Lecture Notes in Computational Vision and Biomechanics 2

Valentin E. Brimkov
Reneta P. Barneva Editors

Digital Geometry
Algorithms

Theoretical Foundations and Applications
to Computational Imaging

@ Springer

Lecture Notes in Computational Vision and Biomechanics

Editors

Jodo Manuel R.S. Tavares
R.M. Natal Jorge

Address:
Faculdade de Engenharia
Universidade do Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto
Portugal
tavares @fe.up.pt, rnatal @fe.up.pt

Editorial Advisory Board

Alejandro Frangi, University of Sheffield, Sheffield, UK
Chandrajit Bajaj, University of Texas at Austin, Austin, USA
Eugenio Ofiate, Universitat Politécnica de Catalunya, Barcelona, Spain
Francisco Perales, Balearic Islands University, Palma de Mallorca, Spain
Gerhard A. Holzapfel, Royal Institute of Technology, Stockholm, Sweden
J. Paulo Vilas-Boas, University of Porto, Porto, Portugal
Jeffrey A. Weiss, University of Utah, Salt Lake City, USA
John Middleton, Cardiff University, Cardiff, UK
Jose M. Garcia Aznar, University of Zaragoza, Zaragoza, Spain
Perumal Nithiarasu, Swansea University, Swansea, UK
Kumar K. Tamma, University of Minnesota, Minneapolis, USA
Laurent Cohen, Université Paris Dauphine, Paris, France
Manuel Doblaré, Universidad de Zaragoza, Zaragoza, Spain
Patrick J. Prendergast, University of Dublin, Dublin, Ireland
Rainald Lohner, George Mason University, Fairfax, USA
Roger Kamm, Massachusetts Institute of Technology, Cambridge, USA
Thomas J.R. Hughes, University of Texas, Austin, USA
Yongjie Zhang, Carnegie Mellon University, Pittsburgh, USA
Yubo Fan, Beihang University, Beijing, China

For further volumes:
http://www.springer.com/series/8910

Lecture Notes in Computational Vision and Biomechanics
Volume 2

The research related to the analysis of living structures (Biomechanics) has been a source of recent re-
search in several distinct areas of science, for example, Mathematics, Mechanical Engineering, Physics,
Informatics, Medicine and Sport. However, for its successful achievement, numerous research topics
should be considered, such as image processing and analysis, geometric and numerical modelling,
biomechanics, experimental analysis, mechanobiology and enhanced visualization, and their applica-
tion to real cases must be developed and more investigation is needed. Additionally, enhanced hardware
solutions and less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of high level
information from static images or dynamic image sequences. Examples of applications involving image
analysis can be the study of motion of structures from image sequences, shape reconstruction from
images and medical diagnosis. As a multidisciplinary area, Computational Vision considers techniques
and methods from other disciplines, such as Artificial Intelligence, Signal Processing, Mathematics,
Physics and Informatics. Despite the many research projects in this area, more robust and efficient
methods of Computational Imaging are still demanded in many application domains in Medicine, and
their validation in real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered to be strongly
connected and related. Hence, the main goal of the LNCV&B book series consists of the provision of a
comprehensive forum for discussion on the current state-of-the-art in these fields by emphasizing their
connection. The book series covers (but is not limited to):

e Applications of Computational Vision and e Grid and High Performance Computing for
Biomechanics Computational Vision and Biomechanics

e Biometrics and Biomedical Pattern Analysis o Image-based Geometric Modeling and Mesh

e Cellular Imaging and Cellular Mechanics Generation

o Clinical Biomechanics e Image Processing and Analysis

e Computational Bioimaging and Visualization =~ e Image Processing and Visualization in

e Computational Biology in Biomedical Imaging Biofluids

e Development of Biomechanical Devices Image Understanding

e Device and Technique Development for Material Models
Biomedical Imaging Mechanobiology

e Digital Geometry Algorithms for Medical Image Analysis

Molecular Mechanics

Multi-modal Image Systems

Gait & Posture Mechanics Multiscale Biosensors in Biomedical Imaging
Multiscale Analysis in Biomechanics Multiscale Devices and Biomems for
Neuromuscular Biomechanics Biomedical Imaging

Numerical Methods for Living Tissues Musculoskeletal Biomechanics

Numerical Simulation Sport Biomechanics

Software Development on Computational Virtual Reality in Biomechanics

Vision and Biomechanics Vision Systems

Computational Vision and Visualization
Experimental Biomechanics

Valentin E. Brimkov « Reneta P. Barneva
Editors

Digital Geometry
Algorithms

Theoretical Foundations and Applications
to Computational Imaging

@ Springer

Editors

Valentin E. Brimkov Reneta P. Barneva

Department of Mathematics Department of Computer and

Buffalo State College Information Sciences

State University of New York State University of New York at Fredonia
Buffalo, NY Fredonia, NY

USA USA

ISSN 2212-9391 ISSN 2212-9413 (electronic)

Lecture Notes in Computational Vision and Biomechanics

ISBN 978-94-007-4173-7 ISBN 978-94-007-4174-4 (eBook)

DOI 10.1007/978-94-007-4174-4
Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2012939722

© Springer Science+Business Media Dordrecht 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Digital geometry is a modern mathematical discipline studying the geometric prop-
erties of digital objects (usually modeled by sets of points with integer coordinates)
and providing methods for solving various problems defined on such objects. Dig-
ital geometry is developed with the explicit goal to provide rigorous mathematical
foundations and basic algorithms for applied disciplines such as computer graphics,
medical imaging, pattern recognition, image analysis and processing, computer vi-
sion, image understanding, and biometrics. These are in turn applicable to important
and societally sensitive areas like medicine, defense, and security.

Although digital geometry has its roots in several classical disciplines (such as
graph theory, topology, number theory, and Euclidean and analytic geometry), it
was established as an independent subject only in the last few decades. Several
researchers have played a pioneering role in setting the foundations of digital ge-
ometry. Notable among these is the late Azriel Rosenfeld and his seminal works
from the late 60’s and early 70’s of the last century. Some authors of chapters of the
present book are also among the founders of the area or its prominent promoters.
The last two decades feature an increasing number of active contributors throughout
the world. A number of excellent monographs and hundreds of research papers have
been devoted to the subject. One can legitimately say that at present digital geom-
etry is an independent subject with its own history, vibrant international commu-
nity, regular scientific meetings and events, and, most importantly, serious scientific
achievements.

This contributed book contains thirteen chapters devoted to different (although
interrelated) important problems of digital geometry, algorithms for their solution,
and various applications. All authors are well-recognized researchers, as some of
them are world leaders in the field. As a general framework, each chapter presents
a research topic of considerable importance, provides a review of fundamental re-
sults and algorithms for the considered problems, presents new unpublished results,
as well as a discussion on related applications, current developments and perspec-
tives. By its structure and content, this publication does not appear to be an exhaus-
tive source of information for all branches of digital geometry. Rather, the book is
aimed at attracting readers’ attention to central digital geometry tasks and related

vi Preface

applications, as diverse as creating image-based metrology, proposing new tools for
processing multidimensional images, studying topological transformations for im-
age processing, and developing algorithms for shape analysis.

An advantage of the chosen contributed book framework is that all chapters pro-
vide enough complete presentations written by leading experts on the considered
specific matters. The chapters are self-contained and can be studied in succession
dictated by the readers’ interests and preferences.

We believe that this publication would be a useful source of information for re-
searchers in digital geometry as well as for practitioners in related applied disci-
plines. It can also be used as a supplementary material or a text for graduate or
upper level undergraduate courses.

We would like to thank all those who made this publication possible. We are in-
debted to Jodo Manuel R.S. Tavares and Renato Manuel Natal Jorge, editors of the
Springer’s series “Lecture Notes in Computational Vision and Biomechanics,” for
inviting us to organize and edit a volume of the series. We are thankful to Springer’s
Office and particularly to Ms. Nathalie Jacobs, Senior Publishing Editor, and Dr.
D. Merkle, Editorial Director, for reviewing our proposal and giving us the oppor-
tunity to publish this work with Springer, as well as for the pleasant cooperation
throughout the editorial process. Lastly and most importantly, our thanks go to all
authors who contributed excellent chapters to this book.

Fredonia and Buffalo, NY, USA Valentin E. Brimkov
Reneta P. Barneva

Contents

Part I General

1

Digital Geometry in Image-Based Metrology

Alfred M. Bruckstein

Provably Robust Simplification of Component Trees of

Multidimensional Images

Gabor T. Herman, T. Yung Kong, and Lucas M. Oliveira

Part I Topology, Transformations

3

Discrete Topological Transformations for Image Processing

Michel Couprie and Gilles Bertrand

Modeling and Manipulating Cell Complexes in Two, Three and

Higher Dimensions

Lidija Comi¢ and Leila De Floriani

Binarization of Gray-Level Images Based on Skeleton Region

Growing e

Xiang Bai, Quannan Li, Tianyang Ma, Wenyu Liu, and
Longin Jan Latecki

Topology Preserving Parallel 3D Thinning Algorithms

Kalman Paldgyi, Gdbor Németh, and Péter Kardos

Separable Distance Transformation and Its Applications

David Coeurjolly and Antoine Vacavant

Separability and Tight Enclosure of Point Sets

Peter Veelaert

vii

viii Contents

Part III Image and Shape Analysis

9 Digital Straightness, Circularity, and Their Applications to Image
Anmalysis 247
Partha Bhowmick and Bhargab B. Bhattacharya

10 Shape Analysis with Geometric Primitives 301
Fabien Feschet
11 Shape from Silhouettes in Discrete Space 323

Atsushi Imiya and Kosuke Sato

12 Combinatorial Maps for 2D and 3D Image Segmentation 359
Guillaume Damiand and Alexandre Dupas

13 Multigrid Convergence of Discrete Geometric Estimators 395
David Coeurjolly, Jacques-Olivier Lachaud, and Tristan Roussillon

Contributors

Xiang Bai Huazhong University of Science and Technology, Wuhan, China

Gilles Bertrand Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, Uni-
versité Paris-Est, ESIEE Paris, Marne-la-Vallée, France

Bhargab B. Bhattacharya Advanced Computing and Microelectronics Unit, In-
dian Statistical Institute, Kolkata, India

Partha Bhowmick Department of Computer Science and Engineering, Indian In-
stitute of Technology, Kharagpur, India

Alfred M. Bruckstein Ollendorff Professor of Science, Computer Science Depart-
ment, Technion, IIT, Haifa, Israel

David Coeurjolly LIRIS, UMR CNRS 5205, Université de Lyon, Villeurbanne,
France

Lidija Comié Faculty of Technical Sciences, University of Novi Sad, Novi Sad,
Serbia

Michel Couprie Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, Uni-
versité Paris-Est, ESIEE Paris, Marne-la-Vallée, France

Guillaume Damiand LIRIS, UMRS5205, Université de Lyon, CNRS, Lyon, France

Leila De Floriani Department of Computer Science, University of Genoa, Genoa,
Italy

Alexandre Dupas Unit 698, Inserm, Paris, France

Fabien Feschet IGCNC - EA 2782, Clermont Université, Université d’ Auvergne,
Clermont-Ferrand, France

Gabor T. Herman Computer Science Ph.D. Program, Graduate Center, City Uni-
versity of New York, New York, NY, USA

ix

X Contributors
Atsushi Imiya Institute of Media and Information Technology, Chiba University,
Chiba, Japan

Péter Kardos Institute of Informatics, University of Szeged, Szeged, Hungary

T. Yung Kong Computer Science Department, Queens College, City University of
New York, Flushing, NY, USA

Jacques-Olivier Lachaud LAMA, UMR CNRS 5127, University of Savoie, Le
Bourget du Lac, France

Longin Jan Latecki Temple University, Philadelphia, PA, USA

Quannan Li University of California, Los Angeles, CA, USA

Wenyu Liu Huazhong University of Science and Technology, Wuhan, China
Tianyang Ma Temple University, Philadelphia, PA, USA

Gabor Németh Institute of Informatics, University of Szeged, Szeged, Hungary

Lucas M. Oliveira Computer Science Ph.D. Program, Graduate Center, City Uni-
versity of New York, New York, NY, USA

Kalman Palagyi Institute of Informatics, University of Szeged, Szeged, Hungary

Tristan Roussillon LIRIS, UMR CNRS 5205, Université de Lyon, CNRS, Villeur-
banne, France

Kosuke Sato School of Science and Technology, Chiba University, Chiba, Japan;
Information Technology Systems Dept. Intelligent Transport Systems Engineering
Section, Mitsubishi Electric Corporation Kamakura Works, Kamakura, Kanagea,
Japan

Antoine Vacavant Clermont Université, Université d’Auvergne, ISIT, CNRS,
UMRG6284, Clermont-Ferrand, France

Peter Veelaert Ghent University, Ghent, Belgium

Chapter 1
Digital Geometry in Image-Based Metrology

Alfred M. Bruckstein

Abstract Interesting issues in digital geometry arise due to the need to perform
accurate automated measurements on objects that are “seen through the eyes” of
modern imaging devices. These devices are typically regular arrays of light sensors
and they yield matrices of quantized probings of the objects being looked at. In this
setting, the natural questions that may be posed are: how can we locate and recog-
nize instances from classes of possible objects, and how precisely can we measure
various geometric properties of the objects of interest, how accurately can we locate
them given the limitations imposed upon us by the geometry of the sensor lattices
and the quantization and noise omnipresent in the sensing process. Another inter-
esting area of investigation is the design of classes of objects that enable optimal
exploitation of the imaging device capabilities, in the sense of yielding the most
accurate measurements possible.

1.1 Introduction

Scanned character recognition systems are by now working quite well, several com-
panies emerged based on the need to do image based inspection for quality control
in the semiconductor industry and, in general, automated visual inspection systems
are by now widely used in many areas of manufacturing. In these important applica-
tions one often needs to perform precise geometric measurements based on images
of various types of planar objects or shapes. Images of these shapes are provided
by sensors with limited capabilities. These sensors are spatially arranged in regular
planar arrays providing matrices of quantized pixel-values that need to be processed
by automated metrology systems to extract information on the location, identity,
size and orientation, texture and color of the objects being looked at. The geome-
try, spatial resolution and sensitivity of the sensor array are crucial factors in the
measurement performances that are possible. When sensor arrays are regular planar
grids, we have to deal with a wealth of issues involving geometry on the integer grid,

A.M. Bruckstein ()

Ollendortf Professor of Science, Computer Science Department, Technion, IIT, 32000 Haifa,
Israel

e-mail: freddy @cs.technion.ac.il

V.E. Brimkov, R.P. Barneva (eds.), Digital Geometry Algorithms, 3
Lecture Notes in Computational Vision and Biomechanics 2,
DOI 10.1007/978-94-007-4174-4_1, © Springer Science+Business Media Dordrecht 2012

4 AM. Bruckstein

Fig. 1.1 Image digitization y y
by point sampling on the unit
R,]
grid Z S o oo
P
)
Ol' \ IO
}
YA
o o’/\ [1\\0\ o
o s e
(=] /ll \’/0 o o Q ——
0,0 S / X
() O\\L/s

hence digital geometry problems enter the picture in industrial metrology tasks in
very fundamental ways.

1.2 The Digitization Model and the Metrology Tasks

We assume that planar shapes, the objects we are interested to locate, measure and
recognize are binary (black on a white background) and live in the real plane, R.
Hence their full description can be given via an indicator function &(x, y) which
is 1 (black) if (x, y) is inside the shape and O (white) if (x, y) is in the background.
The digitization process assumed will be point sampling on the integer grid, Z2,
hence the result of digitization will be a discrete indicator function on the integer
grid: a discrete binary image, or a zero/one matrix of picture elements, or pixels, see
Fig. 1.1. The “generic problem” we deal with is: given the discretized shape, i.e.,

1 ifép(,j)=1

SD(i’j)z{o if£n (i j) =0

recover as much information as possible on the “pre-image”, i.e., on the original
binary shape that lives on the continuous real plane. The information on the pre-
image shape that one needs might be its location and orientation, area, perimeter,
etc. In order to solve the particular problem at hand we shall also need to exploit
whatever prior information we may have on the continuous pre-images. This prior
information sometimes defines the objects or shapes we digitize as members of
parameterized sets of possible pre-images. For example, we might know that the
shapes we are called upon to measure are circular with varying locations and sizes.
In this case the parameter defining the particular object instance being analyzed
from its digitization is a vector comprising three numbers: two coordinates pointing
out the center of the disk and a positive number providing its radius. The digitized
shape &€p (i, j) then provides some information on the center and radius of the disk
and we may ask how good an estimate can we get for these quantities given the
data.

1 Digital Geometry in Image-Based Metrology 5

1.3 Self Similarity of Digital Lines

Digital lines result from point-sampling half-plane pre-images. More is known about
the jagged boundaries obtained in this process topic than anyone can possibly know,
but the basic facts are both simple and beautiful. Half-planes are not very interest-
ing or practically useful objects, however they already pose the following metrology
problem: given the digital image of a half-plane, locate it (i.e., its boundary line) as
precisely as possible. Of course, we must ask ourselves whether and how our loca-
tion estimation improves as we see more and more of the digitized boundary. We
can think about the location estimation problem as a problem of determining the
half-plane pre-images that satisfy all the constraints that the digitized image pro-
vides. Indeed every grid-point pixel that is O (white) will tell us that the half-plane
does not cover that location while every black (1) pixel will indicate that the half-
plane covers its position. It should come as no surprise that the boundary pixels, i.e.,
the locations where white pixels are neighboring black ones, carry all the informa-
tion. The constraint that a certain location in the plane belongs, or does not belong
to the half-plane that is being probed translates into a condition that the boundary
line has a slope and intercept pair in a half-plane defined in the dual representation
space (which is called in pattern recognition circles the Hough parameter plane).
Therefore, as we collect progressively more data in the “image-plane” we have to
intersect more and more half-planes in the Hough plane to get the so called “locale”,
or the uncertainty region in parameter space where the boundary line parameters lie,
see [12, 18, 25]. Looking at the grid geometry and analyzing the lines that corre-
spond to grid-points in the dual plane one quickly realizes that only the boundary
points contribute to setting the limits of the locale of interest, and a careful anal-
ysis reveals that, due to the regularity of the sampling grid, the locales are always
polygons of at most four sides, see [12, 25]. Hence as more and more consecutive
boundary points are added to the pool of information on the digitized half plane, we
have to perform half-plane intersections with at most four sided polygonal locales
to update them. Clearly the locales generally strictly decrease in size as the num-
ber of points increases, and we can get exact estimates on the uncertainty behavior
as the jagged boundary is progressively revealed. This idea, combining the geome-
try of locales for digital straight lines with the process of successively performing
the half-plane intersections for each new data point while walking along the jagged
digitized boundary, led to the simplest, and only recursive O(length) algorithm for
detecting straight edge segments. A complete description of this algorithm is the
subject of the next section of this paper.

The jagged edges that result from discretizing half-planes have a beautiful, self-
similar structure, intimately related to the continued fraction representation of the
real number that defines the slope of their boundary line. It is clear that at various
sampling resolutions the boundary maintains its jaggedness in a fractal manner, but
here we mean a different type of self-similarity, inherent in the jagged boundaries
at any given resolution! A wealth of interesting and beautiful properties that were
described over many years of research on digital straight lines follow from a very
simple unifying principle: invariance of the linear separability property under re-
encoding with respect to regular grids embedded into the integer lattice. Not only

6 AM. Bruckstein

does this principle help in re-discovering and proving in a very straightforward man-
ner digital straight edge properties that were often arrived at and proved in sinuous
ways, but it also points out all the self-similarity type properties that are possible,
making nice connections to number-theoretic issues that arise in this context and
the general linear group GL(2, Z) that describes all integer lattice isomorphisms.
Following [6], we next present the basic self-similarity results.

A digitized straight line is defined as the boundary of a linearly separable di-
chotomy of the set of points with integer coordinates, Z? = {(i, j)|i, j € Z}, in the
plane. The boundary points of the dichotomy induced by a line with slope m and
intercept n, y = mx + n, are

L(m,n) = {(i, hy)li € Z, hi = |mi +n]}.
Without loss of generality let us assume that m > 0, so that the sequence #; is a
nondecreasing sequence of integers. Associate to the set of boundary points L(m, n)

a string of two symbols, 0 and 1, coding the sequence of differences h;11 — h;, as
follows

C(m,n)=---C2C_1CoC1Ca--- =] Cj(m,n)
i

where
0, if hjr1 —h; =0,
Ci(m,n) = .
l(m I’l) {Olk, lfh,'_H —/’l,'Zk,
and 1¥ means 1 1 --- 1 with k 1I’s. C(m, n) is called the chain-code of the line

L(m, n). Note that the sequence C (m, n) can be uniquely parsed into its components
C;(m, n), since a separator must precede every 01 string and follow every run of 1’s
and each of the remaining 0’s must be a single component, as well. Clearly, given
some h;,-value and C(m, n), the entire sequence /; can be recovered. The graphical
meaning of the chain-code associated to L(m, n) is depicted in Fig. 1.2.

The set of points L(m, n) uniquely determines the slope of the line m. Indeed,
L(m,n) = L(m’,n’) implies m = m’, since otherwise the vertical distance between
y=mx +n and y = m’x + n’ would become unbounded at x — 400, and their
h; sequences would differ starting at some large enough i. Furthermore, if m is
irrational we have, by a classical result, that the vertical intercepts of y = mx +n
modulo 1 are dense in [0, 1]. For every ¢ > 0 there exist ig and j such that

mig+n — |mig+nj <e,
mjo+n— |mjo+n]>1-—g¢,

and changing n by ¢ would result in a change in L (m, n). Therefore for irrational m,
L(m, n) uniquely determines both m and n. If m is rational there exist only a finite
set of distinct vertical intercepts of y = mx 4 n modulo 1, therefore 7 is determined
only up to an interval and the length of the worst interval of uncertainly for n de-
pends on the minimal p/q representation of m. This also proves that the chain-code
C(m,n) determines m uniquely, and if m is irrational, n is also determined by it
modulo 1, since we clearly have C(m,n) =C(m,n + 1).

1 Digital Geometry in Image-Based Metrology 7

Fig. 1.2 Chain-codes of
L(m,n)form <1landm > 1

*—>0—>0—>0—>0—>0

—>0—>0—>0—>

C(m,n) :m <1

*—>0—>0—>0

From the definition of chain-codes C(m,n) we obtain several immediate and
basic properties a sequences of zeros and ones must have in order to be the chain-
code of a straight edge. In the case of m < 1, the difference

hist —hi = |mG + 1) +n| — [mi +n] (1.1)

can only be either O or 1. In this case the chain-code of a digitized line has runs
of 0’s separated by single 1’s, and the 0’s occur in runs with length determined by
the number on integer coordinates that fall within the intervals determined on the
x-axis by the points defined by
. . i n
mx; +n=ie€?, ie., xj=—-+ —. (1.2)
m m

The intervals [x;, x;+1) have a constant length of 1/m and therefore the number
of integer coordinates covered can be (see Fig. 1.3a) either p; = |[1/m] or p; =
L1/m] + 1. Therefore, if m < 1, C(m, n) is of the form

C(m,n) =---10°110°2101 - - - (1.3)

where p € {|1/m], |[1/m] + 1}. For the case m > 1, the difference hi +1 — h; =
lm(@ 4+ 1) + n] — [mi + n] is always greater than 1, and therefore the chain-code
C(m, n) has runs of 1’s separated by single 0’s. Since |m + mi + n] — |mi + n]
equals the number of integer coordinates between the values m (i +1) +n and mi +n
the run of 1’s has length determined by the number of integral values in consecutive
intervals of length m, see Fig. 1.3b. This shows that the run-lengths p; in this case,
will be either p = [m] or |m] + 1. Therefore if m > 1, the chain-code C (m, n) has
the form

C(@m,n) =---01°101720170- - - (1.4)
with p € {|m], lm] + 1}.

8 AM. Bruckstein

Fig. 1.3 Basic properties of (a) y=mx+n
chain-codes

The question that immediately arises is the following: is there any order or
pattern in the appearance of the two values for the run length of the symbols 0 or 1,
i.e., in the sequences {p;} that arise from ‘“chain coding” digitized straight lines?
The classical results on digital straight edges are focused on “uniformity proper-
ties” of the appearance of the separator symbol in the chain-codes sequences, see
[14, 20]. We here briefly present a very high level and general uniformity result via
self-similarity, as was first defined in [6].

Suppose we are given the chain-code of a digitized straight boundary C(m, n).
We know that C(m, n) is a sequence composed of two symbols, 0 and 1, and that it
looks either like (1.3) or (1.4), thus it has the general form

- ADPADPH AT A - (1.5)

where p; € {p, p+ 1}, p € Z, and A, U stand for either 0, 1 or 1, 0, respectively.
We can define several transformation rules on two symbol, or A/, sequences
of the type (1.5), transformations that yield new A /[J sequences.

RULE X. Interchange the symbols A and UJ (i.e., A — O and O — A).
Application of X to a chain-code C(m, n) yields a new sequence of symbols,
with 0’s replacing the 1’s and 1’s replacing the 0’s of the original sequence.

1 Digital Geometry in Image-Based Metrology 9

RULE S. Replace every [JA sequence by A.
Application of the S-transformation to a chain-code of the form (1.5) yields a
sequence of the same type with the run length p; replaced by p; — 1. Applying
Rule S, p times yields the next transformation rule.

RULE S”. Replace (”? A by A and 0P+ A by OA.
Notice that, in contrast to the transformation rules X and S, this rule depends on
the {p;} sequence, i.e., it is adapted to the given pattern (1.5). Indeed we can
apply the S-transformation successively at most p times where p is the minimal
value of p;’s. After that, we need to do an X transformation in order to bring the
sequence of symbols to the form (1.5).

RULE R. Replace [0” A by A and P! A by O
We may view the action of R as a result of applying S? first, then replacing [JA
by [J. This rule is also adapted to the sequence on which it operates.
The next transformation rule is somewhat different, since it replaces symbols in
a way that depends on the neighborhood or the “context”.

RULE T. Replace UJA by [J and the [I’s followed by a [J by [JA.
Application of rule T has the effect of putting a A between every consecutive pair
of [J’s and removing all the A’s appearing in the original sequence. For example
the sequence

- 0A0000A000A000AO- - -
will be mapped under T, to
---00A0A0A0DA0ACOADAOD- -

Up to this point the transformation rules were completely specified by rather sim-
ple local symbol replacement rules. The next two classes of transformation rules,
require the setting of an initial position and a bilateral parsing for the generation of
the transformed sequences.

V-RULES. Given the sequence of A, choose a A symbol as an initial position,
then to the right and to the left of the chosen A delete batches of O — 1 consec-
utive A’s.

This transformation has the effect of joining together (from the starting position)
Q consecutive [J-runs. The sequence

ATP=Q ... AT AL TP AP A - P01 A
will be mapped to
o APt Ri—L AP PIH IR 0-1 A L L
if the A preceding [1” is chosen as the initial position. Therefore if a A /[J-chain-

code sequence of type (1.5) is specified by the [J-run length sequence {p;}icy a
V-transformation as defined above will produce a sequence of type (1.5) speci-

fied by {pig+n0 + Pig+n0+1 + *++ + Pig+m+1)0—1}nen for a given ip and a given
integer Q > 1.

10 A.M. Bruckstein

H-RULES. Given the sequence of ALJ symbols, choose a starting point between
two consecutive symbols and parse the sequence to the right and left of the start-
ing point, counting the number of [’s seen. After seeing P [’s, replace the
subsequence by one [J followed by the number of A’s encountered while accu-
mulating the P [’s. In counting the A’s encountered, apply the following rules:
(1) when parsing to the right: if the P-th [0 symbol is followed by a A count
this A as well and start accumulating the next batch of P symbols after it and
(2) when parsing to the left: if the P-th [J symbol is preceded by A do not count
this A and start accumulating the next batch of P [I’s immediately.

As an example, consider applying an H-transformation to the sequence below,
with the indicated initial position,

- 0A000AD00O0A 4 D000 AODDOAOOOAOOO AL - - -
and parameter P = 7. We obtain the parsing
- 0A000A000A 4+ OOOO0AD0O0A + DO00ADO00Ad - -
that yields the output
- 0AAATOAANTAA S -
The same initial conditions with parameter P = 3 provide the parsing
---0Aar 0004+ OOOA OOO+ 0A0O0+0A0O0 + DAOO 1+ OAO- -
and an output sequence
r0AM04Ar0O0104404A10A Y-

So far we have defined seven rules for transforming A /0] sequences into new A /]
sequences. The first five of them are uniquely specified in terms of local string re-
placement rules, the last two being classes of transformations that require the choice
of an initial positions for parsing and are further specified by an arbitrarily chosen
integer (Q or P). The main self similarity results are, [6]:

The Self-similarity Theorem

1. Given a AO sequence of type (1.5), the new sequence produced by applying to
it any of the transformations X, S, SP, R, or T, is the chain-code of a digitized
straight line if and only if the original sequence was the chain-code of a digitized
straight line.

2. Ifa AU sequence is the chain-code of a digitized straight line, then the sequences
obtained from it by applying any transformation according to the H-rules, or
V-rules, are also chain-codes of digitized straight lines.

Note that, for the X-, S-, SP-, R-, or T-transformation rules we have stronger
claims than for the classes of H- and R-rules. The reason for this will become ob-
vious from the proof. The digital line properties stated above are self-similarity re-
sults since what we have is that a given chain-code pattern generates, under repeated
applications of various transformation rules, new patterns in the same class: chain-
codes of digitized straight lines.

1 Digital Geometry in Image-Based Metrology 11

Proof We argue that the chain-code transformations defined above are simply re-
encodings of digitized straight lines on regular lattices of points, embedded into
the integer lattice Z>. This observation, combined with the fact that the embedded
lattices are generated by affine coordinate transformations, readily yield the results
claimed. Indeed, choose any two linearly independent basis vectors By and B, with
integer entries and a lattice point (ig, jo) for the origin £2y. Define a regular embed-
ded lattice of points as follows

E* = {(io, jo) +iB1 + jBal(i, j) € Z*}.

A given straight line y = mx + n defines a dichotomy of the points of Z?, but
also of the points of E2 c Z2! If B, and B, are basis vectors, there exists an affine
transformation that maps lattice E? the embedding back into 72, ie., the point
(io, jo) +iB1+ jB2 € E? into (i, j) e 7?2, and the same transformation maps the
line y = mx + n into some new line Y = M X + N, on the transformed plane. The
points (ig, jo) +i By + j B> from the original (x, y)-plane map into (7, j), hence the
transformation from (X, Y) into (x, y) is

()=G) ()

and therefore the inverse mapping from (x, y) to (X, Y) is

0)-ermr [0)-()]>) e

From these transformations the mapping of the line parameters (m,n) into
(M, N) can also be readily obtained in terms of B B, and £2y.

After performing the transformation (1.6) the line ¥ = M X + N can be chain-
coded with respect to the lattice Z? (which is now the image of E?) and the resulting
chain-code will somehow be related to the chain-code of y = mx + n defined on the
original grid Z2. The key observation, proving the results stated, is that the transfor-
mations introduced in the previous section represent straightforward re-encodings of
digitized lines with respect to suitably chosen embedded lattices E2. The choices of
basis vectors that lead to each of the sequence transformations we are concentrating
on are shown in Fig. 1.4 and are analyzed in detail below:

1. The X transformation rule, the interchange of A and [J symbols, is clearly
accomplished by the coordinate-change mapping that takes (i, j) into (J,).
Here By = [0, 1] and B = [1,0] and we have that y = mx + n maps into
Y = (1/m)X — (n/m) under the transformation matrix My = [0 (1)

2. The S-rule which reduces every integer of the {p;} sequence by 1 is induced by
the mapping that considers a [step as a step in the By = [1, 0] direction, but a
combined [JA-step as the unit step in the By = [1, 1]-direction (see Fig. 1.4a).
Therefore, the S-transformation matrix is

=[5 1] =6 7]

and y =mx +n mapsinto Y = Xm/(1 —m) +n/(1 —m).

12 A.M. Bruckstein

B, —re—ro—ro—ro
Y T
2 TBL
- " B=lp)
=0 Pd
(a) The S transformation. (b) The S” transformation.
By lididi;.
3/4 WYY 2%
e VWS LR
R _ AW 5
4 B2 =p,1] Bgl/l'g "B, B, B, B, By (B [1 0=[p. 1]
/g/p:l“ﬁl 0] By=[0,-1]
(c) The R transformation. (d) The T transformation.
deleted vertical gridlines
! Do : Lo B
! Lo : —o—e
i AR A
R NI
1 by by I ST CEEY CE
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . ! By
B, ‘
T ! .—-l;’-i;’-I;j
deleted levels B, "B, B, B, B .:.;:.l”i B, 1
”””””” T B T By Q
R By =001
Q=2
L. By =[P,0
By =[1,0] o 3[)
(e) The V transformation. () The H transformation.

Fig. 1.4 The S, S”, R, T, V and H transformations

3. The adaptive S”-transformation rule which replaces [J” A by A, and (07+! A by
LA, corresponds to choosing By =[1,0] and B = [p, 1] (see Fig. 1.4b). The
transformation matrix is

wo=[s 4]"=(1[5 1)
-6 7]

The line y = mx + n is transformed into ¥ = Xm /(1 — pm) +n/(1 — pm).
Note that, if m < 1, p = | 1/m] and we denote the fractional part of 1/m by
a(=1/m —|1/m]), we have m/(1 — mp) = 1/a > 1. This shows that one SP-
transformation, that is adapted to the run-length of the [J-symbols replaces the
slope m with (1/m — | 1/m])~!. Therefore, repeated application of this adapted
transformation followed by an X-transformation will produce a sequence of
slopes recursively given by my = 1/my_1 — [1/my_1], mo = m. Hence, the se-
quence of adapted “exponents” of the corresponding S?-transformations py =

1

Digital Geometry in Image-Based Metrology 13

[1/my], is the sequence of integers of the continued fraction representation
of my,

1

1

p1+ ! T
P+

mo=
po+

. The transformation rule R maps (17 A into A and [0PT! A into [J. Therefore

By =[p+1,1] and B, = [p, 1] (Fig. 1.4c). The transformation matrix is

Mo—|PTL P _12 1 —p
R 11 -1 p+1
and an original line y = mx +n ismappedinto Y = X[(p+1)m —1]/(1 — pm)+

m/(1 — pm). Note here that in terms of « = 1/m — [1/m] the new slope is
(1 —a)/a, whenm < 1.

. The last of this class of transformations, Rule T, replaces [JA by [’s, and [’s

followed by a [J by [JA’s. We may view this transformation as a sequence
of two maps: the first one replacing 0”T!'A by [J, and (J”? A by A by the
adapted rule R, the second replacing [J by JAOA --- AQ with (p + D’s,
and A by JAOA - .- ALJ with p[1’s. This would imply that we first do an
R-transformation via the matrix

p+1 p
Mgy =)
RT [p p—l]

Concatenating the two transformations we obtain

1 0
M7 =MgrMg = |:1 _1],

which is not surprising. Indeed, JJA is mapped by B; = [1 1] into one [J step,
but a [] followed by another [] will have to be mapped into a sequence of two
steps, By By, the first one being B, = [0, —1] (see Fig. 1.4d). We readily see from
the M7 transformation that y = mx +n maps into ¥ = (1 —m)X — n. Therefore
the slopes of the two lines add to 1. Indeed, “summing up” the two sequences
in the sense of placing a A whenever there exists a A in either the original, or
the T-transformed chain-code, we get the sequence - - - JAOAOAQ- - -, which
represents the lines of the type y = x + n.

Up to this point, all the transformation matrices, whether adapted to the chain-
code parameter p or not, were matrices with integer entries and had the property
that det(M) = =£1. This implied that the matrices had inverses with integer en-
tries and, as a consequence, the embedded lattice E> was simply a “reorgani-
zation” or “relabeling” of the entire integer lattice Z2. In mathematical terms,
unimodular lattice transformations are isomorphisms of the two dimensional lat-
tice. The 2 x 2 integer matrices with determinant +1 (called unimodular matri-
ces) form a well known group called GL(2, Z) and this group is finitely gener-

14 A.M. Bruckstein

ated by the matrices [fl (1)][(1) {][_01 ?] For all such transformations (that are
invertible within GL(2, Z)) the corresponding chain-code modification rules will
yield chain-codes of linearly separable dichotomies, simply because the trans-
formed line Y = M X + N induces a linearly separable dichotomy of E2. There-
fore the self-similarity results may be regarded as two different ways of stating
that the points of the lattice Z? are linearly separated by a given line y = mx +n.
The first class of results presented above becomes obvious in this setting. Fur-
thermore, from the fact that the group GL(2, Z) is finitely generated, it follows
that we have countably many sequence transformations, having the property that
they yield chain-codes of straight lines if and only if the original chain-code is
a digitized straight line, and they are expressible as products of sequences of
basic transformations of the type X, S, and, say T (or one other transforma-
tion).

The situation is somewhat different for the remaining classes of transformation
rules, the V and H-rules.

6. In the embedded lattice setting it is easy to see that a V-rule implies choosing
some origin point £2g and basis vectors of the form By =[1, 0], B, = [0, Q] (see
Fig. 1.4e). In this case, the set E? is properly contained in Z?, i.e., E* C Z? and
the mapping of Eq. (1.6) has fractional entries. Since V-rules imply a decimation
of the horizontal grid lines, the fact that a chain-code of a digitized line provides
a new digitized line, is obvious. However, due to the proper embedding of E?
into Z? these results are not “if and only if” results any more. Indeed, we could
start with a sequence like

- AOAOP ADADP ATIA - -
and any V-transformation with Q = 2 will provide the transformed sequence
AD[?+1A|:|[?+1A|:|[?+1 L

This sequence is obviously a digitized straight line while the original one is ob-
viously not, for any p > 2. Hence, the proper embedding of E? in Z? implies
that digital lines, but not only digital lines, map into digital lines. Note also that
for a V-rule determined by an integer Q, the line y = mx + n is mapped into a
line with slope m/ Q.

7. The H-rules defined imply choosing some origin point £2¢p and decimating this
time the vertical grid lines, by removing batches of P consecutive vertical lines.
The basis vectors are in this case B; = [P, 0] and B, = [0, 1] (see Fig. 1.4f).
In this case too E? is properly contained in Z? and again the mapping (1.6) has
fractional entries, the determinant of [B; B>] being P. Clearly applying an H-rule
to the chain-code of a digital straight line will yield the chain-code of a new line
with slope m P, however this too is only an one-directional implication, not an
“if and only if” result.

We can clearly combine V and H-transformations to yield new and more com-
plicated sequence mapping rules. For example, applying a V and an H-trans-
formation with the same parameter, i.e., P = Q is equivalent to re-encoding

1 Digital Geometry in Image-Based Metrology 15

the digitized straight line at a reduced resolution. Note that if the line passes
through the origin, i.e., we have y = mx, and we apply a chain-code transfor-
mation rule that has the effect of reducing resolution with any P = Q, we must
always obtain exactly the same chain-code since the new slope will be the same,
(m - P)/Q = m. This is a rather nice invariance property of chain-codes of lines
passing through the origin and it is not entirely obvious in a nongeometric Corllj
text.

The fact that a digitized straight line has the above discussed series of invariance,
or “self-similarity” properties, has many immediate consequences.

The result that an R-transformation on a sequence of symbols yields the chain-
code of digitized straight line if and only if the original sequence was itself a straight
line, constrains the run patterns of the symbol occurring in runs. We may have runs
of equal-length runs but one of the run-length must always occur in isolation (oth-
erwise the R-transformation would yield a sequence in which both symbols occur
in runs longer than 1). Furthermore, this must also be the case at further levels of
run-length encoding of the run-length sequences.

Consider the chain-code of a digitized straight line C(m, n). Performing an S-
transformation on it we get a new chain-code with the property that every symbol
in the new sequence of symbols corresponds to, or “contains”, exactly one [sym-
bol from the original chain-code. Therefore parsing the S-transformed code into
subsequences of equal length is equivalent to performing an H-transformation on
the original chain-code. This shows that in any two equal length subsequences of a
straight line chain-code the number of A’s (and consequently also [1’s) may differ
by at most 1. This property shows that self-similarity is in fact a description of uni-
formity in the distribution of the separator symbols (A) in the chain-code sequence.
Indeed the slope of the line m sets the density of these symbols, and the digitization
process ensures that this density will be achieved with a distortion as uniform as
possible. This interpretation of digital straight lines, as well as their connections to
Euclid’s division algorithm (via continued fraction representations) and to a wealth
of other areas as diverse as music [16], billiard trajectories [4], abstract sequence
analysis [3], combinatorics on words [24], and quasicrystals [30, 32], make this
area of research essentially inexhaustible.

From among many interesting consequences of the self-similarity results we have
chosen to mention the above two properties because such results have been obtained
before, using different proofs, in the context of testing whether a finite sequence
of two symbols could be the chain-code of a digitized straight line segment, see,
e.g., [20].

What we have in fact shown is that one can obtain chain-code transformation
rules that characterize linearity, via the group GL(2, Z) of unimodular lattice trans-
formations. As a consequence we can readily “produce” countably many interesting
and new self-similarity properties of linear chain-code patterns.

Using the properties of digital straight lines, we can not only solve the some-
what theoretical issue of locating a half-plane object of infinite extent but we
can also address some very practical issues like measuring the perimeters of gen-

16 A.M. Bruckstein

eral planar shapes from their versions digitized on regular grids of pixels. In-
deed, analyzing the properties of digitized lines made possible the rational de-
sign of some very simple and accurate perimeter estimators, based on classifica-
tions of the boundary pixels into different classes according to the jaggedness of
their neighborhoods. Building upon earlier work of Proffit and Rosen [31], Ko-
plowitz and Bruckstein proposed a general methodology for the design of sim-
ple and accurate perimeter estimation algorithms that are based on minimizing
the maximum error that would be incurred for infinitely long digitized straight
edges over all orientations [21]. This methodology enables predictions of the ex-
pected performance for shapes having arbitrary, but bounded curvature bound-
aries.

1.4 Digital Straight Segments: Their Characterization and
Recognition

The previous section focused on the properties of digitized half planes of infinite
extent but we often discretize polygonal shapes that have finite length straight seg-
ments as boundaries. Such shapes which will yield finite sequences of chain-code
symbols that will be called Digitally Straight Segments (DSS’s). In general it is
of interest to describe a general discretized boundary by partitioning it into a se-
quence of digital straight segments, effectively producing a “polygonal pre-image”
of the boundary on which a variety of measurements can be performed. In order to
describe a very efficient and easy to grasp algorithm for partitioning a chain-code
sequence into discrete straight portions we need to formalize the Hough-domain,
or dual-space “pre-image” concept. It is well known that a point in the plane de-
fines a pencil of lines that pass through it, i.e., (xo, yo) € R? corresponds to the lines
y = mx + n that obey yg = mxo + n, and this is an equation defining a line in the
Hough-space where the coordinates are (m, n). When a straight Black/White bound-
ary is digitized by point sampling, the grid points that are on the border between the
black region (£p (i, j) = 1) and the white one (£p (k,/) = 0) correspond to lines in
the Hough-plane that delineate the (m, n) domain to which the straight line of the
boundary belongs. Considering Fig. 1.5 we have that the lines corresponding to a
vertical border of the discretized line, i.e., the pixels (i, j), (i, j + 1) for which:
{¢ép(i, j) =1,Ep(i, j + 1) = 0} are the parallel lines in the (m, n)-plane defined
by
i+j)=mi+n = n=—-im+(+1)
{] =mi+n = n=—im+j

Similarly, the next vertical pair of border pixels for which {{p(i + 1,) =1,
Ep(@i + 1, j 4+ 1) = 0} correspond to the (m, n)-plane lines given by the parallel
lines:

G+D=m@+D+n = n=-0+Dm+G+1)
j =m(i+1)4+n = n=—0G+1)m+j

1 Digital Geometry in Image-Based Metrology 17

(z,y) — plane

(t,7+1) (i+1,5+1)

Yy =mz+n

(i+1,7)

+

<.

H
S
.

+

-

j]
i+1i+1 i

Fig. 1.5 Chain-code step and the corresponding Hough-plane geometry

Since clearly the pre-image border line intersects the segments [(i, j), (i, j + 1)],
and [+ 1,), (@ + 1, j + 1)] the (m, n) parameters of the pre-image line belong
to the intersection of the bands defined by the two pairs of parallels corresponding
to the border pixels. The “locale” for the pre-image has been therefore restricted
to a parallelogram by the discrete data that corresponds to one step of the digitized
boundary’s chain-code. Since this process can be repeated for each chain-code sym-
bol in the description of the discretized boundary, we have that each new chain-code
symbol requires the intersection of the previously delineated “locale” for the “pre-
image line” with a pair of parallel lines in the (m, n)-plane. We therefore have the
following recursive algorithm for determining the “pre-image line locale”, which is
also, in fact, a process for determining digital straight segment portions of a chain-
code:

Digital Straight Segment Detection Process

1. For each symbol of the 4-directional chain-code intersect the uncertainty region
or locale in the (m, n)-plane with the corresponding band in the Hough(dual)-
plane.

2. While the result is not empty there exists a linear-pre-image for the chain-coded
portion of the boundary, hence the chain-code portion is a digital straight seg-
ment.

A careful analysis of how the intersections of chain-code bands look in the Hough
plane reveals a miraculous fact: the locales are always regions defined by at most 4
boundary lines. This is a marvelous result due to Leo Dorst [12], which was given
a simple proof by Douglas Mcllroy in [25]. The result is indeed marvelous because
it means that the recursive intersection process that the above described algorithm
for detecting digital straight segment will only take O (1)-time, requiring the inter-
section of a four-sided polygon with two parallel lines. And the situation is even
better: the points defining the locale polygon have rational coordinates hence the
DSS detection process involves updating 8 integers for each chain-code symbol
parsed, see [23]. Therefore we have a beautifully simple O (1)/(chain-code-step)

18 A.M. Bruckstein

recursive digital straight segment detection process. Furthermore, starting the al-
gorithm on an arbitrary chain-coded border we can very efficiently parse it into
DSS-segments. Hence, given a shape digitized on Z?, we can determine a polyg-
onal approximation for the shape by parsing the digitized boundary into DSS seg-
ments, and for each of these we have position and slope estimates readily provided
by their Hough-plane [(m, n)-plane] “locales”. In particular the recursive O(1)-
per boundary pixel algorithm for detecting digital straightness described above,
due to Lindenbaum and Bruckstein [23], enables parsing general, curved object
boundaries into digitally straight segments in order to estimate the pre-image ob-
ject’s perimeter as a sum of the lengths of the line-segments so-detected. In terms
of the methodology discussed in [21] this algorithm yields zero error for digital
straight edges of infinite extent at all orientations, and hence should be the best
perimeter estimator ever, if the criterion would be performance on straight bound-
aries.

1.5 Digital Disks, Convex and Star-Shaped Objects

From the realm of half-plane objects and digital straight lines we could move to
either infinite extent regions that have more complex boundaries (say parabolas, hy-
perbolas or some periodic functions along a principal direction) or to the analysis
of finite extent objects like polygons, disks and other interesting shapes. Some work
has indeed been done on detecting polygonal preimages from their digitized ver-
sions, and, as we have seen, a good algorithm for parsing a jagged boundary into
digital straight segments turns out to be a crucial ingredient in solving various issues
regarding the metrology of such objects.

Suppose next that we have the prior information that the objects discretized are
disks of various locations and sizes. Then the metrology question arising naturally
is: how precisely can we determine the location of a disk and its radius. Considering
the digitization by point sampling, as discussed above, given a digitized image of
black and white pixels, we know that if a certain point in the plane is the center of a
disk of unknown radius, this point will necessarily be closer to all black grid points
than to any white grid point. Hence the locus of all possible points in the plane closer
to all black points than to any white points is the locale of possible disk centers, and
its size will quantify our uncertainty in locating the object in the preimage plane. It
is interesting to note that this locale can be found without knowledge on the radius,
which will still need to be estimated. It turns out that the locale as defined above is
a well-known concept in computational geometry, and it is known that it is a convex
region in the plane. Efrat and Gotsman have done a careful analysis of the problem
and produced an O(Rlog R) algorithm to determine the locale, where R is the ra-
dius of the disk. We refer the interested reader to the paper [13] for details. Note
again that the locale we are talking about is independent of the radius parameter.
Had we prior knowledge on the exact radius, the location of the disk center could be
determined by intersecting all disks of radius R around the black grid points with

1 Digital Geometry in Image-Based Metrology 19

all the complements of disks or radius R around the white (uncovered) grid points.
The resulting intersection locale is generally not a convex shape, due to the precise
knowledge of the radius.

For general convex shapes the question of determining the location, area and
perimeter cannot be addressed in any generality. The digitized version of a convex
shape is a set of black grid points on a background of white ones. As a union of
square pixels the digitized shape will not be convex. Hence much work was done
addressing the question whether there is a good definition of convexity for discrete
objects [20, 37]. A variety of proposals were made and can be found in the liter-
ature. The metrology questions however, in all cases remain: determine with best
precision the location (first order moments), orientation (second order moments)
and other metric properties, like area (zeroth order moment) and perimeter of the
shape. These questions, too have received some attention. It turns out that comput-
ing the moments of the black grid points yields good estimates for the correspond-
ing continuous quantities, and more refined, boundary estimation procedures (say,
based on polygonalization of the jagged boundary via an efficient digital straight
segment detection, as discussed above) do indeed provide improved estimates but
the improvement needs to be carefully weighed against the increased complexity
involved.

Among the many procedures that propose polygonal approximations to pre-
images based on the discrete grid points that were covered by the shape, and also
based on the ones that were not covered, one stands out in elegance and usefulness:
the minimum perimeter polygon that is enclosing all black (covered) points and ex-
cludes all white (uncovered) ones. This minimum perimeter polygon turns out to be
the relative convex hull of the connected graph of sampled black points with respect
to the white ones. Here we assume that sampling is dense enough so that a con-
nected preimage shape ensures that the black pixels form a 4-connected shape! The
relative convex hull can be computed easily and may serve as a good approximation
for preimages for all metrology purposes.

So far we talked about disks and convex objects. The next level of complexity in
planar shapes are the so called star-shaped objects. These are defined as the shapes
that have a “kernel region” inside them so that from any point in the kernel the
entire boundary of the shape can be “seen”, i.e., a line from the chosen point to any
boundary point will lie entirely inside the shape. It is easy to see that this definition
generalizes convexity in a rather natural way and that the kernels must be convex
regions. Determining star-shapedness of a planar shape is not a too difficult task
for polygons and for spline-gons, and the algorithms for doing this rely on locating
and using the inflection points on the boundary, and intersecting the regions in the
plane from where the convex boundary regions are seen, see [5]. As with the notion
of convexity, determining digital star-shapedness posed a series of special problems
that needed careful analysis. This was the topic of a paper by Shaked, Koplowitz
and Bruckstein, and there it was shown that the relative convex hull, or minimal
perimeter polygon of the grid points covered by the shape with respect to the ones
that remained uncovered, provides a convenient computational way to define and
algorithmically determine digital star-shapedness, see [33].

20 A.M. Bruckstein

1.6 Shape Designs for Good Metrology

Up to this point we have discussed ways to analyze and measure planar shapes when
seen through the looking glass of grid probing, or point-sampling discretization. The
classes of shapes were assumed given in some, perhaps parameterized form, and we
dealt with questions about recovering their various features and parameters, or about
measuring their size and perimeter and determining their location with the highest
precision possible.

When considering such issues, a further question that can be posed is the fol-
lowing: design planar shapes or collections of shapes that will interact with the
discretization process in such a way that the quantities we need to measure will be
very easily read out in the discretized images we get. Could we design an object in
the plane (that can be a union of continuous binary shapes), so that digitization of
this object translated to various locations, will yield black and white patterns on the
(discretization) grid that clearly exhibit, say in a binary representation, the X and Y
translation values up to a certain desired precision?

Interestingly, recently a pen-like device was invented and advertised, that has the
following feature: it automatically computes with very high precision the location
of its tip on any of the pages of a paper pad by looking at a faint pattern of dots that
is printed on these sheets of paper. The pattern of these dots is so designed that the
image obtained on any small region as seen by the pen near it’s tip (with the help of
a tiny light detector array) uniquely and easily locates the pen-tip’s position on any
of the pages of the pad, see [1].

This example shows that it is good practice to think about designing shapes to
have such “self-advertising” properties and this approach could provide us surpris-
ingly efficient and precise metrology devices. This problem was posed by Bruck-
stein, O’Gorman, and Orlitsky, at Bell Laboratories, already in 1989, with the aim
of designing planar patterns that will serve as location marks, or fiducials on printed
circuit boards. The need for location or registration fiducials in printing circuit
boards and in processing VLSI devices is quite obvious. When layers of printing
and processing are needed in the manufacturing operation, the precision in perform-
ing the desired processes in perfect registration with previously processed layers is
indeed imperative. The work described in [7] proves that there exists an information
theoretic bound that limits the location precision for any shape that has an spatial
extent of say A x A in pixel-size. Such a shape, when digitized will provide for us
about A? meaningful bits of information, via the pattern of black and white pix-
els in the digitized image. This number of bits can only effectively encode 24%-1
different locales, and hence the precision to which we can refine a region one pixel-
square in size has a maximal area that must exceed 1/ (2A2_1). If we want balanced
X and Y axis precision, we can only locate the pattern to a subpixel precision of
1/ [Z(Az_l)/ 2]. This is the best precision possible assuming optimal exploitation of
the real estate of an A x A area, assigned to the location mark. The important is-
sue that was further settled in [7] is the existence of a fiducial pattern that indeed
achieves this precision. The pattern is so cute that we exhibit it in Fig. 1.6.

1 Digital Geometry in Image-Based Metrology 21

Fig. 1.6 An optimal 2D Optimal Location Mark
fiducial of area 3 x 3 pixels e

Rough
Location Mark —»|

Looking at this fiducial pattern it becomes obvious what it does. It is indeed a
continuous 2D (analog) input that employs the point sampling discretization pro-
cess to compute its X and Y displacement by providing a binary read-out of the
subpixel location of the fiducial within the one pixel to which it can readily be lo-
cated using the left lowest grid-point (the “rough location” mark) covered by the
shape. This leftmost bit of information is also the reason we can only use A — 1
bits for subpixel precision, i.e., for cutting the one pixel precision (provided by the
“rough location” bit) into locale slices. This process turns the fiducial and the dis-
cretization process into a nice “analog computer” that yields the displacements in
the X and Y direction easily, and achieves the highest precision in this task that is
possible based on the available data. The analysis provided in [7] goes even fur-
ther. The optimal fiducials turn out to require highly precise etchings on the VLSI
or circuit board devices and hence might be difficult to realize in practice. Hence
there is a need to analyze other types of fiducial shapes that achieve suboptimal ex-
ploitation of the area, however can provide good location accuracies. For rotational
invariance, circularly symmetric shapes turn out to be necessary, and therefore bull-
eye fiducials were also proposed in [7] and further analyzed in [13, 34]. The main
message of the theoretical analysis provided in [7] was that a self location fiducial
should have lots of edges that carry information on their location when seen through
a digitization camera. Recently, the semiconductor industry used this insight in re-
designing the standard registration fiducials. This was the result of a detailed study
of novel, robust grating mark fiducials, which greatly increased precision and re-
peatability. The study, done by us in conjunction with a team of design engineers at
KLA-Tencor, a leading manufacturer of vision based process inspection machines
for semiconductor industry, proposed fiducial marks as shown in Fig. 1.7b to re-
place the traditional box in a box mark shown in Fig. 1.7a. The traditional fiducial
was clearly not optimal in terms of exploiting the wafer area allocated to it. For a
detailed description of the optimized overlay metrology marks that were adopted by
industry and the theoretical analysis that led to their design, see [2].

The most interesting question that remains to be addressed here is the following:
can we invent shapes that provide other metrological measures as easily as the above
discussed example advertised its location?

22 A.M. Bruckstein

Exclusion
Zone

(a) Box in Box fiducial. (b) The new standard fiducial.

Fig. 1.7 Overlay metrology fiducials (from [2])

1.7 The Importance of Being Gray

So far we have discussed the case of binary continuous images being point-sampled
into matrices of zeros and ones, or Black and White pixels. However the real world
is far richer in possibilities and complications.

First of all, point sampling is not a good model of the imaging process as per-
formed by real life cameras. Those carry out, at each sensor level, a weighted in-
tegration of the incoming light from the continuous input pattern. This integration
happens around each grid point, and the pixel influence region may be assumed cir-
cular. The integration yields, at each grid point, values that continuously vary from
a lowest value for white (no object) input over the pixel influence region to highest
value that corresponds to having the input object cover the entire area of integration.
The result of this integration is then transformed into a discrete value encoded by
several bits, via quantization. Therefore even for binary preimages, we get at each
grid point a pixel value that is the quantization of a continuous variable proportional
to the fraction of the pixel influence region that is covered by the input object.

Furthermore we may also consider the advantages of using non-binary, gray-
scale of color pre-images. The combination or more realistic sampling and quanti-
zation processes with the use of gray levels in preimages open for us a great variety
of further possibilities. As an example, Kiryati and Bruckstein have analyzed, fol-
lowing a question posed by Theo Pavlidis, the trade-off between spatial resolution
and number of gray levels when the aim is to get as much information as possible on
a class of binary pre-images that comprise polygonal shapes. The conclusion of this
research was that “Gray Levels Can Improve the Performance of Binary Image Dig-
itizers”, see [19]. The paper introduces a measure of digitization-induced ambiguity
in recovering the binary preimage, hence it is quite relevant to metrology under such

1 Digital Geometry in Image-Based Metrology 23

sampling conditions. It is then proved that, if the sampling grid is sufficiently dense
(i.e., the sampling rate is high!) and if the pixels would provide us exact gray-levels
rather than quantized values, error-free reconstruction of the binary pre-image is
possible. This is not too surprising, however, when the total bit budget for the dig-
itized image representation is limited (i.e., the sampling rate and the quantization
depth are related, both being finite) the bit allocation problem that arises shows that
the best resource allocation policy is to increase the gray level quantization accu-
racy as much as possible, once a sufficiently dense spatial sampling resolution has
been reached. Therefore once we have a grid dense enough to ensure that all lin-
ear borders of the binary input image polygonal shapes can adequately be “seen”
in the sampled image, all the remaining bit resources should go towards finer gray
level quantization. The question, which prompted this research asked to explain why
gray-level fax machines at low resolution yield nicer images than fax machines at
higher resolution, even for binary document images. It was clear that some sort of
anti-aliasing effect is in place, however [19] proved quantitatively that even in terms
of a well-defined metrology error measure, the gray-levels help considerably more
than increased spatial resolution.

Imagine next that we allow gray level input images too. In this case we shall cer-
tainly have, in conjunction with multilevel quantizations at each pixel much more
information for location and various other measurements. A gradual boundary in the
input image, or equivalently an area integration sensor providing a quantized multi-
level pixel value at each grid-point, will transform the issue of locating a half plane
into a problem of locating precisely several parallel digital straight edges, when they
are simultaneously sampled. Such richness of detail will certainly dramatically re-
duce the size of the uncertainty locales, and enable us to design a wealth of improved
location and orientation fiducials in the future.

The conclusion therefore is that gray levels matter, they are good for us! And the
last word on these issues certainly has not been said yet. For some very nice recent
work along these lines see [35].

1.8 Some Further Open Questions

As was mentioned in the previous sections, there are still many interesting and open
digital geometry and metrology problems. Although digital straight edges did re-
ceive a lot of attention from digital geometry researchers we still expect to see
complete theories pertaining to the sampling and quantization of linear non-step
borders in gray level preimages. If a straight border with sigmoidal gray level pro-
file is sampled by some type of area sampling (with pixels with circularly symmetric
integration regions) the result will be a border-line with quantized gray levels that
will look like a nicely anti-aliased line produced by a computer graphics algorithm.
There are interesting digital line properties of the type we discussed in Sect. 1.3 em-
bedded in the resulting image and these will surely be carefully studied sometime
in the future.

24 A.M. Bruckstein

Along these lines one could also study a class of location fiducials based on
shapes with multiple parallel edges, or edges with an a priori known pattern. Such
robust fiducials should enable “the design” of desired uncertainly locales for high
precision registration, may even be insensitive to pixel size variations.

Another interesting question on self-location that may be subject to further re-
search is the design of binary self-location patterns in the plane. This problem was
partially addressed in the paper [15], the pattern proposed being a separable bit-
pattern that is generated as the outer (binary) product of two one-dimensional de
Bruijn sequences [28] that have the one-dimensional self-location property. Such a
pattern can be shown to be robust to some read-out errors but clearly it has a bit too
much redundancy built into it. The planar pattern used by the Anoto pen we men-
tioned before, [1], is an “analog” point pattern that is based on encoding location in
geometric constellations of points near grid locations that carry the information on
the absolute coordinates of the grid point. It seems that a binary array version of the
problem has not been discussed before the work reported in [15].

The problem of length estimation of discretized boundaries was the subject of
many papers, as seen in [21, 35] and the references therein. However even this topic
was not yet completely exhausted. It is an interesting challenge to design perime-
ter estimators that will work in conjunction with corner detectors and curvature
estimators, perhaps based on digital circle detectors [10], to yield more and more
precise length measurements. The design here should not be aimed to get precise
results on digital straight lines but rather on various types of continuous curves with
breakpoints and corners, and the ranges of curvatures that are expected to appear in
practice.

As we discussed in the previous section, subject of bit allocation tradeoff’s be-
tween resolution and quantization has only been superficially touched upon so far
[17, 19, 35]. Although the initial conclusions are that multilevel quantization pro-
vides quite a lot of information in binary preimage digitization, a similar study
should be made for the case of gray level shape boundaries and gray level images
of various types. In this context one might even ask what should be the design of
the gray-scale profile of planar shape edges to enhance the edge location and length
estimation performance.

We have not discussed in this paper important questions of shape comparison
and recognition, of shape decompositions and isoperimetric inequities for digitized
shapes. These topics all rise very interesting research questions that are recently
beginning to be addressed, see, e.g., [8, 36]. Therefore we may expect the area of
digital geometry to remain an active and exciting subject of research in the future.

1.9 Concluding Remarks

This paper surveys research that dealt with digital geometry and metrology issues.
As is clear form the topics discussed above and the list of references below, metrol-
ogy tasks require deep and interesting excursions into discrete geometry, motivating

1

Digital Geometry in Image-Based Metrology 25

the study of the pixelized world and importing from it important insights and re-
sults. More on the vast subject of discrete geometry can be found in several books

[9,

11, 20, 22, 26, 27, 29].

Acknowledgement Many thanks to Ms. Yana Katz for preparing this paper for publication.

References

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

http://www.anoto.com/the_paper_3.aspx

Adel, M., Ghinovker, M., Golovanevsky, B., Izikson, P., Kassel, E., Yaffe, D., Bruckstein,
A.M., Goldenberg, R., Rubner, Y., Rudzsky, M.: Optimized overlay metrology marks: theory
and experiment. IEEE Trans. Semicond. Manuf. 17(2), 166—179 (2004)

Allouche, J.P., Shallit, J.: Automatic Sequences. Cambridge University Press, Cambridge
(2003)

Baryshnikov, Y.: Complexity of trajectories in rectangular billiards. Commun. Math. Phys.
174(1), 43-56 (1995)

Bornstein, R., Bruckstein, A.M.: Finding the kernel of planar shapes. Pattern Recognit. 24(11),
1019-1035 (1991)

Bruckstein, A.M.: Self-similarity properties of digitized straight lines. Contemp. Math. 119,
1-20 (1991)

Bruckstein, A.M., O’Gorman, L., Orlitsky, A.: Design of shapes for precise image registra-
tion. IEEE Trans. Inf. Theory 44(7), 3156-3162 (1998). AT&T Bell Laboratories Technical
Memorandum, 1989

Bruckstein, A.M., Shaked, D.: Crazy-cuts: dissecting planar shapes into two identical parts.
In: IMA Mathematics of Surfaces XIII Conference, The University of York, UK, September
7-9, 2009

Chassery, J.M., Montanvert, A.: Géométrie Discréte en Analyse d’Images. Hermes, Paris
(1991)

Coeurjolly, D., Gérard, Y., Reveilles, J.P., Tougne, L.: An elementary algorithm for digital arc
segmentation. Discrete Appl. Math. 139, 31-50 (2004)

Davis, L.S. (ed.): Foundations on Image Understanding. Kluwer Academic, Dordrecht (2011).
(The Azriel Rosenfeld Book)

Dorst, L.: Discrete straight line segments: parameters, primitives and properties. Ph.D. thesis,
Technological University Delft (1986)

Efrat, A., Gotsman, C.: Subpixel image registration using circular fiducials. Int. J. Comput.
Geom. Appl. 4, 403-422 (1994)

Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron.
Comput. EC-10, 260-268 (1961)

Giryes, R., Shuldiner, D., Gordon, N., Holt, R.J., Bruckstein, A.M.: Simple and robust binary
self-location patterns. IEEE Trans. Inf. Theory (2012). doi:10.1109/T1T.2012.2191699
Gomez-Martin, F., Taslakian, P., Toussaint, G.: Structural properties of euclidean rhythms. J.
Math. Music 3(1), 1-14 (2009)

Gustavson, S., Strand, R.: Anti-aliased euclidean distance transform. Pattern Recognit. Lett.
32, 252-257 (2011)

Havelock, D.I.: The topology of locales and its effects on position uncertainty. IEEE Trans.
Pattern Anal. Mach. Intell. 13(4), 380-386 (1991)

Kiryati, N., Bruckstein, A.M.: Gray levels can improve the performance of binary image dig-
itizers. CVGIP, Graph. Models Image Process. 53(1), 31-39 (1991)

Klette, R., Rosenfeld, A.: Digital Geometry—Geometric Methods for Digital Picture Analy-
sis. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kauf-
mann, San Francisco (2004)

26

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A.M. Bruckstein

Koplowitz, J., Bruckstein, A.M.: Design of perimeter estimators for digitized planar shapes.
IEEE Trans. Pattern Anal. Mach. Intell. PAMI-11(6), 611-622 (1989)

Latecki, L.J.: Discrete Representation of Spatial Objects in Computer Vision. Springer, Berlin
(1998)

Lindenbaum, M., Bruckstein, A.M.: On recursive, O (N) partitioning of a digitized curve into
digital straight segments. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 949-953 (1993)
Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge
(2002)

Mcllroy, M.: A note on discrete representation of lines. AT&T Bell Labs Tech. J. 64(2), 481—
490 (1984)

Mcllroy, M.D.: Number theory in computer graphics. Proc. Symp. Appl. Math. 46, 105-121
(1992)

Melter, R.A., Rosenfeld, A., Bhattacharya, P. (eds.): Vision Geometry. Contemporary Mathe-
matics, vol. 119. AMS, Providence (1991)

Mitchell, C., Etzion, T., Paterson, K.G.: A method for constructing decodable de Bruijn se-
quences. IEEE Trans. Inf. Theory 42(5), 1472-1478 (1996)

Pavlidis, T.: Algorithms for Graphics and Image Processing. Comput. Sci. Press, Rockville
(1982)

Pleasants, P.A.B.: Quasicrystallography: some interesting new patterns. In: Elementary and
Analytic Theory of Numbers, 2nd edn. Banach Center Publications, vol. 17, pp. 439-461.
PWN, Warsaw (1985)

Proffit, D., Rosen, D.: Metrication errors and coding efficiency of chain coding schemes for
the representation of lines and edges. Comput. Graph. Image Process. 10, 318-332 (1979)
Senechal, M., Taylor, J.: Quasicrystals: the view from Les Houches. Math. Intell. 12(2), 54-64
(1990)

Shaked, D., Koplowitz, J., Bruckstein, A.M.: Star-shapedness of digitized planar shapes. Con-
temp. Math. 119, 137-158 (1991)

Shih, S.W., Yu, T.Y.: On designing an isotropic fiducial mark. IEEE Trans. Image Process.
12(9), 1054-1066 (2003)

Sladoje, N., Lindblad, J.: High-precision boundary length estimation by utilizing gray-level
information. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 357-363 (2009)

Vainsencher, D., Bruckstein, A.: On isoperimetrically optimal polyforms. Theor. Comput. Sci.
406, 146-159 (2008)

Voss, K.: Discrete Images, Objects, and Functions in Z". Springer, Berlin (1991)

Chapter 2
Provably Robust Simplification of Component
Trees of Multidimensional Images

Gabor T. Herman, T. Yung Kong, and Lucas M. Oliveira

Abstract We are interested in translating n-dimensional arrays of real num-
bers (images) into simpler structures that nevertheless capture the topologi-
cal/geometrical essence of the objects in the images. In the case n = 3 these struc-
tures may be used as descriptors of images in macromolecular databases. A fore-
ground component tree structure (FCTS) contains all the information on the rela-
tionships between connected components when the image is thresholded at various
levels. But unsimplified FCTSs are too sensitive to errors in the image to be good
descriptors. This chapter presents a method of simplifying FCTSs which can be
proved to be robust in the sense of producing essentially the same simplifications
in the presence of small perturbations. We demonstrate the potential applicability
of our methodology to macromolecular databases by showing that the simplified
FCTSs can be used to distinguish between two slightly different versions of an
adenovirus.

2.1 Introduction

High-level structural information about macromolecules is now being organized into
databases. These include EM maps (three-dimensional grayscale image arrays ob-
tained by reconstruction from electron microscopic data) of macromolecular struc-
tures. The large size of these image arrays, the arbitrary position and orientation of
the macromolecule in the array, and the possibility of non-linear stretching of the

G.T. Herman (X)) - L.M. Oliveira

Computer Science Ph.D. Program, Graduate Center, City University of New York,
365 Fifth Avenue, New York, NY 10016, USA

e-mail: gabortherman@yahoo.com

L.M. Oliveira
e-mail: Imoliveira@gmail.com

T.Y. Kong

Computer Science Department, Queens College, City University of New York,
65-30 Kissena Boulevard, Flushing, NY 11367, USA

e-mail: ykong@cs.qc.cuny.edu

V.E. Brimkov, R.P. Barneva (eds.), Digital Geometry Algorithms, 27
Lecture Notes in Computational Vision and Biomechanics 2,
DOI 10.1007/978-94-007-4174-4_2, © Springer Science+Business Media Dordrecht 2012

28 G.T. Herman et al.

range make standard methods of comparison between database entries infeasible.
There is a need for simple robust descriptors that capture the topological/geometrical
essence of the macromolecules in the images. We believe that appropriately simpli-
fied foreground component tree structures may be suitable for this purpose.

Foreground component trees are well known representations of grayscale images.
Given a grayscale image / : § — R whose domain 8 is connected, the foreground
component tree of / is a rooted tree whose nodes are the connected components of
superlevel sets of I. These nodes have sometimes been called maximum intensity
extremal regions [6]. A node ¢’ is an ancestor in the tree of a node c¢ if and only if
¢/ D c. The tree can be efficiently constructed using an algorithm which processes
the elements of & in decreasing order of their graylevels and uses Tarjan’s union-find
algorithm [11] to build the tree from the bottom up. For details, see [1, Alg. 4.1] or
[7, Alg. 2]. The latter paper also describes applications of foreground component
trees to image processing and gives a bibliography of some relevant literature.

Two related representations of images (contour trees and Oth persistence dia-
grams) will be described in Sect. 2.7 when we discuss research problems suggested
by our work.

Unsimplified foreground component trees are too sensitive to errors in the image
to be good descriptors. Accordingly, this chapter presents a new three-step method
of simplifying these trees that is provably robust, in the sense that the method pro-
duces essentially the same simplified trees when the image is slightly perturbed.
This property of our method is precisely stated in our main result, Theorem 1.

Methods of simplifying component trees to suppress features that are likely due
to noise or artifacts have previously been considered (see, e.g., [7, 10]). But we
are not aware of any previous work in which a tree simplification method has been
proved to have a robustness property of the kind stated in Theorem 1.

We believe that the simplified trees produced by our method will be useful image
descriptors for the identification and classification of macromolecules. As evidence
of this we provide a sample biological application in which they are used to differ-
entiate two versions of an adenovirus.

2.2 Foreground Component Tree Structures (FCTSs)

We use the term adjacency relation to mean an irreflexive symmetric binary relation
(i.e., a set k of ordered pairs such that if (a, b) € k then a # b and (b, a) € k). The
members of the pairs that belong to any adjacency relation we are using will be
called spels. (As in, e.g., [5], “spel” is an abbreviation of “spatial element”, and we
think of spels as generalizations of pixels and voxels.) We use the term grayscale
image or, more briefly, the term image, to mean a real-valued function whose domain
is a nonempty set of spels. If / : § — R is any image then for any s € § we may refer
to the real value I(s) as the graylevel of s in I.

In the practical work described in Sect. 2.6, we use the “6-adjacency” relation [5,
p. 16] on Z3 as our adjacency relation, and use grayscale images whose domain is
the finite set {(x, y,z) € Z* |0 <x <274, 0 <y <274, 0 <z <274}.

2 Provably Robust Simplification of Component Trees 29

\Y/

0

Fig. 2.1 A rooted tree in which the critical nodes have been circled

Let « be an adjacency relation. We say that two disjoint sets of spels 8; and 8;
are k-adjacent if there exist s € 8 and s, € 8, such that (s, s2) € k. We call a
sequence sq, ...,s; of [+ 1 spels a k-path if [=0 orif l > 1 and (s;, si4+1) € k for
0 <i <. We say that a set 8 is k-connected if for all s, s’ € 8 there exists a «-path
50, ...,5 suchthat so=s,s5;, =s",ands; € Sfor0<i <.

Let7:8 — R be any image, let T € R, and let s € 8. Then C, (s, I,) will denote
the set of all s” € 8 for which there exists a «-path sg, ..., s; such that so = s, 57 = s/,
and I(s;) > 7 for 0 <i <. Note that C, (s, I,t) =@ if T > I(s), and s € C, (s, 1, T)
if T <I(s). We write C, (s, I) to denote the set Cy (s, I, I(s)). Readily, if t € C, (s, I),
then I(¢) > I(s) and either C,(¢,1) = Ci(s,I) or Ci(t,I) C Ci(s,I) according to
whether I(t) = I(s) or I(t) > I(s).

We assume the reader is familiar with the concept of a rooted tree (as defined in,
e.g., [3, Appendix B.5.2]). Let .7 be any rooted tree. We write Nodes(.7") to denote
the (finite) set of all nodes of .7, write root(.7) to denote the root of .7, and write
Leaves(.7) to denote the set of all leaves of .7.

Recall that if u € Nodes(.7) and v is a node of the subtree of .7 that is rooted
at u, then u is said to be an ancestor of v in .7, and v a descendant of u in .7. We
write u X vV or v > & u to mean that u, v € Nodes(.7) and u is an ancestor of v
in . We write u <z v Or v > 5 u to mean that u <z vbut u# v. If u < 5 v then
u is said to be a proper ancestor of v in .7, and v a proper descendant of u in 7.

For v € Nodes(.7), we write Children & (v) to denote the set of all the children
of vin .7, and if v # root(.7") then we write parent 5 (v) to denote the parent of v
in 7. Anode v of 7 is said to be critical if |Children 5 (v)| £ 1; thus v is a critical
node if and only if either v € Leaves(Z") or |Children s (v)| > 2. In Fig. 2.1, the
critical nodes are circled.

Let x be any adjacency relation. Then a k-foreground component tree structure
or k-FCTS is a pair (7, £) for which there exists a collection € of nonempty finite
k-connected sets of spels such that the following four conditions hold:

30 G.T. Herman et al.

Fig. 2.2 The tree of the {1,2,3,4,5,6,7.8} _
FCTS that is defined in _" X .
Example 1 {1,2,3,4,5}

{1,2) {45} {8)

. Yeee
. Forallu,v e C, if u 2 vand v 2 u then the sets u and v are disjoint and are not
k-adjacent.
3. £ is areal-valued function on € such that, for all u, v € C, £(u) < £(v) whenever
u D v. (For each v € C we call £(v) the level of v.)
4. 7 is the rooted tree such that Nodes(.7) = € and, for all u,ve C, u <o v if
and only if u 2D v.

N =

Condition 1 is equivalent to the condition that € have an element which is a
superset of every element of C. Moreover, since every element of C is required to
be a nonempty finite «-connected set, condition 1 implies that | J € is a finite «-
connected set. Since | J € is finite, C can only be a finite collection.

If € is any collection of nonempty finite x-connected sets that satisfies condi-
tions 1 and 2, and £ any function that satisfies condition 3, then there will exist a
unique rooted tree .7 that satisfies condition 4 (so that (7, £) is a k-FCTS); the
root of this tree will be [C.

Example 1 Let k be the adjacency relation on the integers such that (n1,n3) €
k if and only if |n; — np| = 1. Let C be the following collection of six sets:
{{1,2,3,4,5,6,7,8},{1,2,3,4,5}, {1, 2}, {4, 5}, {7, 8}, {8}}. Then it is readily con-
firmed that C satisfies conditions 1 and 2. Now let £ : € — R be defined by
£({1,2,3,4,5,6,7,8}) =12, £({1,2,3,4,5}) =13, £({7,8}) = 16, and £({1,2}) =
£({4,5}) = £({8}) = 18. Then it is readily confirmed that ¢ satisfies condition 3.
Thus there is a «-FCTS (7, ¢) for which Nodes(.7) = C. The tree .7 of this
k-FCTS is shown in Fig. 2.2.

If §is a k-FCTS (7, £), then we may use § to mean the rooted tree .7 in our ter-
minology and notation. As examples of this, nodes and edges of .7 may be referred
to as nodes and edges of §, the notations Nodes(F), root(:§), and Leaves(§) will
have the same meanings as Nodes(.7), root(.7), and Leaves(.7), and parentz (v)
will have the same meaning as parent 5 (v) for any v € Nodes(.7) \ root(.7).

Let 8 be any nonempty finite x-connected set of spels. Then we associate each
image I : § — R with the x-foreground component tree structure FCTS, (1) that is
defined by FCTS, (I) = (77, £1), where:

(1) Nodes(.77) = {C,(s,I) | s € 8} and, for all u, v € Nodes(.7}), we have that
u=<gvifandonlyifu>v.

2 Provably Robust Simplification of Component Trees 31

03 1414121414101212 6 6 14148 910 1 7 7 1212 6 6 1212 6 6 18 18 1318 18 12 16 18 3

Vo

1]

]

I
L@ N oan s W= o

o

o
ey
-

I
=
W

f=14
£=15
f=16
£=17
f=18
f=19
f=20

Fig. 2.3 A grayscale image whose domain is a row of 37 pixels is shown at the fop. Writing /
to denote this image, the numbers above the image show the graylevel /(p) of each pixel p in
the domain; for example, the graylevels of the first, second, third, and fourth pixels on the left
are respectively 0, 3, 14, and 14. The «-FCTS of the image (i.e., FCTS, (1)) is shown below the
image. Here « is the adjacency relation such that (p1, p2) € « justif p; and p; are pixels that share
an edge. Writing (7, £) for this x-FCTS, each node of the tree .7 is a x-connected set of pixels
whose elements are indicated in the figure by the horizontal bar which runs through that node. For
example, the root node vy of .7 consists of all 37 pixels in the domain, the node vy consists of all
pixels in the domain except the leftmost, and the leaf node v47 consists of just the third and the
fourth pixels from the left. For each node v, the value of £(v) can be read from the vertical bar on
the left. For example, £(v2) = €(v3) =3 and £(v4) = €(v5) =6

(ii) For all s € 8, we have that £;(C (s, I)) = I(s). (£ is well defined by this condi-
tion, because I(s) = I(s”) whenever C (s, I) = C,(s',1).)

It is readily confirmed that a x-FCTS with these two properties exists, because C =
{Ck (s, 1) | s € 8} satisfies conditions 1 and 2 in the definition of a x-FCTS; the root
of the tree of this FCTS is | J € = 8. It follows from (ii) that for each v € Leaves(.7})
the level of v in FCTS, (1) is just the graylevel in I of each spel in v, and that for
each v € Nodes(.7;) the level of v is just the minimum of the graylevels of the
spels in v. We call FCTS, (/) the «-FCTS of the image I. Figure 2.3 illustrates this
concept.

Conversely, we associate each k-FCTS § = (.7, £) with the image Iz that we
now define. For each spel s € root(.7), conditions 2 and 4 in the definition of a
k-FCTS imply that, among the elements of Nodes(.7") that contain s, there must be
a smallest (i.e., a node that is a descendant in .7 of every node that contains s); that
element will be denoted by node 7 (s). We define Iz = I 7 ¢ to be the image whose
domain is root(.7"), and which satisfies Iz (s) = £(node 7 (s)) for all s € root(.7).
We also call Iz the image of the k-FCTS §.

Readily, Ircts, (1) = I for any image I whose domain is finite and x-connected,
and FCTS,(Iz) = § for every x-FCTS §. Thus the maps / — FCTS, (/) and

32 G.T. Herman et al.

§ — Iz are mutually inverse bijections between the set of all images with finite
k-connected domains and the set of all x-FCTSs.

Consequently, a figure (such as Fig. 2.3) that shows an image / and its associated
k-FCTS FCTS, (/) can also be construed as showing the «-FCTS § = FCTS, (1)
and its associated image Iz =1.

2.3 The (A, k)-Simplification of a x-FCTS, Essential
Isomorphism, and the Main Theorem

As mentioned earlier, the foreground component tree structure FCTS, (1) is too
sensitive to errors in the image I to be a good descriptor. In this section we propose
a method of simplifying FCTS, (/) that is provably robust, in the sense that the
simplified x-FCTS of I remains essentially the same when [is slightly perturbed.
We begin by defining some further terminology and notation.

Let .7 be any rooted tree, and § = (7, £) a x-FCTS. Then the set of all critical
nodes of .7 will be denoted by Crit(.7) or Crit(¥). The node in Crit(.7) that is
an ancestor in .7 of every node in Crit(7") will be called the lowest critical node
or LCN of 7 or ¥, and denoted by LCN(.7) or LCN(F).

For any subset V of Nodes(.7) that does not contain every ancestor of LCN(.7),
there is a k-FCTS (7', £') such that Nodes(.7") = Nodes(7) \ V and £ is the
restriction of £ to Nodes(.7"). This «-FCTS will be denoted by & — V.

We write § = § to mean that §F = & — V for some V C Nodes(.7) \ {root(.7)}.
Thus § C § implies that root(§’) = root(F) and that Nodes(F') C Nodes(F).

We write .7t to denote the rooted tree whose set of nodes is Crit(.7) U
{root(7)} in which a node u is an ancestor of a node v if and only if u is an
ancestor of v in .7. Thus root(.7"it) = root(.7), LCN(.Z "ty = LCN(.7), and
Crit(.7t) = Crit(.7). If LCN(.7) # root(.7) then LCN(.Z7 ity = LCN(.7) is
the unique child of root(.7t) = root(.7) in .7, The x-FCTS (. erit, gerity
where £°Tt is the restriction of £ to Nodes(.7 "), will be denoted by Ft. Note
that Fi C F. This concept is illustrated in Figs. 2.4 and 2.6.

Using this terminology, our method of simplifying FCTS, (I) can be stated as
follows:

Let & = (9, £o) be any x-FCTS. Then, for every positive real value A and
every nonnegative integer k < |root(%)|, we define the (A, k)-simplification of &g
to be the k-FCTS &3 that can be obtained from & in three steps, as follows:

Step 1: Prune & by removing nodes of size < k, to produce §| C §o.
Step 2: Prune § by removing branches of length < A, to produce §> E §.
Step 3: Eliminate internal edges of length < A from %gm, to produce the final

Kk-FCTS &3 C 5.

With the possible exception of the root, every non-leaf node of the final x-FCTS §3
is a critical node both of §3 and of the original «-FCTS .

Step 1 is one of the filtering methods proposed in Sect. VI of [7]. It is defined
as follows: The result of pruning the x-FCTS §o = (%, £o) by removing nodes of

2 Provably Robust Simplification of Component Trees 33

0 1 1313131313 6 6 6 6 614146 6 6 1 6 612126 61212 6 6 18181218 1812 17 17 1
I S . .

Vo

LI o
V@ ~Nawnms WO

o e

I
[y
N O s W= O

f=18

Fig. 2.4 The thick black edges are the edges of the FCTS Ft \where F is the FCTS that is shown
in Fig. 2.6 below. Nodes and edges of § are shown in gray, but may be hidden by nodes and edges
of Ft—for example, the edges of §F that join v4 to vg and vg to V2 in Fig. 2.6 are not visible in
this figure because they are hidden by the edge of F that joins v4 to vi2. (The image Igeriv Of

F"it is shown at the fop)

size < k is just the k-FCTS
To — {v e Nodes(%) | Iv| <k}

where, as usual, |v| denotes the cardinality of the set v—i.e., the number of spels
in v. Note that the result is just §p itself if k = 0. Figure 2.5 shows an FCTS that
has been obtained by pruning the FCTS of Fig. 2.3 in this way.

Precise definitions of steps 2 and 3 of (X, k)-simplification will be given in
Sects. 2.4 and 2.5 below.

While our simplification method is somewhat similar to the method of [10], it has
the robustness properties that are stated in Theorem 1 and Corollary 2 below (which
the method of [10] does not have). We now introduce terminology and notation that
will be used to state these two results.

We say that two k-FCTSs §. = (4, £a) and §p = (D, L) are essentially iso-
morphic if the subtree of Zl“it that is rooted at LCN(.%,) is isomorphic to the
subtree of 9]3““ that is rooted at LCN(%,). Thus &, and §, are essentially iso-
morphic if and only if there exists a mapping 6 : Crit(.%;) — Crit(.%) such that
O[Crit(.7,)] = Crit(%) and, for all v,V € Crit(7,), v <z Vv if and only if
6(v) < 6(V'). (The latter property implies that 6 is 1-to-1.) Any such 6 will be
called an essential isomorphism of §, to Fp.

Note that if the rooted trees Zfr“ and ybcrit are isomorphic, then §, = (7, £,)
and &, = (%, {p) are certainly essentially isomorphic. The converse is almost but
not quite true. The only way in which §, = (%, £,) and §, = (%, £p) could be
essentially isomorphic without .7t and ﬂbcr“ being isomorphic is if the root is

34 G.T. Herman et al.

03 1414121414101212 6 6 14148 9 9 1 7 7 1212 6 61212 6 6 18181318 1812 16 16 3

Vo

]

[
C@ Nt b WO

[]
-
9 D

I
-
W

i P P T T BT O
[)

f=14
£=15
f=16
f=17
f=18
£=19
f=20

Fig. 2.5 The effect of pruning the FCTS of Fig. 2.3 by removing nodes of size < k is shown, in
the case k = 1; the black edges are the edges of the resulting FCTS. Just two nodes (v1o and va3)
are removed from the tree of Fig. 2.3, as these are the only nodes of that tree that consist of no
more than k pixels (i.e., no more than 1 pixel, since kK = 1). The image of the resulting FCTS is
shown at the fop: Note that the graylevel of the second pixel from the right has changed from 18
in Fig. 2.3 to 16 here; this reflects the removal of vo3 from the tree. Similarly, the graylevel of the
17th pixel from the left has changed from 10 to 9; this reflects the removal of v4g. The graylevels
of the other 35 pixels are the same as in Fig. 2.3

the same as the LCN in one of the trees but not in the other, and when we remove
the root from the latter tree (so its LCN becomes its root) it becomes isomorphic to
the former tree—e.g., if .7, has the structure A but ZMit has the structure A.

For any § > 0, if an essential isomorphism 6 of &, to &, satisfies the condition
[€p(0(x)) — £a(x)| < 6 for all x € Crit(F,), then we say that 0 is level-preserving
to within §. Evidently, the inverse of any essential isomorphism of &, to &p that
is level-preserving to within § will be an essential isomorphism of &} to §, that is
level-preserving to within §.

If an essential isomorphism 6 of &, to §y is level-preserving to within O (i.e., if
Lp(0(x)) = £,(x) for all x € Crit(F,)), then we say that 0 is level-preserving.

Example 2 The FCTS shown in Fig. 2.6 is essentially isomorphic to the FCTS
shown by the thick black edges in Fig. 2.8. Indeed, if (.7, £) is the FCTS shown
in Fig. 2.6, and (7, £,) is the FCTS shown by the thick black edges in Fig. 2.8,
then (.7, £)Tit is the FCTS shown in Fig. 2.4, and (.7, £)t = (., £,). It is evi-
dent from a quick glance at Figs. 2.4 and 2.8 that .7 "t is isomorphic to .7t = .7,
so that (7, £) is essentially isomorphic to (%, £4), as we claimed. It is readily con-
firmed that the mapping 6 : Crit(.7) — Crit(.7;) which respectively maps

Vi, V4, Vs, Vg, Vi0, Vi1, Vi2, V14, V15, Vi, V47 in Fig. 2.6 (or Fig. 2.4)

t0 Vi, Va, Vs, Vi3, Vi4, V15, V17, V19, V2o, Vo1, Voo inFig. 2.8

2 Provably Robust Simplification of Component Trees 35

03 1313131313111111 6 614149 9 § 1 8 812126 612126 6 18181218 1812 17 17 2

Vo

[}

I

Fig. 2.6 If] is the image at the fop (and « is the same adjacency relation as in Figs. 2.3 and 2.5),
then A, (/) =5 and K, (I) =2. A.(I) =5 because, writing (.7, £) for the «-FCTS of I (which is
shown in this figure), .7 has critical nodes v; and v; such thatv; > & v; and £(v;) —€(v;) =5 (e.g.,
(vi, vj) = (v4,Vv1)), but .7 has no critical nodes v; and v; such thatv; > & v; and £(v;) — £(v;) < 5.
K, (I) =2 because .7 has a node (e.g., vg) that consists of just 2 pixels, but no node of .7 consists
of fewer than 2 pixels

is an essential isomorphism of (7, £) to (%, £+). The essential isomorphism 6 is
not level-preserving, since |£,(6(x)) — £(x)| = 1 when x = vy and when X = v15;
indeed, £(vq2) = 13 but £,(0(vq2)) = 14, and £(v45) = 17 but £,(0(v45)) = 16. But
it is readily confirmed that £, (0 (x)) = £(x) for all x € Crit(7) \ {vi2, vi5}, and so
6 is level-preserving to within 1.

Let /: 8 — R be an image whose domain § is finite and «-connected, and let
(7 ,£) =FCTS,(I). Then we define:

KK(I):min|GK(s,I)| = min ||
se8 veLeaves(.7)

Ac() =min{¢(w) — £(v) | u, v € Crit(7) and u > 7 v}

These concepts are illustrated in Fig. 2.6.

If7:8— Rand I : 8§ — R are two images that have the same domain 8, then
the value maxges |I'(s) — I(s)| will be denoted by || —]| co.

Using this notation, we now state our principal robustness result regarding (X, k)-
simplification (a result which we will generalize in Corollary 2):

Theorem 1 (Main Theorem) Let x be any adjacency relation, I : § — R any image
whose domain 8 is finite and k-connected, k any integer such that 0 < k < K, (I),
and). any value such that 0 < A < A,(I)/2. Let I' : 8§ — R be an image such that
' —Illoo < A/2.Then there is an essential isomorphism of the (A, k)-simplification
of FCTS, (I') to FCTS, (I) that is level-preserving to within A /2.

36 G.T. Herman et al.

A proof of this theorem is given in Appendix B. In the theorem, and in Corol-
lary 2 below, we may think of the image / : § — R as an ideal or perfect image of
some object (such as a macromolecule) at a certain level of detail/resolution, and
think of the image I’ as an imperfect noisy approximation to the ideal image I (such
as an EM map of the same object). We may suppose that the ideal image [is not
available to us (and we do not know the exact structure of FCTS, (1)), but the im-
perfect image I’ is available and we can therefore construct FCTS, (I’). Theorem 1
and Corollary 2 assure us that, if I’ is “sufficiently similar” to I, then there will be
values of A and k for which the (A, k)-simplification of FCTS, (I') is essentially
isomorphic to FCTS, (I).

For this purpose it follows from Theorem 1 that the imperfect noisy approxima-
tion I’ will be “sufficiently similar” to the ideal image I if there is no spel in 8 at
which the value of I’ differs from the value of I by A, (I)/4 or more. Additionally,
it will follow from Corollary 2 (as we shall explain in Example 4) that I’ might be
sufficiently similar to / even if this condition is violated at a small number of spels
whose values in I and I’ may differ by arbitrarily large amounts.

Example 3 To illustrate Theorem 1, let I be the image that is shown in Fig. 2.6,
and let I’ be the image that is shown in Fig. 2.3. Then ||I’ — I||s = 1, because there
exists a pixel p (e.g., any of the three rightmost pixels in the domain) for which
[I'(p) —I(p)| = 1, but there is no pixel p for which |I'(p) —I(p)| > 1. Now let A =2
and k = 1. As we observe in the caption of Fig. 2.6, A, (/) =5 and K, (I) =2, so the
conditions A < A, (I)/2, k < K, (I), and ||I' — I||s0 < A/2 that appear in Theorem 1
are satisfied. Thus the theorem says that there is an essential isomorphism of the
(A, k)-simplification of FCTS, (I") to FCTS, (/) that is level-preserving to within
A/2 = 1. In fact the inverse of the mapping 6 defined in Example 2 above is just
such an essential isomorphism! That is because (as we will see in Sect. 2.5) the
FCTS shown by the thick black edges in Fig. 2.8 is exactly the (X, k)-simplification
of FCTS, ().

From Theorem 1, it is easy to deduce Corollary 2 below. Theorem 1 is essentially
the case of Corollary 2 in which k* =0 and I* = I.

As mentioned above, one can think of / in Theorem 1 and Corollary 2 as a perfect
or ideal image, and think of I’ as an imperfect approximation to /. Theorem 1 is
applicable only if the graylevel of every spel in I’ is close to (specifically, within
less than A, (I)/4 of) that spel’s graylevel in I. Corollary 2 is more general; as we
will see in Example 4 below, it may be applicable even if there are exceptional spels
at which I”’s graylevel is much lower or higher than I’s graylevel.

Corollary 2 LetI:8 — RandI' : 8§ — R be images on the same finite k -connected
domain 8. For any nonnegative integer k < |8|, let I denote the image of the k-
FCTS that results from pruning FCTS,(I') by removing nodes of size < k. Sup-
pose there is an image I* : 8§ — R such that there exists a level-preserving essen-
tial isomorphism of FCTS, (I*) to FCTS, (I), and there exists a nonnegative in-
teger k* < K, (I*) for which the image I' satisfies ||I;. — I*|lcoc < Ac(I)/4. Then,

2 Provably Robust Simplification of Component Trees 37

for any positive A and integer k such that 2|1, — I*||co < A < Ac(I)/2 and
k* <k < K, (I*), there is an essential isomorphism of the (A, k)-simplification of
FCTS, (I') to FCTS, (I) that is level-preserving to within \/2.

Proof of Corollary 2, assuming Theorem 1 Let k be an integer such that k* < k <
K, (I*), and A a positive value such that 2|1}, — I*||oo <A < A (I)/2.

Now FCTS, (I;.) is the result of applying step 1 of (A, k*)-simplification to
FCTS, (I'). Tt follows that the (A, k)-simplification of FCTS, (I') is the same as the
(A, k)-simplification of FCTS, (;.) (since applying simplification step 1 twice in
succession with parameter k* and then k has the same effect as applying step 1 just
once with the parameter max(k*, k) = k). To prove the corollary, we need to show
that there is an essential isomorphism of this k-FCTS (i.e., the (&, k)-simplification
of FCTS, (I;..)) to FCTS, (1) that is level-preserving to within 2 /2.

We have that A, (I) = A, (I*), since there is a level-preserving essential iso-
morphism of FCTS, (I*) to FCTS, (/). Thus we have that A < A, (I*)/2. More-
over, I« — I*|loo < A/2 and k < K, (I*). So, on applying Theorem 1 to I* and
I,’{*, we see that there is an essential isomorphism of the (X, k)-simplification
of FCTS, (I;.) to FCTS, (I*) that is level-preserving to within A/2. Compos-
ing this essential isomorphism with the level-preserving essential isomorphism of
FCTS, (I*) to FCTS, (1) gives an essential isomorphism of the (1, k)-simplification
of FCTS, (1,.) to FCTS, (I) that is level-preserving to within A/2, as required. [

The following example shows how the condition that I’ must satisfy in Corol-
lary 2 is much less restrictive than the condition ||[I" — I||c < A, (I)/4 that I’ needs
to satisfy for Theorem 1 to be applicable.

Example 4 Let 8 be a 3D rectangular array of voxels, and let ¥ be the 6-adjacency
relation on 8. Let / : 8§ — R be an image such that, for each threshold v <
maxgeg I(s), the members of {C,(s,7,7) | I(s) > t} have fairly compact shapes
and are not very small, and no two of the sets are very close together. (Here “have
fairly compact shapes” and “are not very small” imply that: (i) removing a very
few randomly chosen voxels from a set C, (s, I,) is unlikely to split it into two or
more pieces, and unlikely to completely eliminate that set. The “no two of the sets
are very close” condition implies that: (ii) adding a very few randomly chosen vox-
els to a set G, (s, I, 7) is unlikely to connect that set to a different set C, (s, I, 7).)
Now let I’ be an image on $ that is obtained from I by changing the graylevels of
a very small number of randomly chosen voxels by arbitrarily large positive and/or
negative amounts. Then ||I’ — I||s < A, (I)/4 will not hold unless every graylevel
change is smaller in absolute value than A, (/)/4. But, regardless of the sizes of the
graylevel changes, when k* is the cardinality of the largest 6-connected subset of
the set {s € 8 | I'(s) > I(s)} it is likely (because of (i) and (ii)) that there will be a
level-preserving essential isomorphism of FCTS, (I,..) to FCTS, (1), in which case
the image I’ will satisfy the condition of Corollary 2 with I* = I}..

38 G.T. Herman et al.

2.4 Pruning by Removing Branches of Length < A

Step 2 of (A, k)-simplification is to prune the FCTS that is the result of step 1 by
removing branches of length < A. We now give a mathematical specification of
the output of step 2 (properties P1-P4 below), present a result (Proposition 3) that
gives us an easily visualized characterization of the output, and then describe (in
Sect. 2.4.3) how step 2 can be efficiently implemented.

2.4.1 Specification of Simplification Step 2

Let .7 be any rooted tree and let x € Nodes(.7). Then we write x|l & to denote the
set of all ancestors of x in .7, write x|, 7 to denote the set x|l 7 \ {x} (i.e., the set
of all proper ancestors of x in .7), write x{ 7 to denote the set of all descendants
of x in 7, and write x1 & to denote the set xf} & \ {x} (i.e., the set of all proper
descendants of x in .7).

Now let @ # S € Nodes(7). Then we write /\ S to denote the closest common
ancestor of S, by which we mean the node v of .7 such that v|} o = ﬂueS ull 7, or,
equivalently, the element of (1),.gul 7 that is a descendant in .7 of every element
of that set.

For any «-FCTS Fin = (i, fin), we call a sequence leaf[1], ..., leaf[n] an
Lin-increasing enumeration of Leaves(Fi,) if no two of leaf[1],...,leaf[n] are
the same, {leaf[1],...,leaf[n]} = Leaves(&i,) (so that n = |Leaves(&i,)|), and
Lin(leaf[1]) < --- < ¥in(leaf[n]). Pruning a k-FCTS §j, by removing branches of
length < X is done using such an enumeration of Leaves(Fiy)-

For any A > 0, any «-FCTS §Fin = (i, €in), and any £j,-increasing enumeration

leaf[1], ..., leaf[n] of Leaves(§i,), we define the result of pruning §;, by removing
branches of length < A using the leaf enumeration leaf[1], ..., leaf[n] to be the «-
FCTS §out that has the following four properties:

P1: Fout CE Sin

P2: leaf[n] € Leaves(&out)

P3: For 1 <i < n, leaf[i] € Leaves(§ou) if and only if there does not exist any
jef{i+1,...,n} for which £, (leaf[i]) — Zin(/\gm{leaf[j], leaf[i]}) < A.

P4: Nodes(Fou) = J{leaf[i]l 7, | 1 <i <nand leaf[i] € Leaves(Fou)}

Given any k-FCTS §in = (i, in), any A > 0, and any £;,-increasing enumeration
leaf[1], ..., leaf[n] of Leaves(Fiy,), it is evident that P1-P4 uniquely determine §oy.
Moreover, even though the result § oy of pruning may depend on the leaf enumer-
ation leaf[1], ..., leaf[n] that is used, we will see from Proposition 3 that, for any
given i, and A, P1-P4 uniquely determine §oy up fo a level-preserving essential
isomorphism.

Figure 2.7 shows an FCTS that has been obtained by pruning the FCTS of Fig. 2.5
in this way.

2 Provably Robust Simplification of Component Trees 39

03 1414121212101010 6 6 14148 8 8 1 7 712126 61212 6 6 18 181318 18 12 16 18 3

L]

VO~ E WO

Il
P e
G kWO

f=17
f=18
f=19
£=20

Fig. 2.7 The effect of pruning the FCTS of Fig. 2.5 by removing branches of length A is
shown, in the case A = 2; the black edges are the edges of the resulting FCTS. Writing
(71, 4£;) for the FCTS of Fig. 2.5, it is assumed that pruning is done using an £{-increasing
leaf enumeration in which the leaf vq7 of 7] occurs later than the leaf vig. The leaves
vg, Vi2, and vqig are the only nodes of 7] that are removed; the leaf vg is removed be-
cause we have that £;(vg) — Zl(/\gl {vig,Vvg}) = €1(vg) — £1(v7) <2 = A (and vq9 occurs
later in the ¢)-increasing leaf enumeration than vg because £1(vg) < £1(v19)); V12 is removed
because £1(vi2) — Zl(/\gl {vi7,v12}) = £1(vi2) — £1(vg) < 2 = A; vqg is removed because
L1(v1g) — 61(/\9I {vi7,v1g}) = £1(vig) — £1(v11) <2 = A and we are assuming (as mentioned
above) that v47 occurs later in the ¢;-increasing leaf enumeration than vig. In this example no
non-leaf nodes of 7] are removed, as every non-leaf node of .7; is an ancestor of a leaf of .77 that
is not removed

2.4.2 An Easily Visualized Characterization of the Output of
Simplification Step 2

The main goal of this section is to present a result (Proposition 3) that is important
for the following reasons:

1. It shows that the output of step 2 is independent of the leaf enumeration which is
used for pruning (up to a level-preserving essential isomorphism).

2. It gives an easily visualized characterization of the output. (This will be further
explained after Proposition 3.)

3. The linear-time implementation of step 2 that is described in Sect. 2.4.3 is based
on this result.

For any rooted tree .7 and any x € Nodes(.7), we write .7 [X] to denote the
subtree of .7 that is rooted at x.

Now we define some other notation that will be used in Proposition 3. For this
purpose, let § = (7, £) be any «-FCTS and A any positive value. Then we de-
fine depthg (X) = maxycpeaves(7x]) £(¥) — €(X). Note that depthg(x) = 0 for all
x € Leaves(.7). We also define:

40 G.T. Herman et al.

UM(F) = {v e Nodes(.7) | depthz(v) > A}
VH(F) = {veNodes(7) | v¢ UMF) but v| 7 € UM}

If U*(F) # 0, then v € V*(F) if and only if v € root(.7)1 7, depthg (v) < A, and
depthg (parent 7 (v)) > A. If U*(F) =0, then V*(F) = {root(.7)}.

For any x € Nodes(.7), either x € U*(F) or x has a unique ancestor in V*(g)
(possibly itself), and x satisfies just one of those conditions. Hence:

Nodes(.7) = U*(F) U U vt o 2.1
veEVH(F)

If U*(F) # 0 (so that root(.7) lies in U*(F) and not in V*(F)), then we define:
V() ={ve VX(3) | depthg (v) + £(v) — (parent 7 (v)) > A}

But if U*(F) = 0, then we define V}(F) = {root(.7)} = V*(3).

Let o = (leaf[1], ..., leaf[n]) be any £-increasing enumeration of the leaves of
the tree .7, and v any node of 7. Then we define lastLeaf, (v, 7) to be the
leaf of .7[v] that occurs later in the £-increasing enumeration o than all other
leaves of Z[v]. (If 7 [v] has just one leaf, then lastLeaf, (v, .7) is that leaf.) Thus
we have that depthz(v) = {(lastLeaf, (v, 7)) — £(v). We define Path, (v, 7) =
{x € Nodes(7) | v <5 x < 7 lastLeaf, (v, 7)}. (Note that if v/ is any node of .7
that is neither an ancestor nor a descendant of v in 7, then lastLeaf, (v, 7) #
lastLeaf, (v/, .7) and Path, (v,) N Path, (v, 7) =@.)

Using the notation we have just introduced, we now state the main result of this
section, which is proved in Appendix A.

Proposition 3 Let §i, = (T, bin) be any k-FCTS, let . > 0, and let Fou =
(Touts Lout) be the k-FCTS that results from pruning §in by removing branches of
length < A using an Lin-increasing enumeration o of Leaves(Z,). Then the nodes

of Fout consist just of:

(1) The nodes of UM (Fin).
(ii) The nodes of Path, (v, Ziy) for each node v in V)l‘ (Fin)-

Now let Fin = (i, lin), A, 0, and Fout = (Fout, Lour) be as in Proposition 3.
Since Vi‘(&n) C V*(Fin), and since no node in V*(F;,) is an ancestor in %, of
a node in U*(Fi,) or of a different node in V*(F;y,), for all v € V)l‘ (Fin) we have
that Path, (v, Z,) N UM(Fin) = @, and for all distinct v, v € Vi‘(&n) we have that
Path, (v, Z,) N Path, (V/, Z,) = 0.

Thus Proposition 3 gives us an easily visualized characterization of the nodes of
the FCTS Fout = (Jout, Lour) that results from pruning §i, by removing branches of
length < A using the leaf enumeration o (and hence an easily visualized characteri-
zation of §oyt itself, since Fout T Fin)-

In Proposition 3, U*(Fin) and V}(Fin) are determined by Fin and A; they do
not depend on o. For any v in V? (Fin), the difference in level between v and the
leaf node of Path, (v, Zi,)—i.e., the value of £y (lastLeaf, (v, Tin)) — Lout (V) =

2 Provably Robust Simplification of Component Trees 41

Lin(lastLeaf, (v, Zi)) — £in (V) = depthgin (v)—also does not depend on o. So even
though the sets Path, (v, Zi,) may depend on the leaf enumeration o, we see from
Proposition 3 that §o, is uniquely determined by §i, and A up to a level-preserving
essential isomorphism.

2.4.3 Linear-Time Implementation of Simplification Step 2

In the rest of this chapter we assume that each FCTS (.7, £) we use is represented
in such a way that we can find the root of .7 in O(1) time and can do all of the
following in O(1) time for any node v of .J:

e Create a clone of v, and add it to another FCTS (as a new child of some specified
node of the latter).

e Find the parent of v in .7, if v is not the root.

e Determine the value of £(v).

e Determine whether or not v is a leaf of .7.

We also assume that, for any non-leaf node v of .7, we can find all the children of
v in O(|Children s (v)|) time.

In the rest of this section we describe simple but efficient implementations of
step 2 and of a variant of step 2.

Let Fin = (i, Lin) be some «k-FCTS, and let o be an ¢j,-increasing leaf enu-
meration of Leaves(.Z,) such that, whenever x and y are leaves of .7, the answer
to the question

Does x occur later than y in ¢ ? (2.2)

can be determined in O (1) time even if £, (X) = £in (y).

Our implementation of step 2 runs in O (|[Nodes(.%;,)|) time, and does not require
the actual creation of the sequence o: We allow o to be implicitly defined by some
function f : Leaves(.%,) x Leaves(.%;,) — {Yes, No} such that the answer to (2.2)
for any two leaves x and y of %, is f(x,y) and this can be computed in O(1)
time.!

For every A > 0 let §ou,x be the FCTS that should result from pruning §i, by
removing branches of length < A using the leaf enumeration o. We now explain
how Fout 5. can be constructed in O (|Nodes(.Z,)|) time.

For each non-leaf node w of .7, we define next, (w, Z,) to be the child of w in
Path, (w, Z,) (i.e., the child of w that is an ancestor of lastLeaf, (w, .Z%,)); if w is
a leaf of .7, then we define next, (W, Zi,) = w. During a single postorder traversal
nexty (W, Zin), lastLeaf, (W,), and depthg, (W) can be computed for all nodes w
of Z, in ZweNodeS(%) O(1 4+ |Children g (w)|) = O(|Nodes(.%,)|) time. Then,

I'Note that no algorithm which actually creates the sequence ¢ that is defined by any such func-
tion f can run in O (|Nodes(.Z,)|) time in all cases, because any comparison sort must perform
§2(nlogn) comparisons to sort a set of n items (here, leaves) in the worst case [3, Thm. 8.1].

42 G.T. Herman et al.

for any given node v of .7, it is easy to determine in O (1) time whether v belongs
to U*(Fin), to V)l‘ (Fin), or to neither of those sets, and it is easy to find all the nodes
of Path, (v, i) by following a chain of next, (w, Z4;) nodes that starts with w = v.
Hence we can construct Foue,x in O (|[Nodes(.Z%,)|) time, for any positive A that the
user may specify, in the following way:

1. Clone root(Z,), and initialize the output FCTS (i.e., the FCTS that will be out-
put when the algorithm terminates) to be an FCTS whose only node is the clone
of root(Z,).

2. Do a preorder traversal of the subgraph of .7, that is induced by the set of nodes
U*(Fin) U V4 (Fin). (This is the rooted tree that is derived from %, by ignoring
all nodes which do not lie in the set U* (Fip) UV)I\ (Fin)- Note that this set contains
root(.7,) and all the ancestors of each node in the set.) When any node v is
visited during the traversal, do the following:

(2a) If ve UM(Gin) \ {root(.Z,)}, then create a clone of v and add it to the output
FCTS.

2b) Ifve V)l‘ (Fin), then find all the nodes of Path, (v, %) and, for every such
node w, create a clone of w and add it to the output FCTS (unless w =

root(Jn)).

It is evident that §Foux can be constructed in this way, since steps (2a) and (2b)
will create clones of all nodes of types (i) and (ii) in Proposition 3 (except the root
of i) and add them to the output FCTS.

Step 3 of (A, k)-simplification simplifies Ft, where F is the output of step 2.
We can construct ng]'tt , directly, without constructing §out,», using a modified ver-
sion of the algorithm described above in which (2a) and (2b) are replaced with:

(2a') If ve UMFin) \ {root(Z,)}, and Children 7, (V) contains two or more nodes
in UM U V)f (&in), then create a clone of v and add it to the output
FCTS.

(2v') Ifve V?(%m), then create a clone of the node lastLeaf, (v, Z,) and add it to
the output FCTS.

Here (2b’) assumes that .7, has at least two nodes.

2.5 Elimination of Internal Edges of Length < A from F°t

Step 3 of (A, k)-simplification is to eliminate internal edges of length < A from Forit
where § is the FCTS that results from step 2 of (A, k)-simplification. We now math-
ematically specify the output of step 3, and then present an algorithm which imple-
ments step 3.

2 Provably Robust Simplification of Component Trees 43
2.5.1 Specification of Simplification Step 3

Let § = (7, £) be any x-FCTS. Then, for each A > 0, the result of eliminating
internal edges of length < A from i is the x-FCTS F(1) that we will define
below. The definition will use some notation which we now introduce.

The set {£(c) — £(¢') | ¢, ¢/ € Crit(F) \ Leaves(F) and ¢ € ¢ 5z} will be denoted
by D(F), and dlg < dzS <iee< dﬁ;(g)‘ will denote the elements of D(F) in as-

cending order. (Note that all elements of D(F) are positive.) We define dog =0. For
any A > 0, we define predz (1) = max{d € D(§) U {0} | d < A}.

Example 5 Let § be the FCTS shown in Fig. 2.7. Then we see from Fig. 2.7 that
Crit(¥) \ Leaves(F) = {v1 V4,V5,V15,V16} and D(F) ={1,5,6,7,11, 12}. It fol-
lows, for example, that, d1 =1, d2 =35, and predgz (1) =1 for I <A <S5.

Now we define F1(0) = Fit and, for all A > 0, we recursively define Fit (1)
to be the k-FCTS that has the following five properties:
El: 3crit<k> C gcrit
E2: LCN(F“(1)) = LCN(®)
E3: Leaves(Fit(1)) = Leaves(g)
E4: If & ¢ D(). then F(1) = F(predz (V).
E5: Forevery ¢ € Nodes(%cm) \ (Leaves(F) U {LCN(F)} U {root(F)}) and every
i €{0,...,|D(&| — 1}, we have that ¢ € Nodes({S’crit(5 1)) if and only if

ce Nodes(%'“rit(dis)) and £(c) — E(parentgmt a5 (0) > d

El implies that Nodes(F(1)) € Nodes(F) = Crit(F) U {root(F)}, and also
implies that root(FTit(1)) = root(F).

Example 6 Figure 2.8 shows the FCTS F(1) in the case where §F is the FCTS
that is shown in Fig. 2.7 and 1 < X < 5. Here d¥ =1 and c123 =5 (as we observed
in Example 5). Since d¥ < i < d3, it follows from E4 that Ft(1) = Fit(a¥) =
Fi(1). The node vq¢ in Fig. 2.7 is not a node of s“fit(ﬁ), indeed, when we
put i =0 and ¢ = v46, the condition £(c) — Z(parentgcm dF) (¢)) > ds o in ES5 is
not met since parentgmt d3) (vig) = V15 and £(v16) — E(v15) =1= dg But E1-E5

imply that the other 12 nodes of F are nodes of F(A).

2.5.2 Implementation of Simplification Step 3

It is possible to perform simplification step 3 (i.e., to construct FTE(1) from Ferit)
by direct application of E1-E5. However, this would require computatlon of the
sorted sequence dF < df << dkg, where dk3 is A or predz () according to
whether A € D(F) or A ¢ D(F), followed by k tree traversals that successively find
the nodes of F(a¥), F(aF), ..., F"HdT).

44 G.T. Herman et al.

0114146 6 6 6 6 6 6 614146 6 6 1 6 612126 612126 6 18 181218 1812 16 16 1
Il I S E =

Vo

|
e ~Nonbs W = O

L |
= o

I]
=
Wne o

£=14
£=15
£=16
b=17
£=18
£=19
£=20

Fig. 2.8 The effect of eliminating internal edges of length < A from Fit = (Frit ¢erit) js shown
here, in the case where § = (.7, £) is the FCTS of Fig. 2.7 and 1 < A < 5. The nodes and edges of
the resulting FCTS Scm(k) are shown as fat/thick black nodes and edges. Other nodes and edges
of the tree .7 of Fig. 2.7 are colored gray, but two of those nodes (vg and v{1 in Fig. 2.7) and three
of those edges are partially or completely hidden by the thick black edge that joins v4 to vq{7. Note
that, since 2 is a possible value of A in this figure, and since § is the result of applying steps 1 and
2 of (A, k)-simplification to the FCTS shown in Fig. 2.3 in the case A =2 and k = 1, the FCTS
shown in this figure is the (2, 1)-simplification of the FCTS shown in Fig. 2.3

Algorithm 1 below, which performs just one tree traversal after the initial cloning
step, will usually be a much more efficient implementation of step 3. It inputs a «-
FCTS Fin = (i, in) and a positive A, and constructs Sicrfit()») by creating a clone
(7,0) of &c;it = (yhf"it, Zic;it) and then labeling each node ¢ of .7 with a value
c.label such that &2"()& = (7 ,£)—{veNodes(7) | v.label < A}. The correctness
of this algorithm is proved in Appendix A.

If we write h(Fin, A) to denote the length [> 1 of the longest chain of nodes
Vi >z, - >g Vv in Crit(F,) for which £in(vy) — €in(v;) < A, then we see from
the initial step “(.7, £) <— a clone of (Z,T, ¢£Tit)” of Algorithm 1 and from the
repeat ... until loop in labelDescendants (Procedure 1) that, under the as-
sumptions which are stated at the beginning of Sect. 2.4.3, the running time of Al-
gorithm 1 is O (|Nodes(Fin)| + 7 (Fin,) |Crit(Fin)|)-

2.6 Demonstration of Potential Biological Applicability

To illustrate the potential usefulness of our simplified FCTSs in identifying struc-
tural differences between macromolecules, we looked for two structures that are
very similar, but not identical. Appropriate data sets were kindly provided by
Roberto Marabini of the Universidad Auténoma de Madrid.

2 Provably Robust Simplification of Component Trees 45

Algorithm 1: Eliminate Internal Edges of Length < A from F°"it
inputs: a k-FCTS Fin = (Zin, Lin); a positive rqal value A
output: a k-FCTS Fou that satisfies Fou = F

m
(7,) «<— aclone of (Z¢rit, gerit);
root(.7).label «— oo;
LCN(7).label «— oo;
foreach x € Children - (LCN(.7)) do 1abelDescendants(Xx, 7, £, A);
Bout < (7, L) — {veNodes(T) | v.label < A};

Procedure 1: 1abelDescendants (¢, 7, ¢, A)
if ¢ ¢ Leaves(.7) then
¢ «—c;
repeat
¢/ «— parent 5 (c);
c.label <— £(¢c) — £(¢);
until (c.label > X or c.label < ¢'.label);
foreach x € Children 7 (¢) do 1abelDescendants(x, 7, £, A);
else c.label «<— oo;

These data sets originate from the work of San Martin et al. [9], which inves-
tigated some biological questions associated with adenoviruses. These viruses are
responsible for a large number of diseases in humans such as gastrointestinal and
respiratory infections, but can also be used in gene therapy and vaccine delivery [8].
They have an icosahedral shape with a diameter of approximately 900 A. At each
of the 12 vertices of the icosahedron there is a substructure referred to as a penton,
and the rest of the surface of the icosahedron consists of 240 hexons. To reflect this,
our simplified FCTSs of these viruses would be expected to have 252 leaves, one
for each penton or hexon. This is indeed the case, as we will see.

In the course of their work, San Martin et al. [9] produced a mutant version of
the wildtype version of the adenovirus they were investigating. The two are identical
except for a change in a protein (called IIla). Surface renderings and central cross-
sections of the two versions are shown in Fig. 2.9. We now describe how, in spite of
their great similarity, the two versions can be distinguished from each other by an
obvious topological difference between their simplified FCTSs.

Each version of the virus studied by San Martin et al. [9] was represented by
a grayscale volume image on a 275 x 275 x 275 array of sample points. We fur-
ther quantized the graylevels in each of these images to a set of just 256 equally
spaced values represented by the integers O, ..., 255, where 0 corresponded to the
minimum and 255 the maximum graylevel in the original image. For each resulting
image I, we constructed FCTS, (1) using 6-adjacency as our adjacency relation «,
and computed the (X, k)-simplification of FCTS, (/) for various choices of A and k.

46 G.T. Herman et al.

Fig. 2.9 Adenovirus. Surface rendering (a) and central cross-section (b) of the wildtype version.
Surface rendering (c) and central cross-section (d) of the mutant version

Fig. 2.10 The gray lines show an FCTS (.7, £) using the tree representation of Figs. 2.1-2.8. The
black lines show the same FCTS using the tree representation of Fig. 2.11. (In the latter represen-
tation, a node that is neither the root nor a leaf is represented by a horizontal segment, and an edge
from a node p to one of its children c is represented by a vertical segment of length proportional to
£(c) — £(p)

We found that A = 10 and k = 799 were good choices that yielded topologically
different simplified FCTSs for the two versions of the virus. These simplified FCTSs
are shown in Fig. 2.11, using a tree representation that is explained in Fig. 2.10. Each
simplified FCTS has 252 leaves, corresponding to the 12 pentons and 240 hexons.
For the wildtype version, the lowest critical node is the parent of all 252 leaves;
see Fig. 2.11(a). For the mutant version, the lowest critical node is the parent of the
12 leaves that correspond to pentons, but is the grandparent of the 240 leaves that
correspond to hexons; see Fig. 2.11(b). These simplified FCTSs indicate that for
the mutant version of the virus there is a substantial range of threshold levels (such
as level A in Fig. 2.11(b)) at which the pentons are disconnected from each other
and from the hexons, but the hexons are connected to each other; for the wildtype
version there is no such range of threshold values. Interestingly, San Martin et al. [9]
do not mention this difference between the two versions of the virus, although they
do point out that in images of the mutant version pentons have lower graylevels than
hexons. (The latter can be seen in Fig. 2.9(d), and is also indicated by Fig. 2.11(b);
when the image of the mutant virus is thresholded at the graylevel B in Fig. 2.11(b),
hexons are observable but pentons are not.)

So our simplified FCTSs may possibly have revealed a previously unobserved
difference between the mutant and the wildtype versions of the virus: for the mutant
version, there is a substantial range of threshold values at which the hexons are
connected to each other, but no penton is connected to a hexon or to another penton.
To investigate whether this is a genuine difference between the two versions of the

2 Provably Robust Simplification of Component Trees 47

(®)

Fig. 2.11 (X, k)-simplifications of FCTSs of wildtype (a) and mutant (b) adenoviruses, where
A =10 and k = 799. (The tree representation used in this figure is explained in Fig. 2.10.) In (a),
the lowest critical node (represented by the horizontal line segment) is the parent of all 252 leaves
of the tree. In (b), the lowest critical node (represented by the horizontal line segment above line A)
is the parent of the rightmost 12 leaves, which correspond to pentons, but is the grandparent of the
other 240 leaves, which correspond to hexons

virus or merely a difference between the specific volume images from which we
produced our FCTSs, we carried out a further study.

Ideally, we would have compared simplified FCTSs of, say, 10 independently
reconstructed volume images of each version, but such data were not available to
us. So we conducted the following approximation of such a study.

For each version of the virus, we randomly selected 2000 out of 3000 available
projection images, and used them to reconstruct a volume image on a 275 x 275 x
275 array of points. This was repeated 10 times.

For each of the 20 resulting volume images, we produced a simplified FCTS
using the above-mentioned parameters. In each of the 10 simplified FCTSs of the
mutant adenovirus, the lowest critical node had 13 children, 12 corresponding to the
pentons and the 13th being the root of a subtree whose leaves corresponded to the
hexons, as in Fig. 2.11(b). But this was not true of the 10 simplified FCTSs of the
wildtype adenovirus; they were all similar to Fig. 2.11(a).

These results provide some evidence to support the hypothesis that images of
the mutant version of the virus can be distinguished from images of the wildtype
version by the existence in the former (but not the latter) of a substantial range of
threshold values with the above-mentioned properties. More investigation would be
needed to confirm this hypothesis.

In any event, this example illustrates how our simplified FCTSs may reveal in-
teresting structural differences between two similar macromolecules.

2.7 Possibilities for Future Work

2.7.1 How Can Our Simplification Method and Theorem 1 Be
Adapted to Contour Trees?

FCTSs are closely related to contour trees, which are also used to represent images
(see, e.g., [12]). Intuitively, a contour tree of an image is an undirected graph each of

48 G.T. Herman et al.

whose points represents a contour—i.e., a connected component of a level set—of a
continuous scalar field derived from the image by interpolation. Contours of scalar
fields derived from 3D images are often called isosurfaces.

To define the contour tree, let / : § — R be an image whose domain 8 is a finite
set of points in Euclidean n-space R" (for some n). As usual, we refer to the ele-
ments of 8 as spels. For simplicity in defining the contour tree, we require that I be
1-to-1—i.e., we require that no two spels have exactly the same graylevel in /. (This
prevents distinct spels from lying on the same contour, and will allow the contour
tree to be defined as a graph whose vertices are spels.) Note that a 1-to-1 image
can be produced from any image by making arbitrarily small graylevel perturba-
tions.

For any adjacency relation « on 8, we write Graph(«) to denote the undirected
simple graph whose vertex set is 8 and whose vertex adjacency relation is «. Recall
that an undirected graph is said to be a tree if it is connected and acyclic.

We will be considering «-FCTSs of I and its negative image —I (which is ob-
tained from / by multiplying each spel’s graylevel by —1). For any x € 8, when dis-
cussing FCTS,, (/) and FCTS, (—I) we write (x) to denote either the node Cy (x, 1)
of FCTS,, (I) or the node C, (x, —1) of FCTS, (—1).

Now suppose the adjacency relation « is unknown, but we know Graph(«) is
a tree. Then « is uniquely determined by FCTS,, (/) and FCTS, (—1). Indeed, it is
not hard to verify that s is an end vertex of Graph(«) whose only a-neighbor is s’
just if in one of FCTS, (/) and FCTS, (—1) we have that (s) = {s} is a leaf whose
parent is {s’), and in the other of FCTS, (/) and FCTS, (—/) we have that (s) has
exactly one child. Further, if s is any end vertex of Graph(a) and the restrictions of
I and « to 8\ {s} are denoted by I’ and o', then FCTS, (I') = FCTS, (I) — {{s)}
and FCTS, (—I') = FCTS, (—I) — {(s)}, from which o’ can be computed (e.g.,
recursively). Algorithm 4.2 in [1], which is based on these two facts, can be
used to construct the tree Graph(x) in O(|8|) time, given I, FCTS,(I), and
FCTS, (—1).

To define a contour tree of I, we first choose a “good” adjacency relation k
on 8. Let .Z be a geometric simplicial complex whose vertex set is 8 and whose
union is connected and simply connected. Let « be the adjacency relation on §
such that (s, ¢) € « if and only if s and ¢ are the endpoints of an edge of the com-
plex .Z.

Now let f : | J.Z — R be the continuous scalar field obtained when we extend
the image [by linear interpolation over each simplex of .Z. Let <1 be the strict
partial order on 8 such that s <1s” if and only if I(s) < I(s”) and there is a path in
\J-Z from s to s” along which f’s value increases monotonically from I(s) to I(s’).
Let a(I, .Z) be the adjacency relation on 8 such that (s, s") € a(l, .£) if and only if
one of the spels s and s’ is an immediate successor of the other with respect to <.
(We say y is an immediate successor of x with respect to < if x </'y and there is no z
such that x <1z <ty.) It can be shown, using the linearity of f on each simplex of .#
and, e.g., well known properties of Reeb graphs (see [1, 4]), that FCTS; 2)() =
FCTS, (1) and FCTS,;,) (—I) = FCTS, (—I), and that Graph(«a(/, .£)) is a tree.

2 Provably Robust Simplification of Component Trees 49

We define the k-contour tree* of I to be Graph(« (I, £)). It follows from our
remarks above that this tree is uniquely determined by FCTS, (/) and FCTS, (1),
and that the tree can be constructed in O(|8|) time from I and these two k-
FCTS:s.

In view of the close relationship between contour trees and FCTSs, we are hope-
ful that it will be possible to formulate a simplification method for contour trees that
is similar to our simplification method for FCTSs and is provably robust in the sense
that it can be shown to satisfy an analog of Theorem 1.

2.7.2 Does the Bottleneck Stability Theorem Have an Analog for
FCTSs That Implies Theorem 1?

Let 7: 8 — R be any image whose domain 8 is finite, and « any adjacency relation
on § such that 8 is k-connected. A descriptor of [that is related to (but contains
less information than) FCTS, (/) is the Oth persistence diagram of —/ based on the
adjacency relation «. (Here the minus sign reflects the fact that persistence diagrams
are defined in terms of the sublevel sets of filter functions® whereas FCTSs are
defined in terms of the superlevel sets of images.) The Oth persistence diagram of
—1 based on « is a multiset of points in R x (R U {4-00}) that contains one point for
each leaf of FCTS, (I). The diagram is easily computed4 from FCTS, (1), but it is
not possible to reconstruct FCTS, (/) from the diagram.

Step 2 of our simplification method eliminates those leaves of the FCTS that are
represented in the Oth persistence diagram by points (x, y) for which y — x < A.
Moreover, for any two images I,1I' : 8 — R, the Lo-distance between the filter
functions used to define the Oth persistence diagrams of —I and —I' is || — I'|| 0.
For these reasons, our Theorem 1 is vaguely reminiscent of the p = 0 case of the
Bottleneck Stability Theorem for persistence diagrams [2], [4, p. 182], which states

2The tree defined here is the augmented contour tree of [1]. It may have many vertices s that have
just two neighbors, of which one neighbor s’ satisfies I(s") < I(s) while the other neighbor s”
satisfies I(s”) > I(s). Many authors define the contour tree to not include such vertices.

3Persistence diagrams are commonly defined (as in [4, pp. 150-152]) for a filter function f :
& — R, where % is a suitable simplicial complex. To define the Oth persistence diagram of —/
based on the adjacency relation x, we can take the simplicial complex % to be the simple graph
whose vertex set is 8 and whose edges join «-adjacent elements of 8, and we can use the filter
function f : .7 — R for which f(v) = —I(v) if v is a vertex of %, and f(e) = —min(/(x), I(y))
if e is an edge of 7 that joins the vertices x and y.

4Let FCTS(I) = (7, £), and let leaf[1], .. ., leaf[n] be any ¢-increasing enumeration of the leaves
of 7. For 1 <i < n, each leaf leaf[i] is represented in the persistence diagram by a point
(—£(leaf[i]), —€(a)) where a is the closest ancestor of leaf[i] that is an ancestor of at least one
of the leaves leaf[i + 1], ..., leaf[n]. The last leaf leaf[n] of the £-increasing enumeration is repre-
sented in the persistence diagram by the point (—£(leaf[n]), +00). The diagram is defined to also
contain, for each z € R, a point (z, z) with countably infinite multiplicity.

50 G.T. Herman et al.

that the bottleneck distance® between the pth persistence diagrams of two filter
functions cannot exceed the L,-distance between those functions.

The Bottleneck Stability Theorem appears not to imply our Theorem 1, because
the FCTSs of two images I; and I, need not be essentially isomorphic even if —I;
and —I have the same persistence diagrams. However, it might be possible to prove
an analogous stability theorem for FCTSs that does imply Theorem 1.

2.7.3 Can Images Be Simplified Using Variants of Our Method?

In view of the natural bijective correspondence between grayscale images (with fi-
nite connected domains) and FCTSs, our method of simplifying FCTSs might also
be construed as a method of simplifying images. Unfortunately we have found that,
when used for that purpose, it will often be unsatisfactory. (One reason is that the
omission of non-critical non-root nodes before performing simplification step 3 may
reduce the graylevels of some spels in the resulting image by too much.) Neverthe-
less, we believe that it may be worthwhile to investigate variants of our method that
might be more useful for image simplification.

2.8 Conclusion

FCTSs can be used as descriptors of EM maps and other grayscale images, but un-
simplified FCTSs are too sensitive to errors in the image. This chapter has specified
a method of simplifying FCTSs that is provably robust (and capable of efficient
implementation). Our main theorem and its corollary (Theorem 1 and Corollary 2)
conservatively quantify the extent of the method’s robustness. We have presented
some experimental evidence that the simplified FCTSs produced by our method are
useful for the exploration of macromolecular databases. We hope further experimen-
tation will yield more evidence of this or suggest fruitful refinements of our method.
Some other avenues for future research have also been discussed.

Acknowledgements We thank Edgar Garduiio, Roberto Marabini, and Homeira Pajoohesh for
discussions regarding this chapter. The work was supported by awards ROIHL070472 from the
National Heart, Lung, and Blood Institute and DMS-1114901 from the National Science Founda-
tion. The content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Heart, Lung, and Blood Institute, the National Institutes of Health,
or the National Science Foundation.

SThe bottleneck distance between two persistence diagrams D; and D, is the infimum of
SUPgep, [ld — n(d)|lo over all bijections n : D; — D>.

2 Provably Robust Simplification of Component Trees 51

Appendix A: Some Properties of Simplification Steps 2 and 3,
and a Proof of the Correctness of Algorithm 1

A.1 Properties of Simplification Step 2

Here we prove the main result of Sect. 2.4.2, and establish other properties of sim-
plification step 2 that are used in our proof of the Main Theorem.

Lemma Al Let §iy = (Z, Lin) be any k-FCTS, let . > 0, and let s and s’ be
any two distinct leaves of a k-FCTS Fout = (Tout, Lout) that results from pruning
Sin by removing branches of length < \. Then (regardless of which {in-increasing
enumeration of Leaves(y) is used to perform the pruning):

i) Az (551 = A ls.8)
(i1) min(Lou(s), Lout(s")) — eout(/\%m{s, s'H>2x

Proof The hypotheses imply that properties P1-P4 hold with respect to some
Lip-increasing enumeration of Leaves(.%,). It follows from P4 that, for all v €
Nodes(Zu), every node in v} # is also a node in vl g . Therefore v} 7 is the
same set regardless of whether .7 = Jou or 7 = Jiy. So /\ #{s, s’} is the same
node regardless of whether .7 = J,y or 7 = iy, since /\ 7{s, s’} is just the ele-
ment of s{} 7 N's’'|} » that is a descendant in .7 of every element of that set. Hence
(i) holds.

To prove (ii), we may assume without loss of generality that, in the ¢;,-increasing
leaf enumeration that is used for pruning, s occurs later than s’. (This assumption im-
plies that min(£i,(s), £in(s")) = £in(s).) Then, since s’ € Leaves(Z,y), property P3
implies that £in (s") — £in(/\ PACE s'}) > A, which is equivalent to:

min(€iy (8), £in(s")) —ﬂin(/\ym{S, s’}) > A (A1)
But (A1) is equivalent to assertion (ii), because of assertion (i) and the fact that £,
is just the restriction of ¢j, to Nodes(Toyt). Il

Corollary A2 Let) be any positive value, and Fou any «-FCTS that results
from pruning a x-FCTS Fin by removing branches of length < A. Then, for all
v € Crit(Four) \ Leaves(Four), we have that v € Crit(Fi,) \ Leaves(Fin) and
depthgout v) > A.

Proof Let Fout = (Jout, Lout), and let v € Crit(Fou) \ Leaves(Fou). Then v =
N7, 18,8’} for some distinct leaves s and s’ of Four- Now v = A 7. 1s, s’} (by as-
sertion (i) of Lemma A1), and so v € Crit(§i,) \ Leaves(Fi,). Moreover, we have
that depthg_ (V) > Lout(s) — Lout(V) = Lout(s) — Eout(/\%m{s, s'}) > A, where the
second inequality follows from assertion (ii) of Lemma Al. d

Lemma A3 Let Fin = (Fin, £in) be a k-FCTS, let). > 0, and let Fout = (Fout, Lout)
be the k-FCTS that results from pruning §in by removing branches of length < A

52 G.T. Herman et al.

using an Liy-increasing leaf enumeration o = (leaf[1], ..., leaf[n]) of Leaves(.%,).
Then:

(a) For all v e Nodes(7,) \ Nodes(Zou), Vit 7z, N Nodes(Toy) = 0.

(b) For all v € Nodes(.%;,), v € Nodes(Toy) if and only if lastLeaf, (v, F,) €
Leaves(Zou).

(¢) Forall veNodes(Tpu), depthgom v) = depthgin).

Proof For brevity, we write lastLeaf, (v) for lastLeaf, (v, Z,). Evidently, (a) fol-
lows from P4, and the “if” part of (b) follows from (a). To establish the “only
if” part of (b), let v € Nodes(Jout), and let leaf[i] = lastLeaf, (v). We need to
show that leaf[i] € Nodes(Zoy). If i = n then this is true (by property P2), so
let us assume i < n. Let j be any element of the set {i + 1,...,n} (so that
leaf[j] ¢ Leaves(.Zh[v])). Now we claim that leaf[j] must satisfy £i,(leaf[i]) —
Zin(/\ym{leaf[j], leaf[i]}) > A.

To see this, let leaf[k] be any leaf of J5y[v]; such a leaf must exist, by P4.
As leaf[i] = lastLeaf, (v), we have that i > k and /¢, (leaf[i]) > ¢i,(leaf[k]). As
jeli+1,...,n}, we have that j € {k + 1,...,n}. Therefore, since leaf[k] €
Leaves(Zou), property P3 implies that:

tin(leaflk]) — € (A 7, {leafl /1. leaflk]}) > (A2)
But, since leaf[i] and leaf[k] are leaves of .Z,[v] but leaf[j] is not,

Az {leaflj]1, leaflil} = A 5 {leaflj], v} = A # {leafl], leaf[k]}
and (since £i, (leaf[i]) > ¢, (leaf[k])) this implies:

tin(leatfli1) — in(A 7, {leaflj1. leafli1})

> tin(leaflk1) — tin(A 7, {1eafl 1. leaflk1})

This and (A2) imply that our claim is valid (for any j in {i + 1, ..., n}). The “only
if” part of (b) follows from this and property P3.

To prove (c), let v € Nodes(Zyy). Then lastLeaf, (v) € Leaves(Jou[V]) (by (b)),
and every w € Nodes(Zoy[v]) € Nodes(Ziy[v]) satisfies £ou(W) = Lin(w) <
Lin(lastLeaf, (v)) = Loyt (lastleaf, (v)).

It follows that depthgOut (V) = Loyt (lastlLeaf, (v)) — Lout (V) = &in (lastLeaf, (v)) —
Lin(V) = depthsin v). Il

Lemma A4 Let Fiy = (T, Lin) be a k-FCTS, let). > 0, and let Fout = (Fout, Lout)
be the k-FCTS that results from pruning §in by removing branches of length < A
using an Lin-increasing leaf enumeration o = (leaf[1], ..., leaf[n]) of Leaves(Z,).
Then:

(a) Nodes(Ju) \ Leaves(Zou) 2 UM (Fin) 2 Crit(Fou) \ Leaves(Toy)
(b) For all v e V*(Fin) \ V1 (Fin), V1 7, N Nodes(Tou) = 9.
(c) Forall v e Vi(Fin), v 7, N Nodes(Toy) = Path, (v, Fip).

2 Provably Robust Simplification of Component Trees 53

Proof For brevity, we shall write U)‘, VA, V’}, lastLeaf, (v), and Path,(v) for
U (i), VA (Fin), V1 (Fin), lastLeals (v, in), and Path, (v, Zn).

First, we prove (a). The inclusion U* D Crit(Zpy,) \ Leaves(Zyy) follows from
Corollary A2 and Lemma A3(c). Moreover, since P4 implies that Leaves(Zoy) C
Leaves(.%,), we have that u ¢ Leaves(Z5y) if u € U So the other inclusion of (a)
will follow if we can show that u € Nodes(.Z,,() whenever u € U*.

Let u be any element of U*, and let leaf[i] = lastLeaf, (u). If i = n, then
lastLeaf, (u) € Nodes(Zoyt) (by property P2) and so u € Nodes(Z,y) (because of
P4), as required. Now suppose i < n. Let j be any element of the set {i + 1, ..., n}
(so leaf[j] ¢ Leaves(.Z;,[u])). Since leaf[i] is a leaf of 7}, [u] but leaf[j] is not, we
have that /\’%{Ieaf[j], leaf[i]} <z u. Hence:

tin(leafli]) — tin(A 7, {leafl 1. leaf[i1}) > tin(leafli]) — in(u)
= depthsin (w) > X

We see from this and property P3 that lastLeaf, (u) = leaf[i] € Leaves(.Zy), and
hence (in view of P4) that u € Nodes(Z,), as required. This proves (a).

Next, we prove (b). Let v be any node in V*\ V}. Then it follows from the
definitions of V* and V7 that v % root(.Z,).

Let p=parents (v). Thenpev] g < U”, so we have that:

£in(lastLeaf, (p)) — £in(p) = depthg, (p) > A (A3)
Now £ip(d) — £in(v) < depthsfin (v) for all d >z v. Therefore:
lin(d) — Lin(p) < depthg. (V) +{in(v) —Llin(p) <A foralld =z v (A4)

Here the second inequality follows from the definition of Vi‘ and the facts that p =
parent g (v) and v € V* \ V’}. It follows from (A3) and (A4) that lastLeaf, (p) is
not a descendant of v in %, and so

Nz {lastLeaf, (p), lastLeaf, (V) } = p AS)
Since lastLeaf, (V) = & v, we deduce from (A4) and (A5) that

Cin(lastLeaf, (v)) — Lin (N\ 7 {lastLeaf, (p), lastLeaf, (v) }) <A (A6)

Since p = parent T (v) and lastLeaf,; (p) # lastLeaf, (V) (e.g., by (AS)), the leaf
lastLeaf, (p) must occur later in the ¢j,-increasing enumeration o than the leaf
lastLeaf, (v). This, (A6), and P3 imply that lastLeaf, (v) ¢ Leaves(Zoy). It now
follows from assertion (b) of Lemma A3 that v ¢ Nodes(Z,y). This and assertion
(a) of Lemma A3 imply vt g, N Nodes(Jou) = @, which proves (b).

Finally, we prove (c). Let v be any node in V}. We first make the claim that
lastLeaf, (V) is a leaf of Ty

If v = root(Z,) then the claim is certainly true (by property P2), so let us assume
v #root(J,). Let p = parent s (v), and let s be any leaf of i that occurs later in
the ¢i,-increasing enumeration o than lastLeaf, (v). Then s ¢ Leaves(.%,[v]), and
so /\ 7 {s, lastLeaf; (V)} < 7, p, which implies that:

54 G.T. Herman et al.

Cin(lastLeaf, (v)) — £in (Nz {s. lastLeaf, (v) })
> Uin (lastLeafs (V) — Lin(P) (A7)
But, since depthgin (v) = {in(lastLeaf, (v)) — £in(v), we also have that
Uin(lastLeaf, (V) — Lin(p) = depthzg, (V) + £in(V) — Lin(p) > A (A8)

where the inequality follows from the definition of Vi‘ and the facts that p =
parent s (v) and v € Vi‘. Now it follows from (A7) and (A8) that:

Cin(lastLeafy (v)) — €i (/\?m {s. lastLeaf, (v) }) > A

Since this is true for every leaf s of .7, that occurs later in the £;,-increasing enu-
meration ¢ than lastLeaf, (v), our claim is justified (by property P3).

If w is any node in Path, (v), then w € lastLeaf, (v){} #, and so it follows from
our claim (and P4) that w € Nodes(.Z5y). Thus every node in Path, (v) lies in
vt .z, N Nodes(Toyy).

It remains only to prove that v{t sz N Nodes(Zoy) \ Path, (v) = . To do this,
we suppose there is a node x € vft 5z, N Nodes(.Zoy) \ Pathy (v) and deduce a
contradiction. As x € vtz \ Path,(v), we have that x ¢ lastLeaf, (v){ # and
so lastLeaf, (v) # lastLeaf, (x). Moreover, each of the nodes lastLeaf, (x) and
lastLeaf, (V) is a leaf of Joy (by Lemma A3(b) and our claim).

Let ¢ = A\ 7, \lastLeaf; (x), lastLeaf; (v)}. Then we have that ¢ € Crit(Zou),
¢ ¢ Leaves(Zyy), and ¢ = /\[%{IastLeaf(7 (x), lastLeaf, (v)} (by assertion (i) of
Lemma Al). The latter implies ¢ >4 v (as lastLeaf;(x) >4 X >4 v and
lastLeafy (v) > 7 v); and ¢ > g v implies depthg. ¢ < depthz. v < A (where the
second inequality follows from the fact that v € V4 C V*). Hence ¢ ¢ U*. But this
contradicts assertion (a) (since ¢ € Crit(J5y) \ Leaves(Joyut)). It follows that x can-
not exist, and so our proof of (c) is complete. 0

We can now prove the main result of Sect. 2.4.2:

Proposition Let §in = (Zin, Lin) be a k-FCTS, let . > 0, and let Fout = (Fout» Lout)
be the k-FCTS that results from pruning §in by removing branches of length <
A using an Lin-increasing enumeration o of Leaves(Z,). Then the nodes of §out
consist just of:

(i) The nodes of UM (Fin).
(ii) The nodes of Path, (v, Z,) for each node v in V? (Fin)-

Proof As U*(Fin) € Nodes(.Z,y) by Lemma A4(a), on putting .7 = %, and § =
Fin in (2.1) and taking the intersection of each side with Nodes(Zy;) we see that:
Nodes(Zou) =U*(Fn) U) (virz, N Nodes(Zou)
VeV (Fin)

The proposition follows from this and assertions (b) and (c) of Lemma A4. O

2 Provably Robust Simplification of Component Trees 55
A.2 Properties of Simplification Step 3

Here we establish some properties of simplification step 3 that are used in our proof

of the Main Theorem and our justification of Algorithm 1.)

For all j e {1,...,|D(®)I}, we see from EI-E5 that Nodes(F(5)) <
Nodes(F"(5’)) whenever § > &’. It follows that F(.) has the following mono-
tonicity property:

F4s) C Fs') whenever § > § (A9)

In addition, F(-) has the following four properties for every A > 0 (as we will

explain below):

E6: For every ¢ € Nodes(F) \ (Leaves(F) U {LCN(F)} U {root(F)}) and every
ief0,...,.|DE&| -1}, ce Nodes(%mt(dﬁl)) if and only if, for every j €
{0,...,i}, £(c) — E(parentgcm dg (¢) > d

E7: For every ¢ € Nodes(Fit) \ (Leaves(%) U {LCN(Z)} U {root(F)}), ¢ €
Nodes(F (1)) if and only if there is no critical proper ancestor ¢’ of ¢ in
& such that £(¢) — £(¢/) < i and ¢ € Nodes(gc“t(predg (£(c) — L(cH))).

E8: For every ¢ ¢ Nodes(F"it) \ (Leaves(F) U {LCN(Z)} U {root(F)}), ¢ €
Nodes(F™ (1)) if £(c) — £(parentzei(c)) > 1.

E9: For every ¢ € Nodes(Ft) \ (Leaves(F) U {LCN(F)} U {root(F))}), if ¢ €
Nodes(F (1)) then £(c) — ¢(parent geric (A)(c)) > A

Our proof of the correctness of Algorithm 1 will be based on property E7. However,
E1-E3, E8, and E9 are the only properties of simplification step 3 that will be used
in our proof of the Main Theorem.

E6 is easily deduced from ES by induction on i. Now we establish E7-E9. Let
¢ € Nodes(F") \ (Leaves(F) U {LCN(F)} U {root(F)}), and let A be any positive
value. We first claim that, for any critical proper ancestor ¢’ of ¢ in §, the following
four conditions are equivalent:

(a) There is some j € {0, ..., |D(F)| — 1} such that £(c) — £(¢/) < dS < A and
de Nodes(scr“(df).

(b) There is some j € {0, ..., |D(F)| — 1} such that £(¢c) — £(c) < dg < A and
¢’ € Nodes(F (pred (¢(c) — £(¢')))).

(c) €(c) — £(¢)) < » and ¢’ € Nodes(Fe"t (predg(€£(c) — £(c)))).

(d) There is some j € {0, ..., |D(F)| — 1} such that £(c) — £(c) =
de Nodes(&crit(dﬂ)

Here (a) implies (b) because of the monotonicity property (A9) and the fact that if

€(c) — £(c) < djﬁl then predz (¢(c) — £(¢') < df . Evidently, (b) implies (c), and

(d) implies (a). For any critical proper ancestor ¢’ of ¢ in §, £(¢) — £(¢) = ds T and

preds(ﬁ(c) — () = d3 for some j € {0, ..., |D(&)| — 1}, and so (c) implies (d).

This justifies our claim that (a)—(d) are equlvalent

/+1<Aand

56 G.T. Herman et al.

Next, we observe that ¢ € Nodes(&crit(k)) holds if and only if ¢ satisﬁes Z(c) —
Z(parentgcm dg (¢)) > de for all j € {0,...,|D(F)| — 1} such that d

(This follows from E6 when A € D(F). It remains true if A ¢ D(F), because of
E4.) So ¢ ¢ Nodes(F(1))]ust if there is some j € {0, ..., |D(F)| — 1} such that
£(c) — Z(parents,cm a%) (0) < d <M. Thus ¢ ¢ Nodes(%'crlt A)) just if (a) holds

for some critical proper ancestor ¢ of ¢ in . Equivalently, ¢ ¢ Nodes(Fi(1)) just
if (c) holds for some critical proper ancestor ¢’ of ¢ in §. This proves E7. E8 follows
from the “if”” part of E7.

Suppose the node ¢ violated E9. Then ¢ € Nodes(Fi(1)). Moreover, when
¢ = parent i, (¢) we would have that £(¢) — £(¢/) < A and also that ¢’ €

Nodes(Scr“(predg(Z(c) —£(c")))), where the latter follows from the former, the

fact that ¢’ € Nodes(F(1)), and the monotonicity property (A9). But this would
contradict the “only if”” part of E7. So E9 holds.

A.3 Justification of Algorithm 1

The correctness of Algorithm 1 will be deduced from Lemma A5 and Corollary A6
below.

Let § = (7, £) be any «-FCTS, and let ¢ be any node of Fit Then we define
Sy (c, §) = ¢ if ¢ € Leaves(F) U {LCN(F)} U {root(F)}, and we define §, (¢, §) =
£(c) — £(a,(c, §)) otherwise, where a, (¢, §) is the closest critical proper ancestor
¢ of ¢ in § such that

either £(c) —4(c)) > A
or €e)— () <randc € Nodes(&“it(predg (te) —¢(c))))

ay (¢, §) exists for all ¢ € Nodes(Fit) \ (Leaves(g) U{LCN(®)} U {root(F)}), be-
cause when ¢ = LCN(F) we see from E2 that ¢’ € Nodes(F (1)) for every i > 0
and so ¢ must satisfy the “either” or the “or” condition. Now 8, (-, &) satisfies the
following condition:

Lemma AS Let 0 < pu < A and let § = (T, £) be any x-FCTS. Thenfor all c e
Nodes(FY) we have that 8, (¢, §) > w if and only if ¢ € Nodes(F (1))

Proof Suppose ¢ € Nodes(Ft) \ (Leaves(F) U {LCN(F)} U {root(F)}). Then
8, (e, &) > w holds just if £(c) — £(ay(c, F)) > 1, and since u < A we see from
the definition of a, (¢,) that this holds just if no critical proper ancestor ¢’ of ¢ in
F satisfies £(¢) — £(¢/) < u and ¢’ € Nodes(Ft (predg(£(c) — £(c)))). So in this
case the lemma follows from E7.

The lemma also holds if ¢ € Leaves(F) U{LCN(F)} U {root(F)}, because in that
case 8. (¢,) = 0o > u and E1-E3 imply ¢ € Nodes(F 1 (1)). O

2 Provably Robust Simplification of Component Trees 57

Corollary A6 Let A be any positive value, let §F = (7, 8) be any k-FCTS, and let
¢ € Nodes(F) \ (Leaves(F) U {LCN(F)} U {root(F)}). Then 8, (c, F) = £(c) —
£(a), where a is the closest critical proper ancestor ¢ of ¢ in § such that

either ((c) — £(c/) > A
or €(c) —£(¢') < rand £(c) — £(c') <8 (¢, F)

Proof We just have to show that a = a, (¢, §). The definition of a,(c,§) dif-
fers from the definition of a only in the or condition “f(c) — £(¢/) < A and ¢ €
Nodes(F (pred (¢(c) — £(c'))))”.

On putting u = predg(ﬂ(c) — £(¢)) in Lemma A5, we see that this condition
holds if and only if £(c) — £(¢’) < A and predz(£(c) — £(c')) < 8. (¢, F), which
is equivalent to the or condition in the definition of a (because either §; (¢, §) =
£(c) — L(ay (¢, F)) € D(F) or 8, (c/, §F) = 00). So a=a, (¢, F), as required. d

We can now explain why Algorithm 1 is correct. The algorithm sets (7, £) to a
clone of Fit = (F¢rit, ¢€rity Writing § for (.7, £), we claim that the label c.label
given by the algorithm to each node ¢ of § = Scr“ is just the value §; (¢, §). Assum-
ing this claim is valid, the correctness of the algorithm follows from Lemma AS5. So
it remains only to verify the claim.

The claim is certainly valid if ¢ is root(§) or LCN(F), because those nodes are
given the label oco.

We see that the algorithm does a top-down traversal of J[LCN(F)], during
which the procedure labelDescendants is executed once for each proper de-
scendant ¢ of LCN(F) in §. When labelDescendants is executed for such a
node c that is a leaf, it gives ¢ the label co. So the claim is valid for each proper
descendant ¢ of LCN() that is a leaf.

When labelDescendants is executed for a proper descendant ¢ of LCN(F)
that is not a leaf, the repeat loop in the procedure is executed. It follows from
Corollary A6 that this loop labels ¢ with the value §) (c, §). (Note that, when the
loop is executed, ¢'.label = 8 (¢/, F) for each proper ancestor ¢’ of ¢ in §.) There-
fore the claim is also valid for each proper descendant ¢ of LCN(§) that is not a
leaf.

Thus the claim is valid for all nodes ¢ of § = 3““, and Algorithm 1 is correct.

Appendix B: A Constructive Proof of Theorem 1

For any adjacency relation «, any image I whose domain is finite and x-connected,
any A > 0, and any integer k > 0, let us say that the image / is (A, k)-good with
respect to k if A,(I) > A and K, (I) > k. Also, let us say that an image I’ is an
g-perturbation of an image I if I’ has the same domain as I and ||’ —I||o < &. Then
Theorem 1 can be deduced from the following lemma:

58 G.T. Herman et al.

Fundamental Lemma Let « be any adjacency relation and Igeeq : 8 — R an image
whose domain § is finite and k-connected. Let ¢ be a positive value, let k be a
nonnegative integer for which Iggeq is (4€, k)-good with respect to k, and let I be
an g-perturbation of Iggea. Then there is an essential isomorphism of FCTS, (Igooa)
to the (2¢, k)-simplification of FCTS, (I') that is level-preserving to within .

Proof of Theorem 1, assuming the Fundamental Lemma is valid Suppose I, A, and
k satisfy the hypotheses of Theorem 1, sothat0 <A < A,(I)/2 and 0 <k < K, (I).
Let I’ be any image that satisfies the conditions stated in the theorem (i.e., let I’ be
any image whose domain is the same as that of / and which satisfies the condition
I = Iloo < A/2). Then we need to show that the conclusion of Theorem 1 holds—
i.e., that there is an essential isomorphism of the (A, k)-simplification of FCTS, (I')
to FCTS, (/) that is level-preserving to within A/2. We now deduce this from the
Fundamental Lemma.

Let Igooa =1, and let ¢ = A /2. Then 4e =21 < A (I) = Ac(gooa) and k <
K (I) = K (Igood), 50 that Iggeq is (4€, k)-good with respect to «. We also have that
1" = Igoodlloo = II' = Illoo <A/2 =¢, so that I is a e-perturbation of Iggoq. Thus
Ig00a = I and I satisfy the hypotheses of the Fundamental Lemma, and must there-
fore satisfy the conclusion of the lemma, which implies the conclusion of Theorem 1
since 2¢ = A. d

We now prove the Fundamental Lemma by constructing an explicit essential iso-
morphism of FCTS, (Ig0q) to the (2, k)-simplification of FCTS, (I') that is level-
preserving to within €.

Let Sgood = (%ood’ Lg00d) = FCTS, (Igood), and let §F =(J',0)=FCTS, ().
Let §1 = (91, £1) be the «-FCTS that results from pruning § by removing nodes
of size < k, and let I be the image I, so that §| = FCTS, (I1). Let §2 = (%, £2)
be the x-FCTS that results from pruning §; by removing branches of length < 2¢,
and let &3 = (3, £3) be the «-FCTS that results from eliminating internal edges
of length < 2¢ from 3‘2"“. Then &3 = (3, £3) is the (2¢, k)-simplification of
FCTS, (I'), so what we want to do is to construct an essential isomorphism of
Teood 10 F3 that is level-preserving to within &. We will do this in three steps:

Step 1: We define a suitable mapping ¢ : Leaves(7g00q) — Leaves(.7]).

Step 2: We show that ¢ is 1-to-1, and that the range of the mapping ¢ is exactly the
set of all the leaves of the subtree 7 of 7). Thereafter, we regard ¢ as a
bijection ¢ : Leaves(7g00q) — Leaves(.2).

Step 3: We extend ¢ to a mapping ¢ : Crit(Jgeea) — Crit(%) by defining
p) = /\72 p[Leaves(Zgooa[ul)]. We then establish that, for all u,u’ €
Crit(Jgo0d), (W) <7 @) if and only if u = Trooa u/, so that ¢ is
1-to-1 and order-preserving. We also show that the range of ¢ is the sub-
set Crit(.73) of Crit(.73), and that [£3(p(u)) — Lgoea(w)| < & for every
u € Crit(Jg00d). Hence we can regard ¢ as a mapping ¢ : Crit(Jgo0d) —
Crit(.73) and, when so regarded, ¢ is an essential isomorphism of Tgood 1O
53 that is level-preserving to within ¢.

2 Provably Robust Simplification of Component Trees 59

Note that the extension of ¢ to ¢ in step 3 is very natural because, if 7 is any
rooted tree and u € Crit(.7), then u = /\ 5 Leaves(.7 [u]). (In fact u € Crit(.7) if
and only if u € Nodes(.7) and u = /\ 5 Leaves(.7 [u]).)

B.1 Step 1 of the Proof of the Fundamental Lemma

We begin by defining a class of symmetric and transitive relations (on spels) that
will be used in our definition of the mapping ¢.

If7:8 — Ris animage and t € R, then we write s &/>c= to mean that 5,7 € §
and t € C (s, I, 7). It is readily confirmed that «/>r= is a symmetric and transitive
relation (which depends on «), and that s </>7= s if and only if I(s) > t. Moreover,
if s €r=7=t and t &I>v= u then s EI=min(r;,)= U.

Now let Ci (v, Igo0a) be any leaf of Fgeoa, and let z be any spel such that

Z€ arg min Ii(w) (B1)
ulgood Zlgond(U)*2€3U

It follows from (B1) that:
Ce (2, 11) 2 {u | u ElgooazTgooa@) 262 v} = € (v, Igood, Tgood (V) —2¢) (B2)
Next, we define:
M(Cx (v, Igooa)) = Leaves(71[C,c(z,11)]) (B3)

The set M(Cy (v, Igo0a)) is well defined by (B3) for the following reasons. First, if v’
is any spel such that C, (v, Igood) = Ci (V, Igoea) (50 that Igeod (V) = Ige0d (v)) then
the condition obtained from (B1) when we replace v with v’ is equivalent to (B1).
Second, if 7’ is any spel that belongs to the set in (B1), then C,(z', I1) = C, (z, I1)
(since 11 (z') =1,(2), and (B2) implies 7’ € C, (z, I)).

We can now define the mapping ¢ : Leaves(Zgo0a) — Leaves(.77) by defining
¢ (Ci (v, Igooa)) to be the element of M(C, (v, Igpoa)) that occurs later in the £-
increasing leaf enumeration that is used in pruning (7, £1) (to produce (93, £2))
than all other elements of M(Cy (v, Igo0d)). Note that if M(Cy (v, Ige0a)) has just one
element, then ¢ (C, (v, Igood)) is that element.

This completes step 1 of the proof of the Fundamental Lemma.

B.2 Some Useful Observations

Steps 2 and 3 of the proof of the Fundamental Lemma will be based on the following
observations:

A. If (7, £) = FCTS, (I), where I is an arbitrary image whose domain is finite and
«-connected, and ¥ # S C Nodes(.7), then £(/\ 7 S) is the greatest real value ©
such that s <r=r= 1 for all spels s, ¢ € | JS.

60 G.T. Herman et al.

B. Whenever ¢ # L C L’ C Leaves(Jggoa) and /\ Frood L'#A Trood L, we have
that ggood(/\y L) < ggood(/\yg L) —4e.

good ood

C. If v e v € Leaves(Zggod), U € Nodes(Zgg0q), and v %7,
egood(/\ygmd {u, v} < Lgood (V) — 4e = Igo0a (V) — 4e.

D. If Cy (v, Igo0d) € Leaves(Tgood) and u Elgeoa>Igooa(v)—4e=> v, then we have that
U Elgooa>Igooa ()= v 0r, equivalently, C; (i, Igooa) 2 Ci (v, Igood)-

E. If Cc(x, 1)) € Leaves(.7]), then C,(x, 1) € Leaves(.%;) if and only if there is
no node C, (v, I1) € Leaves(.7]) that satisfies both of the following conditions:
() x&en=nx -2y
(ii) The leaf C, (y, I1) occurs later in the £;-increasing leaf enumeration that is

used in pruning (77, £1) to produce (7, £;) than the leaf C, (x, I1).

u, then we have that
ood

Here A is a consequence of the definitions of FCTS, (1) and /\ 7 S. (The special
case of A in which S C Leaves(.7) is of particular interest; note that in this case
s € |US if and only if C, (s, /) € S.) B is a consequence of the fact that A, (Igo0a) >
4g, C can be deduced from B by putting L = {v} and L' = {v} U Leaves(Jg00a[ul),
and D can be deduced from A and C.

Assertion E is a consequence of A and the fact that (9, £2) is the result of
pruning (71, £1) by removing branches of length < 2¢. In view of assertion (ii) of
Lemma A1, we also have the following related fact:

E'. El(/\gl {z,7'}) < min(41(z), £1(z')) — 2¢ whenever z and z’ are distinct leaves
of %.

We could of course replace £; with £, in E’. Moreover, in view of assertion (i) of
Lemma Al, we could also replace /\ 5 with /\ & .

Now let x be any spel in 8. As § is the result of pruning FCTS, (I') = (7, ')
by removing nodes of size < k, and /1 = Ig,, we see from the definition of /g, that
I1(x) = max{¢'(u) | u € Nodes(.7"), |[u| > k + 1, and x € u}. This is equivalent to

Li(x)=max{I'(y) | y €8, x €Cc(y.I'), and [Cc(y,1')| > k + 1} (B4)

since the nodes u € Nodes(.7") for which x € u are just the sets C, (y, I') for which
x € C(y,I'). Now we claim that:

Ii(x) =max{t | [Cc(x, I, T)| =k + 1} (B5)

To see this, we first observe that if y satisfies x € C,(y,I’) then y also satisfies
Ce(y,I') = Cy(x,I',I'(y)). It follows from this observation that each element of
the set {I'(y) | y € 8, x € C(y, 1), and |C,(y,I')| > k + 1} in (B4) belongs to the
set {I'(y) |y € 8 and |G (x,I',I'(y))| > k + 1} and therefore belongs to the set {T |
|C(x,I',T)| = k + 1} in our claim (B5). So the right side of (B5) is no less than the
right side of (B4); it remains to show that it is no greater.

For every T < I'(x), let y(z, x) be any spel in argmingee, (x. 1,7 I'(s), so that
I'(y(z,x)) > 7, and it is easy to see that

Ce(y(T. x), I')=Cp(x, 1, 7) (B6)

since I’ > I'(y(z, x)) at every spel in C, (x,I’, T). Now if 7 is any element of the
set {t | |Cc (x,I’, 7)| > k + 1}, then we have that I’ (y(zg, x)) > 79 and we see from

2 Provably Robust Simplification of Component Trees 61

(B6) that |G, (y(t9, x),I")| >k + 1 and x € C(y (10, x),I'), so that I'(y(zg, x)) is
an element of {I'(y) | y € 8,x € C(y,I'), and |Cx(y,I')| > k + 1} that is no less
than 7¢. This shows that the right side of (B4) is no less than the right side of (BS).
Hence the right sides of (B4) and (BS5) are equal, and so our claim (B5) follows from
(B4).

Next, we establish the following properties of /;:

F. Iy is an g-perturbation of Igged, and if (/y, Ip) = (1, Igood) OT (Igood, I1) then for
any 7,8 € R and any spels s, t, u € § we have that:
(1) If sen>r=>1tthen s €h>r—s=>1.
(i) If s €L>Lw)—s=>t then s Eh>lu)—5—2e=>1.

To see that /1 has these properties, let x be any spel in § and note that Cy (x, Iggod,
7) C Ce(x,I', 7 — ¢) for every T € R since [[I' — Iggodllcc < €. On putting
T = Iggod(x), we deduce that Cc(x, I, Iggod(x) — &) 2 Ci(x, Igood: Igood (X)) =
C (x, Igo0d), Whence 1Ce (x, 1, Igood(X) — &) > |ex(x7]good)| >k + 1 (as
K (Igo0a) > k). It follows from this and (BS) that /1 (x) > Igged (x) — €. On the other
hand, whenever T > Iggod(x) + & we have that I'(x) < 7 (as [I' — Igeodlloo < €),
which implies that |C, (x, I, T)| = 0 and hence (by (B5)) that I;(x) < t. From this
it follows that 11 (x) < Igod(x) + &. This shows that I} is an e-perturbation of Iggod,
as F asserts. Now (i) follows immediately, and (ii) can be deduced from (i) by
putting T = I,(u) — 8, since the fact that I, is an e-perturbation of I, implies that
I,(u) — 6 > Iy(u) — 8§ — e forevery u € 8.

B.3 Step 2 of the Proof of the Fundamental Lemma

The main goals of this step are to show that the mapping ¢ defined in step 1 of
the proof is 1-to-1 and that the range of ¢ is exactly the subset Leaves(.73) of
Leaves(.77). This will allow us to regard ¢ as a bijection ¢ : Leaves(Z500d) —
Leaves(.%).

We first state and prove the following easy lemma:

Lemma B1 Let Cy (v, Igood) be any leaf of Tgeoa, let x be any spel in & that satisfies
X Elgooa=lgood (V) ~26=> v, and let s be any leaf of 7\ such that s > Cc(x,11). Then
s € M(Cy (v, Igood))-

Proof Let z be a spel that satisfies (B1) with respect to v. Then (B2) implies
that x € C(z,71) and hence that C(x,I1) >4 Cc(z,11). This and (B3) imply
s € M(Cy (v, Igood))- U

Next, we establish the following properties of M and the mapping ¢:

G. The following are true for any leaf C, (v, Iggod) Of Fgood:
(@) If Ce(y, I1) € M(Cy (v, Igooa)), then:

62 G.T. Herman et al.

(1) Y Elgooa=lgooa () —4s=>V
(ii) ¥y Elgooa>lgo0a (N V
>iil) y&en=n()-2s=v
(b) If Ce (y, 1) = ¢ (Ck (v, Igooa)), then:
()] Igood(U) texh(y)=hL) = Igood(v) —¢&
(ii) Yy Elgooa>lgooa (V) —262V
(iii) Cr(y,I) € Leaves(.%)

To establish (a), let C, (v, Iggod) be any leaf of Fyg0q and let C,(y, I1) be an ar-
bitrary element of M(Cy (v, Igooa)). Then it follows from the definition of the set
M(Cy (v, Igooa)) that Cy (¥, 11) € Ci(z,11) for some spel z that satisfies the condi-
tion v Elygea>Igeoa (v)—26=> 2 (Which implies Igood (2) > Igood (V) —2¢). Since Cy (v, I1)
C G« (z,11), we have that z &l >11(z)= y. This implies Z Elgpoa>Igood(2)—2¢=y (in
view of assertion (ii) of F), which implies z &lgo0a>/g00a()—4c=y (@S Iggod(2) >
Igo0a (V) — 2¢).

Combining z <lgoed >Igeod (v)—4=> ¥ With v Elgeed>Igeoa (v)—2¢=> 2, We deduce asser-
tion (i) of (a). Now (ii) follows from (i) and D because Cy (v, Igood) € Leaves(-Zgood).
and (iii) follows from (ii) and F.

Now we establish (b). Suppose Ci (v, 1) = ¢(Ci (v, Igood)). Consider the node
Ce(v,I) of 7. Let s be a leaf of 7] such that s =4 C,(v,/1). Then we have
that s € M(Cy (v, Igo0d)), by Lemma B1. Hence £1(C(y, 1)) = £1(s) (as s cannot
occur later in the £;-increasing leaf enumeration that is used in pruning (77, ¢1)
than ¢ (C, (v, Igooa)) = Ci (¥, 11), by the definition of ¢ (C (v, Igood))). Therefore

Li(y) =1(Ce(y. 1)) = €1(8) = £1(Cc (v, 1)) =11 (v) (B7)

which establishes the second inequality of assertion (i) of (b). The third inequality
of (i) follows from F. Now Iggod (v) > Igeea(y) (by assertion (ii) of (a)). This implies
Igo0d (v) > I1(y) — & (by F), which is equivalent to the first inequality of assertion (i)
of (b). This establishes assertion (i) of (b). It follows from F and assertion (i) of (b)
that Igood (¥) > Igeod (v) — 2¢. Assertion (ii) of (b) follows from this and assertion
(ii) of (a).

To see that assertion (iii) of (b) holds, let C, (w, I;) be any leaf of .7] that occurs
later in the £;-increasing leaf enumeration that is used in pruning (J7, £;) than
¢ (Ci (v, Igood)) = Ci (¥, I1). Then it follows from the definitions of ¢ (Ci (v, Iggod))
and of an £1-increasing leaf enumeration that:

o Co(w,I1) ¢ M(Cy (v, Ig00d))
o I1(w) =4 (Cc(w,11) = L1(Cic(y, 1)) =L (y)

As I1(w) > I1(y), (B7) implies that 71 (w) > I1(v), and now it follows from F that
Igo0a (W) > Iggea(v) — 2¢. So Ci (v, Igood) é%aod Ci (w, Igg0a); otherwise the spel w
would satisfy w <lge0d>Igeea(w)=> v, Which would imply that w &lsgea>Igooa(v)—26=> V
(since Igood (W) > Iggoa(v) — 2¢), which would in turn imply that €, (w, I) is an
element of M(Cy (v, Igood)) (by Lemma B1), which is false as we saw above.

Since Cy (v, Igood) 7 Tyo0a Cic (w, Iggoa), it follows from C and A that w does not
satisfy W <lgeeda>lgeoa(v)—4e=>v. This and assertion (ii) of F imply that w does not
satisfy w &1,>1(v)—2¢= v, and so (since I1(y) > I1(v), by (B7)) w does not satisfy

2 Provably Robust Simplification of Component Trees 63

w &l =1 (y)-2¢= v. But we know from assertion (iii) of (a) that y &1,>1,(y)—2e= v,
so w also does not satisfy w &1,>1,(y)-2¢= y. As C (w, I1) is an arbitrary leaf of 2
that occurs later in the £ -increasing leaf enumeration used in pruning (.77, £1) than
the leaf ¢ (Cy (v, Igood)), We see from E that ¢ (Cy (v, Igeoa)) € Leaves(25)—i.e.,
assertion (iii) of (b) holds.

Since ¢ (Cy (v, Igo0a)) € Leaves(.%) for every leaf C, (v, Igo0d) Of Tg00d, We can
regard ¢ as a mapping ¢ : Leaves(ﬂg(md) — Leaves(.%), and we will do this from
now on.

We next show that ¢ : Leaves(7g00q) — Leaves(.%) is 1-to-1:

H. ¢(v) # ¢ (V') whenever v and v’ are distinct leaves of geod-

Indeed, let Cy (va, Igood) and Cy (vp, Igood) be any two distinct leaves of Fggod. To
establish H, it is enough to show that M(Cy (va, Igood)) and M(Cy (v, Igood)) are
disjoint. Suppose this is not the case. Then there is a leaf C, (x, ;) of 77 such that
Cie(x,I1) € M(Cy (va, Igooa)) and Cy (x, I1) € M(Cy (Vb, Igooa)). Now assertion (i) of
part (a) of G implies that vy &lgea>Igeed (va)—4e=> X and that vy <laeed >Igeod (V) —46=> X.

Assuming without loss of generality that Igoed (va) < Igeod(Vb), these two prop-
erties imply that vy Elgeea>Igeed (va)—4e=> Vp, Which is impossible in view of C and A.
This contradiction establishes H and shows that ¢ is 1-to-1.

Next, we show that:

I. Leaves(.%) \ ¢[Leaves(Jg00a)] =9

To justify I, let C,(x, I1) be any element of Leaves(.77) \ ¢[Leaves(Jg00d)]. Then
what we need to show is that C, (x, I) ¢ Leaves(.%).

Let Cc (v, Igo0d) be a leaf of Fgeea such that Ce(x, Iggod) 2 Ci (v, Igood). Then
X Elgood>Igood ()= U and so it follows from F that x &>1(x)-2¢e=v. Let C (v, 1) =
¢ (Ci (v, Igooa)). We now claim that:

o Cy(y, 1) occurs later in the £1-increasing leaf enumeration that is used in pruning
(%, El) than eK (x9 Il)

Now we justify this claim. Just one of the following is true:

(a) Igood(v) —2e > Igood(x)
(b) Igood(x) > Igood(v) —2¢

In case (a) it follows from F that I (v) > I1(x), and so I1(y) > I1(x) (since
I1(y) > I1(v), by assertion (i) of part (b) of G); thus our claim is valid.

In case (b), we first observe that, since X <lgoa>lgeoa(x)= v, (b) implies that
X Elgood =lgood (v)—26= v, s0 that €, (x, I1) € M(Cy (v, Igooa)) (by Lemma B1). There-
fore Cy(x,11) € M(Cy (v, Igood)) \ {9 (Ci (v, Igood))}, because €, (x,1) is an el-
ement of Leaves(7]) \ ¢[Leaves(Jgood)]- As Ci(y,11) = ¢(Ci (v, Iggoa)) and
Cie(x,I1) € M(Cy (v, Igooa)) \ {#(Cx (v, Igg0a))}, it follows from the definition of
¢ that our claim is again valid.

In either case, we have that x &I,>1,(x)-2¢= v (as we saw above), and the claim
implies I1(y) > I1(x). So, since we see from assertion (iii) of part (a) of G that
v &> (y)—2¢=> y, we also have that x &11>11 (x)—2¢= y. From this, E, and the above
claim, we deduce that C, (x, I1) ¢ Leaves(.%). This justifies I.

64 G.T. Herman et al.

It follows from H and I that ¢ : Leaves(.7g00qa) — Leaves(.%) is a bijection. This
completes step 2 of the proof of the Fundamental Lemma.

B.4 Step 3 of the Proof of the Fundamental Lemma

We now extend ¢ to a mapping ¢ : Crit(Jgeeq) — Crit(2) by defining ¢(u) =
A\ 7 ¢[Leaves(Tgeoa[u])]. We will establish two properties of the mapping ¢ which
together imply that ¢ is an essential isomorphism of §geoa t0 §3. The first property
is that, for all u, u’ € Crit(Jg0d), ¢ (W) < 7 @) if and only if u = Fr0d u’ (so that
¢ is an order-preserving injection). The second property is that ¢[Crit(Zgeod)] =
Crit(.%3). To establish these two properties, we first show that:

J. |€2(/\g2 o[L]) — ggood(/\ﬂg

Indeed, suppose ¥ # L € Leaves(ﬂgood). If |IL] =1, then J is an immediate conse-
quence of assertion (i) of part (b) of G, so we will assume |L| > 2.

For brevity, we will write 7y, for £ggoq (/\%oo o) and g1 for £5(/\q2 ¢[L)), so
that J can be written as |tg[) — 7L < €.

We first show that t4[1,) > 71, — €. For this purpose, let C; (x, 1) and Cc(y, 1)
be any two distinct elements of @[L]. Then C.(x,I1) = ¢(Cc(u, Igooa)) and
Ce (v, I1) = ¢(Ci (v, Igo0d)), Where Cy (u, Iggoa) and Cy (v, Igooa) are two distinct
elements of L. From A and the definition of 71, we see that u <lgeea>w.= v. This and
F imply that u <1,>7,—s= v. We see from the definition of ¢ and assertion (iii) of
part (a) of G that x &I,>1,(x)—2¢= u and y &I, >1 (y)—2¢= v. Combining the last three
observations, we deduce that:

L)| < & whenever) # L C Leaves(Zgo0d)-

ood

X &h=min(t,—e, 1 (x) 26,11 (7)—2¢) 2 (BS)

However, it follows from C and the definition of 7y, that

L= fgood (A%ood {eK (u, Igood)y eK‘ (v, [good)})

< min(ggood (GK (u, Igood)) —4e, EgOOd(GK (v, Igood)) - 45)
= min(Igooa (1) — 4¢, Igooa (v) — 4¢)

which implies that 7y, — & < min(Iggeq(#) — S¢, Iggoa (v) — 5¢), which implies that
L, — & < min(ly(u) — 4e,I1(v) — 4¢) (in view of F), which in turn implies that
1, — & <min(/; (x) — 4e, I1(y) — 4¢) (by assertion (i) of part (b) of G). So (B8) can
be simplified to x <I;>7,—«= y. It now follows from A that z4[r) > 11, — € (since
Ci(x,I1) and C, (v, I1) are arbitrary distinct elements of ¢[L]), as required.

To complete the proof of J, we show that 71, > 7] — €. This time we let
Cic (, Igo0a) and C (v, Igeoa) be any two distinct elements of L, and then de-
fine Cy (x, 11) = ¢ (Ci (u, Igooa)) and Cy (y, 1) = ¢ (C (v, Igooa)), s0 that Cy (x, I1),
Ck (y,11) € ¢[L]. From A and the definition of t4[1,] we see that x &I >7,1= y. This
and F imply that x &lgea>141—c= y. We see from assertion (ii) of part (b) of G that

2 Provably Robust Simplification of Component Trees 65

U Elgooa>Igood () —26=>x; we similarly have that v &lggea>Igooa(v)—26=>y. Combining
the last three observations, we see that:

u Elgood Zmin(fq)[L]_E’Igood (”)_za’lgood(v)_25)3 v (B9)

However, it follows from the definition of 741} and E’ that:

TyL) < L2 </\72 {¢(GK (u, Igood))a ¢(GK(U, Igood))})

< min(£2 (¢(6K (u, Igood)))a K2(¢(6K(vv Igood)))) —2¢
= min(@z(ek (x, 11)), ZQ(GK (y, I]))) —2e= min(h x), I (y)) —2¢

Hence ty1) — & < min(/; (x) — 3¢, I1 (y) — 3¢), which (by assertion (i) of part (b) of
G) implies tg[L] — & < min(Igood () — 2¢, Iggod (V) — 2€). We now see from (BY) that
U Elgooa>1s1—e=> v. It follows from this and A that 7y, > 7y — & (since Cy (u, Igood)
and Cy (v, Ige0a) are arbitrary distinct elements of L), as required. Thus we have
established J.

From B and J, we deduce:

K. Whenever # # L € L' € Leaves(Zgo0d): A\ 7,4
6 (A 7, $ILD — £2(\ 5, IL']) < 2e.

As we show in Appendix C, it is not difficult to deduce from K that:

L. For all u € Crit(Zgod), Leaves(2[¢(u)]) = g[Leaves(Jggoa[ul)].

M. For all x € ¢[Crit(Zgoa)], there is no y € x| 5 N Crit(.%) that satisfies the
condition £;(x) — €2 (y) < 2e.

N. For all x € Crit(%), some z € x|} 75 N @[Crit(Jgeoq)] satisfies the condition
£r(x) — £r(z) < 2e.

L'= /\%00 o L if and only if

We mention here that N is proved by showing that for every x € Crit(23) the node
z=¢(/\%0Od go_l [Leaves(.%[x])]) has the stated property.
Using L, it is quite easy to show that:

O. For all u,u’ € Crit(Jgood), ¢(0) < 7 ¢(0') if and only if u = Tro0 u'.

Details of the proof of O are given in Appendix C. It follows from O that ¢ is an
order-preserving injection.

As &3 = (3, £3) is the result of eliminating internal edges of length < 2¢ from
35‘“, it follows from M and property E8 of simplification step 3 that ¢ must satisfy
@[Crit(Fgo0od)] € Crit(2) N Nodes(.73) = Crit(.73). Moreover, N implies that,
for all x € Crit(:%) \ ¢[Crit(Jgooa)], some z € x| 7, N @[Crit(Fgooq)] satisfies
£r(x) — £3(z) <2¢. We therefore have that:

o For all x € Crit(:%) \ ¢[Crit(Jgeoa)], some z € x| 7 N Crit(73) satisfies the
condition £, (x) — £ (z) < 2e.

From this and property E9 of simplification step 3 we deduce that ¢ satisfies
(Crit(2) \ ¢[Crit(F00a)]) N Nodes(.73) = @. Equivalently, ¢ satisfies the con-
dition Crit(J3) \ ¢[Crit(Jgeea)] = @. Thus @[Crit(Jgeea)] = Crit(:73). So the

66 G.T. Herman et al.

order-preserving injection ¢ can be regarded as a bijection ¢ : Crit(Jgooa) —
Crit(.73). When so regarded, ¢ is an essential isomorphism of Fggeq to §3. Fi-
nally, ¢ is level-preserving to within ¢ because, for any node u € Crit(Jgg0d),
we deduce from J (on putting L = Leaves(Jgooa[ul]), so that A\ Frood L = u) that
[€3(¢(w)) — Lgooa ()| < €.

This completes the proof of the Fundamental Lemma.

Appendix C: Justification of Assertions L, M, N, and O in Step 3
of the Proof of the Fundamental Lemma

For any rooted tree .7 and any u € Crit(.7), we write £ zu to denote the set
Leaves(Z [u]) = {v € Leaves(.7) | u <& v}. It is readily confirmed that the fol-
lowing are true in any rooted tree .7:

If ##L C L' C Leaves(7), then: A4sL <5 AsL (C1)
If 4L C Leaves(7), then: L5 A5;L2OL (C2)
IfueCrit(7), then: AgyLzu=u (C3)
IfueCrit(7)andL D Lgu, then: AgygL<zu=AzLzu (C4)
Ifu,veCrit(7), then: Lgv=~Lguifandonlyifv=u (C5)
Ifu,veCrit(7), then: LgvD Lguifandonlyifv<gu (Co)

For all L C Leaves(.Zg90d) and all L’ C Leaves(.%), we write ¢L to mean ¢[L]
and we write ¢ 'L to mean ¢~ [L].

If x <4 yory <4 X, and A is any positive value, then we write X 7, y to mean
that |£,(y) — £2(X)| < A, and write X <; y to mean that £7(y) — £2(X) > A; in the
latter case we must have that X < g y. For brevity, we will write /\good and A\, to
mean /\ggmd and /\72 , and write Lggod and £, to mean £ Tyooa a0 L 7. Note that
the definition of the mapping ¢ can be rewritten in terms of ¢ and Lggoq as follows:

o) &N, ¢ Lgooau (C7)

If § #L C L' C Leaves(g00a), then ¥ # ¢L C ¢L’ C Leaves(.75) and so
Mo dL <2 A\, ¢L (by (C1)). Hence assertion K can be restated as follows (for
all nonempty sets L C L' C Leaves(ﬂgood)):

Ao ®L ~oe N\yoL ifand only if Aggpq L' = Agooa L (C8)

When # # L € L’ C Leaves(Z00a), the negations of A, ¢L a5, /\,¢L’ and
/\good L'= /\goodL are /\2 PL" <2 /\2 ¢L and /\good L = Ta00d /\good L respec-
tively (since Agooa L' <7000 /\gooa L and /\; 9L' <72 A\, ¢L), s0 (C8) can also
be stated as follows (for all nonempty sets L C L’ C Leaves(Z500d)):

N2 ¢l <20 \a¢L ifandonly if Ageeq L' < Z000 /good I (Y]

2 Provably Robust Simplification of Component Trees 67

C.1 Proof of Assertion L

In view of (C7), L can be restated as follows:

e For all u € Crit(Jgg0q), we have that £y /\, #Lgooat = ¢ Lgooaul. Equivalently,
¢_1£*2 /\2 ¢£‘goodu = Lgood‘L

To prove this, let u € Crit(-Zgood). Then we successively deduce:
L\, $Lgoodt 2 $Lgooaut [by (C2)]
¢_ILZ /\2 ¢£’g00dll 2 ¢_1¢Lgoodu

¢_1£’2 /\2 ¢£’goodu 2 Lgoodu (C10)
The result will follow from (C10) if we can show that the following is not true:
¢~ L2 \y $Lgooatt 2 Lgooau (C11)

To do this, we derive a contradiction from (C11) as follows:
Agood @' £2 Ny 9LgoodW < Zp0q Ngood Lgooatt [by (C11) and (C4)]
/\2 ¢¢_1L2 /\2 4’£’g00dll <2¢ /\2 ¢’£’goodu [by (C9) and (CIO)]
/\2) /\2 ¢'L‘Jg00d'-l <2e /\2 ¢Lg00du
/\2 ¢’Lg00du <2¢ /\2 ¢Lg00du [by (C3)]

C.2 Proof of Assertion M

In view of (C7), M is equivalent to:

o Ifx= A\, ¢Lggoaut for some u € Crit(Fgooa), and if y € Crit(.%) satisfiesy < 7
X, then y <o, X.

To prove this, suppose X = /\, ¢Lggoaut for some u € Crit(Fggoa), and y €
Crit(.%) satisfies y < & x. Then we can successively deduce:

Y <7 \2®Lgooaut [because y < 7 x|

Loy 2 Lo Ny $Lgooaut [by (CO)]

L2y 2 ¢Lgoodaun [by (CZ)]
¢~ L2y 2 Lggoatt (C12)

/\good ¢_1[Jzy = Tgo0d /\good Lgoodu [by (C4)]
N2 99~ Loy <26 Ny 9Lgooaut [by (C9) and (C12)]
2~2Y =<2e /\2 00dU

JAYLY N2 $Lyg

¥ <2¢ N\ 9Lgooau [by (C3)]
This proves that y <2, X.

68 G.T. Herman et al.

C.3 Proof of Assertion N

In view of (C7), A, #Lgood /\good o1 Lox € @[Crit(Jgeed)] for every node x
of . So N can be proved by establishing that:

e For all x € Crit(%), the node z = /\, $Lgo0d /\good ¢~ 1Lox satisfies z <7 X
and x %), Z.

To prove this, let x € Crit(:73) and let z = /\, $Lgood /\good ¢~ 1Lox. Then we
successively deduce:

Lgood M\gooa ' L2x2 ¢~ Lox [by (C2)] (C13)
Vo Lgood M\gooa ' L2x 2 ¢~ Lox
?Lgood /\good ¢~ Lox D Lox
A2 #Lgo0d Ngooa @' L2x <75 \y Lox [by (C1)]
N2 $Lgood Ngooa @' L2x <7 x [by (C3)]
This proves that z < g, x. We can also successively deduce:
Ngooa Lgood /\good ¢~ Lox = Ngood ¢~ Lox [by (C3)]

N2 #Lgood Ngooa @' £2x ~2s Ny ¢~ ' Lox [by (C8) and (C13)]
A2 #Lgood Ngooa @' L2x ~2e N\, Lox
N2 #Lgood M\gooa @' Lax~2: X [by (C3)]

This proves that z ~y; X.

C.4 Proof of Assertion O

Let u, u’ € Crit(Zg0a). Then:

/

u=<gz 0 justif Lggeatt 2 Lgooat’ [by (C5) and (C6)]
justif ¢Lg00du 2 ¢£‘g00du/
justif Lop(u) D ngo(u/) [by assertion L]
justif @) < o(v) [by (C5) and (C6)]
References

1. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom.
24, 75-94 (2003)

2. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete
Comput. Geom. 37, 103120 (2007)

2 Provably Robust Simplification of Component Trees 69

10.

11.

12.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. Am. Math. Soc., Prov-
idence (2010)

Herman, G.T.: Geometry of Digital Spaces. Birkhiduser Boston, Boston (1998)

Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally sta-
ble extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proceedings of the British Machine
Vision Conference, BMVC 2002, pp. 384-393. British Machine Vision Association, Malvern
(2002).

Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image
Process. 15, 3531-3539 (2006)

Russell, W.C.: Update on adenovirus and its vectors. J. Gen. Virol. 81, 2573-2604 (2000)
San Martin, C., Glasgow, J.N., Borovjagin, A., Beatty, M.S., Kashentseva, E.A., Curiel, D.T.,
Marabini, R., Dmitriev, I.P.: Localization of the N-terminus of minor coat protein IIla in the
adenovirus capsid. J. Mol. Biol. 383, 923-934 (2008)

Sarioz, D., Kong, T.Y., Herman, G.T.: History trees as descriptors of macromolecular struc-
tures. In: Bebis, G., et al. (eds.) Advances in Visual Computing: Second International Sympo-
sium, ISVC 2006, Proceedings, Part I, pp. 263-272. Springer, Berlin (2006)

Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. Assoc. Comput. Mach.
22, 215-225 (1975)

Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V., Hamann, B.: Topology controlled volume
rendering. IEEE Trans. Vis. Comput. Graph. 13, 330-341 (2007)

Chapter 3
Discrete Topological Transformations
for Image Processing

Michel Couprie and Gilles Bertrand

Abstract Topology-based image processing operators usually aim at transforming
an image while preserving its topological characteristics. This chapter reviews some
approaches which lead to efficient and exact algorithms for topological transforma-
tions in 2D, 3D and grayscale images. Some transformations that modify topology
in a controlled manner are also described. Finally, based on the framework of critical
kernels, we show how to design a topologically sound parallel thinning algorithm
guided by a priority function.

3.1 Introduction

Topology-preserving operators, such as homotopic thinning and skeletonization, are
used in many applications of image analysis to transform an object while leaving
unchanged its topological characteristics. In particular, skeletons are often used as
a simplification of the original data, which facilitates shape recognition, registration
or animation.

In this chapter, we will see how to define and efficiently implement such opera-
tors, on the basis of elementary topology-preserving transformations. We will also
discuss some geometrical aspects of skeletons, as well as the need for filtering them.
Besides, we will see that it is sometimes interesting to be able to selectively modify
topology: we will present, in particular, a method that suppresses holes (or tunnels)
in 3D images, depending on a “size” criterion.

These transformations are usually defined for acting on binary images (i.e., pixel
or voxel sets). In Sect. 3.2, we will extend them to the case of grayscale images
(i.e., functions), and present some applications to image filtering, segmentation and
restoration.

M. Couprie () - G. Bertrand

Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, Université Paris-Est, ESIEE Paris,
Marne-la-Vallée, France

e-mail: m.couprie @esiee.fr

G. Bertrand
e-mail: g.bertrand @esiee.fr

V.E. Brimkov, R.P. Barneva (eds.), Digital Geometry Algorithms, 73
Lecture Notes in Computational Vision and Biomechanics 2,
DOI 10.1007/978-94-007-4174-4_3, © Springer Science+Business Media Dordrecht 2012

74 M. Couprie and G. Bertrand

P
Ny(z) Ns(z) Ne(x) Nig(z) Nag(z)

Fig. 3.1 Different neighborhoods of a point x (the central point) in 2D and in 3D

There are two main kinds of thinning procedures: the sequential ones, that take
a single point in consideration at each step, and the parallel ones, that attempt at
removing a whole set of points at each iteration. In the first case, the result most
often depends on the order in which the points are considered, while the latter kind
permits to provide a well-defined result, which is generally more robust than the
former to noise and orientation changes. The third part of this chapter deals with
parallel thinning: we present the framework of critical kernels, that provides a mean
to guarantee the topological soundness of parallel homotopic transformations. We
introduce in this framework a new algorithm that builds at once a well-defined fam-
ily of filtered Euclidean skeletons.

3.2 Topological Transformations of Binary Images
3.2.1 Neighborhoods, Connectedness

First of all, let us recall the basic definitions of digital topology [29, 34] that will be
used in this chapter.

A point x € ZP (D =2, 3) is defined by (x1, ..., xp) with x; € Z. We consider
the neighborhood relations N4 and Ng defined for any point x € Z? by:

Na@) ={y € Z% Iy1 — 21| + [y2 =2 < 1},
Ng(x) = {y € Z*; max(|y1 — x11. [y2 — x2) < 1},
and the neighborhood relations Ng, Np¢ and Njg defined for any point x € Z> by:

Ne(x) ={y € Z%; ly1 — x1] + |y2 — xal + |y3 — x3| < 1},
Nao(x) = {y € Z*; max(|y1 — x1 1. [y2 — x2l, [y3 — x3]) < 1},
Nig(x) ={y € Nag(x); [y1 — x1] + |y2 — x2| + |y3 — x3] < 2}

These neighborhoods are illustrated in Fig. 3.1.

We denote by E the set Z> or Z3. In the sequel, we denote by n a number such
that n € {4, 8, 6,26}. We define N,/ (x) = N, (x) \ {x}. The point y € E is said to be
n-adjacent to the point x € E if y € N;¥(x). An n-path is an ordered sequence of
points xg . .. xg such that x; is n-adjacent to x;_| forany i € {1, ..., k}.

Let X C E, we say that two points x, y of X are n-connected in X if there exists
an n-path in X between those two points. This defines an equivalence relation on X.

3 Discrete Topological Transformations 75

Fig. 3.2 The set of black points has two 4-connected components, and only one 8-connected com-
ponent. This figure also illustrates two common representations of a binary digital image (points
on the /eft, pixels on the right)

The equivalence classes for this relation are the n-connected components of X (see
Fig. 3.2). A subset X of E is said to be n-connected if it is composed of exactly one
n-connected component.

The set composed of all n-connected components of X is denoted by C, (X).
A subset Y of E is said to be n-adjacent to a point x € E if there exists a point
y € Y that is n-adjacent to x. The set of all n-connected components of X that are
n-adjacent to x is denoted by C; (X). Remark that C,(X) and C; (X) are sets of
subsets of X, and not sets of points. Besides, if S is a finite set, we denote by |S| the
number of elements of S.

3.2.2 Connectivity Numbers

Intuitively, a point x of an object X C E is said to be simple if it can be deleted from
X while preserving the topological characteristics of X (see [19]). In the case of Z2,
this implies preserving the number of connected components of both the object and
its complementary set. In Z3, it is necessary to preserve also holes (or tunnels),
a notion that may be formalized through the fundamental group (see e.g. [24]).

Note that the definition of a simple point relies on notions (connected compo-
nents, tunnels) that can be classified as global, in the sense that they cannot be
defined without taking the whole object into account. Nevertheless, we will see that
in 2D and 3D, it is possible to characterize simple points on a local basis, thanks to
the connectivity numbers introduced in this section. Such a local characterization is
essential to get efficient algorithms for topological transformations.

Let X be a finite subset of Z”. We denote by X the complement set of X,
ie., X =7P \ X.If we use a n-connectivity for X then we have to use a 77-con-
nectivity for X. For example in 2D the 4-connectivity for X is associated with the
8-connectivity for X, and in 3D the 6-connectivity for X is associated with the
26-connectivity for X. This is necessary to have a correspondence between topo-
logical characteristics of X and X (see e.g. [29]). To summarize, we have the fol-
lowing possibilities in 2D: (n,77) = (4, 8) or (8,4); and in 3D': (n,7) = (6, 26)
or (26, 6).

IFor the sake of simplicity we do not discuss here the case of the 18-connectivity, see [3, 10, 32]
for more information.

76 M. Couprie and G. Bertrand

(a)

Fig. 3.3 We set (n,n) = (8,4). (a): An object X (light gray and dark gray pixels). (b): The eight
neighbors of pixel u. The unique 8-connected component of Ng () N X is labeled with 01, and the

unique 4-connected component of Ng (u) N X is labeled with b1. (c): Depicts the eight neighbors
of pixel x or pixel y. The 8-connected components of Ng (x) N X are labeled with o1, 02, and the
4-connected components of Ng'(x) N X are labeled with b1, b2

Now, we can define the connectivity numbers in 2D and in 3D [3]. Intuitively, the
connectivity number of a point x relative to a set X, counts the number of connected
components of X \ {x}, which are in the neighborhood of x, and which are adjacent
to x.

Definition 1 Let X C Z? and x € Z?. Let n € {4, 8}. The (2D) connectivity numbers
are defined as follows:

Tu(x, X) = |C; [N (x) N X]|,

Tg(x, X) = |C§[N§ (x) N X]|.
In Fig. 3.3, we illustrate some connectivity numbers in 2D. Figure 3.3b shows
the neighborhood of point u, we can verify that Tg(u, X) = 1 and T4(u, X) = 1.

Similarly, the read_er can check that Tg(v, X) = Ty (v, Y) = 1. For pixel x, we have
Tg(x, X) = T4(x, X) = 2 (see Fig. 3.3c). The same holds for pixel y.

Definition 2 Let X C Z3 and x € Z3. The (3D) connectivity numbers are defined as
follows:

To(x, X) = |C{[Nfz(x) N X]

Tag(x, X) = | C3[N3g(x) N X]

3

Figure 3.4 shows some examples that illustrate this definition. Note that compo-
nents that are not adjacent to the central point, according to the chosen adjacency
relation, are not taken into account: this is illustrated in Fig. 3.4b.

3.2.3 Topological Classification of Object Points

If we use the n-connectivity for X and the n-connectivity for X, the numbers
T, (x, X) and T;(x, X) give us topological characteristics of the point x in the ob-

3 Discrete Topological Transformations 77

@) @
D
A
(@) & (b)
@ @)
&
(c) & (d) ®

Fig. 3.4 (a): The central point x is a 6-simple point (7g(x, X) = Th6(x, X)=1): the unique “ob-
ject” component in its neighborhood is in black, and the unique “background” component is in
white. We have also Tas(x, X) = Ts(x, X) = 1, hence x is 26-simple. (b): The central point x is
a 6-simple point (Tg(x, X) = Tre(x, X) = 1): there are two “object” components in its neighbor-
hood, but only the one in black is 6-adjacent to x. However, x is not 26-simple, for T (x, X) = 2.
(c): The central point x is such that T5(x, X) =2 and The(x, X) = 1; the two “object” components
are in black and dark gray. (d): The central point x is such that T (x, X) = 1 and Th¢(x, X)=2

ject X. In particular, the connectivity numbers allow us to detect whether a point is
simple or not [3, 10], both in 2D and in 3D:

Theorem 1 Let X C E and x € X. The point x is n-simple if and only if
T,(x,X)=1and T7(x, X) = 1.

Intuitively, this characterization states that a point is simple if and only if there is,
in its neighborhood, exactly one “object” component and one “background” compo-
nent. For example, in Fig. 3.3a, we conclude from the computation of connectivity
numbers that points u, v are both simple, whereas x, y are both non-simple points.
In this figure, all simple points are in lighter gray.

Note that the neighborhoods of points x and y are the same (Fig. 3.3c), hence
also the connectivity numbers, but different events occur whenever x or y is deleted
from X. In the case of x, two background components are merged; whereas if y
disappears, X is split into two components. Note also that any simple point may be
removed from X without altering topology, but removing simultaneously # and v
for instance would change topological characteristics of the image (here, the number
of background components). We will see in Sect. 3.4.5 how to perform parallel
thinning with topological guarantees.

The characterization of Theorem 1 also holds in the 3D case, see the examples
of Fig. 3.4.

78 M. Couprie and G. Bertrand

The fact that an intrinsically global notion—the one of simple point—admits
a local characterization is indeed a quite remarkable property. It will allow us to
efficiently implement topological transformations.

The connectivity numbers are also useful to detect other kinds of points of partic-
ular interest. A point x such that T;,(x, X) = 0 is an isolated point. If T(x, X) =0,
then we have an interior point. The border points are characterized by Ty (x, X) # 0.

Let us consider the case where E = Z3, and take a point x such that T}, (x, X) > 2.
If we delete x from X, we locally disconnect the object X (see Fig. 3.4b). We say
that such a point is a 1D isthmus.

Consider the simplest case where 7, (x, X) = 2 (see an example in Fig. 3.4c).
Two situations may occur whenever x is deleted. In the first case, the two local
components involved in the definition of 7, (x, X) are in fact connected together by
a path in X outside the neighborhood of x, and the deletion of the latter suppresses
a tunnel from the object (this situation is similar to the one of point x in Fig. 3.3a,
in 2D). In the second case, the two local components are not connected and the
deletion of x indeed disconnects the object (see y in Fig. 3.3a for a similar 2D
situation). In both cases, topology is not preserved, in other words the point x is not
simple.

In the same way, a point x such that Ty (x, X) > 2 is called a 2D isthmus; its
deletion causes the merging of connected components of the neighborhood of x
in X (see Fig. 3.4d). If these components are connected together in X, the deletion
of x creates a new tunnel for the object, and if they are not, the deletion of x causes
decrease of the number of cavities. Also here, the point x is non-simple.

3.2.4 Topology-Preserving Transformations

Deleting a simple point from an object X yields an object Y included in X, which is
“topologically equivalent” to X. If we iterate this elementary operation, we can ob-
tain a family of nested sets that are all topologically equivalent to X. More formally,

we say that Y is an elementary homotopic thinning of X, and we write X Sy, if
there exists a simple point x for X such that Y = X \ {x}. We say that Y is a ho-
motopic thinning of X if Y = X or if there exists a sequence (Y, ..., Yx) such that
Yo=X, Y=Y and Y) . Yi. If, furthermore, no point in Y is simple, we
say that Y is an ultimate homotopic thinning of X.

When transforming an object X through an homotopic thinning, it is often needed
to preserve from deletion a given subset K of X. Such a subset is called a constraint
set, and we say that Y is an homotopic thinning of X constrained by K if Y is an
homotopic thinning of X such that K C Y. If, furthermore, no point of ¥ \ K is
simple, we say that Y is an ultimate homotopic thinning of X constrained by K .

In order to thicken an object X in a topology-preserving manner, it is sufficient
to compute an homotopic thinning of the complementary set of X (for the dual
connectivity), and to take the complementary of the result.

3 Discrete Topological Transformations 79

3.2.5 Transformations Guided by a Priority Function

The order in which points are considered during a thinning process plays, of course,
an important role with respect to the geometrical aspect of the result. This order can
be specified by means of a numerical function, called priority function.

With each point x of X, a priority function associates an integer or real number
P (x), which represents the priority of point x. The points of X will be treated during
the thinning process following the increasing values of P. To certain points x, a
value P(x) = 400 may be given, meaning that these points must be preserved; in
other words, the points with infinite priority constitute the constraint set.

This strategy is realized by the Algorithm GuidedThinning (Algorithm 1). The
complexity of this algorithm is determined by the choice of the data structure used
to represent the function P. For example, a balanced search tree allows for reaching
a global time complexity in O (nlogn), where n is the number of image points. In
certain particular cases, including the very common case where the function P is a
distance map [35], it is possible to implement Algorithm GuidedThinning in linear
time (see [1]).

Algorithm 1: GuidedThinning

Data : X C E, afunction P from X in Z U {400} or RU {400}

Result : X

repeat
Let x be a point in X such that x is simple for X, P(x) < 400, and P(x)
1s minimal;
X=X\ {x}

until stability ;

If one wants to use Algorithm GuidedThinning for skeletonization purposes,
a natural choice for the priority function is a distance map relative to the back-
ground. In other words, the points with highest priority (i.e., smallest value) are
those closest to the background, and the points that “survive” are well centered in
the object, in the sense that their distance to the background is, roughly speaking,
maximal. Note that any distance may be chosen: discrete distances [35], chamfer
distances [13], Euclidean distance [23], etc. The choice of the Euclidean distance
permits to obtain the lowest sensibility to rotations.

However, choosing the exact Euclidean distance map as a priority function for
removing simple points from the object may lead to geometric distortions [39]. To
illustrate this point, let us consider the object X depicted in white in Fig. 3.5a. In
Fig. 3.5b, we show in black superimposed to X, all the centers of maximal included
Euclidean balls (that is, balls that are included in X but that are not subsets of any
other ball included in X). This is one of the possible definitions for the medial axis
of X (see also Sect. 3.2.6). It is usual to take only a subset of the medial axis as con-
straint set for computing centered skeletons, since the full medial axis often contains

80 M. Couprie and G. Bertrand

—
#%

| |
(a) (b) (c)

Fig. 3.5 (a): The original object X (in white). (b): The Euclidean medial axis of X (centers of
maximal balls, see text), superimposed to X. (¢): A subset Y of the medial axis. (d): Result of the
skeletonization using the Euclidean distance map as a priority function, and Y as constraint set

spurious points. Such a constraint set, let us call it Y, is depicted in Fig. 3.5c, super-
imposed to X. We use as priority function the map P defined by

+00 whenever x € Y;

Px) = { d(x,X) otherwise

where d(x, X) = min{d(x, y) | y € X}, and d(x, y) denotes the Euclidean distance
between x and y. When Y = (7, the function P is just the distance map relative to X.
Figure 3.5d depicts the result of Algorithm GuidedThinning in this case. Note
that the obtained skeleton deviates from the medial axis points.
In the next section, we will study another priority function that gives better results
than the Euclidean distance map, and is linked to a family of filtered medial axes.

3.2.6 Lambda-Medial Axis

The notion of medial axis has been introduced by Blum in the 60s [11, 12]. In the
continuous Euclidean space, the following definition can be used to formalize this
notion: let X be a bounded subset of RP, the medial axis of X consists of the points
x € X that have more than one nearest points on the boundary of X.

A major difficulty when using the medial axis in applications (e.g., shape recog-
nition), is its sensitivity to small contour perturbations, in other words, its lack of
stability. A recent survey [2] summarizes selected relevant studies dealing with this
topic. Because of this problem, it is usually necessary to add a filtering step (or
pruning step) to any method that aims at computing the medial axis.

In 2005, F. Chazal and A. Lieutier introduced the A-medial axis [16], a particular
class of filtered skeletons, and studied its properties, in particular those related to
stability. A major outcome of [16] is the following property: informally, except for
particular values of the filtering parameter, the A-medial axis remains stable under
perturbations of the shape that are small with regard to the Hausdorff distance.

The original definition of the A-medial axis (see [16]) holds and makes sense in
the (continuous) Euclidean D-dimensional space.

Let x = (x1,...,xp), y = (1, ..., yp) € RP, we denote by d(x,y) the Eu-

clidean distance between x and y, in other words, d(x, y) = (Z,?Zl(yk — xk)z)%.
Let S CRP, we set d(y, §) = min,es{d(y, x)}.

3 Discrete Topological Transformations 81

Fig. 3.6 Illustration of the A-medial axis in R2. Left: Points x,x” and x” and their respective
closest boundary points. Top right: A-medial axis with A = €, a very small positive real number.
Bottom right: A-medial axis with A =d(a’, b)) + €

alx|oe N

D

Fig. 3.7 We consider an object X in Z? that is a horizontal ribbon of infinite length and width 4
(partially depicted here in gray). The projection of x on X is IT5(x) = {C}. The smallest ball that
includes IT5(x) is the one with center C and radius 0. The projections of a, b, ¢, d on X are respec-
tively {A}, {B}, {C}, {D}. Hence, the extended projection of x on X is H%(x) ={A, B, C, D}, and
we have PRy (x) = R > 2. The pixels in darker gray are in any A-medial axis with A < R, those in
lighter gray are only in the 0-medial axis of X

Letx e RP, r e R, r > 0, we denote by B, (x) the ball of radius r centered on x,
defined by B, (x) = {y e RP | d(x,y) <r}.

Let S be a nonempty subset of RP, and let x € RP. The projection of x on S,
denoted by ITg(x), is the set of points y of S that are at a minimal distance from x;
more precisely,

Os(x)={yeS|VzeS,d(y,x) <d(zx)}.

The A-medial axis of X is the set of points x in X such that the radius of the
smallest ball that includes 13 (x) is not less than A. For example in Fig. 3.6, we
show a shape that is an ellipsis with a small “bump”, and we consider the interior X
of this shape. Two different A-medial axes of X are displayed on the right.

Now, let us consider the discrete case. For each point x € 7P, we define the direct
neighborhood of x as N(x) ={y € ZP | d(x, y) < 1}. Thus, N(x) = Na(x) (resp.
Ng(x)) whenever D =2 (resp. D = 3).

Transposing directly the definition of the A-medial axis to the discrete grid Z”
would yield unsatisfactory results. For instance, consider a horizontal ribbon in Z?
with constant, even width and infinite length (see Fig. 3.7). Clearly, the projection
of any point of this set on its complementary set is reduced to a singleton. If we keep

82 M. Couprie and G. Bertrand

(a) (b)

Fig. 3.8 (a): The function PRy superimposed to the shape X. Darkest gray levels represent high-
est values of PRy (x). (b): A 3D representation of the function PRy

the same definition as above, any A-medial axis of this object with A > 0 would be
empty.

This is why we need the following notion. Let X C 7P and let x € X. The
extended projection of x on X (where X = ZP \ X), denoted by H%(x), is the

union of the sets [T (y), for all y in N (x) such that d(y, X) < d(x, X). Figure 3.7
illustrates this notion and the following ones.

Let X be a finite subset of Z2, and let A € R, A > 0. We define the function
PRy that associates, to each point x of X, the value PRy (x) that is the radius of
the smallest ball enclosing all the points of the extended projection of x on X. In
other terms, PRy (x) =min{r e R,r > 0|3y e RP, IT5(x) S By(y)}, and we call
PRy (x) the projection radius of x (for X).

The following definition was introduced in [15], together with an experimental
evaluation of the stability and rotation invariance of the discrete A-medial axis.

Definition 3 ([15]) The discrete A-medial axis of X, denoted by DLMA(X, 1), is
the set of points x in X such that PRy (x) > X.

Note that the function PRy can be computed once and stored as a grayscale
image, and that any DLMA of X is a level set of this function at a particular value A
(see Fig. 3.8 and Fig. 3.9). For more details, illustrations and performance analysis,
see [15].

The illustration in Fig. 3.9b is sufficient to demonstrate that a DLMA of a given
shape X may have a homotopy type different from the one of X.

The Algorithm GuidedThinning, with PRy as priority function and with a DLMA
of X as constraint set, provides filtered skeletons that are homotopic to X and share
the good geometric properties of the DLMAs (see Fig. 3.9¢).

Another example is shown in Fig. 3.10, where a filtered Euclidean medial axis
is used as a constraint set during skeletonization. As we have seen at the end of
Sect. 3.2.5 (see also [39]), choosing the exact Euclidean distance map as a priority
function for removing simple points from the object may lead to geometric distor-
tions. In some cases, “extra branches” may even appear (see Fig. 3.5d). Choosing

3 Discrete Topological Transformations 83

(a) (b) (c)

Fig. 3.9 Any DLMA of X is a threshold of PRy at a particular value A. (a): Discrete 7-medial
axis. (b): Discrete 25-medial axis of X. (¢): Guided homotopic thinning of X, with PRx as priority
function and with (b) as constraint set

A A

Fig. 3.10 (a): The original object X (in white, the same as Fig. 3.5a). (b): A constraint set Y: a
filtered DLMA, that is also a set of centers of maximal included balls (see Fig. 3.5¢c). (¢): Result of
the skeletonization using PRy as a priority function, and Y as constraint set

the map PRy as priority function yields more satisfying results (see Fig. 3.10c), as
it guides the thinning process towards elements that belong to the different nested
discrete A-medial axes.

3.2.7 Other Applications of Guided Thinning

For certain applications, it may be relevant to take as priority function the gray
levels of an image. This makes sense when these gray levels can be interpreted as a
measure of the likelihood, for a pixel, to belong to a certain class or region.

To illustrate this, suppose that we want to extract from a 3D magnetic resonance
image (MRI) of the head, the white matter of the brain (see Fig. 3.11a). From the
knowledge of human anatomy and the parameters of the imagery device, we know
that a volume element x situated in the white matter produces a response that is
coded by a value F(x) for the corresponding voxel, which lies between two lim-
its u1 < (o. Assuming a Gaussian model, the voxels with value % are those
with highest probability to belong to the white matter. Furthermore, we know from
anatomical data that the white matter of the brain constitutes a simply connected
volume, in other words, it is topologically equivalent to a ball. In order to guarantee
a result having the wanted topological characteristics, we use the following scheme:

84 M. Couprie and G. Bertrand

Fig. 3.11 (a): Detail of a 2D
plane from a 3D MRI of the
brain. (b): Result of the
method described in the text.
Note that the result is
connected in 3D, although the
shown 2D cross-section is not
connected

(b)

start with an object X = {xo}, where xo is any point situated within the white mat-
ter; then perform an homotopic thinning of X (i.e. an homotopic thickening of X)
guided with the priority function P defined by:

PO = { |F(x) = |, where p =512 if 1y < F(x) < o,

400 otherwise.
The values 400 ensure that all the resulting points have, in the image F', values that
lie in the correct range (see Fig. 3.11b). This method has been successfully exploited
to segment the white matter, as well as the cortex, from 3D MRI with topological
guarantees [21, 22, 36].

In this kind of application, it is useful to be able to apply morphological filter-
ing operators (openings, closings, alternate sequential filters) on an object while
guaranteeing topology preservation. See [18] for the definition of such filtering op-
erators.

3.2.8 Hole Closing

We have seen that it is possible, thanks to the notion of simple point, to design
operators that transform an object while preserving its topological characteristics.
However, controlled topology modifications are needed in some applications. This
topic is seldom addressed in the literature. In this section, we present a method [1]
that is, to our knowledge, the first one that permits to close holes in a 3D ob-
ject.

In our approach, we consider the notion of hole from a topological point of view.
From this viewpoint, it is important to distinguish between holes, cavities and con-
cavities. A concavity is a concave part of the contour of an object, it is not a topo-
logical feature. A cavity is a bounded connected component of the background, that
forms a “hollow” inside the object (see Fig. 3.12a).

A hole is much more complicated to define. Intuitively, the presence of a hole
(or tunnel in 3D) in an object can be characterized by the existence of a closed path

3 Discrete Topological Transformations 85

concavity

holes /
cavities

(a)

(©)

Fig. 3.12 (a): A 2D objects with two holes. (b): A solid torus. This object has one hole (tunnel),
which is detected by the existence of path 7. (¢): The hole of the torus has been closed by a surface
patch

in the object that cannot be continuously deformed, inside the object, into a single
point. For example in 3D, a solid torus like the one depicted in Fig. 3.12b has one
hole.

In 2D, the notions of hole and cavity coincide, thus closing holes in 2D may be
simply done by using algorithms for connected component extraction. But closing
holes in 3D objects is by no means a trivial problem, because 3D holes are not, like
in 2D, delimited regions of space.

Based on connectivity numbers (Sect. 3.2.2) and the strategy of guided thinning
(Sect. 3.2.5), the method that we present here closes holes in any 3D object (see
Fig. 3.13). In addition, this method allows for controlling the “size” of the holes
that are to be closed (Fig. 3.13by,b3). It can be implemented by a linear-time algo-
rithm.

The basic idea of this method consists of embedding the object X, in which we
want to close holes, into another object Y that is connected, without any hole and
without any cavity, such as a solid cuboid for example. Then, we iteratively shrink
Y by deleting points that do not belong to X, and ensuring thanks to the analysis
of connectivity numbers that each point deletion does not create any hole or cavity.
This method has been introduced and formalized in [1], we recall here its main
notions and properties.

Definition 4 ([1]) Let X, Y besuchthat X C Y C 73. We say that Y is a fopological
hull of X if Y has no hole and no cavity, and if, for all x € Y \ X, the set Y \ {x} has
a hole or a cavity.

For example in Fig. 3.13, Y = (ay) is a topological hull of X = (aj). The set
Y \ X (depicted by gray voxels in ap) corresponds to “surface patches” that close
the holes.

The following theorem allows for a local characterization of the class of sets that
are topological hulls, relatively to the class of sets that have no cavity and no hole.

86 M. Couprie and G. Bertrand

1
Il
Il
1

(b1) (b2) (b3)

Fig. 3.13 Tllustration of a hole closing algorithm for 3D objects. (aj, az): The use of a distance
map leads to a good centering of the surface patch that closes the hole. (by, b2, b3): A parameter
controls the “size” of the holes to be closed

Theorem 2 ([1]) Let X, Y be such that X C Y C 7Z>. Suppose that Y has no cavity
and no hole. Then, Y is a topological hull of X if and only if, for each point x of
Y \ X, x is an interior point or a 2D isthmus for Y .

Corollary 1 Let X, Y, Z be such that X CY CZ C 73, and such that Z has no
cavity and no hole. If Y can be obtained from Z by iterating the following two steps
until stability:

— choose a point x in Z \ X such that Ty(x, Z) = 1,
—setZ=7\{x}

then Y is a topological hull of X .

In order to get a result that is well-centered with respect to the object X, we use
a distance map to guide this process, in the manner of Algorithm GuidedThinning.
More precisely, the points in the complement of X that are farthest from X are
treated in the first place. We can also use a parameter s that allows for controlling
the “size” of holes to be closed: if one also deletes, during the process, the candidate
points x that are such that Ti(x, X) > 1, and having a distance map value greater
than s, then the biggest holes (in this sense) will be let open. The Algorithm Hole-
Closing (Algorithm 2) formalizes this method. As for Algorithm GuidedThinning,
with an adapted choice of data structure this algorithm may be implemented to run
in linear time. Note that, whenever the parameter s is set to +o00, Algorithm Hole-
Closing indeed computes a topological hull of X (in other words, it closes all holes).

3 Discrete Topological Transformations 87

Algorithm 2: HoleClosing

Data : X C 73 (the object), s € R U {400} (the size parameter)
Result : Z
Let Z be a cuboid that includes X;
Let P be a distance map relative to X (i.e., P(x) =d(x, X) for any x);
repeat
7 ={zeZ\ X |Ta(z, Z) =1 or (Tz(x, X) > 1 and P(2) > s)};
Let x be a point in Z’ such that P(x) is maximal,
Z=Z\{x}:
until stability ;

3.3 Topological Transformations for Grayscale Images

In this section topological notions such as those of simple point, homotopic thin-
ning, ultimate homotopic thinning, are extended to the case of grayscale images.
Applications to image filtering, segmentation and restoration are presented.

A 2D grayscale image can be seen as a function F from Z? into Z. For each
point x of Z?, F(x) is the gray level, or the luminosity of x. We denote by F the set
of all functions from Z? into Z.

Let F € F and k € Z, the cross-section (or threshold) of F at level k is the set Fy.
composed of all points x € Z? such that F(x) > k. Observe that a cross-section is a
set of points, i.e., a binary image. As for the binary case, if we use the n-adjacency
for the cross-sections Fy of F, we must use the n-adjacency for the complementary
sets Fy, with (n,7) = (8, 4) or (4, 8). Consider the function —F, that we call the
complementary function of F (for each point x of 72, (—F)(x) = —F(x)). Note
that the complementary sets of the cross-sections of F are cross-sections of —F. In
forthcoming examples and figures, we choose n = 8 for the cross-sections of F, thus
we must use 7 = 4 for the cross-sections of —F. A non-empty connected component
X of a cross-section Fy of F is a (regional) maximum for F if X N Fr41 = 0. A set
X C 77 is a (regional) minimum for F if it is a regional maximum for —F.

3.3.1 Cross-Section Topology

Intuitively, we say that a transformation of F preserves topology if the topology
of all cross-sections of F' is preserved. Hence, the ‘“cross-section topology” of a
function (i.e., of a grayscale image) directly derives from the topology of binary
images [9]. Based on this idea, the following notions generalize the notion of simple
point to the case of functions.

Definition 5 Let F € F, the point x € Z? is destructible (for F) if x is simple
for Fi, with k = F (x). The point x € Z? is constructible (for F) if x is destructible
for — F.

88 M. Couprie and G. Bertrand

Fig. 3.14 (a): Original image. (b): An ultimate homotopic thinning of (a). (¢): An ultimate homo-
topic thickening of (a)

We see that the gray level of a destructible (resp. constructible) point may be
lowered (resp. raised) of one unit, while preserving the topology of F. For example
in Fig. 3.14a, the point at level 8 is both destructible and constructible; the two
points at level 2 are constructible, but only one of them may be raised, because after
that, the other point would become non-constructible.

Let F € F and G € F. We say that G is an elementary homotopic thinning of F,
and we write F - G, if there exists a point x that is destructible for F such that
G(x) = F(x)—1, and for each y # x, G(y) = F(x). We say that G is an homotopic
thinning of F if G = F or if there exists a sequence (G, ..., Gg) such that Go = F
G, =G and Gy 5.5 G . Furthermore, if no point of G is destructible, we say
that G is an ultimate homotopic thinning of F. We define in a dual manner the
notions of homotopic thickening and ultimate homotopic thickening.

For example in Fig. 3.14, image (b) is an ultimate homotopic thinning of (a), and
(c) is an ultimate homotopic thickening of (a).

3.3.2 Local Characterizations and Topological Classification
of Points

Let F € F and x € Z2. For the sake of simplicity, we will omit to mention F unless
necessary; for example, we will write N7 (x) rather than N™7 (x, F). We define
the four neighborhoods:

N @) ={ye N§(x): F(y) > F(x)}:
NT(x)={yeNg(x): F(y) > F(x)}:
N™"(x)={yeNg(x): F(y) < F(0)};
N~ (x)={y e N§(x); F(y) < F(x)}.

3 Discrete Topological Transformations 89
We define also:
—y = I max{F(y);y e N""(x)}, if N7 (x) #0,
n (x)= .
F(x) otherwise.

It is easy to show that lowering a destructible point x down to the value ™ (x)
is a homotopic transformation. For example in Fig. 3.14a, the point at level 9 in the
third row can be lowered down to 7, then to 4, and finally to 0 without changing the
topology of cross-sections. This property, in addition to the local characterization
of destructible and constructible points that we present next, allows for the design
of efficient algorithms for computing transformations that preserve cross-section
topology, on the model of e.g. Algorithm GuidedThinning (see [20]).

We define the four connectivity numbers:

T) =[Ca[x, NTF@][s TT00) =[Calx, NTW)]]:
T~ @) =|Ca[lx, N~]|y T-x)=|Ca[x, N~ ®)]].
The following property can be straightforwardly derived from the above definition
and from the local characterization of simple points in binary images (see Theo-
rem 1). It shows that connectivity numbers allow for a local characterization of

destructible and constructible points.
Let F € F and x € Z°.

x is destructible for F < THx)=land T~ (x)=1;
xisconstructiblefor F < T - (x)=land T (x)=1.

Furthermore, connectivity numbers allow for a classification of topological charac-
teristics of a point:

is a peak if T+ (x) = 0; x is minimal if T~~(x) = 0;

is k-divergent if T~ (x) =k with k > 1;

isawell if T~ (x) =0; x is maximal it Tt (x) =0;

is k-convergent if TT+(x) =k with k > 1;

is a lower point if it is not maximal; x is an upper point if it is not minimal;
is an interior point if it is both minimal and maximal;

is a simple side if it is both destructible and constructible;

is a saddle point if it is both convergent and divergent.

R R R R R R X

By considering all the possible values of the four connectivity numbers, one
proves [9] that the type of a point x € Z?, whatever the function F € F, is nec-
essarily one and only one of the following: 1) a peak; 2) a well; 3) an interior point;
4) a constructible minimal point; 5) a destructible maximal point; 6) a minimal
convergent point; 7) a maximal divergent point; 8) a simple side; 9) a destructible
convergent point; 10) a constructible divergent point; 11) a saddle point. Figure 3.15
shows examples of seven out of these eleven types; the four other types can be ob-
tained by duality (for example a well is the dual of a peak, etc.).

The rest of this chapter is devoted to three applications of cross-section topology.
In these applications, we combine homotopic transformations and transformations
that modify topology in a controlled manner.

90 M. Couprie and G. Bertrand

10 10 10 § 10 10 10 JsjUmsie} 10
1010 10 10 10 gis{Ups(] 10

JORBTORTeR | 50 I8 50 (|50 50 50

50 50 50|50 FElOF 50 || 50 ity

10 10 10

50 B 50

10 10 10§10 10 10 § 10 10 10

10 10 10
(a) (b) (c) (d) (e) () (2)

10 10 10 g 10 10 10

10 10 10

Fig. 3.15 Topological type. The central point has the following type: (a): peak; (b): interior;
(c): destructible maximal; (d): maximal 2-divergent; (e): destructible 2-convergent; (f): simple side;
(g): saddle

(a) (b) © ()

Fig. 3.16 Topological filtering. (a): Original image. (b): Original image with added impulse noise.
(c): After 3 steps of homotopic thinning and peak lowering. (d): Homotopic reconstruction of (c)
constrained by (b)

3.3.3 Topological Filtering

In the case of impulse noise, a positive impulse takes the form of a small group of
pixels, having grayscale values higher than those of pixels in their neighborhood.
We can detect a positive impulse made of an isolated pixel x by testing the topo-
logical type of x: it is a peak. One can “destroy” this peak by lowering x down to
the value ™ (x). For impulses formed by several adjacent pixels, this procedure is
not sufficient. However, if we apply homotopic thinning to the image, an impulse
formed by a few pixels may be reduced to a peak, allowing for its detection and
deletion.

On the other hand, we do not want to lower bigger groups of pixels that may
constitute significant objects in the image. This is why we need a notion of “thinning
step” in order to control the spatial extent of the thinning (see [20] for more details).

In Fig. 3.16, we show in (c) the result of three steps of homotopic thinning ap-
plied to image (b), followed by the lowering of all peaks. The positive impulses
have been eliminated, but some points outside these impulses have also been low-
ered. It is thus necessary to restore the initial values of these points. We use for
this purpose a homotopic reconstruction operator, which is nothing else but a ho-
motopic thickening constrained by the original image (that is, the final value of a
point cannot be higher than the value of this point in the original image). Since only
constructible points can be raised, the lowered peaks will not be restored at their
original value. Figure 3.16d shows a homotopic reconstruction of (c) constrained

3 Discrete Topological Transformations 91

(¢)

Fig. 3.17 Topological segmentation. (a): Original image. (b): Ultimate homotopic thinning. (c):
Ultimate filtered thinning with ¥ = 40. (a’), (b’), (¢’): In white, the minima of (a), (b), (c) respec-
tively

by (b). Negative impulses can be filtered by the dual procedure. This topological
filtering gives, for impulse noise, better results than a median filter or a filter based
on morphological opening and reconstruction. In particular, it better preserves thin
structures.

3.3.4 Topological Segmentation

Figure 3.17a shows an image in which one perceives dark cells separated by lighter
borders. Due to noise, this image contains a lot of regional minima: they appear
in white in (a’). An ultimate homotopic thinning (b) preserves, by construction,
all these minima and extend them as much as possible (b’). Figure 3.18a shows a
1D profile extracted from such an ultimate homotopic thinning. In this profile, the
points A, B and C correspond to divergent points that separate neighboring minima.
Some of these divergent points (A, B) can be considered as “irregular points” [9]:
we would like to lower them in order to eliminate, by merging, some minima having
small depth.

To this aim, we introduce the notions of k-destructible point and ultimate filtered
thinning. Intuitively, a point x-destructible x is either a destructible point, or a peak,
or a divergent point that lies on a crest line that divides its neighborhood into several
lower regions, such that at most one of these regions has a difference of altitude with

92 M. Couprie and G. Bertrand

0O 0 0 0 0 0 0
0 0 03010 10 O
0 0 020 10 10 0O

(U 200 200 200 200 200
0 0 0 100@110 0
(U 110 110 110[0]

(a) 00 0 0 0 0 0 (b)

Fig. 3.18 Illustration of k-destructible points. (a): A 1D profile of an ultimate homotopic thinning.
(b): An image with two 10-destructible points (levels 20 and /00) that are not destructible

respect to x that is greater than «. Thus, the parameter « corresponds to a notion
of local contrast. For example, points at levels 20 and 100 in Fig. 3.18b are both
10-destructible, but are not destructible. An ultimate filtered thinning is defined in a
similar manner as an ultimate homotopic thinning, by using “k -destructible” instead
of “destructible”.

In Fig. 3.17c, we see an ultimate filtered thinning of (a) with ¥ = 40. A binary
segmented image (c’) is obtained by extracting regional minima of (c). Note that
this segmentation method involves only one parameter (k) relative to a notion of
local contrast.

3.3.5 Crest Restoration Based on Topology

Segmentation methods that are based on minima extraction and region merging, as
well as those based on contour detection, are sensitive to the quality of the crests that
separate the regions of interest (see Fig. 3.17, Fig. 3.20), which may be alterated by
noise. In this section, we propose a procedure for detecting and eliminating narrow
passes on the crests of a 2D function.

First of all, we apply some steps of filtered or homotopic thinning, in order to
reduce crests to thin lines (see Fig. 3.19b). After this, we can detect points that
belong to “thin crests”, and that must be raised in order to eliminate passes.

Let XCZ*andx e X, xisa separating point (for X) if T(x)>2.LletFeF,a
point x € Z? is called a separating point (for F) if there exists a level k € Z such that
X is a separating point for the set Fj. Note that, if x is a divergent point for F, then
X is necessarily a separating point for F', but the converse is not true. For example,
in Fig. 3.19e, the points at levels 15, 20 and 25 are separating points, whereas only
the point at level 15 and the second point at level 20 (from the top) are divergent
points.

We see in Fig. 3.19b that, in order to eliminate the pass at level 90, we can raise
separating points that are constructible, until a saddle point appears. This saddle
point can then be detected and raised. We also see in Fig. 3.19b that, if we iteratively
raise constructible separating points without any restriction, we will also reinforce
some low crest lines, like the one at level 60. Indeed, the point at level 60 circled
in white is a constructible separating point. Furthermore, we cannot use the notions

3 Discrete Topological Transformations 93

(U 240 240 240 [SIUSSI)
(U0l 240 240 240 810)

[URRVIN 240 240 240 SIS [UNSVI 240 240 240 [SIUSS

o B8 20 P8 50 3
40 40 pX 50 5

0 0 0

u 0

015 0
0 120
0 PE S0 50 3 50 50 S 50 50 5 0 1200 0
(U 25 W0
0 P 50 5 50 50 5 5 '} 30
[0 240 240 240 IR JE 5 0 0 pEDPERRENISO S0 0 0 O

(b)

Fig. 3.19 Crest restoration. (a): The lowest value on the crest is the one of the pass (90). (b): After
one step of homotopic thinning. (¢, d): After 1 and 3 iterations of the crest restoration algorithm.
(e): Points at levels /5, 20 and 25 are separating points

of k-destructible point and filtered thinning in this case, because we would take the
risk of lowering those very passes that we want to raise.

Now, let us define a class of points that are “good candidates” for crest restora-
tion. Intuitively, such a point may be characterized by the presence, in its neigh-
borhood, of a point y that is a separating point for the section at level k = F'(x)
but is not separating for higher sections. This is formalized through the notion of
extensible point defined below.

Let F € F, a point x € Z? that is a separating point for F is called extensible if
it is, either a constructible point, of a saddle point for F, and if x has at least one
neighbor y that satisfies the following two conditions:

(1) y is a separating point (in the binary sense) for F, with k = F(x), and
(ii) y is not a separating point (in the binary sense) for any cross-section F; with
Jj>k.

For example in Fig. 3.19b, we can check that the two circled constructible points
at level 90 are extensible, because each of them has a neighbor at 240 that is sepa-
rating for Fyo but not for Fo; and higher sections; whereas the circled constructible
point at level 60 is not extensible. Indeed, the point at 90 adjacent to the latter point
is separating both for Fgo and for Fp;.

The crest restoration method proceeds by iteratively detecting and raising exten-
sible points. A more detailed description of the method can be found in [20]. In
Fig. 3.19c, we see the result after applying one step of the method on (b). In par-
ticular, we see that two points at level 90 in (b) have been raised up to 240, and
that points at level 60 have not been modified. In (d), we see the result after three
iterations: the crest at 240 has been restored. Further iterations would not modify
this result.

In Fig. 3.20, we illustrate this method on a gradient image (b). Image (b) is first
thinned, giving (c). If we threshold this image, we see that either significant contour
segments are lost (d), or we get too many details. Image (e) has been obtained from
(c) by crest restoration until stability. The same threshold was applied on (c, e),

94 M. Couprie and G. Bertrand

Fig. 3.20 Crest restoration. (a): Original image. (b): After applying a gradient modulus operator
(the lowest values are in white). (c): After a filtered thinning. (e): After crest restoration, performed
until stability. (d, f): Thresholds of (c, e) respectively, at the same level

giving (d, f) respectively. We see that many significant contour segments have been
recovered, without introducing artefacts.

3.4 Parallel Thinning

In Sects. 3.2 and 3.3, we described transformations that are sequential by nature.
By this, we mean that after each point modification, the result of this modification
has to be taken into account in order to perform simplicity tests for other points.
Consequently, depending on the order in which the points are examined, some ar-
bitrary choices may be done, and different results may be obtained depending on
these choices. Even when one uses a priority function to guide the thinning, it is not
seldom that many points share the same priority value, and arbitrary decisions are
still necessary.

Another strategy for thinning objects consists of removing some of its border
points in parallel [37, 38]. However, parallel deletion of simple points does not, in
general, guarantee topology preservation: see for example Fig. 3.3a, where remov-
ing both simple points u, v would merge two components of the background. In
fact, such a guarantee is not obvious to obtain, even for the 2D case (see [17], where

3 Discrete Topological Transformations

95
L]
. I g 1
ZO I:O [J *r—0
(a) (b) () (d) ()

Fig. 3.21 (a) Four points in Z2: x = (0,1); y=(1,1); 2= 1(0,0); t = (1,0). (b) A graph-
ical representation of the set of faces {fy, f1, f2}, where fo = {z} = {0} x {0} (a O-face),
Jf1={x,y}={0,1} x {1} (a 1-face), and f> = {x, y,z,t} ={0, 1} x {0, 1} (a 2-face). (b, ¢) A set
of faces that is not a complex. (d, e) A set of faces that is a complex

fifteen published parallel thinning algorithms are analyzed, and counter-examples
are shown for five of them).

In order to study the conditions under which points may be removed simulta-
neously while preserving topology of 2D objects, C. Ronse introduced minimal
non-simple sets [33]. This work leads to verification methods for the topological
soundness of parallel thinning algorithms. Such methods have been proposed for
2D algorithms by C. Ronse [33] and R. Hall [25], they have been developed for
the 3D case by T.Y. Kong [26, 27] and C.M. Ma [31]. For the 3D case, one of the
authors [4] introduced the notion of P-simple point as a verification method but also
as a methodology to design parallel thinning algorithms.

More recently, one of the authors introduced in [5] a general framework for
studying parallel homotopic thinning in spaces of any dimension. This framework,
called critical kernels, is developed in the context of abstract simplicial or cubical
complexes, but it also permits to prove properties of algorithms acting in Z”. In
particular, the notion of crucial point is introduced in [7] and [6], for the 2D and
the 3D case respectively, together with the proof that any set of non-crucial points
can be removed in parallel from any object in Z” without changing its topological
characteristics.

In Sects. 3.4.1-3.4.4, we present a minimal set of notions needed to survey the
critical kernels framework. Section 3.4.5 is devoted to parallel thinning in Z”, where
results about critical kernels are used only to prove topological correctness. The
reader who prefers to quickly implement algorithms may jump directly to this latter
section.

3.4.1 Cubical Complexes

Intuitively, a cubical complex may be thought of as a set of elements having various
dimensions (e.g. cubes, squares, edges, vertices) glued together according to certain
rules (see Fig. 3.21d).

Let Z be the set of integers. We consider the families of sets Fi, IF}, such that
Fo={{a}laeZ},Fl ={{a.a+ 1} |a € Z}. A subset f of Z”, D > 2, which is
the Cartesian product of exactly d elements of Fi and (D — d) elements of IF}) is

96 M. Couprie and G. Bertrand

Xo X1 X2

Fig. 3.22 Xy: a pure 2-complex. X|: a complex such that X collapses onto X;; a free pair
composed of a square and an edge has been removed. X5: a complex such that X collapses onto
X1; (a free pair composed of an edge and a vertex has been removed), hence X collapses onto X7

called a face or a d-face in ZP, d is the dimension of f, we write dim(f) = d. See
Fig. 3.21a,b for an illustration.

We denote by F? the set composed of all faces in ZP. A d-face is called a point if
d =0, a(unit) edge if d = 1, a (unit) square if d =2, a (unit) cube if d = 3. Observe
that any non-empty intersection of faces is a face. For example, the intersection of
two 2-faces A and B may be either a 2-face (if A = B), a 1-face, a O-face, or the
empty set.

LetfbeafaceinIFD.Wesetf:{geIE‘D lg C f} andf*:f\{f};wecall
f* the boundary of f. Any g € f is called a face of f.If X is a finite set of faces
in FP, we write X~ = U{f | f € X}, X isthe closure of X. A finite set X of faces
inFPisa complex (in]FD) if X=X".IfY C X and Y is a complex, then we say
that Y is a subcomplex of X. In the sequel, the symbol X will denote a complex
in F?, and the symbol f will denote a face of X.

See in Fig. 3.21d,e two examples of complexes, and in Fig. 3.21b,c examples of
sets of faces that are not complexes. The complex in Fig. 3.21d is the closure of the
complex in Fig. 3.21c.

Let d = dim(f). We say that f is a facet of X or an d-facet of X if there is no
face g € X such that f € g*, in other words, if f is maximal for inclusion. We set
dim(X) = max{dim(f) | f € X}. We say that X is an d-complex if dim(X) =d.
We say that X is pure if, for each facet f of X, we have dim(f) = dim(X). For
example in Fig. 3.22, Xo and X, are pure 2-complexes, whereas X is a 2-complex
that is not pure.

The operation of detachment allows us to remove a subset from a complex, while
guaranteeing that the result is still a complex.

LetY € X. We set Detach(Y, X) = (X \Y) ™. The set Detach(Y, X) is a complex
which is the detachment of Y from X. Figure 3.21e shows the detachment of f
from X, where X is the complex of Fig. 3.21d and f is the 3-face of X.

3.4.2 Collapse and Simple Facets

The collapse operation is an elementary topology-preserving transformation which
has been introduced by J.H.C. Whitehead [40], and plays an important role in com-
binatorial topology. It can be seen as a discrete analogue of a continuous defor-

3 Discrete Topological Transformations 97

mation (a strong deformation retract). Collapse is known to preserve the homotopy
type.

Consider a pair (f, g) € X2. If f is the only face of X that strictly includes g,
then g is said to be free for X and the pair (f, g) is said to be a free pair for X.
Note that, if (f, g) is a free pair, then f is necessarily a facet of X and dim(g) =
dim(f) — 1.

Let (f, g) be a free pair for X. Let d = dim(f). The complex X \ {f, g} is an
elementary collapse of X, or an elementary d-collapse of X. The pair (f, g) is also
called a free d-pair (for X).

Let Y be a complex. We say that X collapses onto Y, and we write X \ Y, if
Y = X or if there exists a sequence of complexes (Xo, ..., X¢) such that Xg = X,
X¢ =Y, and X; is an elementary collapse of X;_1, for each i € {1,...,¢}. See
Fig. 3.22 for an illustration.

We give now a definition of a simple facet, it may be seen as a discrete analogue
of the one given by T.Y. Kong in [28] which lies on continuous deformations in the
D-dimensional Euclidean space.

Definition 6 ([5]) Let fA be a facet of X. We say that f and f are simple for X if X
collapses onto Detach(f, X).

For example in Fig. 3.22, we have X, = Demch(f, Xo), and since Xg \{ X2, the
facet f is simple for Xg.

The notion of attachment, as introduced by T.Y. Kong [27, 28], leads to a lo-
cal characterization of simple facets. The attachment of f for X is the complex
Attach(f, X) = f* N [Detach(f, X)]. In other words, a face g is in Attach(f, X) if
gisin f* and if g is a face of a facet & distinct from f.

As an easy consequence of the above definitions, the facet f is simple for X if
and only if f collapses onto Affach(f , X). This property led us to introduce new

characterizations of simple points in 2D, 3D and 4D [19].

3.4.3 Critical Kernels

Let us briefly recall the framework introduced by one of the authors (in [5]) for thin-
ning, in parallel, discrete objects with the warranty that topology is preserved. We
focus here on the two- and three-dimensional cases, but in fact the notions and re-
sults in this section are valid for complexes of arbitrary dimension. This framework
is based solely on three notions: the notion of an essential face, which allows us to
define the core of a face, and the notion of a critical face.

Definition 7 ([5]) We say that f is an essential face for X if f is precisely the
intersection of all facets of X that contain f. We denote by Ess(X) the set composed
of all essential faces of X. If Y is a subcomplex of X and Ess(Y) C Ess(X), then
we say that Y is an essential subcomplex of X .

98 M. Couprie and G. Bertrand

(a) (b) (c)

(d) (e) ()

Fig. 3.23 (a): A 3-complex X(, made of 12 cubes. The essential faces for X that are not
facets are highlighted. (b): Two essential 2-faces f, g and their cores (in black). (¢): X and
its critical faces (highlighted). (d): The critical kernel X| = Critic(Xy). (e): X2 = Critic(X1).
(f): X3 = Critic(X,) = Critic(X3)

Observe that a facet of X is necessarily an essential face for X. Observe also
that, if X and Y are both pure D-complexes, then Y is an essential subcomplex of X
whenever Y is a subcomplex of X.

Definition 8 ([S]) Let f € Ess(X). The core of f for X is the complex Core(f, X)
=U{glgeEss(X)N f*}.

Definition 9 ([5]) Let f € X. We say that f and f are regularfor X if f € Ess(X)
and if f collapses onto Core(f X). We say that f and f are critical for X if
f € Ess(X) and if f is not regular for X.

We set Critic(X) = U{f | f is critical for X}, we say that Critic(X) is the critical
kernel of X.

Figure 3.23 illustrates these definitions. In Fig. 3.23b, we see that f collapses
onto the core of f, thus f is regular; and that g does not collapse onto the core of g,
thus g is critical. Note that, in this complex, all facets (3-faces) are regular.

The following theorem is the most fundamental result concerning critical kernels.
Note that the theorem holds whatever the dimension.

Theorem 3 ([5]) Let Y be an essential subcomplex of X .

(i) The complex X collapses onto its critical kernel.
(1) If Y contains the critical kernel of X, then X collapses onto Y .
(iii) If' Y contains the critical kernel of X, and if Z is an essential subcomplex of X
such that Y C Z, then Z collapses onto Y .

3 Discrete Topological Transformations 99

In Fig. 3.23, we show that the very notion of critical kernel can be seen as a
powerful thinning algorithm, which consists of computing iteratively the critical
kernel of the result of the preceding computation. Furthermore, Theorem 3(ii) tells
us that any essential subcomplex Y of X that is “between” X (Fig. 3.23a) and
X1 (Fig. 3.23d) is such that X collapses onto Y. This is true, in particular, of any
subcomplex Y that is a pure 3-complex containing X. This property gives birth to
a wide class of parallel thinning algorithms, where different criterions, based e.g. on
geometrical notions, can be used in order to choose a particular set as the result of a
single thinning step (see Sect. 3.4.5).

3.4.4 Crucial Cliques and Faces

In the image processing literature, a digital image is often considered as a set of
pixels in 2D or voxels in 3D. A pixel (resp. a voxel) is an elementary square (resp.
cube), thus an easy correspondence can be made between this classical view and the
framework of cubical complexes. From now on, we consider only complexes whose
facets are all D-faces, i.e., pure D-complexes.

Note that, if X is a pure D-complex in FP and if f is a D-face of X, then
Detach(f , X) is a pure complex in FP. There is indeed an equivalence between
the operation on complexes that consists of removing (by detachment) the closure
of a simple D-face, and the removal of an 8-simple (resp. 26-simple) point in the
framework of 2D (resp. 3D) digital topology (see [27, 28]).

When X is a pure D-complex (e.g., a union of voxels in F3), the critical kernel of
X is not necessarily a pure D-complex (see Fig. 3.23d). The notion of crucial face,
introduced in [6, 7], allows us to recover a pure D-subcomplex Y of an arbitrary
pure D-complex X, under the constraint that X collapses onto Y.

Definition 10 ([6]) A face f in X is a maximal critical face, or an M-critical face
(for X), if f is a facet of Critic(X).

The set of all the facets of X that contain an M-critical face f is called the crucial
cligue (for X) induced by f. Each facet in a crucial clique is called a crucial face.

Some 2D crucial cliques are illustrated in Fig. 3.24. The following corollary of
Theorem 3 tell us that, informally speaking, a thinning step that preserves all non-
simple pixels (voxels) and at least one pixel (voxel) in each crucial clique, preserves
topology.

Corollary 2 Let Y be a subcomplex of X that is also a pure D-complex.
If any critical D-face of X and at least one D-face of each crucial clique of X is
inY, then X collapses onto Y .

During the process of thinning an object, we often want to keep certain faces
like curve extremities for example, if we want to obtain a curvilinear skeleton. That
is why we introduce the following definition in order to generalize the previous

100 M. Couprie and G. Bertrand

(a) (b) (c)

Fig. 3.24 Crucial cliques in F? (represented in light gray): (a) induced by an M-critical 0-face;
(b, ¢) induced by an M-critical 1-face. The considered M-critical faces are in bold. The core of the
M-critical face in (a, b) is empty, in (c) it consists of two 0-faces

Fig. 3.25 Masks for alb
1-crucial (M) and O-crucial
(My) points Cb AB
e|f C|D
M Mo

notions. Intuitively, the set K corresponds to a set which is preserved by a thinning
algorithm (a constraint set).

Definition 11 ([6]) Let K be a set composed of facets of X. A subcomplex C of X
is a crucial clique for (X, K) if C is a crucial clique for X such that C N K = . In
this case, each facet in C is called a crucial face for (X, K).

3.4.5 Parallel Thinning Algorithms

In the sequel, we give a characterization of crucial points or pixels in Z?Z, which can
be checked in a quite simple manner with the help of masks. Thanks to this charac-
terization, one can easily implement parallel thinning algorithms that are guaranteed
to preserve topology. The interested reader is referred to [5—8] for the proofs of the
stated properties.” Implementations (in source code) are available on the critical ker-
nels web site.> We emphasize that no representation of cubical complexes is used
for computing this characterization and thinning methods based on it: both inputs
and outputs, as well as intermediate results, are mere binary images (i.e., subsets of
7P). For the sake of simplicity, we limit ourselves to the 2D case, the reader can
find a similar characterization for the 3D case in [6].

The masks M1, My are given in Fig. 3.25. For the mask M7, we also consider the
mask obtained from it by applying a 7 /2 rotation: we get 3 masks (2 for M1, and 1
for My).

2Note that the characterization that we use in this chapter for the 2D case is actually derived from
the ones of [6], which deals with 3D. This allows us to present a characterization that is simpler
than the one proposed in [7].

3http://www.esiee.fr/~info/ck.

3 Discrete Topological Transformations 101

,— [] [J

9
o
o

'YK

Fig. 3.26 Illustration of crucial points (pixels). Left: the simple points are in gray, the crucial
points are marked by a black disk. The couples of black disks that are linked by a bar, in the biggest
connected component, represent all the crucial cliques that are detected by the mask M;. The
triplet of black disks that are linked by a triangle, in the smallest connected component, represents
a crucial clique that is detected by mask My. All simple points that are not crucial may be removed
in parallel by a topology-preserving algorithm. Right: the crucial points marked by a black disk
constitute a set of points that is sufficient to ensure topology preservation. All other simple points
may be safely removed in parallel

Definition 12 Let X C 72, and let M be a set of points of X.

1) The set M matches the mask M, if:
(i) M ={C, D}; and
(ii) the points C, D are simple for X; and
(iii) the sets {a, b} N X and {e, f} N X are either both empty or both non-empty.
2) The set M matches the mask My if:
i) M={A,B,C,D}NX;and
(ii) the points in M are simple and not matched by Mj; and
(iii) at least one of the sets {A, D}, {B, C} is a subset of M.

In the following, the set K plays the role of a constraint set (see Sect. 3.2.4).
There exists a “natural” one-to-one correspondence between the subsets of Z” and
the pure D-complexes in FP (see [6, 7]). Namely, with each point (pixel, voxel)
of ZP we associate a facet of F2 (unit square, unit cube). We extend our vocab-
ulary accordingly: for instance, we say that a point x € X is crucial whenever the
corresponding facet in the corresponding complex is crucial.

Theorem 4 Let X C Z2, K C X, and let M be a set of points in X \ K that are
8-simple for X .

Then, M is a crucial clique for (X, K) if and only if M matches the mask My or
the mask M.

An illustration is given in Fig. 3.26. From Corollary 2, we deduce that a parallel
thinning step that preserves all critical (i.e., non-simple) points and at least one point
of each crucial clique, preserves topology.

The simplest parallel thinning algorithm based on crucial points is Algorithm 3.
It consists of iteratively detecting the points that are simple and not crucial (with
respect to the current object and a possibly empty constraint set), and removing them

102 M. Couprie and G. Bertrand

in parallel. This algorithm makes no arbitrary choice: whenever a crucial clique is
detected, all its points are preserved.

Algorithm 3: CrucialThinning

Data : D e{2,3}, asubset X of ZP, aset K of points of X
Result : X
repeat
V = set of points of X that are simple and not crucial for (X, K);
X=X\V;
until V =0 ;

In [6, 7], we provide various algorithms based on the same principle, that com-
pute different kinds of skeletons: curvilinear of surface skeletons in 3D, skeletons
that are guaranteed to contain the medial axis, minimal skeletons, asymmetric skele-
tons, skeletons of three-dimensional objects made of surfels . ..

Back to guided thinning, we show with the next algorithm how to use the notion
of crucial point in order to avoid arbitrary choices when several candidate points
share the same priority. The result of the following procedure is thus uniquely de-
fined, given any shape and any priority function.

Algorithm 4: GuidedParallelThinning_Version_0

Data : D (2,3}, asubset X of ZP, a function P from X into R U {400}
Result : X
repeat
7 =min{P(x),x € X};
if 7 < 400 then
U={xeX|P(x)=m and x is simple for X};
V ={x € X | x is not crucial for (X, X \ U)};
X=X\V;

until (7 =4o00)or(V=0);

By construction, at each iteration of Algorithm 4, the current set X has the same
topology as the initial object. By “stacking” these sets that are nested in each other,
we can build a function that is a compact representation of this family of thinnings.
The simplest way to do this consists of defining a function F that associates with
each point x of X, the number of the iteration where x is deleted, or +0o whenever x
is still in the final set. Hence, thresholding F' at any integer level provides one of the
thinnings. Instead of the number of the iteration, we can indeed choose any number
that increases at each iteration. This is not necessarily the case of the number 7, but

3 Discrete Topological Transformations 103

Algorithm 5: GuidedParallel Thinning

Data : D (2,3}, asubset X of ZP, a function P from X into R U {400}
Result : A function T from X into R U {+o00}
T =—00;
foreach x € X do T (x) = +o0;
repeat
7 =min{P(x),x € X};
if 7 < 400 then
if 7 > v then 7 =7;
U={xeX|P(x)=m and x is simple for X};
V ={x € X | x is not crucial for (X, X \ U)};
X=X\V;
foreachx e Vdo T(x) =r1;
until (m =+o00)or(V=10);

Fig. 3.27 Left: a visualization of the map PRy, for the same shape X as in Fig. 3.8. Right: the
result of Algorithm GuidedParallelThinning

a slight modification of the algorithm allows us to compute a function that is closely
related to the priority function used as input. This leads us to Algorithm 5.

Figure 3.27 shows, on the right, an example of function computed by Algorithm
GuidedParallelThinning, using the same input shape X as in Fig. 3.8, and the prior-
ity function PRy defined in Sect. 3.2.6 (depicted on the left).

As for Algorithm GuidedThinning, it is possible to implement this algorithm in
O(nlogn) or O(n) time complexity, depending on the nature of the priority func-
tion.

3.5 Perspectives

All the algorithms presented in this chapter work on images defined on Z”. They
fit in the framework, called digital topology, pioneered by A. Rosenfeld [34]. The
success of digital topology is mainly due to its simplicity, especially for the 2D case.

104 M. Couprie and G. Bertrand

Fig. 3.28 An ultimate [T T 1]
skeleton (all pixels are | | |

non-simple) that is not thin

I
NN

However, topological properties in higher dimensions are not easily handled in this
framework.

Besides, in Sects. 3.4.1-3.4.4, we described a framework based on cubical com-
plexes in which topological notions are defined quite naturally. Abstract (cubical)
complexes have been promoted in particular by V. Kovalevsky [30], in order to pro-
vide a sound topological basis for image analysis. The cubical complexes framework
allows for retrieving the results obtained using digital topology, providing a better
understanding of these results. Furthermore, new properties can be proved and new
methods can be developed in this framework, as showed by the example of critical
kernels for the study of parallel homotopic thinning in any dimension.

Further developments are needed to fully explore the possibilities and the benefits
of working directly on objects that are general cubical complexes, and not only pure
ones as it is the case in this chapter. In applications, this should lead in particular to
easier characterization, detection and analysis of lower-dimensional structures, such
as curves in 2D and 3D, and surfaces in 3D.

To illustrate this, let us consider the example of Fig. 3.28. In the continuous
framework, the skeleton of a bounded D-dimensional object always has a dimension
that is at most D — 1. That is, the skeleton of any object in 2D is made of curves
(1D) and points (0D). Figure 3.28 is a classical example showing that this property
of thinness is not always true in the digital topology framework.

However it is indeed possible to provide thinness guarantees in the cubical com-
plex framework. Consider the following thinning scheme, based on the collapse
operation (see Sect. 3.4.2). Each thinning step is decomposed into four (in 2D) sub-
steps corresponding to the four principal directions of the grid, named north (N),
south (S), west (W), and east (E). A north free k-pair is a pair of faces (f, g) such
that f is the only face that strictly includes g, dim(f) =k, and g is on the north
of f. In the substep N, only north free pairs are considered. All north free 2-pairs
are marked, and then removed in parallel (see Fig. 3.29a,b). Then, all north free 1-
pairs are marked, and then removed in parallel (see Fig. 3.29b,c). South, west and
east substeps are defined similarly. The thinning scheme iterates such substeps until
no more free pair can be found in a complete step (NSWE). The topological sound-
ness of this scheme can easily be proved. In Fig. 3.29d, we show the final result
obtained from the object of Fig. 3.29a. Observe that the obtained skeleton is only
composed of O-faces and 1-faces, and can indeed be interpreted as a set of curves.
This thinness property may also be proved in the general case. Of course, additional

3 Discrete Topological Transformations 105

i
of
e
.‘I‘.

I3
.
.
.
.
.
.
.
.
.
.

b)

¢}
~
—

(=7
=

Fig. 3.29 Illustration of a thinning scheme based on collapse (see text)

conditions may be added to this scheme in order to preserve geometrical features
such as curve extremities (see [14]).

The cross-section topology approach presented in Sect. 3.3 can also be adapted
to the case of functions defined on cubical complexes, and benefit from the ease
of defining sound parallel topological operators, based on the critical kernels main
property (Theorem 3), or directly on the collapse operation.

3.6 Conclusion

We have seen that it is possible to design topological operators acting on binary 2D
and 3D images and also on grayscale images, which are well defined, have proven
topological properties and can be implemented through efficient algorithms.

We studied operators that transform an image while preserving its topological
characteristics, and also operators that selectively modify these characteristics in
order to achieve some filtering, segmentation or restoration.

Thanks to the general scheme of guided thinning that we promote in this chapter,
the geometrical features of the processed objects may be taken into account in a
flexible way, through the choice of adapted priority functions (e.g. distance maps)
and constraint sets.

In addition to the sequential approach, which has the advantage of being simple
but the drawback of needing arbitrary decisions to be made, we present a tractable
way to design sound parallel homotopic thinning algorithms, based on the critical
kernels framework. We show that the guided thinning strategy, in particular, may
benefit from this approach and result in a well-defined and flexible thinning scheme.

The critical kernels framework is based on cubical complexes, that we shortly
presented in Sects. 3.4.1-3.4.4. In this chapter, cubical complexes were used only to
prove topological properties of algorithms acting in Z” . Further developments are
needed to build a coherent set of image processing tools based on cubical complexes,
dealing with both binary and grayscale images, encompassing and extending the set
of digital topology tools.

Acknowledgements This work has been partially supported by the “ANR BLANO07-2_184378
MicroFiss” project and the “ANR-2010-BLAN-0205 Kidico” project.

106 M. Couprie and G. Bertrand

References

1. Aktouf, Z., Bertrand, G., Perroton, L.: A three-dimensional holes closing algorithm. Pattern
Recognit. Lett. 23(5), 523-531 (2002).

2. Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and computation of the medial axis—
a state-of-the-art report. In: Mathematical Foundations of Scientific Visualization, Computer
Graphics, and Massive Data Exploration, pp. 109-125. Springer, Berlin (2009)

3. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids.
Pattern Recognit. Lett. 15, 1003-1011 (1994)

4. Bertrand, G.: On P-simple points. C. R. Acad. Sci., Sér. 1 Math. 321, 1077-1084 (1995)

5. Bertrand, G.: On critical kernels. C. R. Acad. Sci., Sér. 1 Math. 345, 363-367 (2007)

6. Bertrand, G., Couprie, M.: New 3D parallel thinning algorithms based on critical kernels. In:
Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 4245,
pp- 580-591. Springer, Berlin (2006)

7. Bertrand, G., Couprie, M.: Two-dimensional thinning algorithms based on critical kernels.
J. Math. Imaging Vis. 31(1), 35-56 (2008)

8. Bertrand, G., Couprie, M.: On parallel thinning algorithms: minimal non-simple sets, P-simple
points and critical kernels. J. Math. Imaging Vis. 35(1), 23-35 (2009)

9. Bertrand, G., Everat, J.C., Couprie, M.: Image segmentation through operators based upon
topology. J. Electron. Imaging 6(4), 395-405 (1997)

10. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pat-
tern Recognit. Lett. 15(2), 169-175 (1994)

11. Blum, H.: An associative machine for dealing with the visual field and some of its biological
implications. Biol. Prototypes Synthetic Syst. 1, 244-260 (1961)

12. Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Per-
ception of Speech and Visual Form, pp. 362-380. MIT Press, Cambridge (1967)

13. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Pro-
cess. 34, 344-371 (1986)

14. Chaussard, J.: Topological tools for discrete shape analysis. Ph.D. thesis, Université Paris-Est
(December 2010)

15. Chaussard, J., Couprie, M., Talbot, H.: Robust skeletonization using the discrete A-medial
axis. Pattern Recognit. Lett. 32(9), 1384-1394 (2011)

16. Chazal, F, Lieutier, A.: The A-medial axis. Graph. Models 67(4), 304-331 (2005)

17. Couprie, M.: Note on fifteen 2D parallel thinning algorithms. Tech. Rep. IGM2006-01, Uni-
versité de Marne-la-Vallée (2006)

18. Couprie, M., Bertrand, G.: Topology preserving alternating sequential filter for smoothing 2D
and 3D objects. J. Electron. Imaging 13(4), 720-730 (2004)

19. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete
spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 637-648 (2009)

20. Couprie, M., Bezerra, EN., Bertrand, G.: Topological operators for grayscale image process-
ing. J. Electron. Imaging 10(4), 1003-1015 (2001)

21. Daragon, X., Couprie, M.: Segmentation topologique du neo-cortex cérébral depuis des don-
nées IRM. In: Proc. Congres RFIA, vol. 3, pp. 809-818 (2002)

22. Dokladal, P., Bloch, I., Couprie, M., Ruijters, D., Urtasun, R., Garnero, L.: Segmentation
of 3D head MR images using morphological reconstruction under constraints and automatic
selection of markers. Pattern Recognit. 36, 2463-2478 (2003)

23. Fabbri, R., Costa, L.D.F,, Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algo-
rithms: a comparative study. ACM Comput. Surv. 40(1), 1-44 (2008)

24. Fourey, S., Malgouyres, R.: A concise characterization of 3D simple points. Discrete Appl.
Math. 125(1), 59-80 (2003)

25. Hall, R.W.: Tests for connectivity preservation for parallel reduction operators. Topol. Appl.
46(3), 199-217 (1992)

3 Discrete Topological Transformations 107

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

Kong, T.Y.: On the problem of determining whether a parallel reduction operator for n-
dimensional binary images always preserves topology. In: Vision Geometry II. Proc. SPIE,
vol. 2060, pp. 69-77 (1993)

Kong, T.Y.: On topology preservation in 2D and 3D thinning. Int. J. Pattern Recognit. Artif.
Intell. 9, 813-844 (1995)

Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary images.
In: Proc. DGCI. Lecture Notes in Computer Science, vol. 1347, pp. 3—18 (1997)

Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph.
Image Process. 48, 357-393 (1989)

Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image
Process. 46, 141-161 (1989)

Ma, C.M.: On topology preservation in 3D thinning. Comput. Vis. Graph. Image Process.
59(3), 328-339 (1994)

Malandain, G., Bertrand, G., Ayache, N.: Topological segmentation of discrete surfaces. Int.
J. Comput. Vis. 10(2), 183-197 (1993)

Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms
for binary digital images. Discrete Appl. Math. 21(1), 67-79 (1988)

Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621-630 (1979)

Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognit. 1, 33-61
(1968)

Rueda, A., Acosta, O., Couprie, M., Bourgeat, P., Fripp, J., Dowson, N., Romero, E., Sal-
vado, O.: Topology-corrected segmentation and local intensity estimates for improved partial
volume classification of brain cortex in MRI. J. Neurosci. Methods 188(2), 305-315 (2010)
Rutovitz, D.: Pattern recognition. J. R. Stat. Soc. 129, 504-530 (1966)

Stefanelli, S., Rosenfeld, A.: Some parallel thinning algorithms for digital pictures. J. Assoc.
Comput. Mach. 18(2), 255-264 (1971)

Talbot, H., Vincent, L.: Euclidean skeletons and conditional bisectors. In: Proc. VCIP’92.
Proc. SPIE, vol. 1818, pp. 862-876 (1992)

Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc. 45(2),
243-327 (1939)

Chapter 4
Modeling and Manipulating Cell Complexes
in Two, Three and Higher Dimensions

Lidija Comi¢ and Leila De Floriani

Abstract Cell complexes have been used in geometric and solid modeling as a
discretization of the boundary of 3D shapes. Also, operators for manipulating 3D
shapes have been proposed. Here, we review first the work on data structures for
encoding cell complexes in two, three and arbitrary dimensions, and we develop a
taxonomy for such data structures. We review and analyze basic modeling operators
for manipulating complexes representing both manifold and non-manifold shapes.
These operators either preserve the topology of the cell complex, or they modify it in
a controlled way. We conclude with a discussion of some open issues and directions
for future research.

4.1 Introduction

Cell and simplicial complexes are the most common way to discretize geometric
shapes, such as static and dynamic 3D objects, or surfaces and hyper-surfaces de-
scribing the behavior of scalar, or vector fields. Representations for these complexes
are at the heart of modeling and simulation tools in a variety of application domains,
such as computer graphics, Computer Aided Design (CAD), finite element analysis,
animation, scientific visualization, and geographic data processing.

Historically, data structures for representing 3D shapes have been developed in
the framework of solid modeling. There have been two approaches to the modeling
of solid objects in B3, the boundary-based representation and the object-based volu-
metric representation. A boundary-based representation consists of a description of
a 3D object in terms of its bounding surfaces, which are decomposed into a collec-
tion of faces, edges and vertices forming a cell 2-complex. It is the most common
representation for 3D objects. The first data structure for boundary representation

L. Comi¢ ()
Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovica 6, Novi Sad, Serbia
e-mail: comic@uns.ac.rs

L. De Floriani
Department of Computer Science, University of Genoa, via Dodecaneso 35, Genoa, Italy
e-mail: deflo@disi.unige.it

V.E. Brimkov, R.P. Barneva (eds.), Digital Geometry Algorithms, 109
Lecture Notes in Computational Vision and Biomechanics 2,
DOI 10.1007/978-94-007-4174-4_4, © Springer Science+Business Media Dordrecht 2012

110 L. Comi¢ and L. De Floriani

is the winged-edge data structure, proposed by Baumgardt in 1972 for manifold
shapes [3]. The first data structure for arbitrary cell 2-complexes is the radial edge
data structure, proposed by Weiler in 1988 [40]. This has been only the starting
point for the development of a variety of representations, which are at the basis
of current solid modeling systems [27]. An object-based volumetric representation
describes a solid object based on a decomposition into volumetric cells, and thus
through a cell 3-complex. Simplicial complexes are a special class of cell com-
plexes. They have been widely used in many application fields. A variety of data
structures specific for simplicial complexes have been proposed in the literature,
and data structures designed for cell complexes can also be used for the representa-
tion of simplicial complexes. For a review of data structures specific for simplicial
complexes, see [10].

Here, we focus on

e data structures for representing cell complexes, and
e manipulation operators for modifying these representations.

We review, analyze and compare data structures for cell complexes used for mod-
eling the boundary or the interior of 3D solid objects. We consider also dimension-
independent representations, and classify such data structures on the basis of the
dimension of the complex and on the topology of the shape discretized by the com-
plex. The comparison among the various data structures is performed in terms of
their expressive power and of the efficiency and effectiveness of navigation oper-
ations on them (i.e., efficiency in retrieving topological relations not explicitly en-
coded in the data structure).

We review the operators that modify topological representations of cell com-
plexes. The literature on operators for building and updating cell complexes is vast
but quite disorganized. We distinguish here between operators for simplicial and for
cell complexes. We briefly review the former (vertex split/edge collapse and stel-
lar operators) and we focus on the latter. We review topological operators designed
for building and updating data structures representing cell complexes (Handlebody
operators, Euler operators). Handlebody operators are based on handlebody theory,
stating that any n-manifold can be obtained from an n-ball by attaching handles to it.
The main characteristic of Euler operators is that they maintain the Euler-Poincaré
formula. Here, we will focus mainly on Euler operators for cell 2- and 3-complexes.
Euler operators are part of the variety of basis operators for modeling cell complexes
in a topologically consistent manner proposed in the literature. There has been no
systematic and uniform treatment of these operators in the literature.

The remainder of this chapter is organized as follows. Section 4.2 provides
some background notions on cell complexes and topological relations between its
cells. Section 4.3 presents a taxonomy of data structures for cell complexes. Sec-
tion 4.4 reviews and compares dimension-independent data structures. Section 4.5
reviews and compares data structures specific for two-dimensional complexes. Due
to the large number of data structures in this category, we distinguish between
data structures for manifold and non-manifold cell complexes, addressed respec-
tively in Sects. 4.5.1 and 4.5.2. Section 4.6 reviews and compares data structures

4 Modeling and Manipulating Cell Complexes 111

for three-dimensional cell complexes. Section 4.7 presents an overview for the up-
date operators on cell complexes. Section 4.8 discusses the Euler-Poincaré formula
for various classes of complexes, and presents a classification of Euler operators.
Sections 4.9 and 4.10 review Euler operators on manifold and non-manifold com-
plexes, respectively. Finally, Sect. 4.11 summarizes the presented work, discusses
some open problems and concludes with future work directions.

4.2 Background Notions

In this section, we review some notions on cell complexes, that we will use through-
out this chapter (see [1] for more details).

A k-cell in the Euclidean space E" is a homeomorphic image of a k-dimensional
ball, and a cell complex in E" is a finite set I of cells in " of dimension at most d,
0 <d < n, such that

1. the cells in I" are pairwise disjoint,
2. for each cell y € I', the boundary of y is a disjoint union of cells of I".

If the maximum dimension of cells of I' is equal to d, then I' is called a d-
dimensional complex, or simply a d-complex. The set of the cells on the boundary
of a cell y is called the (combinatorial) boundary of y. The (combinatorial) co-
boundary (or star) of y consists of all cells of I" that have y on their combinatorial
boundary. An h-cell ¥’ on the boundary of a k-cell y, 0 < h <k, is called an h-face
of y, and y is called a coface of y’. Each cell y is a face of itself. If y’ # y, then
y' is called a proper face of y, and y and y’ are said to be incident. The link of a
cell y is defined as the collection of the cells bounding the cells in the star of y,
which do not intersect y. A cell is called a fop cell if it is not on the boundary of any
other cell in I". The domain, or carrier, of a Euclidean cell d-complex I" embedded
in E", with 0 < d < n, is the subset of E" defined by the union, as point sets, of all
the cells in I".

Two p-cells, 0 < p < d, are said to be adjacent if they share a (p — 1)-face.
Two vertices (i.e., O-cells) are called adjacent if they are both incident in a com-
mon 1-cell. A d-complex I', in which all top cells are d-cells, is called uniformly
d-dimensional or homogeneous. A (combinatorial) pseudo-manifold is a uniformly
d-dimensional complex in which each (d — 1)-cell is shared by one or two d-cells,
and for any two d-cells y and y’, there is a sequence ¥ = y1, ¥2,....¥n = ¥’
of d-cells, and any two consecutive d-cells in the sequence share a (d — 1)-cell.
A pseudo-manifold complex with a manifold domain is called a manifold complex.
Figure 4.1(a) shows an example of a uniformly d-dimensional complex, which is
not a pseudo-manifold, while Figs. 4.1(b) and (c) show an example of a pseudo-
manifold complex which is not a manifold complex.

Simplicial complexes can be seen as a subclass of cell complexes. Their cells,
called simplices, are defined as the convex combination of points in the Euclidean
space. A Euclidean simplex o of dimension k is the convex hull of k 4 1 affinely

112 L. Comi¢ and L. De Floriani

(a) (b) (©)

Fig. 4.1 (a) A homogeneous cell complex that is not manifold; (b) A pseudo-manifold with a
non-manifold domain (a 3D pinched pie); (c¢) The cross-section of the pinched pie at the non-man-
ifold vertex

independent points in the n-dimensional Euclidean space E”, for 0 < k < n. We call
a Euclidean simplex of dimension k a k-simplex, and k is called the dimension of
the simplex.

A (d — 1)-cell y in a uniformly d-dimensional cell complex I" is called a
manifold cell if and only if y is incident in at most two d-cells in I". Otherwise,
(d — 1)-cell y is a non-manifold cell. In a cell complex embedded in 3, there
can be no non-manifold 2-cells (or 3-cells). A vertex (0O-cell) v in a cell (simpli-
cial) d-complex I" (with 1 <d < 3) is a manifold vertex if and only if the link
of v in I' is homeomorphic to a triangulation of the (d — 1)-sphere S?~!, or of the
(d — 1)-disk B?~!. A vertex is called non-manifold otherwise. An edge (1-cell) e
in a d-complex I' (with 2 < d < 3) is a manifold edge if and only if the link of
e in I" is homeomorphic to a triangulation of the (d — 2)-sphere S?~2, or of the
(d — 2)-disk BY~2. An edge is called non-manifold otherwise.

The connectivity information among the entities in a cell complex can be ex-
pressed through fopological relations, which provide an effective framework for
defining, analyzing and comparing the wide spectrum of existing data structures [7].
For a p-cell y in a d-dimensional cell complex I, 0 < p <d, topological relations
are defined as follows:

e Boundary relation Ry, 4(y), with 0 < ¢ < p — 1, consists of the set of g-cells in
I" that are faces of y.

o Co-boundary relation R), ;(y), with p+ 1 < g < d, consists of the set of g-cells
in I" that have y as a face.

o Adjacency relation R), ,(y), with 0 < p <d, consists of the set of p-cells in I"
that share a (p — 1)-cell with y.

e Adjacency relation Ry o(y), where y is a vertex, consists of the set of vertices in
I’ that are adjacent to y through a 1-cell (an edge).

Figure 4.2 illustrates topological relations: Ry 1(f) is the set of edges bounding
2-cell f (see Fig. 4.2(a)), relation Rp,1(v) is the set of edges incident in vertex v
(see Fig. 4.2(b)), relation Ry »(f) consists of the set of 2-cells which share an edge
(1-cell) with 2-cell f (see Fig. 4.2(c)). Boundary and co-boundary relations are
called incidence relations.

4 Modeling and Manipulating Cell Complexes 113

€;

¢,

(2)

Fig. 4.2 Examples of topological relations: boundary relation Ry 1(f) = {e1, ez, e3,e4} for
2-cell f (a); co-boundary relation Rg 1(v) = {ei,...,e7} for vertex v (b); adjacency relation

Ra2(f) ={/1, f2, f3} for 2-cell f (¢)

In the framework of geometric and solid modeling, the notion of a cell complex is
usually considered to be too restrictive, and not powerful and versatile enough to sat-
isfy all the demands required from a modeling system and to model characteristics
of an object that arise in real designing applications. In some approaches proposed in
the literature for modeling boundary representations (manifold surfaces that bound a
solid object in E3), this drawback is overcome by allowing faces (which correspond
to 2-cells) to be multiply-connected, but mappable to a plane. Such faces have no
genus, and are bounded by several connected components of edges, usually called
loops or rings. In some solid modeling applications, volumes (which correspond to
3-cells) are allowed to have through holes or cavities. We call the complexes, in
which cells are not necessarily homeomorphic to a ball, (general) complexes.

4.3 Data Structures for Cell Complexes: An Overview

We classify the data structures for cell complexes in terms of:

1. the domain of the complexes they represent: manifold, pseudo-manifold, uni-
formly d-dimensional, etc.

2. the dimension: dimension-independent data structures can describe cell com-
plexes in any dimension, while dimension-specific data structures are for 2D
and 3D cell complexes embedded in the three-dimensional Euclidean space E3.

3. the topological information encoded: in a cell complex, the basic topological
entities are the cells. A data structure may encode all the cells of a complex, or
only a subset of them.

4. the way topological information is encoded: some data structures encode the
cells and their topological relations explicitly. In such data structures, the cells are
entities and the relations are associated with the entities. Implicit data structures
encode the relations among cells indirectly, through tuples of cells in the same
relation.

We organize the description of the various data structures on the basis of the
dimension of the complex they represent. We present a description of each data
structure in terms of the entities and topological relations it encodes, and we discuss

114 L. Comi¢ and L. De Floriani

it based on its expressive power and on the efficiency in supporting navigation inside
the complex (i.e., in retrieving topological relations not explicitly encoded). In ex-
plicit data structures, topological queries are based on cells. In contrast, in implicit
data structures, navigation is typically performed by considering tuples of cells as
the atomic units.

For the sake of brevity, we review only data structures for cell complexes. A re-
view of data structures for simplicial complexes can be found in [10].

4.4 Dimension-Independent Data Structures

In this section, we discuss dimension-independent data structures for cell com-
plexes. We review first two dimension-independent implicit representations for man-
ifold shapes, namely the Cell-Tuple [6] and the n-G-map [23] data structures, and
the Incidence Graph (IG) [13], a general data structure for arbitrary cell complexes
in any dimension.

A Cell-Tuple [6] is a representation for Euclidean cell complexes with a manifold
domain, while the n-G-map [23] has been developed for abstract cell complexes
belonging to the class of quasi-manifolds, which is a superclass of combinatorial
manifolds. In essence, however, the Cell-Tuple and the n-G-map data structures are
equivalent in terms of the entities and relations they encode. Here, we describe, for
brevity, only the Cell-Tuple data structure.

Given a Euclidean d-dimensional cell complex, a cell-tuple is a (d + 1)-tuple
t of d+ 1 cells, t = (co, c1,-...,cq), such that ¢; is an i-cell on the boundary of
cells c¢j4+1 to cq. A function s; fori =0, ...,d, called a switch function, is defined
on the cell-tuples such that ¢’ = s; (¢) if the (unique) cell-tuple ¢’ is identical to ¢ in
every element except the i-th one. The functions s; partition the set of cell-tuples
into equivalence classes of size 2 each. The s; functions have the following two
properties:

e fori =0,...,d, s; is an involution, that is, given a cell-tuple ¢, s; (s; (t)) =1;
o fori=0,....,d—-2and i +2<j<d,s;s;, where s;5;(t) = s5;(s;(¢)), is an
involution, that is, s;s;(s;s; (1)) =1t.

Figure 4.3(a) provides a simple example of a cell complex defined o