

Bernd Jihne

Digital
Image Processing

Concepts, Algorithms,
and Scientific Applications

Third Edition
with 168 Figures and 16 Color Plates

Springer-Verlag
Berlin Heidelberg GmbH

Dr. Bernd Jahne

Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093-0230, USA
E-mail: bjachne @ucsd.edu

ISBN 978-3-540-59298-3 ISBN 978-3-662-03174-2 (eBook)
DOI 10.1007/978-3-662-03174-2

Library of Congress Cataloging-in-Publication Data
Jahne, Bernd
Digital image processing: concepts, algorithms, and scientific applications /
Bernd Jahne. -- 3rd ed.
Includes bibliographical references and index.
1. Image processing -- Digital techniques. I. Title.
TA 1637.J34 1995
621.36'7--dc20

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH.

Violations are liable for prosecution act under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1991, 1993 and 1995
Originally published by Springer-Verlag Berlin Heidelberg New York in 1995
The use of general descriptive names, registered names, trademarks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera ready by author

SPIN: 10498784 61/3020-543 2 1 0 - Printed on acid -free paper

Preface to the Third Edition

Digital image processing is a fascinating subject in several aspects. Human beings
perceive most of the information about their environment through their visual sense.
While for a long time images could only be captured by photography, we are now at
the edge of another technological revolution which allows image data to be captured,
manipulated, and evaluated electronically with computers.

With breathtaking pace, computers are becoming more powerful and at the same
time less expensive, so that widespread applications for digital image processing emerge.
In this way, image processing is becoming a tremendous tool to analyze image data in
all areas of natural science. For more and more scientists digital image processing will
be the key to study complex scientific problems they could not have dreamed to tackle
only a few years ago. A door is opening for new interdisciplinary cooperations merging
computer science with the corresponding research areas.

Many students, engineers, and researchers in all natural sciences are faced with the
problem of needing to know more about digital image processing. This book is written
to meet this need. The author — himself educated in physics — describes digital image
processing as a new tool for scientific research. The book starts with the essentials
of image processing and leads — in selected areas — to the state-of-the art. This
approach gives an insight as to how image processing really works. The selection of the
material is guided by the needs of a researcher who wants to apply image processing
techniques in his or her field. In this sense, this book tries to offer an integral view of
image processing from image acquisition to the extraction of the data of interest. Many
concepts and mathematical tools which find widespread application in natural sciences
are also applied in digital image processing. Such analogies are pointed out, since they
provide an easy access to many complex problems in digital image processing for readers
with a general background in natural sciences. The discussion of the general concepts is
supplemented with examples from applications on PC-based image processing systems
and ready-to-use implementations of important algorithms. Part of these examples
are demonstrated with BioScan OPTIMAS, a high-quality image processing software
package for PC-based image processing systems (BioScan, Inc., Edmonds, WA). A
special feature of this book is the extensive treatment of three-dimensional images
and image sequences. The synthetic images used for illustration were designed and
computed with Caligari Broadcast (Octree Software, N.Y.) on a Commodore Amiga by
AEON Verlag, Hanau, FRG.

VI

After studying this book, the reader should be able to apply even quite complex
digital image processing techniques in his or her research area. This book is based on
courses given by the author since 1986 in the Physics Department and the Interdisci-
plinary Center for Scientific Computing at the University of Heidelberg. It is assumed
that the reader is familiar with elementary matrix algebra as well as the Fourier trans-
form. Wherever possible, mathematical topics are described intuitively making use of
the fact that image processing is an ideal subject to illustrate even complex mathemat-
ical relations.

I am deeply indebted to the many individuals who helped me to write this book. I do
this by tracing its history. In the early 1980s, when I worked on the physics of small-scale
air-sea interaction at the Institute of Environmental Physics at Heidelberg University,
it became obvious that these complex phenomena could not be adequately treated with
point measuring probes. Consequently, a number of area extended measuring techniques
were developed. Then I searched for techniques to extract the physically relevant data
from the images and sought for colleagues with experience in digital image processing.
The first contacts were established with the Institute for Applied Physics at Heidelberg
University and the German Cancer Research Center in Heidelberg. I would like to thank
Prof. Dr. J. Bille, Dr. J. Dengler and Dr. M. Schmidt cordially for many eye-opening
conversations and their cooperation.

Then I contacted the faculty for computer science at Karlsruhe University and the
Fraunhofer Institute for Information and Data Processing in Karlsruhe. I learnt a
great deal from the course of Prof. Dr. H.-H. Nagel and Dr. R. Kories on “Algorithmic
Interpretation of Image Sequences” that I attended in the summer term 1986.

In April 1989, a German edition of this book was published by Springer-Verlag.
This is not a straightforward translation, but a completely revised edition with many
augmentations, notably with many more practical examples, listings of important al-
gorithms, a new chapter on shape, updated information on the latest image processing
hardware, a new set of color tables, and countless small improvements.

I would like to express my sincere thanks to Dr. Klaus Riemer. He drafted several
chapters of the lecture notes for my courses at Heidelberg University. He also designed
a number of drawings for this book. Many individuals have reviewed various drafts of
the manuscript. I would like to thank Robert I. Birenbaum, Thomas Fendrich, Karl-
Heinz Grosser, Jochen Klinke, Dr. Dietmar Wierzimok and many others for valuable
comments and suggestions on different parts of the manuscript. I am mostly grateful
for the help of my friends at AEON Verlag. They sacrificed many night hours for
proofreading, designing computer graphics, and providing general editorial assistance.

Many researchers and companies provided me with material from their research.
The following list shows the many applications of digital image processing:

e Dr. K. S. Baker, Scripps Institution of Oceanography, La Jolla, California; R. C.
Smith, University of California at Santa Barbara, California; O. B. Brown, Rosenstiel
School of Marine and Atmospheric Science, University of Miami, Florida

e Dr. J. P. Burt, David Sarnoff Research Center, Princeton, New Jersey

e Dr. P. de Loor and Drs. D. van Halsema, Physics and Electronics Laboratory, TNO,
Den Haag

e Dr. J. Dengler, Department of Medical and Biological Computer Science, German

VII

Cancer Research Center, Heidelberg, and Dr. M. Schmidt, Alfred Wegener Institute,
Bremerhaven

e Dr. W. Enkelmann, Fraunhofer-Institute for Information and Data Processing, Karls-
ruhe

o Prof. Dr. G. Granlund, Computer Vision Laboratory, University of Linkoping

o Dr. R. Kories, Fraunhofer-Institute for Information and Data Processing, Karlsruhe

e Prof. Dr. E. C. Hildreth, Center for Biological Information Processing, Massachusetts
Institute of Technology, Cambridge, Massachusetts

e Prof. Dr. A. C. Kak, School of Electrical Engineering, Purdue University, West
Lafayette, Indiana

¢ Dr. K. Riemer and Dr. D. Wierzimok, Institute for Environmental Physics, University
of Heidelberg

o Dr. B. Schmitt and Prof. Dr. D. Komitowski, Department for Histodiagnostics and
Pathomorphological Documentation, German Cancer Research Center, Heidelberg

e J. Steurer, Institute for Communications Technology, Technical University of Munich

e Prof. Dr. J. Wolfrum and Dr. H. Becker, Institute for Physical Chemistry, University
of Heidelberg

o Imaging Technology Inc., Woburn, Massachusetts, and Stemmer PC-Systeme GmbH,
Munich

o Matrox Electronic Systems Limited, Dorval, Quebec, and Rauscher GmbH, Munich

o Techex Computer + Grafik Vertriebs GmbH, Munich

I would also like to thank Prof. Dr. K. O. Miinnich, director of the Institute for
Environmental Physics. From the beginning, he was open-minded about new ideas to
apply digital image processing techniques in environmental physics. It is due to his
farsightedness and substantial support that the research group “Digital Image Process-
ing in Environmental Physics” could develop so fruitfully at his institute. Many of
the examples shown in this book are taken from my research at Heidelberg Univer-
sity and the Scripps Institution of Oceanography. I gratefully acknowledge financial
support for this research from the German Science Foundation, the European Commu-
nity, the National Science Foundation (OCE89 11224), and the Office of Naval Research
(N00014-89-J-3222). Most of this book has been written while I was guest professor
at the Interdisciplinary Research Center for Scientific Computing at Heidelberg Uni-
versity. I would like to thank Prof. Dr. Jager for his hospitality. I would also like to
express my sincere thanks to the staff of Springer-Verlag for their constant interest in
this book and their professional advice.

For the third edition, the proven and well-received concept of the first and second
editions has been maintained and only some errors have been corrected. However,
Appendix B (PC-Based Image Processing Systems) has been completely rewritten to
accomodate to the considerable progress in hardware during the last two years. Again,
I would like to thank all readers in advance for their comments on further improvements
or additions. I am also grateful for hints on errors, omissions or typing errors which,
despite all the care taken, may still have slipped attention.

La Jolla, California and Heidelberg, February 1995 Bernd Jahne

Contents

1 Introduction 1
1.1 Digital Image Processing — A New Research Tool 1
1.2 Components of an Image Processing System 2

1.21 Tmage Sensors.o vt i ittt 2
1.2.2 Image Storage it 6
1.2.3 Image Processing Speed, 8
1.3 Human and Computer Vision, 8
1.4 Examples of Scientific Applications 12
1.5 Hierarchy of Image Processing Operations 15
1.6 Image Processing and Computer Graphics 18

2 Image Formation and Digitization 19

2.1 Interaction between Light and Matter 19
2.1.1 Imtroduction e 19
2.12 OpaqueSurfaces0t i 20
213 Volumes o e e e e e 21
214 Light Sources i i e 22
215 Reflection 22

2.2 Imageformation 22
2.2.1 World and Camera Coordinates 23
2.2.2 Pinhole Camera Model: Perspective Projection 24
2.2.3 Homogeneous Coordinates 26
224 GeometricDistortion 28
225 DepthofFocus ennen.. 29
2.2.6 3-D Point Spread Function 31
2.2.7 Optical Transfer Function 33
2.2.8 Cross Sectional Imaging, 37
2.2.9 Stereoscopy vt i e e e e e e e e e 38
2.2.10 Tomography i it i ittt e e e 39

2.3 Digitization e e e e 40
231 Imagematrix 40
2.3.2 Moiré-Effect and Aliasing 43
2.3.3 The Sampling Theorem 45
2.3.4 Reconstruction from Samples 50

23,5 Standard Sampling e 52

Contents

3 Space and Wave Number Domain
3.1 Imtroduction o ot i e e e e e e e
3.2 The Discrete Fourier transform (DFT)
3.2.1 Theonedimensional DFT
3.2.2 The Two-Dimensional DFT
3.2.3 Periodicity
324 Symmetry e e e
3.2.5 Dynamical Rangeofthe DFT
3.2.6 Phaseand Amplitude
3.3 Discrete Unitary Transforms
3.3.1 General Properties e
3.3.2 Further Examples for Unitary Transforms
3.4 Fast Algorithms for Unitary Transforms
3.4.1 Importance of Fast Algorithms
3.4.2 The 1-D Radix-2 FFT Algorithms
3.4.3 Other 1-D FFT Algorithms
3.4.4 Multidimensional FFT Algorithms
4 Pixels
4.1 Imtroduction o i i i i it e e
4.2 Random Variables e
421 BasiCcs . . . vttt e e e e e e
422 Quantization e
423 Histograms ittt i it e e e e e e e
43 Point Operations i e e e e e
4.3.1 Homogeneous Point Operations
432 Look-UpTables.,
4.3.3 Inhomogeneous Point Operations
4.4 Dyadic LUT Operations i ittt it
4.5 Correlations and Spectra. e e
451 Random Fields
4.5.2 Correlations and Covariancesc.....
4.5.3 Spectra and Coherence L ...
5 Neighborhoods
5.1 Combining Pixels e
511 Linear Filtering i e
5.1.2 Recursive Filters and Linear Systems
5.13 Rank Value Filtering
5.2 Linear Shift-Invariant Filters
52.1 Linearity i e e e e e e e e e
5.2.2 Shift Invariance e e e e
5.2.3 Impulse Response, Transfer Function, and Eigenfunctions
524 Symmetry e e e e e e e e e e e e

5.2.5 General Properties of Linear Shift-Invariant Operators

X Contents
6 Mean and Edges 117
6.1 Smoothing. e 117
6.1.1 BoxFilters e e 117

6.1.2 Binomial Filters 122

6.1.3 Recursive Smoothing Filters 128

6.14 Median Filter e e 131

6.2 Edge Detection e 134
6.2.1 First-Order Derivative Operators 135

6.22 LaplaceFilter. e 138

6.3 FilterDesign i i e e 140
63.1 Filter Nets ittt it ieei 142

6.3.2 Filter Decomposition 146

6.3.3 Smoothing Operators 147

6.3.4 Bandpass Filters; DoG and LoG Filter 153

6.3.5 Derivative Operators i ittt i 155

7 Local Orientation 157
7.1 Imtroduction. e 157
7.1.1 Vectorial Representation of Local Orientation 159

7.1.2 Color Coding of Vectorial Image Features 159

7.2 The Quadrature Filter Set Method 160
7.2.1 Directional Quadrature Filters 160

7.2.2 Vectorial Filter Response Addition 162

7.3 The Tensor Method, 164
7.3.1 Analogy: The Inertia Tensor 166

7.3.2 FEigenvalue Analysis of the 2-D Inertia Tensor 167

7.3.3 Computing the Inertia Tensor in the Space Domain 168

7.3.4 Examples and Applications 170

8 Scales 173
8.1 Multigrid Data Structures 173
8.2 Gauss and Laplace Pyramids vu..... 174
821 Imtroduction 174

8.2.2 Algorithms for Pyramidal Decomposition 177

8.2.3 Filters for Pyramid Formation 180

824 Imterpolation 180

9 Texture 185
9.1 Imtroduction. 185
9.2 Rotation and Scale Invariant Texture Features 188
9.21 Local Variance 188

9.3 Rotation and Scale Variant Texture Features 190
9.3.1 LocalOrientation uunuun... 190

932 Local Wave Number 190

9.3.3 Pyramidal Texture Analysis 190

9.4 Fractal Description of Texture uu..... 192

Contents

10 Segmentation

10.1 Introduction
10.2 Pixel-Based Methods
10.3 Region-Based Methods . . .
10.4 Edge-Based Methods

11 Shape

11.1 Introduction
11.2 Morphological Operators . .

11.2.1 Neighborhood Operations on Binary Images
11.2.2 General Properties of Morphological Operations
11.2.3 Further Morphological Operations

11.3 Representation of Shape . .
11.3.1 Chain Code
11.3.2 Run-length Code . .
11.3.3 Quadtrees

11.4 Shape Parameters

11.4.1 Simple Geometric Parameters
11.4.2 Moment-based Shape Features

11.4.3 Fourier Descriptors .

12 Classification

12.1 Introduction
12.2 Feature Space; Clusters . .
12.3 Feature Selection; Principal-Axes Transform
12.4 Classification Techniques . .
12.5 Application

13 Reconstruction from Projections

13.1 Introduction.
13.2 Focus Series

13.2.1 Reconstruction of Surfacesin Space
13.2.2 Reconstruction by Inverse Filtering
13.2.3 Confocal Laser Scanning Microscopy v v v v v v v v ..
13.3 Reconstruction of Tomographic Images

13.3.1 Introduction
13.3.2 Radon Transform and Fourier Slice Theorem
13.3.3 Filtered Back Projection
13.3.4 Algebraic Reconstruction

14 Motion

14.1 Introduction

14.1.1 Gray Value Changes

14.1.2 The Aperture Problem
14.1.3 The Correspondence Problem
14.1.4 Motion Analysis and 3-D Reconstruction

14.2 Motion Kinematics
14.2.1 Mass points

14.2.2 Deformable Objects

XI

193
193
193
195
198

200
200
200
200
202
204
208
208
209
210
212
212
214
216

XII Contents
14.2.3 Kinematics of Projected Motion 266

14.3 Motion Dynamics o o i e e e e e 268
144 Motion Models e e e e 269
14.4.1 Motionof Points i e 270
14.4.2 Motion of Planar Surfaces 272
14.4.3 Motion in Cross-Sectional Images 274

15 Displacement Vectors 275
15.1 Introduction o i i i e e e e e e e e e e e 275
15.2 Differential Methodst 276
15.2.1 Optical Fluxo it it i it s e e e e e e e e e 276
15.2.2 Least Squares Solution of the Aperture Problem 279
15.2.3 Differential Geometric Modeling 286

15.3 Correlation Methods 289
15.3.1 Principle e e e e e e e e e e 290
15.3.2 Fast Implementation 291
15.3.3 Monotony Operator enn. 293
15.3.4 Signum of the Laplace Operator 296

16 Displacement Vector Fields 297
16.1 Introduction i e e e e e e 297
16.2 Determination of DVF by Variational Calculus 298
16.2.1 General Approach 298
16.2.2 Differential Method as a Minimal Problem 299

16.3 Smooth Displacement Vector Fields 300
16.3.1 Smoothness Constraints, 300
16.3.2 Elasticity Models it 302
16.3.3 Network Models0 iieee.. 304
16.3.4 Diffusion Models 308

16.4 Controlling Smoothness, 309
16.4.1 Smooth Displacement Vector Fields 310
16.4.2 Edge-oriented Smoothness 313
16.4.3 Region-limited Smoothness 315
16.4.4 Oriented Smoothness 315

16.5 Summaryt e e e e e e e e e e e e e e e e e 316
17 Space-Time Images 318
17.1 Motion is Orientationo, 318
17.2 Motion in Fourier Domain, 321
17.3 Velocity Filtering e e e 323
17.3.1 Projection Filters e 324
1732 Gabor Filters i e 326

17.4 1-D Motion Determination 327
17.4.1 Conversion of the Differential Method into a Filter Method 327
17.4.2 The Tensor Method 330
17.4.3 The Quadrature Filter Set Method 331
1744 The Phase Method 332
17.4.5 Accuracy of Motion Determination 334

17.5 2-D Motion Determination, 336

Contents

17.5.1 The Quadrature Filter Set Method
17.5.2 The Tensor Method
A Mathematical Preliminaries
Al MatrixAlgebra
A.1.1 Definitions
A.1.2 The Overdetermined Discrete Inverse Problem
A.1.3 Suggested Further Readings
A.2 Fourier Transformation.
A.2.1 Definition,
A.2.2 Properties of the Fourier Transform
A.2.3 Important Fourier Transform Pairs
A.2.4 Suggested Further Readings
A.3 Discrete Fourier transform (DFT).
A3.1 Definition
A.3.2 Important Properties.
A.3.3 Important Transform Pairs
A.3.4 Suggested Further Readings
B PC-Based Image Processing Systems
B.l Overview
B2 VideoInput
B.3 FrameBuffer
B4 VideoOutput
B.5 Dedicated Image Processing Hardware
B.5.1 Parallel Processing in the Video Pipeline . . .
B.5.2 Processing Windows: Area-of-Interest
B.5.3 Arithmetic Pipeline Processors
B.5.4 Filter processors
B.5.5 Histogram and Feature Extractors
B.6 Programmable Systems

B.6.1 Frame Grabbers with Programmable Processors
B.6.2 Frame Grabbers for Fast PC Bus Systems . . .
B.6.3 Portable Software Versus Dedicated Hardware

Bibliography

Index

XIII

336
337

341
341
341
342
344
344
344
345
346
346
346
346
347
348
348

349
349
350
354
355
356
356
357
357
358
358
358
359
359
360

370

376

1 Introduction

1.1 Digital Image Processing — A New Research
Tool

From the beginning of science, visual observation has played a major role. At that
time, the only way to document the results of an experiment was by verbal description
and manual drawings. The next major step was the invention of photography which
enabled results to be documented objectively. Three prominent examples of scientific
applications of photography are astronomy, photogrammetry, and particle physics. As-
tronomers were able to measure positions and magnitudes of stars accurately. Aerial
images were used to produce topographic maps. Searching through countless images
from hydrogen bubble chambers led to the discovery of many elementary particles in
physics. These manual evaluation procedures, however, were time consuming. Some
semi- or even fully automated optomechanical devices were designed. However, they
were adapted to a single specific purpose. This is why quantitative evaluation of images
never found widespread application at that time. Generally, images were only used for
documentation, qualitative description and illustration of the phenomena observed.

Nowadays, we are in the middle of a second revolution sparked by the rapid progress
in video and computer technology. Personal computers and workstations have become
powerful enough to process image data. They have also become cheap enough to be
widely used. In consequence, image processing is turning from a specialized science in
areas such as astronomy, remote sensing, electrical engineering, and computer science
into a standard scientific tool. Applications in image processing have now been applied
to virtually all the natural sciences.

A simple example clearly demonstrates the power of visual information. Imagine
you had the task to write an article about a new technical system, for example, a new
type of a solar power plant. It would take an enormous effort to describe the system
if you could not include images and technical drawings. The reader of your imageless
article would also have a frustrating experience. He would spend a lot of time trying
to figure out how the new solar power plant worked and he might end up with only a
poor picture of what it looked like.

Technical drawings and photographs of the solar power plant would be of enormous
help for the reader of your article. First, he would immediately have an idea of the
plant. Secondly, he could study details in the drawings and photographs which were not

2 1 Introduction

described in the text, but which caught his attention. Pictorial information provides
much more details, a fact which can be precisely summarized by the saying that “a
picture is worth a thousand words”.

Another observation is of interest. If the reader later heard of the new solar plant,
he could easily recall what it looked like, the object “solar plant” being instantaneously
associated with an image.

1.2 Components of an Image Processing System

In this section, the technical innovations that enabled the widespread application of
image processing in science are briefly reviewed. It will outline the capabilities of
modern image processing systems and the progress in image sensors, image storage,
and image processing.

1.2.1 Image Sensors

Digital processing requires images to be obtained in the form of electrical signals. These

signals can be digitized into sequences of numbers which then can be processed by a

computer. There are many ways to convert images into digital numbers. Here, we will

focus on video technology, since it is the most common and affordable approach.

The milestone in image sensing technology was the invention of semiconductor pho-
todetector arrays. There are many types of such sensors, the most common being the
charge coupled device or CCD. Such a sensor consists of a large number of photosensitive
elements. A typical high resolution CCD sensor (RS 170 norm) has 486 lines of 768
elements on a 10.5 x 11 gm grid. During the accumulation phase, each element collects
electrical charges, which are generated by absorbed photons. Thus the collected charge
is proportional to the illumination. In the read-out phase, these charges are sequentially
transported across the chip from sensor to sensor and finally converted to an electric
voltage.

Semiconductor imaging sensors have a number of significant advantages:

e Precise and stable geometry. This feature simply results from the manufacturing pro-
cedure. Geometric distortion is virtually absent. More important, the sensor is stable
in position, showing only a minor temperature dependence due to the low linear ther-
mal expansion coefficient of silicon (2-10~6/K). These features allow precise size and
position measurements. A new measuring technology named videometry is emerging.
We might think that because of the limited number of sensor elements only quite
coarse measurements are possible in comparison with other physical measurements.
We will learn later, in section 17.4.5, that the positions of objects can be determined
with accuracies well below a tenth of the distance between two sensor elements. This
degree of accuracy can, of course, only be gained if the other components in the
camera system do not introduce any significant error. Also, the geometric distortion
caused by the camera lens has to be taken into consideration (section 2.2.4).

1.2 Components of an Image Processing System 3

e High sensitivity. The quantum efficiency, i.e., the fraction of elementary charges
generated per photon, is close to one. However, commercial CCDs cannot be used at
low light levels because of the thermally generated electrons. But if CCD devices are
cooled down to low temperatures, they are among the most sensitive imagers. Such
devices are commonly used in astronomy and are about one hundred times more
sensitive than photographic material.

o Small and rugged. A final advantage is the small size of the sensor and its insensitivity
to external influences such as magnetic fields and vibrations.

Images are not restricted to visible light. Nowadays, imaging sensor systems are
available for the whole range of the electromagnetic spectrum from gamma radiation to
radio waves. In this way, the application range of digital image processing techniques
has broadened enormously. To a large extent, this development has been initiated by
astronomy. Astronomers have no other way to obtain knowledge about the distant
objects they are studying than by measuring the faint emitted radiation. Thus it was
natural that they developed and continue to develop sensors for the widest possible
range.

These considerations lead us to the conclusion that a scientist using an image pro-
cessing technique is not interested in the image brightness itself, but in specific physical,
chemical, or biological characteristics of the objects he or she is studying. The elec-
tromagnetic radiation collected on the image plane is only used as a medium to learn
about the features of interest.

The following example is taken from satellite oceanography. Plate 1a shows an image
of the coastal Pacific in Southern California taken with the Coastal Zone Color Scanner
(CZCS) in the visible green/blue range. The light emitted from the ocean surface water
in this spectral region is basically determined by the chlorophyll concentration. Thus
plate la directly shows the chlorophyll concentration in a pseudo color code as indicated
in the color plate.

The same area was also observed by the NOAG6 satellite at the same time in the far
infrared. The radiation in this wavelength region is related to the ocean surface temper-
ature (plate 1b). The temperature and chlorophyll concentration show similar spatial
patterns which allow different water masses to be distinguished and ocean mixing and
biological activities to be studied. Provided that the parameters can be determined ac-
curately enough and without bias, the area extended measurements from satellites yield
a much more detailed view of these processes than profiles taken from ships. Satellite
images taken simultaneously in many different spectral regions, so-called multichannel
images, have become a very valuable tool in remote sensing.

Microwaves and radio waves allow active remote sensing. These waves with wave-
lengths from meters to millimeters can be sent via an antenna onto the ocean surface.
Because of the roughness of the sea surface, i.e., small-scale water surface waves, part
of the emitted radiation is scattered back in all directions. Thus the power received by
the satellite antenna contains a world of information about processes influencing the
small-scale waves on the ocean surface [de Loor and Brunsveld van Hulten, 1978).

In the right margin of figure 1.1 in the mud-flats between the two islands, strong
variations in the radar backscatter can be observed which first puzzled scientists con-
siderably. Then it turned out that they were caused by a complex chain of interactions.

4 1 Introduction

Figure 1.1: Radar image of the Dutch coast including the islands of Vlieland and Terschelling taken
with the synthetic aperture radar of the SEASAT satellite on October 9, 1978 and evaluated by
FVLR/GSOC. The resolution of the image is about 25m. Image kindly provided by D. van Halsema,
TNO, the Netherlands.

1.2 Components of an Image Processing System 5

Figure 1.2: Another SAR-SEASAT image taken at the same day as figure 1.1 showing a sector of the
Dutch Ijsselmeer. Image kindly provided by D. van Halsema, TNO.

6 1 Introduction

Because of the low water depth, there are strong tidal currents in this region which
are modulated by the varying water depth. The changing currents, in turn, influence
the small-scale water surface waves. In this complex way, measurements on the ocean
surface with radiation which does not penetrate the water, still provide clues about
the bottom topography. This is an extreme example illustrating the common fact that
features observed in satellite imagery may have very complex causes.

On the open ocean (figure 1.1 left side) and in the isolated Ijsselmeer (figure 1.2),
surface currents are much lower. Consequently, the radar backscatter is quite homoge-
neous. In both images, several ship tracks one to three kilometers long are visible.

In the eastern part of figure 1.2 (top right), different agricultural areas can be
recognized as small rectangles with considerably different brightnesses. Thus radar
images are also useful to distinguish different types of surface areas on continents.
Since radio- and microwaves penetrate clouds, remote sensing of the earth’s surface is
possible despite of weather conditions.

Carver et al. [1985] give a review of microwave remote sensing, and Goetz et al.
[1985] survey optical remote sensing. Stewart [1985] describes all aspects of satellite
oceanography.

Image sensors draw attention to the relationship between the image intensity and
the features of the observed object; this is the first task for a scientist applying any
digital image processing. This aspect is often not adequately considered in computer
science literature.

So far, image sensors and images have been considered as data sets with two spatial
coordinates. A higher level of abstraction is possible. Actually all data with two
coordinates can be treated in the same manner as spatial images. In this wider context,
image sensors may be any kind of instrument which registers data as a function of two
variables.

1.2.2 Image Storage

Images contain huge amounts of data. As an example take a standard image from a
35mm camera which measures 24 mm X 36 mm. If we assume a resolution of 0.01 mm,
it consists of more than 107 data points. Each point needs several bits to resolve the
different gray values of the image. It is a common standard to distinguish 256 levels.
One image point can be stored in eight bits or one byte. The whole image would occupy
10 Mbytes. A color image would require three times as much space since three color
channels, red, green, and blue, must be stored.

Most images which are now processed are captured by video cameras which provide
a much lower resolution. A widespread standard contains 512 x 512 image points. One
gray value image with 8 bits/point contains 256 kbytes of data.

However, applications which analyze time varying processes cannot be studied with
single frames, but require the analysis of image sequences. The storage requirements
then increase tremendously. A single second of video images with 30 frames/s needs
7.5 Mbytes of storage. Three-dimensional imagery, which can really adequately picture
the three-dimensional world, also needs huge storage space. A single 512 x 512 x 512
image occupies 128 Mbytes.

1.2 Components of an Image Processing System 7

These examples emphasize the enormous storage requirements involved in the han-
dling of image data. The storage densities of semiconductor memory are increasing
exponentially with time since their invention. When my research group used one of
the first microcomputer based image processing boards in the early 1980s, an IP-512
from Imaging Technology, a board packed with memory chips could just hold a single
512 x 512 image. Less then ten years later, several image processing boards are avail-
able, e. g., the VISTA board from Truevision, which offers a frame buffer 16 times larger
(4 Mbytes) on a board half the size (see also appendix B).

Thus even personal computers can handle single images without any problems. It
is still difficult to store digitized image sequences at video rate. One rather expensive
solution is a large one Gbyte or more in capacity fast peripheral storage device, a so-
called real-time magnetic disk. This device has a read/write bandwidth larger than
10 Mbytes/s so that digitized video images can be read or written in real time. With
this device video image sequences with up to several thousand images can be digitized
in real time.

Video recording is also making tremendous progress. New recording standards such
as S-VHS offer a much higher resolution and better recording quality than the old
Umatic standard which is widely used in scientific applications. Videotapes are a cheap
recording medium for enormous amounts of image data. One hour of gray value images
corresponds to 21.6 Gbytes of data if digitized with a resolution of 512 x 512 and 8 bits
per image point. However, a serious deficit remains: it is still tedious and expensive to
get random access to specific images on the tape. A special controller is necessary and
the operation involves significant tape wear, since images can only be digitized from a
running videotape.

A real breakthrough has been the new generation of video recording equipment.
These devices, which appeared on the market in 1989, record analog video images on
an optical disk with a high quality. Each side of the disk holds about 40,000 im-
ages equivalent to half an hour of continuous videotape recording. Both recording of
continuous image sequences and of single frames are possible. Fast random access to
any image on the disk is possible within less than 0.5s. Extremely useful for image
sequence processing is the high-quality forward and backward playback with variable
speed from 1/255 to 3 times the normal speed. The near future will certainly bring
both further enhancements and cheaper systems. Digital storage of images on standard
optical disks is a cheaper alternative, but access to the images is considerably slower.
Another significant development are CD-ROM players. These cheap devices allow the
wide distribution of image material, e.g., satellite images.

The newest technology are VLSI chips such as the CL550A from C-Cube Microsys-
tems which allow gray value and color video images to be compressed and decompressed
in real-time, i.e., at a rate of 30 frames/s. Compression is not error free, but degrada-
tion of the images is not visible with typical compression rates of 10:1 to 30:1. With
such rates, the data is reduced to such an extent that video image sequences can be
stored on a fast hard disk in real time. If the slight degradation of the images is ac-
ceptable, this is a much cheaper and more flexible solution than a real-time magnetic

disk.

8 1 Introduction

1.2.3 Image Processing Speed

Because of the immense amount of data in images, successful image processing requires
large computing power. A current personal computer is about as powerful as a main
frame ten years ago and sufficiently fast to perform not too complex image operations.
We will discuss many examples in this book in detail.

Complex operations, image sequence analysis, and reconstruction from projections,
however, need more processing power. These demands can also be met with current
PC-based systems, which are equipped with image processing hardware for specific
operations.

Another promising possibility is the use of modern RISC (reduced instruction set
computing) processors as, e.g., the Intel 1860 chip [Margulis, 1990]. In contrast to
special image processing hardware, which is much more difficult to program, these
general purpose processors can be programmed with standard development tools. This
advantage should not be underestimated.

Finally, parallel processing has a bright future in digital image processing. Many
image processing operations can easily be implemented for parallel computers. Often
used are transputers. These are RISC processors with the feature of special hardware
for fast serial links. Systems with many transputers (so-called superclusters) are being
more commonly used for image processing. At the Interdisciplinary Center for Scientific
Computing at Heidelberg University, a supercluster with 128 transputers has been
installed in 1990 and is now extensively used for image sequence processing.

1.3 Human and Computer Vision

We cannot think of image processing without considering the human visual system. This
seems to be a trivial statement, but it has far-reaching consequences. We observe and
evaluate the images which we are processing with our visual system. Without taking
this elementary fact into consideration, we may be much misled in the interpretation
of images.

The first simple questions we should ask are:

o What intensity differences can we distinguish?

o What is the spatial resolution of our eye?

e How accurately can we estimate and compare distances and areas?

e What role do colors play in human vision?

It is obvious that a deeper knowledge would be of immense help for computer vision.
Here is not the place to give an overview of the human visual system. The intention
is rather to make us aware of the connection between human and computer vision,
and to pick out some elementary facts we are confronted with when we perform digital
image processing. A detailed comparison of human and computer vision can be found
in Levine [1985].

The reader can perform some experiments by himself. Figure 1.3 shows several test
images concerning the question of estimation of distance and area. He will have no

1.3 Human and Computer Vision 9

a) b)

Figure 1.3: Test images for distance and area estimation: a) parallel lines with up to 5% difference in
length; b) circles with up to 10 % difference in radius; c) the vertical line appears longer, though it has
the same length as the horizontal line; d) deception by perspective: the upper line (in the background)
appears longer than the lower line (in the foreground), though both are equally long.

problem in seeing even small changes in the length of the parallel lines in figure 1.3a.
A similar area comparison with circles is considerably more difficult (figure 1.3b). The
other examples show how the estimate is biased by the context in the image. Such
phenomena are known as optical deception. Two examples of estimates for length are
shown in figure 1.3c, d. These examples point out that the human visual system
interprets the context in its estimate of length. Consequently, we should be very careful
in our visual estimates of lengths and areas in images.

We can draw similar conclusions for the estimate of absolute gray values. Figure 1.4a
shows that the small rectangular area with a medium brightness appears brighter in
the dark background than in the light background, though its absolute brightness is the
same. This deception only disappears when the two areas merge. The step case-like
increase in the brightness in figure 1.4b shows a similar effect. The brightness of one
step appears to increase towards the next darker step.

Because of the low brightness resolution of printed images, we cannot perform sim-
ilar experiments regarding the brightness resolution of our visual sense. It shows a
logarithmic rather than a linear response. This means that we can distinguish relative
but not absolute brightness differences. In a wide range of brightnesses, we can resolve
relative differences of about 2 %.

These characteristics of the human visual system are quite different from those of a
machine vision system. Typically only 256 gray values are resolved. Thus a digitized
image has much lower dynamics than the human visual system. This is the reason why
the quality of a digitized image, especially of a scene with high contrast in brightness,
appears inferior to us compared to what we see directly. Although the relative brightness
resolution is far better than 2% in the bright parts of the image, it is poor in the dark

10 1 Introduction

Figure 1.4: Distinction of gray values: a) small rectangular areas of constant gray value are placed in
different arrangements in a darker and brighter background; b) a linear stepwise increase in brightness.

parts of the images. At a gray value of 10, the brightness resolution is only 10 %.
In order to cope with this problem, video cameras generally convert the light inten-
sity I not linearly, but with an exponential law into the gray value g¢:

G=1I. (1.1)

The exponent + is denoted the gamma value. Typically, v has a value of 0.4. With this
exponential conversion, the logarithmic characteristic of the human visual system may
be approximated. Here the contrast range is significantly enhanced. If we presume a
minimum relative brightness resolution of 10 %, we get useable contrast ranges of 25
and 316 with ¥ = 1 and -y = 0.4, respectively. For many scientific applications, however,
it is essential that a linear relation exists between the light intensity and the gray value
(¥ =1). Many CCD cameras provide a jumper or a trimmer to switch or adjust the
gamma value.

Now we turn to the question of the recognition of objects in images. Although
figure 1.5 contains only a few lines and is a planar image not containing any direct
information on the depth, we immediately recognize a cube in the right and left image
and its orientation in space. The only clues from which we can draw this conclusion
are the hidden lines and our knowledge about the shape of a cube. The medium image,
which also shows the hidden lines, is ambivalent. With some training, we can switch
between the two possible orientations in space.

Figure 1.6 shows another remarkable feature of the human visual system. With ease
we see sharp boundaries between the different textures in figure 1.6a and immediately
recognize the figure 5. In figure 1.6b we identify a white equally sided triangle, although
part of the boundaries do not exist.

1.3 Human and Computer Vision 11

Figure 1.5: Recognition of three-dimensional objects: three different representations of a cube with
identical edges in the image plane.

From these few observations, we can conclude that the human visual system is
extremely powerful in recognizing objects, but has some deficiencies in the absolute
estimation of gray values, distances, and areas. Of course, the performance of the visual
system is related to how the visual information is processed. We might be tempted
to measure the power of a vision system with a few figures as the number of sensor
elements and the number of operations it can perform per time. The retina contains
approximately 130 millions photo receptors. These are many more sensor elements
than on a CCD chip. Compared to computers with clock times of several 10 MHz,
the switching time of neural processor elements is about 10* times slower. Despite this
slower timing and the huge number of receptors, the human visual system is much more
powerful than any computer vision system. We constantly rely on the fact that it can
analyze even complex scenes in real time so that we can react correspondingly.

In comparison, the power of computer vision systems is marginal and should make
us feel humble. A digital image processing system can only perform some elementary or
well defined fixed image processing tasks such as quality control in industry production
in real time. More complex tasks such as the analysis of motion or the reconstruc-
tion of an observed three-dimensional scene from two-dimensional image data require
tremendous processing time. We are still worlds away from a universal digital image
processing which is capable of “understanding” images as human beings do.

There is another connection between human and computer vision which is worth
noting. Important developments in computer vision have been made through progress
in understanding the human visual system. We will encounter several examples in this
book: the pyramid as an efficient data structure for image processing (chapter 8), the
concept of local orientation (chapter 7), and motion determination by filter techniques
(chapter 17).

12 1 Introduction

Figure 1.6: a) Recognition of boundaries between textures; b) “interpolation” of object boundaries.

1.4 Examples of Scientific Applications

In this section the considerable progress which evolved with the usage of image mea-
suring techniques is described. The following examples are typical for scientific appli-
cations of digital image processing in the sense that image processing enables complex
phenomena to be evaluated, which could not be adequately accessed with conventional
measuring techniques.

The first examples are the exchange processes between the atmosphere and the
oceans which play a major role in global climate and distribution of pollutants on
the planet earth [Dahlem Workshop The Changing Atmosphere, 1987]. One of these
processes is the exchange of gases. Carbon dioxide, methane, and other trace gases are
climate active gases, since they absorb infrared radiation. The observed concentration
increase of these gases has a significant influence on the global climate. Although there
are still considerable uncertainties, all evidence so far indicates that we face serious
climate changes, particularly global warming. Thus it is of great importance to know
how these gases are exchanged between the atmosphere and the ocean.

The physics of gas exchange is only poorly understood, since it is a complex problem.
The critical processes take place in a very thin layer at the ocean surface, which is only
several 10 yum thick. In this layer, the gases penetrate from the atmosphere into the
ocean surface by molecular diffusion and are then swept into deeper layers by irregular,
turbulent velocity fluctuations.

Processes that take place in such a thin layer at the ocean surface undulated by
surface waves are very difficult to investigate experimentally. Conventional measuring
technique determines the mean flux density of a gas tracer across the interface. If this
information is represented in an image, it would just show an area of a constant gray
value. The brightness would be proportional to the flux density and we would not learn
anything about how the gas exchange process works.

A new method now allows the penetration of the gas tracer into the water surface
to be made visible. The technique uses reactive gases and fluorescent dyes [Jéhne,
1990]. The intensity of the fluorescent light is proportional to the penetration depth

1.4 Examples of Scientific Applications 13

Figure 1.7: a) Time series of the slope of water surface waves; b) image of the wave slope; c) wave
number power spectrum computed from about 200 images; from measurements of the author performed
in the wind/wave facility at the Institut de Mécanique Statistique de la Turbulence, University of
Marseille; wind speed: 5m/s, fetch: 6.2m.

of the gas tracer. We can now obtain an image which gives a detailed insight into the
processes taking place at the water surface (plate 2a and b). At first glance, we see that
the gas exchange process changes significantly when waves occur at the water surface.
Evaluation of single images and image sequences yields a new world of information
about the gas exchange process. First, we can determine the mean penetration depth
of the gas tracer which directly yields the exchange rate as with conventional techniques.
Then we can estimate size, velocity and lifetime of the eddies which transport the gas
across the boundary layer and thus understand how the exchange process works.

A similar technique allows vertical profiles to be measured in laboratory wind/water
facilities [Jahne, 1990]. This time, the intensity of the fluorescent light is directly
proportional to the gas tracer concentration. Fluorescence is stimulated by an argon-
ion laser piercing the water surface perpendicularly from above. A CCD camera is
placed just below the water level outside the water channel and observes the laser beam
from aside. Time series of the vertical profile are shown in plate 2c as an image with
one space and one time coordinate, known as a space-time image.

Another example is the measurement of small-scale waves on the ocean surface
[Jéhne and Waas, 1989; Jihne and Riemer, 1990]. Point measurements with a laser

14 1 Introduction

Figure 1.8: Image sequence of the water wave slope represented as a wave cube; unpublished data
taken by the author in the Marseille wind/wave facility.

probe result in time series from which it is impossible to infer the two-dimensional
structure of the waves on the water surface. In figure 1.7a, we recognize that small
waves are predominantly located on just one side of the larger waves, but we do not
know from which direction these waves are coming. A video image of the water surface
showing the slope coded in gray values contains all this information (figure 1.7b). From
many of such images 2-D wave number spectra can be calculated (figure 1.7c, plate 5).
Finally, an image sequence of the wave slope contains both the temporal and spatial
characteristics of the waves (figure 1.8).

The last example is taken from physical chemistry. It illustrates how complex chem-
ical processes can be made visible and the effort required to image such processes. The
research group of Prof. Dr. Wolfrum at the Institute for Physical Chemistry at Hei-
delberg University has studied the mechanisms of technical combustion. Suntz et al.
[1988] have measured the OH-radical concentration in an experimental combustion en-
gine. They used a XeCl eximer laser with a wavelength of 308 nm to stimulate an
excited electron state of the OH-radical in a small planar light sheet which is 25mm
wide and 75 pm thick (figure 1.9). The resulting fluorescent light is measured by a light-
intensified CCD camera and an illumination time of 25 ns. This short illumination time
is necessary to suppress the light generation by combustion.

Results with a lean combustion mixture are shown in plate 2d. High OH-Radical
concentrations are yielded at the flame front. The -concentrations correlate with the
shape of the front. They are significantly higher with concave rather than convex lines.

1.5 Hierarchy of Image Processing Operations 15

Monitor Computer XeCl-Excimer—Laser
light sheet (25mm x 150um)
D l Interference filter
Y 7T (CWL 308 nm: FWHM 10nm)
Spark plug
Gated image intensified [y—— =)
CCD Camera - N
(Gate time: 25ns) \
V-Imagi i N I
UV~Imaging optics \ Pneumatic cylinder
Pressure sensor Quartz side
windows .
Combined Square piston

intet and Quortz—top
outlet valve window

Figure 1.9: Experimental setup to measure the OH-radical concentration during combustion in an
experimental engine with a square piston [Suntz et al., 1988].

1.5 Hierarchy of Image Processing Operations

Image processing is not a one-step process. We are able to distinguish between several
steps which must be performed one after the other until we can extract the data of
interest from the observed scene. In this way a hierarchical processing scheme is built up
as sketched in figure 1.10. As a conclusion to this introduction to image processing, an
overview of the different phases of image processing is given, together with a summary
outline of this book.

Image processing begins with the capturing of an image with a suitable, not neces-
sarily optical, acquiring system. Then the image sensed must be brought into a form
which can be treated with digital computers. This process is called digitization.

The first steps of digital processing may include a number of different operations.
It may be necessary to correct known disturbances in the image, for instance caused
by a defocused optics, motion blur, errors in the sensor, or errors in the transmission
of image signals (image restoration). If the sensor has nonlinear characteristics, these
need to be corrected. Likewise, brightness and contrast of the image can be optimized.
Another important operation is noise reduction in noisy images. A regular task for
satellite imagery are coordinate transformations to remove geometrical distortions.

The next phases depend on the aim of image processing. Sometimes only removing
sensor-related errors from the image or enhancing the contrast is required. Effective
transmission and storage of images necessitates a further step. In order to cope with
the enormous amount of image data, the images must be stored and transmitted in the
tightest possible code. Some types of images may allow errors in the coding process,
other types may not.

A whole chain of processing steps is necessary to analyze and identify objects. First,
adequate filtering procedures must be applied in order to distinguish the objects of
interest from other objects and the background. Then the object has to be separated

16

Correction
of geometric
distortion

Pyramidal
decomposition

3D scene

Y

Image formation

2D image g(X)

Digitization

Gray value
digital image Gm“

ray value
modification by

1 Introduction

point operations

Multigrid
data structures

Feature image(s)

Feature extraction Segmentation Encoding
Object Object shape
classification parameters
Classified Binary image Encoded image
] Enhanced
and described with extracted for storage restora:d im:g’a
objects objects and transmission

Figure 1.10: A hierarchy of digital image processing tasks from image formation to image comprehen-

sion.

1.5 Hierarchy of Image Processing Operations 17

Figure 1.11: By what means do we recognize that all objects, except for one, are lamps?

from the background (segmentation). This process leads to a binary image. Now that
we know the exact geometrical shape of the object, we can extract further information
as the mean gray value, the area, perimeter, and other parameters for the form of
the object. These parameters can be used to classify objects (classification). This is
an important step in many applications of image processing as the following examples
show:

e In a satellite image which shows an agricultural area, we would like to distinguish
fields with different fruits and obtain parameters to estimate the ripeness or to detect
damage by parasites (see figure 1.2).

e There are many medical applications where the essential question is to detect patho-
logical changes. A classical example is the analysis of aberrations of chromosomes.

e Character recognition in printed and handwritten text is another example which
has been studied since image processing began and still poses significant difficulties.
While you are reading this text, you are performing just this task.

You hopefully do more, namely to try to understand the meaning of what you are
reading. This is also the final step of image processing which aims to understand the
observed scene. We perform this task more or less unconsciously whenever we use our
visual system. We recognize people, we can easily distinguish between the image of a
scientific lab and that of a living room, or watch the traffic to cross a street safely. We

18 1 Introduction

all do this without knowing how the visual system works.

Take as another example the objects shown in figure 1.11. We will have no problem
in recognizing that all objects but one are lamps. How could a machine vision system
perform this task? It is obvious that it is a complex problem, which can only be solved
if adequate representation of and access to previously gained knowledge is available. We
can recognize a lamp because we have already seen many other lamps before and because
we can draw conclusions not only from the geometric shape but also by considering the
possible purpose of an object. Research on problems of this kind are part of a research
area called artificial intelligence.

“Recognition” in scientific applications is often much easier to handle than in ordi-
nary scenes. We can often describe the features of an object in which we are interested
in a precise way. Thus scientific applications often do not include any methods of ar-
tificial intelligence but have an algorithmic approach. We will discuss this matter in
more detail in chapter 12.

1.6 Image Processing and Computer Graphics

For some time, image processing and computer graphics have been treated as two
different areas. Since then knowledge in both areas has increased considerably and
more complex problems are able to be treated. Computer graphics is striving to achieve
photorealistic computer generated images of a three-dimensional scene, while image
processing is trying to reconstruct it from an image actually taken with a camera. In this
sense, computer graphics performs the inverse procedure to that of image processing.
We start with knowledge on the shape and features of an object, i.e., start at the
bottom of figure 1.10 and work upwards until we yield a two-dimensional image. To
handle image processing or computer graphics, we basically have to work from the same
knowledge. We need to know the interaction between illumination and objects, how a
three-dimensional scene is projected onto an image plane, etc.

There are still quite some differences between an image processing and a graphics
workstation. But we can envisage that, when the similarities and interrelations between
computer graphics and image processing are better understood and the proper hardware
is developed, we will see some kind of general purpose workstation in the future which
can handle computer graphics as well as image processing tasks.

2 Image Formation and Digitization

Image acquisition is the first step of digital image processing and is often not properly
taken into account. However, quantitative analysis of any images requires a good un-
derstanding of the image formation process. Only with a profound knowledge of all the
steps involved in image acquisition, is it possible to interpret the contents of an image
correctly. The steps necessary for an object in the three-dimensional world to become
a digital image in the memory of a computer are as follows:

e Becoming visible. An object becomes visible by the interaction with light or, more
generally, electromagnetic radiation. The four basic types of interaction are reflection,
refraction, absorption, and scattering. These effects depend on the optical properties
of the material from which the object is made and on its surface structure. The light
collected by a camera system is determined by these optical properties as well as by
the illumination, i.e., position and nature of the light or, more generally, radiation
sources.

e Projection. An optical system collects the light rays reflected from the objects and
projects the three-dimensional world onto a two-dimensional image plane.

o Digitization. The continuous image on the image plane must be converted into im-
age points on a discrete grid. Furthermore, the intensity at each point must be
represented by a suitable finite number of gray values (Quantization).

These steps will be discussed in the following three sections. Quantization is the
topic of section 4.2.2.

2.1 Interaction between Light and Matter

2.1.1 Introduction

The interaction between matter and radiation is the basis for all imaging. This is more a
topic of physics rather than image processing. Knowledge about this subject, however,
is very useful, especially in scientific and industrial applications, where we have control
on how we set up our imaging system. An approach which integrates the optical setup
and the processing of the resulting images is required in order to obtain the best and
most cost effective solution. In other words, if we make a serious error in the imaging

20 2 Image Formation and Digitization

b)

Scattering

Scattering

Absorption

Refraction
Refraction

Light source Absorption

Light source Camera Camera

Figure 2.1: a) Sketch of the interaction between illumination and objects; a) objects with impermeable
surfaces; b) more general arrangement showing reflection, absorption, scattering, and refraction of
light from the light source to the object, the object of interest itself, and from the object back to the
camera.

system, processing of the images may be costly and slow or, even worse, it might not
be possible at all to correct for the resulting degradations.

Applications in image processing are so widespread that a complete discussion of
this topic is not possible here. We should, however, be aware of some basic facts
that enable us to consider the illumination arrangement in our application properly.
Interaction between illumination and the observed scene has received much attention
in computer graphics where researchers are trying to achieve more realistic computer
generated images. In computer graphics the task is to determine the light intensity
at the surface of the object, given the geometrical arrangement of objects and light
sources and the optical properties of the objects. In image processing, we have to solve
the inverse problem, namely, to infer the position of the objects in space and their
optical properties from the image projected onto the image plane.

We can get a feeling of this complexity from the sequence shown in plate 3. It shows
the same scene rendered with more and more sophisticated models of the interactions
between the illumination and the illuminated objects.

2.1.2 Opaque Surfaces

The illumination problem is less complex if only opaque surfaces are considered (fig-
ure 2.1a). The problem can be divided into two parts. First we have to calculate the
illuminance at the object’s surface. In this simple case, only the light from the light
sources may be considered. However, this is only a zero order approximation, since the
object is also illuminated by light reflected from all the other object points in the scene.
In other words, illuminances from the objects are coupled. As an example, consider the
motion of a single object without any other changes in the scene including the setup of
the light sources. Then many more things than just the position of the moving object

2.1 Interaction between Light and Matter 21

change. The shadow, the moving object is casting, changes with the relative position
of the object and the light sources. When the object comes close to other objects, the
illuminance of these objects will change.

An exact solution to this problem can only be found by solving a huge linear equation
system containing all object points and light sources. Solving such an equation system
which takes into account the influence of other objects on the illumination of an object
point is called ray tracing and is a computationally costly procedure. If finally we have
obtained the correct object illumination, the second task is to use the optical properties
of the object’s surface again to calculate the light intensity which is collected by the
camera lens.

2.1.3 Volumes

Opaque surfaces govern natural scenes. However, many scientific objects cannot be
reduced to such a simple description, as much scientific data is three-dimensional. The
most obvious example are all kinds of three-dimensional fields. We might, for example,
have determined the three-dimensional current field from the analysis of flow visualiza-
tion experiments or numerical calculations. Modern medical image techniques with pen-
etrating radiation also yield volume data of the human body (sections 2.2.10 and 13.3).

In all these cases, not only the surfaces, i. e., planes of discontinuities in optical prop-
erties, are of importance, but also volume elements which scatter or absorb radiation.
These effects have to be taken into account both for the generation of realistic computer
images and for the reconstruction from projections. In contrast to surface rendering,
the generation of computer images from volume data is called volume rendering.

If we take absorption and scattering processes into account imaging becomes much
more complex (figure 2.1b). In general, we must consider refraction, absorption and
scattering of light rays from the light source to each object point and back to the camera.
This general situation is much too complex to be solvable practically. Fortunately, most
practical situations are much easier in the sense that they include only a few of the
possible interaction processes.

With respect to image processing, awareness of the complexity of illumination helps
us in the design of a proper illumination system. Since in scientific applications object
properties are inferred from optical properties, we need to know the illumination of the
object’s surface.

As an example, consider satellite images in the far infrared from the ocean surface.
Without any other influences, the observed brightness would directly be related to the
ocean’s surface temperature. There are, however, many disturbances which must be
properly corrected, if accessible, in order to determine accurate surface temperatures:
e The infrared radiation, emitted by the ocean’s surface, is slightly absorbed in the

atmosphere by water vapor and other trace gases.

o As in the visible range, water has a small reflectivity of about 2-3% at low angles of
incidence. With this level of fraction, the measurement of the sea surface temperature
is influenced by the temperatures of the sky and clouds.

o Clouds must be carefully detected and screened since they hinder the view onto the
ocean surface. This is not difficult for thick clouds which are not penetrated at all,
but it is for thin, partly transparent clouds.

22 2 Image Formation and Digitization

2.1.4 Light Sources

The simplest model for a light source is the point light source. Any other light source
can be built from point light sources. The total power emitted by a light source is called
the radiation fluz, ©. A surface element, dA, whose normal is inclined at an angle ¢
with the incoming light ray, and which is r distant from a point source, receives the

illuminance E:
Ocose

dxr? *

The illuminance of a point light source decreases quadratically with distance. We

can regard all light sources as point sources whose size on the image plane is smaller

than the resolution of the camera system. The illuminance of extended light sources is

independent of the distance from the camera. The quadratic decrease in the intensity

of a small element in the source is compensated exactly by the quadratic increase in
the numbers of elements per surface unit on the image plane.

(2.1)

2.1.5 Reflection

Basically, we can distinguish between two types of reflection; those directed from mirrors
and diffusive reflection.

Mirror surfaces reflect the incident light only in one direction. Many objects, for
example, metallic and water surfaces, reflect partly or entirely in this manner. Directed
reflection becomes visible in images as mirror images or, if the scene is illuminated
with direct light, in the form of specular reflezes (see also plate 3). Specular reflexes
constitute a serious problem for image processing. They are not fixed to the object’s
surface, i. e., they cannot be regarded as a valid feature, but depend solely on the angles
between light sources, the object surface, and the camera.

In contrast, an ideal diffusively reflecting surface, called a Lambertian radiator, scat-
ters light in all directions equally. Diffusively reflecting surfaces, which are not Lam-
bertian radiators, must be characterized by the angular dispersion of the reflected light
intensity. Many surfaces such as painted metallic surfaces, show a mixed reflectivity;
here radiation is reflected partly diffusively and partly directedly.

2.2 Image formation

Nearly all imaging techniques essentially project three-dimensional space in one way or
the other onto a two-dimensional image plane. Thus basically imaging can be regarded
as a projection from 3-D into 2-D space. The essential point is the loss of one coordinate
which constitutes a severe loss of information. Because we unconsciously and constantly
experience that the human visual system performs this task in real time, we might be

2.2 Image formation 23

Optical axis

Camera coordinates

World coordinates

Figure 2.2: Illustration of world and camera coordinates.

tempted to think that the reconstruction of the three-dimensional world from two-
dimensional images is quite a simple task. In this section, we analyze step by step the
formation of an image from the three-dimensional world, and discover the complexity
of the reconstruction task.

2.2.1 World and Camera Coordinates

The position of objects can be described in two different ways (figure 2.2). First, we can
use a coordinate system which is related to the scene observed. These coordinates are
called world coordinates and denoted as X' = (X}, X3, X}). We use the convention that
the X] and X} coordinates describe the horizontal and the X} the vertical positions,
respectively. A second coordinate system, the camera coordinates X = (X, X,, X3),
can be fixed to the camera observing the scene. The X3 axis is aligned with the optical
aris of the camera system (figure 2.2). Physicists are familiar with such considerations.
It is common to discuss physical phenomena in different coordinate systems. In ele-
mentary mechanics, for example, motion is studied with respect to two observers, one
at rest, the other moving with the object.
Transition from world to camera coordinates can be described by a translation and
a rotation term. First, we shift the origin of the world coordinate system to the origin
of the camera coordinate system by the translation vector T (figure 2.2). Then we
change the orientation of the shifted system by rotations about suitable axes so that
it coincides with the camera coordinate system. Mathematically, translation can be
described by vector subtraction and rotation by the multiplication of the coordinate
vector with a matrix:
X =R(X'-T). (2.2)

Rotation does not change the length or norm of the vectors. Then basic matrix algebra

24 2 Image Formation and Digitization

] g X, I

Figure 2.3: Image formation with a pinhole camera.
tells us that the matrix R must be orthogonal, i.e., it holds the condition

3
RRT =TI or Zrkmnm = 6k1 (2.3)
m=1

where I denotes the identity matrix, whose elements are one and zero on diagonal and
non-diagonal positions, respectively. The orthogonality condition leaves three matrix
elements independent out of nine. Unfortunately, the relationship between the matrix
elements and sets of three such parameters turns out to be quite complex and nonlinear.
A widely used set of parameters are the three Eulerian rotation angles. Any rotation
can be decomposed into three consecutive rotations about the axes of the coordinate
system with these angles. A more detailed discussion can be found in textbooks of
classical mechanics such as Goldstein [1980]. Rotation and translation together consti-
tute six independent parameters describing the general transition from world to camera

coordinates.

2.2.2 Pinhole Camera Model: Perspective Projection

Once we know the camera coordinates of the scene, we can study the optical system
of the camera. First we take the simplest possible camera, the pinhole camera. The
imaging element of this camera is an infinitesimal small hole (figure 2.3). Only the light
ray coming from a point of the object at (Xi, X5, X3) which passes through this hole
meets the image plane at (1,3, —d;). Through this condition an image of the object
is formed on the image plane. The relationship between the 3-D world and the 2-D
tmage coordinates (z1,z;) is given by

_diXy

d; X,
X3’)

X3

Ty =

The two world coordinates parallel to the image plane are scaled by the factor d;/ X;.
Therefore, the image coordinates (z;,z;) contain only ratios of world coordinates, from
which neither the distance nor the true size of an object can be inferred.

2.2 Image formation 25

Object Shadow

Figure 2.4: Occlusion of more distant objects and surfaces by perspective projection.

A straight line in the world space is projected onto a straight line at the image plane.
This important feature can be proved by a simple geometric consideration. All light
rays emitted from a straight line pass through the pinhole. Consequently they all lie
on a plane which is spanned by the straight line and the pinhole. This plane intersects
with the image plane in a straight line.

All object points on a ray through the pinhole are projected onto a single point in
the image plane. In a scene with several transparent objects, the objects are projected
onto each other. Then we cannot infer the three dimensional structure of the scene
at all. We may not even be able to recognize the shape of individual objects. This
example demonstrates how much information is lost by projection of a 3-D scene onto
a 2-D image plane.

Most natural scenes, however, contain opaque objects. Here the observed 3-D space
is essentially reduced to 2-D surfaces. These surfaces can be described by two two-
dimensional functions g(z;, z;) and X3(z1,z;) instead of the general description of a
3-D scalar gray value image g(X;, X2, X3). A surface in space is completely projected
onto the image plane provided that not more than one point of the surface lies on the
same ray through the pinhole. If this condition is not met, parts of the surface remain
invisible. This effect is called occlusion. The occluded 3-D space can be made visible if
we put a point light source at the position of the pinhole (figure 2.4). Then the invisible
parts of the scene lie in the shadow of those objects which are closer to the camera.

As long as we can exclude occlusion, we only need the depth map X3(z,z2) to
reconstruct the 3-D shape of a scene completely. One way to produce it — which is
also used by our visual system — is by stereo imaging, i. e., the observation of the scene
with two sensors from different points of view (section 2.2.9).

Imaging with a pinhole camera is essentially a perspective projection, since all rays
must pass through one central point, the pinhole. Thus the pinhole camera model is
very similar to the imaging with penetrating rays, as X-rays, emitted from a point
source (figure 2.5). In this case, the object lies between the central point and the image
plane.

The projection equation corresponds to (2.4) except for the sign:

(2.5)

d; X, 4;X
(X1, X3, X3) — (z1,22) = (X31’ X:) .

26 2 Image Formation and Digitization

X\

Object

Xs
o) §

Figure 2.5: Perspective projection with X-rays.

Here generalized image coordinates are used. The image coordinates are divided by

the image distance d;

I 22 o, 2.6)

d - Iy, d - T2 (
Generalized image coordinates are dimensionless. They are equal to the tangent of the
angle with respect to the optical axis of the system under which the object is observed.
These coordinates explicitly take the limitations of the projection onto the image plane
into account. From these coordinates, we cannot infer absolute positions but know
only the angle under which the object is projected onto the image plane. The same
coordinates are used in astronomy. The general projection equation of perspective
projection (2.5) then reduces to

(2.7)

X = (X1, X5, Xa) s @ = (Xl X2) :

X3’ Xs
We will use this simplified projection equation in all further considerations. For optical
imaging, we just have to include a minus sign or, if speaking geometrically, reflect the
image at the origin of the coordinate system.

Perspective projection is only a model for imaging. It is a rather good approximation
for X-ray imaging since the focus, i.e., the extension of the X-ray source, can be made
quite small. However, it is less good for optical imaging. Real lens systems only image
a certain distance range sharply onto the image plane because of the non-zero aperture.
The images are degraded by lens aberrations causing limited sharpness and geometrical
distortions. Even if these effects can be neglected, the sharpness of the images is limited
by diffraction of the electromagnetic waves at the aperture of the lens. We will discuss
these effects in further sections.

2.2.3 Homogeneous Coordinates

In computer graphics, the elegant formalism of homogeneous coordinates [Mazwell, 1951;
Watt, 1989] is used to describe all the transformations we have discussed so far, i.e.,
translation, rotation, and perspective projection, with a matrix vector multiplication.

2.2 Image formation 27

This formalism is significant, since the whole image formation process can be expressed
in a single 4 x 4 matrix.

Homogeneous coordinates are a four-component row vector X' = (tX],tX;,tX3,t),
from which the ordinary three-dimensional coordinates are obtained by dividing the first
three components of the homogeneous coordinates by the fourth. Any arbitrary trans-
formation can be obtained by postmultiplying the homogeneous coordinates with a 4 x 4
matrix M. In particular, we can obtain the image coordinates = (sz;, sz3, sz3, s) by

z=X'M. (2.8)

Since matrix multiplication is associative, we can view the matrix M as composed of
many transformation matrices, performing such elementary transformations as trans-
lation, rotation around a coordinate axis, perspective projection, and scaling. The
transformation matrices for the elementary transformations are readily derived:

1 0 0 0
0 1 0 0 .
T = 0 0 1 0 Translation by (=13, —T5, —T5)
-, -, -T3 1
1 0 0 0
0 cos® sin® 0 . .
R, = 0 —sin® cos® 0 Rotation about X3 axis by ©
0 0 0 1
cosp 0 sing 0]
= | 0 10 0 pitation about X, axis b
R, = —sing 0 cosg 0 otation about X; axis by ¢
L0 0 0 1] (2.9)
[costy sinyy 0 07 -
R, = - s(1)n¢ co(s)ip (1) g Rotation about X; axis by
0 0 0 1]
s 0 0 0
_ 0 s, 0 0 .
S = 0 0 s5 0 Scaling
0 0 0 1
100 O
010 o0 . <.
P = 00 1 —1/d; Perspective projection
000 1

Perspective projection is formulated slightly differently from the definition in (2.7).
Postmultiplication of the homogeneous vector X = (tX;,tX;,tX3,t) with P yields

d: —
(tXl,txz,txs,t'—d{&> , (2.10)

28 2 Image Formation and Digitization

from which we obtain the image coordinates by division through the fourth coordinate

(.’131,.’1,‘2) = (Xl di :ile,Xz d‘. ii'Xa) * (211)

From this equation we can see that the image plane is positioned at the origin, since if

X3 = 0, both image and world coordinates are identical. The center of projection has
been shifted to (0,0, —d;).

Complete transformations from world coordinates to image coordinates can be com-

posed of these elementary matrices. Strat [1984] proposed the following decomposition:

M =TR,R,R,PSC. (2.12)

The scaling S and cropping (translation) C are transformations taking place in the
two-dimensional image plane. Strat [1984] shows how the complete transformation
parameters from camera to world coordinates can be determined in a noniterative way
from a set of calibration points whose positions in the space is exactly known. In this
way an absolute calibration of the camera parameters including position, orientation,
piercing point (of the optical axis), and focal length can be obtained.

2.2.4 Geometric Distortion

A real optical system causes deviations from a perfect perspective projection. The most
obvious distortions can be observed with simple spheric lenses as barrel- or cushion-
shaped images of squares. Even with a corrected lens system these effects are not
completely suppressed. This type of distortion can easily be understood by consider-
ations of symmetry. Since lens systems show a cylinder symmetry, concentric circles
only experience a distortion in the radius. This distortion can be approximated by

z

T 1+ kajz|?

Depending on whether k3 is positive or negative, barrel- and cushion shaped distor-
tions in the images of squares will be observed. Commercial TV lenses show a radial
deviation of several image points (pixels) at the edge of the sensor. If the distortion
is corrected with (2.13), the residual error is less than 0.06 image points [Lenz, 1987].
This high degree of correction, together with the geometric stability of modern CCD-
sensors, accounts for subpixel accuracy in distance and area measurements without
using expensive special lenses.

Lenz [1988] discusses further details which influence the geometrical accuracy of
CCD sensors. Reconstruction of the depth of objects from stereo images (section 2.2.9)
also requires careful consideration of the geometrical distortions of the camera lenses.

Distortions also occur if non-planar surfaces are projected onto the image plane.
These distortions prevail in satellite and aerial imagery. Thus correction of geometric
distortion in images is a basic topic in remote sensing and photogrammetry [Richards,
1986]. Accurate correction of the geometrical distortions requires shifting of image
points by fractions of the distance of two image points. We will deal with this problem
later in section 8.2.4 after we have worked out the knowledge necessary to handle it

properly.

!

x (2.13)

2.2 Image formation 29

Object plane

Inage plane

Figure 2.6: Illustration of the depth of focus of a thin lens.

2.2.5 Depth of Focus

The abstract model of a pinhole camera images every object, independent of its distance
from the camera, without any loss of sharpness onto the image plane. A real optical
system can only image objects at a certain distance from the camera onto the image
plane. The further away the object is located from this plane, the less sharp is its
image. For practical purposes, it is useful to define a range of distances as the depth
of focus in which the unsharpness remains under a certain threshold. In this section
we will consider the depth of focus within the range of geometrical optics, i.e., with a
perfect lens system and no limits of sharpness due to diffraction.

First, we can conclude that the replacement of the pinhole by a lens does not change
the principal imaging geometry. Although a point is no longer imaged onto a point,
but — assuming a circular aperture — onto a small disc, (2.4) still holds for the center
of the disc.

The depth of focus is illustrated in figure 2.6. We have placed the origins of the
camera and image coordinate systems on the object and image plane, respectively. If
the object distance is increasing, the corresponding image plane lies closer to the lens.
The image of a point smears to a disc with radius ¢ at the original image plane. The
relation between ¢ and the shift of the object plane X3 can be calculated using the

image equation for a thin lens))
TRt @

where d, and d; are the distance of the object and image from the lens, respectively.

In case of an out-of-focus object, d, = d, + X; and d; = d; — z3, a first order Taylor

expansion in X3 and z3 (assuming that X3 < d, and z3 < d;) yields

2
T3~ E‘X;; (215)

o

(2.14)

Introducing the f-number as the ratio of the focal length f to the diameter of the lens
aperture 2r
f

nf = -
2r
and using € = (r/d;)z3 and (2.14), we can express the depth of focus X3 as a function

(2.16)

30 2 Image Formation and Digitization

of the allowed radius of unsharpness &:
2nfdo(do b f)6 _ 2nfd36
f? Rz
The depth of focus is directly proportional to the f-number of the lens. The limit of
ny — oo corresponds to the pinhole camera with an unlimited depth of focus..
We illustrate the depth of focus further with some practical examples.

o Distant objects, d, > f

This is the “normal” situation in photography. For this condition equation (2.17)

approximately yields

st

(2.17)

d2
X; = 2nfsf—;. (2.18)
The depth of focus is inversely proportional to the square of the focal length. Con-
sequently, smaller focal lengths result — despite the smaller image size — in a larger
depth of focus. This fact is well known in photography. Tele lenses and large-image-
size cameras have a considerably lower depth of focus than wide-angle lenses and
small-image-size cameras. A typical high resolution CCD camera has 800 x 590 sen-
sor elements, which are 11.5 X 10 um in size. Thus we can allow for a radius of the
unsharpness disc of 5 gm. Assuming a lens with an f-number of 2 and a focal length
of 15 mm, we have a depth of focus of + 0.2m at an object distance of 1.5m. This
example illustrates that even with this small f-number and the relative low distance,
we may obtain a large depth of focus.
o Object-image scale 1:1, d, =~ d; ~ 2f
The image and object are of the same size. The depth of focus,

X3 = 4nge, (2.19)

then does not depend on the focal length, and is only in the order of the unsharpness
€. With the same f-number of 2 as in the first example, we obtain a depth of focus
of only 40 pm. Only a small object zone can be imaged sharply.

o Microscopyd, =~ f,d; > f
The depth of focus is even smaller in microscopy where the objects are significantly
enlarged, since it is then given by

~ 2‘nf6do

X3)

(2.20)
With a 50-fold enlargement, i.e., d;/d, = 50 and n; = 1, we yield the extreme low
depth of focus of only 0.2 gm.

In conclusion, we can distinguish between two different types of imaging systems: with

distant objects, we obtain a sufficient depth of focus to image a 3-D scene with consid-

erable depth variations, without significant losses in sharpness. In microscopy, however,
we only can focus a tiny depth zone of an object. Thus we can observe cross sections
of an object.

This simple fact has critical consequences for 3-D reconstruction. In microscopy, we
have no chance at all to reconstruct the 3-D structure of an object from a single image.

Essentially, it contains information of only one depth, which is, however, distorted by

2.2 Image formation 31

Object plane J Image plane

Figure 2.7: Image formation by integration of the point spread function h(z). A point at X' in the
object plane results in an intensity distribution with a maximum at the corresponding point z' on the
image plane. At a point z on the image plane, the contributions from all points z’, i.e., g{(z")h(z —z'),
must be integrated.

unsharp contours from other depth ranges. Consequently, 3-D reconstruction requires a
set of images, focused on different depths. Such an image sequence is called a focus series
and already constitutes a 3-D dimensional image. Reconstruction of the 3-D object
requires eliminating of any distortions caused by unsharp contours from defocused image
planes which considerably limit the image quality.

The 3-D shape of distant objects and X-ray imaging cannot be reconstructed with
this technique because of the large depth of focus. We will learn later in sections 2.2.10
and 13.3 how we can reconstruct the 3-D structure by projections from different direc-
tions.

2.2.6 3-D Point Spread Function

Previously it was seen that a point in the 3-D object space is not imaged onto a point
in the image space but onto a more or less extended area with varying intensities.
Obviously, the function which describes the imaging of a point is an essential feature
of the imaging system which is called the point spread function, abbreviated as PSF.
We assume that the PSF is not position dependent. Then the system is called shift
invariant.

If we know the PSF, we can calculate how any arbitrary 3-D object will be imaged.
To perform this operation, we think of the object to be decomposed into single points.
Figure 2.7 illustrates this process. A point X' at the object plane is projected onto the
image plane with an intensity distribution corresponding to the point spread function h.
With g/(z') we denote the intensity values at the object plane g,(X') projected onto
the image plane but without any defects through the imaging. Then the intensity of a
point at the image plane is computed by integrating the contributions from the point

32 2 Image Formation and Digitization

spread functions which have their maximums at &’ (figure 2.7)

oo

5(@) = [d®% g(a)h(z - o) = (g} * b)(=). (2.21)

—00

The operation in (2.21) is known as a convolution. Convolutions play an essential role
in image processing. Convolutions are not only involved in image formation but also in
many image processing operations. In case of image formation, a convolution obviously
“smears” an image. Where points and lines are blurred, the resolution is reduced.

This effect of convolutions can be most easily demonstrated with image structures
which show periodic gray value variations. As long as the repetition length, the wave-
length, of this structure is larger than the width of the PSF, it will experience no
significant changes. As the wavelengths decrease, however, the amplitude of the gray
value variations will start to decrease. Fine structures will finally be smeared out to
such an extent that they are no longer visible. These considerations emphasize the im-
portant role of periodic structures and lead naturally to the introduction of the Fourier
transform which decomposes an image into the periodic gray value variations it contains.

In the following, it is assumed that the reader is familiar with the basic properties of
the Fourier transform. (Appendix A.2 gives a brief summary with references for further
reading.)

Previous considerations showed that formation of a two-dimensional image on the
image plane is described entirely by its PSF. In the following we will extend this con-
cept to three dimensions and explicitly calculate the point spread function within the
limit of geometrical optics, i.e., with a perfect lens system and no diffraction. This
approach is motivated by the need to understand three-dimensional imaging, especially
in microscopy, i. ., how a point in the 3-D object space is imaged not only onto a 2-D
image plane but onto a 3-D image space.

First, we consider how a fixed point in the object space is projected into the image
space. From figure 2.6 we infer that the radius of the unsharpness disk is given by

rrs

&= (2.22)

The index 7 of € indicates the image space. Then we replace the radius of the aperture r
by the maximum angle under which the lens collects light from the point considered
and obtain

d,
& = Ema tan o. (2.23)

This equation gives us the edge of the PSF in the image space. It is a double cone
with the z3 axis in the center. The tips of both the cones meet in the origin. Outside
of the two cones, the PSF is zero. Inside the cone, we can infer the intensity from the
conservation of the radiation energy. Since the radius of the cone increases linearly with
the distance to the plane of focus, the intensity within the cone decreases quadratically.
Thus the PSF h;(z) in the image space is given by

I 2 2\1/2 I
hi(a)= —g—0 (s Ty b g T . (2.24)
m($zstana)? | 2zstana m($ztana)? |\ 29ztana

2.2 Image formation 33

Figure 2.8: 3-D PSF of optical imaging with a lens, backprojected into the object space. Lens aberra-
tions and diffraction effects are neglected.

I, is the light intensity collected by the lens from the point; II is the boz function which
is defined as
1 |zl <1/2

0 otherwise ° (2.25)

1(e) = {
The last expression in (2.24) is written in cylinder coordinates (r,@,z) to take the
rotation symmetry of the PSF about the z3 axis into account.

In a second step, we discuss what the PSF in the image space refers to in the object
space, since we are interested in how the effects of the imaging are projected back into
the object space. We have to consider two effects. First, the image, and thus also ¢, are
larger than the object by the factor d;/d,. Second, we must find the planes in object
and image space corresponding to each other. This problem has already been solved in
section 2.2.5. Equation (2.15) relates the image to the camera coordinates. In effect,
the backprojected radius of the unsharpness disk, ¢,, is given by

€o = X3 tanea, (2.26)

and the PSF, backprojected into the object space, by

I (X + X3)'/2 Io (R)
ho(X) = I = I . .
(%) 7 (X3 tan a)? (2Xstana m(Ztana)? \2Ztana (2.27)

The double cone of the PSF backprojected into the object space, shows the same opening
angle as the lens (figure 2.8).

2.2.7 Optical Transfer Function

Convolution with the PSF in the space domain is a quite complex operation. In Fourier
space, however, it is performed as a multiplication of complex numbers. In particular,
convolution of the 3-D object g/(X) with the PSF h,(X) corresponds in Fourier space
to a multiplication of the Fourier transformed object g/ (k) with the Fourier transformed
PSF, the optical transfer function or OTF izo(k). In this section, we consider the optical

34 2 Image Formation and Digitization

transfer function in the object space, i.e., we project the imaged object back into the
object space. Then the image formation can be described by:

Imaged object Imaging Object

Object space 9o(X) = ho(X) * ¢g\(X)
I I I (2.28)
Fourier space Go(k) = h(k) - g.(k)

Fourier transform pairs are denoted by the symbol o—e . This correspondence means
that we can describe optical imaging either with the point spread function or the optical
transfer function. Both descriptions are complete. As with the PSF, the OTF has an
illustrative meaning. Since the Fourier transform decomposes an object into the periodic
structures it contains, the OTF tells us how these periodic structures are changed by
the optical imaging process. An OTF of 1 for a particular wavelength means that this
periodic structure is not affected at all. If the OTF is 0, it completely disappears. For
values between 0 and 1 it is attenuated correspondingly. Since the OTF is a complex
figure, not only the amplitude of a periodic structure can be changed but also its phase.

Calculation of the OTF

Direct calculation of the OTF is complicated. Here several features of the Fourier
transform are used, especially the linearity and separability, to decompose the PSF
into suitable functions which can be transformed more easily. Two possibilities are
demonstrated. They are also more generally instructive, since they illustrate some
important features of the Fourier transform.

First, some remarks concerning the nomenclature are necessary. Unfortunately, two
definitions of the wave number k are in use. In spectroscopy and mineralogy, k is
defined as the reciprocal wavelength A\: k = 1/), i.e., it denotes the number of the
wavelengths per unit length. In physics, however, the factor 2« is included: k = 27 /.
Both definitions have disadvantages and advantages. We will use both definitions and
denote them as follows: k = 1/X and k = 2x /). The corresponding quantities for time
series are more familiar: the frequency v = 1/T and the circular frequency w = 2x/T,
where T is the period of oscillation.

The first method to calculate the OTF decomposes the PSF into a bundle of § lines
intersecting at the origin of the coordinate system. They are equally distributed in the
cross section of the double cone (figure 2.9a). We can think of each § line as being
one light ray. Without further calculations, we know that this decomposition gives the
correct quadratic decrease in the PSF, because the same number of § lines intersect a
quadratically increasing area. The Fourier transform of a é line is a § plane which is
perpendicular to the line (see appendix A.2). Thus the OTF is composed of a bundle
of § planes. They intersect the kk, plane at a line through the origin of the k space
under an angle of at most a. Since Fourier transform preserves rotational symmetry,
the OTF is also rotationally symmetric to the k3 axis. The OTF fills the whole Fourier
space except for a double cone with an angle of 7/2 — o. In this sector the OTF is
zero. The exact values of the OTF in the non-zero part are difficult to obtain with this
decomposition method. We will infer it with another approach which is based on the

2.2 Image formation

Figure 2.9: Calculation of the 3-D OTF from the 3-D PSF.

35

36 2 Image Formation and Digitization

separability of the Fourier transform. We think of the double cone as layers of disks
with varying radii which increase with |z3| (figure 2.9¢c). In the first step, we perform
the Fourier transform only in the z,z; plane. This transformation yields a function
with two coordinates in the k¥ space and one in the z space, (k1,k2,23), respectively
(¢,¢,2) in cylinder coordinates. Since the PSF (2.27) depends only on r (rotational
symmetry around the z axis), the two-dimensional Fourier transform conforms with a
one-dimensional Hankel transform of zero order [Bracewell, 1965]:

Io r
m(ztana)? ‘2ztana

] (2.29)

J1(2rzgtan a)

h(r,z) =

’ -
Wlg,2) = lo wzqtan o
The Fourier transform of the disk thus results in a function which contains the Bessel
function J;.

As a second step, we perform the missing one-dimensional Fourier transform in the
z direction. Equation (2.29) shows that A'(g, z) is also a Bessel function in z. This time,
however, the Fourier transform is one-dimensional. Thus we obtain no disk function

but
Jl(ivrx) . 2(1_,62)1/211(’%), (2.30)

If we finally apply the similarity theorem of the Fourier transform

f@) o—e fk&) ~
1

Ak (2.31)
ar o—e —fl-],
fla=) o (3)
we obtain \ 12
. el R ks
hlg:ks) = 7|g tan o (1 "~ g?tan? a) 1 <2qtana) ’ (2:32)

Interpretation of the OTF

A large part of the OTF is zero. This means that spatial structures with the correspond-
ing directions and wavelengths completely disappear. This is particularly the case for all
structures in the z direction, i.e., perpendicularly to the image plane. Such structures
get completely lost and cannot be reconstructed without additional knowledge.

3-D structures can only be seen if they also contain structures parallel to the image
plane. It is, for example, possible to resolve points or lines which lie above each other.
We can explain this in the = space as well as in the k space. The PSF blurs the points
and lines, but they can still be distinguished if they are not too close to each other.
Points or lines are extended objects in Fourier space, i.e., a constant or a plane. Such
extended objects partly coincide with the non-zero parts of the OTF and thus will not
vanish entirely. Periodic structures up to an angle of a to the k k; plane, which just

2.2 Image formation 37

corresponds to the opening angle of the lens, are not eliminated by the OTF. Intuitively,
we can say that we are able to recognize all 3-D structures in which we actually can
look into. All we need is at least one ray which is perpendicular to the structure.

Another important property of the OTF emerges which has not yet been considered
so far. The OTF is inversely proportional to the radial wave number ¢ (2.32). Con-
sequently, the contrast of a periodic structure is attenuated proportionally to its wave
number. Since this property of the OTF is valid for all optical imaging — as in the
human visual system — the question arises why we can see fine structures at all.

The answer lies in a closer examination of the geometrical structure of the objects
observed. Normally, we only see the surfaces of objects, i.e., we do not observe real
3-D objects but only 2-D surface structures. If we image a 2-D surface onto a 2-D
image plane, the PSF also reduces to a 2-D function. Mathematically, this means a
multiplication of the PSF with a § plane parallel to the observed surface. Consequently,
the 2-D PSF is now given by the unsharpness disk corresponding to the distance of the
surface from the lens. The convolution with the 2-D PSF preserves the intensity of all
structures with wavelengths larger than the disk.

We arrive at the same conclusion in Fourier space. Multiplication of the 3-D PSF
with a é plane in the z space corresponds to a convolution of the 3-D OTF with a § line
perpendicular to the plane, i.e., an integration in the corresponding direction. If we
integrate the 3-D OTF along the & coordinate, we actually get a constant independent
of the radial wave number ¢:

1/2

tan o 2
oL, [, 1 2 B
T / dz |gtan af |:1 B (qtana)] = lo. (233)

—gqtano

(To solve the integral, we substitute z” = ¢z’tan «; then we yield an integral over a
half unit circle.)

In conclusion, the OTF for surface structures is independent of the wave number.
However, for volume structures, we still have the problem of the decrease of the OTF
with the radial wave number. Observing such structures by eye or with a camera, we
will not be able to observe fine structures. Real 3-D, that is transparent objects, are
much more common in scientific applications than in natural scenes. One prominent
example is the wide area of flow visualization.

2.2.8 Cross Sectional Imaging

Because of the problems in imaging real 3-D structures, many scientific applications
observe de facto 2-D objects. In microscopy, only flat objects or thin slits are used
whose thickness lies within the narrow depth of focus of microscopes (see section 2.2.5).
In a similar manner, mineralogists fabricate thin slits from mineral probes.

In flow visualization, it is also possible to observe cross sections of flow fields by
proper illumination. Only a thin sheet is illuminated and observed with a camera
perpendicularly to the light sheet. We have already discussed such a technique in
section 1.4 (see also plate 2d). An example for flow visualization is shown in plate 4
[Wierzimok et al., 1989]. Here a thin vertical zone is illuminated. The flow is made

38 2 Image Formation and Digitization

Left camera

a
Right camera

Figure 2.10: A stereo camera setup.

visible by small floating particles. Because of the illumination time of 40 ms, they appear
as small streak lines. Twelve images of a sequence are superposed on this image. The
streaks from the individual images are shown in a different color. The influence of the
orbital motions of the waves on the flow field is clearly visible and increases towards
the surface of the water.

All these techniques basically observe 2-D cross sections of 3-D objects. They allow
for a proper imaging of the cross section — which would otherwise not be possible —
but with a complete loss of information in the third dimension.

2.2.9 Stereoscopy

Observation of a scene from two different points of view allows the distance of objects
to be determined. A setup with two imaging sensors is called a stereo system. In this
way, many biological visual systems perform depth perception. Figure 2.10 illustrates
how the depth can be determined from a stereo camera setup. Two cameras are placed
close to each other with parallel optical axes. The distance vector a between the two
optical axes is called the stereoscopic basis.

An object will be projected onto different positions of the image plane because it is
viewed under slightly different angles. The difference in the position is denoted as the
parallaz, p. Tt is easily calculated from figure 2.10:

X1+a./2_d_X1——a/2_ai
X3 Y Xs X

l

p="r,— 'y =d; (2.34)
(Here we do not use generalized image coordinates; see section 2.2.2.) The parallax is
inversely proportional to the distance X3 of the object (zero for an object at infinity)
and is directly proportional to the stereoscopic basis and the focal length of the cameras
(d; = f for distant objects). In my research group, we use stereo imaging to observe the
spatial structure of small-scale water surface waves on the ocean surface. The stereo
system has a stereoscopic basis of 200 mm,; the focal length of the lenses is 100 mm.

With these figures, we calculate from (2.34) that the change in the parallax is about

2.2 Image formation 39

one sensor element of the CCD camera per 1 cm height change at a distance of 4m. A
stereo image taken with this system is shown in plate 6.

The parallax is a vector parallel to the stereoscopic basis @. On the one side, this
has the advantage that if the two cameras are exactly orientated we know the direction
of the parallax beforehand. On the other side, we cannot calculate the parallax in
all cases. If an image sector does not show gray value changes in the direction of the
stereo basis, then we cannot determine the parallax. This problem is a special case of
the so-called aperture problem which occurs also in motion determination and will be
discussed in detail in section 14.1.2. ,

In stereo imaging, this problem can partly be overcome by using a third camera
[Pietikdinen and Harwood, 1986]. The three images result in the three stereo bases
which lie in different directions. As long as there are gray value changes in the images,
we can determine the parallax from at least two stereo bases.

Stereo images can be viewed with different methods. First, the left and right stereo
image can be represented in one image, if one is shown in red and the other in green.
The viewer uses a spectacle with a red filter for the right, and a green filter for the
left eye. In this way, the right eye observes only the green, and the left eye only the
red image. This method — called the anaglyph method — has the disadvantage that
no color images can be used. However, this method needs no special hardware, can be
projected, shown on any RGB monitor, or be printed out with standard printers. The
stereo image shown in plate 6 is presented in this way.

Vertical stereoscopy also allows for the viewing of color stereo images [Koschnitzke et
al., 1983]. The two component images are arranged one upon the other. When viewed
with a prism spectacle, which refracts the image of the right eye to the upper, and the
image of the left eye to the lower image, both images fuse into a 3-D image.

Other stereoscopic imagers use dedicated hardware. A common principle is to show
the left and right stereo image in fast alternation on a monitor. Synchronously, the po-
larization direction of the screen is switched. The viewer wears a polarization spectacle
which filters the correct images out for the left and right eye.

However, the anaglyph method has the largest potential for most applications, since
it can be used with almost any image processing workstation, the only additional piece
of hardware needed being the red-green spectacle. A stimulating overview on scientific
and technical applications of stereo images is given by Lorenz {1985].

2.2.10 Tomography

Tomographic methods do not generate a 3-D image of an object directly, but allow
reconstruction of the three-dimensional shape of objects using suitable methods. To-
mographic methods can be thought as an extension of stereoscopy. With stereoscopy
the depth of surfaces is only inferred, but not the 3-D shape of transparent objects.
Intuitively, we may assume that it is necessary to view such an object from as many
directions as possible.

Tomographic methods use radiation which penetrates an object from different di-
rections. If we use a point source (figure 2.11b), we observe a perspective or fan-beam
projection on the screen behind the object just as in optical imaging (section 2.2.2).

40 2 Image Formation and Digitization

Figure 2.11: a) Parallel projection and b) fan-beam projection in tomography.

Such an image is taken from different projection directions by rotating the point source
and the projection screen around the object. In a similar way, we can use parallel
projection (figure 2.11a) which is easier to analyze but harder to realize. If the object
absorbs the radiation, the intensity loss measured in the projection on the screen is
proportional to the path length of the ray in the object. The 3-D shape of the object
cannot be reconstructed from one projection. It is necessary to measure projections
from all directions by turning the radiation source and projection screen around the
object.

As in other imaging methods, tomography can make use of different interactions
between matter and radiation. The most widespread application is transmission tomo-
graphy. The imaging mechanism is by the absorption of radiation, e.g., X-rays. Other
methods include emission tomography, reflection tomography, and time-of-flight to-
mography (especially with ultrasound), and complex imaging methods using nuclear
magnetic resonance (NMR).

2.3 Digitization

2.3.1 Image matrix

Digitization means sampling the gray values at a discrete set of points, which can be
represented by a matrix. Sampling may already be happening by use of the sensor
which converts the collected photons into an electrical signal. In a conventional tube
camera, the image is already sampled in lines, as an electron beam scans the imaging
tube line by line. The number of lines per image is fixed by television standards (see
appendix B). A CCD-camera already has a matrix of discrete sensors. Each sensor is a

2.3 Digitization 41

sampling point on a 2-D grid. The standard video signal is, however, an analog signal.
Consequently, we lose the horizontal sampling again, as the signal from a line of sensors
is converted into an analog signal. The problems associated with this conversion and
redigitization are discussed in appendix B.

Mathematically, digitization is described as the mapping from a continuous function
in IR? onto a matrix with a finite number of elements:

D
9(317-772) — Gm,n X (235)
T1,22 € IR m,n € IZ

The image matrix can take different geometries. Solid state physicists, mineralogists,
and chemists are familiar with problems of this kind. Crystals show periodic 3-D pat-
terns of the arrangements of their atoms, ions, or molecules which can be classified
due to their symmetries. In 3-D this problem is quite complex. In 2-D we have fewer
choices. For a two-dimensional grid of the image matrix, a rectangular basis cell is al-
most exclusively chosen. This is due to the fact that common image processing systems
use square image matrices (typically 512 x 512), while the common image formats are
rectangular (35 mm film: 24 x 36 mm; video images: length ratio 3:4).

Pizel or Pel

A point on the 2-D grid is called a pizel or pel. Both words are abbreviations of the
word picture element. A pixel represents the gray value at the corresponding grid
position. The position of the pixel is given in the common notation for matrices. The
first index, m, denotes the position of the row, the second, n, the position of the column
(figure 2.12a). If the image is represented by an M x N matrix, the index n runs from
0 to N —1, the index m from 0 to M — 1. M gives the number of rows, N the number
of columns.

Neighborhood Relations

On a rectangular grid, there are two possibilities to define neighboring pixels (fig-
ure 2.12b and c). We can either regard pixels as neighbors when they have a joint
edge or when they have at least one joint corner. Thus four and eight neighbors exist,
respectively, and we speak of a 4-neighborhood or an 8-neighborhood.

Both definitions are needed. This can be seen if we study adjacent objects. An object
is called adjacent when we can reach any pixel in the object by walking to neighboring
pixels. The black object shown in figure 2.12d is adjacent in the 8-neighborhood, but
constitutes two objects in the 4-neighborhood. The white background, however, shows
the same feature at the questionable position, where the object might either be adjacent
or not. Thus the inconsistency arises, that we may have either two crossing adjacent
objects in the 8-neigborhood or two separated objects in the 4-neighborhood. This
difficulty can be overcome if we declare the objects as 4-neighboring and the background
as 8-neighboring, or vice versa.

These complications are a special feature of the rectangular grid. They do not
occur with a hexagonal grid (figure 2.12¢). On a hezagonal grid, we can only define
a 6-neighborhood, since pixels which have a joint corner, but no joint edge, do not
exist. Neighboring pixels have always one joint edge and two joint corners. Despite this
advantage, hexagonal grids are hardly used in image processing, as the hardware does
not support them.

42 2 Image Formation and Digitization

columns
a)
[v] 1 n N
0
1
rnws m m,n
M
b) c)
m-1,n _ m-1,n-1 | m-1,n [m-1,n+1
m,n-1 m,n jmn+1 m,n-1 m,n m,n+1
m+1,n m+1,n-1| m+1,n jm+1,n+1
4-Neighborhood 8-Neighborhood
d) e)

Figure 2.12: a) Each square in the image matrix represents a pixel; the pixel positions are numbered
as denoted. b) 4-neighbors; ¢) 8-neighbors; d) Is the black object adjacent? e) A discrete hexagonal
grid.

2.3 Digitization 43

a) b)

Figure 2.13: Straight lines on discrete geometries: a) square grid; b) hexagonal grid.

Discrete Geometry

The difficulties discussed in the previous section result from the fact that the image
matrix constitutes a discrete structure where only points on the grid are defined. The
discrete nature of the image matrix causes further problems.

Rotations on a discrete grid are defined only for certain angles, when all points of
the rotated grid coincide with grid points. On a rectangular grid, only a rotation of 180°
is possible, on a square grid in multiples of 90°, and on a hexagonal grid in multiples
of 60°.

Equally difficult is the presentation of straight lines. Generally, a straight line can
only be represented as a jagged, staircase-like sequence of pixels (figure 2.13). These
difficulties lead not only to ugly images of lines and boundaries, but also force us to
consider very carefully how we determine the direction of edges, the circumference and
area of objects. In general that is how we handle all the questions concerning the shape
of objects.

Problems related to the discrete nature of digitized images are common to both
image processing and computer graphics. While the emphasis in computer graphics is
on a better appearance of the images, e. g., to avoid jagged lines, researchers in image
processing focus on accurate analysis of the form of objects. The basic knowledge
worked out in this chapter will help to deal with both problems.

2.3.2 Moiré-Effect and Aliasing

Digitization of a continuous image constitutes an enormous loss of information, since
we reduce the information about the gray values from an infinite to a finite number
of points. Therefore the crucial question arises as to which condition we can ensure
that the sampled points are a valid representation of the continuous image, i.e., there
is no loss of information. We also want to know how we can reconstruct a continuous
image from the sampled points. We will approach these questions by first studying the
distortions which result from improper sampling.

Intuitively, it is clear that sampling leads to a reduction in resolution, i. e., structures
of about the scale of the sampling distance and finer will be lost. It might come as
a surprise to know that considerable distortions occur if we sample an image which

44 2 Image Formation and Digitization

Figure 2.14: The Moiré-effect: the left image shows the original image, two linear grids with different
grid constants. In the right image, digitization is simulated by overlaying a 2-D grid over part of the

left image.

/\2 = 20Azx

| < 19X, >|

Figure 2.15: Demonstration of the aliasing effect: an oscilliatory signal is sampled with a sampling
distance Az equal to 19/20 of the wavelength. The result is an aliased wavelength which is 20 times
the sampling distance.

contains fine structures. Figure 2.14 shows a simple example. Digitization is simulated
by overlaying a 2-D grid on the object comprising two linear grids with different grid
constants. After sampling, both grids appear to have grid constants with different
periodicity and direction. This kind of image distortion is called the Moiré-effect.

The same phenomenon, called aliasing, is known for one-dimensional signals, espe-
cially time series. Figure 2.15 shows a signal with a sinusoidal oscillation. It is sampled
with a sampling distance which is slightly smaller than its wavelength. As a result we
can observe a much larger wavelength.

2.3 Digitization 45

Whenever we digitize analog data, these problems occur. It is a general phenomenon
of signal processing. In this respect, only image processing is a special case in the more
general field of signal theory.

Since the aliasing effect has been demonstrated with periodic signals, the key to
understand and thus to avoid it, is by an analysis of the digitization process in Fourier
space. In the following, we will perform this analysis step by step. As a result, we can
formulate the conditions under which the sampled points are a correct and complete
representation of the continuous image in the so-called sampling theorem. The following
considerations are not a strict mathematical proof of the sampling theorem but rather
an illustrative approach.

2.3.3 The Sampling Theorem

Our starting point is an infinite, continuous image g(«), which we want to map onto a
finite matrix Gy, 5. In this procedure we will include the image formation process, which
we discussed in section 2.2. We can then distinguish three separate steps: imaging,
sampling, and the limitation of a finite image matrix.

Image Formation
Digitization cannot be treated without the image formation process. The optical sys-
tem, including the sensor, influences the image signal so that we should include the
effect in this process.

Digitization means that we sample the image at certain points of a discrete grid,
Ty If we restrict our considerations to rectangular grids, these points can be written
as:

T = (M Az, 7 Az,). (2.36)

Generally, we do not collect the illumination intensity exactly at these points, but in
a certain area around them. As an example, we take a CCD camera, which consists
of a matrix of directly neighboring photodiodes without any light insensitive strips in
between. We further assume that the photodiodes are uniformly and equally sensi-
tive. Then g'(x) at the image plane will be integrated over the area of the individual
photodiodes. This corresponds to the operation

(m+1/2)Az1 (n+1/2)Az2
9(@mn) = dz,; / dz; ¢'(x). (2.37)
(m-1/2)Az1 (n—1/2)Az2

This operation includes convolution with a rectangular box function and sampling at
the points of the grid. These two steps can be separated. We can first perform the
continuous convolution and then the sampling. In this way we can generalize the image
formation process and separate it from the sampling process. Since convolution is an
associative operation, we can combine the averaging process of the CCD sensor with
the PSF of the optical system (section 2.2.6) in a single convolution process. Therefore

46 2 Image Formation and Digitization

Figure 2.16: Derivation of the sampling theorem I: schematic illustration of the imaging and sampling
process in the z and k spaces.

2.3 Digitization

.
*
L
.

.
3
4
.
3

sin(k)
k

P
L L]
hd 3
—Q
° o . e ™1
* & L L]
Discrete limited Image

Figure 2.17: Derivation of the sampling theorem II: limited to a finite window.

48 2 Image Formation and Digitization

we can describe the image formation process by the following operation:

g(z) = /dzx' g (@)h(z — z') = ¢'(z) * h(z)
e i (2.38)

(k) = §'(k)h(k),

where h(z) and h(k) are the resulting PSF and OTF, respectively, and ¢'(z) can be
considered as the gray value image obtained with a perfect sensor, i. e., an optical system
(including the sensor) whose OTF is identically 1 and whose PSF is a é-function.

Generally, the image formation process results in a blurring of the image; fine details
are lost. In Fourier space this leads to an attenuation of high wave numbers. The
resulting gray value image is called bandlimited.

Sampling

Now we perform the sampling. Sampling means that all information is lost except at
the grid points. Mathematically, this constitutes a multiplication of the continuous
function which is zero everywhere except for the grid points. This operation can be
performed by multiplying the image function g(z) with the sum of § functions located
at the grid points @,,, (2.36). This function is called the two-dimensional é comb, or
“nail-board function”(figure 2.16). Then sampling can be expressed as

95(2) = 9(2)}_§(x — Tmn)

T (2.39)
gs(k) = Zg(k - ku,v)7

where

» | uPky | | 27u/Azy
Fuy = [vPk,] - [2mv] Az, (2.40)

are the points of the so-called reciprocal grid, which plays a significant role in solid state
physics and crystallography. According to the convolution theorem, multiplication of
the image with the 2-D § comb corresponds to a convolution of the Fourier transform
of the image, the image spectrum, with another 2-D é comb, whose grid constants are
reciprocal to the grid constants in z space (see (2.36) and (2.40)). A dense sampling
in = space yields a wide mesh in the k space, and vice versa. Consequently, sampling
results in a reproduction of the image spectrum at each point of the grid (figure 2.16).

Now we can formulate the condition where we get no distortion of the signal by
sampling. If the image spectrum is so extended that parts of it overlap with the period-
ically repeated copies, then the overlapping parts are alternated. We cannot distinguish
whether the spectral amplitudes come from the original spectrum at the center or from
one of the copies. In order to obtain no distortions, we must avoid overlapping.

A safe condition to avoid overlapping is as follows: the spectrum must be restricted
to the area which extends around the central grid point up to the lines parting the area

2.3 Digitization 49

14

ky

Figure 2.18: Explanation of the Moiré-effect with a periodic structure which does not meet the sampling
condition.

between the central grid point and all other grid points (figure 2.16). (In solid state
physics this zone is called the first Brillouin zone [Kittel, 1971].) On a rectangular grid,
this results in the simple condition that the maximum wave number at which the image
spectrum is not equal to zero, must be restricted to less than half of the grid constants
of the reciprocal grid:

If the spectrum §(k) of a continuous function g(z) is bandlimited, i.e.,
3(k) =0 V k| > 7ki/2, (2.41)
then it can be reconstructed exactly from samples with a distance

A.’E,' = 27('/Pk,'. (242)

In other words, we will obtain a periodic structure correctly only if we take at
least two samples per wavelength. The maximum wave number which can be sampled
without errors is called the Nyquist or limiting wave number. In the following, we will
often use wave numbers which are scaled to the limiting wave number. We denote this
scaling with a tilde:

_ k;AJI,’

s

k; (2.43)

In this scaling all components of the wave number £; fall into the]-1, 1] interval.

Ezplanation of the Moiré-Effect

Considerations from the previous section can now be used to explain the Moiré- and
aliasing effect. We start with a periodic structure which does not meet the sampling
condition. The unsampled spectrum contains a single peak, which is marked with the
long vector k in figure 2.18. Because of the periodic replication of the sampled spectrum,
there is exactly one peak, at k', which lies in the central cell. Figure 2.18 shows that
this peak does not only have another wavelength, but in general another direction, as
observed in figure 2.14.

50 2 Image Formation and Digitization

The observed wave number k' differs from the true wave number k by a grid trans-
lation vector k., on the reciprocal grid. » and v must be chosen to meet the condition

|k1 +qu1| < pk1/2

(2.44)
|k2 +v pkgl < Pk2/2.
According to this condition, we yield an aliased wave number
K =k—"k=19/20Pk — Pk = —1/20 Pk (2.45)

for the one-dimensional example in figure 2.15, as we just observed.

The sampling theorem, as formulated above, is actually too strict a requirement. A
sufficient and necessary condition is that the periodic replications of the non-zero parts
of the image spectra must not overlap.

Limitation to a Finite Window
So far, the sampled image is still infinite in size. In practice, we can only work with
finite image matrices. Thus the last step is the limitation of the image to a finite window
size. The simplest case is the multiplication of the sampled image with a box function.
More generally, we can take any window function w(z) which is zero for sufficient large
z values:
g(@) = gs() - w(=)
(2.46)

ai(k) = §s(k) * b(k).

In Fourier space, the spectrum of the sampled image will be convolved with the Fourier
transform of the window function (figure 2.17). Let us consider the example of the
box window function in detail. If the window in the z space includes M x N sampling
points, its size is M Az; X NAz,. The Fourier transform of the 2-D box function is the
2-D sinc function (see appendix A.2). The main peak of the sinc function has a half-
width of 27 /(M Az,) X 2r/(NAz;). A narrow peak in the spectrum of the image will
become a 2-D sinc function. Generally, the resolution in the spectrum will be reduced
to the order of the half-width of the sinc function.

In summary, sampling leads to a limitation of the wave number, while the limitation
of the image size determines the wave number resolution. Thus the scales in = and &
space are reciprocal to each other. The resolution in the « space determines the size in
the k space, and vice versa.

2.3.4 Reconstruction from Samples

One task is missing. The sampling theorem ensures the conditions under which we can
reconstruct a continuous function from sampled points, but we still do not know how to
perform the reconstruction of the continuous image from its samples, i.e., the inverse
operation to sampling.

Reconstruction is performed by a suitable interpolation of the sampled points. Gen-
erally, the interpolated points g.(z) are calculated from the sampled values g(z,,,)

2.3 Digitization 51

weighted with suitable factors depending on the distance from the interpolated point:

gr(z) = Egs(wm,n)h(z - zm,n)- (247)

mm

Using the integral properties of the é function, we can substitute the sampled points
on the right side by the continuous values:

I

OS> / &z g(@')h(x — 2')8(2mn — @)

_Zd::c’ h(z — =') (;5(%’” _ w/)g(z,)) _

The last integral means a convolution of the weighting function h with a sum of the im-
age function g replicated at each grid point in the z space. In Fourier space, convolution
is replaced by complex multiplication:

dr (k) = h(k)Y9(k — ko). (248)

The interpolated function caunot be equal to the original image, if the periodically
repeated image spectra are overlapping. This is nothing new; it is exactly the state-
ment of the sampling theorem. The interpolated image function is only equal to the
original image function if the weighting function is a box function with the width of the

elementary cell of the reciprocal grid. Then only one term unequal to zero remains at
the right side of (2.48):

ﬁr(k) = H(k1A11/2ﬂ', kgA.’Dz/Zﬂ')g(k). (2.49)
The interpolation function is the inverse Fourier transform of the box function

h(z) = sin 7z1/Azy sin wza/ Az
- 7F$1/A$1 7l'$2/A.’l?2)

(2.50)

This function performs only with 1/z towards zero. A correct interpolation requires
a large image area; mathematically, it must be infinite large. This condition can be
weakened if we “overfill” the sampling theorem, i.e., ensure that §(k) is already zero
before we reach the Nyquist wave number. According to (2.48), we can then choose
iz(k) arbitrarily in the region where § vanishes. We can use this freedom to construct
an interpolation function which decreases more quickly in the x space, i.e., it has
a minimum-length interpolation mask. We can also start from a given interpolation
formula. Then the deviation of its Fourier transform from a box function tells us to
what extent structures will be distorted as a function of the wave number. Suitable
interpolation functions will be discussed in detail in section 8.2.4.

52 2 Image Formation and Digitization

Figure 2.19: a) PSF and b) OTF of standard sampling.

2.3.5 Standard Sampling

The type of sampling discussed in section 2.3.3 using the example of the ideal CCD
camera is called standard sampling. Here the mean value of an elementary cell is
assigned to a corresponding sampling point. It is a kind of regular sampling, since each
point in the continuous space is equally weighted. We might be tempted to assume
that standard sampling conforms to the sampling theorem. Unfortunately, this is not
the case (figure 2.19). To the Nyquist wave number, the Fourier transform of the
box function is still 1/4/2. The first zero crossing occurs at double the Nyquist wave
number. Consequently, Moiré effects will be observed with CCD cameras. The effects
are even more pronounced since only a small fraction — typically 20% of the chip area
for interline transfer cameras — are light sensitive [Lenz, 1988].

Smoothing over larger areas with a box window is not of much help since the Fourier
transform of the box window only decreases with k= (figure 2.19). The ideal window
function for sampling is identical to the ideal interpolation formula (2.50) discussed
in section 2.3.4, since its Fourier transform is a box function with the width of the
elementary cell of the reciprocal grid. However, this windowing is impracticable. We
will consider this matter further in our discussion of smoothing filters in section 6.1.

3 Space and Wave Number Domain

3.1 Introduction

Fourier transform, i.e., decomposition of an image into periodic structures, proved
to be an extremely helpful tool to understanding image formation and digitization.
Throughout the whole discussion in the last chapter we used the continuous Fourier
transform. Proceeding now to discrete imagery, the question arises whether there is a
discrete analogue to the continuous Fourier transform. Such a transformation would
allow us to decompose a discrete image directly into its periodic components.

In continuous space, the image is represented equivalently in the space and Fourier
domain. As an introduction to a discrete Fourier space, we will first consider the effects
of sampling in Fourier space. Since the back transformation is — except for the sign
of the kernel — the same as for the forward transformation (see appendix A.2), we
can follow the route as for sampling in the space domain. By interchanging the roles
of space and wave number domain, we can write the sampling theorem for the wave
number domain directly (compare equation (2.41)):

If a function g(x) is finite, i.e.,
9(z) =0 V|z;| > *z;/2, (3.1)

then it can be reconstructed exactly from samples of its Fourier transform, §(k), with a
distance
Ak,’ = 27T/p13;. (32)

As in the spatial domain, we limit the infinite Fourier domain by a window function.
Multiplication in the Fourier domain corresponds to a convolution in the space domain
with the inverse Fourier transform of the window function. This convolution process
results in a smoothing, i.e., limitation of the resolution, an effect we expected since
we attenuate or remove high wave numbers entirely by multiplication with the window
function in the Fourier domain.

Comparing the effects of the limitation of a continuous function in either of the
two domains, we conclude that they have a corresponding effect in the other domain.
Thus we might suspect that a transformation on the discrete data, i. e., matrices, may
exist which shows very similar features to the continuous Fourier transform. This

54 3 Space and Wave Number Domain

transformation is called the discrete Fourier transform, or DFT. The relation between
the grid constants and sizes in the space and wave number domains are given by
pk1=MAk1=27l'/A21 "zleAzl=27r/Ak1

3.3
pkg = NAkg = 27I'/A.'E2 p.‘l!g = NA.’IIg = 27F/Ak2 ()

The subject of this chapter is rather mathematical, but is significant for a greater
understanding of image processing. We will try to treat the subject illustratively and to
focus on several aspects which are important for practical application. We will discuss
in detail the special features of the DFT of real-valued images, the importance of phase
and amplitude of the DFT, and several fast algorithms to calculate the DFT. The reader
will find references to a more rigorous mathematical treatment in appendix A.3. This
appendix also includes a ready-to-use summary of the theorems of DFT and important
special functions used in image processing.

3.2 The Discrete Fourier transform (DFT)

3.2.1 The one-dimensional DFT

First, we will consider the one-dimensional Fourier transform. The DFT maps an
ordered M-tupel of complex numbers g;, the complez-valued vector g,

g= : , (3.4)
IM-1

onto another vector § of a vector space with the same dimension M.

1 M-1 i
4o =37 X om exP (— ”]‘;’“) , 0Su<M. (3.5)
The back transformation is given by
M-1 .
2
Im =D du eXP(W]lénu), 0<m< M (3.6)
u=0

The expressions in (3.5) and (3.6) with which the vectors are multiplied are called the
kernel of the DFT. We can consider the DFT as inner products of the vector g with a
set of M vectors

exp (B2) | p<u< M (3.7)

3.2 The Discrete Fourier transform (DFT) 55

The elements of these vectors are conveniently abbreviated using

Wi = exp (%) . (3.8)

Then we can write:

1
Wir

b, = Wi |, (3.9)

1
M .
W]{JM—I)u

Using the definition for the inner product

M-1
(9,h) = Y gmh;, = gh", (3.10)
m=0
the DFT reduces to
gu=(9,b.)= g b, . (3.11)
N

IXxM Mx1

Used with a scalar, the superscript * denotes the complex conjugate; used with a vector
or matrix, it denotes the complex conjugate and transposed vector or matrix. Here we
consider vectors as special cases of matrices. Column (g) and row (g7 or g*) vectors
are equivalent to M x 1 and 1 x M matrices, respectively.

Then the scalar product is a special matrix multiplication between a column and a
row vector resulting in a scalar.

The M vectors b, are orthogonal to each other

M (by,b,) = byb," = 6.,,. (3.12)

Consequently, the set b, forms a basis for the vector space, which means that each
vector of the vector space can be expressed as a linear combination of the basis vectors.
The DFT calculates the projections of the vector g onto all the basis vectors directly,
i.e., the components of g in the direction of the basis vectors. In this sense, the DFT
is just a special type of coordinate transformation in an M-dimensional vector space.
Mathematically, the DFT differs from more familiar coordinate transformations such as
rotation in a three-dimensional vector space (section 2.2.1, see also section 2.2.3) only
because the vector space is over the field of the complex instead of real numbers.

The real and imaginary part of the basis vectors are sampled sine and cosine func-
tions of different wavelengths (figure 3.1). The index u denotes how often the wavelength
of the function fits into the interval [0, M]. Only wavelengths with integer fractions of
the interval length M occur. The basis vector by is a constant real vector.

56 3 Space and Wave Number Domain

15 15

14 14
13 13

12 12

2

13 11

10 10

s

(2

R

0 0

Figure 3.1: Basis functions of the DFT for M = 16; real part (cosine function) left, imaginary part
(sine function) right.

3.2.2 The Two-Dimensional DFT

In two dimensions, the DFT maps an M x N matrix with complex components onto
another matrix of the same size:

A 1 M-t 2rimu 2rinv
Cuw = MN,,?:},,%GMW(‘ M)exP (_ N)

(3.13)

1 M-1 /N-1
_ Gm nw—nv Wome
i 2 0mei) V
In the second line, the abbreviation defined in (3.8) is used. As in the one-dimensional
case, the DFT expands a matrix into a set of basis matrices which spans the N x M-
dimensional vector space over the field of complex numbers. The basis matrices are of
the form

1
|
B., = ——| Wi |[1,wy,wg, ... w{
u,v MN ; y YNV N »'Y'N
MxN : (3.14)
WJ&M—I)H

1
— b, b .
MN <~
Mx1i1xN

3.2 The Discrete Fourier transform (DFT) 57

In this equation, the basis matrices are expressed as an outer product between a column
and a row vector which are the basis vectors of the one-dimensional DFT. Kernels with
this property are called separable kernels.

The inverse DFT is given by

1

M-
Grn = 3
u=0

The theorems of the DFT are very similar to the corresponding theorems of the
continuous Fourier transform and are summarized in appendix A.3. In this section we
focus on additional properties of the DFT which are of importance when we want to
apply the DFT to image data.

N-1
S G Wi Wi (3.15)
v=0

3.2.3 Periodicity

The kernel of the DFT shows a characteristic periodicity

exp (—-?—W—l(m-l_—km) = exp (_27r1m) , Vkelz. (3.16)

M M

The definitions of the DFT restrict the space and Fourier domain to an M x N matrix.
If we do not care about this restriction and calculate the forward and back transforma-
tion for indices with unrestricted integer numbers, we find the same periodicities from

(3.13) and (3.15):

wave number domain Guyrmopin = Gy, VEIEDZ

space domain GrtiMpntiN = Gmn, VE 1€ IZ. (3.17)

These equations state a periodic extension in both domains beyond the original matri-
ces. In sections 2.3.3 and 3.1 we obtained the very same result with our considerations
about sampling in the space and wave number domain.

The periodicity of the DFT gives rise to an interesting geometric interpretation. In
the one-dimensional case, the border points gpr_1 and gy = fo are neighboring points.
We can meet this property geometrically if we draw the points of the vector not on a
finite line but on a circle, the so-called Fourier ring (figure 3.2a). This representation
has a deeper meaning when we consider the Fourier transform as a special case of the
z-transform [Oppenheim and Schafer, 1989]. With two dimensions, this can lead to a
mapping of the matrix onto a torus (figure 3.2b), the Fourier torus.

3.2.4 Symmetry

The study of symmetries is important for practical purposes. Careful consideration of
symmetry allows storage space to be saved and algorithms to be speeded up. After
a general introduction to symmetries with discrete functions, we discuss the DFT of
real-valued images.

58 3 Space and Wave Number Domain

a)

Figure 3.2: Geometric interpretation of the periodicity of the one- and two-dimensional DFT with
a) the Fourier ring and b) the Fourier torus.

In continuous space, Fourier transform conserves the symmetry of functions. The
Fourier transform of an even or odd function

9(z) = £g(~=) (3.18)

remains even or odd. In the discrete and finite space, for which the DFT is defined, we
first must find an appropriate definition for symmetries. The direct analogue,

Grn = £G - —n, (3.19)

is not appropriate, because negative indices lie outside of definition range. However, we
can make use of the periodicity property (3.17). Then we find the index (—m, —n) at
(M — m, N — n) within the matrix and define the symmetry condition

Gmn = :tGM—m,N—n, (320)

for even (+ sign) and odd (— sign) functions. The symmetry center lies at the point
(M/2,N/2). '

The complex-valued basis vectors of the DFT also show symmetries. While the real
part (cosine function) is even, the imaginary part (sine function) is odd [(figure 3.1),
(3.7) and (3.14)]. This kind of symmetry for complex valued functions is called Hermi-
tian.

After these general considerations, we can study the DFT of real-valued images in
more detail. From the Hermitian symmetry of the basis vectors of the DFT, we can
conclude that real-valued functions also exhibit a Hermitian DFT:

Grin = Gl 00— Grr_un—, = G, (3.21)

3.2 The Discrete Fourier transform (DFT) 59

Figure 3.3: Representation of the spectrum of an image: a) Fourier transformed image; b) original
image; c¢) remapped spectrum to consider negative values of one component of the wave number.

The complex-valued DFT of real-valued matrices is therefore completely determined
by the values in one half space. The other half space is obtained by mirroring at the
symmetry center (M/2, N/2). Consequently, we need the same amount of storage place
for the DFT of a real image as for the image itself.

At first glance, the basis functions of the DFT in figure 3.1 seem to contradict the
sampling theorem. The sampling theorem states that a periodic structure must be
sampled at least twice per wavelength. This condition is only met for the first half of
the basis functions (indices 0 to 8), but not for the second half. We can resolve this
apparent discrepancy by reindexing the vector. Using the periodicity property (3.17),
we can change the indices in the interval [M/2, M —1] to [-M /2, —1]. Now the indices,
except for the minus sign, directly reflect the period of the basis functions (figure 3.1).
The indices now lie in the interval [-M /2, M /2 —1]; all basis vectors meet the sampling
theorem.

However, what is the meaning of negative frequencies and wave numbers, respec-
tively? For real physical phenomena they make no sense. But as the spectrum of a real
vector is Hermitian, we can just pick out the part with the positive wave numbers.

In two and higher dimensions, matters are slightly more complex. The spectrum of a
real-valued image is determined completely by the values in one half space. This means
that one component of the wave number can be negative, but that we cannot distinguish
between k and —k, i.e., between wave numbers which only differ in sign. Therefore
we can represent power spectra of real-valued images in a half space, where only one
component of the wave number includes negative values. For proper representation of
the spectra with zero values of this component in the middle of the image, it is necessary
to interchange the upper (positive) and lower (negative) parts of the image (figure 3.3).

An image sequence can be regarded as a three-dimensional image with two space
and one time coordinates. Consequently, the DFT results in a spectrum with two wave
numbers and one frequency coordinate. For real-valued image sequences, again we need
only a half space to represent the spectrum. Physically, it makes most sense to choose

60 3 Space and Wave Number Domain

a) K,

ky

Y

Figure 3.4: Representation of the Fourier domain in a) Cartesian and b) log-polar coordinate system.

the half space which contains positive frequencies. In contrast to a single image, we
obtain the full wave number space. Now we can identify the spatially identical wave
numbers k and —k as structures propagating in opposite directions.

3.2.5 Dynamical Range of the DFT

While in most cases it is sufficient to represent an image with 256 quantization levels,
i.e., one byte per pixel, the Fourier transform of an image needs a much larger dynamical
range. Typically, we observe a strong decrease of the Fourier components with the
magnitude of the wave number (figure 3.3). Consequently, at least 16-bit integers or
32-bit floating-point numbers are necessary to represent an image in the Fourier domain
without significant rounding errors.

The reason for this behavior is not the insignificance of high wave numbers in images.
If we simply omit them, we blur the image. The decrease is caused by the fact that the
relative resolution is increasing. It is natural to think of relative resolutions, because
we are better able to distinguish relative distance differences than absolute ones. We
can, for example, easily see the difference of 10 cm in 1 m, but not in 1km. If we apply
this concept to the Fourier domain, it seems to be more natural to represent the images
in a so-called log-polar coordinate system as illustrated in figure 3.4. A discrete grid in
this coordinate system separates the space into angular and logk intervals. Thus the
cell area is proportional to k%. In order to preserve the norm, the Fourier components
need to be multiplied by k? in this representation:

/ dkydk, |g(k)? = / dInk dg k?|g(k)|*. (3.22)

If we assume that the power spectrum |g(k)|? is flat in the natural log-polar coordinate
system, it will decrease with k=2 in the Cartesian coordinates.

For a display of power spectra, it is common to take the logarithm of the gray values
in order to compress the high dynamic range. Our considerations in this section suggest

that a multiplication with k% is a valuable alternative. Likewise, representation in the

3.2 The Discrete Fourier transform (DFT) 61

Figure 3.5: Power spectrum of an image in a) Cartesian and b) log-polar coordinate system.

log-polar coordinate systems allows a much better evaluation of the directions of the
spatial structures and the smaller scales (figure 3.5).

3.2.6 Phase and Amplitude

As outlined above, the DFT can be regarded as a coordinate transformation in a finite-
dimensional vector space. Therefore, the image information is completely conserved.
We can perform the inverse transformation to obtain the original image. In Fourier
space, we observe the image from another “point of view”. Each point in the Fourier
domain contains two pieces of information: the amplitude and the phase, i.e., rela-
tive position, of a periodic structure. Given this composition, we are confronted with
the question as to whether the phase or amplitude contains more information of the
structure in the image, or whether both are of equal importance. In order to answer
this question, we perform a simple experiment. Figure 3.6a shows part of a building
at Heidelberg University. We calculate the DFT of this image and then arbitrarily
change either the phase or the amplitude of the Fourier component and then perform
the inverse DFT.

First, we arbitrarily set the amplitude proportional to k~! (figure 3.6b) or k=%/2
(figure 3.6c), but leave the phase unchanged. The images become somewhat stained,
and in case of |§(k)| o< k~3/2 also blurred, but otherwise we can still recognize all the
details.

Second, we keep the amplitude of the spectrum, but change the phase by replacing
it with random numbers with the exception of the first row (figure 3.6d). Consequently,
only the phase of horizontally orientated structures is kept unchanged. The arbitrary
change causes significant effects: we can no longer recognize the image except for the
coarse horizontal dark/bright pattern which corresponds to the Fourier components
whose phase was not changed.

From this experiment, we can conclude that the phase of the Fourier transform
carries essential information about the image structure. The amplitude alone implies

62 3 Space and Wave Number Domain

Figure 3.6: The importance of phase and amplitude for the image contents: a) original image; b) back
transformed image with unchanged phase but an amplitude arbitrarily set to |§(k)| o< k~1; ¢) as b),
but with |§(k)| o< k~3/2; d) unchanged amplitude and random phase.

only that such a periodic structure is contained in the image but not where. We can also
illustrate this important fact with the shift theorem (see appendix A.3). A shift of an
object in the space domain leads to a shift of the phase in the wave number domain. If
we do not know the phase of its Fourier components, we know neither what the object
looks like nor where it is located.

From these considerations we can conclude that the power spectrum, i.e., the squared
amplitudes of the Fourier components, contains only very little information, since all
the phase information is lost. The power spectrum only indicates the amplitude of the
wave numbers. If the gray value can be associated with the amplitude of a physical
process, say a harmonic oscillation, then the power spectrum gives us the distribution
of the energy in the wave number domain.

3.3 Discrete Unitary Transforms 63

3.3 Discrete Unitary Transforms

3.3.1 General Properties

In section 3.2.1, we learnt that the discrete Fourier transform can be regarded as a linear
transformation in a vector space. Thus it is only an example of a large class of trans-
formations, called unitary transforms. In this section, we discuss some of their general
features which will be of help for a deeper insight into image processing. Furthermore,
we give examples of other unitary transforms which have gained some importance in
digital image processing.

Unitary transforms are defined for vector spaces over the field of complex numbers,
for which an inner product is defined. Implicitly, we have already used the inner or dot
product for vectors. Let g and h be two vectors of an M-dimensional vector space over
the field of complex numbers. Then the standard inner product is defined as

(9,h) = gh" = ngh‘ (3.23)

This definition can be extended for matrices with the following definition:

M-1N-1

H)=)Y Gu.H},. (3.24)

m=0n=0

The inner product for matrices is closely related to the trace function

M-1
=Y Gum (3.25)
by
(G, H) = tr(GH") = tr(G"H). (3.26)

Now we can define the unitary transform:
Let V be a finite-dimensional inner product vector space. Let U be a one-one linear
transformation of V onto itself. Then the following are equivalent.
1. U is unitary.
2. U preserves the inner product, i.e., (g,h) = (Ug,Uh), Vg,h € V.
3. The inverse of U, U™}, is the adjoint of U, U*: UU* = I.

In the definition given, the most important properties of a unitary transform are
already incorporated: an unitary transform preserves the inner product. This includes
that another important property, the norm, is also preserved

lgll = (g,9)"* = (Ug,Ug)""*. (3.27)

It is appropriate to think of the norm as the length or magnitude of the vector. Rotation
in IR? or IR? is an example for a unitary transform where the preservation of the length

of the vectors is obvious (compare also the discussion of homogeneous coordinates in
section 2.2.3).

64 3 Space and Wave Number Domain

The product of two unitary transforms, U1U ,, is unitary. Since the identity operator
I is unitary as well as the inverse of a unitary operator, the set of all unitary transforms
on an inner product space is a group under the operation of composition. In practice,
this means that we can compose/decompose complex unitary transforms from/into
simpler or elementary transforms.

We will illustrate some of the properties of unitary transforms discussed with the
discrete Fourier transform. First we consider the one-dimensional DFT (3.5):

Ly
Gu = 55 ng];fmu-
Mm=0

This equation can be regarded as a multiplication of an M x M matrix Wy (W, =
Wi™*) with the vector g:

9g=Wng. (3.28)
Explicitly, the DFT for an 8-dimensional vector is given by
[do] [W° WO W° W° W° W° W° W°7[go]
gl WO W7 weé W5 W4 w3 w? w!t g1
gz WO WG W4 W? W° wé w* Ww? g2
g3 _ WO Ws W2 W7 W4 Wl WG W3 g3 (3 29)
g4 - WO W4 we w4t wW° w+t WO w4 A . .
!?5 WO W3 WG W W4 W7 w? WS Js
Ge WO W? Wt W& W° W2 Wt WS || g6
i g_/ | | WO Wl W2 W3 W4 WS WG W7 | L g7]

We omitted the subscript M for W to keep the matrix elements more simple and made
use of the periodicity of the kernel of the DFT (3.16) to limit the exponents of W
between 0 and 7. The transformation matrix for the DFT is symmetric (W = W7T),
but not Hermitian (W = W™).

For the two-dimensional DFT, we can write similar equations if we map the M x N
matrix onto an M N-dimensional vector. There is, however, a simpler way if we make
use of the separability of the kernel of the DFT as expressed in (3.13). Using the M x M
matrix W, and the N x N matrix Wy analogously as in the one-dimensional case,
we can write (3.13) as

1 M-1N-1
Auv = s mnWmuWnuy .
du, MN"{jO,;g (3.30)
or, in matrix notation,
G =WuT G Wy=WyGWy. (3.31)
SN e o

MxN MxM MxN NxN

Physicists will be reminded of the theoretical foundations of quantum mechanics
which are formulated in an inner product vector space of infinite dimension, the Hilbert
space. In digital image processing, the difficulties associated with infinite-dimensional
vector spaces can be avoided. A detailed discussion of the mathematics of unitary
transforms with respect to digital image processing can be found in Jaroslavskij [1985].
Hoffmann and Kunze [1971] discuss inner product spaces and unitary operators in detail
in their classic textbook on the foundations of linear algebra.

3.3 Discrete Unitary Transforms 65

3.3.2 Further Examples for Unitary Transforms

After discussing the general features of unitary transforms, some illustrative examples
will be given. They will be brief as they are not as important as the discrete Fourier
transform in digital image processing.

Cosine and Sine Transform

It is often inconvenient that the DFT transforms real-valued to complex-valued images.
We can derive a real transformation if we decompose the complex DFT into its real
and imaginary parts:

K = cos (— 2’;"4”") +isin (— 2’;’;") . (3.32)
Neither the cosine nor the sine part is useful as a transformation kernel, since these
functions do not form a basis for the vector space. The cosine and sine functions only
span the subspaces of the even and odd functions, respectively. We can, however,
artificially define even or odd vectors if we double the dimension of the vector space
and extend the upper half of the vector so that the vector becomes even or odd, i.e.,
JoM—-m = £gm, 0 < m < M. The doubling of the dimension means that the periods
of the kernels double. The transform, however, only needs to be calculated for the
lower half, i.e., the dimension of the original vector, since the other part is given by
symmetry. The kernels for the cosine and sine transforms in an M-dimensional vector

space are
Tmu
cos i)

. [(Tmu
K,, = s (”u) .

Figure 3.7a and b show the basis functions of the 1-D cosine and sine functions. From
the graphs, it is easy to imagine that all the basis functions are orthogonal to each
other. Because of the doubling of the periods, both transforms now contain even and
odd functions. The basis functions with half integer wavelengths fill in the functions
with the originally missing symmetry.

The cosine transform has gained importance for image data compression [Jain, 1989].
It is included into the standard high-compression algorithm proposed by the Joint
Photographic Experts Group (JPEG).

Il

Ko
(3.33)

Hadamard Transform

The basis functions of the Hadamard transform are orthogonal binary patterns (fig-
ure 3.7c). Some of these patterns are regular rectangular waves, others are not. The
Hadamard transform is computationally efficient, since its kernel contains only the fig-
ures 1 and -1. Thus only additions and subtractions are necessary to compute the
transform.

If we compare the basis functions of the DFT with the cosine, sine, and Hadamard
transforms, we might be tempted to assume that these transforms still decompose
the vector in larger and smaller scales. This is only partly true. Imagine that we
shift the basis function with the largest scale (index 1) one position. It will then
become a linear combination of many basis vectors, including those with the smallest

66 3 Space and Wave Number Domain

1s
14

13

Kt
SRR
:
[

Figure 3.7: Basis functions of one-dimensional unitary transforms for M = 16-dimensional vectors: a)
cosine transform; b) sine transform; c) Hadamard transform; d) Haar transform.

scales. This example demonstrates the importance of the shift theorem of the DFT (see
appendix A.3). Changes in position do not change the amplitude of the basis vectors,
but only its phase.

Haar Transform

The basis vectors of all the transforms considered so far are characterized by the fact
that they spread out over the whole vector or image. In this sense we may denote
these transforms as global. All locality is lost. If we have, for example, two indepen-
dent objects in our image, then they will be simultaneously decomposed into these
global patterns and will no longer be recognizable as two individual objects in the new
representation.

The Haar transform is the first example of a unitary transform which partly preserves
some local information, since its basis functions are pairs of impulses which are non-zero
only at the position of the impulse (figure 3.7d). With the Haar transform the position
resolution is better for smaller structures.

As in the Hadamard transform, the Haar transform is computational efficient, since
its kernel only includes the figures —1, 0 and 1.

3.4 Fast Algorithms for Unitary Transforms 67

3.4 Fast Algorithms for Unitary Transforms

3.4.1 Importance of Fast Algorithms

Without an effective algorithm to calculate the discrete Fourier transform, it would not
be possible to use the Fourier transform in image processing. Applied directly, (3.13)
is prohibitively expensive. Each point in the transformed image requires M? complex
multiplications and M?—1 complex additions (not counting the calculation of the cosine
and sine functions in the kernel). In total, we need M* complex multiplications and
M?*(M? — 1) complex additions.

Counting only the multiplications, a PC performing 40 000 real multiplications per
second would need about two months to transform a single 512 x 512 image. Even
on a super computer with a computational power of 1000 MFLOPS (million floating
point operations per second) the computation would take about three minutes. These
figures emphasize the urgent need to minimize the number of computations by choosing
a suitable algorithm. This is an important topic in computer science. In order to do
so we must study the inner structure of a given task, its computational complezity, and
try to find out how it may be solved with the minimum number of operations.

As an example, consider the following simple search problem. A friend lives in a
high-rise building with M floors. We want to find out on which floor his apartment is
located. Our questions will only be answered with yes or no. How many questions must
we pose to find out where he lives? The simplest and most straightforward approach
is to ask “Do you live on floor m?”. In the best case, our initial guess might be right,
but it is more likely to be wrong so that the same question has to be asked with other
floor numbers again and again. In the worst case, we must ask exactly M —1 questions,
in the mean M /2 questions. With each question, we can only rule out one out of M
possibilities. With the question “Do you live in the top half of the building?”, however,
we can rule out half of the possibilities with just one question. After the answer, we
know that he either lives in the top or bottom half, and can continue our questioning in
the same manner by splitting up the remaining possibilities into two halves. With this
strategy, we need fewer questions. If the number of floors is a power of two, say 2, we
need exactly [questions. Thus for M floors, we need 1dM questions, where 1d denotes
the logarithm to the base of two. The strategy which has been applied recursively for
a more efficient solution to the search problem is called divide and conquer.

One measure of the computational complexity of a problem with M components
is the largest power of M that occurs in the count of operations necessary to solve it.
This approximation is useful, since the largest power in M dominates the number of
operations necessary for large M. We speak of a zero-order problem O(M?), if the
number of operations does not depend on its size, or a linear order problem O(M?),
if the number of computations increases linearly with the size. The straightforward
solution of the search problem discussed in the previous example is that of O(M), the
divide-and-conquer strategy of O(1dM).

68 3 Space and Wave Number Domain

All sampling points Even sampling points Odd sampling points
%e \\ /1N)

D 1 2 3 4 5 6 7 0 2 4 b 1 3 5

N3

Figure 3.8: Decomposition of a vector into two vectors containing the even and odd sampling points.

3.4.2 The 1-D Radix-2 FFT Algorithms

First we consider fast algorithms for the one-dimensional DFT, commonly abbreviated
as FFT algorithms for fast Fourier transform. We assume that the dimension of the
vector is a power of two, M = 2!. Since the direct solution according to (3.5) is that
of O(M?) it seems useful to use the divide-and-conquer strategy. If we can split the
transformation into two parts with vectors the size of M/2, we reduce the number of
operations from M? to 2(M/2)? = M?/2. This procedure can be recursively applied
1dM times, until we obtain a vector the size of 1, whose DFT is trivial. Of course,
this procedure only works if the partitioning is possible and the number of additional
operations is not of a higher order than O(M?).

We part the vector into two vectors by choosing the even and odd elements separately
(figure 3.8):

M-1 .
2
M/2-1 27i2nu M/2-1 271 (2n + 1Du
= 7% 92n €XP (— M) + 1;) 92n41 EXP (“%) (3.34)
_ M/Zz_l ex 2minu +ex (_27riu)M/E2_1 ex _27rinu
= 2 G2n €XP M/2 P M Pt 92n+1 €XP __M/Z .

Both sums constitute a DFT with M’ = M/2. The second sum is multiplied with a
phase factor which depends only on the wave number u. This phase factor results from
the shift theorem (see appendix A.3), since the odd elements are shifted one place to
the left. As an example, we take the basis vector with u = 1 and M = 8 (figure 3.8).
Taking the odd sampling points, the function shows a phase shift of w/4. This phase
shift is exactly compensated by the phase factor exp(—2miu/M) = exp(—n/4) in (3.34).

So far the partitioning seems to be successful. The operations necessary to combine
the partial Fourier transforms is just one complex multiplication and addition, i.e.,
O(M?"). Some more detailed considerations are necessary, however, since the DFT over
the half-sized vectors only yields M/2 values. In order to see how the composition
of the M values works, we study the values for u from 0 to M/2 — 1 and M/2 to

3.4 Fast Algorithms for Unitary Transforms 69

M —1 separately. The partial transformations over the even and odd sampling points
are abbreviated by g, and °g,, respectively. For the first part, we can just take the
partitioning as expressed in (3.34). For the second part, u' = u 4+ M/2, only the phase
factor changes. The addition by M/2 results in a change of the sign:

2miu! 2mi(u + M/2) 27iu) 2miu
exp|——p) =exp|——————) =exp (— ’)exp(—m) = —exp (— i)

or

WA}("+M/2) = —Wi".
Making use of this symmetry we can write
gu = egu + W]_lu ogu
. K o } 0<u< M/2 (3.35)
GuiM/2 = egu - WM ogu-

The Fourier transforms for the indices v and « + M/2 only differ by the sign of
the second term. Thus for the composition of two terms we only need one complex
multiplication. The partitioning is now applied recursively. The two transformations
of the M/2-dimensional vectors are parted again into two transformations each. We
obtain similar expressions as in (3.34) with the only difference being that the phase
factor has doubled to exp[—(2miu)/(M/2)]. The even and odd parts of the even vector
contain the points {0,4,8, .-, M/2 — 4} and {2,6,10,---, M/2 — 2}, respectively.

In the last step, we decompose a vector with two elements into two vectors with one
element. Since the DFT of a single-element vector is an identical operation (3.5), no
further calculations are necessary.

After the decomposition is complete, we can use (3.35) recursively with appropriate
phase factors to compose the original vector step by step in the inverse order. In the
first step, we compose vectors with just two elements. Thus we only need the phase
factor for u = 0 which is equal to one. Consequently, the first composition step has a
very simple form:

o = Got4g

S . (3.36)
Jo+mi2=G9 = Go— G1.

The algorithm we have discussed is called a decimation-in-space FFT algorithm,
since the signal is decimated in the space domain. All steps of the FFT algorithm
are shown in the signal flow diagram in figure 3.9 for M = 8. The left half of the
diagram shows the decimation steps. The first column contains the original vector, the
second the result of the first decomposition step into two vectors. The vectors with
the even and odd elements are put in the lower and upper halves, respectively. This
decomposition is continued until we obtain vectors with one element. As a result of
the decomposition, the elements of the vectors are arranged in a new order. We can
easily understand the new ordering scheme if we represent the indices of the vector with
dual numbers. In the first decomposition step we order the elements according to the
least significant bit, first the even elements (least significant bit is zero), then the odd
elements (least significant bit is one). With each further decomposition step, the bit
which governs the sorting is shifted one place to the left. In the end, we obtain a sorting
in which the ordering of the bits is completely reversed. The element with the index

70 3 Space and Wave Number Domain

000 0000 >1<':’® /17@ 50
og: °2 160 = >@><>.<t® g,
R e S .
- 110 ® ® 83
133 & 09011 T ® /17(9 d,
105 % 161 1—=0 542 dg
el L® ot X@%@ dg
1‘:: % 111 -1 ® 20 g,

Figure 3.9: Signal flow diagram of the radix-2 decimation-in-time Fourier transform algorithm for
M = 8; for further explanations, see text.

1 = 001,, for example, will be at the position 4 = 100,, and vice versa. Consequently,
the chain of decomposition steps can be performed with one operation by interchanging
the elements at the normal and bit-reversed positions.

Further steps on the right side of the signal flow diagram show the stepwise com-
position to vectors of double the size. The composition to the 2-dimensional vectors is
given by (3.36). The operations are pictured with arrows and points which have the
following meaning: points represent a figure, an element of the vector. These points are
called the nodes of the signal flow graph. The arrows transfer the figure from one point
to another. During the transfer the figure is multiplied by the factor written close to
the arrow. If the associated factor is missing, no multiplication takes place. A value of
a knot is the sum of the values transferred from the previous level.

The elementary operation of the FFT algorithm involves only two knots. The lower
knot is multiplied with a phase factor. The sum and difference of the two values are
then transferred to the upper and lower knot, respectively. Because of the cross over of
the signal paths, this operation is denoted as a butterfly operation.

We gain further insight into the FFT algorithm if we trace back the calculation of
a single element. Figure 3.10 shows the signal paths for §o and §,. For each level we
go back the number of knots which contribute to the calculation doubles. In the last
stage all the elements are involved. The signal path for §o and §4 are identical but for
the last stage, thus nicely demonstrating the efficiency of the FFT algorithm.

All phase factors in the signal path for §o are one. As expected from (3.5), go
contains the sum of all the elements of the vector

o =[(90 + 94) + (92 + g6)] + [(91 + 95) + (95 + 97)],
while in the last stage the addition is replaced by a subtraction for g4

ga = [(90 + 94) + (92 + g6)] — [(91 + g5) + (93 + 97)]-

After this detailed discussion of the algorithm, we can now estimate the number of
necessary operations. At each stage of the composition, M /2 complex multiplications

3.4 Fast Algorithms for Unitary Transforms 71

90 go g n a
000 000 //1=® —>® ® 4§,
91 92 94 1
001 100
9, 9, g
010 0;5 //1/=®
93 9¢ [
011 110
94 91 g
100 001 T—=® Tr®
95 5 . /
101 10% /
96 95 93
110 0;1 /‘l'®
97 g7 7
111 111
90 go g
000 000 —=0 —>®
91 92 9 /
001 100
9, 94 [}
010 010 /_‘ﬁ_’@
93 96 9¢
011 110
94 g
1 g R
100 00’ —=® TP ® 2O 9
9g 9, 9 _—
101 101
96 95 93
110 o1 /*1—>®
9, 95 95
111 111

Figure 3.10: Signal flow path for the calculation of o and §s with the decimation-in-space FFT
algorithm for an M-dimensional vector.

and M complex additions are carried out. In total we need M/21dM complex multipli-
cations and M ldM complex additions. A deeper analysis shows that we can save even
more multiplications. In the first two composition steps only trivial multiplications by 1
or i occur (compare figure 3.10). For further steps the number of trivial multiplications
decreases by a factor of two. If our algorithm could avoid all the trivial multiplications,
the number of multiplications would be reduced to (M/2)(1dM — 3).

The FFT algorithm is a classic example of a fast algorithm. The computational
savings are enormous. For a 512-element vector, only 1536 instead of 262 144 complex
multiplications are needed compared to the direct calculation according to (3.5); thus
figures for an 8192-element vector need 73 728 instead of 67108 864 complex multipli-
cations. The number of multiplications has been reduced by a factor 170 and 910,
respectively.

Using the FFT algorithm, the discrete Fourier transform can no longer be regarded
as a computationally expensive operation, since only a few operations are necessary per
element of the vector. For a vector with 512 elements, only 3 complex multiplications
and 8 complex additions, corresponding to 12 real multiplications and 24 real additions,

72 3 Space and Wave Number Domain

need to be computed.

In section 3.3, we learnt that the DFT is an example of a unitary transform which
is generally performed by multiplying a unitary matrix with the vector. What does the
FFT algorithm mean in this context? The signal flow graph in figure 3.9 shows that the
vector is transformed in several steps. Consequently, the unitary transformation matrix
is broken up into several partial transformation matrices which are applied one after
the other. If we take the algorithm for M = 8 as shown in figure 3.9, the unitary matrix
is split up into three simpler transformations with spare unitary transformations:

(6] [1L 000 1 0 0 0710 1 000 0 O]
n 0100 0 W 0 ollo1 o i00 0 o
o 0010 0 0 w-? ollt0-1 000 0 o0
| _l0oo001 o0 0 o w3|lo1 o0o-i0oo0 0 o0
G| 11000 -1 0 0 olloo o o010 1 0
Gs 0100 0 -W! 0 olloo o o001 o0 i
d6 0010 0 0 —-W-2 ol/loo 0o 010 -1 0
] (0001 0 0 0o -w3]]loo 0 001 o0 —i
1000 1 0 0 0][g]
1000 -1 0 0 0||a
0010 0 0 1 0|}
0010 0 01 0]]|gs
0100 0 1 0 O0fg
0100 0-1 0 0/]gs
0001 0 0 0 1]|]|uge
0001 0 0 0 —1]]gr

The reader can verify that these transformation matrices reflect all the properties of
a single level of the FFT algorithm. The matrix decomposition emphasizes that the
FFT algorithm can also be considered as a clever method to decompose the unitary
transformation matrix into spare partial unitary transforms.

3.4.3 Other 1-D FFT Algorithms

Having worked out one fast algorithm, we still do not know whether the algorithm is
optimal or if even more efficient algorithms can be found. Actually, we have applied
only one special case of the divide-and-conquer strategy. Instead of parting the vector

in two pieces, we could have chosen any other partition, say PQ-dimensional vectors,
if M = PQ. This type of algorithms is called a Cooley-Tukey algorithm [Blahut, 1985].

Radiz-4 Decimation-in-Time FFT
Another partition often used is the radiz-4 FFT algorithm. We can decompose a vector
into four components

M/4-1 M/4-1
gu — Z g4nW]l_l4m‘ + W]&u Z g4n+1Wﬁ4nu
n=0 n=0

M/4-1 M/4-1
+ WA}M E g4n+2Wﬁ4nu +WA—431‘ Z g4n+3W}\}4nu-

n=0 n=0

3.4 Fast Algorithms for Unitary Transforms 73

For simpler equations, we will use similar abbreviations as for the radix-2 algorithm

and denote the partial transformations by °g,---,3§. Making use of the symmetry of
g
W3, the transformations into quarters of each of the vectors are given by
g = °g,,+W;;1g,,+W 232G, + Wit %G,
Gusma = 0. — W31 gu Wi 2gu-i-lW 3G
§u+M/2 — WM gu W—2u 2 W 3u 3 N
Juram/s = gu Wi G — WM2“ "’9 — Wy 205, b
or, in matrix notation,
Gu 1 1 1 1 _&u
Guema | _ |1 —i -1 i Wit Ga
Gusmpz | |1 -1 1 -1 W”“ 2‘.,
Gut3M/4 1 i -1 - W_su 3G

12 complex additions and 3 complex multiplications are needed to compose 4-tupel ele-
ments of the vector. We can reduce the number of additions further when we decompose
the matrix into two simpler matrices:

Gu 10 1 0110 1 0 04
Gutm/a | _ |0 1 0 —i 10 =1 0 Wi 1§
Gutmiz | |1 0 =1 0 01 0 1 W—Zu 2 o (3.37)
Gu+3M/a 01 o0 01 0 —1 W—3u 3A

The first matrix multiplication yields intermediate results which can be used for several
operations in the second stage. In this way, we save four additions. We can apply this
decomposition recursively log, M times. As for the radix-2 algorithm, only trivial mul-
tiplications in the first composition step are needed. At all other stages, multiplications
occur for 3/4 of the points (3.37). In total, 3/4M(log, M —1) = 3/8 M (1d M —2) complex
multiplications and 2M log, M = M1dM complex additions are necessary for the radix-
4 algorithm. While the number of additions remains equal, 25 % less multiplications
are required than for the radix-2 algorithm.

Radiz-2 decimation-in-frequency FFT

The decimation-in-frequency FFT is another example of a Cooley-Tukey algorithm.
This time, we break the M-dimensional input vector into first M/2 and second M/2
components. This partition breaks the output vector into its even and odd components:

M/2-1
G2 = Z (9m+gm+M/z)W1;[72“
. (3.38)
Gautr = D Wi (9m — Imimp2) Wigps"

A recursive application of this partition results in a bit reversal of the elements in the
output vector, but not the input vector. As an example, the signal flow graph for
M = 8 is shown in figure 3.11. A comparison with the decimation-in-time flow graph
(figure 3.9) shows that all steps are performed in inverse order. Even the elementary
butterfly operations of the decimation-in-frequency algorithm are the inverse of the
butterfly operation in the decimation-in-time algorithm.

74

3 Space and Wave Number Domain
8o oco % ogg
9 ol %] oo
g, ofo o 03(2)
6, 11 % 03‘1’
Gy oth & 133
ds 101 % 132'
dg ot % 138
8, 1T & B

Figure 3.11: Signal flow diagram of the radix-2 decimation-in-frequency Fourier transform algorithm
for M = 8.

Measures for Fast Algorithms

According to the number of arithmetic operations required, there are many other fast
Fourier transform algorithms which are more effective. Most of them are based on
polynomial algebra and the number theory. An in-depth discussion of these algorithms

is

given by Blahut [1985)].

However, the mere number of arithmetic operations is not the only measure for an

efficient algorithm. We must also consider a number of other factors.

Access to the data requires additional operations. Consider the simple example of
the addition of two vectors. There, besides the addition, the following operations are
performed: the addresses of the appropriate elements must be calculated; the two
elements are read into registers, and the result of these additions is written back to the
memory. Depending on the architecture of the hardware used, these five operations
constitute a significant overhead which may take much more time than the addition
itself. Consequently, an algorithm with a complicated scheme to access the elements
of a vector might add a considerable overhead to the arithmetic operations. In effect,
a simpler algorithm with more arithmetic operations but less algorithmic overhead,
may be faster.

Another factor to rate algorithms is the amount of storage space needed. This not
only includes the space for the code but also storage space required for intermediate
results or tables for constants. For example, an in-place FFT algorithm, which can
perform the Fourier transform on an image without using an intermediate storage area
for the image, is very advantageous. Often there is a trade off between storage space
and speed. Many integer FFT algorithms, for example, precalculate the complex
phase factors W,, and store it in statically allocated tables.

To a large extend the efficiency of algorithms depends on the computer architecture
where it is to be implemented. If the multiplication is performed either in software
or by a microcoded instruction, it is much slower than addition or memory access. In
this case, the aim of fast algorithms is to reduce the number of multiplications even
at the cost of more additions or a more complex memory access. Such a strategy

3.4 Fast Algorithms for Unitary Transforms 75

makes no sense on some modern high-speed RISC architectures, as with the Intel i860
microprocessor, where pipelined floating point addition and multiplication take just
one clock cycle. The faster the operations on the processor, the more the memory
access becomes the bottleneck. Fast algorithms must now consider effective memory
access schemes ensuring a high data cache hit rate. Margulis [1990] discusses the
implementation of the FFT on the Intel 1860 RISC processor. An optimized radix-2
decimation-in-frequency butterfly code, consisting of 4 real multiplications, 3 addi-
tions, 3 subtractions, 3 8-byte fetches, and 2 8-byte stores, takes just 6 processor
cycles by making use of the fact that the i860 can perform several instructions in
parallel.

3.4.4 Multidimensional FFT Algorithms

Generally, there are two possibilities to develop fast algorithms for multidimensional
discrete Fourier transforms. Firstly, we can decompose the multidimensional DFT into
1-D DFTs and use fast algorithms for them. Secondly, we can generalize the approaches
of the 1-D FFT for multidimensional spaces. In this section, we show examples for both
possibilities.

Decomposition into 1-D Transforms
A two-dimensional DFT can be broken up in one-dimensional DFTs because of the
separability of the kernel. In the 2-D case (3.13), we yield

A 1 MZ1[N-1 2rinv 2rimu
Gus = 5737 25, | 2 Ornexe (T)] e (-T57) @)

The inner summation forms M 1-D DFTs of the rows, the outer N 1-D DFTs of the
columns, i.e., the 2-D FFT is computed as M row transformations followed by N
column transformations

) « 13 2minv
row transformations Gmy=— Z G n€Xp (— n)

N n=0 N
A 1 M-1 o
column transformations G,, = M"LZ_:OG’""’ exp (_ ’Ir;‘;nu) ‘

In an analogous way, a k-dimensional DFT can be composed of k 1-dimensional DFTs.

Multidimensional Decomposition
A decomposition is also directly possible in multidimensional spaces. We will demon-
strate such algorithms with the simple case of a 2-D radix-2 decimation-in-time algo-
rithm.

We decompose an M x N matrix into four submatrices by taking only every second
pixel in every second line (figure 3.12). This decomposition yields

G, 11 1 1 %Gy
qu,u+N/2 — 1 -1 1 -1 W]Gu o'lqu,u
Gu+M/2,u 1 1 -1 -1 W]\—Ju 1’0Gu,u

g 1

Gu+M/2,u+N/2 -1 -1 1 Wz_{uWﬁu l'léu,u

76 3 Space and Wave Number Domain

wlolvw|le|vwleo|nw|e
wle|w|=]eo|~]w]|~

vle|lvlolw|lolw]|e

wlm|e|l~lal~]w]|~
wle|lw|o|wlalelo
wlmlo|l-]le]=-|w]-
wlolvw|le|w]|e|w]|e
wlm|efe]lo|~te]~

2 3

Figure 3.12: Composition of an image matrix into four partitions for the 2-D radix-2 FFT algorithm.

The superscripts in front of G denote the corresponding partial transformation. The
2-D radix-2 algorithm is very similar to the 1-D radix-4 algorithm (3.37). In a similar
manner as for the 1-D radix-4 algorithm, we can reduce the number of additions from
12 to 8 by factorizing the matrix:

e 10 1 0J[L 10 o0 °°G,,
Gusnya 01 0 1||1-10 0 Wi °1G.,
Gurmz | |10 -1 0f]l0 01 1 Wik 190,
Gorrtravinys 01 0 -1]lo o1 —1]|wprwsud,

(3.40)
The 2-D radix-2 algorithm of an M x M requires (3/4M?)ld M complex multiplications,
25 % less than the separation into two 1-D radix-2 FFTs.

4 Pixels

4.1 Introduction

Discrete images are composed of individual image points, which we denoted in sec-
tion 2.3.1 as pizels. Pixels are the elementary units in digital image processing. The
simplest processing is to handle these pixels as individual objects or measuring points.
This approach enables us to regard image formation as a measuring process which is
corrupted by noise and systematic errors. Thus we learn to handle image data as sta-
tistical quantities. As long as we are confined to individual pixels, we can apply the
classical concepts of statistics which are used to handle point measurements, e. g., the
measurement of meteorological parameters at a weather station such as air temperature,
wind speed and direction, relative humidity, and air pressure.
Statistical quantities are found in image processing in many respects:
o The imaging sensor introduces electronic noise into the light intensities measured.
¢ In low-light level application, we are no longer measuring a continuous stream of
light, but rather single photons.
e The process or object observed may exhibit a statistical nature. An evident example
are images of turbulent flows (see section 1.4 and plate 4).

4.2 Random Variables

4.2.1 Basics

We consider an experimental setup in which we are measuring a certain process. In
this process we also include the noise introduced by the sensor. The measured quantity
is the light intensity or gray value of a pixel. Because of the statistical nature of the
process, each measurement will give a different value. This means that the observed
process is not characterized by a single gray value but rather a probability density
function p(g) indicating how often we observe the gray value g. A measurable quantity
which is governed by a random process — such as the gray value g of a pixel in image
processing — is denoted as a random variable.

78 4 Pixels

In the following, we discuss both continuous and discrete random variables and
probability functions. We need discrete probabilities as only discrete gray values can
be handled by a digital computer. Discrete gray values are obtained after a process
called quantization, which is discussed in section 4.2.2. All formulas in this section
contain continuous formulation on the left side and their discrete counterparts on the
right side. In the continuous case, a gray value g is measured with the probability
p(g9). In the discrete case, we can only measure a finite number, @, of gray values g,
(¢ = 0,1,...,Q — 1) with the probability p,. Normally, the gray value of a pixel is
stored in one byte so that we can measure Q) = 256 different gray values. Since the
total probability to observe any gray value is 1, the probability meets the requirement

oo Q-1
/dg plg)=1, Y p,=1 (4.1)

q=0

The ezpected or mean gray value p is defined as
oo Q-1
p=(g)= / dg p(g)g, #= D Peda- (4.2)
N q=0

The computation of the expectation value is denoted — as in quantum mechanics — by
a pair of angle brackets (---). The variance is a measure to which extent the measured
values deviate from the mean value

o0 Q-1
7 ={(s={0)") = [dgp(a)lg— ()" o= Trilo= () (43)

The probability function can be characterized in more detail by similar quantities
as the variance, the moments:

g=0

0o Q-1
ma = {(g - (9))") = /dg p9)(g— ()", mn =D polgs—{g))". (44)

The first moment is — by definition — zero. The second moment corresponds to the
variance. The third moment, the skewness, is a measure for the asymmetry of the
probability function around the mean value. If a distribution function is symmetrical
with respect to the mean value, the third and all higher-order odd moments vanish.

The probability function depends on the nature of the underlying process. Many
processes with continuous random variables can be adequately described by the normal
or Gaussian probability distribution

o) = ——ewp (-5 W) | (45)

2ro 20?

The normal distribution is completely described by the two elementary statistical pa-
rameters, mean and variance. Many physical random processes are governed by the
normal distribution, because they are a linear superimposition of many (n) individual
processes. The central limit theorem of statistics states that in the limit n — oo the

4.2 Random Variables 79

05 04 03 02 01 00 01 02 03 04 0505 04 03 02 01 00 01 02 03 0z 05
8 s

05 04 03 02 01 00 01 02 03 04 0505 04 03 02 01 00 01 02 03 04 05
s S

Figure 4.1: Illustration of the superimposition of the probability functions with the slope distribution
on the undulated ocean surface: a) slope distribution of a single sinusoidal wave; b) slope distribution
of the superposition of two statistically independent sinusoidal waves; c) Gaussian distribution as
the theoretical limit for the linear superimposition of many sinusoidal waves; d) slope distribution as
measured in a wind-wave facility [Jdhne, unpublished data).

distribution tends to a normal distribution, provided certain conditions are met by the
individual processes [Reif, 1985].

As an example, we consider the distribution of the slope of the ocean surface. The
ocean surface is undulated by surface waves which incline the water surface. As ele-
mentary processes, we can regard sinusoidal waves as propagating on the ocean surface.
Such a single wave shows a slope distribution very different from that of a normal distri-
bution (figure 4.1a). The maximum probability occurs with the maximum slopes of the
wave. Let us assume that waves with different wavelengths and direction superimpose
on each other without any disturbance and that the slope of the individual wave trains
is small. The slopes can then be added up. The resulting probability distribution is
given by convolution of the individual distributions, since, at each probable slope of the

80 4 Pixels

first wave, the second can have all slopes according to its own probability distribution.
The superimposition of two waves results in a distribution with the maximum at slope
zero (figure 4.1b). Even for quite a small number of superimpositions, we can expect a
normal distribution (figure 4.1c).

A measured slope distribution looks very similar to a normal distribution, but also
shows some significant deviations (figure 4.1d). The distribution is slightly asymmet-
ric. The maximum is shifted to small negative slopes, high positive slope values are
much more likely than high negative slopes and than those expected from a normal
distribution.

The deviations from a normal distribution occur because water surface waves violate
one of the requirements for a normal distribution. They do not superimpose without
interactions because of their non-linear nature. In consequence, deviations from the
normal distribution provide some clues about the strength and the kind of nonlinear
interactions.

For discrete values, the Gaussian distribution is replaced by the binomial distribution

[Reif, 1985] o

P @

Again @) denotes the number of quantization levels. The parameter p determines the
mean and the variance

(1-p)979, with 0<p<1. (4.6)

p=Qp (4.7)

o* = Qp(1 - p). (48)

For large @, the binomial distribution quickly converges to the Gaussian distribution.

For @@ = 8, the differences are already quite small, as is shown by the following table
(p=1/2,02=2, u=4):

q 0 1 2 3 4 5 6 7 8
Binomial distribution | 1 8 28 56 70 56 28 8 1
Gaussian distribution | 1.3 7.6 26.6 56.2 72.2 56.2 26.6 7.6 1.3

An application of this simple statistics is shown in the handling of noisy images.
There are a number of imaging sensors available which show a considerable noise level.
The most prominent example is thermal imaging. Such a sensor collects thermal radi-
ation in the far infrared with wavelengths between 3 and 14 yum and thus can measure
the temperature of objects. Figure 4.2a shows the temperature of the water surface.
We can hardly detect the small temperature fluctuations which indicate the turbulent
mixing close to the water surface. We can however take the mean of several images,
just as we would take several measurements to obtain a better estimate of the mean.
An estimate of the error of the mean taken from N samples is given by

2 1 2 _ 1 u 2
% N N =) = N(N_l)g;;(g— (9))*. (4.9)

If we take the average of N images, the noise level is already reduced by a factor vV N
compared to a single image. Figure 4.2b shows how much better the pattern can be
observed in the average image.

4.2 Random Variables 81

Figure 4.2: Noise reduction by image averaging: a) single thermal image of small temperature fluctu-
ations on a water surface; b) same, averaged over 16 images; temperature range corresponding to full
gray value range: 1.25 K.

4.2.2 Quantization

As another application of statistical handling of data we consider quantization. After
digitization (section 2.3), the pixels still show continuous gray values. For use with a
computer we must map them onto a limited number @ of discrete gray values:

[01 oo[i) {gO,gl, v agQ—l} =G.

This process is called quantization. The number of quantization levels in image pro-
cessing should meet two criteria.

First, no gray value steps should be recognized by our visual system. Figure 4.3
shows images quantized with 2 to 16 levels of gray values. It can be clearly seen that a
low number of gray values leads to false edges and makes it very difficult to recognize
objects which show no uniform gray values. In printed images, 16 levels of gray values
seem to be sufficient, but on a monitor we would still be able to see the gray value steps.
Generally, image data are quantized into 256 gray values. Then each pixel occupies 8
bit or one byte. This bit size is well adapted to the architecture of standard computers
which can address memory bytewise. Furthermore, the resolution is good enough that
we have the illusion of a continuous change in the gray values, since the relative intensity
resolution of our visual system is only about 2% (see section 1.3).

The other criterion is related to the imaging task. For a simple application in
machine vision, where the objects show a uniform brightness which is different from the
background, or for particle tracking in flow visualization (section 1.4 and plate 4), two
quantization levels, i.e., a binary image, might be sufficient. Other applications might
require the resolution of faint changes in the intensity. Then an 8-bit resolution would
be too coarse.

Quantization always introduces errors, since the true value g is replaced by one of
the quantization levels g,. If the quantization levels are equally spaced with a distance
Ag and all gray values are equally probable, the variance introduced by the quantization

82 4 Pixels

Figure 4.3: Quantization of an image with different quantization levels: a) 16; b) 8; c) 4; d) 2.

is given by o2
9qtag

oy = Ay / (9—9,)%dg = 11—2(Ag)2- (4.10)
9q—Ag/2

This equation shows how we select a quantization level. We take the level g, for which

the distance from the gray value g, |g —g,/|, is smaller than the neighboring quantization

levels gx—; and gg41. The standard deviation 03 is about 0.3 times the distance of the

quantization levels Ag.

Quantization with unevenly spaced quantization levels is discussed in detail by
Rosenfeld and Kak [1982]. Unevenly spaced quantization levels are hard to realize
in any image processing system. An easier way to yield unevenly spaced levels is to
use equally spaced quantization but to transform the intensity signal before quantiza-
tion with a non-linear amplifier, e.g., a logarithmic amplifier. In case of a logarithmic
amplifier we would obtain levels whose widths increase proportionally with the gray
value.

4.2 Random Variables 83

Algorithm 1: C subroutine to calculate the histogram of an image stored row by row in video memory.
The offset between the lines allows that the histogram of only a subimage (area-of-interest) can be
calculated. This program has been written to run on the TMS 34010 graphics processor of the VISTA
frame buffer (see appendix B).

/*

** Compute histogram in vector 11 for the byte image il in memory

** Explanation of variables:

** vi: pointer to LVEC structure

*x il: pointer to BMAT structure

** pv: pointer to begin of histogram vector
** pi: pointer to image data

** dx: number of columns

** dy: number of rows

** loffs: offset between end of previous and beginning of next line
*/
void vmlibihist(vi,il) LVEC #v1; BMAT #*i1; {

long *pv=vi->dat;

unsigned char *pi=(unsigned char*)ii->dat;

long dy=il->dy, dx=ii1->dx, i;

long loffs=il->offs~(long)il->dx;

/* clear histogram */
vliclr(vi);

/* compute histogram */

while (dy--) {
for (i=dx; i > 0; i--) pv[*pi++]++;
pi += loffs;

4.2.3 Histograms

Generally, the probability distribution is not known a priori. Rather it is estimated from
measurements. If the observed process is homogeneous, that is, it does not depend on
the position of the pixel in the image, there is a simple way to estimate the probability
distribution with the so-called histogram.

A histogram of an image is a vector which contains one element for each quantization
level. Each element contains the number of pixels whose gray value corresponds to the
index of the element. Histograms can be calculated straightforwardly (algorithm 1).
First we set the whole histogram vector to zero. Then we scan all pixels of the image,
take the gray value as the index to the vector, and increment the corresponding element
of the vector by one. The actual scanning algorithm depends on how the image is
stored. Algorithm 1 assumes that the image is stored row by row in the memory, where
an arbitrary offset between the lines is allowed.

Histograms allow a first examination of the images acquired. A surprising prop-
erty of the acquisition hardware is revealed in figure 4.4a. We might have expected a
smooth histogram from an image which just contains gradual changes in the gray values.
However, the histogram shows large variations from gray value to gray value. These
variations cannot be caused by statistical variations: a 512 x 512 image has 1/4 million

84 4 Pixels

Figure 4.4: Images and their gray value histograms I; a) quality control of the analog-digital-converter
(ADC); b) contrast enhanced difference of two consecutive images to show the camera noise.

pixels, so that on average 1000 pixels show the same gray values. Consequently, the
statistical fluctuations even in a total random image should only be /1000 or about
3 %. The reason lies rather in the varying widths of the quantization levels. Imagine
that the decision levels of the video analog-digital converter are accurate to 1/8 least
significant bit. Then the widths of a quantization level might vary from 3/4 to 5/4 least
significant bit. Consequently, the probability distribution may vary by 425 %.

Figure 4.4b gives an impression of the noise of CCD cameras. It shows the difference
between two consecutive images taken from the same static scene. The histogram gives
a clear indication whether an image is too dark or too bright (figure 4.5). As we know
from our discussion on the human visual system in section 1.4, it is very difficult to
estimate absolute intensities just by eye. Therefore, it is strongly recommended to
use objective tools such as histograms to rate image intensities. Especially dangerous
are under- or overflows in the gray values, since they are deceiving areas of constant
brightness, where there may actually be considerable gray value variation. Over- or
underflow can be recognized in the histogram by a strong peak at gray values 255 and 0,
respectively. Under optimal conditions, the histogram should fill the whole gray value
range, but go to zero at the edges. We should adjust our imaging system in such a way
that this condition is met.

4.2 Random Variables 85

Figure 4.5: Images and their gray value histograms II; a) too dark image; b) too bright image with
overflow in gray values; ¢) correctly illuminated image.

86 4 Pixels

4.3 Point Operations

4.3.1 Homogeneous Point Operations

Point operations are a class of very simple image processing operations. The gray values
at individual pixels are modified depending on the gray value and the position of the
pixel. Generally, such a kind of operation is expressed by

Gran = Pran(Gmn)- (4.11)

The indices at the function P denote the explicit dependence on the position of the
pixel. If the point operation is independent of the position of the pixel, we speak of it
as being an homogeneous point operation and can write

G = P(Gmn). (4.12)

Point operations are used to perform such simple image processing tasks as

e Compensation of non-linear camera characteristics. Generally, the gray value is not
directly proportional to the brightness in the image.

e Correction and optimization of the brightness and contrast.

e Highlighting of image parts with a certain range of gray values; detection of small
intensity differences.

e Balancing of illumination differences caused by the uneven sensitivity of the image
sensors or intensity drop towards the edge of the images.

It is important to note that the result of the point operation does not depend at
all on the gray value of neighboring pixels. A point operation maps the set of gray
values onto itself. Generally, point operations are not invertible, since two different
gray values may be mapped onto one. Thus a point operation generally results in a loss
of information which cannot be recovered. The point operation

_ 0 g,<t

for example, performs a simple threshold evaluation. All gray values below the threshold
are set to zero (black), all above and equal to the threshold to 255 (white).
Only a point operation with a one-one mapping of the gray values is invertible.

4.3.2 Look-Up Tables

The direct computation of homogeneous point operations, according to (4.12), is very
costly. Imagine that we intend to present a 512 x 512 image in a logarithmic gray value
scale with the point operation P(g,) = 25.5log g,. We would have to calculate the
logarithm 262 144 times. The key point for a more efficient implementation lies in the
observation that the definition range of any point operation consists of only very few
gray values, typically 256. Thus we would have to calculate the very same values many
times. We can avoid this if we precalculate P(g,) for all 256 possible gray values and

4.3 Point Operations 87

store the computed values in a 256-element table. Then the computation of the point
operation is reduced to a replacement of the gray value by the element in the table with
an index corresponding to the gray value.

Such a table is called a look-up table or LUT. As a result, homogeneous point
operations are equivalent to look-up table operations.

In most image processing systems, look-up tables are implemented in hardware.
Generally, one look-up table, the input LUT, is located between the analog-digital
converter and the frame buffer. Another, the output LUT, is located between the frame
buffer and the digital-analog converter for output of the image in the form of an analog
video signal, e.g., to a monitor. (Technical details are described in appendix B.) The
input LUT allows a point operation to be performed before the image is stored in the
frame buffer. With the output LUT, a point operation can be performed and observed
on the monitor. In this way, we can interactively perform point operations without
modifying the stored image.

As a first example of LUT operations, we will consider contrast stretching and
brightness optimization. Because of poor lighting conditions and the offset level of the
video amplifier being too low, an image will be too dark and of low contrast (figure
4.6a). The histogram shows that the image contains only a low range of gray values at
low gray values. We can improve the appearance of the image considerably if we apply
a point operation which shows a steep line from 0-255 only over a small gray value
range and is 0 below and 255 above the selected range. This operation stretches the
small range of gray values over the full range from 0 to 255 (figure 4.6a). It is important
to recognize that we only improve the appearance of the image with this operation but
not the image quality itself. The gray value resolution is still the same.

The right way to improve the image quality is to optimize the lighting conditions.
If this is not possible, we can increase the gain of the analog video amplifier. Many
modern image processing boards include an amplifier whose gain and offset can be set
by software (see appendix B). Increasing the gain we can improve the brightness and
resolution of the image but only at the expense of an increased noise level.

The point operation which yields the digital negative of an image,

N(g))=Q—1—g, (4.14)

is one of the few examples of a reversible point operation (figure 4.6b).

A logarithmic transformation of the gray values allows a larger dynamic range to
be recognized at the cost of resolution in the bright parts of the image. The dark parts
become brighter and show more details (figure 4.7a). The image is better adapted to
the logarithmic characteristics of the human visual system which can detect relative
intensity differences over a wide range of intensities (section 1.4). The last example
in figure 4.7b shows a clipping operation of the bright parts of the image. High gray
values above a threshold are set to 255. This operation maps the gray values of the
background to a constant value and thus is useful to suppress background noise while
leaving the darker gray values in the objects unchanged.

A cautionary note is necessary for all kinds of LUT operations. As we have already
discussed in contrast stretching, any LUT operation makes the images look better, but
does not actually improve them. This is why we should use them thoughtfully. A careful

88

LUT

LuT

4 Pixels

Figure 4.6: Examples for LUT operations I: a) contrast stretching of a low-contrast image; b) digital

negative.

4.3 Point Operations

LUT

LT

Figure 4.7: Examples for LUT operations II: a) range compression; b) background clipping.

89

90 4 Pixels

preparation of images using an LUT operation is very important for printouts which
have a lower contrast range than images on monitors. It may also be appropriate to
use more advanced methods such as histogram equalization [Jain, 1989]. However, for
further processing of images, especially if we are interested in a quantitative analysis of
gray values, they are not of much help. On the contrary, they may introduce additional
errors, because of the rounding errors introduced by non-linear LUT functions. They
may lead to missing gray values in the output or mapping of two consecutive gray
values onto one. These problems are apparent in the histogram of the processed image
in figure 4.7a.

In conclusion, the use of input LUTs is limited. Input LUTs would be a valuable
processing element if the digitization precision were higher than the storage precision.
Imagine that we digitize with 12 bit, pass the data through a 12-bit input LUT, and
store them with 8 bit. Then we would not see rounding errors. In addition, we could
compress a larger dynamic range with a logarithmic LUT onto 8 bit.

In contrast to the input LUT, the output LUT is a much more widely used tool,
since it does not change the stored image. With LUT operations we can also convert a
gray-value image into a pseudo-color image. Again, this technique is common even with
the simplest image processing boards, since not much additional hardware is needed.
Three digital analog converters are used for the primary colors red, green, and blue.
Each channel has its own LUT. In this way, we can map each individual gray value g,
to any color by assigning a color triple to the corresponding LUT addresses r(g,), g(g,),
and b(g,). Formally, we now have a vector point operation

r(9,)
P(gq) = | g(9q) |- (4.15)
b(gq)

As long as all three point functions r(g,), g(g,), and b(g,) are identical, a gray value
image will be displayed. If two of them vanish, the image will appear in the remaining
color. RGB output LUTs find a wide variety of applications:

o Small gray value differences can be recognized much better if they are transformed
into color differences. We can mark gray value ranges of interest with a certain
color. In this way we can also overcome the incapability of the human visual system
to recognize absolute gray values. Some examples of pseudo-coloring of gray value
images are shown in plate 7.

* Recognized objects — as the result of a segmentation (chapter 10) — can be marked
by coloring without changing the gray values if we reserve another bit plane of the
frame buffer to store the binary image generated by segmentation. This bit can then
be used to switch to another set of RGB output LUTSs which, for example, show the
gray values of the image in yellow instead of white, if it belongs to the object. Since
the original gray values can still be seen, we can study the quality of the segmentation
in detail.

e In the same manner, we can visualize the result of a classification (chapter 12). Now
we can use a different color for objects belonging to different classes.

e Histograms, LUTs, markers and grids can be superimposed in color over the gray
value image and can thus be recognized much better as if we had overlaid them in
black-and-white.

4.3 Point Operations 91

e A more complex application is the representation of stereo images (see section 2.2.9
and plate 6a). We either need two frame buffers, or must split the bit planes of a frame
buffer in two parts to store the left and right stereo image with half the resolution,
e.g., 4 bit = 16 gray values, instead of 8 bit = 256 gray values. With two frame
buffers, we just need to associate the red and green color channel to the first and
second frame buffer, respectively. If we store the red and green component images in
the 4 lower and higher bit planes, the RGB LUTSs would contain the following values:

r(9p) = (g, mod 16)16
9(9») (94/16)16 (4.16)
b(gs) = 0.

The LUT for the red channel sets the output gray value according to the four lowest
bits, while the green channel ignores these bits and only takes the 4 most significant
bits.

¢ In a similar manner, we can represent multi-channel images. An interesting example
is shown in plate 4a. This color image is composed of eight binary images. Each bit
plane is shown in a different color to identify the individual images.

¢ Finally, we can code vectorial image features in color, as we will discuss in sec-
tion 7.1.2.

A final remark concerns the representation of gray values. Normally we think of
them as unsigned numbers ranging from 0 to 255 in 8 bit values. As soon as we
perform operations with images, e. g., if we subtract two images, negative gray values
may appear which cannot be represented. Thus we are confronted with the problem
of two different representations of gray values, as unsigned and signed 8 bit numbers.
Correspondingly, we must have two versions of algorithms, one for unsigned and one
for signed gray values.

A simple solution to this problem is to handle gray values principally as signed
numbers. This can be simply done by subtracting 128. Then the mean gray value
intensity of 128 would become the gray value zero. Gray values lower than this mean
value are negative. Subtraction by 128 can be easily implemented with the input LUT

p(gq) = (94 — 128) mod 256, 0 < g, < 256. (4.17)

This point operation converts unsigned gray values to signed gray values which are
stored and manipulated in the frame buffer. For display, we must convert the gray
values again to unsigned values by the inverse point operation

p(9q) = (9 + 128) mod 256, 0 < g, < 256, (4.18)

which is the same point operation since all calculations are performed modulo 256.

4.3.3 Inhomogeneous Point Operations

Computation of an inhomogeneous point operation is much more time consuming. We
cannot use look-up tables since the point operation depends on the pixel position and
we are forced to calculate the function for each pixel. Despite the effort involved, inho-
mogeneous point operations are used quite often. Here we will discuss two important
applications.

92 4 Pixels

Figure 4.8: Effect of windowing on the discrete Fourier transform: a) DFT of b) without using a
window function; b) image multiplied with a cosine window; c¢) DFT of b) using a cosine window.

Window Operations

Before we can calculate the DFT of an image, the image must be multiplied with a
window function. If we omit this step, the spectrum will be distorted by the convolution
of the image spectrum with the Fourier transform of the box function, the sinc function
(see appendix A.3), which causes spectral peaks to become star-like patterns along the
coordinate axes in Fourier space (figure 4.8a). We can also explain these distortions with
the periodic repeat of finite area images (see section 2.3.3). The periodic repeat leads
to discontinuities in horizontal and vertical directions which cause corresponding high
spectral densities along the axes in the k space. In order to avoid these disturbances,
we must multiply the image with a window function which approaches zero towards the
edges of the image. An optimum window function should a) preserve a high spectral
resolution and b) show minimum distortions in the spectrum, that is, its DFT should
fall off as fast as possible. These are two contradictory requirements. A good spectral
resolution requires a broad window function. Such a window, however, falls off steeply
at the edges causing a slow fall-off of the sidelopes of its spectrum.

A carefully chosen window is very crucial for a spectral analysis of time series
[Marple, 1987; Oppenheim and Schafer, 1989]. However, in digital image processing
it is not so critical, because of the much lower dynamic range of the gray values. A
simple cosine window

W = cos (2;4'”) cos (2”7") A, ~M/2<m < M2, —N/2<n < N/2 (419)
performs this task well (figure 4.8b). The indices in (4.19) are centered around zero.
A direct implementation of the windowing operation is very time consuming, because
we would have to calculate the cosine function M N times. It is much more efficient to
perform the calculation of the window function once, store it in the frame buffer, and
use it for the calculation of many DFTs. The computational efficiency can be further
improved by recognizing that the window function (4.19) is separable, i.e., a product
of two functions wm,, = “wy, - "w,. Then we need to calculate only the M plus N
values for the column and row function ‘w,, and "w,, respectively. As a result there

4.3 Point Operations 93

Figure 4.9: Correction of uneven illumination with an inhomogeneous point operation: a) original im-
age; b) background image; c) division of the image by the background image. Computations performed
with BioScan OPTIMAS.

is no need to store the whole window image. It is sufficient to store only the row and
column functions at the expense of an additional multiplication per pixel when using
the window operation.

Correction of Uneven Illumination
Every real-world application has to contend with uneven illumination of the observed
scene. Even if we spend a lot of time optimizing the lighting system, it is still very
hard to obtain a perfect even illumination. A more difficult problem are small dust
particles in the optical path especially on the glass window close to the CCD sensor.
These particles are not sharply imaged but absorb some light and thus cause a drop
in the illumination level in a small area. These effects are not easily visible in a scene
with high contrast and many details, but become very apparent in a scene with a
uniform background (figure 4.9a and b). CCD sensors also illustrate the problem of
uneven sensitivity of the individual photo receptors. These distortions severely limit
the quality of the images. Additional noise is introduced, it is more difficult to separate
an object from the background, and additional systematic errors have to be considered
concerning the accuracy of gray values.

Nevertheless, it is possible to correct these effects if we can take a background

94 4 Pixels

image. We might either be able to take a picture without the objects, or, if they
are distributed randomly, we can calculate a mean image from the many different
images. This background image b, can be used to correct the uneven illumination
and sensitivity of our sensor. We just divide the image by the background image:

g:nn = Cgnu'u/b'm'n.- (420)

Since the gray values of the divided image again have to be represented by integers,
multiplication with an appropriate constant is necessary. Figure 4.9c demonstrates that
an effective suppression of an uneven illumination is possible using this simple method.

4.4 Dyadic LUT Operations

The window operations and corrections of uneven illumination discussed in the last
section are two examples of operations in which two images are involved, termed dyadic
image operations. In those two examples only simple operations, multiplication and
division, were involved. In this section we discuss how dyadic image operations can be
implemented as LUT operations and consider some further examples. Generally, any
dyadic image operation can be expressed as

g:nn = P(gm'n., hmn) (421)

and performed as an LUT operation. Let the gray values of each parameter in P take
Q different values. In total we have to calculate Q? combinations of parameters and
thus different values of the LUT table L. For 8-bit images, 64k values need to be
calculated, that is still a quarter less then with a direct computation for each pixel in
a 512 x 512 image. We can store all the results of the dyadic operation in a large LUT
with Q% = 64k entries in the following manner:

L(2sgp + hq) = P(g}hhq)v 0<gp,hy <Q. (4-22)

High and low bytes of the LUT address are given by the gray values in the images G
and H, respectively.

More advanced image processing systems, such as the Series 151 (see appendix B),
contain a 16-bit LUT as a modular processing element. With such an LUT processor
any dyadic LUT operation with two 8-bit images can be performed in video time,
i.e., 33ms for a 512 x 512 image, once the 64k LUT has been programmed. This is
much faster than a direct computation of a dyadic operation using the PC hardware,
especially if the operation is complex. One such example is the calculation of phase and
magnitude from a complex-valued image, such as the DFT of an image. We can perform
both operations simultaneously with one LUT operation if we restrict the output to 8
bit: .

L(2%r, +14,) =28 [r2+4i2 + -l?arcta.n (%) , 0<r,i,<Q. (4.23)
The magnitude is returned in the high byte and the phase, scaled to +:128, in the low
byte.

4.5 Correlations and Spectra 95

4.5 Correlations and Spectra

4.5.1 Random Fields

The statistics developed so far, notably histograms, does not contain any information on
the image content, i. e., the relations between the pixels. Let us illustrate this important
fact by a simple example. Take the image shown in figure 4.5 with a bimodal histogram.
This histogram could belong to many different images. We do not know anything about
the size and number of the objects. The histogram could be from an image with a single
dark and white area. Or, even more complicated, a bimodal histogram does not mean
at all that we can separate an object from the background. It could result, for example,
from an image where the objects show a pattern with dark and light stripes and the
background shows white dots on a black background.

If we want to analyze the contents of images statistically, we must consider the whole
image as a statistical quantity, known as a random field. In case of an M x N image, a
random field consists of an M x N matrix whose elements are random variables. This
means that a different probability distribution belongs to each individual pixel. The
mean of a random field is then given by

Q
(Gm,n> = Zopq("% n)gq. (4.24)

We can make an estimate of the mean, just as we would do for a single value, by taking
N measurements under the same conditions and computing the average image

1 N
(G)g = -NE_:IGn- (4.25)

The index F indicates that we compute the mean by averaging over several members
of the ensemble of possible random fields belonging to a given experimental setup (en-
semble mean). The estimate of the variance is given by

2 1 Y 2
ok = ﬁ—_—lgl (G, — (G))?. (4.26)

4.5.2 Correlations and Covariances

Now we can relate the gray values at two different positions with each other. One
measure for the correlation of the gray values is the expectation value for the product
of the gray values at the two positions, the autocorrelation function

0-10-1
Ryg(m,n;m/,n’) = (GrunGrmw) = Y. Y 909rp(g, 73 m, n; m', n’). (4.27)

g=0 r=0

The probability function has six parameters and tells us the probability that we simul-
taneously measure the gray value g at the point (m,n) and r at the point (m/,n’). The

96 4 Pixels

autocorrelation function is four-dimensional. Therefore this general statistics is hardly
ever used. Things become easier, if the statistics does not explicitly depend on the
position of the pixel. Such a random field is called homogeneous. The mean value is
then constant over the whole image

(G) = const, (4.28)
and the autocorrelation function becomes shift invariant

R, ,(m+kn+lm'+kn+1) = R, ,(m,n;ym, n
99 99
= Ry(m —m',n—n";0,0) (4.29)
= R,(0,0;m' —m,n' —n).

The last two identities are obtained when we set (k,1) = —(m/,n’) and (k,1) = —(m, n).
Since the autocorrelation function depends only on the distance between point, it re-
duces from a four- to a two-dimensional function. Fortunately, many stochastic pro-
cesses are homogeneous. A deterministic image which additively contains zero-mean
noise,

G'=G+R, (G)=gG, (4.30)

is not a homogeneous field, because the mean is not constant. By subtraction of the
mean, however, we yield a homogeneous random field. Some processes show multi-
plicative noise. Multiplicative noise can be converted to additive noise by taking the
logarithm of the gray values. The autocorrelation function for a homogeneous random
field takes a much simpler form, since it depends only on the distance between the

pixels:
M-1N-1

Rgg(kl) = Z ZGmnGm+k,n+l' (4.31)

m=0n=0

This expression includes spatial averaging. For a general homogeneous random field
it is not certain that spatial averaging leads to the same mean as the ensemble mean.
A random field which meets this criterion is called an ergodic random field. Another
difficulty concerns indexing. As soon as (m,n) # (0,0), the indices run over the range of
the matrix. We then have to consider the periodic extension of the matrix, as discussed
in section 3.2.3. This is known as cyclic autocorrelation.

As discussed above, many processes consist of a deterministic and a zero-mean
random process. Therefore it is helpful first to subtract the mean and then to calculate
the correlation

M-1N-1

ng(kl) = E E (Gmn = <Gmn))(Gm+k,n+l - <Gm+k,n+l))~ (4.32)

m=0n=0

This function is called the autocovariance. The autocovariance for zero-shift ((k,I) =
(0,0)) is equal to the variance.

Now we illustrate the meaning of the autocorrelation function with some examples.
First we consider an image containing only zero-mean homogeneous noise. The fluctu-
ations at the individual pixels should be independent of each other. Autocorrelation
(and autocovariance) then vanishes except for zero shift. For zero shift it is equal to

4.5 Correlations and Spectra 97

the variance of the noise. This means that the autocorrelation is unequal to zero if the
fluctuations at neighboring pixels are not independent. If the autocorrelation gradually
decreases with the distance of the pixels, the pixels become more and more statistically
independent. We can then define a characteristic length scale over which the gray values
at the pixels are correlated to each other. In this sense the autocorrelation function is
a description of the interrelation between the gray values of neighboring pixels.

In a similar manner as we correlate one image with itself, we can correlate images
from two different homogeneous stochastic processes G and H. The cross correlation
function is defined as

M-1N-1
yh k l Z ZGmnHm+k,n+l (433)
m=0n=0
and the cross covariance as
M-1N-1
Can(k) = 3_ > (G mn))(Hmskntt — (Hmgkns1))- (4.34)
m=0n=0

The cross correlation operation is very similar to the convolution operation (see ap-
pendix A.3). The only difference is the sign of the indices (m,n) in the second term.

4.5.3 Spectra and Coherence

Now we consider random fields in the Fourier space. In the previous section we learnt
that they are characterized by the auto- and cross correlation functions. Correlation in
the space domain corresponds to multiplication in the Fourier space with the complex
conjugate functions

(GxG) o—e Py(k) = (§(k)5"(k)) (4.35)

and
(GxH) o—e Py(k)=(j(k)h(k)). (4.36)

In these equations, correlation is abbreviated with the x symbol, similar to convolution
for which we use the * symbol. For a simpler notation, the spectra are written as
continuous functions. The Fourier transform of the autocorrelation function is the power
spectrum P,,. The Fourier transform of the cross-correlation function is called the cross-
correlation spectrum Pgh. In contrast to the power spectrum, it is a complex quantity,
the real and imaginary parts being termed the co- and quad-spectrum, respectively. To
understand the meaning of the cross-correlation function, it is useful to define another
quantity, the coherence function ®:

2py [Pan(k)P
o%(k) = m. (4.37)

Basically, the coherence function contains information on the similarity of two images.
We illustrate this by assuming that the spectrum of image H is a shifted copy of
the image G, h = gexp(—ikz,). In this case, the coherence function is one and the
cross-correlation spectrum P, reduces to

Po(k) = P,y(k) exp(ikz,). (4.38)

98 4 Pixels

Since Py, is a real quantity, we can compute the shift &, between the two images from
the phase factor exp(ikx,).

If there is no fixed phase relationship of a periodic component between the two
images, then the coherency decreases. We can easily see this if we think of several inde-
pendent components with different phase shifts. If the phase shift of these components
is randomly distributed, the cross-correlation vectors in the complex plane point into
random directions and add up to zero. A more detailed discussion of cross-spectral
analysis can be found in Marple [1987].

An illustrative example is seen in cross-spectral image analysis of water surface
waves (see section 1.4). As two different random fields, we take images which have been
acquired shortly after each other with a time interval of ;. During this time a wave
with the wave number k travels a certain distance so that it shows a phase lag in the
second image which is given by

6 = wto, (4.39)

where w is the circular frequency of the wave. This phase shift is measured with the
coherence function and allows us to determine the phase speed ¢ of the wave by the
simple relation s

L2
The coherence function tells us whether all waves with the same wave number k have
the same phase speed. The larger the fluctuations of the phase speed, the lower is
the coherence. Figure 4.10 shows the power spectrum, the coherency function, and
the phase speed averaged over 258 images as a function of the wave number in a log-
polar wave number coordinate system (section 3.2.5). Even if we are not familiar with
the physics of water surface waves, the apparent differences in the phase speed and the
coherence function observed under the two different conditions tell us that cross-spectral
analysis is a useful tool.

c (4.40)

4.5 Correlations and Spectra 99

Figure 4.10: Cross-correlation analysis of images from water surface waves at 3m/s wind speed to
determine the phase speed and the coherence of the wave field: a) 6.2m fetch; b) 21.3 m fetch. Unpub-
lished data of the author from measurements in the wind-wave facility IMST, University of Marseille,
France.

5 Neighborhoods

5.1 Combining Pixels

The contents of an image can only be revealed when we analyze the spatial relations

of the gray values. If the gray value does not change in a small neighborhood, we

are within an area of constant gray values. This could mean that the neighborhood is
included in an object. If the gray value changes, we might be at the edge of an object.

In this way, we recognize areas of constant gray values and edges.

Point operations do not provide this type of information. New classes of operations
are necessary which combine the pixels of a small neighborhood in an appropriate
manner and yield a result which forms a new image. The meaning of the gray values
in such an image has changed. If we apply an operation to detect the edges, a bright
gray value at a pixel may now indicate that an edge runs across the pixel.

Point operations are a very simple class of operations which are basically used for
image enhancement; in other words, to make images look better. It is obvious that
operations combining neighboring pixels to form a new image are much more diversified
and complex. They can perform quite different image processing tasks:

e Suppression of noise.

o Correction of disturbances caused by errors in image acquisition or transmission.
Such errors will result in incorrect gray values for a few individual pixels.

o Compensation of incorrect focusing, motion blur or similar errors during image ac-
quisition. Such operations are called image restoration operations since they try to
restore the original from a degraded image.

o Enhancement or suppression of fine details in images.

o Detection of simple local structures as edges, corners, lines and areas of constant gray
values.

In this chapter we will discuss linear shift-invariant and rank value filters as two
principal possibilities for combining pixels in a local neighborhood. Then we have to
work out the base from which to handle a wide range of image processing tasks starting
with simple smoothing and edge detection operations (chapter 6). These two chapters
are central to this book as simple filter operations are the building blocks for more
complex operations discussed in chapters 6 through 9 and 17. Optimum filter design
and fast algorithms for filter operations are also discussed in chapter 6.

5.1 Combining Pixels 101

n n-1 n n+t
. SIHECHE
1 0| -1
° m -2 .O 2
» 210 |-2]| =
m+1 -1 Y 1
1 011

Figure 5.1: Tllustration of the discrete convolution operation with a 3 x 3 filter mask.

5.1.1 Linear Filtering

First we focus on the question as to how we can combine the gray values of pixels in
a small neighborhood. The first characteristic is the size of the neighborhood, which
we call the window or filter mask. The window size may be rectangular or of any other
form. We must also specify the position of the pixel relative to the window which will
receive the result of the operation. With regard to symmetry, the most natural choice
is to place the result of the operation at the pixel in the center of an odd-sized mask.

The most elementary combination of the pixels in the window is given by an opera-
tion which multiplies each pixel in the range of the filter mask with the corresponding
weighting factor of the mask, adds up the products, and writes the result to the position
of the center pixel:

Grn= 2. Y HuGmtn1= Y, Y H_j (Grmyrnil- (5.1)

k=—r l=~r k=—r l=~r

This equation assumes an odd-sized mask with (2r + 1) x (2r + 1) coeflicients. It
describes a discrete convolution operation. In comparison to the continuous convolution,
the integral is replaced by a sum over discrete elements (compare appendices A.2 and
A3).

')I'he convolution operation is such an important operation that it is worth studying
it in detail to see how it works. First, we might be confused by the negative signs of
the indices k and ! either for the mask or the image in (5.1). This just means that we
either rotate the mask or the image around its symmetry center by 180° before we put
the mask over the image. (We will learn the reason for this rotation in section 5.2.)
If we want to calculate the result of the convolution at the point (m,n), we center
the rotated mask at this point, perform the convolution, and write the result back to
position (m,n) (figure 5.1). This operation is performed for all pixels of the image.
Close to the edges of the image, when the filter mask ranges over the edge of the image,
we run into difficulties as we are missing some image points. The correct way to solve

102 5 Neighborhoods

Figure 5.2: Image convolution by scanning the convolution mask line by line over the image. At the
shaded pixels the gray value is already been replaced by the convolution sum. Thus the gray values at
the shaded pixels falling within the filter mask need to be stored in an extra buffer.

this problem according to our summations in section 2.3, especially equation (3.17), is
to take into account that finite image matrices must be thought of as being repeated
periodically. Consequently, when we arrive at the left edge of the image, we take the
missing points from the right edge of the image. We speak of a cyclic convolution. Only
this type of convolution will reduce to a simple multiplication in the Fourier space (see
appendix A.3). In practice, this approach is seldom chosen. Instead we add a border to
the image with half the width of the filter mask. In this border either zeros are written,
or we extrapolate in one way or the other the gray values from the gray values at the
edge of the image. The simplest type of extrapolation is to write the gray values of the
edge pixels into the border.

Although this approach gives less visual distortion at the edge of the image than
cyclic convolution, we do introduce errors at the edge of the image with a width of half
the size of the filter mask. If we choose the extrapolation method, the edge pixels are
overweighted.

Equation (5.1) indicates that none of the calculated gray values G,,, will flow into
the computation at other neighboring pixels. This means that the result of the convo-
lution operation, i.e., a complete new image, has to be stored in a separate memory
area. If we want to perform the filter operation in-place, we run into a problem. Let us
assume that we perform the convolution line by line and from left to right. Then the
gray values at all pixel positions above and to the left of the current pixel are already
overwritten by the previously computed results (figure 5.2). Consequently, we need to
store the gray values at these positions in an appropriate buffer.

Now, the question arises whether it is possible or even advantageous to include the
already convolved neighboring gray values into the convolution at the next pixel. In
this way, we might be able to do a convolution with fewer operations since we include

5.1 Combining Pixels 103

the previously computed results. In effect, we are able to perform convolutions with
much less computational effort and also more flexibility. However, these filters, which
are called recursive filters, are much more difficult to understand and to handle —
especially in the two-dimensional case.

For a first impression, we consider a very simple one-dimensional example. The
simplest recursive filter we can think of has the general form

Im =1 —a)g_; + AGm. (5.2)

This filter takes the fraction 1 — « from the previously calculated value and the fraction
a from the current pixel. Recursive filters, in contrast to non-recursive filters, work
in a certain direction, in our example from left to right. For time series, the preferred
direction seems natural, since the current state of a signal depends only on previous
values. Filters, which depend only on the previous values of the signal, are called causal
filters. For images, however, no preferred direction exists. This is the first principal
problem posed by recursive filters for spatial data. Consequently, we have to search for
ways to construct noncausal and symmetric filters from recursive filters.

From (5.2), we can calculate the response of the filter to the discrete delta function

6k={(1, e (53)

i.e., the point spread function or impulse response of the filter (compare section 2.2.6).
Recursively applying (5.2) to the discrete delta function, we obtain

gy = 0

g% = a

9 = ol-a) (5.4)
Im = a(l—a)™

This equation shows several typical general properties of recursive filters:

¢ First, the impulse response is infinite, despite the finite number of coefficients. For
|a] < 1 it decays but never becomes exactly zero. In contrast, the impulse response
of non-recursive convolution filters is always finite. It is equal to the size of the filter
mask. Therefore the two types of filters are sometimes named finite impulse response
filters (FIR filters) and infinite impulse response filters (IIR filters).

o FIR filters are always stable. This means that they always give a finite response to
a finite signal. This is not the case for IIR filters. The stability of recursive filters
depends on the filter coefficients. The filter in (5.2) is instable for |a| > 1 since even
the impulse response diverges. In the simple case of (5.2) it is easy to recognize the
instability of the filter. Generally, however, it is much more difficult to analyze the
stability of a recursive filter, especially in dimensions which are two and higher.

5.1.2 Recursive Filters and Linear Systems

Recursive filters can be regarded as the discrete counterpart of analog filters. A simple
analog filter for electrical signals contains resistors, capacitors, and inductors. As an

104 5 Neighborhoods

a b
Ul UO
*— R —e
Ui Uo
e——] Blackbox }—e o

Figure 5.3: Analog filter for time series: a) black-box model: a signal U; is put into an unknown
system. At the output we measure the signal U,. b) a resistor-capacitor circuit as a simple example
for an analog lowpass filter.

example, we take the simple resistor-capacitor circuit shown in figure 5.3b. The differ-
ential equation for this filter can easily be derived from Kirchhoff’s current-sum law.
The current flowing through the resistor from U; to U, must be equal to the current
flowing into the capacitor. Since the current flowing into a capacitor is proportional to
the temporal derivative of the potential U,, we end up with the first order differential
equation

Ui - Ua

R
This equation represents a very important general type of process called a relazation
process, which is governed by a time constant 7. In our case, the time constant is given
by 7 = RC. Generally, we can write the differential equation of a relaxation process as

=CU,. (5.5)

U, + U, =U;. (5.6)

The impulse response h(t) of this system (in case of an RC-circuit the reaction to a
short voltage impulse) is given by

0 t<0
h(t) = { (1/7) exp(—t/7) &> 0. (5.7)

In case of a continuous function the impulse response is also known as Green’s function.
Once we know the impulse response of the filter, we can calculate the response to any
arbitrary signal by

U,(t) = 7dt' Ui(t')h(t — 1), (5.8)

since (5.6) is linear in U. Because the impulse response is zero for t < 0 (causal filter),
the integration limits extend from 0 to co only.

A discrete approximation of the analog RC filter can be derived by transforming
the differential equation (5.6) into a finite difference equation

U,(t — At) + iU.-(t). (5.9)

Uo(t) = T4+ At

r
7+ At

5.1 Combining Pixels 105

This equation is equivalent to the simple recursive filter (5.2). We have already seen this
identity when comparing the discrete and continuous impulse responses in (5.4) and (5.7).
Since the difference equation is only an approximation of the differential equation, dis-
crete and continuous filters are better called equivalent when the sampled continuous
impulse response is equal to the discrete impulse response. In this way, we can derive
the relationship between the constant o and the time constant 7. It is sufficient to
compare the exponential terms. From

exp(—t/7) = exp(—mAt/7) = (1 — @)™ = exp[m In(1 — @)], (5.10)
we derive
T= _ln(lA—ia) or a=1-—exp(—At/7). (5.11)

With these equations, we obtain a relationship between a continuous process and its
discrete counterpart. Since the discrete samples resemble the analog process exactly, it
is not only an approximation. This means that we can exactly simulate analog filters
with discrete filters, provided we meet the sampling theorem.

Another example also demonstrates the relationship between recursive filters and
linear systems. Let us consider the next more complex recursive filter, a second-order
filter, which relates the current output to the output of the two last samples:

g =2rcos@Ogl _, —r’gl o+ gm- (5.12)
The impulse response of this filter can be shown to be [Oppenheim and Schafer, 1989]

r™ sin[@(m + 1)]
s St S Bt | >

o = sin O m20 (5.13)
0 m < 0.

The transfer function of this asymmetric causal filter is complex:

. 1
h(k) = (e—ie _ e-”i’;) (eie _ e—-;ril-c)’

(5.14)

with the magnitude

1

|h(k)|* = (1‘2 +1— 2rcos(nk — @)) (1'2 +1 — 2r cos(nk + 9)) ‘

(5.15)

At first glance, these formulas might look not familiar, but closer examination re-
veals that they describe the discrete analogue to a very important physical system,
the damped harmonic oscillator. The impulse response describes a sampled damped
harmonic oscillation which has been excited at time zero:

h(t) = { gxp(—t/r) sin(wot) :ig . (5.16)

The transfer function (5.14) contains the physical meaning of the resonance curve for the
oscillator. If r = 1, the oscillator is undamped, and the transfer function has two poles at
k= +0O/x. If r > 1, the resonator is unstable; even the slightest excitement will cause

106 5 Neighborhoods

infinite amplitudes of the oscillation. Only for r < 1, the system is stable; the oscillation
is damped. Comparing (5.13) and (5.16), we can determine the relationship of the
eigenfrequency wp and the time constant 7 of a real-world oscillator to the parameters
of the discrete oscillator, r and ©

r = exp(—At/7) and O = weAt. (5.17)

The last example of the damped oscillator illustrates that there is a close relationship
between discrete filter operations and analog physical systems. Thus filters may be used
to represent a real-world physical process. They model how the corresponding system
would respond to a given input signal g. Actually, we have already made use of this
equivalence in our discussion of optical imaging in section 2.2.6. There we found that
imaging with a homogeneous optical system is completely described by its point spread
function and that the image formation process can be described by convolution. Optical
imaging together with physical systems such as electrical filters and oscillators of all
kinds, can thus be regarded as representing an abstract type of processes or systems,
called linear shift-invariant systems.

This generalization is very useful for image processing, since we can describe both
the image formation and image processing as convolution operations with the same
formalism. Moreover, the images observed may originate from a physical process which
can be modelled by a linear shift-invariant system. Then an experiment to find out how
the system works can be illustrated using the black-box model (figure 5.3a). The black
box means that we do not know the composition of the system observed or, physically
speaking, the laws which govern it. We can find them out by probing the system
with certain signals (input signals) and watching the response by measuring some other
signals (output signals). If it turns out that the system is linear, it will completely
be described by the impulse response. Many biological and medical experiments are
performed in this way. Biological systems are typically so complex that the researchers
often stimulate them with signals and watch for responses in order to be at least able
to make a model. From this model more detailed research may start to investigate
how the observed system functions might be realized. In this way many properties of
biological visual systems have been discovered. But be careful — a model is not the
reality! It pictures only the aspect that we probed with the applied signals.

Oppenheim et al. [1983] give a thorough and coherent treatment of linear system
theory. Marple [1987] discusses in detail digital spectral analysis with emphasis on
model-based approaches.

5.1.3 Rank Value Filtering

The considerations on how to combine pixels have resulted in the powerful concept of
linear shift-invariant systems. Thus we might be tempted to think that we have learnt
all we need to know for this type of image processing operations. This is not the case.
There is another class of operations which works on a quite different concept.

We might characterize a convolution with a filter mask by weighting and summing
up. The class of operations to combine neighboring pixels we are considering now may
be characterized by comparing and selecting. They are called rank value filters. For this

5.2 Linear Shift-Invariant Filters 107

sorted list

323334 |35 36 | 36|37 98

7N .

39 (33 32/,36/,36 31 3§\33 32|35 (3631

3534|3736 |33]|34 35 3%37 36| 33| 34

m |34|33198|36]34]|32 m |34]|33]|36]|36]|34] 32

32|36}32|35]|36]35 32136132 |35(36|35

3313136343132 33|31(36|34|31]32
input output

Figure 5.4: Illustration of the principle of rank value filters with a 3 x 3 median filter.

we take all the gray values of the pixels which lie within the filter mask and sort them
by ascending gray value. This sorting is common to all rank value filters. They only
differ by the position in the list from which the gray value is picked out and written back
to the center pixel. The filter operation which selects the medium value is called the
median filter. Figure 5.4 illustrates how the median filter works. The filters choosing
the minimum and maximum values are denoted as the minimum and maximum filter,
respectively.

There are a number of significant differences between linear convolution filters and
rank value filters. First of all, rank value filters are nonlinear filters. Consequently,
it is much more difficult to understand their general properties. We will discuss the
consequences in detail throughout this chapter in comparison with the convolution
filters. Since rank value filters do not perform arithmetic operations but select pixels,
we will never run into rounding problems. These filters map a discrete set of gray values
onto themselves.

5.2 Linear Shift-Invariant Filters

In this section we discuss the general properties of filters which are both linear and
shift-invariant. We denote this filter type as LSI filters. The theoretical foundations
laid down in this section will help us enormously for practical application. In the
previous section we discussed convolution as a natural way to combine neighboring
pixels. Here we will go the other way round. We start with a discussion of linearity and
shift invariance and end up with the conclusion that convolution is the only class of
operation meeting these properties. Instead of filters, we will speak of operators which

108 5 Neighborhoods

map or transform an image onto itself. In the following we will denote these operators
with calligraphic symbols and write

G =HG (5.18)

for an operator H which transforms the image G into the image G'. Such a general
notation is very helpful, since it allows us to write complex operations easily comprehen-
sible. Furthermore, it does not matter whether the image is represented by an M x N
matrix in the space or the Fourier domain. The reason for this representation indepen-
dent notation lies in the fact that the general properties of operations do not depend on
the actual representation. The mathematical foundation is composed of inner product
vector spaces, which we discussed in section 3.3.1. In this sense, we regard an image as
an element in a complex-valued M x N-dimensional vector space.

5.2.1 Linearity

Linear operators are defined by the principle of superposition. If G and G’ are two
M x N images, a and b two complex-valued scalars, and H is an operator which maps
an image onto another image of the same dimension, then the operator is linear if and
only if

H(aG + bG') = aHG + bHG'. (5.19)

We can generalize (5.19) to the superposition of many inputs

M (zk;akak) - SuHG. (5.20)

The superposition property makes linear operators very useful. We can decompose a
complex image into simpler components for which we can easily derive the response of
the operator and then compose the resulting response from that of the components.

It is especially useful to decompose an image into its individual elements. Formally,
this means that we compose the image with the base images of the chosen representa-
tion, which is a series of shifted discrete é§ or impulse images D

g
HD={1 k=k,i=1" (5.21)

0 otherwise

Thus we can write
M-1N-1

G=) > Gun™D. (5.22)

m=0n=0
As an example for a nonlinear operator, we take the median filter M, which has been
introduced in section 5.1.3. For the sake of simplicity, we consider a one-dimensional
case with a 3-element median filter. It is easy to find two vectors for which the median
filter is not linear:

M([-010-101-]4[--1100-1-1-])
) M[010 —1[01 -1-(-]]—4-1,,&4_[1-::.1]1#00 1 -1]
= [...100._1...]_

(5.23)

5.2 Linear Shift-Invariant Filters 109

5.2.2 Shift Invariance

Another important property of an operator is shift invariance or homogeneity. It means
that the response of the operator does not explicitly depend on the position in the image.
If we shift an image, the output image is the same but for the shift applied. We can
formulate this property more elegantly if we define a shift operator ¥'S which is defined
as

HSGmn = Grtmt- (5.24)

Then we can define a shift-invariant operator in the following way: an operator is shift
invariant if and only if it commutes with the shift operator, i.e.,

H (MSG) =S (HG). (5.25)

It is important to note that the shift operator ¥S itself is a linear shift-invariant oper-
ator.

5.2.3 Impulse Response, Transfer Functlon, and Eigenfunc-
tions

From our considerations in sections 2.2.6 and 5.1.1, we are already familiar with the
point spread function or impulse response of either a continuous or a discrete operator.
Here we introduce the formal definition of the point spread function for an operator H
onto an M x N-dimensional vector space

H =H"D. (5.26)

Now we can use the linearity (5.20) and shift invariance (5.25) of the operator H
and the definition of the impulse response (5.26) to calculate the result of the operator
on any arbitrary image G in the space domain

M-1N-1
(HG)mn = (7‘{ (E EGH HD)) with (5.20)
LN
= (Z Z GuH HD) linearity
k-‘OU(,—_Ol mn
= (Z Z GuH¥S®D with (5.24)
MAN- mn
= (E GuMSH OOD) shift invariance (5.27)
iol = __01 mn
= (Gu leH) with (5.26)
k=0 l? i
= Z GuH.. —kpn—l with (5.24)
I 0

M -1
E Z Gm—k’,n—I’Hk’,l’ using K=m-— k, l=n-— l.

k'=01'=0

110 5 Neighborhoods

These calculations prove that a linear shift-invariant operator must necessarily be a
convolution operation in the space domain. There is no other operator type which is
both linear and shift-invariant.

Next we are interested in the question whether special types of image E exist which
are preserved except for multiplication with a scalar by a linear shift-invariant operator,
i.e.,

HE = \E. (5.28)

A vector (image) which meets this condition is called an eigenvector or characteristic
vector of the operator, the scaling factor A an eigenvalue or characteristic value of the
operator.

As a simple linear shift-invariant operator, we first consider the shift operator S. It
is quite obvious that for real images only a trivial eigenimage exists, namely a constant
image. For complex images, however, a whole set of eigenimages exists. We can find it
when we consider the shift property of the complezx exponentials

WY = exp (2”;;”“) exp (2”11\,””) , (5.29)
which is given by
2riku 2rilv
kl c uv - _ _ uv
S“W =exp <) exp <) Ww. (5.30)

The latter equation directly states that the complex exponentials **W are eigenfunc-
tions of the shift operator. The eigenvalues are complex phase factors which depend on
the wave number indices (u,v) and the shift (k,7). When the shift is one wavelength,
(k,1) = (M/u, N/v), the phase factor reduces to 1 as we would expect.

Now we are curious to learn whether any linear shift-invariant operator has such a
handy set of eigenimages. It turns out that all linear shift-invariant operators have the
same set of eigenimages. We can prove this statement by referring to the convolution
theorem (see appendix A.3) which states that convolution is a point-wise multiplication
in the Fourier space: .

G=H+xG o— G'=H-G. (5.31)

The element-wise multiplication of the two matrices H and G in the Fourier space is
denoted by a centered dot to distinguish this operation from matrix multiplication which
is denoted without any special sign. Equation (5.31) tells us that each element of the
image representation in the Fourier space G is multiplied by the complex scalar Hy,.
Since each point Gy in the Fourier space represents a base image, namely the complex
exponential **W in (5.29) multiplied with the scalar Gu,,, they are eigenfunctions of any
convolution operator. The eigenvalues are then the elements of the transfer function,
H,,. Tn conclusion, we can rewrite (5.31)

H(Guv uuw) = Huuéuv “W. (532)

Another proof is based on the theorem that two commutable operators have the same
set of eigenvectors [Grawert, 1973].

5.2 Linear Shift-Invariant Filters 111

5.2.4 Symmetry

In section 5.1.1 we have already pointed out that for the sake of symmetry, filter masks
with an odd number of pixels are preferred. In this section we will continue the discus-
sion on symmetry of LSI filters and how it effects the representations of the operators
in the space and wave number domain.

Representation in the Space Domain
In section 5.2.3 (5.27) we found that an LSI filter can be represented in the space domain
as a convolution of the operator image H with the image G

M-1N-1

Grn = 3. Y HiiGmknet- (5.33)

k=0 I=0

In section 5.1.1 (5.1) we wrote it as the convolution with a small filter mask centered
around the index (0, 0)

r

G:nn= E ZH—k,—IGm+k,n+l- (534)

k=—r l=—1r

Both representations are equivalent if we consider the periodicity in the space domain
(section 3.2.3). The restriction of the sum in (5.34) reflects the fact that the impulse
response or PSF of the filter is zero except for the few points around the center pixel.
Thus the latter representation is much more practical and gives a better comprehension
of the PSF. For example, the filter mask

0 -1 -2
1 0, —1 (5.35)
2 1 0
written as an M X N matrix reads as
[0, -1 0 0 1]
1 00 0 2

(5.36)
0 00 ..00
| -1 =20 ... 00

In the following we will write all filter masks in the much more comprehensive first
notation where the filter mask is centered around the point Hg.

Concerning symmetry, we can distinguish two important classes of filters: even and
odd filters with the following condition

Hepn=+Hp, (5.37)

where the 4+ and — signs stand for even and odd symmetry. From this definition we

112 5 Neighborhoods

can immediately reduce (5.34) to make the computation of filters more efficient

G;nn = HOOGmn + Z Z Hkl(Gm-—k,n—l + Gm+k,n+l) even

k1
Grn =3 Hiu(Gm-in-t — Gmikn+) odd
k1
' - . (5.38)
Grn = HiGmpn + ZHZ(Gm,n_l + Gmntl) even, 1-D horizontal
=1
= ZHI(Gm,n_z — Gmntl) odd, 1-D horizontal.

=1

The double sums now only run over half of the filter mask, excluding the center pixel
which must be treated separately because it has no symmetric counterpart. It can
be omitted for the odd filter since the coeflicient at the center pixel is zero. In these
equations we also include the special case of a one-dimensional horizontal filter mask
of size 1 x (2r + 1). Corresponding equations can be written for 1-D vertical masks.

For FIR filters, the filter mask is equal to the point spread function, as we can
easily verify by convolving the filter mask with an impulse image. Geometrically, we
can rotate the filter mask by 180°, and then scan the mask over the image. Now we
understand the reason for the inversion of the sign in the indices k,! in (5.34). If the
change in the sign were omitted, the point spread function would be a 180° rotated
copy of the filter mask.

Now let us study recursive or IIR filters. Generally, we can write

Z Z RiuG kst + Z ZHlem—kn I (5.39)

k=0 1=0,k+l#0 k=—r I=—r
IIR part FIR part

The filter contains two parts, a conventional FIR part with a (2r + 1) x (2r + 1) filter
mask and an IIR part which takes the coefficients from only one quadrant except for
the origin. Such a restriction is necessary, since the recursive part falls back upon
previously calculated pixels. The sign of the indices (k,!) in G determines the general
direction in which the recursive filter is applied. There are four principal directions in
a two-dimensional image: a) from left to right and top to bottom, b) from right to left
and top to bottom, c¢) from left to right and bottom to top, and d) from right to left
and bottom to top.

The point spread function of these filters is not given directly by the filter mask, but
must be calculated recursively as demonstrated in section 5.1.1 (5.4). Two problems
arise. First, the PSF does not show any symmetry but generally lags behind in the
direction of the filter. Second, the PSF is infinite. Thus IIR filters are in principle only
suitable for infinite images. In practice, we must ensure that the PSF is significantly
low in a distance which is small compared to the size of the image. Otherwise we run
into similar border problems as with large FIR filters (see section 5.1.1).

Asymmetrical filters are not of much use for image processing, since they shift the
image structures. An even filter only blurs a point but does not shift its center of
gravity. If we use filters which shift points, the exact position measurements will not
be possible.

5.2 Linear Shift-Invariant Filters 113

We can, however, still use recursive filters if we run the same filter in two opposite
directions or in all the directions possible over the image and add or subtract the filter
results. With this operation, the point spread functions add to an even and odd point
spread function. Let *H,i = 1,2,3,4 be the point spread functions of the four different
directions in which an IIR filter can propagate on an image. The following symmetries
are then valid:

‘Hpn = F2H,p, (5.40)

where the addition in the superscript is performed modulo 4. Consequently, we can
obtain the following symmetrical PSFs

‘Hpn + 2 H
(1Hmn + 3Hmn) x (szn + 4I{mn),

which are of use in digital image processing. For further details see section 6.1.3.

(5.41)

Representation in the Wave Number Domain

In-the wave number domain, an LSI filter is represented by its transfer function.
The transfer function directly expresses how periodic structures change in amplitude
and phase as a function of the wave number k. In this section we consider the influence
of the symmetry of the filter masks on the transfer function. The relationship between
the transfer function and the point spread function is given by the discrete Fourier
transform. For correct scaling of the transfer function, the factor 1/NM is omitted:

. M—1N-1 o .
Huyy= Y Y Hpuaexp (— m mu) exp (— 2mi nv) . (5.42)
m=0n=0 M N

This relation can be considerably simplified for even and odd filters. We can then
combine the corresponding symmetric terms H,, » and Har—m N—n in the sum and write

) . i

A, = He + ZZ [Hmn exp <_ 2m mu) exp (_ T nv)
(mn)€Sh i) (5.43)

VH (27r1 mu) (27r1 nv)]
—m.N—n €X e .

M-m,N p M Xp N
Now the sum runs over one half space S, only. The origin is handled in addition since
no symmetric point exists for it. Using the symmetry properties for even and odd filter

masks, we obtain the following equations for these even and odd filter masks:

. 2
H,, = Hyp + ZZ 2H,,.. cos (7;(;“ + 27;\7;1)) even
—_—

(mm)€ESh
N 2 (5.44)
Hu==i 3 2Hpn sin(T 2”—"3) odd.
== M N
(m,n)€SH

These equations can be written more conveniently if we express the wave number by
the scaled wave number k = (2u/M,2v/N) as introduced in section 2.3.3, whose com-
ponents k; lie in the] — 1,1[interval. Then we obtain for even filters

H,, = Hp + Y3 2H,. cos[r(mk, + nk,)], (5.45)
—_—

(m,n)€SH

114 5 Neighborhoods

and for odd filters
H,, =-i S°N" 2Hn sinfm(mk; + nky)]. (5.46)
(m,n)es,)
mm)ESy

These equations are very useful, since they give a straightforward relationship be-
tween the coeflicients of the filter masks and the transfer function. They will be our
main tool to study the properties of filters for specific image processing tasks. They
are also valid for sets of even or odd IIR filters as described above provided we have
calculated the point spread function.

5.2.5 General Properties of Linear Shift-Invariant Operators

We now introduce an operator notation which helps us to describe composite image pro-
cessing operations. All operators will be written with calligraphic letters, as B, D, H, S.
We will systematically reserve special letters for certain operators. For example, S
always means a shift operator. Superscripts in front of the operator will be used to
specify the operator in more detail, as ¥'S denotes a shift operator which shifts the
image by k pixels to the right, and ! pixels down.

Consecutive application is denoted by writing the operators one after the other. The
right operator is applied first. Consecutive application of the same operator is denoted
by the exponents

HH = H=H". (5.47)
m-times
If the operator acts on a single image, the operand, which stands to the right in the
equations, we will omit the operand. In this way we can write operator equations. In
(5.47), we already made use of this notation. Furthermore, we will use braces in the
usual way to control the order of execution.

Using this operator notation, we will now summarize the general properties of linear
shift-invariant image processing operators. This notation and the general properties of
convolution filters will be a valuable help in understanding complex image processing
operations.

Linearity; Principle of Superposition
H(aG + bG') = aHG + bHG'. (5.48)

Commutativity
We can change the order of operators:

HH' = H'H. (5.49)

This property is easy to prove in the Fourier domain, since there the operators reduce
to an element-wise scalar multiplication which is commutative.

5.2 Linear Shift-Invariant Filters 115

Associativity

HH' =H. (5.50)

Since LSI operations are associative, we can compose a complex operator out of simple
operators. Likewise, we can try to decompose a given complex operator into simpler
operators. This feature is essential for an effective implementation of convolution op-
erators. As an example, consider the operator

1 4 6 41
416 24 16 4
6 24 36 24 6 |. (5.51)
416 24 16 4
1 4 6 41

We need 25 multiplications and 24 additions per pixel with this convolution mask. We
can easily verify, however, that we can decompose this mask into two simpler masks:

4 6 4
16 24 16
24 36 24
16 24 16

4 6 4

=[14641]« (5.52)

— RO
— O =
— O

Applying the two convolutions with the smaller masks one after the other, we need
only 10 multiplications and 8 additions. Filter masks which can be decomposed into
one-dimensional masks along the axes are called separable masks. We will denote one-
dimensional operators with an index indicating the axis. We are then able to write a
separable operator B in a three-dimensional space

B = B,B,B,. (5.53)

In case of one-dimensional masks directed in orthogonal directions, the convolution re-
duces to an outer product. Separable filters are more efficient the higher the dimension
of the space. Let us consider a 9 X 9 x 9 filter mask as an example. A direct implemen-
tation would cost 729 multiplications and 728 additions per pixel, while a separable
mask of the same size would just need 27 multiplications and 24 additions, about a
factor of 30 fewer operations.

Distributivity over Addition

Since LSI operators are elements of the same vector space on which they can operate,
we can define addition of the operators by the addition of the vector elements. We then
find that LSI operators distribute over addition

HG +H'G = (H +H")G = HG. (5.54)

Because of this property we can also integrate operator additions into our general
operator notation.

116 5 Neighborhoods

Inverse Operators

Can we invert a filter operation? This question is significant since degradations such
as image blurring by motion or by defocused optics can also be regarded as a filter
operation. If an inverse operator exists and if we know the point spread function of
the degradation, we can reconstruct the original, undisturbed image. The problem of
inversing a filter operation is known as deconvolution or inverse filtering.

By considering the filter operation in the Fourier domain, we immediately recognize
that we can only reconstruct those wave numbers for which the transfer function of the
filter does not vanish. In practice, we are much more limited because of quantization
and additional noise in the image. If a wave number is attenuated below a critical
level which depends on the noise and quantization levels, it will not be recoverable. It
is obvious that these conditions limit the power of a straightforward inverse filtering
considerably. The problem of inverse filtering is considered further in section 13.3.2.

6 Mean and Edges

In this chapter we will apply neighborhood operations to analyze two elementary struc-
tures: the mean gray value and changes in the gray values. The determination of
a correct mean value also includes the suppression of distortions in the gray values
caused by sensor noise or transmission errors. Changes in the gray value mean, in the
simplest case, the edges of objects. Thus edge detection and smoothing are complemen-
tary operations. While smoothing gives adequate averages for the gray values within
the objects, edge detection aims at estimating the boundaries of objects.

6.1 Smoothing

The mean gray value is obtained by a filter operation which “somehow” smooths the
image. Such an operation also suppresses noise or individual pixels which are distorted
by transmission errors. Generally, these operations can be characterized by attenuating
fine-scale features, i.e., high wave numbers. This class of filters is called smoothing or
lowpass filters. We will describe these filters in detail, since they are elementary filters
which will be used to compose more complex filter operations (see, for example, sections

7.3,8.2.2, 15.3.2, and 17.4).

6.1.1 Box Filters

It is obvious that smoothing filters will average pixels within a small neighborhood.
The simplest method is to add all the pixels within the filter mask and to divide the
sum by the number of pixels. Such a simple filter is called a boz filter. Box filters are
an illustrative example as to how to design a filter properly. As an introduction, we
consider a 3 x 3 box filter

1 111

‘R= g 111]. (6.1)
111

The factor 1/9 scales the result of the convolution sum. For any smoothing filter, the

sum of all the coefficients should be one. Otherwise the gray value in a region with

118 6 Mean and Edges

constant gray values is not preserved. We apply this mask to a vertical edge

0 1/3 2/3 1

0011 111
0 011 .ok — 111]= 0 1/3 2/3 1
0011 . 111

0 1/3 2/3 1

As expected for a smoothing operation, the sharp edge is transformed into a smoother
ramp with a gradual transition from 0 to 1. Smoothing filters attenuate structures with
high wave numbers. Let us first try to convolve a vertical structure with a wavelength
of 3 pixel distance by the 3 x 3 box filter

1 -2 11 -21

1 11 00
1—211—21...*5-11 00
11 00

—_ =
I
[e R)
A e ==

1 -2 11 -21

It turns out that the 3 x 3 box filter completely removes a structure with the wave-
length 3. From a good smoothing filter we expect that all structures with a wave
number above a certain threshold are removed. This is not the case for the 3 x 3 box
filter. As an example, we take a structure with the wavelength 2:

1 -1/3 1/3 -1/3 1/3 -1/3 1/3
1|= -+ -1/3 1/3 -1/3 1/3 -1/3 1/3
1 -1/3 1/3 -1/3 1/3 -1/3 1/3

1 -11 -11 -1 1 1
1 -11 -11 -1 ... *5- 1
1 -11 -1 1 -1 1

Obviously, the box filter is not a good lowpass filter. Directly convolving the filter
with test images containing periodic structures of different wavelength to study its wave
number response is a ponderous method. The attenuation of periodic structures as a
function of the wave number is directly given by the transfer function. The box filter
is an even filter. Thus we can apply (5.45). First we consider a one-dimensional 1 x 3
box filter. Its mask is given by

R, =[1/3 1/3 1/3]. (6.2)
Thus only the coefficients Hypp = Hp; = 1/3 are unequal to zero and the transfer function

reduces, according to (5.45), to

A

1 2 .
R, =~ + —~ . .
== 3 + 3 cos(mky) (6.3)

The even filter masks result in a real transfer function. This means that for positive
values no phase shift occurs, while for negative values the signal is inverted. The transfer
function is shown in figure 6.1a. OQur exemplary computations are verified. The transfer

6.1 Smoothing 119

1.0

R

05

0.0

-0.5 1 1 L 1 -05 1 1 1 1
0.0 02 0.4 06 08 10 0.0 02 04 0.6 08 1.0
k k

Figure 6.1: Transfer functions of one-dimensional smoothing filters: a) box filters of size 3, 5, and 7;
b) binomial filters as indicated.

function shows a zero at k = 2/3. This corresponds to a wave number which is sampled
3 times per wavelength. The smallest possible wavelength (1:: = 1), which is sampled
twice per wavelength, is only damped by a factor of three. The negative sign indicates
an interchange of minima and maxima. In conclusion, the 3 x 3 box filter is not a good
lowpass filter. It is disturbing that the attenuation does not increase monotonously
with the wave number but tends to oscillate. Even worse, structures with the largest
wave number are not attenuated strongly enough.

Larger box filters do not show a significant improvement (figure 6.1a). On the
contrary, the oscillatory behavior is more pronounced and the attenuation is only pro-
portional to the wave number. For large filter masks, we can approximate the discrete
with m coeflicients by a continuous box function of width m — 1. The transfer function
is then given by a sinc function (see appendix A.2):

sin(2m(m — 1)7::)

"R, ~ 2
2r(m — 1k

(6.4)

Now we turn to two-dimensional box filters. To simplify the arithmetic, we utilize
the fact that the box filter is a separable filter and decompose it into 1-D vertical and
horizontal components, respectively:

(Jririy o L1
R="R,+°R,=5|1 11 :5[1 1 1]*5 1
111 1

The transfer function of the one-dimensional filters is given by (6.3) (replacing %, by

k, for the vertical filter). Since convolution in the space domain corresponds to multi-
plication in the wave number domain, the transfer function of R is

‘R= (% + —§-oos(7rlz',)> (% + gcos(ﬂ'icy)) . (6.5)

120 6 Mean and Edges

Figure 6.2: Transfer function of two-dimensional box filters shown in a pseudo 3-D plot and a contour
plot. a) 3 x 3 box filter; b) 7 x 7 box filter; distance of the contour lines: 0.05.

From this equation and from figure 6.2a, we can conclude that this 2-D box filter
is a poor lowpass filter. A larger box filter, for example one with a 7 x 7 mask (fig-
ure 6.2b), does not perform any better. Besides the disadvantages already discussed
for the one-dimensional case, we are faced with the problem that the transfer function
is not isotropic, 1. e., it depends, for a given wave number, on the direction of the wave
number.

When we apply a box filter to an arbitrary image, we hardly observe these effects
(figure 6.6). They are only revealed if we use a carefully designed test image. This image
contains concentric sinusoidal rings. Their wavelength increases with the distance from
the center. When we convolve this image with a 7 x 7 or 9 x 9 box filter, the deviations
from an isotropic transfer function become readily visible (figure 6.3). We can observe
the wave numbers which entirely vanish and the change of gray value maxima in gray
value minima and vice versa in some regions, indicating the 180° phase shift caused by
negative values in the transfer function.

6.1 Smoothing 121

Figure 6.3: Test of the smoothing with a 7 x 7 and a 9 x 9 box filter using a test image with concentric
sinusoidal rings.

From this experience, we can learn an important lesson. We must not rate the
properties of a filter operation from its effect on arbitrary images, even if we think that
they seem to work correctly. Obviously, the eye perceives a rather qualitative impression
(see section 1.3). For quantitative scientific applications we need a quantitative analysis
of the filter properties. A careful analysis of the transfer function and the use of carefully
designed test images are appropriate here.

Now we turn back to the question of what went wrong with the box filter. We
might try to design a better smoothing filter directly in the wave number space. An
ideal smoothing filter would cut off all wave numbers above a certain threshold value.
We could use this ideal transfer function and compute the filter mask by an inverse
Fourier transform. However, we run into two problems which can be understood without
explicit calculations. The inverse Fourier transform of a box function is a sinc function.
This means that the coefficients decrease only proportionally to the distance from the
center pixel. We would be forced to work with large filter masks. Furthermore, the
filter has the disadvantage that it overshoots at the edges.

122 6 Mean and Edges

6.1.2 Binomial Filters

From our experience with box filters, we conclude that the design of filters is a difficult
optimization problem. If we choose a small rectangular filter mask, we get a poor trans-
fer function. If we start with an ideal transfer function, we get large filter masks and
overshooting filter responses. The reason for this behavior is because of a fundamen-
tal property of Fourier transform called the classical uncertainty relation in physics or
the time-bandwidth product in the signal processing literature [Marple, 1987]. Here we
briefly discuss what the uncertainty relation means for a steep edge. An edge consti-
tutes a discontinuity or an impulse in the first derivative. The Fourier transform of an
impulse is evenly spread over the whole Fourier domain. Using the integral property of
the Fourier transform (appendix A.2), an integration of the derivative in the space do-
main means a division by k in the Fourier domain. Then we know without any detailed
calculation that in the one-dimensional case the envelope of the Fourier transform of a
function which shows discontinuities in the space domain will go with ¥~ in the wave
number domain. This was exactly what we found for the Fourier transform of the box
function, the sinc function.

Considering this basic fact, we can design better smoothing filters. One condition
is that the filter masks should gradually approach zero.

Here we will introduce a class of smoothing filters which meets this criterion and
can be calculated very efficiently. Furthermore these filters are an excellent example of
how more complex filters can be built from simple components. The simplest and most
elementary smoothing mask we can think of for the one-dimensional case is

1
B, =z[11], (6.6)

which averages the gray values of two neighboring pixels. We can use this mask m
times in a row on the same image. This corresponds to the filter mask

[11]*[11]*...%[11], (6.7)

m times

or written as an operator equation
Bl'=B,B,...B,. (6.8)
—
m times

Some examples of the resulting filter masks are:

B2 = 1/4[121]
B3 = 1/8[1331]

(6.9)

B = 1/16[14641)
B: = 1/256[1 828 56 70 56 28 8 1].

Because of symmetry, only the odd-sized filter masks are of interest. In order to perform
a convolution with the asymmetric mask 1/2[1 1] correctly, we store the result in the
right and left pixel alternately.

6.1 Smoothing 123

The masks contain the values of the discrete binomial distribution. Actually, the
iterative composition of the mask by consecutive convolution with the 1/2[1 1] mask is
equivalent to the computation scheme of Pascal’s triangle:

n| f o?
0 1 1 0
1] 1/2 11 1/4
2| 1/4 121 1/2
3| 1/8 1331 3/4
4| 1/16 14641 1 (6.10)
51 1/32 15101051 5/4
6| 1/64 1615201561 3/2
701/128| 172135352171 |7/4
8 1/256|18285670562881 | 2

n denotes the order of the binomial, f the scaling factor 27", and o? the variance, i.e.,
effective width, of the mask. We can write the values for the coeflicients of an odd-sized
(2R + 1) binomial mask directly using the binomial distribution (4.6)

g _L___QR+Y)
2R+ (R —r)(R+r)!
The computation of the transfer function of a binomial mask is also very simple,

since we only need to know the transfer function of B2. The transfer function of B?® is
then given as the Rth power. With the help of (5.45) we obtain

-R,---,R. (6.11)

2
B ;R [1+ cos(rk)] " m 1~ RZF 4+ O(Y). (6.12)
The graphical representation of the transfer function in figure 6.1b reveals that
binomial filters are much better smoothing filters. The transfer function decreases
monotonically and approaches zero at the largest wave number. The smallest mask,
B2, has a halfwidth of k/2 or discrete v = M/4. This is a periodic structure which is
sampled four times per wavelength. For larger masks, both the transfer function and
the filter masks approach the Gaussian distribution with an equivalent variance. Larger
masks result in smaller half-width wave numbers in agreement with the uncertainty
relation.
Two-dimensional binomial filters can be composed from a horizontal and a vertical

1-D filter

B" = B.Bj. (6.13)
The smallest mask of this kind is a 3 X 3-binomial filter (R = 1):
1 1 21
1 1
Bz=i[1 21]*Z 2|=r5|2 42 (6.14)
1 1 21
The transfer function of a (2R + 1) X (2R + 1)-sized binomial filter is given by
~2rR 1 < \1R
B = 5o [(1 + cos(rk,)) (1 + cos(wky))] . (6.15)

124 6 Mean and Edges

Figure 6.4: Test of the smoothing with a B* and B'6 binomial filter using a test image with concentric
sinusoidal rings.

The transfer functions of B? and B* are shown in figure 6.5. Already the small 3 x 3
filter is remarkably isotropic. Larger deviations from the circular contour lines can
only be recognized for larger wave numbers, when the transfer function has dropped
to 0.3 (figure 6.5a). Generally, the transfer function (6.15) is not isotropic. A Taylor
expansion in k for n = 1

2 T T T 2 76

B ~1 4k +48k +Ek$ky+0(k)

shows that the second order term is isotropic. Only the fourth order term contains an
anisotropic term which increases the transfer function in the directions of the diagonals
(figure 6.5a). In the graph for the 5 x 5 filter (figure 6.5b), we notice that the residual
anisotropy is even smaller. The insignificant anisotropy of the binomial filters also
becomes apparent when applied to the test image in figure 6.4.

Figures 6.6b and c show smoothing with two different binomial filters. There we
observe that the edges get blurred. Fine structures as in the branches of the tree become
lost. Smoothing is one technique to suppress Gaussian noise. Binomial filters can
reduce the noise level considerably but only at the price of blurred details (figure 6.7a
and c). Binary noise, i.e., totally wrong gray values for a few randomly distributed
pixels (figure 6.7b), which is typically caused by transmission errors, is handled poorly

6.1 Smoothing 125

Figure 6.5: Transfer function of two-dimensional binomial filters: a) 3x3, R = 1; b) 5x 5, R = 2;
distance of the contour lines: 0.1.

by linear filters. The images become blurred, but we still see the effect of the binary
noise.

We close our considerations about binomial filters with some remarks on fast algo-
rithms. A direct computation of a (2R + 1) x (2R + 1) filter mask requires (2R + 1)?
multiplications and (2R + 1)? — 1 additions. If we decompose the binomial mask in the
elementary smoothing mask 1/2[1 1] and apply this mask in horizontal and vertical di-
rections 2R times each, we only need 4R additions. All multiplications can be handled
much more efficiently as shift operations. For example, the computation of a 17 x 17
binomial filter requires only 32 additions and some shift operations compared to 289
multiplications and 288 additions needed for the direct approach.

126 6 Mean and Edges

Figure 6.6: Illustration of smoothing filters: a) original image; b) 5 x 5 box filter; c) 9 x 9 box filter; d)
17 x 17 binomial filter (B'°); a set of recursive filters (6.19) running in horizontal and vertical direction;
e)p=2;f) p=32.

6.1 Smoothing 127

Figure 6.7: Suppression of noise with smoothing filters: a) image from figure 6.6 with Gaussian noise;
b) image with binary noise; c) image a) filtered with a 17 x 17 binomial filter (B6); d) image b) filtered
with a 9 x 9 binomial filter (B%); e) image a) filtered with a 5 x 5 median filter; f) image b) filtered
with a 3 x 3 median filter.

128 6 Mean and Edges

6.1.3 Recursive Smoothing Filters

Now we turn to recursive smoothing filters. Basically, they work the same as non-
recursive filters. Principally, we can replace any recursive filter with a non-recursive
filter whose filter mask is identical to the point spread function of the recursive filter.
The real problem is the design of the recursive filter, i.e., the determination of the
filter coefficients for a desired transfer function. While the theory of one-dimensional
recursive filters is standard knowledge in digital signal processing (see, for example, Op-
penheim and Schafer [1989]), the design of two-dimensional filters is still not adequately
understood. The main reason are the fundamental differences between the mathematics
of one- and higher-dimensional z-transforms and polynomials [Lim, 1990].

Despite these theoretical problems, recursive filters can be applied successfully in
digital image processing. In order to avoid the filter design problems, we will use only
very simple recursive filters which are easily understood and compose them to more
complex filters, similar to the way we constructed the class of binomial filters from the
elementary smoothing mask 1/2| 11 } In this way we will obtain a class of recursive
filters which are not optimal from the point of view of filter design but which are useful
in practical applications.

In the first composition step, we combine causal recursive filters to symmetric filters.
We start with a general one-dimensional recursive filter with the transfer function

*A = a(k) +ib(k). (6.16)

The index + denotes the run direction of the filter. The transfer function of the same
filter but running in the opposite direction is

~A = a(k) — ib(k). (6.17)

Only the sign of the imaginary part of the transfer function changes, since it corresponds
to the uneven part of the point spread function, while the real part corresponds to the
even part. We now have several possibilities to combine these two filters to symmetrical
filters which are useful for image processing:

addition A= % (*A+-4) =a(f)
subtraction °A = % (+21 - —A) = ib(k) (6.18)
multiplication A=*A-A = a2(1~c) + 52(]}).

Addition and multiplication (consecutive application) of the left and right running
filter yields even filters, while subtraction results in an odd filter. For smoothing filters,
which have even masks, we can only use addition and multiplication.

As the elementary smoothing filter, we use the two-element lowpass filter we have
already studied in section 5.1.1:

1
A G = . [(P=1)Ghnss + Gma], pELZ, p>1, (6.19)

6.1 Smoothing 129

0.8 2
0.6 4
A, 8
0.4
0.2 16
32
T ' v i
0.2 0.4 0.6 0.8 1
k

Figure 6.8: Transfer function of the recursive lowpass filter (6.22) for different values of p as indicated.

where we replaced @ by p with @ = (p—1)/p for the sake of an efficient implementation
of the filter. The impulse response is then given by

1% (p—1) +m
*A, == —] . 6.20

sz=:o p ()
The transfer function of this filter can easily be calculated by taking into account

that the Fourier transform of (6.20) forms a geometric series:

P 1
*A (k) ~ —. (6.21)
p— (p — 1) exp(Frk)
This relation is valid only approximately, since we broke off the infinite sum in (6.20)
at p = N because of the limited size of the image.
Consecutive filtering with a left and right running filter corresponds to a multipli-
cation of the transfer function
PO P PR 1
A (k) =1A (k) A (k) = . 6.22
(k) (k)) 14 2p(p —1)(1 — cos(wk)) (6.22)
The transfer function shows the characteristics expected for a lowpass filter (figure 6.8).
At k = 0, A,(k) = 1; for small k, the transfer function falls off proportional to k?:

A, ~1—pp—1)(rk)? k<1, (6.23)
and has a cut-off wave number k. (A4(k) = 1/2) of

1 1
2pp—-1 ~ = . 6.24
o 1~ €2

At the highest wave number, k£ = 1, the transfer function has dropped off to

- 1
Al ——m .
(1) 1+4p(p—1)

k. = — arccos
T

(6.25)

130 6 Mean and Edges

Figure 6.9: Transfer functions of two-dimensional recursive low-pass filters: a) A with p = 2; b) A’
with p = 4.

It is not exactly zero as for binomial filters, but sufficiently small even for small values
of p (figure 6.8).

Two-dimensional filters can be composed from one-dimensional filters running in
the horizontal and vertical directions:

A=A A, = A AT A A, (6.26)

This filter (figure 6.9) is considerably less isotropic than binomial filters (figure 6.5).
The anisotropy of the recursive filter is also visible in figures 6.10 and 6.6f. However,
recursive filters show the big advantage that the computational effort does not depend
on the cut-off wave numbers. With the simple first-order recursive filter, we can adjust a
wide range of cut-off wave numbers with an appropriate choice of the filter parameter p
(6.24). The isotropy of recursive filters can be further improved by running additional
filters along the diagonals: '

A = A A Ay Acyy. (6.27)

6.1 Smoothing 131

Figure 6.10: Test of the smoothing with the recursive lowpass filter A, p =2 and p = 32.

The subscripts z — y and z + y denote the main and second diagonal, respectively. The
transfer function of such a filter is shown in figure 6.9b.

Finally, here are a few considerations on computational efficiency. In contrast to
non-recursive filters, the computational effort does not depend on the cut-off wave
number. If p =2/ in (6.19) the filter can be computed without any multiplication:

= [Grutr * 2 = Gl + G 27, 1>1, (6.28)

The two-dimensional filter A then needs only 8 additions and shift operations per
pixel, while the A’ filter, running in four directions, needs twice as many operations.
An example program is given in algorithm 2.

6.1.4 Median Filter

Linear filters effectively suppress Gaussian noise but perform very poorly in case of
binary noise (figure 6.7). Using linear filters which weigh and sum up, we assume that
each pixel carries some useful information. Pixels which are distorted by transmission
errors have lost their original gray value. Linear smoothing does not eliminate this
information but carries it on to neighboring pixels. Thus the only right operation to
process such distortions is to detect these pixels and to eliminate them.

132 6 Mean and Edges

Algorithm 2: C subroutine to perform the one-dimensional noncausal recursive lowpass filtering in an
arbitrary direction over one line in an image.
/*
** Recursive noncausal lowpass filter for an image of type short
*% m1[i)=1/2%*1((2**1-1)mi[i-inc]+mi[i]), running cnt times forwards and backwards
*/
void msilowp(ptr,len,inc,cnt,1) short *ptr; short lem, inc, cnt, 1; {
unsigned int i;
int si;
short *mip;

while (cnt--) {

/*
** forward direction
*/
mip=ptr;
s1 = *mip; /* m1[0] > s1 */
for (i = len; i > 0; i—-) {
s1 = ((s1<<1)-s1 + *mip)>>1;
*mip = si;
mip += inc;
}
/*
** backward direction
*/
mip -= inc;
s1 = 0; /* miln-1] > s1 */
for (i = len; i > 0; i--) {
sl = ((s1<<1)-s1 + *mip)>>1;
*mip = si;
mip —= inc;
}
}
}

This is exactly what a rank value filter does (section 5.1.3). The pixels within the
mask are sorted and one pixel is selected. In particular, the median filter selects the
medium value. Since binary noise completely changes the gray value, it is very unlikely
that it will show the medium gray value in the neighborhood. In this way, the medium
gray value of the neighborhood is used to restore the gray value of the distorted pixel.

The following examples illustrate the effect of a 1 x 3 median filter M: A

M[---123789 -] = [--123789]

M[- 12102456 - | [-124556 -]

M[--000999 -] =[--000999 -]

As expected, the median filter eliminates runaways. The two other gray value structures
— a monotonously increasing ramp and an edge between two plateaus of constant gray
values — are preserved. In this way a median filter effectively eliminates binary noise

6.1 Smoothing 133

without significantly blurring the image (figure 6.7b and f). Gaussian noise is less
effectively eliminated (figure 6.7a and e).

The more important deterministic properties of a one-dimensional 2N + 1 median

filter can be formulated using the following definitions.

e A constant neighborhood is an area with N + 1 equal gray values.

e An edge is a monotonously in- or decreasing area between two constant neighbor-
hoods.

o An impulse is an area of at most N points surrounded by constant neighborhoods
with the same gray value.

e A root or fiz point is a signal which is preserved under the median filter operation.

With these definitions, the deterministic properties of a median filter can be de-
scribed very compactly:
¢ Constant neighborhoods and edges are fix points.

e Impulses are eliminated.

Iterative filtering of an image with a median filter results in an image containing only
constant neighborhoods and edges. If only single pixels are distorted, a 3 x 3 median
filter is sufficient to eliminate them. If clusters of distorted pixels occur, larger median
filters must be used.

The statistical properties of the median filter can be illustrated with an image
containing only constant neighborhoods, edges and impulses. The power spectrum
of impulses is flat (white noise). Since the median filter eliminates impulses, the power
spectrum decreases homogeneously. The contribution of the edges to a certain wave
number is not removed. This example also underlines the non-linear nature of the
median filter. A detailed description of the deterministic and statistic properties of
median filters can be found in Huang [1981] and Arce [1986].

134

second-order derivative

first-order derivative

Figure 6.11: Noisy one-dimensional edge and its first and second derivative.

6.2 Edge Detection

Smoothing filters suppress structures with high wave numbers. If we want to detect
edges, a filter operation is necessary which emphasizes the changes in gray values and
suppresses areas with constant gray values. Figure 6.11 illustrates that derivative oper-
ators are suitable for such an operation. The first derivative shows an extremum at the
edge, while the second derivative crosses zero where the edge has its steepest ascent.
Both criteria can be used to detect edges.

A nth-order derivative operator corresponds to multiplication by (ik)" in the wave
number space (appendix A.2). In two dimensions, derivative operators are represented
by

52_1 o—e ik
0 .
9, o—e ik, (6.29)
i d?
A:a—z%+%g o—e —(k2+E2)

in the space and wave number domain. The sum of the two second partial derivatives
is called the Laplace operator and is denoted by A.

6.2 Edge Detection 135

6.2.1 First-Order Derivative Operators

On a discrete grid, a derivative operator can only be approximated. In case of the first
partial derivative in the z-direction, one of the following approximations may be used:

3f(:1:1,:1:2) ~ f(171, 12) - f(fvl - Axl,xz)

Backward difference

0-731 AI]
~ fz1 + A2y, 22) — f(21,22) Forward difference (6.30)
A.‘El
~ f(21 + A21,35) — f(21 — A2y, 75) Symmetric difference.
2A$1

These approximations correspond to the filter masks

-D, = [l. —1]
+D, = [1 -1.] (6.31)
D, = 1/2[10 —1].

The subscript o denotes the central pixel of the asymmetric masks with two elements.
We should keep in mind that these masks need to be inverted when the convolution is
performed (compare (5.1) in section 5.1.1). Only the last mask shows a symmetry; it
is odd. We may also consider the two-element mask as an odd mask provided that the
result is not stored at the position of the right or left pixel but at a position halfway
between the two pixels. This corresponds to a shift of the grid by half a pixel distance.
The transfer function for the backward difference is then

"D, = exp(ink,/2) | 1 - exp(~ink,) | = isin(rk./2), (6.32)

where the first term results from the shift by half a grid point. Using (5.46), the transfer
function of the symmetric difference operator reduces to

*D, = isin(rk,). (6.33)

At high wave numbers, both operators show considerable deviations from the ideal
transfer function of a derivative operator, —imk,. For wave numbers kr > 1 /2, the
symmetric difference operator works even like a lowpass filter. Indeed, we can think of
this operator as a combination of a smoothing and a difference operator:

*‘D,="D,'B,=[l, —1]*1/2 [L1,]=1/2[10 —1].

In two dimensions, edge detection is more complex. One-dimensional difference
operators such as

1 1
‘D.=2[10 -1] and *D,=>| 0
2 2|

136

Figure 6.12: Imaginary part of the transfer function of derivative operators. a) 1-D transfer function
of ~D, and *D,; b) 2-D transfer function of *D;.

Figure 6.13: Test of the first-order derivative operators D, and D, with the test image shown in
figure 6.4.

6.2 Edge Detection 137

Figure 6.14: Detection of edges with derivative operators shown at image figure 6.6a: a) horizontal
derivative *D,; b) vertical derivative *Dy; c) magnitude-of-gradient |*D|; d) sum-of-magnitudes (6.36);
¢) Laplace operator £; f) signum of the Laplace operator.

138

predominantly detect edges which lie perpendicular to the direction of the operator
(figure 6.14a and b). However, we are seeking a filter operator which detects edges
independent of their orientation, i.e., an isotropic edge detector. From the two spatial
derivatives, we can form a vector operator, the gradient operator

D= [D- } . (6.34)

The magnitude of the gradient operator is invariant under a rotation of the coordinate
system. The computation of the magnitude of the gradient can be expressed by the
operator equation

|D| =D, -D,+D,-D,J'*. (6.35)

Some comments on the notation of this operator equation follow. The symbol - denotes
a point-wise multiplication of the image matrices which result from the filtering with
the operators D, and D,, respectively. This is a nonlinear point operation which must
not be commuted with linear convolution operators. The operator D - D must be
distinguished from DD = D?. The latter means the twofold application of D on the
operant. Likewise the square root in (6.35) is performed point-wise in the space domain.
To get used to this helpful and brief notation we explicitly express the meaning of the
operation |D|G:

1. filter the image independently with D, and D,,

2. square the gray values of the two resulting images,

3. add them, and

4. compute the square root of the sum.

In the course of this book, we will learn about many operators which contain a mix-
ture of linear convolution operators and point operations in the space domain. Point-
wise multiplication is denoted by - to distinguish it from consecutive application of two
linear operators. All other point operations, as addition, division, or any other point
operation P(), can be denoted unambiguously in standard notations.

The magnitude-of-gradient operator |D| is another example of a nonlinear operator.
It has the disadvantage that it is computationally expensive. Therefore it is often
approximated by

|D| = |D.| + |D,| = D' (6.36)

However, this operator is anisotropic even for small wave numbers. It detects edges
along the diagonals more sensitively than along the principal axes.

6.2.2 Laplace Filter

With second derivatives, we can easily form an isotropic linear operator, the Laplace
operator. We can directly derive second-order derivative operators by a twofold appli-
cation of first-order operators

D)=-D, *D,. (6.37)

This means in the spatial domain

1 -21=[1. —1]*[1 —1.]. (6.38)

6.2 Edge Detection 139

Figure 6.15: Transfer functions of discrete Laplace operators: a) L (6.39); b) i (6.43).

The discrete Laplace operator £ = D2 4+ D? has the filter mask

1 0 10
L=[1—21]+[—2}=[1—41} (6.39)
1 0 10

and the transfer function
L = 2cos(rk,) + 2 cos(xk,) — 4. (6.40)
As in other discrete approximations of operators, the Laplace operator is only isotropic
for small wave numbers (figure 6.15a):
1 1

L~ —(rk)?+ E(7ric)4 - E(ﬁé,z‘;y)z + O(K®). (6.41)

140

There are many other ways to construct a discrete approximation for the Laplace
operator. An interesting possibility is the use of binomial masks. With (6.15) we can
approximate all binomial masks for sufficiently small wave numbers by

A 2 ~ ~
B®~1- R”Zw2 +O(kY). (6.42)

From this equation we can conclude that any operator Z — B™ constitutes a Laplace
operator for small wave numbers. For example,

1 1 21 0 00 1 1 21
L'=4(B2—I)=Z 242(-10160]||=2]|2 -12 2 (6.43)
1 21 0 00 1 21
with the transfer function
A - - 1 . - 1 - -
L' = cos(nk,) + cos(nk,) + s eoslm(ks — B) + S coslr(k: +)] =3, (6.44)
which can be approximated for small wave numbers by
i~ —(rk)2 4 %-2-(”1})4 + %(m},icy)z +0(). (6.45)

For large wave numbers, the transfer functions of both Laplace operators show con-
siderable deviations from an ideal Laplacian, —(7k)? (figure 6.15). L' is slightly less
anisotropic than L.

6.3 Filter Design

So far in this chapter, we have discussed the elementary properties of smoothing and
edge detecting filters. In this last section we will add some details. In the examples
discussed so far we were confronted with the recurring questions: how can we find
a filter which performs the given task a) as correctly as possible and b) in the most
efficient way. These are the central questions of a special discipline called filter design.
As we noted already in section 6.1.3, filter design has been well established for one-
dimensional signals, i.e., time series. Excellent text books available for this topic, for
example, Oppenheim and Schafer [1989]. However, multidimensional filter design is
much less established. We do not want to follow the classical avenues here. Rather
we will continue with the approach to combine more complex filter operations from
the elementary operators which we have found useful so far. This approach also shows
the advantage that we obtain effective implementations of the filters. Emphasis in this
section will also be on more accurate derivative filters, since these filters determine the
accuracy of more complex image processing operations such as the determination of local
orientation (chapter 7) and the estimation of motion in image sequences (chapter 17).
Examples of effective implementations will also be discussed.

6.3 Filter Design 141

Figure 6.16: Test of the Laplace and signum of the Laplace operators.

—p —> g 9 9
Register Stage gh g+h g-h
g hg
h h h
Multiplier Adder Subtractor
Scaler

Figure 6.17: Elementary circuits to perform discrete filter operations.

142

Figure 6.18: Different circuit nets to perform the binomial smoothing filter operation B* =
1/16[1 4 6 4 1]: a) direct implementation; b) saving multiplications; c) composition with the ele-
mentary filter B = 1/2[1 1]; d) computation for the next pixels.

6.3.1 Filter Nets

The filters we have discussed so far are built from the simplest elementary operations
we can think of: scaling of pixels and the addition of neighboring pixels. For each of
these operations we can construct a circuit element which performs the corresponding
operation. Figure 6.17 shows a scaler, an adder, a subtractor, a multiplier, and a
shift-register stage. The circuit elements perform the operation either analogously or
digitally.

With these circuit elements, we can view FIR filters in an instructive way. As a
first example, we consider the one-dimensional binomial mask B* = 1/16[1 4 6 4 1].
Figure 6.18 shows different implementations to compute the filter output for one pixel.
While direct implementations result in irregular-shaped circuit nets, the composition
of the filter with the B = 1/2[1 1] mask gives a regular mesh of operations. For the
calculation of a single output pixel, we need 10 additions, more than for the direct
implementation. To calculate the filter output of the next pixel, we only need four
additions if we store the intermediate results on each level of the filter net from the
computations of the previous pixel (figure 6.18d).

Actually, we could build a net of these circuits, spanning the whole vector to compute

6.3 Filter Design 143

Figure 6.19: Circuit net to compute the several convolution operations in parallel: a) binomial smooth-
ing filter B}; b) symmetric first-order derivative *D,; c) second-order derivative D2.

the binomial smoothing in parallel (figure 6.19). Such a net has a number of interesting
properties. Each level of the net corresponds to a filtering of the image with the
elementary smoothing mask 1/2[1 1]. Thus not only do we yield the final result, but
all intermediate smoothing results. The grid points of the individual layers change from
regular grid points to intermediate grid points in a natural way. With such filter nets
we can also easily build derivative operators. For the first-order derivative operator,
we need one layer with adders and one layer with subtracters (figure 6.19b), for the
second-order derivative, we need two layers with subtracters (figure 6.19c).

The filter-net model also allows a straightforward approach to the boundary prob-
lems of filtering. We could close the net into a ring. This corresponds to a cyclic
convolution. Or we could extend the net beyond the edges of the vector, so that we get
all knots to calculate the first and last point. Then we can fill the grid points in the
lowest levels which lie outside the vector either with zeros or we can extrapolate them
in an appropriate manner from the points within the vector.

144

Algorithm 3: C subroutine to perform the one-dimensional binomial filtering with B = 1/4[1 2 1] of
a vector.
/*
** Binomial filter of second order: 1/4 [1 2 1]
*/
void vsibin2(v1) SVEC *vi; {
register unsigned int i;
register int si, s2;
register short *vis, *vid;

/*
** first loop from left to right
*/
vis = vid = vi->dat;
s1 = *vis++; /* vi[0] > s1 */
for (i = vi->dx-1; i > 0; i--) {
§2 = *vis++;
yld++ = (s2+s1)>>1; / v[il=(v[i+1]+v[i])/2 */
s1 = 82; /* v[i] > v[i-1] */
}
/*
** second loop from right to left
*/
vis = vid = vi->dat + vi->dx;
sl = --*vis
for (i = vi->dx-1; i > 0; i--) {
§2 = -—-%vis;
—-xvid = (s2+s1)>>1; /# v[il=(v[i-1]+v[i])/2 */
s1 = 82; /* v[i-1] > v[i] */
}
}

The extension of filter nets to two dimensions is straightforward for separable filters.
The nets are then composed of nets alternately connecting the pixels in the horizontal
or vertical direction. Generally, each such directional net contains two layers so that
the filter results remain positioned on the original grid.

The filter nets are valuable tools for algorithm design. As we have seen, they are
especially useful to make efficient use of intermediate results and to get a clear idea
of the boundary problems at the edges of images. As an example, we discuss two
different implementations of binomial filters. Algorithm 3 computes only one level per
loop. First it runs forward, storing the result of the addition in the left pixel and then
it runs backwards storing the result in the right pixel. For each level one addition,
one shift operation, one memory read, and one memory write operation are necessary.
In contrast, algorithm 4 computes four levels at once. Though the algorithm is more
complex, the advantages are obvious. To compute four levels, we need four additions,
but only one memory read and one memory write operation. The other memory read
and write operations are replaced by faster register transfer operations. Only one shift
operation is performed before we store the final result in the memory. This approach
also leads to less rounding errors.

6.3 Filter Design 145

Algorithm 4: C subroutine to perform the one-dimensional binomial filtering with B = 1/16{1 4 6 4 1}
in an arbitrary direction over the image.
/*
** Filtering of a line in an image starting at ptr with len pixels in an
** aritrary direction (determined by inc) by a 1/16(1 4 6 4 1) binomial filter.
** The filter is applied cnt times. If ZERO is defined, points outside the image
** are assumed to be zeros; otherwise they get the gray value of the edge pixels
*/
void msibin4(ptr,len,inc,cnt) short *ptr; short len,inc,cnt; {
register long acc, s0, sl, s2, s3, s4, rinc=inc;
register short *mip;
unsigned short i,j;
for (j=emt; j > 0; j--) {
/* Preparation of the convolution loop */
mip=ptr;
80 = (long)*mlp; mip += rinc; /* s0
81 = (long)*mip; mip += rinc; /* si

m1[0] */
mi[1] */

82 = 80 + s1; /* 82 = m1[0]+m1[1] */
#ifndef ZERO

s0 <<= 1; /* extrapolate with edge pixel */
#endif

s3 = s0 + s2; /* 83 = 2|3 m1[0]+m1[1] */
#ifndef ZERO

80 <<= 1; /* extrapolate with edge pixel */
#endif

s4 = s0 + s3; /* s4 = 3| T*m1[0]+m1[1] */

/* Convolution loop for pixels O bis len-3 */
for (i = len-2; i > 0; i-—-) {
acc = (long)#*mip; /* m1[i+2] */
s0 = acc; acc += s1; s1 = s0; /* level 1 */
s0 = acc; acc += 82; 82 = 80; /* level 2 */
80 = acc; acc += s3; 83 = s0; /* level 3 */
80 = acc; acc += s4; s4 = s0; /* level 4 */
*(mip-(rinc<<1)) = (short)(acc>>4); mip += rinc;
}
/* Second last pixel mi[len~2] */
mlp -= rinc; /* point to mi[len-1] */
#ifdef ZERO
acc

0;
#else

acc = (long)*mip;

#endif
80 = acc; acc += si1; si1 = s0;
s0 = acc; acc += s2; 82 = s0;
s0 = acc; acc += s3; s3 = s0;
s0 = acc; acc += s4; s4 = s0;
*(mip~rinc) = (short)(acc>>4);

/* Last pixel mi[len-1] */
#ifdef ZERO

acc = 0;
#else
acc = (long)*mip;
#endif
acc += s1; acc += 82; acc += 83; acc += s84; *mip = (short)(acc>>4);
}

146

6.3.2 Filter Decomposition

In the filter nets we discussed so far, it was possible to build up more complex filters
such as larger binomial smoothing masks and derivative operators just by applying
elementary filter masks which repeatedly combine neighboring pixels. Now we turn
to the important question whether it is possible to decompose every convolution mask
in a cascade of convolution operations with such elementary masks. The existence
of such a decomposition would have far-reaching consequences. First, we could build
simple filter nets for any type of convolution operations. Second, many modern image
processing systems include high-performance hardware to perform convolutions with
small convolution kernels (typically 4 x 4 or 8 x 8, see appendix B) very efficiently. If
we can decompose any filter mask in a set of small filter masks, we can also make
use of this hardware for large kernels. Third, the decomposition often reduces the
computation, as we have already demonstrated with the binomial filter kernels.
Simonds [1988] proved that each two-dimensional filter kernel could be built up with

the basic kernels
1E,,=[1 0 1] 10,:[1 0 —1]

1 1 (6.46)
1E,=| 0 10,=] 0
1 -1

and the identity mask I = [1].

Stmonds’ decomposition is based on symmetry. First he shows that every convolu-
tion mask H can be decomposed into four kernels with show the following symmetry
properties:

1. horizontally and vertically even (*H),
2. horizontally even and vertically odd (**H),
3. horizontally odd and vertically even (*°H), and

4. both directions odd (*’H),
ec-Elm,n = (Hm,n + Hm,—'n + H—m,'n. + H—m,—'n)/4

oeHm,n = (Hm,n + Hm,—n - H—m,n - H—m,—n)/4
eon,n = (Hm,'n - Hm,—'n + H—m,n - H—m,-—n)/4
oon,n = (Hm,n - Hm,—'n - H—m,n + H-—m,—n)/4-

It is easy to prove this lemma by adding the lines in (6.47). Next, we conclude that
the four elementary masks in (6.46) and the four combinations of the horizontal and
vertical masks just show these symmetry properties. Together with the identity mask I,
we have 9 independent masks, i.e., just as many independent elements as in a general
3 x 3 mask. Consequently, we can compose any 3 X 3 mask with these nine masks.
For a general mask which does not show symmetry properties, this decomposition is
computationally ineffective since it requires 9 more additions then a direct computation.
However, since all useful image processing filters show certain symmetry properties, only
a partial set of the elementary masks is needed.

(6.47)

6.3 Filter Design 147

Such a decomposition is especially useful if a set of similar masks has to be calcu-
lated. As an example, we take the generalized Sobel operators

110—1 10——1—2
S;==-{20 -2 S;3==-|1 0 -1

10 -1 81a 1 o
(6.48)
o2 2 1o
Sz=§ 0 0 0 S4='8— 1 0 —1 3
-1 -2 -1 0 -1 -2

which are sometimes used as simple operators to detect edges in the direction of the
two axes and diagonals. Simultaneously, they perform some smoothing perpendicular
to the direction of the edge.

These operators can be computed as follows:

“S = (14+'E,)'0,
S = (1+'E,)'0,
S, = 1/8(*0, +*S)
S, = 1/8(10, +°S)
S; = 1/8(%°S —*S)
Sy = 1/8(°°S +8S).

(6.49)

In total, we need only 12 additions and 4 shift operations to calculate the four 3 x 3
Sobel operators.
In order to decompose larger kernels, we need additional masks of the length 2k 41

kE=10---01], *Oo=[10---0 —1]. (6.50)
These masks can be computed iteratively from the masks of size one, L E and 1O

LE*1E — 2B, k> 2

k —
E = 1E'E -2, k=2 (651
r 1pk-10 _ k—ZO, E>2 :)
© = 1'Fo, k=2

6.3.3 Smoothing Operators

In this section we discuss the filter design of smoothing filters. In contrast to classical
approaches in filter design, we will try to develop filters with the desired characteristics
from the elementary B operator. We will learn two design principles which will guide
our search for composite filters.

The binomial smoothing filters B™ discussed in section 6.1.2 optimally balance wave
number resolution and kernel size. Common to all of them is the rather gradual decrease
of the transfer function with the wave number (figure 6.1b). For small wave numbers,

148

all binomial filters decrease with &? (6.12). This property is the basic reason for the
rather gradual decrease of the transfer function. A smoothing filter that decreases with
a higher power in k should first maintain a flat response. At the cut-off wave number, it
should fall-off steeply towards zero. We can construct such filters by observing that the
operator Z — B™ goes with k2. If we apply this operator several times and subtract it
from the original image, we obtain a smoothing operator which decreases with a higher
power in k. The simplest operator of this type is

@UB =T — (T - B*)? =2B% - B (6.52)
The corresponding filter coeflicients are
1

eup, = R [-14104 —1] (6.53)

in one dimension and

-1 -4 —6 -4 -1
L | -4 16 40 16 —4
“’”Bzﬁ -6 40 92 40 -6 (6.54)
-4 16 40 16 —4
-1 -4 —6 —4 -1

in two dimensions. In this way, we can define an entire new class of smoothing filters:

*DB = 1 (2-8%)" (6.55)

with the transfer function

nhp — {1 - {1 - 2% [1 + cos(ﬂ‘lzrz)] [1 + cos(wl;y)]}"}l . (6.56)

We denote the order, i.e., the steepness of the transition, with n, while ! controls the
cut-off wave number of the filter. A Taylor expansion yields for small &, &,

~ l ~\2n
n,l ~
B 11— (nk)™". (6.57)
Figure 6.20 shows transfer functions for a number of filters of this type. The higher the
order of the filter, the more the cut-off wave number is shifted to higher wave numbers.
The minimum mask length increases proportionally with the order of the filter. The
smallest smoothing mask of second order has five coefficients, the smallest filter of third
order

GUB =1 - (T-B%%=382-3B+B° (6.58)

has seven coefficients in one dimension:
1
GV, = g7l —6154415 —61]. (6.59)

This class of filters shares many important properties of the binomial filters B":
e The transfer function decreases monotonically and vanishes at k, =1 and k, = 1.

6.3 Filter Design 149

1.0 1.0
(CBY) @)p b)

08 - 08 -
06 - 06 -
04 B 04 -
02 B 02 B
0.0 1 ! 1 L 0.0 1 1

0.0 02 04 06 08 10 00 0.2 0.4 0.6 08 1.0

k k

Figure 6.20: Transfer functions of one-dimensional smoothing filters of higher order according to (6.56):
a) smallest masks of order n (I = 1); b) second-order filters with [as indicated.

e Since the filter is composed of (approximately) isotropic filters, the resulting filters
are also isotropic (figure 6.21a and b). This is an important design issue in two di-
mensions. We cannot construct a higher-order smoothing filter from one-dimensional
higher-order filters in a simple way. These filters tend to show square-like contour
lines in the transfer function (figure 6.21c).

With these examples, we have learnt some advantages of the composition method for

filter design:

o The filter coeflicients and transfer functions can be expressed in analytical formulas.
This allows us to analyze the properties of the filters directly.

o The design method coincides with an effective implementation.

o As demonstrated, we can incorporate such features as isotropy and behavior at low
wave numbers into the composition rules.

Despite the very efficient implementation of the binomial smoothing filter B”, the
computation required increases dramatically for smoothing masks with low cut-off wave
numbers, because the standard deviation of the filters only coordinates with the square
root of n according to (4.8): ¢ = y/n/2. Let us consider a smoothing operation over
a distance of only 5 pixels, i.e., 0 = 5. Then we need to apply B which requires
200 additions for each pixel even with the most effective implementation. The linear
dimensions of the mask size increase with the square of the standard deviation o as
does the computation required.

The problem originates in the small distance of the pixels averaged in the elementary
B = 1/2[1 1] mask. The repetitive application of this mask is known as a diffusion
process for gray values. The half width of the distribution is only proportional to the
square root of the time, i. e., the number of iteration steps (see (16.25) in section 16.3.3).
In order to overcome this problem, we may use the same elementary averaging process

150

b)

Figure 6.21: Transfer functions of two-dimensional smoothing filters of higher-order smoothing filters
according to (6.56): a) (24 B; b) separable second-order filter (2’4)B,(2'4)By.

but with more distant pixels, for example

10 01
Beey = [0 1] Bevy = [1 0]
1
Bw = [101 By, = |0
1
10 (6.60)
100
Bz—2y = [0 0 1] BZz—y = 00
01
01
0 01
BZz+y = Bz+2y = 00
100 1 0

The subscripts in these elementary masks denote the distance and direction of the pixels
which are averaged. The subscript can be read as the equation for the line connecting

6.3 Filter Design 151

the two pixels. B,_, (plane equation £ — y = 0) averages two neighbored pixels in
the direction of the main diagonal. B,_,, averages a pixel and its neighbor which is
located two grid constants to the right and one to the top. The standard deviation of
these filters is proportional to the distance of the pixels.

The problem with these filters is that they perform a subsampling. Consequently,
they are no longer a good smoothing filter for larger wave numbers. If we take, for
example, the symmetric 2-D B} B}, filter, we effectively work on a grid which is twice
as large in the spatial domain. Hence, the reciprocal grid in the wave number is half
the size, and we see the periodic replication of the transfer function (figure 6.22b,
see also the discussion in section 2.3.3). The zero lines of the transfer function show
the reciprocal grid for the corresponding subsample grids. For convolution with two
neighboring pixels in the direction of the two diagonals, the reciprocal grid is turned
by 45°. The grid constant of the reciprocal grid is v/2 smaller than that of the original
grid.

Used individually, these filters are not of much help. But we can use them in cascade,
starting with directly neighboring pixels. Then the zero lines of the transfer functions,
which lie differently for each pixel distance, efliciently force the transfer function close
to zero for large wave numbers. In the filter combination B2B2B2_ B2, the non-zero
high parts in the corners of Bi_sz +y are nearly vanished since the transfer function
BZ2B: filter is close to zero in this part (figure 6.22a, b, and e). As a final example, we
consider the filter

B*® = B2BB2_ B2, B, BB 2Bl (6.61)
Its standard deviation is 6.5 & 2.5, i.e., it corresponds to the B?® operator. The
transfer function is shown in figure 6.22f. With only 16 additions and one shift operation
we can convolve the image with the 19 x 19 kernel

) 1 100 001
326’:5ﬁ[121]*2*020*020
1] foo1] [100
(1 0 0]
100007 {000
« 0020 x{020
(0000 1] ggg (6.62)
[0 0 1]
[00001] [000
x [00200|x[020]|=
(1 0000] [000
[1 0 0]

152

Figure 6.22: Transfer functions of the elementary binomial filter B used to average pixels with different
distances shown as contour plots. The thick lines show the zeros of the transfer function. a) BZBZ;

b) B, B%,; ¢) B2_ BZ,,; d) B%,_yB§,+sz_2yB§+2y; e) BﬁB:Bﬁ_szﬂ; f) B2 see (6.61).

Yy

6.3 Filter Design

r0O0 0 0 0 O
00 0 0O 0 O
000 0 1 &6
000 2 8 2
00 1 8 30 68
00 6 24 68 146
0 2 14 50 124 254
0 6 24 78 190 372

1 |1 8 3¢ 102 241 464
=--|2 8 38 112 260 500
216 |1 8 34 102 241 464
0 6 24 78 190 372

0 2 14 50 124 254

00 6 24 68 146

00 1 8 30 68

00 0 2 8 2

o0 0 0 1 &6
000 O 0 ©

Lo o o o o o

0

0

102

1

2

1062

1294
1062
756
464
241
102
34
8
1

0

0

0
0
6

24
68
146
254
372
464
500
464
372
254
146
68
24
6
0
0

0

OO0 O0COONOMMPIAIENODOOOOO

OCO0O0O0OO0CO0OOCO=NMNROOOOOOOCO

153

This kernel is also shown in figure 6.23. It would take 52 additions with the equivalent
B? operator. Straightforward convolution with the 27 X 27 mask of B?® would take
729 multiplications and 728 additions. Again this example illustrates that good kernel
design and extremely high efficiency go hand in hand with the composition method.

6.3.4 Bandpass Filters; DoG and LoG Filter

Bandpass filters select a range of wave numbers. Again, it is possible to construct them
from simple binomial smoothing masks. To do so, we take two smoothing filters with
different cut-off wave numbers. When we subtract the results of these two operations,
we obtain an image which contains the range of wave numbers between the two cut-off
wave numbers. A simple one-dimensional example is

Py = A(B2 — BY)

154

with the convolution mask
P1=[121]—i[l4641]=}1[——1020 —1]

and the transfer function

P, =1— cos*(xk) = 1= cos(2rk) 0028(2“:).

The transfer function shows a maximum at & = 1/2 and is zero at k = 0 and k = 1. With
similar combinations of other binomial operators, we can construct bandpass operators
with different a bandwidth and different a bandpass wave number. In a similar manner
we can also construct isotropic two-dimensional bandpass filters.

Since the discrete binomial operators converge rapidly against the Gaussian function
(section 4.2.1), we can use them to describe some general features for larger kernels.
The continuous convolution mask

1/01/2/7 exp(—2?/20%) (6.63)

has the transfer function
exp(—k?*a?/2). (6.64)

Thus the difference filter, which is abbreviated to DoG (Difference of Gaussian) yields
the transfer function

- 242 k22 — o2
DOG=exkaal-(1—exp—’f—(a;—al)). (6.65)

For small wave numbers, the transfer function is proportional to |k|?

. 2.2 2
oG ~ ¥ 02 =1) (6.66)

The decrease towards high wave numbers is determined by the first exponential in
(6.65). The wave number for the maximum response, kmax = |kmax|, is given by
2 ()]

2
05 —0; o1

Since DoG filters increase quadratically for small wave numbers, they behave like a
Laplace operator in this region. Consequently, they are similar to an operator which
first smooths the image with a Gauss operator and then applies the Laplace operator.
Such a filter is called a Laplace of Gaussian, or LoG for short. A LoG filter has the

transfer function
k’o?

LoG = ak?exp 5 (6.68)

LoG and DoG filter operations are believed to have significant importance in low-
level image processing in the human visual system [Marr, 1982]. Methods for fast
computation of these filter operations have been discussed by Chen et al. [1987] and
Crowley and Stern [1984].

6.3 Filter Design 155

6.3.5 Derivative Operators

We have already discussed discrete derivative operators in section 6.2 with respect to
edge detection. Now we focus on the question of the accuracy of these operators. So
far we have only used very crude approximations of the derivatives (6.30) which show
considerable deviations from an ideal derivation operator (6.33) even for small wave
numbers: —36 % for k = 1/2, —10% for k = 1/4 and only —2,6% for k = 1/8. These
deviations are too large to be tolerated for a number of complex filter operations which
we will discuss in section 7.3 and chapter 17. Therefore, we now review improved
approximations of derivative operators in this section.

We start with the fact that any derivative operator of odd or even order has a filter
kernel with the corresponding symmetry. In the following we restrict our considerations
to the first-order derivative operator. Generally, it has the mask

RD=1/2[dg ... dd, 0 —dy —d; ... —dpg] (6.69)

and the transfer function R
O D =1iY"d,sin(urk). (6.70)

u=1l

For a given filter length R, we now have to choose a set of coeflicients, so that the
sum in (6.70) approximates the ideal derivative operator irk in an optimum way. We
can do this by expanding the sine function in urk and then choose the coefficients d,
so that as many terms as possible vanish except for terms linear in k. Before we write
the general mathematical formalism, we consider the simple example with R = 2. If we
expand the transfer function in (6.70) to the third order in &, we obtain

@p, = dﬂrl?:~ — d1/6(7rl’~c~)3
+ 2d, mk — 8d,/6(nk)?

or
OD, = (dy + 2dy)wk — 1/6(d;y + 8d,) (k).

Since the factor of the k3 should vanish and the factor for the k term be equal to one,
we have two equations with the two unknowns d; and d;. The solution is d; = 4/3 and
dy = —1/6. According to (6.69) we yield the filter mask

1
@p = L_ _
D, =1;[-180 -81].

Now we use the same principle to compute an optimum derivative operator with
2r + 1 elements. We expand the sine function up to the order 2r + 1. Then we obtain
r coeflicients for the r powers in k and thus r equations for the r unknowns d,. The
general form of the linear equation system is

1 2 3 .. R dy 1
1 8 27 --- R3 d, 0
1 32 243 ... R ||d|=]0]. (6.71)
1. 22R—1. 32R—1. . RZR—I. dR 0

156

30 T T T T 3.0 T T T T

2 ZW P
S| a - D| b /.

1
20 | 6 . 20
2

10 | ! . 10 F .
00 1 1 1 1 00 1 1 1 1

0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 06 08 10

k k

Figure 6.24: Optimized derivative operators for a given filter length: a) with odd number of coefficients
2R + 1 according to (6.71); b) with even number of coefficients 2R.

As examples of the solutions, we show the filter masks for R = 3
1
GBp =-—M1-9450-459 -1
D, 50 [1-9450-459-1]

and R=1]
@Wp, = o [-332-168 672 0 -672 168 -32 3].

Figure 6.24 shows how the transfer function of these optimized kernels converges to
the ideal derivative operator with increasing R. Convergence is slow, but the transfer
function remains monotonous. No additional errors are introduced for small k. A filter
of length 7 (R = 3) reduces the deviation for £ = 1/2 to only —2.4 % compared to
—36 % for the simple derivative operator with R = 1.

The linear equation system (6.71) can also be used to optimize other odd-order
derivative operators. We must only change the vector on the right side of {6.71) ac-
cordingly. A similar equation system can be used to optimize even-order derivative
operators as well as first-order derivative operators with an even number of coefficients
(see figure 6.24b). The latter places the filter results between the grid points.

7 Local Orientation

7.1 Introduction

In the last chapter we became acquainted with neighborhood operations. In fact, we
only studied very simple structures in a local neighborhood, namely the edges. We
concentrated on the detection of edges, but we did not consider how to determine
their orientation. Orientation is a significant property not only of edges but also of
any pattern that shows a preferred direction. The local orientation of a pattern is the
property which leads the way to a description of more complex image features. Local
orientation is also a key feature in motion analysis (chapter 17). Furthermore, there is
a close relationship between orientation and projection (section 13.4.2).

Our visual system can easily recognize objects which do not differ from a background
by the mean gray value but only by the orientation of a pattern as demonstrated in
figure 7.1. To perform this recognition task with a digital image processing system,
we need an operator which determines the orientation of the pattern. After such an
operation, we can distinguish differently oriented patterns in the same way we can
distinguish gray values.

For a closer mathematical description of local orientation, we use continuous gray
value functions. With continuous functions, it is much easier to formulate the concept
of local orientation. As long as the corresponding discrete image meets the sampling
theorem, all the results derived from continuous functions remain valid, since the sam-

i

Figure 7.1: Objects can not only be recognized because of differences in gray values but also because
of the orientation of patterns.

=———|lll

158 7 Local Orientation

pled image is an exact representation of the continuous gray value function. A local
neighborhood with ideal local orientation is characterized by the fact that the gray value
only changes in one direction, in the other direction it is constant. Since the curves
of constant gray values are lines, local orientation is also denoted as linear symmetry
[Bigiin and Granlund, 1987]. If we orient the coordinate system along these two princi-
pal directions, we can write the gray values as a one-dimensional function of only one
coordinate. Generally, we will denote the direction of local orientation with a vector k
which is perpendicular to the lines of constant gray values. Then we can write for a
local neighborhood with an ideal local orientation:

g9(z) = g(z"k). (7.1)

We can easily verify that this representation is correct, since the gradient of the gray
value structure

3g(mTE)) -
oTE) = 0z, B kg'(z" k) k(T
weB=| —[,-w,(w_c)]—kg< B) (12)
6.1,‘2

lies in the direction of k. (With g’ we denote the derivative of g with respect to the
scalar variable £Tk.) From this coincidence we might conclude that we can easily
determine local orientation with the gradient operator. We could use the magnitude of
the gradient as an orientation-independent certainty measure

Vgl = [(aa—iy + (aa—jzﬂ " (7.3)

and determine the direction of the orientation by

dg dg
¢ = arctan (a—xz/a-l-) . (7.4)
Unfortunately this simple approach does not lead to an adequate orientation deter-
mination because:

o The gradient is a too local feature. Even if we have a random pattern, the gradient
will give us well defined orientations at each point. Consequently, an appropriate
orientation operator must include some averaging in order to detect whether or not
a local neighborhood shows local orientation.

o The gradient does not deliver the correct angular range for orientation. To describe
orientation, a range of 180° is sufficient, since the rotation of a pattern by 180° does
not change its orientation.

o It is not directly possible to average the orientation angle because of the 180° am-
biguity and because the angle shows a discontinuity. For example, two structures
with orientation angles of -89° and 87° lie in very similar directions despite the very
different values of the angles. Direct averaging of the two orientations would yield
the wrong mean value of -1°.

7.1 Introduction 159

T
.

Figure 7.2: Representation of local orientation as a vector: a) the orientation vector: b) averaging of
orientation vectors from a region with homogeneous orientation; c) same for a region with randomly
distributed orientation.

7.1.1 Vectorial Representation of Local Orientation

The introduction made us think about an adequate representation of orientation. Such
a representation needs to take into account the circular property of the orientation
angle. Thus we are forced to represent orientation by an angle. Because its range
is limited to 180°, we must double the angle. We then can think of orientation as a
vector pointing in the direction 2¢ (figure 7.2). The magnitude of the vector can be
set to the certainty of the orientation determination. As a result any averaging means
vector addition. In case of a region which shows a homogeneous orientation, the vectors
line up to a large vector (figure 7.2c). However, in a region with randomly distributed
orientation the resulting vector becomes very small, indicating that no significant local
orientation is present (figure 7.2c).

7.1.2 Color Coding of Vectorial Image Features

We cannot display orientation adequately with a gray value image. We can either
display the certainty or the orientation angle, but not both. The latter cannot be
properly displayed at all, as we get a discontinuity in the representation with the jump
from the smallest to the largest angle. However, both features can be displayed in a
color image. It appears natural to code the certainty measure in the luminance and the
orientation angle in color. Our attention is then drawn to the light parts of the image
where we can determine the orientation angle with good accuracy. The darker a region
becomes, the more difficult it will be for us to distinguish different colors visually. In
this way, our visual impression coincides with the orientation contents in the image.
Representing the orientation angle as a color means that it adapts well to its own cyclic
behavior. There is no gap at a certain angle. Perpendicular orientations are shown in
complementary colors (plate 8).

In the following two sections, we will introduce two different concepts to determine
local orientation. First, we discuss the use of a set of directional filters. The sec-
ond method is based on the Fourier space and allows a direct determination of local
orientation with simple derivative operators.

160 7 Local Orientation

7.2 The Quadrature Filter Set Method

In chapter 5 we learnt that we can use filter operations to select any wave number
range which is contained in an image. In particular we could choose a filter that selects
only wave numbers of a certain direction. In this way, we can extract those structures
which are oriented in the same direction. Such an extraction, however, does not yield
a determination of local orientation. We must use a whole set of directionally sensitive
filters. We will then obtain a maximum filter response from the directional filter whose
direction coincides best with that of local orientation. In order to determine local
orientation we must apply a number of directional filters. Then we have to compare the
filter results. If we get a clear maximum in one of the filters but only little response in
the others, the local neighborhood contains a locally oriented pattern. If a large fraction
of the filters gives a comparable response, the neighborhood contains a distribution of
oriented patterns. So far, the concept seems to be straightforward, but a number of
tricky problems needs to be solved. Which properties have to be met by the directional
filters in order to ensure an exact determination of local orientation, if at all possible?
For computational efficiency, we need to use a minimal number of filters to interpolate
the angle of the local orientation. What is this minimum number?

The concepts introduced in this section are based on the work of Granlund [1978],
Knutsson [1982], and Knutsson et al. [1983].

7.2.1 Directional Quadrature Filters

First we will discuss the selection of appropriate directional filters. Finally, our filters
should give an exact orientation estimate. We can easily see that simple filters cannot
be expected to yield such a result. A simple first-order derivative operator, for example,
would not give any response at local minima and maxima of the gray values and thus
will not allow determination of local orientation in these places. There is a special class
of operators, called quadrature filters, which perform better. They can be constructed
in the following way. Imagine we have a certain directional filter iz(k) We calculate
the transfer function of this filter and then rotate the phase of the transfer function by
90°. By this action, the wave number components in the two filter responses differ by
a shift of a quarter of a wavelength for every wave number. Where one filter response
shows zero crossings, the other shows extremes. If we now square and add the two filter
responses, we actually obtain an estimate of the spectral density, or physically speaking,
the energy, of the corresponding periodic image structure. We can best demonstrate
this property by applying the two filters to a periodic structure a cos(ka). We assume
that the first filter does not cause a phase shift, but the second causes a phase shift of
90°. Then N

hi = h(k)acos(kz)

hy = h(k)asin(kz).

Squaring and adding the filter results, we get a constant phase-independent response
of h?a?. We automatically obtain a pair of quadrature filters if we choose an even real
and an odd imaginary transfer function with the same magnitude.

7.2 The Quadrature Filter Set Method 161

Figure 7.3: Transfer function of the directional quadrature filter according to (2.43) with I = 2 and
B =2 in 112.5° direction.

Returning to the selection of an appropriate set of directional filters, we can state
further that they should be similar to each other. Thus the resulting filter’s transfer
function can be separated into an angular and a wave number part. Such a filter is
called polar separable and may be conveniently expressed in polar coordinates

h(q, 8) = l(9)k(¢), (7.5)

with ¢ = k2 + k2 and tan ¢ = ko /ky.
Knutsson [1982] suggested the following directional quadrature filters:

>

—_

)

~—
il

k() = cos™ (¢ — o) (7.6)

I;o(¢) = icos?(¢ — fx) signum [cos(d — ¢x)].

g denotes the magnitude of the wave number; go and ¢, are the peak wave number
and the direction of the filter, respectively. The indices e and o indicate the even and
odd component of the quadrature pair. The constant B determines the half-width of
the wave number in the number of octaves and ! the angular resolution of the filter.
In a logarithmic wave number scale, the filter has the shape of a Gaussian function.
Figure 7.3 shows the transfer function of such a filter.

A set of directional filters is obtained by a suitable choice of different ¢y:

k
¢k=% k=0,1,---,K —1. (1.7)

Knutsson used four filters with 45° increments in the directions 22.5°; 67.5°; 112.5°
and 157.5°. These directions have the advantage that only one filter kernel has to be

162 7 Local Orientation

Figure 7.4: Computation of local orientation by vector addition of the four filter responses. Shown is
an example where the neighborhood is isotropic concerning orientation: all filter responses are equal.
The angles of the vectors are equal to the filter directions in a) and double the filter directions in b).

designed. The kernels for the filter in the other directions are obtained by mirroring the
kernels at the axes and diagonals. These filters have been designed in the wave number
space. The filter coefficients are obtained by inverse Fourier transform. If we choose a
reasonably small filter mask, we will cut-off a number of non-zero filter coefficients. This
causes deviations from the ideal transfer function. Therefore, Knutsson modified the
filter kernel coefficient using an optimization procedure, in such a way that it approaches
the ideal transfer function as close as possible. It turned out that at least a 15 x 15 filter
mask is necessary to get a good approximation of the anticipated transfer function.

7.2.2 Vectorial Filter Response Addition

The local orientation can be computed from the responses of the four filters by vector
addition if we represent them-as an orientation vector: the magnitude of the vector
corresponds to the filter response, while the direction is given by double the filter
direction.

Figure 7.4 illustrates again why the angle doubling is necessary. An example is
taken where the responses from all four filters are equal. In this case the neighborhood
contains structures in all directions. Consequently, we observe no local orientation and
the vector sum of all filter responses vanishes. This happens if we double the orientation
angle (figure 7.4b), but not if we omit this step (figure 7.4a).

After these more qualitative considerations, we will prove that we can compute
the local orientation exactly when the local neighborhood is ideally oriented in an
arbitrary direction @g. As a result, we also know how many filters we need at least.
We can simplify the computations by only considering the angular terms, since the
filter responses show the same wave number dependence. We can also consider the
two-dimensional vector of the filter response as a complex number. Using (7.7) we can
write the angular part of the filter response as

hi(do) = exp (27ik/ K) cos¥(¢o — 7k /K).

The factor two in the complex exponential results from the angle doubling. The cosine

7.2 The Quadrature Filter Set Method 163

function is decomposed into the sum of two complex exponentials:

ha(do) = g oxp (21ik/K) [exp (i(go — 74/ K) + exp (~i(do — wk/ K))]"
2
- Eliexp (2rik/K) Y (2].’) exp (ij(do — 7k/K)) exp (—=i(2l — j)(do — 7k/K))

121

= 2212 (:) exp (i(5 — 1)260) exp (27i(1 + 1 — 5)(k/K)) .

Now we sum up the vectors of all the K directional filters:

th 2;2(.)exp(lj—l)2¢9) iexp (27i(14+1—-j)(k/K)).

k=0

The complex double sum can be solved if we carefully analyze the inner sum over k.
If j = 1+ 1 the exponent is zero. Consequently, the sum is K. Otherwise, the sum
represents a geometric series with the factor exp (27i(1+ ! — j)(k/K)) and the sum

Klex " _ 1 —exp(2ri(1+1— 7))
::1) p (2mi(1 41— j)(k/K)) = 1—exp (2ri(l +1—5)/K)’ %

We can use this formula only if the denominator # 0 Vj = 0,1,---,2l; consequently
K > 14 1. With this condition the sum vanishes. This result has a simple geometric
interpretation. The sum consists of vectors which are equally distributed on the unit
circle. The angle between two consecutive vectors is 2rk/K.

In conclusion, the inner sum in (7.8) reduces to K for j = [+ 1, otherwise it is zero.
Therefore the sum over j contains only the term with j = I + 1. The final result

K-1_
Sh= () exp 200 (19)

shows a vector with the angle of the local orientation doubled. This concludes the proof.

From [> 0 and K > [+ 1 we conclude that at least K = 3 directional filters are
necessary. If we have only two filters (K = 2), the vector responses of these two filters
lie on a line (figure 7.5a). Thus orientation determination is not possible. Only with
three or four filters, can the sum vector point in all directions (figure 7.5b and c).

With a similar derivation, we can prove another important property of the direc-
tional filters (7.6). The sum over the transfer functions of the K filters results in an
isotropic function for K > I

K-1
Z:o cos? (¢ — 1k/K) = o (2ll) . (7.10)

In other words: a preferred direction does not exist. This is the reason why we can
determine local orientation exactly with a very limited number of filters and a simple
linear procedure such as vector addition.

164 7 Local Orientation

b

Figure 7.5: Vector addition of the filter responses from K directional filters to determine local orien-
tation; a) K = 2; b) K = 3; ¢) K = 4; sum vector shown thicker.

7.3 The Tensor Method

In this section we discuss the question whether we can determine local orientation more

directly. As a starting point, we consider what an ideally oriented gray value structure

(7.1) looks like in the wave number domain. We can compute the Fourier transform of

(7.1) more readily if we rotate the z; axis in the direction of k. Then the gray value

function is constant in the z; direction. Consequently, the Fourier transform reduces

to a 6 line in the direction of k.

It seems promising to determine local orientation in the Fourier domain, since all
we have to compute is the orientation of the line on which the spectral densities are
non-zero. Bigin and Granlund [1987] devised the following procedure:

o With a window function, we select a small local neighborhood from an image.

e We Fourier transform the windowed image. The smaller the selected window, the
more blurred the spectrum will be (uncertainty relation, see appendix A.2). This
means that even with ideal local orientation we will obtain a rather band-shaped
distribution of the spectral energy.

o Local orientation is then determined by fitting a straight line to the spectral density
distribution. We yield the angle of the local orientation from the slope of the line.

The critical step of this procedure is fitting a straight line to the spectral densities
in the Fourier domain. We cannot solve this problem exactly since it is generally
overdetermined, but only minimize the measure of error. A standard error measure is
the square of the magnitude of the vector (see (3.27) in section 3.3.1). When fitting a
straight line, we minimize the sum of the squares of the distances of the data points to
the line

J= / &2k d?(k, k)|§(k)[? — minimum. (7.11)

For the sake of simplicity, k is assumed to be a unit vector. The distance function is
abbreviated using d(k, k). The integral runs over the whole k space; the wave numbers
are weighted with the spectral density |§(k)|>. Equation (7.11) is not restricted to
two dimensions, but is generally valid for local orientation or linear symmetry in an n-
dimensional space. Since we discuss local orientation in three dimensions in chapter 17,

7.3 The Tensor Method 165

2 A

\

Figure 7.6: Distance of a point in k-space from the line in the direction of the unit vector k.

we will solve (7.11) for an n-dimensional space.
The distance vector d can be inferred from figure 7.6 to be

d=k— (kTk)k. (7.12)

The expression in brackets denotes the scalar product of k and k, and the superscript T
the transposed vector. (kTk and kk” denote an inner and outer product, respectively.)
The square of the distance is then given by

|d|? = [k — (kTk)k]T[k — (kTk)k] = kTk — (kTk)2. (7.13)

In order to express the distance more clearly as a function of the vector k, we write it
in the following manner

|d|? = kT (I(kTk) — kET)E. (7.14)

Substituting this expression into (7.11) we obtain
J=kTTE, (7.15)

where J is a symmetric tensor with the diagonal elements

Top =2 /d"k kglg(k)P? (7.16)
4¢P—oo
and the off-diagonal elements
T = — /d"k ko ko |3 (). (7.17)

In the two-dimensional case we can write

ORI] [b] . (118)

166 7 Local Orientation

From this equation, we can readily find k so that J shows a minimum value. The
key to the solution lies in the fact that every symmetric matrix reduces to a diagonal
matrix by a suitable coordinate transformation (see appendix A.1):

oolwelf OV A Z gy g
J(k) = [F; &] [o 7] [¥] = Sk + Jok2. (7.19)
If J; < J3, we can immediately see that J is minimal in the k; direction.

In this way, the problem finally turns out to be an eigenvalue problem for the tensor J
which can be calculated from the spectral densities via (7.16) and (7.17). The direction
of the oriented pattern is given by the eigenvector k; to the smallest eigenvalue J;

Jkl = Jlkl' (7.20)

7.3.1 Analogy: The Inertia Tensor

Before we solve the two-dimensional eigenvalue problem, it is helpful to recognize that it

is analogous to a well-known physical quantity, namely, the inertia tensor. If we replace

the wave number coordinates by space coordinates and the spectral density [§(k)|* by

the specific density p, (7.11) constitutes the integral to compute the inertia of a rotary

body rotating around the k axis. The tensor in (7.15) becomes the inertia tensor.
With this analogy, we can reformulate the problem to determine local orientation.

We must find the axis about which the rotary body, formed from the spectral density

in Fourier space, rotates with minimum inertia. The rotary body might have different

shapes. We can relate the shape of the two-dimensional rotary body to the different
solutions we get for the eigenvalues of the inertia tensor and thus for the solution of the
local orientation problem.

1. Ideal local orientation. The rotary body is a line. For a rotation around this line,
the inertia vanishes. Consequently, the eigenvector to the eigenvalue zero coincides
with the direction of the line. The other eigenvector is orthogonal to the line, and
the corresponding eigenvalue is unequal to zero. This eigenvector gives the rotation
axis for the maximum inertia.

2. Isotropic gray value structure. In this case, the rotary body is a kind of a flat isotropic
disk. A preferred direction does not exist. Both eigenvalues are equal, the inertia is
the same for rotations around all axes. We cannot find a minimum.

3. Constant gray values (special case of one and two). The rotary body degenerates to
a point at the origin of the k space. The inertia is zero for rotation around any axis.
Therefore both eigenvalues vanish.

From this qualitative discussion, we can conclude that the tensor method to estimate
local orientation provides more than just a value for the orientation. Using an analysis of
the eigenvalues of the inertia tensor, we can separate the local neighborhood precisely
into three classes: a) constant gray values, b) local orientation, and c) distributed
orientation.

7.3 The Tensor Method 167

7.3.2 Eigenvalue Analysis of the 2-D Inertia Tensor

In the two-dimensional space, we can readily solve the eigenvalue problem. However,
the solution is not reached in the standard way by solving the characteristic polynomial
to determine the eigenvalues. It turns out that it is easier to rotate the inertia tensor
to the principal axes coordinate system. The rotation angle ¢ then corresponds to the
angle of the local orientation:

0] cos¢ sin¢ Ju Jiz cos¢$ —sing
0 J,| | —sing cos¢ Jiz Joo sing cos¢ |°

Using the trigonometric identities sin 2¢ = 2sin ¢ cos ¢ and cos 2¢ = cos® ¢ —sin? ¢, the
matrix multiplications result in

[J1 0] l cos ¢ sin¢] [Juicosd+ Jigsing —Jyy sin @ + Jyg cos ¢]
0 J; B Joasing + Jipcos ¢ Jyycos ¢ — Jypsin @
[Jll COS2 ¢ + ng sin2 ¢ + J12 sin 2¢ 1/2(J22 - Jll) sin 2¢ + le Cos 2¢]
T | 1/2(Jas — Ju1) sin26 + Jizcos2 Juysin® ¢+ Jap cos? ¢ — Japsin26 |
Now we can compare the matrix coefficients on the left and right side of the equation.
Because the matrices are symmetric, we have three equations with three unknowns, ¢,

J1 and J,. Though the equation system is nonlinear, it can be readily solved for ¢.
Addition of the diagonal elements yields

J1+ J2 = Ju + Ja, (7.21)

—sin¢ cos¢

i.e., the conservation of the trace of the tensor under a coordinate transformation.
Subtraction of the diagonal elements results in

Jl - Jz = (Jll - J22) CcOos 2¢ + 2.]12 sin 2¢, (722)
while from the off-diagonal element
1/2(.]22 - Ju) sin 2¢ + J12 COS 2¢ =0 (723)
we obtain the orientation angle as
2412
tan2¢ = —————. 7.24
= R ia (724)

Without any presumptions we obtained the angle doubling anticipated. In this sense,
the tensor method is much more elegant than the filter set method discussed in sec-
tion 7.2. Since tan2¢ is gained from a quotient, we can regard the dividend as the y
and the divisor as the z component of a vector which we call the orientation vector o:

_ | Iu—Jan
o= [o] . (7.25)

This vector has the magnitude 4Jy, + JZ + JZ, — 2J13J5;. In case of isotropically
distributed orientation (Ji; = Jyg, Ji2 = 0), the magnitude of the orientation vector is
zero.

168 7 Local Orientation

7.3.3 Computing the Inertia Tensor in the Space Domain

So far, the tensor method to determine local orientation completely took place in the
Fourier space. Now we will show that we can compute the coefficients of the inertia
tensor easier in the space domain.

The integrals in (7.16) and (7.17) contain terms of the form

kglg(k)[* = lik,g(k)|*

and
kokolg(k)| = ik,g(k)[ikeg(K)]".

Integrals over these terms are inner or scalar products of the functions ik;§(k). Since the
inner product is preserved under the Fourier transform (section 3.3.1), we can compute
the corresponding integrals in the spatial domain as well. Multiplication of §(k) with
ik; in the wave number domain corresponds to performing the first spatial derivative in
the same coordinate in the space domain:

2
diagonal elements Jop = Y (aﬁg—> d’z
z
4#P window 99 aqg (7.26)
off-diagonal elements J, ———=d%z.
" window aZp azq

The integration area corresponds to the window we use to select a local neighborhood.
On a discrete image matrix, the integral can be entirely performed by convolution.
Integration over a window limiting the local neighborhood means convolution with a
smoothing mask B of the corresponding size. The partial derivatives are computed with
the derivative operators D, and D,. Consequently the elements of the inertia tensor
are essentially computed with nonlinear operators

Tpq = B(Dy - Dy). (7.27)

In two dimensions, the vectorial orientation operator is then given by

[T =T
o-[.] (7.28)

It is important to note that the operators J; and O are nonlinear operators contain-
ing both linear convolution operations and nonlinear point operations (multiplications)
in the space domain. In particular this means that we must not interchange the multi-
plication of the partial derivatives with the smoothing operations.

In their paper on “Analyzing oriented patterns”, Kass and Witkin [1985] arrived
at exactly the same expression for the orientation vector. Interestingly, they started
entirely differently using directional derivatives. Since it now turns out that derivative
operators are central to the orientation problem, we may wonder what went wrong with
our initial idea to use the gradient operator for orientation analysis in section 7.1. The
basic difference is that we now multiply the spatial derivatives and then average them,

7.3 The Tensor Method 169

before we compute the orientation. This means that instead of the vector gradient
operator a symmetric tensor operator of the form

Ju Ji2
J = 7.29
T2 T (7.29)
contains the appropriate description for the gray value changes in a local neighbor-
hood. This tensor is sometimes called the scatter matriz. It is different from the
two-dimensional inertia tensor

| T2 =Tz
J = [-T2 Jn]) (7.30)
However, these two tensors are closely related
A AN
J:trace(J’)[O I]—J', J’:trace(])[o I]—J. (7.31)

From this relationship it is evident that both matrices have the same set of eigenvectors.
The eigenvalues are related by

n n

Jo=> g~ Jp Iy = ZJ; - Jp. (7.32)
g=1 g=1

Consequently, we can perform the eigenvalue analysis with any of the two matrices. We

will obtain the same set of eigenvectors. For the inertia tensor, the direction of local

orientation is given by the minimum eigenvalue, but for the scatter matrix it is given

by the maximum eigenvalue.

Finally, we discuss the interpretation of the estimated orientation information. Both
the scatter and the inertia matrix contain three independent coefficients. In contrast,
the orientation vector contains only two parameters (7.28) and thus does not include
the entire information. The direction of the vector is twice the angle of the orienta-
tion and the magnitude of the vector is a measure of the certainty of the estimated
orientation. There are, however, two reasons for failure of the orientation measure.
The neighborhood may contain a constant gray value area or an isotropic gray value
structure without a preferred orientation (see also classification of orientation in sec-
tion 7.3.1). To distinguish these two cases we need to compare the magnitude of the
orientation vector with the mean square magnitude of the gradient

B(Dy D)+ (D2 D) =TJu+Toz=J1 + J2 (7.33)

which is essentially the trace of both the inertia tensor (7.30) and the scatter matrix
(7.29). A zero orientation vector combined with a non-zero mean square magnitude of
the gradient indicate an isotropic gray value structure. If both are zero, a constant gray
value structure is given. Consequently, we may express a coherence measure for local
orientation by

_ (Ju—Tn)* +47% _ (Jl - J2)2. (7.34)

C=
(J1 + Tn2)? Ji+J,
The coherence ranges from 0 to 1. For ideal local orientation (J; = 0, J; > 0) it is one,
for an isotropic gray value structure (J; = J; > 0) it is zero.

170 7 Local Orientation

7.3.4 Examples and Applications

In the final section of this chapter, we show several examples and applications of ori-
entation analysis. The image with the concentric rings (figure 6.4) is an excellent test
pattern for orientation analysis with which we now demonstrate the computation of the
orientation vector step by step. First we calculate the horizontal and vertical spatial
derivatives with the [l 0 — 1] mask (figure 7.7a and b). Then we perform the point-wise
multiplications of the two resulting images with each other and by themselves. After
smoothing these images with a B'® binomial filter and another subtraction, we obtain
the two components of the orientation vector (figure 7.7¢ and d). The magnitude (fig-
ure 7.7e) and phase (figure 7.7f) of the orientation vector are computed by a Cartesian
to polar coordinate transformation (for a fast implementation see section 4.4).

Representing the orientation vector with two gray value images, either in Cartesian
or polar representation, does not give a good impression of the orientation. Moreover,
mapping the cyclic orientation angle onto a gray value scale results in a discontinuity
and gives a wrong visual impression. Orientations which are mapped to the minimal
and maximal gray values and which are in fact only slightly different, visually appear as
completely different values. A much better representation of the vectorial orientation
is the color coding technique discussed in section 7.1.2 and shown in plate 8b. There is
a gradual change in color for all orientations and perpendicular orientations are shown
in complementary colors. Plate 8 also shows that the orientation estimate is quite
noise insensitive. The accuracy of orientation analysis will be discussed in detail in
section 17.4.5.

The test image discussed so far contains only ideally orientated patterns. The ex-
amples in plate 9 give an impression of the orientation analysis with real-world images.
The edges show up as colored lines, so that differentially oriented patterns can im-
mediately be recognized by the colors. The certainty and coherency measures of the
orientation analysis for the image in plate 9a are shown in figure 7.8. We recognize that
the certainty measure does not drop at the intersections of lines, while the coherency
measure does, indicating that a coherent local orientation does not exist at corners.

Plate 10 demonstrates how orientation analysis can be integrated into a hierarchy of
simple processing steps to solve complex tasks. The original image contains a piece of
calfskin from which a circular sector was rotated (plate 10a). From this image, the local
orientation is computed (plate 10b). After smoothing the orientation image (plate 10c),
the edge of the rotated sector can be computed with derivative operators in a similar
manner as from a simple gray value image.

Orientation constitutes an important property for image enhancement (plate 10e-g).
The original shows a distorted fingerprint image with partly disrupted lines (plate 10e).
With the help of the orientation field (plate 10f), we can use a technique, called adaptive
filtering to restore the image. We use the orientation field to smooth the image along
the lines, and to sharpen it in the normal direction. The two steps, orientation deter-
mination and adaptive filtering, can be repeated iteratively. After only two iterations,
a considerably improved fingerprint is obtained (plate 10g).

7.3 The Tensor Method 171

Figure 7.7: The individual filter operations combined in the tensor method for orientation analysis are
demonstrated with a test image: a) D,; b) Dy; ¢) B(Dy - Dy — D, - D;); d) B(D - Dy);) magnitude
and f) phase of the orientation vector.

172 7 Local Orientation

Figure 7.8: Orientation analysis of the image plate 9a: a) coherency measure; b) certainty measure.

8 Scales

8.1 Multigrid Data Structures

The effect of all the operators discussed so far — except for recursive filters — is re-
stricted to local neighborhoods which are significantly smaller than the size of the image.
This inevitably means that they can only extract local features. We have already seen
a tendency that analysis of a more complex feature such as local orientation (chapter 7)
requires larger neighborhoods than computing, for example, a simple property such as<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>