2.:

(1) The union of any collection of open sets in τ is open.
(2) A finite intersection in τ is open. (The intersection of infinitive number of open

sets can be converge to a single point. It is not an open set.)
(3) The empty set ∅ and R are open sets.

3.4 Decomposition: From Continuous Space to Discrete Space

This section introduces the most common types of discrete approximation of the
continuous space: triangulation or simplicial decomposition. Then we extend the
special space to general finite point space.

The commonly called triangulation was first introduced by H. Poincare. Simplicial
complexes are also the basic foundations for topology and even for modern geometry.

The relationship between continuous space and discrete space is one of decom-
position and fitting. To transform from continuous space to discrete space, we use
decomposition, and changing from discrete space to continuous space requires fitting
or reconstruction.

Decomposition is a partition. Partitioning a 2D plane into small squares is the
easiest way to discretize a continuous space to a set of corner points, edges, and
small square units. These points, edges, and unit-squares are discrete objects.

In theory, triangulation is the best method for decomposing a manifold into
triangles, called 2-simplex. It was first used in combinatorial topology.

The common assumption is this: Any 2D smooth space has triangulation, and
any smooth manifold has a representation using a collection of simplexes. This
collection is called a simplicial complexes. The condition of smoothness is required
here because a local smooth area can be triangulated. A non-smooth area is hard to
evaluate.
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Fig. 3.4 Voronoi and Delaunay diagrams: a A Voronoi diagram; b Delaunay triangulation

A point is a 0-simplex, a line unit is a 1-simplex, and a triangle is a 2-simplex.
Therefore, we can define a tetrahedron as a 4 point, 3-simplex (See Fig. 2.12b).
Simplexes may not always be convenient in practice. However, as long as a cellular
shape, or cell, is used, such as squares or cubes, we can still define topology using
these objects. In modern topology, cellular complexes are very popular (especially
CW−complexes) [12].

As a result, the decomposition of a space can be made by a cell complex. Since
digital k-dimensional cube is special k-cell, it is obvious that k-cubes can be used
and it is called digitization. It is the same as commonly used in sampling technology
in electronic sensors, especially used in medical imaging and other industries. The
sampled data is saved to a digital device as 2D or 3D arrays [6]. The characteristics
of these samplings are regulated and each sample has equal distance to next sample.

When the samples collected in a random manner, the domain decomposition
is different. In 2D, a popular method is called the Voronoi diagram. The Voronoi
diagram partitions a plane into polygons, each polygon containing a sample point
(also called a site); a point x inside a specific polygon containing site p if x is closer
to p than to any other site [5, 9, 14].

TheVoronoi diagram method has particular importance in science and engineering
since the partition is made based on the closest distance to the particular site compar-
ing to other sites. The dual diagram of the Voronoi decomposition is a triangulations
of the domain, it is called Delaunay triangulation.

Delaunay triangulation is the most popular form among different types of
triangulation. See Fig. 3.4 from [4].

We will discuss the detailed algorithms for Delaunay triangulation and theVoronoi
diagram in Chap. 10.
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3.5 Remark

Triangulation, polygon, and polyhedron decompositions have long history in math-
ematics [9, 13]. Some algorithms were also found by computer scientists [3, 7, 17].
Numerical analysis is the area that fits and reconstructs discrete data to continuous
functions. We discuss this in Chap. 11.

References

1. P. S. Alexandrov, Combinatorial Topology, New York: Dover, 1998.
2. M. A. Armstrong, Basic Topology, rev. ed. New York: Springer-Verlag, 1997.
3. B. Chazelle, Triangulating a Simple Polygon in Linear Time. Disc. Comput. Geom. 6, 485–524,

1991.
4. L. Chen, Digital Functions and Data Reconstruction, 2013. Springer, New York.
5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest (1993), Introduction to Algorithms, MIT Press,

Cambridge, MA, 1993.
6. Euclid’s Elements, Green Lion Press, 2002.
7. Garey, M. R.; Johnson, D. S.; Preparata, F. P.; and Tarjan, R. E. “Triangulating a Simple

Polygon.” Inform. Process. Lett. 7, 175–179, 1978.
8. I. M. Gelfand, Lectures on Linear Algebra, Dover, New York, 1989.
9. J. E. Goodman, J. O’Rourke, Handbook of discrete and computational geometry, CRC Press,

Inc., Boca Raton, FL, 1997.
10. F. Harary, Graph Theory, Addison-Wesley, Reading, 1972.
11. G. H. Hardy, Littlewood, J. E.; Pólya, G.. Inequalities. Cambridge Mathematical Library

(second ed.). Cambridge: Cambridge University Press. 1952.
12. A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
13. N. J. Lennes, “Theorems on the Simple Finite Polygon and Polyhedron.” Amer. J. Math. 33,

37–62, 1911.
14. F. P. Preparata, M. I. Shamos, Computational geometry: an introduction, Springer-Verlag New

York, Inc., New York, NY, 1985
15. K. H. Rosen, Discrete Mathematics and Its Applications McGraw-Hill Higher Education, Jan

2007.
16. J. Stewart, Calculus, Brooks/Cole Publishing Company, Pacific Grove, CA, 4th ed, 1999.
17. Tarjan, R. and van Wyk, C. “An Algorithm for Triangulating a Simple Polygon.” SIAM J.

Computing 17, 143–178, 1988.
18. G. B. Thomas, Jr., Calculus and Analytic Geometry, 4th ed. Addison-Wesley, Reading, Mass.,

1969.



Part II
Digital Curves, Surfaces, and Manifolds



Chapter 4
Digital Planar Geometry: Curves and Connected
Regions

Abstract In this chapter, we introduce basic 2D digital geometry. The main topic in
2D geometry is curves. A 2D digital curve is a simple path in Σ2. A simple closed
digital curve is usually the boundary of a connected component. We first discuss
how we precisely define a curve in a graph and Euclidean space, then we discuss
how we represent digital curves. Digital curves have two important applications in
computer graphics and computer vision: (a) Construction of a digital line when two
end points are given, and (b) Determination of a closed digital curve to identify a
connected region in computer vision. At the end of this chapter, we present two
classic theorems related to 2D digital geometry: Pick’s theorem and Minkowski’s
theorem. In addition, we discuss the basic concept of image segmentation, one of
the major applications of 2D digital planes.

Keywords Curve · Plane · Digital curve · Simple path · Curve Representation ·
Connectivity · Component · Image

4.1 General Continuous Curves and Discrete Curves

What is a continuous curve? A moving point generates a curve. In other words, the
trace of a moving point forms a curve. Another example is if we have an open rubber
band with length 1, we can extend and bend it into any shape in 2D, 3D, or an even
higher dimension. Since bending must be continuous, a curve is also continuous.

Mathematically, we define a curve as a continuous function from [0, 1] to R3 or
En as an n-dimensional curve. For example, a 3D curve f is

f : [0, 1] → R3 (4.1)

Thus, a 3D curve is in a triple form: f (t) = (x(t), y(t), z(t)), t ∈ [0, 1]. This is called
parametric form. (t is used as the variable for curves here to indicate the time for a
moving point from t = 0 to t = 1.). See Fig. 4.1a.

In Euclidean space, the distance metric is defined as:

d(f (t), f (s)) =
√

(x(t) − x(s))2 + (y(t) − y(s))2 + (z(t) − z(s))2

We can see that when t moves to s, t → s, d(f (t), f (s)) → 0. So, f (t) is continuous
if and only if x(t), y(t), and z(t) are continuous [17]. This definition was found
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a b c

p

Fig. 4.1 Example of continuous curves: a a curve, b a simple curve, c an ordinary curve that is a
tree

by C. Jordan [12]. In Chap. 13, we will discuss more from differential geometry
perspective.

A curve is called a simple curve if no f (t) = f (t ′) when t �= t ′ except at the two
end points(e.g. t = 0 and t ′ = 1). See Fig. 4.1b. More generally,

Definition 4.1 A union of a finite collection of simple curves is called an ordinary
curve if the union is connected.

In addition, since an ordinary curve only contains a finite number of simple
curves, we can use Jordan’s definition to go through all points on the curve. A tree is
an ordinary curve but not a simple curve. The following is the most general definition
for curves. 1

Definition 4.2 Let Dp be a very small neighborhood of p in a curve C, where the
boundary of Dp meets C a finite number of times. This number is called the order
of p ∈ C. We define, (1) if the order is one then p is called an end point, (2) if the
order is two then p is called an ordinary point, and (3) if the order is greater than or
equal to 3 then p is called a branch point.

We can see that point p in Fig. 4.1 has three branches. The following definition for
1D manifolds is equivalent to the definition we presented in Chap. 3 for k-manifold
when k = 1.

Definition 4.3 A 1D manifold is the only curve that contains end points and ordinary
points.

Therefore, a simple curve is a 1D manifold. In this book, we mainly consider
simple curves.

4.2 Curves in Discrete Forms

Generally, a simple curve defined in the above section can be approximated by a
set of line segments. An easy method is to sample the continuous curve with n + 1
points: f0, f1, ...,fn where fi = f (i/n). We can use these points vertices, then make

1 Beginning readers can skip the rest of the materials in this section.
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Fig. 4.2 A curve and its
piecewise linear
approximation

f(x)

n edges as we assign ei = (fi−1, fi). Therefore, this graph will be a path and this
path is the approximation of the original curve. When n → ∞, the path is the curve.

For simplicity, let us look at a function as a curve shown in Fig. 4.2. We select a
number of sequential points on the curve (or function) f (x), linking all point using
line segments that are linear functions. This is a type of decomposition of curves
called the piecewise linear approximation of the curve.

Conversely, we can make a continuous curve based on a discrete curve (a path of
discrete point), which is called the curve interpolation or approximation. We discuss
this further in Chap. 11.

In general, a path in a graph can be viewed as a general discrete curve. Let us
present the formal definition of discrete curves as the vertex paths of graphs below.

For a graph G = (V , E), we can (naturally) define 0-cells and 1-cells as vertices
and edges as we did in Chap. 3. Here, we give a more formal definition.

Definition 4.4 In G = (V , E), a path of vertices p0, · · · , pn (where pi and pi+1

are adjacent) is called a discrete curve. If p0 = pn, such a curve is called a closed
curve.

Definition 4.5 A path p0, · · · , pn is called a simple discrete curve if pi is not pj ,
i �= j for any i and j except for p0 and pn.

Definition 4.6 The (discrete) length of a curve p0, · · · , pn is defined as the length
of the path, which is n. The distance between two points (or vertices) is defined as
the length of the shortest path between these two points.

Proposition 4.1 The minimum distance between two vertices d(u, v) naturally
induces a metric.

Proof According to the definition of metrics in Definition 3.1, let d(u, v) be the
distance between two vertices u and v in G. We can see: (1) d(u, v) ≥ 0, since the
length of every path is 0 if u = v or greater than 0 if u �= v. (2) d(u, v) = d(v, u).
This is because if there is a path u = p0, · · · , pn = v from u to v, then the path
pn, · · · , p1 from v to u has the same length. (3) Assume we have two shortest paths
u = p0, · · · , pn = v and v = q0, · · · , qm = r i.e. d(u, v) = n and d(v, r) = m. Then,
we will have a path from u to r , u = p0, · · · , pn = q0, · · · , qm = r . However, this
path may not be the shortest from u to r , so d(u, v)+d(v, r) = m+n ≥ d(v, r). �

We can put a discrete curve with edges on the (corresponding) path in 2D Euclidean
space (E2). This is called embedding. When we put a simple closed curve in E2, we
get a polygon (or a polygon-like shape if the edge is not straight). This polygon with
its inside area is called a face-element. In a planar graph, we use F to denote the
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set of faces. An important result about planar graphs is called the Euler theorem of
planar graphs: If G = (V , E) is a connected planar graph, then

|F | + |V | − |E| = 2 (4.2)

This theorem can be proven easily using mathematical induction [11]. Let us
assume that there is only one polygon inside a plane. The number of vertices is equal
to the number of edges in this polygon. Plus we only have two faces: the polygon
and the rest of the plane. Therefore, this theorem holds and we can then attach
another polygon to the original polygon. When we check each case, we can see that
the intersection between these two polygons is just a vertex, and the intersection is
the number of edges. This theorem is fundamental for proving theorems in digital
topology (Chap. 9).

4.3 Digital Curves in Σ2

Even though a digital space is a graph, there are several ways of representing a
general digital curve through its connectivities. This type of characteristic shows the
difference between digital geometry and classical discrete geometry. In other words,
the differences between digital curves and discrete curves are not only that the digital
curve is made using grid points, but also that several types of connectivities exist for
digital curves. In this section, we present some forms of digital curves.

Σ2 is the two dimensional grid space. Σ2 could refer to direct (4-) adjacency
or indirect (8-) adjacency graph. In image processing, a digital curve is a path of
pixels. Each consecutive pair of pixels in the path is adjacent. Sometimes, it is hard
to decide which adjacency, 4-adjacency or 8-adjacency, should be used. We may
need to use different adjacencies in the same curve. When such a condition is met,
our mathematics is turned into artificial intelligence. However, in this book, we are
concerned with the concrete mathematics resolution. We will explicitly state when
we are referring to the artificial intelligence resolution.

4.3.1 Digital Curve Representations

For a simple digital curve, which is made of digital pixels, all pixels are distinct,
except for the first and the last.

Let us look at the similar example in Chap. 2, Fig. 2.11, which is a digitization.
However, to make a digital curve, we must consider the connectivities based on
8-adjacency or 4-adjacency. In Fig. 4.3a, we show a curve that is in the space of
8-adjacency, the curve P = P (p, q) can move diagonally. In Fig. 4.3b, we use the
same sampled points in Fig. 2.11b. When we only allow 4-adjacency, some extra
points will be added to keep the curve continuous. We call this curve Q = Q(p′, q ′).
We have three types of representation.
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a b

Fig. 4.3 Digital curves in Σ2: a A curve in 8-adjacency, b a curve in 4-adjacency where some extra
points are added to keep the curve continuous

Fig. 4.4 The direction of the
next point in a curve when X

is the current point
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(1) Vector Point-Path The curve can be represented by a vector point-path. The
following is the easiest example. If the bottom-left corner is the origin, we know the
first point is p = (1, 1). The curve is:

P = P (p, q) = {(1, 1), (2, 2, ), (3, 3), (4, 3), (5, 4), (6, 4), (7, 5), (8, 4), (9, 4)}.
Q = Q(p′, q ′) = {(1, 1), (1, 2, ), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 5), (5, 5),

(5, 4), (6, 4), (7, 4), (8, 4), (8, 5), (9, 5), (9, 6)}.
(2) Parametric Representation: The second method uses the parametric represen-
tation. Just like a curve in continuous space, a curve in 2D can be represented by a
pair of continuous functions x(t) and y(t). We use curve P as an example in Fig. 4.3a.
For the curve in Fig. 4.3b, the method of representation is the same.

In digital spaces, x(t) and y(t) can be represented by two arrays X[t] and Y [t],
t = 0, 1, 2, ..., n.

Xt = {1, 2, 3, 4, 5, 6, 7, 8, 9, }. Yt = {1, 2, 3, 3, 4, 4, 5, 4, 4}.
(3) Chain-Code Representation The most effective representation is called the
chain code created by Freeman [10]. It saves the most memory when we represent a
digital curve in computers.

In Σ2, a point has eight adjacent points in 8 directions. See Fig. 4.4. (In Σ3, there
are 26 adjacent points in 26-directions.)
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If we know the first point and all of the moving directions of the following points,
we can represent the curve. For example, the curve in Fig. 4.3 began at (1, 1) then is
followed by a point in direction 1, then in direction 1 again. So on so forth. We can
code the curve as:

(1, 1) followed by 1, 1, 0, 1, 0, 1, 7, 0.

How much space has the chain code method saved? More than half, and much
more! The reason why is because we only have 8 directions that can be coded after
the first point. A number N in real computer memory needs log2 N memory space
to store N . For data communication, chain code is an essential method. In algorithm
analysis, we treat N as just using a unit space.

Originally, chain code was used to represent the contour of a 2D object. Chain code
follows the contour of an object in the counter clockwise (or clockwise) direction.
Therefore, chain code is also an edge detection method.

4.3.2 What is a Digital Point: A Vertex or a Pixel?

A TV monitor has many gridded unit squares. A unit square is called a pixel, or a
picture element. One can use a point at the center of a pixel to represent this pixel,
and put the color of the pixel as the value of this point. Meanwhile, a pixel is a unit
square that has four edges and four corner points.

Another problem arises: what is a digital point? A digital point can be one of
the following representations: (1) A digital point used to represent a pixel is called
point-space representation, and (2) A digital point just as an “abstract” corner point,
is called raster-space representation. Of these two representations, one is related to
the Delaunay representation and the other is related to the Voronoi representation,
both of which we discuss in this book.

Let us look at a simple example in Fig. 4.5. Fig. 4.5a shows an original image
and Fig. 4.5b shows its digitization. The boundary pixels of the image are shown in
Fig. 4.5c. The boundary curve is shown in Fig. 4.5d.

How do we save the boundary curve? We can either save the shed pixels (point
representation) as individual array elements (Fig. 4.5c), or, using raster representa-
tion, we save the bold edge in Fig. 4.5c. Note that to save an edge element here, we
must save a pixel pair (just like an element in E in graph G = (V , E)). By the way,
a “corner point” will be represented by four pixels in raster representation, and this
point is an abstract point.

4.3.3 A Property of Parametric Digital Curves

It is impossible to make a parametric representation of a discrete curve directly. This
is because moving from one vertex to another has a numerous possibilities in terms
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Fig. 4.5 Example of an image and its digitization: a The original image, b the digitization of the
image, c the boundary pixels, and d the boundary by human interpretation

of different distances between the two vertices u and v. However, for digital space,
each vertex is located at a grid point. It gives us the opportunity to have a parametric
representation for digital curves.

Let P (t) = (x(t)y(t)) be a digital curve. If x(t) and y(t) are digital curves that hold
the “continuity” condition, meaning that |x(t+1)−x(t)| ≤ 1 and |y(t+1)−y(t)| ≤ 1,
then these properties are called gradual variation (Chap. 11) [5].

Formally, let f (t) be a digital function, i.e. f : Σ1 → {1, 2, · · ·, m}. Rosenfeld
first defined f (t) as digitally continuous if for all t , |f (t + 1) − f (t)| ≤ 1, a special
case of gradual variation.

Proposition 4.2 p(t) is an 8-connected curve if each x(t) and y(t) is digitally
continuous.

Proof Since |x(t+1)−x(t)| ≤ 1 and |y(t+1)−y(t)| ≤ 1, p(t+1) can only be located
at 9 locations surrounding p(t) and including p(t). If we do not allow p(t+1) = p(t),
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then p(t) will be an 8-connected curve. In other words, max{|x(t + 1) − x(t)|, |
y(t + 1) − y(t)|} ≤ 1 that is the definition of indirect adjacency or 8-adjacency. �

Basically, there are two types of digital curves in 2D. One is the 8-connected
curve, i.e.

max{|x(t + 1) − x(t)|, |y(t + 1) − y(t)|} ≤ 1

and another one is strictly the 4-connected digital curve. For the 4-connected digital
curve, we require:

|x(t + 1) − x(t)| + |y(t + 1) − y(t)| ≤ 1

for all t . The pixels shed are an 8-connected digital curve in Fig. 4.5c, and the bold
curve is a 4-connected curve due to the grid points in Fig. 4.5d. A more precise
definition is presented in the next chapter.

4.4 Connectivity and Connected Components in Digital Plane

We know that finding the boundary cycle can identify an object. However, if the object
contains many holes, this method will not work since there may be many boundary
cycles. In this case, we need a method to directly find the connected component of
a set in 2D.

Finding a connected component is another way of identifying an object. This
method seeks to find the whole object, such as every point (or pixel) of the object.

As we know, in Euclidean space, two points are connected if there is a curve to
link them. In digital or discrete space, we say that the points are connected if there is a
(point)-path to link them. We have discussed the two common types of connectivity in
Σ2: 4-connectivity and 8-connectivity. The connectivity must be predefined before
the actual task for finding the component. In image processing, finding a digital
component and its boundary are essential tasks. This process is related to image
segmentation.

A procedure (also called an algorithm) designed for finding a connected
component is called breadth-first-search [7].

Example 4.1 We use an example to present the ideas of this algorithm. In Fig. 4.6,
there are two (connected) components in 4-adjacency.

Let us present the procedure of finding the first component as follows: Start at
point A, take its two neighbors B and D, and put these two neighbors in an array
called Q. (In fact, Q is a queue, a first in first out data structure. But for now, we only
consider Q to be an array for easy understanding.) Q = {B, D}. Pick up B from Q,
get B’s neighbors C and E, and put them into Q. Removing B from Q, we have
Q = {D, C, E}. Repeat the process by picking up D, adding neighbor G to Q, (E
was also a neighbor of D, but it is already in Q.), and remove D from Q. We now
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Fig. 4.6 Finding connected
components in 2D digital
space

A B C

D
E F

G H

have Q = {C, E, G}, and so on and so forth. We will eventually visit all members in
the component that contains A. We can use a simple mark to mark all of the points
removed from Q, and these marked points plus A will be the component. To clarify,
Q changes during each step of the process. We list all of the stages of Q and revisit
the steps of the algorithm once more:

(Time 0) A was picked and Q is empty.
(Time 1) Q = {B, D}, A is marked.
(Time 2) Q = {D, C, E}, B is marked.
(Time 3) Q = {C, E, G}, D is marked.
(Time 4) Q = {E, F , G}, C is marked.
(Time 5) Q = {F , G, H }, E is marked.
(Time 6) Q = {G, H }, F is marked.
(Time 7) Q = {H }, G is marked.
(Time 8) Q = ∅, H is marked.
After these steps, we can move to another unmarked point and start the procedure

over to get the second connected component. �

This example not only presents the procedure of finding a connected component,
but also gives an idea of how an algorithm would run. We will specifically deal with
the algorithmic issue in later chapters.

There might be a question of this process: why do we not build a graph first to
start the standard algorithm? This is because we do not want extra space to be used in
storing the edges. The good thing about digital space is that the edges are assumed by
its connectivity: 4-connectivity or 8-connectivity. Not spending extra time and space
to store a graph is another difference and advantage of this method compared to the
discrete method. In other words, in real time geometric data processing, we like to
have a default setting so we can save time to do the process and skip the preprocessing.
This is also the main difference between digital geometry and discrete geometry.
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4.5 Applications of Connected Components: Image
Segmentation

One of the main motivations of establishing the research area of digital geometry
was the need for image processing, especially the need for image segmentation.
Image segmentation is the basic approach in image processing and computer vision
[10, 16]. It is used to locate specific regions and extract information from them. This
is an essential procedure for image preprocessing, object detection and extraction,
and object tracking. Image segmentation is also related to edge detection.

The goal of image segmentation is to partition an image into different compo-
nents or objects. Can we say that image segmentation is used just to find connected
components from the last section? The answer is both yes and no.

We say yes if the image is a binary image, meaning that this image only contains
two values {0, 1}. We can also say no, since the image now has the property of each
pixel having millions of possible values.

Segmentation partitions an image into connected subsets called segments (com-
ponents). Each segment is uniform and no union of adjacent segments is uniform.

The formal description of segmentation is as follows: In a digital image F , if there
exists a non-empty segmentation F1, F2, ..., Fm satisfying:

(1) Fi ∩ Fj = ∅, if i = 1, .., m, j = 1, ..m; i �= j ,
(2) ∪i=1,...,mFi = F ,
(3) Each Fi is connected,
(4) Each Fi is “uniform,” and
(5) If Fi and Fj are adjacent, then Fi ∪ Fj is not uniform,

then, {F1, F2, ..., Fm} is called a segmentation of F .
The only thing we have not yet defined in this definition is the word “uniform.” In

essence, different people observe “uniform” differently. In common sense, uniform
means only containing small variations, which could be colors, values, or patterns.

Let’s introduce two simple methods for image segmentation in this section.
(1) The simplest method of image segmentation is called the thresholding method.
This method is based on a clip-level (or a threshold value) to turn a gray-scale image
into a binary image. The key for this method is selecting a threshold value. When a
pixel value is greater than the threshold, we re-assign “1” to this pixel; otherwise,
we assign “0” to this pixel. After that, we obtained a binary image. Then, we can use
the algorithm to find a connected component in order to get the segmentation.

Here is a question of finding the threshold. A method called balanced histogram
thresholding calculates a histogram, and the threshold will then be chosen to cut the
image into a 0-value part and 1-value part of almost the same size (we can consider
not counting the background of the image if it is appropriate to do so). Several other
popular methods are used in industry including the maximum entropy method and
Otsu’s method (maximum variance) [10]. The following picture is the result of using
the thresholding method through the maximum entropy method that calculated the
best threshold is 23 [3, 14]. See Fig. 4.7.
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Fig. 4.7 Example of
thresholding image
segmentation: a Original
image; b Segmented image
with the threshold at 23

(2) Another simple method is to first detect the possible boundary of a segment, then
use Chain-code to link the boundary. Finding the possible boundary of a segment is
also called edge detection. For an image F , we calculate the derivative Fx and Fy ,
get the average value F ′, and normalize the biggest value to be 1. The ideal uniform
region will be zero in F ′, except on the boundary. So, the bigger the value indicates
the higher possibility of being the edge.

The Chain-code algorithm starts at a point on a boundary. Then the algorithm
searchs for its neighbor using a counter clockwise angle to see if there is a neighbor
whose value is almost 1. There are only eight directions to search. After the algorithm
finds a point already visited, the algorithm stops to report a boundary curve or edge
curve.

Image segmentation is a huge research area. In this book, we use many examples
of it to explain the usage of digital and discrete geometry. There are many kinds
of segmentation methods including region growing, split-and-merge segmentation,
edge detection, graph cut, and variational principle based methods[10].

4.6 Constructing Digital Lines: Bresenham’s Line Algorithm

In computer graphics [8], there are many occasions where we need to draw a line
on the screen, such as in computer games. These lines are digital lines because the
screen is formed by pixels. Bresenham’s algorithm is a very elegant algorithm for
computing all pixel locations for digital display purposes in computer graphics. It
saves fractional computation time in the computers and uses a technique based on
integer manipulation.

Giving two digital points p = (x1, y1), q = (x2, y2) in Σ2, how do we construct a
digital line? The easiest way is to use line equations to determine each integer point.

y = y2 − y2

x2 − x1
(x − x1) + y1. (4.3)

When we assume x1 ≤ x2, we calculate each y based on x1 < x < x2, where x is an
integer. We also round x1 and x2 to the nearest integers. If we use this equation, the
computer will need to multiply slope k = y2−y2

x2−x1
with an integer (x − x1) each time.

If we assume that slope = y2−y2
x2−x1

≤ 1, when x is increased by 1, y may or may
not change. In other words, put a digital line when x changes by 1 while y stays the
same or also changes by 1.
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Fig. 4.8 Bresenham’s line
algorithm A: no
multiplication operations

For simplicity, let us assume slope k > 0. Therefore, we only have two choices:
Plot (mark) the point (x + 1, y) or point (x + 1, y + 1) on the screen that is N × M

array.
If we could determine when y will change, we would not need to use the line

equation explicitly in each time calculation as x ← x + 1. If we add 0.5 to the
rounded error value, then getting a floor function would be more accurate in industry.

For example, if k = 0.5, we know that for every two changes of the x value, x +1
and x + 2, we would need to increase the y value by 1.

Let error be a real number, the following algorithm will eliminate the multipli-
cation operation. We can also design an algorithm that only uses integer operations.
We assume 0 ≤ k ≤ 1; the angle is from 0 to 45◦, called the first octant. The other
case is similar due to which variable of x or y should be the domain variable.

Algorithm 4.1 : (Bresenham’s Line Algorithm A) No multiplication operation for
real numbers.

Step 1 Let x = x1 and calculate k. Let error = 0.
Step 2 x := x +1, error = error +k, if error < 0.5, then y := y else y := y +1;

error := error − 1.
Step 3 Repeat Step 2 until x equals x2.

Assume p = (2, 2) and q = (11, 5). We have slope k = 3/9 = 1/3. See Fig. 4.8.
The next point after p will be (3, 2) since error = 1/3 < 0.5. The following point
is (4, 3), but the accumulation error would be error = 2/3 − 1 = −1/3. We can
continue the calculations to get the following sequence of points plotted:

p = (2, 2), (3, 2), (4, 3), (5, 3), (6, 3), (7, 4), (8, 4), (9, 4), (10, 5), (11, 5) = q.

In Bresenham’s Line Algorithm A, there is no fractional multiplication. The algo-
rithm would be very fast, but it still has to add the fractional numbers. To avoid the
floating point calculation, we can improve this algorithm on how many x changes are
made in order to limit the number of y changes. If δy = y2 − y1 and δx = x2 − x1,
when we accumulate δy until it passes half of δx, we increase y by 1 and let
error := error − δx
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Algorithm 4.2 : (Bresenham’s Line Algorithm B) The algorithm only uses integer
manipulations.

Step 1 Let dx = x2 − x1; dy = y2 − y1; y = y1, error = 0.
Step 2 For x from x1 to x2, plot or mark pixel (x, y).
Step 3 error = error + dy.
Step 4 (error+error ≥ dx) (meaning we pass the middle 0.5 line), then y = y+1

and error = error − dx; and
Step 5 x = x + 1 repeat from Step2.

The idea presented in Bresenham’s Line Algorithm has been used in circle drawing
and other fast digital drawing algorithms [8, 13].

4.7 Hole Counting of Images

The number of holes (hole Counting) in an image is a topological feature for the
image. In this section, we deal with a connected binary image. This topological
property is important to determine if two images are similar or completely different.
If they have a different number of holes, we can say that these two images are different
without further calculation.

In this section, we present a simple formula for hole counting. Let us think about
the following example: A person Alice is walking on a circle. When Alice finishes the
circle, Alice would have walked a complete 360◦. The second person Bob is walking
on a simple cycle, a closed path. A closed path is not a perfect circle, but if Bob
finishes the path back to the starting point, Bob would have also completed 360◦.
He may have put in more effort and walked a longer distance if the path twists and
turns, but Bob has still completed 360◦.

A 2D component M on a plane may have no holes or h holes. If there is no hole,
then there is just a closed curve on the outside boundary. If there are h holes in M ,
we would have h small closed curves inside the outside closed curve. Therefore, we
have a total of h + 1 closed curves in M . (The difference is that the outside curve
“faces in” and the inside curve “faces out” to hold the component.)

Let us look at the digital case of this problem. In Fig. 4.9, we define InWardTurns
as the total number of corner points, each of which points to the inside of the object.
Likewise, the OutWardTurns is the number of total corner points, each of which
points to the outside of the object.

The outside boundary curve always has 4 more outward points than inward points.
However, each of the inside cycle has 4 more inward (corner) points than outward
points. We assume that M has h holes. Then, we will have h+1 cycles, one of which
would be outside boundary cycle B. The rest of the cycles will be denoted as Hi ,
i = 1, · · · , h. InWardTurns(C) and OutWardTurns(C) are the numbers of inward
points and outward points of a cycle C, respectively. Therefore, we have
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Fig. 4.9 Hole counting example

InWardTurns(B) − OutWardTurns(B) = −4 and InWardTurns(Hi) −
OutWardTurns(Hi) = 4

So
InWardTurns = InWardTurns(B) + ΣiInWardTurns(Hi) and OutWardTurns =

OutWardTurns(B) + ΣiOutWardTurns(Hi).
Therefore,
InWardTurns − OutWardTurns = InWardTurns(B) − OutWardTurns(B)

+Σh
i=1(InWardTurns(Hi) − OutWardTurns(Hi))

Thus,

InWardTurns − OutWardTurns = −4 + 4 · h

What is the total number of holes in a component in 2D digital space? We can get
the following formula: the total number of holes in a connected component in 2D
digital space in 4-adjacency is

h = 1 + (InWardTurns − OutWardTurns)/4. (4.4)

The formal and topological proof requires more sophisticated knowledge in topology
(see Chaps. 9 and 14).

To examine the correctness of the formula, we can count the total InWardTurns
as 1 + 6 + 7 = 14 and the total OutWardTurns as 5 + 2 + 3 = 10. h = 1 +
(InWardTurns − OutWardTurns)/4 = 1 + (14 − 10)/4 = 2 . Therefore, if there is
no hole, h will always be 0 based on the fact that the outside boundary curve always
has 4 more outward points than inward points [4]. This theorem will be proved using
Euler formula in Chap. 9.
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Fig. 4.10 Examples of the
area of triangles on grids
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4.8 Pick’s Theorem and Minkowski’s Theorem*

Pick’s theorem is used to obtain the area of a polygon whose vertices are at the grid
points [9]. It is one of the most amazing theorems in geometry. Pick’s theorem is also
a bridge between grid space and continuous space in 2D. The vertices are located at
the grid points but their measurements are done in Euclidean space.

Given a simple polygon in a 2D grid such that all the polygon’s vertices are grid
points, Pick’s theorem says that the area A of this polygon equals i + b

2 − 1, where
i is the number of interior points and b is the number of boundary points.

This theorem is quite interesting and is hardly believable. Let us first examine
some examples in Fig. 4.10. We can see that for the first triangle A, the area is
(3 · 2)/2 = 3. We know that there are six points on the boundary of A and one point
inside A. Then i + b

2 − 1 = 1 + 6/2 − 1 = 3, so the formula is verified for A.
For triangle B, we know area(B) = 4 · 4 − area(c) − area(d) − area(e) =

16 − 4 · 2/2 − 2 · 3/2 − 1 · 4/2 = 7 B contains six grid points inside and four
points on the boundary. Therefore, i + b

2 − 1 = 6 + 4/2 − 1 = 7. It follows that
area(B) = i + b

2 − 1.
We can prove first that Pick’s theorem is true for the right triangle with two edges

parallel to the grid lines. Then, we can prove the theorem for arbitrary triangles such
as B. We leave this proof as a practice problem.

Theorem 4.1 (Pick’s theorem) Let A be a polygon on 2D grid space where each of
the vertices of A is at a grid point. Then, the area of A is

area (A) = i + b

2
− 1. (4.5)

where i is the number of interior points and b is the number of boundary points.

Proof We provide a brief proof here. We assume that all triangles satisfy Pick’s
theorem. Then, we can use mathematical induction to prove that a polygon can be
split into two smaller polygons. If the smaller polygons satisfy the theorem, then the
original polygon also satisfies Pick’s theorem.

Looking at Fig. 4.11, we split the original polygon M into A and B. And we
assume
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Fig. 4.11 Examples of the
area of triangles on grids
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area(A) = iA + bA/2 − 1 and B = iB + bB/2 − 1
area(M) = area(A) + area(B)
Let us assume that on the partition curve p to q, there are x points in the middle

of the path, excluding the two end points.
bA = C1 + 2 + x and bB = C2 + 2 + x

The number 2 comes from counting points p and q on the boundary.
iM = iA + iB + x and bM = C1 + C2 + 2
Therefore,
area(M) = area(A) + area(B) = iA + bA/2 − 1 + iB + bB/2 − 1
= iA + bA/2 − 1 + iB + bB/2 − 1
= iA + iB + (bA + bB)/2 − 2
= iA + iB + (C1 + 2 + x + C2 + 2 + x)/2 − 2
= iA + iB + x + (C1 + 2 + C2)/2 + 1 − 2
= (iA + iB + x) + (C1 + 2 + C2)/2 − 1
= iM + bM/2 − 1
We have proven the theorem. �

However, there is no polyhedron generalization of Pick’s theorem in 3D or higher
dimensions.

In 2D space, Minkowski’s Theorem is about the integer point existence in a convex
region T in 2D where T is symmetric with respect to the origin, e.g. points (−x,−y)
and (x,y) are both in T . If the area of T is greater than 22, T must contain an integer
point other than the origin [15].

Minkowski’s Theorem is the foundation of the geometry of numbers, a branch of
number theory for Diophantine approximation. We present Minkowski’s Theorem
in Rn as follows:

Theorem 4.2 (Minkowski’s Theorem) Let T be a centrally symmetric convex in Rn.
If the volume of T is greater than or equal to 2n, then there exist integers x1, · · · , xn,
not all zero, such that point (x1, · · · , xn) ∈ T .

In fact, this theorem can be extended to other lattices.
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4.9 Remark

In Euclid’s Elements, a curve does not have a width. However, Hilbert’s curve can
fill an entire Euclidean plane[12]. This somehow generates a contradiction. This
contradiction was caused by the foundations of mathematics. We point out this issue
here to express a concern that even mathematics is not perfect.

A non-trivial curve must lay on a 2D or higher dimensional space. It means that
to define a curve, one must first determine its ambient (containing) space. In order to
understand a lower dimensional object, we need a higher dimensional space, which
may not yet be defined. In terms of the length and straightness of a digital line,
without a discrete line, we can only talk about digital curves. Bresenham’s lines are
the digitization of digital lines. To define a digital line and plane may not be very
fruitful. We may want to limit this concept within Euclidean space in order to better
deal with it [13]. The next chapter will discuss digital surfaces and manifolds [2, 6].
More constructive algorithms will be discussed in Chap. 6. A good reference dealing
algorithms is the book written by Cormen et al. [7].

Connected components are related are topological concepts [1, 2]. So, image
processing especially image segmentation is highly related to topological methods.
For discrete method for smooth data, see [5].
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Chapter 5
Surfaces and Manifolds in Digital Space

Abstract The digital surface is one of the main topics of this book. We know that
digital curves are digital paths and discrete surfaces can be described as triangulations.
Therefore, is a digital surface a simple digitization of a continuous surface? The
answer is no. This is because the basic 2D cell of digital surface in direct adjacency is
a unit square and is not flexible enough to stick perfectly onto a continuous surface in
order to compare with triangles of different sizes. Their 2-cells are only perpendicular
to coordinates. In indirect adjacency, there are may be multiple choices for choosing a
triangle to fit the original surface. In addition to that, the digital point might not on the
surface which is not the same as a traditional triangulation. Digital surfaces are much
more difficult to deal with. In this chapter, we mainly focus on the Morgenthaler and
Rosenfeld definition of digital surface and the Chen and Zhang definition for direct
adjacency. The Chen–Zhang definition has led to the classification of simple surface
points in 3D, which is regarded as a significant result in digital geometry.

We will also define digital manifolds in direct adjacency. We cover more profound
topics such as the general discrete manifold in Chap. 7 and digital topology in Chap. 9.

Keywords Surface · Digital surface · Digital manifold · Definition · Classification
of surface points

5.1 Introduction to Surfaces and Digital Surfaces

The simplest example of a surface is a continuous function on a plane: z = f (x, y).
But this surface is not general enough to define a sphere (as we explained in Chap. 3).
This is because a sphere has two values at many points on the x, y-plane.

A more general definition for a surface is called the parametric surface: Like the
general form of curves, we use t as a parameter in [0,1] to define a curve. Now we
can use (u, v) ∈ A, a rectangular region in R×R, to define a surface in 3D Euclidean
space:

s(u, v) = (x(u, v), y(u, v), z(u, v)). (5.1)

Example 5.1 A sphere with radius r centered at (0, 0) has the parametric form as
follows:

© Springer International Publishing Switzerland 2014 67
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⎧
⎪⎪⎨

⎪⎪⎩

x = r sin (v) cos (u)

y = r sin (v) sin (u)

z = r cos (v)

(5.2)

where u ∈ [0, 2π ] and v ∈ [0, π ]. We can easily verify that x2 + y2 + z2 = r2. For
more about the parametric surface, see [28].

A sphere is a special case of surfaces. Its radius is fixed. With regard to an arbitrary
surface, it is difficult to determine the rectangular area A = [0, 2π ] × [0, π ]. Such
A and the function on A may change from a point to a different point on the same
surface. Thus, differential geometry is needed for defining a general surface. In the
differential form, “A” would become some what of a moving reference frame along
with each point on the surface. We discuss this in Chap. 13.

In any case, we assume that a surface can be decomposed by triangles, or more
generally, polygons. This is called the piecewise linear representation of the surface.
See Fig. 1.2 [6].

The question now becomes: In order to make a digital surface or a digital surface
decomposition of a continuous surface, can we just use the unit square and attach it
to a continuous surface just as we did using triangles?

The answer is no. This is because even though we can use a unit square, we have
to use them in different rotations or angles. Digital space 2-cells only allow the unit
square to be in upright, right angle directions. In other words, if U is a digital 2-cell,
then U must be in the XY , XZ , or YZ-plane of a 3D Euclidean space. (See Fig. 5.1a).

Another question can be asked: Can one just digitize a continuous surface? Mean-
ing, if we obtain all digital/integer vector points, then it must be a digital surface.
The answer depends on various factors. Even though one can digitize a continuous
surface1, there is no guarantee that the digitized points form a “surface.” It would
depend on the resolution of digitization since one may get a unit cube where each
point of the cube is on the original surface. In this case, we have a 3D cell in the
“digital surface.”

5.2 Definitions of Digital Surfaces

The digital surface can be viewed as the polygonal decomposition of continuous
surfaces, where each polygon is a unit square. However, this is a property, not a
definition. We cannot use this to identify a digital surface when a set of points is
given. If one does want to try using this as a definition, every set of digital points
would be a digital surface since we can always make a continuous surface that can
go through all digital points of the set. Rosenfeld was probably the first person to
realize that digital surfaces must have a separate definition mathematically.

1 In most cases, one cannot even store a continuous surface into a computer if there is no formula
to describe the surface.
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Fig. 5.1 Examples of digital surfaces: a A digital plane, and b a digital sphere made by J. Lachaud
and the DGtal Group

A digital surface in 3D grid space does not resemble a surface in 3D Euclidean
space. A digital surface is the collection of the faces of unit cubes. In other words,
a digital surface consists of unit squares parallel to XY−, XZ−, and YZ− planes in
3D. Figure 5.1 shows two examples of digital surfaces: a digital plane and a digital
sphere, respectively.

5.2.1 Morgenthaler-Rosenfeld Definition of Digital Surfaces

Let us first look at a neighborhood of a digital point p in 3D digital space, denoted as
Np, In Fig. 5.2 a. Np contains 27 points including p meaning that p has 26 points in
its neighborhood. For p, a is a directly adjacent point; b and c are indirectly adjacent
points. b is closer to p when comparing the distance between p and c.

In fact, p = (x, y, z) in Σ3 has six direct neighbors, namely, (x ± 1, y, z), (x, y ±
1, z), and (x, y, z±1). This is also called 6-adjacency in 3D. p also has 12 2D-diagonal
neighbors, namely, (x ±1, y ±1, z), (x, y ±1, z ±1), and (x ±1, y, z ±1); and 8 3D-
diagonal neighbors, namely, (x ±1, y ±1, z ±1). So p has 26 = 6+12 +8 adjacent
points total and is called 26-adjacency. If we only allow 2D-diagonal neighbors, then
p has 18 = 6 + 12 adjacent points, called 18-adjacency.

Therefore, we have a total of 3 types of adjacencies, 6-, 18-, and 26-adjacencies.
A path of digital points with α adjacency, α = 6, 18, 26, is called an α connected
path or α-path [26, 24]. A set of points are called α-connected if any two points in
the set are α-connected, meaning that there is an α-path linking them inside this set.

When a surface S passes through a point p and p’s neighborhood is on S, then S(p)
is a subset of Np. In addition, S(p) should look like a “plate,” and S(p)−{p} should
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Fig. 5.2 A point in Np and
surface: a A point p and its
3D neighborhood Np , and b
A surface S passes point p in
Np
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look like a “circle” or a closed digital curve. Finally, S(p) should cut Np into two
components, i.e. Np − S(p) should contain two parts that are not connected. These
observations will lead to the Morgenthaler–Rosenfeld definition of digital surfaces.
See Fig. 5.2.

In Fig. 5.2b, p is surrounded by 8-points on S. These 8 points form a closed
curve. Np − S(p) is the union of two disconnected components C and C′. In 1982,
Morgenthaler and Rosenfeld gave a mathematical definition of digital surfaces. In
order to understand the definition, we first present a simple form of it as follows.

Definition 5.1 (Morgenthaler and Rosenfeld) A point p in S is an (6, 26)-(simple)
surface point if

(1) S(p) is a 6-component,
(2) Np −S(p) has exactly two 26-components and p is 26-adjacent to both of these

26-components,
(3) Each of the 6-neighbors of p is 26-adjacent to both 26-components of Np−S(p).
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Fig. 5.3 A corner point p of
S in Np . a is 26-adjacent to p
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The simplest connectivity in 3D digital space is 6-connectivity. In Definition 5.1,
it is understandable that we want a surface that is 6-connected so that each S(p) is
a 6-component and the first condition in Definition 5.1 is met. We discussed that
Np −S(p) should have exactly two components, see C and C ′ in Fig. 5.2. Let’s look
at the example in Fig. 5.3. It is very common for a surface to contain a corner point,
such as p in Fig. 5.3. The component C ′ ⊂ Np − S(p) only contains a point a. a is
26-adjacent to p, which is why condition 2 of the definition must be satisfied.

We now give the complete Morgenthaler–Rosenfeld definition of digital surfaces
below:

Definition 5.2 (Morgenthaler and Rosenfeld) Let α, β ∈ {6, 18, 26}. A point p in S

is an (α, β)-(simple) surface point if

(1) S(p) is an α-component,
(2) Np − S(p) has exactly two β-components and p is β-adjacent to both

β-components,
(3) each of the α-neighbors is β-adjacent to both β-components of Np − S(p).

Again, why did Morgenthaler and Rosenfeld need to use β-components for the
complement of S(p), Np − S(p)? This is because a surface point p should also
be adjacent to some point in both components of the complement. However, in
Figs. 5.2 and 5.3, the component C′ does not have a point that is 6-adjacent to p. So,
the Morgenthaler–Rosenfeld definition is very elegant in avoiding this problem.

The Morgenthaler–Rosenfeld definition provides a total of nine types of digital
surfaces. However, most of these do not really exist in terms of usefulness by Kong
and Roscoe [5, 19]. The Morgenthaler-Rosenfeld definition seems to be a complete
definition for digital surfaces in Σ3. However, Chen found a counter-example, which
contains a visually true surface-point but not an (α, β)-surface point [4, 5]. See
Fig. 5.4. We discuss the definition of digital surfaces further in the historical remark
of this chapter.

The Morgenthaler–Rosenfeld definition is used to define a surface through its
simple surface points. If every point in S is an (α, β)-surface point, then S is called
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Fig. 5.4 Visually true
surface-points but not
(α, β)-surface points for any
α and β

p

an (α, β)-surface. Therefore, this definition is about the definition for closed surfaces.
It cannot deal with surfaces on boundaries. Next, we provide a definition to deal with
this case.

5.2.2 Parallel-Moves and Chen-Zhang Definition of Digital
Surfaces

The Morgenthaler–Rosenfeld definition of digital surfaces was a milestone in digital
geometry. It showed the necessity and feasibility of digital geometry as a new research
area, a topic that continues to inspire rigorous study today. However, the definition
was based on set-theoretical methods, which lacked certain geometric intuition. Plus,
it was difficult to design an algorithm to actually recognize a digital surface. Chen and
Zhang found another definition of digital surfaces using so called parallel-moves of
line-cells. This definition was based on the observation that surfaces are made from
moving curves [8, 9].

First, we give a recursive definition for generating an i-cell. Let Σ3 be a three-
dimensional digital space. A pair of points p, p′ in Σ3 can be a line-cell if they are
adjacent. A surface-cell, or a closed path, consists of 4 points p1, p2, p3, and p4

which satisfy

⎧
⎪⎪⎨

⎪⎪⎩

dD(pi , pi+1) = 1 for i = 1, 2, 3.

dD(p1, p4) = 1

dD(p1, p3) �= 1 and dD(p2, p4) �= 1

(5.3)

where dD(p, q) is the distance of the direct adjacency. For example, in Fig. 5.3,
points p, q, r , and t form a surface-cell. They satisfy the Eq. (5.3).

Definition 5.3 (Parallel-move) A line-cell {q, q ′} is called a parallel-move of {p, p′}
if p and p′ are adjacent to q and q ′ respectively; but neither p and q ′ nor p′ and q

are adjacent.
We can see that in Fig. 5.3, line-cell (t , r) is a parallel-move from (p, q). Note

that a line-cell {p, p′} might not have an order, but when we associate this line-cell
with its parallel, it is better to indicate the order, such as (p, p′) or (p′, p).
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(p,p’) has three parallel-moves Surface-cells are not line-connected
a b

Fig. 5.5 Two instances which are not considered to be surfaces

It is also easy to see that line-cell (p, q) in Fig. 5.3 has four parallel-moves in Np:
left, right, up, and down. Therefore,

Lemma 5.1 Each line-cell has four parallel-moves in Σ3.
We also have,

Lemma 5.2 A line-cell and each of its four parallel-moves form a surface-cell in
Σ3.

Now, we can give our definition of digital surface based on parallel-moves:

Definition 5.4 (Chen–Zhang) A connected subset S of Σm is a digital surface if
any point p ∈ S is included in some 2-cell of S, and (1) Any two 2-cells are line-
connected in S, (2) Every line-cell in S has only one or two parallel-moves in S, and
(3) S does not contain any 3-cells.

We can explain that all of the three conditions in Definition 5.4 are necessary.
If we assume there is a line-cell that has three parallel-moves, then it must not be

in any surface. See Fig. 5.5a. It goes against the principle of a local neighborhood
that a simple surface point must be similar to a 2D plate. Therefore, condition (2)
must be valid in this definition.

For condition (1) of the definition, if two surface-cells in S are not line-connected,
then S must contain something like Fig. 5.5b. The last condition is easy to see.

Another advantage of Definition 5.4 is that it can be used to describe the boundary
points. p is an inner point in surface S if every line-cell containing p has exactly 2
parallel-moves in S. p is a boundary point of S if there exists a line-cell containing
p that has exactly one parallel-move. The set of all boundary points is denoted by
∂S. See Fig. 5.6.

The concept of parallel-moves cannot be directly used in general discrete spaces
such as indirect adjacency. Some principle of Definition 5.4 can be extended to
general cases of discrete manifolds. We discuss general discrete manifolds in Chap. 7.

We can conclude that Definition 5.4 is intuitive and reasonable. But why is this
definition better than the Morgenthaler–Rosenfeld definition in direct adjacency? It
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Fig. 5.6 Examples of inner
and boundary points
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is better because it can be directly used in designing fast algorithms for digital surface
tracking and recognition. We discuss these topics in Chap. 6. In addition, it can be
used to discover the classification of simple digital points in the next section, a basic
result presented in this chapter.

5.3 The Classification of Digital Surface Points

After defining the digital surface, we can ask the important question: How many
different types of simple surface points are there in 3D digital space? We show two
types in Figs. 5.2b and 5.3. In 1993, Chen and Zhang proved that there are only six
types of simple digital surface points in 3D that are in direct adjacency [10]. This
is called the classification theorem for digital surfaces in direct adjacency in three-
dimensional space. Classification of simple surface points become one of the most
important results in digital geometry and topology. It lead directly to the discovery
of the digital Gauss–Bonnet Theorem for calculating the genus of 3D objects. Many
researchers have used or observed the some of these shapes in their research.

In this section, we use the parallel-move based definition of digital surfaces to
prove this theorem. In fact, there is an equivalence between the two definitions of
digital surfaces given by Morgenthaler and Rosenfeld [24] and Chen and Zhang [9]
in direct adjacency. We give the proof in Chap. 15 due to its complexity [11].

The classification theorem deals with the categorization of simple surface points.
It states that there are exactly six different types of simple surface points [10].

5.3.1 Simple Surface Points and Regular Inner Surface Points

The definition of parallel-move based surfaces is simple and intuitive. The question is:
What is the relationship between such a digital surface and a Morgenthaler–Rosenfeld
surfaces? We can show that a closed regular surface is precisely a Morgenthaler–
Rosenfeld simple surface.
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In order to establish the relationship between Morgenthaler–Rosenfeld’s simple
surfaces and our parallel-move based surfaces, we need to introduce the concept of
regular surface points.

If p is a point of a parallel-move based surface S, then p is regular if all of S’s
surface-cells, including p, are line-connected in S. If p is both inner and regular,
then p is called a regular inner surface point.

To deal with general cases, we can expand the meaning of a regular surface point
to any (point-)connected set as follows.

Definition 5.5 Let S be a connected subset of Σ3. Assume p ∈ S and S(p) =
S ∩ (N27(p) ∪ {p}). p is called a regular surface point of S if:

(1) Each line-cell in S containing p has at least 1 and at most 2 parallel-moves in
S(p).

(2) Any two surface-cells containing p in S are line-connected in S(p).
(3) S(p) does not contain any 3D-cell.

We say p is a regular inner surface point if p is a regular surface point and each
line-cell containing p has exactly two parallel-moves in S(p).

The following theorem establish the relationship between the two definitions of
digital surfaces given by Morgenthaler and Rosenfeld [24] and Chen and Zhang [9].

Theorem 5.1 A Morgenthaler-Rosenfeld simple surface point is a regular inner
surface point in direct adjacency. That is, a regular closed surface is a Morgenthaler-
Rosenfeld surface.

Theorem 5.1. can be used to prove the classification theorem, the stand alone
proof is given in Chap. 15.

5.3.2 Isometric and Geometric Equivalence in 3D

Isometric transformation is a mapping that preserves the distance of two points in
an object to be the same as it is transferred to another space. Isometric is a type of
geometric equivalence. In order to explore the structure of simple closed surfaces in
Σ3, we like to define the digital geometric equivalence below.

Definition 5.6 Let S and S containing p be two subsets in Np, a neighborhood
having p at the center. S and S are geometric equivalent if and only if there is a
one-to-one mapping f : S → R which satisfies:

(1) f (p) = p,
(2) d(x, y) = d(f (x), f (y)), where x, y ∈ S and d is the distance for 6-connectivity,

and
(3) D(x, y) = D(f (x), f (y)), where D is the distance for 26-connectivity.

In this definition, the distance refers to the length of the shortest path.

Lemma 5.3 The geometric equivalence relation is a mathematical equivalence
relation.
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Fig. 5.7 Simple surface
points, each of which has four
adjacent points S

S’

a b

Proof It is easy to see that conditions (1) and (2) are necessary in Definition 5.6 for
this equivalence. It is not obvious that condition (3) is needed. However, we can see
that S and S in Fig. 5.7 are equivalent without condition (3). �

5.3.3 The Theorem of the Classification

The classification theorem presented in this section states that there are exactly six
different types of simple surface points. A simple surface point p concerns with the
point p and its surrounding points. The geometric equivalence relation described in
Definition 5.6. can classify all Np’s subsets with point p into a number of geometric
equivalence classes. Among these classes, only a few of them make p a simple
surface point.

Only direct adjacency (6-adjacency) is considered for simple surface points here.
Based on the geometric equivalence, all simple surface points will be classified.

According to Theorem 5.1, we can easily get the following lemma.

Lemma 5.4 If p is a simple surface point, then each line-cell containing p in Np

has exactly two parallel-moves; any two surface-cells are line-connected in Np, and
there is no 3D-cell in Np.

Theorem 5.2 There are exactly 6 types of simple surface points showed in Fig. 5.8
that are not geometrically equivalent to each other.

Proof Start with a point p and one of its directly adjacent points p′. (This is because
an isolated point cannot be a simple surface point.) According to Lemma 5.4 and
geometric equivalence, the 1-cell (p, p′) must have two parallel-moves. So, we can
only derive two cases in Fig. 5.9, and nothing else.

Thus, a simple surface point with three surface-cells in N (27, p) can be derived
from case (b) shown in Fig. 5.9. The result is case (1) shown in Fig. 5.8.

Because each line-cell must have exactly two parallel-moves, from Fig. 5.9, we
can develop three cases with 3 surface-cells in Fig. 5.10. These are the only pos-
sibilities for having simple surface points without duplication under the geometric
equivalence relation.

Continuing the derivation, we can develop 6 cases with 4 surface-cells from
Fig. 5.10, see Fig. 5.11.
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Fig. 5.8 All types of simple
surface points
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Therefore, we get case (2) and case (3) in Fig. 5.8 from case (a) and case (c) in
Fig. 5.11. Again, we can develop the 6 cases with 5 surface-cells in Fig. 5.12 from
Fig. 5.11.

Next, we can get case (4) in Fig. 5.8 from case (e) in Fig. 5.12. We can see that
point p in case (d) cannot generate a simple surface point. Cases (a), (b), (c), and
(f) in Fig. 5.12 have only one option of being a simple surface point. When we add
a surface-cell to cases (a), (c), or (f), we get the simple surface point as case (5) in
Fig. 5.8. When we add a surface-cell to case (b) in Fig. 5.12, it becomes case (6) in
Fig. 5.8. Thus, we have completed the proof. �
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Fig. 5.9 Exactly two cases derived from line-cell (p, p′)
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Fig. 5.10 Three cases derived from Fig. 5.10

5.4 Digital Manifolds

In this section, we extend Chen–Zhang’s definition of digital surfaces to digital
manifolds. This definition unifies all the definitions of curves, surfaces, and manifolds
in digital spaces in direct adjacency. In other words, it provides a simple, formal,
and uniform definition for digital curves, surfaces, and manifolds.

5.4.1 k-Cells and Connectivity

Two k-cells are said to be k′-dimensional adjacent (k′-adjacent), k > k′ ≥ 0, if they
share a k′- cell. A (simple) k-cell path with k′-adjacency is a sequence of k-cells
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Fig. 5.11 Six cases with four surface-cells derived from Fig. 5.10

v0, v1, ..., vn, where vi and vi+1 are k′-adjacent and v0, v1, ..., vn are different. Two
k-cells u and v are called k′-dimensional connected if they are two end elements of
a (simple) k-cells path with k′-adjacency.

Let S be a subset of Σm. We denote Γ (0)(S) as the set of all points in S, and Γ (1)(S)
as the line-cells set in S. Inductively, we use Γ (k)(S) be the set of k-cells of S.

Therefore, two elements p and q in Γ (k)(S) are k′-adjacent, then p∩q ∈ Γ (k′)(S),
k′ < k.

In Chap. 9, we will discuss simplicial complexes that is a collection of simplexes.
Let S is a n-dimensional object. Γ (k)(S), k = 0, . . ., n represent the similar concepts
of simplicial complexes. It is called finite topology [20]. We discuss this topology of
digital manifolds in Chap. 9.
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Fig. 5.12 Six cases with five surface-cells derived from Fig. 5.11 b, d, e, and f

The difference between the Chen–Zhang’s definition and the simplicial (or cell)-
complexes based definition of surfaces is that simplicial type of complexes need
to store all Γ (k)(S), k = 0, . . ., n of S. The digital manifolds we define next will
not store Γ (k)(S), k = 0, . . ., n. Instead of that, we generate a data structure for
calculation. We will discuss the algorithm issues in Chap. 6.



5.4 Digital Manifolds 81

5.4.2 Definition of Digital Manifolds

In the discussion of digital manifolds, we first extend the concept of parallel-moves to
high dimensions. Then, we give a recursive definition of the m-(dimensional-) cells
based on parallel-moves. Afterwards, we can define n-dimensional digital manifolds
in Σm.

A more general definition of parallel-moves is given as follows:

Definition 5.7 Let A be a subset of Σm. A′ is called a parallel-move of A if

(1) |A| = |A′|,
(2) A ∩ A′ = ∅, and
(3) there exists a biconjunction mapping f : A → A′ such that d(a, f (a)) = 1 for

all a ∈ A.

In addition, a and b are adjacent in A if and only if f (a) and f (b) are adjacent in A′.
Based on the general definition of parallel-moves of a set, we have:

Lemma 5.5 Let V be a parallel-move of V ′, then V ′ is the parallel-move of V .
Parallel-moves are mainly created for constructing k-cells. We can get a k-cells

using the following procedure:
Let {p1, ..., p2k } be a k-cell of Σm, k ≤ m. Suppose vector pi = (x(i)

1 , ..., x(i)
m ),

i = 1, ..., 2k , then there are (m − k)-components so that vectors p1,..., and p2k have
the same value in each of the (m− k)-components, e.g., if the j th component is such

a component. Then, x
(1)
j = x

(2)
j = ... = x

(2k )
j . Any parallel-move of {p1, ..., p2k }

can be obtained by adding or subtracting 1 at any of these (m − k)-components.
Therefore,

Lemma 5.6 Let V be a k-cell, then V has exactly (2 · (m − n)) parallel-moves in
Σm.

Let p be a point and p′ be a parallel-move of p. We can see that {p, p′} is a line-
cell. If an i-cell A′ is a parallel-move of an i-cell A, then {A, A′} is an (i + 1)-cell.
Formally,

Lemma 5.7 Let V and V ′ be k-cells, where V is a parallel-move of V ′. Then V ∪V ′
forms a (k + 1)-cell.

Definition 5.8 A connected subset M of Σm is an n-dimensional digital manifold
if any point p ∈ M is included in some n-cell of M and

(1) Any two n-cell are (n − 1)-connected,
(2) Every (n − 1)-cell in M has only one or two parallel-moves, and
(3) M does not contain any (n + 1)-cell.

We can give an equivalent definition of Definition 5.8 in the next. Theis one is good
for us to understand a digital manifold.

Definition 5.9 A connected subset M of Σm is an n-dimensional digital manifold
if M = ∪{a|a ∈ Γ (n)(M)} and
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(1) Γ (n)(M) is (n − 1)-D connected,
(2) Each element in Γ (n−1)(M) has only one or two parallel-moves, and
(3) Γ (n+1)(M) is empty.

Now we define the boundary of a digital manifold as exactly having one parallel-move
in M , the set we considered in Σm.

Definition 5.10 Let M be an n-dimensional digital manifold. The boundary of M ,
denoted by ∂M , is the set of all (n−1)-cells in M , which only have one parallel-move
in M . M is called an n-dimensional closed digital manifold if ∂M is empty.

We also want to define the regular (ordinary) point for a digital manifold that is
also the extended definition in that of in digital surfaces.

Definition 5.11 Let M be an n-dimensional digital manifold. We say p ∈ M is an
n-regular (ordinary) point if all the n-cells containing p are (n−1)-connected among
(i.e. inside of) these cells (sometimes referred to as local-connected). A manifold M

is n-regular if any point p ∈ M is n-regular.
Obviously, 1-D digital manifolds are curves, and 2-dimensional digital manifolds

are surfaces. Rosenfeld gave a strict definition of digital curves [25]: C is a simple
(closed) curve if and only if each point p in C has exactly two adjacent points in C.
We can see that Definition 5.8 is equivalent to Rosenfeld’s curve definition except
we do not allow the boundary of a 2-cell to be a curve. We have also proven that a
Morgenthaler–Rosenfeld surface is just a regular closed surface in Σ3 [11].

5.4.3 Properties of Digital Manifolds*

In this subsection, we will discuss more profound properties of digital manifolds,
especially the boundary of a digital manifold. In common sense, the boundary of
an nD-manifold is a closed (n − 1) D-manifold. However, in digital Case, we need
more efforts to reach the same goal. We will next present a concept for bridges that
is similar to the cuts in graph theory. This concept is related to genus in topology,
but we like to keep the contents of this chapter to be in geometry not topology.

Definition 5.12 Let M be an n-dimensional digital manifold. We say an (n−1)-cell
c in M is a bridge if M − c is not connected or point-connected. M is said to be
bridge-free if M does not contain any bridge.

Definition 5.13 Let M be an n-regular digital manifold, c be an (n − 1)-cell in M ,
and Mc = ∪{a|a ∈ Γ (n)(M)&a ∩ c �= φ}, i.e., the union of all n-cells containing c

or part of c. We say c in M is a local-bridge if Mc − c is not (point-) connected in
Mc − c. M is said to be local-bridge-free if M does not contain any local-bridge.

The surface shown in Fig. 5.13a is bridge-free, the surface in (b) has bridges, and
the surface in (c) is bridge-free but has local-bridges.

It seems an irregular situation that a surface has a bridge while a closed regular
surface has no bridge.
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a b c

Fig. 5.13 a A 2-regular surface that has no bridge; b A 2-regular surface that has bridges; c A
2-regular surface that has only local-bridges but no bridges

Theorem 5.3 If surface S is regular and local-bridge-free in Σ3, then ∂S is the
union of some closed digital curves and is regular.

Proof First, we prove that each point in ∂S has at least two adjacent points (two
parallel-moves). If ∂S is empty, then, this theorem is true. Suppose that ∂S �= φ.
Assume {p, q} ∈ ∂S, then {p, q} has only one parallel-move, namely {p′, q ′} (p′ is
adjacent to p). Thus, {p, q, p′, q ′} is a surface-cell.

Because S is local-bridge-free, there must be a point in {p′, q ′} not in ∂S.

(1) If p′ ∈ ∂S, then p has two adjacent points in ∂S. In addition, {q, q ′} has two
parallel-moves because q ′ is not in ∂S. One of these two parallel-moves is {p, p′},
and another one can be denoted by {q1, q ′

1}, where q1 is adjacent to q. If q1 is
in ∂S, then q has two adjacent points (parallel-moves). If q1 is not in ∂S, then
line-cell {q, q1} has two parallel-moves, one of which is {q ′, q ′

1}. The other can
be denoted by {q2, q ′

2} in S, where q2 is adjacent to q, and so forth. Since q has
only a finite number of adjacent points (at most 6 in Σ3), there must be an i such
that {qi = p, q ′

i}, and each q1, ..., qi−1 is adjacent to q but not in ∂S. Similarly,
{q, qi−1} has two parallel-moves: {q ′

i−2, q ′
i−1} and {qi = p, q ′

i} in S. Therefore,
{q, qi = p} has a new parallel-move {q ′

i−1, q ′
i}. However, {q, qi = p} has only

one parallel-move {p′, q ′}. Therefore, q has two adjacent points (parallel-moves).
(2) If q ′ ∈ ∂S, then using the same procedure as above, we can prove that both p

and q have two adjacent points in ∂S.

Now, we discuss the case where both p′ and q ′ are not in ∂S. We still use the same
method as above. For p, we generate the sequence {p1, p′

1},... {pi , p′
i}; for q, we

generate the sequence {q1, q ′
1},... {qi , q ′

i}. As a result, for any line-cell in ∂S, each
point of the line-cell has two adjacent points in ∂S. Thus, each point in ∂S has two
adjacent points in ∂S.

Second, we need to prove that any p in ∂S has only two adjacent points in ∂S. If
there is only one surface-cell containing p, then p has only two adjacent points. If
there are exactly two surface-cells containing p, then p has three adjacent points in
∂S implying that there is a local-bridge. Therefore, p has only two adjacent points
in ∂S.

If there are three or more surface-cells, S1, ..., Sk containing p, k ≥ 3, then
we know S1, ..., Sk are line-connected among these surface-cells. Also, p has two
adjacent points, namely q and r , in ∂S. Both {p, q} and {p, r} has one parallel-move.
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If p, q, and r are in a surface-cell Si , then there is a Sj , i �= j such that Si ∩
Sj = {t , t ′} is a line-cell. Note: p ∈ Sj . If t = p, then t ′ = q or t ′ = r . Thus,
{p = t , q = t ′} or {p = t , r = t ′} has two parallel-moves. So, p, q, and r cannot be
in a surface-cell Si when each of S1, ..., Sk contains p.

If q ∈ Si and r ∈ Sj , there are two possibilities: Si ∩Sj = {p, t} or Si ∩Sj = {p}.
If Si ∩ Sj = {p, t}, for the third surface-cell Sm, there is a line-connected surface-
unit path in S1, ..., Sk from Si (or Sj ) to Sm. Let the path be Si , Sn, ..., Sm. Then,
Si ∩ Sn = {p, q} or {p, t}. If Si ∩ Sn = {p, q}, {p, q} has two parallel-moves.
If Si ∩ Sn = {p, t}, then {p, t} has three parallel-moves, Si , Sj , and Sn. This is
impossible because each line-cell has at most two parallel-moves.

For the second possibility, Si ∩ Sj = {p}, we will prove that p has only two
adjacent points q and r in ∂S.

Let us assume that there is a third point t ∈ ∂S and t , adjacent to p. Thus, two
cases can be derived.

(1) If t ∈ Si or t ∈ Sj , then this case is the same as the first possibility.
(2) If q, r , and t are in three different surface-cells, then let t ∈ Sm. We have

already discussed the cases where Si ∩ Sm or Sj ∩ Sm is a line-cell. So, we can
assume Si ∩ Sm = {p} and Sj ∩ Sm = {p}. Because there are only six adjacent
points for p in Σ3, Si ∪ Sj ∪ Sm contains all these six points. Suppose that
these points are {q, r , t , q ′, r ′, t ′}. There are only six line-cells containing p in
Σ3, and each surface-cell in {S1, S2, ..., Sk} − {Si ∪ Sj ∪ Sm} contains two of
the six line-cells. However, these line-cells cannot be {p, q}, {p, r}, or {p, t}.
It is impossible for a surface-cell to be line-adjacent to all three surface cells
Si , Sj , and Sm in this case. On the other hand, if there are two surface-cells in
{S1, S2, ..., Sk}−Si ∪Sj ∪Sm, then there is an element in {{p, q ′}, {p, r ′}, {p, t ′}}
contained by these two surface-cells. This element is already in each Si , Sj , and
Sm. Thus, this line-cell has three parallel-moves, which is impossible. Therefore,
we have completed the proof of Theorem 5.4. �

We now generalize Theorem 5.4 to digital k-manifolds. The key is to define the
regular i-cell as more than just a regular point. The concept of local-bridge-free will
be contained by the new definition of regular manifolds.

Let M be a digital k-manifold. The boundary of M , ∂M , is the set of all (k − 1)-
cells in M , each of which is contained by only one k-cell in M . M is said to be closed
if ∂M = ∅. A point p is called k-inner if p /∈ ∂M . A point p in a k-manifold M is
called regular if all k-cells containing p are (k − 1)-connected. Moreover, we may
state:

Definition 5.14 An i-cell Ai ∈ M , i = 0, .., k−2, is regular if all k-cells containing
Ai are (k −1)-connected (in these k-cells). M is regular if all i-cells in M are regular
for all i = 0, ..., k − 2.

For Ai ∈ M , the set containing these k-cells is denoted by S
(i)
k (Ai). An inner point

p in a k-manifold M is called simple if Sk(p) − {p} is a simple (k − 1)-manifold.

Theorem 5.4 The boundary of a regular n-dimensional digital manifold is regular
and is the union of several (n − 1)-dimensional closed digital manifolds.
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Proof We just present a simple proof here. We know that ∂S is the union of the
collection of (n − 1)-cells, each of which belongs to only one n-cell in S. We might
as well assume here that the ∂S is the collection of (n − 1)-cells.

First, we need to prove that each (n − 2)-cell is included in two (n − 1)-cells in
∂S. Suppose A ∈ ∂S is an (n−1)-cell, we want to prove that each (n−2)-cell in A is
contained by two (n−1)-cells including A. Let a be an (n−2)-cell in A ∈ Δ, where
Δ ∈ S is an n-cell. There is a unique A′ ∈ Δ that contains a. If A′ is in ∂S, then
there are two (n − 1)-cells containing a. Otherwise, A′ is contained only by another
Δ1, and Δ1 contains another A′′ containing a. If A′′ ∈ ∂S, then a is contained by
two (n− 1)-cells; Because all n-cells containing a are (n− 1)-connected, there must
exist a A(m) ∈ ∂S because we have a finite numbers of cells. (Another explanation
is that an (n − 1)-cell is impossible to be contained by three n-cells according to the
definition of the digital manifold.)

Second, if there are three (n − 1)-cells containing a, then all n-cells containing
a will not be (n − 1)-connected based on the above process. So, ∂S is a closed
(n − 1)-pseudo-manifold or several closed (n − 1)-pseudo-manifolds.

We can also prove that every i-cell is regular in ∂S as well. �

5.5 Historical Remarks: Analysis on General Digital Surfaces
in 3D

Before the Morgenthaler–Rosenfeld definition of digital surfaces, people understood
digital surfaces through classic discrete surfaces such as the triangular surface or the
imperial understanding and experience of digital surfaces.

The Morgenthaler–Rosenfeld definition gave the first mathematical definition of
digital surfaces. It was a necessary step in digital geometry. The definition contains
a total of nine types of digital surfaces. Kong and Roscoe presented a detailed work
to analyze Morgenthaler–Rosenfeld’s surfaces [19] and Chen made some additional
analyses [3, 4, 5]. The results show that most of the nine types do not really exist.

In fact, to require that a surface point S(p) separates Np into two completely
disconnected components is not really reasonable. An 8-curve in the digital plane
cannot separate its neighborhood into two components, so why should we require
that of 18- or 26-connected surfaces?

Chen suggested another general surface definition in [5], where 6-connectivity is
used for Np − S(p).

On the other hand, indirect adjacency may cause ambiguous interpretations for
a set S. For example, suppose that we allow 18-adjacency for a set S containing
points as shown in the following figure, Fig. 5.14a. From this, we can see that for
6-adjacency, we have a unique interpretation. However, for 18-adjacency, we could
have an interpretation such as (b), which is a surface. If we interpret (a) to be (c),
then it is not a surface. If we interpret (a) as (d), then it is a different surface. All of
these interpretations are reasonable under 18-adjacency.



86 5 Surfaces and Manifolds in Digital Space

a b

c d

Fig. 5.14 A digital point set in S and some of the interpretations: a Original data points, b and
d Two different surfaces, and c Not a surface

Therefore, 18- or 26- adjacency introduces ambiguities for the interpretation of
surfaces. That is why a general solution allowing indirect adjacency is very difficult.
As we know, there are only six types of simple surface points for direct adjacency
[10, 22], but it is really hard to get all simple surface points to allow indirect adjacency.
The ambiguity is real, and it is impossible to reduce these cases to be unique. On the
contrary, we are able to see the power of indirect adjacency.

Researchers are still interested in identifying how many possible interpretations
of digital surface points there are in just Np. The number is very large, 10,580 cases,
as indicated in [12].

A unified definition may not be very practical in defining digital surfaces. However,
for the purpose of surface recognition, we have to have a unified definition for
surfaces, or at least a few possible definitions. This problem is still open, i.e. finding
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the most reasonable surface if there is more than one interpretation of possible digital
surfaces [14, 27].

The classification of digital surfaces is very important [10]. The six classes of
the digital surface points in 6-adjacency play an important role in digital geometry.
Using this result, the digital form of the Gauss-Bonnet theorem was found in [7].
The detailed proof will be provided in Chap. 14.

For digital manifolds, the general definition of a m-D digital manifold contains
many philosophical meanings. The definition we provided in this chapter has algo-
rithmic advantages [13]. It is not just the digitization of a continuous manifold in
digital space.

The digital manifold definition of this note can also represent non-orientable cases.
For instance, a Mobius band is a surface that fits under the definition of digital surfaces
[1]. We will discuss it in Chap. 6. Herman and Webster discussed the surface of some
3-complexes generated by voxels, and they proved that the boundary (surface) of a
3-complex is the union of several line-connected components of the 2-cells [2, 16].

Theorem 5.5 is a general form for some results discovered by Chen and Zhang [8],
Letecki [21], and Letecki, Eckhardt, and Rosenfeld [23]. A regular set is called a well-
composed set in [21, 23]. Letecki then expanded this concept to 3D [21]. We present
the general theorem, Theorem 5.5 here. Some information about this development
can be found in [5, 18] The more general definition for discrete manifolds is presented
in Chap. 7.
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Chapter 6
Algorithms for Digital Surfaces and Manifolds

Abstract In Chap. 2, we introduced some algorithms for graphs. In this chapter,
we specifically design algorithms for digital object recognition and tracking. These
algorithms are mainly for digital surfaces and manifolds. There are two types of
questions to solve in this chapter: (1) Given a set of data M , decide or recognize
whether the data represents a geometric shape, specifically a curve, surface, or solid
object, and (2) Extract the curve or surface components of the data set. The main task
is to extract the boundary of a surface or a 3D manifold. We also design algorithms
for these problems for higher dimensional manifolds. In this chapter, we deal with
various important tasks in digital and discrete geometry in an ideal situation such
as no noise with perfect data formats. We then design algorithms to find solutions
for these problems. In Chap. 11, we specifically discuss the data in the format of
randomly collected points, called cloud data or scattered data sets that usually do
not form a specific geometric shape. In such a case, the researcher needs to estimate
the best possible shape for the data. These types of problems are usually related to
geometric processing.

Keywords Algorithm · Time complexity · Digital surface · Digital manifold ·
Recognition algorithm · Tracking algorithm · Orientability testing

6.1 What is an Algorithm?

An algorithm is a sequence of instructional steps for solving a problem. The algorithm
can be designed to be very complicated if we are not able to find a simple formula
or equation to fit the problem.

In mathematics, algorithms are always secondary choice for solving a problem.
Along with the fast development of digital computers, people today are very com-
fortable with using algorithms to solve problems. Instead of spending intensive time
to find simple formulas, listing algorithmic steps would bring us to the same results.
In addition, we let the computer do the job for us.

Two types of measurements, time and space costs, are used to evaluate whether an
algorithm is a good algorithm. These are called time complexity and space complex-
ity, respectively. The third measurement is related to the “length” of the algorithm
and is a measure of the total instructions programmed in memory. In other words, it is

© Springer International Publishing Switzerland 2014 89
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the size of the algorithm, called Chaitin–Kolmogorov complexity. This is somehow
related to the simplicity of the number of instructions and “formulas ” used for a
problem. The most widely used complexity measure is time complexity.

We say that the bubble-sort sorting algorithm is O(n2) meaning that this algorithm
requires c × n2 steps to solve the problem where c is a constant. This algorithm is in
polynomial time.

The first algorithm that is not trivial is probably the Euclid’s algorithm, an al-
gorithm for finding the greatest common divisor (GCD) of two integer numbers.
An algorithm is needed since there is no perfect formula for getting GCD(a, b) as
a function of a and b. Therefore, we write a procedure to represent this. In com-
puter programs, we also use the term function, which is a name borrowed from
mathematics.

In computer science, the most basic algorithms are sorting and searching, for ex-
ample bubble-sort and binary-search. Binary-search uses the divide-and-conquer
technology that is very popular in algorithm design. Other techniques such as
dynamic programming and greedy algorithms are also useful.

In additional to good algorithmic technology, data structures, the way of holding
the input data, is also important to efficient algorithms, especially in geometric
problems.

6.1.1 Easy Problems and NP-hard Problems

Some problems are easy to solve such as sorting and searching problems. However,
for other problems, even though we can find algorithms to solve the problem, there
is no quick or fast algorithm to complete the task. We may need exponential time
to solve them, meaning that the program would take years to run for a large input
size. A problem is said to be an NP-problem if we can check the answer (if there
is any that we know of) quickly, e.g. within O(n) time. Very many problems are
found to have such a property. For instance, the traveling salesmen problem has this
property: Finding a route for a traveler who plans to visit one city in each of the 50
U.S. states exactly once, is there a route such that the total distance is smaller than a
given number K?

If we know the sequence of the list of 50 cites, then we can easily check to see if
the answer is correct. If we do not know the answer, then we may need to spend 10
years to find it. [1, 11]

It was proven that the traveling salesmen problem is the hardest of the NP-
problems, called an NP-complete problem. It means that if the traveling salesmen
problem can be solved in polynomial time, then all NP-problems can be solved in
polynomial time with regular computers. This is a famous unsolved problem in math-
ematics and computer science called the P =?NP problem. Here, P means that the
problem can be solved in polynomial time by regular computers (for example, a
Turing machine), and NP means that the problem can be solved in polynomial time
by a non-deterministic Turing machine.
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Content
Pointer

kNN1 2 N End of list

Null
......

a b

Fig. 6.1 A linked list: a A node configuration, b An example of a linked list

6.1.2 Geometric Algorithms

Geometric algorithms are very board. It can refer to a graph algorithm with or
without a geometric metric. It can also mean algorithmic geometry, sometimes called
computational Geometry, that deals with algorithms for Euclidean geometric shapes.
Geometric algorithms can also deal with geometric processing with inputs that are
sampled points or cloud data points. It can even mean geometric curves and surface
fitting algorithms.

In this chapter, we mainly deal with the algorithm for digital surfaces and
manifolds. We discuss other types of geometric algorithms in Chaps. 10–12.

6.2 Data Structures for Digital Data Sets

Data structures are the way to store input or processed data. When an algorithm is
running, it needs to obtain the input data or to save temporary data for processing. It
also needs to output the final results. The format of storing data, the data structure,
is important to the algorithm.

For example, a searching algorithm is used to find whether or not a number is in
an array. If the number is randomly inserted in the array, then we have to search for
the number one by one, making the time complexity O(n) (meaning that there is a
constant c such that the time spending is at most c · n). However, if we have already
arranged (sorted) the data in ascending order, a data structure called a priority queue,
then we can use the binary search algorithm, which only needs O( log n) time.

A. Arrays The simplest data structure for digital data is the array. A surface S in
Σ3 can be represented as an N × N × N array, which is a three dimensional array.
A point in S will be assigned a “1” at the location in this array. Otherwise, we assign
“0” to the rest of the locations.

This array data structure is not very effective since there may be too many zeroes.

B. Linked Lists A linked list is a data structure that is constructed by “nodes.” A
node contains two parts: the content and the pointer. The content part holds data
and the pointer links to the next node. See Fig. 6.1. In Chap. 2, we discussed two
methods of representing graphs, one of which is called an adjacency list. It is similar
to linked lists.
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In computers, a pointer is a memory address that holds a node. Here is an example:
Let us assume that we have three nodes n1 =< 2, pointer1 >, n2 =< 5, pointer2 >,
and n3 =< 8, pointer3 >. A linked list could be

n1 =< 2, n2 >, n2 =< 5, n3 >, n3 =< 8, null >,

where null indicates the end of the list, or

n1 =< 2, n3 >, n3 =< 8, n2 >, n2 =< 5, null > .

For a graph G = (V , E), we can use linked lists to represent G. Let us use
the example in Fig. 4.6, where the first component is a subgraph with vertices
{A, B, C, D, E, F.G, H }. We can represent all edges as follows (using nA to represent
the node holding A):

< A, nB >, < B, nD >, < D, null >;
< B, nA >, < A, nC >, < C, null >;
< C, nB >, < B, nf >, < F , null >;

· · · · · · · · ·
The above representation is clear for computer programmers, but for mathematicians,
we simplify the data structure as

A → B, D;
B → A, C;
C → B, F ;
· · · · · · · · ·

We do this because we cannot represent the meaning of “→” easily in computers.
This is one reason why computer scientists created data structures.

Let S = {p1, · · · , pn} be a subset of Σ3. Then the adjacency-list of S is given as
follows:

p1 → p1(0), ..., p1(k1)
p2 → p2(0), ..., p2(k2)
.....................

pn → pn(0), ..., sn(kn)
From p1 to pn, we list all points in S. pi(0) to pi(ki) are all directly adjacent

points of point pi in S, and they are denoted by ALP (pi).

ALP (pi) = {pi(0), ..., pi(ki)}, i = 1, ..., n.

C. List of All k-cells The data structure for computer graphics usually uses the list
of k-cells, where the points are represented as vectors. Then, we get the index of the
vectors to represent the 1-cell that is formed by two points before we list the set of
1-cells. Therefore, this data structure is usually saved in a file as follows:

1) The number of points, list of points;
2) The number of 1-cells, list of 1-cells;
3) The number of 2-cells, list of 2-cells. · · ·
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This data structure is nice and easy to understand, but not good in terms of efficiency.
It not only requires extra space, but it also does not create an effective connection
among specific cells. In algorithm design, which is not only for display purpose, for
instance in 3D image processing, this data structure would make the algorithm very
slow.

D. Stacks and Queues A Stack is a special data structure that holds a number of
elements. It manages the data in the fist-in and last-out mechanism. Just like a stack
of books, one can only access the top book all the time. The first book that was
pushed in the stack will be the last to be able to take it out. Two operations related
to stacks are P ush and Pop.

A Queue, on the other hand, is in the fist-in and first-out order. Two operations
related to queues are Insert and Remove. We always insert an element to the end
of a queue and remove an element from the front of the queue [11].

6.3 Algorithms for Decision and Tracking of Digital Surfaces

In this section, we start to design basic algorithms for digital surfaces. Our algorithms
include those for the decision algorithm and the tracking algorithm [4, 5, 9].

We assume that none of the objects considered reaches the border of Σm, the
ambient space that holds the objects. We first want to present some of the basic
problems for digital surfaces.

Problem 6. 1 The surface decision problem: Given a subset S of Σ3, we want to
determine if S is a digital surface.

Problem 6. 2 The surface tracking problem: Given a solid object, we want to
determine (and extract) its boundary surface.

6.3.1 Algorithms for the Surface Decision Problem

How can we tell if a set S is a digital surface? This can be decided in accordance with
Definition 5.4. Three procedures are shown in order to accomplish the following
three tasks:

1. Find all parallel-moves of every 1-cell (line-cell), (si , si(j )) in S, and decide
whether or not each (si , si(j )) has one or two parallel-moves.

2. Search for all 2-cells (surface-cells) by the line-adjacency in S and decide whether
or not all surface-cells are line-connected and every point in S will be in one of
the 2-cells. (We want also check if the set of 2-cells covers S.)

3. Find all parallel-moves of each surface-cell in S and decide whether any surface-
cell has parallel-moves in S. We want to know if S contains a 3-cell or not.
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First, we want to obtain all the parallel-moves of each line-cell in S and decide
whether or not it satisfies the first condition of Definition 5.4. The following lemma
will help design the algorithms.

Lemma 6.1 |Γ (1)(S)| = (1/2)Σ |S|
i=1(ni + 1). |Γ (1)(S)| ≤ 3|S|.

Proof All 1-cells in S can be represented as follows:

Γ (1)(S) = {< si , si(j ) >: i = 1, |S|; j = 1, n|S|}.

where [a, b] = [b, a],so |Γ (1)(S)| = (1/2)Σ |S|
i=1(ni + 1). On the other hand, each

point in Σ3 has at most 6 directly adjacent points, so |Γ (1)(S)| ≤ 3|S| holds. �

We also know that: If p, q ∈ Σ3 and d(p, q) = 1, then there is no point r ∈ Σ3

with d(p, r) = 1 and d(r , q) = 1. If d(p, q) = 2, there are at most two paths whose
lengths are 2 between p and q.

Algorithm 6.1 : Find all parallel-moves of every line-cell and decide whether or
not each line-cell has one or two parallel-moves.

Step 1 Take every point si in the point-adjacency-list sequentially.
Step 2 For each point si(j ) adjacent to si , take all the adjacent points ALP (si(j ))

of si(j ), except si .
Step 3 For each point p in {ALP (si(j )) − si}, find all q’s in {ALP (p) − si(j )}. If

q in {ALP (si)}, then (p, q) are the parallel-moves of (si , si(j )). According
to above Lemma and discussions, for a certain p, there is at most one such
q (�= si(j )) in {ALP (si)}.

Step 4 For each line-cell uk = (si , si(j )), set its parallel-moves to the set ALL(uk).
Thereafter, we have the line-cells’ parallel-move-list:

uk → ALL(uk).

Observe the number of elements in ALL(uk) to decide whether or not each
line-cell has one or two parallel-moves.

We know that each point has six direct adjacent points in Σ3. So each ALP (si) has
at most six elements in 3D, we have the following:

Lemma 6.2 The time complexity of Algorithm 6.1 is O(|Γ (1)(S)|). This can also be
expressed as O(|S|).

Second, we design an algorithm to search all surface-cells in S and to decide
their line-connectedness based on the parallel-move-list of the line-cells, where the
parallel-move-list is obtained using Algorithm 6.1. A surface-cell has four line-cells,
since one line-cell and its one parallel-move construct a surface. Two surface-cells
are line-adjacent if and only if there exists a line-cell that is the intersection of these
two surface-cells. In other words, the line-cell has two parallel-moves to be contained
by these two surface-cells, respectively. We already know that (uk , v) is a surface-cell
in S if v ∈ ALL(uk), so we use the breadth-first-search technique on the line-cells’
parallel-move-list uk → ALL(uk).
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Algorithm 6.2 Search for all line-adjacent surface-cells and decide whether or not
all surface-cells are line-adjacent and cover the set S.

Step 1 Let Q be a queue. Choose a line-cell uk in S and mark it.
Step 2 For each unmarked element v of ALL(uk), put v into Q. Also, put the other

two line-cells in the surface-cell (uk , v) and do not put uk or v into Q.
Step 3 Take an element from Q and mark it, then repeat step 2 until Q turns out

to be empty.
Step 4 If the marked line-cells cover the set S, that is, all line-cells are marked in

their parallel-moves’ adjacency-list, then all surface-cells are line-adjacent
and cover set S.

Because Algorithm 6.2 is the standard breadth-first-search algorithm,

Lemma 6.3 The time complexity of Algorithm 6.2 is O(|Γ (1)(S)|), which is also
O(|S|).

The last thing for deciding whether a surface is line-adjacent is to check whether
each surface-cell has a parallel-move. In the same manner described inAlgorithm 6.1
and based on Algorithm 6.3, we could get all the parallel-moves of each surface-cell
in S and test whether or not each surface-cell has a parallel-move in S. The following
lemma is helpful in the design of the algorithm.

Lemma 6.4 (1) Γ (2)(S) = (a, b) | a is ith 1−cell, b ∈ ALL(i), i = 1, ..., |Γ (1)(S)|}.
2)|Γ (2)(S)| = (1/4)Σγ1

i=1(mi + 1),γ1 = |Γ (1)(S)|.
3) |Γ (2)(S)| ≤ |S|.

Algorithm 6.3 : Find out the parallel-moves of all surface-cells in S, and decide
whether any of the surface-cells have parallel-moves in S, we take the following
steps. (If S is a surface, then there is no such a parallel-move. This is because a
surface-cell and its parallel move will be a 3-cell.)

Step 1 Take every line-cell uk in the line-cell’s parallel-move-list sequentially.
Step 2 For each line-cell uk(j ), which is a parallel-move of uk , i.e., uk(j ) ∈

ALL(uk), take all the elements in ALL(uk(j )) − uk .
Step 3 For each element p in {ALL(uk(j ))−uk}, find all q’s in {ALL(p)−uk(j )}.

If q in {ALL(uk)}, then (p, q) is a parallel-move of (uk , uk(j )). According to
Lemma 4.2.4, for a certain p, there is at most one such q such that (�= uk(j ))
in {ALL(uk)}.

Step 4 For each surface-cell, zt = (uk , uk(j )), put its parallel-moves into the set
ALS(zt ). Thereafter, we have a surface-cell’s parallel-move-list:

zt → ALS(zt ).

Observe the number of elements in ALS(zt ) to decide whether any surface-
cell has a parallel-move.

Based on Lemma 6.3 and Lemma 6.4, we have:

Lemma 6.5 The time complexity of Algorithm 6.3 is O(|Γ (2)(S)|), which can also
be expressed as O(|S|).
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To summarize, deciding whether a subset S of Σ3 is a digital surface can be done
by using the three above algorithms. If we start with an adjacency-list of S, then we
have,

Theorem 6.1 There is an algorithm to decide a digital surface in O(|S|), where S

is a subset of the three dimensional space Σ3.

6.3.2 Surface Tracking

Now, we discuss the surface’s tracking problem. First we need to define the solid
objects in Σ3. A solid object is a point-connected subset of Σ3; and it consists
of 3D-cells, one of which can be made by combining a surface-cell and its one
parallel-move. Thus,

Lemma 6.6 Let V be a subset of Σ3. V is a solid object if and only if ∪{z|z ∈
Γ 3(V )} = V and for every u ∈ Γ 2(V ), |ALS(u)| = 1 or 2. Also, ∂V consists of all
u with |ALS(u)| = 1.

Lemma 6.7 There is an O(|V |) time algorithm to track the surface of a solid object
V .

Proof First of all, we need to decide whether V is a solid object. Using Algorithms
6.1 and 6.3, along with Lemma 6.7, we can find all the 3D-cells. V is the solid
object when these 3D-cells cover the whole set V . Herman and Webster indicated
that all the surface-cells of the face surface in a solid object are line-connected [16].
We knew that the face of a solid object may not be a digital-surface, but we can find
out all the surface-cells, each of which only has one parallel-move to obtain the face
surface of V in Algorithm 6.3. In order to track the surface of V , we made a little
change in functionality (of Algorithm 6.3). Hence, the complexity of the algorithm
after the change still satisfies O(|V |). �

6.4 Algorithms for Digital k-Manifolds

We defined digital k-manifolds in Chap. 5. In this section we present the algorithms
to recognize and extract the digital k-manifolds. First, we discuss the data structure
that stores digital manifolds in each dimension and also the construction of the i-cells
using the principle of parallel moves found in Chap. 5. Second, we give the general
algorithms for finding or recognizing the digital k-manifolds.
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6.4.1 Data Structures of Digital k-Manifolds

Unlike triangulated manifolds, digital manifolds do not need predefined k-cells.
Digital k-cells can be obtained as needed (on-line or dynamically). In 1993, Chen
and Zhang defined a digital manifold using parallel-moves. In Chap. 5, we defined
3D digital manifolds and proved that the face surface of a regular 3D digital manifold
is a digital surface.

In this subsection, we attempt to solve the following problem: Given a set of points,
M , in finite dimensional Euclidean space, we want to decide if M is a k-dimensional
digital manifold and get the boundary of M , which is a (k − 1)-manifold.

We also want to know when M contains the majority of k-cells and a few (k +
1)-cells, can we still extract the k-dimensional components? It is possible for the
(k + 1)-cells to be caused by some sampling errors.

Let the Euclidean space be m-dimensional. All data points are sampled at integer
grid points.

Given a set of points in Σm, in order to design a generalized algorithm, we need
to design a special data structure. This data structure will not only hold Γ n)(M), the
n-cells, but it can also indicate the relationship and connection among Γ i)(M) for
all i.

This data structure also gives a guideline for the future implementation of these
algorithms. The terminology we use here are mostly compatible with C + + and
Java.

This data structure is represented as a vector V , where each component is a
location that saves a structure.

V = (C0, ...., Ci , ...., Cm)

Ci is a structure (or class-object in C + + and JAV A) for i-cells. In order to get
Ci , the set of i − cells, our input is the set Ci−1. An element of Ci is the pair of two
elements in Ci−1. These two elements are parallel-moves to each other.

We also need to use the adjacency linked-lists in graph theory to represent the
data connections for later algorithms.

Let S be a subset of Σ3. The adjacency-list (AL) of S is given as follows:
s1 → s1(0), ..., s1(n1)
s2 → s2(0), ..., s2(n2)
.....................

s|S| → s|S|(0), ..., s|S|(n|S|)
s1 to s|S| are all points in S; si(0) to si(ni) are all directly adjacent points in S,

denoted by ALP (si).

ALP (si) = {si(0), ..., si(ni)}, i = 1, ..., |S|. (6.1)

According to the definition of parallel-move of points, the adjacency-list could be
viewed as a point’s parallel-move-list.

The adjacency-list not only can represent a graph of vertices, but it can also
represent a graph of cubes where adjacency is two cubes sharing a square.
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A new discovery is to regroup sharing adjacency and parallel-move adjacency.
We usually use adjacent points as two points that have a distance of “1.” Since
this case only applies to graphs and to connected components, we also noticed that
point parallel-move generates graph edges. Therefore we put the edge connected
components into the parallel-move category. In this paper, two points u and v are
said to be adjacent if |u − v| = 1. This is direct adjacency.

Algorithm 6.4, The General Algorithm For i-cells : Obtain all i-cells based
on parallel-moves of all surface-cells in S in each dimension. The output of this
algorithm is the vector that contains all i-cells.

C0: (a) Contain all points of M = {v1, v2, ..., v|M|}. Each element is treated as
a 0-cell.
(b) Get the parallel-move (adjacency) list for the 0-cell, which is the (graph)
adjacency-list.

C1: (a) The Input: C0.
(b) Get all 1-cells based on the parallel-move list in C0,
(c) Determine all (shared) 0-adjacency: Use 1-cells as the vertex set, and if
two 1-cells share a 0-cell from C0, then put an edge in between these two
1-cells.
(d) Get all connected components of (shared) 0-adjacency.
(e) Get the parallel-move (adjacency) list for 1-cells.

C2: (a) The Input: C1.
(b) Get all 2-cells based on the parallel-move (PM) list for 1-cells in C1.
(c) Determine all (shared) 0-adjacency and 1-adjacency: Use 2-cells as the
vertex set,
and if two 2-cells share an i-cell from Ci (i = 0, 1), then
put an edge between these two 2-cells.
(d) Get all connected components of (shared) 0-adjacency and 1-adjacency,
respectively.
(e) Get the parallel-move (adjacency) list for 2-cells.

· · · · · ·
Ck: (a) The Input: Ck−1.

(b) Get all k-cell based on the parallel-move list for (k − 1)-cells in Ck−1.
If there are no k-cells, then empty all Ck , Ck+1,..., Cm.
(c) Determine all (shared) i-adjacency: Use k-cells as the vertex set, and if
two k-cells share an i-cell from Ci (i = 0, 1, ..., k − 1), then put an edge
between these two i-cells.
(d) Get all connected components of (shared) i-adjacency (i = 0, 1, ..., k −
1), respectively.
(e) Get the parallel-move (adjacency) list for all i-cells.

We should note that i-cells are only constructed by parallel-moves in our algorithm.
If an i-cell c is the union of two (i−1)-cells a and b in digital space, then a is parallel
to b, a ∩ b = ∅, and c = a ∪ b. In Chap. 5, we discussed how c is a partial graph or
partial structure that contains all edges (faces) of its subsets.
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6.4.2 Decision and Recognition Algorithms

A unified method is studied in this section for recognizing and tracking digital man-
ifolds and their boundaries for any dimension in a given digital space. In the last
subsection, a general purposed data structure was proposed and the algorithm is de-
signed. The algorithm can accept any data set from m-dimensional digital space and
can recognize and extract 1D objects, 2D objects, and k-dimensional objects.

Digital manifolds are the digital forms of curves, surfaces, solid-objects, and
multi-dimensional objects. The digital manifold recognition and tracking is an im-
portant research topic in 3D image processing and computer vision. It can be used
for medical image data extraction and seismic image object recognition.

Since most of these 3D images are obtained by 3D mathematical inversion and
reconstruction, the boundary of an object is generally not very clear. In such a
situation, researchers need an interactive system to recognize and display specific
objects on the screen. By adjusting parameters, such as thresholds, they can then
decide if the object viewed is the desired object.

A general definition for digital manifolds in direct adjacency was first proposed
in [8]. We discussed this intensively in Chap. 5.

For a set M in digital space Σm, we can now discuss the algorithm for Ck . We can
track all (k − 1)-connected components. If they are each (k − 1)-cells in Ck and are
included in one or two k-cells in Ck , then Ck is a union if several semi k-manifolds.
We also want to know whether there are (k + 1)-cells in Ck . If there are none, then
we would have k-manifolds.

The boundary of a k-manifold is a collection of (k − 1)-cells where each cell is
adjacent to a point that is in Σm − M .

Algorithm 6.5 (Finding a k-manifold in Ck) This algorithm is designed for all k.
Input: Ck−1, Ck , and Ck+1 of a data set M . They are all in linked-list format

meaning that for an element a in Ci , we can get the (i − 1)-adjacent neighbor in Ci

for i = k − 1, k, k + 1.
Output: The connected components of M , each of which is a k-manifold.

Step 1: Select an element a from Ck . Get all (k − 1)-connected components.
Step 2: For each (k − 1)-connected component A in Ck , check if each point is a

regular point. Then, check if a (k − 1)-cell is included in just one or two
k-cells. If any of the two conditions is not satisfied, then this component is
not a regular k-manifold.

Step 3: For each element a in A, check its parallel-moves in Ck+1. In other words,
for each element bk+1 in Ck+1 that contains a and bk+1, check if bk+1 − a

is an element in A. If so, this means that A contains a parallel-move of a.
That is to say that A contains a (k + 1)-cell. Then, A is not a k-manifold.
Otherwise, A is a (regular) k-manifold.

The following algorithm extracts the boundary of the k-manifold A. The primary
characteristic of a boundary of a k-manifold is the following: (1) The boundary is
a collection of (k − 1)-cells, (2) Each of these (k − 1)-cells has only one k-cell in
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M that contains this k − 1-cell, and (3) These k − 1-cells are (k − 2) connected
components.

Algorithm 6.6 This algorithm gets Bk , which is a boundary of the k-manifold in
Ck . We usually say that we track the boundary of a manifold.

Input: (a) Ck , Ck−1, and Ck−2

Output: (a) A list containing all (k − 1)-cells that are (k − 2)-connected. This
boundary is called a semi-boundary manifold of a k-component. (b) Decide if the
semi-boundary manifold is a manifold.

Step 1: From the output of Ck , we can get all (k−1)-connected components that are
k-manifolds (Algorithm 6.5). Find a (k − 1)-cell that only has one parallel-
move in Ck−1. That means this (k − 1)-cell is on the boundary. Track all of
its neighbors that share (k − 2)-adjacency along with the neighbor whose
(k − 1)-cell is on the boundary (there is only one in Ck−1). We will get all
connected sets on boundary. We can search for all elements in the connected
set Ck .

Step 2: Deciding if a boundary is a manifold is easy. We just need to check if each
point is regular and whether each (k − 2)-cell can be contained by exactly
two (k − 2)-cells. The boundary of a k-manifold should be closed.

In summary, this section uses a unified data structure for algorithm design. The
algorithms are based on the definitions presented in Chap. 5.

6.5 Algorithms for the Orientability of Digital Surfaces

A surface is not orientable if it contains a subsurface, which is topologically equiv-
alent to a Mobius band. In this section, we want to solve the surface orientation
problem in digital space. This problem can be stated as follows: Given a surface S,
we want to determine if S is orientable?

A unsolved problem is determining the number of Mobius bands on a closed
surfaces in high dimensional digital space. As an example, we show a digital Mobius
band below (Fig. 6.2). See [9, 17, 18]

How do we decide whether a surface is a non-orientable surface? In pure mathe-
matics, we decide whether the surface contains a subsurface, which is topologically
equivalent to a Mobius band. However, to simulate the mathematical method for
the discrete decision problem here is impossible. In fact, the digital world has its
own advantages since a wonderful algorithm for deciding whether a digital surface
is non-orientable was finally found [5, 9].

Let p1, p2, p3, p4, dD(pi , p(i+j )mod(4)) = 1 and be a surface-cell; then, its
two normal lines can be represented as (p1, p2, p3, p4) and (p4, p3, p2, p1) (see
Fig. 6.3a). Meanwhile, all of the loop-shifts within are equivalent. For example,
(p1, p2, p3, p4) = (p3, p4, p1, p2).
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Fig. 6.3 Surface-cell orientations

Let A and A′ be two surface-cells that are line-adjacent (see Fig. 6.3b). There
are 4 normal lines (p1, p2, r2, r1), (r1, r2, p2, p1), r1, r2, q2, q1, and (q1, q2, r2, r1).
The pairs, (p1, p2, r2, r1) with r1, r2, q2, q1 and (r1, r2, p2, p1) with (q1, q2, r2, r1), are
called adjacent normal-lines.

Generally, if N and N ′ are two normal-lines of two adjacent surface-cells A

and A′, respectively, then N and M are called adjacent when the orders of r1, r2

appearing in N and N ′ are different, where A ∩ A′ = {r1, r2}. We can determine the
connectedness of normal-lines based on their adjacency. We can see that a surface S

is nonorientable if and only if all normal-lines of S are connected.

Lemma 6.8 Let S be a surface, where N and N̄ are two normal-lines of some
surface-cell of S. S is nonorientable if N and N̄ are connected.

Proof It is easy to see that all normal-lines of S can be separated into two connected
components, and N and N̄ are in different connected components. Therefore, the
two connected components are connected when N and N̄ are connected. �
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We can design an optimal algorithm to decide whether a surface S is orientable or
nonorientable. In fact, after Algorithm 6.2, we have a line-adjacency (not parallel-
adjacency) list of surface-cells of S. Using the breadth-first-search in all normal-lines
of S, S is nonorintable if the amount of the connected normal-lines is greater than
|Γ (2)(S)| for a continuous search; otherwise, S is orientable. In summary, we have:

Theorem 6.2 There exist an O(|S|) time algorithm for the surface orientable
problem: Given a surface S, decide whether S is orientable.

An detailed algorithm for more general case will be given in Chap. 7.

6.6 Isosurface and λ-Connected Boundary Surface Tracking

In a 3D image, an isosurface is a surface where the value of each point on the surface
is the same. In other word, if there is a continuous function on a data volume, the
points with the constant value forms an isosurface. There are many applications for
extracting this type of surfaces for finding the constant valued pressure, temperature,
or velocity for real world problems.

A digital image is usually a gray scale image or colored image. There is no easy
way to accurately scale an image into a binary image [13, 15, 16, 21].

Using the upper-lower thresholds, we can clip a gray scale image into a binary
image. However, we can also just use the thresholds, the lower bound and upper
bound, to track the surface of a solid object. This is called an isosurface. Therefore,
the algorithm should be the same as the one we discussed above where we are looking
for the value to fall into a range and not just specifically for a value of “1” in the
binary image.

Here is another case where the value not in a bound.
Chen developed a so-called λ-connectedness method that can be applied to de-

scribe such a problem [3, 5, 6]. A corresponding segmentation technique has been
studied intensively.

To involve λ-connectedness in surface tracking is not the same as using this method
in segmentation.

First we need to define what a λ-connected boundary point is based on the target
element. For example, our objective could be to find an element (point) with a specific
value or to find a certain location and then obtain the value. Let us assume that we
start at a point with the value f (p). We know that a λ-connected set starting at p

always exists. However, the boundary of the connected set may not be λ-connected
on its own. This would cause a serious problem for tracking because we do not know
the boundary unless we determine the whole connected set. However, this idea is
against the purpose of tracking the boundary of an object since it avoids searching
the whole component.

λ-connectedness allows a small change on the values of neighboring points. If it
is gray-scale, then we can allow the value to change gradually. For instance, if we are
currently at a point with value 100, then we would look for the adjacent point with
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values 100, 101, or 99 to first move to. The formal definition of λ-connectedness is
included in Chap. 12, where we discuss this further.

Isosurfaces and λ-connected surfaces are two types of surfaces. One is in the
“vertical” value clip level and the other is in the “horizontal” connectivity. There are
two ways of solving this problem of λ-connected surfaces:

(1) Assume that the image can be divided into several “continuous” components,
each of which satisfies the condition of normal λ-connected segmentation.

(2) The boundary part can be repeated. In this way, we can still find the boundary
of λ-connected sets.

The solutions will be found in Chap. 12.

6.7 Remarks

In this Chapter, several algorithms for solving problems regarding surface decision,
surface tracking, and surface orientation are presented. These algorithms are devel-
oped on the basis of the digital surface definition given in Sect. 4.4.1 [9, 10]. In
the past, some research works were related to find the boundary surfaces [2, 15].
Rosenfeld and Reed showed an algorithm for surface decision [19, 20].

This chapter provided a systematic technique for topological boundary tracking
algorithms based on the work presented in [4, 5]. We also accomplished these al-
gorithms with λ-connectedness. See Chap. 9 for more details of the definition of
λ-connectedness. We developed a λ-connected tracking algorithm that preserves the
boundary of a given digital surface or the union of digital surfaces. We apply these
techniques in real image processing such as human brain image extraction.

The algorithm that extracts 1D and 2D components can be found in [4]. The
generalization of the algorithm that is able to find cycles in each i-skeleton for
homology groups will be discussed in Chapter 13 and 14. The smallest i-cycle, that
is not an (i + 1)-cell, plays an important role in homology groups related to the
generators of the groups [7].
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Chapter 7
Discrete Manifolds: The Graph-Based Theory

Abstract This chapter presents a general-purpose definition of discrete curves, sur-
faces, and manifolds. This definition only refers to a simple graph, G = (V , E)
and its topological structure. Similar to digital manifolds defined in Chap. 5, the
ideas presented in this chapter still use recursive definitions for discrete curves, sur-
faces, solid objects, and so on. Specifically, a vertex is a point-cell, and an edge is
a line-cell. A surface-cell (2-cell) is defined as a special simple closed “curve”—a
closed semi-curve with the minimum cycle property. In general, a k-cell will be a
closed semi (k − 1)-manifold with minimum “cycle” property. For a graph G, all
i-cells, i = 0, ..., n + 1, will provide topological structure to the discrete space G.
An n dimensional discrete manifold M is defined as: (1) M consists of n-cells and
any two n-cells are (n − 1)-dimensionally connected, (2) each (n − 1)-cell in M is
contained by one or two n-cells, and (3) there is no (n + 1)-cell in M . We also con-
sider the definition of orientable and non-orientable surfaces with a corresponding
decision procedure. Finally, some unconventional examples of the definitions, such
as quadtree surface-cell representation, an octree solid-cell representation, Voronoi
decomposition, and Delaunay simplifications are presented.

Keywords Discrete curve · Discrete surface · Recursive definition · Discrete
manifold · Topological structure · Graph · Algorithm

7.1 What Should be a Discrete Manifold

Basically, discrete manifold usually refers to the piece-wise linear approximation of
a continuous manifold. For instance, a triangulation of a 2D manifold is a 2D discrete
manifold. But this is only a description and not a definition.

Why do we need to define a discrete manifold? We need to define a discrete
manifold because there is a need to know the purpose of computerized data storage,
or computing purpose. It is simple for someone to mathematically define a manifold,
but we could not store such a manifold in a computer in digital form.

For instance, we can define a single variable as a continuous or smooth function,
but we cannot store a general continuous function in a computer, we can only store
an approximation of the continuous function. This is because we cannot store every
point of a function in the domain of [0, 1]. One can also say that we can store a
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P
A closed cycle P

An object

a b

Fig. 7.1 Examples of discrete plane points: a An inner point of a digital plane, and b an inner point
of a triangulated plane

function if it is a polynomial such as f (x) = a0 + a2x
2 + a3x

3 by storing a0, a2, and
a3. However, not every function can be represented as a polynomial. We can only
store a finite number of polynomials. To summarize, we can only store a finite number
of lines or polynomial curves that are an approximation of the original function.

On the other hand, when a set of points is collected from MRI or CT machines,
how can we tell whether this data set is a manifold or not? We must first have a
definition for discrete manifolds.

Researchers found certain characteristics of discrete manifolds and what these
manifolds had in common. First, all data points of a manifold are collected discretely.
Second, the distance between two sample points may indicate the existence of a line
between the points if they are nearby. Therefore, we will first have a graphG = (V , E)
where only V is real and E is just an interpretation.

The next question is: Can we define a discrete k-manifold based on a graph? In
other words, can we build a topological structure on a graph? Similar to partitioning
a continuous manifold into triangles or squares to get a discrete manifold, called the
top-down method, we now want to define discrete 1-cells, 2-cells, and k-cells, which
is called the bottom-up method.

In Chap. 5, we defined the digital manifold based on k cubic cells. This is because
we can have a unique way of defining k-cells in digital space Σn. How we define
discrete manifolds on a graph is the challenge in this chapter.

This chapter generalizes the definition of digital manifolds to discrete manifolds.
To begin, let us look at the common properties of a triangulated manifold and its
corresponding digital manifold. Since a plane is a simplest surface, we examine the
an inner point of a digital plane and its counterpart in a triangulated plane in Fig. 7.1.

We can see the following in the bounded areas of Fig. 7.1a and b: (1) Each 1-cell
(edge) is included in two 2-cells, which is true for every inner (internal) point of the
2D manifold. (2) Point p and its neighboring points form a disk. In other words, its
analog is homemorphic to a disk in 2D Euclidean space. (3) The neighborhood of
p forms a closed cycle that is “homemorphic” to a circle. In addition to those three
requirements, a surface should not contain any 3D cells.
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These observations become the basis of our definitions of discrete manifolds.
In Chap. 9, we discuss the close relationship between discrete manifolds and k-
simplicial complexes. However, a k-discrete manifold is not exactly equivalent to a
k-simplicial complex.

7.2 Discrete Curves on Graphs

For a graph G = (V , E), a discrete curve is a path P . A simple curve is just a simple
path. There is only one small caveat: P should not contain any 2-cells. This is a
little difficult problem for us since we must define a 2D topological structure on G

in order to appropriately define a discrete curve, or 1D manifold.
Before the formal definition, we need some terminologies for sets. Let S be a set.

Assume S ′ is a subset of S, denoted by S ′ ⊆ S. If S is not a subset of S′, then S ′ is
called a proper-subset of S, denoted by S′ ⊂ S.

Let G′ = (V ′, E′) be a graph where V ′ ⊂ V and E′ ⊂ E for graph G = (V , E).
G′ = (V ′, E′) is called a sub-graph of G. If E′ consists of all edges in G whose two
joining vertices are in V ′, then this sub-graph G′ = (V ′, E′) is called a partial-graph
of G, denoted by G′ 	 G. If V ′ is a proper-subset of V , then we denote G′ ≺ G.

We note that for a certain subset, V ′ of V , the partial-graph G′ with vertices V ′ is
uniquely defined.1

Definition 7.1 Each element of V is called a point-cell, 0-cell, or point. Each
element of E is called a line-cell or 1-cell.

A path is a subgraph, and a simple closed path can be viewed as a 2-cell (surface-
cell). However, we want a 2-cell that only contains the minimum number of vertices,
if possible. We call this the minimal cycle, meaning that it does not contain any other
2-cells. The idea comes from Σ2 where every 2-cell contains only four points. For
general graph G, we cannot require that every 2-cell have a unique shape or the same
number of vertices, but we can restrict the graph to not contain any other 2-cell.
Therefore,

Definition 7.2 If a partial- graph D of G is a simple cycle, then D has no proper
sub-graph that is a closed path. Such a D is also called a minimal-cycle.

A 2-cell in this book must be a minimal cycle, but a minimal cycle may or may
not be a surface-cell. Let’s take a look at the G shown in Fig. 7.2.

In Fig. 7.2a and b, every surface-cell is clear. However, G in (c) and (d) has the
same V and E, but each could have a different interpretation.

The simple cycle C = {a, b, c, f , i, h, g, d} (without point e in the center) is a
minimal cycle. If C = {a, b, c, f , i, h, g, d} is not a surface-cell, then G looks like a

1 The concepts of partial-graphs and subgraphs are important in this chapter. In our earlier publica-
tions, such as [3, 6, 7], partial-graphs were defined as subgraphs, which we correct here. However,
the name itself is not a huge problem in understanding the context.



110 7 Discrete Manifolds: The Graph-Based Theory

a

b c

d

b

a

c

d

b ca

d e f

g lh

a b c

d e f

g h l

a b

c d

Fig. 7.2 Examples of discrete spacesa A minimal cycle in 2D; b A minimal cycle in 3D; c
{a, b, c, f , l, h, g, d, a} not considered to be a 2-cell; d {a, b, c, f , l, h, g, d, a} considered to be a
2-cell

plane (in Fig. 7.2c). If C is a surface-cell, then G would have a 3-dimensional-cell
(3-cell) as shown in Fig. 7.2d. This becomes a difficult thing to think, a minimum
cycle, even though it looks like a 2-cell, we do not have to define it as a 2-cell. On
the other hand, a minimum cycle having many vertices, we still can define it as a
2-cell.

Thus, it is important to know: (1) A geometrical interpretation of G is needed
to give a geometrical frame (a topological structure in [21]) to G, (2) Defining a
topological structure requires determining a class of cellular complexes [25], and (3)
The set of 2-cells is a subset of the set of minimal cycles in G.

Let C be the set of all minimal cycles in G. Defining a subset of C as the set of
surface-cells is a way of generating a geometrical frame for G.

Definition 7.3 Let C be the set of all minimal cycles in G. A subset of C, U2, is
called a 2-cell set if for any two different minimal cycles in U2, u and v, u ∩ v is
connected in u ∩ v.

In Definition 7.3, u∩v is a subset of a path. That u∩v is connected in u∩v means
that the intersection is “point-connected” or “0-connected.” We want to avoid the
case shown in Fig. 7.3. Even though B can be a 2-cell in continuous space, we would
still like to keep the simplicity here because we can always decompose B into two
2-cells in continuous space. There is no need to keep such a case as in the definition.
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Fig. 7.3 The intersection of
two cells should not be
disconnected as shown in this
figure

A B

Each element of U2 is called a surface-cell, with respect to the pair <G, U2 >. If
u ∩ v is empty, then u and v are not adjacent. We want u ∩ v to be a connected path
because we need the intersection of two surface-cells to be on the “edges” of these
two surface-cells. If u ∩ v is just a node (point), we say u and v are point-connected.
If u ∩ v contains line-cells, then u and v are said to be line-connected.

A partial-graph is unique for a certain subset of the vertices of G. If G′ is a
subgraph, then G(G′) denotes the partial-graph with all vertices in G′. For a subset
of the vertices of G, called V ′, G(V ′) will be the partial-graph of G with all vertices
in V ′.

Now we are going to define two more concepts before defining a discrete curve.
First, a simple path will be also called a pseudo-curve . Second, define a semi-curve.

Definition 7.4 A semi-curve D is defined as having one of the two following prop-
erties: (1) D is a simple path P = {p0, ..., pn} such that G(P ) = P if (p0, pn) is not
an edge, or (2) D is G(P ) = P ∪ {(p0, pn)} if (p0, pn) is an edge in G.

We can view a semi-curve as a subset of vertices of G since G(P ) = P . A semi-
curve is a partial-graph D of G where each vertex has one or two adjacent vertices
in D. In other words, a semi-curve D is a simple path p0, ..., pn such that pi and pj

are not adjacent in G if i �= j ± 1, except where i = 0 and j = n.
If C is a closed semi-curve, then G(C) does not contain any other 2-cells except

that C itself could be a 2-cell. In other words, if C is a closed semi-curve and C /∈ U2,
then C will separate a 2D plane into two components. See Fig. 7.2c. This property
is called the Jordan curve property that holds true in an Euclidean plane.

Definition 7.5 For a graph G = (V , E) and a set of 2-cells in < G, U2 >, D ⊂ V is
called a curve if D is a semi-curve and D does not contain any 2-cells in U2 (meaning
that D does not contain any subset that are the vertices of a 2-cell in U2).

As a matter of fact, we intentionally did not use G(D) in Definition 7.5 because
G(D) and D are in fact equivalent to each other. We can summarize the above
definitions to provide a concise definition for discrete curves:

For a graph G = (V , E) and a U2 of G, D ⊂ V is said to be a discrete curve with
respect to <G, U2 > if: (1) D is connected (0-connected or point-connected), (2)
Each point (0-cell) is contained by one or two line-cells, and (3) D does not contain
any surface-cells in U2.

It follows easily that:
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Lemma 7.1 (1) If a semi-curve C is not a curve, then C is a 2-cell. (2) If U2 is
empty, then every simple path (pseudo-curve) is a curve.

In summary, we would like to define a 2-cell as a semi-curve. However, we si-
multaneously want a discrete curve to have properties of the Jordan curve theorem
(in most cases): A simple closed curve separates a surface into two disconnected
nonempty sets. The definition that “a simple discrete (or digital) curve is just a
simple path in G” [24] is a commonly accepted, intuitive definition of curves, or
pseudo-curves in this chapter. The reason we do not use it as a mathematical defi-
nition of discrete curves is because it breaks too easily this fundamental theorem in
mathematics. There is a simple path, such as {e, f , l, h} in Fig. 7.2c, that does not
separate the surface into two disconnected nonempty sets. Even though the analog
of a discrete path in Euclidean space would be good for this property, maintaining
the property of the Jordan curve theorem is important in discrete space as well.

7.3 Discrete Surfaces

After extensive discussion on discrete curves, now it is much easier to define discrete
surfaces. We cover three types of discrete surfaces here: (1) discrete pseudo-surfaces,
(2) discrete semi-surfaces, and (3) discrete surfaces. We treat pseudo-surfaces as nat-
urally defined triangulated surfaces or mesh surfaces. The semi-surface is almost a
discrete surface except that a closed semi-surface can be a 3-cell. Finally, a dis-
crete surface holds most of the mathematical properties in discrete space just as a
(continuous) surface does in Euclidean space.

The philosophy of building the concepts of discrete surfaces has the same hi-
erarchy as the philosophy behind discrete curves: A pseudo-surface is a subgraph
that is “soft” and may have multiple interpretations on its supporting vertex set. A
semi-surface is a partial-graph that is “solid” and has one unique interpretation. A
discrete surface is a semi-surface, if it is not a 3-cell.

Simplicial complexes or cellular complexes of combinatorial topology or alge-
braic topology can be based on a similar concept such as the pseudo-curve/surface.
It is clear that we like to build more specific and sound discrete surfaces or manifolds
in real computations. The best examples of these, digital surfaces and manifolds, are
presented in Chaps. 5 and 6. (these examples are like the convex-hull since they are
unique when the points are fixed).

7.3.1 A Special Set of 2-cells

Pseudo-surfaces are the same as “naive discrete surfaces” that can be defined as a
collection of 2-cells, 1-cells, and 0-cells, as we do in Chap. 9 (as cell complexes).
For a continuous space, it is fine since we can choose whether or not we want to put
a 3-cell into the complex. If we do not, it is a surface. In other words, we select what
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we want to form a surface. However, in discrete case, since we have to consider the
computational cost, there are so many options when the set of 0-cells and 1-cells
are fixed that selecting U2 has an exponential number of options and no computing
machine can handle it.

Consequently, in the computing sciences, the selection of U2 is a critical issue.
We must tell the machine what the best way to get a discrete surface is. In order
to determine the geometrical and the topological structure of graph G in a unique
manner, we give a default definition of U2 here. Unless otherwise specified, this
default definition applies to all of our cases.

Definition 7.6 (Default Definition) Let G be a simple graph, the default definition
of U2 of G is:

(1) Assume m is the minimum value of the lengths of all simple cycles. Then, all
simple cycles with length m are surface-cells, i.e. in U2.

(2) If a point p is not a point of any surface-cell in U2 by (1), then a minimum
value of the simple cycle containing p will be included in U2.

We at least have one U2 defined and will skip the explanation on how to obtain a
U2 in further sections.

7.3.2 Discrete Semi-surfaces, 3-cells, and Discrete Surfaces

We now consider discrete surfaces. Based on prior knowledge of defining a discrete
curve, the definition of discrete surface would also be dependent on the definition of
3-cells. In this case, a 3-cell would be a minimal closed semi-surface. Of course, our
definitions are not dependent on how we select U2, the set of surface-cells or 2-cells.
For G, we use G2 =<G, U2 > to represent the set G = (V , E) with adding 2-cells
U2. If D is a partial-graph of G, U2(D) = {s|s ∈ U2&V (s) ∈ D}, where V (f ) is the
set of vertices of 2-cell s. <D, U2(D)> is a partial structure of <G, U2 >. (By the
way, since V = U0 and E = U1, <G, U2 >=<U0, U1, U2 >.)

Definition 7.7 Let D be a partial-graph of G and S =< D, U2(D) >. S is a semi-
surface if and only if each 1-cell of D is included in one or two 2-cells of S. S is
called a closed semi-surface if and only if each 1-cell in S is included in exactly two
surface-cells of S.

We also can view S or D in Definition 7.7 as the vertex set of D (or S) because D

is uniquely defined by its vertex set. In other words, we can use the “vertex subset of
D” as a substitute for the “partial-graph of D” in the definition. A 3D-cell (solid-cell
or 3-cell) is always a closed semi-surface, but a closed semi-surface may not be a
3-cell.

Similarly, we can define:

Definition 7.8 A closed semi-surface is said to be a minimal closed semi-surface
if it does not contain any proper subsets that are closed semi-surfaces.
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Any minimal closed semi-surface can be a 3-cell. A 3-cell in this chapter must be a
minimal unit of the 3D structure. A special set of minimal closed semi-surfaces forms
a topological structure on G, denoted by U3, a set of 3-cells. Similar to Definition
7.3, such a special set is defined as follows:

Definition 7.9 Let S be the set of all minimal closed semi-surfaces in G. A subset
of S , U3, is a 3-cell set if for any two different elements in U3, u and v, u∩v is empty,
a vertex, point-connected if it contains line-cells, or line-connected if it contains
surface-cells (in u ∩ v).

In most cases, u ∩ v just contains a point (0-cell), a line-cell, or a 2-cell. Each
of the elements of U3 is a 3-cell with respect to <G, U2, U3 >, in other words, the
discrete space.

Definition 7.10 Subset S of G is a discrete surface with respect to <G, U2, U3 > if
and only if S is a semi-surface and S does not contain any subset that is a 3-cell in U3.

In fact, S is a point set (or a vertex set). S has a unique interpretation in G3 =<

G, U2, U3 >. That is < G(S), U2(S), U3(S) >, a partial structure of G3. The follow
definition is about the boundary of a discrete surface:

Definition 7.11 The boundary of surface S, denoted by ∂S, is a subset of S such
that for any point b ∈ ∂S, there is a line-cell e containing b where e is contained by
exactly one 2-cell in S.

Corollary 7.1 A discrete surface is closed if and only if ∂S = ∅.

7.4 Properties of Discrete Surfaces

In this section, we examine some basic properties of discrete surfaces. As we know,
the discrete surface defined in this chapter is a “sound” or “hard” discrete surface.
This means that there is only one interpretation for this surface. On the contrary, when
we are able to generate multiple surfaces on a vertex set (the supporting set), we refer
such type of discrete surface to a pseudo-surface, which is similar to triangulated
or meshed surfaces. The foundation related to simplicial complexes that will be
discussed in later chapters.

In this chapter, the “hard” discrete surface is a special case of 2D cell complexes.
This special case is very helpful in algorithm design for real world calculations related
to geometric problems.

In Chap. 2, we presented the complete graph K5 and the bicomplete graph K3,3.
These are two exclusive cases of planar graphs [19]. The following lemma will
confirm that K5 and K3,3 are not discrete surfaces.

Lemma 7.2 K5 and K3,3 are not discrete surfaces under the default definition of
2-cells.

Proof Let us redraw K5 and K3,3 below.
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a b

Fig. 7.4 The complete graph K5 and the bicomplete graph K3,3

Fig. 7.5 A planar graph that
is not a discrete surface

According to the default 2-cell definition (Definition 7.6), every 3-point-cycle is
a surface-cell in K5 and every 4-point-cycle is a surface-cell in K3,3. We can see that
every edge in (a) is contained by more than three 2-cells. In (b), every edge is also
contained by at least three 2-cells (Fig. 7.4). �

A discrete surface can be viewed as a planar graph. However, a planar graph
sometimes is not a discrete surface. The following result is interesting and it shows
the relationship of discrete surfaces and planar graphs.

Lemma 7.3 A discrete surface is a planar graph, but a planar graph may not be a
discrete surface.

Proof We know that G is a planar graph if and only if G does not contain K5 or K3,3.
According to Lemma 7.2, a discrete surface is a planar graph. However, looking at the
following example, we can see that this planar graph is not a surface (Fig. 7.5). �

The reason a planar graph may or may not be a discrete surface is that it is
dependent on how the 2-cell set U2 is formed. The next lemma shows that if we
accept the simplex as a member of U2 as we see it on a triangulated surface and we
have a unique interpretation of the surface, then this surface is a discrete surface as
defined in this chapter. This leaves a huge problem in finding U2, which is far to
unique, refer to the Catalan number in Sect. 1.2.1.
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Lemma 7.4 The simplex (or convex polygon) decomposition of a continuous surface
forms a discrete surface if U2 only contains surface triangles.

Proof We define U2 to be
U2 = ∪{∂Δ}

where Δ is a simplex on the decomposed surface. Any line segment is contained
by at most two simplexes. On the other hand, the intersection of two simplexes is
empty, a point, or a line segment. There is no 3-cell. (In fact, in computer graphics,
we do not include any 3-cells in the data set.) This matches the definition of discrete
surfaces.

7.5 Regular Surface Points

In Chap. 4, we introduced the concept of ordinary points on curves. A 1D manifold
is a curve in which every point is an ordinary point. An ordinary point means that
there are no branches for any point on the curve. For the same reason, we do not want
“branches” on a surface, i.e. the neighborhood of each point on a discrete surface
must be similar to a 2D disk. We call such a point a regular (or ordinary) surface
point for discrete surfaces.

Let S be a subset of G, S(p) denotes all points in the set of all 2-cells in S

containing p. In other words, if q is in a 2-cell that contains p, then q ∈ S.

Definition 7.12 A point p in a discrete surface S is a regular (or ordinary) point if
the set of all surface-cells containing p are line-connected among these surface-cells.
If a point in S is not regular, then it is called irregular.

This definition will reject the case of that the intersection of the neighborhoods
of two surface points is only a point. We give an example shown in Chap. 5.

We may generalize the above definition. For any < G = (V , E), U2, U3 >, a
point p ∈ V is said to be a regular surface point if S(p) (meaning the partial-graph
generated by S(p) with all line and surface-cells) is a surface and all surface-cells in
S(p) are line-connected.

Lemma 7.5 Assume S is a discrete surface and there is a point p ∈ S that is not
on the boundary of S. Let p have only two adjacent points p′, p′′ in S. Then: (1)
There are two 2-cells A, B such that A ∩ B contains p′, p, p′′, and (2) If p′, p′′ are
adjacent in S, then p′, p, p′′ form a surface-cell.

Proof The first statement is easy to prove. Assume A and B contain p′, p. Because
A is a simple cycle, A must contain two adjacent points of p. Therefore, A must
contain p′′ since p has only two adjacent points. For the same reason, B contains
p′′. See Fig. 7.6a

In the second statement, if {p′, p, p′′} is not a 2-cell, then there are two surface-
cells, C and D, where C contains 1-cell {p′, p′′} and D does as well. Now A ∩ C

contains p′, p′′, but p′, p′′ are not connected in A ∩ C. This does not satisfy the
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Fig. 7.6 Two adjacent points case of an inner point p

definition of 2-cells, i.e., A∩C must be connected in A∩C. So there is a contradiction.
See Fig. 7.6b and c. �

If p only has two adjacent points p′, p′′ in surface S, and p′, p′′ are not adjacent,
then p is called an abundant point . This means we can delete p and make p′, p′′
adjacent without changing the structure of S, except for the two surface-cells con-
taining p. (This is true except in the case where we are making non simple graphs.
If we delete “p,” then it would generate a cell that only has two 1-cell (edges) as its
boundary. In Fig. 7.6c, this cell can be merged with other cells, i.e. we can delete
both edges (p p’) and (p,p’)’).

We could assume that S does not contain any abundant points for the rest of this
chapter. It is also true that if a surface S does not contain any abundant points, then the
intersection of any two surface-cells in S can at most contain one line-cell. However,
in general, we should not make such an assumption.

In order to know about the neighborhood of a point p inside of S, we want S(p)
to be a disk-like shape that is homemorphic to a 2D disk in 2D Euclidean space. We
would like to have S(p) − {p} be a simple cycle that is homemorphic to a circle in
Euclidean space. We now can prove this important observation.

Lemma 7.6 Let S be a discrete surface without abundant points. If p is an inner and
regular point of S, then there exists a simple cycle containing all points in S(p)−{p}
in S.

Proof Let p be an inner and regular point of S. Assume q is a point other than
p in S(p) and a surface-cell A contains q. Then, A is a semi-curve. Thus, q has
two adjacent points a, b in A. If p = a (or p = b), then {q, p} is a line-cell in S.
According to the definition of S and since p is an inner point, there are two surface-
cells containing {q, p} in S, one of which is A and we assume the other is B. B must
be in S(p) because B contains p. Then q must have an adjacent point r in B, and
r �= p.
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Fig. 7.7 a A paper strip with two ends; b A Mobius strip by attaching flipped two ends. (redraw
needed)

If b = r , then S(q) = A∪B. Otherwise, S is not a surface. Thus, q is an abundant
point of S.

If b �= r , we know r ∈ S(p) − {p}, then q has two adjacent points in S(p) − {p}.
If p �= a and p �= b, then q has two adjacent points in S(p) − {p}. S(p) − {p}

is a finite set, so such a procedure generates a closed path P = p0, .....pn, p0, which
includes all points in S(p) − {p}. �

In order to make the connection to digital surface in Σ3, we want to define the
following concept.

Definition 7.13 Let S be a discrete surface. Then, p is said to be a simple surface
point if S(p) − p is a closed curve.

A regular inner point is a simple surface point in digital space Σm. For a digital
surface S in Σ3, a simple surface point under Morgenthaler–Rosenfeld’s definition
is a regular inner surface point in the case of direct adjacency (Chap. 5; [14]).

We continue our discussions on special properties of regular discrete surfaces in
the following two sections on orientable properties and separable properties.

7.6 Orientability of Discrete Surfaces

In 3D, a surface-cell has two sides, just like a coin has a face and a tail. However, in
a Mobius strip, one can move from one side to another side smoothly. This type of
surfaces is called none-orientable. See Fig. 7.7.

We can make a Mobius strip by taking a long, thin strip of paper and attaching
the two short ends together so that the top of one end is at the bottom of the other
(Fig. 7.7a).

The purpose of orientation is simple in that it is to determine the outside and
inside of a closed curve in a 2D or a closed surface in 3D ((m − 1)D hyper surface
in mD space). We have presented a surface that is not orientable in 3D digital space
in Chap. 6.
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Let C be a simple cycle in G = (V , E). C is p0, p1, · · · , pn, p0, so it has
two orientations: (a) Beginning from p0 to p1,..., pn and returning to p0, and (2)
Beginning from p0 to pn,..., p1 and returning to p0. These two orientations are
called two normals of C. If p0, p1, ..., pn, p0 is clockwise, then p0, pn, ..., p1, p0 is
counter-clockwise, and vice versa.

Two orientations of a simple cycle C are denoted by N (C) and N̄ (C). That is to
say, if N (C) = p0p1...pnp0, then N̄ (C) = p0pn...p1p0, and vice versa. These two
orientations are called natural orientations based on cycle C’s looping direction.

Consider a partial-graph G(C) with all vertices in C. G(C) may contain more
edges than C. In such a case, it is possible to have another orientation for G(C), i.e.,
a permutation of p0, p1, · · · , pn, say, q0, q1, · · · , qn, where q0, q1, ..., qn is a simple
cycle other than N (C) and N̄ (C) regardless of any shift of the points in a loop.
Therefore, the number of orientations of G(C) may be greater than two.

However, if G(C) = C, i.e., each point in C has exactly two adjacent points in
C ∈ G, then, G(C) has only two orientations.

This result is easy to prove because there is no permutation of p0, p1...pn that is a
simple path other than p0, p1, ..., pn and pn, ...p1, p0. Any surface-cell A has exactly
two orientations since a surface-cell is a closed semi-curve so G(A) = A. Thus, if A

is a surface-cell, then an orientation of A (view A as a simple cycle) is an orientation
of G(A) (or G(A) consists of all vertices).

Suppose S is a discrete surface on G, i.e. <G, U2, U3> has been defined, and
S is a discrete surface with respect to <G, U2, U3>. If A, B are line-adjacent (1-
adjacent) two surface-cells in S, then A, B are two simple cycles. We have a total
of four orientations to consider for A and B: N (A), N̄ (A), N (B), and N̄ (B). Let
A ∩ B = α where α is an arc (non-closed simple path). If α = a1, .., ak , then we can
denote α−1 = ak , ..., a1.

Our purpose is to pass one normal to another normal from A to B or from B to A

(through α or α−1). This is a different method compared to the method in topology
where A and B are combined as a bigger cell by dismissing the intersection to get two
orientations of A∪B. The method presented here is better for algorithmic solutions,
meaning that we can easily decide if a surface is orientable or not. This is because
we do not need to store a new 2-cell of A ∪ B. (The union is not viewed as a 2-cell
here.)

Definition 7.14 Let A, B be two line-adjacent surface-cells where A ∩ B = α.
Then nA ∈ {N (A), N̄ (A)} and nB ∈ {N (B), N̄ (B)}) are said to be normal-adjacent
if α is a part of nA and α−1 is a part of nB , or α−1 is a part of nA and α is a part of nB .

For two 2-cells A and B, no matter how we name N (A) or N(B). Now, we can
define the connectivity of normals between any two 2-cells in a surface S.

Definition 7.15 Two normals nA and nB of two 2-cells A and B are called normal-
connected if there is a normal path nA = N0, · · · , Nm = nB where Ni , Ni+1, i =
0, · · · , m − 1, are normal-adjacent.

What we want to do is a little more clear now. We want to establish a connection
through normals for all 2-cells in S. Think of S as a meshed sphere, the normals will
be separated into two components: one indicating the inside of the sphere and the
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other indicating the outside of the sphere. If S is a Mobus strip, then we only have
one component of those normals. In fact, we have established the following lemmas:

Lemma 7.7 Normal-connectedness is an equivalence relation.

Proof First, we define nA and nB as normal-adjacent. Second, it is easy to know that
if nA to nB are normal-connected, then there is a path nA = N0, · · · , Nm = nB . So,
nB to nA would be normal-connected by the reversed path nB = Nm, · · · , N0 = nA,
and we have symmetry. Third, we prove the transitivity. If nA to nB and nB to nC are
normal-connected, then we have nA = N0, · · · , Nm = nB and nB = N ′

0, · · · , N ′
m′ =

nC that are normal-connected paths. So nA = N0, · · · , Nm = N ′
0, · · · , N ′

m′ = nC is
a normal-connected path. Then nA to nC is normal-connected. �

Lemma 7.8 Let S be a discrete surface, then all normals have at most two normal-
connected components by normal-adjacency.

Proof Let S be a discrete surface as defined in this chapter. We know that a 2-cell
only contains two normals and any two 2-cells are line-connected (1-connected) in
S. Let A and B be line-connected by A = A0, · · · , Am = B. On the other hand,
fix a cell A so that it has two normals NA and N̄A. Let us assume there is a normal
N , which belongs to an arbitrary cell B. Then, path P = B, · · · , A would induce a
normal-connected path N , · · · , nA. Therefore, no matter what, any normal of B will
be normal-connected either by NA or N̄A. Thus, any normal will be either connected
to NA or N̄A. So there are at most two normal components. �

We have the following definition for orientable surfaces:

Definition 7.16 Surface S is said to be orientable if its normal set has two normal-
connected components.

A good example of a non-orientable surface is shown in Fig. 6.2. The following
lemma is trivial based on the definition.

Lemma 7.9 Let A be a surface of S. If N (A) and N̄ (A) are normal-connected,
then S is not orientable.

We can also prove that if S has m surface-cells and if S is orientable, then two
normal-connected components of the normal set of S are equally sized by Lemma
7.8. This is because that we have total of 2m normals of S.

In Sect. 6.5, we presented an algorithm for deciding if a digital surface is
orientable. This algorithm can be modified for general discrete surfaces.

In pure mathematics, to decide an orientable surface, we need to test whether the
surface contains a subsurface that is topologically equivalent to a Mobius strip (or
band) [26]. See Fig 7.7. We can also see that a Mobius strip has a single boundary
curve, and this fact has fundamental significance to non-orientability. However, even
though any non-orientable surface contains a Mobius strip, it is sometimes very hard
to find out there is a one embedded in a bigger surface if the surface is formed in a
complicated way.

It seems actually impossible using a constructive procedure in continuous space.
However, in discrete space, we only have a finite number of 2-cells. An algorithm
would stop after all cells have been checked in normal connectedness.
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Fig. 7.8 Two normals in a
Mobius strip moving to the
same normal smoothly.
(Original figure was obtained
from Dick Palais
http://virtualmathmuseum.
org/Surface/gallery_m.html)

In practice, we want a procedure to decide if all normals are normal-connected
instead of finding a Mobius strip.

A discrete Mobius strip is shown in Fig. 7.8. The two normals of a 2-cell A will
be moving to the same normal at a 2-cell B.

We can design an optimal algorithm, O(|S|) time, to decide whether a surface S

is orientable or non-orientable. We give the detailed steps of this algorithm in below.
Since the algorithm for deciding a discrete surface is similar to the algorithms

presented in Chap. 6 and the procedure is not very complicated, we just give the
algorithm for orientability here. The idea of the algorithm is simple: We use normal-
connectedness to link 2-cells. If the total number of normals of 2-cells exceeds the
number of 2-cells in the surface S, then there must be a 2-cell whose two normals
are connected by normal-connectivity, so S is not orientable. Otherwise it must be
orientable.

Algorithm 7.1 Decision Algorithm for Orientability.
Input: (1) A discrete surface S = (G = (V , E), U2, U3). (2) Two orientations

(two normals) of each 2-cell A in the format NA =<a1, ..., an, a1 > and N̄A =<

an, ...., a1, an>, if A = {a1, ..., an} is a 2-cell and a1, ..., an is a simple cycle.
Output: S is orientable or not?

Step 1 Set the set of normals N ←− ∅.
Step 2 Get a 2-cell A, and put NA into N . Because S is line-connected, there

must be an edge (1-cell) that is shared with another 2-cell, denoted as B.
If NA has a common part of the sequence of NB , then <a1, ..., an, a1 >

∩ <b1, ..., bn>�= ∅ and put N̄B into N . Otherwise, put NB into N . (The
normal-connectedness must be in reverse order in terms of direction in their
intersection.)

http://virtualmathmuseum.org/Surface/gallery_m.html
http://virtualmathmuseum.org/Surface/gallery_m.html
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Step 3 Use a stack Stack or a queue Queue to save all 2-cells visited2. Repeat
Step 2 until N contains more than |U2| members. In such a case, S is
non-orientable. Otherwise, |N | is |U2| and S is orientable.

We leave the algorithm analysis to readers. This algorithm would be linear time con-
sidering that the largest cell contains a constant, limited number of points. However,
it is at most O(|V |+ |E|+ |U2|k2), where k is the length of the longest cycle, which
is a 2-cell in U2. See [1, 15] for methods of algorithm analysis.

7.7 Separability, Simple Connectedness, and Jordan
Curve Theorem

One of the most important tasks in geometry is separating a geometric object into
smaller pieces. The methods of Voronoi and Delaunay, along with other partitioning
methods are all about the separation of a space. However, we never discussed weather
or not a space is separable.

For a small or local space, we can observe this property and determine whether or
not we can separate it. However, when a space is extremely large, we really do not
know whether it is possible. One of the most exciting theorems is called the Jordan
curve theorem. It answers a basic part of this question. (The theorem is exciting not
only because of the theorem itself, but also because of its proofs since people are
still debating whether we have a solid proof.)

In topology, the Jordan curve theorem states [26, 27]:

Theorem 7.1 A simply closed curve J in a plane Π decomposes Π − J into two
components.

In fact, this theorem holds for any simply connected surface, and a plane is a
simply connected surface. So what is a simply connected space?

A connected topological space M is said to be simply connected if for any point
p in M , any simply closed curve containing p can contract to p. The contraction
means a continuous mapping among a series of closed curves, e.g. from the original
cycle to a point. See Fig. 7.9a. We have a boundary surface of a sphere. The simple
cycle a will separate the closed surface into two components. Also, the cycle b and
c are the contractions of a. When we continue to contract c, it would be becoming
the point p.

The Jordan curve theorem is not true for a general continuous surface. For example
in Fig. 7.9b, when M is the boundary surface of a donut, then it cannot always be
separated into two components by a closed curve such as cycles a and b. Meanwhile,
a cycle is not always contractible to a point on the surface. Neither a nor b can be
contracted into p. See Fig. 7.9b.

2 Use depth-first search or breadth-first search to go though every cell in S like in Step 2. We omit
the details to make the algorithm simpler and easier to understand. For search details, see Chap. 6.
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P

a
a

b

b

c

a b

Fig. 7.9 Simply connected surfaces: a A sphere that is simply connected, and b A donut which is
not simply connected

The first proof of the Jordan curve theorem believed to be correct was made by
Veblen in 1905. Tutte proved this theorem in planar graphs in the 1970s.

To simulate the proof of the Jordan theorem in discrete space is not easy. First, we
must define a “discretely” continuous mapping, i.e. discrete deformation. Second,
we need the concept of “discrete contraction.”

These concepts have a connection to the gradual variation introduced in Chap. 11.
Due to the complexity of the proof and the technical change of the methodology
from the recursive definition of cells and surfaces to discrete deformation, we must
use a completely different aspect of the discrete geometry method. We give a proof
in Chap. 15.

Digital spaces can be non-Jordan meaning that the Jordan curve theorem may
not apply to the some digital spaces. For example, in Σ2 with 8-adjacency, assume
a, b, c, d are four points of a unit square. A path passes the diagonal points a and c,
it seems partitioned b and d to be belong to two different parts. However, b and d are
adjacent here. So the Jordan curve theorem is not true for 8-adjacency.

In addition„ {a, b, c, d} is a surface-cell. Moreover, {a, b, c}, {a, b, d}, etc. are
8-adjacency surface-cells too. Such cases may generate ambiguities [4, 5]. It is not
able to described by cell complexes neither.

7.8 Discrete k-Manifolds

A discrete k-manifold is the generalization of discrete surfaces. In addition, the
definition of kD digital manifolds in Σm in Chap. 5 should be a special case of
the discrete k-manifold. In this section, we introduce a general definition of a k-
dimensional discrete manifold on a graph G.
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7.8.1 The Recursive Definition of Discrete k-Manifolds

The methodology we use is still the same, we define a discrete k-manifold recursively
in the following way (assuming that we defined k-cells on the closed minimal (k−1)D
semi-manifold): (1) Define the (k)D semi-manifold based on k-cells, (2) Define
k + 1-cells as the closed minimal (k)D semi-manifold, and (3) Define k-manifold.

We have already defined <G, U2, U3>, along with 2-cells and 3-cells in the above
sections. Let S be a set of k-cells, k ≥ 3. We say that two k-cells, A and B, are (k−1)-
connected if there is path from k-cells A = A1, · · · , An = B, such that Ai ∩ Ai+1

is a k − 1-cell (or a set of k − 1-cells that are k − 2-connected). S is said to be
(k − 1)-connected if any two k-cells, A and B in S are (k − 1)-connected.

Let M be a subset of V . The partial-structure (space) of M , with respect to
G =< V = U0, E = U1, U2, ..., Uk >, G(M) = {u|V (u) ∈ M&u ∈ Ui}, suggests
that each i-cell u(i) of the supporting set (V (u(i)) is in M .

So we give the general k-dimensional semi-manifold S as follows:

Definition 7.17 A kD semi-manifold S is a set of k-cells in <G = (V , E),
U2, ..., Uk > satisfying S = {all k-cells in G(V (S)), i.e. S is a partial-space. This
semi-manifold satisfies: (1) S is (k − 1)-connected in S, and (2) Each (k − 1)-cell in
S is contained by one or two k-cells.

Definition 7.18 A closed kD semi-manifold (k-semi-manifold) S is called minimal
if there is no proper subset of S that is a closed k-semi-manifold. A (k + 1)-cell set,
Uk+1, is a subset of all closed minimal k-semi-manifolds of G, such that for any
pair u, v ∈ Uk+1, u ∩ v is empty, a 0-cell, an unclosed 1-semi-manifold, an unclosed
2-semi-manifold, · · · , or an unclosed k-semi-manifold.

As we mentioned before, in most cases, u ∩ v is empty, a 0-cell, a 1-cell,..., or a
k-cell.

Definition 7.19 A k-semi-manifold S is said to be a k-manifold if S does not contain
any (k + 1)-cells with respect to <G, U2, ..., Uk+1>.

Thus, a k-manifold S is a set of k-cells in <G = (V , E), U2, ..., Uk+1> satisfying:
(1) S is (k − 1)-connected in S, (2) each (k − 1)-cell in S is contained by one or two
k-cells, and (3)S does not contain any (k + 1)-cells.

An n-cell set, Un, can be defined using the existing U0 = V , U1 = E, ...Un−1 of
G. We also call U0, U1, ...Un an n-dimensional discrete topological structure (DTS).

We can see that if Ui = ∅ then Un = ∅ for all n > i.
The dimension of G is defined as the largest index of Un �= ∅ for all possible

selections of DTS.
Two k-cells u, v are i-adjacent if u ∩ v consists of several i-cells. In addition,

u and v are i-connected if there is a path u1, ..., um where ut , ut+1 are i-adjacent,
t = 1, ..., m − 1, where u = u1 and v = um.

We have discussed the structure of discrete k-manifolds, which have a bottom-up
type of construction. We can also describe a manifold with a top-down construction.
We always assume G(M) to be equivalent to M . A definition based on 0-cells (points)
is presented next.
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7.8.2 An Alternative Definition of Discrete k-Manifolds

Definition 7.20 Given an n-dimensional discrete-topological-structure of G, G =<

G = (V , E), U2, ...Un>, a connected subset M of V (G) is a discrete k-manifold,
k = 0, ..., n−1, if for any a ∈ M , there exists a ui ∈ Ui , i = 1, ..., k+1, V (ui) ⊂ M ,
where i = 0, ..., k+1 and: (1) Any two k-cells are (k−1)-connected in M , (2) Every
(k −1)-cell in M is contained by only one or two k-cells, and (3) M does not contain
any (k + 1)-cells.

A discrete n-manifold can be defined in <G, ..., Un> by ignoring (n + 1)-cell
testing. Let M be a discrete k-manifold. The boundary of M , ∂M , is the set of all
(k−1)-cells in M , each of which is contained by only one k-cell in M . M is said to be
closed if ∂M = ∅. A point p is called k-inner if p /∈ ∂M . A point p in a k-manifold
M is called regular if all k-cells containing p are (k − 1)-connected [7, 11].

7.8.3 Boundary of Discrete k-Manifolds

The boundary of a discrete k-manifold is the key issue in actual practice. We first
define the regular (ordinary) i-cell in a manifold.

Definition 7.21 A i-cell Ai ∈ M , i = 0, .., k − 2, is regular (ordinary) if all k-cells
containing Ai are (k − 1)-connected (in these k-cells). M is regular if all i-cells in
M are regular for all i = 0, ..., k − 2.

For Ai ∈ M , the set containing these k-cells is denoted by S
(i)
k (Ai). An inner point

p in a k-manifold M is called simple if Sk(p) − {p} is a simple (k − 1)-manifold. A
k-pseudo-manifold P is a collection of k-cells such that (1) any two k-cells in P are
(k − 1)-connected in P , and (2) any (k − 1)-cell in c ∈ P is contained by one or two
k-cells in P . We treat P as a “sub-graph” for pseudo-manifolds.

Theorem 7.2 For G, if S ⊂ V (G) is a regular n-manifold, then ∂S is a closed
regular (n−1)-pseudo-manifold or several closed regular (n−1)-pseudo-manifolds.

Proof We present the idea of a proof here. We know that ∂S is the union of the
collection of (n − 1)-cells, each of which belongs to only one n-cell in S. We might
as well assume here that ∂S is the collection of (n − 1)-cells.

First, we want to prove that each (n − 2)-cell is included in two (n − 1)-cells in
∂S. Suppose an (n − 1)-cell A ∈ ∂S, then we want to prove that all (n − 2)-cell in
A is contained in two (n − 1)-cells, including A. Let a be a (n − 2)-cell in A ∈ Δ,
where Δ ∈ S is an n-cell. There is a unique A′ ∈ Δ that contains a based on the
construction of an n-cell. If A′ is in ∂S, then there are two (n−1)-cells containing a.
Otherwise, A′ can only be contained by another (the only) Δ. In addition, Δ contains
another A′′ �= A containing a. If A′′ ∈ ∂S then a is contained by two (n−1)-cells on
the boundary of S; otherwise, we will have A(3) that contains a. And so on. Because
all n-cells containing a are (n−1)-connected, there must be an A(m) ∈ ∂S containing
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a because we either have a finite number of cells or an (n − 1)-cell is contained in
three n-cells. It is impossible that an (n − 1)-cell is contained in three n-cells. So A
and A(m) are two (n-1)-cells containing a.

Second, if there are three (n − 1)-cells containing a, then all n-cells containing
a will not be (n − 1)-connected based on the above process. So, ∂S is a closed
(n − 1)-pseudo-manifold or several closed (n − 1)-pseudo-manifolds.

We can also prove that every i-cell is regular in ∂S as well. �

7.8.4 Examples of Discrete Manifolds

The best example of a discrete manifold is a digital manifold. This only has one single
interpretation in a natural way, direct adjacency. There are other types of “natural”
discrete manifolds.

Voronoi Diagrams and Delaunay Decompositions are two good examples of dis-
crete manifolds in any dimensions [16, 18]. For a continuous manifold, we randomly
select N points, the Voronoi diagrams and Delaunay Decomposition will generate
a discrete Manifold in any dimension. The detailed algorithm will be presented in
Chap. 10.

Some real images are stored by quadtree and octree schemes. Quadtree and octree
techniques are powerful methods that represent a 2D or 3D image. They are also used
in image compression and solid modeling. A leaf of quadtree or octree can be viewed
as a 2-cell or a 3-cell. Their partition forms a topological structure of a manifold of
an object. [3, 7, 9]

7.9 Remark

The relationship between the definition in this chapter and the definition of the
simplicial complex [20] in topology is that a pseudo-manifold forms a simplicial
complex. The simplicial complex representation of a manifold in Euclidean space
forms a discrete manifold. On the other hand, a discrete manifold is only a special
class of cell complexes. Its supporting set (V or U0) only has one interpretation in
the space. The space we define in this section G =<G = (V , E), U2, ..., Uk> can
hold multiple discrete manifolds in a unified manner, but a simplicial complex, or a
celluar complex, is only specific to a partition. The example of such a manifold is
the digital surface discussed in Chap. 5 [12–13].

The simplicial complex when represents an n-manifold must rely on a continuous
manifold, which is not a general space that contains many objects. In other words,
we must use a continuous space when talking about a simplicial complex that is
n-manifold. Again, we cannot store a general continuous space into a computer
[17]. Similarly, a vertex set has an exponential number of interpretations even in
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triangulation. It is computationally impossible to consider a set that contains all
simplicial complexes for a supporting set [18].

In [7], we present a more general definition of discrete surfaces that ignores the
requirements, including that a k-manifold should not contain a (k+1)-cell. This is the
of pseudo-manifold method. One only cares if there is an interpretation of the discrete
set that is a k-manifold. In this case, some 8-adjacency in 2D and 26-adjacency in
3D digital space will be covered. Some original thoughts about geometrical and
topological structures can be found in [2, 21–23].

Two issues that relate to research philosophy in digital and discrete geometry are
the following. First, we know that the boundary of 2-cell is a closed curve and the
boundary of 3-cell is a closed closed surface. Generally, The boundary of a k-cell are
closed except 1-cell. Why? We say the boundary of a k-cell is a closed semi k − 1
manifold. Each pair of (k −1)-cells on the boundary is (k−2)-connected. For 1-cell,
we have two 0-cells on the boundary, they are (−1)-connected. The (−1)-cell in fact
is a empty cell. We can see that every pair is empty-connected. There is no need for
their connectivity.

An observation is also interesting. There are two types of connections that
related to distance measurement in discrete manifolds: edge-connection and inner-
connection of cells. Let us look at an example: We have defined that a 2-cell A is a
minimal cell meaning that there is no other 2-cell is a proper subset of A, A does
not contain any 1-cell and 0-cell inside of A. The boundary of A will contain some
1-cells and 0-cells. From one point to another point in A, the distance is usually
the shortest point-path between two points. These points are on the edge of a cell.
However, on the other hand, a 2-cell or its boundary can contract to any of its bound-
ary point using just one-unit time. It means that two points in the same 2-cell has
an internal connection. Just like a unit square in 8-adjacency in 2D. Therefore, the
cell-edge-connection in this chapter is the direct adjacency in digital space. The inner
connection is the general or indirect adjacency. When allowing the inner connection
to make a curve or path, we will have a non-Jordan space. In addition, using inner
connection, we will not be able to make a simplicial complex that will be discussed
in Chap. 9.

We can see that only triangle cells maintain the property that edge-connection is the
same as inner-connection every pair of points in a triangle has the same graph-distance
that is one.

In general, for a k-cell, there are also edge-connection and inne-connection. Here
edge means the boundary of a cell. Only simplexes have the property that two such
connections are the same. This might be another reason that triangles and simplexes
have the simplest topological structure. However, it is hard to obtain simplexes
computationally comparing to the digtal or cubic cells.

More discussion on the Jordan curve theorem can be found in Chap. 15 and in
[6, 7, 30]. Topics on digital topology and discrete topology will be discussed in
Chaps. 9 and 14 [6, 8, 10, 24, 28, 29].
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Chapter 8
Discretization, Digitization, and Embedding

Abstract This chapter deals with the relationships among objects in discrete, digital,
and continuous spaces. If Chap. 7 can be viewed as covering the theoretical aspect
of discrete spaces and its objects, then this chapter can be viewed as covering the
practical methods to make actual moves from one space to another. Likewise, Chap. 9
then connects classical mathematics to discrete and digital topology. Two of the most
important operations are discretization (obtaining a discrete object from continuous
space) and embedding (putting a discrete or digital object into a continuous space). To
obtain a discrete object, we need to retain its geometric and tropologic identity, such
as distance measurements and genus (holes). In general, a discrete object differs from
a continuous object in that it has two basic measures: graph distance and Euclidean
distance. The graph distance measures the number of edges between two notes as dis-
crete sampling points. Euclidean distance can be viewed as the weight on the edges.
Embedding is putting a discrete object back into a continuous space. For instance,
putting a weighted graph into 3D Euclidean space, we must not allow two edges to
cross each other. In practice, discretization and embedding are not separated. They
are two parts of a unified process called mesh generation in computer graphics. Other
embedding methods, such as the piecewise linear reconstruction method and more
sophisticated polynomial fitting and B-spline methods are discussed in Chap. 11.

Keywords Discretization · Digitization · Triangulation · Decomposition · Marching
cube · Point space · Raster space · Interpretation

8.1 Mesh Generation: Method of Discretization
and Triangulation for Continuous Surfaces

Meshing is the standard method for discretizing a continuous surface into piecewise-
linear 2-cells. Usually these 2-cells are triangles or convex polygons. When we
have a solid object, the key is to represent the boundary surface of the solid using
triangles or 2-cells. There are three meshing methods: (1) Cubic-based, (2) Voronoi
and Delauney triangulation, and (3) Curvature and normal related advanced methods.
Mesh generation becomes a special technology in computer graphics [14].

This chapter begins with meshes and discusses the embedding technologies. Ac-
cording to Whitney and Nash, a manifold can be smoothly embedded into Euclidean
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space [17]. Therefore, we mainly deal with Euclidean space as we study continuous
space in this chapter. We also discuss projections as a special immersion method.

8.1.1 Cubic-Based Boundary Meshes for 3D
Continuous Manifolds

For 3D, data collection is usually in digital. For instance, the 3D CT scans form a
function or image in 3D digital space. Each voxel or 3D pixel (also called a cube)
has a value in the space. Let us assume that we use a clip-level to transfer this image
into a binary image or we extract the so called isosurface where the value of each
point on the surface is the same. We can then get a solid object in digital space. How
do we represent the boundary surface using triangle patches?

8.1.1.1 Marching Cubes

The most commonly used method is called marching cubes [1, 22, 26]. In this
technique, the data points (the values are not zero) in a 3D cube will be checked to
match some patterns. Of course, we only check the cube on the boundary of the solid
object. If it is inside the object, then all of the 8 points on the cube would have the
same value.

A cube contains 8 points. Therefore, there are a total of 256 = 28 possible
combinations in which some selected points are in the object. The rest of the points
are not in the object. We assume the points considered are on the boundary.

It was found that only 15 patterns among the 256 cases are really useful. See
Fig. 8.1.

When a pattern is matched, then a set of small triangles would be assigned to this
cube. That means we represent the discrete data points with several triangles. Then,
we “march” to another cube nearby, also on the boundary of the solid, to find its
pattern.

In other words, the algorithm of marching cubes checks the type of local config-
uration of a boundary point of a solid object. It must be one of 15 cases in 15 cubes
in Fig. 8.4. Then, we put the triangles in the cube into the file that stores the surface
patches.

This method has been used in many industries and applications. The main idea
is to use half point interpolations to convert a digital object into continuous space in
terms of triangulation. Different scale factors will be selected as needed to get high
or low resolution. It can also be used to get the triangulation of an object.

Marching cubes have two disadvantages: (1) Each cube on the boundary of an
object will be replaced by several triangles, resulting in several triangles, and (2)
This method is not mathematically proven in terms of preserving the mathematical
properties including topological properties of the original object.

For the first problem, we can combine small neighborhoods into one big triangle
by calculating the similarities of normals. However, for the second disadvantage,
we need special methods in order to fix it. In fact, Wood found that marching cubes
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Fig. 8.1 Triangulation using marching cubes made by D. Lingrand

Fig. 8.2 Triangulation generates holes by Z. Wood: a A picture without holes using 1 million
triangles, b A picture with 15,000 triangles and 957 holes, and c A picture with 15,000 triangles
after deleting all holes

will generate many holes when the original data has some noise [27]. Even if there
is no noise, the scaling of discretization and the size of cubes may generate some
pathological situations that will create many holes.

This example tells us that a very fine detailed triangulation might not require us to
consider topological error. However, we may not be able to hold this in the memory
of small computers since there is too much information. For Fig. 8.2b, we know that
many triangles are wasted in representing small holes, which might be invisible [27].

Preserving topological properties can not only save space in computer graphics,
but can also be the key in geometric processing for image analysis, especially in med-
ical imaging. Dealing with both theoretical and practical uses of geometric methods
is the goal of this book. In fact, calculating the number of holes is significant in
topology. We present a fast digital algorithm in Chap. 14.
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Fig. 8.3 Triangulation using convex-hull boundary of cubes

The small pathological case is related to how we interpret the boundary points
and unit cells discussed later in this chapter. Wood refers to it as artifacts in [27].

8.1.1.2 Convex Hull Representation of 3D Cube Boundaries

We developed a method that uses the convex hull in a 3-cell to represent the boundary
of an object. Unlike marching cubes, a half scale is used for triangulation, i.e. the
triangles can be used as small half sub-cubes. The convex hull method considers the
total data points in a 3-cell in order to form a unique 3D shape inside a cube to be
attach to the inner cube of the original object.

The convex hull formed by certain vertices of a unit cube in digital space is unique.
The idea is the same as that of the partial graph idea in Chap. 7, but this time the
inside of the cube is unique [7]. See Fig. 8.3.

This method is valid since the faces of the convex hull would be cancelled in the
inner cubes but would remain on the boundary surface of the 3D solid (object).

Unlike the marching cubes method that uses half of the points to form meshes,
our method preserves the original cube information. For a higher dimensional object,
an m-dimensional object in m-dimensional digital space, the boundary of the object
in each m-cube is unique. Therefore, the convex hull of the boundary points in an
m-cube is also unique. The upper-face of the convex hull will represent the boundary
of the original object.
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Fig. 8.4 Example of triangulation from cubes: a Convex-hull boundary method, and b Marching
cube method

We have tested many examples of using these two triangulations. In Fig. 8.4,
we first use a digital filling method to make the rabbit data to be a digital 3D solid
data set. The original data is from Princeton’s 3D benchmark [25]. Then we use
the convex-hull cube boundary method and the marching cube method to do the
triangulated surface to see their difference. More examples are shown in [7] for data
reconstruction.

In Fig 8.4a, the convex-hull boundary, if there are more than 4 data points, then
we will use its complement (blue) configuration.

If we say that marching cubes will get more detailed information on a 3D object,
then the convex-hull boundary configuration is a mathematical solution. On the other
hand, the marching cube method is a technical solution, and it may generate false
results in some local cases.

The question is, can digital geometry generate a method to complete the task?
This is the essential question to ask.

Even though we can say that the marching cube method can be viewed as a
modification of a digital geometric method, the method is still mainly a numerical
process since the half point does not exist in our digital “language.”

It is very obvious that we could just embed the digital object in Euclidean space.
This does not look good since the boundary surface points are forced to be within
only 6 types.

We know that we have 18-adjacency, 26-adjacency, and maybe even 12-adjacency
(when we only admit the half diagonal points in a unit square, we will then develop
a method to use this knowledge).

In a cube containing 8 points, only the cases containing 4 or more points can form
a polyhedron.
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8.1.2 Voronoi Decomposition and Curvature-Based Meshes

Voronoi decomposition is often used to decompose a closed surface to obtain the
meshes. The idea is the same: represent a flat area using a large polygon and rep-
resent a curved area using many small polygons. Based on the principle of Voronoi
decomposition, we need to first place the points (sites) in the correct locations of the
surface [24].

Curvature-related and Poisson surfaces are also used for surface decomposition.
In such a method, we use the curvature to determine the length of a triangle: The
bigger the curvature, the smaller the triangle needed. In a flat region, we use bigger
triangles. In a curved region, we use smaller triangles. This method also relates to
the normal of a flat 2-cell where a Poisson equation is employed [19].

The finite-element method is also used in determining how the triangles are se-
lected in a decomposition for continuous surfaces. This method usually requires a
mechanical model [24].

8.2 Digitization and Dual Digital Spaces

In Chap. 4, we already discussed there are two ways to digitize an object into digital
representation (Fig. 4.5). We now focus on the relationship of these two digitizations:
point digital spaces and raster digital spaces. They are dual digital spaces, just like
Delaunay and Voronoi decomposition, where one uses points and another uses an
n-cell to discretize the n-manifold. In Chap. 3, we discussed their definitions and
gave examples. In Chap. 10, we will give the algorithms to obtain Delaunay and
Voronoi decomposition.

This section investigates the relationship and the theoretical framework for point
digital spaces and raster digital spaces of digital spaces in digital geometry[4].

In point-spaces, a digital object such as a curve or a surface is represented by a
set of elements called points. We have used this method in Chap. 5. A k-D object is
defined by (k − 1)-cells, inductively. Therefore, they will eventually be defined by
points.

On the other hand, in a raster space, a digital object is a subset of a “relation”
in the space. For instance, an n-manifold is partitioned into n-cells. Therefore, an
(n − 1)-cell will be an intersection of two n-cells, where such an intersection is
a pair of two n-cells. Then, an (n − 1)-manifold, which is a set of (n − 1)-cells,
will be viewed as a relation of n-cells. Please note that not every relation forms an
(n − 1)-manifold.

8.2.1 Examples of Two Basic Digital Spaces

Given a set S of points, called sites, we can get the Voronoi diagram of S and its
Delaunay triangulation in Euclidean space. The Voronoi diagram can be viewed as
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raster space, and the Delaunay simplicial decomposition can be viewed as point
space. Therefore a point space is a dual space of a raster space.

The following problems can be asked: (1) How can we define the digital curves,
surfaces, and manifolds in point spaces or raster spaces? (2) What is the difference
and relationship between them? (3) What are the advantages and/or disadvantages
of using point spaces or raster spaces in practical computation?

A real image is a continuous function; however, it must be stored in a digital array
in computers today.

Mathematically, let Em be the m-dimensional Euclidean space. Zm is the set of all
points (a1, ..., am) in Em, where all a1, ..., am are integers. Zm is called a digital space.
Because the computer can only store a finite amount of data, we usually consider a
finite subset of Zm, Σm = {(a1, ..., am)|0 ≤ ai ≤ N ; i = 1, ..., m} for a certain N , as
a digital space.

Digital geometry and topology deal with adjacency, connectivity, curves, surfaces,
manifolds, etc. in Zm. Unlike continuous geometry and topology, digital objects in
digital spaces have concrete meanings. For example, a digital point may have length,
but a digital curve may have area. Such properties are dependent on how we define
a point, curve, and so on. Thus, different interpretations in digital geometry and
topology can yield different results.

Assume f is a two-dimensional image that is stored in a two-dimensional array
in a computer. If (x, y) is an element in the array and f (x, y) is the value on (x, y),
then typically, f (x, y) represents the average value of a unit square surrounding the
point (x, y), and this unit square is called a pixel P ixel(x, y). (A 3D image can be
represented by a function on a 3D array, where the value on a point is the average
value of a unit cube called a voxel.)

Let us recall the example in Chap. 4, Fig. 4.5. Suppose that we have a connected
region S in Fig. 4.5. If we want to determine the boundary of S, then a problem will
appear. How do we find the boundary of S? The most natural way is to consider it
as the boundary in Fig. 4.5d, but how do we represent it using pixels? In this case,
a line segment is the intersection between two adjacent pixels, and so we can use a
set of pixel-pairs to represent the boundary. That is to say, a line-cell (1-cell) is an
element of a binary relation of 2-cells. By the way, a point (0-cell) is represented
by the intersection of four pixels. However, in continuous spaces, the boundary is a
curve. In order to be consistent, we represent a curve by using a set of pixel-pairs.
Such a digital space is called a raster-space in this note.

On the other hand, we can define the boundary of S as C shown in Fig. 4.5c. That is
to say, a curve can be represented by a set of pixels (or points) in a 2D array. Without
loss of generality, we can directly use a point (x, y) to represent a pixel and omit
the P ixel(x, y). This digital space is called a point space. A line-cell consists of two
adjacent points in this case. The difference between a point space and a raster space
is how to define i-dimensional cells (or i-cells) for i = 0, ..., m in an m-dimensional
space. We define i-cells for both “point spaces” and “raster spaces” in this section.
In addition, we also introduce the concept of “connectedness” in this section.
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8.2.2 Point Spaces in Direct Adjacency

A point p in Σ2 has four horizontal and vertical neighbors, namely (x ± 1, y) and
(x, y±1); p also has four diagonal neighbors, namely (x±1, y±1) and (x±1, y±1).
We say that horizontal and vertical neighbors are directly adjacent to p (or 4-adjacent
to p), and we say that both types of neighbors are (indirectly) adjacent to p (or
8-adjacent to p) in Chap. 4 [3, 5].

In general, the points p = (x1, x2, ..., xm) and q = (y1, y2, ..., ym) are two directly
adjacent points in Σm if dD(p, q) = ∑m

i=1 |xi − yi | = 1. We say that p and q are
general-adjacent (directly or indirectly) points if d(p, q) = max1≤i≤m|xi − yi | = 1.
We only consider direct adjacency in this sub-section. Let p and q be a pair of
(directly) adjacent points of Σm. Intuitively, {p, q} is a line-cell. A surface-cell is a
set of 4 points that form a unit square parallel to the coordinate planes. A 3-cell (or
solid-cell) is a unit cube that has 8 points.

More generally, a k-cell (k-cube) has exactly 2k points, p1, ..., p2k in direct adja-
cency, where each p1, ..., p2k has m components, denoted by pi = (x(pi )

1 , ..., x(pi )
m ).

There are m − k components that do not change value for all p(1), ..., p(2k ). For pi

and pj , i �= j , 1 ≤ ∑m
t=1 |x(pi )

t − x
(pj )
t | ≤ k, and maxm

t=1|x(pi )
t − x

(pj )
t | = 1. Again,

we sometimes refer to a 0-cell as a point-cell, a 1-cell as a line-cell, and a 2-cell
as a surface-cell. Two unit-cells u and v are point-adjacent if they share a point,
line-adjacent if they share a line-cell, and k-adjacent if they share a k-cell. u and v
are called k-connected in S if there exists a path u0 = u, u1, ..., un = v in S, such
that ui and ui+1 are k-adjacent, i = 0, ..., n − 1. Figure. 2.10 shows some examples
of adjacency and connectedness [8, 9].

A raster space, RSm, is a partition (or decomposition) of Em. Such partition splits
Em into m-dimensional unit cells (m-cells), each m-cell contains a point of Zm in
the center of the cell.

For two distinct m-cells r and r ′, if r ∩ r ′ is an (m − 1)-cell, then the (m − 1)-cell
is called a surface-element[18]. So, a surface-cell can be represented by an element
of a binary relation on RSm. Note that a surface-element is in (m − 1)-dimension.
In order to be consistent in this note, we call it an (m − 1)-cell. If m = 3, then a
“surface-element” is a surface-cell.

In general, for 2k m-cells r1, ...., r2k , if ∩2k

i=1ri is an (m − k)-cell, then an (m − k)-
cell can be represented by an element of a 2k-relation on RSm. A 2k-relation in direct
adjacency can be defined as follows:

RS (m−k) = {r = (r1, ...., r2k )|r1 ∩ .... ∩ r2k is an (m − k)-cell}.
Note, (r1, ...., r2k ) = (p1, ...., p2k ), where {p1, ...., p2k } is any permutation of
{r1, ...., r2k }. Such a relation is called a “symmetric relation.”

Although RSm can also be represented by Zm, RSm has different implications
than those of Σm. If we say the definition of k-cell in point spaces is “bottom to
top,” then the definition of k-cells in raster spaces is “top to bottom.” They are just
in opposite order. In fact, if we let P = {p|p is 0-cell in RSm}, then we can generate
a similar k-cell structure in point-spaces.
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Fig. 8.5 Example of 0-cells,
1-cells, and 2-cells in 2D
raster and point spaces: a Two
spaces, b Raster-space 2-cell,
c Point-space 0-cell, d
Raster-space 1-cell = the
intersection of two 2-cells, e
Point-space 1-cell = the union
of two 0-cells, f Raster-space
0-cell = the intersection of
four 2-cells, and g
Point-space 2-cell = the union
of four 0-cells

a

f

b c

e

g

d

For two t-cells u and v, where t > k, they are directly k-adjacent if u ∩ v contains
a k-cell. u and v are called directly k-connected in S if there exists a path u0 =
u, u1, ..., un = v in S, such that ui and ui+1 are k-adjacent, i = 0, ..., n − 1.

It is not difficult to know that RSm is the Voronoi decomposition of “sites” Zm.
If we link every pair of points, which are (m − 1)D-adjacent in Zm, then we get a
Delaunay “triangulation” of the Voronoi diagram. Therefore, the point space Zm is
a dual space of RSm.

Kovalevsky first gave examples of 0-cells, 1-cells, 2-cells, and 3-cells in raster
spaces in [21]. To clarify the relationship of these two spaces, we show the 2D raster,
point spaces, and their 0-cells, 1-cells, and 2-cells with direct adjacency in Fig. 8.5.

We can see, in point spaces, a k-dimensional digital object (including digital
curves, surfaces, manifolds, etc.) is represented by a set of elements in Zm. In
raster spaces, a k-dimensional digital object is represented by a set of elements in
2(m−k)-relation on RSm.
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for the relationship between point spaces and raster spaces
we can see three interesting facts concerning point space and raster space. First, a

raster space RSm with defined k-cells is a dual space of a point space. A raster-space is
aVoronoi diagram, and its dual point-space is the Delaunay simplicial decomposition
of the Voronoi diagram [19].

Second, for 3D point spaces, Chen and Zhang obtained the following: Simple
surface points in (6, 26)-surfaces have exactly six types [10]. A regular inner surface
point based on Definition 5.5 was introduced to get the results in Chap. 5. A (6, 26)-
surface point defined in Definition 5.2 is equivalent to a regular inner surface point.
Here, “regular” means all surface-cells containing p in S are line-connected in S∩Np.
More details can be found in Chap. 5.

For 3D raster spaces, if V is a subset of RS3, then V is a set of voxels. Latecki ex-
amined the same results as the six types of simple surface points for “Well-composed”
sets [6].

Therefore in most of cases, the raster space representation are the same as The
point space representation such as the example shown in Fig. 8.5.

However, we do have the following example that shows that the two representa-
tions are not equivalent (Fig. 8.6). We want to think about: Can a set in raster space
be represented by its 0-cells?

Example 8.1 This example shows that we may need a refinement in order to make
an appropriate match. That is also true, in Chap. 7, we want to use the point subset
to represent a cell. See more discussion in [6, 4].

8.3 Discrete Manifolds in Voronoi Diagrams and Delaunay
Decompositions

In theory, for a smooth m-manifold M , we can get its piece-wise linear decompo-
sition. If we isometrically embed M into an Euclidean space, then we can get its
digital decomposition. Or we can randomly arrange n points with a probabilistic
distribution in M , so we can get the Voronoi Diagram and Delaunay triangulation.

The following method will can be used to get Voronoi or Delaunay decomposition
of M .

We know that if given n points, a set P , in the m-dimensional Euclidean space,
we can get a Voronori diagram and Delaunay triangulation. In [16], Bern explained
an algorithm that can get the Delaunay triangulation of a point set in d dimensions.
This is done by obtaining the convex hull of these n points (lifting them into (d + 1)
dimensions). Then we can get its dual diagram, the Voronoi decomposition. Here,
the convex hull is the smallest convex that contains all points in P . Two algorithms
for computing the convex hull will be introduce in Chap. 9.

Such a decomposition is a partition of Ed . We can use the partition on M to get
the decomposition of M by interesting M into the Euclidean space. Each Voronoi
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Fig. 8.6 A pixel set in raster space that is hard to be represented by its 0-cells: a The pixel set V ,
where s is not in V ; b s must be in V if 0-cells are used to define a 2-cell in point spaces; and c A
refined V

Fig. 8.7 Real data example of the Voronoi diagram and Delaunay triangulation by D. Mount

region will be called a m-cell. The boundary of the partition on M would be a set of
m − 1 piece wise linear cells.

In Chap. 9, we will design algorithms for the Delaunay triangulation and Voronoi
diagram. We showed a figure in Chap. 3 for those decompositions (Fig. 3.4). In
Fig. 8.7, we show the 2D the Voronoi diagram and the Delaunay triangulation for a
real data set [7].

For 3D, Fortune showed an example of the Voronoi diagram and Delaunay
decomposition [15, 16] (Fig. 8.8).

When we treat the decompositions as we extract k-cells from them, we can define
the cell complexes and m-discrete manifolds. We have had extensive discussion about
this in Chap. 7. In next section, we are specifically interested in the relationships of
the representation of these two decompositions.
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a b

Fig. 8.8 a A Voronoi diagram in 3D; b the Delaunay triangulation of the same sites

8.4 Manifolds in Point Spaces and Raster Spaces*

The point space and the raster space are dual digital spaces, just like the Voronoi
diagram and the Delaunay triangulation.

Now we can define manifolds in these two digital spaces. In point spaces, we build
the cell structure by first defining points, then to upper level such as m-cells. On the
other hand, in raster spaces, we first identify m-cells, then find lower dimensional
cells.

We have had extensive discussions on point digital spaces in Chap. 5. Now, we
just summarize the definition here for next comparison. A general approach was
considered by Chen [2], and it can be used in Voronoi diagrams and Delaunay
decompositions.

A Voronoi diagram is a special “graph” G = (V , E), where V contains all ver-
tices of the Voronoi diagram and E contains all Voronoi edges (Voronoi 1-cells). A
Delaunay decomposition is also a special “graph” G = (V , E), where V is the set
of sits, and E is the set of Delaunay edges (Delaunay 1-cells). We also have Voronoi
2-cells, Voronoi 3-cells, Delaunay 2-cells, and Delaunay 3-cells.

For a graph G, let τ (G) be a group of defined sets of 0-cells (V ), 1-cells (E),
2-cells,..., k-cells,...., where τ (G) is called a topological structure of G.

Definition G iven a G and τ (G), the partial graph1 D of G is a k-dimensional digital
manifold (or k-manifold) if and only if:

(1) Any two k-cells in D are (k − 1)-cell-connected in D,
(2) Each (k − 1)-cell in D is included in one or two k-cells in D, and
(3) D does not contain any (k + 1)-cell.

1 It was called subgraph in [6, 4], but meaning is the same as in this book.
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In addition to the above definition, the boundary of a k-manifold D, denoted by ∂D,
is a subset of (k − 1)-cells contained in D so that each element of ∂D is exactly
contained by one k-cell in D.

For raster spaces, let V be a set, R be a symmetric binary relation, and τ be a
partition of R. H = (V , τ ) is a raster digital space. When τ = R, i.e. partitioning
to a single element, then this definition is equivalent to the original definition by
Herman [18].

Definition 8.2 An n-D simple digital manifold is a subset S of V , and for any two
elements p, q ∈ S, there is a path (p, p1), ..., (pn−1, q) ∈ τS .

S is called simply (n − 1)-D connected if for any two elements p, q ∈ S, there
is a path (p, p1), ..., (pn−1, q) ∈ τS [18]. In fact, simply (n − 1)-D connectedness is
equivalent to the connectedness in Chap. 7.

Let us consider the collection of V , R, ..., R(n), τ , ...τ (n), where V is a set and R

is a symmetric binary relation on V , R(i) is a binary relation on R(i−1), and τ (j ) is a
partition of R(i). We say that G = (V , R, ..., R(n), τ , ..., τ (n)) is an n-dimensional topo-
logical structure on V . Given a topological structure G = (V , R, ..., R(n), τ , ..., τ (n)).
Let S be a subset of V and

GS = (S, RS , ..., R(n)
S , τS , ..., τ (n)

S ),
where R

(i)
S = {r = (a, b)|(r ∈ R(i))&(a, b ∈ R

(i−1)
S )}, and τ

(i)
S = {r = (a, b)|(r ∈

τ (i))&(a, b ∈ τ
(i−1)
S )}.

If S is a subset of τ (i), then for j > i, let S = τ
(i)
S , R

(j )
S = {r = (a, b)|(r ∈

R(j ))&(a, b ∈ R
(j−1)
S )}, and τ

(j )
S = {r = (a, b)|(r ∈ τ (j ))&(a, b ∈ τ

(j−1)
S )}.

Then, the boundary of S is defined as
∂S = {r = (a, b)|(r ∈ τ (i+1))&, where only one of a, b ∈ S}.

Definition 8.3 An i-dimensional manifold is a subset S of τ (n−i), and the following
is true:

(1) S is (i −1)-cell connected, i.e. for any two elements p, q ∈ R
(n−i)
S there is a path

(p, p1), ..., (pn−1, q) ∈ R
(n−(i−1))
S .

(2) τ
(n−(i−1))
S = R

(n−(i−1))
S , i.e. τ

(n−(i−1))
S is the single element partition. (Intuitively,

any (i − 1)-cell (p, p′) is contained by at most two i-cells p, p′ in S.)

For Voronoi diagrams and Delaunay decompositions, we can naturally get their
topological structures G = (V , R, ..., R(n), τ , ..., τ (n)).

Raster spaces, as defined in this chapter, are more meaningful in nature but they
are difficult to represent in computers. On the other hand, point spaces are easy to
represent, but sometimes it is difficult to find meaning in continuous mathematics.
These are dual spaces to each other, and for that reason, both of them possess the
“dual properties.”
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8.5 Object Interpretation and Error Analysis: An Exploration

Digitization and discretization contain errors. How big the error is will provide an
upper limit on the accuracy of the process. In fact, we try to restrict the errors
to a range. For example, when a line is digitized. The length of the digital curve
is sometimes difficult to deal with. There are two ways: (1) Count all vertical or
horizontal directions and diagonal directions on the digital curve. (2) Use the least
squares method to perform an interpolation on the digital points. We then consider
the length of the continuous curve.

In 2D, a digitized connected region can converge to the original area, but its
digitized boundary may not converge to the original boundary of the region. This is
very interesting in high dimension. The boundary can be arbitrarily bigger than the
original boundary, but the volume is converging to the original region.

8.5.1 Line Digitization and Error Estimation

In Chap. 4, we presented the Bresenham algorithm for line digitization. Such a
digitization will generate some errors in practice. Given a line segment in 2D Eu-
clidean plane with the slope k <= 1 (otherwise, we swap the x and y axis), the best
digitization is using Bresenham’s algorithm to get the line. The characteristics of
Bresenham’s line is that it is an 8-adjacent curve. If we are given a Bresenham line
segment, then the question we can ask is: What is the length of the segment? If we
do not know this digital curve is a line, how do we calculate the length of the curve.

Consequently, there are three ways for answering these two questions: (1) Count
the points on the digital curve. This way, we can get a graph length that is not
embedded Euclidean length. The accuracy in Euclidean space is very low. (2) Count
the length locally, i.e. count all diagonal edges as

√
(2) points. (3) Do a least squares

fitting and then calculate the fitted line length.
For the first case (1), we know that the worst case is when the slope is 1 and the

error ratio is 1/
√

2. For (2), we can get the exact error analysis. Let p1 = (x1, y1)
and p2 = (x2, y2). Consider pi and pi+1. Assume that a = x2−x1 ≥ b = y2−y1,
so let b = ka, where k ≤ 1 and c = √

(a2 + (ka)2). We can assume also that p1
and p2 are integer points (otherwise use center truncation, i.e. x = [v + 0.5]). The
counterpart of line “c” (a hypotenuse line) will be a Bresenham line that contains a

points in which b = ka sqrt(2) points and a − ka straight points are parallel to the
x-axis.

Let n = a. We count the local length, meaning that at a local 1’ point, we count
the length as 1 and at a local

√
2 point, we count the length as

√
2. Therefore, the

digital/Bresenham length will be Bl = (n− kn)+ kn
√

(2) = n((1− k)+ k
√

(2)).
If we want to estimate the ratio of Bl/c, then:

n((1 − k) + k
√

(2))/
√

(n2 + (kn)2) = ((1 − k) + k
√

(2))/
√

(1 + (k)2)
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We hope that the above expression is equal to 1. In this case, we can solve the
equation

((1 − k) + k
√

(2))√
(1 + (k)2)

= 1

What we get is:

((1 − k) + k
√

(2))2 = (1 + (k)2)

((1 − k) + k
√

(2))2 = (1 − k)2 + 2(1 − k)k
√

(2) + 2k2

1 − 2k + k2 + 2(1 − k)k
√

(2) + 2k2 = (1 + (k)2)

−2k + 2(1 − k)k
√

(2) + 2k2 = 0

−2k + 2k
√

(2) + 2( − k)k
√

(2) + 2k2 = 0

−2k + 2k
√

(2) + 2( − k)k
√

(2) + 2k2 = 0

−2k + 2k
√

(2) + 2( − k)k
√

(2) + 2k2 = 0

So k = 0 is a solution. or if k �= 0 we have

−1 +√
(2) − k

√
(2) + k = 0

√
(2) − 1 = k

√
(2) − k

i.e. k = 1
That is to say, there are two occasions such that the Euclidean length of a line

segment equals the interpreted length of a discrete line (Bresenham line): k = 0 and
k = 1.

The question is, what makes the largest difference between these two measure-
ments? A good guess would be arct g(k) = 22.5◦ degrees of the angle.

One way is still to see the

maximum = f (k) = ((1 − k) + k
√

(2))2

(1 + (k)2)

df

dk
= 0 = d

dk

((1 + (
√

(2) − 1)k)2)
′
((1 + (k)2)) − (1 + (k)2)

′
(1 + (

√
(2) − 1)k)2

((1 + (k)2))2

= 2(1 + (
√

(2) − 1)k)(
√

(2) − 1)(1 + (k)2) − 2k(1 + (
√

(2) − 1)k)2

So (1 + (
√

(2) − 1)k) = 0, i.e. k = 1/(1 − sqrt(2)) = −(
√

(2) + 1), which is not
a valid solution.

On the other hand,

2(
√

(2) − 1)(1 + (k)2) − 2k(1 + (
√

(2) − 1)k) = 0

(
√

(2) − 1) + (
√

(2) − 1)(k)2 − k + −k(
√

(2) − 1)k) = 0

k = (
√

(2) − 1)
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So tg(α) = k = (
√

(2) − 1), where the angle is 22.5◦.
The ratio is

√
(f (k)) = √

(f (
√

(2) − 1)

= √
(
(1 + (

√
(2) − 1)(

√
(2) − 1))2

1 + (
√

(2) − 1)2
)

= √
((1 + (

√
(2) − 1)2) = √

(4 − 2
√

(2)) = 1.08239

That means the interpreted length of the discrete segment is longer than Eu-
clidean length. However, the maximum ratio is 1.08 when we did the local counting.
Therefore,

Lemma 8.1 The maximum error ratio of using local counting on horizontalvertical
and diagonal types of 1-cells is 1.08.

Next, we can consider the average ratio of differences on digitization and
embedding. We have

∫ 1

0

√
(f (k))dk =

∫ 1

0

((1 − k) + k
√

(2))√
((1 + (k)2))

dk

=
∫ 1

0

1√
((1 + (k)2))

dk + · · · + (
√

(2) − 1)
∫ 1

0

k√
((1 + (k)2))

dk

= ln((
√

(2) + 1) − 2
√

(2) + 3

= 1.05294646227

For the general discrete model,

Σm=n
m=0

1

n + 1
· ((n − m) + m

√
(2))√

(n2 + (m)2)

when n = 5, value = 1.04239; n = 10, value = 1.04766; n = 100, value =
1.05242, n = 1000. the value is 1.05294. n = 5000, the value is also 1.05294

Sometimes, we do not want to count the last sample point. Then, we have

Σm=n−1
m=0

1

n
· ((n − m) + m

√
(2))√

(n2 + (m)2)

When n ≥ 5000, the value is also 1.05295.
Therefore, the later model is closer to the continuous model. The average

difference ratio is only 5 % of the actual Euclidean line.
For case (3), we can leave this as an open problem: A fitted curve in what scenario

will be the best fit to the original boundary if the guiding point are all digital?
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8.5.2 2D Region: Area and the Boundary Length

Based on the discussion in the previous subsection, digitization will approximate the
area, but not the edge. Edge approximation requires localized digitization [20, 23].
We can predict that the fitting on the boundary of a region will be the best for curve
length estimation. However, in such a case, we might not be able to get the area of
the region accurately.

Another question we can study is if we can use the uncertainty principle: In digital
space, if we can get the right area, then the length of the boundary will never converge.
If we get the boundary right, then we cannot preserve the area of the region that will
converge to the original.

Let us assume that Ea denotes the difference (error) in area between the original
object and the digitized object, and Eb denotes the difference (error) in length between
the original object and the digitized object. We know that Ea can be zero. However,
Eb can never be zero in digital space.

If it is not in digital space, then there is an instance where Eb can be arbitrarily
bigger when Ea is approximating zero. Is there an inequality such as Eb × Ea <

ε(δ) · area · perimeter for any shape including the refinement scale δ?
The perimeter of a region in discrete space is only 1.08 times the original. What

is the average perimeter for a piecewise linear polygon? What would the probability
model be? It is difficult to do the same thing in 3D. We can only do some actual
experimental comparisons. This question is related to geometric measure theory.
See Federer’s book on rectifiable curves [13].

8.6 Remark: Embedding to Euclidean Space

Embedding a digital object into Euclidean space is usually related to modeling. The
best way is to find a function (or collection of functions and equations) to approximate
the original object.

A manifold can isomorphically be embedded into Euclidean space. Nash’s
theorem also stated that a smooth manifold can be embedded into Euclidean space.

In Chap. 12, we will consider so called manifold learning that can be viewed as
a technique for embedding. We want to find the smallest dimension that can hold a
manifold. In other words, we want to delete all unnecessary components in a very
high dimensional space.

For algorithmic considerations [11], including approximation algorithms, can be
used in this type of research. We will give examples in Chap. 15 for approximation
of digitization.
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Chapter 9
Combinatorial Topology and Digital Topology

Abstract Topology is the study of the equivalence between two general spaces under
continuous mappings. Two spaces are called homemorphic if there is an invertible
continuous function between them. Triangles or simplexes are used in topological
analysis of a space since we want to decompose a complex space into some simpler
shapes to better understanding the whole structure of a space. This type of topology is
called combinatorial topology. Combinatorial topology is the old name for algebraic
topology before the theory of homology was developed.

In this chapter, we briefly introduce combinatorial topology and (modern) alge-
braic topology for later chapters. Then, we move to use these tools in digital topology
problems. We are specifically interested in using Euler characteristic to analyze dig-
ital curves and surfaces. For the other two important problems related to discrete
and digital topology: Jordan curve theorem and digital genus computation, we will
discuss these in Chaps. 14 and 15.

Keywords Topology · Simplex · Simplicial complex · Cell complex · Finite
topology · Euler characteristic · Digital topology

9.1 Basic Concepts of Topology

Comparing to geometry, measurement of distance and volumes, topology studies the
relationship between two spaces, especially the equivalence between two general
spaces under continuous mappings. Two continuous spaces are called homeomorphic
if there is an invertible continuous function between them. The simplicial approxima-
tion theorem guarantees that continuous maps exist from a finite simplicial complex
to a “refined” simplicial complex by barycentric subdivision that can be approxi-
mated. This theorem basically says that we can use the simplexes to decompose a
continuous topological space without change the topological properties of the space.

We have already introduced the concept of point set topology in Chap. 3. Let X

be a set and τ be a collection of subsets of X. τ is called a topology on X if: (1) The
empty set and X are in τ , (2) The intersection of a finite number of elements of τ is
in τ , and (3) The union of an arbitrary number of elements of τ is in τ . The elements
of X are usually called points and the elements in τ (subsets of X) are called open
sets. The complement of an open set A, X − A, is called a closed set. Note that a

© Springer International Publishing Switzerland 2014 149
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subset A ⊂ X may be open, closed, both, or neither. If |τ | is finite, then the open set
is the same as the closed set.

The easiest example of topology is the <R = {real numbers}, τ =
{open intervals}>.

A topological space can also refer to a function space in which each element of
X is a function.

A function on topological space usually means that the function is on the base set
X. We can also define a function between two topological spaces (X, τ ) and (Y , τ ′).
For instance, f : X → Y .

Intuitively, we say that two objects are topologically equivalent if there is a
process that can continuously change one object into another. It can be defined
as a continuous one-to-one onto function. We also say that these two objects have
homeomorphism [2].

Definition 9.1 (X, τ ) and (Y , τ ′) are said to be homeomorphic or topologically
equivalent if there exists a continuous and invertible function f between these two
spaces. (f −1 is also continuous.)

Surfaces and manifolds in Euclidean space are special types of topological spaces.
A surface usually refers to a 2D manifold. A mathematical definition of a surface is a
structure where at each point on the surface, there is a neighborhood that is similar to
a disk. More precisely, the neighborhood is homeomorphic to 2D Euclidean space.
In discrete space, we can view a surface as the discretization of a continuous surface.
This means that there is a partition on the surface that is piecewise linear [30]. In
other words, a complex or general surface can be viewed as gluing together of simple
2D shapes such as triangle, rectangles, and even polygons.

We can extend the definition of surfaces to an n-dimensional manifold: a (topo-
logical) n-manifold is a topological space M = (X, τ ). Each element (point) of X

has an open nD neighborhood Ux that is continuously equivalent or homeomorphic
to an nD Euclidean space. This means there exists an invertible continuous function
between them. For instance, there is a fx : Ux → En where f −1

x is also continuous.
In this book, we will not concern extensively smooth manifolds. We just refer a

smooth n-manifold is a manifold where there is no bent angle in each local location
in the space.

9.2 Triangulation, Simplicial Complexes, and Cell Complexes

Triangles or simplexes are used decompose a topological space for two reasons:
(1) Understand the local configuration of the space, (2) Assist to find the global
topological invariants. This approach is valid because of the simplicial approximation
theorem, proved by L.E.J. Brouwer. This theorem states: the continuous maps from a
finite simplicial complex to a simplicial complex can be approximated by barycentric
subdivision. The meaning of this theorem is that any continuous shape, e.g. a curve
or surface, in a simplicial decomposed space can be approximated by a sequence of
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0-Simplex 1-Simplex 2-Simplex 3-Simplex

Point Line-segment Triangle Tetrahedron

Fig. 9.1 Examples of simplexes

piecewise linear (sub-)complexes. (This approximation is a type of deformation or
homotopy that is defined later in this chapter.)

Partitioning a 2D region into triangles is called triangulation. However, only
triangles cannot build a topological structure and we need to use edges and vertices
in a combined manner. Due to the fact that points are 0-simplexes and edges are
1-simplexes, the collection of those simplexes is called simplicial complex.

For any such a decomposition or a partition, we will generate vertices, edges, and
triangles, the combination of which is called a complex. However, the joint parts
shared by two triangles must be an edge or point in the complex.

9.2.1 Definition of Simplicial Complexes

A point is a 0-simplex, a line segment is a 1-simplex, a triangle is a 2-simplex, and
a tetrahedron is a 3-simplex. See Fig. 9.1.

Mathematically, An m-simplex Δ is defined as a shape that has m + 1 vertex
points u0, u1, · · · , um in Rn satisfying:

(1) (u1 − u0), · · · , (um − u0) are linearly independent, and
(2) Δ = {λ0u0 + · · · + λmum|Σm

i=0λi = 1}.
where λi ≥ 0, 0 ≤ i ≤ m. For any set S that has above property, we call
(u0, · · · , um) ∈ Rn affine-independent. The S is called an affine-shape. In fact, the
simplex is the convex hull of u0, · · · , um.

A subset of u0, · · · , um that is also a simplex is called a face of S. Therefore, the k-
face ofS contains k+1 vertices of u0, · · · , um. For example, S with vertices u0, · · · , u5

is a 4-simplex. F2 containing u0, u1, u2 is a 2-simplex, which is the convex-hull of
u0, u1, u2. where F2 is a 2-face of S.

A simplicial complex K in Rn is a set of simplexes in Rn such that

(1) Every face of a simplex S ∈ K is an element of K , and
(2) The intersection of any two simplexes S1 and S2 of K is a face in both S1 and S2.

The intersection is just a face and not a union of a set of faces. But a face could
contain many low dimensional faces. Therefore, the standard definition should be
changed from “the intersection of any two simplexes S1 and S2 of K is a face in each
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Fig. 9.2 A simplicial
complex that is not a
3-manifold a

b

c A

S1 and S2” to “the intersection of any two simplexes S1 and S2 of K is a k-face in
each of S1 and S2.”

This intersection can be empty. We use (−1)-face to indicate the empty intersection
because k could never be -1. Based on convention, we do not use ∅-face, which refers
to a unique cell in the space. In summary, a k-simplex is the convex hull of k + 1
affinely independent points [20]. A simplicial complex is a set of simplexes that
represents topological space.

Basically, a simplicial complex can be viewed as a topological space when think-
ing about the topology τ as a special subset of points who makes points, line segments,
triangles, and k-simplexes. Researchers in combinatorics also invented the so called
abstract simplicial complex [26].

A simplicial k-complex K is a simplicial complex where the largest dimension of
any simplex in K equals k. A k discrete manifold is a k-complex, but a k-complex
might not be a discrete manifold, as shown by the following example. See Fig. 9.2.

In Fig. 9.2, we can also see that a, b, and c are three edges (three 1-cells).
They are not the edge of a 2-cell and there is no 2-cell bounded by a, b, and c.
However, A is a 2-cell. This complex has three components. In addition, a simplicial
2-complex must contain at least one triangle, and must not contain any tetrahedra or
higher-dimensional simplices.

9.2.2 More Examples of Simplicial Complexes and Other Natural
Complexes

An arbitrary continuous space can be approximated by a set of simple discrete shapes.
These shapes are called cells, and they are usually defined as convexes. The sim-
plest convex in 2D is triangle, that is called a simplex in high dimension. Such an
approximation is made by a partition meaning that two k dimensional-cells does not
overlap, i.e. their intersection is not an k dimensional object.
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Beyond triangulations and rectangle decomposition, the Voronoi Diagrams and
Delaunay Decompositions are most popular. We like to discuss the meanings of them
below.

Given n points in m-dimensional Euclidean space, we can obtain a Voronoi dia-
gram and Delaunay triangulation. Let P be a set of points in Euclidean space Em.
P is called sites. the Voronoi diagram of P partitions Em into regions. Each region
contains just a site. so that any point in the region containing site p ∈ P are closer
to p than to any other site in P.

The Delaunay triangulation of P is the unique triangulation of P so that there are
no elements of P inside the circumsphere of any triangle. Here, “triangulation” has
an extended meaning: it decomposes the convex hull of P into simplexes using S as
vertices [14]. In addition, Delaunay triangulation does not need to be a decomposition
where each face is a triangle.

Voronoi diagrams are a central subject in computational geometry. Some efficient
algorithms have been developed to compute the Voronoi diagram and Delaunay
decomposition [14, 15]. In [5], we show how to define a discrete surface (or manifold)
in Voronoi diagrams or Delaunay decompositions. For how algorithms calculate the
Voronoi diagrams and Delaunay decompositions, see Chap. 10.

In 3D, a Voronoi diagram is a special “graph,” G = (V , E), where V contains all
vertices of the Voronoi diagram and E contains all Voronoi edges (Voronoi 1-cells).
A Delaunay decomposition is also a special “graph,” G = (V , E), where V is the set
of sits and E is the set of Delaunay edges (Delaunay 1-cells). We also have Voronoi
2-cells, Voronoi 3-cells, Delaunay 2-cells, and Delaunay 3-cells.

For a graph G, let τ (G) be a set of defined sets of 0-cells (V ), 1-cells (E), 2-
cells (U2), . . . , k-cells (Uk), . . . by Voronoi cells or Delaunay cells. Let τ (G) =<

G, U2, ..., Un> be a topological structure of G. Based on theVoronoi cells or Delaunay
cells, we can get all the matches for the definition of discrete surfaces in Sect. 7.5
and discrete manifolds in Sect. 7.4.

A Voronoi diagram gives a good example of the cell complex. We will define the
cell complex next.

9.2.3 Cell Complexes*

We have discussed simplicial complexes and digital complexes (cube complexes
in Chap. 5). The more general complexes can be defined by replacing triangles or
simplexes with any other shape. These are called cell complexes.

A more general form of cell complexes is called the CW complex. However, it
is hard to use a computer to represent CW Complexes. In fact, there is no need to
require that a cell have a polygonal boundary. It can be any curve as long as when
two cells meet, they must have a simply connected component as the intersection (in
other words, part of the boundary of the two cells is also a cell.).
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We know that a kD unit ball is represented as,

Bk = {x|x ∈ Rk&‖x‖ ≤ 1}.
The boundary of Bk is a unit sphere,

Sk−1 = {x|x ∈ Rk&‖x‖ = 1}.
Basically, a k-cell is a deformation of a unit k-ball; an open k-cell is a topologi-
cal space that is homeomorphic to an open ball. Mapping (called “attaching”) the
boundary of Bk to a point will result in a Sk .

A space M is called a CW-complex, which stands for complexes with weak
topology, if there is a nested sequence of topological spaces

M (0) ⊂ M (1) ⊂ · · · ⊂ M (m) = M

where M (0) is a set of discrete points. Just like V in G = (V , E) in Chap. 7, we
attach 1-balls B1 to M (0) along their boundaries S0. If B1 is a line-segment and it
is attached to two points in M (0), then the interiors of the attached 1-ball is called
a 1-cell. When we get an M (1) that is exactly like graph G = (V , E), then we can
attach 2-balls B2 to M (1) along their boundaries S1. If B1 is a circle, then ideally we
can attach a 2-ball to a simple cycle in M (1). Then, we can get M (2).

To summarize, for k > 0, M (k) is the result of attaching a set of k-balls to M (k−1)

by mapping (gluing) their boundaries Sk−1 to M (k−1). M (k) is called a k-skeleton of
M . The k-cell is the mapping (deformation) of the interior part of the k-ball.

A CW complex is called regular if the gluing maps are 1-to-1 continuous onto,
which is called a homeomorphism. The complex restricts each cell where a regular
CW complex meets each vertex of M at most once.

A fundamental theorem called the CW-approximation theorem says that every
topological space X has a CW complex to weakly approximate X [19, 20].

It is clear that the definition of discrete manifolds (Chap. 7) is a special case of the
CW complex. However, even though the CW complex has great mathematical prop-
erties, we cannot represent a CW complex in computers since we cannot represent a
general continuous map (gluing map) in computers.

9.2.4 Euler Characteristic of Simplical Complexes

A property of a space is called topological invariant if it does not change under the
invertible continuous mapping. For a connected (and orientable) surface, the genus
g also indicates the number of handles or tunnels on the surface. Therefore, genus is
a topological invariant. A sphere does not have any handle or tunnel, so its genus is
zero. A donut has one handle, its genus is one. See Fig. 7.9.

Euler characteristic is another topological invariant that is defined for a simplicial
complex even for any finite CW complex:

χ = k0 − k1 + k2 − k3 + · · · , (9.1)
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where ki indicates the number of cells in dimension i in the complex. The Euler
characteristic has fundamental importance in combinatorial topology. For a surface,
we know that

χ = 2 − 2g − b (9.2)

where b is the number of the boundary components. So we have χ = 2 − 2g for
closed surfaces. We have presented and used the most popular case of this theorem
for the planar graph G = (V , E) in Chaps. 4 and 6. In such a case, we have the
following facts: (1) g = 0, (2) b = 0, (3) k0 = |V |, k1 = |E|, and k2 = |F |, and (4)
the rest of ki , i ≥ 3 is 0. Therefore we got, k0 − k1 + k2 = 2, thus we have Euler’s
formula for planar graphs (4.2).

|V | + |F | − |E| = 2 (9.3)

9.3 Basic Algebraic Topology: Homotopy Groups
and Homology Groups*

Two curves on a surface are called homotopy if one curve can be changed to the
other curve in a continuous way. In engineering, this concept is called deformation.
Fundamental groups is about an algebraic group relating to “homotopic” curves,
an essential concept connecting algebra and geometry. Homotopy groups are an
extension of fundamental groups that deal with continuous changes between surfaces
and higher dimensional manifolds (in a topological space). Although homotopy
groups are strong in the topological sense, they are difficult to calculate and even
not computable in the general case. Researchers developed simpler groups called
homology groups that are easier to calculate.

Both the homology group and the homotopy group are topological invariants
to topological spaces. Thus, if space X and Y have different homology groups or
homotopy groups, then X and Y are not homeomorphic. However, we can not say
that X and Y are homeomorphic even if their homotopy groups are the same.

We have another example of how to understand topology and its invariants: there
is a space that has one hole and another space that has two holes. These two spaces
are not topologically equivalent and they also have different homology groups. In
practice, calculating the number of holes for two 2D pictures will tell us the topo-
logical equivalence between them. However, in higher dimensional spaces, even
two 2D surfaces have the same number of holes, but they may not be topologically
equivalent.

In this section, we give an overview of the algebraic aspects of topology. This
section contains some profound knowledge in topology [1, 19].
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9.3.1 Review of Groups in Algebra

We here review the basic concept of groups in algebra. G = (S, ·) is called a group
if it contains a base set S and a binary operator · with the following properties:

(a) If a, b ∈ G, then a · b ∈ G (closure property),
(b) If a, b, c ∈ G, then (a · b) · c = a · (b · c) (associative property),
(c) There exists an e ∈ G such that for every a ∈ G, e · a = a · e = a (identity

property), and
(d) If a ∈ G, there exists b ∈ G such that a · b = b · a = e (inverse element

property).

If a · b = b · a, then the group is called an Abelian group (commutative property). A
subgroup H of G is called a normal subgroup if for any a ∈ G we have,

aH = Ha

meaning that a · h, where h ∈ H would be an element of Ha, and vice versa. aH

is a (left-) coset. If we define the quotient set as G/H = {aH |a ∈ G}, then we can
prove that G/H is a group when we treat H as the identity of G/H . G/H is called
the quotient group with respect to H . In algebra, cosets create the partition of a set.

Let G and H be two groups. a function f : G → H is called a (group-)
homomorphism from G to H for all a and b in G. We have

f (a · b) = f (a) · f (b).

We can further define the kernel of f denoted by Ker(f ). This kernel is a subset of
G such that for any a ∈ Ker(f ), we have f (a) = eh, where eh is the identity of H .

Ker(f ) = {a ∈ G|f (a) = eh}.
We also denote the image of f , f (G), as Im(f ). We have the following basic result,
which is not difficult to prove.

Proposition 9.1 (1) The kernel of a homomorphic mapping f : G → H is a normal
subgroup of G. (2) The image of f is a subgroup of H .

9.3.2 Fundamental Groups and Homotopy Groups

Let X be a topological space and x ∈ X be a point. A closed curve starting and
ending at x is called a loop loop(x). We call x a base point. Given the direction of
the loop, clockwise or counterclockwise, the loop now is a path.

Now, we can define a group that is formed by the closed curves passing x. Let us
define the group product a · b of loop a and loop b as the path of a followed by the
path of b.
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a and b are equivalent if a can be deformed to b (a and b are homotopic). The
identity element is the point x which is treated as a special loop. a’s inverse element
is defined as the inversed path of a.

All loops with base point x is a group denoted by πx(X, ·). It is called the fun-
damental group. The fundamental group was defined by Poincare in 1895 [1]. For a
(path-) connected space X, we can prove that if x, y ∈ X, πx(X, ·) and πy(X, ·) are
the same (isomorphically equivalent) [1].

Formally, a loop is a function from 1-sphere (circle) S1 to X. Functions f and g

are said to be homotopic if there is a mapping H such that

H : X × [0, 1] → Y ,

where H(x, 0) = f (x) and H(x, 1) = g(x). In addition, H(x, t) is continuous. So
the fundamental group is formed by loops under the homotopic. If any two loops
are homotopic on X, then this space is called simply connected. Therefore, the
fundamental group of a simply connected Space has just one element.

In other words, one can contract a loop to be a simple point in simply connected
spaces.

The generalization of the fundamental group to the homotopy groups is to use
higher dimensional spheres instead of circles.

Definition 9.2 All maps (functions) from the n-sphere Sn to X can be classified
into the set of homotopy classes where any two elements of a homotopy class are
homotopic. This set forms a group called the nth homotopy group of a topological
space X, denoted by πn(X).

In fact, the fundamental group π1(X) can be very complicated. For n > 1, the
homotopy group πn(X) is anAbelian group [19]. Even though the homotopy group is
an Abelian group (n > 1), this definition did not suggest any thinking path to obtain
a homology group for the specific manifold. However, for some special manifolds,
we can get their homotopy groups.

Example 9.1 (1) π1(S1) = Z. This is because a loop cannot be contracted on S1,
and we can only loop it multiple times. Therefore, it is equal to Z. (2) π1(S2) = {e}
because any loop onS2 can be contracted to a single point, i.e. every loop is homotopic
to an infinitively small Circle, that is a point. (3) π2(S2) = Z. The reason is the same
as that of (1). �

9.3.3 Homology Groups

Let X be a topological space that can be viewed as a general cell complex. A cell
complex does not have to be a discrete manifold. Homology groups will be appeared
as a group sequence H0, H1, · · · , Hn where n is the highest dimension of n-cell in
X. Homology groups are hard to define. But they have simple meanings: H0 is the
number of connected components and H1 is the number of holes.
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1V

V0

1V

V0

a b c a b c

a b

Fig. 9.3 Examples of cell complexes and their homology groups: a Two 0-cells and three 1-cells,
and b two 0-cells, three 1-cells, and one 2-cell

We can use simplicial complex X as a base to introduce homology groups. A
k-simplex Δi has k + 1 vertices v0, · · · , vk . The orientation of Δk is determined
if the orientation of each edge (1-simplex) is determined. We use [v0, · · · , vk] to
represent the cell and its orientation by assigning the arrow of the edge from vi to vj

if j > i (in the vector (v0, · · · , vk)). So the boundary of Δk would be k + 1 Δk−1s:
[v0, · · · , vi , vi + 1, · · · , vk] for all i = 0, · · · , k.

Define ∂[v0, · · · , vk] = Σk
i (−1)i[v0, · · · , vi , vi + 1, · · · , vk] as a convenient way

of representation. For instance,∂[v0, v1] = [v1] − [v0] means we have two boundary
points. However, ∂[v0, v1, v2] = [v1, v2] − [v0, v2] + −[v1, v2] indicates the three
edge directions and the orientation of the boundary clockwise or counter-clockwise.

Let Cn(X) be the Abelian group with all n-cells (or n-simplexes) a
(n)
t , t =

1, · · · , N , in X that are considered: Σni · a
(n)
i where ni is an integer. Cn(X) is

called an n-chain and an element of Cn(X) is a simple path of n-cells, just like we
defined in Chap. 7. The following example explains how we get Cn(X) [19].

Example 9.2 In Fig. 9.3a, a − b is a path or chain. So 2a − 2b is a path with two
cycles from v0 to v1 and back to v0. In Fig. 9.3b, we add a 2-cell A in the clockwise
direction. We can see that C2(X) = 0 in Fig. 9.3a since there is no 2-cell, and C1(X)
is the set of elements like n(a) + m(b) where n, m are integers. C0(X) can also be
represented as a set of n(v0) + m(v1). In Fig. 9.3b, C2(X) has the elements listed as
n(A). �

Now we introduce boundary operators ∂k that are boundary homomorphic map-
pings from Ck(X) to Ck−1(X), i.e. ∂k : Ck(X) → Ck−1(X). We want to map an
n-Chain (a chain of n-cells), Pn, to its own boundary. Specifically, if Pn is a set of
[v0, · · · , vn], then

∂nPn = Σi( − 1)iPn|[v0, · · · , vi , vi + 1, · · · , vn] (9.4)
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where Pn|[v0, · · · , vi , vi + 1, · · · , vn] is the restriction.
Since the boundary of an n-cell is closed, therefore, the boundary of the boundary

is empty. It is easy to see that

Theorem 9.1

∂(n)(∂(n+1)) = 0 (9.5)

This theorem means that the boundary of Cn+1(X) is always closed, and every
closed shape will map to 0. Therefore, Im(∂n+1) ⊂ Ker(∂n). This means that every
boundary is closed but not every closed shape is the boundary of a higher dimensional
cell. However, if X is simply connected, we can say that they are equal.

The chain complex is a sequence of Abelian groups C0, C1, C2, ...Cn, ..... It is
connected by homomorphisms ∂n : Cn → Cn−1 [19].

· · · −→∂n+1Cn−→∂nCn−1−→∂n−1 · · · −→∂2C1−→∂1C0−→∂0 0

The homology groups are defined as follows:

Hn(X) := Ker(∂n)

Im(∂n+1)

Example 9.3 We still use Fig. 9.3 to be example for analyzing the structure of
homology groups.

In Fig. 9.3a, H1(X) = Ker(∂1) since Im(∂2) =, i.e. no 2-cells in Im(∂2). Ker(∂1)
contains all the closed cycles since only closed cycles can map to the identity element
in C0. The cycle is in the form of n(a − b) + m(b − c). In addition, the group
{n(a − b) + m(b − c)} is the normal subgroup of the group {n(a) + m(b) + l(c)},
which is the general form of C1. Therefore, H1(X) = Ker(∂1) = Z × Z. H0 =
Ker(∂0)/Im(∂1); Ker(∂0) has the Abelian group generated by two points since ∂0

does not map 0-cells anywhere. Im(∂1) is the boundary of all edges, which is still the
same Abelian group generated by these two points. Therefore, H0 = 1 is the single
element that is also the identity.

In Fig. 9.3b, H2(X) = Z since there is only one 2-cell. However, Im(∂2) is a
group generated by a − b, where a − b is the boundary of A. Therefore, Im(∂2) =
{n(a − b)|n ∈ Z}. Ker is the same as in Fig. 9.3a and H1(X) = Ker(∂1)/Im(∂2) =
(Z × Z)/Z = Z. It means that Fig. 9.3b contains only one hole by the edge cycle.

�

The geometric meaning of Ker(∂n) is the collection of all “cycles” made by n-
cells or “closed n-manifolds.” This is because only one object without a boundary
can map to zero, the identity element in Cn−1 which is an Abelian group.

Again, an n + 1 object (manifold) has a closed boundary in Cn. Therefore,
Im(∂n+1) ⊂ Ker(∂n). When every n-“cycle” is the boundary of an (n+ 1)-manifold,
the space with the property of Im(∂n+1) = Ker(∂n), has no n-hole. Therefore, Hn(X)
indicates the number of n-holes in the space X. Homology groups are powerful tools
for topological structures. We use homology groups in Chap. 14 to find the genus of
3D objects.
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9.4 Digital Topology: An Introduction

In this section, we will first introduce the concept of finite topology that makes use of
classical topological method such as cell complexes in a discrete space especially for
digital images in digital space. Then, we will present a unified method for topological
analysis in 2D and 3D digital space by using the Euler theorem for planar graphs.
The topics on more advanced digital topology will be discussed in Chaps. 14 and 15.
All results discussed in this section will not only satisfy all requirements of classical
topology, but also satisfy the methods of digital manifolds and discrete manifolds
given in Chaps. 5 and 7.

9.4.1 Finite Topology and Grid-Cell Topology

Finite topology was proposed by Kovalevsky for creating a type of cellular topol-
ogy for a finite set, especially for grid-cell spaces. This topology is based on cell
complexes. It was a nice bridge to topologies between digital space to continuous
space. It was specifically for describing the structure of images [25]. This method
first appeared in P. S. Alexandrov famous book in 1930’s [1]. The method was used
as an example of the grid-cell complexes.

Kovalevsky’s method is to encode images into cellular complexes. However, cellu-
lar complexes defined in [25] through using open sets is not a discrete mathematical
method defined in Chap. 7. Finite topology maps a digital image to a continuous
space in order to make an encoding, which could cause additional problems in com-
putations or algorithm design. The cell in Kovalevsky’s finite topology may be a
polyhedron or faces of a polyhedron.

Definition 9.3 A (abstract) cellular complex C = (E, B, dim) is a set E of (ab-
stract) elements provided with an antisymmetric, irreflexive, and transitive binary
relation B ⊂ E ×E called the bounding relation (or the face relation) and with a di-
mension function dim : E → {0, 1, 2, ...} such that dim(e1) < dim(e2) for all pairs
(e1, e2) ∈ B. e ∈ E with dim(e) = i is called an i-dimensional element or an i-cell.
A complex is called k-complex if the dimensions of all its elements is less than or
equal to k.

The advantage of this definition is to ignore the continuous space, just use dis-
crete objects to define the topology. The disadvantage is that we still need human
interpretation to determine whether an actual image component is an i-complex. In
other words, given a set of pixels in 2D or voxels in 3D, deciding if the set is a
1-complex, 2-complex, or 3-complex will have results that depend on which cells
are pre-included in E. Kovalevsky called this problem the image encoding problem.
Therefore, the encoding is key to generate a topology. In Chaps. 5 and 7, we have
given the unified method for defining the topology of discrete cells. We can also say
that the method we used in Chaps. 5 and 7 are realizations of the topologic spaces
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defined in Definition 9. 3. The realization of a cell complex was also discussed in
continuous space. It is different from the discrete realization here.

9.4.2 Topology of Curves in 2D Digital Space

In this section, we will present some basic properties of curves in a 2D discrete plane
or a closed 2D discrete manifold. All results discussed in this section will not only
satisfy all requirements of classical topology, but also satisfy the methods of digital
manifolds and discrete manifolds given in Chaps. 5 and 7.

9.4.2.1 Case Study: A Simple Topological Theorem of Digital Curves

There are many ways of dividing a plane into smaller pieces or 2-cells. Some exam-
ples were presented in Chap. 2. Following the edges of each 2-cells, we can get a
discrete curve. Since the most popular 2-cells are triangles and squares. We here use
squares as an example to give a topological theorem in discrete space.

A polygon is called regular if every edge is equal in terms of lengths. A square is
also called a regular 4-polygon. We can extend this concept to any type of regular
polygons. Squared decompositions are not only convenient in digital computers, but
we can also derive some interesting topologic properties.

Here, we present a simple theorem of digital curves using the classic Euler formula
of planar graphs.

We first give an intuitive explanation of this theorem. Let us assume that a simple
closed digital curve C contains at least one point inside the curve in direct adjacency
defined in Chap. 2. This curve only contains three types of points: (1) The outward
point (CP2), adjacent to two points on C and not adjacent to any point in the inner
area of C, (2) The straight point, CP3, adjacent to two points on C with a neighbor in
the inner area of C, and (3) The inward point CP4 adjacent to two points on C with
two neighboring points in the inner area of C. The theorem says that,

Lemma 9.1 CP 2 = CP4 + 4.
This lemma has multiple proofs. The meaning of this lemma is that for a simple

digital curve, the outward points are always 4 more than the inward points. This
result can be used directly in calculating how many holes there are in a digital image.
As we know, Euler’s planar graph theorem states: In a planar graph, if V , E, and F

represent the set of vertices, edges, and faces, respectively, then |E| = |F |+|V |−2.
We can use this theorem to prove above lemma.

Proof Let INC be the set of points inside of the curve not including any point on
the boundary C. It is easy to know that the vertices contain all points in INC and on
the boundary C. So,

|V | = |CP4| + |CP3| + |CP2| + |INC |.



162 9 Combinatorial Topology and Digital Topology

Each point in INC will have 4 edges to link with. However every edge was used
twice. Also consider three types of points on boundary curve; therefore,

|E| = (4 · INC + 4 · |CP4| + 3 · |CP3| + 2 · |CP2|)/2.

For the same reason, we consider each point in INC will be included in 4 2-cells
(faces). However a point CP4 only is only included in three faces, and so on. Consid-
ering that a face contains four points and outside of the curve is also a face in planar
graphs, we have

|F | = (4 · INC + 3 · |CP4| + 2 · |CP3| + |CP2|)/4 + 1.

Therefore, using formula |E| = |F | + |V | − 2, we have:
|CP4|+|CP3|+|CP2|+|INC |+ (4 · INC +3 · |CP4|+2 · |CP3|+|CP2|)/4+1−2
= (4 · INC + 4 · |CP4| + 3 · |CP3| + 2 · |CP2|)/2.

thus, |CP2| = |CP4| + 4. �

Rosenfeld presented a result that states: Any simple closed curve must have five
points in a 2D digital plane with direct adjacency (or 4-connected) [24]. In differential
geometry there is a famous four vertex theorem: Every simple closed convex curve
in a plane has at least four vertices, where the vertex is a point whose curvature has
a local maximum or minimum. This theorem in digital plane will be there must be 4
points in CP2 ∪ CP4. The curvature of a point in CP3 (the straight line point) is zero
that is not maximum neither minimum.

Since boundary curve C does not contain any 4-regular polygons, so any two
outward corner points cannot be adjacent in our digital curve definition. There are
at least four outward corner points. The positions between the two outward corner
points must be filled by the points in CP3 or CP4. Thus, |C| must be greater than or
equal to 8.

Using the theorem proved above, we can easily prove Eq. (4.4) for the hole
counting problem [8].

9.4.2.2 Euler’s Formula and Other Discrete Curves

We can use Euler’s Formula for planar graphs to study other types of discrete curve. If
only one type of polygons can be used, there are only three ways to divide a plane into
regular polygons. These polygons are regular triangles (3-regular-polygon), squares
(4-regular-polygon), and 6-regular-polygons.

In Lemma 9.1, we can see that a closed digital curve has at least eight points in
a 4-regular-polygon decomposition plane. Using the same technique, we can prove
that there are least six points in a closed discrete curve in the 3-regular-polygon
decomposition plane, and at least eight points in a 4-regular-polygon decomposition
plane, and at least 12 points in a closed discrete curve in the 6-regular-polygon
decomposition plane [6]. Figs. 9.4 and 9.5.

Let us consider the 3-regular-polygon case next. If C is a closed curve, then there
are five kinds of simple curve points in INC ∪ C. We call a point p on C a CPi point
if p has i adjacent points in INC ∪ C.
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3-polygon-unit cells 4-polygon-unit cells

6-polygon-unit cells

a b

c

Fig. 9.4 Digital planes made by regular polygon cells

Fig. 9.5 An angle in a regular
polygon

A

B

Lemma 9.2 For regular 3-polygon decomposition, any closed curve must hold the
following property: |CP3| = |CP5| + 6.

Proof According to Fig. 9.6, we know |CP1| = 0 and |CPi| = 0 if i > 6. In fact,
CP2 = 0 (point A in Fig. 3.7) and CP6 = 0 (point E in Fig. 9.6) because C cannot
contain any 3-regular-polygons. The points in CP4 are said to be straight line points
such as point C in Fig. 9.6. The points of CP3 are said to be outward-corner points
such as point B in Fig. 9.6. The points of CP5 are said to be inward-corner points
such as point D in Fig. 9.6.

Since the vertices and edges generated by these 3-regular polygons form a planar
graph, we can use Euler’s planar graph theorem to find the relationship between CP3

and CP5. This theorem says: In a planar graph, if V , E, and F represent the set of
vertices, edges, and faces, respectively, then |E| = |F | + |V | − 2. In our case

|V | = |CP5| + |CP3| + |CP4| + |INC |,
|E| = (6 · INC + 5 · |CP5| + 4 · |CP4| + 3 · |CP3|)/2,
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Fig. 9.6 Vertices classification of regular polygon cells in 3-polygon

and
|F | = (6 · INC + 4 · |CP5| + 3 · |CP4| + 2 · |CP3|)/3 + 1.

Therefore,
|CP5|+|CP3|+|CP4|+|INC |+(6·INC +4·|CP5|+3·|CP4|+2·|CP3|)/3+1−2
= (6 · INC + 5 · |CP5| + 4 · |CP4| + 3 · |CP3|)/2.

So |CP3| = |CP5| + 6. �

We can also prove the case for regular 6-polygons. That is

Lemma 9.3 For regular 6-polygon decomposition, any closed curve must hold the
following property: CP2 = CP3 + 6, |CP3| ≥ 3.

See detailed proof in [6].

9.4.3 Topology of Digital Surfaces: An Application of Euler’s
Theorem

Topology of surfaces is already a well established theory in topology. Any 2D surface
can be categorized to be a surface with n handles and m Mobieus strips. It means
that every surface must be homemorphic to a sphere where we attach n handles (just
like the handle of a cup) and m Mobieus strips.

Nevertheless, how do we decide that a given set is a surface with n handles and
m Mobieus strips is a difficult problem. In Chap. 6, we have design an algorithm
that can decide if a surface is orientable. In this section, we will present a simple
theorem that will be able to help us to decide if a digital surface is simply connected,
i.e. there is no handles and Mobieus strips. This theorem states that: |M3(S)| =
8 + |M5(S)| + 2|M6(S)| where Mi is the set of surface points that has i neighbors on
the surface.
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Therefore, in digital space, we could explore more topological invariants in some
special cases.

Let p be a point on the digital surface S. p is called the i-point if p is 6-adjacent
to i points in S ∩ Np. Let M3(S), M4(S), M5(S), and M6(S) be the sets of 3-points
(also called corner points), 4-points, 5-points, and 6-points, respectively. There is no
7-point in a simple surface S [10]. We assume that This surface is a closed surface
in the rest of the section.

Lemma 9.4 (1) |V | = |M3(S)| + |M4(S)| + |M5(S)| + |M6(S)|;
(2) |E| = (3|M3(S)| + 4|M4(S)| + 5|M5(S)| + 6|M6(S)|)/2;
(3) |F | = (3|M3(S)| + 4|M4(S)| + 5|M5(S)| + 6|M6(S)|)/4.

Proof It is easy to know that M0(S), M1(S), M2(S), and Mk(S), k ≥ 7 cannot be a
surface point. Therefore (1) is true.

Next, we consider each vertex’s contribution to the edges E in planar graph G.
In G = (V , E), every point in M3(S) is connected with three edges, every point in
M4(S) is connected with four edges, every point in M5(S) is connected with five
edges, and every point in M6(S) is connected with six edges. On the other hand,
every edge has two end points. So,

|E| = (3|M3(S)| + 4|M4(S)| + 5|M5(S)| + 6|M6(S)|)/2.

we have proved case (2).
For case (3), we count the contribution of each vertex to the faces F in G. In

G = (V , E), every point in M3(S) is connected with three faces, every point in
M4(S) is connected with four faces, every point in M5(S) is connected with five
faces, and every point in M6(S) is connected with six faces. On the other hand, every
face has four end points. So,

|F | = (3|M3(S)| + 4|M4(S)| + 5|M5(S)| + 6|M6(S)|)/4.

We have completed the proof. �

Theorem 9.2 The digital form of Euler’s formula on surfaces is the following:

|M3(S)| = 8 + |M5(S)| + 2|M6(S)|. (9.6)

Proof According to Euler’s formula, we have: |M3(S)| + |M4(S)| + |M5(S)| +
|M6(S)|+ (3|M3(S)|+4|M4(S)|+5|M5(S)|+6|M6(S)|)/4 = (3|M3(S)|+4|M4(S)|+
5|M5(S)| + 6|M6(S)|)/2 + 2. Thus,

|M3(S)| + |M4(S)| + |M5(S)| + |M6(S)| =
(3|M3(S)| + 4|M4(S)| + 5|M5(S)| + 6|M6(S)|)/4 + 2.

Then, |M3(S)| = 8 + |M5(S)| + 2|M6(S)|. �

According to Theorem 9.2, we have:

Theorem 9.3 Any simple closed surface has at least eight corner surface points.
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Furthermore,

Theorem 9.4 Any simple closed surface has at least 14 points.

Proof According to the definition of digital surfaces, a digital surface does not
contain any 3-cell (cube). Therefore, any two corner surface points (points in M3)
cannot be adjacent. According to Theorem 9.2, each simple closed surface has at least
eight corner points, each of which is connected to three edges that cannot connect
with corner surface points. So, there are 24 = (3×8) points, some of them are doubly
counted, each of which is not a corner surface points. In conclusion, the number of
points in a closed surface is:

|M3(S)| + |M4(S)| + |M5(S)| + |M6(S)| =
8 + |M5(S)| + 2|M6(S)| + |M4(S)| + |M5(S)| + |M6(S)| =

8 + |M4(S)| + 2|M5(S)| + 3|M6(S)|
and

4|M4(S)| + 5|M5(S)| + 6|M6(S)| ≥ 24.

According to Theorem 9.2, we consider the following integer programming problem:

8 + |M4(S)| + 2|M5(S)| + 3|M6(S)| = min

4|M4(S)| + 5|M5(S)| + 6|M6(S)| ≥ 24;

We have |M4(S)| = 6 and |M5(S)| = |M6(S)| = 0. That is, any simple closed surface
has at least 14 points. �

9.5 Remark

In this chapter, we discuss both the topology of simplicial complexes and finite
topology for digital space. In computer graphics, a discrete manifold usually means
a meshed object. The simplicial approximation theorem proven by Brouwer is a
foundational result. This theorem means that a continuous manifold is somewhat
equivalent to a subclass of simplicial complexes.

Computationally, use polygons or triangles for decomposition will not add much
time since a polygon can be partitioned into triangles in linear time [4, 13, 16, 27, 29].
However, for data reconstruction purposes, the different triangulation may yield
much different result [7].

The homology group part in this chapter will be used in Chap. 14. More detailed
discuss can be found in Hatcher’s popular book [19].

Fundamental groups for digital spaces were first studied by Khalimsky [22], and
then Kong [23]. The path or curves are formed by digital points. The definition is used
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to simulate the classic fundamental groups in digital space by defining the digital
curves and their motions.

Euler’s formula for planar graphs [18] plays an important role in this chapter in
digital topology. The earlier results using Euler’s formula in digital topology can be
found in [11]. More detailed results can be found in [6].

Modern geometry and algebra are combined in many ways including information
security. For example, the most effective encryption method today is called ellipti-
cal curve cryptography that uses groups on elliptical curves to encode and decode
information[3]. This group is a finite Abelian group. The Abelian group is particu-
larly important to geometric structures. This geometric curve generates an Abelian
group that is a generalization of currently used RSA that uses prime numbers. A
problem called the hidden subgroup problem that is related to quantum computing is
significant [17]. In particular, decompsition of finite Abelian groups in both regular
computers and quantum computers are interesting too [9, 12, 21]. Decomposition
of finite Abelian groups is the generalization of Shor’s work for prime factorization
in quantum computers [12, 28]. This work might relate to fundamental groups and
other homotopy-homology groups on the topological structure of a manifold. There
might be some future problems in discrete from of elliptical curve cryptography for
the approximation of some type of encoding and decoding.
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Part IV
Geometric Computation and Processing



Chapter 10
Geometric Measurements and Geometric
Computing

Abstract In ancient times, the need for measuring land resulted in the development
of geometry, much like the need for counting yielded arithmetic. The easiest example
is to measure the distance between two points as we discussed in Chap. 3. In this
chapter, we cover basic geometric measurements including curve length, surface
area, and solid volumes in classical topics of geometry.

The second main topic of this chapter is geometric computing, using algorithms
to solve geometric problems in 2D or 3D Euclidean spaces. This area is called com-
putational geometry or algorithmic geometry. We present some basic methods and
techniques for the following problems: convex hull, closest pair, and Delaunay and
Vonoroi diagrams we discussed in Chap. 3. This chapter covers the basic knowledge
for the later chapters of the book.

Keywords Measurement · Metric · Length and area · Lp space · Polygon · Convex
hull · Delaunay triangulation · Voronoi decomposition · Algorithms

10.1 Overview of Measurements in Different Spaces

In Euclidean space, the most fundamental theorem is the Pythagorean theorem: in a
right triangle, the square of the hypotenuse equals the summation of the squares of
both legs.

As we know from Chap. 3, the concept of metric was created because people
wanted to measure the distance between two points. Such a simple concept may yield
different answers in different spaces, for instance in Euclidean space and spheres.

The main difference between geometry and topology is the measurements. Strictly
speaking, geometry must have a metric but topology does not have a metric and does
not focus on the distance measure. However, the common ground is that they both
deal with continuous neighborhoods and differentiability of spaces.

Measurements in discrete geometry can be similar to those in a continuous space
if we embed discrete objects into a Euclidean space. Algorithmic geometry is dealing
with this case. We discuss this further in the second half of this chapter.

However, in digital geometry, as we have seen in Chaps. 4 and 6, we are mainly
interested two metrics: direct and indirect adjacency. The distance measure we mainly
use is graph-based distance (length of the path), not Euclidean distance in many

© Springer International Publishing Switzerland 2014 171
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instances. This is because digital geometry was invented for image processing and
computer vision in large “portions.”

It is obvious that we need to also consider the Euclidean length and area of a
geometric object in digital space (as embedded into Euclidean space). This way
deals with approximation, especially of the boundary of the object in Euclidean
space. For example, we can consider boundary length as a factor when we do image
segmentation (See Chap. 4 for the definition), which uses the variational method in
continuous spaces. See Chap. 12.

This chapter provides the necessary background of the measurements in Euclidean
space and its computation [21, 22]. We also provide some advanced knowledge of
geometric measurements for later chapters, especially the measurement of curvatures
[8, 15, 16].

10.2 Basic Measurements in Euclidean Space

The basic measurements for geometric shapes are length, area and volume. Length
refers to the distance between two points or could also refer to the longest dimension
of an object. Area is the quantity of the number of unit squares, a value that can be
fractional. Volume is the number of unit-cubes.

10.2.1 Length, Area, and Volume

In analytic geometry, projecting a line-segment from point q1 = (x1, y1) to q2 =
(x2, y2) on the x and y-axis will yield two intervals (line-segments on the axes), that
are two legs of a triangle. The distance is also called the length of the line-segment,

Length or Distance In 2D Euclidean space, distance from q1 = (x1, y1) to q2 =
(x2, y2) is

d(q1, q2) =
√

(x2 − x1)2 + (y2 − y1)2

This is the first metric of geometry. It satisfies all conditions of the definition of
metrics discussed in Chap. 3. The proof of the formula was given in various ways in
Euclidean space. This Euclidean metric is not valid for spheres.

For a 2D polygonal shape, the perimeter is the total length of the edges. Therefore,
for a rectangle with length a and width b, the perimeter is 2(a + b).

For a circle, the circumference C is π · d where d is the diameter of the circle.
Even in ancient times people already found that C

d is a constant so they called the
ratio of the circumference π .

Area The formula for the area of a triangle can be derived from the formula for the
area of a rectangle: A = a × b. The area of a triangle is 1/2a × h.

The area of a circle is π · r2, where r is the radius and r = d/2.
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Volume In terms of volume, the volume of a cube is a3 where a is the length of an
edge. The formula for the volume of a sphere is 4/3 · πr3, where r is the radius.

The general method for computing length, area, and volume for any given curve,
surface, and solid object requires knowledge of differentiation and integration from
calculus. Here we just present a brief description.

10.2.2 Curve Length

For an arbitrary curve in E2, 2D Euclidean space, s(t) = (x(t), y(t)), where t ∈ [0, 1].
It is not difficult to know that at time t , ds = Δs = s(t+Δt)−s(t) = √

(Δx2+Δy2).
Therefore,

(ds)2 = (dx)2 + (dy)2. (10.1)

The length of the curve (arc length) is the summation of all small changes on s, Δs

or ds. Therefore, the formula would be

∫ 1

0
ds =

∫ 1

0

ds

dt
dt =

∫ 1

0

√(
dx

dt

)2

+
(

dy

dt

)2

dt

In fact, the curve length (10.1) can be generalized by

ds2 = E du2 + 2F dudv + G dv2

If the value is positive, such a curve is called the Riemann curve (or Riemann
manifolds). In fact, Euclidean space is good enough for the study of any type of
Riemann manifold since every Riemann manifold can be isometrically embedded
into Euclidean space in higher dimensions.

10.2.3 Surface Area

If the surface is parameterized using u and v, then the general formula for surface
area S = S(u, v) is the summation of all small rectangles on the surface with length
ΔSu and width ΔSv, i.e. Tu = dS

du and Tv = dS
dv . Therefore, the formula applies for

where Tu and Tv are tangent vectors and a × b is the cross product.

Area =
∫

S

|Tu × Tv|dudv. (10.2)

If z = f (x, y) is defined over a region D, then

Area =
∫ ∫

(D)

√
(((∂z)/(∂x))2 + ((∂z)/(∂y))2 + 1)dxdy.
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10.2.4 Solid Volume

Most of the time, we are only interested in the volume of 3D objects in 3D. In
calculus, let f (x, y) ≥ 0 be a continuous function. The volume of the solid that lies
above a region R and below the z = f (x, y) is given by the following formula,

Volume =
∫ ∫

R

f (x, y)dxdy

In fact, if we let E be a solid, then its solid volume is

Volume =
∫ ∫ ∫

E

dxdydz. (10.3)

Such volume calculation is simple. However, a related formula called Greens theorem
or divergence theorem can be used to calculate the surface area S through the volume
that it bounds.

∫

E

∇ · FdΩ =
∮

S

F · n̂dS.

n̂ is normal of dS.

10.2.5 Curvatures

The curvature of a curve measures the degree of curviness. It is defined as the
magnitude of the acceleration of the curve.

κ(t) = ‖s ′′(t)‖. (10.4)

The radius of the curvature R(t) is the reciprocal of the radius of curvature:

R(t) = 1

κ(t)
.

Therefore, for a plane curve s(t) = (x(t), y(t)), the curvature is

κ = |x ′y ′′ − y ′x ′′|
(x ′2 + y ′2)3/2

(10.5)

The curvature for surfaces are measured by two principal curves with a local
maximum curvature and local minimum curvature. We have two curvatures κ1 and
κ2, where κ1κ2 is called the Gaussian curvature and (κ1 + κ2)/2 is called the mean
curvature.

A fundamental theorem in differential geometry, called the Gauss-Bonnet theo-
rem, related to Gaussian curvatures states: The integral of the Gaussian curvature
over the whole (closed) surface is 2π times the Euler characteristic.

The mean curvature is directly related to the minimum surfaces where the mean
curvature is zero at every point. More discussion of the uses of curvatures can be
found in Chaps. 12 and 14, also in [16].
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10.3 Discrete Measurements for Polygons and Polyhedrons

Measurements for polygons are essential to engineering since most real world ap-
plications can be approximated by piecewise linear decompositions, i.e. by polygon
type of shapes.

Length of a polygon can be measured as the summation of all edges.

10.3.1 Polygon

Area of a polygon can also be calculated by a simple formula: Assume (x1, y1),
· · · , (xn, yn) are n vertices in polygon P . Its area is

A = 1

2
(

n∑

i=1

(xiy(i+1)mod(n) − x(i+1)mod(n)yi). (10.6)

Proving this formula is simple since we already know the formula for calculating
the area of a triangle. We split P into a triangle and another smaller polygon using
just one line segment. Using mathematical induction, we get two polygons that meet
the formula so the summation of the two formulae will be equal to the above formula
since the direction of the new line segment is opposite of the two polygons. They
will cancel each other in the final formula.

10.3.2 Polyhedron

Volume of an (Orientable) Polyhedron

Let E be the region enclosed by a polyhedron, The faces of a polyhedron are planar
and each face is a polygon. The faces have piecewise constant normals. Therefore,

Volume = 1

3

∑

facei

xi · n̂iAi (10.7)

where xi is an point (any point) on the facei , n̂i is the normal vector, and Ai is area
of the face.

Since enumerating the faces may not be a simple task, we may need a special
algorithm to count this. In later chapters we will discuss data structures for this type
of computation.
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Fig. 10.1 The metric
differences when p changes
in Lp spaces

p=1

p=2

p=infinity

10.4 Metrics in Lp Spaces and Digital Spaces*

We have defined p-norm in Chap. 3. In fact, this is related to a class of important
spaces called Lp spaces in functional analysis, and the metrics are closely related to
direct adjacency and indirect adjacency in digital space.

In general, we define a metric for (R2, dp) as

dp(q1, q2) = (|x2 − x1|p + |y2 − y1|p))
1
p (10.8)

(R2, dp) is called a Lp space. The p-norm ‖X‖p = d(X, (0, 0)) in Chap. 3.
For Rn,X = (x1, · · · , xn), when p → ∞, ‖X‖p → max {|x1|, |x2|, · · · , |xn|}.

This is equivalent to:

‖X‖∞ = max {|x1|, |x2|, · · · , |xn|}
This is why we say that indirect adjacency in 2D has the metric of d∞.
Figure 10.1 shows the characteristics when p changes around the unit circle of

each p.
The following definition and example give some essential information while we

choose a metric for a space.

Definition 10.1 A metric d on X is said to be intrinsic if for any two points x and y

in X, we can find a curve whose length is arbitrarily close to d(x, y). In other words,
there is a curve that links these two points with (almost) the same length.

Example 10.1 We can examine that all dp, p = 1, 2, ·, ∞ are intrinsic metrics.
However, for digital space, Σm, d2 is not an intrinsic metric. In other words, d1 and
d∞ are two intrinsic metrics in the digital plane. d2 is not an intrinsic metric in digital
space since we cannot usually find a path with the distance between two random
points x and y. For instance, x = (i, j ) and y = (i + 1, j + 2) in (Σ2, d2). This
is because the shortest path from x to y has a distance of 3 (direct adjacency) or
2 (indirect adjacency or

√
(2) + 1 if embedded into E2), but d2(x, y) = √

(2)2 + 1.
Again, d2 is an intrinsic metric if we embed a digital space into Euclidean space.
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10.4.1 Geometric Measures*

Also, note that the concept of measure is different from metric. Measure is a concept
usually used in probability. It is defined on a set S, where Si is a subset of S and U

is a collection of Si .
A measure is a function μ from {Si} to a real number with the following properties:

(1) For all Si ∈ U , μ(Si) ≥ 0.
(2) μ(∅) = 0.
(3) If U is a countable set, U = {Si |i ∈ N}, and U is a pairwise disjoint set, i.e.

Si ∩ Sj = ∅ in U , then

μ

(
⋃

i∈N

Si

)

=
∑

i∈N

μ (Si) .

To understand what a measure is, we can think about length, area, and volumes.
Those are measures. Therefore, a measure defined on a set A is a nonnegative real
function. The measure of a empty set would be zero. And, if U = A ∪ B and A and
B are disjoint, then μ(U ) = ∑

μ(A) + μ(B).
Probability is also a measure. For a geometric entity, defining a measure is

important.

10.5 Algorithmic Geometry

Algorithmic geometry is usually called computational geometry. It uses the algorithm
technique to process the geometric problem. To find efficient and fast algorithms is the
goal of this research area. Note that for the general public, computational geometry
may have several different meanings. In this book, we use the term algorithmic
geometry in the discussion.

10.5.1 Convex Hulls of Discrete Points

Given a set of discrete points on a plane, find the minimum convex that contains all
the points. This convex is called the convex hull of the point set.

The easiest way to understand the convex hull is to use a rubber band to bind a
bunch of needles that are attached to a wood plane. We can also use a long string to
wrap around these points. See Fig. 10.2.

This idea can be implemented as a simple algorithm called the gift-wrapping
method.

Problem of the Convex Hull Given a set of points in the plane, find the minimum
convex that holds all the points. See Fig. 10.2b.
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Wrapping
direction

a b c

Fig. 10.2 The convex hull of points: a A collection of points, b the convex hull of these points, and
c the gift-wrapping algorithm

Algorithm 10.1 The gift-wrapping algorithm for the convex hull. This algorithm is
similar to wrap a gift.

Step 1 Find the left most point, which is also the lowest point. This point must be
the corner point of the convex), denoted P .

Step 2 Draw lines from P to all the other points. Find the line with the biggest
angle with respect to y-axis. This line must be on the edge of the convex.

Step 3 Take the point at the end of the line that is not P , and use this point as the
new starting point P .

Step 4 If P was selected before, stop the algorithm. Otherwise, go back to Step 2.

We have presented the meaning of the algorithm in Fig. 10.2c.

Theorem 10.1 The time complexity of the gift-wrapping algorithm is O(nh), where
n is the number of points in the set and h is the number of points on the boundary of
the convex hull.

Proof Algorithm analysis: Step 2 uses O(n) time for calculations and comparisons.
There are h points on the corners (the boundary of the convex). Therefore, the time
complexity is O(nh). Since h can be as many as n, this algorithm has O(n2) time
complexity in the worst case scenario. �

Another popular algorithm for convex hulls is called the Graham’s scan algorithm
[4]. This algorithm first uses a fast sorting algorithm to sort the angles to a reference
point. Then, find the corner points of the convex hull along with the sorted order.

Algorithm 10.2 Graham’s scan algorithm for the convex hull.

Step 1 Find the lowest point, which is also the rightmost point denoted by P .
Step 2 Draw dotted lines to all other points from point P . This takes O(n) time.
Step 3 Sort the angles of all dotted lines in ascending order, which takes O(n log n)

time if we use the merge-sort algorithm.
Step 4 Draw an edge from P to the point that is the end point of the dotted line

with the smallest angle (the edge will be on the boundary of the convex
hull). The new point will be set to P which uses O(1) time.

Step 5 Start at P and draw the line to the end point of the next line in the sorting
sequence that uses O(1) time.
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Step 6 If the new corner angle that is smaller than 180◦ (the curve would be concave
otherwise), then back track and skip the point that makes the angle smaller
than 180◦. Continue until each point has been selected.

Theorem 10.2 The time complexity of Graham’s scan algorithm is O(n log n).

Proof We just give a brief algorithm analysis here. The Step 2 uses O(n) time. The
Step 3 uses O(n log n) time since we can use a merge-sort algorithm. The Step 4 uses
O(1) time, and the Step 5 also uses O(1) time. Finally, the Step 6 uses O(n) time.

When we skip points for concave cases, we do not repeat the points skipped each
time. Therefore, the total time of the algorithm is O(n log n). �

The optimum algorithm for convex hull finding is O(n log h) that is slightly better
than Graham’s scan algorithm. See [17].

10.5.2 Algorithms for Delaunay Triangulations and Voronoi
Diagrams

Givennpoints (called sites) on a plane, for a new pointx, find the closest site to x. This
problem is called the nearest neighbor problem, one of the most popular problems
in the real world (this problem predates the establishment of artificial intelligence).
Here is the example: An elementary school student transfers to the Washington DC
area from NewYork, and his parents want to find a new school for him. The best guess
for a school is whichever is closest to their new home. The second most important
factor is a similar problem in mathematics to finding the nearest grocery store.

This problem is a variation of the Voronoi diagram problem that involves par-
titioning a rectangle into smaller regions such that each site is contained within a
region. Any point in the region is closer to the site in its own region. This type of
region is called the Voronoi region.

Therefore, if we have a new point x and try to find the closest site to the new
point, we only need to decide which Voronoi region contains x.

In 1986, Fortune found an algorithm for Voronoi diagrams with time complexity
O(n log n). This is an optimal algorithm. However, it is difficult to implement [10].

Here, we introduce a technique for constructing the dual diagram of the Voronoi
diagram—Delaunay triangulation. There is a relatively simple and fast algo-
rithm called the Bowyer-Watson algorithm to solve the Delaunay triangulation
algorithmically.

10.5.2.1 Basic Definitions and Symbols

Let Pi , i = 1, · · · , n be n points, called sites. A partitioned area, called a Voronoi
region, is bounded by edges and vertices. The vertex of the region is called the
Voronoi point. An edge of the Voronoi region must have the property that each point
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on the edge must be equal distance to the two sites. A Voronoi point must have the
property of being equidistant to the three sites. This means there must be a circle
containing these three sites centered at each Voronoi point, the circumcircles of the
triangle. Such a triangle is the Delaunay triangle.

Another definition of Delaunay triangulation is as follows: no circumcircle of any
triangle contains a site. The following Bowyer-Watson algorithm is designed based
on this fact.

The Bowyer-Watson algorithm is one of the most commonly used algorithms for
this problem. This method can be used for computing the Delaunay triangulation of
a finite set of points in any number of dimensions. After the Delaunay triangulation
is completed, we can obtain a Voronoi diagram of these points by getting the dual
graph of the Delaunay triangles.

Algorithm 10.3 The Bowyer-Watson algorithm is incremental in that the algorithm
works by adding one point at a time to a valid Delaunay triangulation of a subset of
the desired points. Then, it works in the new subset, adding points to reconstruct the
new Delaunay triangulation.

Step 1 Start with three points of the set. We make the first triangle by linking three
points with three edges.

Step 2 Insert a new point P . Draw the circumcircle of each existing triangle. If
any of those circumcircles contains the new point P , the triangle will be
marked as invalid.

Step 3 Remove all invalid triangles. This process will leave a convex polygon hole
that contains the new point.

Step 4 Link the new point to each corner point of the convex polygon to form a
new triangulation.

The time complexity of this algorithm is O(n
√

(n)). A simple procedure can be
applied to get the Voronoi diagram from the Delaunay triangulation. The key of the
procedure is to link the centers of the circumcircles such that two corresponding
triangles share an edge. In other words, these new linking lines for the centers of the
two corresponding circumcircles form a Voronoi diagram. For more details of this
algorithm, see [1, 23, 24].

Another popular algorithm for this problem is called the Fortune’s Algorithm. It
is for Voronoi Diagrams. Fortune’s algorithm is based on the fact that in a parabolic
curve, the distance from the focus point to the curve point is equal to the distance
from the curve point to the reference line, or the directrix line. On the other hand,
the distance from the focus point to the directrix line determines the parabolic curve
uniquely.

Therefore, if two sites are treated as two focus points and they share a directrix
line, then the intersection point of the two parabolic curves will be equidistant to the
two sites. Therefore, such an intersection point must be on the sharing edge of the
two Voronoi regions.

Fortune’s algorithm and a divide-and-conquer based algorithm are both in
O(n log n). The detailed steps of these algorithms can be found in [10, 11, 17].
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10.5.3 Closest Pair Problem

The problem of computing the closest pair of a collection of points in 2D plane is
a classical problem in geometric computing. This problem states: Given n points in
a plane or in Rm, find a pair of points that are the minimum distance apart [4]. We
can calculate the distance for every pair to get the one with the minimum distance.
However, this algorithm will take O(n2) time since we have total of O(n(n − 1)/2)
pairs.

This problem has an O(n log n) time algorithm when we use the divide-and-
conquer method for algorithm design.

Algorithm 10.4 The divide-and-conquer algorithm for the closest pair problem.

Step 1 Sort the points according to their values on the x-axis.
Step 2 Split the set of points into two (almost) equal-sized subsets. The splitting

line at the x-axis is denoted by x = xmid .
Step 3 Solve the problem in the left and right subsets. We have two minimum

distances Dleft and Dright .
Step 4 Let d = min{Dleft , Dright}. Make two lines on both sides of line x = xmid

with an offset of d. The closest pair will be in two strips or only in one of
either the left or right set.

Step 5 Split the strips into d × d squares. Select a point in a square in the left
strip. Check all the points in the three other squares in the right strip. This
will take constant time since each square only contains one or at most three
points (otherwise, d is not smaller or equal to Dright ). Checking all the
points in the left strip will require O(n) time. Therefore, we will have the
minimum distance.

Theorem 10.3 The time complexity for the closest pair problem is O(nlogn).

10.6 Remarks

Geometric measurement is based on the the metric that is a distance measure. Even
though Euclid’s Elements had the original contribution [7], but basics of measure-
ment is now based on calculus [21]. The measurement on surfaces are even more
complex, we will discuss it in Chap. 13 where we deal with differential geometry
[13]. Geometric measurement is important to computer graphics [9].

Geometric computing deals with the fast method of obtaining measurements. It
is mainly covered in computational geometry. In this chapter, we reviewed some
algorithmic technologies that will be used in this book [6, 17].

Measurements in discrete geometry and digital geometry are different. Digital
geometry for image processing and computer vision sometime requires different
form of length and area computations. Digital geometry may not only use Euclidean
metric [2, 12].
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Another distance measurement called the Hausdorff distance could be useful too.
Let S and S ′ be two shapes of a metric space. Their Hausdorff distance is the measure
of the longest distance they can move to (not the shortest pair).

dH(S, S ′) = max{ sup
x∈S

inf
y∈S′ d(x, y), sup

y∈S′
inf
x∈S

d(x, y) },

Hausdorff distance is the deformation distance [5, 11].
The main difference between geometry and topology is in the measurements. Strict

speaking, geometry requires a metric. In other words, it must consider the distance
between two points. On the other hand, topology does not focus on distance mea-
sure. However, the common ground is that they are all dealing with neighborhoods,
continuity, and differentiability.

In next chapter, we will discuss numerical solutions of geometric problems [3, 19].
The combined methods today are important to data sciences. We will discuss them
in Chap. 12. Some machine learning, cognitive sciences, and image processing
problems are concerned [14, 18]. Some concepts in discrete mathematics of this
chapter can be found in [20].
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Chapter 11
Digital Functions, Data Reconstruction,
and Numerical Geometry

Abstract This chapter contains three parts. First, we discuss data reconstruction
including curve and surface fitting. Second, we cover principal component analysis,
one of the most important geometric data analysis methods. Third, we present mathe-
matical transformations for data analysis. This chapter is highly related to concurrent
data sciences from theoretical perspectives. We focus on the practical methods of
geometric data processing in the next chapter.

Data fitting and reconstruction are the inverse treatments of decomposition. Based
on discretely sampled data points, we want to build a continuous curve, surface, or
solid data volume. Even though numerical methods such as Bezier polynomials and
B-Splines are the most popular in computer graphics, we first introduce discrete
functions and its applications to digital function interpolation here due to the nature
of this book. In the section involving principal component analysis, we briefly discuss
the principle in statistics and its solution using linear algebra. Lastly, we introduce
the three most important mathematical transforms including the Fourier transform,
Radon transform, and wavelet transform. These transforms are fundamental to digital
image processing including analysis and compression.

Keywords Data reconstruction · Fitting · Bezier polynomial · B-spline · Gradually
varied function · Principle component · Mathematical transformation

11.1 Digital Functions and Data Interpolation

In this section, we introduce a discrete surface reconstruction method called gradually
varied surface fitting. In 1986, Rosenfeld introduced a concept called the “contin-
uous” function in digital space [15]. A digital function means that its values are
integers on digital points. The word “continuous” allows only small changes in a
neighborhood. In other words, if x and y are two adjacent points in a digital space,
then |f (x) − f (y)| ≤ 1.

A gradually varied function, introduced by Chen in 1989 [1], is more general than
a digital continuous function. A gradually varied function is a function from a digital
space Σ to {A1, A2, · · · , Am} where A1 < A2 < · · · < Am and Ai are rational or
real numbers [1]. This function possesses the following property: If x and y are two
adjacent points in Σ , assume f (x) = Ai , then f (y) = Ai , f (x) = Ai+1, or Ai−1.

© Springer International Publishing Switzerland 2014 185
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11.1.1 Gradually Varied Functions

The gradually varied function is used to interpolate a discrete surface when sample
points satisfy certain conditions, which we present later. We now start to define a
gradually varied function.

Assume that A1, A2, · · · , Am are m rational or real numbers where A1 < A2 <

· · · < Am.

Definition 11.1 Assume f : Σ2 → {A1, A2, · · · , Am} is a function. For two points
p, q ∈ Σ2, if f (p) = Ai and f (q) = Aj , then the level-difference between f (p)
and f (q) is |i − j |.
Definition 11.2 Let p, q be two adjacent points in Σ2. f is said to be gradually
varied on p and q if f (p) = Ai implies f (q) = Ai−1, Ai , or Ai+1. f is said to be
gradually varied if f is gradually varied on any pair of adjacent points p, q in Σ2.

In general, we can define the above concept of gradual variation on a graph
G = (V , E) [2, 3]. For simplicity, we only discuss the case on Σ2 here.

The problem of gradually varied interpolation is: Let D be a connected subset in
Σ2 and J ⊂ D. If given fJ : J → {A1, A2, ..., Am}, is there an extension of fJ ,
fD : D → {A1, A2, ..., Am} such that for all p ∈ J , fJ (p) = fD(p)?

The following theorem is for the necessary and sufficient conditions of the
existence of gradually varied function. It was proven by Chen in 1989 [1, 3].

Theorem 11.1 There exists the gradually varied interpolation if and only if for any
two points p and q in J , the length of the shortest path between p and q in D is not
less than the level-difference between f (p) and f (q).

Proof We give a constructive proof here. The basic idea of the construction is to
assign a value to a point q that has not been assigned a value, but has a neighbor p,
which is a sample point or has already been assigned a value.

In order to make the proof clear, we define LD(p, p′) as the level difference
between f (p) and f (p′): Let f (p) = Ai and f (p′) = Aj , LD(p, p′) = |j − j |.

As usual, d(p, p′) denotes the length of the shortest path between p and p′ in D.
(1) First, we prove the necessary condition. Suppose f is the gradually varied

function on D, then f is gradually varied on every path in D. The path may be the
shortest path between two points p and p′ in J . Hence, the length of the shortest
path is not less than the difference between the gray level of p and p′, i.e. d(p, p′) ≥
LD(p, p′).

(2) Second, we prove the sufficient condition. Suppose we have fJ : J →
{A1, A2, ..., Am} and for all p, p′ ∈ J , d(p, p′) ≥ LD(p, p′) (in D).

First let fD(p) = fJ (p) if p ∈ J and fD(p′) = θ if p′ ∈ D − J . Define

D0 = {p|fD(p) �= θ , p ∈ D}
Now, D0 = J .
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The constructive proof is the following: If D0 �= D, we can find a vertex (or point)
r ∈ D0 so that r has an adjacent point x not in D0, i.e. x ∈ D − D0. We can assume
fD(r) = Ai .

Then, let fD(x) = fD(r) = Ai , and denote

m(x) = {p|fD(p) < Ai , p ∈ D0};
M(x) = {p|fD(p) > Ai , p ∈ D0}.

There will be three cases:

(i) If there is a p ∈ m(x), such that d(x, p) < LD(x, p), we know d(r , p) ≤
d(r , x) + d(x, p) and d(r , x) = 1 (r and x are adjacent points). Therefore,
d(r , p) ≤ 1+d(x, p); we have d(x, p) ≥ d(x, p)−1. We also know d(r , p) ≥
LD(r , p) since r ,p ∈ D0. Thus, d(x, p) ≥ d(r , p) − 1 ≥ LD(r , p) − 1.
In addition, LD(r , p) = LD(x, p) since fD(x) = fD(r) = Ai . Therefore,
d(x, p) ≥ LD(r , p) − 1 ≥ LD(x, p) − 1.
According to the assumption d(x, p) < LD(x, p), so d(x, p) = LD(x, p) − 1.
For any q ∈ M(x), we have fD(p) < fD(x) < fD(q), and therefore,
LD(p, q) = LD(p, x) + LD(x, q). Again, d(p, x) + d(x, q) ≥ d(p, q) ≥
LD(p, q), then

d(p, x) + d(x, q) ≥ LD(p, x) + LD(x, q) ≥ LD(p, x) + 1 + LD(x, q)

Hence,

d(x, q) ≥ 1 + LD(x, q).

Therefore, we have proven that if there is a p ∈ m(x) such that d(x, p) <

LD(x, p), then

∀p ∈ m(x)(d(x, p) ≥ LD(x, p) − 1) and ∀q ∈ M(x)(d(x, p) ≥ LD(x, q) + 1).

Thus, we can modify the value of x, from fD(x) = Ai to fD(x) = Ai−1.
Obviously, for the new value at x, we have,

d(y, x) ≥ LD(y, x), if y ∈ D0&fD(y) �= Ai ,

and

d(y, x) ≥ LD(y, x) = 1, if y ∈ D0&fD(y) = Ai.

(ii) If there exists a q ∈ M(x) such that d(x, q) < LD(x, q), similar to (i), we
reassign fD(x) = Ai+1. We obtain ∀y ∈ D0(d(x, y) ≥ LD(x, y)).

(iii) If (i) and (ii) are not satisfied, then fD(x) = Ai would be required.
(c) Let D0 ← D0 ∪ {x}, then for every pair p and p′ in D0, we have

d(p, p′) ≥ LD(p, p′).
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We repeat processes (a) to (c) until D0 = D. After all the points in D −J are valued,
we can see that fD is gradually varied. This is because if x,y are adjacent, then
d(x, y) = 1 ≥ LD(x, y). So LD(x, y) must be 0 or 1. That is, fD is gradually varied
on every pair of adjacent points. Therefore, fD is gradually varied on D. �

We then call the following condition the gradually varied condition : For any two
points p and q in J , the length of the shortest path between p and q in D is not less
than the level-difference between f (p) and f (q).

11.1.2 The Construction Algorithms of Gradually Varied
Functions

In the proof of Theorem 11.1, we have given a constructive procedure for how we
assign a new value for an unknown data point assuming p ∈ J and its neighbor
q /∈ J . First let f (q) = f (p), then check whether or not J ∪ {q} with the new value
satisfies the gradually varied condition. If it does, then we keep the value of f (q).
Otherwise, we subtract or add a level to f (q). Repeating the above process will fill
in all unknown value points in D.

Example 11.1 Let us look at an example. Assume that we have an array with direct
adjacency. We have three sample points and we want to fill the rest of six numbers
in the locations marked as “-.”

A =

⎛

⎜⎜
⎝

− 2 −
− − 4

− − 5

⎞

⎟⎟
⎠

We can see that it satisfied the gradually varied condition. According to the algorithm
we used in the proof. We let A22 = 2.

⎛

⎜⎜
⎝

− 2 −
− 2 4

− − 5

⎞

⎟⎟
⎠

But this assignment broken the gradually varied condition. There must be a value in
{1, 3} that satisfies the gradually varied condition. We have the following matrix.

⎛

⎜⎜
⎝

− 2 −
− 3 4

− − 5

⎞

⎟⎟
⎠
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Fig. 11.1 Fitting using digital functions called gradually varied surface fitting

This new array satisfy the gradually varied condition. We can repeat the above
procedure to fill all numbers.

⎛

⎜⎜
⎝

2 2 −
− 3 4

− − 5

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

2 2 3

− 3 4

− − 5

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

2 2 3

2 3 4

2 4 5

⎞

⎟⎟
⎠

This case study showed the easiness of this method, we also implemented proce-
dure in program C++ code (Fig. 11.1). For detailed proofs and time complexities,
refer to [2, 3].

11.1.3 Other Discrete Surface Reconstruction

Given a boundary function f of a region, if f is continuous, then there is a smooth
function for the region. This problem is called the Dirichlet problem. A classic result



190 11 Digital Functions, Data Reconstruction, and Numerical Geometry

is that the solution of the Dirichlet problem is a harmonic function and that result is
unique.

The harmonic function is the function f (x, y) that has the property

∂2f

∂x2
+ ∂2f

∂y2
= 0. (11.1)

This equation is called the Laplacian equation. There are two ways to solve the
above equation discretely [3]. First, the solution that satisfies the value of a point
will be the numerical average of its neighbors. We can design an iterated process to
get the solution. Second, we can establish a linear equation to solve the problem. In
digital plane, the coefficient matrix, called, Laplacian matrix, will be sparse since
each point in Euclidean space only has four adjacent points.

In addition to use harmonic equations, we can also apply the minimum surface to
reconstruct a function. For the minimum surface, we will discuss it in Chap. 13.

11.2 Numerical Curve and Surface Fitting

In this section, we give a brief description of curve and surface Fitting. Given a set
of sample points, if a smooth curve that passes through all these points. We call this
type of curve reconstruction interpolation. On the other hand, we can also construct
a curve that is not required to pass all sample points. This method is called the
approximation method.

11.2.1 Curve Interpolation and Approximation

In theory, Lagrange interpolations is the simplest method for curve interpolation. This
method uses a polynomial called the Lagrange polynomial to fit all given guiding
points. In other words, Lagrange interpolation provides a general method for the
existence of a smooth function that always exists for any number of guiding points.

For a set of m+1 data points (x0, y0), . . . , (xi , yi), . . . , (xm, ym) where x0 < x1 <

. . . , < xm, the Lagrange interpolation polynomial is given by:

P (x) =
m∑

i=0

yi · Pi(x) (11.2)

where

Pi(x) =
∏

0≤j≤m; i �=j

x − xj

xi − xj

(11.3)

is called the Lagrange basis polynomial.
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We can examine P (xi) = yi , which shows that this method interpolates the
function exactly.

The disadvantage is that this polynomial has a very high degree, equal to the
number of samples n. Such a high degree of smoothness may be unnecessary: any
small error might result in a big change in fitted curves.

11.2.1.1 Bezier Polynomials

Bezier polynomials are often used in computer aided geometric design, such as
in the automobile industry. The characteristic of the Bezier curve is: (1) It is an
approximation method, and (2) the fitted curve is in the convex of the sample points
(called control points). Bezier polynomials use the control points to manage the
shape of the curve. It usually goes through two end points and does not pass through
other control points.

Given a set of m+ 1 data points P0 = (x0, y0), P1 = (x1, y1), . . . , Pm = (xm, ym),
Bezier polynomials will be calculated by parametric curve, e.g. P (t) = (x(t), y(t)),
which is in vector form. For two points, the Bezier polynomial is given by:

P (t) = (1 − t)P0 + tP1, t ∈ [0, 1] (11.4)

In general, let P{0...k} denote the fitted function for control points P0, . . . , Pk .

P (t) = P{0...m}(t) = (1 − t) · P{0...m−1}(t) + t · P{1...m}(t), t ∈ [0, 1] (11.5)

We can see that this formula is very similar to the formula for the linear interpolation of
two points, but the reference “points” are the two lower order Bezier polynomials. In
other words, Bezier polynomial fitting is defined as linear approximation recursively.

For the explicit form, we can expand the above equation to be

P (t) =
n∑

i=0

(
n

i

)
(1 − t)n−i t i · Pi , (11.6)

where
(
n

i

) = n!
i!·(n−i)! is a binomial coefficient. A Bezier polynomial is also called

a Bernstein polynomial of degree n. It can also be represented using a so called
Bernstein basis polynomial of degree n, which is defined as

βi,n(t) =
(

n

i

)
t i (1 − t)n−i , i = 0, . . . , n. (11.7)

Therefore,

P (t) =
n∑

i=0

βi,n(t) · Pi (11.8)
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11.2.1.2 B-splines*

B-spline is an advanced method for curve approximation. The principle behind this
method can be found in [3, 4, 6]. We present the formula for B-spline as follows:

Let the knot sequence be defined {t0, t1, ..., tm}, where t0 ≤ t1 ≤, ..., ≤ tm, ti ∈
[0, 1], and the control points are P0, ..., Pn. Define the degree as d = m − n − 1.
For instance, d = 3 is the cubic spline. (The knots t(d + 1), ..., t(m − d − 1) refer
to internal knots. The fitted curve among these knots will maintain the properties
desired.)

Define the basis functions as

Bi,0(t) :=
⎧
⎨

⎩
1 if ti ≤ t < ti+1

0 otherwise
, i = 0, . . . , m − 2 (11.9)

Bi,j (t) := t − ti

ti+j − ti
Bi,j−1(t) + ti+j+1 − t

ti+j+1 − ti+1
Bi+1,j−1(t) (11.10)

where i = 0, . . . , m − j − 2. 1 ≤ j ≤ d indicates the degree where i is the interval
segment index or knots. B-spline is a linear combination of basis B-splines Bi,d with
coefficients Pi

P(t) =
m−d−2∑

i=0

PiBi,d (t), t ∈ [td , tm−d−1].

We can see that this has a linear interpolation basis where the function is linearly
accumulated p times.

The cubic B-spline provides a good estimate of derivatives up to the third order.
The cubic B-spline formula can be represented in a matrix format:

Pi(t) = 1

6

(
1 t t2 t3

)

⎛

⎜⎜⎜⎜⎜
⎝

1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

fi−1

fi

fi+1

fi+2

⎞

⎟⎟⎟⎟⎟
⎠

(11.11)

for t ∈ [0, 1], and i = 2, · · · , n − 2. t can either represent the x-axis or y-axis
(Fig. 11.2).

11.2.2 Numerical Surface Fitting

At the beginning of this chapter, we discussed the gradually varied method for con-
tinuous surface fitting. In fact, another simple way of surface fitting is to use the
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Fig. 11.2 Curve fitting using
piecewise linear curve a,
B-spline curve b, and Bezier
curve c. (by L. Chen)

triangulation method. It projects the sample data points onto the XY-plane, makes a
triangulation on the domain, and then lifts the points back to the original position.
This will generate a triangulated surface in 3D. This method is a special case of
meshing of a closed continuous surfaces, which we discussed in Chap. 10.

Mathematically, we can fit a surface based on a second-order surface in 3D space:

x2 + a1y
2 + a2z2 + a3yz + a4zx + a5xy + a6x + a7y + a8z + a9 = 0. (11.12)

This equation needs nine sample points to solve for nine coefficients. If there are more
than nine sample points, then we need to use the so called least squares method [3]
to get a best approximation. However, the best way today is to use the tensor product
of two B-spline curves. B-spline surfaces are constructed by two B-spline curves to
make a surface-area or patch. It is used in computer graphics and engineering [8, 14].

S(u, v) =
∑

i=0,n

∑

j=0,m

Bi,n(u)Bj ,m(v)Pi,j , u, v ∈ [0, 1]. (11.13)

where Pi,j are (n + 1)(n + 1) control points (sample points) and Bi,n(u) and Bj ,m(v)
are B-spline basis functions discussed in the above sections.

Some advanced surface reconstruction techniques are also based on tensor prod-
ucts. For instance, non-uniform rational B-splines (NURBS) are very common today
in computer graphics in controlling flexible shapes. NURBS are made for geometric
design since getting the value of the weights wij is a huge problem. If we use a
uniform rational and the weights wij ’s are the same, then NURBS will be similar to
B-spline [4].
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11.3 Principal Component Analysis

For a set of sample data points in 2D, the method of principal component analysis
(PCA) can be used to find the major direction of the data. It is essential to data
processing. The method is also related to regression and other methods in numerical
analysis and statistical computing [10]. Even though, there are many ways to explain
PCA, the best is through statistics.

11.3.1 Concepts: Mean, Standard Deviation, Variance,
and Covariance

For a set of sample points, x1, x2 · · · , xn, the mean is the average value of xis:

x̄ = 1

n

n∑

i=1

xi ,

so we may use a random variable X to represent this data set.
Variance is the measure of how data points differ from each other in a whole. The

sample variance of the data set or the random variable X is defined as

Var(X) = 1

n

n∑

i=1

(xi − x̄)2,

The square root of the variance is called standard deviation σX, i.e. Var(X) = σ 2
X.

Note that people sometimes use n − 1 instead of n in the formula.
For simplicity, let X = {x1, x2 · · · , xn} and Y = {x1, x2 · · · , xn}. The covariance

of X and Y is defined as

Cov(X, Y ) = 1

n

n∑

i=1

((xi − x̄)(yi − ȳ))

It is important to note that the correlation of X and Y is defined by

Cor(X, Y ) = Cov(X, Y )

σX · σY

.

We can see that if X = Y , then Cov(X, Y ) = Var(X) = σ 2
X and Cor(X, Y ) = 1.

11.3.2 Covariance Matrix and Principal Components

Given a set of 2D points, (x1, y1), · · · , (xn, yn), one can treat X as a random variable
of the first component of the 2D vector and Y as the second component. We define
the covariance matrix to be:
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a b

Fig. 11.3 Principal component analysis: a Original data points, and b the eigenvectors of the
covariance matrix

M(X, Y ) =
⎛

⎝Cov(X, X) Cov(X, Y )

Cov(X, Y ) Cov(Y , Y )

⎞

⎠ (11.14)

Geometric direction of a set of vector data points can be determined through
principal component analysis (PCA). The largest eigenvalue of the matrix indicates
the major axis by calculating the corresponding eigenvector.

The application of PCA is to find the major axis of the data in 2D. See Fig. 11.3.
In general, this method can be extended to analyze data in m dimensional space.

Assume we have m random variables in Xi and n samples for each variable. In other
works, we have N sample points pi = (x1, x2, · · · , xm), i = 1, ..., N . We can extend
the covariance matrix to be m × m,

M(X1, · · · , Xm) =

⎛

⎜⎜⎜⎜⎜
⎝

Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xm)

Cov(X2, X1) Cov(X2, X2) · · · Cov(X1, Xm)

· · · · · · · · · · · ·
Cov(Xm, X1) Cov(Xm, X2) · · · Cov(Xm, Xm)

⎞

⎟⎟⎟⎟⎟
⎠

We will have m eigenvalues, λ1, . . . , λm. We assume that λ1 ≤, ..., ≤ λm. The
eigenvector Vi of λi indicates the i-th principal component. This means that most of
the sample data is along the side of vector Vi , compared to vector Vj , if j > i.

For data storage, we can determine that most of the data is covered by the first few
principal components. We can use linear transformation to attach this to the original
data and store the transformed data in a much lower dimension to save space. This
is why PCA is one of the most effective methods in BigData and data science today.
It was discovered many times by different researchers [9].
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11.4 Mathematical Transformations and Data Science*

Mathematical transformations are the basic tools for data analysis, especially for
image processing and computer vision. Fourier transform is the most fundamen-
tal approach. In this section, we mainly discuss the principles of the three most
widely used mathematical transformations: Fourier transform, Radon transform,
and wavelet transform.

The basic idea of transforms are to decompose the signal, image, or information
in some way. Then, we extract the most important information and remove the least
important information. We then put the majority of the information back to get a
clear or filtered data. Putting the decomposed information back is called inversion.
Therefore, the entire process of mathematical transformations has two steps: forward
transformation and inversion.

11.4.1 Fourier Transform and Image Filtering

Let f (t) be a periodic wave function that has an amplitude (intensity) at time t . Also
e(xj ) = cos(x) + jsin(x) is a complex number where j = √

( − 1) is the imaginary
unit. The Fourier transform of f (t) represents the function on frequency domain U .

F (u) =
∫ ∞

−∞
f (x)e−j2πut dt. (11.15)

u represents frequency. The inverse Fourier transform is the following:

f (t) = F−1(t) =
∫ ∞

−∞
F (u) ej2πtu du (11.16)

Scientists use part of the frequency such as u ∈ [ − B, B] to reconstruct f (t). When
we think about the original f (t), it contains much noise beyond [ − B, B] in its
frequency domain.

In image processing, the Fourier transform can also be used to filter an image
such as isolated noise. It is done by convolution as defined below:

(f ∗ g)(t) =
∫ ∞

−∞
f (τ )g(t − τ )dτ

Understanding this formula in signal processing is not hard. Thinking about the
integral requires summation, and g(t) is a digitized function that only contains three
consecutive 1’s. If g = 00 · · · 01110 · · · 00, then (f ∗g)(t) = f (t−1)+f (t)+f (t+1)
is just the accumulation of three consecutive values added together. If we divide the
value by 3, then we get the average value of f on an interval. For 2D image f , the
process is similar. We add nine pixels together and divide by 9. The convolution is
equivalent to the average of the surrounding pixels.
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11.4.2 The Radon Transform and Data Reconstruction
by Projection

The Radon transform is the mathematical foundation of computerized tomography
(CT). Assume that we have a partial transplanted object (like a jade stone) and we
want to know the internal structure of the object. One thing we can do is to use
a flash light to light the object at a point. We can check the opposite sides of the
lighted points and other places. The light passing through the object would give
some information. For instance, if there is a small metal inside of the jade stone,
the light passing through the metal would be very weak. If the jade is an evenly
distributed substance, then the light would be smooth at all places on the edge.

The intensity of how the light passes is called projection. That is a function of the
summation (integral) of the line that goes through the object. The Radon transform
guarantees that if we know all the projected values then we will know the intensity
of each point of original object. This is called reconstruction based on projection.

The line equation for the projection is ρ = x cos ϑ +ysin ϑ . T = ρ is the distance
from the origin to the line.

The Radon transform T ∈ [0, ∞) and ϑ ∈ [0, 2π ], now the function f Radon
transformed with variables (ϑ , T ):

Rf (T , ϑ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(T − x cos ϑ − ysin ϑ)dx dy (11.17)

where δ function keeps the values on the straight line T − x cos ϑ − ysin ϑ = 0,
which has a positive value and the rest of the location of the δ function will be
(almost) zero.

The complete theory behind Radon transforms is beyond the scope of this book.
The key idea of the inversion (to get the original density function of objects) is the
following: (1) Use δ function to represent the line integration as a type of Fourier
transform, then use the formula of inversion of the Fourier transform to get the final
formula [13].

11.4.3 Wavelet Transform and Image Compression

The wavelet transform is similar to the Fourier transform in terms of decomposing
the signal. However, the Fourier transform only decomposes the signal into sines and
cosines, i.e. in frequency domain. The wavelet transform has two advantages: (1) The
wavelet transform can use many types of basic functions (basis) called wavelets. (2)
Wavelet transform can perform simultaneous localization in both time and frequency
domains [5, 9, 14].

We only introduce the discrete wavelet in this section. A function ψ(x) is a wavelet.
{φsk : s, k ∈ I } is called a basis of ψ , if for integer s (scale factor) and k (time

factor)

φsk(x) = 2
s
2 ψ(2sx − k),
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Let φsk(x) be basis functions where s is the scale and k is time. Let f (x) be a
function.

The integral wavelet transform is the integral transform defined as

Wφ(α, β) = 1√|α|
∫ ∞

−∞
ψ̄(

x − β

β
)f (x)dx (11.18)

where ḡ(x) is the complex conjugate of g(x). (For the complex number z = a + ib,
its conjugate is z̄ = a − ib. ḡ = g for real functions.)

We can represent a function f (x) as

f(x) =
∞∑

s,k=−∞
cskφsk(x)

where

csk = Wφ(2−s , k2−s).

The scale factor always decreases by 2. This method can only be used for multi-
resolution or compression. People can select any indexes for the special purposes of
compression. The simplest form of the wavelets is called Haar wavelets.

An example of using Haar wavelets is as follows. For instance, in Haar wavelets,
H (t) can be described as

H (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 0 ≤ t < 1/2,

−1 1/2 ≤ t < 1,

0 otherwise.

We have used Haar wavelets in meteorological data analysis for outlier tracking [11].

11.5 Remark: Data Reconstruction in Science and Engineering

In this Chapter, we briefly discussed the methods of data reconstruction in science
and engineering. We began with the discrete fitting method use digital functions
[3]. This method is called gradually varied functions. It is related to Rosenfeld’s
applications to image segmentation [15]. It is also related to a classic problem called
Whitney’s problem in mathematics [7, 12, 16]. We gave an extensive coverage in
[3].

We also introduce some of the most important methods in data fitting including
Bezier polynomials and B-Splines. They are the most popular.

This chapter also presented principal component analysis, and it will be used in
Chap. 12 when we discuss the application in Google-search and other data science
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methods. The method containing eigenvalues and eigenvectors has essential impor-
tance in many areas in applied sciences. Principal component analysis is a statistical
method [10].

This chapter also introduces the three most important mathematical transforms:
the Fourier transform, Radon transform, and wavelet transform. Due to the fact that
they are not the central topics of this book, we only provide the short discussion.
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Chapter 12
Geometric Search and Geometric Processing

Abstract In this chapter, we focus on cutting edge problems in geometric data pro-
cessing. These problems have common properties and usually can be summarized
as generally as: Given a set of n data points x1, ..., xn in m-dimensional space,Rm,
how do we find the geometric structures of the sets or how do we use the geometric
properties in real data processing? Geometric data representation, image segmenta-
tion, and object thinning are some of the most successful applications of discrete and
digital geometry. Along with the fast development of wireless networking, geomet-
ric search, especially R-tree technology, has become a central method for quickly
identifying and retrieving a geometric location. 3D thinning is one of the best ap-
plications developed through digital geometry by preserving topological structures
while reducing pixels or voxels. The classic methods of geometric pattern recogni-
tion such as the k-means and k-nearest neighbor algorithms are also included. The
newest topic in BigData and data science is concerned with these methods.

Keywords Graph search algorithm · Quad-tree and R-tree · PageRank · Graph-cut ·
Classification and segmentation · Manifold learning · Persistent analysis · Cloud data ·
Incomplete data classification

12.1 Geometric Searching and Matching

Searching and matching are two basic tasks. Search is used to find some object in
a set or space. For instance, searching for a number in an integer set, we know the
binary search method is the fastest for a sorted array of integers.

If the set is the random set, then the search will be trivial since we can only
compare the elements from the set one by one. When the set contains a structure,
such as an order, the search may use properties of the structure. In space, the set
could be a topological structure such as components, a geometric structure such as
distance metrics, or an algebraic relation such as rules.

Matching usually means searching for an object that may contain several elements
in a set. The set may hold a structure, meaning that the elements in the set have
relations and connections. Finding a substring in a DNA sequence is a good example.
More profound research in finding a protein structure is a geometric problem.

© Springer International Publishing Switzerland 2014 201
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Matching could also mean that we can find a partial or best match. For instance,
finger print matching.

Recent research shows great interest in high dimensional search. This search is
usually related to the nearest neighbor method. The fast algorithm is based on prepro-
duced data structure. To find a new data point in a set of points, usually in the form of
an n-dimensional vector, we want to find the point that is closest to the new point. R-
tree data structure was previously implemented in order to perform a fast search. This
application is important in wireless networking. For instance, we have a number of
wireless tower stations that cover cellular phone communication. When a new phone
joins in the area, we need to locate the new phone and appoint a station to commu-
nicate with it. To search the cell phone without calculating its distance from all the
stations, we will need a special data structure. The most popular today is the R-tree.

Another hot research topic due to the need of BigData applications is called
subspace recovery, an interesting question that has received much attention lately:

Thinking about a simple problem, there are 100 sample points on a 2D plane.
We want to find a line that contains most of these sample points. Is this problem NP
hard? Its decision problem can be described as follows: Is there a line that contains at
least 50 points? What about a curve instead of a line? This problem is highly related
to manifold learning where we try to determine a cloud point set that represents a
manifold such as a curve. The data points are not only 50–100, and they are 50
–100 GB, how do we use cloud computing technology to solve this problem?

The general version of this problem called robust subspace recovery, relates to
dimension reduction [16, 23]: Given a collection of m points in Rn, if many but
not necessarily all of these points are contained in a d-dimensional subspace T , can
we find m? The points contained in T are called inliers and the remaining points
are outliers. This problem has received considerable attention in computer science
and statistics. However, efficient algorithms from computer science are not robust to
adversarial outliers, and the estimators from robust statistics are difficult to compute
in higher dimensions.

The problem is finding a T dimensional space that contains most of the points or
a given ratio of inner points. How do we determine T in the fastest way? Does T

have some sort of boundary?
Geometric search, especially high dimensional search, is a hot topic related to data

science, along with incomplete data search, which is related to artificial intelligence.

12.2 Searches in Graphs

The very basic geometric search method is the search method for general graphs.
The best search method was first made by Tarjan [14] and first used in computer
graphics and computer vision by Pavlidis [32]. These techniques are called breadth
first search and depth first search.

The data structures that refer to these two techniques are queues and stacks made
by adjacency lists.
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In this section, we explain how the basic algorithms of graph theory are translated
into geometric search. These algorithms are: (1) The breadth first search algorithm,
(2) The shortest path algorithm, and (3) The minimum spanning tree algorithm.

The maximum flow and minimum cut algorithms are also related to this topic. We
give a brief introduction.

12.2.1 Breadth First Search and Depth First Search

Breadth first search is a fast search approach to get a connected component on a
graph. It begins at a vertex p and searches for all adjacent vertices. Then, it “inserts”
all adjacent points (neighbors) into a queue. “Removing” a vertex from the queue,
the algorithm calls the point p and then repeatedly finds p’s neighbors until the queue
is empty. Marking all the vertices we visited, the marked vertices form a connected
component. This technique was introduced by Tarjan [14].

Algorithm 12.1 Breadth-first-search technique for all point-connected components.

Step 1: Let p0 be a node in G. Set
L(p0) ← ∗ and QUEUE ← QUEUE ∪ p0

i.e., labeling p0 and p0 is sent a queue QUEUE.
Step 2: If QUEUE is empty, go to Step 4; otherwise,

p0 ← QUEUE (top of QUEUE). Then,
L(p0) ← 0.

Step 3: For each p with an edge linking to p0,
do
QUEUE ← QUEUE ∪ p and L(p) ← ∗. Then, go to Step 2.

Step 4: S = {p : L(p) = 0} is a connected part.
Step 5: If p is un-visited vertex, Let p0 = p, Repeat Step 1.

Otherwise Stop.

Breadth first search only visit a new node twice: insert to the queue and remove from
the queue. So this algorithm is a linear time algorithm. It is a fast search approach.
Example 4.1 in Chap. 4 gives the detailed example for this process.

Depth first search is similar to breadth first search. Depth first search will find a
new node continuously until no more new node can be found. When the algorithm
run in the journey, it saves all visited nodes in a stack. Since we only go with a path
try to find the “deepest” node, there are other branches we might missed at the first
try. So the algorithm return to each visited node in the order pushed in stack. It was
first in last out. We check other branches from a pop-up node, after all nodes are
popped out, this algorithm will find all nodes in a component. This algorithm will
visit all edges twice at most. Therefore, it is also a linear algorithm on edges.
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12.2.2 Dijkstra’s Algorithm for the Shortest Path

Finding the shortest path in the weighted graphs is a classic topic in graph theory.
We have presented an algorithm in Chap. 2. Here we introduce another algorithm for
the shortest path. Dijkstra’s algorithm [14] for shortest paths in weighted graphs can
be modified and used to solve this problem. The drawback of Dijkstra’s algorithm
is that it cannot take negative edge. Dijkstra’s algorithm is faster that Bellman-Ford
Algorithm presented in Chap. 2. We can also involve a special data structure to make
Dijkstra’s algorithm even more fast.

The idea of this shortest path algorithms is the following: Start at the vertex that is
the departing node. Then, we record the distance from the departing node to all of its
neighbors. The record may not be the shortest path involving those notes. We update
the record and put the updated value on the nodes, a process called relaxation.

After that, we extend the notes by one more edge, do a relaxation, and continue
to repeat these two steps until we have reached every node in the graph.

The algorithmic technique used in this problem is called dynamic programming.
Even though from a vertex to another vertex, there may be exponential number of
paths, however if we only interested in the shortest path, we only need to care about
the length we travel, we do not have pass a certain vertex. There are only n(n− 1)/2
pairs of vertices. Update the minimum distance while we calculate. This is called
dynamic programming.

Algorithm 12.2 The modified Dijkstra’s algorithm can be used to find the
connectivity from a source point to all other points in the graph.

Step 1: Let T = V . Choose the source point a

L(a) = 0; L(x) = ∞ for all x ∈ T − {a}.
Step 2: find all neighbors v of a node u with L value L(v) = L(u) + w(u, v).

T ← T − {v}
Step 3: For each x adjacent to v do

L(x) = max{L(x), min{L(v), L(x) + w(x, v)}}
Step 4: Repeat steps 2-3 until T is empty.

12.2.3 Minimum Spanning Tree

A spanning tree of a graph G is a tree which contains all vertices of G. A graph G

has a spanning tree if and only if G is connected. The problem of finding a minimum
spanning tree is to find a tree such that the total weights reach the minimum for a
weighted graph.

We have discussed the minimum spanning tree in Chap. 2. We did give an al-
gorithm, the Kruskal’s algorithm, and an example. Here we want to present the
methodology of designing the algorithm. This methodology is called the greedy
algorithm.

In the Kruskal’s algorithm, the tree T initially contains all vertices but no edges.
Because of this, it starts an iterative process, adding an edge to T under the condition
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Page 1 Page 2

Page 3

Page 4 Page 5

Page 1

Link to
Page 2

Page 3

Page 4

Fig. 12.1 Example of a web link graph

that the edge has the minimum weight. We continue to add a minimum edge to T as
long as not allowing a cycle appearance in T . When T has |G|−1 edges, the process
stops.

The principle where we always made a minimum or maximum selection is called
the greedy method. In artificial intelligence, the greedy method constantly applies
to applications. In most of cases, it may not obtain an optimal solution rather an
approximation. However, for the minimum spanning tree, the greedy method reaches
the optimum.

Here we want to give another algorithm called The Prim’s algorithm [14].

Algorithm 12.3 The Prim’s algorithm. It is to find a minimum spanning tree T of
a weighted graph G = (V , E).

Step 1: Select any point p in V , let T = {p}.
Step 2: Repeat steps 3–4 until T has |V | vertices.
Step 3: Select a new vertice p not in T , choose the minimum edge linking to T .

It means that p link to any vertex in T as long as the new edge will reach
reach the minimum.

Step 4: Let T ← T ∪ {p}. Go to Step 3.

12.2.4 Online Search, Google Search, and PageRank

The principle of the Google search method, PageRank, is simple and elegant [4, 31].
It is to establish a link graph, then calculate the importance of each web node (page).
To explain this method, we start with the adjacency matrix of the page link graph, a
directed graph. This matrix for Fig. 12.1 is the following:
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M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 1 1 0

1 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Its weight graph with distribute the average contribution to each of outgoing nodes
is shown below. For instance, the first page “Page 1” gives 1/3 contribution to each
of its pointed neighbors: Page2, Page3, and Page4. We will have the weight matrix:

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1
3

1
3

1
3 0

1
2 0 1

2 0 0

1 0 0 0 0

0 0 0 0 1

0 1
2

1
2 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The transpose of W will be the matrix we are interested, denoted as MPR Such a
representation is very intuitive.

On the other hand, Page and Brin have used the following formula to rank the
importance of each web page [4] called the PageRank of a page A:

PR(A) = (1 − d)

N
+ d(PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) (12.1)

where N is the total number of pages considered, PR(Ti) is the PageRank of page Ti

which link to page A, C(Ti) is the number of links going out of page Ti and d ∈ [0, 1]
is a damping factor which is usually set to 0.85.

A simple algorithm runs the above formula on an iterating manner. It stops as an
error limit will meet.

It is astonish when we check the relationship between the matrix MPR and PR(A).
Let vector x = (1/N , · · · , 1/N ). xT is the transpose of x. we will get another vector
MPRxT , and so on Mk

PRxT . We know that Mk
PRxT will converge to a vector when k

is big enough. Then

Mk+1
PR xT = MPR[(MPR)kxT ] = (MPR)kxT ,

so in such a case, y = (MPR)kxT is the eigenvector of MPR. After we add the dumping
factor to the matrix, we have

G =

⎡

⎢⎢
⎣

(1−d)
N

· · ·
(1−d)

N

⎤

⎥⎥
⎦+ d · MPR (12.2)
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the eigenvector of G will be approximately

⎡

⎢⎢
⎣

PR(A1)

· · ·
PR(AN )

⎤

⎥⎥
⎦ .

Now, G is called the Google matrix. (Some good examples can be found at
pr.efactory.de/e-pagerank-algorithm.shtml.)

12.3 Graph Cut and Its Applications to Image Segmentation

Let graph G = (V , E). If we partition V into two disjoint sets A and B, i.e. V = A∪B

and A ∩ B = ∅, then the edges from A to B are called a cut. If G is a weighted
graph, then w(e) = w(u, v) is the weight on edge e = (u, v). We need to then find a
partition for A and B such that

min{cut(A, B) = Σu∈A,v∈Bw(u, v)}
is a minimum. This is called a minimum cut problem. It is proven that a minimum
cut gives the maximum flow [14, 22].

If we compare the graph cut to image segmentation (we have defined the image
segmentation in Sect. 4.5 in Chap. 4.), we can see that there are some similarities.
Let us assign high values on the connection (edges) to the nearby pixels if they have
similar intensity (brightness), and assign small values on the connection to the nearby
pixels if they have large differences in terms of intensity. Therefore, the minimum
cut would offer us a relatively good segmentation.

However, there are so many data points in a picture and some neighborhoods
have exactly the same values if we use the weight graph for all the points in the
pictures. For instance in |V | = 1024 × 1024 = 220, the graph for E and w may be
|E| = |V |2 = 240 in size. This may require Bigdata or cloud computing techniques
to process.

Thus, a technique of solving this issue begins with safely partitioning the picture
into smaller regions, specifically near convex regions for building an easier new
graph, where each node of the graph represents a homogeneous region similar that
is treated as one big pixel. Therefore, the minimum cut for big pixels will be much
faster.

A method called normalized cut was invented so that the procedure almost always
finds the part that contains fewer vertices. Normalized cut will balance the size
factor of the cut [38]. We present a brief introduction to this technology, which is
very popular today. The normalized cut defines a measure as follows:

N_cut(A, B) = cut(A, B)

Assoc(A, V )
+ cut(B, A)

Assoc(B, V )
, (12.3)
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Fig. 12.2 Improved N -cut example by Levinshtein. a Original image, b partitioned by bigger
pixels, and c the final segmentation displayed by the partition curves

where
Assoc(S, V ) = Σu∈S,v∈V w(u, v)

is the total “association” between S and V . cut(A, B) and cut(B, A) may differ if we
consider direct graphs. It is proven that finding the smallest N − cut(A, B) is an NP-
hard problem. We can only find its approximate solution in a reasonable time. This
method involves an excellent graph theory tool called the Laplacian matrix along
with the eigenvector to obtain this approximation of the solution.

Let D be a diagonal matrix with dii = Σj wij and dij = 0 if i �= j and W = [wij].
Shi and Malik showed that X is the binary membership function of a set S with 1
value for the component-index number in S and −1 value if the component-index
number not in S [38]. If cut(S, V − S) is the normalized cut then

XT (D − A)X

XT DX

is minimized with the condition XT D1 = 0. Therefore, solving the following
eigenvalue equation will provide a solution for this problem.

(D − W )X = λDX

The second smallest λ value (the smallest is zero) indicates its eigenvector X as
the smallest segment when X is translated into a binary vector.
If D is diagonal matrix with dii = Σjwij, then dij = 0 if i �= j and W = [wij].
An improved method of normalized cut was presented in [29]. In Levinshtein’s PhD
thesis, He used some rules by simply removing the edges connecting the two parts.
See Fig. 12.2c.

Mathematically, this is a beautiful method. However, in practice, it is still quite
slow in performance. Ren and Malik improved this algorithm using a method similar
to the method of finding the similarity of bigpixels [34]. Scientists in Canon Inc
observed that it is related to the λ-connected method by Chen [7, 8].1 We will
discuss λ-connectedness at the last section of this chapter. In 3D or other massive

1 VerticalNews reported a patent application by Canon Inc with the description on this.
http://www.spclab.com/research/lambda/VerticalNewsReportsRelatedChen91a.pdf .
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Fig. 12.3 Quad trees

search, when the data points are not fit into a single computer, the bigdata technology
can be used with the big-pixels or the big surface cells.

12.4 Spatial Data Structures: Quadtrees, Octrees, and R-trees

Geometric processing must build on some efficient data structures. Even though
graph structures can be used to represent all geometric data sets, to represent graphs in
a computer is very costly in terms of space. In many applications, we develop effective
data structures. The most popular ones for geometric problems are quadtrees, octrees,
and R-trees. We specifically discuss these advanced data structures in this section.

We also provide simple examples to describe the necessities of each data structure.

12.4.1 Quadtrees and Octrees

The quadtree is for 2D data sets or objects. The root of a quadtree contains a 4-
subtree. If we partition a 2D square into 4 identical smaller subsquares, then each
subtree will represent a subsquare. When storing a binary image, we can save space
when a subsquare contains no information (it is blank) ([20, 32, 35]; Fig. 12.3)



210 12 Geometric Search and Geometric Processing

In this example, the quadtree method partitions a 2D space into four equal quad-
rants, subquadrants, and so on. We stop at a node called a leaf if all the elements
represented by the node have the same value. We continue decomposing if this is not
the case.

The depth or height of the tree is at most log2 n if we are dealing with an n × n

region. We can save space since a leaf may represent a lot of pixels in real images.
The octree uses the same principle as the quadtree, but it is used for 3D data

storage. This is because we can split a 3D cube into 8 subcubes. Therefore, octrees
are for spatial data representation [27, 36].

Each node in an octree represents a cubic region. We subdivide it into eight octants
that will be represented by eight subnodes. When the values of the subregion are the
same. The corresponding node will be a leaf. Otherwise, we keep dividing the region.

Example 12.1 Image segmentation using quadtrees: This segmentation is called
Split-and-merge segmentation. The key is to give an order of merge. This is not an
equivalence relation that is why the order of merge is important. Pavlidis and his
PhD student found this segmentation. If the merge process is equivalence relation,
it is not needed for a tree separation. If it is a similarity relation, as the Uniform
rule of distance to the mean of the grouped sub-segments does, the order of the
grouping makes difference. The key step of this method is to merge two segments
together when they are adjacent along a splitting line. For the original split-and-
merge segmentation, two segments (can be viewed as two big-pixels) can be merged
if the maximum distance of the value of the merged segment to the mean value of the
merged segment is smaller or equal to ε. Split-and-merge segmentation is based on a
quadtree partition of an image and hence is sometimes called quadtree segmentation.

12.4.2 R-tree and Wireless Networking

The idea of the R-tree comes from the B-tree in database systems. Using a rectangle,
as small as possible, we cover all data points in a 2D space and then use smaller
subrectangles to cover the points inside the parent rectangle. The subrectangles in
the same level can overlap each other. See Fig. 12.4.

Since the dimensions of each rectangle are not fixed, this allows for the most
flexibility in the partition of data in a space. The “R” in R-tree stands for rectangle.
This method is a very popular technique in querying and search.

A popular problem is: Given a point location, find all of the rectangles or leaves
that contain a chosen point [15, 43]. The idea of R-trees is to use the bounding
rectangle boxes to decide whether or not we need to search the inside a subtree.
Therefore, most of the nodes in the tree are never read during a search. The idea of
R-tree is from B-trees in data structure [14], that have variable number of subtrees
(son nodes). Not like a quad tree. It makes R-trees suitable for large data sets and
databases,



12.5 Classification and Clustering: Distance Related Methods 211

A

B

C

D

E

F

A B C

D E F

a

c

b

Fig. 12.4 R trees

There are many applications using R-trees in wireless networking. For instance
for queries in wireless broadcast system, we need to quickly find a group of users in a
heavy rain area to tell them that there might be a flooding possibility. This is especially
useful in social network systems. Social networking categorizes individuals into
specific groups. Another example for R-tree to be used, a social network such as
facebook does not usually contain the location parameter for users. However, when
a local social event needs to hurry some local attendees, they can ask facebook to
send message to the members around. R-tree is a best way to identify the people and
send them message.

12.5 Classification and Clustering: Distance Related Methods

In this section, we introduce the most popular classification methods that all use
geometric distance as the measuring standard. In this section, we assume the samples
are in vector format, i.e. each sample will be represented as a vector (called a feature
vector).



212 12 Geometric Search and Geometric Processing

12.5.1 k-Nearest Neighbor Method

Classification has two types: supervised classification and unsupervised classifica-
tion. In supervised classification, we know the category of data. We also collected
some samples whose classifications are known. This is called pattern recognition.
We know some pattern already and want to put a new sample into its pattern category.
Unsupervised classification, on the other hand, is a process where we do not know
the pattern. This is called clustering, meaning that we can only partition the data into
several categories [40].

The k-nearest neighbor method (kNN) is the simplest pattern recognition or su-
pervised classification method. It means that we know the classifications of a sample
data set S = {Q1, ..., Qm}. When a new sample comes for consideration, we want to
know which data category this new sample would belong to.

The simplest way is to find the distance of the sample P to all the samples with
known classifications. The shortest distance of d(P , Qi) i = 1, ..., m will indicate
the class that should include P . This is called the nearest neighbor method.

kNN is a generalization of the nearest neighbor method. If we assume a class (or
category) contains multiple samples in S and the classified data contains some noise,
then we can consider the closest k samples in S. Whichever class that can contain
these k samples would be assigned as the class for the new sample. That is why this
is called the kNN method [1, 40].

We can also add a machine learning component into kNN. In machine learning
[30], we split S into two sets, one set would be the training set ST and the other
would be the testing set SR . We know the classification results for both sets. For each
element Ri in SR , if we run kNN, then we get the result for SR . The correct ratio
represents the accuracy of the training set to the testing set.

12.5.2 k-Means Method

The k-means method is an advanced unsupervised classification method. Given a set
of vectors, if we want to classify the data into two categories, then what is the best
we can do? The k-means algorithm would provide a very reasonable way to do the
partition. In Fig. 12.5, we first select two initial vectors as the “centers”(called sites)
of the two categories. Second, for each elements P in the set, we put it into one of
the categories and recording the distance to the center. Third, update the two center
locations such that the total summation of the distance gets smaller. The algorithm
will halt if there is no improvement when we move the two centers.

The idea of the diagram can be used in the k-means algorithm: Based on the initial
k sites, partition the space using the Voronoi diagram. Then, we can move the center
to the geometric centroid of the new partition before we recalculate the result. This
is an iterated process. The only problem is with the local minimum meaning that
this algorithm may converge at the local best result. In other words, the algorithm
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Fig. 12.5 The k mean algorithm

will stop after a local minimum is attained. The idea of the k-means algorithm first
started in 1957 by H Steinhaus [40].

One algorithm was designed by Lloyd in 1982 that used the partitioned area and
not the discrete data points in the new center calculation. Incorporating the Voronoi
diagram partition only speeds up some portions of the algorithm. In the global sense
of optimization, we can prove that this method is NP-hard. A local search algorithm
was implemented by D.Mount et al. [26].

A simple version of the k-mean algorithm is as follows:

Algorithm 12.4 The k-Means Algorithm.
Input: A set of data points X = {x1, · · · , xn}, each xi is a m-dimensional real

vector.
Output: k-means tries to find P = {c1, c2, · · · , ck}, where each ci is a vector.

Then, all the data points will be partitioned into k subset of X, Si associating with
ci , satisfying:

min
k∑

i=1

∑

xj ∈Si

∥∥xj − ci

∥∥2
. (12.4)

Step 1 Randomly select k vectors c1, c2, · · · , ck as the initial centers.
Step 2 For each data point xi , calculate the distance d(xi , cj ), setting xi as St if

d(xi , ct ) is the smallest.
Step 3 Calculate the new geometric center of Sj by

cj = 1

|Sj |
∑

xi∈Si

xi

Step 4 Repeat Step 2 until the total square of the distances in (12.4) can no longer
be improved.

Since there only exists a finite number of such partitions, the algorithm will converge
locally. More theoretical results were found in recent years.
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12.5.3 Tracking and Mean Shift

Tracking the set of point data is based on the density function. To find the center
point of each small window, we always move the current mean vector towards the
direction of the maximum increase in density. This method is called the mean shift
method .

The procedure guarantees the convergence of the point towards the points with
the highest density in a designed window [18]. Note that the gradient of the density
function is zero at this point since the derivative of the highest point is zero. This
process can start at a randomly selected point in the search space, this method can
be used to find the backbone or framework of the data set. Mean shift can also be
used to find the thinning of an object statistically.

Mathematically, mean shift can be used to find the centric trice of a cloud point
data. We first need to assume a statistical model of density function, such as the
Gaussian kernel: Kernel(x − x0) = e−c(x−x0)2

where x0 is a initial estimated center
where c is a predefined constant. Then the next mean will be determined by

m(x0) =
∑

x∈N (x0) Kernel(x − x0)x
∑

x∈N (x) Kernel(x − x0)
(12.5)

where N (x0) is the neighborhood window of x0, a set of points for which
Kernel(x0) �= 0.

Then we will set the new center x0 to be m(x0), and repeat the above calculation
to get a trice of x0 as the track of the mean shift.

12.5.4 Support Vector Machine Algorithms

The support vector machine algorithm (SVM) is another machine learning model. It is
an advanced method in machine learning algorithms that combines both classification
and regression analysis. This method is to find a best separation line between two
classes (a middle line to both classes) [40].

In Fig. 12.6, for an original data set (a), we can find three reasonable lines to
separate them (b). However, line a will give the largest gap. So a will be selected by
SVM. The data points A, B, and C will be called the supporting vectors.

12.6 Case Study: Cloud Data Computing

Given a set of data points in m-dimensional space, in this section, we will ask several
questions and give primary answers to these questions.

This section is highly related to the current BigData and data science topics. We
mainly cover two topics: Manifold learning and persistent homology analysis.
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Fig. 12.6 The support vector machine algorithm

All of the major pattern recognition methods were presented in this chapter. Now,
we will discuss when will use them in this section. After that, for the questions that
cannot be answered using existing methods reviewed before. We will try to use the
methods to be introduce in the rest of the chapter.

A data set is called a cloud if its data points are randomly arranged, but they are
dense and usually have a lot of data points. Cloud computing as well as cloud data
computing is highly related to networking.

Let M be a cloud data set. We can ask the following questions:

Q1. How do we find the orientation of the data set? We can use the principle
component analysis to get the primary eigenvectors.

Q2. How do we classify M into different classes? The best method is k-means if
there is no time limit. We can use use SVM to separate the data set.

Q3. How do we find the partition of the space using the data set? The Voronoi
diagram is the best choice.

Q4. If some categorization is given, some instance, we know the data classification
of a subset of M , we can use k-NN to find the classification for unknown data
points.

Q5. How do we save the data points? And later, we like to retrieve the data points.
We can use quadtree or R-tree to save the data. So we can save a lot of space
[36].

Q6. If most of the data are not occupying the entire space, can we find a subspace to
hold the data not waste the other space? This problem is related to dimension
reduction [23] and manifold learning [39, 42].

Q7. How do we find the topological structure of the data sets? A technology called
persistent homology analysis was proposed to solve this problem. [5, 19]

Q8. When the cloud data is dense enough to fill entire space, we will call M the
image. We will use image processing method to solve the problem related [35].

12.6.1 Manifold Learning on Cloud Data

Manifold learning was originally proposed for nonlinear dimensionality reduction
[3, 9, 23]. The main task is to identify a surface or manifold where the most data
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will be located on it. The example always used in manifold learning is a 2D Swiss
roll that is sampled randomly and it is embedded in a 3D space. The question is how
do we extract the information?

Isomap and the Kernel principle component analysis are usually used in finding
such a structure. Here we just present the algorithm for Isomap [2, 6, 39].

Algorithm 12. 5 The Isomap algorithm. M is a cloud data set.

Step 1 For each point x ∈ M , determine the neighbors of each point. we can
K-NN or MST to get the information.

Step 2 Construct the graph with the neighbors found in Step 1. the edge will be
weighted by the Euclidean distance.

Step 3 Calculate the shortest path between two vertices using Dijkstra’s algorithm
Step 4 Multidimensional scaling makes edges between two vertices. Cut off the

data points beyond the clip level. Determine local dimension of the data.
This step is called lower-dimensional embedding.

Step 5 Compare the results in Step 4. make decision on the dimensions for all
local neighborhood, For instance, the most of local neighborhood are 2D.
We make the 2D out put.

In Step 5, one can use principle component analysis to help us to find the local di-
mensions [42]. In fast algorithm design, there may be some geometric data structures
that can assist us to find new faster algorithms. See Fig. 1.5a.

12.6.2 Persistent Homology and Data Analysis

Cloud data usually does not have a topological structure except they are located
individually. Each point is an independent component. However, to interpret that
each data point is a sampling, meaning that each point represent an area or volume,
but we do not know how big the area or volume is? Then this problem will relate to
so called persistent homology analysis [5, 19].

In topology, homology usually indicates the number of holes in each dimension.
We will introduce the formal concept of homology in Chap. 13. Here we only treat
this concept as the number of holes. It is called the Betti number of the manifold.

In the method of persistent homology, we make a sample point grows in its volume
with a radius r . When r changes from 0 to a big number, the data will change from
individual data points to the large volume until fills entire space.

The persistent homology method will calculate the homology groups (number
of holes in each dimension) for each r . It would make some sense that the same
topology (homology groups) that covers most of r will be the primary topological
structure of M , the data set. See Fig. 1.5b.

In Chap. 14, we will specifically discuss how we calculate homology groups [12].
In terms of making a data shape to grow, mathematical morphology may provide
some nice operators [20].
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12.7 Topological Image Processing: Thinning Algorithms

Image thinning is to provide a simplest structure to a complex image for human
or computer to interpret or recognize. Therefore, thinning usually will extract or
keep the middle curves of the image components. In addition, thinning maintains the
topological structure of an image while deleting as many pixels as possible.

One of the most popular methods is called Zhang-Suen thinning for 2D images
[41].

Let S ∈ Σ2 be a connected component and S be represented as set of “1s” with
background pixels that are marked “0”

N8 is the 8-Neighbourhood of the center pixel P

⎡

⎢⎢
⎣

P 4 P 3 P 2

P 5 P P 1

P 6 P 7 P 8

⎤

⎥⎥
⎦ .

where c(P ) = number of neighbors with value 1, i.e. c(P ) = P 1 + P 2 + · · · + P 8
and b(P ) = number of boundary components, i.e. number of 0–1 transitions in
sequence (P1,P2, . . . ,P8,P1).

The pixel P ∈ S can be deleted if P is a boundary point, i.e. c(P ) �= 8. If c(P ) = 7,
then deleting P may cause a hole if P 2, P 4, P 6, or P 8 is 0. At the same time, P as
a center point will be kept if P 1, P 3, P 5, or P 7 is 0.

Therefore, P can only be deleted if (2 ≤ c(P ) ≤ 6) and P is a “corner” point in S.

Algorithm 12.6 The Zhang-Suen thinning algorithm is as follows:

Step 1: Mark pixel P ∈ S (P = 1) if (2 ≤ c(P ) ≤ 6)(̂b(P ) = 1)(̂P 1 · P 3 · P 5 =
0)(̂P 3 · P 5 · P 7 = 0).

Step 2: Delete all marked pixels.
Step 3: Mark pixel P ∈ S (P = 1) if (2 ≤ c(P ) ≤ 6)(̂b(P ) = 1)(̂P 1 · P 3 · P 7 =

0)(̂P 1 · P 5 · P 7 = 0).
Step 4: Delete all marked pixels.
Step 5: Repeat Steps 1–4 until no pixel can be marked.

For 3D thinning, one of the best algorithms was designed by Lee et al [28]. This
algorithm specifically use digital topology to define the problems. The digital surface
points (Chap. 5) are used to identify the data point that can be deleted. They also use
the Euler characteristic to maintain the topology unchanged when deleting a point.
Homann had implemented this algorithm in a relatively simple way [24]. We present
this algorithm as below:

Algorithm 12.7 3D thinning algorithm. Let M be a connected component in 3D.

Step 1: Pick a new point (or pixel) x in M .
Step 2: If x is not a boundary surface pixel, go to Step 1. Then, consider one the six

possible direct directions in 3D at a time (using mod(6) to pick direction
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once at a time.) to keep the thinning symmetrically. In other word, keep the
centrelines are not shifted.

Step 3: Test if the deletion of x will change the Euler characteristic. If it does, go
to Step 1. We want to make sure that no new hole is created or no hole will
be removed. In [28] There is a look-up table that can be used.

Step 4: Marked x and delete x.
Step 5: Repeat Steps 1–4 until no pixel can be deleted.

We will discuss how to calculate of the Euler characteristic in Chap. 14. We need to
treat a 3D pixel as a 3D-cell. So we can use the algorithm for 3D manifold calculation
for thinning.

12.8 Connectedness: Geometric Search Using Incomplete
Information

Connectivity is a basic measure in many research areas of mathematical science and
social sciences: (1) In the discrete case, two vertices are said to be connected if there
is a path between them; (2) in the continuous case, two points, a and b, are connected
in space, S, if there is a continuous function, f : [0, 1] → S, such that f (0) = a and
f (1) = b; (3) In social science, we also can say that two persons in an institution
are connected if one person is under the supervision of the other. However, these
connectivity relations only describe either full connection or no connection.

In this section, we introduce a systematic approach called the λ-connectedness
method to the problems in digital and discrete geometry [7–9, 11]. It can be applied
to image segmentation or classification, searching, and data reconstruction.

λ-connectedness can be used to measure incomplete relations between two ver-
tices, points, human beings, etc. We start with the definition of λ-connectedness,
then discuss some examples.

λ-connectedness is a measure for partial connectivity among data points, a set of
grouped data, or a collected objects. This method is based on a graph, G = (V , E),
and an associate function, ρ, on the vertices of the graph, where ρ is called the
potential function.

A metric, Cρ(x, y), is defined for the λ-connectedness on the vertices, x, y ∈ G,
with respect to ρ. This metric is not only based on the distance but also relates to the
value on the vertices.

12.8.1 Connectedness and Segmentation

Let (Σ2, f ) be a digital image. If p and q are adjacent, we define a measure called
“neighbor-connectivity” below:

αf (p, q) =
⎧
⎨

⎩
1 − ‖f (p)−f (q)‖

H
if p and q are adjacent

0 otherwise
(12.6)
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where H = max{f (x)|x ∈ Σ2}.
Let x1, x2, ..., xn−1, xn be a simple path. The path-connectivity β of a path π =

π (x1, xn) = {x1, x2, ..., xn} is defined as

βf (π (x1, xn)) = min{αf (xi , xi+1)|i = 1, ..., n − 1} (12.7)

or

βf (π (x1, xn)) =
∏

{αf (xi , xi+1)|i = 1, ..., n − 1} (12.8)

Finally, the degree of connectedness (connectivity) of two vertices x, y with respect
to ρ is defined as:

Cf (x, y) = max{βf (π (x, y))|π is a (simple) path.} (12.9)

For a given λ ∈ [0, 1], point p = (x, f (x)) and q = (y, f (y)) are called λ-connected
if Cf (x, y) ≥ λ.

If Eq. (12.7) is used, λ-connectedness is reflexive, symmetric, and transitive.
Thus, it is an equivalence relation. If Eq. (12.8) is used, λ-connectedness is reflexive
and symmetric. Therefore, it is a similarity relation. Generalized λ-Connectedness
can be found in [9].

λ-connectedness was proposed to describe the phenomenon of gradual change,
specifically in geophysical and geological layer search [7, 9]. In other words, these
layers exhibit gradual or progressive changes in a layer, but sudden changes fre-
quently occur between two layers. A λ-connected component can be viewed as a
layer, and two layers should be separated by the λ-connected search.

We know that a digital image can be represented by a function: f : Σ2 → [0, 1].
So, if p, q are adjacent and there are only a “little” difference between f (p) and
f (q), then pixel (p, f (p)) and (q, f (q)) are said to be λ-adjacent. If there is a point r

that is adjacent to q and (q, f (q)), (r , f (r)) are λ-adjacent, then (p, f (p)), (r , f (r))
are said to be λ-connected. Similarly, we can define the λ-connected on a path of
pixels.

Assume that there is a 4×4 small image, all pixels pi,j , i, j = 1, 2, 3, 4, are given
in the following array [8].

⎡

⎢⎢⎢⎢⎢
⎣

.2 .1 1. .8

.1 .8 .9 .5

.7 .8 .4 .6

.7 .4 .6 .8

⎤

⎥⎥⎥⎥⎥
⎦

(12.10)

Assume the “little” difference is set to be 0.2. Two pixels are λ-adjacent if the
difference between two adjacent elements are not greater than 0.2. It is easy to see
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Fig. 12.7 Examples of waveform data and gray-scale seismic data. (a) A waveform seismic section,
and (b) a velocity section

that there are three λ-connected components in the image. The second component is
shown below:

⎡

⎢⎢⎢⎢⎢
⎣

10. 8.0

8.0 9.0

7.0 8.0

7.0

⎤

⎥⎥⎥⎥⎥
⎦

. (12.11)

The other two components are located at the up-left corner and the low-right corner
of the original matrix (1), respectively.

In seismic data processing, researchers usually deal with two types of layers: the
geological layer and the seismic layer. The geological layer is formed by sedimentary
rocks from one geological time period to another. On the other hand, a seismic layer
is distinguished by geophysical properties of sedimentary rocks represented in the
form of seismic data in the stratum, the most popular in use are velocity and porosity.
Since the geological layer cannot be identified just by using seismic data, the work
described in this chapter is only the seismic layer search.

Seismic data has two forms in general: waveform seismic data, and gray-scale
seismic data. Both waveform data and gray-scale seismic data can be viewed as
digital images (See Fig. 12.7). A digital image can be represented as a function from
a 2D/3D array to an interval in R, the real number set. Mathematically, such an array
can be regarded as a graph if we define: (1) each element in the array is a vertex of
the graph, (2) the edge set consists of all pairs of elements a, b, denoted by (a, b),
where a and b are adjacent in the array.
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To determine a layer in the stratum is to find a subset of vertices which have
similar properties (or values) in the gray scale image. λ-connectedness is defined to
describe the relationship among pixels in the image.

12.8.1.1 λ-connected Region Growing Segmentation

In a gray scale image, intensity is the uniformity measure. A region (or segment) in
an image may be viewed as a connected group of pixels, all with similar brightness.
The region growing method begins with a single pixel, and then by examining its
neighbors to find a maximum sized connected region of similar pixels. In this manner,
regions grow from single pixels. One can also use a region or grouped set of pixels
as a seed instead of a single pixel. In this case, after selecting the partition (group of
pixels), a uniformity test is applied to the region to see if it qualifies as a partition. If
the test fails, the region is subdivided into smaller regions. This process is repeated
until all regions are uniform. (The major advantage of using small regions rather
than single pixels is that it reduces the sensitivity to noise.)

Region growing forms an equivalence relation to partition the image. λ-connected
segmentation is used to partition the image by searching each λ-connected compo-
nent in the image. The fast algorithm design technique such as depth-first-search or
breadth-first-search can be used for implementation [14].

Algorithm 12.8 The breadth-first-search technique for λ-connected segmentation.
This algorithm is very similar to standard breadth-first-search.

Step 1: Let p0 be a point in Σ . Set
L(p0) ← ∗ and Queue ← Queue ∪ p0

i.e., labeling p0 and p0 is sent a Queue Queue.
Step 2: If STACK is empty, go to step4; otherwise,

p0 ← Queue (top of Queue). Then,
L(p0) ← 0.

Step 3: For each p linking p0, if
L(p) �= 0, L(p) �= ∗, and C(p, p0) ≥ λ, then
Queue ← Queue ∪ p and L(p) ← ∗. Then, goto Step2.

Step 4: Stop. S = {p : L(p) = 0} is one λ-connect ed part.

Algorithm 12.8 is time optimal, and the time complexity of it is O(|n · ΣN |).

12.8.1.2 λ-connected Split-and-Merge Segmentation

We give an example of split-and-merge segmentation in Sect. 12.4. They key step
of this method is to merge two segments together when they are adjacent along a
splitting line. For the original split-and-merge segmentation, two segments (can be
viewed as two big-pixels) can be merged if the maximum distance of the value of the
merged segment to the mean value of the merged segment is smaller or equal to ε.
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The idea of this method is as follows: One starts with tree nodes (representing
square regions of the image) at some intermediate level of the quad-tree. If a square is
found to be non-uniform, then it is replaced by its four son-squares (split). Conversely,
if four son-squares are segmented and a region in a son-square can merge with a region
in another son-square in terms of adjacency and uniformity, they will be merged until
no more pair of regions that can be merged. These four son-squares are replaced by a
single square(merge), called a segmented square. This process continues recursively
until no further splits or merges are possible.

In traditional split-and-merge segmentation, the uniformity is measured by the
mean of the merged region. This is a statistical measure. In λ-connected split-and-
merge segmentation, we merge two regions into one if the merged region is λ-
connected for any possible path in the region. Such a region is called a normal
λ-connected set [7]. Split-and-merge segmentation only preserves reflexivity and
symmetry and is not a mathematical partition or equivalence classification.

Algorithm 12.9 The split-and-merge technique for λ-normal-connectedness.

Step 1: Let Σ2 be a (2l × 2l) array. L ← Σ2. And let L is a set.
Step 2: If region L is already homogeneous, i.e. L is λ-normal-connected set,

NOMERGE ← NOMERGE ∪ L and go to step 3; otherwise,
divide L into four subsquares, L11,L12,L21, and L22;
then NOSPLIT ← NOSPLIT ∪ {L11, L12, L21, L22}.

Step 3: If there exists four regions which are four son of some region Ls
in NOMERGE, namely L11,L12,L21, and L22,
they will be conquered by merging approach. It tests any two
λ-normal-connected subset which are neighbor,
and belongs to different regions in L11,L12,L21, and L22, merge
these subset if their union is a λ-normal-connected subset of L.
NOMERGE ← NOMERGE − {L11, L12, L21, L22}. Otherwise,
if there are no such four regions; then stop when NOSPLIT is empty,
choose a region from NOSPLIT , send it to L, and goto Step2 else.

We can prove the following result: There is an O(n|Σ2| + |Σ2|log|Σ2|) time split-
and-merge algorithm for normalλ-connected segmentation [7]. For more information
about the λ-connected method, refer to [9].

12.8.2 λ-connected Segmentation for Big-pixels
and BigData Related Sets

As we discuss in Sect. 12.3, the normalized cut used big-pixel technique to reduce
the size of a graph. In fact, λ-connected split-and-merge segmentation is just a big-
pixel related technique. λ-connectedness can be just defined on a general graph not
only rectangle domain [9]. So use λ-connected search, we can find segments for
big-pixels.
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Fig. 12.8 The image and its quadtree representation. a an image, and b the quadtree representation
of this image

When an image is already compressed in a quadtree format, we can even perform
a segmentation without decode the data to a real image. In such a way, we can deal
with BigData sets in a very fast manner.

In typical image segmentation applications, the domain is a rectangular region.
Quadtree and octree representations are commonly used in medical imaging and
spatial databases to compress data [20, 36].

If an image is stored or compressed by a quadtree, then the algorithm presented
in this section provides a method that does not require restoration or decoding of the
quadtree code before the image can be used. In other words, the quadtree partition
is directly used to build a graph, and then a λ-connected segmentation is performed
on the new graph. The advantage of using such a strategy is to significantly increase
the segmentation speed.

A compressed image represented in the quadtree shall have a leaf index with value
[13]. In Fig. 12.8, we represent an image into a quadtree format where “1” means
that there is non-zero data points in the region with small variations. So each square
marked as “1” is a big-pixel.

An image is split into four quadrants, namely Q0, Q1, Q2 and Q3, which represent
the upper-left, upper-right, bottom-right and bottom-left quadrants, respectively.
Specific formats are used to describe the structure of the compressed image in the
quadtree representation. For example, (Null, 0) means that the entire image is filled
by “0,” ( < 3 >, 128) means that the bottom-left quadrant is filled by “128,” and
( < 2 >< 1 >, 255) means that the upper-right quadrant and the bottom-right
quadrant of the image is filled by 255. In this example, the leaf size may be computed
by: n

22 where n is the length of the image.
Typical image segmentation must go through each point so the time complexity

must be at least O(n2) [14], where n is the length of the image and we assume n = 2k .
In the quadtree technique, a leaf ( < 2 >< 1 >, 255) will represent n/22 × n/22

pixels.
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Assume that the number of quadtree leaves is N . Then the segmentation algorithm
can be described by first defining the adjacency graph GQ = (VQ, EQ) for the
quadtree stored image where each leaf is a node in GQ. If u and v are two adjacent
leaves in VQ, then (u, v) ∈ EQ. In a 2D image, there are two types of neighborhood
systems: the 4-neighbor system where each point has only four neighbors and the
8-neighbor system where each point has eight neighbors.

Lemma 12.1 GQ has at most 3N edges for a 4-neighbor system. And GQ has at
most 4N edges for an 8-neighbor system.

For the detailed proof of this lemma, see [9, 10, 13].
How much time is needed to build GQ? It depends on how the quadtree code is

stored. Basically, there are two ways. In the first way, the quadtree code is stored in the
“depth-first” mode and we do the following: recursively store the first quadrant, Q0

and its off-springs, then store Q1 and its off-springs, and so on. In this mode, we can
build GQ quickly since we only need to compare the neighbors in the quadtree code
sequence to see if they are adjacent. According to Lemma 3.1, the time complexity
of the algorithm is linear. (How we store an image in quadtree format is not the
focus of this book. We can recursively generate the quadtree-code for Q0,..., Q3.
In this method, we only store the code if it is a leaf, which would only take O(N )
time.) In the second way, the quadtree code is stored in the “breadth-first” mode:
we sequentially store the quadtree index codes for the largest blocks, then second
largest blocks, and so on. The time to get GQ may be longer, since we need to check
if the current block is adjacent to any previous block. The time complexity could be
O(N · N ).

Lemma 12.1 provides us another advantage. We only need an O(|VQ|) time al-
gorithm to perform the segmentation using λ-connectedness. The value of |VQ| is
usually much smaller than n · n, the original image size. Even through |VQ| is de-
pendent on the actual image, it is very reasonable to say that the average is O(n).
Therefore,

Theorem 12.1 There is an O(|VQ|) time algorithm to perform segmentation using
λ-connectedness.

Without decoding the quadtree code in the original image, we cannot perform a
statistical mean-based segmentation since it is not a mathematical classification. A
leaf (or a block) added to a segment probably does not satisfy the requirement of
|p − mean| < δ since the mean may change. We may need to break a leaf to get a
more precise segmentation. Developing this idea can lead to another algorithm: (1)
separate the leaf into 4 sub-blocks, (2) if one sub-block can merge into the segment,
repeat this step, (3) insert the rest of the sub-blocks into the quadtree code sequence,
then repeat. This algorithm is faster than restoring the whole image, but is slower
than λ-connected quadtree segmentation [10, 13].

This method of building graph GQ has essential significance to direct calculate
the homology groups without decode the image into real Euclidean space. The idea
is this, quadtree representation does not change inward and outward points in the
formula related to hole counting. we can get the exact number of holes just check
the leaves of the quadtree and its neighbors to determine the number of inward and



References 225

outward points. So we can use it for the calculation of genus directly. See Chaps. 6
and 14. for details including the definition of homology groups.

Storing images always generates the BigData sets. The algorithms discussed in
this section will direct relate to BigData and data science for recent trend of studies.
We will talk more about this in Chap. 15.

12.9 Remarks

In this chapter, we overview the geometric processing for many applications. Be-
ginning with geometric search, we reviewed some of main algorithms in graphs.
We use the famous the Google search algorithm (PageRank) as example to describe
the importance of graph search algorithms and its matrix representation. Then we
discuss another important application to image segmentation such as the normalized
cut.

Secondly, we introduce spatial data structures especially quadtrees and R-trees.
And their applications to Wireless network applications.

Thirdly, we review the major classification methods for geometric problems such
as kNN and k-mean et al. We also introduce one of the most important applications
in digital geometry—Thinning algorithms.

At last, we focus on the discrete method for incomplete data analysis using
geometric method. We call it as λ-connected method.

For λ-connectedness, in fact, partial relations have been studied in other aspects.
Random graph theory allows one to assign a probability to each edge of a graph
[3]. This method assumes, in most cases, each edge has the same probability. On
the other hand, Bayesian networks, are often used for inference and analysis when
relationships between each pair of states/events, denoted by vertices, are known.
These relationships are usually represented by conditional probabilities among these
vertices and are usually obtained from outside of the system [25]. We can see that
λ-connectedness is different from those techniques.

In fact, the gradually varied function introduced in Chap. 11 is the special case
of λ-connected sets [10]. λ-connectedness can also be applied to numerical fitting
problems [10, 11]. The relationship between a continuous function and a λ-connected
function was investigated in [8–10]. The main material of the book relating to λ-
connectedness is from [8, 11]. Graphics and numerical methods can also be used in
geometric data visualization, see [17, 33].
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Chapter 13
Discrete Methods in Differential Geometry

Abstract Nowadays, differential geometry is not only still one of the most profound
research areas of mathematics after having had great influence in physics for more
than a century, but it has also recently begun to play a very important role in com-
puter graphics and image processing. The Poincare conjecture was believed to be
proven by Perelman in 2004. However, other mathematicians are still looking into
the details of the proof where not all parts are constructive. Researchers in digital
topology have already started to explore the possibility of proving this conjecture
in digital or discrete cases. This would also be exciting since a pure digital proof
must be able to be implemented in terms of algorithms and would be constructive.
In this chapter, we introduce the basic knowledge of differential geometry and some
practical topics in its applications to computer graphics and computer vision. Due
to the fact that differential geometry has a close relationship to variational analysis
and harmonic functions, we also include a brief review of the principle of variational
analysis. This chapter emphasizes some important topics of the discrete methods in
differential geometry including circle packing, curvature flow, and minimum surface
calculations.

Keywords Differential geometry · Discrete geometry · Riemannian metric
· Curvature · Fundamental forms of surface · Gaussian-bonnet theorem · Discrete
conforming mapping · Circle packing · Curvature flow · Minimum surface

13.1 Basics of Differential Geometry

Originally, differential geometry was the study of the geometric properties of curves
and surfaces using differentials and integrals. The simplest example calculates the
length of a smooth curve.

Later, people began studying the geometry of differential manifolds. The concept
of differential manifolds is a very general one in that it is not defined in Euclidean
space. Each point in such a manifold is contained in a neighborhood that is homeo-
morphic to a Euclidean space. Therefore, the distance from one point to another on
a differential manifold must be defined in a dynamic way when the small Euclidean-
like coordination frame moves from one to another in parallel. In this section, we
mainly introduce differential geometry of surfaces.

© Springer International Publishing Switzerland 2014 231
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13.1.1 The Riemannian Metric

In Euclidean space, the distance between two points is measured by the Pythagorean
theorem. Its differential form is

ds2 = du2 + dv2

for a curve s in the u, v plane. Extending this formula to a more general form, we
have

ds2 = Edu2 + F1du dv + F2dv du + Gdv2

where A, F1, F2, and G are functions of u and v. Such a distance measure is called
the Riemannian metric. When we require that the coefficients of dv du and du dv be
the same, we will have

ds2 = Edu2 + 2Fdu dv + Gdv2 (13.1)

Differential geometry using the Riemannian metric is called Riemannian ge-
ometry. A differentiable manifold with Riemannian metric is called a Riemannian
manifold. We can see that when F = 0 and E and G are 1, this metric is the Euclidean
metric.

Example 13.1 We gave the arc length of a sphere in Chap. 3, Formula (3.10). Using
the Riemannian metric form, we can prove that

ds2 = r2du2 + r2 · sin2(u)dv2 (13.2)

where r is a constant radius and u, v are two angles in spherical coordinates. In this
case, E = r2, F = 0, and G = r2 · sin2(u). �

In general, for n variables, a Riemannian metric in a local coordinate system can
be written as

g = Σn
i,j gij(x)dxidxj (13.3)

where gij(x) = gji(x) and the matrix [gji(x)]n×n, called Riemannian metric tensor,
is a positive definite matrix. This means that g is always positive when dxi is not all
zero.

13.1.2 Curvatures of Surfaces

We defined the curvature of a curve C(t) in Chap. 10 as the second derivative to t ,
d2C

dt2 . See Eq. (10.4).
To understand the meaning of the curvature in C(t) on a plane, we can think of

it as a measure of how sensitive the tangent line is when its base point moves other
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Fig. 13.1 A point p ∈ S and
its tangent plane Tp . Two
planes A and B containing n,
the normal line at p. There are
two normal curvatures kn(a)
and kn(b) of curve a in A and
curve b in B, respectively
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nearby points. If C(t) is a straight line, then the curvature would be zero. Therefore,
the curvature of a large circle would be comparatively smaller than that of a small
circle. Thus the curvature of a circle is the reciprocal of its radius r: κ = 1

r
.

Curvatures on surfaces are much more complex, and they have many types. For
the different types of curvatures on a surface S, we first calculate the maximum value
of the curvature and the minimum value of the curvature around a point p ∈ S. The
curves we select on S from the plane are perpendicular to the tangent plane Tp at
point p. See Fig. 13.1. The curvatures of curves a = S ∩A and b = S ∩B are called
normal curvatures.

It follows that the maximum and minimum values of the normal curvatures at a
point are called the principal curvatures, κ1 and κ2. Based on the principal curvatures,
two types of important curvatures can be defined. These are the Gaussian curvature
and the mean curvature.

KG = κ1 · κ2, (13.4)

and,

H = κ1 + κ2

2
. (13.5)

More general definitions of curvatures are illustrated in Fig. 13.2. (This part may
be difficult to understand.) Again, let Tp be the tangent plane at point p on the surface.
n is the normal line at p on T . n is perpendicular to Tp. Let C be an arbitrary curve
on a surface S and K be the curvature of curve C. The tangent vector at point p

of curve C will have a normal vector N with respect to C. The projection of k to
n is called the normal vector, and the projection of k to Tp is called the geodesic
curvature kg. Therefore,

k = kn + kg
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Fig. 13.2 Curvatures:
Relationship among
curvatures on a curve and
their normal curvature and
geodesic curvature

C

p

Tp

k
kn

kg

S

where k, kn, and kg are vectors. We can also write k = k ·N . Their scalar values are
denoted as (geodesic curvature) kg , and (normal curvature) kn.

Note that two different curves passing through p onS that have different curvatures
(k) may have the same normal curvature.

13.1.3 Fundamental Forms of Surfaces

To describe the characteristics of a surface, two facts are the most important: the
length between two points and the length of the curvatures on the surface. Therefore,
there are two fundamental forms for surfaces that describe these properties. They are
called the first fundamental form and the second fundamental form.

These two forms are also related since the second fundamental form is the deriva-
tive of the first fundamental form (at the normal vector of the tangent plane of a point
on the surface).

The first fundamental form is just the metric form (13.1):

I = Edu2 + 2Fdu dv + Gdv2.

To understand the first fundamental form, we can rewrite the differential arc length
formula of a curve s(t) = (u(t), v(t)) on a surface S = r(u, v) in Chap. 10, we have

ds2 = ru · rudu2 + 2ru · rvdu dv + rv · rvdv2.

Therefore, the first fundamental form is just the generalization of the above for-
mula. The Riemann metric tensor for this case is: g11 = (ru)2; g12 = g21 = ru · rv;
g22 = rv · rv.

The second fundamental form describes how curviness of a surface, what we call
curvature. Thinking about the tangent plane at a point on the surface, with respect
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to the tangent plane, we rotate our space to make this tangent plane our (local)
domain plane. For example, if the tangent plane is parallel to the xy-plane, so the
first derivative of the surface would be zero (see Fig. 13.2).

Therefore, the second derivative determines the curvature of the surface. If we
use Taylor expansion, we have,

r(u + du, v + dv) = r(u, v) + rudu + rvdv + 1/2(ruudu2 + 2ruvdu dv + rvvdv2)

+ · · · . (13.6)

thus,

dr = r(u + du, v + dv) − r(u, v) = 1/2(ruudu2 + 2ruvdu dv + rvvdv2). (13.7)

This is the differentiation of the direction of a curve on a surface at point (u+du, v+
dv). This is very similar to the Hessian matrix that determines the extreme points
of a function f (x, y). In general, we use tangent planes to replace the xy-plane,
which is the vector perpendicular to the tangent plane at (u, v). Therefore, this local
coordinate system is a moving frame (or tangent plane in this case).

The second fundamental form is the generalization of (13.7)

II = L du2 + 2M du dv + N dv2. (13.8)

So, the second fundamental form determines the curvature of a surface (in the local
sense).

In calculus, we know that the determinate of the Hessian matrix can determine
the type of extreme points. LM − N2 will also have the same functionality as
fxxfyy − (fxy)2 in the Hessian matrix.

To understand the function f on an xy-plane is equivalent to rotating any point on
the Riemann manifold such that its tangent plane is the xy-plane in the local sense.
That is why the second fundamental form is the generalized Hessian matrix. Moving
the frame along with the normal vector of the tangent plane of points on a curve in the
manifold is called parallel transport. We discuss the important concept of connection
in the later sections of this chapter. (This is also related to the Gaussian map.) In
higher dimensional space, the supersurface, an (n − 1)-manifold, can also have the
generalization of the second fundamental form.

We define the normal curvature of the general Riemannian metric as :

kn = II

I
= Ldu2 + 2Mdu dv + Ndv2

Edu2 + 2Fdu dv + Gdv2

The Gaussian curvature KG = κ1 · κ2 of a surface is given by

KG = LN − M2

EG − F 2
(13.9)

The mean curvature is given by

H = LG − 2MF + NE

2(EG − F 2)
(13.10)
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Modern Riemannian geometry mainly studies global properties. Since any differ-
ential manifold can be embedded into a Euclidean space isomorphically proved by
Nash, this means that the shape can be retained without deformation. On the other
hand, any differential manifold can be decomposed piecewisely. Therefore, in this
book, what we discuss regarding discrete geometry of the differential manifold in
Euclidean space is mathematically valid. For details, refer to Thurston’s book [27].

13.1.4 Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem is not only one of the fundamental theorems in differ-
ential geometry, but it is also one of the most important results in the entire field
of mathematics. This single theorem connects very well different branches of mod-
ern mathematics, including topology, geometry, and algebra. Its generalization, the
Atiyah-Singer index theorem has many applications in theoretical physics. We first
present a simpler form of the Gauss-Bonnet theorem and then explain its meaning.

Theorem 13.1 Suppose S is a closed surface or compact two-dimensional
Riemannian manifold,

∫

S

KG dA = 2πχ (S), (13.11)

where KG is the Gauss curvature and χ (S) is the Euler characteristic of S.
We know that the Euler characteristic of S is the number related to genus in from

Chap. 9, Eq. (9.2). We also know that

χ (S) = 2 − 2g

for a closed surface. If the surface is simply connected, without any holes, then g = 0
and

∫

S

KG ds = 4π ,

The integral of the Gauss curvature on a closed surface is a constant. This theorem
has significant applications in 3D image processing where the goal is to find the
number of holes in a object, which we discuss in Chap. 14. It states: If M is a closed
2-dimensional digital manifold, the genus g is

g = 1 + (M5 + 2M6 − M3)/8,

where Mi indicates the number of surface-points, each of which has i adjacent
points on the surface. This is the simplest formula for the Gauss-Bonnet theorem in
3D digital space [4].

Consider the boundary ∂S. Then the Gauss-Bonnet theorem will be,
∫

S

KG dA +
∫

∂S

kg ds = 2πχ (S),

where kg is the geodesic curvature of ∂S [14].
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13.2 Variational Principle and Harmonic Analysis

In this section, we introduce the variational principle and harmonic functions. The
variational principle came from the solution of the Dirichlet problem: given a con-
tinuous function f on boundary ∂D of D, is there a differentiable extension F of f

on D?
The solution resulted in the discovery of the minimum energy function for an

integral:

E[f (x)] =
∫

Ω

(f 2
x + f 2

y )dxdy. (13.12)

Usually |∇f |2 replaces (f 2
x + f 2

y ) for a more general representation. ∇f is the
gradient in the vector field with unit vectors ei :

∇f = ∂f

∂x1
e1 + · · · + ∂f

∂xn

en

The Dirichlet problem is also important in mathematical physics. The solution f

to this problem is unique and satisfies the following equation

∂2f

∂x2
+ ∂2f

∂y2
= 0 (13.13)

This is called a harmonic function.
The method used in finding the solution is called the variational principle, which

laid out the foundation for functional analysis.
Harmonic functions have important applications in science and engineering. The

linear function is always harmonic.
Harmonic functions also play an important role in solving the famous minimal surface
problem [7]. We discuss its algorithm in the later sections of this chapter.

Harmonic functions have some important properties: (1) The maximum and min-
imum values must be on the boundary of the domain (if f is not a constant), and (2)
The average of the values in a neighborhood circle equals the value at the center of
the circle.

For a simply connected 2D region D and its boundary J , we have the following:

Theorem 13.2 For a bounded region D and its boundary J , if f on J is continuous,
then there is a unique harmonic extension F of f such that the extension is harmonic
in D − J .

More generally, the solution for the Dirichlet problem can be extended to a
connected with genus greater than 0 [7].

This theorem plays a significant role in existence of conformal mapping and
circle packing we will discuss next. Especially, the algorithm we present next in
circle packing.

Variational principle is an important tool for geometric problems in data pro-
cessing. A functional E[f , B] was proposed by Mumford and Shah for image



238 13 Discrete Methods in Differential Geometry

Fig. 13.3 Image segmentation using modified a modified Mumford-Shah functional

segmentation [10]. (We introduced the concept of image segmentation in Chaps. 3
and 12.) This has become a trendy research field in discrete geometry.

For an image F in a domain D, let f be the model (a reconstructed image) and
let B be the boundaries of each segmented component of f . The Mumford-Shah
functional is defined as [18]

E[f , B] = α

∫

D

(F − f )2dA + β

∫

D−B

|∇f |2dA + γ

∫

B

ds

where α + β + γ = 1 are weights. This formula means that the difference between
the original image and fitted image should be small because the first term is

∫
D

(F −
f )2dA. The internal variation of f should be small because of the second term
(the standard segmentation has the same value in a segmented component). The
total boundary length should also be small in many cases. In Fig. 13.3, Vese and
Chan obtained a nice segmentation using a modified Mumford-Shah functional. The
first row is the original data F and the second row is the fitted data f . The second
column is the intermediate iteration result and the last column is the final result of
the segmentation [28].

13.3 Discrete Conforming Geometry

The conforming mapping came from complex analysis for angle-preserving transfor-
mation in 2D complex plane. A simply connected 2D region can always conformal
map to a disk. This is the famous Riemann conforming mapping theorem. Riemann
used a simple construction of some complex functions to prove this theorem. This
theorem is also valid for any bounded 2D surface due to the Dirichlet principle [7].
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Fig. 13.4 Conforming mapping with angle-preserving: a a deformed disk, and b a disk

Fig. 13.5 Conforming mapping for geometric design by Y. Yang et al.: a planar design, and b the
3D realization

We can have an example that shows the conforming mapping from a deformed disk
back to a disk. See Fig.13.4.1

Researchers in computer graphics sometimes use conforming mapping to make
3D pictures or geometric design of architectures. See Fig. 13.5 [2, 29]

The question remaining here is how we actually make such a conformal mapping
when an actual 2D region is given? In other words, how do we design an algorithm
to construct such a mapping for an arbitrary boundary?

One of the solutions was suggested by W. Thurston in 1985. His idea is to use
so called circle packing. We will next introduce the circle packing for obtaining
the conforming mapping, and then discuss the direct harmonic function for discrete
conforming mapping.

1 The example was made by the Java applet by MichaelA. Lee and Kevin E. Schmidt on conforming
mapping at http : //f ermi.la.asu.edu/ccli/applets/conf map/index.html.



240 13 Discrete Methods in Differential Geometry

Fig. 13.6 Circle packing on
3D surface by Yang

13.3.1 Circle Packing

Circle packing is to use circles to cover a given surface such that all circles touch
another without overlapping. The circles can be equal or vary in sizes. If two circles
are tangent, we can link a line segment from two centers of the circles. These line-
segments will form a partition of the surface. Therefore, circle packing is a method
of decomposition of a surface. However, since circles cannot fill the total space of
a surface, we use terminology of density to describe the ratio. Figure 13.6 gives an
example of circle packing on 3D [29].

Researchers in computational geometry or algorithmic geometry are interested
in how the best density circle packing can be [11]. In this section, we focus on its
relationship to conforming mapping.

For an 2D region D, Thurston observed that circle packing could be used to
approximate conformal mappings: (1) First, pack small circles with radius r in a
hexagonal tessellation of the plane, (a circle will tangent to six circles within region
D), (2) constructs a planar graph G from the intersection graph of the circles, and
(3) add an extra vertex that is adjacent to all the circles on the boundary of D. We
just present the main idea below:

Let C be a 2D disk having the boundary circle with radius R. The planar graph
G can be represented by a circle packing of C. The circles from the packing of D

has a one-to-one mapping to the circles in C.
Thurston’s conjecture of the circle packing: Using the Mobius transformation,

when the radius r approaches zero, the functions from the packing of D to C con-
structed in this way would approach the conformal function given by the Riemann
mapping theorem. Thurston’s conjecture was proven by Rodin and Sullivan [24].
Collins and Stephenson designed an algorithm for circle packings [6, 26]. This
algorithm use angle relaxation for convergence (Fig. 13.7).
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Fig. 13.7 Conforming
mapping using circle packing:
a Original packing, and b the
result of Thurston’s algorithm
modified by Stephenson and
his colleagues



242 13 Discrete Methods in Differential Geometry

13.3.2 Case Study: Algorithms of Circle Packing, Harmonic
functions, and Conformal Mapping

In this section, we describe an idea combining ideas from [26] and discrete harmonic
functions.

Algorithm 13.1 Discrete Harmonic Method for circle packing.
Input: A unique size circle packing (hexagon type) for a simply connected region

in 2D (If the region contains multiple holes, the algorithm is similar).
Output: A circle packing of a circular region C.

Step 1 Make a unique size circle with radius ε in the region (hexagon type). Cut
all incomplete circles on the boundary out.

Step 2 Select a point inside the region c0 (at the center of the region if possible).
Define a function: all boundary points are zero and f (c0) = 1.

Step 3 Do a harmonic fitting of the function (using discrete method [3]).
Step 4 Draw the contour map of the region A based on the fitted value (isosurface).

(A contour line, also called isoline, is a curve where the function values
along the curve have a constant value.)

Step 5 Draw curves rθ from c0 to the edge points with right-angles to all contour
map curves.

Step 6 Calculate the length of rθ using Mobius transformation (any one or all) to
calculate the ratio of circles on the curve. Compare this to the radius of the
big-circle C.

Step 7 Draw circles in the projected center with the circle’s original radius.
Step 8 The circles may overlap each other or not be attached (hexagon type). Do

local adjustments of the ovals. (The relaxation method can be used based
on the Algorithms in [26]).

Now the detailed algorithm can be a digital method for faster performance if using
digital grids. Making a digital grid that is 1/4 of ε, we use digital harmonic fitting
to find the contour map to use as the level set.

13.4 Curvature Flows and Discrete Curvature Flows
on Surfaces

The Ricci flow is a curvature flow that was used to attempt to solve the Poincare con-
jecture by Hamilton and Perelman. Most of mathematicians believed that Perelman
and others have completed the proof [17]. The Poincare conjecture was one of the
most famous unsolved problems in mathematics. It states that every simply connected
closed 3D manifold is homeomorphic to the 3D sphere S3. Some mathematicians
are still looking into the details of the proof where not all parts are constructive. A.
V. Evako suggested to study the Poincare conjecture in digital space so that it would
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Fig. 13.8 Riemann curvature
R(X, Y )Z where X, Y , and Z

are vector fields

Z
Z’

Parallel transport
of Z vector along curves

R(X,Y)Z=
Z’-Z

dx

dy

dx dy

p

Tengent direction at a point

give an algorithmic proof. This would also be interesting since a pure digital proof
must be able to be implemented and must be constructive [21].

Hamilton did design a plan for proving the Poincare conjecture, first by putting a
Riemannian metric on a simply connected closed 3-manifold and then adjusting this
metric by modifying the curvature at each point. Until the manifold has a constant
curvature, it must be a 3-sphere. The idea is simple in this process. Thinking about a
deformed circle, in order to make it a rounded circle again, we just need to expand
the inward (negative curvature) parts of the circle and contract the outward (positive
curvature) parts. We use Ricci flow to make the negative curvature points positive
and reduce the value of the curvature if it is too large.

This short section only provides a basic introduction to this newest development
in differential geometry and its applications to discrete problems. We only intend to
show some related concepts for the purpose of future uses in massive geometric data
processing.

Let us first introduce the Riemann curvature tensor, which is defined on the Levi-
Civita connection. The Levi-Civita connection is similar to the directional derivative
in Eucldean space. It is called the covariant derivative. Let C be a curve on a manifold
M , where p and q are two closed points and Tp and Tq are two tangent space at p

and q, respectively. u is the tangent vector at p and v is the tangent vector at q along
C. Therefore, we can calculate the directional derivative of v in the direction of u (on
C), Du(v). Since Du(v) may or may not be in Tp, we make a projection perpendicular
to Tp, where the projected vector is called the covariant derivative or connection and
is denoted by ∇uv. In fact, in order to make the projection, we must move the vector
from q to p, a move called parallel transport. This definition is valid for any vector
field (and its related bundle).

Intuitively, the Riemann curvature R(X, Y )Z at point p can be defined as follows:
Let Z′ and Z be two unit vectors where Z′ is a parallel transport of Z starting at p and
traveling along the boundary of a small cell and returning to point p. See Fig. 13.8.
Note that R(X, Y )Z is equal to Z′ − Z divided by the area of the small cell.

Formally, the curvature tensor can be defined using Levi-Civita connection:

R(u, v)w = ∇u∇vw − ∇v∇uw − ∇[u,v]w (13.14)
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where [u, v] is the Lie bracket for two vector fields u and v. It satisfies [X, Y ](f ) =
X(Y (f )) − Y (X(f )) for all smooth functions f .

The Riemann curvature was expressed in the coordinate system,

Ra
σμν = dxa(R(∂μ, ∂ν)∂σ )

Its tensor form is the following.

Raσμν = gabR
b
σμν.

The Ricci curvature is a special curvature defined by the Riemann curvature:

Ric(u) =
∑

i

R(u, ei)ei , (13.15)

where {ei} is an orthonormal basis of the tangent space at a point in M . We have
Ricci curvature tensor

Rab = Rk
akb.

Then, the Ricci flow equation is given by

∂tgij = −2Rij.

It is to say that if we have a Riemannian manifold with metric tensor gij (see
(13.15)), we can compute the Ricci tensor Rij. The calculation can be done by using
the so called sectional curvature,

κ(u, v) = 〈R(u, v)v, u〉.
where u and v are the orthonormal vectors on the tangent space at p and 〈·, ·〉 is the
inner product. The other way of simplifying the equation is viewing the flow equation
as

∂tgij = −2KGgij.

where KG can be the Gaussian curvature if M is a 2D manifold.
The Ricci flow equation does not suggest any actual algorithms for modifying a

3D manifold into a 3-sphere, since checking which point has the positive curvature
on a continuous space is not possible. Chow and Luo introduced an equation called
combinatorial Ricci flow for this computational purpose [5]. They used a weighted
triangulation based on the circle-packing algorithm to get the initial curvature in
combinatorial form. Then, they used a procedure to modify the angles of the triangles
to converge to a constant curvature.

In Chow-Luo’s definition, let A(i) be the cone type angle at the vertex vi which
is the sum of all inner angles having vertex vi . The discrete Gaussian curvature Ki

at vi is defined to be 2π − A(i). This definition is compatible with the definition we
will use in Chap. 14 as well. The combinatorial Ricci flow is the following,
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Fig. 13.9 The minimum
surface example of a tent of a
musical event

Let the curvature Ki at vi be defined as 2π −Σai . The combinatorial Ricci flow
is the following:

dri

dt
= −Ki · ri .

Compare this with the normalized Ricci flow that is defined for all vertices:

dri

dt
= −(Ki − Kavg) · ri.

Chow-Luo’s method makes Ki closer to Kavg computationally [5]. A partial imple-
mentation of this method can be found in [12]. A more efficient discrete flow is called
combinatorial Yamabe flow were studied in [9, 16].

13.5 Discrete Minimum Surfaces

The problem of minimal surfaces is related to Plateau’s problem that proves the
existence of a minimal area surface with a given boundary. The minimal area surface
is equivalent to having a mean curvature of zero in all inner points. Physicists like
to make minimal surfaces by dipping a wire frame into a soap solution, generating
a soap film. Another popular example is the tent of a musical event, see Fig. 13.9.

The mathematical solution of this problem is to find a function that satisfies the
follow equation:

(1 + f 2
x )fyy − 2fxfyfxy + (1 + f 2

y )fxx = 0. (13.16)

This equation is different from a Laplace equation as fxx + fyy = 0. This problem
was solved by Douglas and Rado using Dirichlet’s principle and conformal mapping
in the 1930s [7].

Computationally, solving the problem is not easy. It requires an iterated process
that can approach a triangulated surface with boundaries near minimal surfaces. Sev-
eral algorithms were proposed and the curvature was calculated in discrete models.
The mean curvature was updated to be zero or near zero in 3D. Before we introduce
the algorithms for the solution of discrete minimum surfaces, we first introduce the
Laplace-Beltrami operator.
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13.5.1 Laplace-Beltrami Operator

The Laplace-Beltrami equation is a generalization of the Laplace equation for func-
tions in a plane. The Laplace-Beltrami equation is for functions with a domain of the
arbitrary two-dimensional Riemannian manifold. It is the divergence of the gradient
in short: Δf = divgradf . For a surface with local coordinates and first fundamental
form (13.1), the Laplace-Beltrami equation defined as a tensor form is as follows

ΔF = gij
(
∇Xi

∇Xj
F − ∇∇Xi

Xj
F
)

where gij is the inversion of gij in metric tensor and ∇Xj
F is a connection (covariant

derivative ). It can also be written as:

Δf = ∂

∂x

(
(Ffy − Gfx)√

EG − F 2

)
+ ∂

∂y

(
(Ffx − Gfx)√

EG − F 2

)
(13.17)

For E = G = 1 and F = 0, Δf becomes the Laplace operator. Δf = 0 is a
solution of the minimum of the Dirichlet integral on a surface with the metric form
Eq. (13.1)

13.5.2 Algorithms of Discrete Minimum Surfaces

According to [22, 23] the numerical solution of mean curvature Hp, at discrete point
p and surrounded by triangles with qi as neighbors, can be represented as:

Hp =
1
2 Σqi

(cotai + cotbi) · (p − qi)

A(V (p))

where A(V (p)) is the area of the Voronoi cell V (p). A digitized mean curvature
will be derived based on this principle in Chap. 14.

The formula of 1
2Σqi

(cot(ai) + cot(bi)) · (p − qi) is derived from the Laplace-
Beltrami operator for triangulated surfaces. This is obtained by minimizing the
Dirichlet energy over the triangulation. In general, the Laplace-Beltrami operator
is for Riemann manifolds, which is the generalization of the Laplace operator in Eu-
clidean space. In other words, the Dirichlet principle is valid for Riemann manifold
domains, but its solution is the Laplace-Beltrami equation [20, 25].

To get a minimal surface requires designing an iterated procedure to make Hp

zero for all inner points p in the triangulation. The algorithm according to Pinkall
and Polthier is briefed as follows [22]:

Algorithm 13.2 The discrete minimal surface.

Step 1 Take the initial surface M0 with boundary ∂M (the polygonal representation
of ∂M) as the first approximation of M .
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a b

Fig. 13.10 The discrete mean curvature calculation: a the Voronoi area around vertex p, and b
angles opposite to the edge (p, qi)

Step 2 Compute the next surface Mi+1 by solving the linear Dirichlet problem
based Mi on with the minimal condition based on Hp.

Step 3 Set i ← i + 1 and continue to repeat Step 2.

Another way is to adjust each point p such that Hp approaches zero (or a constant
for constant mean curvature surfaces). A spring model of the solution was proposed
by Jiang et al. [13].

13.6 Remarks: From Gaussian Curvatures
to Sectional Curvatures

Let M be a manifold [1, 8, 19], especially the hypersurface of a Riemann manifold.
We can observe the curvature on M in each 2D tangent plane in the tangent space Tp

at a point p of the manifold. This curvature is called sectional curvature. If u and v
are two linearly independent tangent (unit) vectors at point p, then

K(u, v) = 〈R(u, v)v, u〉
〈u, u〉〈v, v〉 − 〈u, v〉2

is called the sectional curvature with regards to a plane containing u and v. We know
R is the curvature tensor. If u and v are orthonormal, knowing that 〈u, u〉〈v, v〉−〈u, v〉2

is the square of the area of parallelogram u,v, then

K(u, v) = 〈R(u, v)v, u〉.



248 13 Discrete Methods in Differential Geometry

The sectional curvature tensor is denoted as

[K(ui , uj )]n×n

This is an n × n matrix. u1, · · · un are orthonormal vectors in the tangent space.
We can use principal curvatures as examples to understand the nature of sectional
curvatures. As we discussed in the second fundamental form, which is for curvatures,
the curvature tensor regarding to two orthonormal vector variables are

⎛

⎝L M

M N

⎞

⎠ .

We can prove that the two principal curvatures of this sectional curvature matrix is
just the two eigenvalues. A Gaussian curvature is a multiplication of two eigenvalues
of this matrix. Let us use this as an example to solve the following eigenvalue problem.
According to formula (3.23)

Det(A − λI ) = 0

will be the solution of eigenvalues of matrix A. Therefore,
∣∣∣∣∣∣

L − λ M

M N − λ

∣∣∣∣∣∣
.

we have,

(L − λ)(N − λ) − M2 = 0

then,

(λ2 − (L + N ))λ + (LN − M2) = 0

Assuming that λ1 and λ2 are two roots of the equation, then λ1 · λ2 = (LN − M2).
In addition, λ1+λ2

2 = L+N
2 . These are exactly the same value as KG in Formula (13.

9) and H in Formula (13.10) when E = G = 1 and F = 0, respectively.
In general, for a manifold M in Euclidean space, the principal curvatures are

the eigenvalues of its second fundamental form. If κ1 = λ1, ..., κn = λn are the n

principal curvatures at a point p ∈ M and x1, ..., xn are orthonormal eigenvectors in
principal directions, then the sectional curvature of M at p is given by

K(xi , xj ) = κiκj

This is the Gaussian curvature regarding to the tangent plane containing xi and xj .
The general Gaussian curvature is Det(K) = κ1 ·κ2 · · · κn. Lee’s book has extensive
discussions on this topic [15].
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It is a fantastic relation between curvatures and eigenvalues. We have discussed
that the principal components in Chap. 11 are the eigenvalues of the covariant matrix
of random variables. We also discussed the eigenvalues of the PageRanking matrix
is the indicator in Google search. Now, we have shown Riemann’s idea that the
curviness of a general manifold can be measured by looking at all the Gaussian
curvatures of a 2D subsurface, which is also the multiplication of eigenvalues. (Good
Mathematics are Always “Connected!”)

In addition to the current trends of research on manifold learning, Riemann man-
ifold learning was also studied. The topic is related to geometric processing that was
covered in Chap. 12.
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Chapter 14
Advanced Digital Topology and Applications

Abstract In this chapter, we present advanced topics in digital geometry and
topology including digital curvatures and their applications. First we give a brief
overview of current development of computational topology that overlaps digital
topology. Second, we introduce digital Gaussian curvatures and prove the digi-
tal form of the Gauss-Bonnet theorem. The new formula that calculates genus is
g = 1 + (|M5| + 2 · |M6| − |M3|)/8 where Mi indicates the set of surface-points,
each of which has i adjacent points on the surface. This formula provides the types of
topological invariants such as genus and homology groups for 3D image processing.
We also design a linear time algorithm that determines such invariants for digital
spaces in 3D. Such computations could have applications in medical imaging as they
can be used to identify patterns in 3D imaging. We then discuss the implementation
of the method. After that, we introduce digital mean curvatures and its applications
to 3D image classifications.

Keywords Digital topology · Digital homology · Image processing · Gaussian
curvature · Mean curvature · Digital gaussian–bonnet theorem · Pattern recognition
· Algorithm design

14.1 Topology and Computing

The most famous problem in topological computing is how to decide whether a
simply connected 3D manifold is homeomorphic to a 3D sphere. This problem is
called the Poincare conjecture. Even though this problem was believed to be solved in
2004. Some mathematicians are not convinced that the current proof of the theorem
is totally constructive.

In any case, the actual procedure that converts a piece-wise linear representation
of a simply connected 3D manifold into a sphere has not yet been found.

A problem related to this problem is called the 3-sphere recognition algorithm,
which determines whether a triangulated 3-manifold is homeomorphic to the 3-
sphere. However, the best algorithm runs in exponential time and also requires
exponential space [33].

© Springer International Publishing Switzerland 2014 251
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If we can determine that a 3D triangulated manifold is simply connected, then it
is surely homeomorphic to the 3-sphere based on Perelman’s proof of the Poincare
conjecture.

Computational Topology is a research area in computational geometry or algo-
rithmic geometry. It solves the topological problems using algorithms, for example,
homotopy groups and homology groups of a manifold [12, 18, 31].

Computing topological invariants has been of great importance in understanding
the shape of an arbitrary 2D or 3D object [17]. The most powerful invariant of
these objects is the fundamental group [16]. Unfortunately, fundamental groups are
highly non-commutative and therefore difficult to work with. In fact, the general
problem in determining whether two given groups are isomorphic is undecidable
(meaning that there is no algorithm that can solve the problem) [29]. For fundamental
groups of 3D objects, this problem is decidable but no practical algorithm has yet
been found.

As a result, homology groups have received the more attention because their
computations are more feasible and they still provide significant information about
the shape of the object [11, 18]. However, for general simplicial complexes, the
problem of computing homology groups is still not completely solved [3].

Using topology to calculate the topological properties of geometric objects is
currently a popular topic in science and engineering. It is a fascinating thing since
topology can be used in every day life and is not esoteric enough to only remain
in textbooks. People do not have to be serious mathematicians to understand these
topics.

Due to the development of cloud computing, many researchers have made con-
siderable progress in homology computations including persistent homology and
dimension reduction in geometric data processing. We have discussed this part in
Chap. 11.

14.2 Digital Homology and Image Processing

Images are stored in digital space. For image related applications, the simplest topo-
logical question is determining how many holes are in an image. Counting them one
by one is the obvious technology. However, this is very time consuming for big data
sets as most images are 1000 × 1000 pixels today.

The digital method can solve this topological question in a reasonable amount of
time.

Another development is even more crucial and important. This area is called
persistent homology, which calculates how many holes are in each scale for scattered
data or cloud data. Since we may not have a solid object to use in calculating these
holes, we only use some random samples.



14.3 Digital Curvatures in 3D 253

Each sample can represent an area or an m-dimensional ball, but we do not know
how big the ball is. The persistent homology will tell us all the ways for this process
of finding all possible holes in each level.

This leads to a main problem addressed in this chapter: Given a 3D object in
3D Euclidean space R3, determine the homology groups of the object in the most
effective way by only analyzing the digitization of the object.

In this chapter, we design an optimal algorithm with time complexity O(n) to
compute the genus and homology groups in 3D digital space, where n is the size of
the input data. The method used is based on cubical images with direct adjacency,
also called (6,26)-connectivity images in discrete geometry. There are only six types
of local surface points in such a digital surface.

The Gauss-Bonnet theorem in differential geometry will be used to determine the
genus of 2-dimensional digital surfaces. The new formula derived in this section that
calculates genus is g = 1 + (|M5| + 2 · |M6| − |M3|)/8 where Mi indicates the set
of surface-points, each of which has i adjacent points on the surface.

On the other hand, the mean curvature was also interesting in differential ge-
ometry especially in the calculation of minimum surfaces, we have discussed it in
Chap. 13. In this chapter, we introduce digital mean curvatures. We use it in 3D
image classification as a case study. In this chapter, we mainly discuss the solution
made by digital topology, especially the application of digital curvatures.

14.3 Digital Curvatures in 3D

In this section, we give formulas for two important curvatures in digital space: the
Gaussian curvature and the mean curvatures. These are called digital curvatures.

14.3.1 Digital Gaussian Curvatures

In 3D digital space, assume Ki is the digital Gaussian curvature of elements in Mi ,
i = 3,4,5,6 shown in Fig. 5.8 where Mi is the set of points each element has i adjacent
points in the surface. In other words, M3 is the set of corner point shown as Fig. 5.8a.
M4 are shown in b and c, M5 has just one case in (d), and M6 has two cases shown
in (e) and (f).

Since the classification is so important to the proof of the main theorem of this
chapter, we redraw Fig. 5.8 again as below:
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a

b

d

e f

c

All types of simple surface points as shown in Fig. 5.8
Let us recall the Gauss-Bonnet theorem (13.11) that states if M is a closed

manifold, then
∫

M

KGdA = 2π (2 − 2g) (14.1)

where KG is the Gaussian curvature and g is the genus of M . Its discrete form is the
following

Σp∈MK(p) = 2π (2 − 2g) (14.2)

where K(p) is the Gaussian curvature at point p with omitting G in KG without
losing generality.
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Fig. 14.1 Simple closed surface for digital Gaussian curvatures

We can prove the following lemma based on this formula.

Lemma 14.1 Let Ki be the digital Gaussian curvature for the element in Mi ,
i = 3, 4, 5, 6.

(1) K3 = π/2,
(2) K4 = 0, for both types of digital surface points,
(3) K5 = −π/2, and
(4) K6 = −π , for both types of digital surface points.

Proof This lemma can be proven by directly applying the discrete form of Gaussian
curvatures in [15, 32]. We give another prove here.

(a) We can see that K4 is always 0 since KG = K1 × K2 and one of the principal
curvatures must be 0 for any point in M4. We know that there exists a simply closed
surface that contains only eight points of M3 and several points within M4. Therefore,
8 · K3 = 2π · (2 − 0). See Fig. 14.1a. Therefore, K3 = π/2. So we have proved (1)
and (2) in the lemma.

(b) There is a simply closed surface that only contains ten points of the type in M3,
and two points in M5. See Fig. 14.1b. Therefore, K5 = −K3. In Fig. 14.1c, we have
13 M3 points and three M5 point and one M6 point. So, 13K3 + 3K5 + K6 = 4π .
Therefore, K6 = −2π/2 = −π . �

Lemma 14.1 can also be calculated by the discrete Gaussian curvature theorem
[32]. The curvature of the center point of the polyhedron is determined by

∫

M

KGdA = 2π − Σiθi. (14.3)

Therefore, we can obtain the same results as Lemma 14.1 using above equation.
For example, in 3D digital space, the angle of one face is π/2. So, K5 = 2π−5·π/2 =
−π/2. The proof of Lemma 14.1 is necessary if we are using the Gauss-Bonnet
theorem first and then obtaining the curvature for each surface point. We include a
proof here since the reference [32] does not contain such a proof.
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Fig. 14.2 The Voronoi region
in digital space

..................

...........................βiαi

xi

x

The Voronoi region

14.3.2 Digital Mean Curvatures

If Hi denotes the digital mean curvature of elements in Mi , i = 3, 4, 5, 6 in 3D digital
space, then we have

Lemma 14.2

(1) H3 = 4√
3
.

(2) H4 = 0 for flat neighborhood, and H4 = √
2 for a bend neighborhood.

(3) H5 = 4
5 .

(4) H6 = 0, for both types of digital surface points.

This lemma can be proven easily based on the formula derived by Meyer et al. in
2002 [26].

A minimum surface can be defined as a surface whose mean curvature at every
point is 0. There are several algorithms for obtaining minimum surfaces. Here we
give a brief proof for Lemma 14.2. The formula derived in [26] for the mean curvature
normal at point x is (also see Sect. 13.5.2.):

H (x) · n = 1

2 · A
Σxi∈N (x)( cot αi + cot βi)(x − xi) (14.4)

where N is the set of (discrete) neighbors of x. αi and βi are angles in two different
triangles that are both opposite to line segment xxi , which is shared by the triangles.
A is called the Voronoi region of x. For digital space, the Voronoi region is easy to
determine. See Fig. 14.2.

H (x) · n = 1

A
Σxi∈N (x)(x − xi) (14.5)

Note that H (x)·n is a vector. |(x−xi)| = 1 and cot αi = cot βi =1. in Fig. 14.2. A =
1
4 · i for Mi points. |Σxi ∈ N (x)(x −xi)| = √

(3) for M3; |Σxi ∈ N (x)(x −xi)| = 0
for M4 flat, and

√
(2) for M4 that is bend in Fig. 5.8 (3); |Σxi ∈ N (x)(x − xi)| = 1

for M5;|Σxi ∈ N (x)(x − xi)| = 0 for M6; Therefore, H3 = 1
3· 1

4

√
(3) = 4√

(3)
. For

bend M4 points (Fig. 5.8c), H4 = 1
4 1

4

√
(2) = √

(2). H5 = 1
5 1

4
· 1 = 4

5 .
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14.3.3 Digital Principal Curvatures

The principal curvatures at a point p of a surface, denoted κ1 and κ2, are the maximum
and minimum value of curvatures of the curves on normal planes (intersecting with
the surface). The relationship among the principal curvature, the Gaussian curvature,
and the mean curvature were given in the formulas (13.4) and (13.5): K = k1 · k2

and H = (k1 + k2)/2. Therefore [23, 26],

k1 = H +
√

H 2 − K , k2 = H −
√

H 2 − K

It is easy to get,

Lemma 14.3 (a) k
(3)
1 = 4√

3
+
√

16
3 − π

2 = 4.24913, k
(3)
2 = 4√

3
−
√

16
3 − π

2 =
0.369675.

(b) k
(4b)
1 = 0 for a flat M4 point,

k
(4b)
2 = 0;

k
(4c)
1 = 2

√
2 = 2.82843, for a bend M4 point

k
(4c)
2 = 0.

(c) k
(5)
1 = 4

5 +
√

16
25 + π

2 = 2.28687,

k
(5)
2 = 4

5 −
√

16
25 + π

2 = −0.686875;

(d) k
(6)
1 = √

π = 1.77245,
k

(6)
2 = −√

π = −1.77245 for both types of M6 digital surface points.

14.4 Gauss-Bonnet Theorem of Closed Digital Surfaces

Cubical space with direct adjacency, or (6,26)-connectivity space, has the simplest
topology in 3D digital spaces. It is also believed to be sufficient for the topological
property extraction of digital objects in 3D. Two points are said to be adjacent in
(6,26)-connectivity space if the Euclidean distance between these two points is 1,
i.e., direct adjacency.

Let S be a closed (orientable) digital surface in 3D grid space in direct adjacency.
We know that there are exactly 6-types of digital surface points [5, 9].

In Chap. 9, we have proved a theorem using Euler’s theorem of planar graphs.
This theorem (Theorem 9.2) stated for a simply connected digital surface S, we have,

|M3| = 8 + |M5| + 2|M6|.
where Mi (M3, M4, M5, M6) is a set of digital points with i neighbors [5]:

The limitation of this result is obvious since it is only for the simply connected
surface. It cannot be used in calculating a surface with holes or genus. The following
theorem have solved this problem completely. This theorem is the simplest form of
the famous Gauss-Bonnet theorem.
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Theorem 14.1 (Chen-Rong [8]) If S is closed digital surface, we have

g = 1 + (|M5| + 2 · |M6| − |M3|)/8. (14.6)

Proof We use the digital form of the Gauss-Bonnet theorem (14.2) Its discrete form
is

Σ{p is a point in S}K(p) = 2π · (2 − 2g)

where g is the genus of S. So, we have

Σ6
i=3Ki · |Mi | = 2π · (2 − 2g),

π/2 · |M3| − π/2 · |M5| − π · |M6| = 2π · (2 − 2g),

|M3| − |M5| − 2|M6| = 4π · (2 − 2g).

Therefore, 2g = 2 + (|M5| + 2 · |M6| − |M3|)/4. Thus,

g = 1 + (|M5| + 2 · |M6| − |M3|)/8.

�

Without discussing intensively, we already know that the algorithm of calculating
the genus of a digital surface in 3D is very simple. We just need to count for all points
in Mi . In other words, given a closed 2D manifold, we can calculate the genus g by
counting the number of points in M3, M5, and M6. Then we can get the genus using
Eq. (14.6).

Lemma 14.4 There is an algorithm that can calculate the genus of S in linear time.

Proof Scanning through all points (vertices) in S and counting the neighbors of each
point, we can see that a point in M has four neighbors indicating that it is in M4, as
are M5 and M6. We can then put points in each category of Mi and then use formula
(14.6) to calculate the genus g. �

The two following examples show that the formula (14.6) is correct.

Example 14.1 The first example, shown in Fig. 14.3, is the easiest case. In Fig. 14.3a,
there are eight points in M3 and no points in M5 or M6. (To avoid conflict between
the closest digital surface and the 3-cell [5], we can insert some M4 points on the
surface but not at the center point.) According to (14.6), g = 0.

We extend the surface to a genus 1 surface as shown in Fig. 14.3b where there are
still eight M3 points and also eight M5 points. Thus, Fig. 14.3b satisfies Eq. (14.6).

In Fig. 14.3c, S has 16 M5 points and 8 M3 points. So g = 2. Using the same
method, one can insert more handles.

Example 14.2 The second example comes from the Alexander horned sphere. See
Fig. 14.4. First we show a “U” shaped base in Fig. 14.4a. It is easy to see that there
are 12 M3 points and 4 M5 points. So g = 0 according to Eq. (14.6). Then, we attach
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Fig. 14.3 Simple examples of
closed surfaces with
g = 0, 1, 2

a handle to Fig. 14.4a shown in Fig. 14.4b. We have added 4 M3 points and 12 M5

points. g = 1+ (|M5|+2 · |M6|− |M3|)/8 = 1+ (4+12−12−4) = 1. Finally, we
add another handle to the other side of the “U” shape in Fig. 3a, the genus number
increases by one since we still add 4 M3 points and 12 M5 points shown in Fig. 14.4c
and we have. g = 2 for (c). For more complex cases like theAlexander horned sphere
(the finite case), we only need to insert two smaller handles to an existing handle, so
the genus will increase accordingly.

The theorem 14.1 is an amazing theorem in digital topology. It connects both
differential geometry and discrete geometry in a perfect way. It is very practical
since the digital space does not have an error in angle calculation. There is is no need
to worry about the numerical error corrections.

The above idea can be extended to simplicial cells (triangulation) or even general
CW k-cells. This is because for a closed discrete surface, we can calculate Gaus-
sian curvature at each vertex point using formula (14.3). However, for real world
problems, we have to consider the actual error accumulated when S is very big.
Theoretically, we still have the following result.

Lemma 14.5 There is an algorithm that can calculate the genus of a closed
simplicial surface in O(|E|) where E the set of 1-cells (edges).

There are examples that |E| is not linear to the number of vertices |V |.

14.5 Homology Groups of Manifolds in 3D Digital Space

We have introduced the concept of homology groups in Chap. 13. In this section,
we can get complete expression of homology groups of a 3D manifold in 3D digital
space. Homology groups are other invariants in topological classification. For a k-
manifold, Homology group Hi , i = 0, ..., k indicates the number of holes in each
i-skeleton of the manifold [10, 12, 19, 22].
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Fig. 14.4 An example that comes from the Alexander horned sphere in digital space

Consider a compact 3-dimensional manifold in R3 whose boundary is repre-
sented by a surface. We show that its homology groups can be expressed in terms
of its boundary surface (Theorem 14.2). This result follows from standard results in
algebraic topology [16].

First, we recall some standard concepts and results in topology. Given a topolog-
ical space M , its homology groups, Hi(M), are certain measures of i-dimensional
“holes” in M . For example if M is a solid torus, its first homology group, H1(M) ∼= Z,
is generated by its Longitude, which goes around the obvious hole. For a precise def-
inition, see [16]. Let bi = rankHi(M , Z) be the ith Betti number of M . The Euler
characteristic of M is defined by

χ (M) =
∑

i≥0

( − 1)ibi

If M is a 3-dimensional manifold, then Hi(M) = 0 for all i > 3 essentially
because there are no i-dimensional holes. Therefore, χ (M) = b0 − b1 + b2 − b3.
Furthermore, if M is in R3, it must have a nonempty boundary. This implies that
b3 = 0.
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The following lemma is well known for 3-manifolds. It holds, with the same
proof, for any odd dimensional manifolds. We only present the results in the section.
For detailed proofs, refer to [8].

Lemma 14.6 Let M be a compact orientable 3-manifold (which may or may not
be in R3).

(1) If M is closed (i.e. ∂M = ∅), then χ (M) = 0.
(2) In general, χ (M) = 1

2χ (∂M).

Theorem 14.2 Let M be a compact connected 3-manifold in S3. Then

(1) H0(M) ∼= Z.
(2) H1(M) ∼= Z

1
2 b1(∂M), i.e. H1(M) is torsion-free with a rank of half of rank

H1(∂M).
(3) H2(M) ∼= Zn−1 where n is the number of components of ∂M .
(4) H3(M) = 0 unless M = S3.

14.6 Algorithm Design: Theory and Practical Implementation

The algorithm mentioned in Sect. 14.4 is a theoretical result. The implementation
of the algorithm must consider all possible cases in practical data collection. We
first need to find the boundary and then decide if the boundary is a 2D manifold [5,
25]. If the boundary data that connects voxel data sets are not purely defined digital
surfaces [20, 21, 24], we will have three options: (1) we need to modify the data to
meet the requirement before genus calculation, (2) if the change of the original data
set is too great, we may need to stop the modification instead of outputting a result
for reference, and (3) we make some limited changes, and then produce a result.

The difference between the theoretical results and practical data processing is that
we may not always get the input data we expected. In our case, the boundary of a solid
object should be treated as a surface. However, practically, this might not always
be the case. Some researchers also consider making real data sets “well”-organized.
Siqueira et al. considered making a 26-connected data set well-composed [36].

Our new algorithm and implementation will perform: (1) pathological cases de-
tection and deletion, (2) raster space to point space (dual space) transformation, (3)
linear time algorithm for boundary point classification, and (4) genus calculation.

14.6.1 A Linear Algorithm of Finding Homology Groups in 3D

Based on the results we presented in Sects. 14.4 and 14.5, we now describe a linear
algorithm for computing the homology group of 3D objects in 3D digital space.
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Assuming we only have a set of points in 3D. We can digitize this set into 3D
digital spaces. There are two ways of doing so: (1) by treating each point as a cube-
unit that is called the raster space, (2) by treating each point as a grid point, which is
also called the point space. These two are dual spaces. Using the algorithm described
in [5], we can determine whether the digitized set forms a 3D manifold in 3D space
in direct adjacency for connectivity. The algorithm is in linear time.

Algorithm 14.1 Let us assume that we have a connected M that is a 3D digital
manifold in 3D. Hi = Hi(M) is the i-th homology group in this section.

Step 1. Track the boundary of M , S = ∂M , which is a union of several closed
surfaces. This algorithm only needs to scan though all the points in M to
see if the point is linked to a point outside of M . That point will be on
boundary.

Step 2. Calculate the genus of each closed surface in ∂M using the method de-
scribed in Sect. 2. We just need to count the number of neighbors on a
surface. and put them in Mi , using the formula (14.6) to obtain g.

Step 3. Using the Theorem 14.2, we can get H0, H1, H2, and H3. H0 is Z. For
H1, we need to get b1(∂M), which is just the summation of the genus in all
connected components in ∂M . H2 is the number of components in ∂M . H3

is trivial.

Lemma 14.7 Algorithm 14.1 is a linear time algorithm.

Proof Step 1 uses linear time. We can first track all points in the object using
breadth-first-search. We assume that the points in the object are marked as “1” and
the others are marked as “0.” Then, we test if a point in the object is adjacent to
both “0” and “1” by using 26-adjacency for linking to “0.” Such a point is called a
boundary point. It takes linear time because the total number of adjacent points is
only 26. Another algorithm tests whether each line cell on the boundary has exactly
two parallel moves on the boundary [5]. This procedure only takes linear time for
the total number of boundary points in most cases.

Step 2 is also in linear time by Lemma 14.4.
Step 3 is just a simple math calculation. For H0, H2, and H3, they can be computed

in constant time. For H1, the counting process is at most linear. �

Therefore, we can use linear time algorithms to calculate g and all homology
groups for digital manifolds in 3D based on Lemma 14.4 and Lemma 14.7.

Theorem 14.3 There is a linear time algorithm to calculate all homology groups
for each type of manifold in 3D.

To some extent, researchers are also interested in space complexity that is regarded
to the running space needed beyond the input data. Our algorithms do not need to
store past information, and the new algorithms presented in this section are always
O( log n). Here, log n is the number of bits needed to represent a number n.
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14.6.2 Input Data Sets

In real application, input data formats are critical to algorithm design. We will use
cubical data that is also the data format for MRI and CT data. In cubical data samples,
we assume the sampling is contiguous, where each sample point is normally followed
by another sample point in its neighborhood.

Random sampled points can introduce a level of uncertainty. In this case, we
usually cannot calculate the genus without making an assumption. For instance, we
would not be able to know where a hole is. In order to obtain simplicial decomposition
(usually triangulation), we usually need to use Voronoi or Delaunay decomposition
with boundary information. This means the boundary must be assumed.

A new technology, called persistent homology analysis, tells us how to find the
best estimation for the location of holes as we discussed in Chap. 12. However, this
method is not a precise analysis [4, 39].

Even though the method described in this section can be modified in persistent
analysis, we mainly deal with the method of precise genus and homology group
calculation. In other words, our assumption is that the digital object consists of
cubical points (digital points, raster points). Each point is a cube, which is the
smallest 3D object. The edge and point are defined with regards to the cube and an
object may contain several connected components using a cube-linking path.

14.6.3 Searching Connected Components of a Cubical Data Set

Connected component search is an old task that can be done by using Tarjan’s breadth-
first search. Pavlidis was one of the first people to realize and use this algorithm
in image processing. This problem is also known as the labeling problem. The
complexity of the algorithm is O(n) [30].

The problem is what connectivity is based of. In 3D, we usually have 6-, 18-,
26- connectivity. Since real data has noise, we also have to consider all of those
connectivities and we must use 26-connectivity to get the connected components.

Therefore, the connected component of real processing is not a strictly 6-
connected component. The topological theorem generated previously in [8] is no
longer suitable. So we need to transform a 26-connected component into a 6-
connected component. This should be done by a meaningful adding or deleting
process since optimization on the minimum number of changes could be an NP-hard
problem.

Problem of Minimum Modifications Given a set of points in 3D digital space,
if this set is not a manifold, assume that the points are connected in a connectivity
defined using adding or deleting processes to make the set a 3D manifold. The
question becomes: is there a polynomial algorithm that makes the solution have
minimum modifications where adding or deleting a data point will be counted as one
modification [6]?



264 14 Advanced Digital Topology and Applications

A similar problem was considered in [35] in which a decision problem of adding
was proposed.

This problem can be extended to a general k-manifold in n-D space. Even though
we have the 6-connected component, there may still be cases that contain the patho-
logical situation, which requires special treatment. We will discuss this issue in the
next subsection.

14.6.4 Pathological Case Detection and Deletion

In this section, we only deal with Jordan manifolds, meaning that a closed (n − 1)-
manifold will separate the n-manifold into two or more components. For such a
case, only direct adjacency will be allowed since indirect adjacency will not generate
Jordan cases.

That is to say, if the set contains indirect adjacent voxels, we need to design an
algorithm to detect the situation and delete some voxels in order to preserve the
homology groups.

It is known that there are only two such cases in cubical or digital space [5]:
two voxels (3-cells) share a 0-cell or a 1-cell. Therefore, we want to modify the
voxel set to only contain voxels where two of these cases do not appear. Two voxels
share exactly a 2-cell, or there is a local path (in the neighborhood) of voxels where
two adjacent voxels share a 2-cell [5]. A special case was found in [36] that is the
complement case of the case in which two voxels share a 0-cell (see Fig. 14.6a).
This special case may create a tunnel or could also be filled. We will simplify it by
adding a voxel in a 2 × 2 × 2 cube. Such a case in point space is similar to case (a)
in Fig. 14.6 since the boundaries of these cases are the same.

The problem is that many real data sets do not satisfy the above restrictions (also
called well composed image). The detection is easy but deleting certain points (the
minimum points deletion) to preserve the homology is a bigger issue.

The following rules (observations) are reasonable: In a neighborhood Np that
contains 8 cubes and 27 grid points then the following is true.

a) If a voxel only shares a 0-cell with a voxel then this voxel can be deleted
(Fig. 14.6a).

b) If a voxel only shares a 1-cell with a voxel then this voxel can be deleted
(Fig. 14.6b).

c) If a boundary voxel v shares a 0,1-cell with a voxel, assuming that v also shares
a 2-cell with a voxel u, then u must share a 0,1-cell with a voxel that is not in
the object M . Therefore, u is on the boundary and deleting v will not change the
topological properties.

d) If in a 2 × 2 × 2 cube there are six boundary voxels and the complement (two
zero-valued voxels) of these voxels is the same as Fig. 14.6a, then we can add a
voxel to this 2 × 2 × 2 cube such that the new voxel shares as many 2-cells in
the set as possible. This means that we want the additional voxels to be inside the
object as much as possible Fig. 14.5.
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Fig. 14.5 Pathological cases

Fig. 14.6 Example of constructed data without using pathological case elimination
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We have implemented or modified the above rules to fit the theoretical definition
of digital surfaces. We also design an algorithm based on these rules to detect and
delete some data points while preserving the topology. This is essential to calculating
the genus correctly. However, when the object becomes more complex, pathological
situations may still exist.

The mathematical foundation of the above process that eliminates pathological
cases is still under investigation.

Mathematical Foundation of Modifying a 3D Object into a 3D Manifold: Given
a set of points in 3D digital space, how would we modify the data set into a manifold
without losing or changing the topology (in mathematics)?

14.6.5 Boundary Search

In general, a point is on the boundary if and only if it is adjacent to one point in the
object and one point not in the object (in 26-connectivity). A simple algorithm that
goes through each point and tests the neighborhood will determine whether a point
is on the boundary or not. This is a linear time and O(log(n)) space algorithm.

The only thing special about this boundary detection is that we use 26-connectivity
to determine the boundary points. This is to take all possible boundary points into
consideration in the next step.

14.6.6 Determination of the Configuration of Boundary Points

When all boundary points are found, we need to find their classifications. In other
words, we need to determine whether a special point is in M3, M4, M5, or M6. Here
is the problem, if we only have one voxel, is it a point (0-cell) or a 3D object (3-cell)?
In this section, we treat it as a 3-cell.

The input data is in raster space, but the boundary surface will be in point space.
We must first make the translation. Then, for each point on the surface, we count how
many neighbors exist in order to determine its configuration category. After that, we
use formula (14.6) to get the genus.

If we still need to find homology groups, we can just use the simple calculations
based on Theorem 14.4 to obtain them. Using the program, we get the genus = 5 for
a modified real image (Figs. 14.7 and 14.8).

In Fig. 14.9, we show the result of real data processing for a modified 3D bone
image.
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Fig. 14.7 The processing
result after pathological case
elimination

Fig. 14.8 The data processing
for a modified 3D real image

14.7 Case Study: Digital Curvatures Applied to 3D Object
Analysis and Recognition

In this section, we describe a new method that uses digital curvatures for 3D object
analysis and recognition. For direct adjacency in 3D, digital surface points have only
six types. It is easy to determine and classify the digital curvatures of each point on
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Fig. 14.9 Two original human faces from NIST-FRGC data sets

the boundary of a 3D object. This is simpler than the case of triangulation on the
boundary surface of a solid; the curvature can be of any real value.

We focuses on the global properties of categorizing curvatures for small regions.
We use both digital Gaussian curvatures and digital mean curvatures to characterize
3D shapes. Then, we propose a multi-scale method and a feature vector method for
3D similarity measurement.

In this experiment, we found that Gaussian curvatures mainly describe global
features and average characteristics such as the five regions of a human face. On the
other hand, mean curvatures can be used to find local features and extreme points
such as the nose in 3D facial data.

A 3D object can be represented by one or several closed surfaces (2D-manifolds).
Curvatures that describe the degree of change at a point on the surface have been
used for many years in 3D image processing [1, 27].
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The typical technology related to curvatures is as follows: (1) triangulation of the
surface, (2) fit the digital image to a continuous surface (using B-spline), and (3)
calculate the standard Gaussian and/or mean curvatures.

Worring and Smeulders showed that even in 2D, the interpretations of digitized
curves may generate completely different curvatures [38]. In other words, the same
image will generate different curvature maps if the triangulation of the image is
different.

This section presents a preliminary study of using digital curvatures of digital
surfaces as features to classifying different 3D objects. Digital curvatures can be
used for 3D object matching, classification, and recognition. Since direct adjacency
only has six types of digital surface points in local configurations, it is much easier to
determine and classify the digital curvatures for every point on the boundary surface
of a 3D object.

14.7.1 Meaning of Digital Curvatures

In 1986, Besl and Jain presented a systematic method to use curvatures in image
processing [2]. Besl and Jain used the signs (positive, zero, negative) of Gaussian
curvature and mean curvature to classify 3D surface points. Their technique uses
triangulation for decomposition and then calculates the Gaussian curvature (K) and
mean curvature (H). Eight principle shapes can be identified:

(1) Peak (surface) point K > 0, H < 0,
(2) Flat point H = 0, K = 0,
(3) Pit point H > 0, K > 0,
(4) Minimal point H = 0, K < 0,
(5) Ridge point K = 0, H < 0,
(6) Saddle ridge point H < 0, K < 0,
(7) Valley point H > 0, K = 0, and
(8) Saddle valley point H > 0, K < 0.

In fact, cases (1) and (3) are mirror images of the same shape with a change of sign
in H . This also applies to cases (5) and (7) and also cases (6) and (8).

Given a set of cloud points in 3D, we assume that they are connected. Since cubical
space with direct adjacency, or (6,26)-connectivity space, has the simplest topology
in 3D digital spaces, we use this as the 3D image domain. This is also believed to be
sufficient for the topological property extraction of digital objects in 3D.

In this space, two points are said to be adjacent in (6,26)-connectivity space if the
Euclidean distance between these two points is 1. If this condition is not satisfied,
we can use the a 3-ball to cover the neighboring space to make do persistent analysis
as described in Chap. 12.

Let M be a closed (orientable) digital surface in 3D grid space in direct adjacency.
We know that there are exactly 6-types of digital surface points as shown in Fig. 5.8.
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For M , Mi still still indicate the set of digital points with i neighbors. We have
M3, M4, M5, and M6 to our image analysis. Mapping these digital surface points to
the Besl-Jain classification, we would be able to see that M3 corresponds to cases
(1) and (3), M4(a) to case (2), M4(b) to cases (5) and (7), M5 to cases (6) and (8),
and M6 to case (4).

Digital configurations contain two types of none-trivial minimal surface points in
M6. The correspondence between the shapes in the Besl-Jain classification is very
interesting. Also see [10, 13, 28, 37] for more related discussion using curvatures.

14.7.2 Digital Curvatures and 3D Image Analysis

Using the digital Gaussian curvature and the digital mean curvature in the classifica-
tion of 3D objects in image analysis will bring us new information. For instance in
a closed digital surface, M4 is independent to M3; M4 contains parabolic points (the
bend ones). M3 contains the elliptical points since the surface point is locally convex.
M5 and M6 contain hyperbolic points, where the Gaussian curvature is negative and
the surface point is locally saddle shaped.

Let S be a subset of the 2D manifold M . Now, S might not be a closed surface.
We define a feature vector called the digital curvature vector fS =

(m3, m4, m5, m6), where mi = |Mi| with respect to S. We can also split the vec-
tor into four component vectors to include two cases for M4 and M6, respectively.
Basically, the vector now contains four components: fS = (|M3|, |M4|, |M5|, |M6|).

The motivation of defining such a vector for a local region is based on the corre-
sponding Gaussian-Bonnet theorem with the boundary curves [23]. Suppose C is a
boundary curve of S that is simply connected and kg is the geodesic curvature of C,
then

∫

C

kgdt +
∫ ∫

S

KdA = 2π (14.7)

If C is a n-polygon and αi is the interior angle, then

(n − 2) · π +
∫

C

kgdt +
∫ ∫

S

KdA = Σn
i=1αi (14.8)

Therefore,

gS = g(fS) = |M3| · K3 + |M5| · K5 + |M6| · K6) =
∫ ∫

S

KdA (14.9)

can also be used to represent the total geodesic curvature of C:
∫

C

kgdt = 2π − gS (14.10)

In image processing, we can define S (or C) as a rectangular region. If S only
contains one surface point, then gS is just K . In practice, the vector fS can be used
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Fig. 14.10 Digital curvature on face one’s surface by projection: ′∗′,′+′, and ′X′ indicate
M3, M5, M6-points, respectively

for a closed surface or a small region centered at one point. Between two regions,
there can be intersections or no intersection. The region can be 2D or 3D, depending
on whether the problem can be projected into 2D easily. The most popular shapes of
the domain regions are circlesspheres and rectanglescubes.

We have used this technique to analyze human facial data. If the size of the region
is reduced 1, 2, 22, . . . , 2k times, we will get a sequence of fS , or simply get gS .
Then, we can see the change in the curvatures. Such a method is usually called a
multi-scaling method.

Let us look at the following example. The two original images are shown in
Fig. 14.9 [7].

In Fig. 14.10 and 14.11, we show the initial digital curvature calculation–
projections from x− and y− directions. In these two figures, There are three symbols,
′∗′,′+′, and ′X′. ′∗′ indicates M3-points on the face that are the positive curvature
point (π/2). ′+′ indicates M5-points (−π/2), and ′X′ indicates M6-points (−π );
they are negative curvature points. The calculation is for the whole 3D image. The
display only shows two observation angles for each image.

In Fig. 14.12, we show the projected Gaussian curvature data for each scale for
face one from 64 × 64 × 64 to 8 × 8 × 8. Figure 14.13 is for face two. In order
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Fig. 14.11 Digital curvature on face two’s surface by projection

Fig. 14.12 Digital curvature scaling for face one

Fig. 14.13 Digital curvature scaling for face two
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Fig. 14.14 Five areas of interests and four flat-or-bending areas are the similar characteristics of
the human face

to be able to observe more easily, we display the same sized image when the scale
changes.

Analyzing Figs. 14.12 and 14.13, we see that the multi-scaling method can identify
some of the interesting areas of the face. For example, we can identify five areas of
interest for face one and face two. They both contain two areas at the top and bottom
and one area in the middle.

These five areas indicate two regions on the sides of the head, two cheeks, and the
nose. The nonzero total of the Gaussian curvature for a region that remains means
that the total change has not been canceled in this region.

The result shows that the first person has a flatter face than the second person
since the method reaches the five interesting areas earlier. We can also identify the
flat-or-bending regions in the human face as shown in Fig. 14.14. A total of four such
areas can be easily found.

The advantage of Gaussian curvature-based calculation is that it is not a simple
processing of pixel averages in the region. The curvature-based calculation is based
on geometric and topological properties of the 3D object. For instance, we know
the total Gaussian curvature will be a constant as the selected region becomes the
whole 3D data array. In summary, the method described in this section can identify
the five regions of interest and four flat-or-bending regions as the common similar
characteristics of a human face. In addition, the calculation is much easier than that
of triangulation based images. The following lemma provides evidence for this.

Lemma 14.8 The algorithm designed to obtain scaled local Gaussian curvatures
for finding five areas of interest on the image of a human face is of complexity
O(nlogn). The space needed is O(logn).

Proof We first compute the curvature for higher resolution images then we reduce
the resolution by half, since the 2k −1-scaled Gaussian curvature data can be used to
calculate the 2k-scaled Gaussian curvature data. We can design a fast linear algorithm
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Fig. 14.15 Use digital mean curvature to find a peak point that indicates the nose on a human face:
a Image is made by a 2 × 2 summation of the absolute values of digital mean curvatures, and b
Image is made by a 4 × 4 summation of the absolute values of digital mean curvatures
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Fig. 14.16 Six 3D objects from Princeton’s 3D database

due to the reduction of the size of the array by half. In such a case, the space needed
would also be O(n) if we just use the input array and not the intermediate data. By
using the output of the result for each resolution or scale, the time complexity would
be O(n log n) and the space complexity would be O( log n) (considering only the
space needed to run the algorithm).

14.7.3 Investigation Based on Digital Mean Curvatures

For the mean digital curvature application, we have investigated the calculation based
on the absolute average for small regions. The geometric meaning of such a treatment
of digital mean curvatures is the zigzagged points on the surfaces. Mean curvature
zero points indicate the critical points that change from inward to outward if it is not
a flat point. The results of an example is shown in Fig. 14.15.

To summarize the findings, Gaussian curvatures describe the global features and
the average characteristics such as the five regions of a human face, but mean curva-
tures find local features and extreme points such as the nose. In the future, we will
use this method for analyzing more human facial data. We can normalize the image
size and calculate the distance for a pair of faces in corresponding or nearby scales.
The following section presents a method for 3D data “rough” classification using
digital curvature vectors.
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14.7.4 Object Classification Using Curvature Vectors

We know that we have different types of digital curvature points in a digital surface.
We can list these different points as a digital curvature vector for an image. As a global
feature, we may be able to use this global information for for 3D shape similarity
analysis and classification of 3D objects.

There have been many research investigations that use local curvatures in 3D
shape similarity analysis. Shum, Hebert, and Ikeuchi proposed a method that has
O(n2) time complexity [34]. However, it is not very practical for the purpose of
data retrieval. Another disadvantage of the continuous curvature method is that the
calculation of curvatures return real numbers and that introduces precision errors
[27]. A multi-scaling method was proposed to complete this task, but it takes more
time.

The technique presented in this section is not an attempt to replace the methods
developed before. We try to explore more applications using digital curvatures. As
we discussed in Sects. 2 and 3, the local digital curvature is determined by the local
shape of the digital surface. The number of each type of surface-point may indicate
the features of a 3D object.

14.7.5 Feature Vectors of 3D Objects Based on Digital Curvatures

A feature vector only contains a number of digital surface points in each of the
categories M3, M4, M5, and M6. In general, a 3D digital object may not necessarily
be a 3D digital manifold. This is because we have strict definitions for 3D manifolds
where each local neighborhood must be similar to a 3D Euclidean space. However,
this does not affect the use of curvatures in 3D objects. For a safe claim, we can
assume that the 3D object is simply connected. This method is used for calculating
the boundary surface of a 3D object in this section. The feature vector is

f v = 1

T
(|M3|, |M4|, |M5|, |M6|) = (r3, r4, r5, r6) (14.11)

where T is the total number of surface points. For example, an object has a to-
tal of 1679 digital points on boundary surfaces |M3| = 469, |M4| = 995, |M5| =
183, and|M6| = 32. The non-manifold points (2D) are the points where the neigh-
borhood of the point is not a 2D-configuration shown in Fig. 5.8. Because of these
non-manifold points, we corrected the data for |M|’s: 484, 995, 180, 28, and 240.
It also includes a total of 8 non-manifold points. The method to delete these points
is presented in [6]. Therefore, we get the ratios r3 = 0.288267, r4 = 0.592615,
r5 = 0.107207, and r6 = 0.016677. The Euclidean distance of the two feature

vectors is d =
√

Σ6
i=3((xi − yi)2).
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We could also use the scaling method from above section (Sect. 14.7.2) to get
more features. Here, we use this method to do a rough classification for 3D shapes.
The computing examples are taken from the Princeton Benchmark Website [14].

14.7.6 Similarity and Distance Analysis Based on the Feature
Vectors

For n samples of solid objects, we can calculate the feature ratio vectors for each of the
samples. Therefore, we will have n feature vectors e1, · · · , en. A simple calculation
allows us to get the Euclidean distances for every pair of points. For the example in
Fig. 14.16, the feature ratio vectors ex = (r3, r4, r5, r6) where rk = |Mk|/T are listed
below:

e1 = (0.288267, 0.592615, 0.107207, 0.016677),
e2 = (0.262424, 0.508752, 0.193369, 0.044133),
e3 = (0.168149, 0.680220, 0.144854, 0.008895),
e4 = (0.152833, 0.711492, 0.122506, 0.013966),
e5 = (0.148500, 0.710425, 0.135432, 0.007128),
e6 = (0.162700, 0.688310, 0.140705, 0.010093).

The Distance matrix of two-vector pairs is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0.01587 0

0.02358 0.04188 0

0.03271 0.05904 0.00173 0

0.03430 0.05837 0.00139 0.00023 0

0.02609 0.0461 0.00011 0.00098 0.00072 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14.12)

In the matrix, aij is the distance between objects i and j . The matrix is symmetric
so we only present half of it. We can easily see that objects 1 and 2 are closely related.
Objects 4, 5, and 6 are similar. From the data pictures displayed in Fig. 14.16, we
can see that this is correct. An interesting observation is that Object 3 does not go
with three of the other objects in the second category.

In this case study, we used digital Gaussian curvatures and digital mean curvatures
to analyze 3D shapes. We have found that digital curvatures may have some power in
identifying the significant features of 3D objects. For instance, we could identify five
regions in some facial images. We also presented a method for similarity analysis
using digital curvatures in Sect. 14.7.5 and 14.7.6.
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Chapter 15
Select Topics and Future Challenges
in Discrete Geometry

Abstract Digital geometry is a relatively new research area. It is difficult to show
the characteristics of digital geometry as a well-developed theory. On the other
hand, discrete geometry used to focus on combinatorial methods such as simplicial
decomposition, counting, and tillings. However, it is now also much interested in
differential geometry methods. Many new problems related to digital and discrete
geometry are have been discovered and have raised interests from various different
research disciplinary areas. In order to synthesize some features, this chapter mainly
deals with methodology issues of digital and discrete geometry in terms of future
studies. We begin with detailed proofs of two basic theorems in digital and discrete
geometry. In these proofs, we show the power of the digital and discrete methods
in geometry. Then, we focus on future problems in BigData and the data sciences,
including what digital methods can do in random algorithms, manifold learning, and
advanced geometric measurements. We also present some questions for graduate
students and other researchers to think about.

Keywords Discrete and digital methodology · Equivalence theorem · Jordan curve
theorem · Random algorithm · BigData · Data science · Advanced measurement ·
Future research problems

15.1 Characteristics of Digital Geometric Methods

Digital geometric methods differ from traditional discrete geometry, performance
being a key difference. Unlike triangulations and meshes, the digital method seeks to
find fast algorithms beyond its special mathematical properties. Meshes in computer
graphics use simplicial complexes in a space expensive storage manner. We not
only need to store points, but also edges, faces, and solids. In computer graphics, the
beauty of the generated picture is one of the primary concerns. However, in computer
vision, speed might be the most important, such as automated driving.

This is why the digital geometric method must aim to find more efficient algo-
rithms, even if these are not attainable immediately. The algorithmic advantages are
guaranteed by the equivalence theorem of the two definitions of the digital surface.

Digital method and its extended partial graph method, have showed the advantages
in fast algorithm design and even new theorem findings. In Sect. 15.2, we will prove
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the Equivalence theorem between Two Definitions of Digital Surfaces: Morgenthaler-
Rosenfeld’s definition and Chen-Zhang’s parallel move based definition [2, 4, 9, 10].

Digital manifold defined in the parallel move is to has considerable meaning for
such an advantage. Instead of saving all 0-cell, . . . , k-cells for a digital manifold,
we only need to save 0-cells. Then we generate all other cells while the program is
running, dynamically.

The digitization is also related to the performance how do we digitizing an object.
A good method was suggested by M. Rabin for random algorithms.

In Chap. 7, we extend this method in the fashion of discrete method in topology
which is different from simplicial or cell complex in algebraic topology presented in
Chaps. 9 and 13.

We use a partial graph1, the solid object, instead of soft, the multiple interpretations
in our method. This is because there are exponential cases for the interpretations.

Digital geometry and modern discrete geometry show much interests in fast con-
structive methods not like the classical mathematics where the existence of findings
are essential in many cases.

Even though, a single simplicial complex has unique meaning, but it cannot di-
rectly used as a space that holds numbers of manifolds that has a unique meaning. This
traditional method in mathematics, they some how much care about the existence.

However, in digital method, we need to find an object out. Since we only deal
with the finite points object, the existence is clear. we always can find an algorithm to
get it or reject it. The focus in this case is turned to be find the quick way to identify
an object.

Chapter 6 is the “implementation” of such idea. One of the important theoretical
result is finding the classification of the six types. We will prove the related theorem
in the next section to show the equivalence of the parallel move method comparing
to set theoretical method. It is obvious that our method is suit for the meaning of the
simplicial complex. It is more specialized in computing the geometric object.

This development is shown in Chap 14 the simplest form of Gauss-Bonnet theo-
rem. The following theorem was kind of lengthy in proof. The detailed technology
can be seen the specialty of the data.

The cell complex does not contain the case of digital space in general (indirect)
adjacency. Even though cell complexes are most general in topology. but it still not
be able to cover a general digital space since 8-adjacency in 2D digital space is not
a cell complex. There are two cells where their intersection is not a 0-cell, 1-cell or,
2-cell when embedding to Euclidean 2D.

A simple closed path in cell-complex or discrete manifold, might not have Jordan
curve property. It could be the boundary of a smallest 2-cell. There is no internal
vertex inside of a 2-cell.

In order to maintain the Jordan curve theorem for discrete manifold, a new defi-
nition of curves must be defined. The curve under the new definition must be able to

1 We switched the meanings of the partial graph with the subgraph from the author’s previous
publication. See definition in Chap. 2.
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be embedded to 2D Euclidean space for the standard meaning in general topology
and combinatorial topology. In this chapter, we will give a complete proof of this
theorem in discrete manifolds in Sect. 15.3.

For other related future topics, we select random algorithm issues for finding the
digitization in Sect. 15.4, integral points issue and Riemann manifold learning that
is related to manifold learning discussed in Sect. 12.5.

15.2 The Equivalence Between Two Definitions
of Digital Surfaces

This section presents a proof of the equivalence of two digital surface definitions. It
states that a simple surface point of a set S ⊂ Σ3 is a regular inner surface point, and
vice versa. We have used this theorem, Theorem 5.1, in Chap. 5.

The definition of the simple surface points was given by Morgenthaler and Rosen-
feld (Sect. 5.1), and the definition of inner surface points is based on the parallel-move
concept proposed by Chen and Zhang in direct adjacency (Sect. 5.2).

This theorem is the basis for the classification theorem (Theorem 5.2) of digital
surface points, and the classification theorem is fundamental for proving the digital
form of Gauss-Bonnet theorem (Theorem 14.1). That is one of most stunting results
in this book.

15.2.1 The Theorem of Equivalence

In this subsection, we provide a complete proof of Theorem 5.1. This theorem is
important to the classification theorem of digital surface points, Theorem 5.2. The
proof is lengthy but shows some detailed technique to digital geometry [10, 5]. The
second purpose to involve this proof in this book is to demonstrate that the digital
geometry is a branch of mathematics, not a branch of empirical sciences.

We know most of surface points are regular. We show two examples for non-
regular surface points in Fig. 15.1. So we want to exclude these cases. In other
words, a simple surface point needs to be a regular point. This fact will be shown in
the following proof.

The following theorem is another form of Theorem 5.1.

Theorem 15.1 A simple surface point, under the Morgenthaler-Rosenfeld definition
(Definition 5.1), of a set S ⊂ Σ3 is a regular inner surface point, and vice versa.

Proof This proof contains two parts. The first part proves that if p is a simple surface
point, then p is also a regular inner surface point. The second part proves that if p is
a regular inner surface point, then p is a simple surface point.

We still use Np as the neighborhood of point p. Np that contains 26 points.



284 15 Select Topics and Future Challenges in Discrete Geometry

p

p

a b

Fig. 15.1 Examples for non-regular points: a Non-regular point p; b Inner but non-regular surface
point p

Part 1 Suppose that p is a simple surface point as defined in Definition 5.1 at Sect. 5.
2.1. We want to show the following:

1) S(p) = S ∩ (Np ∪ {p}) does not have any 3D-cell,
2) Each line-cell containing p in S has exactly two parallel moves in S(p), i.e., p is

inner, and
3) Any two surface-cells containing p in S are line-connected in S(p).

First, suppose p is a simple surface point in S. Obviously, p cannot be a corner point
of any 3D-cell in S, hence we establish statement 1).

For 2), to begin with, p has three or more (directly) adjacent points in S ∩ Np.
Otherwise, S̄ ∩ Np is connected, so p is not a simple surface point in accordance
with condition (2) of its definition in Sect. 5.2.1.

We define here a grid plane is a set of all points with a fixed z Pz =
{(x, y, z)|(x, y, z) ∈ Σ3}, all points with a fixed y Py = {(x, y, z)|(x, y, z) ∈ Σ3},
or all points with a fixed x Px = {(x, y, z)|(x, y, z) ∈ Σ3}.

Next, let p′ ∈ S be an arbitrary adjacent point of p. therefore, there is a grid
plane (such as plane1, plane2 or plane3 in Fig. 15.2 which contains p in Np and
does not contain p′. Thus, all directly and indirectly adjacent points of p′ are in one
side of the grid plane (including the plane). Dependent upon the third condition of
the definition of simple surface points, each c1(p) and c2(p), which are defined in
Sect. 5.2.1, have one point in the side of the plane because they must be indirectly
adjacent to p′. Also, all of the parallel-moves of line-cell {p, p′} are in the side of
the plane.
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Fig. 15.2 S in Np
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If {p, p′} has no two parallel-moves in S, then all of the points which are in S̄∩Np

and are in the side of the plane are connected; thus, c1(p) and c2(p) are connected.
So, {p, p′} has two or more parallel-moves.

Now, we prove line-cell {p, p′} has no more than two parallel-moves. In contrast,
suppose {p, p′} has three parallel-moves; without loss of generality, we let the three
parallel-moves {q, q ′}, {r , r ′}, and {s, s ′} of {p, p′} be described in Fig. 15.2:

Suppose we are sure that {p, p′, q, q ′, r , r ′, s, s ′} are in S. We let A be the set
whose elements are in {a, a′} but not in S, and B be the set whose elements are in
{b, b′} but not in S. Because S ∩ Np does not have any 3D-cells, A and B are not
empty.

Since p is a simple surface point; A and B, A and C, or B and C must be indirectly
connected according to the second condition of the definition of simple surface points
in Sect. 5.2.1. Using the same reasoning for A and C, and B and C, we only need to
prove: p is no longer a simple surface point when A and B, or A and C are indirectly
connected.

(i) If A and B are indirectly connected, then a ∈ A and b ∈ B; otherwise, A

does not connect with B in Np ∪ p. We know that a and b are indirectly connected.
Meanwhile, every s’s indirectly adjacent point in Np ∪ p is below plane3, and two
of them are contained in c1(p) and c2(p) respectively. Thus, all of s’s indirectly
adjacent points must be indirectly adjacent to a or b. Then c1(p) and c2(p) defined
in Sect. 5.2.1 are indirectly connected, so p is not a simple surface point.

(ii) If A and C are indirectly connected, a must belong to A. We may suppose
that A ∪ C ⊂ c1(p) and B ⊂ c2(p). We now must discuss the following two cases.

(ii.a) If b ∈ S, then c2(p) = b′. Thus, q cannot be indirectly adjacent to b, i.e.,
c2(p). According to the third condition of the simple surface points’ definition, p is
not a simple surface point.
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Fig. 15.3 Two cases in which surface-cells are not line-adjacent

(ii.b) If b is not in S, i.e., b ∈ c2(p); then we can see if q connects to b and r

connects to a, they must pass the plane 2. On the other hand, if {u, v, w} ⊂ S, then
there is a point of c1(p) in {u′, v′, w′} based on no 3D-cell in S. However, the point and
A cannot be indirectly connected in Np, that is, A and C are not indirectly connected.
Thus, there must be a point δ in u, v, and w such that it is in c1(p) ∪ c2(p). If δ is in
c1(p) then each point in plane 2 indirectly connects with a or δ. q cannot indirectly
connect with the point b. If δ is in c2(p) then r cannot indirectly connects with the
point a. According to the third condition of the simple surface point definition, p is
not a simple surface point.

Therefore, we have proven statement 2. We now prove statement 3 to complete
part one of the proof. Statement 3 says that any two surface-cells of S(p) are line-
connected if p is a simple surface point.

Actually, there are only two cases for two surface-cells A and B including p in
Np ∪ p which are not line-adjacent (See Fig. 15.3). In the following we show that
these two surface-cells A and B are line-connected in Np ∪ p when p is a simple
surface point and both A and B are in S.

For case (a), if one of u, v, or w is in S, then surface-cells A and B are line-
connected. Otherwise, because each (p, a) and (p, b) have two parallel-moves, C

and D must be in S. By the same reasoning, points e and f are in S, so we can see
that the p is not a simple surface point because S̄ ∩Np has three indirectly connected
parts.

For case (b), if u and v are in S, then A and B are line-connected. Otherwise, C

and D,or {a, e, x, p} and {a, p, y, w} must be in S; so we have a case like case (a).
Thus, p is not a simple surface point if A and B are not line-connected. We have
thus proven statement 3.
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Fig. 15.4 The case that is not
a regular surface point
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To summarize, p is a regular inner surface point if p is a simple surface point. We
have proved the first part.

Part 2 Suppose p is a regular inner surface point. We want to show that p is a simple
surface point, i.e., the following three statements are true:

1) S ∩ Np has exactly one component adjacent to p, denote this component Ap.
2) S̄ ∩ Np has exactly two 26-connected components, c1 and c2, 26-adjacent to p.
3) If q ∈ S and q is adjacent to p, then q is 26-adjacent to both c1 and c2.

Our strategy for proving part two is different from part one’s proof. We just enumerate
all possibilities in which a regular inner surface point p can appear, and we then prove
that all possible regular inner surface points are simple surface points.

We know if p is a regular surface point of S, then p is not a corner point of any
3D-cell which is in S. Because of the (point-) connectivity of S, p has an adjacent
point denoted by p′. Also, {p, p′} has two parallel-moves, denoted by {a, a′} and
{b, b′}; therefore, both a and b are also adjacent to p.

Suppose the surface-cell that is formed by {p, a} and {p, b} is in S, then there are
three surface-cells that are line-connected to each other in S(p). Therefore, they can
be illustrated as shown in Fig. 5.10.

Here x must not be in S as p is not a corner of any 3D-cell. If there is a point u,
v, or w that is adjacent to p; then A, B or C must be in S because any line-cell has
exactly two parallel-moves. In this case, there exist two surface-cells which are not
connected in Np ∪ {p}, so p is not a regular surface point. Thus, there is no such
point u, v, or w which is adjacent to p, so we can see p satisfies the definition of a
simple surface point (Fig. 15.4).

On the other hand, if the surface-cell formed by {p, a} and {p, b} is not in S. We
can derive only two different cases as shown in Fig. 15.5.
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Fig. 15.5 Another case that is not a regular surface point

p’

b

b’

b

a’

p’b’

d

a

a’

p

a

p

Fig. 15.6 S(p) has exactly four 2-cells (surface-cells)

We now illustrate all possible developments based on the above cases, meaning
that p is kept as a regular inner surface point. We only consider the points that are
adjacent to p and the surface-cells that contain p. It is straightforward to see that
there is only one possible case for a regular inner surface point with exactly three
surface-cells.

(i) If there are exactly four surface-cells in S(p), we have only the following two
possible cases keeping p as a regular inner surface point (Fig. 15.6) We can see that
p in either (a) or (b) is a simple surface point.

(ii) If there are five or more surface-cells in S(p) = S ∩ (Np ∪ p), then only
two cases which contain three surface-cells can be developed to generate different
results. The two cases are given in Fig. 15.7.

Each (a) and (b) in Fig. 15.8 has three possible ways for adding one more surface-
cell. Some of which are overlap. We can reduce such cases to 4 distinct cases as
shown in Fig. 15.14.

Next, we continuously add new surface-cells to (a), (b), (c), and (d) of Fig. 15.8.
and maintain p as a regular inner surface point. We arrive at the following seven
cases shown in Fig. 15.9. We can see that (e) of Fig. 15.9. already arrives at the final
state, where it has only five surface-cells in S(p). On the other hand, (c) also arrives
at the final state because it cannot be a regular inner surface point.

We also can see that there is only one possible choice to add a surface-cell onto (a),
(b), (d), (f), and (g) in Fig. 15.9. After adding a surface-cell, (a), (b), (d), (f), and (g)
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Fig. 15.7 Two cases can be developed
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Fig. 15.8 Four cases derived from Fig. 15.7

are deduced into 2 cases shown in Fig. 15.10. Each of which have six surface-cells
including p, where p is a regular inner surface point.

Finally, we shall explain, when p is a regular surface point in S, why there are no
seven or more surface-cells including p in S ∩ (Np ∪ {p}) that can make a simple
surface point. We know p has six adjacent points in Np ∪ {p}; in other words, there
are six line-cells including p. If a surface-cell A including p is in S, then A contains
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Fig. 15.9 Seven cases derived from Fig. 15.8

two of the six line-cells. When S has seven surface-cells, there must exist a line-cell
which is included by three surface-cells. Therefore, S is not a surface.

From the preceding 5-step process, we obtain three types of regular inner surface
points contained by five or six surface-cells. Considering Figs. 15.5 and 15.6, we
have one regular inner surface point with three surface-cells and two regular inner
surface points with exactly four surface-cells. There are only six possibilities for p

to be a regular inner surface point. We can see that all of the three kinds of the regular
inner surface points satisfy the definition of the simple surface points. We now have
completed the proof of part 2.

Therefore, every regular inner surface point is a simple surface point. �
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Fig. 15.10 Two cases deduced from Fig. 15.9

15.3 The Jordan Curve Theorem on Discrete Surfaces

This section focuses on the Jordan curve theorem in 2D discrete spaces, with respect
to the general definition of discrete curves, surfaces, and manifolds discussed in
Chap. 7 [3]. The Jordan curve theorem states that a (simply) closed curve separates
a simply connected surface into two components. Based on the definition of discrete
surfaces, we give three reasonable definitions of simply connected spaces in discrete
spaces. Theoretically, these three definitions are equivalent.

For the Jordan curve theorem, O. Veblen in 1905 wrote a paper [35] that was
regraded as the first correct proof of this fundamental theorem. The first discrete
proof was given by W.T. Tutte on planar graphs in 1979 [34]. Recently, researchers
still show considerable interests in the Jordan curve theorem using formalized proofs
in computers [13]. In 1999, L. Chen attempted to prove the discrete Jordan curve
theorem for 2D discrete manifolds without using 2D Euclidean space [7]. In this
section, we will adopt some original ideas in Veblen’s paper and give a proof of this
theorem in discrete space.

In Chap. 7, we have defined a discrete surface. More importantly, this discrete
surface can be naturally embedded to Euclidean plane. Or a closed discrete surface,
can be easily embedded to a 3D or higher dimensional Euclidean spaces.

Let us first review some concepts for curves in Sect. 7.2: (1)A simple path is called
a (discrete) pseudo-curve, (2) a simple semi-curve can be a curve or a surface-cell
(2-cell), (3) A simple curve must not contain any proper subset that is a 2-cell.

It is obvious, if we define a path (a pseudo-curve) is a discrete curve, there is no
Jordan curve theorem in discrete space. This is because that the inner part of a 2-cell
is empty in graphs structures.

In Sect. 7.5, we defined regular points or ordinary points in a discrete manifolds.
We proved that for a discrete surface S (Lemma 7.6): If p is a inner and regular point
of S, then there exists a simple cycle containing all points in S(p) − {p} in S where
S(p) is the neighborhood of p in graph G. This lemma is particularly important in
our proof. In addition, we also have (Lemma 7.5): For a discrete surface S, let a point
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p ∈ S, if p has only two adjacent points p′, p′′ in S, then there are two surface-cells
A, B such that A ∩ B contains p′, p, p′′. If p′, p′′ are adjacent in S, then p′, p, p′′
form a surface-cell.

15.3.1 Discrete Deformation and Simply Connected
Discrete Surfaces

In topology, the formal description of the Jordan curve theorem is: A simply closed
curve J in a plane Π decomposes Π − J into two components [24, 28]. In fact,
this theorem holds for any simply connected surface. A plane is a simply connected
surface in Euclidean space, but this theorem is not true for a general continuous
surface. For example, the boundary of a donut.

What is a simply connected continuous surface? A connected topological space T

is simply connected if for any point p in T , any simply closed curve containing p can
be contracted to p. The contraction is a continuous mapping among a series of closed
continuous curves [28]. So, we first need the concept of “discrete contraction.”

In order to keep the concepts simple to understand, we first define the grad-
ual variation between graphs. Then we define discrete deformation among discrete
pseudo curves. And finally, we define the contraction of curves is a type of discrete
deformation. See [5, 6] for more details of the definitions.

In this section, we assume the discrete surface is both regular and orientable
(Chap. 7).

Definition 15.1 Let G and G′ be two connected graphs. A mapping f : G → G′
is gradually varied if for two vertices a, b ∈ G that are adjacent in G, then f (a) and
f (b) are adjacent in G′ or f (a) = f (a′).

So gradual variation defined in Chap. 11 is the counterpart of continuation of
Euclidean space. The special case of this definition is that two paths are subgraphs
of a graph G. We want to change a path to another “continuously” is the same as to
change one “gradually” to another one. Herman defined “elementarily N-equivalent”
for defining simply connected space[19].

Intuitively, “continuous” change from a simple path C to another C ′ is that there
is no “jump” between these two paths. If x, y ∈ S, d(x, y) denotes the distance
between x and y. d(x, y) = 1 means that x and y are adjacent in S. It is important
to point out that in a 2-cell (or any other k-cell), from a point p to another point q in
the cell, p �= 1, the distance d(p, q) can be viewed as 1. In other words, a cell can
be viewed as a complete subgraph on its vertices.

Definition 15.2 Two simple paths C = p0, ..., pn and C′ = q0, ..., qm are gradually
varied in S if d(p0, q0) ≤ 1 and d(pn, qm) ≤ 1 and for any non-end point p in C,
then

(1) p is in C ′, or p is contained by a 2-cell A (in G(C ∪ C ′)) such that A has a
point in C ′.
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Fig. 15.11 Gradually varied curves: a C and C ′ are gradually varied; b C and C′ are not gradually
varied

(2) Each non-end-edge in C is contained by a 2-cell A (in G(C ∪ C ′)) which has
an edge contained by C ′ but not C if C′ is not a single point.
and vise versa for C′.

For example, C and C ′ in Fig. 15.11a are gradually varied, but C and C′ in
Fig. 15.11b are not gradually varied. We can see that a 2-cell, which is a simple path,
and any two connected parts in the 2-cell are gradually varied. So we can say that a
2-cell can be contracted to a point gradually.

Assume E(C) denotes all edges in path C. Let XorSum(C, C′) = (E(C)−E(C ′))∪
(E(C ′) − E(C)). XorSum is called sum(modulo2) in Newman’s book [28].

Attach a 2-cell to a simple path C, if the intersection is an arc (connected path)
not a vertex, we can see cut the intersection (keep the first and last vertices of the
intersection which is an arc), the simple path will go another half of the arc of the
cell. The new path is also a simple path, and it is gradually varied to C. Therefore,

Lemma 15.1 Let C be a pseudo-curve and A be a 2-cell. If A ∩ C is an arc
containing at least an edge, then XorSum(C, A) is a gradual variation of C.

It is not difficult to see that XorSum(XorSum(C, A), A) = C and
XorSum(XorSum(C, A), C) = A under the condition of the above lemma.

Definition 15.3 Two simple paths (or pseudo-curves) C and C ′ are said to be
homotopic if there is a series of simple paths C0, ..., Cn such that C = C0, C ′ = Cn,
and Ci , Ci+1 are gradually varied.

We say that C can be discretely deformed to C′ if C and C ′ are homotopic. The
following lemma is guarantee that we deform a curve by just making changes a cell
a time.

Lemma 15.2 If two (open, not closed) simple paths C and C ′ are homotopic then
there is a series of simple paths C0, ..., Cm such that C = C0, C′ = Cn, and
XorSum(Ci , Ci+1) is a 2-cell excepting end-edges of C and C′.

15.3.2 Cross-Over of Simple Paths

To prove the Jordan curve theorem, we need to describe what the disconnected
components are by means of separated from a simple curve C? It means that any
path from a component to another must include at least a point in C. It also means
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Fig. 15.12 S(p) and Cross-over at p: a Two adjacent points a and b of p in S(p), and b an example
for two cross-over paths

that this linking path must cross-over the curve C. In this subsection, we want to
define it.

Because a surface-cell A is a closed path, we can define two orientations (normals)
to A: clockwise and counter-clockwise. Usually, the orientation of a 2-cell is not a
critical issue. However, for the proof of the Jordan curve theorem it is necessary.

In other words, a pseudo-curve which is a set of points has no “direction,” but aa
path, has its own “travel direction” from p0 to pn. For two paths C and C ′, which are
gradually varied, if a 2-cell A is in G(C ∪C ′), the orientation of A with respect to C

is determined by the first pair of points (p, q) ∈ C ∩ A and C = ...pq.... Moreover,
if a 1-cell of A is in C, then the orientation of A is fixed with respect to C.

According to Lemma 7.6, S(p) contains all adjacent points of p and S(p) − {p}
is a simple cycle—there is a cycle containing all points in S(p) − {p}.

We assume that cycle S(p) − {p} is always oriented clockwise. For two points
a, b ∈ S(p) − {p}, there are two simple cycles containing the path a → p → b: (1)
a cycle from a to p to b then moving clockwise to a, and (2) a cycle from a to p to
b then moving counter-clockwise to a. See Fig. 15.12a.

It is easy to see that the simple cycle S(p) − {p} separates S − {S(p) − {p}} into
at least two connected components because from p to any other points in S the path
must contain a point in S(p) − {p}. S(p) − {p} is an example the Jordan curve.

Definition 15.4 Two simple paths C and C ′ are said to be “cross-over” each other
if there are points p and q (p may be the same as q) such that C = ...apb...sqt...

and C ′ = ...a′pb...sqt ′... where a �= a′ and t �= t ′. The cycle apa′...a without b in
S(p) and the cycle qt...t ′q without s in S(q) have different orientations with respect
to C.

For example, in Fig. 15.12b, C and C ′ are “cross-over” each other. When C and
C ′ are not “cross-over” each other, we will say that C is at a side of C ′.

Lemma 15.3 If two simple paths C and C′ are not cross-over each other, and they
are gradually varied, then every surface-cell in G(C ∪ C′) has the same orientation
with respect to the “travel direction” of C and opposite to the “travel direction” of
C ′.

We also say that C and C ′ in the above Lemma are side-gradually varied.
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Intuitively, a simply connected set is such a set so that for any point, every simple
cycle containing this point can contract to the point. According to the nature of the
word “contraction,” we can give the mathematical definition of “contraction” for
discrete spaces. In fact, the contraction procedure relates to some substance. This
substance gradually loses the size (which can be space occupied), and when a part
was lost, it will never come back again in this contraction.

Definition 15.5 A simple cycle C can contract to a point p ∈ C if there exist a
series of simple cycle, C = C0, ..., p = Cn: (1) Ci contains p for all i; (2) If q is not
in Ci then q is not in all Cj , j > i; (3) Ci and Ci+1 are side-gradually varied.

We now show three reasonable definitions of simply connected spaces below. We
will provide a proof for the Jordan curve theorem under the third definition of simply
connected spaces. The Jordan theorem shows the relationship among an object, its
boundary, and its outside area.

A general definition of a simply connected space should be:

Definition 15.6 Simply Connected Surface Definition (a) < G, U2 > is simply
connected if any two closed simple paths are homotopic.

If we use this definition, then we may need an extremely long proof for the Jordan
curve theorem. The next one is the stardard definition which is the special case of
the Definition 15.6.

Definition 15.7 Simply Connected Surface Definition (b) A connected discrete
space < G, U2 > is simply connected if for any point p ∈ S, every simple cycle
containing p can contract to p.

This definition of the simply connected set is based on the original meaning of
simple contraction. In order to make the task of proving the Jordan theorem simpler,
we give the third strict definition of simply connected surfaces as follows.

We know that a simple closed path (simple cycle) has at least three vertices in
a simple graph. This is true for a discrete curve in a simply connected surface S.
For simplicity, we call an unclosed path an arc. Assume C is a simple cycle with
clockwise orientation. Let two distinct points p, q ∈ C. Let C(p, q) be an arc of
C from p to q in a clockwise direction, and C(q, p) be the arc from q to p also in
a clockwise direction, then we know C = C(p, q) ∪ C(q, p). We use Ca(p, q) to
represent the counter-clockwise arc from p to q. Indeed, C(p, q) = Ca(q, p). We
always assume that C is in clockwise orientation.

Definition 15.8 Simply Connected Surface Definition (c) A connected discrete
space < G, U2 > is simply connected if for any simple cycle C and two points
p, q ∈ C, there exists a sequence of simple cycle paths Q0, ..., Qn where C(p, q) =
Q0 and Ca(p, q) = Qn such that Qi and Qi+1 are side-gradually varied for all
i = 0, · · · , n − 1..

In fact, it is easy to see that Simply Connected Surface Definition (b) and (c) are
special cases of Definition (a). C(p, q) = Q0 and Ca(p, q) = Qn are two arcs of C.

Now we want to prove that the simply connected surface definition (b) and the
definition (c) are equivalent (In [5], we thought that such a proof would be hard).
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Proposition 15.1 Definition (b) and Definition (c) are equivalent.

Proof It is easy to see that Definition (b) is a special case of Definition (c). This is
because that we can define an edge e in C as the one arc and the rest of C is another
arc.

Now we prove that Definition (c) can be induced from Definition (b). We first
select the contracting point x to be p. Let the contracting sequence C0, C1, . . . ,Ci

contain another point q if C is not a 2-cell, but Ci+1, . . . , Cn = p do not contain q

(Ci+1 does not contain q is the key. If q is not in the same 2-cell of p, we can always
find such a q).

So the paths from p to q, Ck(p, q), and q to p, Ck(q, p) (both arcs are in the clock-
wise direction) have their own corresponding gradually varied paths, respectively in
Ck , k = 0, . . . ,i).

Note that, all Ct , t = i + 1, . . . ,n − 1 are closed path. We know q is not in Ci+1,
but q has a corresponding point in Ci+1, denoted as qi+1. In other words, q changed
to qi+1, in the contraction process.

Therefore, from p to qi+1, there are two paths from p to qi+1, Ci+1(p, qi+1)
and from qi+1 to p, Ci+1(qi+1, p). Thus, Ci(p, q) and Ci+1(p, qi+1) are gradually
varied, so are Ci(q, p) and Ci+1(qi+1, p). In the same way, we can find qi+2, . . .

,qn−1. Finally, C0(p, q), . . . ,Ci+1(p, qi+1), . . . ,Cn−1(p, qn−1), Cn−1(qn−1, p), . . .

Ci+1(qi+1, p),C0(q, p) are such a gradually varied sequence. �

Basically, the deformation procedure does not really care about cross-over points.
We does not allow cross-over points in the definition is to make the proof easier.

15.3.3 The Jordan Curve Theorem

Since a simple cycle could be a surface-cell, it can not separate S into two discon-
nected components. So for the strict case of Jordan curve theorem, we must use a
discrete curve not a simple cycle.

In the case of allowing the central pseudo points, (it is true for embedding a surface
into a Euclidean space.) we will have the general Jordan Curve Theorem. We will
prove this case at the last of this section.

However, for a closed discrete curve, we have

Theorem 15.2 (The Jordan Curve Theorem in Discrete Space) A discrete simply
connected surfaces S defined by Definition 15.8 (Definition (c)), has the Jordan
property: For a closed discrete curve C on S, if C does not contain any point of
∂S, C divides S into at least two disconnected components. In other words, S − C

consists of at least two disconnected components.

Proof Suppose that C is a closed curve in a simply connected surface S. C does not
reach the border of S, i.e. C ∩ ∂S = ∅.

Assume point p ∈ C, then suppose that q and r are two adjacent points of p

in C with form of ...qpr , ..., where the direction of . . . q to p to r . . . to p is
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Fig. 15.13 A close curve C and the paths from a to b

clockwise. See Fig. 15.13 {p, r} is a line-cell, then there are two 2-cells containing
{p, r}. Denote these 2-cells by A and B with clockwise orientation.

Our strategy is to prove that if there is a point a in A which is not in C, and a point
b ∈ B and b /∈ C, then any path from a to b must contain a point in C. Then we can
see that S − C are not (point-) connected and we have the Jordan curve theorem.

First, we want to prove that there must exist a point in A − C. If each point in A

is in C, since A is a simple cycle, then C = A. However, C is not a surface-cell, so
the statement can not be true. Thus, there is a point a ∈ A − C. For the same reason
there is a point b ∈ B − C. We assume that a is the last such point in A starting with
p, and b is the first such point in B starting with p (see Fig. 15.13a).

We always assume clockwise direction here for cell A and B unless we indicate
otherwise.

Let us make a summery of above idea: Suppose that C is a closed curve. (If C is
a closed simple path, we allow C is a 2-cell and we allow to assign a pseudo-point in
the center of the 2-cell, we still can prove this theorem.) The idea of the proof is to
find two points in each sides of the curve C. This is because that for any 1-cell (r , p)
in C, there are two 2-cells A,B sharing (r , p) by the discrete surface definition. A



298 15 Select Topics and Future Challenges in Discrete Geometry

must contain a vertex a and B must contain b, and they are not in C. a, b are adjacent
to some points in C, respectively. We are going to prove that from a to b, any path
must cross-over C. That is the most important part of the Jordan curve theorem.

We assume, on the contrary, there is a simple path from a to b does not cross-
over C, called P(a, b) in Fig. 15.13 a. But we know there is P (b, a) in A ∪ B (i.e.
P (b, a) = b · · · rp · · · a) does cross-over C. P(a, b) ∪ P(a, b) is a cycle in clockwise
(Fig. 15.13a).

We know S(r) is the neighborhood of r in S. So S(r) contains all 2-cells containing
r . The boundary of S(r) is a simple closed curve. (This is because we always assume
that r is a regular point). a is on the boundary of S(r). (The boundary of S(r) is
S(r) − {r}). A ∪ B is a subset of S(r).

We now prove that P(a, b) is not a subset of S(r); otherwise, it must cross-over C.
(a 2-cell containing r must have an edge on C, or all points of the 2-cell are on the
boundary of S(r) except r). If P (a, b) does not contain r , must be a part of boundary
of S(r) which is a cycle. r has two adjacent points on C, (If they are not pseudo
points, meaning here it can be eliminated or added on an edge that does not affect
to the 2-cell) so these two points are also in the boundary of S(r). So there are only
two paths from a to b on the boundary of S(r). These two points are not on the same
side of the cross-over path containing r . (The boundary of S(r) was separated by the
cross-over path containing r .) P(a, b) must contain such a point that is on C.

Therefore we proved P(a, b) is not a subset of S(r). Then P(a, b) ∪ P (b, a) is a
simple closed curve. (P (b, a) passes r). By the definition of the simply-connected
surface, there are finite numbers of paths P (a, b) = P0(a, b), . . . , Pn−1(a, b), such
that so that Pi(a, b) and Pi+1(a, b) are (side-)gradually varied.

In addition, Pn−1(a, b) is gradually varied to Pn(a, b) = P a(b, a) (a reversed
P (b, a) that passes r).

We now can assume that there is a smallest i such that Pi(a, b) cross over C, but
Pi−1(a, b) does not (Fig. 15.13 a). We will prove that is impossible if Pi−1(a, b) does
not cross over C.

Let point x in Pi(a, b)∩C and x /∈ Pi−1(a, b). There are two cases: (1) cross over
at a single point x on C, or (2) cross over at a sequence of points on C. We will prove
these two cases, respectively.

Case 1 Suppose that x = “p′′ = “q ′′ in Definition 15.4 (See Fig. 15.12 a, b)).
It means two curves Pi(a, b) and C share just one point x. and assume Pi(a, b) =
...uxv... and C = ...cxd..., where v �= d.

We know that u, v, c, d are in the boundary of S(x), a simple cycle S(x) − {x}
(See Lemma 7.6). There is a 2-cell X (in between Pi−1 and Pi) contains (u, x). See
Fig. 15.13b ) X has a sequence of points S1 in Pi−1 and a sequence of points S2
in Pi . X has at most two edges e1, e2 not in Pi−1 ∪ Pi ; S1, e1, S2, e2, are the
boundary of X. e1 is the edge linking S1 to S2, and e2 is the edge linking S2 to S1
counterclockwise.(Again, e1 may or may not be directly incident to u, and e1 may
be an empty edge if Pi−1 intersects Pi at point u. e2 may also in the same situation.)
We might as well assume that x is the first point on Pi(a, b) (from a to b in path
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Fig. 15.14 Extended figures of Fig. 15.13 b and c, respectively

Pi)that is in C. Thus, c, d /∈ X (If c is in X c must be in Pi−1. if d is in X, x is not
only the cross over point).

If X contains v, we will have a cycle u · d · v(e2)(S1)(e1) in the boundary of S(x)
(e2)(S1)(e1) contains only points in Pi−1 and u,v (that are possible end points of e1,
e2). c is on the boundary of S(x) too. Where is c? It must be in the boundary curves
(of S(x)) from u to d or the curve from d to v. Then c, d in S(x) must in the same side
of uxv which is part of Pi . Therefore, C and Pi(a, b) do not cross-over each other at
x. See Fig. 15.13b and the following extended figure.

If X does not contain v, then there must be a 2-cell Y (in between Pi−1 and Pi)
containing (x, v). We can see that X and Y are line-connected in S(x) (See Fig. 15.13c
and above extended figure). This is due to the definition of regular point of x, all
surface-cells containing x are line-connected. Meaning there is a 2-cell paths they
share a 1-cell in adjacent pairs.

Since X and Y are line-connected, we can assume:

a) X and Y share a 1-cell, i.e. X ∩Y = (x, y). Then y is on Pi−1(a, b). Let e2 be the
possible edge from v to Pi−1(a, b). (e2 could be empty as e1) and u(e1)..y...(e2)v
is on the boundary cycle of S(x). Except u and v, u(e1)..y...(e2)v is on Pi−1(a, b).
u...d...v is part of the boundary cycle of S(x). In addition, c (that is not in
Pi−1(a, b)) must be in the boundary curves (of S(x)) from u to d or the curve
from d to v. Again, c, d in S(x) must in the same side of uxv which is part of Pi .
Therefore, C and Pi(a, b) do not cross-over each other at x (See Fig. 15.13c also
see the above extended c).

b) X and Y share the point x, and there are line-connected 2-cells as a path in between
X and Y . X ∩ Y = x. Let us assume that e1 incident to Pi−1(a, b) at y ′ (y ′ is u
if e1 is empty) and e3 incident to Pi−1(a, b) at y ′′. We will have a set of points
y′ = y0, y1, ..., yk = y ′′ in Pi−1(a, b). Each yt is contained in a 2-cell containing
x. All y0, y1, ..., yk are in the boundary cycle of S(x). c that is not in Pi−1(a, b).
c must be in the boundary curves (of S(x)) from u to d or the curve from d to v.
Thus, c, d in S(x) must in the same side of uxv which is part of Pi . C and Pi(a, b)
do not cross-over each other at x (See Fig. 15.13 c and 15.14c).
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Case 2 Suppose Pi(a, b) and C cross over a sequence of points on C: Pi(a, b) =
...ux0x1...xmv... and C = ...cx0x1...xmd..., where v �= d.

We still have e1 = (u, y0) and e2 = (v, yk) where y0 and yk are on Pn−1 for some
k. Each yt , t = 0, 1, ..., k, is in a 2-cell that containing some xj , j = 0, 1, ..., m.

Note that: If u does not have a direct edge linking to Pn−1, u will be in a 2-cell
between Pn and Pn−1, either u is a pseudo point on Pn for the deformation from Pn−1

to Pn, or Pn−1 and Pn intersects at u. That u is a pseudo point means here it has a
neighbor that has an edge link to Pn−1, or the neighbor’s neighbor, and so on. We
can just assume here u is the point that is adjacent to a point in Pn−1. In the theory,
as long as u is contained by a 2-cell such that all the points in the 2-cell are in Pn−1

or Pn.
The same way will apply to this case just treat x0, . . . ,xm to x in Case 1. We first

get the union of S(x0), . . . ,S(xm). We want to prove that: The boundary of this union
will be simple cycle too.

Using mathematical induction we can prove it. After that, we can prove the rest
of theorem using the same method presented in Case 1. See Fig. 15.15.

The following is the detailed proof: Let S(x0, ..., xk) = S(x0) ∪ ... ∪ S(xk).
First, we will prove that the boundary of S(x0) ∪ S(x1) is a simple cycle (it is a

simple closed curve too). We know that (x0, x1) is an edge in C ∩Pi(a, b). Also, there
are two 2-cells A, B in S(x0) containing (x0, x1).

x1 is a boundary point in S(x0), so no other 2-cell will contain x1. In the same way,
S(x1) also contains A, B, and x1 is only contained in two 2-cells in S(x1). Therefore,
S(x0) ∩ S(x1) = A ∪ B and A ∩ B = (x0, x1).

Note that A and B are adjacent 2-cells. On the other hand, x1 is on the boundary
curve (that is closed) of S(x0). So x1 has two adjacent points on this cycle, y1 and
y2. (We assume that y1 and y2 are not pseudo points, so) y1 and y2 are both on the
boundary of S(x0) ∪ S(x1). (If y1 or y1 is pseudo points, we can ignore y1 or y2 to
find the a actual point that adjacent to x1.) (x1, y1) has two 2-cells containing (x1, y1)
in S(x0)∪S(x1). For instance, in Fig. 15.15a, A and A1 contain (x1, y1) and B and B1

contain (x1, y2). Thus, the boundary of S(x0) ∪ S(x1) is a closed curve that is formed
by the arc from y1 to y2 in the boundary of S(x0), plus the arc from y2 to y1 in the
boundary of S(x1).

Second, we assume the boundary of S(x0, ..., xk−1) is a closed curve, when we
consider the arc x0, ..., xk−1, xk in C, we can prove the boundary of S(x0, ..., xk)
is also a closed curve. Please note that this property may contain a degenerate or
pathological case. We can add some 2-cells in S , but not on C. So that if xi , xj

in C is not adjacent, then any path linking xi and xj not intersecting C, contains
at least two other points. In other words, from xi to xj , a path must pass three 2-
cells (including the one that contains xi or xj ). This is also to say that xi and xj are
separated by a 2-cell that does not contain xi , xj . This is very easy to make since we
can always refine a 2-cells into several two cells using Veblen points.

We know that we have two closed curves: Suppose that Q is the boundary of
S(x0, ..., xk−1), and R is the boundary of S(xk). (xk−1, xk) is in S(xk), and (xk−1, xk)
is in S(x0, ..., xk−1). There are two 2-cells A, B containing (xk − 1, xk) in S(xk) ∩
S(x0, ..., xk−1).
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Fig. 15.15 The union of
neighborhoods of a sequence
of adjacent points S(x0, ..., xk)
and its boundary

x0

x1

A By1 y2
A1 B1

x 0

x

A By1 y2

A1 B1

xk-1

k

x1

x

x

0

1

x0

xk

y1 y2

y1 y2

a b

c d

xk−1 is on the boundary cycle of S(xk), then xk−1 must have two adjacent points
in R, y1, and y2. (xk−1, y1) and (xk−1, y2) are two edges in S(xk) ∩ S(x0, ..., xk−1). In
the same way above, we will have the cycle passing y1 and y2 that is the boundary
curve of S(x0, ..., xk).

Thus, we have proved that the boundary curve of S(x0, ..., xk) is a simple closed
curve. In the rest of the proof, we will treat S(x0, ..., xm) to be S(x) in Case 1. See
Fig. 15.15.

We now use denote X = {x0, ..., xm} and X is an arc in C (Please note that in Case
1, X was used as a 2-cell. Now X is an arc in C) .

In the rest of the proof, we will prove: if Pi−1(a, b) and C are not cross over each
other, then, Pi(a, b) and C will not be cross over each other. Therefore, any P (a, b)
must cross over C. This completes the proof of the discrete Jordan curve theorem.
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Fig. 15.16 A pair of
crossing-over curves Pi and C
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Let us first state again that Pi(a, b) passes x0...xm but Pi−1(a, b) does not contain
any point of {x0, ..., xm}. In addition, Pi−1(a, b) and Pi(a, b) is gradually varied,
i.e. Pi(a, b) was deformed from Pi−1(a, b) directly. We also know that S(X) =
S(x0, ..., xm) is the neighborhood of the arc in C, i.e. the arc x0, ..., xm is a part of the
closed curve C. The boundary of S(X) = S(x0, ..., xm) is a closed curve too.

u, v, c, d are on the boundary of S(x0, ..., xm) (Assume u, v, c, d are not pseudo
points, otherwise, we can find corresponding none-pseudo on the boundary of
S(x0, ..., xm).) u, (x0, ..., xm), v is a part of Pi We also know that c and (x0, ..., xm)
are not in Pi−1. There will be two 2-cells, U and V , are in between Pi(a, b) and
Pi−1(a, b) (all points of U and V are in Pi(a, b) ∪ Pi−1(a, b)) such that (u, x0) ∈ U

and (xm, v) ∈ V .
Let Pi−1 ∩ U = S1 and Pi ∩ U = S2. Let e1 be the edge in U linking S1 to S2

(in most cases, e1 incident to u, but not necessarily), and let e2 be the edge in U

linking S2 to S1 (possibly starting at x0). So, (e2)(S1)(e1)(S2) are the boundary of
U , counterclockwise.

Subcase (i) If U contains v (U = V ), all points in U ’s boundary are contained in
S({x0, ..., xm}) by the definition of S(x0). we will have a cycle u · d · v(e2)(S1)(e1) in
the boundary of S(X = {x0, ..., xm}). c is on the boundary of S(X) too. But c /∈ Pi−1.
It must be in the boundary curves (of S(X)) from u to d or the curve from d to v.
Then c, d in S(X) must in the same side of uXv which is part of Pi . Therefore, C

and Pi(a, b) do not cross-over each other at X (See Fig. 15.16).

Subcase (ii) If U does not contain v, then there must be a 2-cell V (in between Pi−1

and Pi) containing (xm, v).
Let e1 = (p1, p2) be the edge in U incident to a point in Pi−1 and a point in

Pi , respectively. (In most cases, e1 incident to u, i.e. u = p2, but not necessarily).
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Fig. 15.17 An edge only
starts at xk linking to Pi−1;
x0, ..., xk−1 do not have any
edge to Pi−1
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And let e2 = (r2, r1) be the edge in V incident to a point in Pi and a point in Pi−1,
respectively. r2 is usually v.

Note that: c must not be in U . Gradual variation (direct deformation) means that
each point in each 2-cell of U and V in between Pi and Pi−1 must be in Pi ∪ Pi−1.
Formally, Pi XoRSum Pi−1 is a set of 2-cells; every point in these 2-cells is in
Pi ∪ Pi−1.

We can see that U and V are line-connected in S(X) by the definition of line-
connected paths, meaning there is a path of 2-cells where each adjacent pair shares
a 1-cell (See Figs. 15.15d and 15.16).

From r1 to p1, there is an arc in Pi−1. To prove that all points in this arc are in
the boundary of S(X) we need to prove each point on the arc must be in a 2-cell
that contains a point in {x0, ..., xm}, and this 2-cell is other than (except this 2-cell is)
U or V . It gives us some difficult to prove it. The above discussion seems not very
productive.

We found a more elegant way to prove this case by finding another simple path
(or pseudo curve) that cross-over C. The method is the following: If U �= V , there
must be a xk in {x0, ..., xm}, xk has an edge linking to Pi−1. (Otherwise, u, x0, ..., xm, v
are in a 2-cell that contains some points in Pi−1. Therefore, U = V .) We can also
assume that k is not m, otherwise, v is in Pi−1, so U = V . See Fig. 15.17.

We select the smallest k having an edge linking xk to Pi−1, 0 ≤ k ≤ m−1. xk is in
both Pi−1 and C. We might as well let (xk , v′) is such an edge, and v′ is a point in Pi−1.
Therefore, we will have the new path (simple path), P ′

i . This new path has two parts:
The first part is the same as Pi before and including the point xk , and the second part
is the partial path (curve) of Pi−1 after point v′. This path P ′

i = ..., u, x0, ..., xk , v′, ...
does cross-over C = ..., c, x0, ..., xk , xk+1, ..., xm, d, .... It is obvious that Pi−1, P ′

i , Pi
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are gradually varied. This is because we just inserted a path in between of Pi−1 and
Pi .

This new path P ′
i has such a good property that is {x0, ..., xk−1} do not have an

edge in Pi−1. Since v′ is in P ′
i , the 2-cell V ′ (in Pi−1 XoRSum P ′

i ) contains v′ also
contains (xk−1, xk) and (xk , v′) (in S(xk)). Since no edge from x0, ..., xk−1 to Pi−1, U

containing u is just V ′. We will have just Subcase (i) using P ′
i to replace Pi .

The entire theorem is proven. �

Theorem 15.2, the discrete Jordan curve theorem, has a little difference from
the classical description of The Jordan curve Theorem. This is because that discrete
curve has its own strict property: C does not contain any 2-cell. In order to satisfy
the classical form. We need to use central pseudo points, we call it the Veblen point,
for each type of cells, especially 1-cells (line-cells) and 2-cells (surface-cells) So we
will allow the simple path (semi-curve) in the proof of the Jordan curve theorem. In
fact, a little modification will assist the proving of the theorem. The rest of work is
just to prove that there are only two (connected) components in S − C.

Theorem 15.3 (The Jordan Curve Theorem for Generalized Simple Closed
Paths) Let S be a discrete simply connected surfaces, (S can be closed or a discrete
plane embedded in 2D Euclidean Space). A closed simple path (0-cell connected
semi-curve) C which does not contain any point of ∂S divides S into two components
(in terms of allowing central pseudo points for each cell). In other words, S − C

consists of two components. These two components are disconnected.

Proof In this proof, we can put the central pseudo points for each 1-cells and 2-cells
to assist our proof. The reason is that if we embed 1-cells and 2-cells into Euclidean
plane or higher dimensional space. We can always find the central points for each
cell. The idea of the central pseudo points is at least valid in Euclidean space. In fact,
the central pseudo points also have two normal directions for a 2-cell. It also has two
directions for a 1-cell. For instance, {a, b} is an edge, a → b and b → a are two
directions.

In the proof of Theorem 15.2, we know that we have two 2-cells A and B at
the different side of the cycle C. We proved that point a ∈ A and b ∈ B are not
connected in S − C.

C has the orientation of clockwise (or counterclockwise as we first made). (p, r)
is clockwise in A, but (p, r) is counterclockwise in B. So we call A is clockwise, and
B is counterclockwise. For each edge ei (e.g. (p, r)) in C, we will have two 2-cells
containing ei , denoted by Ai and Bi . There must be one in clockwise and another is
in counterclockwise.

We always assume that Ai is clockwise and Bi is counterclockwise. We now add
all the central pseudo points to all 1-cells and 2-cells in S. And immediately remove
all central pseudo points from 1-cells in C. (This operation is to stop a path will go
through the central pseudo points on C.)

We also know in our assumption: each 2-cell must have at least three edges (1-
cells) in its boundary. This is because S is a simple graph. (We can always add a point
to make it in Euclidean space.) We also assume that C does not reach the border of
S meaning that C ∩ ∂S = ∅.
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Case 1: A special case C is the boundary of a single 2-cell, denoted as A. A simple
path could be just the boundary of a 2-cell. In this case, we have a central pseudo
point in the cell A. So this theorem is virtually true if we can prove that S − C is
point-connected. That is to say that except the central pseudo point in A, S − C is a
point-connected component. In other word, S−A is one point-connected component.

We can prove this is because of the following facts: For each cell B in S − A, if
B has an edge in C. The boundary of B is a simple closed path. If the boundary of B

is C, then S = A ∪ B since every edge has shared by two 2-cells (A and B) already.
We have two components in S − C: the central pseudo point of A and the central
pseudo point of B.

Case 2: The general case We know 2-cells that are joint with an edge in C have
two types: the clockwise type, denoted as Ai , i = 1, · · · , m, m > 0, and the
counterclockwise type, denoted as Bj , i = 1, · · · , n, n > 0.

We can prove that all Ai are connected without using points in C. This is because
that any point p in C is contained by two 1-cells e1 and e2 in C. These two 1-cells
are contained by Ai and Aj , respectively. If Ai = Aj , it is connected. If A If Ai

and Aj share an edge, then, the central pseudo points of Ai and Aj are connected.
If Ai and Aj do not share an edge, we know Ai and Aj are in S(p), there must be
a cycle contains some edges in Ai and some edges of Aj , and e1 ∪ e2. So Ai and
Aj are connected (meaning through their central pseudo points) do not pass e1 ∪ e2.
Therefore, all Ai’s (meaning using their central pseudo points) are connected. In
other words, e1 ∪ e2 split S(p) into two parts, one called PartA(p) include Ai and
Aj , and another one, PartB (p) include some B’s. Ai and Aj are point connected
in PartA(p) without passing any point in e1 ∪ e2. All cells that are not Ai or Aj in
PartA(p) will also assign as the clockwise type, i.e. Ak for some k. So all Ai’s are
connected.

In the same way, we can prove that all Bi’s are connected. (C ∩ ∂S = ∅.)
We now prove that any point x in S − C, must be connected to the component

containing Ai or to the component containing Bi . We know that any two points are
point-connected by a path in S. Let c ∈ C, P (x, c) is such a path connecting x and c.
Note that every point c′ in C is contained by S(c′) = PartA(c′)∪PartB (c′). Since x

is not in C, P (x, c) (which has finite numbers of points) must contain the first point
in C, we assume it is c′. In many cases, c′ = c. Let P (x, c) = x · · · x ′c′ · · · c. Then x′
must be not in C. Thus, x ′ must be in S(c′) −C. x ′ must be in some Ai orBj because
S(c′) = PartA(c′) ∪ PartB(c′).

In other words, there must be a first point in P (x, c), x ′, that is adjacent a point
c′ ∈ C (may or may not be point c). (x′, c′) must belong to an Ai or Bj . So if (x ′, c′)
belong to Ai , x is a point connected to the central pseudo points of Ai . We call it
component A. All points in A are connected since Ai are connected for all i.

If (x′, c′) belong to Bj , x is a point connected to the central pseudo points of Bj .
We call it component B. All points in B are connected since Bj are connected for all
j . We also know S − C = A ∪ B since x was selected from S − C.

According to the proof of on Theorem 15.2, there is a in some Ai − C is not
connected to b in some Bj − C in S − C. a is in A, and b in B. Therefore, any point
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in A is not connected to any point in B in in S − C (Otherwise, a will be connected
to that point in A, then will be connected to any point in B).

We now complete the proof of Theorem 15.3, the general Jordan Curve Theorem.
�

Therefore, we can allow the simple path (pseudo-curves) for this theorem. This
is the general case of Jordan Curve Theorem. We know that 2D Euclidean space
can be partitioned into triangles and it is simply connected in this discrete space
in terms of simplicial complexes. So we can prove the Jordan Curve Theorem for
2D Euclidean plane. The only problem is that we need to assume that we have a
refinement process that will make the triangulation (joint with the simple curve C)
infinitively approximates C. Some philosophical issue may be occur when the curve
is an area filling curve. However such a question could ask for any of proofs of this
theorem.

A detailed technique to make such a refinement is called the midpoint subdivision
method. Please see L. Chen, A Concise Proof of Discrete Jordan Curve Theorem,
http://arxiv.org/abs/1411.4621.

15.4 Randomized Algorithms of Closest Pair Problem
in Geometry

Given a set of points in a metric space, find two points that is closest. This problem is
called the closest pair problem. This problem also has the relationship with nearest
neighbor search (closest point search) when a quarry point (a vector) is given, we
want to get a point that is closest to the query point. This problem also relates
to the famous classification method called k-nearest neighbors (k-NN). We have
discussed in Chap. 9. When the data set is very large, it is important to consider
the to use multiple computer to complete the search, that is cloud computing and
BigData technology. Such as using the map-reduce mechanism to distribute a small
set of points to each individual machine and each individual machine will return a k

nearest points of each member of the small set.
In designing closet pair algorithm, Rabin discovered a fundamental technology

related to geometric computing. This section will introduce his method[31].
Rabin’s the closest pair problem is the first randomized algorithm. It was discov-

ered even before randomized prime number testing. This algorithm has historical
importance in computational complexity not only in computational geometry. In
fact, Rabin’s algorithm is an digitization algorithm. It can also be viewed as a digital
geometry method.

For a set with n elements, the brute-force method meaning calculate the distances
for all pairs needs O(n2) time. If we select the divide-and-conquer method it uses
O(nlogn) [12].

Rabin’s randomization algorithm only takes O(n) time. In the proof of the algo-
rithm, the technique of building the recurrence equation for the algorithm analysis
is somewhat similar to the proof of the Chan’s Convex hull algorithm O(n log (h)).
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We call this type of digitization the Rabin’s digitization. Rabin’s algorithm is a
digitization algorithm. We can modify his idea to get a definitive algorithm:

Algorithm 15.1 Rabin’s algorithm for digitization

Step 1 Random pick N pair (N = √
(n)) find the minimum distance d

Step 2 Use d to be the length of the square (or cube) for unit grids in Euclidean
space. The array of the grid is ((xmax − xmin)/d) × ((ymax − ymin)/d)

Step 3 Scan through n points and get all point indexes in the grid. Mark all filled
gird meaning those grid square must contain at least one point.

Step 4 Build two hash tables for points and build a graph with neighboring link

Linking all filled squares together will cost O(n). To give a complete analysis of this
algorithm is beyond the scope of this book. We can just assume that there are half
point is just in the square containing one element. for all other squares, we select√

(N ) to get smaller dnew for digitizing the points. So the total complexity is

O(n) + O(n/2) + O(n/4) + ... = O(n)

The expect time is O(n) and worst case of the algorithm is O(nlogn). For each
filled square, we check the distance pairs inside of the square and the distance pairs
in its adjacent squares.

Some other resources for this algorithm are available in [26] and a detailed algo-
rithm was presented in [22] S. Suri requires each square or cube contains only O(1)
points for this algorithm the algorithm analysis will be simpler [33]. This may be the
original thought of Rabin. We can modify his idea to get a definitive algorithm:

Algorithm 15.2 Modified Rabin’s algorithm for digitization

Step 1 Random pick N pair (N = √
(n)) find the minimum distance d.

Step 2 Use d to be the length of the square (or cube) for unit grids in Euclidean
space. The array of the grid is ((xmax − xmin)/d) × ((ymax − ymin)/d).

Step 3 Scan through n points and get all point indexes in the grid. Mark all filled
gird meaning those grid square must contain at least one point.

Step 4 Build two hash tables for points and build a graph with neighboring link.
Step 5 If a d × d contains more than

√
(n) splite that in half or select t to find dist

to split.
Step 6 Repeat and until all cells contain less than

√
(n).

This algorithm will beO(n(logn)) such a digitization is better than a quadtree method.
Identify all square that has at least an element, scan all points to identify the locations
of the square. Mark it as filled square.

15.4.1 Relationship to Cloud Computing

For m-dimensional problem it will be the same. This is an idea of digitization. Using
the property of digitization, the neighboring is the limited at least in low-dimensions.
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It can apply to the problem in cloud density, counting, and splitting quad tree and
octree for wireless communications such as balance the resource use for random and
moving stations.

There two ways to do a square covering for quadtree type. Split a square or cube
until only one point is inside of the cube. This splitting process will save most of
space. Possibly the best in terms of space storage. This process will be O(n log n)
time.

Use Rabin’s method but for all squares that contains more than one point, we only
split it use the same manner. So this method will be much faster. The average time
will be O(n) or at most O(n log log n) [14].

It is also true that we can set a constant limit for the points a square can hold too.
Finding a minimum numbers of squares in different sizes to cover all spatial points
will be interesting too.

15.5 BigData, Manifolds, and Advanced Measurement
in Geometry

BigData and Data Science contain the huge Opportunity for Scientists, Engineers
and IT Business. It also provides tremendous opportunity to mathematicians and
computer scientists to discover new mathematics and new algorithms. In this section,
we will attempt to outline the different aspects, a mathematician or computer scientist
may be interested.

15.5.1 What is the Bigdata Technology

BigData technology is about the data sets from many sources and collections such
as different format of data. It also has the properties of massive storage, and it
requires fast analysis through a large number of computing devices including cloud
computers. It may yield revolutionary breakthroughs in science and industry. BigData
is a phenomenon in the current appearance of problems regarding data sets. The
characteristics of BigData are: (1) Large data volume, (2) Use of cloud computing
tech, (3) High level of security, (4) Potential business values, (5) Many different data
sources.

Modern Big-Data computing is also called Petabyte age: Petabyte (PB) means
1MB × 1GB. For instance, Google give each person 1 G of 1 billion People in the
World, the data volume will be 1G × 1G = 1000PB.

The software tool for BigData is called Apache Hadoop, which is an open-
source software framework that supports data-intensive distributed applications and
it enables applications to work with thousands of computation-independent com-
puters and petabytes of data. Hadoop was derived from Google’s MapReduce and



15.5 BigData, Manifolds, and Advanced Measurement in Geometry 309

Google File System (GFS). MapReduce is a technological framework for processing
parallelize-able problems across huge datasets using a large number of comput-
ers (nodes), in the meantime, MapReduce can take advantage of locality of data,
processing data near the storage in order to reduce the distance transmission costs.

MapReduce consists of two major steps: “Map” and “Reduce.” They are similar
to original Fork and Join operations in distributed systems, but considering very
large numbers of computers that can be constructed based on Internet based cloud.
In the Map-step, the master computer (a node) first divides the input into smaller
sub-problems and then distributes them to worker computers (worker nodes). A
worker node may also be a sub-master node to distribute the sub-problem in even
more smaller problems that will form a multi-level structure of a task tree. The worker
node can solve the sub-problem, and report the result back to its up level master node.
In the Reduce-step, the master node will collects the results from the worker nodes,
and then it combines the anwsers as an output (solution) of the original problem.

Data Science is a new terminology for BigData. How to make a Petabyte problem
to be parallelize-able is the key to use Hadoop. What is Data Science? Data con-
tains science. However, data science has a different approach than that of classical
mathematics, which uses mathematical models to fit data and to extract informa-
tion. Moreover, some mathematical and statistical tools are expect to find some
fundamental principle behind the data.

For instance, to find rules and properties of the data set and among different data
sets—the relationship of connectivity between data sets. The new research would be
more likely to include partial and incomplete connectivity, which is also a hot topic
in the current research of social networks. Previously developed technology such as
numerical analysis, graph theory, uncertainty, and cellular automata will play some
role.

However, developing new mathematics is more likely to be key for the scientists.
A good example for face recognition, finding a person in a data base with 10 million
pictures, the pictures are randomly taken. To find a best match of the new pictured
person needs tremendous calculations.

It is related to person’s orientation in each picture. Let’s assume that we have 100
computers but they are not available for all time. One can build a tree structures of
these 100 computers. When a computer is available, it will get task from its father
node. When it is not available, it will return its job to its father node.

Not every problem with Massive data set can be easily split into sub problems, it
depends on connections of its graph representation. For instance, a NP hard problem
such as the traveling salesman problem, the sub-problem with less nodes does not
help much for the whole problem. However, for a scoring problem, a solution of sub
problem would be helpful. If a merge-sort algorithm is used, Map-step can give a
sub problem to its worker nodes, “Reduce” step only takes a linear time to merge
them.
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15.5.2 α Shape, Digital α Shape, and Homology Computing

Finding topological structure of the spatial data, has the property of divide-and-
conquer or map-reduce meaning that a problem can be split into sub problems than
get the merge when the sub problem was solved individually. This is because that
the structure of a topological space in the cell-complex format can be partitioned
into subspace. However the merge process (reduce process) may need not only just
combining. For instance it may or may not be connected. We still need to recognize
the structure in the father node.

In the cloud data persistent analysis in Chap. 9, the α shape (growing the size of
the ball, some author used it as dual-shape of α shape.) will get a dynamic structure
of the topological homology groups.

The following strategy of the process is natural: partition the space, Euclidean En

into m nodes, each node can be a sub-father node. Let S is a set of points, a procedure
will send each point to the node that only handle the corresponding partition, a regular
n-cube subspace. When all data points are distributed, each node (computer) will
start its own calculation on the α shape and homology associating with the value α. In
the merge (reduce) process, there are two ways: (1) Use the father node to check the
boundary of partition and the manifold or complex to be merged. (2) Instead of use
the father node, just use son-node to merge its neighboring partitions (nodes). And
report to the father node. This merge can be done in a hierarchy manner. Linking two
manifold or complex along the edges of regular n-cube subspace was not trivial but
has a fast algorithm. It just the same as the quad-tree segmentation merge process.
Chen designed an algorithm for this merge that was also cited in a Canon’s patent
application [2].

The homology group may add the fact on the boundary, they may generate more
k-holes. To be evenly distributing the tasks to each node-computer, we always use
the following assignment schema: if u,v are two neighboring nodes, we now just
assume that u ∩ v is a (n− 1)-hyperplane for now. v take care the merge if u is coded
before v, meaning that the index of u given by the father node is smaller than v’s. For
instance, the coordinate of u is smaller than v.

The (dual) α shape uses n-balls to extend the data volume it is time expensive
since the calculation of the intersection of n-balls is not simple. We can use digital
n-cubes to replace the n-balls in the homology computing. A linear algorithm for
digital α shapes is given in [6].

A challenge question is that how do we computationally attach a complex to a
complex to get the correct homology groups.

15.5.3 Advanced Manifold Learning

General manifold learning and dimension reduction is still the open problem. It is
highly related to the homology of data set. The existing methods, even well devel-
oped, such as isomaps and Laplacian eigenmaps methods. They are not a definitive
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mathematical approaches to get the solutions to most of data sets. They are still the
specialized methods for some specific data sets.

The current research has started to calculate Riemann manifold in 3D and high
Dimensional Euclidean space [25]. Especially to find Riemann metric and curvatures
based on discrete methods. In fact, one must know the Riemann manifold in order
to get the first or second form of Riemann manifolds.

Guillemard has made extensive work on the manifold learning in his PhD
dissertation [16]. The α shape was combined with dimension reduction in the
dissertation.

Another related problem is to find a subspace such as a plane that contains most
of the points for a data set given. This could be another version of manifold learning.

This problem is called subspace recovery: Given m points in Rn. If many of
them are contained in a t-dimensional subspace T can we find it using an efficient
algorithm?

Most of researchers use statistical method to find the subspace [32].
This problem also has a definitive version in computing theory: Is there a

polynomial algorithm that can find a subspace that contains N elements?
In [18], Hardt and Moitra proved a theorem related to find a subspace: If a set

of m points in Rn has strictly more than dm
n

points in a d-dimensional subspace
(with a condition), then there is a deterministic polynomial time algorithm to find a
t-subspace, t ≤ d, that has more than dm

n
points.

To understand this problem, we can assume that A plane has 100 points, we want
to determine if a line that contains at least 50 points. This problem is not very easy to
solve since we can make the 50 points on a line intentionally. And the other points just
random arranged. Using statistics, we use the least square method to do regression.
But for a determinative solution, it is not so obvious [18, 21].

15.5.4 Integral Points Counting

Counting the integral points in a polyhedra is a way to estimate the volume of the
polyhedra. This is an important measure for a geometric object. As we know that
there is no simple extension of Pick’s theorem in 3D, the problem of counting the
integral points is not easy to solve.

One can use an algorithm to count the integer points. The algorithm is simple if
one can determine whether or not a point is inside of the polyhedra.

However, in this case, one may need to determine all integer neighbors of the 3D
polygons in the polyhedra [23].

Another algorithm is called the odd-even test, but this algorithm needs to scan
through every integer point in the space. It may be very slow if the polyhedra is
relatively much smaller than the space we considered.

The idea of the odd-even test is also simple: Let’s use 3D space as example, we
scan an integer point p along z-axis. The scanning process starts at the smallest value
point in z-axis. To check how many polygons (on the boundary of the polyhedra)
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have passed to the recent location at p. If the number is odd, that means p is inside
of the polyhedra; otherwise, p is outside. As we said this process needs check every
integer point in the space.

A more sophisticated method was given in [1]. For a m-D polytope given by its
vertices or by its facets, the complexity appears to be O(nO(m log m)) where n is the
input size.

As a discussion question, still using 3D, the following method may obtain a fast
solution in digital approximation: (1) Assume we have vertices as the input. Use
Bresenham algorithm for each digital lines and we can get digital polygon of a
polygon. So we will get the integral boundary of the polyhedra. (2) Locate a point
inside of the polyhedra. (3) Use breadth first search to get the integer points in the
polyhedra.

Since only two points are need to be checked when scanning through the 3D grid
array.

Another algorithm use depth-first-search (DFS) and breadth-first-search (BFS) to
determine the inside integral boundary of polyhedra.

There are three digital planes are important. one is Bresenham plane the closet
to the true (original) plane. One is in the left closest to the original plane (< 1) and
another one is the right closet to the original plane.

Mark red to the left, and green to the Bresenham, and blue to right.
So if one red is inside of polyhedron its counterpart at same reference point will

be not. Most likely, the red neighbor is in the P.
It is possible one point marked as g or R, b and g. not r and b. If g=b=r means that

this point is on the exact position of digital point (define left-right plane equation >0
or <0).

Assume vertices of each polygon on the lattice points. each polygon is convex.
(otherwise it is easy to split to that). Kaufman has an algorithm to determine all
integer points inside of the convex polygon [23].

Link all inside points will be the answer. Use odd-even to decide if a point is in
or not in the polyhedron by scanning each line.

The boundary edges of each polygon in 3D. only affect its neighbor digital points.
so the red, blue, green for each polygon are limited. only need to decide among those
edge surroundings. only two polygons are concerned except the points at ending
points. all immediate neighbors are sealed.

Klette also realized that there are an envelop of cubics containing a 3D polygon.
So we mark the all cubics, the edge of the cubic plane.

We continue to use our treatment. The neighbor points at edge will be determined
with the neighboring polygon. r connected with g will change the g to r or vise versa.
We will keep all g or r in one side of the orientation.

After all, we will have either r is the closed inside or g is. to determine that. we
can link a r point to boundary of 3D domain edge if pass odd numbers of polygons
(except the edge) is inside. if pass even numbers of polygons (g points). r is in outside.

This algorithm is linear (numbers of polygons and all vertices. or size of outer
envelop with insiders and length of the array). This algorithm will be the Optimum.
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Find a point is inside a polygon or outside one just need to calculate the left-right
for each polygon line. get actual plane value to get r or b integral points. all other
things follows.

If all those points are closed (a closed connected objects in 26-connectivity) not
need not a pure manifold. Then we can use above scan algorithm to make it.

15.5.5 Advanced Measurement in Geometry

How to calculate actual length, surface area, and volume in Riemann manifolds?
One way is to transform or embed the Riemann manifold into Euclidean space. The
isometric embedding mean that the transformation maintains the length value no
change in two spaces. J. Nash proved a theorem indicating such a smooth isometric
embedding exists [17]. In particular, Nash proved: A continuously differentiable
(C1) n-Riemannian manifolds can be isometrically embedded to 2n + 1 Euclidean
space. Since a Ck manifold will have a continuous decomposition and C1 will have
Ck approximation. This theorem is enough for us for discussion.

We know there are discrete decompositions for manifolds in Euclidean space. It
is also true that for any Riemannian manifolds, we will have the digital form. So
we can use simplicial complexes to get the approximation and use the method of
polyhedras discussed in above sections to calculate the volume. For digital k-cell
decomposition of a manifold, the volume of the manifold is not near the value of
total integral points inside of the manifold.

On the other hand, some estimation methods for length and areas are also useful.
For instance, it is not hard to know that a circle in 2D has the shortest length if the area
of a region is fixed. In other words, give a closed curve C, the area that is bounded
by C will reach the maximum if C is a circle. So we have the following inequality
called isoperimetric inequality [20, 29]:

4πAreaC ≤ (length(C))2

Another inequality is to measure the opposite direction of an inequality about the
length vs area. Let’s define the systole as the least length of a noncontractible loop
in a space X. Loewner proved a theorem for systole inequality for every metric. It
states for a torus T , (Note: A torus is also called a 2-torus; 1-torus is a circle; n-torus
is C × C × · · · × C where C is a circle.) we have,

systole2 ≤ 2√
3

AreaT

Pu proved another inequality for the real projective plane. A general result was
proved by Gromov [30, 15]:

systolen ≤ cn · volumeM ,
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systole here is the length for closed curves of an essential n-manifold M . cn is a
constant only depending on the dimension of M .

Isometric embedding a Riemann manifold to Euclidean space, then we can get its
measurement digitally or discretely. The genus calculation can also be found use the
method discussed in Chap. 14. Calculation of systole in digital case or discrete case
is an approximation measurement. The question for researchers in this field could be
find the error estimation of such a digitization or discretization.

Unlike Riemann geometry, one might only know the relationship of some mea-
sures such as length or area in differential forms. In digital or discrete geometry, we
can actually know all real values for length or area etc. Even though one does not
know how to use the mathematical function to discribe a digital or discrete manifold,
we know actual manifolds in space. That is kind of tread off.

Digital method dose not need to do a triangulation or a simplicial decomposition.
It just need to count the integer number to get a measurement estimation.

15.5.6 Discussion of Area Measurement of Shapes in Grid Space

The area of a shape in grid space is the total points included in the shape including
the edge of the shape. This intuitive definition is most used.

Why we can not just use Pick’s formula as the definition of area of a geometric
shape in 2D. This is because, the meaning of a grid point may not be just treated as
a point in Euclidean space.

A grid point may mean many things: Could be a single point, an area near the
point, or a neighborhood of the point, a open or close set.

If we use Pick’s formula as the area, then Let U the the m × n region with area
(m − 1) × (n − 1).

A is a connected region (simply connected) polygon. Pickarea(U ) �= Pickarea(A)−
Pickarea(U −A) since there some gap between point Pickarea A and Pickarea (U −A).

Therefore, the most reasonable measurement of areas of grid point sets is just the
count of points in the set.

Digital points are more like a physical point or quantum points. It is not just can be
treated as the Euclidean point. It may have length, area, or volumes. It is depended on
the need of the calculations. When calculate the volume, one may need to consider
the half point location as well (just like the matching cubes).

The boundary of an area of digital object is not the boundary points, it is a
continuous curve (we do not know precisely) that best fit the points. A mathematical
curve observed in real world, we cannot touch, we only can feel its digital or discrete
approximation.
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15.6 Historical Concerns: From Geometry of Numbers
to Applied Discrete Geometry

Although digital geometry, discrete geometry, geometry, and topology have their
differences, they are closely related in computation. The main difference between
geometry and topology is the measurements. Strictly speaking, geometry must have
a metric but topology does not have to have a metric. In other words, geometry must
consider the distance between two points. However, topology does not focus on this
distance measure. At the same time, the common ground is that they both deal with
neighborhoods, meaning that they both deal with continuity and differentiability.
Discrete geometry focuses on finite points, finite line-cells, and solid-cells. It pro-
vides a way of decomposing a continuous space to finite space. Digital geometry is
for computer graphics and image processing. Even though the theory of the geometry
of numbers was discovered by Minkowski more than 100 years ago and it is related
to digital geometry, modern image processing and massive data analysis requires
efficient algorithms. These algorithms must be able to handle new geometrically
related infrastructures such as cloud data computing, which uses a large number of
computers within one network connection. Therefore, discrete geometry is highly
applicable in current hot topics such as BigData and data sciences.On the other hand,
in theory, we are still searching for concise proofs of the four-color problem and the
topological proof of the Poincare conjecture. This is not to repeat research already
done, but to seek to better understand mathematics in a more natural way.In addition
to their contributions to modern applied sciences and classical mathematics, geomet-
ric and typological computing also play important roles in other cutting-edge fields.
In quantum computing, research includes the extensive study of elliptical curves for
cryptographies and topological quantum computers for non-abelian states. Discrete
geometry and digital geometry will continue to be highly significant in the near
future.
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Glossary

Algorithm A set of steps of instructions for solving a problem.
Approximation Similar to interpolation, but approximation does not require the
new function passes the sampling values at each sample points. Because of that,
approximation is usually easy to get smoothness.
Boundary of domain The edge of domain.
Classification The process to categorize a set of elements to different classes.
Curve A one dimensional shape in which each point has neighborhood that is
homemorphic to E1.
Digital image A digital function from a 2D domain to integers.
Digital k-cell A k dimensional cell in digital space.
Digital k-manifold A digital object that is a collection of k-cells with some special
properties.
Digital space A grid space in which every element is a integer point.
Discrete space A graph-based space with geometric metric. It contains definition of
k-dimensional cells.
Domain The mathematical term for the region that holds locations. Range or co-
domain is usually used as the values.
Gradually varied function Gradually varied function is a type of discrete functions
where the values of each pair of neighbors are the sample or only have small change.
Gradually varied functions use A1,. . . ,Am to represent the value and level changes.
It is essentially to translate the discrete function into digital functions in terms of
algebra. This method has the limitation to deal with derivatives.
Interpolation Extend the sample data (usually a few points) into entire region or
domain. It will be the function (or surface for 2D) for the region. Interpolation
requires the new function passes the sampling values at each sample points.
Manifold A k dimensional shape in which each point has neighborhood that is
homemorphic to Em.
Sample Points A group of samples collected from a region that is usually a rectangle,
but could be any other shapes. The sample point has two components: one is the
location as (x,y) in 2D or (x,y,z) in 3D; another is the value in real numbers.
Segmentation Partition a image into different components.
Surface A two dimensional shape in which each point has neighborhood that is
homemorphic to E2.
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0-cell, 28
0-connected, 29
1-cell, 28
2-cell, 28
26-connected, 27
3-cell, 28
3-sphere, 251
4-adjacency, 27
4-connected, 27
6-connected, 27
8-adjacency, 27
8-connected, 27
Σm, 30
Γ (k)(S), 79
λ-connectedness, 218

A
Abelian group, 156
Abundant point, 117
Algorithm, 22
Approximation, 190
Array, 91

B
B-spline, 192
B-spline surfaces, 193
Barycentric subdivision, 149
Bayesian networks, 225
Bernstein basis polynomial, 191
Bernstein polynomial, 191
Bezier curve, 191
Bezier polynomial, 191
Big pixel, 207
BigData, 195
BigData technology, 308
Boundary of surface, 114

Breadth first search, 203
Bresenham’s Line Algorithm, 60

C
Catalan number, 5
Cell complex, 153
Cell complexes, 153
Cellular complex, 110
Chain code, 53
Chaitin-Kolmogorov complexity, 90
Circle packing, 240
Classification theorem, 74
Clip-level, 58
Closest pair problem, 181
Closet pair, 306
Cloud computing, 307
Cloud data, 215
Computational geometry, 6
Computerized tomography, 197
Conforming mapping, 238
Connected component, 56
Connected graph, 19
connection, 243
Connectivities, 52
Continuous function, 40
Convex hull, 140
Convolution, 196
Correlation, 194
Covariance, 194
Covariance matrix, 194
Cube, 132
Curvature, 232
Curvature tensor, 243
Curve, 49
Curve interpolation, 190
CW−complexes, 45
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D
Data reconstruction, 198
Data science, 195
Data structure, 91
Delaunay decomposition, 140
Delaunay triangulation, 45
Derivative, 40
Differentiable function, 40
Differentiable manifold, 232
Differential geometry, 232
Digital curvatures, 253
Digital curve, 32
Digital function, 185
Digital Gaussian curvature, 255
Digital geometry, 6
Digital mean curvatures, 256
Digital space, 6, 26
Digital surface, 71
Digital topology, 32
Dijkstra’s algorithm, 204
Dimension reduction, 215
Direct adjacency, 27
Dirichlet problem, 189, 237
Discrete curve, 51, 111
Discrete deformation, 293
Discrete manifold, 33, 123
Discrete minimum surface, 246
Discrete space, 30
Discrete surface, 113
Dynamic programming, 204

E
Edge, 18
Eigenvalue, 42
Eigenvector, 42
Elliptical curve cryptography, 167
Embedding, 131
Equivalence relation, 219
Euler characteristic, 154
Euler theorem of planar graphs, 52
Euler’s theorem, 257

F
FH, 214
Finite topology, 160
Fitting, 190
Fourier transform, 196
Function, 40
Fundamental forms, 234
Fundamental group, 155

G
G′ 	 G, 19
Gauss-Bonnet theorem, 254

Gaussian curvatures, 233
General adjacency, 27
Genus, 154
Geometric equivalence, 75
Google search, 205
Gradually varied condition, 188
Gradually varied function, 186
Graph, 18
Graph homomorphism, 25
Graph isomorphism, 25
Graph theory, 4
Greedy algorithm, 204
grid-cell complexes, 160
Group, 156

H
Haar wavelets, 198
Harmonic function, 190, 237
Hausdorff distance, 182
Hole Counting, 61
Homeomorphic, 43, 150
Homeomorphism, 43, 149
homology groups, 159
Homotopy, 155
Homotopy groups, 157

I
Indirect adjacency, 27
Interpolation, 190
Isometric transformation, 41
Isoperimetric inequality, 313
Isosurface, 102, 132

J
Jordan Curve Theorem, 296

K
k-cell, 28, 81
k-complex, 160
k-means, 212
k-nearest neighbor method, 212
kNN, 212
k′-adjacent, 78
Kruskal’s algorithm, 204

L
Lp space, 176
Lagrange interpolation, 190
Lagrange polynomial, 190
Laplace-Beltrami equation, 246
Laplacian equation, 190
Laplacian matrix, 190
Length, 172
Line adjacent, 29
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Line connected, 29
Line-cell, 28
Linked list, 91

M
Machine learning, 212
Manifold, 43, 150
Manifold learning, 215
MapReduce, 309
Marching cubes, 132
Matching, 201
Mathematical morphology, 216
Matrix, 41
Mean, 194
Mean curvatures, 233
Mean shift, 213
Memory address, 92
Metric, 176
Minimal closed, 113
Minimal cycle, 109
Minimal surface, 237
Minimum cut, 207
Minimum spanning tree, 23, 202
Minkowski’s theorem, 64
Mobius band, 100
Multi-resolution, 198

N
Neighbor, 28
Neighborhood, 44
Non-orientable, 100
Non-uniform rational B-splines(NURBS), 193
Normalized cut, 207
Normals of closed curves, 119
NP-complete problem, 90

O
Octree, 210
Orientable, 102
Outlier tracking, 198

P
p-norm, 176
PageRank, 205
Parallel transport, 235
Parallel-move, 72, 81
Parametric representation, 53
Partial graph, 19
Partial relation, 225
Path, 218
Persistent analysis, 216
Persistent homology, 216
Pick’s theorem, 63
Piecewise linear approximation, 51

Pixel, 7
Plateau’s problem, 245
Poincare conjecture, 251
Point adjacent, 29
Point connected, 29
Point space, 136
Polygon, 25
polyhedron, 175
Polynomial time, 90
Principal component, 195
Principal curvatures, 233
Probability, 225
Pseudo-curve, 111

Q
Quad-tree, 222
Quadtrees, 209
Queue, 93

R
R-tree, 210
Radon transform, 197
Random graph, 225
Randomized algorithm, 306
Raster space, 136
Region growing, 221
Regular i-cell, 84
Ricci flow, 242
Riemannian geometry, 41, 232
Riemannian manifold, 232
Riemannian metric, 232
Robust subspace recovery, 202
Rotation, 41

S
segmentation, 221
Semi-curve, 111
Semi-surface, 113
Social networking, 211
Shortest path, 203
Shortest path algorithm, 203
Side-gradually varied, 294
Simple graph, 18
Simple path, 19
Simple surface points, 74
Simplicial approximation, 149
Simplicial complex, 151
Simplicial decomposition, 44
Site, 45
Smooth isometric embedding, 313
Smooth manifold, 43, 150
Space complexity, 89
split-and-merge segmentation, 221
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Stack, 93
Standard deviation, 194
Subgraph, 19
Support vector machine, 214
Surface area, 173
Surface decision, 93
Surface fitting, 192
Surface orientation, 100
Surface tracking, 93
surface-cell, 28
SVM, 214
Systole, 313

T
Thinning, 217
Thresholding, 58
Time complexity, 89
Topological space, 43
Topologically equivalent, 43, 150

Topology, 43
Translation, 41
Tree, 222
Triangulation, 30, 44

U
Undirected graph, 18
Uniformity measure, 221

V
Variance, 194
vertex, 18
Volume, 174
Voronoi diagram, 45
Voxel, 7

W
Wavelet transform, 197
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