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The research related to the analysis of living structures (Biomechanics) has been a source of recent re-
search in several distinct areas of science, for example, Mathematics, Mechanical Engineering, Physics,
Informatics, Medicine and Sport. However, for its successful achievement, numerous research topics
should be considered, such as image processing and analysis, geometric and numerical modelling,
biomechanics, experimental analysis, mechanobiology and enhanced visualization, and their applica-
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images and medical diagnosis. As a multidisciplinary area, Computational Vision considers techniques
and methods from other disciplines, such as Artificial Intelligence, Signal Processing, Mathematics,
Physics and Informatics. Despite the many research projects in this area, more robust and efficient
methods of Computational Imaging are still demanded in many application domains in Medicine, and
their validation in real scenarios is matter of urgency.
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Preface

Digital geometry is a modern mathematical discipline studying the geometric prop-
erties of digital objects (usually modeled by sets of points with integer coordinates)
and providing methods for solving various problems defined on such objects. Dig-
ital geometry is developed with the explicit goal to provide rigorous mathematical
foundations and basic algorithms for applied disciplines such as computer graphics,
medical imaging, pattern recognition, image analysis and processing, computer vi-
sion, image understanding, and biometrics. These are in turn applicable to important
and societally sensitive areas like medicine, defense, and security.

Although digital geometry has its roots in several classical disciplines (such as
graph theory, topology, number theory, and Euclidean and analytic geometry), it
was established as an independent subject only in the last few decades. Several
researchers have played a pioneering role in setting the foundations of digital ge-
ometry. Notable among these is the late Azriel Rosenfeld and his seminal works
from the late 60’s and early 70’s of the last century. Some authors of chapters of the
present book are also among the founders of the area or its prominent promoters.
The last two decades feature an increasing number of active contributors throughout
the world. A number of excellent monographs and hundreds of research papers have
been devoted to the subject. One can legitimately say that at present digital geom-
etry is an independent subject with its own history, vibrant international commu-
nity, regular scientific meetings and events, and, most importantly, serious scientific
achievements.

This contributed book contains thirteen chapters devoted to different (although
interrelated) important problems of digital geometry, algorithms for their solution,
and various applications. All authors are well-recognized researchers, as some of
them are world leaders in the field. As a general framework, each chapter presents
a research topic of considerable importance, provides a review of fundamental re-
sults and algorithms for the considered problems, presents new unpublished results,
as well as a discussion on related applications, current developments and perspec-
tives. By its structure and content, this publication does not appear to be an exhaus-
tive source of information for all branches of digital geometry. Rather, the book is
aimed at attracting readers’ attention to central digital geometry tasks and related

v



vi Preface

applications, as diverse as creating image-based metrology, proposing new tools for
processing multidimensional images, studying topological transformations for im-
age processing, and developing algorithms for shape analysis.

An advantage of the chosen contributed book framework is that all chapters pro-
vide enough complete presentations written by leading experts on the considered
specific matters. The chapters are self-contained and can be studied in succession
dictated by the readers’ interests and preferences.

We believe that this publication would be a useful source of information for re-
searchers in digital geometry as well as for practitioners in related applied disci-
plines. It can also be used as a supplementary material or a text for graduate or
upper level undergraduate courses.

We would like to thank all those who made this publication possible. We are in-
debted to João Manuel R.S. Tavares and Renato Manuel Natal Jorge, editors of the
Springer’s series “Lecture Notes in Computational Vision and Biomechanics,” for
inviting us to organize and edit a volume of the series. We are thankful to Springer’s
Office and particularly to Ms. Nathalie Jacobs, Senior Publishing Editor, and Dr.
D. Merkle, Editorial Director, for reviewing our proposal and giving us the oppor-
tunity to publish this work with Springer, as well as for the pleasant cooperation
throughout the editorial process. Lastly and most importantly, our thanks go to all
authors who contributed excellent chapters to this book.

Valentin E. Brimkov
Reneta P. Barneva

Fredonia and Buffalo, NY, USA



Contents

Part I General

1 Digital Geometry in Image-Based Metrology . . . . . . . . . . . . . . 3
Alfred M. Bruckstein

2 Provably Robust Simplification of Component Trees of
Multidimensional Images . . . . . . . . . . . . . . . . . . . . . . . . 27
Gabor T. Herman, T. Yung Kong, and Lucas M. Oliveira

Part II Topology, Transformations

3 Discrete Topological Transformations for Image Processing . . . . . 73
Michel Couprie and Gilles Bertrand

4 Modeling and Manipulating Cell Complexes in Two, Three and
Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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Chapter 1
Digital Geometry in Image-Based Metrology

Alfred M. Bruckstein

Abstract Interesting issues in digital geometry arise due to the need to perform
accurate automated measurements on objects that are “seen through the eyes” of
modern imaging devices. These devices are typically regular arrays of light sensors
and they yield matrices of quantized probings of the objects being looked at. In this
setting, the natural questions that may be posed are: how can we locate and recog-
nize instances from classes of possible objects, and how precisely can we measure
various geometric properties of the objects of interest, how accurately can we locate
them given the limitations imposed upon us by the geometry of the sensor lattices
and the quantization and noise omnipresent in the sensing process. Another inter-
esting area of investigation is the design of classes of objects that enable optimal
exploitation of the imaging device capabilities, in the sense of yielding the most
accurate measurements possible.

1.1 Introduction

Scanned character recognition systems are by now working quite well, several com-
panies emerged based on the need to do image based inspection for quality control
in the semiconductor industry and, in general, automated visual inspection systems
are by now widely used in many areas of manufacturing. In these important applica-
tions one often needs to perform precise geometric measurements based on images
of various types of planar objects or shapes. Images of these shapes are provided
by sensors with limited capabilities. These sensors are spatially arranged in regular
planar arrays providing matrices of quantized pixel-values that need to be processed
by automated metrology systems to extract information on the location, identity,
size and orientation, texture and color of the objects being looked at. The geome-
try, spatial resolution and sensitivity of the sensor array are crucial factors in the
measurement performances that are possible. When sensor arrays are regular planar
grids, we have to deal with a wealth of issues involving geometry on the integer grid,

A.M. Bruckstein (�)
Ollendorff Professor of Science, Computer Science Department, Technion, IIT, 32000 Haifa,
Israel
e-mail: freddy@cs.technion.ac.il

V.E. Brimkov, R.P. Barneva (eds.), Digital Geometry Algorithms,
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DOI 10.1007/978-94-007-4174-4_1, © Springer Science+Business Media Dordrecht 2012

3



4 A.M. Bruckstein

Fig. 1.1 Image digitization
by point sampling on the unit
grid Z

2

hence digital geometry problems enter the picture in industrial metrology tasks in
very fundamental ways.

1.2 The Digitization Model and the Metrology Tasks

We assume that planar shapes, the objects we are interested to locate, measure and
recognize are binary (black on a white background) and live in the real plane, R2.
Hence their full description can be given via an indicator function ξ(x, y) which
is 1 (black) if (x, y) is inside the shape and 0 (white) if (x, y) is in the background.
The digitization process assumed will be point sampling on the integer grid, Z2,
hence the result of digitization will be a discrete indicator function on the integer
grid: a discrete binary image, or a zero/one matrix of picture elements, or pixels, see
Fig. 1.1. The “generic problem” we deal with is: given the discretized shape, i.e.,

ξD(i, j) =
{

1 if ξD(i, j) = 1

0 if ξD(i, j) = 0

recover as much information as possible on the “pre-image”, i.e., on the original
binary shape that lives on the continuous real plane. The information on the pre-
image shape that one needs might be its location and orientation, area, perimeter,
etc. In order to solve the particular problem at hand we shall also need to exploit
whatever prior information we may have on the continuous pre-images. This prior
information sometimes defines the objects or shapes we digitize as members of
parameterized sets of possible pre-images. For example, we might know that the
shapes we are called upon to measure are circular with varying locations and sizes.
In this case the parameter defining the particular object instance being analyzed
from its digitization is a vector comprising three numbers: two coordinates pointing
out the center of the disk and a positive number providing its radius. The digitized
shape ξD(i, j) then provides some information on the center and radius of the disk
and we may ask how good an estimate can we get for these quantities given the
data.
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1.3 Self Similarity of Digital Lines

Digital lines result from point-sampling half-plane pre-images. More is known about
the jagged boundaries obtained in this process topic than anyone can possibly know,
but the basic facts are both simple and beautiful. Half-planes are not very interest-
ing or practically useful objects, however they already pose the following metrology
problem: given the digital image of a half-plane, locate it (i.e., its boundary line) as
precisely as possible. Of course, we must ask ourselves whether and how our loca-
tion estimation improves as we see more and more of the digitized boundary. We
can think about the location estimation problem as a problem of determining the
half-plane pre-images that satisfy all the constraints that the digitized image pro-
vides. Indeed every grid-point pixel that is 0 (white) will tell us that the half-plane
does not cover that location while every black (1) pixel will indicate that the half-
plane covers its position. It should come as no surprise that the boundary pixels, i.e.,
the locations where white pixels are neighboring black ones, carry all the informa-
tion. The constraint that a certain location in the plane belongs, or does not belong
to the half-plane that is being probed translates into a condition that the boundary
line has a slope and intercept pair in a half-plane defined in the dual representation
space (which is called in pattern recognition circles the Hough parameter plane).
Therefore, as we collect progressively more data in the “image-plane” we have to
intersect more and more half-planes in the Hough plane to get the so called “locale”,
or the uncertainty region in parameter space where the boundary line parameters lie,
see [12, 18, 25]. Looking at the grid geometry and analyzing the lines that corre-
spond to grid-points in the dual plane one quickly realizes that only the boundary
points contribute to setting the limits of the locale of interest, and a careful anal-
ysis reveals that, due to the regularity of the sampling grid, the locales are always
polygons of at most four sides, see [12, 25]. Hence as more and more consecutive
boundary points are added to the pool of information on the digitized half plane, we
have to perform half-plane intersections with at most four sided polygonal locales
to update them. Clearly the locales generally strictly decrease in size as the num-
ber of points increases, and we can get exact estimates on the uncertainty behavior
as the jagged boundary is progressively revealed. This idea, combining the geome-
try of locales for digital straight lines with the process of successively performing
the half-plane intersections for each new data point while walking along the jagged
digitized boundary, led to the simplest, and only recursive O(length) algorithm for
detecting straight edge segments. A complete description of this algorithm is the
subject of the next section of this paper.

The jagged edges that result from discretizing half-planes have a beautiful, self-
similar structure, intimately related to the continued fraction representation of the
real number that defines the slope of their boundary line. It is clear that at various
sampling resolutions the boundary maintains its jaggedness in a fractal manner, but
here we mean a different type of self-similarity, inherent in the jagged boundaries
at any given resolution! A wealth of interesting and beautiful properties that were
described over many years of research on digital straight lines follow from a very
simple unifying principle: invariance of the linear separability property under re-
encoding with respect to regular grids embedded into the integer lattice. Not only
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does this principle help in re-discovering and proving in a very straightforward man-
ner digital straight edge properties that were often arrived at and proved in sinuous
ways, but it also points out all the self-similarity type properties that are possible,
making nice connections to number-theoretic issues that arise in this context and
the general linear group GL(2,Z) that describes all integer lattice isomorphisms.
Following [6], we next present the basic self-similarity results.

A digitized straight line is defined as the boundary of a linearly separable di-
chotomy of the set of points with integer coordinates, Z2 = {(i, j)|i, j ∈ Z}, in the
plane. The boundary points of the dichotomy induced by a line with slope m and
intercept n, y = mx + n, are

L(m,n) = {
(i, hi)|i ∈ Z, hi = �mi + n�}.

Without loss of generality let us assume that m > 0, so that the sequence hi is a
nondecreasing sequence of integers. Associate to the set of boundary points L(m,n)

a string of two symbols, 0 and 1, coding the sequence of differences hi+1 − hi , as
follows

C(m,n) = · · ·C−2C−1C0C1C2 · · · =
∏
i

Cj (m,n)

where

Ci(m,n) =
{

0, if hi+1 − hi = 0,

01k, if hi+1 − hi = k,

and 1k means 1 1 · · · 1 with k 1’s. C(m,n) is called the chain-code of the line
L(m,n). Note that the sequence C(m,n) can be uniquely parsed into its components
Ci(m,n), since a separator must precede every 01 string and follow every run of 1’s
and each of the remaining 0’s must be a single component, as well. Clearly, given
some hi0 -value and C(m,n), the entire sequence hi can be recovered. The graphical
meaning of the chain-code associated to L(m,n) is depicted in Fig. 1.2.

The set of points L(m,n) uniquely determines the slope of the line m. Indeed,
L(m,n) ≡ L(m′, n′) implies m = m′, since otherwise the vertical distance between
y = mx + n and y = m′x + n′ would become unbounded at x → ±∞, and their
hi sequences would differ starting at some large enough i. Furthermore, if m is
irrational we have, by a classical result, that the vertical intercepts of y = mx + n

modulo 1 are dense in [0,1]. For every ε > 0 there exist i0 and j0 such that

mi0 + n − �mi0 + n� < ε,

mj0 + n − �mj0 + n� > 1 − ε,

and changing n by ε would result in a change in L(m,n). Therefore for irrational m,
L(m,n) uniquely determines both m and n. If m is rational there exist only a finite
set of distinct vertical intercepts of y = mx +n modulo 1, therefore n is determined
only up to an interval and the length of the worst interval of uncertainly for n de-
pends on the minimal p/q representation of m. This also proves that the chain-code
C(m,n) determines m uniquely, and if m is irrational, n is also determined by it
modulo 1, since we clearly have C(m,n) ≡ C(m,n + 1).
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Fig. 1.2 Chain-codes of
L(m,n) for m < 1 and m̃ > 1

From the definition of chain-codes C(m,n) we obtain several immediate and
basic properties a sequences of zeros and ones must have in order to be the chain-
code of a straight edge. In the case of m < 1, the difference

hi+1 − hi = ⌊
m(i + 1) + n

⌋ − �mi + n� (1.1)

can only be either 0 or 1. In this case the chain-code of a digitized line has runs
of 0’s separated by single 1’s, and the 0’s occur in runs with length determined by
the number on integer coordinates that fall within the intervals determined on the
x-axis by the points defined by

mxi + n = i ∈ Z, i.e., xi = i

m
+ n

m
. (1.2)

The intervals [xi, xi+1) have a constant length of 1/m and therefore the number
of integer coordinates covered can be (see Fig. 1.3a) either ρi = �1/m� or ρi =
�1/m� + 1. Therefore, if m < 1, C(m,n) is of the form

C(m,n) = · · ·10ρ110ρ210ρ31 · · · (1.3)

where ρ ∈ {�1/m�, �1/m� + 1}. For the case m > 1, the difference hi + 1 − hi =
�m(i + 1) + n� − �mi + n� is always greater than 1, and therefore the chain-code
C(m,n) has runs of 1’s separated by single 0’s. Since �m + mi + n� − �mi + n�
equals the number of integer coordinates between the values m(i+1)+n and mi+n

the run of 1’s has length determined by the number of integral values in consecutive
intervals of length m, see Fig. 1.3b. This shows that the run-lengths ρi in this case,
will be either ρ = �m� or �m� + 1. Therefore if m > 1, the chain-code C(m,n) has
the form

C(m,n) = · · ·01ρ101ρ201ρ30 · · · (1.4)

with ρ ∈ {�m�, �m� + 1}.
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Fig. 1.3 Basic properties of
chain-codes

The question that immediately arises is the following: is there any order or
pattern in the appearance of the two values for the run length of the symbols 0 or 1,
i.e., in the sequences {ρi} that arise from “chain coding” digitized straight lines?
The classical results on digital straight edges are focused on “uniformity proper-
ties” of the appearance of the separator symbol in the chain-codes sequences, see
[14, 20]. We here briefly present a very high level and general uniformity result via
self-similarity, as was first defined in [6].

Suppose we are given the chain-code of a digitized straight boundary C(m,n).
We know that C(m,n) is a sequence composed of two symbols, 0 and 1, and that it
looks either like (1.3) or (1.4), thus it has the general form

· · ·Δ�ρi Δ�ρi+1Δ�ρi+2Δ · · · (1.5)

where ρi ∈ {p,p + 1}, p ∈ Z, and Δ, � stand for either 0, 1 or 1, 0, respectively.
We can define several transformation rules on two symbol, or Δ/�, sequences

of the type (1.5), transformations that yield new Δ/� sequences.

RULE X. Interchange the symbols Δ and � (i.e., Δ → � and � → Δ).
Application of X to a chain-code C(m,n) yields a new sequence of symbols,
with 0’s replacing the 1’s and 1’s replacing the 0’s of the original sequence.
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RULE S. Replace every �Δ sequence by Δ.
Application of the S-transformation to a chain-code of the form (1.5) yields a
sequence of the same type with the run length ρi replaced by ρi − 1. Applying
Rule S, p times yields the next transformation rule.

RULE Sp . Replace �pΔ by Δ and �p+1Δ by �Δ.
Notice that, in contrast to the transformation rules X and S, this rule depends on
the {ρi} sequence, i.e., it is adapted to the given pattern (1.5). Indeed we can
apply the S-transformation successively at most p times where p is the minimal
value of ρi ’s. After that, we need to do an X transformation in order to bring the
sequence of symbols to the form (1.5).

RULE R. Replace �pΔ by Δ and �p+1Δ by �.
We may view the action of R as a result of applying Sp first, then replacing �Δ

by �. This rule is also adapted to the sequence on which it operates.
The next transformation rule is somewhat different, since it replaces symbols in
a way that depends on the neighborhood or the “context”.

RULE T. Replace �Δ by � and the �’s followed by a � by �Δ.
Application of rule T has the effect of putting a Δ between every consecutive pair
of �’s and removing all the Δ’s appearing in the original sequence. For example
the sequence

· · ·�Δ����Δ���Δ���Δ� · · ·
will be mapped under T, to

· · ·��Δ�Δ�Δ��Δ�Δ��Δ�Δ�� · · ·
Up to this point the transformation rules were completely specified by rather sim-
ple local symbol replacement rules. The next two classes of transformation rules,
require the setting of an initial position and a bilateral parsing for the generation of
the transformed sequences.

V-RULES. Given the sequence of Δ�, choose a Δ symbol as an initial position,
then to the right and to the left of the chosen Δ delete batches of Q − 1 consec-
utive Δ’s.
This transformation has the effect of joining together (from the starting position)
Q consecutive �-runs. The sequence

Δ�ρi−Q · · ·Δ�ρi−1Δ↑�ρi Δ�ρi−1Δ · · ·�ρi+Q−1Δ

will be mapped to

· · ·Δ�ρi−Q+···+ρi−1Δ�ρi+ρi+1+···+ρi+Q−1Δ · · ·
if the Δ preceding �ρi is chosen as the initial position. Therefore if a Δ/�-chain-
code sequence of type (1.5) is specified by the �-run length sequence {ρi}i∈N a
V-transformation as defined above will produce a sequence of type (1.5) speci-
fied by {ρi0+nQ + ρi0+nQ+1 + · · · + ρi0+(n+1)Q−1}n∈N for a given i0 and a given
integer Q ≥ 1.
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H-RULES. Given the sequence of Δ� symbols, choose a starting point between
two consecutive symbols and parse the sequence to the right and left of the start-
ing point, counting the number of �’s seen. After seeing P �’s, replace the
subsequence by one � followed by the number of Δ’s encountered while accu-
mulating the P �’s. In counting the Δ’s encountered, apply the following rules:
(1) when parsing to the right: if the P -th � symbol is followed by a Δ count
this Δ as well and start accumulating the next batch of P symbols after it and
(2) when parsing to the left: if the P -th � symbol is preceded by Δ do not count
this Δ and start accumulating the next batch of P �’s immediately.
As an example, consider applying an H-transformation to the sequence below,
with the indicated initial position,

· · ·�Δ���Δ���Δ ↑ ����Δ���Δ���Δ���Δ� · · ·
and parameter P = 7. We obtain the parsing

· · · ↑ �Δ���Δ���Δ ↑ ����Δ���Δ ↑ ���Δ���Δ� ↑ · · ·
that yields the output

· · · ↑ �ΔΔΔ ↑ �ΔΔ ↑ �ΔΔ ↑ · · ·
The same initial conditions with parameter P = 3 provide the parsing

· · ·�Δ ↑ ���Δ ↑ ���|Δ ↑ ��� ↑ �Δ�� ↑ �Δ�� ↑ �Δ�� ↑ �Δ� · · ·
and an output sequence

· · · ↑ �Δ ↑ �Δ ↑ � ↑ �Δ ↑ �Δ ↑ �Δ ↑ · · ·
So far we have defined seven rules for transforming Δ/� sequences into new Δ/�
sequences. The first five of them are uniquely specified in terms of local string re-
placement rules, the last two being classes of transformations that require the choice
of an initial positions for parsing and are further specified by an arbitrarily chosen
integer (Q or P ). The main self similarity results are, [6]:

The Self-similarity Theorem

1. Given a Δ� sequence of type (1.5), the new sequence produced by applying to
it any of the transformations X, S, Sp , R, or T, is the chain-code of a digitized
straight line if and only if the original sequence was the chain-code of a digitized
straight line.

2. If a Δ� sequence is the chain-code of a digitized straight line, then the sequences
obtained from it by applying any transformation according to the H-rules, or
V-rules, are also chain-codes of digitized straight lines.

Note that, for the X-, S-, Sp-, R-, or T-transformation rules we have stronger
claims than for the classes of H- and R-rules. The reason for this will become ob-
vious from the proof. The digital line properties stated above are self-similarity re-
sults since what we have is that a given chain-code pattern generates, under repeated
applications of various transformation rules, new patterns in the same class: chain-
codes of digitized straight lines.
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Proof We argue that the chain-code transformations defined above are simply re-
encodings of digitized straight lines on regular lattices of points, embedded into
the integer lattice Z

2. This observation, combined with the fact that the embedded
lattices are generated by affine coordinate transformations, readily yield the results
claimed. Indeed, choose any two linearly independent basis vectors B1 and B2 with
integer entries and a lattice point (i0, j0) for the origin Ω0. Define a regular embed-
ded lattice of points as follows

E2 = {
(i0, j0) + iB1 + jB2|(i, j) ∈ Z

2}.
A given straight line y = mx + n defines a dichotomy of the points of Z2, but

also of the points of E2 ⊂ Z
2! If B1 and B2 are basis vectors, there exists an affine

transformation that maps lattice E2 the embedding back into Z
2, i.e., the point

(i0, j0) + iB1 + jB2 ∈ E2 into (i, j) ∈ Z
2, and the same transformation maps the

line y = mx + n into some new line Y = MX + N , on the transformed plane. The
points (i0, j0) + iB1 + jB2 from the original (x, y)-plane map into (i, j), hence the
transformation from (X,Y ) into (x, y) is(

x

y

)
=

(
i0

j0

)
+ [

BT
1 BT

2

](X

Y

)

and therefore the inverse mapping from (x, y) to (X,Y ) is(
X

Y

)
= [

BT
1 BT

2

]−1
[(

x

y

)
−

(
i0

j0

)]
= M

(
i0

j0

)
. (1.6)

From these transformations the mapping of the line parameters (m,n) into
(M,N) can also be readily obtained in terms of B1B2 and Ω0.

After performing the transformation (1.6) the line Y = MX + N can be chain-
coded with respect to the lattice Z2 (which is now the image of E2) and the resulting
chain-code will somehow be related to the chain-code of y = mx +n defined on the
original grid Z

2. The key observation, proving the results stated, is that the transfor-
mations introduced in the previous section represent straightforward re-encodings of
digitized lines with respect to suitably chosen embedded lattices E2. The choices of
basis vectors that lead to each of the sequence transformations we are concentrating
on are shown in Fig. 1.4 and are analyzed in detail below:

1. The X transformation rule, the interchange of Δ and � symbols, is clearly
accomplished by the coordinate-change mapping that takes (i, j) into (j, i).
Here B1 = [0,1] and B2 = [1,0] and we have that y = mx + n maps into
Y = (1/m)X − (n/m) under the transformation matrix MX = [ 0 1

1 0

]
.

2. The S-rule which reduces every integer of the {ρi} sequence by 1 is induced by
the mapping that considers a � step as a step in the B1 = [1,0] direction, but a
combined �Δ-step as the unit step in the B2 = [1,1]-direction (see Fig. 1.4a).
Therefore, the S-transformation matrix is

MS =
[

1 1
0 1

]−1

=
[

1 −1
0 1

]

and y = mx + n maps into Y = Xm/(1 − m) + n/(1 − m).
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Fig. 1.4 The S, Sp , R, T, V and H transformations

3. The adaptive Sp-transformation rule which replaces �pΔ by Δ, and �p+1Δ by
�Δ, corresponds to choosing B1 = [1,0] and B2 = [p,1] (see Fig. 1.4b). The
transformation matrix is

MSp =
[

1 p

0 1

]−1

=
([

1 1
0 1

]
· · ·

[
1 1
0 1

])−1

=
[

1 −p

0 1

]
.

The line y = mx + n is transformed into Y = Xm/(1 − pm) + n/(1 − pm).
Note that, if m < 1, p = �1/m� and we denote the fractional part of 1/m by
α(= 1/m − �1/m�), we have m/(1 − mp) = 1/α > 1. This shows that one Sp-
transformation, that is adapted to the run-length of the �-symbols replaces the
slope m with (1/m − �1/m�)−1. Therefore, repeated application of this adapted
transformation followed by an X-transformation will produce a sequence of
slopes recursively given by mk = 1/mk−1 − �1/mk−1�, m0 = m. Hence, the se-
quence of adapted “exponents” of the corresponding Sp-transformations pk =
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�1/mk�, is the sequence of integers of the continued fraction representation
of m0,

m0 = 1

p0 + 1
p1+ 1

p2+ 1···

4. The transformation rule R maps �pΔ into Δ and �p+1Δ into �. Therefore
B1 = [p + 1,1] and B2 = [p,1] (Fig. 1.4c). The transformation matrix is

MR =
[
p + 1 p

1 1

]−1

=
[

1 −p

−1 p + 1

]

and an original line y = mx+n is mapped into Y = X[(p+1)m−1]/(1−pm)+
m/(1 − pm). Note here that in terms of α = 1/m − �1/m� the new slope is
(1 − α)/α, when m < 1.

5. The last of this class of transformations, Rule T, replaces �Δ by �’s, and �’s
followed by a � by �Δ’s. We may view this transformation as a sequence
of two maps: the first one replacing �p+1Δ by �, and �pΔ by Δ by the
adapted rule R, the second replacing � by �Δ�Δ · · ·Δ� with (p + 1)�’s,
and Δ by �Δ�Δ · · ·Δ� with p�’s. This would imply that we first do an
R-transformation via the matrix

MRT =
[
p + 1 p

p p − 1

]
.

Concatenating the two transformations we obtain

MT = MRTMR =
[

1 0
1 −1

]
,

which is not surprising. Indeed, �Δ is mapped by B1 = [1 1] into one � step,
but a � followed by another � will have to be mapped into a sequence of two
steps, B2B1, the first one being B2 = [0,−1] (see Fig. 1.4d). We readily see from
the MT transformation that y = mx +n maps into Y = (1 −m)X −n. Therefore
the slopes of the two lines add to 1. Indeed, “summing up” the two sequences
in the sense of placing a Δ whenever there exists a Δ in either the original, or
the T-transformed chain-code, we get the sequence · · ·�Δ�Δ�Δ� · · ·, which
represents the lines of the type y = x + n.

Up to this point, all the transformation matrices, whether adapted to the chain-
code parameter p or not, were matrices with integer entries and had the property
that det(M) = ±1. This implied that the matrices had inverses with integer en-
tries and, as a consequence, the embedded lattice E2 was simply a “reorgani-
zation” or “relabeling” of the entire integer lattice Z

2. In mathematical terms,
unimodular lattice transformations are isomorphisms of the two dimensional lat-
tice. The 2 × 2 integer matrices with determinant ±1 (called unimodular matri-
ces) form a well known group called GL(2,Z) and this group is finitely gener-
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ated by the matrices
[ 0 1

+1 0

][ 1 1
0 1

][ −1 0
0 1

]
. For all such transformations (that are

invertible within GL(2,Z)) the corresponding chain-code modification rules will
yield chain-codes of linearly separable dichotomies, simply because the trans-
formed line Y = MX + N induces a linearly separable dichotomy of E2. There-
fore the self-similarity results may be regarded as two different ways of stating
that the points of the lattice Z2 are linearly separated by a given line y = mx +n.
The first class of results presented above becomes obvious in this setting. Fur-
thermore, from the fact that the group GL(2,Z) is finitely generated, it follows
that we have countably many sequence transformations, having the property that
they yield chain-codes of straight lines if and only if the original chain-code is
a digitized straight line, and they are expressible as products of sequences of
basic transformations of the type X, S, and, say T (or one other transforma-
tion).

The situation is somewhat different for the remaining classes of transformation
rules, the V and H-rules.

6. In the embedded lattice setting it is easy to see that a V-rule implies choosing
some origin point Ω0 and basis vectors of the form B1 = [1,0], B2 = [0,Q] (see
Fig. 1.4e). In this case, the set E2 is properly contained in Z

2, i.e., E2 ⊂ Z
2 and

the mapping of Eq. (1.6) has fractional entries. Since V-rules imply a decimation
of the horizontal grid lines, the fact that a chain-code of a digitized line provides
a new digitized line, is obvious. However, due to the proper embedding of E2

into Z
2 these results are not “if and only if” results any more. Indeed, we could

start with a sequence like

· · ·Δ�Δ�pΔ�Δ�pΔ�Δ · · ·
and any V-transformation with Q = 2 will provide the transformed sequence

Δ�p+1Δ�p+1Δ�p+1 · · ·
This sequence is obviously a digitized straight line while the original one is ob-
viously not, for any p > 2. Hence, the proper embedding of E2 in Z

2 implies
that digital lines, but not only digital lines, map into digital lines. Note also that
for a V-rule determined by an integer Q, the line y = mx + n is mapped into a
line with slope m/Q.

7. The H-rules defined imply choosing some origin point Ω0 and decimating this
time the vertical grid lines, by removing batches of P consecutive vertical lines.
The basis vectors are in this case B1 = [P,0] and B2 = [0,1] (see Fig. 1.4f).
In this case too E2 is properly contained in Z

2 and again the mapping (1.6) has
fractional entries, the determinant of [B1B2] being P . Clearly applying an H-rule
to the chain-code of a digital straight line will yield the chain-code of a new line
with slope mP , however this too is only an one-directional implication, not an
“if and only if” result.

We can clearly combine V and H-transformations to yield new and more com-
plicated sequence mapping rules. For example, applying a V and an H-trans-
formation with the same parameter, i.e., P = Q is equivalent to re-encoding
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the digitized straight line at a reduced resolution. Note that if the line passes
through the origin, i.e., we have y = mx, and we apply a chain-code transfor-
mation rule that has the effect of reducing resolution with any P = Q, we must
always obtain exactly the same chain-code since the new slope will be the same,
(m · P)/Q = m. This is a rather nice invariance property of chain-codes of lines
passing through the origin and it is not entirely obvious in a nongeometric con-
text. �

The fact that a digitized straight line has the above discussed series of invariance,
or “self-similarity” properties, has many immediate consequences.

The result that an R-transformation on a sequence of symbols yields the chain-
code of digitized straight line if and only if the original sequence was itself a straight
line, constrains the run patterns of the symbol occurring in runs. We may have runs
of equal-length runs but one of the run-length must always occur in isolation (oth-
erwise the R-transformation would yield a sequence in which both symbols occur
in runs longer than 1). Furthermore, this must also be the case at further levels of
run-length encoding of the run-length sequences.

Consider the chain-code of a digitized straight line C(m,n). Performing an S-
transformation on it we get a new chain-code with the property that every symbol
in the new sequence of symbols corresponds to, or “contains”, exactly one � sym-
bol from the original chain-code. Therefore parsing the S-transformed code into
subsequences of equal length is equivalent to performing an H-transformation on
the original chain-code. This shows that in any two equal length subsequences of a
straight line chain-code the number of Δ’s (and consequently also �’s) may differ
by at most 1. This property shows that self-similarity is in fact a description of uni-
formity in the distribution of the separator symbols (Δ) in the chain-code sequence.
Indeed the slope of the line m sets the density of these symbols, and the digitization
process ensures that this density will be achieved with a distortion as uniform as
possible. This interpretation of digital straight lines, as well as their connections to
Euclid’s division algorithm (via continued fraction representations) and to a wealth
of other areas as diverse as music [16], billiard trajectories [4], abstract sequence
analysis [3], combinatorics on words [24], and quasicrystals [30, 32], make this
area of research essentially inexhaustible.

From among many interesting consequences of the self-similarity results we have
chosen to mention the above two properties because such results have been obtained
before, using different proofs, in the context of testing whether a finite sequence
of two symbols could be the chain-code of a digitized straight line segment, see,
e.g., [20].

What we have in fact shown is that one can obtain chain-code transformation
rules that characterize linearity, via the group GL(2,Z) of unimodular lattice trans-
formations. As a consequence we can readily “produce” countably many interesting
and new self-similarity properties of linear chain-code patterns.

Using the properties of digital straight lines, we can not only solve the some-
what theoretical issue of locating a half-plane object of infinite extent but we
can also address some very practical issues like measuring the perimeters of gen-
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eral planar shapes from their versions digitized on regular grids of pixels. In-
deed, analyzing the properties of digitized lines made possible the rational de-
sign of some very simple and accurate perimeter estimators, based on classifica-
tions of the boundary pixels into different classes according to the jaggedness of
their neighborhoods. Building upon earlier work of Proffit and Rosen [31], Ko-
plowitz and Bruckstein proposed a general methodology for the design of sim-
ple and accurate perimeter estimation algorithms that are based on minimizing
the maximum error that would be incurred for infinitely long digitized straight
edges over all orientations [21]. This methodology enables predictions of the ex-
pected performance for shapes having arbitrary, but bounded curvature bound-
aries.

1.4 Digital Straight Segments: Their Characterization and
Recognition

The previous section focused on the properties of digitized half planes of infinite
extent but we often discretize polygonal shapes that have finite length straight seg-
ments as boundaries. Such shapes which will yield finite sequences of chain-code
symbols that will be called Digitally Straight Segments (DSS’s). In general it is
of interest to describe a general discretized boundary by partitioning it into a se-
quence of digital straight segments, effectively producing a “polygonal pre-image”
of the boundary on which a variety of measurements can be performed. In order to
describe a very efficient and easy to grasp algorithm for partitioning a chain-code
sequence into discrete straight portions we need to formalize the Hough-domain,
or dual-space “pre-image” concept. It is well known that a point in the plane de-
fines a pencil of lines that pass through it, i.e., (x0, y0) ∈R

2 corresponds to the lines
y = mx + n that obey y0 = mx0 + n, and this is an equation defining a line in the
Hough-space where the coordinates are (m,n). When a straight Black/White bound-
ary is digitized by point sampling, the grid points that are on the border between the
black region (ξD(i, j) = 1) and the white one (ξD(k, l) = 0) correspond to lines in
the Hough-plane that delineate the (m,n) domain to which the straight line of the
boundary belongs. Considering Fig. 1.5 we have that the lines corresponding to a
vertical border of the discretized line, i.e., the pixels (i, j), (i, j + 1) for which:
{ξD(i, j) = 1, ξD(i, j + 1) = 0} are the parallel lines in the (m,n)-plane defined
by {

(i + j) = mi + n ⇒ n = −im + (j + 1)

j = mi + n ⇒ n = −im + j

Similarly, the next vertical pair of border pixels for which {ξD(i + 1, j) = 1,

ξD(i + 1, j + 1) = 0} correspond to the (m,n)-plane lines given by the parallel
lines: {

(j + 1) = m(i + 1) + n ⇒ n = −(i + 1)m + (j + 1)

j = m(i + 1) + n ⇒ n = −(i + 1)m + j
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Fig. 1.5 Chain-code step and the corresponding Hough-plane geometry

Since clearly the pre-image border line intersects the segments [(i, j), (i, j + 1)],
and [(i + 1, j), (i + 1, j + 1)] the (m,n) parameters of the pre-image line belong
to the intersection of the bands defined by the two pairs of parallels corresponding
to the border pixels. The “locale” for the pre-image has been therefore restricted
to a parallelogram by the discrete data that corresponds to one step of the digitized
boundary’s chain-code. Since this process can be repeated for each chain-code sym-
bol in the description of the discretized boundary, we have that each new chain-code
symbol requires the intersection of the previously delineated “locale” for the “pre-
image line” with a pair of parallel lines in the (m,n)-plane. We therefore have the
following recursive algorithm for determining the “pre-image line locale”, which is
also, in fact, a process for determining digital straight segment portions of a chain-
code:

Digital Straight Segment Detection Process

1. For each symbol of the 4-directional chain-code intersect the uncertainty region
or locale in the (m,n)-plane with the corresponding band in the Hough(dual)-
plane.

2. While the result is not empty there exists a linear-pre-image for the chain-coded
portion of the boundary, hence the chain-code portion is a digital straight seg-
ment.

A careful analysis of how the intersections of chain-code bands look in the Hough
plane reveals a miraculous fact: the locales are always regions defined by at most 4
boundary lines. This is a marvelous result due to Leo Dorst [12], which was given
a simple proof by Douglas McIlroy in [25]. The result is indeed marvelous because
it means that the recursive intersection process that the above described algorithm
for detecting digital straight segment will only take O(1)-time, requiring the inter-
section of a four-sided polygon with two parallel lines. And the situation is even
better: the points defining the locale polygon have rational coordinates hence the
DSS detection process involves updating 8 integers for each chain-code symbol
parsed, see [23]. Therefore we have a beautifully simple O(1)/(chain-code-step)
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recursive digital straight segment detection process. Furthermore, starting the al-
gorithm on an arbitrary chain-coded border we can very efficiently parse it into
DSS-segments. Hence, given a shape digitized on Z

2, we can determine a polyg-
onal approximation for the shape by parsing the digitized boundary into DSS seg-
ments, and for each of these we have position and slope estimates readily provided
by their Hough-plane [(m,n)-plane] “locales”. In particular the recursive O(1)-
per boundary pixel algorithm for detecting digital straightness described above,
due to Lindenbaum and Bruckstein [23], enables parsing general, curved object
boundaries into digitally straight segments in order to estimate the pre-image ob-
ject’s perimeter as a sum of the lengths of the line-segments so-detected. In terms
of the methodology discussed in [21] this algorithm yields zero error for digital
straight edges of infinite extent at all orientations, and hence should be the best
perimeter estimator ever, if the criterion would be performance on straight bound-
aries.

1.5 Digital Disks, Convex and Star-Shaped Objects

From the realm of half-plane objects and digital straight lines we could move to
either infinite extent regions that have more complex boundaries (say parabolas, hy-
perbolas or some periodic functions along a principal direction) or to the analysis
of finite extent objects like polygons, disks and other interesting shapes. Some work
has indeed been done on detecting polygonal preimages from their digitized ver-
sions, and, as we have seen, a good algorithm for parsing a jagged boundary into
digital straight segments turns out to be a crucial ingredient in solving various issues
regarding the metrology of such objects.

Suppose next that we have the prior information that the objects discretized are
disks of various locations and sizes. Then the metrology question arising naturally
is: how precisely can we determine the location of a disk and its radius. Considering
the digitization by point sampling, as discussed above, given a digitized image of
black and white pixels, we know that if a certain point in the plane is the center of a
disk of unknown radius, this point will necessarily be closer to all black grid points
than to any white grid point. Hence the locus of all possible points in the plane closer
to all black points than to any white points is the locale of possible disk centers, and
its size will quantify our uncertainty in locating the object in the preimage plane. It
is interesting to note that this locale can be found without knowledge on the radius,
which will still need to be estimated. It turns out that the locale as defined above is
a well-known concept in computational geometry, and it is known that it is a convex
region in the plane. Efrat and Gotsman have done a careful analysis of the problem
and produced an O(R logR) algorithm to determine the locale, where R is the ra-
dius of the disk. We refer the interested reader to the paper [13] for details. Note
again that the locale we are talking about is independent of the radius parameter.
Had we prior knowledge on the exact radius, the location of the disk center could be
determined by intersecting all disks of radius R around the black grid points with
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all the complements of disks or radius R around the white (uncovered) grid points.
The resulting intersection locale is generally not a convex shape, due to the precise
knowledge of the radius.

For general convex shapes the question of determining the location, area and
perimeter cannot be addressed in any generality. The digitized version of a convex
shape is a set of black grid points on a background of white ones. As a union of
square pixels the digitized shape will not be convex. Hence much work was done
addressing the question whether there is a good definition of convexity for discrete
objects [20, 37]. A variety of proposals were made and can be found in the liter-
ature. The metrology questions however, in all cases remain: determine with best
precision the location (first order moments), orientation (second order moments)
and other metric properties, like area (zeroth order moment) and perimeter of the
shape. These questions, too have received some attention. It turns out that comput-
ing the moments of the black grid points yields good estimates for the correspond-
ing continuous quantities, and more refined, boundary estimation procedures (say,
based on polygonalization of the jagged boundary via an efficient digital straight
segment detection, as discussed above) do indeed provide improved estimates but
the improvement needs to be carefully weighed against the increased complexity
involved.

Among the many procedures that propose polygonal approximations to pre-
images based on the discrete grid points that were covered by the shape, and also
based on the ones that were not covered, one stands out in elegance and usefulness:
the minimum perimeter polygon that is enclosing all black (covered) points and ex-
cludes all white (uncovered) ones. This minimum perimeter polygon turns out to be
the relative convex hull of the connected graph of sampled black points with respect
to the white ones. Here we assume that sampling is dense enough so that a con-
nected preimage shape ensures that the black pixels form a 4-connected shape! The
relative convex hull can be computed easily and may serve as a good approximation
for preimages for all metrology purposes.

So far we talked about disks and convex objects. The next level of complexity in
planar shapes are the so called star-shaped objects. These are defined as the shapes
that have a “kernel region” inside them so that from any point in the kernel the
entire boundary of the shape can be “seen”, i.e., a line from the chosen point to any
boundary point will lie entirely inside the shape. It is easy to see that this definition
generalizes convexity in a rather natural way and that the kernels must be convex
regions. Determining star-shapedness of a planar shape is not a too difficult task
for polygons and for spline-gons, and the algorithms for doing this rely on locating
and using the inflection points on the boundary, and intersecting the regions in the
plane from where the convex boundary regions are seen, see [5]. As with the notion
of convexity, determining digital star-shapedness posed a series of special problems
that needed careful analysis. This was the topic of a paper by Shaked, Koplowitz
and Bruckstein, and there it was shown that the relative convex hull, or minimal
perimeter polygon of the grid points covered by the shape with respect to the ones
that remained uncovered, provides a convenient computational way to define and
algorithmically determine digital star-shapedness, see [33].
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1.6 Shape Designs for Good Metrology

Up to this point we have discussed ways to analyze and measure planar shapes when
seen through the looking glass of grid probing, or point-sampling discretization. The
classes of shapes were assumed given in some, perhaps parameterized form, and we
dealt with questions about recovering their various features and parameters, or about
measuring their size and perimeter and determining their location with the highest
precision possible.

When considering such issues, a further question that can be posed is the fol-
lowing: design planar shapes or collections of shapes that will interact with the
discretization process in such a way that the quantities we need to measure will be
very easily read out in the discretized images we get. Could we design an object in
the plane (that can be a union of continuous binary shapes), so that digitization of
this object translated to various locations, will yield black and white patterns on the
(discretization) grid that clearly exhibit, say in a binary representation, the X and Y

translation values up to a certain desired precision?
Interestingly, recently a pen-like device was invented and advertised, that has the

following feature: it automatically computes with very high precision the location
of its tip on any of the pages of a paper pad by looking at a faint pattern of dots that
is printed on these sheets of paper. The pattern of these dots is so designed that the
image obtained on any small region as seen by the pen near it’s tip (with the help of
a tiny light detector array) uniquely and easily locates the pen-tip’s position on any
of the pages of the pad, see [1].

This example shows that it is good practice to think about designing shapes to
have such “self-advertising” properties and this approach could provide us surpris-
ingly efficient and precise metrology devices. This problem was posed by Bruck-
stein, O’Gorman, and Orlitsky, at Bell Laboratories, already in 1989, with the aim
of designing planar patterns that will serve as location marks, or fiducials on printed
circuit boards. The need for location or registration fiducials in printing circuit
boards and in processing VLSI devices is quite obvious. When layers of printing
and processing are needed in the manufacturing operation, the precision in perform-
ing the desired processes in perfect registration with previously processed layers is
indeed imperative. The work described in [7] proves that there exists an information
theoretic bound that limits the location precision for any shape that has an spatial
extent of say A × A in pixel-size. Such a shape, when digitized will provide for us
about A2 meaningful bits of information, via the pattern of black and white pix-
els in the digitized image. This number of bits can only effectively encode 2A2−1

different locales, and hence the precision to which we can refine a region one pixel-
square in size has a maximal area that must exceed 1/(2A2−1). If we want balanced
X and Y axis precision, we can only locate the pattern to a subpixel precision of
1/[2(A2−1)/2]. This is the best precision possible assuming optimal exploitation of
the real estate of an A × A area, assigned to the location mark. The important is-
sue that was further settled in [7] is the existence of a fiducial pattern that indeed
achieves this precision. The pattern is so cute that we exhibit it in Fig. 1.6.
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Fig. 1.6 An optimal 2D
fiducial of area 3 × 3 pixels

Looking at this fiducial pattern it becomes obvious what it does. It is indeed a
continuous 2D (analog) input that employs the point sampling discretization pro-
cess to compute its X and Y displacement by providing a binary read-out of the
subpixel location of the fiducial within the one pixel to which it can readily be lo-
cated using the left lowest grid-point (the “rough location” mark) covered by the
shape. This leftmost bit of information is also the reason we can only use A2 − 1
bits for subpixel precision, i.e., for cutting the one pixel precision (provided by the
“rough location” bit) into locale slices. This process turns the fiducial and the dis-
cretization process into a nice “analog computer” that yields the displacements in
the X and Y direction easily, and achieves the highest precision in this task that is
possible based on the available data. The analysis provided in [7] goes even fur-
ther. The optimal fiducials turn out to require highly precise etchings on the VLSI
or circuit board devices and hence might be difficult to realize in practice. Hence
there is a need to analyze other types of fiducial shapes that achieve suboptimal ex-
ploitation of the area, however can provide good location accuracies. For rotational
invariance, circularly symmetric shapes turn out to be necessary, and therefore bull-
eye fiducials were also proposed in [7] and further analyzed in [13, 34]. The main
message of the theoretical analysis provided in [7] was that a self location fiducial
should have lots of edges that carry information on their location when seen through
a digitization camera. Recently, the semiconductor industry used this insight in re-
designing the standard registration fiducials. This was the result of a detailed study
of novel, robust grating mark fiducials, which greatly increased precision and re-
peatability. The study, done by us in conjunction with a team of design engineers at
KLA-Tencor, a leading manufacturer of vision based process inspection machines
for semiconductor industry, proposed fiducial marks as shown in Fig. 1.7b to re-
place the traditional box in a box mark shown in Fig. 1.7a. The traditional fiducial
was clearly not optimal in terms of exploiting the wafer area allocated to it. For a
detailed description of the optimized overlay metrology marks that were adopted by
industry and the theoretical analysis that led to their design, see [2].

The most interesting question that remains to be addressed here is the following:
can we invent shapes that provide other metrological measures as easily as the above
discussed example advertised its location?
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Fig. 1.7 Overlay metrology fiducials (from [2])

1.7 The Importance of Being Gray

So far we have discussed the case of binary continuous images being point-sampled
into matrices of zeros and ones, or Black and White pixels. However the real world
is far richer in possibilities and complications.

First of all, point sampling is not a good model of the imaging process as per-
formed by real life cameras. Those carry out, at each sensor level, a weighted in-
tegration of the incoming light from the continuous input pattern. This integration
happens around each grid point, and the pixel influence region may be assumed cir-
cular. The integration yields, at each grid point, values that continuously vary from
a lowest value for white (no object) input over the pixel influence region to highest
value that corresponds to having the input object cover the entire area of integration.
The result of this integration is then transformed into a discrete value encoded by
several bits, via quantization. Therefore even for binary preimages, we get at each
grid point a pixel value that is the quantization of a continuous variable proportional
to the fraction of the pixel influence region that is covered by the input object.

Furthermore we may also consider the advantages of using non-binary, gray-
scale of color pre-images. The combination or more realistic sampling and quanti-
zation processes with the use of gray levels in preimages open for us a great variety
of further possibilities. As an example, Kiryati and Bruckstein have analyzed, fol-
lowing a question posed by Theo Pavlidis, the trade-off between spatial resolution
and number of gray levels when the aim is to get as much information as possible on
a class of binary pre-images that comprise polygonal shapes. The conclusion of this
research was that “Gray Levels Can Improve the Performance of Binary Image Dig-
itizers”, see [19]. The paper introduces a measure of digitization-induced ambiguity
in recovering the binary preimage, hence it is quite relevant to metrology under such
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sampling conditions. It is then proved that, if the sampling grid is sufficiently dense
(i.e., the sampling rate is high!) and if the pixels would provide us exact gray-levels
rather than quantized values, error-free reconstruction of the binary pre-image is
possible. This is not too surprising, however, when the total bit budget for the dig-
itized image representation is limited (i.e., the sampling rate and the quantization
depth are related, both being finite) the bit allocation problem that arises shows that
the best resource allocation policy is to increase the gray level quantization accu-
racy as much as possible, once a sufficiently dense spatial sampling resolution has
been reached. Therefore once we have a grid dense enough to ensure that all lin-
ear borders of the binary input image polygonal shapes can adequately be “seen”
in the sampled image, all the remaining bit resources should go towards finer gray
level quantization. The question, which prompted this research asked to explain why
gray-level fax machines at low resolution yield nicer images than fax machines at
higher resolution, even for binary document images. It was clear that some sort of
anti-aliasing effect is in place, however [19] proved quantitatively that even in terms
of a well-defined metrology error measure, the gray-levels help considerably more
than increased spatial resolution.

Imagine next that we allow gray level input images too. In this case we shall cer-
tainly have, in conjunction with multilevel quantizations at each pixel much more
information for location and various other measurements. A gradual boundary in the
input image, or equivalently an area integration sensor providing a quantized multi-
level pixel value at each grid-point, will transform the issue of locating a half plane
into a problem of locating precisely several parallel digital straight edges, when they
are simultaneously sampled. Such richness of detail will certainly dramatically re-
duce the size of the uncertainty locales, and enable us to design a wealth of improved
location and orientation fiducials in the future.

The conclusion therefore is that gray levels matter, they are good for us! And the
last word on these issues certainly has not been said yet. For some very nice recent
work along these lines see [35].

1.8 Some Further Open Questions

As was mentioned in the previous sections, there are still many interesting and open
digital geometry and metrology problems. Although digital straight edges did re-
ceive a lot of attention from digital geometry researchers we still expect to see
complete theories pertaining to the sampling and quantization of linear non-step
borders in gray level preimages. If a straight border with sigmoidal gray level pro-
file is sampled by some type of area sampling (with pixels with circularly symmetric
integration regions) the result will be a border-line with quantized gray levels that
will look like a nicely anti-aliased line produced by a computer graphics algorithm.
There are interesting digital line properties of the type we discussed in Sect. 1.3 em-
bedded in the resulting image and these will surely be carefully studied sometime
in the future.
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Along these lines one could also study a class of location fiducials based on
shapes with multiple parallel edges, or edges with an a priori known pattern. Such
robust fiducials should enable “the design” of desired uncertainly locales for high
precision registration, may even be insensitive to pixel size variations.

Another interesting question on self-location that may be subject to further re-
search is the design of binary self-location patterns in the plane. This problem was
partially addressed in the paper [15], the pattern proposed being a separable bit-
pattern that is generated as the outer (binary) product of two one-dimensional de
Bruijn sequences [28] that have the one-dimensional self-location property. Such a
pattern can be shown to be robust to some read-out errors but clearly it has a bit too
much redundancy built into it. The planar pattern used by the Anoto pen we men-
tioned before, [1], is an “analog” point pattern that is based on encoding location in
geometric constellations of points near grid locations that carry the information on
the absolute coordinates of the grid point. It seems that a binary array version of the
problem has not been discussed before the work reported in [15].

The problem of length estimation of discretized boundaries was the subject of
many papers, as seen in [21, 35] and the references therein. However even this topic
was not yet completely exhausted. It is an interesting challenge to design perime-
ter estimators that will work in conjunction with corner detectors and curvature
estimators, perhaps based on digital circle detectors [10], to yield more and more
precise length measurements. The design here should not be aimed to get precise
results on digital straight lines but rather on various types of continuous curves with
breakpoints and corners, and the ranges of curvatures that are expected to appear in
practice.

As we discussed in the previous section, subject of bit allocation tradeoff’s be-
tween resolution and quantization has only been superficially touched upon so far
[17, 19, 35]. Although the initial conclusions are that multilevel quantization pro-
vides quite a lot of information in binary preimage digitization, a similar study
should be made for the case of gray level shape boundaries and gray level images
of various types. In this context one might even ask what should be the design of
the gray-scale profile of planar shape edges to enhance the edge location and length
estimation performance.

We have not discussed in this paper important questions of shape comparison
and recognition, of shape decompositions and isoperimetric inequities for digitized
shapes. These topics all rise very interesting research questions that are recently
beginning to be addressed, see, e.g., [8, 36]. Therefore we may expect the area of
digital geometry to remain an active and exciting subject of research in the future.

1.9 Concluding Remarks

This paper surveys research that dealt with digital geometry and metrology issues.
As is clear form the topics discussed above and the list of references below, metrol-
ogy tasks require deep and interesting excursions into discrete geometry, motivating
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the study of the pixelized world and importing from it important insights and re-
sults. More on the vast subject of discrete geometry can be found in several books
[9, 11, 20, 22, 26, 27, 29].
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Chapter 2
Provably Robust Simplification of Component
Trees of Multidimensional Images

Gabor T. Herman, T. Yung Kong, and Lucas M. Oliveira

Abstract We are interested in translating n-dimensional arrays of real num-
bers (images) into simpler structures that nevertheless capture the topologi-
cal/geometrical essence of the objects in the images. In the case n = 3 these struc-
tures may be used as descriptors of images in macromolecular databases. A fore-
ground component tree structure (FCTS) contains all the information on the rela-
tionships between connected components when the image is thresholded at various
levels. But unsimplified FCTSs are too sensitive to errors in the image to be good
descriptors. This chapter presents a method of simplifying FCTSs which can be
proved to be robust in the sense of producing essentially the same simplifications
in the presence of small perturbations. We demonstrate the potential applicability
of our methodology to macromolecular databases by showing that the simplified
FCTSs can be used to distinguish between two slightly different versions of an
adenovirus.

2.1 Introduction

High-level structural information about macromolecules is now being organized into
databases. These include EM maps (three-dimensional grayscale image arrays ob-
tained by reconstruction from electron microscopic data) of macromolecular struc-
tures. The large size of these image arrays, the arbitrary position and orientation of
the macromolecule in the array, and the possibility of non-linear stretching of the
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range make standard methods of comparison between database entries infeasible.
There is a need for simple robust descriptors that capture the topological/geometrical
essence of the macromolecules in the images. We believe that appropriately simpli-
fied foreground component tree structures may be suitable for this purpose.

Foreground component trees are well known representations of grayscale images.
Given a grayscale image I : S → R whose domain S is connected, the foreground
component tree of I is a rooted tree whose nodes are the connected components of
superlevel sets of I. These nodes have sometimes been called maximum intensity
extremal regions [6]. A node c′ is an ancestor in the tree of a node c if and only if
c′ ⊇ c. The tree can be efficiently constructed using an algorithm which processes
the elements of S in decreasing order of their graylevels and uses Tarjan’s union-find
algorithm [11] to build the tree from the bottom up. For details, see [1, Alg. 4.1] or
[7, Alg. 2]. The latter paper also describes applications of foreground component
trees to image processing and gives a bibliography of some relevant literature.

Two related representations of images (contour trees and 0th persistence dia-
grams) will be described in Sect. 2.7 when we discuss research problems suggested
by our work.

Unsimplified foreground component trees are too sensitive to errors in the image
to be good descriptors. Accordingly, this chapter presents a new three-step method
of simplifying these trees that is provably robust, in the sense that the method pro-
duces essentially the same simplified trees when the image is slightly perturbed.
This property of our method is precisely stated in our main result, Theorem 1.

Methods of simplifying component trees to suppress features that are likely due
to noise or artifacts have previously been considered (see, e.g., [7, 10]). But we
are not aware of any previous work in which a tree simplification method has been
proved to have a robustness property of the kind stated in Theorem 1.

We believe that the simplified trees produced by our method will be useful image
descriptors for the identification and classification of macromolecules. As evidence
of this we provide a sample biological application in which they are used to differ-
entiate two versions of an adenovirus.

2.2 Foreground Component Tree Structures (FCTSs)

We use the term adjacency relation to mean an irreflexive symmetric binary relation
(i.e., a set κ of ordered pairs such that if (a, b) ∈ κ then a �= b and (b, a) ∈ κ). The
members of the pairs that belong to any adjacency relation we are using will be
called spels. (As in, e.g., [5], “spel” is an abbreviation of “spatial element”, and we
think of spels as generalizations of pixels and voxels.) We use the term grayscale
image or, more briefly, the term image, to mean a real-valued function whose domain
is a nonempty set of spels. If I : S→ R is any image then for any s ∈ S we may refer
to the real value I(s) as the graylevel of s in I.

In the practical work described in Sect. 2.6, we use the “6-adjacency” relation [5,
p. 16] on Z

3 as our adjacency relation, and use grayscale images whose domain is
the finite set {(x, y, z) ∈ Z

3 | 0 ≤ x ≤ 274, 0 ≤ y ≤ 274, 0 ≤ z ≤ 274}.
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Fig. 2.1 A rooted tree in which the critical nodes have been circled

Let κ be an adjacency relation. We say that two disjoint sets of spels S1 and S2
are κ-adjacent if there exist s1 ∈ S1 and s2 ∈ S2 such that (s1, s2) ∈ κ . We call a
sequence s0, . . . , sl of l + 1 spels a κ-path if l = 0 or if l ≥ 1 and (si , si+1) ∈ κ for
0 ≤ i < l. We say that a set S is κ-connected if for all s, s′ ∈ S there exists a κ-path
s0, . . . , sl such that s0 = s, sl = s′, and si ∈ S for 0 ≤ i ≤ l.

Let I : S→ R be any image, let τ ∈ R, and let s ∈ S. Then Cκ(s, I, τ ) will denote
the set of all s′ ∈ S for which there exists a κ-path s0, . . . , sl such that s0 = s, sl = s′,
and I(si) ≥ τ for 0 ≤ i ≤ l. Note that Cκ (s, I, τ ) = ∅ if τ > I(s), and s ∈ Cκ(s, I, τ )

if τ ≤ I(s). We write Cκ(s, I) to denote the set Cκ (s, I, I(s)). Readily, if t ∈ Cκ (s, I),
then I(t) ≥ I(s) and either Cκ (t, I) = Cκ(s, I) or Cκ(t, I) � Cκ (s, I) according to
whether I(t) = I(s) or I(t) > I(s).

We assume the reader is familiar with the concept of a rooted tree (as defined in,
e.g., [3, Appendix B.5.2]). Let T be any rooted tree. We write Nodes(T ) to denote
the (finite) set of all nodes of T , write root(T ) to denote the root of T , and write
Leaves(T ) to denote the set of all leaves of T .

Recall that if u ∈ Nodes(T ) and v is a node of the subtree of T that is rooted
at u, then u is said to be an ancestor of v in T , and v a descendant of u in T . We
write u 
T v or v �T u to mean that u,v ∈ Nodes(T ) and u is an ancestor of v
in T . We write u ≺T v or v 
T u to mean that u 
T v but u �= v. If u ≺T v then
u is said to be a proper ancestor of v in T , and v a proper descendant of u in T .

For v ∈ Nodes(T ), we write ChildrenT (v) to denote the set of all the children
of v in T , and if v �= root(T ) then we write parentT (v) to denote the parent of v
in T . A node v of T is said to be critical if |ChildrenT (v)| �= 1; thus v is a critical
node if and only if either v ∈ Leaves(T ) or |ChildrenT (v)| ≥ 2. In Fig. 2.1, the
critical nodes are circled.

Let κ be any adjacency relation. Then a κ-foreground component tree structure
or κ-FCTS is a pair (T , �) for which there exists a collection C of nonempty finite
κ-connected sets of spels such that the following four conditions hold:
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Fig. 2.2 The tree of the
FCTS that is defined in
Example 1

1.
⋃

C ∈ C

2. For all u,v ∈ C, if u �⊇ v and v �⊇ u then the sets u and v are disjoint and are not
κ-adjacent.

3. � is a real-valued function on C such that, for all u,v ∈ C, �(u) < �(v) whenever
u � v. (For each v ∈ C we call �(v) the level of v.)

4. T is the rooted tree such that Nodes(T ) = C and, for all u,v ∈ C, u ≺T v if
and only if u � v.

Condition 1 is equivalent to the condition that C have an element which is a
superset of every element of C. Moreover, since every element of C is required to
be a nonempty finite κ-connected set, condition 1 implies that

⋃
C is a finite κ-

connected set. Since
⋃

C is finite, C can only be a finite collection.
If C is any collection of nonempty finite κ-connected sets that satisfies condi-

tions 1 and 2, and � any function that satisfies condition 3, then there will exist a
unique rooted tree T that satisfies condition 4 (so that (T , �) is a κ-FCTS); the
root of this tree will be

⋃
C.

Example 1 Let κ be the adjacency relation on the integers such that (n1, n2) ∈
κ if and only if |n1 − n2| = 1. Let C be the following collection of six sets:
{{1,2,3,4,5,6,7,8}, {1,2,3,4,5}, {1,2}, {4,5}, {7,8}, {8}}. Then it is readily con-
firmed that C satisfies conditions 1 and 2. Now let � : C → R be defined by
�({1,2,3,4,5,6,7,8}) = 12, �({1,2,3,4,5}) = 13, �({7,8}) = 16, and �({1,2}) =
�({4,5}) = �({8}) = 18. Then it is readily confirmed that � satisfies condition 3.
Thus there is a κ-FCTS (T , �) for which Nodes(T ) = C. The tree T of this
κ-FCTS is shown in Fig. 2.2.

If F is a κ-FCTS (T , �), then we may use F to mean the rooted tree T in our ter-
minology and notation. As examples of this, nodes and edges of T may be referred
to as nodes and edges of F, the notations Nodes(F), root(F), and Leaves(F) will
have the same meanings as Nodes(T ), root(T ), and Leaves(T ), and parentF(v)

will have the same meaning as parentT (v) for any v ∈ Nodes(T ) \ root(T ).
Let S be any nonempty finite κ-connected set of spels. Then we associate each

image I : S → R with the κ-foreground component tree structure FCTSκ(I) that is
defined by FCTSκ(I) = (TI, �I), where:

(i) Nodes(TI) = {Cκ(s, I) | s ∈ S} and, for all u,v ∈ Nodes(TI), we have that
u 
TI v if and only if u ⊇ v.
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Fig. 2.3 A grayscale image whose domain is a row of 37 pixels is shown at the top. Writing I
to denote this image, the numbers above the image show the graylevel I(p) of each pixel p in
the domain; for example, the graylevels of the first, second, third, and fourth pixels on the left
are respectively 0, 3, 14, and 14. The κ-FCTS of the image (i.e., FCTSκ (I)) is shown below the
image. Here κ is the adjacency relation such that (p1,p2) ∈ κ just if p1 and p2 are pixels that share
an edge. Writing (T , �) for this κ-FCTS, each node of the tree T is a κ-connected set of pixels
whose elements are indicated in the figure by the horizontal bar which runs through that node. For
example, the root node v0 of T consists of all 37 pixels in the domain, the node v1 consists of all
pixels in the domain except the leftmost, and the leaf node v17 consists of just the third and the
fourth pixels from the left. For each node v, the value of �(v) can be read from the vertical bar on
the left. For example, �(v2) = �(v3) = 3 and �(v4) = �(v5) = 6

(ii) For all s ∈ S, we have that �I(Cκ (s, I)) = I(s). (�I is well defined by this condi-
tion, because I(s) = I(s′) whenever Cκ(s, I) = Cκ(s′, I).)

It is readily confirmed that a κ-FCTS with these two properties exists, because C =
{Cκ(s, I) | s ∈ S} satisfies conditions 1 and 2 in the definition of a κ-FCTS; the root
of the tree of this FCTS is

⋃
C = S. It follows from (ii) that for each v ∈ Leaves(TI)

the level of v in FCTSκ(I) is just the graylevel in I of each spel in v, and that for
each v ∈ Nodes(TI) the level of v is just the minimum of the graylevels of the
spels in v. We call FCTSκ(I) the κ-FCTS of the image I. Figure 2.3 illustrates this
concept.

Conversely, we associate each κ-FCTS F = (T , �) with the image IF that we
now define. For each spel s ∈ root(T ), conditions 2 and 4 in the definition of a
κ-FCTS imply that, among the elements of Nodes(T ) that contain s, there must be
a smallest (i.e., a node that is a descendant in T of every node that contains s); that
element will be denoted by nodeT (s). We define IF = I(T ,�) to be the image whose
domain is root(T ), and which satisfies IF(s) = �(nodeT (s)) for all s ∈ root(T ).
We also call IF the image of the κ-FCTS F.

Readily, IFCTSκ (I) = I for any image I whose domain is finite and κ-connected,
and FCTSκ(IF) = F for every κ-FCTS F. Thus the maps I �→ FCTSκ(I) and
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F �→ IF are mutually inverse bijections between the set of all images with finite
κ-connected domains and the set of all κ-FCTSs.

Consequently, a figure (such as Fig. 2.3) that shows an image I and its associated
κ-FCTS FCTSκ(I) can also be construed as showing the κ-FCTS F = FCTSκ(I)
and its associated image IF = I.

2.3 The (λ,k)-Simplification of a κ-FCTS, Essential
Isomorphism, and the Main Theorem

As mentioned earlier, the foreground component tree structure FCTSκ(I) is too
sensitive to errors in the image I to be a good descriptor. In this section we propose
a method of simplifying FCTSκ(I) that is provably robust, in the sense that the
simplified κ-FCTS of I remains essentially the same when I is slightly perturbed.
We begin by defining some further terminology and notation.

Let T be any rooted tree, and F = (T , �) a κ-FCTS. Then the set of all critical
nodes of T will be denoted by Crit(T ) or Crit(F). The node in Crit(T ) that is
an ancestor in T of every node in Crit(T ) will be called the lowest critical node
or LCN of T or F, and denoted by LCN(T ) or LCN(F).

For any subset V of Nodes(T ) that does not contain every ancestor of LCN(T ),
there is a κ-FCTS (T ′, �′) such that Nodes(T ′) = Nodes(T ) \ V and �′ is the
restriction of � to Nodes(T ′). This κ-FCTS will be denoted by F− V.

We write F′ � F to mean that F′ = F−V for some V ⊆ Nodes(T )\{root(T )}.
Thus F′ � F implies that root(F′) = root(F) and that Nodes(F′) ⊆ Nodes(F).

We write T crit to denote the rooted tree whose set of nodes is Crit(T ) ∪
{root(T )} in which a node u is an ancestor of a node v if and only if u is an
ancestor of v in T . Thus root(T crit) = root(T ), LCN(T crit) = LCN(T ), and
Crit(T crit) = Crit(T ). If LCN(T ) �= root(T ) then LCN(T crit) = LCN(T ) is
the unique child of root(T crit) = root(T ) in T crit. The κ-FCTS (T crit, �crit),
where �crit is the restriction of � to Nodes(T crit), will be denoted by Fcrit. Note
that Fcrit � F. This concept is illustrated in Figs. 2.4 and 2.6.

Using this terminology, our method of simplifying FCTSκ(I) can be stated as
follows:

Let F0 = (T0, �0) be any κ-FCTS. Then, for every positive real value λ and
every nonnegative integer k < |root(T0)|, we define the (λ, k)-simplification of F0
to be the κ-FCTS F3 that can be obtained from F0 in three steps, as follows:

Step 1: Prune F0 by removing nodes of size ≤ k, to produce F1 � F0.
Step 2: Prune F1 by removing branches of length ≤ λ, to produce F2 � F1.
Step 3: Eliminate internal edges of length ≤ λ from Fcrit

2 , to produce the final
κ-FCTS F3 � Fcrit

2 .

With the possible exception of the root, every non-leaf node of the final κ-FCTS F3
is a critical node both of F3 and of the original κ-FCTS F0.

Step 1 is one of the filtering methods proposed in Sect. VI of [7]. It is defined
as follows: The result of pruning the κ-FCTS F0 = (T0, �0) by removing nodes of
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Fig. 2.4 The thick black edges are the edges of the FCTS Fcrit, where F is the FCTS that is shown
in Fig. 2.6 below. Nodes and edges of F are shown in gray, but may be hidden by nodes and edges
of Fcrit—for example, the edges of F that join v4 to v8 and v8 to v12 in Fig. 2.6 are not visible in
this figure because they are hidden by the edge of Fcrit that joins v4 to v12. (The image I

Fcrit of

Fcrit is shown at the top)

size ≤ k is just the κ-FCTS

F0 − {
v ∈ Nodes(T0)

∣∣ |v| ≤ k
}

where, as usual, |v| denotes the cardinality of the set v—i.e., the number of spels
in v. Note that the result is just F0 itself if k = 0. Figure 2.5 shows an FCTS that
has been obtained by pruning the FCTS of Fig. 2.3 in this way.

Precise definitions of steps 2 and 3 of (λ, k)-simplification will be given in
Sects. 2.4 and 2.5 below.

While our simplification method is somewhat similar to the method of [10], it has
the robustness properties that are stated in Theorem 1 and Corollary 2 below (which
the method of [10] does not have). We now introduce terminology and notation that
will be used to state these two results.

We say that two κ-FCTSs Fa = (Ta, �a) and Fb = (Tb, �b) are essentially iso-
morphic if the subtree of T crit

a that is rooted at LCN(Ta) is isomorphic to the
subtree of T crit

b that is rooted at LCN(Tb). Thus Fa and Fb are essentially iso-
morphic if and only if there exists a mapping θ : Crit(Ta) → Crit(Tb) such that
θ [Crit(Ta)] = Crit(Tb) and, for all v,v′ ∈ Crit(Ta), v 
Ta v′ if and only if
θ(v) 
Tb θ(v′). (The latter property implies that θ is 1-to-1.) Any such θ will be
called an essential isomorphism of Fa to Fb.

Note that if the rooted trees T crit
a and T crit

b are isomorphic, then Fa = (Ta, �a)

and Fb = (Tb, �b) are certainly essentially isomorphic. The converse is almost but
not quite true. The only way in which Fa = (Ta, �a) and Fb = (Tb, �b) could be
essentially isomorphic without T crit

a and T crit
b being isomorphic is if the root is
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Fig. 2.5 The effect of pruning the FCTS of Fig. 2.3 by removing nodes of size ≤ k is shown, in
the case k = 1; the black edges are the edges of the resulting FCTS. Just two nodes (v10 and v23)
are removed from the tree of Fig. 2.3, as these are the only nodes of that tree that consist of no
more than k pixels (i.e., no more than 1 pixel, since k = 1). The image of the resulting FCTS is
shown at the top: Note that the graylevel of the second pixel from the right has changed from 18
in Fig. 2.3 to 16 here; this reflects the removal of v23 from the tree. Similarly, the graylevel of the
17th pixel from the left has changed from 10 to 9; this reflects the removal of v10. The graylevels
of the other 35 pixels are the same as in Fig. 2.3

the same as the LCN in one of the trees but not in the other, and when we remove
the root from the latter tree (so its LCN becomes its root) it becomes isomorphic to
the former tree—e.g., if T crit

a has the structure

V

but T crit
b has the structure

Y

.
For any δ ≥ 0, if an essential isomorphism θ of Fa to Fb satisfies the condition

|�b(θ(x)) − �a(x)| ≤ δ for all x ∈ Crit(Fa), then we say that θ is level-preserving
to within δ. Evidently, the inverse of any essential isomorphism of Fa to Fb that
is level-preserving to within δ will be an essential isomorphism of Fb to Fa that is
level-preserving to within δ.

If an essential isomorphism θ of Fa to Fb is level-preserving to within 0 (i.e., if
�b(θ(x)) = �a(x) for all x ∈ Crit(Fa)), then we say that θ is level-preserving.

Example 2 The FCTS shown in Fig. 2.6 is essentially isomorphic to the FCTS
shown by the thick black edges in Fig. 2.8. Indeed, if (T , �) is the FCTS shown
in Fig. 2.6, and (T∗, �∗) is the FCTS shown by the thick black edges in Fig. 2.8,
then (T , �)crit is the FCTS shown in Fig. 2.4, and (T∗, �∗)crit = (T∗, �∗). It is evi-
dent from a quick glance at Figs. 2.4 and 2.8 that T crit is isomorphic to T crit∗ = T∗,
so that (T , �) is essentially isomorphic to (T∗, �∗), as we claimed. It is readily con-
firmed that the mapping θ : Crit(T ) → Crit(T∗) which respectively maps

v1, v4, v5, v9, v10, v11, v12, v14, v15, v16, v17 in Fig. 2.6 (or Fig. 2.4)

to v1, v4, v5, v13, v14, v15, v17, v19, v20, v21, v22 in Fig. 2.8
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Fig. 2.6 If I is the image at the top (and κ is the same adjacency relation as in Figs. 2.3 and 2.5),
then Λκ(I) = 5 and Kκ(I) = 2. Λκ(I) = 5 because, writing (T , �) for the κ-FCTS of I (which is
shown in this figure), T has critical nodes vi and vj such that vi 
T vj and �(vi )−�(vj ) = 5 (e.g.,
(vi , vj ) = (v4, v1)), but T has no critical nodes vi and vj such that vi 
T vj and �(vi )−�(vj ) < 5.
Kκ(I) = 2 because T has a node (e.g., v9) that consists of just 2 pixels, but no node of T consists
of fewer than 2 pixels

is an essential isomorphism of (T , �) to (T∗, �∗). The essential isomorphism θ is
not level-preserving, since |�∗(θ(x)) − �(x)| = 1 when x = v12 and when x = v15;
indeed, �(v12) = 13 but �∗(θ(v12)) = 14, and �(v15) = 17 but �∗(θ(v15)) = 16. But
it is readily confirmed that �∗(θ(x)) = �(x) for all x ∈ Crit(T ) \ {v12, v15}, and so
θ is level-preserving to within 1.

Let I : S → R be an image whose domain S is finite and κ-connected, and let
(T , �) = FCTSκ(I). Then we define:

Kκ(I) = min
s∈S

∣∣Cκ (s, I)
∣∣ = min

v∈Leaves(T )
|v|

Λκ(I) = min
{
�(u) − �(v)

∣∣ u,v ∈ Crit(T ) and u 
T v
}

These concepts are illustrated in Fig. 2.6.
If I : S → R and I′ : S → R are two images that have the same domain S, then

the value maxs∈S |I′(s) − I(s)| will be denoted by ‖I′ − I‖∞.
Using this notation, we now state our principal robustness result regarding (λ, k)-

simplification (a result which we will generalize in Corollary 2):

Theorem 1 (Main Theorem) Let κ be any adjacency relation, I : S →R any image
whose domain S is finite and κ-connected, k any integer such that 0 ≤ k < Kκ(I),
and λ any value such that 0 < λ < Λκ(I)/2. Let I′ : S → R be an image such that
‖I′ − I‖∞ ≤ λ/2. Then there is an essential isomorphism of the (λ, k)-simplification
of FCTSκ(I′) to FCTSκ(I) that is level-preserving to within λ/2.
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A proof of this theorem is given in Appendix B. In the theorem, and in Corol-
lary 2 below, we may think of the image I : S → R as an ideal or perfect image of
some object (such as a macromolecule) at a certain level of detail/resolution, and
think of the image I′ as an imperfect noisy approximation to the ideal image I (such
as an EM map of the same object). We may suppose that the ideal image I is not
available to us (and we do not know the exact structure of FCTSκ(I)), but the im-
perfect image I′ is available and we can therefore construct FCTSκ(I′). Theorem 1
and Corollary 2 assure us that, if I′ is “sufficiently similar” to I, then there will be
values of λ and k for which the (λ, k)-simplification of FCTSκ(I′) is essentially
isomorphic to FCTSκ(I).

For this purpose it follows from Theorem 1 that the imperfect noisy approxima-
tion I′ will be “sufficiently similar” to the ideal image I if there is no spel in S at
which the value of I′ differs from the value of I by Λκ(I)/4 or more. Additionally,
it will follow from Corollary 2 (as we shall explain in Example 4) that I′ might be
sufficiently similar to I even if this condition is violated at a small number of spels
whose values in I and I′ may differ by arbitrarily large amounts.

Example 3 To illustrate Theorem 1, let I be the image that is shown in Fig. 2.6,
and let I′ be the image that is shown in Fig. 2.3. Then ‖I′ − I‖∞ = 1, because there
exists a pixel p (e.g., any of the three rightmost pixels in the domain) for which
|I′(p)−I(p)| = 1, but there is no pixel p for which |I′(p)−I(p)| > 1. Now let λ = 2
and k = 1. As we observe in the caption of Fig. 2.6, Λκ(I) = 5 and Kκ(I) = 2, so the
conditions λ < Λκ(I)/2, k < Kκ(I), and ‖I′ − I‖∞ ≤ λ/2 that appear in Theorem 1
are satisfied. Thus the theorem says that there is an essential isomorphism of the
(λ, k)-simplification of FCTSκ(I′) to FCTSκ(I) that is level-preserving to within
λ/2 = 1. In fact the inverse of the mapping θ defined in Example 2 above is just
such an essential isomorphism! That is because (as we will see in Sect. 2.5) the
FCTS shown by the thick black edges in Fig. 2.8 is exactly the (λ, k)-simplification
of FCTSκ (I′).

From Theorem 1, it is easy to deduce Corollary 2 below. Theorem 1 is essentially
the case of Corollary 2 in which k∗ = 0 and I∗ = I .

As mentioned above, one can think of I in Theorem 1 and Corollary 2 as a perfect
or ideal image, and think of I′ as an imperfect approximation to I. Theorem 1 is
applicable only if the graylevel of every spel in I′ is close to (specifically, within
less than Λκ(I)/4 of) that spel’s graylevel in I. Corollary 2 is more general; as we
will see in Example 4 below, it may be applicable even if there are exceptional spels
at which I′’s graylevel is much lower or higher than I’s graylevel.

Corollary 2 Let I : S →R and I′ : S→ R be images on the same finite κ-connected
domain S. For any nonnegative integer k < |S|, let I′

k denote the image of the κ-
FCTS that results from pruning FCTSκ(I′) by removing nodes of size ≤ k. Sup-
pose there is an image I∗ : S → R such that there exists a level-preserving essen-
tial isomorphism of FCTSκ(I∗) to FCTSκ(I), and there exists a nonnegative in-
teger k∗ < Kκ(I∗) for which the image I′ satisfies ‖I′

k∗ − I∗‖∞ < Λκ(I)/4. Then,
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for any positive λ and integer k such that 2‖I′
k∗ − I∗‖∞ ≤ λ < Λκ(I)/2 and

k∗ ≤ k < Kκ(I∗), there is an essential isomorphism of the (λ, k)-simplification of
FCTSκ (I′) to FCTSκ(I) that is level-preserving to within λ/2.

Proof of Corollary 2, assuming Theorem 1 Let k be an integer such that k∗ ≤ k <

Kκ(I∗), and λ a positive value such that 2‖I′
k∗ − I∗‖∞ ≤ λ < Λκ(I)/2.

Now FCTSκ(I′
k∗) is the result of applying step 1 of (λ, k∗)-simplification to

FCTSκ (I′). It follows that the (λ, k)-simplification of FCTSκ(I′) is the same as the
(λ, k)-simplification of FCTSκ(I′

k∗) (since applying simplification step 1 twice in
succession with parameter k∗ and then k has the same effect as applying step 1 just
once with the parameter max(k∗, k) = k). To prove the corollary, we need to show
that there is an essential isomorphism of this κ-FCTS (i.e., the (λ, k)-simplification
of FCTSκ (I′

k∗)) to FCTSκ(I) that is level-preserving to within λ/2.
We have that Λκ(I) = Λκ(I∗), since there is a level-preserving essential iso-

morphism of FCTSκ(I∗) to FCTSκ(I). Thus we have that λ < Λκ(I∗)/2. More-
over, ‖I′

k∗ − I∗‖∞ ≤ λ/2 and k < Kκ(I∗). So, on applying Theorem 1 to I∗ and
I′
k∗ , we see that there is an essential isomorphism of the (λ, k)-simplification

of FCTSκ(I′
k∗) to FCTSκ(I∗) that is level-preserving to within λ/2. Compos-

ing this essential isomorphism with the level-preserving essential isomorphism of
FCTSκ (I∗) to FCTSκ(I) gives an essential isomorphism of the (λ, k)-simplification
of FCTSκ (I′

k∗) to FCTSκ(I) that is level-preserving to within λ/2, as required. �

The following example shows how the condition that I′ must satisfy in Corol-
lary 2 is much less restrictive than the condition ‖I′ − I‖∞ < Λκ(I)/4 that I′ needs
to satisfy for Theorem 1 to be applicable.

Example 4 Let S be a 3D rectangular array of voxels, and let κ be the 6-adjacency
relation on S. Let I : S → R be an image such that, for each threshold τ ≤
maxs∈S I(s), the members of {Cκ(s, I, τ ) | I(s) ≥ τ } have fairly compact shapes
and are not very small, and no two of the sets are very close together. (Here “have
fairly compact shapes” and “are not very small” imply that: (i) removing a very
few randomly chosen voxels from a set Cκ (s, I, τ ) is unlikely to split it into two or
more pieces, and unlikely to completely eliminate that set. The “no two of the sets
are very close” condition implies that: (ii) adding a very few randomly chosen vox-
els to a set Cκ(s, I, τ ) is unlikely to connect that set to a different set Cκ(s′, I, τ ).)
Now let I′ be an image on S that is obtained from I by changing the graylevels of
a very small number of randomly chosen voxels by arbitrarily large positive and/or
negative amounts. Then ‖I′ − I‖∞ < Λκ(I)/4 will not hold unless every graylevel
change is smaller in absolute value than Λκ(I)/4. But, regardless of the sizes of the
graylevel changes, when k∗ is the cardinality of the largest 6-connected subset of
the set {s ∈ S | I′(s) > I(s)} it is likely (because of (i) and (ii)) that there will be a
level-preserving essential isomorphism of FCTSκ(I′

k∗) to FCTSκ (I), in which case
the image I′ will satisfy the condition of Corollary 2 with I∗ = I′

k∗ .
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2.4 Pruning by Removing Branches of Length ≤ λ

Step 2 of (λ, k)-simplification is to prune the FCTS that is the result of step 1 by
removing branches of length ≤ λ. We now give a mathematical specification of
the output of step 2 (properties P1–P4 below), present a result (Proposition 3) that
gives us an easily visualized characterization of the output, and then describe (in
Sect. 2.4.3) how step 2 can be efficiently implemented.

2.4.1 Specification of Simplification Step 2

Let T be any rooted tree and let x ∈ Nodes(T ). Then we write x⇓T to denote the
set of all ancestors of x in T , write x↓T to denote the set x⇓T \ {x} (i.e., the set
of all proper ancestors of x in T ), write x⇑T to denote the set of all descendants
of x in T , and write x↑T to denote the set x⇑T \ {x} (i.e., the set of all proper
descendants of x in T ).

Now let ∅ �= S ⊆ Nodes(T ). Then we write
∧

T S to denote the closest common
ancestor of S, by which we mean the node v of T such that v⇓T = ⋂

u∈S u⇓T , or,
equivalently, the element of

⋂
u∈S u⇓T that is a descendant in T of every element

of that set.
For any κ-FCTS Fin = (Tin, �in), we call a sequence leaf[1], . . . , leaf[n] an

�in-increasing enumeration of Leaves(Fin) if no two of leaf[1], . . . , leaf[n] are
the same, {leaf[1], . . . , leaf[n]} = Leaves(Fin) (so that n = |Leaves(Fin)|), and
�in(leaf[1]) ≤ · · · ≤ �in(leaf[n]). Pruning a κ-FCTS Fin by removing branches of
length ≤ λ is done using such an enumeration of Leaves(Fin).

For any λ > 0, any κ-FCTS Fin = (Tin, �in), and any �in-increasing enumeration
leaf[1], . . . , leaf[n] of Leaves(Fin), we define the result of pruning Fin by removing
branches of length ≤ λ using the leaf enumeration leaf[1], . . . , leaf[n] to be the κ-
FCTS Fout that has the following four properties:

P1: Fout � Fin
P2: leaf[n] ∈ Leaves(Fout)

P3: For 1 ≤ i < n, leaf[i] ∈ Leaves(Fout) if and only if there does not exist any
j ∈ {i + 1, . . . ,n} for which �in(leaf[i]) − �in(

∧
Tin

{leaf[j ], leaf[i]}) ≤ λ.
P4: Nodes(Fout) = ⋃{leaf[i]⇓Tin | 1 ≤ i ≤ n and leaf[i] ∈ Leaves(Fout)}
Given any κ-FCTS Fin = (Tin, �in), any λ > 0, and any �in-increasing enumeration
leaf[1], . . . , leaf[n] of Leaves(Fin), it is evident that P1–P4 uniquely determine Fout.
Moreover, even though the result Fout of pruning may depend on the leaf enumer-
ation leaf[1], . . . , leaf[n] that is used, we will see from Proposition 3 that, for any
given Fin and λ, P1–P4 uniquely determine Fout up to a level-preserving essential
isomorphism.

Figure 2.7 shows an FCTS that has been obtained by pruning the FCTS of Fig. 2.5
in this way.
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Fig. 2.7 The effect of pruning the FCTS of Fig. 2.5 by removing branches of length λ is
shown, in the case λ = 2; the black edges are the edges of the resulting FCTS. Writing
(T1, �1) for the FCTS of Fig. 2.5, it is assumed that pruning is done using an �1-increasing
leaf enumeration in which the leaf v17 of T1 occurs later than the leaf v18. The leaves
v8, v12, and v18 are the only nodes of T1 that are removed; the leaf v8 is removed be-
cause we have that �1(v8) − �1(

∧
T1

{v19, v8}) = �1(v8) − �1(v7) ≤ 2 = λ (and v19 occurs
later in the �1-increasing leaf enumeration than v8 because �1(v8) < �1(v19)); v12 is removed
because �1(v12) − �1(

∧
T1

{v17, v12}) = �1(v12) − �1(v9) ≤ 2 = λ; v18 is removed because
�1(v18) − �1(

∧
T1

{v17, v18}) = �1(v18) − �1(v11) ≤ 2 = λ and we are assuming (as mentioned
above) that v17 occurs later in the �1-increasing leaf enumeration than v18. In this example no
non-leaf nodes of T1 are removed, as every non-leaf node of T1 is an ancestor of a leaf of T1 that
is not removed

2.4.2 An Easily Visualized Characterization of the Output of
Simplification Step 2

The main goal of this section is to present a result (Proposition 3) that is important
for the following reasons:

1. It shows that the output of step 2 is independent of the leaf enumeration which is
used for pruning (up to a level-preserving essential isomorphism).

2. It gives an easily visualized characterization of the output. (This will be further
explained after Proposition 3.)

3. The linear-time implementation of step 2 that is described in Sect. 2.4.3 is based
on this result.

For any rooted tree T and any x ∈ Nodes(T ), we write T [x] to denote the
subtree of T that is rooted at x.

Now we define some other notation that will be used in Proposition 3. For this
purpose, let F = (T , �) be any κ-FCTS and λ any positive value. Then we de-
fine depthF(x) = maxy∈Leaves(T [x]) �(y) − �(x). Note that depthF(x) = 0 for all
x ∈ Leaves(T ). We also define:
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Uλ〈F〉 = {
v ∈ Nodes(T )

∣∣ depthF(v) > λ
}

Vλ〈F〉 = {
v ∈ Nodes(T )

∣∣ v /∈ Uλ〈F〉 but v↓T ⊆ Uλ〈F〉}
If Uλ〈F〉 �= ∅, then v ∈ Vλ〈F〉 if and only if v ∈ root(T )↑T , depthF(v) ≤ λ, and
depthF(parentT (v)) > λ. If Uλ〈F〉 = ∅, then Vλ〈F〉 = {root(T )}.

For any x ∈ Nodes(T ), either x ∈ Uλ〈F〉 or x has a unique ancestor in Vλ〈F〉
(possibly itself), and x satisfies just one of those conditions. Hence:

Nodes(T ) = Uλ〈F〉 ∪
⋃

v∈Vλ〈F〉
v⇑T (2.1)

If Uλ〈F〉 �= ∅ (so that root(T ) lies in Uλ〈F〉 and not in Vλ〈F〉), then we define:

Vλ
1〈F〉 = {

v ∈ Vλ〈F〉 ∣∣ depthF(v) + �(v) − �
(
parentT (v)

)
> λ

}
But if Uλ〈F〉 = ∅, then we define Vλ

1〈F〉 = {root(T )} = Vλ〈F〉.
Let σ = (leaf[1], . . . , leaf[n]) be any �-increasing enumeration of the leaves of

the tree T , and v any node of T . Then we define lastLeafσ (v,T ) to be the
leaf of T [v] that occurs later in the �-increasing enumeration σ than all other
leaves of T [v]. (If T [v] has just one leaf, then lastLeafσ (v,T ) is that leaf.) Thus
we have that depthF(v) = �(lastLeafσ (v,T )) − �(v). We define Pathσ (v,T ) =
{x ∈ Nodes(T ) | v 
T x 
T lastLeafσ (v,T )}. (Note that if v′ is any node of T
that is neither an ancestor nor a descendant of v in T , then lastLeafσ (v,T ) �=
lastLeafσ (v′,T ) and Pathσ (v,T ) ∩ Pathσ (v′,T ) = ∅.)

Using the notation we have just introduced, we now state the main result of this
section, which is proved in Appendix A.

Proposition 3 Let Fin = (Tin, �in) be any κ-FCTS, let λ > 0, and let Fout =
(Tout, �out) be the κ-FCTS that results from pruning Fin by removing branches of
length ≤ λ using an �in-increasing enumeration σ of Leaves(Tin). Then the nodes
of Fout consist just of:

(i) The nodes of Uλ〈Fin〉.
(ii) The nodes of Pathσ (v,Tin) for each node v in Vλ

1〈Fin〉.

Now let Fin = (Tin, �in), λ, σ , and Fout = (Tout, �out) be as in Proposition 3.
Since Vλ

1〈Fin〉 ⊆ Vλ〈Fin〉, and since no node in Vλ〈Fin〉 is an ancestor in Tin of
a node in Uλ〈Fin〉 or of a different node in Vλ〈Fin〉, for all v ∈ Vλ

1〈Fin〉 we have
that Pathσ (v,Tin) ∩ Uλ〈Fin〉 = ∅, and for all distinct v,v′ ∈ Vλ

1〈Fin〉 we have that
Pathσ (v,Tin) ∩ Pathσ (v′,Tin) = ∅.

Thus Proposition 3 gives us an easily visualized characterization of the nodes of
the FCTS Fout = (Tout, �out) that results from pruning Fin by removing branches of
length ≤ λ using the leaf enumeration σ (and hence an easily visualized characteri-
zation of Fout itself, since Fout � Fin).

In Proposition 3, Uλ〈Fin〉 and Vλ
1〈Fin〉 are determined by Fin and λ; they do

not depend on σ . For any v in Vλ
1〈Fin〉, the difference in level between v and the

leaf node of Pathσ (v,Tin)—i.e., the value of �out(lastLeafσ (v,Tin)) − �out(v) =
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�in(lastLeafσ (v,Tin)) − �in(v) = depthFin
(v)—also does not depend on σ . So even

though the sets Pathσ (v,Tin) may depend on the leaf enumeration σ , we see from
Proposition 3 that Fout is uniquely determined by Fin and λ up to a level-preserving
essential isomorphism.

2.4.3 Linear-Time Implementation of Simplification Step 2

In the rest of this chapter we assume that each FCTS (T , �) we use is represented
in such a way that we can find the root of T in O(1) time and can do all of the
following in O(1) time for any node v of T :

• Create a clone of v, and add it to another FCTS (as a new child of some specified
node of the latter).

• Find the parent of v in T , if v is not the root.
• Determine the value of �(v).
• Determine whether or not v is a leaf of T .

We also assume that, for any non-leaf node v of T , we can find all the children of
v in O(|ChildrenT (v)|) time.

In the rest of this section we describe simple but efficient implementations of
step 2 and of a variant of step 2.

Let Fin = (Tin, �in) be some κ-FCTS, and let σ be an �in-increasing leaf enu-
meration of Leaves(Tin) such that, whenever x and y are leaves of Tin, the answer
to the question

Does x occur later than y in σ? (2.2)

can be determined in O(1) time even if �in(x) = �in(y).
Our implementation of step 2 runs in O(|Nodes(Tin)|) time, and does not require

the actual creation of the sequence σ : We allow σ to be implicitly defined by some
function f : Leaves(Tin) × Leaves(Tin) → {Yes,No} such that the answer to (2.2)
for any two leaves x and y of Tin is f (x,y) and this can be computed in O(1)

time.1

For every λ > 0 let Fout,λ be the FCTS that should result from pruning Fin by
removing branches of length ≤ λ using the leaf enumeration σ . We now explain
how Fout,λ can be constructed in O(|Nodes(Tin)|) time.

For each non-leaf node w of Tin, we define nextσ (w,Tin) to be the child of w in
Pathσ (w,Tin) (i.e., the child of w that is an ancestor of lastLeafσ (w,Tin)); if w is
a leaf of Tin then we define nextσ (w,Tin) = w. During a single postorder traversal
nextσ (w,Tin), lastLeafσ (w,Tin), and depthFin

(w) can be computed for all nodes w
of Tin in

∑
w∈Nodes(Tin)

O(1 + |ChildrenTin(w)|) = O(|Nodes(Tin)|) time. Then,

1Note that no algorithm which actually creates the sequence σ that is defined by any such func-
tion f can run in O(|Nodes(Tin)|) time in all cases, because any comparison sort must perform
Ω(n logn) comparisons to sort a set of n items (here, leaves) in the worst case [3, Thm. 8.1].
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for any given node v of Tin it is easy to determine in O(1) time whether v belongs
to Uλ〈Fin〉, to Vλ

1〈Fin〉, or to neither of those sets, and it is easy to find all the nodes
of Pathσ (v,Tin) by following a chain of nextσ (w,Tin) nodes that starts with w = v.
Hence we can construct Fout,λ in O(|Nodes(Tin)|) time, for any positive λ that the
user may specify, in the following way:

1. Clone root(Tin), and initialize the output FCTS (i.e., the FCTS that will be out-
put when the algorithm terminates) to be an FCTS whose only node is the clone
of root(Tin).

2. Do a preorder traversal of the subgraph of Tin that is induced by the set of nodes
Uλ〈Fin〉 ∪ Vλ

1〈Fin〉. (This is the rooted tree that is derived from Tin by ignoring
all nodes which do not lie in the set Uλ〈Fin〉∪Vλ

1〈Fin〉. Note that this set contains
root(Tin) and all the ancestors of each node in the set.) When any node v is
visited during the traversal, do the following:
(2a) If v ∈ Uλ〈Fin〉\{root(Tin)}, then create a clone of v and add it to the output

FCTS.
(2b) If v ∈ Vλ

1〈Fin〉, then find all the nodes of Pathσ (v,Tin) and, for every such
node w, create a clone of w and add it to the output FCTS (unless w =
root(Tin)).

It is evident that Fout,λ can be constructed in this way, since steps (2a) and (2b)
will create clones of all nodes of types (i) and (ii) in Proposition 3 (except the root
of Tin) and add them to the output FCTS.

Step 3 of (λ, k)-simplification simplifies Fcrit, where F is the output of step 2.
We can construct Fcrit

out,λ directly, without constructing Fout,λ, using a modified ver-
sion of the algorithm described above in which (2a) and (2b) are replaced with:

(2a′) If v ∈ Uλ〈Fin〉 \ {root(Tin)}, and ChildrenTin(v) contains two or more nodes
in Uλ〈Fin〉 ∪ Vλ

1〈Fin〉, then create a clone of v and add it to the output
FCTS.

(2b′) If v ∈ Vλ
1〈Fin〉, then create a clone of the node lastLeafσ (v,Tin) and add it to

the output FCTS.

Here (2b′) assumes that Tin has at least two nodes.

2.5 Elimination of Internal Edges of Length ≤ λ from Fcrit

Step 3 of (λ, k)-simplification is to eliminate internal edges of length ≤ λ from Fcrit,
where F is the FCTS that results from step 2 of (λ, k)-simplification. We now math-
ematically specify the output of step 3, and then present an algorithm which imple-
ments step 3.
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2.5.1 Specification of Simplification Step 3

Let F = (T , �) be any κ-FCTS. Then, for each λ > 0, the result of eliminating
internal edges of length ≤ λ from Fcrit is the κ-FCTS Fcrit〈λ〉 that we will define
below. The definition will use some notation which we now introduce.

The set {�(c)− �(c′) | c, c′ ∈ Crit(F) \ Leaves(F) and c′ ∈ c↓F} will be denoted
by D(F), and d

F

1 < d
F

2 < · · · < d
F

|D(F)| will denote the elements of D(F) in as-

cending order. (Note that all elements of D(F) are positive.) We define d
F

0 = 0. For
any λ > 0, we define predF(λ) = max{d ∈ D(F) ∪ {0} | d < λ}.
Example 5 Let F be the FCTS shown in Fig. 2.7. Then we see from Fig. 2.7 that
Crit(F) \ Leaves(F) = {v1, v4, v5, v15, v16} and D(F) = {1,5,6,7,11,12}. It fol-
lows, for example, that, d

F

1 = 1, d
F

2 = 5, and predF(λ) = 1 for 1 < λ ≤ 5.

Now we define Fcrit〈0〉 = Fcrit and, for all λ > 0, we recursively define Fcrit〈λ〉
to be the κ-FCTS that has the following five properties:

E1: Fcrit〈λ〉 � Fcrit

E2: LCN(Fcrit〈λ〉) = LCN(F)

E3: Leaves(Fcrit〈λ〉) = Leaves(F)

E4: If λ /∈ D(F), then Fcrit〈λ〉 = Fcrit〈predF(λ)〉.
E5: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}) and every

i ∈ {0, . . . , |D(F)| − 1}, we have that c ∈ Nodes(Fcrit〈dF

i+1〉) if and only if

c ∈ Nodes(Fcrit〈dF
i 〉) and �(c) − �(parent

Fcrit〈dFi 〉(c)) > d
F

i+1.

E1 implies that Nodes(Fcrit〈λ〉) ⊆ Nodes(Fcrit) = Crit(F) ∪ {root(F)}, and also
implies that root(Fcrit〈λ〉) = root(F).

Example 6 Figure 2.8 shows the FCTS Fcrit〈λ〉 in the case where F is the FCTS
that is shown in Fig. 2.7 and 1 ≤ λ < 5. Here d

F

1 = 1 and d
F

2 = 5 (as we observed

in Example 5). Since d
F

1 ≤ λ < d
F

2 , it follows from E4 that Fcrit〈λ〉 = Fcrit〈dF

1 〉 =
Fcrit〈1〉. The node v16 in Fig. 2.7 is not a node of Fcrit〈dF

1 〉; indeed, when we

put i = 0 and c = v16, the condition �(c) − �(parent
Fcrit〈dFi 〉(c)) > d

F

i+1 in E5 is

not met since parent
Fcrit〈dF0 〉(v16) = v15 and �(v16) − �(v15) = 1 = d

F

1 . But E1–E5

imply that the other 12 nodes of Fcrit are nodes of Fcrit〈λ〉.

2.5.2 Implementation of Simplification Step 3

It is possible to perform simplification step 3 (i.e., to construct Fcrit〈λ〉 from Fcrit)
by direct application of E1–E5. However, this would require computation of the
sorted sequence d

F

1 < d
F

2 < · · · < d
F
k , where d

F
k is λ or predF(λ) according to

whether λ ∈ D(F) or λ /∈ D(F), followed by k tree traversals that successively find
the nodes of Fcrit〈dF

1 〉,Fcrit〈dF

2 〉, . . . ,Fcrit〈dF
k 〉.
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Fig. 2.8 The effect of eliminating internal edges of length ≤ λ from Fcrit = (T crit, �crit) is shown
here, in the case where F = (T , �) is the FCTS of Fig. 2.7 and 1 ≤ λ < 5. The nodes and edges of
the resulting FCTS Fcrit〈λ〉 are shown as fat/thick black nodes and edges. Other nodes and edges
of the tree T of Fig. 2.7 are colored gray, but two of those nodes (v9 and v11 in Fig. 2.7) and three
of those edges are partially or completely hidden by the thick black edge that joins v4 to v17. Note
that, since 2 is a possible value of λ in this figure, and since F is the result of applying steps 1 and
2 of (λ, k)-simplification to the FCTS shown in Fig. 2.3 in the case λ = 2 and k = 1, the FCTS
shown in this figure is the (2,1)-simplification of the FCTS shown in Fig. 2.3

Algorithm 1 below, which performs just one tree traversal after the initial cloning
step, will usually be a much more efficient implementation of step 3. It inputs a κ-
FCTS Fin = (Tin, �in) and a positive λ, and constructs Fcrit

in 〈λ〉 by creating a clone
(T , �) of Fcrit

in = (T crit
in , �crit

in ) and then labeling each node c of T with a value
c.label such that Fcrit

in 〈λ〉 = (T , �)−{v ∈ Nodes(T ) | v.label ≤ λ}. The correctness
of this algorithm is proved in Appendix A.

If we write h(Fin, λ) to denote the length l ≥ 1 of the longest chain of nodes
v1 
Tin · · · 
Tin vl in Crit(Fin) for which �in(v1) − �in(vl ) ≤ λ, then we see from
the initial step “(T , �) ←− a clone of (T crit

in , �crit
in )” of Algorithm 1 and from the

repeat . . . until loop in labelDescendants (Procedure 1) that, under the as-
sumptions which are stated at the beginning of Sect. 2.4.3, the running time of Al-
gorithm 1 is O(|Nodes(Fin)| + h(Fin, λ) |Crit(Fin)|).

2.6 Demonstration of Potential Biological Applicability

To illustrate the potential usefulness of our simplified FCTSs in identifying struc-
tural differences between macromolecules, we looked for two structures that are
very similar, but not identical. Appropriate data sets were kindly provided by
Roberto Marabini of the Universidad Autónoma de Madrid.
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Algorithm 1: Eliminate Internal Edges of Length ≤ λ from Fcrit

inputs : a κ-FCTS Fin = (Tin, �in); a positive real value λ

output: a κ-FCTS Fout that satisfies Fout � Fcrit
in

(T , �) ←− a clone of (T crit
in , �crit

in );
root(T ).label ←− ∞;
LCN(T ).label ←− ∞;
foreach x ∈ ChildrenT (LCN(T )) do labelDescendants(x,T , �, λ);
Fout ←− (T , �) − {v ∈ Nodes(T ) | v.label ≤ λ};

Procedure 1: labelDescendants(c,T , �, λ)

if c /∈ Leaves(T ) then
c′ ←− c;
repeat

c′ ←− parentT (c′);
c.label ←− �(c) − �(c′);

until (c.label > λ or c.label ≤ c′.label);
foreach x ∈ ChildrenT (c) do labelDescendants(x,T , �, λ);

else c.label ←− ∞;

These data sets originate from the work of San Martín et al. [9], which inves-
tigated some biological questions associated with adenoviruses. These viruses are
responsible for a large number of diseases in humans such as gastrointestinal and
respiratory infections, but can also be used in gene therapy and vaccine delivery [8].
They have an icosahedral shape with a diameter of approximately 900 Å. At each
of the 12 vertices of the icosahedron there is a substructure referred to as a penton,
and the rest of the surface of the icosahedron consists of 240 hexons. To reflect this,
our simplified FCTSs of these viruses would be expected to have 252 leaves, one
for each penton or hexon. This is indeed the case, as we will see.

In the course of their work, San Martín et al. [9] produced a mutant version of
the wildtype version of the adenovirus they were investigating. The two are identical
except for a change in a protein (called IIIa). Surface renderings and central cross-
sections of the two versions are shown in Fig. 2.9. We now describe how, in spite of
their great similarity, the two versions can be distinguished from each other by an
obvious topological difference between their simplified FCTSs.

Each version of the virus studied by San Martín et al. [9] was represented by
a grayscale volume image on a 275 × 275 × 275 array of sample points. We fur-
ther quantized the graylevels in each of these images to a set of just 256 equally
spaced values represented by the integers 0, . . . ,255, where 0 corresponded to the
minimum and 255 the maximum graylevel in the original image. For each resulting
image I, we constructed FCTSκ(I) using 6-adjacency as our adjacency relation κ ,
and computed the (λ, k)-simplification of FCTSκ(I) for various choices of λ and k.
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Fig. 2.9 Adenovirus. Surface rendering (a) and central cross-section (b) of the wildtype version.
Surface rendering (c) and central cross-section (d) of the mutant version

Fig. 2.10 The gray lines show an FCTS (T , �) using the tree representation of Figs. 2.1–2.8. The
black lines show the same FCTS using the tree representation of Fig. 2.11. (In the latter represen-
tation, a node that is neither the root nor a leaf is represented by a horizontal segment, and an edge
from a node p to one of its children c is represented by a vertical segment of length proportional to
�(c) − �(p))

We found that λ = 10 and k = 799 were good choices that yielded topologically
different simplified FCTSs for the two versions of the virus. These simplified FCTSs
are shown in Fig. 2.11, using a tree representation that is explained in Fig. 2.10. Each
simplified FCTS has 252 leaves, corresponding to the 12 pentons and 240 hexons.
For the wildtype version, the lowest critical node is the parent of all 252 leaves;
see Fig. 2.11(a). For the mutant version, the lowest critical node is the parent of the
12 leaves that correspond to pentons, but is the grandparent of the 240 leaves that
correspond to hexons; see Fig. 2.11(b). These simplified FCTSs indicate that for
the mutant version of the virus there is a substantial range of threshold levels (such
as level A in Fig. 2.11(b)) at which the pentons are disconnected from each other
and from the hexons, but the hexons are connected to each other; for the wildtype
version there is no such range of threshold values. Interestingly, San Martín et al. [9]
do not mention this difference between the two versions of the virus, although they
do point out that in images of the mutant version pentons have lower graylevels than
hexons. (The latter can be seen in Fig. 2.9(d), and is also indicated by Fig. 2.11(b);
when the image of the mutant virus is thresholded at the graylevel B in Fig. 2.11(b),
hexons are observable but pentons are not.)

So our simplified FCTSs may possibly have revealed a previously unobserved
difference between the mutant and the wildtype versions of the virus: for the mutant
version, there is a substantial range of threshold values at which the hexons are
connected to each other, but no penton is connected to a hexon or to another penton.
To investigate whether this is a genuine difference between the two versions of the
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Fig. 2.11 (λ, k)-simplifications of FCTSs of wildtype (a) and mutant (b) adenoviruses, where
λ = 10 and k = 799. (The tree representation used in this figure is explained in Fig. 2.10.) In (a),
the lowest critical node (represented by the horizontal line segment) is the parent of all 252 leaves
of the tree. In (b), the lowest critical node (represented by the horizontal line segment above line A)
is the parent of the rightmost 12 leaves, which correspond to pentons, but is the grandparent of the
other 240 leaves, which correspond to hexons

virus or merely a difference between the specific volume images from which we
produced our FCTSs, we carried out a further study.

Ideally, we would have compared simplified FCTSs of, say, 10 independently
reconstructed volume images of each version, but such data were not available to
us. So we conducted the following approximation of such a study.

For each version of the virus, we randomly selected 2000 out of 3000 available
projection images, and used them to reconstruct a volume image on a 275 × 275 ×
275 array of points. This was repeated 10 times.

For each of the 20 resulting volume images, we produced a simplified FCTS
using the above-mentioned parameters. In each of the 10 simplified FCTSs of the
mutant adenovirus, the lowest critical node had 13 children, 12 corresponding to the
pentons and the 13th being the root of a subtree whose leaves corresponded to the
hexons, as in Fig. 2.11(b). But this was not true of the 10 simplified FCTSs of the
wildtype adenovirus; they were all similar to Fig. 2.11(a).

These results provide some evidence to support the hypothesis that images of
the mutant version of the virus can be distinguished from images of the wildtype
version by the existence in the former (but not the latter) of a substantial range of
threshold values with the above-mentioned properties. More investigation would be
needed to confirm this hypothesis.

In any event, this example illustrates how our simplified FCTSs may reveal in-
teresting structural differences between two similar macromolecules.

2.7 Possibilities for Future Work

2.7.1 How Can Our Simplification Method and Theorem 1 Be
Adapted to Contour Trees?

FCTSs are closely related to contour trees, which are also used to represent images
(see, e.g., [12]). Intuitively, a contour tree of an image is an undirected graph each of
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whose points represents a contour—i.e., a connected component of a level set—of a
continuous scalar field derived from the image by interpolation. Contours of scalar
fields derived from 3D images are often called isosurfaces.

To define the contour tree, let I : S → R be an image whose domain S is a finite
set of points in Euclidean n-space R

n (for some n). As usual, we refer to the ele-
ments of S as spels. For simplicity in defining the contour tree, we require that I be
1-to-1—i.e., we require that no two spels have exactly the same graylevel in I. (This
prevents distinct spels from lying on the same contour, and will allow the contour
tree to be defined as a graph whose vertices are spels.) Note that a 1-to-1 image
can be produced from any image by making arbitrarily small graylevel perturba-
tions.

For any adjacency relation α on S, we write Graph(α) to denote the undirected
simple graph whose vertex set is S and whose vertex adjacency relation is α. Recall
that an undirected graph is said to be a tree if it is connected and acyclic.

We will be considering α-FCTSs of I and its negative image −I (which is ob-
tained from I by multiplying each spel’s graylevel by −1). For any x ∈ S, when dis-
cussing FCTSα(I) and FCTSα(−I) we write 〈x〉 to denote either the node Cα(x, I)
of FCTSα(I) or the node Cα(x,−I) of FCTSα(−I).

Now suppose the adjacency relation α is unknown, but we know Graph(α) is
a tree. Then α is uniquely determined by FCTSα(I) and FCTSα(−I). Indeed, it is
not hard to verify that s is an end vertex of Graph(α) whose only α-neighbor is s′
just if in one of FCTSα(I) and FCTSα(−I) we have that 〈s〉 = {s} is a leaf whose
parent is 〈s′〉, and in the other of FCTSα(I) and FCTSα(−I) we have that 〈s〉 has
exactly one child. Further, if s is any end vertex of Graph(α) and the restrictions of
I and α to S \ {s} are denoted by I ′ and α′, then FCTSα′(I′) = FCTSα(I) − {〈s〉}
and FCTSα′(−I′) = FCTSα(−I) − {〈s〉}, from which α′ can be computed (e.g.,
recursively). Algorithm 4.2 in [1], which is based on these two facts, can be
used to construct the tree Graph(α) in O(|S|) time, given I, FCTSα(I), and
FCTSα(−I).

To define a contour tree of I, we first choose a “good” adjacency relation κ

on S. Let L be a geometric simplicial complex whose vertex set is S and whose
union is connected and simply connected. Let κ be the adjacency relation on S

such that (s, t) ∈ κ if and only if s and t are the endpoints of an edge of the com-
plex L .

Now let f : ⋃
L → R be the continuous scalar field obtained when we extend

the image I by linear interpolation over each simplex of L . Let � be the strict
partial order on S such that s � s′ if and only if I(s) < I(s′) and there is a path in⋃

L from s to s′ along which f ’s value increases monotonically from I(s) to I(s′).
Let α(I,L ) be the adjacency relation on S such that (s, s′) ∈ α(I,L ) if and only if
one of the spels s and s′ is an immediate successor of the other with respect to �.
(We say y is an immediate successor of x with respect to � if x �y and there is no z

such that x � z� y.) It can be shown, using the linearity of f on each simplex of L
and, e.g., well known properties of Reeb graphs (see [1, 4]), that FCTSα(I,L)(I) =
FCTSκ (I) and FCTSα(I,L )(−I) = FCTSκ(−I), and that Graph(α(I,L )) is a tree.
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We define the κ-contour tree2 of I to be Graph(α(I,L )). It follows from our
remarks above that this tree is uniquely determined by FCTSκ(I) and FCTSκ(−I),
and that the tree can be constructed in O(|S|) time from I and these two κ-
FCTSs.

In view of the close relationship between contour trees and FCTSs, we are hope-
ful that it will be possible to formulate a simplification method for contour trees that
is similar to our simplification method for FCTSs and is provably robust in the sense
that it can be shown to satisfy an analog of Theorem 1.

2.7.2 Does the Bottleneck Stability Theorem Have an Analog for
FCTSs That Implies Theorem 1?

Let I : S → R be any image whose domain S is finite, and κ any adjacency relation
on S such that S is κ-connected. A descriptor of I that is related to (but contains
less information than) FCTSκ(I) is the 0th persistence diagram of −I based on the
adjacency relation κ . (Here the minus sign reflects the fact that persistence diagrams
are defined in terms of the sublevel sets of filter functions3 whereas FCTSs are
defined in terms of the superlevel sets of images.) The 0th persistence diagram of
−I based on κ is a multiset of points in R× (R∪ {+∞}) that contains one point for
each leaf of FCTSκ(I). The diagram is easily computed4 from FCTSκ(I), but it is
not possible to reconstruct FCTSκ(I) from the diagram.

Step 2 of our simplification method eliminates those leaves of the FCTS that are
represented in the 0th persistence diagram by points (x, y) for which y − x ≤ λ.
Moreover, for any two images I, I′ : S → R, the L∞-distance between the filter
functions used to define the 0th persistence diagrams of −I and −I′ is ‖I − I′‖∞.
For these reasons, our Theorem 1 is vaguely reminiscent of the p = 0 case of the
Bottleneck Stability Theorem for persistence diagrams [2], [4, p. 182], which states

2The tree defined here is the augmented contour tree of [1]. It may have many vertices s that have
just two neighbors, of which one neighbor s′ satisfies I(s′) < I(s) while the other neighbor s′′
satisfies I(s′′) > I(s). Many authors define the contour tree to not include such vertices.
3Persistence diagrams are commonly defined (as in [4, pp. 150–152]) for a filter function f :
K → R, where K is a suitable simplicial complex. To define the 0th persistence diagram of −I
based on the adjacency relation κ , we can take the simplicial complex K to be the simple graph
whose vertex set is S and whose edges join κ-adjacent elements of S, and we can use the filter
function f : K →R for which f (v) = −I(v) if v is a vertex of K , and f (e) = −min(I(x), I(y))

if e is an edge of K that joins the vertices x and y.
4Let FCTSκ (I) = (T , �), and let leaf[1], . . . , leaf[n] be any �-increasing enumeration of the leaves
of T . For 1 ≤ i < n, each leaf leaf[i] is represented in the persistence diagram by a point
(−�(leaf[i]),−�(a)) where a is the closest ancestor of leaf[i] that is an ancestor of at least one
of the leaves leaf[i + 1], . . . , leaf[n]. The last leaf leaf[n] of the �-increasing enumeration is repre-
sented in the persistence diagram by the point (−�(leaf[n]),+∞). The diagram is defined to also
contain, for each z ∈ R, a point (z, z) with countably infinite multiplicity.
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that the bottleneck distance5 between the pth persistence diagrams of two filter
functions cannot exceed the L∞-distance between those functions.

The Bottleneck Stability Theorem appears not to imply our Theorem 1, because
the FCTSs of two images I1 and I2 need not be essentially isomorphic even if −I1

and −I2 have the same persistence diagrams. However, it might be possible to prove
an analogous stability theorem for FCTSs that does imply Theorem 1.

2.7.3 Can Images Be Simplified Using Variants of Our Method?

In view of the natural bijective correspondence between grayscale images (with fi-
nite connected domains) and FCTSs, our method of simplifying FCTSs might also
be construed as a method of simplifying images. Unfortunately we have found that,
when used for that purpose, it will often be unsatisfactory. (One reason is that the
omission of non-critical non-root nodes before performing simplification step 3 may
reduce the graylevels of some spels in the resulting image by too much.) Neverthe-
less, we believe that it may be worthwhile to investigate variants of our method that
might be more useful for image simplification.

2.8 Conclusion

FCTSs can be used as descriptors of EM maps and other grayscale images, but un-
simplified FCTSs are too sensitive to errors in the image. This chapter has specified
a method of simplifying FCTSs that is provably robust (and capable of efficient
implementation). Our main theorem and its corollary (Theorem 1 and Corollary 2)
conservatively quantify the extent of the method’s robustness. We have presented
some experimental evidence that the simplified FCTSs produced by our method are
useful for the exploration of macromolecular databases. We hope further experimen-
tation will yield more evidence of this or suggest fruitful refinements of our method.
Some other avenues for future research have also been discussed.
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5The bottleneck distance between two persistence diagrams D1 and D2 is the infimum of
supd∈D1

‖d − η(d)‖∞ over all bijections η : D1 → D2.
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Appendix A: Some Properties of Simplification Steps 2 and 3,
and a Proof of the Correctness of Algorithm 1

A.1 Properties of Simplification Step 2

Here we prove the main result of Sect. 2.4.2, and establish other properties of sim-
plification step 2 that are used in our proof of the Main Theorem.

Lemma A1 Let Fin = (Tin, �in) be any κ-FCTS, let λ > 0, and let s and s′ be
any two distinct leaves of a κ-FCTS Fout = (Tout, �out) that results from pruning
Fin by removing branches of length ≤ λ. Then (regardless of which �in-increasing
enumeration of Leaves(Tin) is used to perform the pruning):

(i)
∧

Tout
{s, s′} = ∧

Tin
{s, s′}

(ii) min(�out(s), �out(s′)) − �out(
∧

Tout
{s, s′}) > λ

Proof The hypotheses imply that properties P1–P4 hold with respect to some
�in-increasing enumeration of Leaves(Tin). It follows from P4 that, for all v ∈
Nodes(Tout), every node in v⇓Tin is also a node in v⇓Tout . Therefore v⇓T is the
same set regardless of whether T = Tout or T = Tin. So

∧
T {s, s′} is the same

node regardless of whether T = Tout or T = Tin, since
∧

T {s, s′} is just the ele-
ment of s⇓T ∩ s′⇓T that is a descendant in T of every element of that set. Hence
(i) holds.

To prove (ii), we may assume without loss of generality that, in the �in-increasing
leaf enumeration that is used for pruning, s occurs later than s′. (This assumption im-
plies that min(�in(s), �in(s′)) = �in(s′).) Then, since s′ ∈ Leaves(Tout), property P3
implies that �in(s′) − �in(

∧
Tin

{s, s′}) > λ, which is equivalent to:

min
(
�in(s), �in

(
s′)) − �in

(∧
Tin

{
s, s′}) > λ (A1)

But (A1) is equivalent to assertion (ii), because of assertion (i) and the fact that �out
is just the restriction of �in to Nodes(Tout). �

Corollary A2 Let λ be any positive value, and Fout any κ-FCTS that results
from pruning a κ-FCTS Fin by removing branches of length ≤ λ. Then, for all
v ∈ Crit(Fout) \ Leaves(Fout), we have that v ∈ Crit(Fin) \ Leaves(Fin) and
depthFout

(v) > λ.

Proof Let Fout = (Tout, �out), and let v ∈ Crit(Fout) \ Leaves(Fout). Then v =∧
Tout

{s, s′} for some distinct leaves s and s′ of Fout. Now v = ∧
Tin

{s, s′} (by as-
sertion (i) of Lemma A1), and so v ∈ Crit(Fin) \ Leaves(Fin). Moreover, we have
that depthFout

(v) ≥ �out(s) − �out(v) = �out(s) − �out(
∧

Tout
{s, s′}) > λ, where the

second inequality follows from assertion (ii) of Lemma A1. �

Lemma A3 Let Fin = (Tin, �in) be a κ-FCTS, let λ > 0, and let Fout = (Tout, �out)

be the κ-FCTS that results from pruning Fin by removing branches of length ≤ λ
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using an �in-increasing leaf enumeration σ = (leaf[1], . . . , leaf[n]) of Leaves(Tin).
Then:

(a) For all v ∈ Nodes(Tin) \ Nodes(Tout), v⇑Tin ∩ Nodes(Tout) = ∅.
(b) For all v ∈ Nodes(Tin), v ∈ Nodes(Tout) if and only if lastLeafσ (v,Tin) ∈

Leaves(Tout).
(c) For all v ∈ Nodes(Tout), depthFout

(v) = depthFin
(v).

Proof For brevity, we write lastLeafσ (v) for lastLeafσ (v,Tin). Evidently, (a) fol-
lows from P4, and the “if” part of (b) follows from (a). To establish the “only
if” part of (b), let v ∈ Nodes(Tout), and let leaf[i] = lastLeafσ (v). We need to
show that leaf[i] ∈ Nodes(Tout). If i = n then this is true (by property P2), so
let us assume i < n. Let j be any element of the set {i + 1, . . . ,n} (so that
leaf[j ] /∈ Leaves(Tin[v])). Now we claim that leaf[j ] must satisfy �in(leaf[i]) −
�in(

∧
Tin

{leaf[j ], leaf[i]}) > λ.
To see this, let leaf[k] be any leaf of Tout[v]; such a leaf must exist, by P4.

As leaf[i] = lastLeafσ (v), we have that i ≥ k and �in(leaf[i]) ≥ �in(leaf[k]). As
j ∈ {i + 1, . . . ,n}, we have that j ∈ {k + 1, . . . ,n}. Therefore, since leaf[k] ∈
Leaves(Tout), property P3 implies that:

�in
(
leaf[k]) − �in

(∧
Tin

{
leaf[j ], leaf[k]}) > λ (A2)

But, since leaf[i] and leaf[k] are leaves of Tin[v] but leaf[j ] is not,∧
Tin

{
leaf[j ], leaf[i]} = ∧

Tin

{
leaf[j ],v

} = ∧
Tin

{
leaf[j ], leaf[k]}

and (since �in(leaf[i]) ≥ �in(leaf[k])) this implies:

�in
(
leaf[i]) − �in

(∧
Tin

{
leaf[j ], leaf[i]})

≥ �in
(
leaf[k]) − �in

(∧
Tin

{
leaf[j ], leaf[k]})

This and (A2) imply that our claim is valid (for any j in {i + 1, . . . ,n}). The “only
if” part of (b) follows from this and property P3.

To prove (c), let v ∈ Nodes(Tout). Then lastLeafσ (v) ∈ Leaves(Tout[v]) (by (b)),
and every w ∈ Nodes(Tout[v]) ⊆ Nodes(Tin[v]) satisfies �out(w) = �in(w) ≤
�in(lastLeafσ (v)) = �out(lastLeafσ (v)).

It follows that depthFout
(v) = �out(lastLeafσ (v)) − �out(v) = �in(lastLeafσ (v)) −

�in(v) = depthFin
(v). �

Lemma A4 Let Fin = (Tin, �in) be a κ-FCTS, let λ > 0, and let Fout = (Tout, �out)

be the κ-FCTS that results from pruning Fin by removing branches of length ≤ λ

using an �in-increasing leaf enumeration σ = (leaf[1], . . . , leaf[n]) of Leaves(Tin).
Then:

(a) Nodes(Tout) \ Leaves(Tout) ⊇ Uλ〈Fin〉 ⊇ Crit(Tout) \ Leaves(Tout)

(b) For all v ∈ Vλ〈Fin〉 \ Vλ
1〈Fin〉, v⇑Tin ∩ Nodes(Tout) = ∅.

(c) For all v ∈ Vλ
1〈Fin〉, v⇑Tin ∩ Nodes(Tout) = Pathσ (v,Tin).
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Proof For brevity, we shall write Uλ, Vλ, Vλ
1 , lastLeafσ (v), and Pathσ (v) for

Uλ〈Fin〉, Vλ〈Fin〉, Vλ
1〈Fin〉, lastLeafσ (v,Tin), and Pathσ (v,Tin).

First, we prove (a). The inclusion Uλ ⊇ Crit(Tout) \ Leaves(Tout) follows from
Corollary A2 and Lemma A3(c). Moreover, since P4 implies that Leaves(Tout) ⊆
Leaves(Tin), we have that u /∈ Leaves(Tout) if u ∈ Uλ. So the other inclusion of (a)
will follow if we can show that u ∈ Nodes(Tout) whenever u ∈ Uλ.

Let u be any element of Uλ, and let leaf[i] = lastLeafσ (u). If i = n, then
lastLeafσ (u) ∈ Nodes(Tout) (by property P2) and so u ∈ Nodes(Tout) (because of
P4), as required. Now suppose i < n. Let j be any element of the set {i + 1, . . . ,n}
(so leaf[j ] /∈ Leaves(Tin[u])). Since leaf[i] is a leaf of Tin[u] but leaf[j ] is not, we
have that

∧
Tin

{leaf[j ], leaf[i]} ≺Tin u. Hence:

�in
(
leaf[i]) − �in

(∧
Tin

{
leaf[j ], leaf[i]}) > �in

(
leaf[i]) − �in(u)

= depthFin
(u) > λ

We see from this and property P3 that lastLeafσ (u) = leaf[i] ∈ Leaves(Tout), and
hence (in view of P4) that u ∈ Nodes(Tout), as required. This proves (a).

Next, we prove (b). Let v be any node in Vλ \ Vλ
1 . Then it follows from the

definitions of Vλ and Vλ
1 that v �= root(Tin).

Let p = parentTin
(v). Then p ∈ v↓Tin ⊆ Uλ, so we have that:

�in
(
lastLeafσ (p)

) − �in(p) = depthFin
(p) > λ (A3)

Now �in(d) − �in(v) ≤ depthFin
(v) for all d �Tin v. Therefore:

�in(d) − �in(p) ≤ depthFin
(v) + �in(v) − �in(p) ≤ λ for all d �Tin v (A4)

Here the second inequality follows from the definition of Vλ
1 and the facts that p =

parentTin
(v) and v ∈ Vλ \ Vλ

1 . It follows from (A3) and (A4) that lastLeafσ (p) is
not a descendant of v in Tin, and so∧

Tin

{
lastLeafσ (p), lastLeafσ (v)

} = p (A5)

Since lastLeafσ (v) �Tin v, we deduce from (A4) and (A5) that

�in
(
lastLeafσ (v)

) − �in

(∧
Tin

{
lastLeafσ (p), lastLeafσ (v)

}) ≤ λ (A6)

Since p = parentTin
(v) and lastLeafσ (p) �= lastLeafσ (v) (e.g., by (A5)), the leaf

lastLeafσ (p) must occur later in the �in-increasing enumeration σ than the leaf
lastLeafσ (v). This, (A6), and P3 imply that lastLeafσ (v) /∈ Leaves(Tout). It now
follows from assertion (b) of Lemma A3 that v /∈ Nodes(Tout). This and assertion
(a) of Lemma A3 imply v⇑Tin ∩ Nodes(Tout) = ∅, which proves (b).

Finally, we prove (c). Let v be any node in Vλ
1 . We first make the claim that

lastLeafσ (v) is a leaf of Tout.
If v = root(Tin) then the claim is certainly true (by property P2), so let us assume

v �= root(Tin). Let p = parentTin
(v), and let s be any leaf of Tin that occurs later in

the �in-increasing enumeration σ than lastLeafσ (v). Then s /∈ Leaves(Tin[v]), and
so

∧
Tin

{s, lastLeafσ (v)} 
Tin p, which implies that:
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�in
(
lastLeafσ (v)

) − �in

(∧
Tin

{
s, lastLeafσ (v)

})

≥ �in
(
lastLeafσ (v)

) − �in(p) (A7)

But, since depthFin
(v) = �in(lastLeafσ (v)) − �in(v), we also have that

�in
(
lastLeafσ (v)

) − �in(p) = depthFin
(v) + �in(v) − �in(p) > λ (A8)

where the inequality follows from the definition of Vλ
1 and the facts that p =

parentTin
(v) and v ∈ Vλ

1 . Now it follows from (A7) and (A8) that:

�in
(
lastLeafσ (v)

) − �in

(∧
Tin

{
s, lastLeafσ (v)

})
> λ

Since this is true for every leaf s of Tin that occurs later in the �in-increasing enu-
meration σ than lastLeafσ (v), our claim is justified (by property P3).

If w is any node in Pathσ (v), then w ∈ lastLeafσ (v)⇓Tin and so it follows from
our claim (and P4) that w ∈ Nodes(Tout). Thus every node in Pathσ (v) lies in
v⇑Tin ∩ Nodes(Tout).

It remains only to prove that v⇑Tin ∩ Nodes(Tout) \ Pathσ (v) = ∅. To do this,
we suppose there is a node x ∈ v⇑Tin ∩ Nodes(Tout) \ Pathσ (v) and deduce a
contradiction. As x ∈ v⇑Tin \ Pathσ (v), we have that x /∈ lastLeafσ (v)⇓Tin and
so lastLeafσ (v) �= lastLeafσ (x). Moreover, each of the nodes lastLeafσ (x) and
lastLeafσ (v) is a leaf of Tout (by Lemma A3(b) and our claim).

Let c = ∧
Tout

{lastLeafσ (x), lastLeafσ (v)}. Then we have that c ∈ Crit(Tout),
c /∈ Leaves(Tout), and c = ∧

Tin
{lastLeafσ (x), lastLeafσ (v)} (by assertion (i) of

Lemma A1). The latter implies c �Tin v (as lastLeafσ (x) �Tin x �Tin v and
lastLeafσ (v) �Tin v); and c �Tin v implies depthFin

c ≤ depthFin
v ≤ λ (where the

second inequality follows from the fact that v ∈ Vλ
1 ⊆ Vλ). Hence c /∈ Uλ. But this

contradicts assertion (a) (since c ∈ Crit(Tout)\Leaves(Tout)). It follows that x can-
not exist, and so our proof of (c) is complete. �

We can now prove the main result of Sect. 2.4.2:

Proposition Let Fin = (Tin, �in) be a κ-FCTS, let λ > 0, and let Fout = (Tout, �out)

be the κ-FCTS that results from pruning Fin by removing branches of length ≤
λ using an �in-increasing enumeration σ of Leaves(Tin). Then the nodes of Fout
consist just of:

(i) The nodes of Uλ〈Fin〉.
(ii) The nodes of Pathσ (v,Tin) for each node v in Vλ

1〈Fin〉.

Proof As Uλ〈Fin〉 ⊆ Nodes(Tout) by Lemma A4(a), on putting T = Tin and F =
Fin in (2.1) and taking the intersection of each side with Nodes(Tout) we see that:

Nodes(Tout) = Uλ〈Fin〉 ∪
⋃

v∈Vλ〈Fin〉

(
v⇑Tin ∩ Nodes(Tout)

)

The proposition follows from this and assertions (b) and (c) of Lemma A4. �
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A.2 Properties of Simplification Step 3

Here we establish some properties of simplification step 3 that are used in our proof
of the Main Theorem and our justification of Algorithm 1.

For all j ∈ {1, . . . , |D(F)|}, we see from E1–E5 that Nodes(Fcrit〈δ〉) ⊆
Nodes(Fcrit〈δ′〉) whenever δ ≥ δ′. It follows that Fcrit〈·〉 has the following mono-
tonicity property:

Fcrit〈δ〉 � Fcrit〈δ′〉 whenever δ ≥ δ′ (A9)

In addition, Fcrit〈·〉 has the following four properties for every λ > 0 (as we will
explain below):

E6: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}) and every
i ∈ {0, . . . , |D(F)| − 1}, c ∈ Nodes(Fcrit〈dF

i+1〉) if and only if, for every j ∈
{0, . . . , i}, �(c) − �(parent

Fcrit〈dFj 〉(c)) > d
F

j+1.

E7: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), c ∈
Nodes(Fcrit〈λ〉) if and only if there is no critical proper ancestor c′ of c in
F such that �(c) − �(c′) ≤ λ and c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉).

E8: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), c ∈
Nodes(Fcrit〈λ〉) if �(c) − �(parent

Fcrit(c)) > λ.

E9: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), if c ∈
Nodes(Fcrit〈λ〉) then �(c) − �(parent

Fcrit〈λ〉(c)) > λ.

Our proof of the correctness of Algorithm 1 will be based on property E7. However,
E1–E3, E8, and E9 are the only properties of simplification step 3 that will be used
in our proof of the Main Theorem.

E6 is easily deduced from E5 by induction on i. Now we establish E7–E9. Let
c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), and let λ be any positive
value. We first claim that, for any critical proper ancestor c′ of c in F, the following
four conditions are equivalent:

(a) There is some j ∈ {0, . . . , |D(F)| − 1} such that �(c) − �(c′) ≤ d
F

j+1 ≤ λ and

c′ ∈ Nodes(Fcrit〈dF
j 〉).

(b) There is some j ∈ {0, . . . , |D(F)| − 1} such that �(c) − �(c′) ≤ d
F

j+1 ≤ λ and

c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉).
(c) �(c) − �(c′) ≤ λ and c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉).
(d) There is some j ∈ {0, . . . , |D(F)| − 1} such that �(c) − �(c′) = d

F

j+1 ≤ λ and

c′ ∈ Nodes(Fcrit〈dF
j 〉).

Here (a) implies (b) because of the monotonicity property (A9) and the fact that if
�(c) − �(c′) ≤ d

F

j+1 then predF(�(c) − �(c′)) ≤ d
F
j . Evidently, (b) implies (c), and

(d) implies (a). For any critical proper ancestor c′ of c in F, �(c)− �(c′) = d
F

j+1 and

predF(�(c) − �(c′)) = d
F
j for some j ∈ {0, . . . , |D(F)| − 1}, and so (c) implies (d).

This justifies our claim that (a)–(d) are equivalent.
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Next, we observe that c ∈ Nodes(Fcrit〈λ〉) holds if and only if c satisfies �(c) −
�(parent

Fcrit〈dFj 〉(c)) > d
F

j+1 for all j ∈ {0, . . . , |D(F)| − 1} such that d
F

j+1 ≤ λ.

(This follows from E6 when λ ∈ D(F). It remains true if λ /∈ D(F), because of
E4.) So c /∈ Nodes(Fcrit〈λ〉) just if there is some j ∈ {0, . . . , |D(F)| − 1} such that
�(c) − �(parent

Fcrit〈dFj 〉(c)) ≤ d
F

j+1 ≤ λ. Thus c /∈ Nodes(Fcrit〈λ〉) just if (a) holds

for some critical proper ancestor c′ of c in F. Equivalently, c /∈ Nodes(Fcrit〈λ〉) just
if (c) holds for some critical proper ancestor c′ of c in F. This proves E7. E8 follows
from the “if” part of E7.

Suppose the node c violated E9. Then c ∈ Nodes(Fcrit〈λ〉). Moreover, when
c′ = parent

Fcrit〈λ〉(c) we would have that �(c) − �(c′) ≤ λ and also that c′ ∈
Nodes(Fcrit〈predF(�(c) − �(c′))〉), where the latter follows from the former, the
fact that c′ ∈ Nodes(Fcrit〈λ〉), and the monotonicity property (A9). But this would
contradict the “only if” part of E7. So E9 holds.

A.3 Justification of Algorithm 1

The correctness of Algorithm 1 will be deduced from Lemma A5 and Corollary A6
below.

Let F = (T , �) be any κ-FCTS, and let c be any node of Fcrit. Then we define
δλ(c,F) = ∞ if c ∈ Leaves(F) ∪ {LCN(F)} ∪ {root(F)}, and we define δλ(c,F) =
�(c) − �(aλ(c,F)) otherwise, where aλ(c,F) is the closest critical proper ancestor
c′ of c in F such that

either �(c) − �(c′) > λ

or �(c) − �
(
c′) ≤ λ and c′ ∈ Nodes

(
Fcrit〈predF

(
�(c) − �

(
c′))〉)

aλ(c,F) exists for all c ∈ Nodes(Fcrit)\ (Leaves(F)∪{LCN(F)}∪ {root(F)}), be-
cause when c′ = LCN(F) we see from E2 that c′ ∈ Nodes(Fcrit〈μ〉) for every μ ≥ 0
and so c′ must satisfy the “either” or the “or” condition. Now δλ(·,F) satisfies the
following condition:

Lemma A5 Let 0 ≤ μ ≤ λ and let F = (T , �) be any κ-FCTS. Then for all c ∈
Nodes(Fcrit) we have that δλ(c,F) > μ if and only if c ∈ Nodes(Fcrit〈μ〉).

Proof Suppose c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}). Then
δλ(c,F) > μ holds just if �(c) − �(aλ(c,F)) > μ, and since μ ≤ λ we see from
the definition of aλ(c,F) that this holds just if no critical proper ancestor c′ of c in
F satisfies �(c) − �(c′) ≤ μ and c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉). So in this
case the lemma follows from E7.

The lemma also holds if c ∈ Leaves(F)∪{LCN(F)}∪{root(F)}, because in that
case δλ(c,F) = ∞ > μ and E1–E3 imply c ∈ Nodes(Fcrit〈μ〉). �
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Corollary A6 Let λ be any positive value, let F = (T , �) be any κ-FCTS, and let
c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}). Then δλ(c,F) = �(c) −
�(a), where a is the closest critical proper ancestor c′ of c in F such that

either �(c) − �
(
c′) > λ

or �(c) − �
(
c′) ≤ λ and �(c) − �

(
c′) ≤ δλ

(
c′,F

)

Proof We just have to show that a = aλ(c,F). The definition of aλ(c,F) dif-
fers from the definition of a only in the or condition “�(c) − �(c′) ≤ λ and c′ ∈
Nodes(Fcrit〈predF(�(c) − �(c′))〉)”.

On putting μ = predF(�(c) − �(c′)) in Lemma A5, we see that this condition
holds if and only if �(c) − �(c′) ≤ λ and predF(�(c) − �(c′)) < δλ(c′,F), which
is equivalent to the or condition in the definition of a (because either δλ(c′,F) =
�(c) − �(aλ(c′,F)) ∈ D(F) or δλ(c′,F) = ∞). So a = aλ(c,F), as required. �

We can now explain why Algorithm 1 is correct. The algorithm sets (T , �) to a
clone of Fcrit

in = (T crit
in , �crit

in ). Writing F for (T , �), we claim that the label c.label

given by the algorithm to each node c of F = Fcrit is just the value δλ(c,F). Assum-
ing this claim is valid, the correctness of the algorithm follows from Lemma A5. So
it remains only to verify the claim.

The claim is certainly valid if c is root(F) or LCN(F), because those nodes are
given the label ∞.

We see that the algorithm does a top-down traversal of T [LCN(F)], during
which the procedure labelDescendants is executed once for each proper de-
scendant c of LCN(F) in F. When labelDescendants is executed for such a
node c that is a leaf, it gives c the label ∞. So the claim is valid for each proper
descendant c of LCN(F) that is a leaf.

When labelDescendants is executed for a proper descendant c of LCN(F)

that is not a leaf, the repeat loop in the procedure is executed. It follows from
Corollary A6 that this loop labels c with the value δλ(c,F). (Note that, when the
loop is executed, c′.label = δλ(c′,F) for each proper ancestor c′ of c in F.) There-
fore the claim is also valid for each proper descendant c of LCN(F) that is not a
leaf.

Thus the claim is valid for all nodes c of F= Fcrit, and Algorithm 1 is correct.

Appendix B: A Constructive Proof of Theorem 1

For any adjacency relation κ , any image I whose domain is finite and κ-connected,
any λ > 0, and any integer k ≥ 0, let us say that the image I is (λ, k)-good with
respect to κ if Λκ(I) > λ and Kκ(I) > k. Also, let us say that an image I′ is an
ε-perturbation of an image I if I′ has the same domain as I and ‖I′ − I‖∞ ≤ ε. Then
Theorem 1 can be deduced from the following lemma:
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Fundamental Lemma Let κ be any adjacency relation and Igood : S →R an image
whose domain S is finite and κ-connected. Let ε be a positive value, let k be a
nonnegative integer for which Igood is (4ε, k)-good with respect to κ , and let I′ be
an ε-perturbation of Igood. Then there is an essential isomorphism of FCTSκ(Igood)

to the (2ε, k)-simplification of FCTSκ(I′) that is level-preserving to within ε.

Proof of Theorem 1, assuming the Fundamental Lemma is valid Suppose I, λ, and
k satisfy the hypotheses of Theorem 1, so that 0 < λ < Λκ(I)/2 and 0 ≤ k < Kκ(I).
Let I′ be any image that satisfies the conditions stated in the theorem (i.e., let I′ be
any image whose domain is the same as that of I and which satisfies the condition
‖I′ − I‖∞ ≤ λ/2). Then we need to show that the conclusion of Theorem 1 holds—
i.e., that there is an essential isomorphism of the (λ, k)-simplification of FCTSκ(I′)
to FCTSκ(I) that is level-preserving to within λ/2. We now deduce this from the
Fundamental Lemma.

Let Igood = I, and let ε = λ/2. Then 4ε = 2λ < Λκ(I) = Λκ(Igood) and k <

Kκ(I) = Kκ(Igood), so that Igood is (4ε, k)-good with respect to κ . We also have that
‖I′ − Igood‖∞ = ‖I′ − I‖∞ ≤ λ/2 = ε, so that I′ is a ε-perturbation of Igood. Thus
Igood = I and I′ satisfy the hypotheses of the Fundamental Lemma, and must there-
fore satisfy the conclusion of the lemma, which implies the conclusion of Theorem 1
since 2ε = λ. �

We now prove the Fundamental Lemma by constructing an explicit essential iso-
morphism of FCTSκ(Igood) to the (2ε, k)-simplification of FCTSκ(I′) that is level-
preserving to within ε.

Let Fgood = (Tgood, �good) = FCTSκ(Igood), and let F′ = (T ′, �′) = FCTSκ(I′).
Let F1 = (T1, �1) be the κ-FCTS that results from pruning F′ by removing nodes
of size ≤ k, and let I1 be the image IF1 , so that F1 = FCTSκ(I1). Let F2 = (T2, �2)

be the κ-FCTS that results from pruning F1 by removing branches of length ≤ 2ε,
and let F3 = (T3, �3) be the κ-FCTS that results from eliminating internal edges
of length ≤ 2ε from Fcrit

2 . Then F3 = (T3, �3) is the (2ε, k)-simplification of
FCTSκ (I′), so what we want to do is to construct an essential isomorphism of
Fgood to F3 that is level-preserving to within ε. We will do this in three steps:

Step 1: We define a suitable mapping φ : Leaves(Tgood) → Leaves(T1).
Step 2: We show that φ is 1-to-1, and that the range of the mapping φ is exactly the

set of all the leaves of the subtree T2 of T1. Thereafter, we regard φ as a
bijection φ : Leaves(Tgood) → Leaves(T2).

Step 3: We extend φ to a mapping ϕ : Crit(Tgood) → Crit(T2) by defining
ϕ(u) = ∧

T2
φ[Leaves(Tgood[u])]. We then establish that, for all u,u′ ∈

Crit(Tgood), ϕ(u) 
T2 ϕ(u′) if and only if u 
Tgood u′, so that ϕ is
1-to-1 and order-preserving. We also show that the range of ϕ is the sub-
set Crit(T3) of Crit(T2), and that |�3(ϕ(u)) − �good(u)| ≤ ε for every
u ∈ Crit(Tgood). Hence we can regard ϕ as a mapping ϕ : Crit(Tgood) →
Crit(T3) and, when so regarded, ϕ is an essential isomorphism of Fgood to
F3 that is level-preserving to within ε.
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Note that the extension of φ to ϕ in step 3 is very natural because, if T is any
rooted tree and u ∈ Crit(T ), then u = ∧

T Leaves(T [u]). (In fact u ∈ Crit(T ) if
and only if u ∈ Nodes(T ) and u = ∧

T Leaves(T [u]).)

B.1 Step 1 of the Proof of the Fundamental Lemma

We begin by defining a class of symmetric and transitive relations (on spels) that
will be used in our definition of the mapping φ.

If I : S→ R is an image and τ ∈R, then we write s �I≥τ� t to mean that s, t ∈ S

and t ∈ Cκ(s, I, τ ). It is readily confirmed that �I≥τ� is a symmetric and transitive
relation (which depends on κ), and that s �I≥τ�s if and only if I(s) ≥ τ . Moreover,
if s �I≥τ1� t and t �I≥τ2�u then s �I≥min(τ1,τ2)�u.

Now let Cκ(v, Igood) be any leaf of Tgood, and let z be any spel such that

z ∈ arg min
u�Igood≥Igood(v)−2ε�v

I1(u) (B1)

It follows from (B1) that:

Cκ (z, I1) ⊇ {
u

∣∣ u�Igood≥Igood(v)−2ε�v
} = Cκ

(
v, Igood, Igood(v) − 2ε

)
(B2)

Next, we define:

M
(
Cκ(v, Igood)

) = Leaves
(
T1

[
Cκ(z, I1)

])
(B3)

The set M(Cκ(v, Igood)) is well defined by (B3) for the following reasons. First, if v′
is any spel such that Cκ(v′, Igood) = Cκ(v, Igood) (so that Igood(v′) = Igood(v)) then
the condition obtained from (B1) when we replace v with v′ is equivalent to (B1).
Second, if z′ is any spel that belongs to the set in (B1), then Cκ(z′, I1) = Cκ (z, I1)

(since I1(z
′) = I1(z), and (B2) implies z′ ∈ Cκ (z, I1)).

We can now define the mapping φ : Leaves(Tgood) → Leaves(T1) by defining
φ(Cκ (v, Igood)) to be the element of M(Cκ(v, Igood)) that occurs later in the �1-
increasing leaf enumeration that is used in pruning (T1, �1) (to produce (T2, �2))
than all other elements of M(Cκ (v, Igood)). Note that if M(Cκ(v, Igood)) has just one
element, then φ(Cκ (v, Igood)) is that element.

This completes step 1 of the proof of the Fundamental Lemma.

B.2 Some Useful Observations

Steps 2 and 3 of the proof of the Fundamental Lemma will be based on the following
observations:

A. If (T , �) = FCTSκ(I), where I is an arbitrary image whose domain is finite and
κ-connected, and ∅ �= S ⊆ Nodes(T ), then �(

∧
T S) is the greatest real value τ

such that s �I≥τ� t for all spels s, t ∈ ⋃
S.
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B. Whenever ∅ �= L � L′ ⊆ Leaves(Tgood) and
∧

Tgood
L′ �= ∧

Tgood
L, we have

that �good(
∧

Tgood
L′) < �good(

∧
Tgood

L) − 4ε.
C. If v ∈ v ∈ Leaves(Tgood), u ∈ Nodes(Tgood), and v ��Tgood u, then we have that

�good(
∧

Tgood
{u,v}) < �good(v) − 4ε = Igood(v) − 4ε.

D. If Cκ (v, Igood) ∈ Leaves(Tgood) and u�Igood≥Igood(v)−4ε�v, then we have that
u�Igood≥Igood(u)�v or, equivalently, Cκ (u, Igood) ⊇ Cκ (v, Igood).

E. If Cκ (x, I1) ∈ Leaves(T1), then Cκ(x, I1) ∈ Leaves(T2) if and only if there is
no node Cκ(y, I1) ∈ Leaves(T1) that satisfies both of the following conditions:
(i) x �I1≥I1(x)−2ε�y

(ii) The leaf Cκ(y, I1) occurs later in the �1-increasing leaf enumeration that is
used in pruning (T1, �1) to produce (T2, �2) than the leaf Cκ (x, I1).

Here A is a consequence of the definitions of FCTSκ(I) and
∧

T S. (The special
case of A in which S ⊆ Leaves(T ) is of particular interest; note that in this case
s ∈ ⋃

S if and only if Cκ (s, I) ∈ S.) B is a consequence of the fact that Λκ(Igood) >

4ε, C can be deduced from B by putting L = {v} and L′ = {v} ∪ Leaves(Tgood[u]),
and D can be deduced from A and C.

Assertion E is a consequence of A and the fact that (T2, �2) is the result of
pruning (T1, �1) by removing branches of length ≤ 2ε. In view of assertion (ii) of
Lemma A1, we also have the following related fact:

E′. �1(
∧

T1
{z, z′}) < min(�1(z), �1(z′)) − 2ε whenever z and z′ are distinct leaves

of T2.

We could of course replace �1 with �2 in E′. Moreover, in view of assertion (i) of
Lemma A1, we could also replace

∧
T1

with
∧

T2
.

Now let x be any spel in S. As F1 is the result of pruning FCTSκ(I′) = (T ′, �′)
by removing nodes of size ≤ k, and I1 = IF1 , we see from the definition of IF1 that
I1(x) = max{�′(u) | u ∈ Nodes(T ′), |u| ≥ k + 1, and x ∈ u}. This is equivalent to

I1(x) = max
{
I′(y)

∣∣ y ∈ S, x ∈ Cκ

(
y, I′), and

∣∣Cκ

(
y, I′)∣∣ ≥ k + 1

}
(B4)

since the nodes u ∈ Nodes(T ′) for which x ∈ u are just the sets Cκ(y, I′) for which
x ∈ Cκ (y, I′). Now we claim that:

I1(x) = max
{
τ

∣∣ ∣∣Cκ

(
x, I′, τ

)∣∣ ≥ k + 1
}

(B5)

To see this, we first observe that if y satisfies x ∈ Cκ(y, I′) then y also satisfies
Cκ (y, I′) = Cκ(x, I′, I′(y)). It follows from this observation that each element of
the set {I′(y) | y ∈ S, x ∈ Cκ(y, I′), and |Cκ (y, I′)| ≥ k + 1} in (B4) belongs to the
set {I′(y) | y ∈ S and |Cκ (x, I′, I′(y))| ≥ k + 1} and therefore belongs to the set {τ |
|Cκ (x, I′, τ )| ≥ k + 1} in our claim (B5). So the right side of (B5) is no less than the
right side of (B4); it remains to show that it is no greater.

For every τ ≤ I′(x), let y(τ, x) be any spel in arg mins∈Cκ (x,I′,τ ) I′(s), so that
I′(y(τ, x)) ≥ τ , and it is easy to see that

Cκ

(
y(τ, x), I′) = Cκ

(
x, I′, τ

)
(B6)

since I′ ≥ I′(y(τ, x)) at every spel in Cκ (x, I′, τ ). Now if τ0 is any element of the
set {τ | |Cκ (x, I′, τ )| ≥ k + 1}, then we have that I′(y(τ0, x)) ≥ τ0 and we see from
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(B6) that |Cκ(y(τ0, x), I′)| ≥ k + 1 and x ∈ Cκ(y(τ0, x), I′), so that I′(y(τ0, x)) is
an element of {I′(y) | y ∈ S, x ∈ Cκ(y, I′), and |Cκ (y, I′)| ≥ k + 1} that is no less
than τ0. This shows that the right side of (B4) is no less than the right side of (B5).
Hence the right sides of (B4) and (B5) are equal, and so our claim (B5) follows from
(B4).

Next, we establish the following properties of I1:

F. I1 is an ε-perturbation of Igood, and if (Ia, Ib) = (I1, Igood) or (Igood, I1) then for
any τ, δ ∈ R and any spels s, t, u ∈ S we have that:
(i) If s �Ia≥τ� t then s �Ib≥τ−ε� t .

(ii) If s �Ia≥Ia(u)−δ� t then s �Ib≥Ib(u)−δ−2ε� t .

To see that I1 has these properties, let x be any spel in S and note that Cκ(x, Igood,

τ ) ⊆ Cκ (x, I′, τ − ε) for every τ ∈ R since ‖I′ − Igood‖∞ ≤ ε. On putting
τ = Igood(x), we deduce that Cκ (x, I′, Igood(x) − ε) ⊇ Cκ (x, Igood, Igood(x)) =
Cκ (x, Igood), whence |Cκ(x, I′, Igood(x) − ε)| ≥ |Cκ(x, Igood)| ≥ k + 1 (as
Kκ(Igood) > k). It follows from this and (B5) that I1(x) ≥ Igood(x)− ε. On the other
hand, whenever τ > Igood(x) + ε we have that I′(x) < τ (as ‖I′ − Igood‖∞ ≤ ε),
which implies that |Cκ(x, I′, τ )| = 0 and hence (by (B5)) that I1(x) < τ . From this
it follows that I1(x) ≤ Igood(x) + ε. This shows that I1 is an ε-perturbation of Igood,
as F asserts. Now (i) follows immediately, and (ii) can be deduced from (i) by
putting τ = Ia(u) − δ, since the fact that Ia is an ε-perturbation of Ib implies that
Ia(u) − δ ≥ Ib(u) − δ − ε for every u ∈ S.

B.3 Step 2 of the Proof of the Fundamental Lemma

The main goals of this step are to show that the mapping φ defined in step 1 of
the proof is 1-to-1 and that the range of φ is exactly the subset Leaves(T2) of
Leaves(T1). This will allow us to regard φ as a bijection φ : Leaves(Tgood) →
Leaves(T2).

We first state and prove the following easy lemma:

Lemma B1 Let Cκ(v, Igood) be any leaf of Tgood, let x be any spel in S that satisfies
x �Igood≥Igood(v)−2ε�v, and let s be any leaf of T1 such that s �T1 Cκ(x, I1). Then
s ∈ M(Cκ (v, Igood)).

Proof Let z be a spel that satisfies (B1) with respect to v. Then (B2) implies
that x ∈ Cκ(z, I1) and hence that Cκ(x, I1) �T1 Cκ (z, I1). This and (B3) imply
s ∈ M(Cκ (v, Igood)). �

Next, we establish the following properties of M and the mapping φ:

G. The following are true for any leaf Cκ(v, Igood) of Tgood:
(a) If Cκ(y, I1) ∈ M(Cκ(v, Igood)), then:
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(i) y �Igood≥Igood(v)−4ε�v

(ii) y �Igood≥Igood(y)�v

(iii) y �I1≥I1(y)−2ε�v

(b) If Cκ(y, I1) = φ(Cκ (v, Igood)), then:
(i) Igood(v) + ε ≥ I1(y) ≥ I1(v) ≥ Igood(v) − ε

(ii) y �Igood≥Igood(v)−2ε�v

(iii) Cκ(y, I1) ∈ Leaves(T2)

To establish (a), let Cκ (v, Igood) be any leaf of Tgood and let Cκ(y, I1) be an ar-
bitrary element of M(Cκ (v, Igood)). Then it follows from the definition of the set
M(Cκ (v, Igood)) that Cκ(y, I1) ⊆ Cκ(z, I1) for some spel z that satisfies the condi-
tion v �Igood≥Igood(v)−2ε�z (which implies Igood(z) ≥ Igood(v)−2ε). Since Cκ(y, I1)

⊆ Cκ (z, I1), we have that z�I1≥I1(z)�y. This implies z�Igood≥Igood(z)−2ε�y (in
view of assertion (ii) of F), which implies z�Igood≥Igood(v)−4ε�y (as Igood(z) ≥
Igood(v) − 2ε).

Combining z�Igood≥Igood(v)−4ε�y with v �Igood≥Igood(v)−2ε�z, we deduce asser-
tion (i) of (a). Now (ii) follows from (i) and D because Cκ(v, Igood) ∈ Leaves(Tgood),
and (iii) follows from (ii) and F.

Now we establish (b). Suppose Cκ(y, I1) = φ(Cκ(v, Igood)). Consider the node
Cκ (v, I1) of T1. Let s be a leaf of T1 such that s �T1 Cκ(v, I1). Then we have
that s ∈ M(Cκ(v, Igood)), by Lemma B1. Hence �1(Cκ (y, I1)) ≥ �1(s) (as s cannot
occur later in the �1-increasing leaf enumeration that is used in pruning (T1, �1)

than φ(Cκ (v, Igood)) = Cκ(y, I1), by the definition of φ(Cκ (v, Igood))). Therefore

I1(y) = �1
(
Cκ(y, I1)

) ≥ �1(s) ≥ �1
(
Cκ(v, I1)

) = I1(v) (B7)

which establishes the second inequality of assertion (i) of (b). The third inequality
of (i) follows from F. Now Igood(v) ≥ Igood(y) (by assertion (ii) of (a)). This implies
Igood(v) ≥ I1(y)− ε (by F), which is equivalent to the first inequality of assertion (i)
of (b). This establishes assertion (i) of (b). It follows from F and assertion (i) of (b)
that Igood(y) ≥ Igood(v) − 2ε. Assertion (ii) of (b) follows from this and assertion
(ii) of (a).

To see that assertion (iii) of (b) holds, let Cκ(w, I1) be any leaf of T1 that occurs
later in the �1-increasing leaf enumeration that is used in pruning (T1, �1) than
φ(Cκ (v, Igood)) = Cκ(y, I1). Then it follows from the definitions of φ(Cκ(v, Igood))

and of an �1-increasing leaf enumeration that:

• Cκ (w, I1) /∈M(Cκ(v, Igood))

• I1(w) = �1(Cκ(w, I1)) ≥ �1(Cκ (y, I1)) = I1(y)

As I1(w) ≥ I1(y), (B7) implies that I1(w) ≥ I1(v), and now it follows from F that
Igood(w) ≥ Igood(v)− 2ε. So Cκ(v, Igood) ��Tgood Cκ (w, Igood); otherwise the spel w

would satisfy w�Igood≥Igood(w)�v, which would imply that w�Igood≥Igood(v)−2ε�v

(since Igood(w) ≥ Igood(v) − 2ε), which would in turn imply that Cκ(w, I1) is an
element of M(Cκ(v, Igood)) (by Lemma B1), which is false as we saw above.

Since Cκ (v, Igood) ��Tgood Cκ(w, Igood), it follows from C and A that w does not
satisfy w�Igood≥Igood(v)−4ε�v. This and assertion (ii) of F imply that w does not
satisfy w�I1≥I1(v)−2ε�v, and so (since I1(y) ≥ I1(v), by (B7)) w does not satisfy
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w�I1≥I1(y)−2ε�v. But we know from assertion (iii) of (a) that y �I1≥I1(y)−2ε�v,
so w also does not satisfy w�I1≥I1(y)−2ε�y. As Cκ(w, I1) is an arbitrary leaf of T1
that occurs later in the �1-increasing leaf enumeration used in pruning (T1, �1) than
the leaf φ(Cκ (v, Igood)), we see from E that φ(Cκ(v, Igood)) ∈ Leaves(T2)—i.e.,
assertion (iii) of (b) holds.

Since φ(Cκ(v, Igood)) ∈ Leaves(T2) for every leaf Cκ(v, Igood) of Tgood, we can
regard φ as a mapping φ : Leaves(Tgood) → Leaves(T2), and we will do this from
now on.

We next show that φ : Leaves(Tgood) → Leaves(T2) is 1-to-1:

H. φ(v) �= φ(v′) whenever v and v′ are distinct leaves of Tgood.

Indeed, let Cκ(va, Igood) and Cκ (vb, Igood) be any two distinct leaves of Tgood. To
establish H, it is enough to show that M(Cκ (va, Igood)) and M(Cκ(vb, Igood)) are
disjoint. Suppose this is not the case. Then there is a leaf Cκ (x, I1) of T1 such that
Cκ (x, I1) ∈ M(Cκ(va, Igood)) and Cκ(x, I1) ∈ M(Cκ(vb, Igood)). Now assertion (i) of
part (a) of G implies that va �Igood≥Igood(va)−4ε�x and that vb �Igood≥Igood(vb)−4ε�x.

Assuming without loss of generality that Igood(va) ≤ Igood(vb), these two prop-
erties imply that va �Igood≥Igood(va)−4ε�vb, which is impossible in view of C and A.
This contradiction establishes H and shows that φ is 1-to-1.

Next, we show that:

I. Leaves(T2) \ φ[Leaves(Tgood)] = ∅
To justify I, let Cκ(x, I1) be any element of Leaves(T1) \ φ[Leaves(Tgood)]. Then
what we need to show is that Cκ(x, I1) /∈ Leaves(T2).

Let Cκ(v, Igood) be a leaf of Tgood such that Cκ (x, Igood) ⊇ Cκ (v, Igood). Then
x �Igood≥Igood(x)�v and so it follows from F that x �I1≥I1(x)−2ε�v. Let Cκ (y, I1) =
φ(Cκ (v, Igood)). We now claim that:

• Cκ (y, I1) occurs later in the �1-increasing leaf enumeration that is used in pruning
(T1, �1) than Cκ(x, I1).

Now we justify this claim. Just one of the following is true:

(a) Igood(v) − 2ε > Igood(x)

(b) Igood(x) ≥ Igood(v) − 2ε

In case (a) it follows from F that I1(v) > I1(x), and so I1(y) > I1(x) (since
I1(y) ≥ I1(v), by assertion (i) of part (b) of G); thus our claim is valid.

In case (b), we first observe that, since x �Igood≥Igood(x)�v, (b) implies that
x �Igood≥Igood(v)−2ε�v, so that Cκ(x, I1) ∈M(Cκ(v, Igood)) (by Lemma B1). There-
fore Cκ(x, I1) ∈ M(Cκ(v, Igood)) \ {φ(Cκ (v, Igood))}, because Cκ(x, I1) is an el-
ement of Leaves(T1) \ φ[Leaves(Tgood)]. As Cκ (y, I1) = φ(Cκ (v, Igood)) and
Cκ (x, I1) ∈ M(Cκ(v, Igood)) \ {φ(Cκ(v, Igood))}, it follows from the definition of
φ that our claim is again valid.

In either case, we have that x �I1≥I1(x)−2ε�v (as we saw above), and the claim
implies I1(y) ≥ I1(x). So, since we see from assertion (iii) of part (a) of G that
v �I1≥I1(y)−2ε�y, we also have that x �I1≥I1(x)−2ε�y. From this, E, and the above
claim, we deduce that Cκ(x, I1) /∈ Leaves(T2). This justifies I.
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It follows from H and I that φ : Leaves(Tgood) → Leaves(T2) is a bijection. This
completes step 2 of the proof of the Fundamental Lemma.

B.4 Step 3 of the Proof of the Fundamental Lemma

We now extend φ to a mapping ϕ : Crit(Tgood) → Crit(T2) by defining ϕ(u) =∧
T2

φ[Leaves(Tgood[u])]. We will establish two properties of the mapping ϕ which
together imply that ϕ is an essential isomorphism of Fgood to F3. The first property
is that, for all u,u′ ∈ Crit(Tgood), ϕ(u) 
T2 ϕ(u′) if and only if u 
Tgood u′ (so that
ϕ is an order-preserving injection). The second property is that ϕ[Crit(Tgood)] =
Crit(T3). To establish these two properties, we first show that:

J. |�2(
∧

T2
φ[L]) − �good(

∧
Tgood

L)| ≤ ε whenever ∅ �= L ⊆ Leaves(Tgood).

Indeed, suppose ∅ �= L ⊆ Leaves(Tgood). If |L| = 1, then J is an immediate conse-
quence of assertion (i) of part (b) of G, so we will assume |L| ≥ 2.

For brevity, we will write τL for �good(
∧

Tgood
L) and τφ[L] for �2(

∧
T2

φ[L]), so
that J can be written as |τφ[L] − τL| ≤ ε.

We first show that τφ[L] ≥ τL − ε. For this purpose, let Cκ (x, I1) and Cκ(y, I1)

be any two distinct elements of φ[L]. Then Cκ(x, I1) = φ(Cκ(u, Igood)) and
Cκ (y, I1) = φ(Cκ (v, Igood)), where Cκ(u, Igood) and Cκ(v, Igood) are two distinct
elements of L. From A and the definition of τL we see that u�Igood≥τL�v. This and
F imply that u�I1≥τL−ε�v. We see from the definition of φ and assertion (iii) of
part (a) of G that x �I1≥I1(x)−2ε�u and y �I1≥I1(y)−2ε�v. Combining the last three
observations, we deduce that:

x �I1≥min
(
τL−ε,I1(x)−2ε,I1(y)−2ε

)�y (B8)

However, it follows from C and the definition of τL that

τL ≤ �good

(∧
Tgood

{
Cκ(u, Igood),Cκ(v, Igood)

})

< min
(
�good

(
Cκ(u, Igood)

) − 4ε, �good
(
Cκ(v, Igood)

) − 4ε
)

= min
(
Igood(u) − 4ε, Igood(v) − 4ε

)
which implies that τL − ε < min(Igood(u) − 5ε, Igood(v) − 5ε), which implies that
τL − ε < min(I1(u) − 4ε, I1(v) − 4ε) (in view of F), which in turn implies that
τL − ε < min(I1(x) − 4ε, I1(y) − 4ε) (by assertion (i) of part (b) of G). So (B8) can
be simplified to x �I1≥τL−ε�y. It now follows from A that τφ[L] ≥ τL − ε (since
Cκ (x, I1) and Cκ(y, I1) are arbitrary distinct elements of φ[L]), as required.

To complete the proof of J, we show that τL ≥ τφ[L] − ε. This time we let
Cκ (u, Igood) and Cκ(v, Igood) be any two distinct elements of L, and then de-
fine Cκ (x, I1) = φ(Cκ(u, Igood)) and Cκ (y, I1) = φ(Cκ (v, Igood)), so that Cκ(x, I1),
Cκ (y, I1) ∈ φ[L]. From A and the definition of τφ[L] we see that x �I1≥τφ[L]�y. This
and F imply that x �Igood≥τφ[L]−ε�y. We see from assertion (ii) of part (b) of G that
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u�Igood≥Igood(u)−2ε�x; we similarly have that v �Igood≥Igood(v)−2ε�y. Combining
the last three observations, we see that:

u�Igood≥min
(
τφ[L]−ε,Igood(u)−2ε,Igood(v)−2ε

)�v (B9)

However, it follows from the definition of τφ[L] and E′ that:

τφ[L] ≤ �2

(∧
T2

{
φ
(
Cκ(u, Igood)

)
, φ

(
Cκ(v, Igood)

)})

< min
(
�2

(
φ
(
Cκ(u, Igood)

))
, �2

(
φ
(
Cκ(v, Igood)

))) − 2ε

= min
(
�2

(
Cκ(x, I1)

)
, �2

(
Cκ(y, I1)

)) − 2ε = min
(
I1(x), I1(y)

) − 2ε

Hence τφ[L] − ε < min(I1(x)− 3ε, I1(y)− 3ε), which (by assertion (i) of part (b) of
G) implies τφ[L] −ε < min(Igood(u)−2ε, Igood(v)−2ε). We now see from (B9) that
u�Igood≥τφ[L]−ε�v. It follows from this and A that τL ≥ τφ[L]−ε (since Cκ(u, Igood)

and Cκ (v, Igood) are arbitrary distinct elements of L), as required. Thus we have
established J.

From B and J, we deduce:

K. Whenever ∅ �= L ⊆ L′ ⊆ Leaves(Tgood),
∧

Tgood
L′ = ∧

Tgood
L if and only if

�2(
∧

T2
φ[L]) − �2(

∧
T2

φ[L′]) ≤ 2ε.

As we show in Appendix C, it is not difficult to deduce from K that:

L. For all u ∈ Crit(Tgood), Leaves(T2[ϕ(u)]) = ϕ[Leaves(Tgood[u])].
M. For all x ∈ ϕ[Crit(Tgood)], there is no y ∈ x↓T2 ∩ Crit(T2) that satisfies the

condition �2(x) − �2(y) ≤ 2ε.
N. For all x ∈ Crit(T2), some z ∈ x⇓T2 ∩ ϕ[Crit(Tgood)] satisfies the condition

�2(x) − �2(z) ≤ 2ε.

We mention here that N is proved by showing that for every x ∈ Crit(T2) the node
z = ϕ(

∧
Tgood

ϕ−1[Leaves(T2[x])]) has the stated property.
Using L, it is quite easy to show that:

O. For all u,u′ ∈ Crit(Tgood), ϕ(u) 
T2 ϕ(u′) if and only if u 
Tgood u′.

Details of the proof of O are given in Appendix C. It follows from O that ϕ is an
order-preserving injection.

As F3 = (T3, �3) is the result of eliminating internal edges of length ≤ 2ε from
Fcrit

2 , it follows from M and property E8 of simplification step 3 that ϕ must satisfy
ϕ[Crit(Tgood)] ⊆ Crit(T2) ∩ Nodes(T3) = Crit(T3). Moreover, N implies that,
for all x ∈ Crit(T2) \ ϕ[Crit(Tgood)], some z ∈ x↓T2 ∩ ϕ[Crit(Tgood)] satisfies
�2(x) − �2(z) ≤ 2ε. We therefore have that:

• For all x ∈ Crit(T2) \ ϕ[Crit(Tgood)], some z ∈ x↓T2 ∩ Crit(T3) satisfies the
condition �2(x) − �2(z) ≤ 2ε.

From this and property E9 of simplification step 3 we deduce that ϕ satisfies
(Crit(T2) \ ϕ[Crit(Tgood)]) ∩ Nodes(T3) = ∅. Equivalently, ϕ satisfies the con-
dition Crit(T3) \ ϕ[Crit(Tgood)] = ∅. Thus ϕ[Crit(Tgood)] = Crit(T3). So the
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order-preserving injection ϕ can be regarded as a bijection ϕ : Crit(Tgood) →
Crit(T3). When so regarded, ϕ is an essential isomorphism of Fgood to F3. Fi-
nally, ϕ is level-preserving to within ε because, for any node u ∈ Crit(Tgood),
we deduce from J (on putting L = Leaves(Tgood[u]), so that

∧
Tgood

L = u) that
|�3(ϕ(u)) − �good(u)| ≤ ε.

This completes the proof of the Fundamental Lemma.

Appendix C: Justification of Assertions L, M, N, and O in Step 3
of the Proof of the Fundamental Lemma

For any rooted tree T and any u ∈ Crit(T ), we write LT u to denote the set
Leaves(T [u]) = {v ∈ Leaves(T ) | u 
T v}. It is readily confirmed that the fol-
lowing are true in any rooted tree T :

If ∅ �= L ⊆ L′ ⊆ Leaves(T ), then:
∧

T L′ 
T
∧

T L (C1)

If ∅ �= L ⊆ Leaves(T ), then: LT
∧

T L ⊇ L (C2)

If u ∈ Crit(T ), then:
∧

T LT u = u (C3)

If u ∈ Crit(T ) and L �LT u, then:
∧

T L ≺T u = ∧
T LT u (C4)

If u,v ∈ Crit(T ), then: LT v = LT u if and only if v = u (C5)

If u,v ∈ Crit(T ), then: LT v �LT u if and only if v ≺T u (C6)

For all L ⊆ Leaves(Tgood) and all L′ ⊆ Leaves(T2), we write φL to mean φ[L]
and we write φ−1L to mean φ−1[L].

If x 
T2 y or y 
T2 x, and λ is any positive value, then we write x ≈λ y to mean
that |�2(y) − �2(x)| ≤ λ, and write x ≺λ y to mean that �2(y) − �2(x) > λ; in the
latter case we must have that x ≺T2 y. For brevity, we will write

∧
good and

∧
2 to

mean
∧

Tgood
and

∧
T2

, and write Lgood and L2 to mean LTgood and LT2 . Note that
the definition of the mapping ϕ can be rewritten in terms of φ and Lgood as follows:

ϕ(u)
def= ∧

2 φLgoodu (C7)

If ∅ �= L ⊆ L′ ⊆ Leaves(Tgood), then ∅ �= φL ⊆ φL′ ⊆ Leaves(T2) and so∧
2 φL′ 
T2

∧
2 φL (by (C1)). Hence assertion K can be restated as follows (for

all nonempty sets L ⊆ L′ ⊆ Leaves(Tgood)):∧
2 φL′ ≈2ε

∧
2 φL if and only if

∧
good L′ = ∧

good L (C8)

When ∅ �= L ⊆ L′ ⊆ Leaves(Tgood), the negations of
∧

2 φL ≈2ε

∧
2 φL′ and∧

good L′ = ∧
good L are

∧
2 φL′ ≺2ε

∧
2 φL and

∧
good L′ ≺Tgood

∧
good L respec-

tively (since
∧

good L′ 
Tgood

∧
good L and

∧
2 φL′ 
T2

∧
2 φL), so (C8) can also

be stated as follows (for all nonempty sets L ⊆ L′ ⊆ Leaves(Tgood)):∧
2 φL′ ≺2ε

∧
2 φL if and only if

∧
good L′ ≺Tgood

∧
good L (C9)
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C.1 Proof of Assertion L

In view of (C7), L can be restated as follows:

• For all u ∈ Crit(Tgood), we have that L2
∧

2 φLgoodu = φLgoodu. Equivalently,
φ−1L2

∧
2 φLgoodu = Lgoodu.

To prove this, let u ∈ Crit(Tgood). Then we successively deduce:

L2
∧

2 φLgoodu ⊇ φLgoodu
[
by (C2)

]
φ−1L2

∧
2 φLgoodu ⊇ φ−1φLgoodu

φ−1L2
∧

2 φLgoodu ⊇ Lgoodu (C10)

The result will follow from (C10) if we can show that the following is not true:

φ−1L2
∧

2 φLgoodu �Lgoodu (C11)

To do this, we derive a contradiction from (C11) as follows:∧
good φ−1L2

∧
2 φLgoodu ≺Tgood

∧
good Lgoodu

[
by (C11) and (C4)

]
∧

2 φφ−1L2
∧

2 φLgoodu ≺2ε

∧
2 φLgoodu

[
by (C9) and (C10)

]
∧

2 L2
∧

2 φLgoodu ≺2ε

∧
2 φLgoodu∧

2 φLgoodu ≺2ε

∧
2 φLgoodu

[
by (C3)

]

C.2 Proof of Assertion M

In view of (C7), M is equivalent to:

• If x = ∧
2 φLgoodu for some u ∈ Crit(Tgood), and if y ∈ Crit(T2) satisfies y ≺T2

x, then y ≺2ε x.

To prove this, suppose x = ∧
2 φLgoodu for some u ∈ Crit(Tgood), and y ∈

Crit(T2) satisfies y ≺T2 x. Then we can successively deduce:

y ≺T2

∧
2 φLgoodu [because y ≺T2 x]

L2y �L2
∧

2 φLgoodu
[
by (C6)

]
L2y � φLgoodu

[
by (C2)

]
φ−1L2y �Lgoodu∧

good φ−1L2y ≺Tgood

∧
good Lgoodu

[
by (C4)

]
∧

2 φφ−1L2y ≺2ε

∧
2 φLgoodu

[
by (C9) and (C12)

]
∧

2 L2y ≺2ε

∧
2 φLgoodu

y ≺2ε

∧
2 φLgoodu

[
by (C3)

]

(C12)

This proves that y ≺2ε x.
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C.3 Proof of Assertion N

In view of (C7),
∧

2 φLgood
∧

good φ−1L2x ∈ ϕ[Crit(Tgood)] for every node x
of T2. So N can be proved by establishing that:

• For all x ∈ Crit(T2), the node z = ∧
2 φLgood

∧
good φ−1L2x satisfies z 
T2 x

and x ≈2ε z.

To prove this, let x ∈ Crit(T2) and let z = ∧
2 φLgood

∧
good φ−1L2x. Then we

successively deduce:

Lgood
∧

good φ−1L2x ⊇ φ−1L2x
[
by (C2)

]
V φLgood

∧
good φ−1L2x ⊇ φφ−1L2x

φLgood
∧

good φ−1L2x ⊇ L2x∧
2 φLgood

∧
good φ−1L2x 
T2

∧
2 L2x

[
by (C1)

]
∧

2 φLgood
∧

good φ−1L2x 
T2 x
[
by (C3)

]

(C13)

This proves that z 
T2 x. We can also successively deduce:
∧

good Lgood
∧

good φ−1L2x = ∧
good φ−1L2x

[
by (C3)

]
∧

2 φLgood
∧

good φ−1L2x ≈2ε

∧
2 φφ−1L2x

[
by (C8) and (C13)

]
∧

2 φLgood
∧

good φ−1L2x ≈2ε

∧
2 L2x∧

2 φLgood
∧

good φ−1L2x ≈2ε x
[
by (C3)

]
This proves that z ≈2ε x.

C.4 Proof of Assertion O

Let u,u′ ∈ Crit(Tgood). Then:

u 
Tgood u′ just if Lgoodu ⊇ Lgoodu′ [
by (C5) and (C6)

]
just if φLgoodu ⊇ φLgoodu′

just if L2ϕ(u) ⊇ L2ϕ
(
u′) [by assertion L]

just if ϕ(u) 
T2 ϕ
(
u′) [

by (C5) and (C6)
]
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Chapter 3
Discrete Topological Transformations
for Image Processing

Michel Couprie and Gilles Bertrand

Abstract Topology-based image processing operators usually aim at transforming
an image while preserving its topological characteristics. This chapter reviews some
approaches which lead to efficient and exact algorithms for topological transforma-
tions in 2D, 3D and grayscale images. Some transformations that modify topology
in a controlled manner are also described. Finally, based on the framework of critical
kernels, we show how to design a topologically sound parallel thinning algorithm
guided by a priority function.

3.1 Introduction

Topology-preserving operators, such as homotopic thinning and skeletonization, are
used in many applications of image analysis to transform an object while leaving
unchanged its topological characteristics. In particular, skeletons are often used as
a simplification of the original data, which facilitates shape recognition, registration
or animation.

In this chapter, we will see how to define and efficiently implement such opera-
tors, on the basis of elementary topology-preserving transformations. We will also
discuss some geometrical aspects of skeletons, as well as the need for filtering them.
Besides, we will see that it is sometimes interesting to be able to selectively modify
topology: we will present, in particular, a method that suppresses holes (or tunnels)
in 3D images, depending on a “size” criterion.

These transformations are usually defined for acting on binary images (i.e., pixel
or voxel sets). In Sect. 3.2, we will extend them to the case of grayscale images
(i.e., functions), and present some applications to image filtering, segmentation and
restoration.

M. Couprie (�) · G. Bertrand
Laboratoire d’Informatique Gaspard-Monge, Équipe A3SI, Université Paris-Est, ESIEE Paris,
Marne-la-Vallée, France
e-mail: m.couprie@esiee.fr

G. Bertrand
e-mail: g.bertrand@esiee.fr

V.E. Brimkov, R.P. Barneva (eds.), Digital Geometry Algorithms,
Lecture Notes in Computational Vision and Biomechanics 2,
DOI 10.1007/978-94-007-4174-4_3, © Springer Science+Business Media Dordrecht 2012

73



74 M. Couprie and G. Bertrand

Fig. 3.1 Different neighborhoods of a point x (the central point) in 2D and in 3D

There are two main kinds of thinning procedures: the sequential ones, that take
a single point in consideration at each step, and the parallel ones, that attempt at
removing a whole set of points at each iteration. In the first case, the result most
often depends on the order in which the points are considered, while the latter kind
permits to provide a well-defined result, which is generally more robust than the
former to noise and orientation changes. The third part of this chapter deals with
parallel thinning: we present the framework of critical kernels, that provides a mean
to guarantee the topological soundness of parallel homotopic transformations. We
introduce in this framework a new algorithm that builds at once a well-defined fam-
ily of filtered Euclidean skeletons.

3.2 Topological Transformations of Binary Images

3.2.1 Neighborhoods, Connectedness

First of all, let us recall the basic definitions of digital topology [29, 34] that will be
used in this chapter.

A point x ∈ Z
D (D = 2,3) is defined by (x1, . . . , xD) with xi ∈ Z. We consider

the neighborhood relations N4 and N8 defined for any point x ∈ Z
2 by:

N4(x) = {
y ∈ Z

2; |y1 − x1| + |y2 − x2| � 1
}
,

N8(x) = {
y ∈ Z

2;max
(|y1 − x1|, |y2 − x2|

)
� 1

}
,

and the neighborhood relations N6, N26 and N18 defined for any point x ∈ Z
3 by:

N6(x) = {
y ∈ Z

3; |y1 − x1| + |y2 − x2| + |y3 − x3| � 1
}
,

N26(x) = {
y ∈ Z

3;max
(|y1 − x1|, |y2 − x2|, |y3 − x3|

)
� 1

}
,

N18(x) = {
y ∈ N26(x); |y1 − x1| + |y2 − x2| + |y3 − x3| � 2

}
.

These neighborhoods are illustrated in Fig. 3.1.
We denote by E the set Z2 or Z3. In the sequel, we denote by n a number such

that n ∈ {4,8,6,26}. We define N∗
n (x) = Nn(x) \ {x}. The point y ∈ E is said to be

n-adjacent to the point x ∈ E if y ∈ N∗
n (x). An n-path is an ordered sequence of

points x0 . . . xk such that xi is n-adjacent to xi−1 for any i ∈ {1, . . . , k}.
Let X ⊆ E, we say that two points x, y of X are n-connected in X if there exists

an n-path in X between those two points. This defines an equivalence relation on X.
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Fig. 3.2 The set of black points has two 4-connected components, and only one 8-connected com-
ponent. This figure also illustrates two common representations of a binary digital image (points
on the left, pixels on the right)

The equivalence classes for this relation are the n-connected components of X (see
Fig. 3.2). A subset X of E is said to be n-connected if it is composed of exactly one
n-connected component.

The set composed of all n-connected components of X is denoted by Cn(X).
A subset Y of E is said to be n-adjacent to a point x ∈ E if there exists a point
y ∈ Y that is n-adjacent to x. The set of all n-connected components of X that are
n-adjacent to x is denoted by Cx

n(X). Remark that Cn(X) and Cx
n(X) are sets of

subsets of X, and not sets of points. Besides, if S is a finite set, we denote by |S| the
number of elements of S.

3.2.2 Connectivity Numbers

Intuitively, a point x of an object X ⊆ E is said to be simple if it can be deleted from
X while preserving the topological characteristics of X (see [19]). In the case of Z2,
this implies preserving the number of connected components of both the object and
its complementary set. In Z

3, it is necessary to preserve also holes (or tunnels),
a notion that may be formalized through the fundamental group (see e.g. [24]).

Note that the definition of a simple point relies on notions (connected compo-
nents, tunnels) that can be classified as global, in the sense that they cannot be
defined without taking the whole object into account. Nevertheless, we will see that
in 2D and 3D, it is possible to characterize simple points on a local basis, thanks to
the connectivity numbers introduced in this section. Such a local characterization is
essential to get efficient algorithms for topological transformations.

Let X be a finite subset of Z
D . We denote by X the complement set of X,

i.e., X = Z
D \ X. If we use a n-connectivity for X then we have to use a n-con-

nectivity for X. For example in 2D the 4-connectivity for X is associated with the
8-connectivity for X, and in 3D the 6-connectivity for X is associated with the
26-connectivity for X. This is necessary to have a correspondence between topo-
logical characteristics of X and X (see e.g. [29]). To summarize, we have the fol-
lowing possibilities in 2D: (n,n) = (4,8) or (8,4); and in 3D1: (n,n) = (6,26)

or (26,6).

1For the sake of simplicity we do not discuss here the case of the 18-connectivity, see [3, 10, 32]
for more information.
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Fig. 3.3 We set (n,n) = (8,4). (a): An object X (light gray and dark gray pixels). (b): The eight
neighbors of pixel u. The unique 8-connected component of N∗

8 (u)∩X is labeled with o1, and the
unique 4-connected component of N∗

8 (u) ∩ X is labeled with b1. (c): Depicts the eight neighbors
of pixel x or pixel y. The 8-connected components of N∗

8 (x) ∩ X are labeled with o1, o2, and the
4-connected components of N∗

8 (x) ∩ X are labeled with b1, b2

Now, we can define the connectivity numbers in 2D and in 3D [3]. Intuitively, the
connectivity number of a point x relative to a set X, counts the number of connected
components of X \ {x}, which are in the neighborhood of x, and which are adjacent
to x.

Definition 1 Let X ⊆ Z
2 and x ∈ Z

2. Let n ∈ {4,8}. The (2D) connectivity numbers
are defined as follows:

T4(x,X) = ∣∣Cx
4

[
N∗

8 (x) ∩ X
]∣∣,

T8(x,X) = ∣∣Cx
8

[
N∗

8 (x) ∩ X
]∣∣.

In Fig. 3.3, we illustrate some connectivity numbers in 2D. Figure 3.3b shows
the neighborhood of point u, we can verify that T8(u,X) = 1 and T4(u,X) = 1.
Similarly, the reader can check that T8(v,X) = T4(v,X) = 1. For pixel x, we have
T8(x,X) = T4(x,X) = 2 (see Fig. 3.3c). The same holds for pixel y.

Definition 2 Let X ⊆ Z
3 and x ∈ Z

3. The (3D) connectivity numbers are defined as
follows:

T6(x,X) = ∣∣Cx
6

[
N∗

18(x) ∩ X
]∣∣,

T26(x,X) = ∣∣Cx
26

[
N∗

26(x) ∩ X
]∣∣.

Figure 3.4 shows some examples that illustrate this definition. Note that compo-
nents that are not adjacent to the central point, according to the chosen adjacency
relation, are not taken into account: this is illustrated in Fig. 3.4b.

3.2.3 Topological Classification of Object Points

If we use the n-connectivity for X and the n-connectivity for X, the numbers
Tn(x,X) and Tn(x,X) give us topological characteristics of the point x in the ob-
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Fig. 3.4 (a): The central point x is a 6-simple point (T6(x,X) = T26(x,X) = 1): the unique “ob-
ject” component in its neighborhood is in black, and the unique “background” component is in
white. We have also T26(x,X) = T6(x,X) = 1, hence x is 26-simple. (b): The central point x is
a 6-simple point (T6(x,X) = T26(x,X) = 1): there are two “object” components in its neighbor-
hood, but only the one in black is 6-adjacent to x. However, x is not 26-simple, for T26(x,X) = 2.
(c): The central point x is such that T6(x,X) = 2 and T26(x,X) = 1; the two “object” components
are in black and dark gray. (d): The central point x is such that T6(x,X) = 1 and T26(x,X) = 2

ject X. In particular, the connectivity numbers allow us to detect whether a point is
simple or not [3, 10], both in 2D and in 3D:

Theorem 1 Let X ⊆ E and x ∈ X. The point x is n-simple if and only if
Tn(x,X) = 1 and Tn(x,X) = 1.

Intuitively, this characterization states that a point is simple if and only if there is,
in its neighborhood, exactly one “object” component and one “background” compo-
nent. For example, in Fig. 3.3a, we conclude from the computation of connectivity
numbers that points u, v are both simple, whereas x, y are both non-simple points.
In this figure, all simple points are in lighter gray.

Note that the neighborhoods of points x and y are the same (Fig. 3.3c), hence
also the connectivity numbers, but different events occur whenever x or y is deleted
from X. In the case of x, two background components are merged; whereas if y

disappears, X is split into two components. Note also that any simple point may be
removed from X without altering topology, but removing simultaneously u and v

for instance would change topological characteristics of the image (here, the number
of background components). We will see in Sect. 3.4.5 how to perform parallel
thinning with topological guarantees.

The characterization of Theorem 1 also holds in the 3D case, see the examples
of Fig. 3.4.
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The fact that an intrinsically global notion—the one of simple point—admits
a local characterization is indeed a quite remarkable property. It will allow us to
efficiently implement topological transformations.

The connectivity numbers are also useful to detect other kinds of points of partic-
ular interest. A point x such that Tn(x,X) = 0 is an isolated point. If Tn(x,X) = 0,
then we have an interior point. The border points are characterized by Tn(x,X) �= 0.

Let us consider the case where E = Z
3, and take a point x such that Tn(x,X) � 2.

If we delete x from X, we locally disconnect the object X (see Fig. 3.4b). We say
that such a point is a 1D isthmus.

Consider the simplest case where Tn(x,X) = 2 (see an example in Fig. 3.4c).
Two situations may occur whenever x is deleted. In the first case, the two local
components involved in the definition of Tn(x,X) are in fact connected together by
a path in X outside the neighborhood of x, and the deletion of the latter suppresses
a tunnel from the object (this situation is similar to the one of point x in Fig. 3.3a,
in 2D). In the second case, the two local components are not connected and the
deletion of x indeed disconnects the object (see y in Fig. 3.3a for a similar 2D
situation). In both cases, topology is not preserved, in other words the point x is not
simple.

In the same way, a point x such that Tn(x,X) � 2 is called a 2D isthmus; its
deletion causes the merging of connected components of the neighborhood of x

in X (see Fig. 3.4d). If these components are connected together in X, the deletion
of x creates a new tunnel for the object, and if they are not, the deletion of x causes
decrease of the number of cavities. Also here, the point x is non-simple.

3.2.4 Topology-Preserving Transformations

Deleting a simple point from an object X yields an object Y included in X, which is
“topologically equivalent” to X. If we iterate this elementary operation, we can ob-
tain a family of nested sets that are all topologically equivalent to X. More formally,
we say that Y is an elementary homotopic thinning of X, and we write X

e→ Y , if
there exists a simple point x for X such that Y = X \ {x}. We say that Y is a ho-
motopic thinning of X if Y = X or if there exists a sequence 〈Y0, . . . , Yk〉 such that
Y0 = X, Yk = Y and Y0

e→ . . .
e→ Yk . If, furthermore, no point in Y is simple, we

say that Y is an ultimate homotopic thinning of X.
When transforming an object X through an homotopic thinning, it is often needed

to preserve from deletion a given subset K of X. Such a subset is called a constraint
set, and we say that Y is an homotopic thinning of X constrained by K if Y is an
homotopic thinning of X such that K ⊆ Y . If, furthermore, no point of Y \ K is
simple, we say that Y is an ultimate homotopic thinning of X constrained by K .

In order to thicken an object X in a topology-preserving manner, it is sufficient
to compute an homotopic thinning of the complementary set of X (for the dual
connectivity), and to take the complementary of the result.
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3.2.5 Transformations Guided by a Priority Function

The order in which points are considered during a thinning process plays, of course,
an important role with respect to the geometrical aspect of the result. This order can
be specified by means of a numerical function, called priority function.

With each point x of X, a priority function associates an integer or real number
P(x), which represents the priority of point x. The points of X will be treated during
the thinning process following the increasing values of P . To certain points x, a
value P(x) = +∞ may be given, meaning that these points must be preserved; in
other words, the points with infinite priority constitute the constraint set.

This strategy is realized by the Algorithm GuidedThinning (Algorithm 1). The
complexity of this algorithm is determined by the choice of the data structure used
to represent the function P . For example, a balanced search tree allows for reaching
a global time complexity in O(n logn), where n is the number of image points. In
certain particular cases, including the very common case where the function P is a
distance map [35], it is possible to implement Algorithm GuidedThinning in linear
time (see [1]).

Algorithm 1: GuidedThinning
Data : X ⊆ E, a function P from X in Z∪ {+∞} or R∪ {+∞}
Result : X

repeat
Let x be a point in X such that x is simple for X, P(x) < +∞, and P(x)

is minimal;
X = X \ {x};

until stability ;

If one wants to use Algorithm GuidedThinning for skeletonization purposes,
a natural choice for the priority function is a distance map relative to the back-
ground. In other words, the points with highest priority (i.e., smallest value) are
those closest to the background, and the points that “survive” are well centered in
the object, in the sense that their distance to the background is, roughly speaking,
maximal. Note that any distance may be chosen: discrete distances [35], chamfer
distances [13], Euclidean distance [23], etc. The choice of the Euclidean distance
permits to obtain the lowest sensibility to rotations.

However, choosing the exact Euclidean distance map as a priority function for
removing simple points from the object may lead to geometric distortions [39]. To
illustrate this point, let us consider the object X depicted in white in Fig. 3.5a. In
Fig. 3.5b, we show in black superimposed to X, all the centers of maximal included
Euclidean balls (that is, balls that are included in X but that are not subsets of any
other ball included in X). This is one of the possible definitions for the medial axis
of X (see also Sect. 3.2.6). It is usual to take only a subset of the medial axis as con-
straint set for computing centered skeletons, since the full medial axis often contains
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Fig. 3.5 (a): The original object X (in white). (b): The Euclidean medial axis of X (centers of
maximal balls, see text), superimposed to X. (c): A subset Y of the medial axis. (d): Result of the
skeletonization using the Euclidean distance map as a priority function, and Y as constraint set

spurious points. Such a constraint set, let us call it Y , is depicted in Fig. 3.5c, super-
imposed to X. We use as priority function the map P defined by

P(x) =
{+∞ whenever x ∈ Y ;

d(x,X) otherwise

where d(x,X) = min{d(x, y) | y ∈ X}, and d(x, y) denotes the Euclidean distance
between x and y. When Y = ∅, the function P is just the distance map relative to X.

Figure 3.5d depicts the result of Algorithm GuidedThinning in this case. Note
that the obtained skeleton deviates from the medial axis points.

In the next section, we will study another priority function that gives better results
than the Euclidean distance map, and is linked to a family of filtered medial axes.

3.2.6 Lambda-Medial Axis

The notion of medial axis has been introduced by Blum in the 60s [11, 12]. In the
continuous Euclidean space, the following definition can be used to formalize this
notion: let X be a bounded subset of RD , the medial axis of X consists of the points
x ∈ X that have more than one nearest points on the boundary of X.

A major difficulty when using the medial axis in applications (e.g., shape recog-
nition), is its sensitivity to small contour perturbations, in other words, its lack of
stability. A recent survey [2] summarizes selected relevant studies dealing with this
topic. Because of this problem, it is usually necessary to add a filtering step (or
pruning step) to any method that aims at computing the medial axis.

In 2005, F. Chazal and A. Lieutier introduced the λ-medial axis [16], a particular
class of filtered skeletons, and studied its properties, in particular those related to
stability. A major outcome of [16] is the following property: informally, except for
particular values of the filtering parameter, the λ-medial axis remains stable under
perturbations of the shape that are small with regard to the Hausdorff distance.

The original definition of the λ-medial axis (see [16]) holds and makes sense in
the (continuous) Euclidean D-dimensional space.

Let x = (x1, . . . , xD), y = (y1, . . . , yD) ∈ R
D , we denote by d(x, y) the Eu-

clidean distance between x and y, in other words, d(x, y) = (
∑D

k=1(yk − xk)
2)

1
2 .

Let S ⊆ R
D , we set d(y,S) = minx∈S{d(y, x)}.
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Fig. 3.6 Illustration of the λ-medial axis in R
2. Left: Points x, x′ and x′′ and their respective

closest boundary points. Top right: λ-medial axis with λ = ε, a very small positive real number.
Bottom right: λ-medial axis with λ = d(a′, b′) + ε

Fig. 3.7 We consider an object X in Z
2 that is a horizontal ribbon of infinite length and width 4

(partially depicted here in gray). The projection of x on X is ΠX(x) = {C}. The smallest ball that
includes ΠX(x) is the one with center C and radius 0. The projections of a, b, c, d on X are respec-
tively {A}, {B}, {C}, {D}. Hence, the extended projection of x on X is Πe

X
(x) = {A,B,C,D}, and

we have PRX(x) = R > 2. The pixels in darker gray are in any λ-medial axis with λ � R, those in
lighter gray are only in the 0-medial axis of X

Let x ∈ R
D , r ∈R, r � 0, we denote by Br(x) the ball of radius r centered on x,

defined by Br(x) = {y ∈R
D | d(x, y) � r}.

Let S be a nonempty subset of RD , and let x ∈ R
D . The projection of x on S,

denoted by ΠS(x), is the set of points y of S that are at a minimal distance from x;
more precisely,

ΠS(x) = {
y ∈ S

∣∣ ∀z ∈ S,d(y, x) � d(z, x)
}
.

The λ-medial axis of X is the set of points x in X such that the radius of the
smallest ball that includes ΠX(x) is not less than λ. For example in Fig. 3.6, we
show a shape that is an ellipsis with a small “bump”, and we consider the interior X

of this shape. Two different λ-medial axes of X are displayed on the right.
Now, let us consider the discrete case. For each point x ∈ Z

D , we define the direct
neighborhood of x as N(x) = {y ∈ Z

D | d(x, y) � 1}. Thus, N(x) = N4(x) (resp.
N6(x)) whenever D = 2 (resp. D = 3).

Transposing directly the definition of the λ-medial axis to the discrete grid Z
D

would yield unsatisfactory results. For instance, consider a horizontal ribbon in Z
2

with constant, even width and infinite length (see Fig. 3.7). Clearly, the projection
of any point of this set on its complementary set is reduced to a singleton. If we keep
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Fig. 3.8 (a): The function PRX superimposed to the shape X. Darkest gray levels represent high-
est values of PRX(x). (b): A 3D representation of the function PRX

the same definition as above, any λ-medial axis of this object with λ > 0 would be
empty.

This is why we need the following notion. Let X ⊆ Z
D , and let x ∈ X. The

extended projection of x on X (where X = Z
D \ X), denoted by Πe

X
(x), is the

union of the sets ΠX(y), for all y in N(x) such that d(y,X) � d(x,X). Figure 3.7
illustrates this notion and the following ones.

Let X be a finite subset of Z
D , and let λ ∈ R, λ � 0. We define the function

PRX that associates, to each point x of X, the value PRX(x) that is the radius of
the smallest ball enclosing all the points of the extended projection of x on X. In
other terms, PRX(x) = min{r ∈ R, r � 0 | ∃y ∈ R

D,Πe

X
(x) ⊆ Br(y)}, and we call

PRX(x) the projection radius of x (for X).
The following definition was introduced in [15], together with an experimental

evaluation of the stability and rotation invariance of the discrete λ-medial axis.

Definition 3 ([15]) The discrete λ-medial axis of X, denoted by DLMA(X,λ), is
the set of points x in X such that PRX(x) � λ.

Note that the function PRX can be computed once and stored as a grayscale
image, and that any DLMA of X is a level set of this function at a particular value λ

(see Fig. 3.8 and Fig. 3.9). For more details, illustrations and performance analysis,
see [15].

The illustration in Fig. 3.9b is sufficient to demonstrate that a DLMA of a given
shape X may have a homotopy type different from the one of X.

The Algorithm GuidedThinning, with PRX as priority function and with a DLMA
of X as constraint set, provides filtered skeletons that are homotopic to X and share
the good geometric properties of the DLMAs (see Fig. 3.9c).

Another example is shown in Fig. 3.10, where a filtered Euclidean medial axis
is used as a constraint set during skeletonization. As we have seen at the end of
Sect. 3.2.5 (see also [39]), choosing the exact Euclidean distance map as a priority
function for removing simple points from the object may lead to geometric distor-
tions. In some cases, “extra branches” may even appear (see Fig. 3.5d). Choosing
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Fig. 3.9 Any DLMA of X is a threshold of PRX at a particular value λ. (a): Discrete 7-medial
axis. (b): Discrete 25-medial axis of X. (c): Guided homotopic thinning of X, with PRX as priority
function and with (b) as constraint set

Fig. 3.10 (a): The original object X (in white, the same as Fig. 3.5a). (b): A constraint set Y : a
filtered DLMA, that is also a set of centers of maximal included balls (see Fig. 3.5c). (c): Result of
the skeletonization using PRX as a priority function, and Y as constraint set

the map PRX as priority function yields more satisfying results (see Fig. 3.10c), as
it guides the thinning process towards elements that belong to the different nested
discrete λ-medial axes.

3.2.7 Other Applications of Guided Thinning

For certain applications, it may be relevant to take as priority function the gray
levels of an image. This makes sense when these gray levels can be interpreted as a
measure of the likelihood, for a pixel, to belong to a certain class or region.

To illustrate this, suppose that we want to extract from a 3D magnetic resonance
image (MRI) of the head, the white matter of the brain (see Fig. 3.11a). From the
knowledge of human anatomy and the parameters of the imagery device, we know
that a volume element x situated in the white matter produces a response that is
coded by a value F(x) for the corresponding voxel, which lies between two lim-
its μ1 < μ2. Assuming a Gaussian model, the voxels with value μ1+μ2

2 are those
with highest probability to belong to the white matter. Furthermore, we know from
anatomical data that the white matter of the brain constitutes a simply connected
volume, in other words, it is topologically equivalent to a ball. In order to guarantee
a result having the wanted topological characteristics, we use the following scheme:
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Fig. 3.11 (a): Detail of a 2D
plane from a 3D MRI of the
brain. (b): Result of the
method described in the text.
Note that the result is
connected in 3D, although the
shown 2D cross-section is not
connected

start with an object X = {x0}, where x0 is any point situated within the white mat-
ter; then perform an homotopic thinning of X (i.e. an homotopic thickening of X)
guided with the priority function P defined by:

P(x) =
{ |F(x) − μ|, where μ = μ1+μ2

2 if μ1 � F(x) � μ2,

+∞ otherwise.

The values +∞ ensure that all the resulting points have, in the image F , values that
lie in the correct range (see Fig. 3.11b). This method has been successfully exploited
to segment the white matter, as well as the cortex, from 3D MRI with topological
guarantees [21, 22, 36].

In this kind of application, it is useful to be able to apply morphological filter-
ing operators (openings, closings, alternate sequential filters) on an object while
guaranteeing topology preservation. See [18] for the definition of such filtering op-
erators.

3.2.8 Hole Closing

We have seen that it is possible, thanks to the notion of simple point, to design
operators that transform an object while preserving its topological characteristics.
However, controlled topology modifications are needed in some applications. This
topic is seldom addressed in the literature. In this section, we present a method [1]
that is, to our knowledge, the first one that permits to close holes in a 3D ob-
ject.

In our approach, we consider the notion of hole from a topological point of view.
From this viewpoint, it is important to distinguish between holes, cavities and con-
cavities. A concavity is a concave part of the contour of an object, it is not a topo-
logical feature. A cavity is a bounded connected component of the background, that
forms a “hollow” inside the object (see Fig. 3.12a).

A hole is much more complicated to define. Intuitively, the presence of a hole
(or tunnel in 3D) in an object can be characterized by the existence of a closed path
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Fig. 3.12 (a): A 2D objects with two holes. (b): A solid torus. This object has one hole (tunnel),
which is detected by the existence of path π . (c): The hole of the torus has been closed by a surface
patch

in the object that cannot be continuously deformed, inside the object, into a single
point. For example in 3D, a solid torus like the one depicted in Fig. 3.12b has one
hole.

In 2D, the notions of hole and cavity coincide, thus closing holes in 2D may be
simply done by using algorithms for connected component extraction. But closing
holes in 3D objects is by no means a trivial problem, because 3D holes are not, like
in 2D, delimited regions of space.

Based on connectivity numbers (Sect. 3.2.2) and the strategy of guided thinning
(Sect. 3.2.5), the method that we present here closes holes in any 3D object (see
Fig. 3.13). In addition, this method allows for controlling the “size” of the holes
that are to be closed (Fig. 3.13b2,b3). It can be implemented by a linear-time algo-
rithm.

The basic idea of this method consists of embedding the object X, in which we
want to close holes, into another object Y that is connected, without any hole and
without any cavity, such as a solid cuboid for example. Then, we iteratively shrink
Y by deleting points that do not belong to X, and ensuring thanks to the analysis
of connectivity numbers that each point deletion does not create any hole or cavity.
This method has been introduced and formalized in [1], we recall here its main
notions and properties.

Definition 4 ([1]) Let X, Y be such that X ⊆ Y ⊆ Z
3. We say that Y is a topological

hull of X if Y has no hole and no cavity, and if, for all x ∈ Y \ X, the set Y \ {x} has
a hole or a cavity.

For example in Fig. 3.13, Y = (a2) is a topological hull of X = (a1). The set
Y \ X (depicted by gray voxels in a2) corresponds to “surface patches” that close
the holes.

The following theorem allows for a local characterization of the class of sets that
are topological hulls, relatively to the class of sets that have no cavity and no hole.
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Fig. 3.13 Illustration of a hole closing algorithm for 3D objects. (a1, a2): The use of a distance
map leads to a good centering of the surface patch that closes the hole. (b1, b2, b3): A parameter
controls the “size” of the holes to be closed

Theorem 2 ([1]) Let X, Y be such that X ⊆ Y ⊆ Z
3. Suppose that Y has no cavity

and no hole. Then, Y is a topological hull of X if and only if, for each point x of
Y \ X, x is an interior point or a 2D isthmus for Y .

Corollary 1 Let X, Y , Z be such that X ⊆ Y ⊆ Z ⊆ Z
3, and such that Z has no

cavity and no hole. If Y can be obtained from Z by iterating the following two steps
until stability:

– choose a point x in Z \ X such that Tn(x,Z) = 1;
– set Z = Z \ {x}
then Y is a topological hull of X.

In order to get a result that is well-centered with respect to the object X, we use
a distance map to guide this process, in the manner of Algorithm GuidedThinning.
More precisely, the points in the complement of X that are farthest from X are
treated in the first place. We can also use a parameter s that allows for controlling
the “size” of holes to be closed: if one also deletes, during the process, the candidate
points x that are such that Tn(x,X) > 1, and having a distance map value greater
than s, then the biggest holes (in this sense) will be let open. The Algorithm Hole-
Closing (Algorithm 2) formalizes this method. As for Algorithm GuidedThinning,
with an adapted choice of data structure this algorithm may be implemented to run
in linear time. Note that, whenever the parameter s is set to +∞, Algorithm Hole-
Closing indeed computes a topological hull of X (in other words, it closes all holes).
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Algorithm 2: HoleClosing

Data : X ⊆ Z
3 (the object), s ∈R∪ {+∞} (the size parameter)

Result : Z

Let Z be a cuboid that includes X;
Let P be a distance map relative to X (i.e., P(x) = d(x,X) for any x);
repeat

Z′ = {z ∈ Z \ X | Tn(z,Z) = 1 or (Tn(x,X) > 1 and P(z) > s)};
Let x be a point in Z′ such that P(x) is maximal;
Z = Z \ {x};

until stability ;

3.3 Topological Transformations for Grayscale Images

In this section topological notions such as those of simple point, homotopic thin-
ning, ultimate homotopic thinning, are extended to the case of grayscale images.
Applications to image filtering, segmentation and restoration are presented.

A 2D grayscale image can be seen as a function F from Z
2 into Z. For each

point x of Z2, F(x) is the gray level, or the luminosity of x. We denote by F the set
of all functions from Z

2 into Z.
Let F ∈ F and k ∈ Z, the cross-section (or threshold) of F at level k is the set Fk

composed of all points x ∈ Z
2 such that F(x) � k. Observe that a cross-section is a

set of points, i.e., a binary image. As for the binary case, if we use the n-adjacency
for the cross-sections Fk of F , we must use the n-adjacency for the complementary
sets Fk , with (n,n) = (8,4) or (4,8). Consider the function −F , that we call the
complementary function of F (for each point x of Z2, (−F)(x) = −F(x)). Note
that the complementary sets of the cross-sections of F are cross-sections of −F . In
forthcoming examples and figures, we choose n = 8 for the cross-sections of F , thus
we must use n = 4 for the cross-sections of −F . A non-empty connected component
X of a cross-section Fk of F is a (regional) maximum for F if X ∩ Fk+1 = ∅. A set
X ⊆ Z

2 is a (regional) minimum for F if it is a regional maximum for −F .

3.3.1 Cross-Section Topology

Intuitively, we say that a transformation of F preserves topology if the topology
of all cross-sections of F is preserved. Hence, the “cross-section topology” of a
function (i.e., of a grayscale image) directly derives from the topology of binary
images [9]. Based on this idea, the following notions generalize the notion of simple
point to the case of functions.

Definition 5 Let F ∈ F , the point x ∈ Z
2 is destructible (for F ) if x is simple

for Fk , with k = F(x). The point x ∈ Z
2 is constructible (for F ) if x is destructible

for −F .
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Fig. 3.14 (a): Original image. (b): An ultimate homotopic thinning of (a). (c): An ultimate homo-
topic thickening of (a)

We see that the gray level of a destructible (resp. constructible) point may be
lowered (resp. raised) of one unit, while preserving the topology of F . For example
in Fig. 3.14a, the point at level 8 is both destructible and constructible; the two
points at level 2 are constructible, but only one of them may be raised, because after
that, the other point would become non-constructible.

Let F ∈F and G ∈F . We say that G is an elementary homotopic thinning of F ,
and we write F

e→ G, if there exists a point x that is destructible for F such that
G(x) = F(x)−1, and for each y �= x, G(y) = F(x). We say that G is an homotopic
thinning of F if G = F or if there exists a sequence 〈G0, . . . ,Gk〉 such that G0 = F ,
Gk = G and G0

e→ . . .
e→ Gk . Furthermore, if no point of G is destructible, we say

that G is an ultimate homotopic thinning of F . We define in a dual manner the
notions of homotopic thickening and ultimate homotopic thickening.

For example in Fig. 3.14, image (b) is an ultimate homotopic thinning of (a), and
(c) is an ultimate homotopic thickening of (a).

3.3.2 Local Characterizations and Topological Classification
of Points

Let F ∈ F and x ∈ Z
2. For the sake of simplicity, we will omit to mention F unless

necessary; for example, we will write N++(x) rather than N++(x,F ). We define
the four neighborhoods:

N++(x) = {
y ∈ N∗

8 (x);F(y) > F(x)
};

N+(x) = {
y ∈ N∗

8 (x);F(y) � F(x)
};

N−−(x) = {
y ∈ N∗

8 (x);F(y) < F(x)
};

N−(x) = {
y ∈ N∗

8 (x);F(y) � F(x)
}
.
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We define also:

η−(x) =
{

max{F(y);y ∈ N−−(x)}, if N−−(x) �= ∅,

F (x) otherwise.

It is easy to show that lowering a destructible point x down to the value η−(x)

is a homotopic transformation. For example in Fig. 3.14a, the point at level 9 in the
third row can be lowered down to 7, then to 4, and finally to 0 without changing the
topology of cross-sections. This property, in addition to the local characterization
of destructible and constructible points that we present next, allows for the design
of efficient algorithms for computing transformations that preserve cross-section
topology, on the model of e.g. Algorithm GuidedThinning (see [20]).

We define the four connectivity numbers:

T ++(x) = ∣∣Cn

[
x,N++(x)

]∣∣; T +(x) = ∣∣Cn

[
x,N+(x)

]∣∣;
T −−(x) = ∣∣Cn

[
x,N−−(x)

]∣∣; T −(x) = ∣∣Cn

[
x,N−(x)

]∣∣.
The following property can be straightforwardly derived from the above definition
and from the local characterization of simple points in binary images (see Theo-
rem 1). It shows that connectivity numbers allow for a local characterization of
destructible and constructible points.

Let F ∈ F and x ∈ Z
2.

x is destructible for F ⇔ T +(x) = 1 and T −−(x) = 1;
x is constructible for F ⇔ T −(x) = 1 and T ++(x) = 1.

Furthermore, connectivity numbers allow for a classification of topological charac-
teristics of a point:

x is a peak if T +(x) = 0; x is minimal if T −−(x) = 0;
x is k-divergent if T −−(x) = k with k > 1;
x is a well if T −(x) = 0; x is maximal if T ++(x) = 0;
x is k-convergent if T ++(x) = k with k > 1;
x is a lower point if it is not maximal; x is an upper point if it is not minimal;
x is an interior point if it is both minimal and maximal;
x is a simple side if it is both destructible and constructible;
x is a saddle point if it is both convergent and divergent.

By considering all the possible values of the four connectivity numbers, one
proves [9] that the type of a point x ∈ Z

2, whatever the function F ∈ F , is nec-
essarily one and only one of the following: 1) a peak; 2) a well; 3) an interior point;
4) a constructible minimal point; 5) a destructible maximal point; 6) a minimal
convergent point; 7) a maximal divergent point; 8) a simple side; 9) a destructible
convergent point; 10) a constructible divergent point; 11) a saddle point. Figure 3.15
shows examples of seven out of these eleven types; the four other types can be ob-
tained by duality (for example a well is the dual of a peak, etc.).

The rest of this chapter is devoted to three applications of cross-section topology.
In these applications, we combine homotopic transformations and transformations
that modify topology in a controlled manner.
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Fig. 3.15 Topological type. The central point has the following type: (a): peak; (b): interior;
(c): destructible maximal; (d): maximal 2-divergent; (e): destructible 2-convergent; (f): simple side;
(g): saddle

Fig. 3.16 Topological filtering. (a): Original image. (b): Original image with added impulse noise.
(c): After 3 steps of homotopic thinning and peak lowering. (d): Homotopic reconstruction of (c)
constrained by (b)

3.3.3 Topological Filtering

In the case of impulse noise, a positive impulse takes the form of a small group of
pixels, having grayscale values higher than those of pixels in their neighborhood.
We can detect a positive impulse made of an isolated pixel x by testing the topo-
logical type of x: it is a peak. One can “destroy” this peak by lowering x down to
the value η−(x). For impulses formed by several adjacent pixels, this procedure is
not sufficient. However, if we apply homotopic thinning to the image, an impulse
formed by a few pixels may be reduced to a peak, allowing for its detection and
deletion.

On the other hand, we do not want to lower bigger groups of pixels that may
constitute significant objects in the image. This is why we need a notion of “thinning
step” in order to control the spatial extent of the thinning (see [20] for more details).

In Fig. 3.16, we show in (c) the result of three steps of homotopic thinning ap-
plied to image (b), followed by the lowering of all peaks. The positive impulses
have been eliminated, but some points outside these impulses have also been low-
ered. It is thus necessary to restore the initial values of these points. We use for
this purpose a homotopic reconstruction operator, which is nothing else but a ho-
motopic thickening constrained by the original image (that is, the final value of a
point cannot be higher than the value of this point in the original image). Since only
constructible points can be raised, the lowered peaks will not be restored at their
original value. Figure 3.16d shows a homotopic reconstruction of (c) constrained
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Fig. 3.17 Topological segmentation. (a): Original image. (b): Ultimate homotopic thinning. (c):
Ultimate filtered thinning with κ = 40. (a’), (b’), (c’): In white, the minima of (a), (b), (c) respec-
tively

by (b). Negative impulses can be filtered by the dual procedure. This topological
filtering gives, for impulse noise, better results than a median filter or a filter based
on morphological opening and reconstruction. In particular, it better preserves thin
structures.

3.3.4 Topological Segmentation

Figure 3.17a shows an image in which one perceives dark cells separated by lighter
borders. Due to noise, this image contains a lot of regional minima: they appear
in white in (a’). An ultimate homotopic thinning (b) preserves, by construction,
all these minima and extend them as much as possible (b’). Figure 3.18a shows a
1D profile extracted from such an ultimate homotopic thinning. In this profile, the
points A, B and C correspond to divergent points that separate neighboring minima.
Some of these divergent points (A, B) can be considered as “irregular points” [9]:
we would like to lower them in order to eliminate, by merging, some minima having
small depth.

To this aim, we introduce the notions of κ-destructible point and ultimate filtered
thinning. Intuitively, a point κ-destructible x is either a destructible point, or a peak,
or a divergent point that lies on a crest line that divides its neighborhood into several
lower regions, such that at most one of these regions has a difference of altitude with
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Fig. 3.18 Illustration of κ-destructible points. (a): A 1D profile of an ultimate homotopic thinning.
(b): An image with two 10-destructible points (levels 20 and 100) that are not destructible

respect to x that is greater than κ . Thus, the parameter κ corresponds to a notion
of local contrast. For example, points at levels 20 and 100 in Fig. 3.18b are both
10-destructible, but are not destructible. An ultimate filtered thinning is defined in a
similar manner as an ultimate homotopic thinning, by using “κ-destructible” instead
of “destructible”.

In Fig. 3.17c, we see an ultimate filtered thinning of (a) with κ = 40. A binary
segmented image (c’) is obtained by extracting regional minima of (c). Note that
this segmentation method involves only one parameter (κ) relative to a notion of
local contrast.

3.3.5 Crest Restoration Based on Topology

Segmentation methods that are based on minima extraction and region merging, as
well as those based on contour detection, are sensitive to the quality of the crests that
separate the regions of interest (see Fig. 3.17, Fig. 3.20), which may be alterated by
noise. In this section, we propose a procedure for detecting and eliminating narrow
passes on the crests of a 2D function.

First of all, we apply some steps of filtered or homotopic thinning, in order to
reduce crests to thin lines (see Fig. 3.19b). After this, we can detect points that
belong to “thin crests”, and that must be raised in order to eliminate passes.

Let X ⊆ Z
2 and x ∈ X, x is a separating point (for X) if T (x) � 2. Let F ∈ F , a

point x ∈ Z
2 is called a separating point (for F ) if there exists a level k ∈ Z such that

x is a separating point for the set Fk . Note that, if x is a divergent point for F , then
x is necessarily a separating point for F , but the converse is not true. For example,
in Fig. 3.19e, the points at levels 15, 20 and 25 are separating points, whereas only
the point at level 15 and the second point at level 20 (from the top) are divergent
points.

We see in Fig. 3.19b that, in order to eliminate the pass at level 90, we can raise
separating points that are constructible, until a saddle point appears. This saddle
point can then be detected and raised. We also see in Fig. 3.19b that, if we iteratively
raise constructible separating points without any restriction, we will also reinforce
some low crest lines, like the one at level 60. Indeed, the point at level 60 circled
in white is a constructible separating point. Furthermore, we cannot use the notions
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Fig. 3.19 Crest restoration. (a): The lowest value on the crest is the one of the pass (90). (b): After
one step of homotopic thinning. (c, d): After 1 and 3 iterations of the crest restoration algorithm.
(e): Points at levels 15, 20 and 25 are separating points

of κ-destructible point and filtered thinning in this case, because we would take the
risk of lowering those very passes that we want to raise.

Now, let us define a class of points that are “good candidates” for crest restora-
tion. Intuitively, such a point may be characterized by the presence, in its neigh-
borhood, of a point y that is a separating point for the section at level k = F(x)

but is not separating for higher sections. This is formalized through the notion of
extensible point defined below.

Let F ∈ F , a point x ∈ Z
2 that is a separating point for F is called extensible if

it is, either a constructible point, of a saddle point for F , and if x has at least one
neighbor y that satisfies the following two conditions:

(i) y is a separating point (in the binary sense) for Fk , with k = F(x), and
(ii) y is not a separating point (in the binary sense) for any cross-section Fj with

j > k.

For example in Fig. 3.19b, we can check that the two circled constructible points
at level 90 are extensible, because each of them has a neighbor at 240 that is sepa-
rating for F90 but not for F91 and higher sections; whereas the circled constructible
point at level 60 is not extensible. Indeed, the point at 90 adjacent to the latter point
is separating both for F60 and for F61.

The crest restoration method proceeds by iteratively detecting and raising exten-
sible points. A more detailed description of the method can be found in [20]. In
Fig. 3.19c, we see the result after applying one step of the method on (b). In par-
ticular, we see that two points at level 90 in (b) have been raised up to 240, and
that points at level 60 have not been modified. In (d), we see the result after three
iterations: the crest at 240 has been restored. Further iterations would not modify
this result.

In Fig. 3.20, we illustrate this method on a gradient image (b). Image (b) is first
thinned, giving (c). If we threshold this image, we see that either significant contour
segments are lost (d), or we get too many details. Image (e) has been obtained from
(c) by crest restoration until stability. The same threshold was applied on (c, e),
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Fig. 3.20 Crest restoration. (a): Original image. (b): After applying a gradient modulus operator
(the lowest values are in white). (c): After a filtered thinning. (e): After crest restoration, performed
until stability. (d, f): Thresholds of (c, e) respectively, at the same level

giving (d, f) respectively. We see that many significant contour segments have been
recovered, without introducing artefacts.

3.4 Parallel Thinning

In Sects. 3.2 and 3.3, we described transformations that are sequential by nature.
By this, we mean that after each point modification, the result of this modification
has to be taken into account in order to perform simplicity tests for other points.
Consequently, depending on the order in which the points are examined, some ar-
bitrary choices may be done, and different results may be obtained depending on
these choices. Even when one uses a priority function to guide the thinning, it is not
seldom that many points share the same priority value, and arbitrary decisions are
still necessary.

Another strategy for thinning objects consists of removing some of its border
points in parallel [37, 38]. However, parallel deletion of simple points does not, in
general, guarantee topology preservation: see for example Fig. 3.3a, where remov-
ing both simple points u, v would merge two components of the background. In
fact, such a guarantee is not obvious to obtain, even for the 2D case (see [17], where
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Fig. 3.21 (a) Four points in Z
2: x = (0,1); y = (1,1); z = (0,0); t = (1,0). (b) A graph-

ical representation of the set of faces {f0, f1, f2}, where f0 = {z} = {0} × {0} (a 0-face),
f1 = {x, y} = {0,1} × {1} (a 1-face), and f2 = {x, y, z, t} = {0,1} × {0,1} (a 2-face). (b, c) A set
of faces that is not a complex. (d, e) A set of faces that is a complex

fifteen published parallel thinning algorithms are analyzed, and counter-examples
are shown for five of them).

In order to study the conditions under which points may be removed simulta-
neously while preserving topology of 2D objects, C. Ronse introduced minimal
non-simple sets [33]. This work leads to verification methods for the topological
soundness of parallel thinning algorithms. Such methods have been proposed for
2D algorithms by C. Ronse [33] and R. Hall [25], they have been developed for
the 3D case by T.Y. Kong [26, 27] and C.M. Ma [31]. For the 3D case, one of the
authors [4] introduced the notion of P-simple point as a verification method but also
as a methodology to design parallel thinning algorithms.

More recently, one of the authors introduced in [5] a general framework for
studying parallel homotopic thinning in spaces of any dimension. This framework,
called critical kernels, is developed in the context of abstract simplicial or cubical
complexes, but it also permits to prove properties of algorithms acting in Z

D . In
particular, the notion of crucial point is introduced in [7] and [6], for the 2D and
the 3D case respectively, together with the proof that any set of non-crucial points
can be removed in parallel from any object in Z

D without changing its topological
characteristics.

In Sects. 3.4.1–3.4.4, we present a minimal set of notions needed to survey the
critical kernels framework. Section 3.4.5 is devoted to parallel thinning in Z

D , where
results about critical kernels are used only to prove topological correctness. The
reader who prefers to quickly implement algorithms may jump directly to this latter
section.

3.4.1 Cubical Complexes

Intuitively, a cubical complex may be thought of as a set of elements having various
dimensions (e.g. cubes, squares, edges, vertices) glued together according to certain
rules (see Fig. 3.21d).

Let Z be the set of integers. We consider the families of sets F
1
0, F1

1, such that
F

1
0 = {{a} | a ∈ Z}, F1

1 = {{a, a + 1} | a ∈ Z}. A subset f of ZD , D � 2, which is
the Cartesian product of exactly d elements of F1

1 and (D − d) elements of F1
0 is



96 M. Couprie and G. Bertrand

Fig. 3.22 X0: a pure 2-complex. X1: a complex such that X0 collapses onto X1; a free pair
composed of a square and an edge has been removed. X2: a complex such that X1 collapses onto
X2; (a free pair composed of an edge and a vertex has been removed), hence X0 collapses onto X2

called a face or a d-face in Z
D , d is the dimension of f , we write dim(f ) = d . See

Fig. 3.21a,b for an illustration.
We denote by F

D the set composed of all faces in Z
D . A d-face is called a point if

d = 0, a (unit) edge if d = 1, a (unit) square if d = 2, a (unit) cube if d = 3. Observe
that any non-empty intersection of faces is a face. For example, the intersection of
two 2-faces A and B may be either a 2-face (if A = B), a 1-face, a 0-face, or the
empty set.

Let f be a face in F
D . We set f̂ = {g ∈ F

D | g ⊆ f } and f̂ ∗ = f̂ \ {f }; we call
f̂ ∗ the boundary of f . Any g ∈ f̂ is called a face of f . If X is a finite set of faces
in F

D , we write X− = ⋃{f̂ | f ∈ X}, X− is the closure of X. A finite set X of faces
in F

D is a complex (in F
D) if X = X−. If Y ⊆ X and Y is a complex, then we say

that Y is a subcomplex of X. In the sequel, the symbol X will denote a complex
in F

D , and the symbol f will denote a face of X.
See in Fig. 3.21d,e two examples of complexes, and in Fig. 3.21b,c examples of

sets of faces that are not complexes. The complex in Fig. 3.21d is the closure of the
complex in Fig. 3.21c.

Let d = dim(f ). We say that f is a facet of X or an d-facet of X if there is no
face g ∈ X such that f ∈ ĝ∗, in other words, if f is maximal for inclusion. We set
dim(X) = max{dim(f ) | f ∈ X}. We say that X is an d-complex if dim(X) = d .
We say that X is pure if, for each facet f of X, we have dim(f ) = dim(X). For
example in Fig. 3.22, X0 and X2 are pure 2-complexes, whereas X1 is a 2-complex
that is not pure.

The operation of detachment allows us to remove a subset from a complex, while
guaranteeing that the result is still a complex.

Let Y ⊆ X. We set Detach(Y,X) = (X \Y)−. The set Detach(Y,X) is a complex
which is the detachment of Y from X. Figure 3.21e shows the detachment of f̂

from X, where X is the complex of Fig. 3.21d and f is the 3-face of X.

3.4.2 Collapse and Simple Facets

The collapse operation is an elementary topology-preserving transformation which
has been introduced by J.H.C. Whitehead [40], and plays an important role in com-
binatorial topology. It can be seen as a discrete analogue of a continuous defor-
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mation (a strong deformation retract). Collapse is known to preserve the homotopy
type.

Consider a pair (f, g) ∈ X2. If f is the only face of X that strictly includes g,
then g is said to be free for X and the pair (f, g) is said to be a free pair for X.
Note that, if (f, g) is a free pair, then f is necessarily a facet of X and dim(g) =
dim(f ) − 1.

Let (f, g) be a free pair for X. Let d = dim(f ). The complex X \ {f,g} is an
elementary collapse of X, or an elementary d-collapse of X. The pair (f, g) is also
called a free d-pair (for X).

Let Y be a complex. We say that X collapses onto Y , and we write X ↘ Y , if
Y = X or if there exists a sequence of complexes 〈X0, . . . ,X�〉 such that X0 = X,
X� = Y , and Xi is an elementary collapse of Xi−1, for each i ∈ {1, . . . , �}. See
Fig. 3.22 for an illustration.

We give now a definition of a simple facet, it may be seen as a discrete analogue
of the one given by T.Y. Kong in [28] which lies on continuous deformations in the
D-dimensional Euclidean space.

Definition 6 ([5]) Let f be a facet of X. We say that f̂ and f are simple for X if X

collapses onto Detach(f̂ ,X).

For example in Fig. 3.22, we have X2 = Detach(f̂ ,X0), and since X0 ↘ X2, the
facet f is simple for X0.

The notion of attachment, as introduced by T.Y. Kong [27, 28], leads to a lo-
cal characterization of simple facets. The attachment of f̂ for X is the complex
Attach(f̂ ,X) = f̂ ∗ ∩ [Detach(f̂ ,X)]. In other words, a face g is in Attach(f̂ ,X) if
g is in f̂ ∗ and if g is a face of a facet h distinct from f .

As an easy consequence of the above definitions, the facet f is simple for X if
and only if f̂ collapses onto Attach(f̂ ,X). This property led us to introduce new
characterizations of simple points in 2D, 3D and 4D [19].

3.4.3 Critical Kernels

Let us briefly recall the framework introduced by one of the authors (in [5]) for thin-
ning, in parallel, discrete objects with the warranty that topology is preserved. We
focus here on the two- and three-dimensional cases, but in fact the notions and re-
sults in this section are valid for complexes of arbitrary dimension. This framework
is based solely on three notions: the notion of an essential face, which allows us to
define the core of a face, and the notion of a critical face.

Definition 7 ([5]) We say that f is an essential face for X if f is precisely the
intersection of all facets of X that contain f . We denote by Ess(X) the set composed
of all essential faces of X. If Y is a subcomplex of X and Ess(Y ) ⊆ Ess(X), then
we say that Y is an essential subcomplex of X.
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Fig. 3.23 (a): A 3-complex X0, made of 12 cubes. The essential faces for X0 that are not
facets are highlighted. (b): Two essential 2-faces f,g and their cores (in black). (c): X0 and
its critical faces (highlighted). (d): The critical kernel X1 = Critic(X0). (e): X2 = Critic(X1).
(f): X3 = Critic(X2) = Critic(X3)

Observe that a facet of X is necessarily an essential face for X. Observe also
that, if X and Y are both pure D-complexes, then Y is an essential subcomplex of X

whenever Y is a subcomplex of X.

Definition 8 ([5]) Let f ∈ Ess(X). The core of f̂ for X is the complex Core(f̂ ,X)

= ∪{ĝ | g ∈ Ess(X) ∩ f̂ ∗}.

Definition 9 ([5]) Let f ∈ X. We say that f and f̂ are regular for X if f ∈ Ess(X)

and if f̂ collapses onto Core(f̂ ,X). We say that f and f̂ are critical for X if
f ∈ Ess(X) and if f is not regular for X.

We set Critic(X) = ∪{f̂ | f is critical for X}, we say that Critic(X) is the critical
kernel of X.

Figure 3.23 illustrates these definitions. In Fig. 3.23b, we see that f̂ collapses
onto the core of f , thus f is regular; and that ĝ does not collapse onto the core of g,
thus g is critical. Note that, in this complex, all facets (3-faces) are regular.

The following theorem is the most fundamental result concerning critical kernels.
Note that the theorem holds whatever the dimension.

Theorem 3 ([5]) Let Y be an essential subcomplex of X.

(i) The complex X collapses onto its critical kernel.
(ii) If Y contains the critical kernel of X, then X collapses onto Y .

(iii) If Y contains the critical kernel of X, and if Z is an essential subcomplex of X

such that Y ⊆ Z, then Z collapses onto Y .
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In Fig. 3.23, we show that the very notion of critical kernel can be seen as a
powerful thinning algorithm, which consists of computing iteratively the critical
kernel of the result of the preceding computation. Furthermore, Theorem 3(ii) tells
us that any essential subcomplex Y of X that is “between” X0 (Fig. 3.23a) and
X1 (Fig. 3.23d) is such that X0 collapses onto Y . This is true, in particular, of any
subcomplex Y that is a pure 3-complex containing X1. This property gives birth to
a wide class of parallel thinning algorithms, where different criterions, based e.g. on
geometrical notions, can be used in order to choose a particular set as the result of a
single thinning step (see Sect. 3.4.5).

3.4.4 Crucial Cliques and Faces

In the image processing literature, a digital image is often considered as a set of
pixels in 2D or voxels in 3D. A pixel (resp. a voxel) is an elementary square (resp.
cube), thus an easy correspondence can be made between this classical view and the
framework of cubical complexes. From now on, we consider only complexes whose
facets are all D-faces, i.e., pure D-complexes.

Note that, if X is a pure D-complex in F
D and if f is a D-face of X, then

Detach(f̂ ,X) is a pure complex in F
D . There is indeed an equivalence between

the operation on complexes that consists of removing (by detachment) the closure
of a simple D-face, and the removal of an 8-simple (resp. 26-simple) point in the
framework of 2D (resp. 3D) digital topology (see [27, 28]).

When X is a pure D-complex (e.g., a union of voxels in F
3), the critical kernel of

X is not necessarily a pure D-complex (see Fig. 3.23d). The notion of crucial face,
introduced in [6, 7], allows us to recover a pure D-subcomplex Y of an arbitrary
pure D-complex X, under the constraint that X collapses onto Y .

Definition 10 ([6]) A face f in X is a maximal critical face, or an M-critical face
(for X), if f is a facet of Critic(X).

The set of all the facets of X that contain an M-critical face f is called the crucial
clique (for X) induced by f . Each facet in a crucial clique is called a crucial face.

Some 2D crucial cliques are illustrated in Fig. 3.24. The following corollary of
Theorem 3 tell us that, informally speaking, a thinning step that preserves all non-
simple pixels (voxels) and at least one pixel (voxel) in each crucial clique, preserves
topology.

Corollary 2 Let Y be a subcomplex of X that is also a pure D-complex.
If any critical D-face of X and at least one D-face of each crucial clique of X is

in Y , then X collapses onto Y .

During the process of thinning an object, we often want to keep certain faces
like curve extremities for example, if we want to obtain a curvilinear skeleton. That
is why we introduce the following definition in order to generalize the previous
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Fig. 3.24 Crucial cliques in F
2 (represented in light gray): (a) induced by an M-critical 0-face;

(b, c) induced by an M-critical 1-face. The considered M-critical faces are in bold. The core of the
M-critical face in (a, b) is empty, in (c) it consists of two 0-faces

Fig. 3.25 Masks for
1-crucial (M1) and 0-crucial
(M0) points

notions. Intuitively, the set K corresponds to a set which is preserved by a thinning
algorithm (a constraint set).

Definition 11 ([6]) Let K be a set composed of facets of X. A subcomplex C of X

is a crucial clique for 〈X,K〉 if C is a crucial clique for X such that C ∩ K = ∅. In
this case, each facet in C is called a crucial face for 〈X,K〉.

3.4.5 Parallel Thinning Algorithms

In the sequel, we give a characterization of crucial points or pixels in Z
2, which can

be checked in a quite simple manner with the help of masks. Thanks to this charac-
terization, one can easily implement parallel thinning algorithms that are guaranteed
to preserve topology. The interested reader is referred to [5–8] for the proofs of the
stated properties.2 Implementations (in source code) are available on the critical ker-
nels web site.3 We emphasize that no representation of cubical complexes is used
for computing this characterization and thinning methods based on it: both inputs
and outputs, as well as intermediate results, are mere binary images (i.e., subsets of
Z

D). For the sake of simplicity, we limit ourselves to the 2D case, the reader can
find a similar characterization for the 3D case in [6].

The masks M1, M0 are given in Fig. 3.25. For the mask M1, we also consider the
mask obtained from it by applying a π/2 rotation: we get 3 masks (2 for M1, and 1
for M0).

2Note that the characterization that we use in this chapter for the 2D case is actually derived from
the ones of [6], which deals with 3D. This allows us to present a characterization that is simpler
than the one proposed in [7].
3http://www.esiee.fr/~info/ck.
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Fig. 3.26 Illustration of crucial points (pixels). Left: the simple points are in gray, the crucial
points are marked by a black disk. The couples of black disks that are linked by a bar, in the biggest
connected component, represent all the crucial cliques that are detected by the mask M1. The
triplet of black disks that are linked by a triangle, in the smallest connected component, represents
a crucial clique that is detected by mask M0. All simple points that are not crucial may be removed
in parallel by a topology-preserving algorithm. Right: the crucial points marked by a black disk
constitute a set of points that is sufficient to ensure topology preservation. All other simple points
may be safely removed in parallel

Definition 12 Let X ⊆ Z
2, and let M be a set of points of X.

1) The set M matches the mask M1 if:
(i) M = {C,D}; and

(ii) the points C,D are simple for X; and
(iii) the sets {a, b} ∩ X and {e, f } ∩ X are either both empty or both non-empty.

2) The set M matches the mask M0 if:
(i) M = {A,B,C,D} ∩ X; and

(ii) the points in M are simple and not matched by M1; and
(iii) at least one of the sets {A,D}, {B,C} is a subset of M .

In the following, the set K plays the role of a constraint set (see Sect. 3.2.4).
There exists a “natural” one-to-one correspondence between the subsets of ZD and
the pure D-complexes in F

D (see [6, 7]). Namely, with each point (pixel, voxel)
of ZD we associate a facet of FD (unit square, unit cube). We extend our vocab-
ulary accordingly: for instance, we say that a point x ∈ X is crucial whenever the
corresponding facet in the corresponding complex is crucial.

Theorem 4 Let X ⊆ Z
2, K ⊆ X, and let M be a set of points in X \ K that are

8-simple for X.
Then, M is a crucial clique for 〈X,K〉 if and only if M matches the mask M0 or

the mask M1.

An illustration is given in Fig. 3.26. From Corollary 2, we deduce that a parallel
thinning step that preserves all critical (i.e., non-simple) points and at least one point
of each crucial clique, preserves topology.

The simplest parallel thinning algorithm based on crucial points is Algorithm 3.
It consists of iteratively detecting the points that are simple and not crucial (with
respect to the current object and a possibly empty constraint set), and removing them
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in parallel. This algorithm makes no arbitrary choice: whenever a crucial clique is
detected, all its points are preserved.

Algorithm 3: CrucialThinning

Data : D ∈ {2,3}, a subset X of ZD , a set K of points of X

Result : X

repeat
V = set of points of X that are simple and not crucial for 〈X,K〉;
X = X \ V ;

until V = ∅ ;

In [6, 7], we provide various algorithms based on the same principle, that com-
pute different kinds of skeletons: curvilinear of surface skeletons in 3D, skeletons
that are guaranteed to contain the medial axis, minimal skeletons, asymmetric skele-
tons, skeletons of three-dimensional objects made of surfels . . .

Back to guided thinning, we show with the next algorithm how to use the notion
of crucial point in order to avoid arbitrary choices when several candidate points
share the same priority. The result of the following procedure is thus uniquely de-
fined, given any shape and any priority function.

Algorithm 4: GuidedParallelThinning_Version_0

Data : D ∈ {2,3}, a subset X of ZD , a function P from X into R∪ {+∞}
Result : X

repeat
π = min{P(x), x ∈ X};
if π < +∞ then

U = {x ∈ X | P(x) = π and x is simple for X};
V = {x ∈ X | x is not crucial for 〈X,X \ U 〉};
X = X \ V ;

until (π = +∞) or (V = ∅) ;

By construction, at each iteration of Algorithm 4, the current set X has the same
topology as the initial object. By “stacking” these sets that are nested in each other,
we can build a function that is a compact representation of this family of thinnings.
The simplest way to do this consists of defining a function F that associates with
each point x of X, the number of the iteration where x is deleted, or +∞ whenever x

is still in the final set. Hence, thresholding F at any integer level provides one of the
thinnings. Instead of the number of the iteration, we can indeed choose any number
that increases at each iteration. This is not necessarily the case of the number π , but
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Algorithm 5: GuidedParallelThinning

Data : D ∈ {2,3}, a subset X of ZD , a function P from X into R∪ {+∞}
Result : A function T from X into R∪ {+∞}
τ = −∞;
foreach x ∈ X do T (x) = +∞;
repeat

π = min{P(x), x ∈ X};
if π < +∞ then

if π > τ then τ = π ;
U = {x ∈ X | P(x) = π and x is simple for X};
V = {x ∈ X | x is not crucial for 〈X,X \ U 〉};
X = X \ V ;
foreach x ∈ V do T (x) = τ ;

until (π = +∞) or (V = ∅) ;

Fig. 3.27 Left: a visualization of the map PRX , for the same shape X as in Fig. 3.8. Right: the
result of Algorithm GuidedParallelThinning

a slight modification of the algorithm allows us to compute a function that is closely
related to the priority function used as input. This leads us to Algorithm 5.

Figure 3.27 shows, on the right, an example of function computed by Algorithm
GuidedParallelThinning, using the same input shape X as in Fig. 3.8, and the prior-
ity function PRX defined in Sect. 3.2.6 (depicted on the left).

As for Algorithm GuidedThinning, it is possible to implement this algorithm in
O(n logn) or O(n) time complexity, depending on the nature of the priority func-
tion.

3.5 Perspectives

All the algorithms presented in this chapter work on images defined on Z
D . They

fit in the framework, called digital topology, pioneered by A. Rosenfeld [34]. The
success of digital topology is mainly due to its simplicity, especially for the 2D case.
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Fig. 3.28 An ultimate
skeleton (all pixels are
non-simple) that is not thin

However, topological properties in higher dimensions are not easily handled in this
framework.

Besides, in Sects. 3.4.1–3.4.4, we described a framework based on cubical com-
plexes in which topological notions are defined quite naturally. Abstract (cubical)
complexes have been promoted in particular by V. Kovalevsky [30], in order to pro-
vide a sound topological basis for image analysis. The cubical complexes framework
allows for retrieving the results obtained using digital topology, providing a better
understanding of these results. Furthermore, new properties can be proved and new
methods can be developed in this framework, as showed by the example of critical
kernels for the study of parallel homotopic thinning in any dimension.

Further developments are needed to fully explore the possibilities and the benefits
of working directly on objects that are general cubical complexes, and not only pure
ones as it is the case in this chapter. In applications, this should lead in particular to
easier characterization, detection and analysis of lower-dimensional structures, such
as curves in 2D and 3D, and surfaces in 3D.

To illustrate this, let us consider the example of Fig. 3.28. In the continuous
framework, the skeleton of a bounded D-dimensional object always has a dimension
that is at most D − 1. That is, the skeleton of any object in 2D is made of curves
(1D) and points (0D). Figure 3.28 is a classical example showing that this property
of thinness is not always true in the digital topology framework.

However it is indeed possible to provide thinness guarantees in the cubical com-
plex framework. Consider the following thinning scheme, based on the collapse
operation (see Sect. 3.4.2). Each thinning step is decomposed into four (in 2D) sub-
steps corresponding to the four principal directions of the grid, named north (N),
south (S), west (W), and east (E). A north free k-pair is a pair of faces (f, g) such
that f is the only face that strictly includes g, dim(f ) = k, and g is on the north
of f . In the substep N, only north free pairs are considered. All north free 2-pairs
are marked, and then removed in parallel (see Fig. 3.29a,b). Then, all north free 1-
pairs are marked, and then removed in parallel (see Fig. 3.29b,c). South, west and
east substeps are defined similarly. The thinning scheme iterates such substeps until
no more free pair can be found in a complete step (NSWE). The topological sound-
ness of this scheme can easily be proved. In Fig. 3.29d, we show the final result
obtained from the object of Fig. 3.29a. Observe that the obtained skeleton is only
composed of 0-faces and 1-faces, and can indeed be interpreted as a set of curves.
This thinness property may also be proved in the general case. Of course, additional
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Fig. 3.29 Illustration of a thinning scheme based on collapse (see text)

conditions may be added to this scheme in order to preserve geometrical features
such as curve extremities (see [14]).

The cross-section topology approach presented in Sect. 3.3 can also be adapted
to the case of functions defined on cubical complexes, and benefit from the ease
of defining sound parallel topological operators, based on the critical kernels main
property (Theorem 3), or directly on the collapse operation.

3.6 Conclusion

We have seen that it is possible to design topological operators acting on binary 2D
and 3D images and also on grayscale images, which are well defined, have proven
topological properties and can be implemented through efficient algorithms.

We studied operators that transform an image while preserving its topological
characteristics, and also operators that selectively modify these characteristics in
order to achieve some filtering, segmentation or restoration.

Thanks to the general scheme of guided thinning that we promote in this chapter,
the geometrical features of the processed objects may be taken into account in a
flexible way, through the choice of adapted priority functions (e.g. distance maps)
and constraint sets.

In addition to the sequential approach, which has the advantage of being simple
but the drawback of needing arbitrary decisions to be made, we present a tractable
way to design sound parallel homotopic thinning algorithms, based on the critical
kernels framework. We show that the guided thinning strategy, in particular, may
benefit from this approach and result in a well-defined and flexible thinning scheme.

The critical kernels framework is based on cubical complexes, that we shortly
presented in Sects. 3.4.1–3.4.4. In this chapter, cubical complexes were used only to
prove topological properties of algorithms acting in Z

D . Further developments are
needed to build a coherent set of image processing tools based on cubical complexes,
dealing with both binary and grayscale images, encompassing and extending the set
of digital topology tools.
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Chapter 4
Modeling and Manipulating Cell Complexes
in Two, Three and Higher Dimensions

Lidija Čomić and Leila De Floriani

Abstract Cell complexes have been used in geometric and solid modeling as a
discretization of the boundary of 3D shapes. Also, operators for manipulating 3D
shapes have been proposed. Here, we review first the work on data structures for
encoding cell complexes in two, three and arbitrary dimensions, and we develop a
taxonomy for such data structures. We review and analyze basic modeling operators
for manipulating complexes representing both manifold and non-manifold shapes.
These operators either preserve the topology of the cell complex, or they modify it in
a controlled way. We conclude with a discussion of some open issues and directions
for future research.

4.1 Introduction

Cell and simplicial complexes are the most common way to discretize geometric
shapes, such as static and dynamic 3D objects, or surfaces and hyper-surfaces de-
scribing the behavior of scalar, or vector fields. Representations for these complexes
are at the heart of modeling and simulation tools in a variety of application domains,
such as computer graphics, Computer Aided Design (CAD), finite element analysis,
animation, scientific visualization, and geographic data processing.

Historically, data structures for representing 3D shapes have been developed in
the framework of solid modeling. There have been two approaches to the modeling
of solid objects in E

3, the boundary-based representation and the object-based volu-
metric representation. A boundary-based representation consists of a description of
a 3D object in terms of its bounding surfaces, which are decomposed into a collec-
tion of faces, edges and vertices forming a cell 2-complex. It is the most common
representation for 3D objects. The first data structure for boundary representation
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is the winged-edge data structure, proposed by Baumgardt in 1972 for manifold
shapes [3]. The first data structure for arbitrary cell 2-complexes is the radial edge
data structure, proposed by Weiler in 1988 [40]. This has been only the starting
point for the development of a variety of representations, which are at the basis
of current solid modeling systems [27]. An object-based volumetric representation
describes a solid object based on a decomposition into volumetric cells, and thus
through a cell 3-complex. Simplicial complexes are a special class of cell com-
plexes. They have been widely used in many application fields. A variety of data
structures specific for simplicial complexes have been proposed in the literature,
and data structures designed for cell complexes can also be used for the representa-
tion of simplicial complexes. For a review of data structures specific for simplicial
complexes, see [10].

Here, we focus on

• data structures for representing cell complexes, and
• manipulation operators for modifying these representations.

We review, analyze and compare data structures for cell complexes used for mod-
eling the boundary or the interior of 3D solid objects. We consider also dimension-
independent representations, and classify such data structures on the basis of the
dimension of the complex and on the topology of the shape discretized by the com-
plex. The comparison among the various data structures is performed in terms of
their expressive power and of the efficiency and effectiveness of navigation oper-
ations on them (i.e., efficiency in retrieving topological relations not explicitly en-
coded in the data structure).

We review the operators that modify topological representations of cell com-
plexes. The literature on operators for building and updating cell complexes is vast
but quite disorganized. We distinguish here between operators for simplicial and for
cell complexes. We briefly review the former (vertex split/edge collapse and stel-
lar operators) and we focus on the latter. We review topological operators designed
for building and updating data structures representing cell complexes (Handlebody
operators, Euler operators). Handlebody operators are based on handlebody theory,
stating that any n-manifold can be obtained from an n-ball by attaching handles to it.
The main characteristic of Euler operators is that they maintain the Euler-Poincaré
formula. Here, we will focus mainly on Euler operators for cell 2- and 3-complexes.
Euler operators are part of the variety of basis operators for modeling cell complexes
in a topologically consistent manner proposed in the literature. There has been no
systematic and uniform treatment of these operators in the literature.

The remainder of this chapter is organized as follows. Section 4.2 provides
some background notions on cell complexes and topological relations between its
cells. Section 4.3 presents a taxonomy of data structures for cell complexes. Sec-
tion 4.4 reviews and compares dimension-independent data structures. Section 4.5
reviews and compares data structures specific for two-dimensional complexes. Due
to the large number of data structures in this category, we distinguish between
data structures for manifold and non-manifold cell complexes, addressed respec-
tively in Sects. 4.5.1 and 4.5.2. Section 4.6 reviews and compares data structures
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for three-dimensional cell complexes. Section 4.7 presents an overview for the up-
date operators on cell complexes. Section 4.8 discusses the Euler-Poincaré formula
for various classes of complexes, and presents a classification of Euler operators.
Sections 4.9 and 4.10 review Euler operators on manifold and non-manifold com-
plexes, respectively. Finally, Sect. 4.11 summarizes the presented work, discusses
some open problems and concludes with future work directions.

4.2 Background Notions

In this section, we review some notions on cell complexes, that we will use through-
out this chapter (see [1] for more details).

A k-cell in the Euclidean space En is a homeomorphic image of a k-dimensional
ball, and a cell complex in E

n is a finite set Γ of cells in E
n of dimension at most d ,

0 ≤ d ≤ n, such that

1. the cells in Γ are pairwise disjoint,
2. for each cell γ ∈ Γ , the boundary of γ is a disjoint union of cells of Γ .

If the maximum dimension of cells of Γ is equal to d , then Γ is called a d-
dimensional complex, or simply a d-complex. The set of the cells on the boundary
of a cell γ is called the (combinatorial) boundary of γ . The (combinatorial) co-
boundary (or star) of γ consists of all cells of Γ that have γ on their combinatorial
boundary. An h-cell γ ′ on the boundary of a k-cell γ , 0 ≤ h ≤ k, is called an h-face
of γ , and γ is called a coface of γ ′. Each cell γ is a face of itself. If γ ′ �= γ , then
γ ′ is called a proper face of γ , and γ and γ ′ are said to be incident. The link of a
cell γ is defined as the collection of the cells bounding the cells in the star of γ ,
which do not intersect γ . A cell is called a top cell if it is not on the boundary of any
other cell in Γ . The domain, or carrier, of a Euclidean cell d-complex Γ embedded
in En, with 0 ≤ d ≤ n, is the subset of En defined by the union, as point sets, of all
the cells in Γ .

Two p-cells, 0 < p ≤ d , are said to be adjacent if they share a (p − 1)-face.
Two vertices (i.e., 0-cells) are called adjacent if they are both incident in a com-
mon 1-cell. A d-complex Γ , in which all top cells are d-cells, is called uniformly
d-dimensional or homogeneous. A (combinatorial) pseudo-manifold is a uniformly
d-dimensional complex in which each (d − 1)-cell is shared by one or two d-cells,
and for any two d-cells γ and γ ′, there is a sequence γ = γ1, γ2, . . . , γn = γ ′
of d-cells, and any two consecutive d-cells in the sequence share a (d − 1)-cell.
A pseudo-manifold complex with a manifold domain is called a manifold complex.
Figure 4.1(a) shows an example of a uniformly d-dimensional complex, which is
not a pseudo-manifold, while Figs. 4.1(b) and (c) show an example of a pseudo-
manifold complex which is not a manifold complex.

Simplicial complexes can be seen as a subclass of cell complexes. Their cells,
called simplices, are defined as the convex combination of points in the Euclidean
space. A Euclidean simplex σ of dimension k is the convex hull of k + 1 affinely
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Fig. 4.1 (a) A homogeneous cell complex that is not manifold; (b) A pseudo-manifold with a
non-manifold domain (a 3D pinched pie); (c) The cross-section of the pinched pie at the non-man-
ifold vertex

independent points in the n-dimensional Euclidean space En, for 0 ≤ k ≤ n. We call
a Euclidean simplex of dimension k a k-simplex, and k is called the dimension of
the simplex.

A (d − 1)-cell γ in a uniformly d-dimensional cell complex Γ is called a
manifold cell if and only if γ is incident in at most two d-cells in Γ . Otherwise,
(d − 1)-cell γ is a non-manifold cell. In a cell complex embedded in E

3, there
can be no non-manifold 2-cells (or 3-cells). A vertex (0-cell) v in a cell (simpli-
cial) d-complex Γ (with 1 ≤ d ≤ 3) is a manifold vertex if and only if the link
of v in Γ is homeomorphic to a triangulation of the (d − 1)-sphere Sd−1, or of the
(d − 1)-disk Bd−1. A vertex is called non-manifold otherwise. An edge (1-cell) e

in a d-complex Γ (with 2 ≤ d ≤ 3) is a manifold edge if and only if the link of
e in Γ is homeomorphic to a triangulation of the (d − 2)-sphere Sd−2, or of the
(d − 2)-disk Bd−2. An edge is called non-manifold otherwise.

The connectivity information among the entities in a cell complex can be ex-
pressed through topological relations, which provide an effective framework for
defining, analyzing and comparing the wide spectrum of existing data structures [7].
For a p-cell γ in a d-dimensional cell complex Γ , 0 ≤ p ≤ d , topological relations
are defined as follows:

• Boundary relation Rp,q(γ ), with 0 ≤ q ≤ p − 1, consists of the set of q-cells in
Γ that are faces of γ .

• Co-boundary relation Rp,q(γ ), with p + 1 ≤ q ≤ d , consists of the set of q-cells
in Γ that have γ as a face.

• Adjacency relation Rp,p(γ ), with 0 < p ≤ d , consists of the set of p-cells in Γ

that share a (p − 1)-cell with γ .
• Adjacency relation R0,0(γ ), where γ is a vertex, consists of the set of vertices in

Γ that are adjacent to γ through a 1-cell (an edge).

Figure 4.2 illustrates topological relations: R2,1(f ) is the set of edges bounding
2-cell f (see Fig. 4.2(a)), relation R0,1(v) is the set of edges incident in vertex v

(see Fig. 4.2(b)), relation R2,2(f ) consists of the set of 2-cells which share an edge
(1-cell) with 2-cell f (see Fig. 4.2(c)). Boundary and co-boundary relations are
called incidence relations.
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Fig. 4.2 Examples of topological relations: boundary relation R2,1(f ) = {e1, e2, e3, e4} for
2-cell f (a); co-boundary relation R0,1(v) = {e1, . . . , e7} for vertex v (b); adjacency relation
R2,2(f ) = {f1, f2, f3} for 2-cell f (c)

In the framework of geometric and solid modeling, the notion of a cell complex is
usually considered to be too restrictive, and not powerful and versatile enough to sat-
isfy all the demands required from a modeling system and to model characteristics
of an object that arise in real designing applications. In some approaches proposed in
the literature for modeling boundary representations (manifold surfaces that bound a
solid object in E

3), this drawback is overcome by allowing faces (which correspond
to 2-cells) to be multiply-connected, but mappable to a plane. Such faces have no
genus, and are bounded by several connected components of edges, usually called
loops or rings. In some solid modeling applications, volumes (which correspond to
3-cells) are allowed to have through holes or cavities. We call the complexes, in
which cells are not necessarily homeomorphic to a ball, (general) complexes.

4.3 Data Structures for Cell Complexes: An Overview

We classify the data structures for cell complexes in terms of:

1. the domain of the complexes they represent: manifold, pseudo-manifold, uni-
formly d-dimensional, etc.

2. the dimension: dimension-independent data structures can describe cell com-
plexes in any dimension, while dimension-specific data structures are for 2D
and 3D cell complexes embedded in the three-dimensional Euclidean space E

3.
3. the topological information encoded: in a cell complex, the basic topological

entities are the cells. A data structure may encode all the cells of a complex, or
only a subset of them.

4. the way topological information is encoded: some data structures encode the
cells and their topological relations explicitly. In such data structures, the cells are
entities and the relations are associated with the entities. Implicit data structures
encode the relations among cells indirectly, through tuples of cells in the same
relation.

We organize the description of the various data structures on the basis of the
dimension of the complex they represent. We present a description of each data
structure in terms of the entities and topological relations it encodes, and we discuss
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it based on its expressive power and on the efficiency in supporting navigation inside
the complex (i.e., in retrieving topological relations not explicitly encoded). In ex-
plicit data structures, topological queries are based on cells. In contrast, in implicit
data structures, navigation is typically performed by considering tuples of cells as
the atomic units.

For the sake of brevity, we review only data structures for cell complexes. A re-
view of data structures for simplicial complexes can be found in [10].

4.4 Dimension-Independent Data Structures

In this section, we discuss dimension-independent data structures for cell com-
plexes. We review first two dimension-independent implicit representations for man-
ifold shapes, namely the Cell-Tuple [6] and the n-G-map [23] data structures, and
the Incidence Graph (IG) [13], a general data structure for arbitrary cell complexes
in any dimension.

A Cell-Tuple [6] is a representation for Euclidean cell complexes with a manifold
domain, while the n-G-map [23] has been developed for abstract cell complexes
belonging to the class of quasi-manifolds, which is a superclass of combinatorial
manifolds. In essence, however, the Cell-Tuple and the n-G-map data structures are
equivalent in terms of the entities and relations they encode. Here, we describe, for
brevity, only the Cell-Tuple data structure.

Given a Euclidean d-dimensional cell complex, a cell-tuple is a (d + 1)-tuple
t of d + 1 cells, t = (c0, c1, . . . , cd), such that ci is an i-cell on the boundary of
cells ci+1 to cd . A function si for i = 0, . . . , d , called a switch function, is defined
on the cell-tuples such that t ′ = si(t) if the (unique) cell-tuple t ′ is identical to t in
every element except the i-th one. The functions si partition the set of cell-tuples
into equivalence classes of size 2 each. The si functions have the following two
properties:

• for i = 0, . . . , d , si is an involution, that is, given a cell-tuple t , si(si(t)) = t ;
• for i = 0, . . . , d − 2 and i + 2 ≤ j ≤ d , sisj , where sisj (t) = sj (si(t)), is an

involution, that is, sisj (sisj (t)) = t .

Figure 4.3(a) provides a simple example of a cell complex defined on a surface
without boundary. The cell complex is composed of two internal 2-cells A and B ,
and of the 2-cell C. Figure 4.3(b) shows all the tuples in small squares, and all the
si (i = 0,1,2) functions. Two tuples are related by function s0 if they are connected
through a dotted line, by s1 if connected by a thin solid line, or by s2 if connected
through a dashed line.

The Cell-Tuple data structure encodes all the cell-tuples in a complex, and the
switch functions si for i = 0, . . . , d . It is an implicit data structure because the cells
and their mutual topological relations are implicitly represented by the cell-tuples.

It can be shown that all topological relations can be retrieved efficiently from the
Cell-Tuple data structure. As an example, consider the retrieval of relation R0,2(5)
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Fig. 4.3 A simple cell complex on a surface homeomorphic to a sphere. The complex is composed
of triangle A, square B and the external 2-cell C on the surface (a). All the tuples and all the switch
functions si (i = 0,1,2) encoded by the Cell-Tuple data structure (b). All the boundary relations
encoded in the IG (c)

for vertex 5 in Fig. 4.3, which consists of all the 2-cells that are incident in vertex 5.
The retrieval starts with any of the tuples that include vertex 5, such as (5, a,C).
By alternately applying functions s2 and s1 to each new tuple visited, the cyclic
sequence (5, a,C), (5, a,B), (5, f,B), (5, f,A), (5, e,A), (5, e,C) is obtained,
which produces the set of 2-cells {A,B,C} that are incident in vertex 5.

The Incidence Graph (IG) [13] is an incidence-based explicit data structure for
cell complexes. The incidence relations among cells that differ in dimension by one
are explicitly encoded. Formally, the IG encodes all the cells of a cell d-complex Γ ,
and for each p-cell γ in Γ , its immediate boundary, and immediate co-boundary
relations, namely:

• for each p-cell γ , where 0 < p ≤ d , boundary relations Rp,p−1(γ );
• for each p-cell γ , where 0 ≤ p < d , co-boundary relations Rp,p+1(γ ).

Figure 4.3(c) gives an example that illustrates the boundary relations encoded in the
IG in the form of a directed graph.

The design of the IG supports a simple recursive strategy to retrieve boundary
and co-boundary relations. Boundary relation Rp,q(γ ) (p > q) for a given p-cell γ

is obtained by retrieving the encoded boundary Ri,i−1 relations of all the i-faces for
i = p, . . . , q + 1 of γ . Co-boundary relation Rp,r (γ ) (p < r) is obtained by retriev-
ing the encoded co-boundary Ri,i+1 relations of all the i-cells for i = p, . . . , r − 1
in the star of γ . The retrieval of any relation for a cell γ can be done in time linear
in the number of cells in the star or on the boundary of cell γ .

The IG has been used as the underlying framework for the implementation of
Selective Geometric Complexes (SGCs) [33], which describe arbitrary-dimensional
non-manifold objects through collections of mutually disjoint (not necessarily topo-
logical) cells defined as open subsets of d-manifolds. A simplified and more space
efficient versions of the incidence graph for simplicial complexes in arbitrary dimen-
sion have been proposed in [9] and [8]. Another concise instance of the Incidence
graph for cell 2-complexes is the Adjacency and Incidence Framework (AIF) [36].
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4.5 Data Structures for Two-Dimensional Cell Complexes

In this section, we discuss data structures for two-dimensional cell complexes em-
bedded in the 3D Euclidean space. We classify them according to the taxonomy
introduced in Sect. 4.3, and organize their description in two subsections according
to the domain of the complexes (manifold or non-manifold).

4.5.1 Representing Manifold 2-Complexes

Here, we briefly review the Star-Vertex [19], the Winged-Edge [3], the Doubly-
Connected Edge List (DCEL) [31], the Half-Edge [27] the Quad-Edge [16] and
the Lath-based [18] data structures. The Winged-Edge, DCEL and the Half-Edge
data structures are all edge-based representations, since they represent the edge as
the primary entity and the relations around it. The Quad-Edge and the Lath-based
data structures are implicit representations. A thorough analysis and comparison of
data structures for manifold cell 2-complexes can be found in [34].

The Star-Vertex (SV) data structure [19] is an adjacency-based data structure for
manifold planar cell 2-complexes. In terms of topological relations, the Star-Vertex
data structure encodes relation R0,0 explicitly. Relation R2,0(f ) is partially encoded
since face f is implicitly described through one of its vertices. The Star-Vertex data
structure only supports the retrieval of R2,0 relation and R0,0 relation efficiently.
Co-boundary relations cannot be retrieved locally. In terms of storage cost, it is the
most economical of the data structures for cell 2-complexes, but it does not have the
full navigation capability as the other data structures.

The Winged-Edge (WE) data structure [4] is the first one proposed for two-
dimensional cell complexes. It encodes: (i) for each edge e, its two vertices, the
two faces incident in e, and the four edges that are both adjacent to e and are on
the boundary of the two faces incident in e (see Fig. 4.4(a)); (ii) for each face f , a
reference to one edge on the boundary of f ; (iii) for each vertex v, a reference to
one edge incident in v. It supports the retrieval of all topological relations efficiently.
The cells in the star of a vertex or on the boundary of a face can be traversed in both
clockwise or counterclockwise direction.

The Doubly-Connected Edge List (DCEL) data structure [31] is a simplified ver-
sion of the WE representation, though it has been developed independently. For each
edge e, instead of encoding all four edges on the boundary of the two faces incident
in e (see Fig. 4.4(b)), it stores only two edges, one for each of the two faces incident
in e. The DCEL supports the traversal of all topological relations, but only in coun-
terclockwise direction in the star of a vertex, and in clockwise direction around the
boundary of a face.

The Half-Edge (HE) data structure [27] encodes two copies of each edge, each
of which is called a half-edge. A half-edge has a direction with respect to the face
which it bounds. For each half-edge, the following information is encoded: its start
vertex, the face associated with it, the previous and the next edges on the same face,
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Fig. 4.4 Edge-based relations represented in the edge-based data structures: (a) In the
Winged-Edge data structure, e has a reference to e1, e2, e3, e4, u, v, f1 and f2. (b) In the DCEL,
e has a reference to e2, e3, u, v, f1 and f2. (c) In the Half-Edge data structure, each edge e is
represented as two half-edges he and he′. Half-edge he has a reference to he′, he1, he2, u and f1

the companion half-edge (see Fig. 4.4(c)). Relations encoded at vertices and faces
are the same as those encoded in the Winged-Edge and DCEL data structures. The
Half-Edge data structure supports the efficient retrieval of all topological relations,
and also the cells in the star of a vertex or on the boundary of a face can be traversed
in both clockwise or counterclockwise directions. The Handle-Edge data structure
in [24] extends the Half-Edge data structure to manifold surfaces with boundary. It
includes also an explicit representation of vertices, edges and faces.

All the edge-based data structures presented in this section encode, for each edge,
relations R1,0 and R1,2, different partial R∗

1,1 relations, since only two or four edges
adjacent to a given edge e are encoded, a partial R∗

0,1 relation for each vertex, which
consists of one edge in the star of the vertex, and a partial R∗

2,1 relation for each face,
which consists of one edge on the boundary of the face. All these data structures
support the efficient retrieval of all topological relations.

The Quad-Edge data structure [16] and the Lath-based data structure [18] are
implicit data structures for cell 2-complexes with a manifold domain. In such com-
plexes, edges in the star of each vertex can be ordered radially around the vertex,
and the edges on the boundary of a face can be ordered clockwise or counterclock-
wise around the face. Thus, each edge belongs to four loops: the two at its extreme
vertices, and the two at the faces sharing it. Such representations exploit this prop-
erty.

In the Quad-Edge data structure, each quad-edge is associated with its two ex-
treme vertices, its two adjacent faces and the next edges in its four loops. Basically,
the Quad-Edge data structure encodes the same information as the Winged-Edge
data structure. In a quad-edge that corresponds to edge e, the four adjacent edges
of e are organized as part of the two loops around two faces, and two loops around
two vertices. In the Winged-Edge data structure, the same four edges belong to the
two loops of the two faces. Relations encoded at vertices and faces are the same
as in the Winged-Edge data structure. As the other edge-based data structures, the
Quad-Edge data structure encodes partial relations R∗

2,1 for each face, partial rela-
tion R∗

0,1 for each vertex, complete relations R1,0, R1,2 and a partial relation R∗
1,1

for each edge. As in the other edge-based representations, all topological relations
can be retrieved efficiently.
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The Lath-based data structures are a collection of data structures that use vertices
and laths as the basic elements. Each lath is uniquely identified with exactly one
vertex, one edge and one face of a complex. A lath is conceptually similar to a
cell-tuple. The Lath-based data structure requires no separate records for edges and
faces. There are three variations in the encoding of a lath, giving rise to three data
structures: the Split-Edge, the Half-Edge-Lath and the Corner data structures, which
differ in the topological entities associated with a lath.

In the Split-Edge data structure, each lath corresponds to one side of an edge and
encodes a link to its start vertex, a link to the lath of the other side of the same edge,
and a link to the lath of the next edge in the clockwise direction on the same face.
In the Half-Edge-Lath data structure, each lath is associated with half of an edge. It
encodes a link to its vertex, a link to the lath of the other half of the same edge, and
a link to the lath of the next edge in the clockwise direction around the same vertex.
In the Corner data structure, a lath is associated with one corner of a vertex. Each
lath encodes: a link to the associated vertex, a link to the lath of the next vertex in
the clockwise direction on the same face, and a link to the lath of the next face in
the clockwise direction around the same vertex.

All Lath-based data structures support the retrieval of all topological relations
through laths in time linear in the entities involved in the relations. However, because
of the implicitness of the faces, edges and vertices, access from these cells to their
associated laths is not efficient.

4.5.2 Representing Non-manifold 2-Complexes

We review data structures for non-manifold shapes discretized as cell complexes.
The first data structure proposed in the literature for 2-complexes is the Radial
Edge (RE) data structure [40], which has been extended and specialized in [17, 44].
More recent simplified representations are the Partial Entities (PE) data struc-
ture [21] and the Loop Edge-use (LE) data structure [30]. The PE data structure
has the same representation power as the RE, but it is considerably more com-
pact. The LE data structure is a specialization of the RE data structure to encode
uniformly 2-dimensional cell complexes. The Handle-Cell data structure [32] is
based on the concept of stratification (the decomposition of the boundary of a non-
manifold 3D shape into manifold parts). We describe here the Radial-Edge data
structure, its variant the Partial-Entity data structure, and the Handle-Cell data struc-
ture.

The Radial Edge (RE) data structure [40] has been developed to describe the de-
composition of the boundary of non-manifold three-dimensional objects, composed
of parts of different dimensions. This decomposition is not a cell complex as de-
fined in algebraic topology, since the 2-cells are not necessarily homeomorphic to
2-balls, but they can be multiply connected 2-manifolds with boundary, mappable to
a plane. The connected components formed by the edges bounding any 2-cell (face)
are called loops or rings. The entities in the RE data structure are thus: regions,
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Fig. 4.5 An illustration of the entities in the RE data structure: Three shells exist in a complex de-
scribing two hollow cubes sharing a common face (a); Each face f has two face-uses fu and f ′

u (b);
Each face-use on the inner shell of a cube is bounded by a loop-use which is composed of a circular
list of edge-uses (c); Vertex v shared by three faces (d), and the vertex-uses vu, v′

u and v′′
u that start

at v (e)

shells, faces, loops, edges and vertices. A region is a solid object, which is bounded
by a collection of shells. (In Fig. 4.5(a), there are three shells on a shape of two
hollow cubes sharing a face.) A shell is an oriented boundary surface of a region,
consisting of maximal connected sets of faces. In addition, faces, loops, edges and
vertices are characterized by orientations, namely face-uses, loop-uses, edge-uses
and vertex-uses. A face f has two face-uses associated with it, which correspond
to the two possible orientations of f (see Fig. 4.5(b)). The oriented boundary of
a face-use is described by loop-uses. A loop-use is composed of a circular list of
edge-uses. Each edge-use associates an edge e with the orientation induced on e

by the face-use to which it belongs. Thus, an edge-use represents the association
between an edge and a face-use (see Fig. 4.5(c)). A top 1-simplex, called a wire-
edge, is described by two edge-uses forming a loop that connects the two bound-
ary vertices of the wire-edge. Since each edge is bounded by two vertices, each
edge-use is associated with a vertex-use. Thus, a vertex-use describes the associ-
ation between a vertex and an edge-use that originates from it (see Figs. 4.5(d)
and (e)).

Here, we present, for clarity, a simpler version of the RE data structure for rep-
resenting an object described by a connected cell 2-complex, in which the 2-cells
are homeomorphic to disks, and there are no isolated vertices. Thus, every face is
bounded by exactly one loop. This simple version of the RE data structure does not
contain high-level topological elements, namely, regions, and shells, but it has the
following entities: faces, edges, vertices, face-uses (which also capture their oriented
boundaries originally described by loop-uses), edge-uses and vertex-uses.

The RE data structure can be formalized in terms of topological relations as fol-
lows (note that the formalization does not take into account the orientations captured
by face-uses, edge-uses and vertex-uses):

• for each face f : partial relation R∗
2,1(f ), consisting of one edge on the boundary

of f ,
• for each edge e:

– relation R1,2(e), in which the faces are ordered around e;
– partial relation R∗

1,1(e), defined as the collection of the pair of edges adjacent
to e and bounding the faces incident in e, ordered around e, so that both the
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2i-th element and the (2i + 1)-element in this relation belong to the i-th face
in R1,2(e);

– relation R1,0(e), ordered by the indices of the vertices;
• for each vertex v: relation R0,1(v), unordered.

Relations R1,2(e), R∗
1,1(e) and R1,0(e) for edge e describe the information en-

coded at edges. R1,2(e) describes the relation between an edge and a face defined by
an edge-use. Relation R∗

1,1(e) captures the association between an edge-use ep and
the edges following and preceding ep on the boundary of the face f with which ep

is associated. The adjacency of edge-uses at the same edge e is implicitly expressed
through the order in R∗

1,1(e). It can be shown that all topological relations can be
retrieved efficiently from the RE data structure.

The primary difference between the RE and the Partial Entities (PE) data struc-
ture [21] is that the PE data structure considers each face to have one orientation
geometrically defined based on its face normal. The orientation of its boundary can
thus be uniquely defined. In the RE data structure, a face entity is without orienta-
tion. The face-uses of the RE data structure describe all the possible orientations of
each face. In the RE data structure, the connectivity among the faces, edges and ver-
tices is defined through face-uses, edge-uses and vertex-uses. In the PE data struc-
ture, the connectivity among faces, edges and vertices is captured at the faces, at
partial-edges and at partial-vertices. The PE data structure encodes the same rela-
tions as the RE data structure, with the exception of R0,1(v) relation at vertex v,
which is partially encoded in the PE, but fully encoded in the RE. All topological
relations can be retrieved efficiently from the PE data structure. In [21], an imple-
mentation of the PE data structure is presented that has half the storage cost of the
RE data structure for non-manifold cell 2-complexes, and uses twice as much space
as that of the winged-edge data structure for manifold cell 2-complexes.

Another way to represent non-manifold shapes consists of decomposing them
into manifold, or nearly-manifold, components, called strata (see [41] for stratifi-
cations of analytic sets). In [32], a combinatorial stratification of a cell 2-complex
Γ describing the boundary of a 3D non-manifold shape is defined as a collection of
k-dimensional connected combinatorial manifolds S = {M1, . . . ,Mn} (k = 0,1,2)
with or without boundary such that the union

⋃
i Mi gives Γ and each non-empty

intersection between two elements Mi and Mj in S is a sub-complex of both Mi

and Mj . The resulting set of strata and their connectivity provides a description of
the original shape which is used as the basis for the Handle-Cell (HC) data struc-
ture. It consists of the global cells, which are the cells of Γ , and the local cells,
which are the cells that describe the strata (points, curves and surfaces). The con-
nectivity among the strata is captured through the sharing of global cells (vertices
and edges).

The HC data structure can be formalized in terms of topological relations as
follows:

• for each face f : partial relation R∗
2,1(f ) which consists of one edge on the bound-

ary of f ,
• for each edge e:
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– relation R1,2(e), which consists of all faces incident in e;
– partial relation R∗

1,1(e), ordered around edge e, so that both the 2i-th element
and the (2i + 1)-element in this relation are on the i-th face of e;

– relation R1,0(e), which consists of the extreme vertices of edge e;
• for each vertex v: relation R0,1(v), which consists of the set of edges incident

in v.

Since strata are 2-complexes with a manifold domain, surfaces are represented
through the Half-Edge data structure. This is conceptually similar to the represen-
tation of the surfaces of the 3-cells in the Handle-Face (HF) data structure (see
Sect. 4.6). The Handle-Cell data structure is also similar to the data structures for
non-manifold 2-complexes, such as the Radial Edge data structure and Partial Enti-
ties data structure. The primary difference is that in the Handle-Cell data structure
stratification is explicitly encoded.

4.6 Data Structures for Three-Dimensional Cell Complexes

In this section, we discuss representations for three-dimensional cell complexes
embedded in the three-dimensional Euclidean space E

3. There are relatively few
representations for describing 3D shapes discretized as a cell 3-complex. Most of
such representations are limited to the manifold domain. Representations for man-
ifold cell complexes are the Facet-Edge [11] and the Handle-Face [25] data struc-
tures.

The Facet-Edge (FE) data structure [11] is a 3D extension of the quad-edge
data structure developed for cell 2-complexes (see Sect. 4.5.1), and thus it is an
implicit representation for manifold cell 3-complexes. The basic entities encoded in
the Facet-Edge data structure are the vertices and the so-called facet-edges defined
on the 2-cells and 1-cells (faces and edges). The three-dimensional cells and their
topological information are encoded through the topological vertex-based relations
of the dual complex to the given one. The 0-cells of the dual complex correspond
to the 3-cells of the original complex, its 1-cells to the faces, its 2-cells to the edges
and its 3-cells to the vertices.

The boundary of each face f contains a ring of edges e1, . . . , en. This ring is
called a face-ring, and may be ordered in two directions. The star of an edge e

contains a ring of faces f1, . . . , fm. This ring is called an edge-ring and can also
be ordered in two directions. A facet-edge pair uniquely associates a face f with
an edge e on the boundary of f . Each facet-edge pair exists in four versions. Each
version is associated with exactly one face-ring of f and exactly one edge-ring of e.
Each version of a facet-edge has its dual which is defined in the dual complex. For
the cell complex in Fig. 4.6(a), the four edges in the face-ring of face f1 are shown
in Fig. 4.6(b), and the four facet-edges formed by face f1 and edge e1 are shown in
Figs. 4.6(c)–(f).

The Facet-Edge data structure describes a complex Γ by encoding, for each
facet-edge pair a associated with edge e in a face-ring and with face f in an edge-
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Fig. 4.6 An illustration of the concept of facet-edge: a model of two cubes (a); three edges incident
in face f1 (b); the four facet-edge pairs formed by face f1 and edge e1 (c–f)

ring, the preceding and succeeding facet-edges in both the face-ring and the edge-
ring of a. For the example in Fig. 4.6(a), the successors of (f1, e1) in the face-
ring of e1 in both directions are respectively (f2, e1) and (f3, e1). In Fig. 4.6(b),
the successors of (f1, e1) in both directions in the edge-ring of f1 are (f1, e2)

and (f1, e3).
In terms of topological relations, the FE data structure encodes relation R2,1 in

the form of edge-rings, relation R1,2 in the form of face-rings, partial relation R∗
1,1

in the form of edge-rings, relations R1,0 and R2,3 implicitly as the incident vertices
of the edges, relation R0,1, and relation R3,2 (implicitly, as R0,1 relation of the dual
complex). It can be shown that topological relations can be efficiently retrieved from
the FE data structure.

The Handle-Face (HF) data structure [25] is an explicit representation for man-
ifold cell 3-complexes. It is similar to the RE and the PE data structures (see
Sect. 4.5.2), since the 3-cells of the 3-complex are described in the HF data structure
through their boundaries, made by faces, edges and vertices. The HF data structure
contains two types of entities: the basic entities, which are the faces, edges and
vertices in the cell complex, and the surface entities, which describe the boundary
of each 3-cell of the complex. The HF data structure further distinguishes between
surface entities that are on the boundary of the entire manifold shape and surface
entities that are in the interior. Here we present a simplified version of the HF data
structure in which the surface entities simply describe the boundary of each 3-cell.
The surface entities are surfaces, surface edges and surface vertices.

Figure 4.7 illustrates the entities in the HF data structure. Figure 4.7(a) shows all
the faces, edges and vertices in a cell complex that is composed of two 3-cells. Fig-
ure 4.7(b) shows the half-faces, surface-edges and surface-vertices on the surface of
each 3-cell of Fig. 4.7(a). Figure 4.7(c) shows the surface-oriented edges bounding
each half-face shown in Fig. 4.7(b).

The HF data structure encodes the following topological relations:

• For each face f , partial R∗
2,1(f ) relation, which encodes one edge bounding

face f ;
• For each edge e, relation R1,2, which encodes all faces around e, radially ordered

around e; partial R∗
1,1(e) relation, which encodes for each face f incident in e the

edge following e on the boundary of f ; and relation R1,0(e), which encodes the
two vertices incident in edge e;
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Fig. 4.7 A 3-complex with two cubic 3-cells, composed of 11 faces, 20 edges, and 12 vertices (a);
There are 12 half-faces, 24 surface-edges, and 16 surface vertices in the whole complex (b); Sur-
face-oriented edges of the two 3-cells (c)

• For each vertex v, partial relation R∗
0,1(v), which encodes one edge incident in

vertex v.

The 3-cells are not represented explicitly in the HF data structure. The drawback
is that no attribute can be attached to the 3-cells. Also, the HF representation encodes
the same relations as in the RE and PE data structures. On the other hand, unlike the
RE and the PE data structures, the HF data structure cannot represent shapes with
dangling edges or faces, or 3D shapes with non-manifold vertices and edges. As all
representations which encode orientations by duplicating the basic entities, the HF
data structure is quite verbose. All topological relations at faces, edges and vertices
can be retrieved efficiently from the HF data structure, and the representation of
surface entities allows retrieving the boundaries of the 3-cells even if these latter are
not explicitly represented.

The Compact Half-Face (CHF) data structure [20] is a specialization of the
HF data structure for representing manifold simplicial 3-complexes (usually called
tetrahedral meshes).

4.7 Manipulation Operators on Cell Complexes: An Overview

Manipulation operators that we will review in the rest of the chapter can be classified
based on the type of the complexes they apply to into:

• operators on simplicial complexes, such as
– edge collapse/vertex-pair collapse;
– stellar operators;

• operators on cell complexes, such as
– handle operators;
– Euler operators.

We will focus our attention on Euler operators on cell complexes. In this section,
we will review edge collapse/vertex-pair collapse operators and stellar operators on
simplicial complexes, and handle operators on cell complexes.
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Fig. 4.8 A portion of a simplicial 2-complex with edge e = (p′,p′′) (a); after half-edge col-
lapse (b); after full-edge collapse (c)

4.7.1 Collapse Operators on Simplicial Complexes

Triangle and tetrahedral meshes (simplicial 2- and 3-complexes, usually with man-
ifold domain) have been used for approximating 2D and 3D objects in E

3. Simpli-
fication and modification of such meshes is an important task, aimed at reducing
the size of densely sampled models, or at improving mesh quality, by obtaining
meshes where the top simplexes (triangles in 2D and tetrahedra in 3D) satisfy some
geometric constraints (concerning e.g. aspect ratio, size, diameter).

In the literature, there have been many approaches to the updating of simplicial
complexes. The most common update operators for simplicial complexes are edge
collapse, which is based on contracting an edge to one of its extreme vertices, or
to a new vertex, and vertex-pair collapse, which collapses two vertices that are not
connected through an edge, together with the inverse refinement operators called
vertex split.

Edge collapse is a simplification operator. It contracts an edge e = (p′,p′′) to a
vertex: either to one of its endpoints, e.g. p′ (half-edge collapse), or to a new ver-
tex p (full-edge collapse). Half-edge collapse modifies the simplexes in the star of
vertex p′′, while full-edge collapse modifies the simplexes in the star of both ver-
tex p′ and p′′. The effect of the half-edge collapse is that the n-simplexes incident
in edge e become (n − 1)-simplexes incident in vertex p′. Other simplexes inci-
dent in vertex p′′ become incident in p′. The effect of the full-edge collapse is that
the n-simplexes incident in edge e become (n − 1)-simplexes incident in vertex p.
Other simplexes incident in either vertex p′ or p′′ become incident in p. Figure 4.8
illustrates the edge collapse operator in 2D.

Vertex split is a refinement operator, inverse to edge collapse. Full-vertex split
expands a vertex p into two new vertices p′ and p′′, and an edge e = (p′,p′′). Half-
vertex split expands a vertex p′ into vertex p′, new vertex p′′, and edge e = (p′,p′′).

Vertex-pair collapse merges two vertices that are not connected through an edge,
and is called also virtual edge collapse. Its effect is to collapse the virtual edge
joining the two vertices. This operator does not change the number of triangles in
the mesh, but it updates the triangles incident in the collapsed vertices. This op-
erator may merge two components into one (if the two merged vertices belong to
different components), or it may create or destroy a hole (if the two merged ver-
tices belong to the same component). Vertex-pair collapse operator is illustrated in
Fig. 4.9.
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Fig. 4.9 Vertex-pair collapse operator may merge two components into one (a); destroy a hole (b);
create a hole (c); not change the topology of the mesh (d)

4.7.2 Stellar Operators

A class of operators on simplicial complexes introduced in [38] are called stellar
operators. They are motivated by the work in [22] on stellar subdivision theory.
Stellar operators are defined in arbitrary dimensions. They change the local neigh-
borhood of a simplex in a simplicial complex, but they do not affect the topology of
the complex.

In [38], two types of stellar operators in the 2D case are defined, called split
(and its inverse weld) and flip. Split (stellar subdivision) operators are refinement
operators, the inverse weld operators are simplification operators. Flip (bistellar)
operators change the connectivity of the simplicial complex, but they do not alter
the number of simplexes in the complex. Each flip operator can be expressed through
split and weld operators.

In 2D, there are two instances of the split operator, namely face split and edge
split. Face split inserts a new vertex p inside a triangle t , and connects it to the three
vertices of t . Edge split introduces a new vertex p in the interior of an existing edge
e splitting it in two, and it splits also the two triangles incident in e (in the star of e)
by connecting the new vertex to the vertices in the link of e. Face and edge split
operators are illustrated in Figs. 4.10(a) and (b), respectively.

The inverse weld operators are simplification operators. A vertex weld opera-
tor may be applied on a vertex of degree three (incident in exactly three edges). It
deletes the vertex, the three edges incident in it, and it merges the three triangles
incident in the vertex in one triangle. An edge weld operator may be applied on a
vertex of degree four. It deletes the vertex and two non-consecutive edges incident
in it (in a cyclic order), thus merging two pairs of triangles incident in the vertex.

The edge flip operator deletes one edge e in the complex, and replaces it by
another edge, which connects the two vertices in the link of the deleted edge e. The
edge flip operator is illustrated in Fig. 4.10(c).

Fig. 4.10 A portion of a simplicial 2-complex before and after a face split (a), edge split (b), and
edge flip operator (c)
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4.7.3 Handle Operators

The handle operators on a manifold cell 2-complex Γ triangulating a surface S

have been introduced in [24]. They are based on the handlebody theory for surfaces,
stating that any surface S can be obtained from a 2-ball by iteratively attaching
handles (0-, 1- and 2-handles).

The initialization operator in [24] corresponds to attaching a 0-handle. It creates
a new surface with one face, three edges and three vertices.

There are three operators that correspond to attaching a 1-handle. They identify
two boundary edges of Γ (incident in exactly one face) with no vertices in com-
mon. If the two identified edges belong to two different components of Γ , then the
number of connected components and of boundary curves (connected components
of boundary edges) in Γ is decreased by one. If the two identified edges belong to
the same component and the same boundary curve of Γ , then the number of holes
(independent 1-cycles) and the number of boundary curves in Γ is increased by 1. If
the two identified edges belong to the same component and two different boundary
curves of Γ , then the number of holes (independent 1-cycles) is increased by 1, and
the number of boundary curves in Γ is decreased by 1.

The operator that corresponds to the attachment of a 2-handle identifies two
edges on the boundary of Γ with two vertices in common. It decreases the number
of holes and the number of boundary curves in Γ by 1. Another operator, which
does not alter the topology of Γ , identifies two edges on the boundary of Γ that
have one vertex in common.

The analogous work in 3D in [25] uses the fact that each compact orientable
3-manifold S can be obtained by iteratively attaching handles (0-, 1-, 2- and
3-handles) to a 3-ball. Operators that correspond to handle attachments are called
Morse operators in [25].

Operator that creates a new 3-ball (initialization operator) corresponds to the
attachment of a 0-handle. Other operators identify two boundary faces (incident in
exactly one 3-cell) of a cell 3-complex Γ triangulating a solid S.

The attachment of a 1-handle can be applied in three situations: if the two iden-
tified boundary faces are on different connected components of Γ , then the two
components are merged into one; if the two identified faces belong to the same
boundary surface component of Γ (connected component of boundary faces) and
have no edges in common, then a hole is created; if the two identified faces belong
to different boundary surfaces of the same connected component of Γ , the operator
can be realized only if Γ is embedded in a space of dimension greater than 3.

The attachment of a 2-handle corresponds to identifying two faces on the same
boundary surface component of Γ that have some edges in common. The operator
can create cavities and/or close holes in Γ .

The attachment of a 3-handle is applicable if the two identified faces belong to
the same boundary surface component and have all edges in common. This operator
fills in the cavity formed by the two identified faces.
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4.8 Euler Operators on Cell Complexes: An Overview

In this section, we review the Euler-Poincaré formula for cell complexes, and for
complexes in which the cells are not necessarily homeomorphic to a ball, that we
have called general complexes. The operators on such complexes, which maintain
the validity of Euler-Poincaré formula, are called Euler operators. We give a taxon-
omy of Euler operators and we review Euler operators MEV, MEF and MEKR, that
are most commonly used in the applications.

4.8.1 Euler-Poincaré Formula for Cell Complexes

The Euler-Poincaré formula expresses the necessary validity condition of a cell
complex with manifold or non-manifold carrier [1]. The Euler-Poincaré formula
for a cell d-complex Γ (with or without boundary, of homogeneous or non-
homogeneous dimension) with ni i-cells states that

d∑
i=0

(−1)ini = n0 − n1 + · · · + (−1)dnd =
d∑

i=0

(−1)iβi

= β0 − β1 + · · · + (−1)dβd .

Here, βi is the i-th Betti number of Γ . It measures the number of independent non-
bounding i-dimensional cycles in Γ . The alternating sum n0 − n1 + · · · + (−1)dnd

of the number of i-cells in Γ is denoted as χ(Γ ), and is called the Euler-Poincaré
characteristic of Γ .

If Γ is a (manifold or non-manifold) cell complex embedded in E
3, then β3 = 0

and the number of 0-cells (vertices), 1-cells (edges), 2-cells (faces) and 3-cells (vol-
umes) is usually denoted as v, e, f and c, respectively. For a cell 3-complex in E

3,

v − e + f − c = β0 − β1 + β2. (4.1)

For a cell 2-complex in E
3, also c = 0 and

v − e + f = β0 − β1 + β2. (4.2)

Intuitively, in E
3, β0 is the number of connected components, β1 is the number

of holes (non-bounding 1-cycles), and β2 is the number of cavities (non-bounding
2-cycles) in Γ .

For a manifold cell 2-complex Γ whose carrier is the boundary of a solid object
in E

3 (a boundary representation), the Euler-Poincaré formula states that

v − e + f = 2(s − g). (4.3)

Here, s is the total number of shells (connected components of Γ ) and g is the genus
of the boundary surface.

If Γ is a cell 2-complex homeomorphic to a 2-sphere, then

v − e + f = 1 − 0 + 1 = 2. (4.4)

This formula is maintained by the operators in [4].
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If Γ is a cell 1-complex (a graph), also called a wire frame, then

v − e = β0 − β1. (4.5)

This formula is used in the approach in [42].

4.8.2 Euler-Poincaré Formula for General Complexes

The Euler-Poincaré formula has been extended to the case of general com-
plexes, in which cells are not necessarily homeomorphic to a ball, as discussed
in Sect. 4.2.

If Γ is a 3-complex, in which faces may be bounded by more than one ring of
edges but are mappable to a plane, and volumes may have cavities and holes, then
the Euler-Poincaré formula

v − e + (f − r) − (c − ch + cc) = β0 − β1 + β2 (4.6)

holds. Here, r is the total number of inner rings (loops) in the faces (2-cells) of Γ ,
ch is the total number of holes in the volumes (3-cells) of Γ , and cc is the total
number of cavities in the volumes (3-cells) of Γ . The operators in [28, 29] maintain
formula (4.6).

If Γ is a 2-complex embedded in E
3, in which faces may be bounded by multiple

rings, then

v − e + (f − r) = β0 − β1 + β2. (4.7)

The operators in [21] maintain formula (4.7).
If the carrier of Γ is the boundary of a solid object in E

3, then

v − e + (f − r) = 2(s − g). (4.8)

Here, s is the total number of shells (connected surface components) and g is the
genus of the boundary surface. The operators in [2, 5, 12, 26, 27] maintain for-
mula (4.8).

We note here that in the literature, the numbers β0, β1 and β2 are usually denoted
as C (the number of connected components), Ch (the number of complex holes)
and Cc (the number of complex cavities), respectively. The numbers c, ch and cc

are also denoted as V l (the number of volumes), V h (the number of volume holes)
and V c (the number of volume cavities), respectively.

4.8.3 Classification of Euler Operators

Euler-Poncaré formula can be regarded as the equation of a hyperplane (a subspace)
of dimension k − 1 in the discrete space (lattice) Zk , where k is the number of topo-
logical entities involved in the formula [27]. The basis of this subspace, i.e., the
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minimal set of independent vectors that span the hyperplane, has k − 1 indepen-
dent k-dimensional vectors. These vectors may be interpreted as operators, called
Euler operators, in which each coordinate corresponds to an entity in the Euler-
Poincaré formula. Each coordinate represents the number of the topological entities
introduced or removed from the model, depending on the sign of the coordinate. In
the literature, there have been many proposals for the basis vectors of this discrete
space, which correspond to Euler operators for updating complexes satisfying the
corresponding Euler-Poincaré formula.

We classify Euler operators acting on topological shape representations in the
form of a cell complex in three classes.

• Initialization operators, which create an initial (simple) model with few topolog-
ical entities. The initial model is created such that the Euler-Poincaré formula
involving those entities is satisfied. Initialization operators can also create a new
connected component in the model, thus increasing the zeroth Betti number β0.

• Topology preserving operators, which change the combinatorial description of
the model, but do not change its topology. They introduce or remove cells in the
cell complex Γ which is the topological model representing the object, but they
do not change the topology (expressed through the Euler-Poincaré characteristics
and the Betti numbers) of the complex.

• Topology modifying operators, which introduce or remove topological entities in
a way that changes the topology of the complex, but they do not influence the va-
lidity of the Euler-Poincaré formula. They change the topological characteristics
of the model expressed through the Betti numbers (e.g. connected components,
genus and cavities, i.e., the zeroth, first and second Betti number of the complex
embedded in E

3). Initialization operators may be considered as topology modify-
ing operators, as they create an initial model starting from the empty set.

4.8.4 MEV, MEF and MEKR Operators

We adopt the naming convention widely used for Euler operators. Letters M and K

stand for Make and Kill (create and delete) a topological entity. Kill operators are
inverse to the corresponding Make ones. They undo the effect of Make operators.
Despite the wide variety of the basis Euler operators proposed in the literature, some
of the operators are a part of virtually all of the bases. We will review here the
Euler operators that belong to the majority of the basis, and are common to most of
the proposals for building and updating cell complexes. These operators are called
MEV , MEF and MEKR.

MEV (Make Edge and Vertex) operator creates a new edge and a new vertex.
There are three instances of MEV operator, depending on the way the new edge and
vertex are introduced in Γ :

• an existing vertex is split in two vertices, connected through the new edge
(MEV1);
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Fig. 4.11 The instances of the MEV operator: MEV1 (a); MEV2 (b) and MEV3 (c)

Fig. 4.12 The instances of the MEF operator: MEF1 (a); MEF2 (b) and MEF3 (c). The MEKR
operator (d)

• the new vertex is incident in the new edge only (MEV2). The new edge may be a
wire edge, or it may be inside a face;

• the new vertex is introduced in the interior of an existing edge, splitting it in two
(MEV3).

MEV1 instance of the MEV operator is a generalization to cell complexes of the
half-vertex split operator, commonly used in mesh processing, and reviewed in
Sect. 4.7. The MEV operator is illustrated in Fig. 4.11.

MEF (Make Edge and Face) operator creates a new edge and a new face. In the
literature, three instances of MEF operator have been proposed:

• the new edge connects two different vertices on the same face, splitting the exist-
ing face in two (MEF1);

• the new edge is a loop edge, such that the endpoint of the new edge is an existing
vertex (MEF2). The new face may be introduced in the interior of an existing
face;

• an existing edge is expanded into a new edge and a new face, bounded only by
the new edge and the edge that has been split (MEF3).

The three instances of the MEF operator are illustrated in Fig. 4.12.
In the 2D manifold case, operators MEF1, MEF2 and MEF3 are dual to oper-

ators MEV1, MEV2 and MEV3, respectively, in the sense that duality exchanges
faces with vertices, and boundary with co-boundary. All the instances of the MEV
operators are common in practice, while among the MEF operators, the MEF1 is
the most commonly used.

Another topology preserving operator is used in many approaches to updating
complexes in which faces may be bounded by several rings (loops). It is called
MEKR (Make Edge, Kill Ring). It makes an edge connecting two vertices on two
distinct rings (loops) bounding the same face. The new edge belongs two times to
the face. The MEKR operator is illustrated in Fig. 4.12(d). This operator introduces
an edge in the model, and eliminates an inner ring in the face. The repeated use
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of this operator may produce a complex in which all faces are simply connected,
showing that Euler-Poincaré formulas (4.8) and (4.2) are consistent.

4.9 Euler Operators on Manifolds

We consider the various basis sets of Euler operators proposed in the literature for
modeling manifold cell complexes, and we analyze them in the order of increasing
complexity of the complex. The first approach to modeling polyhedral models (sur-
faces) homeomorphic to a 2-sphere and satisfying formula (4.4) has been proposed
in [4]. In this approach, only topology preserving operators are defined: MEV3 in-
stance of the MEV operator, and MEF1 instance of the MEF operator. We review
here the operators for modeling manifold 2-complexes of arbitrary topology. We re-
view also the splice operator, defined for manifold cell 2- and 3-complexes. It unifies
the various Euler operators, both topology preserving and topology modifying.

4.9.1 Euler Operators on Manifold 2-Complexes Bounding a Solid
(Boundary Representations)

We review the Euler operators that can manipulate a representation Γ of an ori-
entable manifold surface S bounding a solid object in 3D and satisfying Euler-
Poincaré formula (4.8) [5, 12, 26, 27]. We first review briefly the operators common
to all the approaches, and then we review in greater detail the operators defined for
specific approaches.

Topology preserving operators used in all the approaches are MEV and MEF
operators, described in Sect. 4.8. In [12], all three instances of the MEV operator are
used, under different names, but only its MEV1 instance (the new vertex is inserted
in an existing edge, splitting it in two) is in the set of basis operators. In [26], all
three instances of the MEV operators are used. In [27], the MEV1 and MEV2 (the
new vertex is connected to the new edge only) instances of the MEV operator are
used. In [5], MEV1 and MEV2 instances of the MEV operator are used.

The instance of MEF operator used in [5, 12, 26] is MEF1. It makes an edge and
a face, by connecting two existing vertices on the same boundary component of an
existing face, thus splitting the existing face in two. In [27], both MEF1 and MEF2
(the new face is bounded only by the new edge) instances of the MEF operator are
used.

MEKR operator, described in Sect. 4.8, is used in [5, 12, 27]. It may transform
each face of Γ into a topological 2-cell.

In [12], two topology modifying operators are defined:

• MEKFS (Make Edge, Kill Face and Shell) operator joins two vertices belonging to
two faces on two different shells through a new edge, merging the two faces into
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Fig. 4.13 The two instances of the MEKFS (Make Edge, Kill Face and Shell) operator: the new
edge joins two connected components (a) or kills a cavity (b). The MEH (Make Edge and Hole)
operator: the two joined vertices are on the same shell

Fig. 4.14 The two instances
of the glue operator: KFMH
(Kill Face, Make Hole) (a);
KFS (Kill Face and Shell) (b)

one face, and merging the two shells into one shell. It reduces by one the num-
ber β0 of connected components. MEKFS operator is illustrated in Figs. 4.13(a)
and (b).

• Glue operator merges two faces and deletes them both. It corresponds to the con-
nected sum operator on manifold surfaces. Two faces may be glued by the glue
operator if they have no inner rings (they are simply-connected), their outer rings
have the same number of vertices, and the two faces have no edges in common.
The glue operator deletes not only the two faces, but it deletes also all the edges
and vertices on the boundary of one of the deleted faces. There are two instances
of the glue operator, illustrated in Fig. 4.14.
– If the two glued faces belong to the same shell, a handle (genus) is created, and

the operator is called KFMH (Kill Face, Make Hole (Handle)).
– If the two glued faces belong to two different shells, one shell is deleted, and

the operator is called KFS (Kill Face and Shell).

The operator MEKR (Make Edge, Kill Ring), which connects two different rings
bounding the same face, thus producing faces that are topological cells, is also used.
MEF (Make Edge and Face), MEKR (Make Edge, Kill Ring) and MEKFS (Make
Edge, Kill Face and Shell) are grouped together into one operator, called ME (Make
Edge), since they all make an edge in the model.

In [5], the topology modifying operator is called MRKF (Make Ring, Kill Face).
It creates a ring and deletes a face from the model, by gluing a (simply connected)
face to another face, thus deleting one face and making an (inner) ring in another
face. It has two instances:

• KFMRH (Kill Face, Make Ring and Hole (Handle)) operator glues two faces
belonging to the same shell, thus making a handle in the surface.

• MRKFS (Make Ring, Kill Face and Shell) operator glues together two faces be-
longing to two different shells, thus merging two shells into one.

MRKF operator is similar to the glue operator in [12], but it imposes looser con-
ditions on the glued faces, and it deletes only one of the faces. In [5], the MEKFS
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(Make Edge, Kill Face and Shell) operator is also used. It is the same as the homony-
mous operator in [12]. Together with MEF (Make Edge and Face) and MEKR (Make
Edge, Kill Ring), it is grouped into a ME (Make Edge) operator, similar to [12].

The topology modifying operator in [26] is MEKFS (Make Edge, Kill Face and
Shell). It joins two faces by joining a vertex of each face through an edge, where the
new edge belongs twice to the new joined face. It has three instances. The first two
are the same as the two instances of the homonymous operator in [5, 12], illustrated
in Figs. 4.13(a) and (b). The third one occurs if the two joined faces belong to the
same shell. Then, a handle is created. The third instance of the MEKFS operator
is called MEHKF (Make Edge and Hole (Handle), Kill Face), and is illustrated in
Fig. 4.13(c).

Topology modifying operator MRKF (Make Ring, Kill Face) in [27] is the same
as MRKF operator in [5]. It glues two faces together, by making the boundary of
one face an inner loop of another face.

Euler operators have also been defined on face oriented data structures in [2]
and [43].

4.9.2 Splice Operator

The splice operator has been designed in 2D specifically for the Quad-Edge data
structure [16], and in 3D for the Facet-Edge data structure [11]. This operator has
a straightforward implementation in these data structures, and it unifies the various
Euler operators in a single operator.

The splice operator in 2D, proposed in [16], takes as argument two edges. De-
pending on the cycles the two edges belong to, the splice operator can be either
topology preserving or topology modifying. In the case when it is topology preserv-
ing, splice can be expressed through topology preserving Euler operators as a MEF
followed by KEV , or as a MEV followed by KEF. Thus, it either increases the num-
ber of faces by one and decreases the number of vertices by one, or it decreases the
number of faces by one and increases the number of vertices by one.

The splice operator in [11] extends the splice operator in [16] to the Facet-Edge
data structure. There are two instances of the splice operator: splice facet and splice
edge. The two operators are defined on the edge rings and the face rings of the
involved facet-edges, but they are not guaranteed to produce a valid complex.

Because of these drawbacks, another set of operators is introduced in [11]. The
splice operator in [16] is adapted to act on edges in the subdivision of a surface
bounding a 3-cell, and is defined and implemented through the Facet-Edge operator
splice edge. The meld operator is topology modifying. It glues two faces with equal
number of edges on their boundaries. If the two faces belong to different connected
components, the two components are merged. If the two faces belong to the same
component, a genus is created. It corresponds to the glue operator in [12], but it
deletes only one of the glued faces, not both of them.
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4.10 Euler Operators on Non-manifolds

Only a few approaches to the update operators on non-manifolds have been pro-
posed in the literature. The earliest approaches to solid modeling considered a wire-
frame model, which is a non-manifold cell 1-complex (a graph). In [42], a set of
operators on wireframes is defined: topology preserving operator is the MEV2 in-
stance of the MEV (Make Edge and Vertex) operator; topology modifying operator
is called ME (Make Edge), which either merges two components or creates a hole.
We review here Euler operators on non-manifold complexes in the order of increas-
ing dimension of the complexes on which they act: operators on 2-complexes, and
operators on 3-complexes.

4.10.1 Euler Operators for 2-Complexes

The first approach to modeling and updating the boundary of a non-manifold solid
object is introduced in [39]. The set of basis operators is not proposed, but a verbose
list of operators for updating such models is presented, and the change in the number
of topological entities (vertices, edges, rings, faces, shells, regions or volumes, and
models) is discussed for each operator.

In [21], the set of basis operators for a non-manifold 2-complex Γ satisfying the
Euler-Poincaré formula (4.7) is proposed.

Topology preserving operators are:

• MEV2 instance of the MEV (Make Edge and Vertex) operator, which makes a
new edge and a new vertex, incident in the new edge only (the new edge may
belong to a face or it may be a wire edge inside a shell);

• MVR (Make Vertex and Ring), which makes a vertex inside a face, creating a new
inner ring, consisting of a single vertex.

Topology modifying operators are

• MVC (Make Vertex and Connected Component), which makes a new connected
component, composed of the new vertex only;

• MECh (Make Edge and Complex Hole), which makes a new edge connecting two
existing vertices on the same connected component in the complex, and creates a
hole;

• MFKCh (Make Face, Kill Complex Hole), which makes a face, which fills in and
deletes an existing complex hole (cycle of edges);

• MFCc (Make Face and Complex Cavity), which makes a face filling in a loop of
edges that is not a cycle, and closes off a cavity.

Topology modifying operators in [21] are illustrated in Fig. 4.15.
In addition to this set of basis Euler operators, additional macro-operators are

introduced to ease the use of Partial-Entity data structure.

• SE (Split Edge) is the MEV3 instance of the MEV (Make Edge and Vertex) op-
erator. It inserts a new vertex in the interior of an existing edge, splitting it in
two.
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Fig. 4.15 Topology modifying operators in [21]: MVCc (Make Vertex and Cavity) (a); MECh
(Make Edge and Hole) (b); MFKCh (Make Face, Kill Hole) (c); MFCc (Make Face and Cavity) (d)

• MEF (Make Edge and Face) operator is its MEF1 instance. It inserts an edge in
the interior of an existing face by connecting two vertices on the same boundary
component of the face through the new edge, splitting the face in two.

• MEKR operator is described in Sect. 4.8. It is used to eliminate inner rings bound-
ing a face by creating a new edge, which connects two vertices on the same face,
but on two different boundary components of the face.

• MEKC makes a new edge, which connects two vertices on different shells, and
merges the two shells.

In [37], another basis set of Euler operators is proposed, operating on 2-com-
plexes satisfying the Euler-Poincaré equation v − (e − eh) + (f − f h + f c) =
β0 − β1 + β2, where eh, f h and f c are the number of edge holes (edges not in-
cident in any vertex, and not bounding any face), face holes (holes inside faces)
and face cavities (faces without boundary, i.e., not incident in any edge or vertex),
respectively.

Topology preserving operators are

• MEV2 and MEV3 instances of the MEV (Make Edge and Vertex),
• all three instances of the MEF (Make Edge and Face),
• MVKEh (Make Vertex, Kill Edge without boundary), which makes a vertex on an

edge without boundary, converting that edge to an edge with boundary,
• MVFh (Make Vertex and Ring), which makes an isolated vertex in a face, making

thus a ring (a 1-cycle) in the face,
• MVKFc (Make Vertex and Shell, Kill Face Cavity), which makes a vertex in a face

homeomorphic to a sphere, converting the face to a face with boundary,
• MEEhFFh (Make Edge without boundary and Face bounded by that edge), which

makes an edge without boundary, and a face bounded by that the edge, either
around some connected set of vertices (and edges), or inside a face, which be-
comes multiply connected.

Topology modifying operators are called MECh (Make Edge and Complex Hole)
and MFCc (Make Face and Complex Cavity). MECh makes a loop edge, bounded
by a single vertex, and it thus creates a 1-cycle in the complex Γ . MFCc makes a
face bounded by a single vertex, thus creating a 2-cycle in Γ .
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4.10.2 Euler Operators on 3-Complexes

In [29], the set of operators for updating a 3-complex Γ satisfying the Euler-
Poincaré formula (4.6) is proposed.

The topology preserving operator is the MEV2 instance of the MEV (make edge
and vertex) operator. The new edge connects the new vertex to an existing one.

Operators that modify the topology of initial cells, but do not modify the topology
of the underlying shape (and thus the Betti numbers of the complex decomposing
the shape), are

• MVR (Make Vertex and Ring), which makes a new isolated vertex inside a face,
and a new ring composed of a single vertex. It is the same as the homonymous
operator in [21],

• MVVc (Make Vertex and Volume Cavity), which makes a new isolated vertex in-
side a volume,

• MEVh (Make Edge and Volume Hole), which makes a new isolated edge (not
incident in any face) inside a volume.

These operators produce cells that are not topological cells.
Operators that change the global topological characteristics of the complex are

• MECh (Make Edge and Complex Hole), which makes an edge connecting two
existing vertices on the same connected component of edges, and makes a hole,

• MFKCh (Make Face, Kill Complex Hole), which makes a face that fills in a cycle
of edges,

• MFCc (Make Face and Complex Cavity), which makes a face that closes off a
cavity, and

• MVlKCc (Make Volume, Kill Complex Cavity), which makes a volume that fills
in a cavity.

The MECh, MFKCh and MFCc operators are the same as the homonymous opera-
tors in [21].

In [28], the operators in [29] are described in greater detail. In particular, three
types of the MEV2 instance of the MEV (Make Edge and Vertex) operator are con-
sidered, depending on the position of the existing vertex w that is connected to the
new edge: w does not belong to a face or a volume; w is in the interior of a face; w

is in the interior of a volume.
In addition to the basis Euler operators, other topological macro-operators are

introduced. The macro-operators can be expressed through the basis operators, and
they allow for the more flexible implementation of high-level operators. There are
two groups of the macro-operators.

• ME (Make Edge) operators. They make an edge connecting two existing vertices.
– If the two vertices are on the two different rings on the same face, the operator

merges the two rings (i.e., deletes one of the rings), thus decreasing the num-
ber r by one. This is the MEKR (Make Edge, Kill Ring) operator described in
Sect. 4.8.
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– If the two vertices belong to two different cavities inside the same connected
component, the two cavities are merged, and the number Cc of volume cavities
is decreased by one.

– If the two vertices belong to two different complexes (connected components)
in the model, the two complexes are merged, and the number C of connected
components is decreased by one.

• Split operators.
– Split edge operator is the MEV3 instance of the MEV (Make Edge and Vertex)

operator. It inserts a vertex in an existing edge, splitting it in two edges.
– Split face operator inserts an edge in an existing face, splitting it in two faces. It

is the same as the MEF1 instance of the MEF (Make Edge and Face) operator.
– Split volume operator inserts a face in an existing volume, splitting the volume

in two.

In [15], the operators in [29] have been extended to complexes called stratifica-
tions, in which cells, called strata, are defined by analytic equalities and inequalities.
The cells are not necessarily homeomorphic to a ball, and they may have incomplete
boundaries. We will review briefly only the operators acting on cells with complete
boundaries. Topology preserving operators are called cell subdividers and local hole
shapers. A cell subdivider subdivides an n-cell by inserting into it an (n − 1)-cell.
A local hole shaper merges a topological cell into an incident cell of higher dimen-
sion, changing the number of holes in the higher dimensional cell. Topology modi-
fying operators are called global hole shapers. A global hole shaper either attaches
or detaches a cell, thus creating or deleting a hole.

4.11 Discussion

We have presented a taxonomy for data structures that model cell complexes, and
classified such data structures according to the dimension of the complex they rep-
resent into dimension independent data structures, data structures for 2-complexes,
and data structures for 3-complexes. We have further classified the data structures
in each group according to the basic kind of the topological entities they represent.
Table 4.1 summarizes the characteristics of the data structures we reviewed accord-
ing to the proposed taxonomy. We have described each data structure in terms of the
entities and topological relations it encodes, and we have discussed it based on its
expressive power and on the efficiency in supporting navigation inside the complex.
Explicit data structures encode directly all cells in the complex, while implicit data
structures encode some relations among the cells in the complex. All data structures
support the retrieval of all topological relations in time linear in the number of topo-
logical entities involved in the relation. The only exception is the Star-Vertex data
structure. It retrieves efficiently only R2,0 and R0,0 relations, while the other topo-
logical relations are retrieved in time linear in the number of vertices in the complex.
We also distinguish between the data structures that represent manifold cell com-
plexes from the ones that model non-manifold complexes. A special class of cell
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Table 4.1 Characteristics of data structures

Data structure Domaina Method

Dimension-independent data structures

Cell-Tuple M Implicit

IG NM Incidence-based

Data structures for 2D models

Winged-Edge M Edge-based

DCEL M Edge-based

Half-Edge M Edge-based

Quad-Edge M Implicit

Lath M Implicit

Star-Vertex M Adjacency-based

RE NM Edge-based

PE NM Edge-based

HC NM Edge-based

Data structures for 3D models

Facet-Edge M Implicit

HF M Edge-based

aM = Manifold, NM = Non-manifold

complexes are simplicial complexes. Data structures for cell complexes can also be
used to represent simplicial complexes, but, because of the widespread use of such
complexes in the applications, specific data structures have been developed [10].

There is a vast literature on building and update operators on cell complexes.
Here, we have focused on Euler operators. These latter have been defined in the
literature for manipulating both manifold and non-manifold complexes. In our anal-
ysis, we have further classified them according to the dimension of the complex.
The summary of the most commonly used Euler operators is given in Table 4.2. As
we pointed out, the notion of a cell complex is not general enough to accommodate
all the requirements of modeling applications. Thus, in the literature, instead of cell
complexes, a more general type of complexes is considered. Usually, faces are not
supposed to be homeomorphic to a 2-ball, but are allowed to be multiply connected:
bounded by several rings of edges, but mappable to a plane. In some approaches,
also volumes are allowed to have through holes and cavities. We summarize the op-
erators that affect the complexes in which only faces may be multiply connected,
while volumes are topological 3-cells (homeomorphic to a 3-ball). In the last col-
umn of the table, the change in the number of topological entities is indicated for
each operator. It can easily be seen that all the operators maintain the validity of
the corresponding Euler-Poncaré formula. The entities appear in the tuples in the
same order as in the corresponding Euler-Poincaré formula. For general topology
preserving Euler operators MEV , MEF, and MEKR, which form part of almost all



4 Modeling and Manipulating Cell Complexes 139

Table 4.2 Characteristics of Euler operators

Euler operator Domaina Typeb Effect

General Euler operators

MEV M & NM TP e = e + 1, v = v + 1

MEF M & NM TP e = e + 1, f = f + 1

MEKR M & NM TP e = e + 1, r = r − 1

Manifold 2-complexes without boundary, v − e + (f − r) = 2(s − g)

MEKF—MEKFS M TM (0,1,−1,0,−1,0)

MEKF—MEHKF M TM (0,1,−1,0,0,1)

Glue—KFMH M TM (0,0,−2,0,0,1)

Glue—KFS M TM (0,0,−2,0,−1,0)

KFMR—KFMRH M TM (0,0,−1,1,0,1)

KFMR—KFSMR M TM (0,0,−1,1,−1,0)

Non-manifold 2-complexes with boundary, v − e + (f − r) = C − Ch + Cc

MVC NM TM (1,0,0,0,1,0,0)

MECh NM TM (0,1,0,0,0,1,0)

MFKCh NM TM (0,0,1,0,0,−1,0)

MFCc NM TM (0,0,1,0,0,0,1)

MVR NM TM (1,0,0,1,0,0,0)

Non-manifold 3-complexes with boundary, v − e + (f − r) − V = C − Ch + Cc

MECh NM TM (0,1,0,0,0,0,1,0)

MFKCh NM TM (0,0,1,0,0,0,−1,0)

MFCc NM TM (0,0,1,0,0,0,0,1)

MVlKCc NM TM (0,0,0,0,1,0,0,−1)

aM = Manifold, NM = Non-manifold
bTP = Topology preserving, TM = Topology modifying

the basis operators proposed in the literature, for manifold and non-manifold do-
mains, modeled by cell or general complexes, in two or three dimensions, we do not
use the tuples to describe the change in the number of cells in the complex, but we
describe this change in a pseudo-code like style.

An interesting class of operators is provided by the higher-level operators based
on the handlebody theory proposed in [24, 25, 32]. Their definition is based on the
fact that any n-manifold can be generated from an n-ball by attaching handles. Han-
dle operators are defined for cell 2- and 3-complexes with boundary in [24, 32] and
[25], respectively. They can be classified as topology modifying operators. Handle
operators in 2D can be expressed through Euler operators as discussed below.

• The attachment of a 0-handle corresponds to creating an initial triangle (a 2-ball).
It can be expressed through the initialization Euler operator MFC (Make Face
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and Component), followed by MVR (Make Vertex and Ring), two MEV operators
and one MEF operator, which together create a triangle.

• The attachment of a 1-handle identifies two boundary edges with no vertices in
common. It can be expressed through
– two ME (Make Edge) operators that connect the corresponding endpoints of

the two edges to be identified (one MEKFS (Make Edge, Kill Face and Shell)
and one MECh (Make Edge and Complex Hole) if the two identified edges
are on different connected components; two MECh (Make Edge and Complex
Hole) operators if the two identified edges are on the same component),

– two KEV (Kill Edge and Vertex) operators that contract the two edges created
by ME operators, and identify the corresponding endpoints,

– MFKCh (Make Face, Kill Complex Hole) which creates a face that fills the ring
formed by two edges to be identified, and

– KEF3 (inverse of the MEF3 instance of MEF operator) which contracts the
created face and merges the two edges.

• The attachment of a 2-handle identifies two edges with both vertices in common.
It can be expressed as a MFKCh operator, followed by KEF3 operator.

Handle operators in 3D identify two boundary faces with the same number of edges
and vertices, and convert them into an inner face. The corresponding edges and
vertices on the boundary of the two identified faces are also identified. Thus, the
handle operators in 3D generalize the glue operator in [12], since the two glued
faces may have some, or all, edges in common. An interesting research direction
would be to generalize handle operators to higher dimensions, i.e., for an n-mani-
fold discretized as a cell complex, and to express them as macro-operators through
Euler operators in higher dimensions.

As we have seen, there are many non-unified proposals in the literature for the
manipulation operators on cell complexes, and on general complexes. So, we pro-
pose a minimal set of Euler operators which subsume all the other Euler opera-
tors. Let us consider the case of cell 2-complexes embedded in the 3D Euclidean
space E

3. We can define the following operators:

• Topology preserving operators: MEV (Make Edge and Vertex) and MEF (Make
Edge and Face).

• Topology modifying operators:
– MV0Cycle (Make Vertex and 0-Cycle)
– ME1Cycle (Make Edge and 1-Cycle) and
– MF2Cycle (Make Face and 2-Cycle).

Operator MV0Cycle creates a new vertex and a new connected component, it in-
creases by one the number of vertices (0-cells) and the zeroth Betti number β0. It is
also an initialization operator. Operator ME1Cycle creates a new edge and forms a
1-cycle, thus increasing by one the number of edges (1-cells) and the first Betti num-
ber β1. Operator ME2Cycle creates a new face and forms a 2-cycle, thus increasing
by one the number of faces (2-cells) and the second Betti number β2. Figure 4.16
shows an example of ME1Cycle and ME2Cycle operators. For 3-complexes em-
bedded in the 3D Euclidean space, there will be an additional topology preserving
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Fig. 4.16 Topology
modifying operators:
ME1Cycle (Make Edge and
1-Cycle) (a); MF2Cycle
(Make Face and 2-Cycle) (b)

operator MFVl (Make Face and Volume (3-Cell)) which adds a new face (2-cell) and
a new three-dimensional (volumetric) cell. The topology modifying operators will
be the same as for 2-complexes, since in this case the Betti number β3 is null.

The above operators can be naturally generalized to arbitrary dimensions. If we
consider a complex of dimension d , we will have:

• d topology preserving operators: MiC(i + 1)C (Make i-Cell and (i + 1)-Cell),
which create an i-cell and an (i + 1)-cell,

• d + 1 topology modifying operators: MiCiCycle (Make i-Cell and i-Cycle),
which create an i-cell and an i-cycle.

It is easy to see that other operators we reviewed here, defined on 2-complexes
or 3-complexes, are instances of one of the above operators when we restrict the
attention to cell complexes. Also, it should be easy to prove that the above operators
form a complete basis of Euler operators. An interesting open question is the gener-
alization of the above operators to general complexes, which are a superset of cell
complexes.

Moreover, an important issue would be to define a complete set of basic oper-
ators, like Euler operators, for simplicial complexes, first for two-dimensional and
three-dimensional ones, and then in arbitrary dimensions. Also, it would be inter-
esting to express common operators on simplicial complexes, like edge collapse, or
vertex-pair collapse, in terms of such operators.

Finally, we want to mention an approach to modeling 3D shapes that has been
proposed in [14, 35]. This approach is based on the notion of stratified sets, which
generalize cell complexes in the sense that a stratum need not to be connected, nor
bounded, nor globally homeomorphic to an open ball. In [15], the author proposes a
set of Euler operators for 3D objects with incomplete boundaries. It will be interest-
ing to see how these operators, when restricted to objects with complete boundary,
relate to the other existing Euler operators for non-manifold objects both for general
and classical cell complexes, that we have reviewed here.

Finally, the definition of Euler operators on stratifications is an interesting re-
search direction, since stratifications have a solid mathematical basis.
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Chapter 5
Binarization of Gray-Level Images Based
on Skeleton Region Growing

Xiang Bai, Quannan Li, Tianyang Ma, Wenyu Liu, and Longin Jan Latecki

Abstract In this chapter, we introduce a new binarization method of gray level
images. We first extract skeleton curves from Canny edge image. Second, a Skele-
ton Strength Map (SSM) is calculated from Euclidean distance transform. Starting
from the boundary edges, the distance transform is firstly computed and its gradient
vector field is calculated. After that, the isotropic diffusion is performed on the gra-
dient vector field and the SSM is computed from the diffused vector field. It has two
advantages that make it useful for skeletonization: 1) the SSM serves as the form of
the likelihood of a pixel being a skeleton point: the value at pixels of the skeleton is
large while at pixels that are away from the center of object, the SSM value decays
very fast; 2) By computing the SSM from the distance transform, a parameterized
noise smoothing is obtained. Then, skeleton curves are classified into foreground
and background classes by comparing the mean value of their local edge pixels and
neighbors lowest intensity. Finally, the binarization result is obtained by choosing
foreground skeleton curve pixels as seed points and presenting region growing algo-
rithm on gray scale image with certain growing criteria. Images with different types
of document components and degradations are used to test the effectiveness of the
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proposed algorithm. Results demonstrate that the method performs well on images
with low contrast, noise and non-uniform illumination.

5.1 Introduction

Image binarization is an image pixel labeling problem, which aims to classify the
pixels of an image into two classes: foreground and background [39]. It is an impor-
tant pre-processing step for most document analysis algorithms, and is widely used
in medical image analysis and automatic recognition of targets such as character,
fingerprint, etc.

Currently, the existing binarization methods are mainly categorized into two
classes: global and local [41, 48]. The global thresholding method [24, 25, 36] con-
verts a gray-level image into a binary image based on an image intensity value called
global threshold, which is invariant in the whole image domain. For images with an
obvious bimodal histogram, global binarization methods are effective. However, in
reality bimodality in histograms is not guaranteed, and single global threshold is
not robust and sufficient for images with low contrast or non-uniform illumination.
In local thresholding techniques [6, 13, 33, 40], thresholding value can vary from
one pixel location to next, and is selected according to the local area information
adaptively. Therefore, local binarization methods, which are also called adaptive
binarization methods, have better performance on the images with more complex
situations. But local thresholding method also has limitations: when neighborhood
is small, binarization results will suffer from fake shadows and the loss of objects.
Some hybrid methods therefore are proposed. In those methods, both global and
local information are used to label the pixel. In Trier and Jain’s goal-directed eval-
uation for 19 methods, Niblack’s method performs best among 11 different locally
adaptive binarization methods. Sezgin and Sankur [41] ranked 40 binarization meth-
ods based on their performance on non-destructive testing (NDT) images and doc-
ument images, Kittler’s method is the best performing thresholding method in both
cases.

Edge information has been utilized by several thresholding methods, and is
proved to be useful. Yanowitz and Bruckstein [51] proposed an adaptive thresh-
olding method, in which threshold surface is determined by interpolating the image
gray levels at points where the gradient is high, indicating probable object edges.
However, because this method depends only on the information of points with high
gradient, fake object or object loss may exist if there is large noise in edge infor-
mation or object edges are too weak. Cao [11] introduced an improved Canny edge
detector [10] and utilize it to localize the object. By presented Otsu’s algorithm on
the object region, the binarization result is finally obtained. However, for objects
with non-uniform illumination this method does not perform well by only using a
non-adaptive global threshold for whole object region.

Methods incorporating edge detector and region growing algorithm have been
proposed. Liu [19] chose hot and cold seeds near the edges, and then foreground and
background regions are grown from these seeds simultaneously. However, Canny
edges may occur inside the object or background region when illumination change
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exists there. In this case, there will be spurious object or background in the binariza-
tion result.

We first compute the edge map of an image by Canny detector [10]. Then, the
skeleton curves are extracted based on the Canny edges. After that, we take skeleton
pixels belong to object region as seeds, and present region growing algorithm to
obtain the binarization result. We show that, by selecting skeleton pixels as seeds,
our method is more robust against the noise in edge image. The experimental results
demonstrate our method has a good performance on images with low contrast and
non-uniform illumination.

In this paper, we introduce a skeletonization algorithm based on the Skeleton
Strength Map (SSM) introduced in [52]. Different from [52], the SSM is computed
via isotropic diffusion of the gradient vector field of the distance transform. This pro-
vides advantages over both the distance transform and the Skeleton Strength Map
used in [52]. Besides, though we do not have an accurate segmentation, by com-
puting the distance transform from the incomplete boundaries, we can also benefit
from the existence of the boundary and make the SSM more symmetric.

Skeleton is a very important compact shape descriptor in computer vision since
it can preserve both the topological and geometrical information of an object [5].
It has been studied extensively since and plays an important role in areas of object
representation and recognition.

Typical skeletonization approaches can be categorized into four types [16]: thin-
ning and boundary propagation [7, 26, 27, 29], geometric methods such as algo-
rithms based on the Voronoi diagram [9, 34, 35], algorithms based on distance trans-
form [12, 21, 31], and algorithms based on general-field functions [2, 17].

Beside these methods, there are also several other kinds of algorithms on skele-
tonization of binary images. Siddiqi et al. [43] measure the average outward flux of
the vector field that underlies the Hamiltonian system and combine the flux mea-
surement with a homotopy preserving thinning process applied in a discrete lattice.
This approach leads to a robust and accurate algorithm for computing skeletons in
2D as well as 3D. However, the flux is both limited by the pixel resolution and the
error is proportional to the curvature of the boundary evolution front. This makes the
exact location of endpoints difficult to be found. An analysis of the system using the
Hamilton–Jacobi equations of classical mechanics has shown how the skeleton can
be detected using the divergence of the distance map for the object boundary [44].
Torsello and Hancock [47] overcome this problem by taking into account variations
of density due to boundary curvature and eliminating the curvature contribution to
the error. Aslan and Tari [3] present an unconventional approach for shape recog-
nition using unconnected skeletons in the coarse level. This approach can lead to
stable skeletons in the presence of boundary deformations; however, the obtained
skeletons do not contain explicit topological structure. In [4], a skeleton pruning
method is proposed to obtain stable skeletons via discrete curve evolution.

The algorithms related to our work are based on Euclidean distance transform.
They extract the skeleton by detecting ridges on the distance transform surface
[12, 21, 31]. Those algorithms can ensure the accurate localization of skeleton
points, but they suffer from the problem of robustness: they are very sensitive to
boundary noise.
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In addition, for these algorithms, there is a common requirement that the com-
plete contour of an object must be known before. However, for gray-scale images,
due to the great challenge of segmentation, a complete and robust contour is often
unavailable and the distance transform is undefined in gray-scale images. Thus it
is difficult to apply the conventional algorithms in gray-scale images. To cope with
this issue, many different segmentation-free skeletonization algorithms have been
proposed [23, 38, 52]. In [23], a computational algorithm is proposed to compute
pseudo-distance map directly from the original image using a nonlinear governing
equation. It can extract the skeleton of the narrow objects efficiently without losing
information. But for the objects that are wider, this algorithm fails. Anisotropic vec-
tor diffusion is used to address the bias problem in [52], but this algorithm also fails
to extract the skeleton of wide objects. Also, this method pre-assumes that the object
is always brighter or darker than the background as [14] does. There are also other
methods. In [45], Tari et al. proposed a method that extracted the skeletons from a set
of level-set curves of the edge strength map. Tek et al. [46] have shown that an ori-
entation sensitive distance propagation function can be used to extract symmetries
from fragmented contours by labeling skeletal points according to whether or not
they represent the collision of consistently oriented boundary fronts. In [32, 37], the
authors proposed a method based on scale-space theory which extracts the “cores”
from the ridges of a medialness function in scale-space.

The rest of the paper is organized as follows. In Sect. 5.2, we introduce the skele-
ton strength map. In Sects. 5.3 and 5.4, we introduce the skeletonization approaches
for binary images and gray-scale images respectively. In Sect. 5.5 we present the
proposed approach to binarization of gray-level images based on their skeletons.
In Sect. 5.6 we demonstrate that the proposed approach is able to outperform the
state-of-the-art binarization methods on challenging gray-level image.

5.2 Skeleton Strength Map (SSM)

The computation of the Skeleton Strength Map has been introduced in [52] and
[30]. Here we briefly review the process and stresses on the differences. The SSM
in [52] is based on the anisotropic diffusion of gray-scale images. In this paper, we
use isotropic diffusion instead because it is much faster while achieving comparable
performance.

5.2.1 Computation of the Skeleton Strength Map

We compute the SSM from the distance transform. The distance transform dt (r)
is defined as the distance of an interior point r to the nearest boundary point [8]
shown in Fig. 5.1(a). In gray-scale images, we treat the points on the edge map as
boundary points and compute the distance transform. In our approach we compute
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Fig. 5.1 Computation of the SSM. (a) shows the distance transform, (b) shows the SSM, (c) shows
the thinned SSM

f (r) = 1−‖�Gσ(r)∗dt (r)‖ to replace the distance transform dt (r), where Gσ (r)
is the Gaussian kernel function, σ is its standard deviation and ∗ is the convolution
operator. f (r) can be treated as an inverted version of the smoothed gradient mag-
nitude of dt (r). The main advantage of using f (r) instead of dt (r) is based on the
fact that the relative value between skeleton point and it neighbors is significantly
larger for f (r) than for dt (r) and it provides an effective way to filter the distortions
by boundary noise. Therefore, we work with the gradient vector field of f (r).

Isotropic Diffusion After the gradient vector field of f (r) is computed, the
isotropic diffusion is performed. The diffusion process is ruled by a partial differen-
tial equation set as in [50],⎧⎪⎨

⎪⎩
du

dt
= μ∇2u − (u − fx)

(
f 2

x + f 2
y

)
du

dt
= μ∇2v − (v − fy)

(
f 2

x + f 2
y

) (5.1)

Here, μ is the regular parameter and is set to 0.07 in our experiments, u, v are
two components of the diffused gradient vector field f (r). Initializing u, v with
(u0, v0) = ∇f = (

∂f
∂x

,
∂f
∂y

), the partial differential equation (5.1) can be solved.

Skeleton Strength Map To localize the skeleton points from the diffused gradient
vector field, we need to compute a Skeleton Strength Map (SSM) from it. In the
SSM the value at each point indicates the probability of being a skeleton point,
Fig. 5.1(b). The higher the value at a point is, the more likely it is a skeleton point.
It is known that the skeleton points are located where two or more vectors confront,
so based on this principle, the skeleton strength map is computed by adopting the
formula from [52]:

SSM(r) = max

(
0,

∑
r′∈N(r)

grf (r′) · (r′ − r)
‖r − r′‖

)
, (5.2)

where N(r) denotes the eight-neighbors of r. grf (·) is the gradient vector field
of f (r). Each of r’s eight-neighbors projects its vector to the unit vector pointing
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Fig. 5.2 Illustration of
non-maximum suppression.
(x′, y′) and (x′′, y′′) are two
intersection points, if
SSM(x, y) is greater than
SSM(x′, y′) and
SSM(x′′, y′′), then it’s a local
maximum and retained

from r′ to r. The intensity of the SSM at r is then assigned the value of the sum of
projections if the sum is positive. The intuition here is that if all the neighbors of r
have gradient vector pointing to it, the intensity of SSM at r is high and it is likely
to be a skeleton point.

Non-Maximum Suppression After the SSM has been computed, we use non-
maximum suppression to thin the SSM values. The non-maximum is a very ef-
ficient thinning technique that has been applied in edge detection such as Canny
operator [10, 22]. For each point (x, y), let Θ(x,y) be a direction of the gradient
vector at (x, y). With reference to Fig. 5.2, we examine two responses SSM(x′, y′)
and SSM(x′′, y′′) in the adjacent positions (x′, y′) and (x′′, y′′) that are intersection
points of a line passing through (x, y) with the orientation Θ(x,y). If the response
SSM(x, y) at (x, y) is greater than SSM(x′, y′) and SSM(x′′, y′′), i.e., (x, y) is a
local maximum, than (x, y) belongs to SSM; otherwise, it will be discarded. The
effect of non-maximum suppression is shown in Fig. 5.1(c).

5.2.2 Comparison Between SSM and Distance Transform

We have stated that as the likelihood map of the skeleton, the SSM value de-
cays rapidly at pixels away from center of the object. This can be demonstrated
in Fig. 5.3. The distance of pixels inside the hand has value greater than zero, while
after diffusion, except for pixels near the skeleton points, other pixels have SSM
value zero (in the middle of Fig. 5.3). After non-maximum suppression, the SSM
value of some pixels is further suppressed (on the right of Fig. 5.3).

5.3 Skeletonization of Binary Images

The primary goal of this paper is to extract skeletons from gray-scale images. Still,
we can show that, this method can achieve good results for binary images. In this
section, we introduce the process of skeletonization for binary images.

For binary images, we compute the SSM and thin it with non-maximum sup-
pression. We then select the local maxima as the seeds from the thinned SSM and
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Fig. 5.3 The mesh of the SSM of a hand. On the left is the mesh of the distance transform, in the
middle is the mesh of the SSM and on the right is the mesh of the SSM thinned by non-maximum
suppression

connect them using the shortest path algorithm (Dijkstra’s algorithm) on f (r). An
example of skeletonization of binary images is shown in Fig. 5.4.

5.3.1 Local Maxima Detection

Definition 1 A local maximum of SSM is a point r whose SSM value SSM(r) sat-
isfies the following conditions:

SSM(r) ≥ max
r′∈N(r)

SSM(r) (5.3)

Fig. 5.4 (a) is the binary mask of a horse, (b) shows the distance transform of (a), (c) is the
SSM computed from (b), (d) is the SSM thinned by non-maxima suppression, (e) shows the local
maxima, and (f) is the final skeleton
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To make the skeleton more robust, we also exclude pixels that have the SSM
value SSM(r) ≤ T (generally, T is set to be 0.15). By adjusting the threshold T , we
can also get a cleaner skeleton.

The local maxima used in this paper can be regarded as the “seeds” to extract the
ridge of the SSM. This is very similar to the “ridge” of the distance transform. Since
the SSM is computed from the distance transform, it can locate skeleton accurately
as the distance transform does.

5.3.2 Local Maxima Connection

To connect the local maxima, a distance measure is defined based on the surface of
function f (r).

Definition 2 Given an 8-connected path R = {r1, r2, . . . , rn}, its gradient length is
defined as |R|G = ∑n

i=1 |f (ri)|.

The gradient distance between two points r and r′ is defined as the minimum
over the gradient lengths of all 8-connected paths connecting them. The 8-connected
path with the smallest gradient distance is called a gradient path. The gradient path
corresponds to a geodesic path on the surface defined by f (r). It is computed with
Dijkstra’s shortest path algorithm. We obtain the skeleton by connecting the local
maxima with gradient paths. To begin, we choose the point having the maximum
distance transform as the center of the skeleton and connect iteratively all the other
local maxima to it until all the local maxima are connected.

5.4 Skeletonization of Gray-Scale Images

The computation of the distance transform is very natural for binary images, how-
ever, for gray-scale images, things are different since we do not have a complete con-
tour. In our approach, we treat all non-boundary pixels as object pixels and bound-
ary points as background and then compute the distance transform. There are many
methods to extract boundary, and in this paper we choose the Canny operator [10].

5.4.1 Noise Smoothing of Boundaries

The skeleton is easily influenced by noise. As we hope to extract the skeleton of
gray-scale images from boundaries, we should filter the boundary noise. Here we
use two heuristics to measure the significance of edge segments: 1) long bound-
ary segments are more significant than short boundary segments and 2) if one short
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Fig. 5.5 Effect of noise smoothing: (a) the original image; (b) the edge map of (a); (c) the edge
map after noise removed

boundary segment is close to a long segment, it is still possible to compute skele-
ton branches from them, so we shall treat one short segment more significant if its
endpoints are closer to endpoints of a long segment.

To implement these two heuristics, let S = {si |1 ≤ i ≤ N} be all the bound-
ary segments and L(si) is the length of si . We partition S into two subsets S1 =
{s′

i |1 ≤ i ≤ N1} and S2 = {s′′
i |1 ≤ i ≤ N2}, N1 + N2 = N , containing segments

longer or shorter than a threshold T1 respectively. For each boundary segment
s′′
i in S2, we compute the distance of its endpoints to all endpoints of segments

in S1. If the minimum distance is greater than certain threshold, we treat this seg-
ment as noise and remove it. This process is straightforward and an example is
given shown in Fig. 5.5. Figure 5.5(b) shows the edge of Fig. 5.5(a) obtained by
canny operator, and Fig. 5.5(c) shows the edges after removing insignificant seg-
ments. We can see from this figure, removing some short segments with endpoints
distant from endpoints of long segments does not affect the whole shape of the
horse.

5.4.2 Computation of SSM from Gray-Scale Images

To compute the SSM, the boundary values are firstly reversed and the Euclidean dis-
tance transform (shown in Fig. 5.6(a)) is performed. We then compute the SSM and
perform non-maximum suppression as described in Sect. 5.2, e.g., see Fig. 5.6(b).
A small problem exists for gray-scale images: as we can see in Fig. 5.6(c), there
are some high values of SSM caused by edges. It is easy to remove them, since
we know the boundary in advance; we can assign each edge pixel a window of
size k × k and assign SSM values of zero to pixels within that window (k = 3 is
generally sufficient). Figure 5.6(d) shows the SSM after edge strength values are
removed.

By adopting hysteresis thresholding, we obtain the skeleton shown in Fig. 5.6(e).
The same skeleton overlaid on the original gray level image is shown in Fig. 5.6(f).
The skeleton obtained in this way is not connected, as we have mentioned before,
since we have no position information about the object.
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Fig. 5.6 An example of skeletonization of gray level images from boundaries: (a) the distance
transform; (b) the SSM; (c) thinned SSM; (d) is the SSM with values around original edges re-
moved; (e) is the final skeleton by hysteresis thresholding; (f) the final skeleton overlaid on the
original image

Fig. 5.7 The skeleton is robust to boundary noise

5.4.3 Robustness Under Boundary Noise and Deformation

Figure 5.7 provides two examples that show the insensitivity of the proposed method
to boundary noise. The two stars both have substantial noise on the contours, how-
ever, the two skeletons obtained are very similar and preserve the topological and ge-
ometric structure of the two stars with no spurious branches. This demonstrates the
robustness of our algorithm (for both stars, the parameter σ is set as 2.5). The com-
putation of the SSM provides an effective way to filter boundary noise. In Fig. 5.8,
by varying σ from 1, 1.5, to 2.5, more robust skeleton can be generated for the left
star in Fig. 5.7.
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Fig. 5.8 The skeleton smoothing obtained by varying the parameter σ

Fig. 5.9 Comparative study of the algorithm on several camels with great inner variations

The stability of our algorithm in the presence of large inner-class shape variations
is demonstrated in Fig. 5.9. Although these camels have different poses and differ
significantly from each other, the obtained skeletons have the same global structure.

5.4.4 Results on Gray-Scale Images

In Fig. 5.10, two examples of skeletons obtained from boundary of gray-scale im-
ages are provided. Column (a) shows the edge images obtained by Canny opera-
tor. We observe that though there are lots of gaps, e.g., gaps on back of the dog,
and gaps on feet of the horse, good SSM can still be computed as shown in col-
umn (b). Column (c) shows the skeleton (in red) obtained by thresholding the SSM.
This illustrates the ability of our approach to extract the skeleton from incomplete
boundaries. Compared to the skeleton obtained by [52] shown in column (d), two
advantages have been achieved. One is that the skeletons obtained by our method
are more symmetric to the objects’ boundary than [52], e.g., the torsos of the dog
and the horse. The reason for this is attributed to the usage of boundaries and the
distance transform, while the algorithm in [52], it fails to locate the skeleton points
accurately when the object is wide. The other advantage is that, the results are more
complete than the results of [52]. For example, the skeletons of the dog and the horse
do not have branches corresponding to the 4 limbs, while our algorithm generates
such branches and main branches are preserved.

These experiments have demonstrated that the SSM can be readily extended to
the case of gray-scale images and that the good skeletons can be computed even
when the boundaries have many gaps, clutters and noise.
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Fig. 5.10 Skeleton results based on the SSM computed from Canny edges. (a) shows the edge im-
ages obtained by Canny operator. (b) shows our SSM. (c) shows our skeletons. (d) shows skeletons
obtained by the method in [52]

5.5 Binarization of Gray-Level Images Based on Their Skeletons

5.5.1 Seeds Selection

We aim to select foreground object skeletons of gray-level images as seeds. There
are two main benefits of using skeletons as seed candidates. First, skeleton points
belonging to the same region has spatial connectivity, which makes them easy to
be grouped into one curve. This enables us to consider skeleton points in the same
region as a whole, and have a global instead of local perception about whether these
skeleton pixels belong to a foreground or background region. Second, the number
of skeleton points will adaptively increase or decrease when a region expands or
shrinks. Therefore, we do not need to specify how many seeds are needed for a
region in advance. We illustrate these facts in Fig. 5.11.

5.5.2 Classifying Skeleton Segments into Foreground and
Background

We start with grouping skeleton pixels in the same region. Since skeleton pixels in
the same region are spatially adjacent, they can be easily grouped according to their
connectivity. Here, the edge-linking algorithm [28] is used to achieve this goal. In
practice, we first compute the edge image E using Canny edge detector on gray-
scale image I . Then we generate the skeleton image S using SSM of the distance
transform on edge image E. By applying edge-linking algorithm on S, we obtain
n skeleton curves, i.e., S = SS1 ∪ SS2 ∪ . . . SSn. For each grouped skeleton curve,
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Fig. 5.11 (a) is a gray image of two characters. (b) shows Canny edges in red and the skeletons
in blue

our goal is to classify it into foreground or background. Therefore, we calculate the
average intensity value of its contained skeleton pixels, then compare it with the
gray intensity level of the region boundary, i.e., nearby edges. The average inten-
sity G(SSi) for skeleton curve SSi is calculated as G(SSi) = 1

|SSi |
∑|SSi |

j=1 |I (ssj )|,
ssj ∈ SSi . Since we want to compare G(SSi) with the gray intensity level of
the nearby boundaries, we need to determine the local region R(SSi) of skeleton
curve SSi first. R(SSi) is defined as a band containing SSi , that is: for every pixel
m ∈ R(SSi), ∃ssj ∈ SSi , |m − ssj | < r , r indicates the radius of the band. Thus,
the edge points in the local region of SSi is LEi = R(SSi) ∩ E. For every edge
point e ∈ E, its intensity level is indicated by its 8-neighborhood minimum inten-
sity f (e) = min I (ni

e) for i = 1 . . .8. ni
e is the neighborhood of edge pixel e. For the

nearby edge pixels LEi of skeleton curve SSi , its average 8-neighborhood minimum
intensity M(LEi) = 1

|LEi |
∑|LEi |

j=1 |f (lej )|, lei ∈ LEi . Thus, if the average intensity
value G(SSi) of skeleton curve is lower than the gray intensity level M(LEi) of the
nearby edges, the skeleton pixels are considered belonging to foreground region,
so we add pixels of SSi to foreground skeleton OS. Otherwise, they are considered
belonging to background. Here, we assume object regions have lower intensity than
background regions. As mentioned above, we will use foreground skeleton pixels
OS as seeds to perform the region growing algorithm.

5.5.3 Dynamic Threshold Computation

Similar to Sauvola’s method [40], we also have a dynamic threshold T (i, j) for each
pixel (i, j). We determine the adaptive threshold T (i, j) for edge and non-edge pixel
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respectively.

T (i, j) =

⎧⎪⎨
⎪⎩

f (i, j) if (i, j) ∈ E

1
|W(i,j)∩E|

∑|W(i,j)∩E|
n=1 |f (in, jn)|

(in, jn) ∈ W(i, j) ∩ E if (i, j) /∈ E

Here, W(i, j) is the rectangle region whose center is (i, j), and function f (i, j) has
the same definition as in Sect. 5.5.2, which computes the 8-neighborhood lowest
intensity of pixel (i, j). The dynamic threshold T (i, j) is used as one of the criteria
for the following region growing algorithm.

5.5.4 Region Growing Algorithm

We take every pixel obi of object skeleton OS as a seed point to perform a
4-neighborhood region growing algorithm. RG(obi) represents its growing region,
RG(obi) = {p1,p2 . . . pn}. If adjacent pixel (i, j) satisfies at least one of the fol-
lowing criteria, (i, j) is added in to RG(obi), and is classified as object pixel.

(1) |I (i, j) − 1
n

∑n
k=1 I (pk)| < t , pk ∈ RG(obi)

(2) I (i, j) ≤ T (i, j)

Therefore, the final binarization result is obtained by aggregating all RG(obi).

5.6 Experimental Results and Analysis

Our experimental images are degraded document images, NDT images, and im-
ages with non-uniform illumination. We compare the performance of our method
to classical binarization methods that also utilize edge information. Figure 5.12
shows a comparison between 7 binarization methods on 2 degraded document im-
ages in which smear and low contrast exist. Our method is compared to methods
by Otsu [36], Kapur [24], Niblack [33], Kittler [25], Yanowitz and Bruckstein [51],
Sauvola and Pietikainen [40]. Among these methods, [40] and our method perform
better than the others. Niblack’s method cannot resist the noise brought by inho-
mogeneous intensity in the background region, and therefore, generates many fake
object pixels in binarization results. The other 4 methods cannot solve the smear
problem in these images.

Figure 5.13(a) shows two NDT images with ground truth segmentation in (b).
Here our method is compared to methods by Bernsen [6], Niblack [33], Otsu [36],
Kittler [25], and Yanowitz and Bruckstein [51]. Otsu’s, YB’s and our methods pro-
vide better performance while the others show weak resistance against the local
noise in the background region.

Star and PCB images in Fig. 5.14(a) both exhibit sharp non-uniform illumination.
Here our method is compared to methods Otsu [36], Sauvola and Pietikainen [40],
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Fig. 5.12 Comparison between 7 binarization methods with 2 degraded document images: (a) two
degraded document images; (b) Otsu’s method; (c) Kapur’s method; (d) Niblack’s method; (e) Kit-
tler’s method; (f) YB’s method; (g) Sauvola’s method; (h) our method

Bernsen [6], Niblack [33], Kittler [25], and Yanowitz and Bruckstein [51]. Only
our method provides very good binarization results. From other methods, only YB’s
method yields acceptable results on both images.

5.7 Future Work and Open Problems

In this paper, we propose a novel binarization technique that utilizes both Canny
edge detector and seeded region growing algorithm. The main idea of the proposed
binarization technique is to take skeleton pixels belonging to different regions as
seed candidates, and then according to their local edge information, we classify
them into two groups. We select objects’ skeleton pixels as seeds to a region growing
algorithm. Several experimental results are presented that confirm the effectiveness
of the proposed binarization method. For images with low contrast, noise and non-
uniform illumination, our method can overcome the deficiencies of some classical
methods.

We observe that the Skeleton Strength Map (SSM) can be computed for any gray
level image, e.g., Fig. 5.6, and consequently, for any color 2D image. We only need
to compute its edge map and then SSM on its gray level version. Thus, theoretically
the proposed method can be used to obtain a binary segmentation into foreground
and background objects of any color image.



160 X. Bai et al.

Fig. 5.13 Comparison between 7 binarization methods with 2 NDT images: (a) two NDT images;
(b) Ground truth; (c) Bernsen’s method; (d) Niblack’s method; (e) Otsu’s method; (f) Kittler’s
method; (g) YB’s method; (h) our method

The key challenge in using this method to segment a color image is to determine
which SSM skeletons belong to the foreground objects. This seems to be the main
open problem for this very important application. Consequently, a positive answer
to this problem will allow us to utilize the proposed method in the unsupervised
image segmentation.

Unsupervised image segmentation is a fundamental and challenging problem in
computer vision. The goal is to segment an image into several regions without any
prior knowledge. There is a huge literature on this topic. Some of the most influential
approaches are [1, 15, 18, 20, 42, 49]. Most of them focus on minimizing an energy
function while assigning region labels to image pixels.

A serious challenge these approaches face is the locality of the affinity relation
between pixels or regions, which we call a locality problem. Since pixels with sim-
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Fig. 5.14 Comparison between 7 binarization methods with 2 non-uniform illumination im-
ages: (a) Star and PCB images; (b) Otsu’s method; (c) Sauvola’s method; (d) Bernsen’s method;
(e) Niblack’s method; (f) Kittler’s method; (g) YB’s method; (h) our method

ilar colors in a small neighborhood are more likely to belong to the same object
than such pixels in a large neighborhood, only local affinities are input to unsu-
pervised image segmentation algorithms. Obviously, adding long range information
could lead to improved performance. However, doing so not only increases compu-
tation cost but often creates a challenge of finding relevant long range information
or, equivalently, filtering out irrelevant or noisy information.

A simple step towards solving the locality problem is using regions (superpixels)
instead of pixels. Superpixels have been used in image segmentation recently, e.g.,
in [49]. Although superpixels alleviate this problem and lead to more robust affinity
relations, their affinity relation still remains local, e.g., only adjacent regions are
related in [49]. Moreover, superpixels are usually small regions, since otherwise
they can erase object boundary information. In other words, the problem of local
affinity relations also applies to superpixels.
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The proposed methods solves the locality problem by utilizing the SSM skeletons
of the foreground objects. Simply speaking, pixels of a single SSM skeleton are
very likely to belong to the same object. Therefore, region growing starting from
this skeleton seems to provide an adequate solution to the locality problem.

Our future work will focus on integrating the proposed method, and, in particular,
the global information of the SSM skeletons of foreground objects in the framework
of superpixel based image segmentation. As stated above, the main challenge is to
determine which SSM skeletons belong to foreground objects.
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Chapter 6
Topology Preserving Parallel 3D
Thinning Algorithms

Kálmán Palágyi, Gábor Németh, and Péter Kardos

Abstract A widely used technique to obtain skeletons of binary objects is thinning,
which is an iterative layer-by-layer erosion in a topology preserving way. Thinning
in 3D is capable of extracting various skeleton-like shape descriptors (i.e., center-
lines, medial surfaces, and topological kernels). This chapter describes a family of
new parallel 3D thinning algorithms for (26,6) binary pictures. The reported algo-
rithms are derived from some sufficient conditions for topology preserving parallel
reduction operations, hence their topological correctness is guaranteed.

6.1 Introduction

Skeleton is a region-based shape descriptor which represents the general shape of
objects. 3D skeleton-like shape features (i.e., centerlines, medial surfaces, and topo-
logical kernels) play important role in various applications in image processing,
pattern recognition, and visualization [6, 10, 38, 41, 42, 44].

An illustrative definition of the skeleton uses the prairie-fire analogy: the object
boundary is set on fire, and the skeleton is formed by the loci where the fire fronts
meet and extinguish each other [5]. Thinning is a digital simulation of the fire front
propagation: the border points that satisfy certain topological and geometric con-
straints are deleted in iteration steps [12].

A 3D binary picture [11, 12] is a mapping that assigns a value of 0 or 1 to each
point with integer coordinates in the 3D digital space Z

3. Points having the value of
1 are called black points, and those with a zero value are called white ones. Black
points form the components of a picture, while white points form the background
and the cavities. We consider (26,6)-pictures, where 26-adjacency and 6-adjacency
are, respectively, used for the components and their complement [12].
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A reduction operation transforms a binary picture only by changing some black
points to white ones (which is referred to as the deletion of 1’s). A parallel reduc-
tion operation deletes all points satisfying its condition simultaneously. A reduction
operation does not preserve topology [11] if

• any component in the input picture is split (into several components) or is com-
pletely deleted,

• any cavity in the input picture is merged with the background or another cavity,
or

• a cavity is created where there was none in the input picture.

There is an additional concept called hole (or tunnel) in 3D pictures. A hole
(which doughnuts have) is formed of 0’s, but it is not a cavity [12]. Topology preser-
vation implies that eliminating or creating any hole is not allowed.

There are three types of 3D thinning algorithms for producing the three types
of skeleton-like shape features: curve-thinning algorithms are used to extract me-
dial lines or centerlines, surface-thinning algorithms produce medial surfaces, while
kernel-thinning algorithms are capable of extracting topological kernels. A topolog-
ical kernel is a minimal set of points that is topologically equivalent [12] to the
original object (i.e., if we remove any further point from it, then the topology is not
preserved). Note that kernel-thinning algorithms are often referred to as reductive
shrinking algorithms [9]. 3D curve-thinning and surface-thinning algorithms use
operations that delete some points which are not endpoints, since preserving end-
points provides important geometrical information relative to the shape of the ob-
jects. Kernel-thinning algorithms for extracting topological kernels do not take any
endpoint characterization into consideration. Medial surfaces are usually extracted
from general shapes, tubular structures can be represented by their centerlines, and
extracting topological kernels is useful in topological description.

Most of the existing thinning algorithms are parallel as the fire front propagation
is by nature parallel. These algorithms are composed of parallel reduction opera-
tions. Parallel reduction operations delete a set of points simultaneously which may
lead to altering the topology. Note that deletion rules of parallel thinning algorithms
are generally given by matching templates. In order to verify that a given parallel
3D thinning algorithm preserves the topology for all possible (26,6) pictures, some
sufficient conditions for topology preservation have been proposed [11, 18, 36].
However, verifying these conditions usually means checking several configurations
of points, hence papers presenting thinning algorithms contain long proof parts.
Despite of complex proofs, it was claimed in [14, 45] that two parallel 3D thin-
ning algorithms [18, 19] are not topology preserving. That is why we propose a
safe technique for designing topologically correct parallel 3D thinning algorithms.
Our approach is based on some new sufficient conditions for topology preservation.
These conditions consider individual points (instead of point configurations) and
can be combined with various thinning strategies.

In this chapter we present 15 algorithms that are derived from the new sufficient
conditions combined with the three major strategies for parallel thinning (i.e., fully
parallel, subiteration-based, and subfield-based [8]) and three types of endpoints.



6 Topology Preserving Parallel 3D Thinning Algorithms 167

Fig. 6.1 Frequently used
adjacencies in Z

3. The set
N6(p) contains point p and
the six points marked U, D,
N, E, S, and W. The set
N18(p) contains N6(p) and
the twelve points marked by
“!”. The set N26(p) contains
N18(p) and the eight points
marked by “"”

The rest of this chapter is organized as follows. Section 6.2 reviews the basic no-
tions and results of 3D digital topology, and we present our sufficient conditions for
topology preservation. Then, in Sect. 6.3 we propose 15 parallel 3D thinning algo-
rithms and their topological correctness is proved. Since fast extraction of skeleton-
like shape features is extremely important in numerous applications for large 3D
shapes, Sect. 6.4 is devoted to the efficient implementation of the proposed algo-
rithms, and Sect. 6.5 presents some illustrative results. In Sect. 6.6 some possible
future works and open problems are outlined. Finally, we round off the chapter with
some concluding remarks.

6.2 Topology Preserving Parallel Reduction Operations

In this section, we present new sufficient conditions for topology preservation. First
we outline some concepts of digital topology and related key results that will be
used in the sequel.

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j =

6,18,26) the set of points that are j -adjacent to point p (see Fig. 6.1).
The sequence of distinct points 〈x0, x1, . . . , xn〉 is called a j-path (for j = 6,26)

of length n from point x0 to point xn in a non-empty set of points X if each point of
the sequence is in X and xi is j -adjacent to xi−1 for each 1 ≤ i ≤ n (see Fig. 6.1).
Note that a single point is a j -path of length 0. Two points are said to be j-connected
in the set X if there is a j -path in X between them (j = 6,26). A set of points X is
j-connected in the set of points Y ⊇ X if any two points in X are j -connected in Y

(j = 6,26).
A 3D binary (26,6) digital picture P is a quadruple P = (Z3,26,6,B) [12].

Each element of Z3 is called a point of P . Each point in B ⊆ Z
3 is called a black

point and has a value 1. Each point in Z
3\B is called a white point and has a value 0.

An object is a maximal 26-connected set of black points, while a white component is
a maximal 6-connected set of white points. Here it is assumed that a picture contains
finitely many black points.

The lexicographical order relation “≺” between two distinct points p =
(px,py,pz) and q = (qx, qy, qz) in Z

3 is defined as follows:

p ≺ q ⇔ (pz < qz) ∨ (pz = qz ∧ py < qy) ∨ (pz = qz ∧ py = qy ∧ px < qx).
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Let C ⊆ Z
3 be a set of points. Point p ∈ C is the smallest element of C if for any

q ∈ C\{p}, p ≺ q .
A unit lattice square is a set of four mutually 18-adjacent points in Z

3, while a
unit lattice cube is a set of eight mutually 26-adjacent points in Z

3.
A black point is called a border point in (26,6) pictures if it is 6-adjacent to

at least one white point. A border point p is called a U-border point if the point
marked U = u(p) in Fig. 6.1 is a white point. We can define D-, N-, E-, S-, and
W-border points in the same way. A black point is called an interior point if it is not
a border point. A simple point in a (26,6) picture is a black point whose deletion
is a topology preserving reduction operation [12]. Note that simplicity of point p

in (26,6) pictures is a local property that can be decided by investigating the set
N26(p) [12].

Parallel reduction operations delete a set of black points and not just a single
simple point. Hence we need to consider what is meant by topology preservation
when a number of black points are deleted simultaneously.

Ma [17] gave some sufficient conditions for 3D parallel reduction operations to
preserve topology. Later, Palágyi and Kuba proposed the following simplified con-
ditions [36]:

Theorem 1 ([36]) The parallel reduction operation O is topology preserving for
(26,6) pictures if all the following conditions hold.

1. Only simple points are deleted by O .
2. Let p be any black point in a picture (Z3,26,6,B) such that p is deleted by

O . Let Q ⊆ B be any set of simple points in (Z3,26,6,B) such that p ∈ Q,
and Q is contained in a unit lattice square. Then point p is simple in picture
(Z3,26,6,B\(Q\{p})).

3. No object contained in a unit lattice cube is deleted completely by O .

Theorem 1 provides a general method of verifying that a parallel thinning algo-
rithm preserves topology. In this section, we present some new sufficient conditions
for topology preservation as a basis for designing 3D parallel thinning algorithms.

Theorem 2 The parallel reduction operation O is topology preserving for (26,6)

pictures if all the following conditions hold for any black point p in any picture
(Z3,26,6,B) such that p is deleted by O .

1. Point p is simple in (Z3,26,6,B).
2. Let Q ⊆ B be any set of simple points in (Z3,26,6,B) such that p ∈ Q,

and Q is contained in a unit lattice square. Then point p is simple in picture
(Z3,26,6,B\(Q\{p})), or p is not the smallest element of Q.

3. Point p is not the smallest element of any object C ⊆ B in (Z3,26,6,B) such
that C is contained in a unit lattice cube.

Proof It can be readily seen that if the parallel reduction operation O satisfies
Condition i of Theorem 2, then Condition i of Theorem 1 is also satisfied (i =
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1,2,3). Hence, parallel reduction operation O is topology preserving for (26,6) pic-
tures. �

6.3 Variations on Parallel 3D Thinning Algorithms

In this section, 15 parallel 3D thinning algorithms are presented. These algorithms
are composed of parallel reduction operations derived from our sufficient conditions
for topology preservation (see Theorem 2).

Thinning algorithms preserve endpoints and some border points that provide rel-
evant geometrical information with respect to the shape of the object. Here, we
consider three types of endpoints.

Definition 1 There is no endpoint of type TK.

To standardize the notations, shrinking algorithms capable of producing topo-
logical kernels are considered as kernel-thinning algorithms, where no endpoint is
preserved, hence we use endpoints of type TK (i.e., the empty set of the endpoints).

Definition 2 A black point p in picture (Z3,26,6,B) is a curve-endpoint of type
CE if (N26(p)\{p})∩B contains exactly one point (i.e., p is 26-adjacent to exactly
one further black point).

Endpoints of type CE have been considered by numerous existing 3D curve-
thinning algorithms [26–28, 34–36, 38].

Definition 3 A black point p in picture (Z3,26,6,B) is a surface-endpoint of type
SE if there is no interior point in N26(p) ∩ B .

Note that the characterization of endpoints SE is applied in some existing
surface-thinning algorithms [24, 26–28, 31, 33, 37].

In the rest of this section we present parallel 3D thinning algorithms composed
of parallel reduction operations that satisfy Theorem 2.

6.3.1 Fully Parallel Algorithms

In fully parallel algorithms, the same parallel reduction operation is applied in each
iteration step [1, 15, 16, 18, 19, 33, 45].

The scheme of the proposed fully parallel thinning algorithm 3D-FP-ε using end-
point of type ε is sketched in Algorithm 1 (ε ∈ {TK,CE,SE}). Note that Palágyi
and Németh reported three fully parallel 3D surface-thinning algorithms in [37], but
they are based on sufficient conditions that differ from the conditions of Theorem 2.
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Algorithm 1 Algorithm 3D-FP-ε

1: Input: picture (Z3,26,6,X)

2: Output: picture (Z3,26,6, Y )

3: Y = X

4: repeat
5: // one iteration step
6: D = {p | p is 3D-FP-ε-deletable in Y }
7: Y = Y \ D

8: until D = ∅

3D-FP-ε-deletable points are defined as follows:

Definition 4 A black point is 3D-FP-ε-deletable if it is not an endpoint of type ε,
and all conditions of Theorem 2 hold (ε ∈ {TK,CE,SE}).

We have the following theorem.

Theorem 3 Algorithm 3D-FP-ε (ε ∈ {TK,CE,SE}) is topology preserving for
(26,6) pictures.

Proof Deletable points of the proposed fully parallel algorithms (see Definition 4)
are derived directly from conditions of Theorem 2. Hence, all of the three algorithms
are topology preserving. �

Note that all objects contained in a unit lattice cube are formed of endpoints of
type SE. Hence, Condition 3 of Theorem 2 can be ignored in algorithm 3D-FP-SE.

6.3.2 Subiteration-Based Algorithms

In subiteration-based (or frequently referred to as directional) thinning algorithms,
an iteration step is decomposed into k successive parallel reduction operations ac-
cording to k deletion directions [8]. If the current deletion direction is d , then a set
of d-border points can be deleted by the parallel reduction operation assigned to it.
Since there are six kinds of major directions in 3D cases, 6-subiteration algorithms
were generally proposed [2, 7, 13, 20, 25, 34, 43, 46]. Moreover, 3-subiteration
[30–32], 8-subiteration [35], and 12-subiteration [36] algorithms have also been de-
veloped for this task.

In what follows, we present three examples of parallel 3D 6-subiteration thinning
algorithms. Algorithm 2 sketches the scheme of 3D 6-subiteration parallel thinning
algorithm 3D-6-SI-ε that uses the endpoint of type ε (ε ∈ {TK,CE,SE}).
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Algorithm 2 Algorithm 3D-6-SI-ε

1: Input: picture (Z3,26,6,X)

2: Output: picture (Z3,26,6, Y )

3: Y = X

4: repeat
5: // one iteration step
6: for each i ∈ {U,D,N,E,S,W} do
7: // subiteration for deleting some i-border points
8: D(i) = {p | p is a 3D-6-SI-i-ε-deletable point in Y }
9: Y = Y \ D(i)

10: end for
11: until D(U) ∪ D(D) ∪ D(N) ∪ D(E) ∪ D(S) ∪ D(W) = ∅

The ordered list of deletion directions 〈U,D,N,E,S,W〉 [7, 34] is considered
in the proposed algorithm 3D-6-SI-ε (ε ∈ {TK,CE,SE}). Note that subiteration-
based thinning algorithms are not invariant under the order of deletion directions
(i.e., choosing different orders may yield various results).

In the first subiteration of our 6-subiteration thinning algorithms, the set of 3D-
6-SI-U-ε-deletable points are deleted simultaneously, and the set of 3D-6-SI-W-ε-
deletable points are deleted in the last (i.e., the 6th) subiteration. Now we lay down
3D-6-SI-U-ε-deletable points.

Definition 5 A black point p in picture (Z3,26,6,X) is 3D-6-SI-U-ε-deletable if
all of the following conditions hold:

1. Point p is a simple and U-border point, but it is not an endpoint of type ε in
picture (Z3,26,6,X).

2. Let A (p) be the family of the following 13 sets (see Fig. 6.2b):

{e}, {s}, {se}, {sw}, {dn}, {de}, {ds}, {dw},
{e, s}, {e, se}, {s, se}, {s, sw},
{e, s, se}.

For any set A in the family A (p) composed of simple and U-border points,
but not endpoints of type ε in picture (Z3,26,6,X), point p remains simple in
picture (Z3,26,6,X\A).

3. Let B(p) be the family of the following 42 objects in picture (Z3,26,6,X) (see
Fig. 6.2c):

{a,h}, {b,g}, {c, f }, {d, e},
{a,h, b}, {a,h, c}, {a,h,f }, {a,h,g}, {b,g, a}, {b,g, d}, {b,g, e}, {b,g,h},
{c, f, a}, {c, f, d}, {c, f, e}, {c, f,h}, {d, e, b}, {d, e, c}, {d, e, f }, {d, e, g},
{b, c,h}, {d,g,f }, {a, d,f }, {b, e,h}, {b, c, e}, {a,f, g}, {a, d, g}, {c, e,h},
{a,h, b, c}, {a,h, b, g}, {a,h, c, f }, {a,h,f, g}, {b,g, a, d}, {b,g, d, e},
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Fig. 6.2 The considered right-handed 3D coordinate system (a). Notation for the points in
N18(p) (b). Notation for the points in a unit lattice cube (c)

{b, c, e,h}, {b,g, e,h}, {c, f, a, d}, {c, f, d, e}, {c, f, e,h}, {d, e, b, c},
{d, e, f, g}, {a, d,f, g}.

Point p is not the smallest element of any object in B(p).

Note that the deletable points at the remaining five subiterations can be derived
from 3D-6-SI-U-ε-deletable points (assigned to the deletion direction U, see Defi-
nition 5) by reflexions and rotations.

Theorem 4 Algorithm 3D-6-SI-ε (ε ∈ {TK,CE,SE}) is topology preserving for
(26,6) pictures.

Proof Without loss of generality, it is sufficient to prove that the first subitera-
tion of algorithm 3D-6-SI-ε is topology preserving. To this end, we show that
the parallel reduction operation T that deletes 3D-6-SI-U-ε-deletable points (ε ∈
{TK,CE,SE}) satisfies all conditions of Theorem 2.

1. Operation T may delete simple points by Condition 1 of Definition 5. Hence
Condition 1 of Theorem 2 is satisfied.

2. It is easy to see that the family A (p) (see Condition 2 of Definition 5 and
Fig. 6.2a–b) contains all possible sets of simple U-border points that are con-
sidered by Condition 2 of Theorem 2. Therefore, this latter condition is satisfied.

3. It can be readily seen that the family of objects B(p) (see Condition 3 of Def-
inition 5 and Fig. 6.2c) contains all possible objects of U-border points that are
considered in Condition 3 of Theorem 2. Hence, this last condition is satisfied.

Since objects contained in a unit lattice cube are composed of endpoints
of type SE, Condition 3 of Definition 5 can be ignored in algorithm 3D-6-SI-
SE. �
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Fig. 6.3 The divisions of Z3 into 2 (a), 4 (b), and 8 (c) subfields. If partitioning into k subfields is
considered, then points marked “i” are in the subfield SFk(i) (k = 2,4,8; i = 0,1, . . . , k − 1)

6.3.3 Subfield-Based Algorithms

The third type of parallel thinning algorithms applies subfield-based technique [8].
In existing subfield-based parallel 3D thinning algorithms, the digital space Z

3 is
partitioned into two [21, 22, 26], four [23, 27], and eight [3, 27] subfields which
are alternatively activated. At a given iteration step of a k-subfield algorithm, k suc-
cessive parallel reduction operations associated to the k subfields are performed.
In each of them, some border points in the active subfield can be designated for
deletion.

Let us denote SFk(i) the i-th subfield if Z3 is partitioned into k subfields (k =
2,4,8; i = 0, . . . , k − 1). SFk(i) is defined formally as follows:

SF2(i) = {
(px,py,pz) | (px + py + pz mod 2) = i

}
,

SF4(i) = {
(px,py,pz) | (px + 1 mod 2) · [2 · (py mod 2) + (pz mod 2)

]
+ (px mod 2) · [2 · (py + 1 mod 2) + (pz + 1 mod 2)

] = i
}
,

SF8(i) = {
(px,py,pz) | 4 · (px mod 2) + 2 · (py mod 2) + (pz mod 2) = i

}
The considered divisions are illustrated in Fig. 6.3.

Proposition 1 For the 2-subfield case (see Fig. 6.3a), two points p and q ∈ N26(p)

are in the same subfield, if q ∈ N18(p)\N6(p).

Proposition 2 For the 4-subfield case (see Fig. 6.3b), two points p and q ∈ N26(p)

are in the same subfield, if q ∈ N26(p)\N18(p).

Proposition 3 For the 8-subfield case (see Fig. 6.3c), two points p and q ∈ N26(p)

are not in the same subfield.

In order to reduce the noise sensitivity and the number of skeletal points (without
overshrinking the objects), Németh, Kardos, and Palágyi introduced a new subfield-
based thinning scheme [26]. It takes the endpoints into consideration at the begin-
ning of iteration steps, instead of preserving them in each parallel reduction opera-
tion as it is accustomed in the conventional subfield-based thinning scheme.
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Next, we present nine parallel 3D subfield-based thinning algorithms. The
scheme of the subfield-based parallel thinning algorithm 3D-k-SF-ε with iteration-
level endpoint checking using endpoint of type ε is sketched in Algorithm 3 (with
k = 2,4,8; ε ∈ {TK,CE,SE}).

Algorithm 3 Algorithm 3D-k-SF-ε

1: Input: picture (Z3,26,6,X)

2: Output: picture (Z3,26,6, Y )

3: Y = X

4: repeat
5: // one iteration step
6: E = {p | p is a border point, but not an endpoint of type ε in Y }
7: for i = 0 to k − 1 do
8: // subfield SFk(i) is activated
9: D(i) = {q | q is a 3D-SF-k-deletable point in E ∩ SFk(i)}

10: Y = Y \ D(i)

11: end for
12: until D(0) ∪ D(1) ∪ . . . ∪ D(k − 1) = ∅

The 3D-SF-k-deletable points are defined as follows (k = 2,4,8):

Definition 6 A black point p is 3D-SF-k-deletable (k = 2,4,8) in picture (Z3,26,

6,X) if all of the following conditions hold:

1. Point p is simple in (Z3,26,6,X).
2. If k = 2, then point p is simple in picture (Z3,26,6,X\{q}) for any simple point

q such that q ∈ N18(p)\N6(p) and p ≺ q .
3. • If k = 2, then point p is not the smallest element of the ten objects depicted in

Fig. 6.4.
• If k = 4, then point p is not the smallest element of the four objects depicted

in Fig. 6.5.

Theorem 5 Algorithm 3D-k-SF-ε (k = 2,4,8; ε ∈ {TK,CE,SE}) is topology pre-
serving for (26,6) pictures.

Proof To prove it, we show that the parallel reduction operation T that deletes
3D-SF-k-deletable points satisfies all conditions of Theorem 2.

1. Operation T may delete simple points by Condition 1 of Definition 6. Hence
Condition 1 of Theorem 2 is satisfied.

2. • Let k = 2 and let p ∈ SF2(i) be any black point in picture (Z3,26,6,X) that
is deleted by T (i = 0,1).

Let Q ⊆ X ∩ SF2(i) be any set of black points in (Z3,26,6,X) such that
p ∈ Q, Q is contained in a unit lattice square, and each point in Q\{p} is
simple in picture (Z3,26,6,X).
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Fig. 6.4 The ten objects that are taken into consideration by 2-subfield algorithms. Notations: each
point marked by “"” is a black point; each point marked by “!” is a white point. (Note that each
of these objects is contained in a unit lattice cube)

Fig. 6.5 The four objects considered by 4-subfield algorithms. Notations: each point marked “"”
is a black point; each point marked “!” is a white point. (Note that each of these objects is con-
tained in a unit lattice cube)

Then Q = ∅ or Q = {q} by Proposition 1, and such kind of sets are con-
sidered by Condition 2 of Definition 6. Hence Condition 2 of Theorem 2 is
satisfied.

• Let k = 4 and let p ∈ SF4(i) be any black point in picture (Z3,26,6,X) that
is deleted by T (i = 0,1,2,3).

Let Q ⊆ X ∩ SF4(i) be any set of black points in (Z3,26,6,X) such that
p ∈ Q, Q is contained in a unit lattice square, and each point in Q\{p} is
simple in picture (Z3,26,6,X).

Then Q = ∅ by Proposition 2. Hence Condition 2 of Theorem 2 is satisfied.
• Let k = 8 and let p ∈ SF8(i) be any black point in picture (Z3,26,6,X) that

is deleted by T (i = 0,1, . . . ,7).
Let Q ⊆ X ∩ SF8(i) be any set of black points in (Z3,26,6,X) such that

p ∈ Q, Q is contained in a unit lattice square, and each point in Q\{p} is
simple in picture (Z3,26,6,X).

Then Q = ∅ by Proposition 3. Hence Condition 2 of Theorem 2 is satisfied.
3. • Let k = 2 and let C ⊆ X ∩ SF2(i) be any object in picture (Z3,26,6,X) that

is contained in a unit lattice cube (i = 0,1).
It can be readily seen by Proposition 1 that all the ten possible cases for such

objects are depicted in Fig. 6.4, and these objects cannot be deleted completely
by Condition 3 of Definition 6.

Hence Condition 3 of Theorem 2 is satisfied.
• Let k = 4 and let C ⊆ X ∩ SF4(i) be any object in picture (Z3,26,6,X) that

is contained in a unit lattice cube (i = 0,1,2,3).



176 K. Palágyi et al.

It can be readily seen by Proposition 2 that all the four possible cases for
such objects are depicted in Fig. 6.5, and these objects cannot be deleted com-
pletely by Condition 3 of Definition 6.

Hence Condition 3 of Theorem 2 is satisfied.
• Let k = 8 and let C ⊆ X ∩ SF8(i) be any object in picture (Z3,26,6,X) that

is contained in a unit lattice cube (i = 0,1, . . . ,7).
It is easy to see that there is no such an object by Proposition 3.
Hence Condition 3 of Theorem 2 is satisfied. �

Since objects contained in a unit lattice cube are composed of endpoints of type
SE, Condition 3 of Definition 6 can be ignored in algorithm 3D-k-SF-SE (k =
2,4,8).

6.4 Implementation

One may think that the proposed algorithms are time consuming and it is rather
difficult to implement them. That is why we outline a method for implementing any
3D fully parallel thinning algorithm on a conventional sequential computer. This
framework is fairly general, as similar schemes can be used for the other classes of
parallel algorithms and some sequential 3D thinning algorithms [33, 37, 38].

The proposed method uses a pre-calculated look-up-table to encode simple
points. In addition, two lists are used to speed up the process: one for storing the
border points in the current picture (since thinning can only delete border points,
thus the repeated scans/traverses of the entire array storing the picture are avoided);
the other list is to collect all deletable points in the current phase of the process.
At each iteration, the deletable points are found and deleted, and the list of border
points is updated accordingly. The algorithm terminates when no further update is
required.

For simplicity, the pseudocode of the proposed 3D fully parallel thinning algo-
rithms is given (see Algorithm 4). The subiteration-based and the subfield-based
variants can be implemented in similar ways.

The two input parameters of the procedure are array A which stores the input
picture to be thinned and the type of the considered endpoints ε. In input array A,
the value “1” corresponds to black points and the value “0” denotes white ones.
According to the proposed scheme, the input and the output pictures can be stored
in the same array, hence array A will contain the resultant structure.

First, the input picture is scanned and all the border points are inserted into the
list border_list. We should mention here that it is the only time consuming scan-
ning. Since only a small part of points in a usual picture belong to the objects, the
thinning procedure is much faster if we just deal with the set of border points in the
actual picture. This subset of object points is stored in border_list (i.e., a dynamic
data structure). The border_list is then updated: if a border point is deleted, then
all interior points that are 6-adjacent to it become border points. These brand new
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Algorithm 4 Fully parallel thinning algorithm
1: Input: array A and endpoint characterization ε
2: Output: array A
3: // collect border points
4: border_list = 〈empty list〉
5: for each p = (x, y, z) in A do
6: if p is border point then
7: border_list = border_list +〈p〉
8: A[x, y, z] = 2
9: end if

10: end for
11: // thinning
12: repeat
13: deleted = 0
14: deletable_list = 〈empty list〉
15: // checking Condition 1 of Theorem 2
16: for each point p = (x, y, z) in border_list do
17: if p is a simple point and not an endpoint of type ε then
18: deletable_list = deletable_list +〈p〉
19: A[x, y, z] = 3
20: else
21: A[x, y, z] = 2
22: end if
23: end for
24: // checking Condition 2 of Theorem 2
25: for each point p in deletable_list do
26: if deletion p does not satisfy Condition 2 of Theorem 2 then
27: deletable_list = deletable_list −〈p〉
28: end if
29: end for
30: // checking Condition 3 of Theorem 2
31: for each point p in deletable_list do
32: if deletion p does not satisfy Condition 3 of Theorem 2 then
33: deletable_list = deletable_list −〈p〉
34: end if
35: end for
36: // deletion
37: for each point p = (x, y, z) in deletable_list do
38: A[x, y, z] = 0
39: border_list = border_list −〈p〉
40: deleted = deleted+1
41: // update border_list
42: for each point q = (x′, y′, z′) that is 6-adjacent to p do
43: if A[x′, y′, z′] = 1 then
44: A[x′, y′, z′] = 2
45: border_list = border_list +〈q〉
46: end if
47: end for
48: end for
49: until deleted = 0
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border points of the actual picture are added to the border_list. In order to avoid
storing more than one copy of a border point in border_list, array A represents
a four-color picture during the thinning process: the value “0” corresponds to the
white points, the value “1” corresponds to (black) interior points, the value “2” is
assigned to all (black) border points in the actual picture (added to border_list), and
the value “3” corresponds to points that are added to the deletable_list (i.e., a sublist
of border_list).

The kernel of the repeat cycle corresponds to one iteration step of the thinning
process. The number of deleted points is stored in the variable called deleted. The
thinning process terminates when no more points can be deleted (i.e., no further
changes occur). After thinning, all points having a nonzero value belong to the pro-
duced skeleton-like shape feature.

Simple points in (26,6) pictures can be locally characterized; the simplicity of
a point p can be decided by examining the set N26(p) [12]. There are 226 possible
configurations in the 3 × 3 × 3 neighborhood if the central point is not considered.
Hence we can assign an index (i.e., a non-negative integer code) for each possible
configuration and address a pre-calculated (unit time access) look-up-table having
226 entries of 1 bit in size, therefore, it requires only 8 megabytes storage space in
memory.

By adapting this efficient implementation method, our algorithms can be well
applied in practice: they are capable of extracting skeleton-like shape features from
large 3D pictures containing 1 000 000 object points within one second on a standard
PC.

6.5 Results

The proposed 15 algorithms were tested on objects of different shapes. Here we
present some of them (see Figs. 6.6–6.12). The pairs of numbers in parentheses are
the counts of object points in the produced skeleton-like structure and the parallel
speed (i.e., the number of the performed parallel reduction operations [8]).

6.6 Possible Future Works and Open Problems

In this section, we will outline some possible future works and open problems con-
cerning parallel 3D thinning.

• Conventional thinning algorithms preserve endpoints to provide important geo-
metric information relative to the object to be represented. Bertrand and Cou-
prie proposed an alternative strategy [4]. They developed a sequential thinning
scheme based on a generalization of curve/surface interior points that are called
isthmuses. Isthmuses are dynamically detected and accumulated in a constraint
set of non-simple points.
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Fig. 6.6 A 191 × 96 × 114 image of a hand and its topological kernels produced by the five
proposed parallel 3D kernel-thinning algorithms. The original image contains 455 295 black points.
Since the original object contains a hole, there are holes in its topological kernels, too

The very first parallel 3D isthmus-based curve-thinning algorithm was de-
signed by Raynal and Couprie [39]. Each iteration step of their 6-subiteration
algorithm consists of two phases:

1. Updating the constraint set, by adding points detected as isthmuses;
2. Removing “deletable” points which are not in the constraint set.

Raynal and Couprie gave these “deletable” points by 3 × 3 × 3 matching tem-
plates, and proved that simultaneous deletion of “deletable” points is a topology
preserving reduction operation. Hence their algorithm is topology preserving.

In a forthcoming work, we are going to combine our sufficient conditions for
topology preservation (see Theorem 2) with various parallel thinning strategies
(i.e., fully parallel, subiteration-based, and subfield-based) and some character-
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Fig. 6.7 A 135 × 86 × 191 image of a dragon and its centerlines produced by the five proposed
parallel 3D curve-thinning algorithms. The original image contains 423 059 black points

izations of isthmuses to generate new parallel 3D curve-thinning and surface-
thinning algorithms.

• The 3D parallel thinning algorithms presented in this chapter are based on The-
orem 2 (i.e., some sufficient conditions for topology preservation). Conditions 2
and 3 of Theorem 2 are “asymmetric”, since points that are the smallest elements
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Fig. 6.8 A 380×287×271 image of a deer head and its centerlines produced by the five proposed
parallel 3D curve-thinning algorithms. The original image contains 1 658 641 black points
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Fig. 6.9 A 103×381×255 image of a helicopter and its centerlines produced by the five proposed
parallel 3D curve-thinning algorithms. The original image contains 273 743 black points

of some sets may not be deleted. It is easy to see that the following theorem
provides “symmetric” conditions for topology preservation.

Theorem 6 The parallel reduction operation O is topology preserving for (26,6)

pictures if all the following conditions hold for any black point p in any picture
(Z3,26,6,B) such that p is deleted by O .

1. Point p is simple in (Z3,26,6,B).
2. Let Q ⊆ B be any set of simple points in (Z3,26,6,B) such that p ∈ Q, and Q

is contained in a unit lattice square.
Then point p is simple in picture (Z3,26,6,B\(Q\{p})).

3. Point p is not an element of any object C ⊆ B in (Z3,26,6,B) such that C is
contained in a unit lattice cube.

In a future work, we plan to combine alternative sufficient conditions for topology
preservation with parallel thinning strategies to generate further classes of 3D
parallel thinning algorithms.

• Unfortunately, skeletonization methods (including thinning) are rather sensitive
to coarse object boundaries, hence the produced skeletons generally contain some
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Fig. 6.10 A 45×191×191 image of a gear and its medial surfaces produced by the five proposed
parallel 3D surface-thinning algorithms. The original image contains 596 360 black points
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Fig. 6.11 A 285×285×88 image of a camel and its medial surfaces produced by the five proposed
parallel 3D surface-thinning algorithms. The original image contains 1 088 458 black points
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Fig. 6.12 A 122 × 93 × 284 image of a car and its medial surfaces produced by the five proposed
parallel 3D surface-thinning algorithms. The original image contains 1 321 764 black points

false segments. In order to overcome this problem, unwanted skeletal parts are
usually removed by a pruning process as a post-processing step [40]. In [29], we
presented a new thinning scheme for reducing the noise sensitivity of 3D thinning
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algorithms. It uses iteration-by-iteration smoothing which removes some border
points being considered as extremities.

We are going to design new topology preserving parallel contour smoothing
operations, and combine our 3D parallel thinning algorithms (based on sufficient
conditions for topology preservation) with iteration-by-iteration smoothing.

• It is easy to see that subiteration-based and subfield-based parallel thinning
schemes are not invariant under the order of deletion directions and subfield ac-
tivations, respectively. It means that choosing different orders of directions may
yield various results in subiteration-based algorithms, and varieties of skeleton-
like shape features can be produced by a subfield-based algorithm with diverse
orders of the active subfields.

Neither order-independent subiteration-based nor subfield-based parallel thin-
ning algorithms have been proposed. We are going to deal with this unsolved
problem (i.e., we plan to construct subiteration-based and subfield-based algo-
rithms that produce the same result for any order of deletion directions and sub-
field activation).

6.7 Concluding Remarks

Fast and reliable extraction of skeleton-like shape features (i.e., medial surface, cen-
terline, and topological kernel) is extremely important in numerous applications for
large 3D shapes. In this chapter we presented a variety of parallel 3D thinning algo-
rithms and their efficient implementation. They are based on some sufficient condi-
tions for topology preserving parallel reduction operations, hence their topological
correctness is guaranteed. The algorithms are based on different characterizations
of endpoints. Additional types of endpoints coupled with sufficient conditions for
topology preservation yield newer thinning algorithms.

Acknowledgements This research was supported by the TÁMOP-4.2.2/08/1/2008-0008 pro-
gram of the Hungarian National Development Agency, the European Union and the European
Regional Development Fund under the grant agreement TÁMOP-4.2.1/B-09/1/KONV-2010-0005,
and the grant CNK80370 of the National Office for Research and Technology (NKTH) & the
Hungarian Scientific Research Fund (OTKA).

References

1. Arcelli, C., Sanniti di Baja, G., Serino, L.: New removal operators for surface skeletonization.
In: Proc. 13th Int. Conf. Discrete Geometry for Computer Imagery, DGCI 2006. Lecture Notes
in Computer Science, vol. 4245, pp. 555–566. Springer, Heidelberg (2006)

2. Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recognit. Lett. 16,
979–986 (1995)

3. Bertrand, G., Aktouf, Z.: A 3D thinning algorithm using subfields. In: SPIE Proc. of Conf. on
Vision Geometry, pp. 113–124 (1994)



6 Topology Preserving Parallel 3D Thinning Algorithms 187

4. Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly, D., Mon-
tanvert, A., Chassery, J. (eds.) Géométrie discrète et images numériques, pp. 187–209. Hermès
Science Publications-Lavoisier, Paris (2007)

5. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.)
Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge
(1967)

6. Gomberg, B.R., Saha, P.K., Song, H.K., Hwang, S.N., Wehrli, F.W.: Topological analysis of
trabecular bone MR images. IEEE Trans. Med. Imaging 19, 166–174 (2000)

7. Gong, W.X., Bertrand, G.: A simple parallel 3D thinning algorithm. In: Proc. 10th IEEE In-
ternat. Conf. on Pattern Recognition, ICPR’90, pp. 188–190 (1990)

8. Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld,
A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier, Ams-
terdam (1996)

9. Hall, R.W., Kong, T.Y., Rosenfeld, A.: Shrinking binary images. In: Kong, T.Y., Rosenfeld, A.
(eds.) Topological Algorithms for Digital Image Processing, pp. 31–98. Elsevier, Amsterdam
(1996)

10. Itoh, T., Yamaguchi, Y., Koyamada, K.: Fast isosurface generation using the volume thinning
algorithm. IEEE Trans. Vis. Comput. Graph. 7, 32–46 (2001)

11. Kong, T.Y.: On topology preservation in 2-d and 3-d thinning. Int. J. Pattern Recognit. Artif.
Intell. 9, 813–844 (1995)

12. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph.
Image Process. 48, 357–393 (1989)

13. Lee, T., Kashyap, R.L., Chu, C.: Building skeleton models via 3-D medial surface/axis thin-
ning algorithms. CVGIP, Graph. Models Image Process. 56, 462–478 (1994)

14. Lohou, C.: Detection of the non-topology preservation of Ma’s 3D surface-thinning algorithm,
by the use of P-simple points. Pattern Recognit. Lett. 29, 822–827 (2008)

15. Lohou, C., Dehos, J.: An automatic correction of Ma’s thinning algorithm based on P-simple
points. J. Math. Imaging Vis. 36, 54–62 (2010)

16. Lohou, C., Dehos, J.: Automatic correction of Ma and Sonka’s thinning algorithm using P-
simple points. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1148–1152 (2010)

17. Ma, C.M.: On topology preservation in 3D thinning. CVGIP, Image Underst. 59, 328–339
(1994)

18. Ma, C.M.: A 3D fully parallel thinning algorithm for generating medial faces. Pattern Recog-
nit. Lett. 16, 83–87 (1995)

19. Ma, C.M., Sonka, M.: A fully parallel 3D thinning algorithm and its applications. Comput.
Vis. Image Underst. 64, 420–433 (1996)

20. Ma, C.M., Wan, S.-Y.: Parallel thinning algorithms on 3D (18,6) binary images. Comput. Vis.
Image Underst. 80, 364–378 (2000)

21. Ma, C.M., Wan, S.Y.: A medial-surface oriented 3-d two-subfield thinning algorithm. Pattern
Recognit. Lett. 22, 1439–1446 (2001)

22. Ma, C.M., Wan, S.Y., Chang, H.K.: Extracting medial curves on 3D images. Pattern Recognit.
Lett. 23, 895–904 (2002)

23. Ma, C.M., Wan, S.Y., Lee, J.D.: Three-dimensional topology preserving reduction on the 4-
subfields. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1594–1605 (2002)

24. Manzanera, A., Bernard, T.M., Pretêux, F., Longuet, B.: Medial faces from a concise 3D thin-
ning algorithm. In: Proc. 7th IEEE Int. Conf. Computer Vision, ICCV’99, pp. 337–343 (1999)

25. Mukherjee, J., Das, P.P., Chatterjee, B.N.: On connectivity issues of ESPTA. Pattern Recognit.
Lett. 11, 643–648 (1990)

26. Németh, G., Kardos, P., Palágyi, K.: Topology preserving 2-subfield 3D thinning algorithms.
In: Proc. 7th IASTED Int. Conf. Signal Processing, Pattern Recognition and Applications,
pp. 310–316 (2010)

27. Németh, G., Kardos, P., Palágyi, K.: Topology preserving 3D thinning algorithms using four
and eight subfields. In: Proc. International Conference on Image Analysis and Recognition,



188 K. Palágyi et al.

ICIAR 2010. Lecture Notes in Computer Science, vol. 6111, pp. 316–325. Springer, Heidel-
berg (2010)

28. Németh, G., Kardos, P., Palágyi, K.: A family of topology-preserving 3D parallel 6-sub-
iteration thinning algorithms. In: Proc. 14th International Workshop on Combinatorial Image
Analysis, IWCIA’2011, Madrid, Spain. Lecture Notes in Computer Science, vol. 6636, pp.
17–30. Springer, Heidelberg (2011)

29. Németh, G., Kardos, P., Palágyi, K.: Thinning combined with iteration-by-iteration smoothing
for 3D binary images. Graph. Models 73, 335–345 (2011)

30. Palágyi, K.: A 3-subiteration 3D thinning algorithm for extracting medial surfaces. Pattern
Recognit. Lett. 23, 663–675 (2002)

31. Palágyi, K.: A 3-subiteration surface-thinning algorithm. In: Proc. 12th Int. Conf. Computer
Analysis of Images and Patterns, CAIP 2007, Vienna, Austria. Lecture Notes in Computer
Science, vol. 4673, pp. 628–635. Springer, Heidelberg (2007)

32. Palágyi, K.: A subiteration-based surface-thinning algorithm with a period of three. In: Ham-
precht, F., Jähne, B., Schnörr, C. (eds.) Lecture Notes in Computer Science, vol. 4713,
pp. 294–303. Springer, Heidelberg (2007)

33. Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theor. Comput. Sci. 406, 119–135
(2008)

34. Palágyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting medial lines.
Pattern Recognit. Lett. 19, 613–627 (1998)

35. Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Proc. 8th Int. Conf. on
Discrete Geometry for Computer Imagery, DGCI’99, Marne-la-Valle, France. Lecture Notes
in Computer Science, vol. 1568, pp. 325–336. Springer, Heidelberg (1999)

36. Palágyi, K., Kuba, A.: A parallel 3D 12-subiteration thinning algorithm. Graph. Models Image
Process. 61, 199–221 (1999)

37. Palágyi, K., Németh, G.: Fully parallel 3D thinning algorithms based on sufficient conditions
for topology preservation. In: Proc. 15th IAPR International Conference on Discrete Geometry
for Computer Imagery, DGCI 2009. Lecture Notes in Computer Science, vol. 5810, pp. 481–
492. Springer, Heidelberg (2009)

38. Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pulmonary air-
way tree structures. Comput. Biol. Med. 36, 974–996 (2006)

39. Raynal, B., Couprie, M.: Directional 3D thinning using 8 subiterations. In: Proc. 16th Int.
Conf. on Discrete Geometry for Computer Imagery, DGCI 2011, Nancy, France. Lecture
Notes in Computer Science, vol. 6607, pp. 175–186. Springer, Heidelberg (2011)

40. Shaked, D., Bruckstein, A.: Pruning medial axes. Comput. Vis. Image Underst. 69, 156–169
(1998)

41. Siddiqi, K., Pizer, S. (eds.): Medial Representations—Mathematics, Algorithms and Applica-
tions. Computational Imaging and Vision, vol. 37. Springer, New York (2008)

42. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and re-
trieval. In: Proc. Int. Conf. Shape Modeling and Applications, pp. 130–139. IEEE Press, New
York (2003)

43. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-D pictures. Comput. Graph. Image
Process. 17, 315–331 (1981)

44. Wan, M., Liang, Z., Ke, Q., Hong, L., Bitter, I., Kaufman, A.: Automatic centerline extraction
for virtual colonoscopy. IEEE Trans. Med. Imaging 21, 1450–1460 (2002)

45. Wang, T., Basu, A.: A note on ‘A fully parallel 3D thinning algorithm and its applications’.
Pattern Recognit. Lett. 28, 501–506 (2007)

46. Xie, W., Thompson, R.P., Perucchio, R.: A topology-preserving parallel 3D thinning algorithm
for extracting the curve skeleton. Pattern Recognit. 36, 1529–1544 (2003)



Chapter 7
Separable Distance Transformation
and Its Applications

David Coeurjolly and Antoine Vacavant

Abstract In binary shape analysis, the distance transformation (DT) and its by-
products are fundamental in many applications since they provide volumetric and
metric information about the input shape. In this chapter, we present a survey on a
specific approach (the dimension by dimension techniques) for the Euclidean metric
and with discuss its performances and its generalizations to higher dimension or to
specific grid models.

7.1 Introduction

Metric based description and analysis of shapes are fundamental notions in im-
age analysis and processing. Among classical tools, the distance transformation
(DT) [38, 53] of a binary image I : Zd → {0,1} consists in labeling each point
of a digital object E, defined as pixels with value 1 for instance on I , with its short-
est distance to the complement of E. In the literature, DT has been widely used
as a powerful tool in computer vision applications such as shape matching [20],
pedestrian detection [26], human tracking [13], action recognition [33], robot mo-
tion planning [39, 71], or computation of morphological operators [19].

Another application of the DT is the computation of the medial axis (MA) of
a digital shape [5, 43, 54], which is defined as the set of the centers of the largest
balls contained in the processed object. MA is a very interesting shape represen-
tation because it is reversible, i.e. one can reconstruct the original object from its
MA balls. Again, MA can be found in the literature in various applications such as
surface reconstruction [1], shape simplification [62], volume representation [9] or
smoothing [48].
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Many techniques have been proposed to compute the DT and then the MA given
a metric with a trade-off between algorithmic performances and the accuracy of the
metric compared to the Euclidean one. Hence, we can consider distances based on
chamfer masks [7, 29, 50, 53] or sequences of chamfer distances [44, 46, 53, 60]; the
vector displacement based Euclidean distance [20, 22, 45, 49]; the Voronoi diagram
based Euclidean distance [8, 32, 34, 40] or the square of the Euclidean distance [36,
41, 55]. From a computational point of view, several of these methods lead to time
optimal algorithms to compute the error-free Euclidean Distance Transformation
(EDT) for d-dimensional binary images [8, 34, 36, 40, 41]. The extension of these
algorithms is straightforward since they use separable techniques to compute the
DT; d one-dimensional operations—one per direction of the coordinate axis—are
performed.

In this chapter, we focus on separable techniques for the Euclidean metric and
its applications. First of all, we define the DT and the medial axis (MA) extraction
thanks to discrete geometry concepts (Sect. 7.2). We present the formulations in d

dimensions (or d-D), but for a sake of clarity, we generally illustrate the principles
in the 2-D case. In Sect. 7.3, we present several extensions of these algorithms on
special spaces, like toric plane or irregular isothetic grids. To deal with the process-
ing of voluminous image data, high performance versions of DT (multithreaded,
GPU) are finally discussed in Sect. 7.4.

7.2 Distance Transformation and Discrete Medial
Axis Extraction

7.2.1 Distances

A distance (or metric) is a relation that is defined by four axioms:

Definition 1 (Distance) Let E be a non empty set and F be a sub-group of R.
A distance from E into F , denoted by (d,E,F ), is a relation d : E × E → F such
that:

Non-negativity ∀x, y ∈ E, d(x, y) ≥ 0; (7.1)

Identity of indiscernibles ∀x, y ∈ E, d(x, y) = 0 ⇔ x = y; (7.2)

Symmetry ∀x, y ∈ E, d(x, y) = d(y, x); (7.3)

Triangle inequality ∀x, y, z ∈ E, d(x, y) ≤ d(x, z) + d(z, y). (7.4)

The first distances that have been used in image analysis are d1 and d∞ [54],
respectively defined as

d1(x,y) = |y1 − x1| + |y2 − x2| + · · · + |yd − xd |; (7.5)

d∞(x,y) = max
{|y1 − x1|, |y2 − x2|, . . . , |yd − xd |}. (7.6)

In the literature, for the Z
d case, d1 distance is also called �1-metric or grid metric,

and for d = 2, Manhattan, city block, taxi-cab or rectilinear metric. The d∞ distance
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Fig. 7.1 Balls of distance 1,
with different distances: d8 in
plain lines, dE in dotted lines,
and d4 in dashed lines

is named �∞-metric, Chebyshev or uniform metric, and for d = 2, chessboard or
square metric (cf. Fig. 7.1). Furthermore, d1 and d∞ are often called d4 and d8 in
the 2-D case, d6 and d26 in 3-D, because of the number of digital points at distance
1 of a given grid points (see further Definition 2).

The Euclidean distance is certainly the most employed distance, and is defined
for two points x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) that belong to R

d by

dE(x,y) =
√

(y1 − x1)2 + (y2 − x2)2 + · · · + (yd − xd)2. (7.7)

The squared Euclidean distance d2
E is another interesting application for image anal-

ysis, since d2
E(x,y) has values in Z, for all x,y ∈ Z

d . Hence, even if d2
E is not a met-

ric, it is a convenient exact representation of the Euclidean metric for which efficient
algorithms can be designed.

Both d1 and dE metrics are in fact special cases of weighted �p metrics defined
by

d�p (u,v) =
(

d∑
i=0

wi |ui − vi |p
) 1

p

(7.8)

with u,v,w ∈ R
d and p ∈ R

∗. Weights wi can be set to represent anisotropic grids
widely used in medical imaging for instance (p = 2 and {wi = 1} leads to the clas-
sical Euclidean distance on the regular square grid). From a computational point of
view, algorithms presented here are illustrated with the Euclidean d�2 = dE distance
(cf. Fig. 7.2 for illustrations). However, many of them are valid for any �p metric.

From a given distance, one can also define a ball, which is an important notion
for medial axis extraction:

Definition 2 (Ball) Let (d,E,F ) be a distance, p ∈ E and r ∈ F . The ball Bd of
center p and radius r is

Bd(p, r) = {
q ∈ E: d(p,q) ≤ r

}
. (7.9)

To consider an open ball, we just have to use a strict inequality in the previous
equation.
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Fig. 7.2 Distance transformation of point sets (a–c) or of a 2-D shape (d–g) for the Euclidean
metric, the �1 metric, and the �∞ metric, respectively

7.2.2 Distance Transformation

The distance transformation (DT) aims to compute the distance of each point of a
discrete object E to the boundary of E. Let I be a binary image where value 1 pixels
define the digital object E and value 0 pixels define its background E. One defines
the DT of x ∈ E, based on a given distance d , as follows:

DT (x) = min
{
d(x,y), y ∈ E

}
. (7.10)

In the rest of the chapter, we will focus on the DT based on the squared Euclidean
distance d2

E , that we denote by E2DT. The first algorithms that were devoted to com-
pute the E2DT [22, 49] were inspired from by chamfer distance transformation [7],
and unfortunately induced errors in the computation of the distance.

To correctly compute the E2DT, various authors have chosen to construct a sep-
arable algorithm [27, 69]. The main idea of such technique is to compute the E2DT
by scanning a 2-D image with independent set of 1-D processes; one per dimension.
This principle is thus easily extendable to higher dimensions. Let I be a binary im-
age of size n × n. A separable E2DT algorithm consists in computing the image H :

H(i1, i2) = min
{
(i1 − x1)

2 + (i2 − x2)
2:

0 ≤ x1, x2 < n and I (x1, x2) ∈ E
}
, (7.11)

and this process is decomposed into two independent steps (see also Fig. 7.3):
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Fig. 7.3 Global overview of the two-dimensional E2DT process. The first step of the algorithm
computes G (a), representing minimal distances along the x-axis. If we choose one column of G,
the second phase consists in computing G(i1, i2)

2 + (i2 − x2)
2 for each pixel of this column (b).

The minimization of this column leads to the computation of the E2DT stored in H

Fig. 7.4 Example of the two-dimensional E2DT process over a small binary image

1. From image I , compute the G image with a one-dimensional minimization pro-
cess over every row i1:

G(i1, i2) = min
x1

{|i1 − x1|: 0 ≤ x1 < n and I (x1, i2) ∈ E
}; (7.12)

2. Then, compute the final result H , for any column i2:

H(i1, i2) = min
x2

{
G(i1, x2)

2 + (i2 − x2)
2: 0 ≤ x2 < n

}
. (7.13)

In higher dimension, Eq. (7.11) can be generalized and decomposed into 1-D
minimization steps defined in Eq. (7.13). The time complexity of the first step is
O(n2), and O(d · nd) in the general case, since it consists in a scan of the rows of
image I (Fig. 7.5). Next step is also in O(d · nd) complexity, and aims to compute
the lower envelope of the set of parabolas (see Fig. 7.6)

{
F i1

x2
(i2) = G(i1, x2)

2 + (i2 − x2)
2}, with 0 ≤ x2 < n. (7.14)

This idea was first introduced by Saito and Toriwaki [55], but their algorithm was
not linear in time. It was improved in [36] where using a stack based technique,
the lower envelope of the set of parabolas of Eq. (7.14) is obtained in linear time
(see Fig. 7.5). Hence, the overall DT computation is optimal in O(d · nd) algorithm
[36, 41].
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Algorithm 1: First step along the
X axis

Data: E a binary shape inside I ,
an n × n image.

Result: G the E2DT along X axis.
1 for i2 = 0 to n − 1 do
2 if I (0, i2) ∈ E then
3 G(0, i2) ← 0;

4 else
5 G(0, i2) ← ∞;

6 for i1 = 0 to n − 1 do
7 if I (i1, i2) ∈ E then
8 G(i1, i2) ← 0;

9 else
10 G(i1, i2) ←

1 + G(i1 − 1, i2);

11 for i1 = n − 2 to 0 do
12 if G(i1 + 1, i2) < G(i1, i2)

then
13 G(i1, i2) ←

1 + G(i1 + 1, i2);

Algorithm 2: Second step along
the Y axis

Data: G obtained from step 1.
Result: H the E2DT map.

1 for i1 = 0 to n − 1 do
2 q ← 0, s[0] ← 0, t[0] ← 0;
3 for i2 = 0 to n − 1 do
4 while

q ≥ 0 ∧ Fs[q](t[q]) >

Fi2(t[q]) do
5 q ← q − 1;

6 if q < 0 then
7 q ← 0, s[0] ← i2;

8 else
9 w ← 1+Sep(s[q], i2);

10 if w < n then
11 q ← q + 1,

s[q] ← i2;
12 t[q] ← w;

13 for i2 = n − 1 to 0 do
14 H(i1, i2) ← Fs[q](i2);
15 if i2 = t[q] then
16 q ← q − 1;

Fig. 7.5 Separable algorithm for E2DT of a 2-D binary image

In Fig. 7.5, we detail the pseudo-code of the E2DT computation in dimension 2.
The first step (Fig. 7.5-Alg. 1) corresponds to the distance propagation defined in
Eq. (7.12) implemented with a 2-scan process. To compute the lower envelope of
parabolas F i1

x2(i2), we define a function Sep(u1, u2) which corresponds to the y-
coordinate of the intersection point between two consecutive parabolas. For a given
column i1, it is given by:

Sep(u1, u2) = (
u2

2 − u2
1 + G(i1, u2)

2 − G(i1, u1)
2)div

(
2(u1 − u2)

)
. (7.15)

In Fig. 7.4, we show a small example of the E2DT computation.
In [41], the authors present a way to change the F () and Sep() functions in order

to compute DT with other metrics. More precisely, for each lp metric defined above,
there exist functions F () and Sep() for which algorithms in Fig. 7.5 produce exact
lp DT of binary images in dimension d .
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Fig. 7.6 Lower and upper envelope computations in E2DT and the REDT problems

7.2.3 Reverse Distance Transformation

In this section, we discuss about the reconstruction problem of an object E

thanks to a set of balls. Let us consider L, a set of l points {xm}1≤m≤l =
{(xm

1 , xm
2 , . . . , xm

d )}1≤m≤l , and r(xm) the associated squared Euclidean distance.
A point p belongs to E if it belongs to at least one disk whose center is a point
m of L, with radius

√
r(xm). Hence, the reverse distance transformation (REDT) of

L consists in obtaining the set of points P such that:

P = {
(i1, i2)

∣∣ (i1 − x1)
2 + (i2 − x2)

2 < r(x1, x2), (x1, x2) ∈ L
}
. (7.16)

Let now F be an image of size n × n such that F(i1, i2) is set to r(i1, i2) if (i1, i2)

belongs to L and to 0 otherwise. To obtain the REDT of L, we have to compute the
image H :

H(i1, i2) = max
{
F(x1, x2) − (i1 − x1)

2 − (i2 − x2)
2;

0 ≤ x1, x2 < n and (x1, x2) ∈ F
}
, (7.17)

then we extract the positive values of H . As in the case of the E2DT, we can decom-
pose this process into two main steps:

1. From image F , compute the G image with a one-dimensional maximization pro-
cess

G(i1, i2) = max
x1

{
F(x1, i2) − (i1 − x1)

2, 0 ≤ x1 < n
}; (7.18)

2. Then, compute the final result H :

H(i1, i2) = max
x2

{
G(i1, x2) − (i2 − x2)

2: 0 ≤ x2 < n
}
. (7.19)

Similarly to the previous section, Eqs. (7.18) and (7.19) correspond to the com-
putation of the upper envelope of a set of parabolas {F ∗(i) = h − (i − x)2} with
some h ∈ Z

+ (see Fig. 7.6). Hence, we can use a similar algorithmic tool with spe-
cific Sep() functions. For example, for the first step, we have

Sep∗(u1, u2) = (
u2

1 − u2
2 − F(u1, i2) + F(u2, i2)

)
div

(
2(u1 − u2)

)
. (7.20)
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Algorithm 3: REDT one-dimensional process (here, along x-axis)
Data: F the image of balls centers, of size n × n.
Result: G the REDT result along X axis.

1 for i2 = 0 to n − 1 do
2 q ← 0, s[0] ← 0, t[0] ← 0;
3 for i1 = 1 to n − 1 do
4 while q ≥ 0 ∧ F ∗

s[q](t[q]) < F ∗
i1
(t[q]) do

5 q ← q − 1;

6 if q < 0 then
7 q ← 0, s[0] ← i1;

8 else
9 w ← 1 + Sep∗(s[q], i1);

10 if w < n then
11 q ← q + 1, s[q] ← i1;
12 t[q] ← w;

13 for i1 = n − 1 to 0 do
14 G(i1, i2) ← F ∗

s[q](i1);
15 if i1 = t[q] then
16 q ← q − 1;

Algorithm 3 details the 1-D upper envelope computation in linear time. To com-
pute the REDT in dimension 2 or in higher dimensions d , we have to repeat this
1-D process dimension by dimension. The complexity of the overall algorithm in
dimension d is O(d · nd).

Figure 7.7 illustrates an example of the 2-D REDT process on a small image
containing three Euclidean balls.

7.2.4 Medial Axis Extraction

In this section, we study the medial axis of a digital shape by considering the first
definition of a maximal ball. Note that we always consider open balls in the rest of
the chapter (see Definition 2).

Definition 3 (Maximal ball) A maximal ball is an open ball contained in the shape
not entirely covered by another ball contained in the shape.

We now define the medial axis as follows (cf. Fig. 7.8 for an illustration in the
continuous domain).
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Fig. 7.7 Example of the two-dimensional REDT process over a small image with three Euclidean
balls

Fig. 7.8 Medial axis of a
shape (external contour),
illustration from [2]

Definition 4 (Medial axis [5, 54]) The medial axis of a shape is the set of maximal
ball centers contained in the shape.

If we label each point x of the medial axis (MA) with the radius δ(x) of the
maximal ball centered in x, any shape F ⊂ R

d may be represented by the union of
the maximal balls as follows:

F =
⋃

x∈MA(F )

B
(
x, δ(x)

)
, where B(x, r) = {

y ∈R
d : dE(x,y) < r

}
. (7.21)

An interesting property of balls and their maximality can be given in d + 1 dimen-
sion, with the notion of elliptic paraboloids. For a sake of clarity, we consider a ball
B ⊆ R

2 of center p = (p1,p2) and radius r , and we denote

hB(x1, x2) = r2 − (x1 − p1)
2 − (x2 − p2)

2. (7.22)

The ball B is thus the set of points (x1, x2) ∈ R
2 such that hB(x1, x2) > 0. We

associate the ball B with the elliptic paraboloid B̂ ∈R
3:

B̂ = {
(x1, x2, x3) ∈ R

3: 0 ≤ x3 < hB(x1, x2)
}
, (7.23)

and the intersection between B̂ and the plane x3 = 0 is the disk of center (p1,p2)

and radius r . In [3], a similar object has been defined under the name of ghost
sphere. If we now consider the Euclidean shape F ⊂ R

2, Eq. (7.21) may be inter-
preted as:

F̂ =
⋃

B⊂F

B̂, where F̂ ∈ R
3. (7.24)

As for the concept of maximal ball in R
2 (Definition 3), we say that an elliptic

paraboloid is maximal in F̂ if it is not entirely included in any other paraboloid
in F̂ . We have the following property (see also Fig. 7.9):
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Fig. 7.9 Equivalence
between inclusion of balls in
2-D and inclusion of elliptic
paraboloids in 3-D

Lemma 1 (Maximality of a paraboloid [16]) A ball B is maximal in F if and only
if its associated elliptic paraboloid is maximal in F̂ .

When F is a finite union of balls, we can notice that the boundary of F̂ coin-
cides with the upper envelope of the elliptic paraboloids associated with the balls B

included in F . This envelope is defined by:

h(x1, x2) = max
B⊂F

hB(x1, x2). (7.25)

We also recall the following lemma, which permits to say that the elliptic paraboloid
associated with a maximal ball reaches the upper envelope of paraboloids:

Lemma 2 (Ball maximality and upper envelope of paraboloids [16]) Let F ⊂ R
2

be a finite union of open balls. Let B be an open ball in R
2. Then:

B is maximal in F ⇐⇒ ∃(x1, x2) ∈ B, hB(x1, x2) = h(x1, x2). (7.26)

Note that a proof of this lemma follows properties of maximal balls [2].
We now propose to show how to extract a discrete medial axis of a digital

shape E. This MA, denoted by MAdE
(E) is the set of maximal balls centers, gener-

ated with the Euclidean distance. MAdE
(E) has the property to reconstruct exactly

the original object E (but it is generally not homotopic to E). This reconstruction
process consists in computing the set of l balls (xk, δ(xk)) ∈ Z

d ×N:

E =
⋃

1≤k≤l

B
(
xk, δ(xk)

)
, where B(x, r) = {

y ∈ Z
d : dE(x,y) < r

}
. (7.27)

Let B(p) be the largest ball centered in p and contained in E. From the previous
lemma, the set

MA0(E) = {
p ∈ Z

2
∣∣ ∃(x1, x2) ∈ E, hB(p)(x1, x2) = h(x1, x2)

}
(7.28)

is a subset of the MA of E, but is not included into the discrete MA of E. In fact,
a ball may be maximal in E, although the Euclidean ball with the same center and
radius may not be, as shown in Fig. 7.10. Indeed, in the MA0(E) set of Fig. 7.10(a),
all balls are maximal in the continuous plane. However, the digital ball centered in
the middle of the shape with radius

√
2 contains the digitizations of the four balls of

radius 1. In [16], we describe a technique to filter balls in MA0(E) in order to keep
maximal balls in the digital domain.
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Fig. 7.10 (a—from left to
right) A simple binary shape
with its E2DT, the points in
MA0(E) and its discrete
medial axis. (b) Illustration of
the elliptic paraboloids
involved in MA0(E)

We can now sketch the algorithm for obtaining the reduced discrete medial axis
(RDMA) of a digital shape E. As discussed above, balls in RDMA(E) have the fol-
lowing properties: they are maximal in the digital domain and the union of RDMA
balls is equal to E. In an algorithmic point of view, one can see that Eq. (7.22) cor-
responds to the upper envelope computation process defined in the REDT algorithm
(see Sect. 7.2.3). Hence, from a binary shape E defined in an image I , the RDMA
can be obtained as follows (see [16] for details):

1. Compute the E2DT of E;
2. Use the REDT algorithm on the E2DT map to mark balls belonging to the upper

envelope of elliptic paraboloids (Eq. (7.28));
3. Remove maximal continuous balls which are not maximal in the digital case.

As discussed above, the first two steps can be done in O(c · nd). To filter non
maximal digital balls, we have defined a simple algorithm which filters the balls
in the 1-D process during the REDT computation [16]. Hence, we finally obtain a
RDMA extraction algorithm in optimal O(c · nd) time (cf. Fig. 7.11 for a result).

7.2.5 Voronoi Diagrams and Power Diagrams

7.2.5.1 E2DT and Voronoi Diagram

The resolution of the DT formulation given in Eq. (7.10) in the discrete space can
be addressed by computing the Voronoi diagram (VD) of the background pixels (i.e.
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Fig. 7.11 Examples of RDMA extraction on 3-D shapes

Voronoi sites). We recall that the VD of a set of N points P = {pi}i=1,...,N is a tiling
of the plane into Voronoi cells (or VD cells) {Cpi

}i=1,...,N such that [23, 70]:

Cpi
= {

x ∈ Z
d : dE(x,pi ) ≤ dE(x,pj ), ∀j �= i

}
. (7.29)

Hence, a simple approach to compute the E2DT (presented in Fig. 7.12 and Al-
gorithm 4) is to pre-compute the complete VD of the background points, and to
locate foreground points in the VD. In the 2-D case, the E2DT computation has a
O(n × n lognB) time complexity, where n × n is the total number of pixels, and
nB = #E is the number of background pixels. More precisely, the Voronoi Diagram
V can be computed thanks to the CGAL library [37],1 and has an optimal time com-
plexity O(nB lognB) and requires O(nB) space [25]. Then, the main loop of this
algorithm consists in locating each foreground point p in V , and in searching for its
nearest Voronoi site s in VP . The location query is proved to have a O(lognB) com-
plexity [25]. Thus, we perform this loop in O(nF lognB) time, where nF = #E.
Indeed, searching for the nearest site s is processed in constant time in the three
cases: p is inside a Voronoi cell, p stands on a Voronoi edge, and p is on a Voronoi

1CGAL, Computational Geometry Algorithms Library, http://www.cgal.org.
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Fig. 7.12 The computation of the E2DT (a) can be obtained by constructing the VD of the back-
ground pixels (black points). The VD is illustrated by dotted lines in (b)

vertex. When p stands on a vertex or on an edge of V , the choice of the Voronoi cell
containing s is arbitrary.

This technique is obviously not computationally efficient for large images, and
the extension of this transformation to d-D is a hard work. A VD can be computed
in d-D with a O(nB lognB + n

�d/2�
B ) time complexity (thanks to a gift-wrapping

approach [23], for example). However, localizing a point in the VD is an arduous
task, and an additional structure like subdivision grids [47] should be constructed to
handle this operation.

Algorithm 4: Computation of the E2DT thanks to a VD-based process
Data: E a binary shape inside I , a n × n image.
Result: The E2DT of each point of E, stored in H .

1 compute the Voronoi Diagram VP of the points P = {q: q ∈ E};
2 for each point p ∈ E do
3 locate p in VP ;
4 if p is the Voronoi vertex v of VP then
5 s ← Voronoi site of an adjacent cell of v;
6 else if p belongs to a Voronoi edge e in VP then
7 s ← Voronoi site of an adjacent cell of e;
8 else {p belongs to a Voronoi cell C of VP }
9 s ← Voronoi site of C;

10 H(p) ← d2
E(s,p);

11 for each point q ∈ E do
12 H(q) ← 0;
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Fig. 7.13 (a) Several stages of the algorithm of Breu et al. [8] in an example with four background
pixels p1, . . . , p4 (circles) and two foreground pixels (crosses). During the first sweeping stage,
they build the discrete VD, intersection between the Z

d and the complete VD of the background
points. In the last step, the point p1 is not considered anymore, because it is hidden by p2 and p3
(see also (b)). Last figure is the result of the second stage, where the foreground points are affected
by the correct E2DT

As a consequence, many algorithms devoted to compute the E2DT of binary d-D
images only compute a partial discrete VD of the background pixels [8, 40, 58] in
order to be computationally efficient in any dimension. A first approach developed
by Breu et al. [8] aims to compute the E2DT of a binary image by using a sweep-
line process. During the two scans of the image, a predicate decides if a Voronoi
site u is hidden by two others sites v and w (see Fig. 7.13). In the 2-D case, at each
Y -coordinate y = ri of the input image I , this predicate is true if

(w1 − v1) × (
v2

1 − u2
1 − 2ri(v2 − u2) + v2

2 − u2
2

)
≥ (v1 − u1) × (

w2
1 − v2

1 − 2ri(w2 − v2) + w2
2 − v2

2

)
. (7.30)

Maurer, Qi and Raghavan [40] propose to adapt the separable scheme proposed
in [36, 41, 55] to extend this methodology to d-D, with an algorithm that prunes the
VD in each dimension. Such an algorithm is now considered as a reference. As an
example, the E2DT algorithm coded in the famous ITK (Insight ToolKit) library is
inspired from this work.2

2More details can be found in [63] and on the page http://www.itk.org/Doxygen/html/
classitk_1_1SignedMaurerDistanceMapImageFilter.html.
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Fig. 7.14 Power diagram
construction: the input set of
circles in the plane (a), and its
power diagram (b)

7.2.5.2 REDT and Power Diagram

We can describe similar links between the REDT computation and the computation
of a specific diagram: the power diagram (also known as the Laguerre diagram) [4].
First, let us consider a set of N sites S = {ci}i=1,...,N such that each point ci is asso-
ciated with a radius ri (see Fig. 7.14(a)). The power σi(x) of a point x in R

d accord-
ing to the site ci is given by σi(x) = ‖x − ci‖2 − r2

i . If σi(x) < 0, x belongs to the
disk of center ci and radius ri . If σi(x) > 0, x is outside the ball. The power diagram
is a kind of Voronoi diagram based on the metric σ . Hence, the power diagram VS

is a decomposition of the space into open cells F = {Cci
}i=1,...,N associated with

each site ci such that

Cci
= {

x ∈R
d : σi(x) < σj (x), ∀j �= i

}
. (7.31)

Note that cell Cci
associated with site ci may be empty, otherwise, Cci

is a convex
polytope (see Fig. 7.14 in dimension 2). The power diagram is a common tool in
computational geometry when a geometry of spheres or hyper-spheres must be taken
into account [1, 4, 6].

In the REDT computation described in Sect. 7.2.3, Eq. (7.17) corresponds
to the set of points (i1, i2) for which there exists a ball j with power distance
σj (i1, i2) < 0.

Similarly to the previous section and since faces Cci
of the power diagram are

obtained by minimizing all power distances, a simple algorithm to solve the REDT
problem can be sketched as follows:

• Given an input set of points with radii, we construct the power diagram.
• For each grid point p ∈ Z

d , we locate p in the power diagram.
• The reconstructed binary shape P corresponds to points p with negative power

distance.

In dimension d , the construction of the power diagram has gotten the same com-
putational cost as the Voronoi diagram construction. Hence, the overall the discus-
sion on computation detailed in Sect. 7.2.5.1 is still valid in the power diagram case.
Furthermore, algorithms that compute Voronoi diagram mappings in the digital grid
can be adapted to be able to construct digital power diagram mappings [16].



204 D. Coeurjolly and A. Vacavant

Fig. 7.15 Examples of
I-grids: grid obtained with a
RLE (Run Length Encoding)
scheme (a), quadtree-based
grid (b) and an adaptive
grid (c)

7.3 Extensions and Generalizations

7.3.1 Irregular Grids

As discussed in Sect. 7.2, the DT and RDMA extraction processes are widely stud-
ied and developed on regular grids. Some specific extensions of the DT to non-
regular grids also exist, such as elongated grids [12, 29, 59], quadtrees/octrees [57,
71], Face-Centered Cubic (FCC)/Body-Centered Cubic (BCC) grids [31], etc. In a
similar way, some works aimed to extend the computation of a skeleton to other
non-standard regular grids (triangular, hexagonal, rectangular grids) [14, 24], and
to quadtree/octree representations [56, 72]. In this section, we present generic DT
and RDMA extraction processes, designed on every kind of image representations
in two or higher dimensions.

We first recall the I-grid model [17, 64, 68]:

Definition 5 (d-D I-grid) Let P be a closed rectangular subset of Rd . A d-D I-grid
G is a tiling of P with non overlapping hyper-rectangles (or cells) whose d −1 faces
are parallel to the successive axes of the chosen space. The position of each cell is
characterized by its center point (its position) (pR

1 ,pR
2 , . . . , pR

d ) ∈R
d and its length

along every axes (�R
1 , �R

2 , . . . , �R
d ) ∈ R

∗+d .

In the rest of the section, we will use for illustration mainly 2-D grids, and we
will consider them binary, i.e. they contain cells that are labeled background or fore-
ground (for a given grid G, denoted GB and GF , respectively). Some examples of
classic grids in imagery are given in Fig. 7.15. The I-grid model is able to represent
these grids in any dimension. Even if the distance between discrete points in Z

d

is a very natural notion, according to R
d , distance in an I-grid should be precisely

addressed.

7.3.1.1 E2DT Computation on III-Grids

Here, we first recall the two extensions of the E2DT proposed on I-grids, for each
cell R ∈ GF :

I-CDT(R) = min
R′

{
d2
E

(
pR,pR′)

: R′ ∈ GB

}
, (7.32)

I-BDT(R) = min
s

{
d2
E

(
pR, s

)
: s ∈ S

}
, (7.33)
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Fig. 7.16 Example of the VD of the background points to obtain the I-CDT of a simple I-grid (a)
and the background/foreground frontier (dark segments) to obtain the I-BDT (b)

where S is the set of segments contained in the background/foreground frontier of
the grid. The first extension, the Center-based DT (Eq. (7.32)) [66] is based on
the cell centers of the grid. The Border-based DT (Eq. (7.33)) [67] employs cell
borders, and computes the shortest distance between a foreground cell center and
the background/foreground boundary.

We can compute these extensions thanks to the construction of two kinds of VD
(see Sect. 7.2.5). The I-CDT may be computed thanks to a similar algorithm to the
one illustrated in Algorithm 4. If we now consider the background/foreground fron-
tier to compute the I-BDT, Eq. (7.33) implies that we compute a VD of segments,
and not a classical VD of points (see Fig. 7.16 for an example of these diagrams
computed on a simple I-grid). As in the discrete case, a complete VD-based I-CDT
technique is obviously not computationally efficient for every grids, and not adapted
to dense grids [66]. To compute the I-BDT, a similar process can be drawn, where
the computation of the VD of segments can be handled in O(nS log2 nS), where
nS = 4nB is the total number of segments belonging to the background/foreground
frontier [37]. The extension of both VD-based transformations (I-CDT and I-BDT)
to d-D I-grids is difficult. In the following, we show how to use separable techniques
in order to compute them.

To develop a separable process on I-grids, we denote by A the irregular matrix
associated with a labeled I-grid G, introduced in [66]. This data structure aims to
organize the cells of the grid along the X and Y axis by adding virtual cells centers
(see Fig. 7.17 for an example).

The nodes and the border attributes are used to propagate the I-CDT and I-BDT
distance values through the irregular matrix and then compute a correct distance
value for each cell center. Thanks to the irregular matrix, we are able to compute
the two extensions of the DT on I-grids from Eq. (7.32) and Eq. (7.33), in linear
time, according to the irregular matrix size (see [68] for more details). In Fig. 7.18,
we present the result of the computation of the I-CDT on various digitizations of
images ghost and lena. Even if the hexagonal grid is not properly an I-grid, the
result of the I-CDT is the DT based on the hexagonal tiles centers.
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Fig. 7.17 Construction of the irregular matrix associated with the simple I-grid illustrated in
Fig. 7.16. In (a), the extra node A(0,2) of the matrix is depicted at the intersection of the dot-
ted lines. In (b), examples of values for border attributes are also given along X (dashed lines)
and Y (dotted lines). For instance, we have HR(0,2) = HL(0,2) = 20, HT (0,2) = HB(0,2) = 10,
HR(1,1) = HL(1,1) = 10, and HT (1,1) = HB(1,1) = 0 since this node coincides with a cell
horizontal border. We can also notice that HL(2,3) �= HR(2,3) while HT (2,3) = HB(2,3) = 5

It is also possible to extend the notion of RDMA on I-grids [65]. In Fig. 7.19, we
also show an application of I-RDMA for computing an adaptive MA. We consider a
quadtree decomposition of a binary image, with an increasing level of subdivision.

Fig. 7.18 From several digitizations of the binary images ghost and lena (a–b), we propose to
compute the I-CDT, viewed as a distance map for ghost (c–g). In the bottom, we also display the
elevation map associated with each case of the image lena: (h) regular square grid, (i) hexagonal
grid, (j) rectangular grid, (k) quadtree decomposition, (l) RLE
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Fig. 7.19 Top: Extraction of the I-RDMA on several regular image structures (square, hexago-
nal, rectangular). Bottom: Progressive extraction of the I-RDMA for three levels of quadtree de-
composition of the same image. We present in (g) a quarter of the balls associated with the final
decomposition

We finally present a part of the balls associated with the MA points for the final
decomposition.

In this irregular case, we have increased the size of the input with the help of
the irregular matrix construction. In some situations such as irregular anisotropic
domains, no overload exists. However, pathological cases may lead to an irregu-
lar matrix with quadratic size (compared to the input set of irregular cells). How-
ever, experimental evaluation shows that the separable algorithms still outperform
Voronoi diagram based construction for instance.

7.3.2 Toric Domains

In many material sciences applications, discrete toric domains are widely used to
model and analyze structures based on a sample of the material and assuming that
the overall material can be approximated as a regular tiling of this sample. In order
to make the measurements consistent through tiling, we have to consider that the
sample is embedded in a toric space. Discrete toric spaces in higher dimension can
be defined as direct products of 1-D cyclic domains [11, 15]. In order to perform
volumetric analysis such as distance transformation, we have to handle the boundary
propagation correctly. Since the 1-D envelope computations involved in the DT,
REDT and RDMA algorithms are independent, we just have to define 1-D toric
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Fig. 7.20 Example of E2DT computation on a toric domain

envelope computation in order to make all the algorithms remain consistent in the
toric model (see Fig. 7.20).

In [15], we have detailed a modification of the envelope parabola computations
defined earlier in order to take into consideration cyclic 1-D domains. Using these
modified 1-D process, linear in time separable volumetric algorithms can be defined
on d-D toric domains.

7.4 High Performance Computation

In many applications, efficient volumetric analysis is required in order to achieve
real-time computations, or to be able to deal with large data-sets. For the first point,
we focus on parallel implementation of separable algorithms on both CPU and GPU.
In Sect. 7.4.2, we briefly discuss about out-of-core distance transformation compu-
tation.

7.4.1 Parallel Computation

Let us first consider a simple multithreaded environment. As illustrated in Fig. 7.4,
for each dimensional step, we have independent 1-D processes. Hence we have a
straightforward but optimal multithread implementation that can be sketched as fol-
lows in dimension 2. Let us consider p processors (or threads) in share memory
model. During the first step, we decompose the loop in line 1 of Fig. 7.5-Alg. 1 into
a parallel loop with p chunks of n/p rows attached to each processor. At the end of
the first step, we have to synchronize the processors and continue with the second
step decomposing loop 1 of Fig. 7.5-Alg. 2 in a similar way.

In dimension d , we can repeat the loop decomposition to obtain an optimal

O(d · nd

p
) parallel algorithm with p threads.

Graphical Processing Unit (GPU) can be considered as a specific parallel com-
puting device with fine grain parallelism. Beside the fact that the 1-D envelope pro-
cesses can be computed in parallel, the stack structure involved in the computation
is not well-adapted to GPU computing. Existing techniques either consider approxi-
mated solution with errors [21, 51, 52] or may not be optimal in terms of parallelism
and work-load [61].
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In parallel computing, the work-load corresponds to the sum of atomic operations
for all processors. For example, the jump flooding algorithm consists in propagating
minimum distance information for each pixel (x, y) according to neighbors (x +
{−k,0, k}, y + {−k,0, k}). The step length k ranges for n/2, n/4, . . . ,1. Even if
this algorithm may introduce errors in the distance computation, every pixel has
exactly the same microprogram to execute which makes the overall process efficient.
Given an n × n image, the jump flooding algorithm has O(logn) steps, where each
step takes O(n2/p) for p processors. Hence, the total work amounts to O(n2 logn)

which is not optimal since the optimal sequential algorithm is O(n2).
Recently, [10] have proposed a banding approach that splits the 1-D envelope

computations into chunks in order to improve the parallel efficiency. The work-load
is still not optimal but we can thus obtain a fast and error-free Euclidean DT on
GPU.

Optimal in time and work-load algorithms exist in the Common-CRCW and
EREW parallel models [35]. Authors describe an algorithm for the distance transfor-

mation which runs in O(logn) time in the EREW model with O( n2

logn
) processors

(resp. O(log logn) time with O( n2

log logn
) processors for the CRCW model), leading

to an optimal linear in time work. Note that modern GPUs have a specific parallel
model in-between the CRCW and EREW ones. As far as we know, these optimal
theoretical algorithms have been implemented and experimented on GPU.

7.4.2 Out-of-Core Approaches

The previous section focuses on the decomposition of the volumetric computation
into independent (and thus parallel) processes. In some applications, one could be
more concerned with the size of the input shape to analyze rather than with the
speed of the computation. However, we are still facing similar propagation issues.
If the input shape cannot fit into memory, the general framework can be sketched as
follows: First, decompose the volumetric shape into blocks, load and process each
block, and write the final or intermediate result to an external storage. If propaga-
tion between blocks occurs, we may have to process several time the same block.
Additionally, we may also need a way to detect that propagation has to be handled.
In the literature, this is called out-of-core algorithms.

The first approach to the solution to this problem could be to exploit 1-D decom-
position (illustrated for the DT problem in dimension 2):

• Decomposing the input shape into 1-D rows, we group the rows into chunks de-
pending on the available memory.

• For each chunk, load it, compute the 1-D distance transformation on independent
rows and write the result into a temporary volume on the external storage.

• Decompose the intermediate map into 1-D columns and group them into chunks.
• Process each chunk similarly with independent 1-D column computation and

write the result.
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Fig. 7.21 Block
decomposition for out-of-core
distance transformation
computation

The main advantage of this technique is that there is no distance propagation
between 1-D processes. Each block is thus processed once per dimension. The main
drawback corresponds to the row/column decomposition of both the input shape
or the temporary one. Indeed, since the 2-D image is linearized on the file system
(without loss of generality, we assume that rows are concatenated), the extraction of
a set of columns could be inefficient.

In many situations, we usually prefer to decompose the input object domain into
hyper-rectangular blocks (Fig. 7.21). However, we have to deal in that case with
distance propagation across the boundaries. Some studies have proposed different
techniques to control this propagation (see for example [28, 30, 42]). On the latter
proposal, even if the internal distance transformation on each block introduces er-
rors, they use a very interesting structure, so called sparse grid, which only contains
distance information on the boundary of each block in the decomposition. Hence,
once such boundary conditions are computed offline, the complete distance trans-
formation on a block can be obtained without any propagation through the volume.
In [42], the proposed algorithm is not optimal and may contain errors. However,
correcting such drawbacks with separable technique is an interesting challenge.

7.5 Discussion and Open Problems

In this chapter, we have detailed separable techniques to perform volumetric quan-
tization on digital shapes with the help of metric information. These techniques of-
fer several computational advantages and extensions to specific metrics or domains
have been presented.

At this point, we would like to focus on two challenging future works for high
performance computation. The first one deals with fast GPU implementation. In-
deed, as far as we know, no efficient implementation of the workload optimal DT
algorithm has been proposed on GPU. The main motivation here is driven by the fact
that DT is widely used as a core tool in many computer vision and image synthesis
real time applications.
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The second challenge corresponds to the out-of-core implementation of the op-
timal and exact volumetric tools. Indeed, in many material science or medical ap-
plications, it becomes common to deal with 20483 binary shapes to analyze [18]. In
this context, specific strategies have to be investigated.

Many figures of this chapter have been generated by the DGtal library3 which
provides an implementation of these separable techniques on d-D images.
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Chapter 8
Separability and Tight Enclosure of Point Sets

Peter Veelaert

Abstract In this chapter we focus on the separation and enclosure of finite sets
of points. When a surface separates or encloses a point set as tightly as possible, it
will touch the set in a small number of points. The results in this chapter center on
how the surfaces touch the set, and on the side of a surface at which a point lies. The
subject is closely related to theory of oriented matroids, where oriented matroids are
used to describe hyperplane arrangements, but there are some differences in focus,
as well. Oriented matroids are very useful to prove that an abstract configuration
of lines and points can or cannot be realized in real space. In digital geometry,
however, the realization is given, for example, as a set of edge points in a digital
image. The emphasis is on finding models that explain how the digitized points and
lines could arise. We give a general overview of the use of preimages (or domains)
and elemental subsets in digital geometry and we also present some new results on
the relation between elemental subsets and separability.

8.1 Introduction

Digital geometry arose as the study of the geometric properties of points that lie on
a regular grid. The primary goal was to derive properties of digital objects, i.e., sets
of grid points, that mimicked Euclidean geometry. Notable examples were digital
straight lines and digital planes [17], both satisfying chord properties [23, 27], and
digital disks [16]. Formal properties of sets of grid points are widely applicable in
digital image processing, digital tomography, or more recently, depth images. For
example, once an object has been recognized as a digitized circle, we have at hand a
compact representation from which we can reconstruct the digitized version without
error.

Since its initial conception the development of the digital geometry of grid points
has taken several directions. From a practical viewpoint, a recurring theme is to for-
malize the digitization process, depending on the application. A digitization may
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be viewed as a rounding scheme, e.g., the grid intersect rounding scheme uses the
crossings of an algebraic surface with grid lines. Obviously, the digitization scheme
determines the properties of the digitized object [5]. In particular, since connectiv-
ity on a regular grid is easy to define, we can introduce schemes that preserve the
connectedness of an object. Once a digitization scheme has been chosen, we can
look at the inverse recognition problem. To recognize a digital object we have to
show that there is a continuous surface that has given rise to the digitized object.
Much effort has been spent on finding efficient algorithms for recognizing the most
common digital primitives, e.g., digitized lines, circles or planes.

Since grid points have integral coordinates, a natural consequence of the digitiza-
tion process is to look for properties that are related to integral solutions of algebraic
equations. For example, when a digital annulus is defined as the set of integral points
that satisfy k ≤ x2 + y2 ≤ k + m, a natural question is to look for pairs (k,m) for
which the annulus is an 8-connected set. Except for the most simple cases, however,
the mathematics that is involved is notoriously sophisticated.

In this work the focus is not on the digital objects themselves, but on the sepa-
ration and enclosure of finite sets of points. When a surface separates or encloses a
point set as tightly as possible, it will touch the set in a small number of points. The
results in this chapter center on how the surfaces touch the set, and on the side of
a surface at which a point lies. The subject is closely related to theory of oriented
matroids [6], in particular, where oriented matroids are used to describe hyperplane
arrangements. There are some differences in focus, though. Oriented matroids are
very useful to prove that an abstract configuration of lines and points can or cannot
be realized in real space. In digital geometry, however, the realization is given, for
example, as a set of edge points in a digital image. The focus is on finding models
that explain how the digitized points and lines could arise.

We will give a general overview of the use of preimages (or domains) and el-
emental subsets in digital geometry. Most of the material is known, but we also
present some new results on the relation between elemental subsets and separabil-
ity.

The chapter is structured as follows. In Sect. 8.2 we introduce domains in an
affine space of separating functions. In Sect. 8.3 we consider the lattice structure of a
domain. In Sect. 8.4 we look at special types of separating functions and we describe
an algorithm that finds the supporting surfaces that enclose a set. Section 8.5 deals
with classification of domains, and finally, in the last section we outline some open
problems.

8.2 Separation Maps and Parameter Domains

In this section we introduce domains in an affine space of separating functions.
Each function separates a point set by attributing function values to the points that
are either positive, negative or zero. A domain encompasses all those functions that
separate a given point set in the same way. One of the objectives is to enumerate
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all the domains that can be defined on a finite set. For this we introduce minimal
separations as a way to represent a domain as concisely as possible.

8.2.1 Affine Function Spaces

Let h0, h1, . . . , hn be functions in the variables x1, . . . , xd . We define an n-
dimensional function space as the affine span of the n + 1 functions hi . For p ∈ R

d ,
consider the affine space F of functions fa of the form

fa(p) = a0h0(p) + a1h1(p) + · · · + anhn(p), ai ∈R,

where the parameters ai have to satisfy the condition a0 +· · ·+an = 1, which makes
the space affine. We may rewrite this as

fa(p) = (
1 − (a1 + · · · + an)

)
h0(p) + a1h1(p) + · · · + anhn(p)

or

fa(p) = g0(p) + a1g1(p) + · · · + angn(p) (8.1)

where we have set g0(p) = h0(p), and gi(p) = hi(p) − h0(p), for i > 1. Thus, in
(8.1) there is always a term, g0(p), that has no parameter. It is this form of the affine
parameterization that we will mostly use.

To state the results that follow in a simple form, we will need subsets of points
that are in general position with respect to the affine function space. For our pur-
poses, for a subset of n points pi to be in general position means that there is a
unique surface fa(p) = 0, fa ∈ F that passes through the n points. It therefore
suffices that g0(pi) �= 0, for at least one point, and that the determinant of the ma-
trix (gi(pj )), 1 ≤ i, j ≤ n is not zero. For example, if we define the functions as
fa : (x, y, z) → z − a1x − a2y − a3, this excludes a configuration of 3 collinear
points in R

3. When there are more than n points, they will be in general position if
at least n of these points are in general position.

In what follows the functions gi will be defined by polynomials. This is not a
prerequisite, however. The only restriction is that we cannot have linear dependen-
cies between the n functions, i.e., gn = α1g1 +· · ·+αn−1gn−1, not all αi vanishing.
Linear dependencies would not allow us to have n points in general position.

Example 1 In the following we will explore several affine function spaces. The
functions

f (x, y) = y − ax − b

represent linear separations. Alternative forms are f (x, y) = x − ay − b and
f (x, y) = ax + by − 1. We also define circular separations

f (x, y) = x2 + y2 − 2ax − 2by + c. (8.2)
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Although this form differs from the more common form (x − a)2 + (y − b)2 = r2,
(8.2) has the advantage that the parameterization is affine. Circular separations can
be generalized to conic separations, for example,

f (x, y) = x2 + dy2 − 2ax − 2by + c. (8.3)

8.2.2 Separation by Sign Maps

Each function in the function space separates the points of a set by their signs. The
sign map is defined as sign(x) = 1, if x > 0, sign(x) = −1, x < 0 and sign(0) = 0.
We will often use {+,−,0} as a shorthand for {+1,−1,0}. Let fa(p) be a func-
tion in F and let S be a finite subset of Rd . All points receive a sign signfa(p),
which can be +,−,0. A function separates the points of S unambiguously if it only
attributes the signs +, −.

Conversely, we can define a map on S that attributes a sign to each point in an
arbitrary way. In most cases such a map will not be covered by a function.

Definition 1 Let signS : S → {+1,−1} be a map that attributes a sign to each point
of S. We say that signS is consistent with the affine function space F if there is at
least one function fa in F , such that sign(fa(p)) = signS(p) for each point in S.

Given a sign map signS , we will use the shorthands S+ := sign−1
S (+) and S− :=

sign−1
S (−). Points of S+ are sometimes denoted as p+

i , points of S− as p−
i . To find

out whether a sign map is consistent it is sufficient to verify the feasibility of a linear
programming problem. The sign map is consistent if the linear program

g0(p) + a1g1(p) + · · · + angn(p) > 0, p ∈ S+,

g0(p) + a1g1(p) + · · · + angn(p) < 0, p ∈ S− (8.4)

in the variables ai is feasible.
One of our objectives is to find subsets of functions that separate a set of finite

points in a similar fashion, or, in other words, that attribute signs in a similar way.
Therefore we want to specify a consistent sign map as concisely as possible. We are
interested in attributing signs to a small subset R of S such that the sign map signR

can be extended to a map signS in a unique way. A first step is to introduce surface
separations, where we limit the sign map to the points that lie on a common surface
fa(p) = 0.

Lemma 1 Let R be a subset of S of at least n points in general position. that lie
on a common surface of the form fa(p) = 0, fa ∈F . Assume furthermore that R is
maximal in S, that is, there are no points in S \ R that satisfy fa(p) = 0. Then any
sign map defined on R that is consistent with F , can always be extended to a unique
sign map defined on S.
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Proof First we note that fa is uniquely determined because the points are in general
position. The set R encompasses all the points of S that satisfy fa(p) = 0. Therefore
|fa(p)| > 0 for all points in S \ R. Let pm be the point in S \ R for which |fa(p)|
is minimal.

Second, since the sign map is consistent on R there is a function fb for which
signfb(p) coincides with the sign map defined on R. Let pM be the point in S \ R

for which |fb(p)| is maximal. Now we choose α > |fb(pM)|/|fa(pm)|, and let

fc = αfa(p) + fb(p).

Then we have sign(fc(p)) = sign(fa(p)), for p ∈ S \ R, because α was chosen
such that |αfa(p)| > |fb(p)| for all p ∈ S \ R. On the other hand, sign(fc(p)) =
sign(fb(p)), for p ∈ R, since fa(p) = 0 for the points in R.

Hence, it is always possible to attribute signs that coincide with the signs given
to the points in R, and that coincide with the signs of fa for the points not in R.
Furthermore, the function fa is uniquely determined by the points in R and the
signs are consistent with a function fc in the function space. �

Later, after defining domains, we will see that it is possible to restrict the set R

even further. A domain encompasses all the functions of F that separate the points
of S in the same way.

8.2.3 Domains of Functions

The parameters of the functions that separate a set in the same way define a subset
of Rn. Since this set of parameters is either a polyhedron or a polytope we introduce
the following terminology mostly based on [30]. A polyhedron is an intersection of
finitely many closes halfspaces. A polytope is a polyhedron that is bounded. A face
of a polytope is an intersection of the polytope with a halfspace in which the poly-
tope is entirely contained. Vertices are faces that are single points. Facets are faces
of dimension d − 1. An edge is a 1-dimensional face that is the convex hull of two
vertices. The vertices and edges of a polytope form an undirected graph. A polytope
is simplicial if all its facets have the minimal possible number of d points. A poly-
tope is simple if each vertex is adjacent to the minimal possible number of d facets.
An n-dimensional simplex is the convex hull of n + 1 affinely independent vertices.
A simplex is both simple and simplicial. A supporting hyperplane is a hyperplane
that contains a facet.

Definition 2 Let S+, S− be a partitioning of S that is consistent with the function
class F . Then the polyhedron D in Rn defined by the inequalities

g0(p) + a1g1(p) + · · · + angn(p) ≥ 0, p ∈ S+,

g0(p) + a1g1(p) + · · · + angn(p) ≤ 0, p ∈ S− (8.5)

is called the domain of functions that separate S into S+ and S−.
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Fig. 8.1 (a) A separation of
a set of grid points, and (b)
the resulting domain of
separating lines

A domain has also been called a preimage as it encompasses surfaces that pro-
duce the same set after digitization [2]. Each parameter point (a1, . . . , an) that lies
in the interior int(D) of a domain defines a function fa(p) = g0(p) + a1g1(p) +
· · · + angn(p) that is consistent with the signed separation. Functions that lie on the
boundary ∂D of the domain pass through one or more points of S. Therefore, they
do not separate S unambiguously. Nonetheless, it is convenient to include them also.
In fact, as we will see, the vertices of the domain are of special importance because
they lead to a very concise way to represent a separation.

Furthermore, we explicitly exclude the case where S+ and S− have points in
common, which would mean that (8.5) also includes pairs of inequalities that can
be replaced by an equality. This would reduce the dimension of the polyhedron. For
example, we could have a triangle embedded in R

3.

Example 2 Figure 8.1(a) shows a finite set S of gridpoints. The signed separation
(−2,0)+, (1,1)+ yields the domain in Fig. 8.1(b). The domain is a polygon with
4 vertices. Each of these vertices represents the parameters (a, b) of one of the 4
straight lines shown in Fig. 8.1(a). The same domain could have been specified as
well by the signed pair (−2,0)+, (2,1)−, or several other pairs.

The pair (1,1)+, (3,2)+ does not represent a valid separation, however. Since
the straight line that passes through these two points, also passes through (−1,0)

and (−3,0), we must attribute signs to these points that coincide with the domain,
i.e., (−1,0)− and (−3,0)−.

Figure 8.1(b) shows only one of the many domains that can arise from a separa-
tion of S. Figure 8.2 shows more domains of separating lines for the set of gridpoints
shown in Fig. 8.1(a). Only domains are shown that are bounded and that contain
lines passing through the rectangle (−1,0), (1,0), (−1,1), (1,1). In this example,
each domain is either a triangle or a quadrangle. This is true in general when S is a
connected subset of Z2 [10]. When the points of S do not have to lie on a regular
grid, we can have domains with an arbitrary large number of vertices.

There is a direct relation between the domains in Fig. 8.2 and the covectors of an
oriented matroid. We refer to [22] for more details.

Each parameter point a ∈ int(D) defines a function fa(p) that is consistent with
the signed separation. This does not mean, however, that fa(p) = 0 is always a real
surface. For example, the function x2 + y2 + 10 is consistent with the separation
S+ = {(0,0)}, S− = ∅, but x2 + y2 + 10 = 0 does not represent a real curve in R

2.
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Fig. 8.2 Some of the
domains that can arise from
separations of the set shown
in Fig. 8.1

In [29] it was shown that this anomaly does not occur as long as S− �= ∅. More
generally, if S− �= ∅ and S+ �= ∅, there is always a real curve that separates a point
p1 ∈ S+ from a point p2 ∈ S− in the following way. Consider any continuous path
p(t): t ∈ [0,1] in R that starts at p1 and ends at p2. The restriction of a function fa

to the points on the path p(t), yields a continuous function that is positive at p1, and
negative at p2. Therefore, fa(p(t)) = 0 for some point p(t). This proves that we
cannot go from S+ to S− without passing through a point of the surface fa(p) = 0.

Also the points on the boundary of the domain are interesting. A parameter point
a ∈ ∂D defines a surface fa(p) = 0 that will pass through one or more points of S.
However, we can still specify signs for the points that satisfy fa(p) = 0 in a consis-
tent way to obtain a separation on a surface. In fact, if we specify consistent signs
for the vertices of the polyhedron this will lead to minimal separations.

8.2.4 Minimal Separations

Let VD denote the vertex set of a polyhedral domain. Each vertex corresponds to a
surface separation. The vertex vj = (v1j , . . . , vnj ) defines the surface fvj

(p) = 0.
To the points of S that lie on this surface we can attribute signs that are consistent
with the separation. Each point pi of S that lies on fvj

(p) = 0 defines a hyperplane,

g0(pi) + a1g1(pi) + · · · + angn(pi) = 0

that passes through the vertex vj . If the domain lies in the halfspace

g0(pi) + a1g1(pi) + · · · + angn(pi) ≥ 0

we attribute the sign + to pi , else we attribute the sign −. In this way we can
attribute signs to all the points of S that lie on the surface fvj

(p) = 0.
However, not every point on the surface will give rise to a supporting hyperplane

for the domain. Or in other words, not every hyperplane contains a facet adjacent
to vj . This allows us to reduce the surface separation to a minimal separation.
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Fig. 8.3 The big points form
a minimal separation in which
dark points are positive, and
light points are negative

Definition 3 Let the signed set R be a surface separation. A subset of R is called
a minimal signed separation if each of its points corresponds to a supporting hyper-
plane of D(R) and if this subset cannot be extended.

In Fig. 8.3 the dark points are positive points, and the light points are negative.
All the points lie on a common circle. The set of big points, with dark as well as
light points, indicates a minimal signed separation. To attribute signs to all points
on the circle, and by extension also in the plane, it is sufficient to specify the signs
of the points of the minimal signed separation.

Although it is minimal and cannot be further reduced, a minimal separation may
have an arbitrarily large number of points.

Example 3 Figure 8.4(a) shows a minimal separation for a set S with 13 points,
one point at the origin and 12 points on a common circle x2 + y2 = 25. There is a
minimal separation that consists of 12 positive points: (5,0)+, (4,3)+, (3,4)+, . . . ,
(−4,−3)+. Figure 8.4(b) shows the domain, which is a 12-gon pyramid. The apex
of the pyramid lies on 12 facets. The domain can be specified, however, by any of its
vertices. Each of the 12 vertices at the base of the pyramid lies at the intersection of
3 half-spaces. Thus, the domain can be specified as well by the minimal separation
(0,0)−, (5,0)+, (4,3)+.

Likewise, each vertex of a domain in R
n must lie on at least n facets. This pro-

vides a means to enumerate all possible separations of a given set.

Example 4 Consider the domains shown in Fig. 8.2, which describe domains of
straight lines y = ax +b. Since a domain is a polygon, each vertex lies on two edges
(facets). Therefore, all minimal separations consist of two points, e.g., p+

i , p+
j . Con-

versely, we can find all minimal separations by listing all pairs of points of S, and
then attributing either the sign + or − to each point of them. A signed pair will un-
ambiguously define a consistent separation, provided S does not contain any point
that lies in between them, since the sign of this point would still be unspecified.
Figure 8.2 was generated by considering only signed pairs without points in be-
tween.
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Fig. 8.4 The black points
form a minimal separation

8.3 Lattice Structure of a Domain

The incidence relations between the faces of a domain play an important role in dig-
ital object recognition algorithms [12]. The combinatorial structure of a polytopal
domain, i.e., its face lattice, is entirely determined by the meet and join relations of
its faces. Each face represents a subfamily of separating functions, where a vertex
corresponds to a single function, an edge to a 1-dimensional family of surfaces, and
so on. The meet and join relations in the parameter space correspond to join and
meet relations in the original space. For example, the join of two vertices of the pa-
rameter domain, i.e., an edge between vertices, corresponds to the meet or common
intersection of a family of surfaces.

To illustrate how the combinatorial structure of the polytope is inherited by the
separating functions we consider a domain of separating circles. Several authors
have proposed algorithms to determine circular separability [8, 9, 11, 18, 19, 24].

Example 5 Figure 8.5 shows an example. The circular separation with R− = {(1,1),
(2,1)}, and R+ = {(1,0), (2,0)}, induces the signs shown in Fig. 8.5(a). The gray
points belong to S− and lie inside the separating circles, the black points belong
to S+. There are infinitely many circles that separate S into S+ and S−. Figure 8.5(a)
shows one of these circles. Figure 8.5(b) shows the polytopal domain, which has 5
vertices.

Each vertex of the domain corresponds to one circle. Figure 8.5(c) shows 5 cir-
cles, one for each vertex. Each circle, however, also determines a circular separation
that is consistent with the partitioning S+, S−.

To be precise, a vertex lies at the intersection of three or more facets of the poly-
tope, where each facet lies on a plane of the form

x2
1 + y2

1 − 2ax1 − 2by1 + c = 0,

. . .

x2
n + y2

n − 2axn − 2byn + c = 0,

(8.6)

where (x1, y1), . . . , (xn, yn) lie on a common circle. Each point (xi, yi) corresponds
to one of these facets. By attributing signs to the points we can establish a consistent
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Fig. 8.5 Family of separating circles: one separating circle, the polytopal domain of parameters,
and the circles that correspond to the vertices of the domain

Fig. 8.6 Circles that
correspond to a polytope
edge. All the circles pass
through two common points.
The circles that correspond to
the two vertices on the edge,
pass through three points

circular separation. The relative position of the vertex with respect to the polytope
determines the sign of each point. If the polytope is contained in the halfspace x2

1 +
y2

1 − 2ax1 − 2by1 + c ≥ 0, then (x1, y1) receives a positive sign, otherwise (x1, y1)

receives a negative sign. If we limit ourselves to supporting planes at the vertex, the
circular separation will be minimal.

An edge of the polytope corresponds to a 1-dimensional family of circles. Fig-
ure 8.6 shows the circles determined by one of the edges. All these circles have the
same two points in common. The two points correspond to the two facets that are in-
cident to the edge. Finally, each facet of the polytope corresponds to a 2-dimensional
family of circles, which all have one point in common. This is the point (xi, yi) in
S that determines the plane

x2
i + y2

i − 2axi − 2byi + c = 0

in which the facet lies.
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8.3.1 Leaning Points and Surfaces

Since the vertices and facets play an important role in the separation, we give explicit
names to their counterparts.

Definition 4 Let D be a domain. Each vertex v of D gives rise to a leaning surface
defined by fv(p) = 0. Let v1, . . . , vk , denote the k vertices of a facet of D, where
we must have k ≥ n for a domain in R

n. The point p that lies at the intersection of
the k surfaces

fvj
(p) = 0, j = 1, . . . , k (8.7)

is called a leaning point of D.

Thus each vertex corresponds to a leaning surface. A facet corresponds to a lean-
ing point, that is, the point that lies at the intersection of the leaning surfaces defined
by the vertices of the facet. Although a facet of a domain always corresponds to a
leaning point, this is not true for polytopes in general. A facet of an arbitrary poly-
tope does not have to correspond to a leaning point. In general, given k vertices that
span a facet of an arbitrary polytope, the system (8.7) will not have a real solution
for p.

Example 6 Consider the space of conics defined by

x2 + dy2 − 2ax − 2by + c = 0.

Let P be an arbitrary polytope for the parameters a, b, c, d , and let u0, . . . , u4
denote the coefficients of one of its supporting hyperplanes

u0 + du3 + au1 + bu2 + c = 0.

This hyperplane corresponds to a leaning point provided⎧⎪⎪⎨
⎪⎪⎩

x2 =u0

y2 =u3
−2x =u1
−2y =u2

has a solution for (x, y). This is only possible if the coefficients satisfy the relations
u2

1 = 4u0, and u2
2 = 4u3.

However, if we start from a separation S+, S− and use it to define a domain,
there are no difficulties. Each facet corresponds to a real leaning point in S+ ∪ S−,
because all the supporting planes correspond to points of S+ ∪ S−.

Example 7 Figure 8.7 shows, for a given separation S+, S−, the leaning points and
leaning surfaces of separating circles. The separation was specified by the surface
separation (1,1)−, (2,1)−, (1,0)+, (2,0)−.
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Fig. 8.7 Leaning points for
circular separations

We now take the same separation S+, S−, but we look at a richer class of sepa-
rating functions of the form

x2 + dy2 − 2ax − 2by + c,

whose level sets are conics. For conics the points (1,1), (2,1), (1,0), (2,0) are
not in general position. There are infinitely many ellipses passing through these
4 points. Hence we cannot use this set to define a surface separation. The points
(1,0), (2,0), (0,1), (3,1), (1,2), (2,2) are in general position. We obtain the same
separation S+, S− if we attribute signs to these points that coincide with the original
separation: (1,0)+, (2,0)−, (0,1)+, (3,1)+, (1,2)+, (2,2)+.

The resulting domain is a polyhedron, but not a polytope. By increasing the pa-
rameter d , we can squeeze the ellipse vertically so that it becomes more and more
like a pair of horizontal parallel lines, as shown in Fig. 8.8(a). To prevent this from
happening we add the point (0,1/2) to S+, which makes the polyhedron a bounded
polytope. For the same reason, we also add the point (3/2,−1) to S+, to prevent un-
limited squeezing in the horizontal direction. Figure 8.8(b) shows the leaning points
and leaning conics, which are all ellipses. The resulting domain has 11 vertices and
7 facets, corresponding to 11 ellipses and 7 leaning points. Since ellipses are more
flexible than circles, there are more leaning points.

The ellipse configuration inherits its incidence relations from the lattice structure
of the domain. Each ellipse (vertex) passes through 4 leaning points (facets). Three
of the leaning points have 8 ellipses that pass through them. The domain is simple,
but not simplicial.

Figure 8.9 shows the face lattice of the ellipse configuration in Fig. 8.8(b). On the
top layer is the domain itself. On the second layer are 7 facets, and on the lowest, or
fifth, layer 11 vertices. Each node on the lattice represents a family of ellipses. The
dimension of the families decreases from top to bottom. For the domain at the top
there are 4 degrees of freedom. For the second layer, the layer of facets, there are
3 degrees of freedom. A facet represents the ellipses that pass through a common
leaning point. The third layer, with 2 degrees of freedom, corresponds to ellipses
that pass through two common leaning points. Finally, at the fifth layer, no degree
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Fig. 8.8 (a) Squeezed ellipse; (b) Leaning points for elliptical separations

Fig. 8.9 Face lattice of ellipses

of freedom is left. Each node corresponds to a unique leaning ellipse that has to pass
through 4 leaning points.

8.3.2 Lifting Map

To gain more insight in the separability problem, we will lift the points of S onto a
surface in R

n. Consider the map

ψ : (p1, . . . , pd) → (
g0(p), g1(p), . . . , gn(p)

)
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where usually n > d . The map ψ lifts the points of Rd onto a d-dimensional surface
in R

n. We let ψ(S+) := T +, and ψ(S−) := T −. Then finding a separating function
of the form (8.4) is equivalent to finding a separation of the form

z0 + a1z1 + · · · + anzn > 0, p ∈ T +

z0 + a1z1 + · · · + anzn < 0, p ∈ T − (8.8)

which separates the points p = (z0, . . . , zn) of T + and T − in R
n. The separation

problem is now the problem of separating the two sets T + and T − by a hyperplane.
In other words, by lifting the points onto the hypersurface ψ(Rd), the separation by
a function

fa(p) = g0(p) + a1g1(p) + · · · + angn(p)

has been transformed into a separation by an affine function

f ′
a(z) = z0 + a1z1 + · · · + anzn. (8.9)

The map ψ does not change the nature of the separation problem. Any solution
of (8.8) is also solution of (8.4) and vice versa. The domain defined by (8.8) is
exactly the same as the original domain. Likewise, ψ transforms leaning points into
leaning points, and leaning surfaces into leaning surfaces.

The lifting shows that a domain is always a domain of hyperplanes. For example,
for any domain of separating circles in R

2, we can always find a domain of separat-
ing planes in R

3such that both domains coincide. The converse is not true, however.
The lifted points lie on a surface, not at arbitrary positions. This restricts the shape
in which a domain can occur. The following example clarifies this.

Example 8 Consider the space of affine functions

x2 + y2 − 2ax − 2by + c,

and the map

ψ : (x, y) → (−2x,−2y, x2 + y2,1
)
.

If we let (z1, z2, z3,1) = (−2x,−2y, x2 + y2,1), then finding a separating surface
amounts to finding a function

z3 + az1 + bz2 + c

that separates ψ(S+) from ψ(S−) in R
3. Likewise, consider the space of conics

x2 + dy2 − 2ax − 2by + c,

and the map

ψ : (x, y) → (−2x,−2y, x2, y2).
Finding a separating surface then amounts to finding a function

az1 + bz2 + z3 + dz4 + c

that separates ψ(S+) from ψ(S−) in R
4.
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Thus circular separability in R
2 is transformed into linear separability in R

3

[6, 19], and conic separability is transformed into linear separability in R
4. An im-

mediate consequence is that circular separability can be decided in linear time [19],
since a linear programming problem in 3D can be solved in linear time.

The map ψ maps Rn onto the paraboloid Q defined by z3 = (z1/2)2 + (z2/2)2.
Since ψ is one-to-one, the inverse ψ−1 is defined on Q. In [29] it was shown that
a circular separation R+, R− is consistent if the sets R+, R− can be separated lin-
early in R

2. That is, on a common circle, circular separability is equivalent to linear
separability. The transformation ψ provides further insight on how circular sepa-
rability is related to linear separability. Let R = R+ ∪ R− be points on a common
circle. The transformation ψ maps the points of R onto a common plane H1 in R

3.
In addition the points in ψ(R) lie on the paraboloid Q. Let H2 be a second plane
that separates the sets ψ(R+), ψ(R−) in R

3. Then the points of ψ−1(H2 ∩ Q) lie
on a common circle which separates R+ from R−.

Clearly, since the lifted points of R lie on a common plane H1 and on a
paraboloid, the separability by a second plane H2 coincides with the separability
by a straight line in H1. Furthermore, the straight line H1 ∩ H2 intersects Q in two
points q1, q2. The straight line that passes through ψ−1(q1) and ψ−1(q2) separates
R+ from R− in R

2.

Furthermore, the separation R+, R− is consistent for the functions (8.1) if the
separation T +, T − is consistent with the affine space of functions (8.9). The func-
tions (8.9) define hyperplanes. In fact, the map ψ transforms the surface f (p) = 0
into a hyperplane f ′(z) = 0. Suppose the points of R = R+ ∪R− lie on the common
surface f (p) = 0. Then the transformation ψ maps these points onto a common hy-
perplane in R

n. The separation T +, T − is consistent if the sets T + and T − can be
separated by a second hyperplane. More generally we have the following result.

Proposition 1 Let S+, S− be a separation of S into positive and negative points.
Then this separation is consistent with the affine functions (8.1) if conv(ψ(S+)) ∩
conv(ψ(S−)) = ∅.

Proof The proof is immediate. The proposition simply restates that two sets can be
separated by an affine plane if their convex hulls do not intersect. �

8.3.3 Separation Extensions

Up to now we looked at how a domain separates a finite set of points. Each function
in a domain separates the points of S in exactly the same way.

For the points not in S, however, the situation is different. Some points will re-
ceive the same sign from all the functions in the domain. But there are also ambigu-
ous points, that may receive a positive sign for some functions and a negative sign
for other functions.
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The situation is illustrated in Fig. 8.6 which shows a family of circles whose
parameters lie on an edge v1v2 of a polytopal domain. All pass through the two
common points, that correspond to the facets that are adjacent to the edge v1v2.
A point may always lie outside the circles, always inside, or both outside and inside
some circles.

According to the following proposition, to find out in which category a point falls
it is sufficient to check the vertices of a domain. The following proposition is based
on one of the basic properties of polytopes.

Proposition 2 Let S+, S− be a separation with polytopal domain D. Let p be a
point not in S+ ∪ S−. If for one of the parameter points b in the domain we have
fb(p) ≤ 0, then there is at least one vertex v of D for which we have fv(p) ≤ 0. The
statement is also true if we replace ≤ by ≥.

Proof For a given point p, the half-space H of functions fa(p) for which fa(p) ≤ 0
is determined by

g0(p) + a1g1(p) + · · · + angn(p) ≤ 0.

Since there is at least one parameter point a in the domain for which this inequality
holds, H ∩D �= ∅. Since the domain is a convex polytope there is at least one vertex
v of D for which fv(p) ≤ 0. �

Hence, the vertices not only specify the domain as their convex span, but in
terms of separations, the functions associated with the vertices are also sufficient to
determine all the unambiguous points outside S. Furthermore, a domain not only
separates the finite set S, but also a large part of Rd . The only part of space where
the separation is undefined, are the points p for which fa(p) = 0 for some function
in the domain. Furthermore, any point with an unambiguous sign can be added to S

(with the correct sign) without altering the consistency of the separation. Suppose
p is a new point not in S+ ∪ S−. If we add p to the separated sets, the domain D

changes in the following way:

• if fvi
(p) > 0 for all vertices vi , then D does not change if we add p to S+;

• if fvi
(p) < 0 for all vertices vi , then D does not change if we add p to S−;

• if fvi
(p) > 0 for some vertex vi and fvj

(p) < 0 for some other vertex vj , then
when we add p either to S+ or to S− the domain will change, but the separation
will still be consistent;

• if fvi
(p) > 0 for all vertices vi , then the separation is no longer consistent when

we add p to S−;
• if fvi

(p) < 0 for all vertices vi , then the separation is no longer consistent when
we add p to S+.

8.4 Enclosure and Separation with Elemental Subsets

In this section we look at special types of separating functions. We will discover that
a tight separation allows to reduce the separated sets so that their domain becomes
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a simplex. Furthermore, we will see that the tight separation of two reduced sets
is actually the same as their tight enclosure. For this reason tight separation and
enclosure are handled together.

8.4.1 Tight Enclosure and Separation

Suppose we want to separate S+, S− with two non-intersecting surfaces that lie as
far apart as possible. More precisely, we are interested in two surfaces fa(p) = ε

and fa(p) = −ε, such that

fa(p) ≥ ε, p ∈ S+

fa(p) ≤ −ε, p ∈ S− (8.10)

where we want ε to be as large as possible. Equally interesting is a third surface
fa(p) = 0, which lies half-way the two sets S+ and S−, and which can be defined
as the unique separating surface for which minp∈S+∪S− |fa(p)| is maximal.

Since the two surfaces (8.10) separate sets, there must be a link with a separating
domain. Obviously, the function fa itself lies inside the domain. Assume that one
of the gi is a constant function, e.g., gn = 1, so that the functions take the form

g0(x) + a1g1(x) + · · · + an.

In this case, the functions fa + ε and fa − ε also belong to the affine function space
and to the domain. In fact, they lie at the boundary of the domain.

Example 9 For circles we use the function space

f (x, y) = x2 + y2 − 2ax − 2by + c.

Let D be a polytopal domain of separating circles. In the parameter space, we con-
sider a straight line parallel to the c-axis passing through the domain. This line
crosses the boundary of the domain in two points (a, b, cM) and (a, b, cm), where
we choose cM > cm. The points of S+ ∪ S− are separated twice as follows:

x2 + y2 − 2ax − 2by + cM ≥ 0, (x, y) ∈ S+

x2 + y2 − 2ax − 2by + cM ≤ 0, (x, y) ∈ S−

x2 + y2 − 2ax − 2by + cm ≥ 0, (x, y) ∈ S+

x2 + y2 − 2ax − 2by + cm ≤ 0, (x, y) ∈ S−

The third inequality can be rewritten as

x2 + y2 − 2ax − 2by + (cM + cm)/2 ≥ (cM − cm)/2, x ∈ S+.

The second inequality can be rewritten as

x2 + y2 − 2ax − 2by + (cM + cm)/2 ≤ −(cM − cm)/2, x ∈ S−.
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This corresponds to a separation of the form (8.10), with ε = (cM − cm)/2. Clearly,
(cM − cm)/2 attains a maximum when at least one of the crossed boundary points
is a vertex of the domain. Since a vertex lies on at least n = 3 facets, and the other
point lies on at least one facet, the surfaces

x2 + y2 − 2ax − 2by + (cM + cm)/2 = (cM − cm)/2,

x2 + y2 − 2ax − 2by + (cM + cm)/2 = −(cM − cm)/2,
(8.11)

together pass through at least n + 1 points of S.

The above property is true in general. A pair of tightly separating surfaces always
passes through n + 1 points. This brings us to the notion of an elemental subset
which plays an important role in L∞ fitting [26, 28].

8.4.2 Elemental Subsets

Elemental subsets are the basic building blocks for exploring separations and enclo-
sures.

Definition 5 Let S be a finite set of points and let F be the affine space of functions
of the form (8.1). An elemental subset E is a subset of S with n + 1 points, which
has at least one n-point subset with its points in general position.

The primary importance of elemental subsets stems from the fact that the signs of
the induced separation can be determined in an analytical way. For n + 1 points pi ,
we define the (n + 1) × (n + 1) matrix

M :=
⎛
⎜⎝

g0(p1) g1(p1) . . . gn(p1)

. . .

g0(p1+n) g1(p1+n) . . . gn(p1+n)

⎞
⎟⎠ .

Let Ci denote the cofactors of the first column of M . These cofactors play an impor-
tant role with respect to the relative positions of the points in E and the enclosing
surfaces f (p) = ±ε. We have a first simple lemma.

Lemma 2 Let E be a subset of n + 1 points pi , and assume that g0(pi) �= 0 for at
least one of the points pi . Then E is an elemental subset if and only if at least one
of the cofactors Ci is non vanishing.

Proof It suffices to note that if the cofactor Ci �= 0, then the non-homogeneous
system with n linear equations

a1g1(pj ) + · · · + angn(pj ) = −g0(pj ), 1 ≤ j ≤ n + 1, j �= i

has a unique solution, because its determinant is non zero. �
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We introduce a residual ε(E) that weighs the absolute value of the determinant of
M against the sum of the absolute values of the cofactors of the first column of M ,

ε(E) := ∣∣det(M)
∣∣/(|C1| + · · · + |Cn+1|

)
= ∣∣C1g0(p1) + · · · + Cn+1g0(p1+n)

∣∣/(|C1| + · · · + |Cn+1|
)
. (8.12)

Since at least one of the cofactors is non-vanishing, ε(E) is always defined. El-
emental subsets can be used for enclosing a set of points, or for separating two sets
of points. In the case of enclosing points this amounts to L∞ fitting and ε is called
the residual. We have the following result [28].

Theorem 1 Let E be an elemental subset. Then there is a unique pair of surfaces
fa(p) = ε(E), fa(p) = −ε(E) such that each point of E lies on one of these sur-
faces. Furthermore, there is no surface fa(p) = 0 for which |fa(p)| < ε for all
p ∈ E.

Thus, given E we may define E+ as the set of points p in E for which
fa(p) = ε(E), and similarly, E− as the set of points for which fa(p) = −ε(E).
The separation of E into E+ and E− entirely depends on the signs of the cofactors
of (8.12), provided the sign of each cofactor is either + or −, but never 0.

Theorem 2 Let E be an elemental subset for which all the n-point subsets are in
general position. Then there is a unique pair of surfaces fa(p) = ε(E), fa(p) =
−ε(E) such that each point pi in E lies on the surface

fa(pi) = sign(Ci). sign(M).ε(E).

Proof Since the n points of each of the n + 1 n-point subsets are in general posi-
tion, none of the cofactors Ci is vanishing. Hence, sign(Ci) is either 1 or −1, but
never equal to 0. According to Theorem 1 a point pi ∈ E either lies on the surface
fa(pi) = ε(E) or on the surface fa(pi) = −ε(E). Hence we have

g0(p1) + a1g1(p1) + · · · + angn(p1) = λ1ε(E)

g0(p2) + a1g1(p2) + · · · + angn(p2) = λ2ε(E)

. . .

g0(pn+1) + a1g1(pn+1) + · · · + angn(pn+1) = λn+1ε(E)

(8.13)

where λi is either 1 or −1. We will show that λi = sign(Ci). sign(det(M)).
Let Ci be the cofactors of the first column of the matrix M . Then,∑

1≤i≤n+1

g0(pi)Ci = detM,

but also
∑

1≤i≤n+1 gj (pi)Ci = 0 for j = 1, . . . , n, because these sums represent
determinants of matrices with two identical columns. If we multiply the i-th equality
of (8.13) by the cofactor Ci , and add all the left and right hand sides, we find∑

1≤i≤n+1

g0(pi)Ci =
∑

1≤i≤n+1

ε(E)λiCi,
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which can be rewritten as

ε(E) = det(M)/
∑

1≤i≤n+1

λiCi. (8.14)

However, according to Theorem 2 we also have

ε(E) = ∣∣det(M)
∣∣/ ∑

1≤i≤n+1

|Ci |.

Hence in (8.14) the λi must be chosen such that |∑1≤i≤n+1 λiCi | is maximal, and
ε(E) is positive. This will be true if λi = sign(Ci) sign(det(M)). �

Because of this result it is easy to find the best fit of an elemental subset. The
parameters of the best fit satisfy the linear system

g0(pi) + a1g(pi) + · · · + angn(pi) = sign(Ci) sign
(
det(M)

)
ε(E),

i = 1, . . . , n + 1.

This system has n + 1 equations in n variables. If ε(E) is defined as in (8.12), the
system always has a solution, which can be found by discarding one of the n + 1
equations, no matter which one. Alternatively, one may consider ε as the (n + 1)

variable. Then, after solving the system for a1, . . . , an, ε, one finds for ε the value
defined by (8.12).

8.4.3 Tight Enclosure of Large Set

Elemental subsets allow us to construct a global separation or enclosure from ele-
mental separations or enclosures [28]. Let S be a finite subset of points that contains
at least one elemental subset. The size of S may be much larger than n + 1. We
define the residual of S as

ε(S) := max
E⊆S

ε(E),

where the maximum of ε(E) is taken over all elemental subsets E in S. The follow-
ing result was proven in [28].

Theorem 3 Let S be a set that contains at least one elemental subset E. Then there
is a unique surface fa(p) = 0 such that |fa(p)| ≤ ε(S), p ∈ S.

This theorem has an immediate corollary.

Corollary 1 Let S be a set that contains at least one elemental subset E1. Let
f1(p) = 0 be the unique surface such that f1(p) = ε(E1) and f1(p) = −ε(E1)

contain all the points of E1. If there is a point p2 ∈ S for which |f1(p2)| > ε(E1)

then the set E1 ∪ {p2} contains at least one elemental subset E2 for which ε(E2) >

ε(E1).
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Proof Let E1 be an elemental subset in S for which there is a point p2 with
|f (p2)| > ε(E1). According to Theorem 3 there is a surface f2 such that∣∣f2(p)

∣∣ ≤ ε
(
E1 ∪ {p2}

)
, p ∈ E1 ∪ {p2}. (8.15)

At the same time, ∣∣f1(p)
∣∣ ≤ ε(E1), p ∈ E1. (8.16)

Since p2 satisfies (8.15), but not (8.16), we must have ε(E1 ∪ {p2}) > ε(E1). Since
ε(E1 ∪{p2} = maxE⊂(E1∪p2) ε(E), there must be at least one subset E2 in E1 ∪{p2}
such that ε(E2) > ε(E1). �

Corollary 1 leads to an efficient algorithm that finds the supporting surfaces that
enclose a large set S. The algorithm works for any space of affine functions. The
basic idea is to construct a sequence of elemental subsets E1,E2, . . . with increasing
costs ε(E1) < ε(E2) < · · · . Eventually we must find an En of maximal cost, whose
supporting surfaces fa(p) = ±ε(En) enclose the entire set.

Algorithm
Input: A finite set S.
Output: An elemental subset En such that ε(En) = ε(S).
1. Select an arbitrary initial elemental subset E1 and compute

ε(E1);
2. Compute the best fit fa of Ei ;
3. Process all points of S until a point p is found at a distance

further than ε(Ei) from the best fit;
4. If no such point is found, return the current Ei ;
5. Replace Ei by an elemental subset Ei+1 in Ei ∪ {p} for which

ε(Ei+1) > ε(Ei). According to Corollary 1 there is at least one
such subset in Ei ∪ {p}.

6. Proceed with step 2.

8.4.4 Tight Separation of Sets

In Sect. 8.2 we considered the domain of all functions that separate two sets. Among
these functions, however, there is a separating function that maximizes the algebraic
distance to both sets. Let S+, S− be a consistent separation. We define ε(S+, S−)

as the maximal value of ε for which the system

g0(p) + a1g(p) + · · · + angn(p) ≥ ε, p ∈ S+

g0(p) + a1g(p) + · · · + angn(p) ≤ −ε, p ∈ S− (8.17)

is still feasible. Again elemental subsets play a crucial part in this optimization prob-
lem.
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Proposition 3 Let S+, S− be a consistent separation with a polytopal domain. Then
there is an elemental subset E in S+ ∪ S− for which E ∩ S+ �= ∅, E ∩ S− �= ∅ and
ε(E ∩ S+,E ∩ S−) = ε(S+, S−).

Proof Consider the linear programming problem in the variables a1, . . . , an, ε

where we want to maximize the value of ε subject to the conditions (8.17). Since
the a1, . . . , an that satisfy (8.17) always belong to the domain of the separation,
the polyhedron defined by the linear programming problem is also a polytope. The
maximum is always attained in a vertex v1, . . . , vn, εm of the polytope, which lies
on at least n + 1 facets. Hence there must be n + 1 points p in S+ ∪ S− for which

g0(p) + v1g(p) + · · · + vngn(p) = εm.

These points form an elemental subset E for which ε(E ∩ S+,E ∩ S−) =
ε(S+, S−). �

Given S+, S− for each elemental subset E in S+ ∪ S− we let E+, E− denote
the separation of E induced by S+, S−. That is, E+ = E ∩ S+ and E− = E ∩ S−.
Clearly, if S+, S− then E+, E− is also consistent. The following theorem is the
dual of Theorem 3.

Theorem 4 Let S+, S− be a consistent separation. Then

ε
(
S+, S−) = min

E∈S
ε
(
E+,E−)

.

Proof The proof is based on Helly’s Theorem which states that in R
n the intersec-

tion of a finite collection of convex compact sets is non-empty if and only if the
intersection of every n + 1 of these sets is non-empty. Consider the system (8.17)
where we want to find the maximal value for which this system still has a solution.
Due to Helly’s Theorem, the system is feasible if each of its subsystems with n + 1
inequalities is feasible.

However, each subsystem with n + 1 inequalities corresponds to a separation
E+, E− of an elemental subset. The subsystem will have a solution provided ε ≤
ε(E+,E−). Since this must hold for any subsystem, we must have ε(E+,E−) ≤
minE ε(E), where the minimum is taken over elemental subsets E in S+ ∪ S−. �

One of the pleasant properties of an elemental subset is that we can compute the
residual cost ε(E) of its tight enclosure analytically. For tight separations there is
a similar result. It comes at no surprise, however, that to compute ε(E+,E−) we
also need to specify at which side a point lies. In this sense, the computation of
ε(E+,E−) is a refinement of the computation of ε(E+ ∪ E−).

Given a separation E+, E−, for each pi let sign(pi) denote the sign of pi as
attributed by the separation.

Theorem 5 Let E+, E− be a consistent separation of an elemental subset E. Then

ε
(
E+,E−) = det(M)/

∑
1≤i≤n+1

sign(pi)Ci. (8.18)
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Proof The proof uses the same technique as the proof of Theorem 2. The points of
E+ lie on the surface fa(p) = ε, and the points of E− lie on the surface fa(p) =
−ε. Hence we have the following system of n + 1 equations:

g0(p1) + a1g1(p1) + · · · + angn(p1) = sign(pi).ε
(
E+,E−)

, p ∈ E. (8.19)

After multiplication with the cofactors Ci we find∑
1≤i≤n+1

g0(pi)Ci =
∑

1≤i≤n+1

sign(pi)Ciε
(
E+,E−)

,

which yields

ε
(
E+,E−) = det(M)/

∑
1≤i≤n+1

sign(pi)Ci. �

The proof also shows that ε(E+ ∪ E−) = min ε(E+,E−), where the minimum
is taken over all possible ways in which we can separate the elemental subset E

into E+ and E−. Hence, if try to separate the set E in all possible ways, the tight
separation for which the residual ε(E+,E−) becomes minimal, coincides with a
tight enclosure of the elemental subset.

Example 10 Let S+, S− be a signed separation as shown in Fig. 8.10. The value
of ε(S+, S−) can be computed in two ways. First, the vertices of the domain are:
(3/2,1/2,2), (3/2,1,2), (11/6,5/6,8/3), (2,1/2,3), (2,1,4). By constructing a
line parallel to the c-axis through each of the vertices, and by computing the inter-
sections with opposing facets, we find that the maximal value of cM − cm is 2/3.

The same result can be found with elementary subsets. For circles the matrix M

takes the form

M =

⎛
⎜⎜⎜⎜⎝

x2
1 + y2

1 −2x1 −2y1 1

x2
2 + y2

2 −2x2 −2y2 1

x2
3 + y2

3 −2x3 −2y3 1

x2
4 + y2

4 −2x4 −2y4 1

⎞
⎟⎟⎟⎟⎠

for an elemental subset (x1, y1), . . . , (x4, y4). The set (1,0)+, (2,2)+, (3,1)+,
(1,1)− is an elemental subset whose supporting surfaces separate the set S into
S+, S−. For this elemental subset (8.18) yields ε = 1/3. Figure 8.10 shows the
pair of supporting circles of the elemental subset. Also shown is the circle that lies
half-way the separating circles.

8.5 Classification of Domains

Since a bounded domain is a convex polytope, there is a wide range of results on
polytopes that are immediately relevant for domains and configurations of separat-
ing surfaces. Clear examples are the lower and upper bound theorems which give
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Fig. 8.10 The pair of
supporting circles that
separate S+ from S−

bounds for the number k-faces for a polytope with n facets [7, 30]. In this section
we will only touch the most straightforward links between polytopes and surface
configurations. In particular, we look at what kind of lattice structure a domain can
have. The lattice of a domain corresponds directly to a lattice of separating surfaces
and their intersections.

8.5.1 Simplices

Two polytopes are called combinatorially equivalent if there is an isomorphism that
preserves the lattice structure [30]. A simplex is the most simple kind of polytope. In
Rn space, a polytope with n+1 affinely independent vertices is a simplex. A consis-
tent separation has at least n+1 leaning points and n+1 leaning surfaces. Therefore,
a simplex represents the most basic way to separate two point sets, with the mini-
mal number of leaning points and surfaces. Figure 8.11 shows three configurations
where the domain is a simplex. In Fig. 8.11(a) the lines that separate the points have
a triangular domain. There are 3 leaning lines (vertices of the triangle), and three
leaning points (facets of the triangle). In Fig. 8.11(b) the circles form tetrahedron or
4-simplex. There are 4 leaning circles, and 4 leaning points. On each leaning circle
there are exactly 3 leaning points, and through each leaning point pass precisely 3
circles. Figure 8.11(c) also leads to a simplex domain for circles, although the con-
figuration is different from that in Fig. 8.11(b). In Fig. 8.11(b) the circles separate
one internal point from three external points. In Fig. 8.11(c) two internal points are
separated from two external points.

Theorem 6 Let E be an elemental subset with ε(E) > 0, and let E+, E− be the
separation induced by the tight enclosure of E. Then the domain of E+, E− is a
simplex.

Proof Each point of E defines a half-space, and the intersection of the n + 1 half-
spaces is a polyhedron P . Since there is a tight enclosure fa(p) = ±ε(E), with
ε(E) > 0, the interior of P is non-empty. �
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Fig. 8.11 Point configurations that lead to simplex domains

Fig. 8.12 A tight enclosure of 5 arbitrarily chosen points yields a simplex of conics

Therefore, to find a simplex domain, we can take an arbitrary subset of n + 1
points in general position, compute a tight enclosure to find a consistent separation,
which then leads to a simplex domain. Figure 8.12(a) shows 5 points and their tight
enclosure by conics. The signs and separation induced by the enclosure yields a 4-
simplex in the parameter space. Figure 8.12(b) shows the 5 leaning points, which
coincide with the original points, and the 5 leaning conics. On each conic there are
4 points and through each point 4 conics pass.

8.5.2 More Complex Domains

Although the classification of polytopes in R
n is still an ongoing research topic, the

classification of convex polytopes with few vertices, i.e., n + 2 or n + 3 vertices is
known [14, 15]. We start with a general observation.
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Fig. 8.13 Bipyramid as a
domain and the leaning points
and leaning surfaces

Fig. 8.14 Square pyramid as
a domain of separating circles
and their leaning points and
leaning surfaces

Proposition 4 Let S+, S− be a separation such that there is no subset S+ ∪S− with
n + 1 points that lie on a common surface f (p) = 0. Then the domain is a simple
polytope.

Proof Since each leaning surface has at most n points on it, each vertex is incident
to the minimal number of n facets. �

There are only two kinds of 3-polytopes with 5 vertices, the bipyramid over a
triangle, and the square pyramid. In Fig. 8.13 the domain is a bipyramid over a tri-
angle. The domain has 5 vertices and 6 facets. Hence there are 5 leaning circles
and 6 leaning points. The bipyramid is a simplicial polytope since each facet has 3
vertices. Because of this, there are three leaning circles passing through each lean-
ing point. A bipyramid is not a simple polytope. There are 3 vertices that are each
adjacent to 4 facets. These vertices correspond to the 3 circles in Fig. 8.13(a) that
have 4 leaning points.

In Fig. 8.14 the domain is a square pyramid. It is not simplicial and also not a
simple polytope. There are 5 leaning points, 3 positive leaning points and 2 negative
leaning points. The leaning point (1,0) corresponds to the square of the pyramid.
There are four leaning circles that pass through it. The circle that passes through 4
distinct leaning points corresponds to the apex of the pyramid.
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The number of types increases rapidly with the number of vertices. There are 7
kinds of 3-polytopes with 6 vertices [14, 15]. Two of these 7 are simplicial poly-
topes.

8.6 Concluding Remarks and Open Problems

The careful analysis of the structure of domains has led to efficient algorithms for
digital object recognition. Since digital object recognition itself is in essence an LP
problem, the main focus was on problems that go one step further and where one
has to split an ordered set into segments that represent multiple objects, for example,
circular arcs [8, 24].

An even greater challenge, however, may lie in problems that are related to con-
vex programming. We list two of them. The enclosure of finite sets of data points is
equivalent to L∞ fitting. Here we addressed the basic problem of enclosing the en-
tire data set. In practice, however, we need more robust fitting methods that can cope
with outliers, e.g., in geometric vision [1]. It is known that when outliers are present,
the elemental subset with the largest fitting cost contains at least one of them. It is
difficult, however, to identify which of the n + 1 points in the elemental subset is an
outlier. Several approaches have been used to remove the most likely outliers while
preserving the most likely inliers [1, 20, 25]. From the viewpoint of digital geometry
this outlier removal problem can be formulated in two distinct ways: Given a set S

find a subset T of size m such that ε(T ) is as small as possible. Here we assume that
n−m of the points are outliers. Or alternatively, given a set S, and a threshold δ find
a subset T that satisfies δ ≥ ε(T ) where T is as large as possible. Here we assume
that the outliers are those points that would make the residual larger than a given
threshold. Although for both problems an optimal solution can be found by enumer-
ating all elemental subsets, it is still an open problem to find an algorithm that makes
optimal use of the information provided by tight enclosures. An efficient algorithm
should evaluate as few elemental subsets as possible to determine the most likely
outliers.

A similar question occurs in classification problems where we want to find a
minimal set of surfaces that separate feature points in distinct classes, as is done
by support vector machines. In its most basic form we have to find a surface that
separates two sets S+ and S−, but where the given separation is in general not
consistent. Here the problem can be formulated as follows. Find two subsets T + ⊆
S+ and T − ⊆ S− such that the separation T + and T − is consistent with the affine
function space, and where T + ∪ T − is as large as possible.

Finally, one of the corner stones that still seems to be missing in digital ge-
ometry is a better integration of the analytical results on digitized surfaces with
digital topology. The separation and enclosure results presented in this chapter are
closely related to sets of integral points between level surfaces. Subsets of the form
S = {p ∈ Z

d : −ε ≤ fa(p) ≤ ε} have been called digital layers, digital level sets
[13, 21], or also discrete analytical surfaces. It is still a major problem to find a
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value for ε so that a digital layer is connected as a set. For hyperplanes and hyper-
spheres this question has been examined in some detail [3–5]. For the more general
case, only a few limited results are known [13].
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Chapter 9
Digital Straightness, Circularity, and Their
Applications to Image Analysis

Partha Bhowmick and Bhargab B. Bhattacharya

Abstract This chapter contains some theoretical properties of digital straightness
and digital circularity, which are helpful in designing algorithms related to image
analysis. These properties are obtained mainly from word-theoretic and number-
theoretic analysis. Existing techniques on straight line recognition, circular arc
recognition, vectorization, etc. have been discussed along with their historical con-
nections. Some salient points that discriminate digital geometry from real geometry
have also been mentioned. Relevant experimental results have been given to demon-
strate the elegance of digital-geometric techniques in performing desired tasks in the
digital plane. Some open problems have been given at the end to point out the chal-
lenges and prospects of digital straightness and circularity in image analysis.

9.1 Introduction

Although Euclidean geometry is often sought for—quite more than any other non-
Euclidean geometry, however, with the proliferating digitization of graphical objects
and visual imageries, fresh analytical studies and experimentation with geometric
primitives such as straight lines, circles, curves, and planes have become indispens-
able for efficient real-world applications. Hence, theoretical studies on these prim-
itives in the digital space have been an active subject of research since 1960s [20,
21, 38, 45, 53, 60, 61, 72, 90, 114, 122]. In later years, several works have come up
on characterization and algorithms for generation and recognition of these geomet-
ric primitives [15, 18, 22, 25, 33, 42, 50, 73, 84, 85, 98, 99, 141, 148, 150, 153].
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The earlier works were mostly based on the notions borrowed from real/Euclidean
geometry, whereas the more recent works are based on the new paradigms of digital
geometry [6, 24, 26, 32, 51, 82, 84, 132], digital topology [75, 77, 83, 92, 130, 131],
computational imaging [5, 8, 121], combinatorial image analysis [28–30], and the-
ory of words and numbers [7, 23, 86].

Among these geometric primitives, digital straight line segments (DSS) and dig-
ital circles have drawn special attention for their challenging nature from the view-
point of theoretical formulation, and also for their potential applications to image
analysis and computer graphics. Several intriguing problems and properties related
to DSS and DSL (digital straight line/ray) have been studied [20, 115, 124]. Many
attributes of DSS can be interpreted in terms of continued fractions [88, 103, 144].
The most fundamental problem, which is highly relevant to pattern recognition in
general, and to curve approximation in particular, is to ascertain whether or not a
given digital curve segment S is a DSS. Many solutions to this problem have been
reported in the literature [43, 49, 50, 89, 102, 138]. With the advent of digitiza-
tion in general, and vectorization in particular, the problem on characterization and
recognition is also of higher relevance today for digital circles and circular arcs
[46, 52, 70, 139, 140]. Some of the contemporary works on circle detection may be
seen in [12, 93, 118, 128, 129].

The chapter is organized as follows. In Sect. 9.2, we indicate the notional differ-
ence of straightness in Z

2 with that in R
2, and explain the digital-geometric prop-

erties of straightness. The concept of approximate straightness and the algorithm to
extract approximate straight line segments are also discussed in this section. Sec-
tion 9.3 contains the digital-geometric properties of circularity and a couple of algo-
rithms to determine whether a digital curve segment is digitally circular. The usage
of approximate straightness in polygonal approximation of a set of digital curve seg-
ments is explained in Sect. 9.4. Related algorithms and some experimental results
have been furnished in this section to demonstrate the elegance of digital-geometric
algorithms. Section 9.5 presents the usefulness of chord property and sagitta prop-
erty in circular arc segmentation, along with experimental results. With some open
problems given in Sect. 9.6, we conclude this chapter in Sect. 9.7.

9.2 Digital Straightness

Since a straight line—whether Euclidean or digital—essentially consists of points, a
digital line (or any other digital curve) is a sequence of digital points, which satisfies
certain straightness properties in a digital sense. Similarities may be found in their
constitutions, but differences lie in their very definitions. In the Elements, Euclid
defines a (real) point as that of which there is no part [19]. In digital geometry, an
additional criterion is that the coordinates of a (digital) point can only be integers.
Thus, the similarity between a real point and a digital point lies in their very charac-
teristic of having “no part”, and the dissimilarity is in their “coordinate constraints”.
Similarly, for a real and a digital straight line, the similarity is in the fact that a
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Fig. 9.1 Left: Chain codes in 8N. Right: DSS(p1,pn) is cut at pm; when the real line segment
p1pm is digitized to get DSS(p1,pm), it is not the exact (ordered) subset of points from p1 to pm

in the original DSS

straight line is one that lies evenly with points on itself. Interestingly, the property
of evenness of points lying on a line was stated as the definition of a real straight
line by Euclid, which was reiterated by both Freeman and Rosenfeld [61, 84, 122]
in 1960s–70s in the context of digital straight lines. The difference is, Euclid stated
the “evenness” as a definition; whereas, the concept of “evenness” was formalized
and proved in [122], which shows that “evenness” is a necessary condition in order
that a digital curve segment is digitally straight.

Another important and not-so-trivial characteristic that finds some similarity and
also some difference between a real straight line and a digital straight line is as
follows. One would expect that, if a digital straight line segment (DSS) is cut into
two parts, then each (i.e., sub-DSS) of them would still be digitally straight (and a
DSS, thereof). This, in fact, is true for a real straight line segment in the Euclidean
geometry, and also in accordance with our notional intuition. However, from the two
subsequences of digital points representing the cut-off parts, the correspondence is
not straightforward. If p1pn is a real line segment joining p1,pn ∈ Z

2, then in the
DSS(p1,pn), which is the digitization of p1pn, the DSS properties are valid. But if
we cut DSS(p1,pn) at “any” intermediate point, say pm, then the (ordered) set of
points from p1 to pm (and from pm+1 to pn) might not be the digitization of the
real line segment p1pm (and pm+1pn).

For example, in Fig. 9.1, DSS(p1,pn) is cut at pm in such a way that the right-
most run-length of DSS(p1,pm) is too small compared to the other runs (including
the leftmost run-length). In such a case, the new DSS, namely DSS(p1,pm), ob-
tained by digitization of the real line segment p1pm, is not a subset of the original
DSS, i.e., DSS(p1,pn). Thus, the difference is: When two points p and q are arbi-
trarily selected from a real straight line segment L, then the new straight line seg-
ment pq is always a part of the original one; whereas, if p and q are two arbitrarily
selected points from a digital straight line segment, DSS(p1,pn), then DSS(p, q)

may or may not be a part/subsequence of the original segment, DSS(p1,pn).
Nevertheless, when a DSS is cut at an arbitrary point pm to get 〈p1,p2, . . . , pm〉

as a sub-DSS, it may not be the digitization of p1pm, but it remains to be a DSS
in the sense that it represents a part of the digitization of some real line or line
segment different from the real line segment p1pm. In fact, a finite set of digital
points satisfying the properties of digital straightness is a subset of digitization of
infinitely many real lines, which does not stop an arbitrarily cut DSS to remain
a DSS. Thus, the similarity is: Whether in case of a real or a digital straight line
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segment, an arbitrary part of it is always straight—taken in the respective real or
digital sense.

The problems related with DSS may be categorized into two classes. One class
deals with the mapping from R

2 to Z
2: Given a real straight line segment joining two

digital points p and q , what is the sequence of digital points constituting DSS(p, q)?
There exists several algorithms to find the points of DSS(p, q) [20, 22, 58, 84], and
the problem is relatively simpler. If p = (ip, jp) and q = (iq , jq), and w.l.o.g., if
ip < jp and if the slope of the real line pq be in [0,1], then DSS(p, q) consists
of the nearest digital points corresponding to those real points on pq which have
integer abscissas in the interval [ip, iq ]. That is,

DSS(p, q) =
{
(i, j) ∈ Z

2
∣∣∣ ip � i � jp ∧ j =

⌊
y + 1

2

⌋
∧ y − jq

jq − jp

= i − iq

iq − ip

}
.

(9.1)

The other class deals with problems related with digital straightness, which
mainly involves the mapping from Z

2 to R
2. To introduce, some of the intriguing

problems from this class are listed below.

1. How many different DSLs (digital straight lines) exist passing through two given
points, p and q?

2. How it can be proved that the points of DSS generated by a DSS algorithm are
“placed near to” Euclidean straight line y = ax + b?

3. How a criterion for initialization conditions can be obtained when DSS extraction
algorithm should generate exactly the Bresenham’s DSS [20]?

4. Given the sequence of digital points constituting a digital curve segment, how to
decide whether it is a DSS or not?

5. Is it possible to construct any algorithm that can normalize the set (space) of
DSS(s), i.e., attaching the length to any DSS starting at a digital point p and
ending at another digital point q?

6. How can we extract DSS(s) of maximum possible length(s) from a given digital
curve segment?

7. How can we extract the minimal DSS cover from a given digital curve segment?

It may be noted that, solutions to Problem 1 and Problem 2 inherit from the close
relationship between continued fractions and DSS [88, 103, 144]. Problem 3 has
been addressed in [115], where a DSS has been defined without using the equation
of the Euclidean straight line (y = ax +b). Regarding Problem 4, in which the input
is a digital curve segment and output is “yes” or “no”, depending on whether or not
the digital curve segment is a DSS, there also exist several interesting solutions
[43, 49, 50, 89, 102, 138]. As evident from their definitions, Problems 5–7 can
be classified as very complicated ones. Further, besides the above problems, it is
possible to formulate more problems related to DSS [115].



9 Digital Straightness, Circularity, and Their Applications 251

Fig. 9.2 C = 04105104105105105104 from p to q is not a DSS as it fails to satisfy R4.
Its run length code is 4545554, in which the runs of 5 have lengths 1 and 3, which are not
consecutive. However, if we split C into C ′ and C′′, respectively from p to p′ and from q ′ to q ,
then each of C′ and C′′ becomes a DSS

9.2.1 Properties of Digital Straightness

A (irreducible) digital curve segment S is a sequence of digital points in 8N or 4N
connectivity [84]. In 8N (our consideration), (i, j) ∈ C and (i′, j ′) ∈ C are neigh-
bors of each other, provided max(|i − i′|, |j − j ′|) = 1, and the chain codes con-
stituting C are from {0,1,2, . . . ,7} (Fig. 9.2). If each point in C has exactly two
neighbors in C, then C is a closed curve; otherwise, C is an open curve having two
points with one neighbor each, and the remaining points with two neighbors each.
A self-intersecting curve C can be split into a set of open/closed curves (Fig. 9.3).

In order to determine whether (a part of) S is straight or not, there have been
several studies since 1960s [84]. Interestingly, solutions to this problem inherit from
the theory of continued fractions [84, 144]. In [122], it has been shown that S is
the digitization of a straight line segment if and only if it has the chord property.
(A curve S has the chord property if, for each point-pair (p, q) ∈ S × S, p �= q , for
any (x, y) on the chord pq (real straight line segment joining p and q), ∃(i, j) ∈ S

such that max{|i − x|, |j − y|} < 1.)
From the theory of words [97], it has been be shown that, if a DSL is the dig-

itization of a real straight line with rational slope, then the chain code is periodic;
otherwise, aperiodic [31]. Formulation of necessary conditions based on the prop-
erties of self-similarity w.r.t. chain codes, was first given in [61] as follows:

F1: At most two types of elements (chain codes) can be present, and these can differ
only by unity, modulo 8;

F2: One of the two element values always occurs singly;
F3: Successive occurrences of the element occurring singly are as uniformly spaced

as possible.

The above three properties were illustrated by examples and based on heuristic
insights. Further, Property F3 is not precise enough for a formal proof [110]. Nev-
ertheless, it explicates how the composition of a straight line in the digital space
resembles that in the Euclidean space as far as the “evenness” (Sect. 9.1) in distri-
bution of its constituting points is concerned. A few examples are given below to
clarify the idea.

1. 001012100 is not a DSS, since F1 fails (three elements are present).
2. 001001100 is not a DSS, since F2 fails (none of 0 and 1 occurs singly).
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Fig. 9.3 Defining digital
curve segments by chain
codes. (Source: [14])

3. 010100010 is not a DSS, since F3 fails (singular element 1 is not uniformly
spaced).

4. 010010010 is a DSS, since F1–F3 are true.

It may be noted that, for a chain code sequence 010100100, the question of
“uniform spacing” (as stated in F3) of the singular element 1 remains unanswered.
For, there is one 0 between the first two consecutive 1s, and there are two 0s be-
tween the next two consecutive 1s. The first formal characterization of DSS, which
also brought in a further specification of Property F3, was however provided a few
years later in [122], as stated in the following properties of DSS.

R1: The runs have at most two directions, differing by 450, and for one of these
directions, the run length must be 1.

R2: The runs can have only two lengths, which are consecutive integers.
R3: One of the run lengths can occur only once at a time.
R4: For the run length that occurs in runs, these runs can themselves have only two

lengths, which are consecutive integers; and so on.

It may be noted that the above four properties, R1–R4, still do not allow a for-
mulation of sufficient conditions for the characterization of a DSS, but they specify
F3 by a recursive argument on run lengths. Thus, 010100100 qualifies as a DSS
by R1–R4, since the intermediate run-lengths (i.e., 1 and 2) of 0s are consecutive.
Another example is given in Fig. 9.2, which disqualifies Property R4, and hence is
not a DSS. Once it is split into two appropriate pieces, the individual pieces pass
through R1–R4 tests, and hence each of them becomes a DSS.

9.2.2 Approximate Straightness

In recent times, digital straightness has drawn special attention for their interesting
periodic properties, which are found to be quite useful in applications related to
digital images. For example, in a digital image containing one or more objects with
fairly straight edges, the set of (approximate) digital straight line segments carries
a strong geometric information of the underlying objects. Hence, the concept of
approximate digital straight line segments (ADSS) has been proposed in [14]. In the
ADSS, some of the most fundamental properties of DSS are preserved and some
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Fig. 9.4 Set of DSS (left) and that of ADSS (right), alternately colored in black and gray, extracted
from a small set of digital curve segments. (Source: [14])

properties relaxed (see Fig. 9.5). The number of ADSS extracted from a set of digital
curve segment S in a real world scenario is usually fewer than that of DSS cover,
since many visually straight segments may fail to satisfy all stringent properties
(R3 and R4, Sect. 9.2.1) of a DSS. For example, in Fig. 9.4 contains forty eight
fragments, each of which is “exactly straight”, whereas, that of ADSS contains only
twenty, which look “visually straight”.

The concept of ADSS can also be used for an efficient polygonal approximation.
Since the set of ADSS provides an elegant and compact representation of digital
curve segments, it is very effective in producing approximate polygons (or, poly-
chains) using a single parameter. The whole process consists of two stages: extrac-
tion of ADSS and polygonal approximation. The major features are as follows.

• The detection of ADSS is based on chain-code properties; only primitive integer
operations, such as comparison, increment, shift, and addition (subtraction) are
required.

• Does not use any recursion, and thus saves execution time.
• To obtain the polygonal approximation, only the endpoints of ADSS are required

with a few integer multiplications.
• The actual approximation of a digital curve segment never oversteps the worst-

case approximation for a given value of a control parameter.

Several other methods [35, 39, 66, 152] have been proposed recently for (approx-
imate) line detection. Most of the conventional parametric approaches are based on
certain distance criteria, usage of masks, eigenvalue analysis, Hough transform, etc.
In contrast, the ADSS-based method relies on utilizing some of the basic properties
of DSS for extraction of ADSS. Earlier algorithms for approximating a given digital
curve segment may be seen in [1, 9, 74]. Several variants of have been proposed
later [16, 17, 112, 135, 137]. The class of polygonal approximation algorithms, in
general, can be broadly classified into two categories: one in which the number of
vertices of the approximate polygon(s) is specified, and the other where a distortion
criterion (e.g. maximum Euclidean distance) is used.

Most of the existing polygonal approximation algorithms, excepting a few, have
super-linear time complexities, for example, O(N) in [145], O(MN2) in [112],
O(N2) in [135] and [137], O(N3) in [120], where M denotes the number of seg-
ments, and N the total number of points representing the input set of digital curve
segments. A comparative study of these algorithms can be found in [14, 154].
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Fig. 9.5 Instances of digital curve segments showing the significance of properties and conditions
related with DSS and ADSS recognition. (Source: [14])

Further, in order to analyze curvature, most of them require intensive floating
point operations [2, 56, 62, 142, 151]. For other details, the reader may look at
[13, 54, 111, 125, 142, 145, 149, 155, 156]. The ADSS-based proposed here uses
only integer operations, and yields a suboptimal polygonal approximation with lin-
ear time complexity (see [14]).

9.2.3 Extraction of ADSS

In the algorithm EXTRACT-ADSS, designed for extraction of ADSS from a digital
curve segment S, we have used R1 along with certain modifications in R2. However,
we have dropped R3 and R4, since they impose very tight restrictions on S to be
recognized as a DSS. Such a policy has been done in order to successfully extract
the ADSS, and some of the advantages are as follows.

• avoiding tight DSS constraints, especially while representing the gross pattern of
a real-world image with digital aberrations/imperfections;

• enabling extraction of ADSS from a curve segment, thereby straightening a part
of it when the concerned part is not exactly “digitally straight”;

• reducing the number of extracted segments, thereby decreasing storage require-
ment and run-time in subsequent applications;
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• reducing the CPU time of ADSS extraction;
• usage of integer operations only (e.g., to compute 	(p + 3)/4
, 3 is added with

p, followed by two successive right shifts).

Since the chain code of a curve segment is taken in a one-dimensional list, S, the
ADSS may be characterized by the following sets of parameters:

• orientations parameters: n (non-singular element), s (singular element), l (length
of leftmost run of n), and r (length of rightmost run of n). They play decisive
roles on the orientation (and the digital composition, thereof) of the concerned
ADSS. For example, in Fig. 9.5, the curve S1 has n= 0, s= 1, and chain code
04105105104104105 having l = 4 and r = 5.

• run length interval parameters: p and q , where [p,q] is the range of possible
lengths (excepting l and r) of n in S that determines the level of approximation
of the ADSS, subject to the following two conditions:

(c1) q − p � d = ⌊
(p + 1)/2

⌋
. (9.2)

(c2) (l − p), (r − p) � e = ⌊
(p + 1)/2

⌋
. (9.3)

While implementing EXTRACT-ADSS, we strictly adhere to R1, as it is directly
related to the overall straightness of S. However, we have modified the stricture in
R2 by considering that the run lengths of n can vary by more than unity, depending
on the minimum run length of n. The rationale of modifying R2 to condition (c1)
is that, while approximating the extracted line segments from S, an allowance of
approximation (d) specified by (c1) is permitted. Given a value of p, the amount d

by which q is in excess of p indicates the deviation of the ADSS from the actual/real
line, since ideally (for a DSS) q can exceed from p by at most unity (the significance
of d in characterizing an ADSS is detailed out in [14]).

Apart from d , the other parameter, namely e, is incorporated in (c2), which, along
with (c1), ensures that the extracted ADSS is not badly approximated owing to some
unexpected values of l and r . The DSS properties R1–R4, however, do not give
any idea about the possible values of l and r (depending on n). Further, in the
algorithm for DSS recognition [43], l and r are not taken into account for adjudging
the DSS characteristics of a curve segment. However, we impose some bounds on
the possible values of l and r , in order to ensure a reasonable amount of straightness
at either end of an extracted ADSS. The values of d and e are heuristically chosen
so that they become computable with integer operations only. Some other values,
like d = 	(p + 3)/4
 and e = 	(p + 1)/2
, or so, may also be chosen provided the
computation is realizable in integer domain and does not produce any undesirable
ADSS. For example, in Fig. 9.5, the curve S5 has p = 1, q = 2, l = 11, r = 1. In our
case (Eqs. (9.2) and (9.3)), therefore, we get d = 1 and e = 1 resulting a violation
of (c2) by l; thus S5 will not be accepted as an ADSS.

To justify the rationale of (c1) and (c2), we consider a few digital curves, S1–S5,
as shown in Fig. 9.5. It’s interesting to observe that, although each of S1 and S2 has
the appearance of a digital line segment, they fail to hold all the four properties of
DSS simultaneously, as shown in their respective figures. The curve S1 violates R3,
and the curve S2 violates R4. However, they satisfy R1, (c1), and (c2) and therefore,
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Algorithm 1: EXTRACT-ADSS to find out the ordered list A of end points
of ADSS in the input curve S that contains the chain code for each connected
component. (Source: [14])
Algorithm EXTRACT-ADSS (S)
1. A ← {1}, u ← 1
2. FIND-PARAMS (C , u)
3. c ← l

4. if s− n (mod 8) �= 1 then goto Step 20
5. p ← q ← length of next run of n
6. d ← e ← 	(p + 1)/2

7. c ← c + 1 + p

8. if l − p > e then goto Step 20
9. while q − p � d

10. k ← length of next run of n
11. if l − k > e then
12. c ← c + 1 + k

13. break
14. if k − p � e then c ← c + 1 + k

15. else c ← c + 1 + p + e

16. if k < p then
17. p ← k

18. d ← e ← 	(p + 1)/2

19. if k > q then q ← k

20. u ← u + c

21. A ← A ∪ {u}
22. u ← u + 1 
 next start point
23. repeat from Step 2 until C is finished

Procedure FIND-PARAMS (S,u)
1. i ← u

2. if C [i] = C [i + 1] then
3. n← C [i]
4. s← element �= n following C [i + 1]
5. l ← leftmost run length of n
6. return
7. else
8. n← C [i], s← C [i + 1], l ← 1
9. i ← i + 1
10. while C [i + 1] ∈ {n,s} 
 end[C ] = −1
11. if C [i] = C [i + 1] then
12. if C [i] = s then
13. swap n and s
14. l ← 0
15. return
16. else
17. i ← i + 1
18. return

each of them is declared as an ADSS. Similarly, the curve S3 satisfies R1–R4 and
(c1, c2); it is both an ADSS and a DSS. However, none of the curves S4 and S5 can
be announced as a DSS or an ADSS because of the violation of R2, (c1), and (c2).

9.2.4 Algorithm EXTRACT-ADSS

Algorithm 1 shows the algorithm EXTRACT-ADSS for extracting ADSS from the
chain code of each digital curve segment, say Sk , stored in the list S. This requires nk

repetitions from Step 2 through Step 23, where nk is the number of ADSS in Sk . Let
the ith repetition on Sk produces the ADSS L(k)

i . Recognition of L(k)
i is prompted by

finding its corresponding parameters (n,s, l) using the FIND-PARAMS procedure in
Step 2 of EXTRACT-ADSS. This is followed by checking/validation of

• property R1: Step 4 and Step 10;
• condition (c1): while loop check at Step 9;
• condition (c2): on the leftmost run length l in Step 8 and Step 11, and on the

rightmost run length r in Step 14.
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Proof of correctness For each ADSS, L(k)
i , we show that property R1 and conditions

(c1) and (c2) are simultaneously satisfied. We also show that L(k)
i is maximal in

length in Sk in the sense that inclusion of the character (n or s or any other in
{0,1, . . . ,7}) (or a substring of characters) that immediately precedes or follows
the part of digital curve segment corresponding to L(k)

i in Sk does not satisfy the
ADSS property/conditions.

While checking R1 in Step 4 or Step 10, if an expected n or s is not found at the
desired place in Sk , then the current ADSS, L(k)

i ends with the previously checked

valid characters. This is explicit in Step 4 and implicit in Step 10. Thus L(k)
i satisfies

R1, and is maximal from its starting point and the finishing end, since either it is the
first ADSS in Sk or the previous ADSS L(k)

i−1, was maximal.
Now, for each new run (of n), (c1) is verified in Step 9—excepting the leftmost

run, l, which is not required since p (and q) does not exist for a single run—after
appropriately updating p and q in Step 17 and Step 19 respectively, whenever nec-
essary. In Step 9, if it is found that q is unacceptably large (i.e., q � p + d), then the

while loop (Steps 10–19) is not executed, and the current ADSS, L(k)
i , ends with the

truncated part of that run (truncated maximally, i.e., up to length p + e, in Step 15
of the previous iteration) as its rightmost run, r .

For checking (c2), however, we have to be more careful. For the second run (i.e.,
the run immediately following l) of the current ADSS, (c2) is checked (with respect
to l) in Step 8. It may be noted that, if l −p > e, then (c2) is not satisfied, and so the
first two runs (l and its successor) trivially constitute an ADSS by Step 7; because
for two runs, we get only l and r (and no p or q), and no relation is imposed between
l and r to define an ADSS.

For the third and the subsequent run(s), if any, the corresponding run length is
stored in k (Step 10). If some (small enough) k violates (c2), then that k is treated as
r (Steps 11–13), and the current ADSS ends with that run as the rightmost run (of
run length k), whereby the maximality criterion of the ADSS is fulfilled. Otherwise,
if k does not exceed the maximum possible length of the rightmost run (checked in
Step 14), then we consider k as a valid run of the current ADSS (Step 14), else we
truncate it to the maximum permissible length (p+e) as the rightmost run (Step 15).
Note that, if k > p + e, then k > q (for p + e � p + d � q), and Step 19 updates q

to k, whence (c1) will be false in Step 9 in the next iteration, and so, the ADSS will
end here with the (maximally) truncated part (p + e) as its rightmost run.

Time complexity Determination of the parameters (n,s, l) in FIND-PARAMS con-
sists of two cases—the first one (Steps 2–6) being easier than the second (Steps 7–
18). In either of these two cases, the procedure searches linearly in S for two distinct
(but not necessarily consecutive) chain code values and determines the parameters
accordingly. As evident from the loop in either case, the three parameters are ob-
tained using only a few integer comparisons. The number of comparisons is l + 1
for the first case, and that for the second case is the number of characters in S until
two consecutive non-singular characters are found.

The parameters n,s, l obtained in FIND-PARAMS are successively passed
through a number of check points, as mentioned earlier, which take constant time as
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evident in Steps 3–8 of EXTRACT-ADSS. In Step 5 of EXTRACT-ADSS, the first
run length of n is measured immediately after the leftmost run length of n, if any,
and it starts from the first non-singular character out of the two consecutive charac-
ters detected in FIND-PARAMS. In Step 10 of EXTRACT-ADSS, we have another
simple (and silent) loop that determines in linear time each valid run of n in S, the
validity criteria being verified and updated in Steps 9–19, each of these steps taking
constant time. Hence, for the ADSS, L(k)

i , the algorithm EXTRACT-ADSS, together
with the procedure FIND-PARAMS, takes linear time; wherefore the time complexity
for extraction of all ADSS in S is strictly linear on the number of points in S.

9.3 Digital Circularity

The sequence of digital points constituting a digital circle has an interesting rela-
tion with the distribution of perfect squares (square numbers) in integer intervals.
Such number-theoretic concepts are found to be useful both for construction of dig-
ital circles [15] and for determining the digital circularity of a given digital curve
segment [107]. We discuss here about the latter problem: Given a sequence of chain-
codes (Sect. 9.2) or run-lengths (number of contiguous points with same x- or y-
coordinate) [123] representing a digital curve segment S, the problem is to decide
whether the segment S is an arc of a digital circle. If S is not entirely circular, then
the maximum number of runs (starting from the first run) in S satisfying the prop-
erties of digital circularity is reported along with the corresponding radius or range
of radii.

It may be mentioned here that, if S is an arbitrary 8-connected digital curve seg-
ment, then each individual run of S is always a run of one or more digital circles
(Sects. 9.3.2 and 9.3.3). In other words, given any positive integer λ, there always
exists a range of digital circles with their radii lying in [r ′, r ′′], such that each of
these circles (in each of the eight octants, and hence in Octant 1) contains some
run(s) having length λ. Thus, trivially, each run of S is always a digital circular arc.
The problem becomes non-trivial when two successive runs of S are considered,
since we have to decide whether there exists a common digital circle having these
two runs in succession. In fact, such circles may exist in multiple, which are con-
flicting circles, as explained in Sect. 9.3.2. And the problem complexity eventually
increases when more run-lengths are considered from S. A representative example
of only two runs is illustrated in Fig. 9.7.

A digital circle C Z(o, r) centered at o(0,0) and having radius r ∈ Z
+ consists

of eight symmetric octants, and the properties in one octant are also valid in the
other seven octants with appropriate modifications (Fig. 9.6). Note that, a digital
point (i, j) lies in Octant 1 if and only if 0 � i � j . Hence, for simplicity of subse-
quent discussions we consider that, if S is digitally circular, then all the runs of S,
w.l.o.g., lie in Octant 1. Thus, the chain-codes corresponding to S are considered to
be of the form 0a70b70c7 . . . (a, b, c, . . . � 0). If the chain-code representation of
a digital curve segment is such that the curve segment lies in more than one octant,
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Fig. 9.6 Eight octants of a
digital circle

then we split it for corresponding octants accordingly. Also, for notational simplic-
ity, henceforth we consider that S denotes the (8-connected) digital curve segment,
or equivalently, the sequence of either n runs or lengths (a, b, c, . . .) of these n runs,
defining the underlying digital curve segment. We can consider the problem of de-
termining the digital circularity of S in two versions, which are as follows:

Version 1 (Sect. 9.3.2) The sequence S is considered to have the starting corre-
spondence with the topmost run (i.e., with maximum y-coordinate) in Octant 1 of
the concerned digital circle. Thus, S is digitally circular, or, said to possess digital
circularity, if and only if there exists a digital circle C Z(o, r) having center o(0,0)

and radius r whose top n runs (corresponding to k = 0,1, . . . , n − 1) are identical
with the respective n runs of S.

Version 2 (Sect. 9.3.3) The sequence S may start from any run excepting the top-
most run in Octant 1 of the concerned digital circle if it is digitally circular. So, S

is digitally circular if and only if there exist a digital circle C Z(o, r) and an integer
k′(� 1) such that the successive n runs of C Z(o, r) starting from its k′th run (i.e.,
k = k′, k′ + 1, . . . , k′ + n − 1), are identical with the respective n runs of S.

Although Version 1 of the problem is a sub-problem of Version 2 (when k′ = 0),
we have treated them separately due to the fact that the latter is computationally
more complex than the former. For, ensuring the properties of digital circularity in
Version 2 implies not only deciding the existence of a radius r or a range of radii
[r ′, r ′′], but also finding an appropriate integer k′ (whereas, k′ = 0 in Version 1).

For an arbitrarily large circle, the integer k′ may become arbitrarily large—
especially when the runs of S correspond to the trailing runs of the circle in Oc-
tant 1—which requires a feasible trade-off for practical applications. Also, if S as a
whole does not satisfy digital circularity and only the first n′(< n) runs of S consti-
tute the maximum subsequence satisfying digital circularity in Version 1, then we
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Fig. 9.7 (a) Given that S[0] = 6 is the first run-length of a digital curve segment S, which cor-
responds to the topmost run-length λ0 of a digital circle, we find that there are many (conflicting)
circles, and their radii are in [26,36]. (b) If the next run-length is S[1] = 3, then out of these circles,
only two circles (r ∈ [26,27]) satisfy it (λ1 = S[1] = 3), and thus the conflicting range decreases;
(c) S[1] = 4 is satisfied by seven circles with r ∈ [28,34]. (d) S[1] = 5 is satisfied by two circles
with r ∈ [35,36]. However, if S[1] � 2 or S[1] � 6, then there is no digital circle whose topmost
run-length is S[0] = 6

can resort to Version 2 to find whether there exists some k′ > 0 for which a longer
subsequence of length n′′(> n′) satisfies digital circularity, depending on the need
and precision of the concerned application. In particular, we may also find the value
of k′ for which n′′ is maximum, so that n′′ = n in the best case (see Fig. 9.8). Ev-
idently, Version 2 is much harder to solve compared to Version 1. Solutions to the
above two versions of the problem, in turn, are used by us to derive a circular seg-
mentation of digital curve segments. If a digital curve segment S as a whole does
not correspond to an arc of a digital circle, then we fragment S into a sequence of
digital circular arcs, each of which is locally maximum in length.

9.3.1 Existing Works

Theorization and experimentation with the properties of digital discs/circles re-
lated to the reconstruction/segmentation problem can be traced back to 1970’s
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Fig. 9.8 An illustration to
differentiate Version 1 and
Version 2 of the problems for
a digital curve segment
S = 〈7,5,4,4,4,3〉

[47, 48, 67, 91, 104]. Most of those works, however, did not consider the inher-
ent digital-geometric properties of digital discs/circles, which indeed is more com-
plex than it appears [32]. In later years, and especially over the last few years, the
challenge of the problem in the digital plane gradually has become apparent with
the advent of new theoretical advances, such as digital calculus [104, 105], digital
topology [87], digital geometry [24, 26, 82, 84], computational imaging [8, 11, 121],
and theory of words and numbers [23, 86]. The classical results about the convex
hull of the integer points in a disc [10] and a more recent work on the integer points
of a hyperball [27] further emphasize that the study of digital-geometric properties
of circles is an interesting topic of research for theoretical enrichment as well as
practical applications.

A brief overview of the existing algorithms including the one based on number-
theoretic approach in the chronological order is given below.

Circularity measure As an obvious and foremost way to decide whether a set of
digital points Q ⊂ Z

2 has a circular shape, a circularity measure was proposed
in [67]. The objective was to estimate the closeness of the digital point set Q to a
digital disk by approximating the corresponding Euclidean measure, 4πa/p2, a and
p being the respective area and perimeter of Q. Although such a measure can be
resorted to when a coarse approximation is in question, it fails to provide the ex-
act information even when the concerned object is exactly circular in the digital
plane [32, 79].

A geometric characterization of the digital disk was, therefore, introduced in [79]
in consistency with the definitions of digital convexity and digital polygonality, in
order to aid the procedure of determining whether or not a given digital object Q
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is a digital disk.1 The decision algorithm is based on verifying the convexity of the
object Q, and subsequently checking whether each vertex pair from the convex hull
of Q satisfies certain criteria of Euclidean geometry. The algorithm, however, has
an excessive run-time of O(n3) complexity, n being the number of points in Q. It
was improved to O(n2) in [80] using a relatively complicated geometric algorithm.
However, the major drawback of all these algorithms is their lack of readiness to
determine the circularity of Q when Q is an arbitrary fragment of a digital circle or
a digital disk [129].

Arc separability Given two planar sets of points, P and Q, the problem of arc
separability is a classical problem in computational geometry, which was first
linked to recognize digital disks in [57]. The algorithm uses both the Voronoi and
the furthest-point Voronoi diagrams on the real/Euclidean plane to find the set R

(a convex polygon) of points, which are centers (at all feasible radii) of circles that
contain all the members of P and none of Q. Clearly, the approach was mainly
computational-geometric. Based on a similar approach, an algorithm to recognize
digital circles from digital curve segments was presented later in [89]. However,
complexity bounds of this algorithm were not provided, and it has been shown to
have O(n2 logn) computational cost in [40], where n is the number of points con-
stituting the digital curve segment.

Linear programming In [134], a different computational-geometric technique was
proposed to achieve linear time complexity for the circle recognition algorithm. It
makes use of the minimum covering circle algorithm from [100], which, however,
also has the inherent drawback of not recognizing an arc S of a digital circle like
the earlier methods, since the relation of the minimum circle circumscribing S with
the corresponding circle is not known. Later, based on the fact that the circular arc
recognition problem is equivalent to solve a set of n inequalities in dimension 3,
where n is the number of digital points of the digital curve segment, it was shown
in [44] that linear programming can be, in fact, used to design a linear-time algo-
rithm for detecting arcs of digital circles. However, no experimental results were
presented in [44].

Curvature estimation Characterization of digital circular arcs has been related
with curvature estimation in [41, 147]. While estimating the local curvature by mov-
ing a window along the digital contour, an optimality is achieved by considering the
domain of all circular arcs that give rise to a specific digital pattern in the window.
A domain, which can be one of the six types, namely straight, strictly convex, in-
finite convex, strictly concave, infinite concave, and non-circular, is calculated for
all possible chain codes of length m from 3 to 9. Based on the domain type, the
maximal recognizable radius, MRR(m), is estimated to pose a limit on the radius
of continuous arcs. As the radius of the arc domain varies, an unavoidable error

1In [79], Q is considered to be a digital disk if there exists a Euclidean/real circle such that Q

comprises of all the digital points lying on or inside that real circle.
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occurs in the radius or curvature estimation. This error is bounded by the Geomet-
ric Minimum Variance Bound (GMVB), an equivalent of the Cramér-Rao bound,
which is computed using the characterization of the arc domain based on a moment
generating function.

Hough transform Hough transform (HT) forms a standard practice to segment cir-
cular arcs [63, 96]. However, its computational burden is as high as O(n3), which
makes the method unsuitable for real-time applications. Hence, improvements have
been proposed over the years to detect circular arcs in an efficient way. In [59], sev-
eral HT-based techniques have been discussed and compared, and circular direct
Hough transform (CDHT) has been proposed to reduce the computational burden.
Its major steps include (a) Hough space voting after a modified circle parametriza-
tion by first-order equations (instead of the conventional second-order equation);
(b) clustering for recovery of spatial information; (c) detection of global maxima
(i.e., circles) and local maxima (i.e., arcs); and (d) spurious peak identification.

The algorithm in [76] uses a 2D Hough transform for the detection of the cir-
cle centers in the Euclidean plane in the first step, followed by a validation of their
existence by radius histogram in the next step. That the perpendicular bisector of
every chord of a real/Euclidean circle passes through its center, is the property used
there. This property for the localization of centers was also used earlier in [48], but
it lacked robustness due to usage of only vertical and horizontal chords. Another
algorithm in [81] is also similar to [76] in principle but avoids any gradient informa-
tion, and uses a threshold value on the votes of chord pairs. In a recent work [37],
sampling of points constituting the input digital contour has been used along with
the above-mentioned chord property to reduce the voting computation.

Domain reconstruction A geometric characterization of the domain of a quarter of
a digital circle was first described in [32] with an objective of domain reconstruction
for the full circle from the domains of individual quarter circles. The domain of a
digital circle is a volume in 3D parametric space, defined as the intersection of the
set of upright cones at digital points inside the circle and that of the complements
of upright cones at digital points outside the circle. A recent work using a similar
notion may be seen in [40], which also correlates it with the arc separating problem.
It shows how the arc center domain, acd(P,Q), of two given point sets, P and
Q, can be computed from the generalized Voronoi cell using the Euclidean metric.
The algorithm uses the principle of duality—the computational-geometric approach
to Hough transform—to obtain a circular segmentation of a digital curve segment
using its associated polyline, L. Edges of the polyline L are added one by one and
the emptiness of acd is tested. If the acd is empty, then a new domain is initialized.
With the assumption that the input curve segment is digitally convex and consists

of n points, the number of edges of L is bounded by O(n
2
3 ), wherefore the time

complexity of the algorithm is shown to be O(n
4
3 logn). Three constrained versions

of online arc recognition problem and the domain reconstruction procedures are
proposed recently in [128].
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Linearity of tangent space Based on the fact that a sequence of chords (with suc-
cessive endpoints and having equal length) of a circle corresponds to a sequence
of collinear points in the tangent space [95], a linear-time algorithm has recently
been proposed in [106]. The sequence of chords is first obtained by a polygonaliza-
tion of the input digital curve. This chord sequence is represented as a sequence of
points in the tangent space. By means of this representation, the problem of digital
arc recognition in the object space is reduced to the problem of digital straight line
recognition in the tangent space, which is solved in linear time. The algorithm can
handle noisy and blurred images with a few heuristic parameters.

Number-theoretic solution Since the squares of abscissas of the grid points con-
stituting the k(� 0)th run (in Octant 1) of the digital circle C Z(o, r), centered at
o(0,0) and with radius r , lie in the interval Ik := [max{0, (2k − 1)r − k(k − 1)},
(2k + 1)r − k(k + 1) − 1] (Lemma 1), there is no change in the corresponding run-
length with a change in r as long as Ik “slides on the integer axis” without any
change in the squares contained by it. As a consequence, there exists a set of finitely
many circles with identical length of their k(� 0)th runs, wherein lies the crux of
the problem. Other added technicalities of the analysis include the fact that, with
increasing k, the number of squares in Ik usually decreases and occasionally in-
creases by at most unity, provided the radius r remains fixed. And also, for some
radius r ′ > r and for some k′ > k � 0, the interval Ik′ corresponding to r ′ may con-
tain a larger number of squares compared to Ik corresponding to r , which opens up
new analytical possibilities, as revealed in this chapter. Eventually, it may happen
that a digital curve segment S does not belong to any digital circle, or belongs to a
particular digital circle, or belongs to a range of digital circles of consecutive integer
radii, each of which whatsoever, is reported by our algorithm.

Interestingly, given a sequence S of run-lengths that correspond to an arc of a
digital circle(s), the radius r or the range of radius [r ′, r ′′], which satisfies the se-
quence S may depend on whether or not we analyze S starting from the top runs of
the candidate circle(s). Especially, when S consists of a small number of runs, then it
may correspond to an arc of a digital circle of radius r1 and also to an arc of another
digital circle of a significantly dissimilar radius r2 such that the respective arcs are
quite differently located apropos their run-positions. For example, if S = 〈7,5,4〉
(run-lengths of the underlying curve segment), then it is an arc of C Z(r = 47,48)

corresponding to k = 0,1,2 and it is also an arc of C Z(r = 170,171) corresponding
to k = 2,3,4. This shows that there is a factor of inexactness while estimating the
radius of S if it is found to be digitally circular (Fig. 9.8, Sect. 9.1).2 A way out
is to investigate its circularity starting from the lowest possible run-position, and
ending at the highest possible one, which is a major feature of the proposed ap-
proach.

2The notion of inexactness in our work corresponds to a range of radius (and positions), which has
some conceptual resemblance with the existence of generalized circumcenter proposed recently
in [121].
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9.3.2 Down the Top Run

A digital curve segment is defined as a finite sequence of integer points (i.e., points
from Z

2) connected (minimally) in 8-neighborhood [84]. A digital circle is a type
of digital curve segment which has its pre-image as a real circle in R

2. Depending
on whether the radius and the center of a digital circle are real or integer values,
several definitions of digital circles may be seen in the literature [3, 4, 15, 21, 58,
106, 113, 147]. We have considered the type of digital circle proposed in [21]. If
we consider the radius r ∈ Z

+ and the center c = o(0,0), then the first octant of the
corresponding digital circle is given by

C Z

1 (o, r) =
{
(i, j) ∈ Z

2
∣∣∣ 0 � i � j � r ∧ ∣∣j −

√
r2 − i2

∣∣ <
1

2

}
.

The entire digital circle consists of eight symmetric octants [15], and so is given by

C Z(o, r) = {
(i, j)

∣∣ {|i|, |j |} ∈ C Z

1 (o, r)
}
. (9.4)

Combining, we get the symmetry-free form as

C Z(o, r) =
{
(i, j) ∈ Z

2
∣∣∣ ∣∣max

(|i|, |j |) −
√

r2 − (
min(|i|, |j |))2∣∣ <

1

2

}
. (9.5)

Clearly, an arbitrary digital circle C Z(p, r) having center at p(ip, jp) ∈ Z
2 and

radius r ∈ Z
+ is given by

C Z(p, r) = {
(i + ip, j + jp)

∣∣ (i, j) ∈ C Z(o, r)
}
.

9.3.2.1 Nesting the Radii

We start with the following lemma [15] that relates each point, and each run thereof,
of a digital circle, namely C Z(o, r) (Eq. (9.4) or Eq. (9.5)), to a unique square
number in the corresponding integer interval.

Lemma 1 The interval Ik := [uk, vk] = [max{0, (2k − 1)r − k(k − 1)}, (2k + 1)r −
k(k + 1) − 1] contains the squares of abscissas of (all and only) the grid points
constituting the k(� 0)th run in Octant 1 of C Z(o, r).

If the top (k = 0) run-length be λ0, then we can decide the corresponding range
of radii of all those circles whose top run-length is λ0, using the following lemma.

Lemma 2 λ0 is the length of top run of a digital circle C Z(o, r) if and only if r lies
in the interval R0 = [(λ0 − 1)2 + 1, λ2

0].

Proof Let r ∈ [(λ0 − 1)2 + 1, λ2
0]. From Lemma 1, for k = 0, we get I0 = [0, r − 1],

or, v0 = r − 1. Hence, the upper limit of I0 is given by

v0 ∈ [
(λ0 − 1)2, λ2

0 − 1
]

(9.6)
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which contains exactly one square number, (λ0 − 1)2. As the number 0 (i.e., the
point (0, r)) is included in the top run of C Z(o, r), the length of the top run be-
comes λ0.

To prove the converse, let the length of the top run be λ0. Then I0 is such an
interval that contains (λ0 − 1)2 as the largest square number. Hence, v0 satisfies
Eq. (9.6), or, r − 1 ∈ [(λ0 − 1)2, λ2

0 − 1], which implies r ∈ [(λ0 − 1)2 + 1, λ2
0]. �

Lemma 2 shows that, given an arbitrary positive integer λ0, there always exists
a range of digital circles of consecutive radii lying in the interval R0 whose length
varies linearly with λ0. However, for two given positive integers λ0 and λ1, there
may or may not exist a digital circle whose top two runs have lengths λ0 and λ1 in
succession. We have the following lemma.

Lemma 3 λ0 and λ1 are the lengths of top two runs of a digital circle C Z(o, r) if

and only if r ∈ R0 ∩ R1, where, R1 = [� (Λ1−1)2+3
3 �, 	Λ2

1+2
3 
] and Λ1 = λ0 + λ1.

In particular, if R0 ∩ R1 = ∅, then there exists no digital circle whose top two
runs have length λ0 and λ1.

The proof of Lemma 3 follows from Lemma 1 and Lemma 2, and given in de-
tail in [107]. The combined significance of Lemma 2 and Lemma 3 is illustrated
in Fig. 9.7. Given that λ0 = 6 and λ1 = 3, we get the respective lower and up-
per limits for R0 as r ′

0 = (λ0 − 1)2 + 1 = 52 + 1 = 26 and r ′′
0 = λ2

0 = 62 = 36
(Lemma 2), and those for R1 as r ′

1 = �((Λ1 − 1)2 + 3)/3� = �(82 + 3)/3� = 23
and r ′′

1 = 	(Λ2
1 + 2)/3
 = 	(92 + 2)/3
 = 27 (Lemma 3). Thus, R0 = [26,36]

and R1 = [23,27], which implies that [26,36] ∩ [23,27] = [26,27] is the range
of radii of digital circles whose top two runs have lengths 6 and 3 in succession.
For r ∈ R′

1 := R1 � R0 = [23,25], we have λ0 = 5 and λ1 = 4 (Lemma 1), which
conforms to Λ1 = λ0 + λ1 = 9, but not to the corresponding given values of λ0

and λ1.
Now, to decide whether there exits a valid range of radii corresponding to a given

sequence of run-lengths, we can extend the above findings to obtain Theorem 1. Its
proof is based on induction and uses the results of Lemma 1 and Lemma 2.

Theorem 1 (Radii interval) 〈λ0, λ1, . . . , λn〉 is the sequence of top n + 1 run-
lengths of a digital circle C Z(o, r) if and only if

r ∈
n⋂

k=0

Rk (9.7)

where,

Rk =
[⌈

1

2k + 1

(
(Λk − 1)2 + k(k + 1) + 1

)⌉
,

⌊
1

2k + 1

(
Λ2

k + k(k + 1)
)⌋]

(9.8)
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Algorithm 2: The decision algorithm DCT that verifies whether a sequence of
top n runs corresponds to a digital circle

Input: int S[0 . . n − 1]
Output: Whether S is digitally circular

1 Λ ← S[0];
2 [r ′, r ′′] ← [(Λ − 1)2 + 1,Λ2];
3 for k ← 1 to n − 1 do
4 Λ ← Λ + S[k];
5 s′ ← �((Λ − 1)2 + k(k + 1) + 1)/(2k + 1)�;
6 s′′ ← 	(Λ2 + k(k + 1))/(2k + 1)
;
7 if s′′ < r ′ or s′ > r ′′ then
8 print “S is circular up to (k − 1)th run for [r ′, r ′′]”;
9 return;

10 else
11 [r ′, r ′′] ← [max(r ′, s′),min(r ′′, s′′)];
12 print “S is circular in entirety for [r ′, r ′′]”;

and

Λk =
k∑

j=0

λj .

In particular, if
⋂n

k=0 Rk = ∅, then there exists no digital circle whose top n + 1
runs have length 〈λ0, λ1, . . . , λn〉.

9.3.2.2 The Algorithm DCT

Theorem 1 provides the way to determine whether a sequence S, consisting of n

run-lengths, is digitally circular. Starting from S[0], we can gradually come down
the sequence while obtaining the corresponding radius/radii of the matching digi-
tal circle(s). The algorithm DCT (Digital Circularity from the Top run) that decides
whether the sequence S corresponds to top n runs of a digital circle or a range of
digital circles with radii in [r ′, r ′′], is shown in Algorithm 2. For its proof of cor-
rectness, see [107]. To explain its time complexity, we observe that in each iteration
of the for loop, Θ(1) time is consumed. Hence, if there exists at least one digital
circle C Z(o, r) such that all n runs of S constitute the top n runs of C Z(o, r), then
the algorithm DCT terminates successfully with Θ(n) time complexity. Otherwise,
the algorithm terminates in Θ(n′) time if n′(< n) runs of S (i.e., S[0..(n′ − 1)])
constitute the top n′ runs of some circle and S[n′] fails to be the length of n′th run
of the circle.
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Fig. 9.9 Demonstration of
circular segmentation on a
representative digital curve
segment corresponding to
S = 〈6,3,3,3,2,1,1〉, using
the algorithm DCT

Circular segmentation If the entire segment S[0..n] is not digitally circular, then
the algorithm DCT can be used iteratively to determine whether the full or a part of
the remaining segment, i.e., S[n′..n], is digitally circular. In case S[n′..n] is circular
in entirety, time complexity is Θ(n − n′); otherwise, the time complexity is Θ(n′′)
if S[n′..(n′ + n′′ − 1)] is maximally circular. In either case, on termination of the
circular segmentation by iterative application of DCT, the total time complexity is
given by Θ(n).

A demonstration of circular segmentation on a typical digital curve segment lying
in Octant 1 is given in Fig. 9.9. Iteration 1 corresponds to Step 1 and Step 2 of the
algorithm DCT (Algorithm 2) in which Λ is initialized to S[0] = 6, and the radius
interval R0 := [r ′, r ′′] = [26,36] is computed thereof. In Iteration 2, Λ is updated
to S[0] + S[1] = 6 + 3 = 9, wherefore the next radius interval [s′, s′′] is found
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Fig. 9.10 Plot on conflicting
radii starting from the top
run-length. See text for
explanation and also Fig. 9.11

to be [23,27] (Steps 4–6 of DCT). The effective radius range is obtained to be
[26,36] ∩ [23,37] = [26,27] in Step 11 of DCT. In Iteration 3, Λ is increased from
9 to 9+S[2] = 12 in Step 4, and subsequently [s′, s′′] are computed in Steps 5 and 6
of DCT. As [s′, s′′] = [26,30] has a nonempty intersection with the previous range,
i.e., [26,27], the effective radius range becomes [26,27], as obtained in Step 11
of DCT. In Iteration 4, the new value of Λ becomes 12 + S[3] = 15 for which the
corresponding radius interval [30,33] has no intersection with the previous interval
[26,27], as verified in Step 7 of DCT. Hence, the first three run-lengths of S satisfy
digital circularity corresponding to the top three runs of the digital circles with r ∈
[26,27], which is reported in Iteration 4.

For the run-length S[3] = 3, Λ is re-initialized to Λ = 3 in Step 1 of DCT and the
new radius range becomes R0 := [r ′, r ′′] = [5,9], as computed in Step 2 of DCT.
Proceeding in a similar fashion, the successive run-lengths of S are processed in
Iterations 6–8 of Fig. 9.9. The algorithm of circular segmentation finally terminates
on finding that S[3..6] is digitally circular with r ∈ [7,8].

Rate of convergence It is quite interesting to note that the pattern of run-lengths in
S has a significant impact on the rate of convergence of the radius or the range of
radius of the underlying digital circles. It may so happen that although the first few
runs have larger lengths in S, we might get a unique radius sooner than the case
when the corresponding run-lengths are smaller. This is in dissent with the earlier
notion that the length of the radius interval varies linearly with a particular run-
length (Lemma 2). The 3D plot on conflicting radii r ′ versus a given radius r with
increasing values of the position of the run k(� 0) is shown in Fig. 9.10. From this
plot, the overall increasing trend of conflicting radii and their resolving run-position
with r is evident. This owes to the fact that for a small value of r and a “nearly
equal” value of r ′, the number of corresponding equi-length top runs of C Z(o, r)

and C Z(o, r ′) is usually less than that when r has a larger value with a nearly equal
value of r ′.



270 P. Bhowmick and B.B. Bhattacharya

Fig. 9.11 Resolving the conflicting radii r ′ with increasing k for a part of the radius range from
Fig. 9.10. Note that these plots are sliced off from Fig. 9.10 for k = 1,2,3 and 4. See text for
further explanation

For an elaborate illustration, a part (36 � r � 64) of the plot of Fig. 9.10 has
been given in Fig. 9.11, which shows how the conflicting radii gradually disappears
as k increases from 1 to 4. As put in Lemma 2, r ′ is a conflicting radius for r

at k = 0 if and only if r and r ′ are in an interval of the form [(λ0 − 1)2 + 1, λ2
0].

Hence, for k = 0, the tuples (r ′, r) signify the integer points in [1,22]2, [22 +1,32]2,
[32 + 1,42]2, . . . , as exhibited in the plot of Figs. 9.10 and 9.11. For k � 1, these
regions of conflict gradually get disbanded by the effect of subsequent intervals Rk ,
k � 1 (Theorem 1).

For example, the radius in the range [37,49] that has the highest value of k to
resolve the conflicting radii is r = 45. A similar radius in [50,64] is 55. For r = 45,
we have all the radii in [37,49] as conflicting radii at k = 0. At k = 1, we have
[42,49] to be conflicting with r = 45. Hence, if r = 45 and r ′ = 41 (or less), then
no conflict arises from C Z(o, r ′) for k � 2. For k = 2,3, and 4, the respective radii
of conflict, therefore, gradually reduce to the ranges [42,46], [44,46], and [44,46].
For r = 55 that lies in the next region of conflict, the respective regions of conflicting
radii are [50,57], [53,57], [54,57], and [54,56] (Fig. 9.11(a–d)). It may be noticed
in Fig. 9.11(d) that for r = 45, the conflicting radii are 44 and 46 for k � 4 out of
which r ′ = 44 goes on conflicting (with r = 45) till k = 7 and r ′ = 46 till k = 6.
Hence, the run-lengths of C Z(o, r = 45) do not get resolved until k = 8. Similarly,
for r = 55, as r ′ = 54 and r ′ = 56 go on conflicting till k = 9 and k = 4 respectively,
the run-lengths of C Z(o,55) remain unresolved until k = 10. This explains the fact
that a larger number of run-lengths are “usually” required to resolve a larger radius
and a smaller number of run-lengths usually for a smaller radius. The opposite-cum-
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unusual scenario, of course, also exists. Consider r = 53, which, although larger
than r = 45, is resolved much earlier at k = 3 (Fig. 9.11(b, c)). Another such unusual
instance is r = 41 that gets resolved at k = 2. Radii getting resolved at k = 4 are
r = 42,43,52,57, and so forth.

9.3.3 General Case

Some interesting properties of digital circularity for an arbitrary run or a sequence
of runs that does not start from the topmost run (k = 0) are given below (proofs
given in [107]).

Lemma 4 If a digital circle of radius r contains a given run of length λ, then
there exist two positive integers a and k such that r � �max(f1,λ(a, k), f2,λ(a, k))�,
where

f1,λ(a, k) = (a − 1)2 + k(k − 1) + 1

2k − 1
(9.9)

and

f2,λ(a, k) = (a + λ − 1)2 + k(k + 1) + 1

2k + 1
. (9.10)

Lemma 5 If a digital circle of radius r contains a given run of length λ, then there
exist two positive integers a and k such that r � 	min(f3,λ(a, k), f4,λ(a, k))
, where

f3,λ(a, k) = a2 + k(k − 1)

2k − 1
(9.11)

and

f4,λ(a, k) = (a + λ)2 + k(k + 1)

2k + 1
. (9.12)

Theorem 2 An arbitrary run of given length λ belongs to a digital circle if and only
if its radius lies in the range

Rak =
{
r

∣∣ r �
⌈

max
a,k∈Z+

(
f1,λ(a, k), f2,λ(a, k)

)⌉}

∩
{
r

∣∣ r �
⌊

min
a,k∈Z+

(
f3,λ(a, k), f4,λ(a, k)

)⌋}
.

It may be noted that, for a given value of k, y = f1,λ(x, k) represents a parabola
with x = 1 as the axis. Hence, r � f1,λ(a, k) signifies the interior region of (and
lying on) f1,λ(a, k). Similarly, for the same given value of k, r � f2,λ(a, k) is the
interior region of f2,λ(a, k), and r � f3,λ(a, k) and r � f4,λ(a, k) are the respective
exterior regions of the parabolas f3,λ(a, k) and f4,λ(a, k). As a result, the region
Rak signifies the (closed) region enclosed by the four parabolic curves, namely,
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Table 9.1 Points of intersection (in R
2) among the parabolas {fi,λ | i = 1,2,3,4} defining Rak

(k = 2k − 1, k = 2k + 1, k̂ = k(k − 1), k̂ = k(k + 1), λ = λ − 1)

Parabolas Point Abscissa of the point

f1,λ f2,λ α12
1
2 (kλ +

√
(kλ + 2)2 + 2(k λ

2 + 2k̂ − 3) + 2)

f2,λ f3,λ α23
1
2 (k λ +

√
(k λ)2 + 2(k λ

2 + 2k̂ − 1))

f3,λ f4,λ α34
1
2 (kλ +

√
(kλ)2 + 2(kλ2 + 2k2))

f4,λ f1,λ α41
1
2 (kλ + k +

√
(kλ + k)2 + 2(kλ2 + 2k̂ − k − 1))

Table 9.2 Specifications of the parabolas {fi,λ | i = 1,2,3,4} (notations as in Table 9.1)

Parabola Axis Directrix Length of
Latus Rectum

Vertex Focus

f1,λ x = 1 ky = 3/4 k (1, (k̂ + 1)/k) (1, (8k̂ + 5)/(4k))

f2,λ x = −λ ky = 3/4 k (−λ, (k̂ + 1)/k) (−λ, (8k̂ + 5)/(4k))

f3,λ x = 0 ky = −1/4 k (0, (k̂)/k) (0, (8k̂ + 1)/(4k))

f4,λ x = −λ k y = −1/4 k (−λ, k̂/k) (−λ, (8k̂ + 1)/(4k))

{fi,λ | i = 1,2,3,4}. The four points of intersection {αij | j = (i mod 4) + 1, i =
1,2,3,4}—one for every two consecutive curves, fi,λ and f(i mod 4)+1,λ—defining
the region Rak , are shown in Tables 9.1 and 9.2, an outline of the derivation being
given in [107].

9.3.3.1 The Algorithm DCG

From Theorem 2, it is evident that for a particular positive value of k, if there exists
a positive integer a such that the region Rak is non-empty and contains at least one
integer point, namely (a, r), then C Z(o, r) is the digital circle whose kth run-length
is λ. Hence, in the algorithm DCG (Digital Circularity in General, Algorithm 3),
we start with k = kmin = 1 (Step 2) and compute all a’s contained in Rak using the
procedure FIND-PARAMS (Procedure 1). For example, if S[0] = 7, then for k = 1,
we get �α23� = 9 and 	α41
 = 11 using Table 9.1, whose physical significance is
shown in Fig. 9.12. Let a possess m values, which are computed and stored in
A[0][0],A[1][0], . . . ,A[m − 1][0] (Step 4 of FIND-PARAMS). For each such value
A[i][0] of a, the corresponding range of radii lying in Rak is stored in A[i]; the
lower limit is stored in A[i][1] and the upper limit in A[i][2] (Steps 5–12 of FIND-
PARAMS). Notice in Fig. 9.12 that for a given value of λ(= 7), the valid radii or
ranges of radius may not be contiguous. The circles with r = 82,83, . . . ,86, and
with r = 98,99,100 do not have any run of length 7.
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Algorithm 3: The decision algorithm DCG that verifies whether a sequence of
n runs corresponds to a digital circle

Input: int S[0 . . n − 1]
Output: Number of runs of S that are digitally circular; starting run from

which circularity is satisfied; radius interval.

1 nmax ← 0;
2 for k′ ← kmin to kmax do
3 Λ ← S[0], i ← 0;
4 FIND-PARAMS(A,Λ,k′);
5 while i < m and nmax < n do // for all a’s of first run
6 [s′, s′′] ← [r ′, r ′′] ← [A[i][1],A[i][2]];
7 Λ ← A[i][0] + S[0], j ← 1;
8 while j < n and s′′ � r ′ and s′ � r ′′ do // verify other n − 1

runs
9 Λ ← Λ + S[j ], k ← k′ + j ;

10 s′ ← � (Λ−1)2+k(k+1)+1
2k+1 �;

11 s′′ ← 	Λ2+k(k+1)
2k+1 
;

12 if s′′ � r ′ and s′ � r ′′ then
13 [r ′, r ′′] ← [max(r ′, s′),min(r ′′, s′′)];
14 j ← j + 1

15 i ← i + 1;
16 if nmax < j then
17 nmax ← j , koff ← k′, [rmin, rmax] ← [r ′, r ′′]

18 print nmax; koff; [rmin, rmax]

For each a = A[i][0] (Step 5 of DCG) corresponding to the first run S[0] of
the digital curve segment S, the corresponding radius range [r ′, r ′′] and the re-
lated shift of run-length given by a = A[i][0] are considered (Step 6 and Step 7
of DCG, respectively). For each such possible integer-tuple (a, k), the radius inter-
val [s′, s′′] for each of the subsequent run-lengths of S is computed (Steps 9–11). If
[s′, s′′] ∩ [r ′, r ′′] �= ∅, then the effective radius range is updated to [r ′, r ′′] (Step 13
of DCG). Otherwise, the current run does not belong to the same digital circle as
of the preceding runs, and hence the maximum number or runs, denoted by j in
DCG, satisfying digital circularity is stored to nmax (Steps 16 and 17), provided j

is greater than the previous maximum, if any; the other output parameters, namely
koff and the radius interval [rmin, rmax], are updated accordingly (Step 17).

In order to maximize the length of each segmented arc, we have to maximize the
lengths of its leading and trailing runs, and so the algorithm DCG should be run on
S[1..n − 2], as S[0] is the leading and S[n − 1] is the trailing run. After obtaining
nmax, koff, and [rmin, rmax] in Step 17, Lemma 1 can be used to compute koff − 1
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Procedure 1: Find-Params(int A, int Λ, int k)

1 Compute {αuv | 1 � u � 4 ∧ v = (u + 1) mod 4} // from Table 9.1;
2 i ← 0;
3 for a ← �α23� to 	α41
 do
4 A[i][0] ← a;
5 if a < α12 then
6 A[i][1] ← �f2,λ(a, k)�
7 else
8 A[i][1] ← �f1,λ(a, k)�
9 if a < α34 then

10 A[i][2] ← 	f3,λ(a, k)

11 else
12 A[i][2] ← 	f4,λ(a, k)

13 i ← i + 1;

14 m ← i

Fig. 9.12 Demonstration of the procedure FIND-PARAMS on a run-length 7 to obtain the solution
space Rak of the radius intervals {[r ′

j , r
′′
j ] | j = 0,1,2} corresponding to m = 3 square numbers

lying in the interval [�α23�2, 	α41
2] = [92,112]

and koff + nmax corresponding to rmax. Note that, rmin is not required to compute
these run lengths, as we want to maximize the lengths of terminal runs, i.e., S[0]
and S[n − 1]. The parts of S[0] and S[n − 1] which are not in excess of koff − 1 and
koff + nmax respectively, are accepted.

An interesting point regarding the changing nature of the range of a is that, as k

increases, the range of a gets wider, thereby making the region Rak possess more
options for r . That is, the number of integer points (a, r) in Rak goes on increasing
with k, for a given value of λ. This, in turn, calls for more and more digital circles
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to be tested when k is made higher, hence delaying the final solution. A feasible
solution to arrest such delay has been designed by us using the concept of infimum
circle and supremum circle, as explained in [107].

9.4 Polygonal Approximation

Extraction of the ADSS for each curve Sk in the given set (binary image) I :=
{Sk}Kk=1 of digital curve segments generates an ordered set of ADSS, namely Ak :=
〈L(k)

i 〉nk

i=1, corresponding to Sk . In each such set Ak , several consecutive ADSS may
occur, which are approximately collinear and, therefore, may be combined together
to form a single segment.

Let 〈L(k)〉j2
j1

be the maximal (ordered) subset of the ADSS starting from L(k)
j1

that
conforms to some approximation criterion. Then these j2 − j1 + 1 segments in Ak

are combined together to form a single straight line segment starting from the start
point of L(k)

j1
and ending at the end point of L(k)

j2
. This procedure is repeated for

all such maximal subsets of Ak in succession to obtain the polygonal approxima-
tion (in case Sk is a closed curve) or polychain approximation (in case Sk is open),
namely Pk , corresponding to Sk .

In the proposed algorithm, depending on the approximation criterion, we have
used a greedy method of approximating the concerned curve Sk starting from the
very first ADSS in Ak . Determination of a minimal set of DSS (and a minimal set Ak

of ADSS, thereof) corresponding to a given curve Sk is known to be computationally
intensive [84, 124]; so for real-time applications, a near-optimal but speedy solution
is often preferred than the optimal one.

9.4.1 Approximation Criterion

There are several variants of approximation criteria available in the literature [125].
We have tested our algorithms with two variants of the approximation measures
based on area deviation [145]. Both the algorithms are realizable in purely inte-
ger domain subject to few primitive operations only. The approximation criterion
is defined w.r.t. the approximation parameter or error tolerance, denoted by τ , as
follows.

9.4.1.1 Cumulative Error (Criterion C∑)

Let 〈L(k)〉j2
j1

, be an ordered subset of Ak as discussed above. Then the ADSS (j2 −
j1 + 1 in number) in Ak are replaced by a single straight line segment starting from
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the start point of L(k)
j1

and finishing at the end point of L(k)
j2

, if:

j2−1∑
j=j1

∣∣�(
s
(
L(k)

j1

)
, e

(
L(k)

j

)
, e

(
L(k)

j2

))∣∣ � τd�
(
s
(
L(k)

j1

)
, e

(
L(k)

j2

))
(9.13)

where, s(L(k)
j ) and e(L(k)

j ) represent the respective start point and the end point of

the ADSS L(k)
j , etc. The start point of L(k)

j coincides with the end point of the pre-

ceding ADSS, if any, in A k , and the end point of L(k)
j coincides with the succeeding

one, if any. In Eq. (9.13), |�(p, q, r)| denotes twice the magnitude of area of the tri-
angle with vertices p := (xp, yp), q := (xq, yq), and r := (xr , yr ), and d�(p, q) the
maximum isothetic distance between two points p and q . Since all these points are
in two-dimensional digital space, the above measures are computable in the integer
domain as shown in the following equations.

d�(p, q) = max
{|xp − xq |, |yp − yq |} (9.14)

�(p, q, r) =
∣∣∣∣∣∣

1 1 1
xp xq xr

yp yq yr

∣∣∣∣∣∣ (9.15)

From Eq. (9.15), it is evident that �(p, q, r) is a determinant that gives twice
the signed area of the triangle with vertices p, q , and r . Hence the ADSS in the
given subset are merged to form a single straight line segment, say L̃, provided the
cumulative area of the triangles (j2 − j1 in number), having L̃ as base and the third
vertices being the end points of the ADSS (excepting the last one) in the subset
〈L(k)〉j2

j1
, does not exceed the area of the triangle with base L̃ (isothetic length) and

height τ .

9.4.1.2 Maximum Error (Criterion Cmax)

With similar notations as mentioned above, using the maximum error criterion, the
ADSS in 〈L(k)〉j2

j1
would be replaced by a single piece, provided the following con-

dition is satisfied.

max
j1�j�j2−1

∣∣�(
s
(
L(k)

j1

)
, e

(
L(k)

j

)
, e

(
L(k)

j2

))∣∣ � τd�
(
s
(
L(k)

j1

)
, e

(
L(k)

j2

))
(9.16)

The rationale of considering two such criteria is as follows. Since we would be
replacing a number of ADSS, which are almost straight, and more importantly, are
not ordinary digital curves of arbitrary patterns and arbitrarily curvatures, the end
point of each ADSS makes a triangle with the replacing segment, namely L̃. So the
sum of the areas of triangles formed by the end points of these ADSS in combination
with the replacing line L̃ gives a measure of error due to approximation of all ADSS
in 〈L(k)〉j2

j1
by L̃. Alternatively, if we are guided by the worst case approximation,

that is, if the mostly digressing ADSS is considered to estimate the error, then the
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maximum of the areas of these triangles should be considered as the error measure
for approximation of worst ADSS in 〈L(k)〉j2

j1
by L̃.

Empirical observations as reported in [14], reveal that the above two criteria are
essentially similar in the sense that they produce almost identical polygons for dif-
ferent digital curve segments for different values of the error tolerance (i.e., τ ). This
is quite expected as far as the output is concerned.

As mentioned earlier in Sect. 9.4, to construct polygonal approximation we con-
sider the start point of the first ADSS (i.e., L(k)

j1
), and the end point of the last ADSS

(i.e., L(k)
j2

). This can be justified as follows.

• The sum (for criterion C∑) or the maximum (for criterion Cmax) of the isothetic
distances of the end points of each ADSS from the replacing line L̃ never exceeds
the specified error tolerance τ . This follows easily on expansion of the left hand
side of the corresponding Eqs. (9.13) and (9.16), and from the fact that the term
d�(s(L(k)

j1
), e(L(k)

j2
)) represents the isothetic length of L̃.

• Since each ADSS L(k)
j is approximately a DSS, we consider that �p ∈ L(k)

j such

that the isothetic distance of p from DSL passing through the end points of L(k)
j

exceeds unity (as testified in our experiments). Although for sufficiently long
ADSS, this may not hold for the underlying conditions (c1) and (c2); however,
in our experiments with real world images, this was found to hold. In the case of
any violation, some heuristics may be employed to find the error points and to
find smaller ADSS to resolve the problem.

9.4.2 Algorithm for Polygonal Approximation

The algorithm for polygonal approximation of a sequence of ADSS in the set A ,
using the approximation criterion of Eq. (9.13), is described in Algorithm 4. To take
care of the criterion Cmax of Eq. (9.16), a similar procedure may be written.

Final time complexity As explained in Sect. 9.2.4, the time complexity for ex-
tracting the ADSS in a set of digital curve segments, I := {Sk}Kk=1, is given by
Θ(N1) + Θ(N2) + · · · + Θ(NK) = Θ(N), where N(= N1 + N2 + · · · + NK) is the
total number of points representing I . Now, in the algorithm MERGE-ADSS, we
have considered only the ordered set of vertices of the ADSS corresponding to the
curves, so that the worst-case time complexity in this stage is linear in N . Hence,
the overall time complexity is given by Θ(N) + O(N) = Θ(N), whatsoever may
be the error of approximation τ .

9.4.3 Quality of Approximation

The goodness of an algorithm for polygonal approximation is quantified, in general,
by the amount of discrepancy between the approximate polygon(s) (or polychain(s))
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Algorithm 4: MERGE-ADSS for polygonal approximation of a sequence of
ADSS in A using criterion Cmax. (Source: [14])

Input: A , n, τ

Output: Vertices of polygonal approximation in A
1. for m ← 1 to n

2. for S ← 0, i ← 1 to (n − m − 1)

3. S ← S + �(A [m],A [m + i],A [m + i + 1])
4. dx ← |A [m].x − A [m + i + 1].x|
5. dy ← |A [m].y − A [m + i + 1].y|
6. d ← max{dx, dy}
7. if S � dτ

8. delete A [m+i] from A
9. else
10. break
11. m ← m + i − 1

and the original set of digital curve segments. There are several measures to assess
the approximation of a curve Sk , such as

• compression ratio CR = Nk/Mk , where Nk is the number of points in Sk and Mk

is the number of vertices in the approximate polygon Pk ;
• the integral square error (ISE) between Sk and Pk .

Since there is always a trade-off between CR and ISE, other measures may
also be used [69, 126, 133]. These measures, however, may not always be suit-
able for some intricate approximation criterion. For example, the figure of merit
[133], given by FOM = CR/ISE, may not be suitable for comparing approxima-
tions for some common cases, as shown by [125]. In a work by [143], the percentage
relative difference, given by ((Eapprox − Eopt)/Eopt) × 100, has been used, where
Eapprox is the error incurred by a suboptimal algorithm under consideration, and
Eopt the error incurred by the optimal algorithm, under the assumption that same
number of vertices are produced by both the algorithms. Similarly, one may use
two components, namely fidelity and efficiency, given by (Eopt/Eapprox) × 100 and
(Mopt/Mapprox) × 100 respectively, where Mapprox is the number of vertices in the
approximating polygon produced by the suboptimal algorithm and Mopt is the same
produced by the optimal algorithm subject to same Eapprox as the suboptimal one
[125].

The algorithm proposed here is not constrained by the number of vertices Mk

of the output polygon Pk , and therefore, the measures of approximation where
Mk acts as an invariant, are not applicable. Instead, we have considered the error
of approximation, namely τ , as the sole parameter in our algorithm, depending on
which the number of vertices Mk corresponding to Pk will change. A high value
of τ indicates a loose or slacked approximation, whence the number of vertices Mk

decreases automatically, whereas a low value of τ implies a tight approximation,
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thereby increasing the number of vertices in the approximate polygon. Hence, in
accordance to the usage of τ in both of our proposed methods, one based on criterion
C∑ and the other on Cmax, the total number of vertices M := M1 +M2 + · · ·+MK

in set of approximate polygons {Pk}Kk=1 corresponding to the input set of digital
curve segments, namely I := {Sk}Kk=1, versus τ , provides the necessary quality
of approximation. Since the total number of points lying on all the points in I
characterizes (to some extent) the complexity of I , we consider the compression
ratio (CR) as a possible measure of approximation.

Another measure of approximation is given by how much a particular point
(x, y) ∈ Sk ∈ I has deviated in the corresponding polygon Pk . If p̃ := (x̃, ỹ) be
the point in Pk corresponding to p := (x, y) in I , then for all points in I , this
measure is captured by the variation of the number of points with isothetic deviation
d⊥ w.r.t. d⊥, where the (isothetic) deviation from p to p̃ is given by

dev⊥(p → p̃) = min
{|x − x̃|, |y − ỹ|}. (9.17)

Further, since dev⊥(p → p̃) depends on the chosen value of τ in our algorithm, the
fraction of the number of points in I with deviation d⊥ varies plausibly with τ . So,
the isothetic error frequency (IEF) (or, simply error frequency), given by

f (τ, d⊥) = 1

N

∣∣{p ∈ I : dev⊥(p → p̃) = d⊥
}∣∣, (9.18)

versus τ and d⊥, acts as the second measure that provides the error distribution for
the polygonal approximation of I .

It may be observed that, the error frequency distribution in Eq. (9.18) is equiva-
lent to the probability density function, and satisfies the criterion∑

d⊥
f (τ, d⊥) = 1, for τ = 0,1,2, . . . .

In fact, the error frequency distribution function in our measure is a bivariate distri-
bution of (finite-size) samples of size N , depending on the two variables, namely τ

and d⊥. A study on the nature of the error frequency distribution for a sufficiently
large population of arbitrary digital curves may be, therefore, a promising area of
theoretical analysis of polygonal approximation of digital curves.

9.4.4 Experimental Results

In Fig. 9.13, we have presented the comparative results on polygonal approxima-
tion of a benchmark curve, “chromosome” [142]. Our implementation is in C in
Intel Core 2 Duo CPU E4500 2.20 GHz, Mandriva Linux 2008. The results show
that MERGE-ADSS compares favorably with others when we consider τ = 1 in
MERGE-ADSS. For τ = 2,3, . . . , the approximation obtained by MERGE-ADSS
requires fewer number of vertices (M), but at the cost of some error incurred, and
may not be profitable for small curves like “chromosome” (and other test/benchmark
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Fig. 9.13 Results of polygonal approximations on “chromosome” by some existing methods and
MERGE-ADSS (using criterion C∑), after applying EXTRACT-ADSS. aA blue point indicates
the start point and a red point indicates the end point of an ADSS. A green point indicates an
ADSS with its end point coinciding with its start point, which is a degenerate case arising out of
our consideration of the chain code of a start point w.r.t. the end point of the previous ADSS in the
sequence. (Source: [14])

Table 9.3 Comparison of DSS and ADSS extraction algorithms on different images.
(Source: [14])

Image name &
size (pixels)

No. of
points

P.A.a

(s)
No. of segs. Avg. length CPU time (s)

DSS ADSS DSS ADSS DSS ADSS {P}b

bird-nestlings 480×320 3041 6.38 902 327 3.37 9.30 5.42 0.17 0.05

climber 320 × 330 2750 5.92 1170 419 2.35 6.56 6.74 0.20 0.05

India 325 × 285 2552 7.15 1735 597 1.47 4.27 9.06 0.29 0.06

leaf 240 × 256 1312 3.88 341 106 3.85 12.38 2.17 0.08 0.02

spider 292 × 286 1767 4.20 583 157 3.03 11.25 3.93 0.11 0.03

test-001 140 × 1050 2809 6.26 858 276 3.27 10.18 4.48 0.14 0.04

vase 408 × 333 6066 10.81 1972 681 3.07 8.91 14.52 0.43 0.10

aCPU time for polygonal approximation using area deviation [145] without ADSS
bAverage CPU time for polygonal approximation with ADSS using criteria C∑ and Cmax, and
τ = 1–20

curves considered in the existing works [125, 142, 145, 149, 155]). However, for
sufficiently large curve segments, slackening of τ reduces the number of vertices to
the desired limit, as evident from Fig. 9.14. Table 9.3 shows results on some test
images for tolerance varying from 1 to 20.
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Fig. 9.14 Results of polygonal approximation on a real-world image (after edge detection and
thinning) by EXTRACT-ADSS, followed by MERGE-ADSS (using C∑)
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9.5 Circular Arc Segmentation

Fast and accurate recognition of circles or circular arcs in a digital image is a chal-
lenging problem with practical relevance to computer vision applications as well as
in medical imaging. In Sect. 9.3, we have given a brief overview of different tech-
niques. Out of all these techniques, Hough transform (HT) is mostly followed in
some or other variant. Though HT is robust against noises, clutters, object defects,
and shape distortions, it often requires intensive computation and a large amount of
memory.

In this section, we discuss a technique of recognizing digital circles as well as
circular arcs, based on the chord property and the sagitta property [146]. A prelim-
inary version of this may be seen in [12]. All the arc segments are first extracted,
and then using the chord property, the circularity of each arc segment is verified and
the circular segments are identified. The sagitta property is applied to determine the
radii of the circular arc segments, and in turn, the corresponding centers. Finally,
two arc segments with closest radii and centers are merged iteratively to obtain a
complete circle or a larger circular arc segment. To improve the accuracy of com-
puting the centers and radii, a technique based on restricted Hough transform (RHT)
is used.

In real-world images, a digital circle or a circular arc may intersects other circular
arcs or digital straight line segments. To handle such cases, first we need to detect
the digital circular segments separately and then merge them efficiently to form a
complete digital circle or a larger circular arc segment. Further, as the contour may
be given as thick curve segments, we use thinning [63] as preprocessing before
applying the algorithm. The subsequent steps may be briefed as follows.

9.5.1 Finding the Intersection Points

In order to detect each segment separately, first of all we detect all the points of
intersection (among the digital curve segments) and end points (for open digital
curves), and store them in a list P . As we detect circular segments first and then
merge them to form a complete circle or a larger circular segment, we have to do
some special treatment for a free/isolated closed curve. Consider S to be a free and
closed digital curve segment. We put two virtual points of intersection, say, p1 ∈ S

and p2 ∈ S, such that, if S1 and S2 be the two resultant segments (S1 ∪ S2 = S)
whose (virtual) end points are p1 and p2, then the lengths of S1 and S2 differ by
at most unity.

9.5.2 Storing the Curve Segments

A thin digital curve segment is a set of pixels having two end pixels and a minimal
list of pixels that establish connectivity between the end pixels using 8-neighbor
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rule [63]. For each point pi ∈ P , the corresponding segment(s) incident at pi is/are
extracted. If pi is an end point of a digital curve segment S, then there is only one
segment, i.e., S, incident at pi . If pi is a virtual point of intersection created for a
free and closed digital curve, namely S = S1 ∪ S2, then there are two segments, i.e.,
S1 and S2, incident at pi . And number of digital curve segments incident at pi is
three or more if and only if pi is an actual point of intersection between two or more
digital curve segments.

To discard the spurious segments, we consider the length of (i.e., number of
digital points constituting) each segment incident at each pi ∈ P . If a segment is
negligibly small (10 pixels or less), then it is discarded; otherwise, it is stored in a list
of segments, L . Each node of the list contains the (coordinates of) two endpoints,
the center and the radius of the circular arc if obtained, and a pointer to the linked list
of the concerned curve points. To identify the circular arc segments, we need to first
remove the digital straight line segments from the list L . It may be mentioned here
that there are several techniques to determine digital straightness [14, 84, 85, 125].
We have used the concept of area deviation [145], which is realizable in purely
integer domain using a few primitive operations only. The method is as follows.

Let S := 〈a = c1, c2, . . . , ck = b〉 be a digital curve segment with end points a

and b. Let ci (2 � i � k − 1) be any point on the segment S other than a and b.
Let hi be the distance of the point ci from the real straight line segment ab. Then S

is considered to be a single digital straight line segment starting from a and ending
at b, provided

max
2�i�k−1

∣∣�(a, ci, b)
∣∣ � τhd�(a, b). (9.19)

Here, |�(a, ci, b)| denotes twice the magnitude of area of the triangle with ver-
tices a := (x1, y1), ci := (xi, yi), and b := (xk, yk), and d�(a, b) := max(|x1 − xk|,
|y1 − yk|) is the maximum isothetic distance between a and b.

9.5.3 Deviations of Chord Property

Let θm be the angle subtended by (chord) ab at the midpoint m of a segment S ∈ L
with end points a and b. Let θc be the angle subtended by ab at an arbitrary point c ∈
S � {a, b}. Then, according to the chord property, θc = θm if the segment S is a part
of the Euclidean (real) circle. But this is not exactly true for a digital circle. Hence,
we use a variant of this useful chord property (Fig. 9.15). If θc ∈ [θm − ε, θm + ε] for
all c ∈ S excepting a few points near its two ends, ε being a small positive quantity
(Fig. 9.15), then the digital curve S is circular.

Let C R(o, r) be the real circle centered at o(0,0) and having radius r ∈ Z
+.

Let A R(α,β) be an arc of C R(o, r) having end points α(xα, yα) ∈ C R(o, r) and
β(xβ, yβ) ∈ C R(o, r), such that xα, xβ ∈ Z. Let γ (xγ , yγ ) ∈ R

2 be an arbitrary
point in A R(α,β) � {α,β}. Let the chord αβ subtends an angle φγ at γ . Let
a, b, c ∈ Z

2 be the respective points in the digital circle C Z(o, r) corresponding
to α,β, γ , and the angle subtended by the line segment ab at c be φc .
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Fig. 9.15 Deviation of the chord property. Points in R
2 (α,β, . . .) or in the real circle CR(o, r)

are shown in black, and points shown as larger gray blobs (a, b, c) belong to the digital circle,
C Z(o, r). A R(α,β) is an arc of CR(o, r) in Octant 1, which corresponds to the given digital
(circular) arc A Z(a, b). As c changes its place along A Z(a, b) such that yγ − 1

2 < yc < yγ + 1
2 ,

the angle φc(= θa + θb + π/2) gets deviated by (+/−)ε

Now, consider that A R(α,β) is an arc of C R(o, r) in Octant 1, which
corresponds to the digital (circular) arc A Z(a, b). Since a(xa, ya), b(xb, yb),
and c(xc, yc) are the respective points of C Z(o, r) corresponding to α(xα, yα),
β(xβ, yβ), and γ (xγ , yγ ) of C R(o, r), we have xα = xa ∈ Z, xβ = xb ∈ Z, and
xγ = xc ∈ Z (Fig. 9.15). Further, owing to the digitization scheme, we have

yα − 1

2
< ya < yα + 1

2
, yβ − 1

2
< yb < yβ + 1

2
,

yγ − 1

2
< yc < yγ + 1

2
.

(9.20)

Let c′ and γ ′ be the respective feet of perpendiculars dropped from c and γ to the
vertical line x = xa , and b′ and β ′ be those from b and β to the vertical line x = xc .
Let θa , θα , θb , and θβ be the acute angles subtended at c and γ by the corresponding
perpendiculars. Then, φc = θa + θb + π/2 and φγ = θα + θβ + π/2. Clearly, for
c ∈ A Z(a, b), we have

max(φc) = max(θa + θb) + π/2 � max(θa) + max(θb) + π/2, (9.21)

min(φc) = min(θa + θb) + π/2 � min(θa) + min(θb) + π/2, (9.22)

or,

φc ∈ [
min(θa) + min(θb) + π/2,max(θa) + max(θb) + π/2

]
. (9.23)

Let δyac = ya − yc, δxca = xc − xa , and δyαγ = yα − yγ . Then the deviation of θa

from θα is given by
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δθaα = θa − θα = tan−1 ya − yc

xc − xa

− tan−1 yα − yγ

xγ − xα

(9.24)

= tan−1 δyac

δxca

− tan−1 δyαγ

δxca

(since xa = xα and xc = xγ )

= tan−1
(

(δyac − δyαγ )δxca

δ2
xca

+ δyac δyαγ

)
< tan−1

(
δxca

δ2
xca

+ δyac δyαγ

)
(Eq. (9.20))

(9.25)

≈ tan−1
(

δxca

δ2
xca

+ δ2
yac

)
= tan−1 1

|ca| (with δyac ≈ δyαγ ). (9.26)

Thus, the deviation of θa from θα is at most tan−1(1/ca), and higher the distance
of a from c, lesser is the deviation. Similar deviation, namely δθbβ

, also comes into
play while considering θb, and as the distance of c from b increases, the deviation
becomes insignificant. Hence, if m be the middle pixel (one of two, if there are two
such) of A Z(a, b), then the maximum possible deviation of φm from φγ is given by

τφ = 2 tan−1 1

|am| = 2 tan−1 2

|ab| . (9.27)

For practical cases, the distance of c or m from a or b is quite low, and hence
such deviations have to be considered for proper results. Our algorithm possesses
this feature, resulting to its satisfactory performance in terms of both precision and
robustness.

9.5.4 Verifying the Circularity

The list L contains segments which are not digitally straight, as explained in
Sect. 9.5.2. That is, each segment S in L is made of at least one circular seg-
ment with or without one or many intervening straight pieces. So, for each segment
S, we check its circularity using the chord property as explained in Sect. 9.5.3. If
the segment S consists of both circular and straight components, then we extract
its circular part(s) only from S, store these circular segment(s) in the list L with
necessary updates, and remove the original segment S from L .

We start checking the circularity of S := 〈a = c1, c2, . . . , ck = b〉 starting from
the end point, a. We consider an appropriately small prefix of S, namely Sj := 〈a =
c1, c2, . . . , cj 〉, where j = min(τs, k), and verify the circularity for one-third of the
points lying in the central region of Sj , namely

S
(m)
j := 〈c	j/3
, c	j/3
+1, . . . , cm−1, cm, cm+1, . . . , c2	j/3
−1, c2	j/3
〉.

In our experiments, we have considered τs = 15. Two-third points (one-third from
either end) of S are discounted from circularity test as they are prone to excessive
deviations of chord property, as explained in Sect. 9.5.3. Hence, if cm (m = 	j/2
)
be the midpoint of Sj and the angle subtended by the chord acj at m is estimated to
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be φm, then Sj is considered to be satisfying the chord property, provided the angles

φc subtended by acj at all points c ∈ S
(m)
j � {a, cj } satisfy the following equation.

max
c∈S

(m)
j

{|φc − φm|} � τφ. (9.28)

If Sj is found to be circular, then we augment it to Sj ′ := 〈a = c1, c2, . . . , cj ′ 〉, where
j ′ = min(j + 	 1

3τs
, k), in order to include the next 	 1
3τs
 pixels from S, and again

verify the chord property for S
(m′)
j ′ with m′ = 	j ′/2
. The process is continued until

all points in S are verified or the chord property fails for some prefix Sj (or Sj ′ )
of S.

9.5.5 Combining the Arcs

If S is a circular arc with end points a and b, then its sagitta is the straight line
segment drawn perpendicular to the chord ab, which connects the midpoint μ of ab

with S. The sagitta property is as follows: If the perpendicular to ab at μ intersects
S at s, then the radius of the circle whose arc is S, is given by

r = d2(a, b)

8d(μ, s)
+ d(μ, s)

2
(9.29)

where, d(a, b) denotes the Euclidean distance between the points a and b.
The radius, and hence the center, of each circular arc S ∈ L are computed using

the sagitta property, and stored in the node corresponding to S. While combining
the circular arcs, necessary care has to be taken for the inevitable error that creeps in
owing to the usage of sagitta property, which is a property of real circles only. Since
we deal with digital curve segments, the cumulative error of the effective radius
computed for a combined/growing circular arc using the aforesaid sagitta property
is very likely to increase with an increase in the number of segments constituting
that arc. Hence, to enhance accuracy, we merge two digital circular segments S and
S′ into S′′ := S ∪ S′, if (i) S and S′ have a common end point in P and (ii) S′′
satisfies the chord property. Since the node corresponding to each segment in the
list L contains end points, center, radius, and a pointer to the list of curve points,
the attributes of the segment S are updated by those of S′′, and the data structure P
is updated accordingly.

9.5.6 Finalizing the Centers and Radii

In spite of the treatments to reduce discretizations error while employing chord
property to detect circular arcs and while employing sagitta property to combine two
or more circular arcs and compute the effective radius and center, some error may
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still be present in the estimated values of the radii and the center. To remove such
errors, we apply a restricted Hough transform (RHT) on each circular arc S ∈ L
with a small parameter space [34]. Let q(xq, yq) and r be the respective center and
radius of S estimated using the sagitta property. Then the restricted parameter space
is taken as [xq − δ, xq + δ] × [yq − δ, yq + δ] × [r − δ, r + δ], such that δ = τH r ,
where 0 < τH < 1 (τH = 1

8 in our experiments). A 3D integer array, H , is taken cor-
responding to this parameter space, each of whose entry is initialized to zero. For
every three distinct and non-collinear points c, c′, and c′′ from S, we estimate the
center q ′(x′, y′) and the radius r ′ of the (real) circle passing through c, c′, and c′′. If
each of rd(x′), rd(y′), and rd(r ′) lies within the corresponding bounds of H , then
the entry in H corresponding to rd(x′, y′, r ′) is incremented (rd(x′) = 	x′ + 1

2
,
etc.). Finally, the entry in H corresponding to the maximum frequency provides the
final center and radius of S.

9.5.7 Some Results

A demonstration of the proposed method on a sample image (6.pbm) is shown in
Fig. 9.16. All the digital curve segments in the image are extracted and stored in the
list L . At first, the straight line segments are removed from L with a small compu-
tation time. For example, L(f (304,45), o(304,94)), L((304,94), (303,155)), etc.
are some of the straight line segments that are removed.3 Then using the chord
property, the circular segments are detected with necessary updates in the list L .
For example, the digital curve segment from d(174,174) to b(199,293) consists
of two circular segments. Those two circular segments are extracted; one segment
from d(174,174) to c(199,249) is stored in the node of the original segment and
the other one from c(199,250) to b(199,293) is stored in a newly created node and
inserted in the list L . Similarly, the segment from m(223,174) to (307,349) con-
sists of a circular arc and a straight line segment. From this segment, we extract the
circular part and remove the straight part. Necessary updates in L and P are made.
The circular segments in the list L are shown in Fig. 9.16(d) by different colors and
are enumerated in Table 9.4.

Two or more smaller adjacent arcs are combined if they jointly satisfy the chord
property in order to get larger arcs for reducing the computational error in the next
step of applying the sagitta property. After such combining/merging, the number
of circular segments gets reduced to almost 50%, as reflected in Table 9.4 and
Fig. 9.16(e). Next, the radius and the center of each arc in L are computed using
the sagitta property and stored in the node of the corresponding arc. Figure 9.16(f)
shows the center of each circular arc as +. The detailed information of the circular
segments stored in the list L is given in Table 9.4. The radius and center of the

3Here we use L((x, y), (x′, y′)) to denote the digital straight line segment joining the points (x, y)

and (x′, y′).
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Fig. 9.16 Step-wise snapshots of the algorithm on 6.pbm: (a) input; (b) after thinning; (c) in-
tersection points and end points in L, removing small arcs; (d) detected circular arcs by chord
property; (e) after combining adjacent arcs; (f) centers detected by sagitta property; (g) after merg-
ing circular arcs; (h) after applying RHT; (i) final result; (j) ground-truth

combined arc are estimated as the weighted arithmetic means of the radii and cen-
ters of the constituent arcs, respectively; the weight is taken as the number of points
of the constituent arc. For example, some of the segments in Table 9.4 are combined
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Fig. 9.16 (Continued)

into segments 1 and 2 (Fig. 9.16(g)), with the updated information being listed in
Table 9.4. Next we apply RHT on each arc. Resultant image is shown in Fig. 9.16(h)
and the arcs are detailed out in Table 9.4. Finally, we consider the detected circu-
lar arcs in the original (i.e., input) image and for each pixel on a detected arc S,
the object pixels in its 8-neighborhood are iteratively marked as pixels of the cor-
responding thick circular arc. Figure 9.16(i) shows the detected thick circular arcs
of the input image. Figure 9.17 shows the set of results on another image, 2007-
1.tif.

9.6 Future Work and Open Problems

Digital straightness and digital circularity have interesting properties, some of which
have been discovered so far, and some are yet to. Digital straight lines have also
some relation with Farey sequences [64, 84, 136], and their proper employment in
the digital plane can also result to efficient algorithms, as shown recently in [116,
117]. Digital circularity, whether in theoretical or in empirical sense, has also many
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Table 9.4 Changes in L after successive stages on the image of Fig. 9.16

Seg.
No.

End point 1 End point 2 # Curve
points

Center Radius Curve points

(a) After detecting the circular arcs

1 f(303,45) e(193,107) 118 – – (303,45), (302,45), (301,45), . . . , (193,107)

2 f(305,45) g(414,109) 118 – – (305,45), (306,45), (307,45), . . . , (414,109)

3 o(304,93) p(344,243) 188 – – (304,93), (305,94), (306,94), . . . , (344,243)

4 e(192,108) d(174,172) 65 – – (192,108), (191,109), (191,110), . . . , (174,172)

5 g(415,110) h(432,174) 65 – – (415,110), (416,111), (417,112), . . . , (432,174)

6 n(236,131) o(301,94) 82 – – (236,131), (236,130), (236,129) . . . , (304,94)

7 n(235,132) m(223,172) 42 – – (235,132), (234,132), (233,133), . . . , (223,172)

8 d(174,174) c(199,249) 76 – – (174,174), (174,175), (174,176), . . . , (199,249)

9 m(223,174) l(233,213) 40 – – (223,174), (223,175), (223,176), . . . , (233,213)

10 h(432,175) i(404,255) 81 – – (432,175), (432,176), (432,177), . . . , (404,225)

11 c(199,250) b(200,293) 45 – – (199,250), (200,251), (201,252), . . . , (200,293)

12 b(199,294) a(181,303) 20 – – (199,294), (199,295), (198,296), . . . , (181,303)

13 j(426,295) k(445,304) 20 – – (426,295), (427,296), (428,296), . . . , (445,304)

(b) After combining adjacent arcs and detection of centers by sagitta property

1 o(304,93) p(344,243) 188 (302,174) 81 (304,93), (305,94), (306,94), . . . , (344,243)

2 h(432,174) d(174,172) 366 (303,174) 129 (432,174), (432,173), (432,172), . . . , (174,172)

3 d(174,174) c(199,249) 76 (294,176) 120 (174,174), (174,175), (174,176), . . . , (199,249)

4 l(233,213) o(301,94) 164 (302,173) 79 (233,213), (233,212), (232,211), . . . , (301,94)

5 h(432,175) i(404,255) 81 (319,180) 113 (432,175), (432,176), (432,177), . . . , (404,255)

6 c(199,250) a(181,303) 65 (177,272) 31 (199,250), (200,251), (201,252), . . . , (181,303)

7 j(426,295) k(445,304) 20 (446,277) 27 (426,295), (427,296), (428,296), . . . , (445,304)

(c) After merging

1 l(233,213) p(344,243) 352 (302,173) 80 (233,213), (233,212), (232,211), . . . , (344,243)

2 c(199,249) i(404,255) 523 (303,174) 124 (199,249), (198,248), (197,247), . . . , (404,255)

3 c(199,250) a(181,303) 65 (177,272) 31 (199,250), (200,251), (201,252), . . . , (181,303)

4 j(426,295) k(445,304) 20 (446,277) 27 (426,295), (427,296), (428,296), . . . , (445,304)

(d) After RHT

1 l(233,213) p(344,243) 352 (303,173) 80 (233,213), (233,212), (232,211), . . . , (344,243)

2 c(199,249) i(404,255) 523 (303,174) 129 (199,249), (198,248), (197,247), . . . , (404,255)

3 c(199,250) a(181,303) 65 (177,272) 31 (199,250), (200,251), (201,252), . . . , (181,303)

4 j(426,295) k(445,304) 20 (447,276) 28 (426,295), (427,296), (428,296), . . . , (445,304)

relevant applications, as shown in [78, 93, 108, 109, 118, 119, 127–129]. Some open
problems that are relevant to the context of this chapter are given below.

1. DSS Cover Given a (finite) connected set of digital points, P , find the minimal
set of digitally straight segments (DSS) so that each point of P belongs to some
DSS from the minimal set. This problem is quite related to vectorization of thick
digital curves in general, which is of course in Z

2 [36, 52, 55, 70, 71, 117, 139,
157]. So far, there has been some work in R

2, which is possibly not strongly
related with the digital version. As stated in [65, 68], the minimum line cover
problem is, given a set P of n points in R

2, the smallest number l of straight
lines have to be found to cover all points in S.
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Fig. 9.17 Step-wise snapshots of our experiment on 2007-1.tif: (a) input; (b) after thinning;
(c) intersection points and end points in L ; (d) detected circular arcs by chord property; (e) after
combining adjacent arcs; (f) centers detected by sagitta property; (g) after merging circular arcs;
(h) after applying RHT; (i) final result

This problem has been known to be NP-hard [101] for over 20 years. The
decision version has been shown to be fixed-parameter tractable in [94], and an
O(n log l)-time algorithm has been given in [65] for l = O(log1−ε n).
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2. DCA Cover For P ⊂ Z
2, a similar and more difficult problem is to find the

minimal set of digitally circular arcs (DCA) whose union produces S. When P

has a circular pattern (e.g., digitized documents containing thick circular curves,
often found in engineering drawings), such a DCA cover would be more efficient
than a DSS cover, thereby yielding better vectorization.

3. Combined Cover In general, (digital) lines and circular arcs may get intermixed,
wherefore an optimal solution may be required. This can be resolved by an ap-
propriate employment of exact or approximate solutions in terms of DSS cover
and DCA cover.

A trade-off is also an obvious issue, which might be addressed in this context.
4. δ-DSS Cover A restricted (and possibly more application-relevant) version of

line cover problem in Z
2 is, given a positive integer δ and a (finite) point set

P ⊂ Z
2, find a minimal set of DSS, D, such that each point of P has an iso-

thetic distance of at most δ from some DSS d ∈ D. The isothetic distance be-
tween two points p(x, y) and p′(x′, y′) is given by d⊥(p,p′) = min{|x − x′|,
|y − y′|}. Hence, for each point p ∈ P , there should exist some DSS d ∈ D so
that d⊥(p,d) � δ, where d⊥(p,d) = min{d⊥(p,p′): p′ ∈ d}.

This is a variant of the traditional skeletonization or thinning problem [63],
and is in fact, more well-defined.

5. δ-DCA Cover The problem of δ-DSS cover can also be framed for a restricted
version of DCA cover, as follows. Find a minimal set of digitally circular arcs,
A, such that each point of P has an isothetic distance of at most δ from some arc
a ∈ A.

In case there are multiple solutions for the above two problems, we can im-
pose some other metric to be optimized in addition. For example, if there ex-
ists multiple instances of D, then find the one for which

∑
p∈P d⊥(p,p′: p′ ∈

ap ∈ A) is minimized; here ap denotes a/the digitally circular arc in A from
which the isothetic distance of p is minimum.

9.7 Conclusion

Several theoretical perspectives and related applications of digital straightness and
digital circularity have been discussed here. Comparative studies of existing ap-
proaches to solving some contemporary problems have been investigated, and
digital-geometric techniques have been explained for modeling and analyzing them
in the digital plane. Appropriate modelings and reformulations have been done to
conceive the problems in the digital plane. Some applications of these ideas to
polygonal approximation and circular arc segmentation have been aptly demon-
strated with theoretical and experimental results.

It is evident from the discussions and the algorithms presented here, that a set of
ADSS extracted from a digital curve segment is significantly smaller in size than that
of DSS extracted from the same, although each ADSS can be treated as sufficiently
straight for various practical applications. Furthermore, the CPU time needed for
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ADSS extraction is remarkably less than that for DSS extraction. The extracted set
of ADSS can be combined to determine a compact polygonal approximation of a
digital curve based on certain approximation criteria and a specified error tolerance.
The algorithm and related procedures require only primitive integer operations and
hence run very fast compared to the existing methods.

To determine digital circularity, we have shown how integer arithmetic can be
used to compute successive radius intervals during radii nesting. The algorithm
DCT is very efficient when the circularity testing has to be done on a digital curve
segment S with the correspondence of its first run with one of the extremum runs
of the underlying digital circle/circular arc. As the algorithm DCT is based on run-
length analysis and not on the constituent digital points/pixels of S, the time com-
plexity of DCT is effectively linear in the number of runs, which is one of its major
features. The concept of conflicting radii has also been discussed to show how the
rate of convergence of the effective radius interval depends on the run-length pat-
tern of a digital curve segment. Demonstrations and elaborations detailed out in this
chapter clearly reveal the challenge of getting a digital-geometric solution to digital
circularity.

For real-world applications (e.g., vectorization) in which the circular arcs usually
deviate from the actual/well-defined digital circular arcs, an approximation algo-
rithm might be more useful. One such is explained from [12], which identifies dig-
ital circles and circular arcs from a binary image using chord property and sagitta
property, and is not strictly based on the notion of approximate circularity or related
number-theoretic analysis. The decision problem on approximate digital circularity
is that, given an approximation parameter τ and a digital curve segment S, whether
there exists a digital circle C Z(r) for which each point p of S is at most τ units
apart from the corresponding nearest point of C Z(r). A judicious relaxation of the
integer interval of radii is required to address this problem. The digital-geometric so-
lution based solely on integer intervals is technically engrossing, which, if achieved,
would open up novel possibilities to solve the approximate solution of circular arc
segmentation in related applications.
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Chapter 10
Shape Analysis with Geometric Primitives

Fabien Feschet

Abstract In this chapter, a unifying framework is presented for analyzing shapes
using geometric primitives. It requires both a model of shapes and a model of geo-
metric primitives. We deliberately choose to explore the most general form of shapes
through the notion of connected components in a binary image. According to this
choice, we introduce geometric primitives for straightness and circularity which
are adapted to thick elements. Starting from a model (the tangential cover) which
emerged in the digital geometry community we show how to use Constrained De-
launay Triangulation to represent all shapes as a connected path well adapted to
the recognition of geometric primitives. We moreover describe how to map our
framework into the class of circular arc graphs. Using this mapping we present a
multi-primitives analysis which is suitable for self-organizing a shape with respect
to prescribed geometric primitives. Further work and open problems conclude the
chapter.

10.1 Introduction

The raw data contained in an image is usually insufficient for a complete understand-
ing of its content. It is a common problem to extract and represent shapes within an
image. For instance it may be used to look for a similar object in a database or to
recognize important objects which might help to understand with a computer the
content of the image. There are usually two ways to represent shapes in an image
either by its boundary or by its interior [17]. The most simple model for represent-
ing the boundary is the polygonal model which is somewhat efficient and easy to
compute. However, in full generality, more complex geometric primitives than seg-
ments must be used to have an efficient and powerful representation. For instance,
spline curves are often used for capturing shapes outlines (see references in [17]).
Several outline capturing techniques are presented in [17] but most often they rely
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on a fitting procedure to approximate the shapes. Moreover, in vectorization ap-
proaches [12], fitting with line segments and circles is commonly used. However,
as mentioned in [12], the extraction of the thickness of the geometric primitives is
usually hard and the presence of noise is a central source of errors.

We propose another approach based on a completely different paradigm. We start
by noting that in binary images, the notion of connected components is easy to
manage. This is the same for the notion of contour of an object. In the presence of
noise, the notion of contour can be replaced, to deal with noise, by two contours [13]
which enclose the expected true contour of the object. This leads to the notion of
digital outlines. However, digital outlines is just a particular case of viewing a shape
as a connected component. Thus, our presentation mainly focuses on connected
components but with a model which is also well adapted to digital outlines.

Instead of trying to fit a continuous primitive to our digital data, we use the no-
tion of geometric digital primitives. This approach is well known [15] and usually
uses digital straight segments (DSS). The main purpose of the present chapter is to
provide means to manipulate thick shapes. So we both recall an extension of the
notion of DSS, the α-blurred segments where α is a parameter of thickness, and
provide an extension of the notion of thick digital arcs with our notion of α-thick
annulus. Having defined basic digital primitives, the first part of the analysis con-
sists in extracting those primitives. For α-blurred segments, this has been done in
[6] where an efficient algorithm was presented. By explicitly encoding the interior
of shapes with the use of triangulations, we can force geometric primitives to be or-
ganized through an extension of the notion of tangential cover [9]. The idea of this
powerful representation is that when two geometric primitives intersect, it is bet-
ter to keep both primitives instead of cutting them to have disjoint primitives. This
has been for instance used in [10] to solve the min-DSS problem which consists in
constructing the polygonal representation of a digital closed curve with a minimal
number of DSS in linear time. In the present paper, we provide an extension of the
tangential cover, called the predicate cover (PC), in order to manipulate other prim-
itives than just DSS. We show the connection between the predicate cover and the
class of circular arcs graphs. Using this, we are able to provide a generic framework
well adapted to thin digital shapes, thick shapes, digital outlines and more generally
arbitrary connected components.

10.2 The Tangential Cover

As noted previously in the introduction, we will consider different types of shapes
and different geometric primitives. The goal of this section is to emphasize the origi-
nal construction called the tangential cover which has been introduced in the context
of digital curves [9]. In the next section, we will introduce various types of shapes
we are going to analyze in the framework presented in this chapter. We will show
that, in fact, all these representations can be manipulated in the same way under a
very simple and natural hypothesis. This hypothesis will then serve as a basic build-
ing block in our framework and is deduced from the tangential cover construction.
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10.2.1 Shapes as Digital Curves

As mentioned in [26], one of the most widely used representations of shapes is based
on the boundary of an object. In this model, a shape is the boundary of a compact
object. Hence, since there is no holes inside the object, one and only one boundary
is necessary and sufficient to entirely represent the object. This boundary is usually
a digital curve. We recall basic definitions in the following.

We consider points in the digital plane Z2 and some adjacency α on those points.
The usual adjacencies are the classical 4- and 8-adjacencies [15]. Let us recall
that if we denote by N () a norm in R

2, they are defined by the fact that two
points p and q are adjacent if and only if N (q − p) ≤ 1. The norm N () is the
l1 norm—corresponding to the sum of the absolute differences of the coordinates
of the points—for the 4-adjacency and it is the infinite norm l∞—corresponding
to the max of the absolute differences of the coordinates of the points—for the
8-adjacency. In the sequel, the adjacency is fixed. Of course, our work readily ex-
tends to the case of other cellular decompositions of the real plane R

2 such as the
triangular or the hexagonal decomposition.

A digital α-path in the plane (a digital path, for short) is a sequence of points
(p0, . . . , pn) of Z2 such that pi and pi+1 are α-adjacent and pi �= pi+1. It must be
noted that a path is indeed an ordered set of points of Z2 such that two consecutive
points are α-adjacent. Hence, for a given set of points, there may be several paths
describing it depending on the chosen ordering. A path is closed if and only if p0

and pn are α-adjacent. When a path is closed, indices of the points in the path are
intended modulo n + 1, the length of the path. For a path P , a subpath is a subset of
points of P which is an α-path. For an α-path P , either closed or not, we denote by
S P(P ) the set of all subpaths of P .

A closed digital curve is a digital path where each point pi has exactly two
α-adjacent points in the path. An open digital curve is a digital path with the same
property except for the points p0 and pn which have only one α-adjacent point in
the path.

Following Wagenknecht [25], many contour tracing algorithms have been pro-
posed in the literature. Among them, the inter-pixel boundary is of interest due to
the property that it avoids many of the usual topological issues encountered when
dealing, for instance, with one pixel wide objects.

10.2.2 Digital Straight Segments

Definition 1 The set of points (x, y) of Z2 verifying

μ ≤ ax − by < μ + ω (10.1)

with μ, a and b in Z and ω in N − {0} is called arithmetical line with slope a/b,
with shift parameter μ and with thickness ω. It is denoted by D(a,b,μ,ω).
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Fig. 10.1 Lines with a = 3, b = 5, μ = 0: (a) ω = 4 (b) ω = 5 (c) ω = 8 (d) ω = 10

Informally, the arithmetical lines correspond to all the points with integer coor-
dinates in a strip limited by the lines ax − by = μ and ax − by = μ + ω − 1. The
thickness ω corresponds to the number of lines of slope a/b which goes through the
integer points of the strip (see Fig. 10.1).

The width parameter ω controls the thickness but also the connectivity of the
line. Indeed, arithmetical lines are:

(a) disconnected if ω < max(|a|, |b|),
(b) strictly eight connected if ω = max(|a|, |b|),
(c) strictly four connected if ω = |a| + |b| and
(d) thick and four connected if ω > |a| + |b|.

Definition 2 A discrete segment is a finite subset of an arithmetical line.

If the line is connected, so is the discrete segment. The recognition problem
is the problem of deciding whether or not a given set of points of Z

2 is a dis-
crete segment. This problem was solved by Debled and Reveillès [5] for the cases
(b), (c). The complexity of the recognition process is O(n) where n is the number
of points. Their algorithm is incremental meaning that points are added one by one.
An extension of the algorithm has been given by Vialard [24] to add points on both
sides of the segment. It can be easily proved that points can also be suppressed on
both sides. All algorithms compute parameters of a line containing the given set of
points.

10.2.3 The Tangential Cover

We wish to represent 2D digital curves using digital primitives. We expect such a
representation to provides important geometric information about digital curves. To
do so, we introduce the tangential cover of a digital curve and we refer to [15] and
[21] for definitions and properties of digital segments.

Definition 3 ([9]) The tangential cover (TC) of a digital curve C is the set of all
maximal digital straight segments of connected subsets of C with respect to the
inclusion order.
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Fig. 10.2 (Left) The TC is the set of all maximal segments. (Right) The mapping onto the unit
circle

The TC may be mapped onto a circular arcs graph. A 2D closed digital curve is
homeomorphic to a circle. Since the points of the curve are indexed in order, it is
possible to map each point of the curve to a point on the unit circle, as illustrated
in Fig. 10.2. Each segment of the TC then corresponds to an arc on the circle. In
Fig. 10.2 (right), let us consider that a segment exists between points 4 and 6. This
segment is then mapped onto an arc of the circle.

This representation has proven itself to be a very useful and efficient tool for dig-
ital curves analysis. For instance, it has been used to solve the Min-DSS problem
[10]. It has also been used to estimate global digital curvature [13] and tangents
along digital contours [16]. In its primary form, the TC could only manage the ex-
traction of maximal DSS (digital straight segments as in [15]). However, since the
tangential cover can be embedded in a circular arcs graph, we could apply classical
algorithms on the graph instead of algorithms on the digital curve. For instance, a
polygonalization of a digital curve is a set of maximal segment sharing their ending
points and covering the curve. Hence, each polygonalization is a path or a cycle—for
closed curves—in the graph. Thus, the Min-DSS problem which consists in comput-
ing a minimal length polygonalization corresponds to a shortest path or a shortest
cycle in the graph.

Among the properties used to build the tangential cover, two must be absolutely
retained. First, it is important to notice that the curve is viewed as a totally ordered
list of points. Second, it appears that the geometric primitives must be ordered by
inclusion. As such, it appears that not all geometric primitives will lead to efficient
algorithms. Indeed, the linear complexity for the computation of the tangential cover
mainly comes from the fact that a digital straight segment is maximal whenever it
becomes impossible to add a point in both sides without losing the DSS property.
We will use these properties to generalize the tangential cover in Sect. 10.5.

10.3 Generic Shape Representation

The digital curve model is not enough powerful to represent all shapes encountered
in practice. For instance, it avoids the possibility of self-intersections or of thick
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Fig. 10.3 Hand-drawn
sample shape

curves. It is known that in case of noisy object, it is a good strategy to enclose the
noisy boundary into an inner and an outer boundary [19]. In this case, the repre-
sentation of shapes is called an outline that is two digital curves, one containing the
other and such that the boundary is between the curves. As such, the outline is in
general of variable thickness and the exact position of the boundary inside the out-
line is unknown. However, self-intersection is not allowed to define the inner and the
outer curves. In the most general case, the shape is simply a connected component
as complex as possible.

Since the analysis aims at organizing shapes into geometric primitives, it appears
that the thickness of the curve must be taken into account both in the representa-
tion of shapes and of geometric primitives. In the following, we present the general
model for connected components and in the next section, geometric primitives al-
lowing thick objects will be presented.

10.3.1 Shapes as Connected Components

We are focusing on raw black and white digital images such as Fig. 10.3. We wish
to obtain a decomposition of each shape within such images into sets of geomet-
ric primitives which should capture geometric features of the shapes. We are then
confronted with the presence of noise in the raw data, which is inherent to most
digital images. Such noise can either be due to the acquisition technique or to the
nature of the image itself. Noise produces irregularities, which usually prevent the
recognition of meaningful geometric features. Thus some pre-processing techniques
must be performed before the recognition in order to clean the shape. We provide a
method which is robust to noise and may be applied to raw shapes without the help
of any of these usual pre-processing techniques. The most straightforward way to
analyze such images is to extract the set of all their connected components and
to take into account the interior of the shape. This feature may be achieved by
computing a constrained Delaunay triangulation of the connected component, as
in [7, 22]. Contours are extracted using a simple marching technique on the inter-
pixel boundaries and the triangulation is performed with the set of boundaries as
constrained edges. The shape is then decomposed into the set of all the computed
triangles (see Fig. 10.4). Due to the constraints, all vertices of the triangles con-
sist of contour points (no Steiner points are added) and the set of edges perfectly
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Fig. 10.4 Constrained
Delaunay triangulation of the
sample shape

represent the variability of the shape. Moreover its intrinsic thickness is taken into
account.

10.3.2 α-Path on Connected Components

As noted previously, we can use a unified strategy for dealing with digital curves
and the more general model of shapes as connected components. Indeed, in both
cases, there are simple elements, a pixel on the one hand and a triangle on the other
hand, and a connectivity relation α on those elements. In the former case, the usual
4- and 8-connectivity are adopted and in the latter case the edge adjacency relation
between triangles is used. Thus, in both cases, a shape can be viewed as an α-path.
In the sequel, we show how to solve the problem of computing a total ordering of
the elements of this α-path.

10.3.2.1 Decomposition into Branches

We wish to compute a total ordering on an α-path. In [7], we presented an algorithm
that solves this problem in the case where the input shape is a polygon with one hole.
However this algorithm does not manage the general case. This algorithm relied
on the edge-neighborhood of the triangles. The shape representation described in
[22] also uses the same characterization. A triangle with three edge neighbors is
called a junction triangle. A triangle with only one edge neighbor is a terminating
triangle. Finally, a triangle with two edge neighbors is a branch triangle. Our idea is
to decompose the shape into a set of branches, using Algorithm 1.

This simple algorithm produces a set of branches which always begin with a
junction triangle and may either end with another junction triangle or a terminat-
ing triangle. If the algorithm is processed on the raw set of triangles, it generates
a lot of small branches caused by structurally unimportant features. Thus we use a
geometric pruning method to get rid of these, as in [20, 22]. This pruning method
is based on a morphological significance ratio ρ0 which must be fixed in advance.
ρ0 may be related to the desired α thickness value chosen for the subsequent primi-
tive recognition. Once the set of triangles has been pruned accordingly, Algorithm 1
is performed. The result on the sample shape is exhibited in Fig. 10.5.
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Algorithm 1: Decomposition into branches

StartNewBranch;
T ← Find any Junction triangle ;
Add(T ,Branch) ;
Mark(T );
Push(Neighbors(T ),Stack);
while !Empty(Stack) do

T ←Pop(Stack) ;
Add(T ,Branch) ;
Mark(T ) ;
if T is a Branch triangle then

T ← Unmarked(Neighbors(T ))
else

if T is a Junction triangle then
Push(Unmarked(Neighbors(T )),Stack)

StartNewBranch;

Fig. 10.5 Branches obtained
from the pruned triangulation.
The dots represent the
endpoints of each branch

10.3.2.2 Ordering the Branches

Our shape is now represented by a set of branches. We must create a path which joins
those branches in order. In this section we explain how to obtain an optimal traversal
so that back and forth moves are avoided as much as possible along the branches.
The problem is to find a path that relies all the branches with a minimal cost. In
graph theory, this problem is known as the Chinese Postman Problem [11]. It is
rather straightforward to convert our set of branches into an instance of the Chinese
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Fig. 10.6 Graph
representation of the
decomposition

Fig. 10.7 The minimal cost
traversal: 1-3-2-3-4-5-8-9-8-
7-6-7-5-4-10-11-12-11-13-
11-10-14-15-14-16-17-16-18,
for a total weight of 267

Postman Problem. Each endpoint of the branches becomes a vertex of the graph,
and each branch itself becomes an edge. Each edge is weighted by the number of
triangles contained in the corresponding branch. For the sample shape, the graph is
exhibited in Fig. 10.6. Then we apply an algorithm given in [11] to obtain a minimal
cost traversal of the branches (see Fig. 10.7).

10.4 Geometric Primitives

The DSS model not only concerns straight part exclusively but also is not suitable
for dealing with thick shapes. Hence, we now introduce a new notion of straightness
which quite resembles the original one of DSS but also deals with circular primitives
in the same vein. The main idea is to cover both cases of thin and thick shapes.
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Fig. 10.8 (Left) The illustration of the isothetic thickness of a convex hull. (Right) An α-blurred
straight segment, with α = 5

Fig. 10.9 The chromosome shape, with four different thickness values. α = 1,2,3,4 pixels. The
dots represent a good polygonalization for each α, and on the bottom lie the associated tangential
covers, represented by their circular arcs graph

10.4.1 Blurred Straight Segments

The arithmetical definition of DSS, initiated by Reveillès in [21], is a rather rigid one
with regards to noise. If the processed shape is somewhat irregular, the recognized
segments may be a lot shorter than expected. So we rely on an extended definition
to overcome this drawback.

Definition 4 ([4]) A set of points S is an α-blurred straight segment if and only
if the isothetic thickness of its convex hull is less than a given real number α. The
isothetic thickness of a convex hull is the minimum between its horizontal width
and its vertical height.

Figure 10.8 shows an example of an α-blurred straight segment. This definition
allows us to break the rigidity of arithmetical DSS. The value of α is a parameter
and must be fixed in advance. An efficient algorithm which tests if a set of points
is an α-blurred straight segment is given in [2]. Its time complexity is O(logn). In
Fig. 10.9, the tangential cover using blurred straight segments is shown by various
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Fig. 10.10 (Left) A digital
ring. (Right) An α′-thick
digital arc, with α′ = 2

α values. We can remark that as expected, the complexity in number of maximal
geometric primitives depends on the chosen parameter α.

10.4.2 Digital Circular Arcs and Annulus

We now wish to extend the model of parameterized thickness to a circular digital
primitive. In [12], Hilaire and Tombre define a fuzzy digital arc as a set of pixels
“close enough” to a circular arc of the real plane, with some constraints. These con-
straints limit the recognition of digital arcs to rather thin ones, which do not suit our
usage. Hence we use another approach. According to the work of Andrès [1], a dig-
ital ring is the set of all digital points comprised between two concentric Euclidean
circles (see Fig. 10.10). Our definition is related to the one of digital ring and is a
classical annulus.

Definition 5 A set of pixels S is an α′-thick digital arc if and only if it is com-
pletely enclosed between two Euclidean circles C0 and C1 with common center o

and whose difference of radii dr = r1 −r0 is less than a given real number α′, having
r1 > r0.

An example of an α′-thick digital arc is given in Fig. 10.10. Contrary to digital
rings, some holes may appear in α′-thick digital arcs. In other words, it is not nec-
essary for all digital points comprised between C0 and C1 to be in S for it to be an
α′-thick digital arc. We wish to determine whether a given set of pixels S is a part
of an α′-thick digital arc. This problem is equivalent to finding the minimum-width
enclosing annulus of S, and comparing its width to α′. There exists such an algo-
rithm within the Computational Geometry Algorithm Library CGAL for instance.
Its time complexity is O(n).

10.5 The Predicate Cover

In previous works, we generalized the definition of the TC [7] in order to process
different primitives. According to previous section, all shapes will be seen as a to-
tally ordered α-paths and as such we can use the inclusion order between subpaths.
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Fig. 10.11 The
decomposition of the whole
shape in the order of the
branches, α = 5 pixels

Definition 6 Let C be a totally ordered α-path, and let P be a binary predicate of
validity. The predicate cover (PC) of C is the set of all maximal valid subpaths of C.
Validity is intended with respect to P and maximality is intended with respect to the
inclusion order.

The generality of the notion of subpaths and its associated predicate of validity
allow us to process various digital primitives. In this chapter, our goal is to represent
digital curves using circular and straight digital primitives simultaneously. It should
be noticed that since subpath is an α-connected subpart of the path, clearly the
number of valid subpaths is at most O(n2). This bound is also valid when taking
into account the predicate P .

Consider for example a computation with the predicate cover. We can extract a
polygonalization of a connected component. We can traverse branches during the
recognition to merge branches (see Fig. 10.11). Visual linear parts are well recog-
nized and it is possible to cluster the segments to obtain meaningful subparts of the
original shape.

From these experiments, we also conclude that in the study of shapes, the local
thickness is well captured by our algorithm. If parts of the center path of the shape
is linear, we can capture it only if the thickness is rather constant with respect to the
bound α.

10.6 Multi-primitives Analysis

The case of computing the predicate with one geometric primitive is somewhat a
direct extension of the classical tangential cover. However, the most important prop-
erty of the predicate cover is that the model is valid for several primitives. Hence,
it is straightforward to look at the decomposition of a shape with several primitives.
The principle of the analysis rely on a competition among the different primitives
while moving on the shape. As previously noted, the algorithm is more easily un-
derstood on the associated circular arcs graph than on the shape. We thus use this
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Fig. 10.12 The front(P ) and
back(P ) elements are
illustrated on a primitive P .
The bold circular arcs
represent the primitive pencil
PP(p) of the point with
index p

model. It should be noted that more than two primitives might be considered simul-
taneously without changing the method.

10.6.1 α-Blurred Straight Segments Versus α′-Thick Digital Arcs

We suppose that the predicate cover has been computed both for α-blurred seg-
ments and for α′-thick arcs on a shape C . Our goal is to obtain a decomposition
of C into both segments and arcs, using both predicate covers. This decomposition
should capture geometric features of the shape. Obviously, straighter parts should be
represented by segments and more circular ones should be represented by arcs. It re-
sembles a polygonalization, but with several primitives. For given α and α′ values,
there exists a large amount of possible decompositions. The optimal decomposi-
tion(s) should be the one(s) which contain the minimum number of primitives. Our
method should be able to compute the optimal decomposition, or at least reasonably
approach it.

Let us first describe how to obtain a polygonalization with only one primitive
using the predicate cover. This algorithm mimics the classical algorithm of shortest
path in a graph but will be simply modified for our purpose. The shortest path may
be computed easily. To do this, let us define the notion of primitive pencil PP(p)

of any element, in the path describing the shape, with index p. PP(p) is the set of
all primitives that contain p (see Fig. 10.12). The front(P ) and back(P ) elements
are the start and end points of a primitive P . Remind that the graph is oriented with
respect to the orientation of the path. Given the orientation, we easily determine the
primitive P∗ of PP(p) that reaches the point with index pmax = front(P∗) that is
the farthest away from p on the path. This point pmax defines a function f (), that is
f (p) = pmax. This f () function is computed in linear time, since we only need to
compute it for the beginning and ending points of each primitive.

The indices of the vertices of the polygonalization of C starting at point index p

are obtained by iterates of the function f (). More formally, vpi = f i(p) with vpi

being the index of the i-th vertex of the polygonalization, and with f i(p) being the
i-th iterates of the function f (). We use this process for both predicate covers, build-
ing two functions fS() and fA() respectively for the segments PC and for the arcs
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Fig. 10.13 The original
shape (top) has been
decomposed into α-blurred
straight segments and
α′-thick digital arcs (bottom),
with α = α′ = 4 pixels

PC. In this scope, a multi-primitive decomposition of a shape may be seen as a se-
ries of applications of the functions fX(). To be more precise, such a decomposition
is a word on the alphabet {fA,fS}.

A simple multi-primitive decomposition may be deduced straightaway. We map
both predicate covers onto the same circular arcs graph and use the following greedy
algorithm. We choose a starting point with index p0. We have fS(p) = pSmax and
fA(p) = pAmax. If pAmax > pSmax we choose the corresponding arc, else we choose
the segment. The process stops when the point with index p0 is reached again. This
means that the decomposition is complete. The shape is then reconstructed using
the chosen primitives and their associated parameters. An example is presented in
Fig. 10.13. In the case of open curves, the only difference is that the starting point
is necessarily one of the endpoints, depending on the orientation.

However, this method does not allow us to control the quality of the solution
(its proximity to the optimum). Moreover, we do not have any information on the
behavior of the decomposition with regards to the used primitives. Due to their
construction, the two types of predicate covers contain all possible decompositions
of the curve. To obtain a guarantee on the quality of the solution, a better method is
to build the complete tree of all possible decompositions. We describe this process
in the next subsection.

10.6.2 Building the Complete Tree

Our idea is the following: from a given point with index p on the path, we may
either choose the longest segment or the longest arc covering p (longest meant as
the result of the fX() function described previously). Thus there exists two differ-
ent possible decompositions starting from p. Then the same process is applied to
both results, and so on. This process defines a binary tree. The root of the tree is
the chosen starting point with index p0 (see the next subsection). A node of the
tree is a partial decomposition of the path from p0 to the current index p defined
by any of the fX() functions. The process stops when fX(p) ≥ p0, and the current
node is then a leaf of the tree. Such a leaf is a complete decomposition of the path,
and a backtracking from the leaf to the root gives us the corresponding word on
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Table 10.1 This table shows some statistics on the full decomposition tree

Curve * Chromosome (61 pts) Leaf (119 pts) Semicircle (103 pts)

α = 1 #D 4323 NA 3811

#MinD 20 NA 1

|MinD| 9 NA 5

α = √
2 #D 964 255744 810

#MinD 10 504 1

|MinD| 8 15 5

α = 2 #D 150 11768 192

#MinD 18 88 1

|MinD| 6 11 4

α = 2
√

2 #D 72 4480 127

#MinD 56 672 1

|MinD| 6 11 4

α = 4 #D 25 175 32

#MinD 1 11 2

|MinD| 3 6 3

*To read the table: #D is the number of possible decompositions; #MinD is the number of minimal
decompositions in terms of number of primitives; |MinD| is the number of primitives of minimal
decompositions. α = α′ for the whole table

the alphabet {fA,fS}. We build the whole tree and analyze the results. We focus on
the leaves with the smallest tree depth. Those leaves constitute a pool of minimal
decompositions in terms of number of primitives. We show some statistics in Ta-
ble 10.1. Three classical shapes are dealt with at different thickness values. We use
a (

√
2)i , i ∈ {0, . . . ,4} growth model for the thickness, having α = α′ = (

√
2)i . For

instance, for the chromosome shape and for α = α′ = 1, there exists 4323 possible
decompositions. Upon these decompositions, a pool of 20 of them contain only 9
primitives, which is the minimal value.

The building of the full tree allows us to better understand the behavior of the
decompositions. However its main drawback is of course the combinatorial explo-
sion that results. As exhibited in Table 10.1 for the leaf shape, which is a small
curve (only 119 points) but rather irregular, the number of possible decompositions
explodes for small α values. Thus its usage is limited to rather small curves for
behavior studies only, and should be avoided otherwise. In the next section, we de-
scribe our way to avoid the full deployment of the tree while still obtaining a good,
if not optimal, decomposition.
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10.6.2.1 The Choice of the Starting Point

Choosing an arbitrary starting point index p0 does not allow us to warrant the op-
timality of our decompositions. Anyway, we may improve the results by finding a
“good” starting point. The best choice would be the endpoint of some primitive,
in order to begin with a maximal primitive. But we are working with two types of
primitives, so a good starting point for one primitive is not necessarily good for the
other one. We propose a quite simple method. fX(p) − p represents the length of
the useful part of the primitive. For each point index p of the curve, we compute
Qp = fA(p) − p + fS(p) − p and choose p0 such that Qp0 is maximal. This way,
both primitives are taken into account for the choice of p0.

10.6.3 A Partial Tree

We describe our method to avoid the full deployment of the tree while maintaining
good results. Our approach is related to branch and bound techniques. We use a
criterion to evaluate each node. All nodes which are not leaves and whose children
have not been explored yet are considered “open nodes” suitable for evaluation. We
only explore the node with the best criterion value upon the pool of open nodes. The
process stops when the first leaf is built. We describe our criterion in the follow-
ing.

10.6.3.1 Our Criterion

The criterion we use to evaluate the open nodes is based on the notion of “covering
rate” Cr(n) of a node n. Remind that each node is a partial decomposition of the
path (see Sect. 10.6.2). Thus it covers a part of the path. We compute the number of
points Q(n) covered until the current node, and divide this number by the tree depth
D(n) of the node. So the formula for the criterion is: Cr(n) = Q(n)

D(n)
. It is the average

value of the number of points contained in a primitive. The node with maximal Cr()

value upon the pool of open nodes is the one to explore. Thus at each step, we deploy
the branch that has the best chance to cover the entire curve with the best covering
rate. For instance let us take a look at Fig. 10.14 (left). The decomposition starts
with point index p0. Each branch is labeled with the nature of its primitive (A for
circular arc, S for segment), and each node is labeled with its covering rate Cr().
The pool of open nodes is represented, and the black node is the one that has the
best covering rate. Hence it is the one that will be explored next. On the rightmost
figure, the node has been explored and the pool of open nodes has been updated
accordingly. The best node is now located in another branch. This process allows
us to go back to previous unexplored nodes with lower depth if needed. Cr(n) is
computed in constant time at each node creation.
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Fig. 10.14 Here is an
example of the partial
exploration of the tree based
on our covering rate criterion

10.6.4 Experimental Results

We applied our method to a series of digital curves known as the SQUID
database [18]. In Fig. 10.15 are exhibited several decompositions of a hippocampus
shape. We used various thickness values, from α = α′ = 1 to α = α′ = 4 pixels. It
is interesting to see how the local geometric features are captured at each different
thickness value. For instance, the tail of the hippocampus is recognized as a circular
part at thickness α = α′ = 2, then it is again a series of straight parts for greater
thickness values, and finally for α = α′ = 4 the circular structure reappears. Let us
remark that the rate of circular arcs increases along with the thickness. Indeed, for
small thickness values, the definition of digital circular arcs is too arithmetically
constrained to result in long primitives when the input shapes are somewhat irregu-
lar. A greater α value allows for a greater tolerance to irregularities, and more circu-
lar parts appear. This behavior is illustrated in the accompanying table of Fig. 10.15.

To illustrate the quality of our greedy algorithm, we decomposed several sub-
sampled digital shapes and compared the results using the full tree and the partial
tree. These results are exhibited in Fig. 10.16. Those curves have been sub-sampled
to approximately 200 pixels each in order to deploy the full tree. The accompanying
statistics table of Fig. 10.16 shows that the greedy algorithm approaches or equals
the minimal decomposition size. We conjecture that a greedy algorithm may guar-
antee an upper bound of one extra primitive with regards to the minimal size, but
this has yet to be proven.

10.7 Future Work and Open Problems

Future work should be focused on multi-scale analysis of shapes, that is using vary-
ing scale for the parameters introduced in the geometric primitive characterization.
Some work has already been done in this direction [8, 14], but more is needed to
understand precisely how to manage those varying scales. As a consequence on this
research direction, the complexity of the multi-scale analysis should be evaluated
carefully in order to avoid to simply rerun current algorithms as many times as there
are scales to analyze. This problem has not been tackled yet, but deserves attention
in the future.

The main open problems concern the dimension of the shapes. Indeed, it is not
difficult to see that the presented framework can easily be extended to the case
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Thickness α = 1 α = √
2 α = 2 α = 2

√
2 α = 3 α = 4

Size of the decomposition 86 57 39 30 25 15
Ratio arcs/segments 2.3 % 5.3 % 12.8 % 20 % 28 % 60 %

Fig. 10.15 The shape is shown on top. Then we show the results of our multi-primitive decompo-
sitions for various thickness values increasing from left to right and from top to bottom (note that
α = α′ for all decompositions). These values are exhibited on the bottom table, along with some
statistics

of 1-dimensional geometric primitives in 3D and more generally in nD. This is
because, due to the graph structure, the presented framework is not dependent on any
notion of dimension. However, it relies on the fact that geometric primitives are one
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Shape * Comma Watch Spoon

α = 2 #D 166264 61740 125436
#MinD 4 48 1
|MinD| 10 10 9
|Greedy| 11 10 10

Fig. 10.16 Three sub-sampled digital shapes used to test the quality of our greedy algorithm.
From left to right: “Comma”, “Watch”, “Spoon”. α = α′ = 2. (Top) The shapes. (Middle) Decom-
positions using the greedy algorithm. (Bottom) Statistics table: #D, #MinD and |MinD| have the
same meaning as in Table 10.1; and |Greedy| is the number of primitives of the greedy algorithm
decompositions

dimensional to ensure that the total ordering of the elements of a shape is necessary
and sufficient for the analysis. This property becomes false with 2D primitives such
as planes since there is no more a total ordering on the elements adapted to the
recognition of the primitives. Moreover, the predicate cover heavily relies on the
inclusion order, which is a total order for 1D primitives but becomes a partial order
for nD primitives. We should also add that the computation of the minimal number
of planes which covers a digital object is an NP-Complete problem [23]. We refer
the reader to the work in [3] for a first attempt to approach the problem.

A second open problem concerns overlapping shapes. Indeed, no overlapping is
considered in the framework. However, in practice, it is necessary to try to recover
a shape with a minimal number of subparts built from the geometric analysis of the
primitives. For instance, the framework due to the total ordering does not consider
that some parts might be matched in order to detect coherent substructure. Solving
this problem requires to decompose a shape from the geometric analysis with the
requirement that an element of the shape might be associated with several subparts.

A third open problem concerns the complexity of the analysis. It is important to
notice that our approach has only one guarantee which is the quadratic bound on
the number of valid subpaths in each predicate cover. But sometimes, only a linear
number of such subpaths exists, for instance, for DSS. Thus, some properties on
the predicate must be added to separate quadratic analysis form linear ones. For
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instance, it is straightforward to see that the Sum-of-Squared-Error commonly used
in polygonal approximations is a predicate which leads to a quadratic number of
elements in the associated predicate cover. This explains why, in practice, polygonal
approximation algorithms relying on this predicate are quadratic at least, when they
do require optimality.
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Chapter 11
Shape from Silhouettes in Discrete Space

Atsushi Imiya and Kosuke Sato

Abstract Reconstruction of an object from a series of silhouettes is obtained
through a binary geometric tomography technique since both the objects and the
projections, which are measured as a series of silhouettes, are binary. In this paper,
we formulate the method Shape from Silhouettes in two- and in three-dimensional
discrete space. This approach to the problem derives an ambiguity theorem for the
reconstruction of objects in the discrete space. The theorem shows that Shape from
Silhouettes in discrete space results in an object which is over-reconstructed, if the
object is convex. Furthermore, we show that in three-dimensional space, it is possi-
ble to reconstruct a class of non-convex objects from a set of silhouettes although in
the plane a non-convex object is not completely reconstructible from projections.

11.1 Introduction

The reconstruction of three-dimensional shapes from measured data, such as range
data, photometric information, and stereo image pairs, is called Shape from X. In
this chapter, we deal with Shape from Silhouettes, a problem also called Shape from
Counter [2], Shape from Profile [25, 26] in computer vision, and Shape from Plane
Probing [5] in computational geometry. The method is a conventional technique for
detection of shape models and shape reconstruction in computer graphics [13, 20]
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and robotics [16, 22, 25, 26]. Even though these reconstruction methods are mathe-
matically formulated in the continuous framework [9, 10, 20], the reconstruction is
achieved in discrete space. Moreover, little attention has been paid on the theoretical
analysis of reconstruction algorithms in computer vision.

This chapter aims to introduce a complete discrete version of Shape from Silhou-
ettes, a method allowing to reconstruct a discrete object from discrete silhouettes,
that is, the camera observing the silhouettes is described as a voxel and the detectors
measuring the silhouettes are described as a set of voxels in the three-dimensional
discrete space.

In discrete space, a discrete object is reconstructed by line voting [12, 13], that
is, it is considered as the intersection of all discrete lines defined by the camera
voxels and the silhouette voxels. We prove that this approach leads to an ambiguous
reconstruction. Furthermore, we show that a series of silhouettes measured using a
camera moving along a circle on a plane is insufficient for the full reconstruction of
the visible hull of an object. Although this type of measuring system is sometimes
used in computer vision, our results show that we cannot reconstruct the full profile
of an object using such a camera system even if the object is convex. Next, we show
that we can fully reconstruct a convex object from a series of silhouettes measured
through a general stereo system with some simple geometric assumptions.

The illumination problem [3] estimates the minimum and maximum number of
view-points for the reconstruction of a convex body from its views from an appropri-
ate set of these view-points. The illumination problem is equivalent to shape recon-
struction from silhouettes or shadows. However, it is difficult in general to define the
configuration of view-points for a given object. There are many results for the recon-
struction of a convex polygon from its shadows (see, for example, [16, 17]). Lauren-
tini [14, 15] was concerned with the geometric properties of silhouette-based shape
reconstruction for polyhedra, and clarified the relation between the visible hull and
the convex hull of a polyhedron. Tuy [27] proved that for a positive function defined
in a finite closed convex region in three-dimensional Euclidean space, it is possi-
ble to reconstruct the function from line integrals measured by cone-beams, if the
source of the line integrals moves on a pair of circles with the same radius lying on a
mutually perpendicular planes which encircle the region. Obtaining the shape from
perspective projections is related to the cone-beam reconstruction problem since it
is possible to determine the boundary from line integrals. It is possible to decom-
pose a three-dimensional object to a set of slices. The geometric relation between
an object and its slices permits to decompose the shadows of a three-dimensional
object to shadows of planar objects. Using these geometric relations we prove that
a class of non-convex objects is reconstructible from a series of shadows.

11.2 Shape Reconstruction

In this section we describe the reconstruction procedure. We specifically consider
the reconstruction of non-convex objects.
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11.2.1 Silhouettes and Support Hyperplanes

Let R be the set of real numbers and Z be the set of integers; the closed finite subsets
of Rn and Z

n are called objects and discrete objects, respectively.
In two- and three-dimensional Euclidean space, Rn, n = 2,3 we define the sil-

houette of a finite closed region O from a source s ∈R
n as

Ω(s) = {
ω

∣∣l(s) ∩ O �= ∅}
(11.1)

for the half-line1

l(s) = {
x
∣∣x = s + tω, ω ∈ S

n−1, t ≥ 0
}
, (11.2)

where S
n−1 for n = 2,3 is the unit circle/sphere in R

n, n = 2,3.
If for all s in R

n \ K , where K is a finite convex region in R
n and Ω(s) is

measured, we can reconstruct K as

K =
⋂

s∈Rn\K

( ⋂
ω∈Ω(s)

{x|x = s + tω}
)

. (11.3)

For n = 2, the method is equivalent to the reconstruction of K from a set of support
lines as the intersection of half-planes is limited by the support lines.

For n = 3 and the source s, a set Ω(s) in S
2 defines a convex cone. This convex

cone defines a set of tangent planes to the cone. The reconstruction of K in R
3 is

defined by the support planes as the intersection of half-spaces divided by the sup-
port planes. For a finite convex object K in R

3, if we can detect all planes which
intersect K , we can obtain all rays which pass through K as the intersection of pairs
of planes. These rays defines silhouettes. Therefore, this geometrical property im-
plies that we can reconstruct a finite convex object in three-dimensional Euclidean
space from the set of all planes which intersect the object.

Figures 11.1, 11.2, and 11.3 show a procedure to reconstruct an object from shad-
ows. A shadow is a monochrome image on the imaging plane of the camera. A sil-
houette is the profile of an object derived from a shadow. Figure 11.2 shows the
procedure to derive the silhouette from the shadow associated with a fixed light
source. A silhouette is derived from a visual cone and the intersection of silhou-
ettes is the visual hull. Therefore, when the number of source point increases, the
difference between the object and its visual hull decreases.

Figure 11.4 shows the discrete method for the reconstruction of an object. First,
the reconstructed object is expressed as a discrete object on the discrete plane or
discrete space. Then, a shadow image of an imaging plane is processed as a discrete
binary image.

Figures 11.5 and 11.6 show geometric models obtained through Shape from Sil-
houettes in the plane and space, respectively.

1The cross-section of the cone l(s), s ∈ Ω(s) with the hyperplane s�x = d is geometrically defined
as the silhouette generated by source s.
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Fig. 11.1 Reconstruction procedure. (a) Imaging system measures a silhouette on the imaging
plane. (b) A silhouette on the imaging plane defines a visual cone. (c) The intersection of two
visual cones contains an object. (d) A visual hull of an object is the intersection of many visual
cones

Fig. 11.2 Construction of a visual cone. The silhouette on the detector plane and the source point
define a visual cone

Fig. 11.3 Geometric
configuration of the visual
hull and visual cones
on the plane.
(a) The black convex
polygon is V H(S,K).
(b) The gray region
containing V (H,K) is the
intersection of visual cones
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Fig. 11.4 Discrete method
for the reconstruction of an
object.
(a) The reconstructed object
is expressed as a discrete
object in the discrete plane or
space.
(b) A shadow image on an
imaging plane is processed as
a discrete binary image

Fig. 11.5 Silhouettes and
reconstruction of an object on
the plane.
(a) Geometry of the detectors
and the source for the planar
problem.
(b) Silhouette of a convex
object on a plane.
(c) Visible hull of a
silhouette.
(d) Visible hull of silhouettes

11.2.2 Reconstruction of Non-convex Objects

In this section, we summarize the results of Ref. [10] on the reconstruction of non-
convex objects from silhouettes. The following Theorem 1 shows a condition for the
full reconstruction of a non-convex object.

Theorem 1 From the set of silhouettes of an object observed from vertices lying on
a sphere encircling the object, we can obtain a set of two-dimensional perspective
projections of a slice from a point which moves on a circle encircling the object.
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Fig. 11.6 Silhouette and reconstruction of an object in the space. (a) Geometry of the detectors
and the source for the spatial problem. (b) Silhouette of a convex object in the space. (c) Visible
hull of a silhouette. (d) Visible hull of silhouettes

Next, we define a class of non-convex objects.

Definition 1 For any point on the boundary, if there exists at least one unique con-
vex slice-curve which contains this point, we call this object a slice-convex object.

A convex closed object is slice-convex. This geometric property of Definition 1
and Theorem 1 lead to the following Theorem 2.

Theorem 2 A slice-convex object is uniquely reconstructible from the set of silhou-
ettes observed from vertices which lie on the whole sphere encircling the object.

Theorem 2 permits the reconstruction of a class of non-convex objects from sil-
houettes. Furthermore, in this expression, the axis of the reconstruction is not neces-
sarily a straight line. The theorem also implies that a series of silhouettes measured
using a camera moving along a circle on a plane is insufficient for the full recon-
struction of the visible hull of an object. Although this type of measuring system
is sometimes used in computer vision, our results show that we cannot reconstruct
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the full profile of an object using such a camera system even if the object is convex.
Moreover, this theorem allows to fully reconstruct a convex object from a series
of silhouettes measured using a general stereo system since a pair of camera orbits
defines a pairs of general stereo.

We have the following theorem for a slice-convex object V with respect to axis
λv0 for |v0| = 1 and λ �= 0, setting A[v] to be the reconstructed object with respect
to the axis λv, for λ �= 0.

Theorem 3 For an object V , the relation

V =
⋂
v∈S2

A[v] (11.4)

is satisfied if V is slice-convex with respect to axis λv0.

If an object is defined as the common region of a finite number of slice-convex
objects, that is, an object V is expressed as

V =
n⋂

α=1

A[aα], |aα| = 1, (11.5)

for λ �= 0, where λaα is the axis with respect to which the slices of an object are
convex, we have the relation

V =
n⋂

α=1

A[aα] ⊇
⋂
v∈S2

A[λv] ⊇ V . (11.6)

This relation leads to Theorem 4.

Theorem 4 A slice-convex object V is reconstructed as

V =
⋂
v∈S2

A[v]. (11.7)

Theorems 3 and 4 show that it is possible to reconstruct a slice-convex object
from silhouettes, even if we do not detect its axes, using the equation

O =
⋂
s∈A

l(s,O), (11.8)

where A is a closed convex manifold encircling an object O and l(s,O) is a line
which passes through s and satisfies the property

l(s,O) ∩ O �= ∅. (11.9)

Furthermore, if we can pre-detect the axes of a slice-convex object, we can re-
construct a three-dimensional non-convex object. This property shows the differ-
ence between the shape from silhouettes in the two-dimensional space and three-
dimensional space, since, in three-dimensional space, the set of silhouettes does not
allow us the reconstruction of non-convex objects. Figure 11.7 shows the geometri-
cal relations of a silhouette in the space and slice-silhouettes in the space obtained
from silhouettes in the three-dimensional space.
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Fig. 11.7 Reconstruction of an object in a three-dimensional space using a two-dimensional
method. (a) A three-dimensional silhouette of an object. (b) A two-dimensional silhouette as a
slice of a three-dimensional silhouette. (c) A set of two-dimensional slices used to reconstruct a
three-dimensional object

11.3 Mathematical Preliminaries

In this section we outline some mathematical facts and notations.

11.3.1 Connectivity of Pixels and Voxels

For p ∈ Z
n, n = 2,3, V (p(x, y)) = [x − 1

2 , x + 1
2 ] × [y − 1

2 , y + 1
2 ] and

V (p(x, y, z)) = [x − 1
2 , x + 1

2 ] × [y − 1
2 , y + 1

2 ] × [z − 1
2 , z + 1

2 ] are called a
pixel and a voxel, respectively.

Definition 2 For two points p = (p1, . . . , pn)
� and q = (q1, . . . , qn)

� in Z
n, if

|pi − qi | ≤ 1, 1 ≤ i ≤ n and k ≤ n − ∑n
i=1 |pi − qi | ≤ n, we call points p and q

k-connected.

The order of connectivity k expresses the minimum dimension of the common
parts of two pixels and voxels for n = 2,3, respectively.

Definition 3 The k-neighborhood Nk(p) of a discrete point is the set of all k-
connected points. Furthermore, we set Ak(p) = Nk(p) \ p.

For n = 2,3, we have N0- and N1-neighborhoods, and N0-, N1-, and N2-
neighborhoods, respectively. The N0 and N1 neighborhoods on the discrete plane
Z

2 are equivalent to the 8-neighborhood N8 and 4-neighborhood N4, respectively,
if we define the neighborhoods using the numbers of points connected to each point
in Z

2. In the discrete space Z
3, N0-, N1-, and N2-neighborhoods are equivalent to

the 26-neighborhood N26, 18-neighborhood N18, and 6-neighborhood N6, respec-
tively, if we define the neighborhoods using the numbers of connected points to each
point in Z

3.
Next, we define the order of a path between two points and a k-connected object.
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Fig. 11.8 Discrete planar
line L(a, b,μ). Lattice points
on a line are contained in
L(a, b,μ), although the
lattice points on the dashed
line are not contained in
L(a, b,μ)

Definition 4 For a sequence of points p = [p1, . . . ,pn], if all pairs of points pi and
pi+1 are k-connected, we call p a k-path. If there exists k-paths between all pair of
points of M , M is called k-connected discrete object.

Using the paths, we define the connectivity of an object in the discrete space.

Definition 5 For a point p in a k-connected object M , if M \ p is not k-connected,
we call M the minimum k-connected. Furthermore, if M is at least 0-connected,
M is connected. If M is not at most 0-connected, then M is disconnected.

11.3.2 Discrete Linear Objects

11.3.2.1 Discrete Planar Lines

Definition 6 Setting L(s,d) to be a line on the Euclidean plane R2, the discrete line
associated with the line L(a, b,μ) is the set of lattice points on Z

2 which satisfy the
double inequality

L(a, b,μ) = {
(x, y) ∈ Z

2
∣∣τ ≤ ax + by + μ < τ + ω

}
, (11.10)

for a > 0, or a = 0 and b > 0, as shown in Fig. 11.8, where a, b,μ ∈ Z, ω ∈ N, and
τ ∈ Q for the sets of natural and rational numbers. Here ω defines the thickness of
the line, and μ and τ define the intercept of the line.

By selecting τ and ω, we have three types of discrete lines on the plane.

Definition 7 The supercover of the line L(s,d) is the set of pixels which intersect
the line L(s,d), that is,{

p ∈ Z
2
∣∣V (p) ∩ L(s,d) �= ∅}

. (11.11)

Definition 8 The standard line of L(s,d) is the set of the 1-connected pixels which
intersect the line.
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Definition 9 The naive line of L(s,d) is the set of the 0-connected pixels which
intersect the line.

Definitions 7, 8, and 9 give algebraic expressions of discrete lines in the plane.

Theorem 5 The supercover of L(s,d) on R
2 is the set of the solutions of the double

Diophantine inequality{
(x, y)� ∈ Z

2
∣∣∣∣−|a| + |b|

2
≤ ax + by + μ ≤ |a| + |b|

2

}
(11.12)

as shown in Fig. 11.9(a).

Theorem 6 The standard line of L(s,d) is the set of the solutions of the double
Diophantine inequality{

(x, y)� ∈ Z
2
∣∣∣∣−|a| + |b|

2
≤ ax + by + μ <

|a| + |b|
2

}
(11.13)

for a > 0, or a = 0 and b > 0, as shown in Fig. 11.9(b).

Theorem 7 The naive line of L(s,d) is the set of the solutions of the double Dio-
phantine inequality{

(x, y)� ∈ Z
2
∣∣∣∣−max(|a|, |b|)

2
≤ ax + by + μ <

max(|a|, |b|)
2

}
(11.14)

for a > 0, or a = 0 and b > 0, as shown in Fig. 11.9(c).

By removing equality of the right hand side of the equation of the supercover, the
definition of the standard line allows us to reduce the local thickness of a discrete
line.

Theorem 8 If the line L(a, b,μ), (a �= 0, b �= 0) ∈ R
2 passes through the point

(m + 1
2 , n + 1

2 ), m,n ∈ Z the supercover contains all four pixels whose centers
are (m,n)�, (m + 1, n)�, (m,n + 1)�, and (m + 1, n + 1)� and the standard line
contains the three pixels whose centers are (m,n)�, (m,n + 1)�, and (m + 1, n ∨
(n + 1))�.

11.3.2.2 Discrete Spatial Lines

Definition 10 The supercover of the line L(s,d) is the set of voxels which intersect
the line, that is, {

p ∈ Z
3
∣∣V (p) ∩ L(s,d) �= ∅}

. (11.15)

Definition 11 The standard line of L(s,d) is the set of the 2-connected voxels
which intersect the line.
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Fig. 11.9 The supercover,
the standard line, and the
naive line L(a, b,μ) on Z

2.
The lattice points on a line are
contained in L(a, b,μ),
although the lattice points on
the dashed line are not
contained in L(a, b,μ)

Definition 12 The naive line of L(s,d) is the set of the 0-connected pixels which
intersect the line.

Figure 11.10 shows the three types of discrete lines in the space.
Definitions 10, 11, and 12 give algebraic expressions of discrete lines in the

space.
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Fig. 11.10 The three types
of discrete spatial lines of
L(s = (0,0,0)�,d = (5,7,9)�)

Theorem 9 The supercover of the line L(s,d) is the set of the solutions of the
double Diophantine inequality

⎧⎪⎨
⎪⎩

− 1
2

(|a| + |b|) ≤ ax + bz + μ1 ≤ 1
2

(|a| + |b|),
− 1

2

(|a| + |c|) ≤ ay + cz + μ2 ≤ 1
2

(|a| + |c|),
− 1

2

(|b| + |c|) ≤ cx − by + μ3 ≤ 1
2

(|b| + |c|).
(11.16)

Theorem 10 The standard line of L(s,d) in Z
3 is defined as follows.
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If for a, b, and c, a = b = 0, a = c = 0, b = c = 0 none of the following equalities
hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

(|a| + |b|) ≤ ax + bz + μ1 < 1
2

(|a| + |b|)
(a > 0, or a = 0, b > 0)

− 1
2

(|a| + |c|) ≤ ay + cz + μ2 < 1
2

(|a| + |c|)
(a > 0, or a = 0, c > 0)

− 1
2

(|b| + |c|) ≤ cx − by + μ3 < 1
2

(|b| + |c|)
(c > 0, or c = 0, −b > 0);

(11.17)

If a = b = 0:

{− 1
2 |c| ≤ cz + μ2 < 1

2 |c| (c > 0)

− 1
2 |c| ≤ cx + μ3 < 1

2 |c| (c < 0); (11.18)

If a = c = 0:

{− 1
2 |b| ≤ bz + μ1 < 1

2 |b| (b > 0)

− 1
2 |b| ≤ −by + μ3 < 1

2 |b| (b < 0); (11.19)

If b = c = 0:

{− 1
2 |a| ≤ ax + μ1 < 1

2 |a| (a > 0)

− 1
2 |a| ≤ ay + μ2 < 1

2 |a| (a < 0).
(11.20)

Theorem 11 The naive line of L(s,d) in Z
3 is defined as follows.

If max(|a|, |b|, |c|) = |a|:
{− 1

2 |a| ≤ ax + bz + μ1 < 1
2 |a| (a > 0)

− 1
2 |a| ≤ ay + cz + μ2 < 1

2 |a| (a < 0); (11.21)

If max(|a|, |b|, |c|) = |b|:
{− 1

2 |b| ≤ ax + bz + μ1 < 1
2 |b| (b > 0)

− 1
2 |b| ≤ cx − by + μ3 < 1

2 |b| (b < 0); (11.22)

If max(|a|, |b|, |c|) = |c|:
{− 1

2 |c| ≤ ay + cz + μ2 < 1
2 |c| (c > 0)

− 1
2 |c| ≤ cx − by + μ3 < 1

2 |c| (c < 0).
(11.23)

Figures 11.10(a), 11.10(b), and 11.10(c) show the three types of discrete lines in
the space.
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11.3.2.3 Discrete Planes

Setting a = (a, b, c)� ∈ Z
3 and μ ∈ Z, discrete planes are considered as an exten-

sion in Z
3 of planar discrete lines.

Theorem 12 The supercover of P(a,μ) on R
3 is the set of solutions of the double

Diophantine inequalities{
(x, y, z)� ∈ Z

3
∣∣∣∣−|a| + |b| + |c|

2
≤ ax + by + cz + μ ≤ |a| + |b| + |c|

2

}
.

(11.24)

Theorem 13 The standard plane of P(a,μ) is the set of the solutions of the double
Diophantine inequality{

(x, y, z)� ∈ Z
3
∣∣∣∣−|a| + |b| + |c|

2
≤ ax + by + cz + μ <

|a| + |b| + |c|
2

}
,

(11.25)

where a > 0 or (a = 0 and b > 0) or (a = 0, b = 0, and c > 0).

Theorem 14 The naive plane corresponding to P(a,μ) is the set of the solutions
of the double Diophantine inequality{

(x, y, z)� ∈ Z
3
∣∣∣∣−max(|a|, |b|, |c|)

2
≤ ax + by + cz + μ <

max(|a|, |b|, |c|)
2

}
,

(11.26)

where (a > 0) or (a = 0 and b > 0) or (a = 0, b = 0 and c > 0).

11.3.3 Discrete Polygons and Polyhedra

In this subsection, we define a polytope in the discrete space Z
n using discrete hy-

perplanes. For the plane

P(a,μ) =
{

xi ∈ Z

∣∣∣∣∣
n−1∑
i=1

aixi + μ = 0

}
, (11.27)

where a = (a1, a2, . . . , an)
� ∈ Z

n, and μ ∈ Z, in Z
n, we define a pair of half-spaces

as

H+(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ ≥ 0

}
, (11.28)

H−(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ ≤ 0

}
, (11.29)
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and

H̄+(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ > 0

}
, (11.30)

H̄−(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ < 0

}
. (11.31)

We define a convex polyhedron in the discrete space Z
n as

M =
m⋂

j=1

H−(
P(aj ,μj )

)
, (11.32)

which is equivalent to

M = {
x ∈ Z

n
∣∣x ∈ M ⊕ N0

}
. (11.33)

For the extension ⊕ of points in Z
n with Nk , we have the following relations.

H+ ⊕ N0
(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ +
n−1∑
i=1

|ai | ≥ 0

}
(11.34)

H− ⊕ N0
(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ −
n−1∑
i=1

|ai | ≤ 0

}
(11.35)

and

H+ ⊕ Nn−1
(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ + n−1
max
i=1

(|ai |
) ≥ 0

}
(11.36)

H− ⊕ Nn−1
(
P(a,μ)

) =
{

x ∈ Z
n

∣∣∣∣∣
n−1∑
i=1

aixi + μ − n−1
max
i=1

(|ai |
) ≤ 0

}
. (11.37)

Figures 11.11(a) and 11.11(b) show the extension of H− by N0, Nn−1 on the two-
dimensional discrete plane.
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Fig. 11.11 Extension of H− by N0, Nn−1 on the two-dimensional discrete plane

Since

M ⊕ N0 =
m⋂

j=1

H−
(

L

(
aj ,μj +

n−1∑
i=1

|aj,i |
))

(11.38)

M ⊕ Nn−1 ⊆
m⋂

j=1

H−(
L

(
aj ,μj + n−1

max
i=1

(|aj,i |
)))

, (11.39)

where aj = {aj,1, . . . ,aj,n−1}, we have the relations such that

M ⊕
k⊕

h=1

N0 =
m⋂

j=1

H−
(

L

(
aj ,μj + k

n−1∑
i=1

|aj,i |
))

(11.40)

M ⊕
k⊕

h=1

Nn−1 ⊆
m⋂

j=1

H−(
L

(
aj ,μj + k

n−1
max
i=1

(|aj,i |
)))

, (11.41)

where k ∈ Z, k > 0.
For a discrete convex polytope M , since P ⊕N0 \P is the kernel of P ⊕N0, the

kernel of P ⊕ ⊕k
h=1 N0 is

Uk =
(

P ⊕
k⊕

h=1

N0

)∖(
P ⊕

k−1⊕
h=1

N0

)
, (11.42)

where k > 0, k ∈ Z. Figures 11.12(a), 11.12(b), and 11.12(c) show P ⊕ N0,
P ⊕ Nn−1, and U1 on Z

n for n = 2, respectively.
As an analytical expression of (P ⊕ ⊕k

h=1 N0), we have next Lemma 1.

Lemma 1 Setting

H1 =
m⋂

j=1

H−(
L

(
aj , bj ,μj + k

(|aj | + |bj |
)))

, (11.43)
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Fig. 11.12 Extension of a
discrete polygon by N0 and
N1 on the discrete plane.
In (a) and (b),
τj = μj + ∑n−1

i=1 |aj,i | and
τj = μj + maxn−1

i=1 (|aj,i |),
respectively

H2 =
m⋃

j=1

H̄−
Z

(
L

(
aj , bj ,μj + (k − 1)

(|aj | + |bj |
)))

, (11.44)

for Uk defined by Eq. (11.42), the relation

Uk = H1 ∩ H2 (11.45)

is satisfied.



340 A. Imiya and K. Sato

11.4 Shape Reconstruction in Discrete Space

In this section we explain and illustrate the reconstruction process in 3D space.

11.4.1 Reconstruction of Space and Object

In Z
n, instead of the pair of the source s and Ω(s) for a line, we detect the pair

of s and d . Furthermore, in Z
2, we assume that detector pixels lie on the edges E

of the square D2 whose four vertices are (0,0)�, (3n − 1,0)�, (3n − 1,3n − 1)�,
and (0,3n)�, and that a discrete object exists in the square R whose vertices are
(n − 1, n − 1)�, (2n − 1, n)�, (2n − 1,2n − 1)�, and (n − 1,2n − 1)�. We assume
that our object is a 4-connected simple object. Moreover, the source pixel moves
on the edges of the square D. Therefore, we can detect a set of discrete half-planes
which are divided by line segments connecting two pixels on D, namely, the source
s = (s1, s2)

� and the detector d = (d1, d2)
�. Furthermore, in Z

3, we assume that
the detectors are voxels on a cube D3 whose vertices are (0,0,0)�, (3n − 1,0,0)�,
(3n − 1,3n − 1,0)�, (0,3n − 1,0)�, (0,0,3n)�, (3n − 1,0,3n − 1)�, (3n − 1,

3n − 1,3n − 1)�, and (0,3n − 1,3n − 1)�, and the object is enclosed in a cu-
bic region R whose vertices are (n − 1, n − 1, n − 1)�, (n − 1,2n − 1, n − 1)�,
(2n − 1,2n − 1, n − 1)�, (n − 1,2n − 1, n − 1)�, (n − 1, n − 1,2n − 1)�,
(n − 1,2n − 1,2n − 1)�, (2n − 1,2n − 1,2n − 1)�, and (n − 1,2n − 1,2n − 1)�.
The source s moves on the faces F of D3. We assume that our object is 6-connected
simple object.

Setting l(s,O) to be a line passing through a fixed source s, we define a set of
voxels d on D3 such that

l(s,O) ∩ O = ∅ (11.46)

for an object O. The set of voxels d is the silhouette of object O with respect to the
source s.

Figure 11.13 shows discrete models obtained through Shape from Silhouettes in
the plane and space, respectively.

11.4.2 Convex Hull and Visual Hull in Discrete Space

Definition 13 For a source s and t ∈ D, where D := Dn for n = 2,3, the silhouette
from the source s is

T (s,D,K) = {
t
∣∣L(s, t) ∩ K �= ∅, t ∈ D

}
. (11.47)

Definition 14 ∂T (s,D,K) such that

∂T∗(s,D,K) = {
t
∣∣A� T (s,D,K),A = N0(t) ∩ D, t ∈ T (s,D,K)

}
(11.48)

is the boundary of the silhouette T (s,D,K).
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Fig. 11.13 Reconstruction in discrete space. Form top to down, environment, silhouette, visual
cone, and visual hull for the two-dimensional discrete space (left) and the three-dimensional dis-
crete space are shown (right)
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Algorithm 1: GENERATION_OF_VISUAL_HULL V H(S,D,K)

Input: temp(∅,D,K) = R

Input: T (sj ,D,K), 1 ≤ j ≤ |S|
Result: V H(S,D,K)

for j ← 1 to |S| do
compute V C(sj ,D,K);

temp(
⋃j

i=1{si},D,K) = temp(
⋃j−1

i=1 {si},D,K) ∩ V C(sj ,D,K);

V H(S,D,K) = temp(
⋃|S|

i=1{si},D,K);

Lemma 2 Let TSup(s,D,K), TSta(s,D,K), and TNai(s,D,K) be the silhouettes
defined by the supercover, standard, and naive lines, respectively. We have the rela-
tion

TNai(s,D,K) ⊆ TSta(s,D,K) ⊆ TSup(s,D,K). (11.49)

We define the labels for discrete points as

L(p, s,D,K) =
⎧⎨
⎩

1, (if p ∈ L(s, t) and p /∈ L(s, t̂)),

2, (if p ∈ L(s, t̂)),

3, (otherwise).
(11.50)

Using these labels, we define the visual cone and visual hull.

Definition 15 V C(s,D,K) and ∂V C(s,D,K), such that

V C(s,D,K) = {
p

∣∣L(p, s,D,K) = 1,2
}

(11.51)

∂V C(s,D,K) = {
p

∣∣L(p, s,D,K) = 2
}
, (11.52)

are denoted as the visual cone and the boundary of the visual cone, respectively.

For the visual cone, we have the relation

V C(s,D,K) =
⋃

t∈T (s,D,K)

L(s, t). (11.53)

Algorithm 1 shows an algorithm for the generation of visual hull V C(s,D,K) from
T (s,D,K) using the geometric property of Eqs. (11.51) and (11.53).

Lemma 3 For the visual cones V CSup(s,D,K), V CSta(s,D,K), and V CNai(s,
D,K) defined by the supercover, standard, and naive lines, respectively, we have
the relation

V CNai(s,D,K) ⊆ V CSta(s,D,K) ⊆ V CSup(s,D,K). (11.54)

Lemma 4 A visual cone V C(s,D,K) satisfies the relation

K ⊂ V C(s,D,K). (11.55)
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Lemmas 3 and 4 are obvious from the geometrical properties of the definitions
of discrete lines.

Definition 16 V H(s,D,K) and ∂V H(s,D,K), such that

V H(S,D,K) = {
p

∣∣L(p, S,D,K) = 1,2
}
, (11.56)

∂V H(S,D,K) = {
p

∣∣L(p, S,D,K) = 2
}
, (11.57)

are called visual hull and boundary of the visual hull, respectively.

Furthermore, we set

V H(S,D,K) =
⋂
s∈S

V C(s,D,K). (11.58)

Lemma 5 For the visual hulls V CSup(s,D,K), V CSta(s,D,K), and V CNai(s,
D,K) defined by supercover, standard, and naive lines, we have the relation

V HNai(S,D,K) ⊆ V HSta(S,D,K) ⊆ V HSup(S,D,K). (11.59)

Lemma 6 V H(S,D,K) satisfies the relation

K ⊆ V H(S,D,K). (11.60)

These two propositions are obvious from the geometrical properties of the defi-
nitions of discrete lines. From Lemmas 5 and 6 the next Lemma 7 is derived.

Lemma 7 For a pair of discrete objects K1 and K2, if K1 ⊆ K2, their visual hulls
satisfy the relation,

V H(S,D,K1) ⊆ V H(S,D,K2). (11.61)

Proof For a source s, V C(s,D,K) is the set of all discrete lines L(s,d) which
intersect K . Therefore, the relation K1 ⊆ K2 implies the relation V C(s,D,K1) ⊆
V C(s,D,K2). �

Furthermore, Lemma 7 implies Theorem 15.

Theorem 15 For sets of sources S1, S2, if S1 ⊆ S2 the visual hulls satisfy the rela-
tion

V H(S1,D,K) ⊆ V H(S2,D,K). (11.62)

Therefore, for the reconstructed object, we have Theorem 16.

Theorem 16 The relation

V H(S,D,K) ⊆ (K ⊕ N0 ⊕ N0) (11.63)

is satisfied for all types of discrete lines in two- and in three-dimensional discrete
space.
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Fig. 11.14 Illustration of upper bound of reconstruction. V H(S,D,K) has a distance at most 2
from K with 0-connectivity

Theorem 16 can be read as the next Theorem 17.

Theorem 17 If K is the discretization of a finite convex region in R
2, K̂ satisfies

the relation

K̂ \ K ⊂ (K ⊕ N8 ⊕ N8) \ K, (11.64)

where N8 is the 8-neighborhood of the origin.

For these voxels, we have Theorem 18.

Theorem 18 If K is the discretization of a finite convex region in R
3, K̂ satisfies

the relation

K̂ \ K ⊂ (K ⊕ N26 ⊕ N26) \ K, (11.65)

where N26 is the 26-neighborhood of the origin.

Figure 11.14 illustrates the upper bound of reconstruction. In Fig. 11.14,
V H(S,D,K) has distance at most 2 from K with 0-connectivity.

11.4.3 Proof of Theorem 16

Form the relation of Eq. (11.49), we prove the relation of Eq. (11.63) for an object
reconstructed using the supercover.

Using Eq. (11.42), Eq. (11.63) becomes V H(S,D,K) ⊆ K ∪ U1 ∪ U2. This
relation implies that none of the elements of U3 is are included in the visual hull,
that is,

∀p ∈ U3, p /∈ V H(S,D,K). (11.66)
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The configurations of points of a two-dimensional discrete object are illustrated
in Fig. 11.14(c). Therefore, the proof is obtained by clarifying the condition that
satisfies the relation p /∈ V H(S,D,K).

Lemma 8 Iff a point p satisfies the relation p /∈ V H(S,D,K) for a source s, a line
which intersects p does not intersect K , that is,

p /∈ V H(s,D,K) ⇐⇒ ∃s ∈ S, V C(s,D,p) ∩ K = ∅. (11.67)

Proof Equation (11.58) implies that V H(S,D,K) is the set of points which are
included in V C(s,D,K) for all s. Therefore, for a point s, iff p /∈ V H(S,D,K),
there exists at least V C(s,D,K) which does not include p, that is,

p /∈ V H(S,D,K) ⇐⇒ ∃s ∈ S, p /∈ V C(s,D,K). (11.68)

Furthermore, Eq. (11.53) implies that L(s,d) ⊆ V C(s,D,K) if L(s,d) and K in-
tersect. Therefore, if there exists at least one L(s,d) which contains p and intersects
K , p ∈ V C(s,D,K) is satisfied. Conversely, the relation p /∈ V C(s,D,K) implies
that all lines which contains s and p do not intersect K , that is,

p /∈ V C(s,D,K) ⇐⇒ V C(s,D,p) ∩ K = ∅. (11.69)

Equations (11.68) and (11.69) imply Eq. (11.67). �

11.4.3.1 Two-Dimensional Case

Figure 11.15 presents an illustration of the proof of the upper bound theorem in case
of a two-dimensional reconstructed object.We prove some propositions.

Lemma 9 For a source s and a point p, V C(s,D,p) and K have no common point
if there exists a line L(s,d) between the point p and the object K and it does not
intersect either p or K , that is,

K ⊂ H−(
L(s,d)

)
, K ∩ L(s,d) = ∅

p ∈ H+(
L(s,d)

)
, p /∈ L(s,d)

⇒ V C(s,D,p) ∩ K = ∅ (11.70)

as shown in Fig. 11.15(b).

Proof Equation (11.68) implies that a point d on L(s,d) which satisfies Eq. (11.70)
is not included in T (s,D,K) and T (s,D,p). Since d exists between T (s,D,K)

and T (s,D,p), T (s,D,K) ∩ T (s,D,p) = ∅. Therefore, V C(s,D,p) and K do
not intersect. �

Lemma 10 There exists at least one discrete line L(s,d) which is contained in
H̄−(L(a, b,μ − (|a| + |b|))) ∩ H−(L(a, b,μ + |a| + |b|)), that is,

∃L(s,d), L(s,d) ⊂ H̄−(
L

(
a, b,μ − (|a| + |b|)))

∩ H−(
L

(
a, b,μ + |a| + |b|)). (11.71)

This configuration is shown in Fig. 11.15(c).



346 A. Imiya and K. Sato

Fig. 11.15 Figures illustrating the proof of the upper bound theorem of a two-dimensional recon-
structed object

Proof Since H̄−(L(a, b,μ − |a|+|b|
2 )) ∩ H−(L(a, b,μ + |a|+|b|

2 )) is equivalent to

the width of the standard line, H̄−(L(a, b,μ − |a|+|b|
2 )) ∩ H−(L(a, b,μ + |a|+|b|

2 ))

is the set of connected points with 4-connectivity. The set B(R) whose source and
detector are S and D, respectively is the closed line with 4-connectivity. Therefore,
H̄−(L(a, b,μ− |a|+|b|

2 ))∩H−(L(a, b,μ+ |a|+|b|
2 )) and B(R) share a pair of points

s and d . Then, the width of the supercover implies the relation H̄−(L(a, b,μ −
(|a| + |b|))) ∩ H−(L(a, b,μ + |a| + |b|)). Equation (11.32) and Lemma 1 imply
the relations

K =
m⋂

j=1

H−(
L(aj , bj ,μj )

)
(11.72)

U3 ⊂
m⋃

j=1

H̄−(
L

(
aj , bj ,μj + 2

(|aj | + |bj |
)))

(11.73)

as shown in Fig. 11.15(d). For an edge L(aj , bj ,μj ), we have the relations

K ⊂ H−(
L(aj , bj ,μj )

)
(11.74)
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U
j

3 ⊂ H̄−(
L

(
aj , bj ,μj + 2

(|aj | + |bj |
)))

, (11.75)

as shown in Fig. 11.15(e), where 1 ≤ j ≤ m, j ∈ Z and U
j

3 = U3 ∩ H−(L(aj , bj ,

μj + 2(|aj | + |bj |))). From Eqs. (11.74) and (11.75) we derive the conclusion that

H̄−(
L(aj , bj ,μj )

) ∩ H−(
L

(
aj , bj ,μj + 2

(|aj | + |bj |
)))

(11.76)

does not have a common point with either K or U
j

3 . Furthermore, Lemma 10 implies
that there exists a line L(s,d) which includes points defined by Eq. (11.76).The line
L(s,d) satisfies Lemma 9 if p ∈ U

j

3 . Therefore, Lemma 9 implies that all points in

p in U
j

3 satisfy the relation

∃s ∈ S, V C(s,D,p) ∩ K = ∅ (11.77)

as shown in Fig. 11.15(f). Moreover, since

U3 =
m⋃

j=1

U
j

3 (11.78)

all points of U3 satisfy Eq. (11.77). �

11.4.3.2 Three-Dimensional Case

The following two propositions are used to prove the three-dimensional case.

Lemma 11 If a plane P(a, b, c,μ) containing a source s exists between the point
p and the object K , and P(a, b, c,μ) does not contain either p or K , that is,

K ⊂ H−(
P(a, b, c,μ)

)
, K ∩ P(a, b, c,μ) = ∅

p ∈ H+(
P(a, b, c,μ)

)
, p /∈ P(a, b, c,μ)

⇒ V C(s,D,p) ∩ K = ∅, (11.79)

where s ∈ P(a, b, c,μ), then V C(s,D,p), and K have no common point.

Lemma 12 There exists at least a plane P(a′, b′, c′,μ′) which is contained in Ĥ

Ĥ = H̄−(
P

(
a, b, c,μ − (|a| + |b| + |c|)))

∩ H−(
L

(
a, b, c,μ + |a| + |b| + |c|)) (11.80)

and s ∈ P(a′, b′, c′,μ′), that is, the following relation holds:

∃P
(
a′, b′, c′,μ′), P

(
a′, b′, c′,μ′) ⊂ Ĥ . (11.81)

Equation (11.32) and Lemma 1 imply the relation

K =
m⋂

j=1

H−(
P(aj , bj , cj ,μj )

)
(11.82)
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U3 ⊂
m⋃

j=1

H̄−(
P

(
aj , bj , cj ,μj + 2

(|aj | + |bj | + |cj |
)))

. (11.83)

Furthermore, for an edge L(aj , bj , cj ,μj ), the relations

K ⊂ H−(
P(aj , bj , cj ,μj )

)
(11.84)

U
j

3 = H̄−(
P

(
aj , bj , cj ,μj + 2

(|aj | + |bj | + |cj |
)))

(11.85)

hold, where 1 ≤ j ≤ m, j ∈ Z and U
j

3 = Uj ∩ H−(P (aj , bj , cj ,μj + 2(|aj | +
|bj | + |cj |))). Equations (11.84) and (11.85) imply that

H̄−(
P(aj , bj , cj ,μj )

) ∩ H−(
P

(
aj , bj , cj ,μj + 2

(|aj | + |bj | + |cj |
)))

(11.86)

does not share any point with K and U
j

3 . Lemma 12 implies that there exist
P(a′, b′, c′,μ′), which is included in the set defined by Eq. (11.86). This plane
P(a′, b′, c′,μ′) satisfies the statement if p ∈ U

j

3 . Therefore, any point in U
j

3

U3 =
m⋃

j=1

U
j

3 (11.87)

satisfies the relation

∃s ∈ S, V C(s,D,p) ∩ K = ∅. (11.88)

11.4.4 Non-convex Case

In this section, we prove an upper-bound theorem for non-convex objects in discrete
space using the convex hull in the discrete space.

Definition 17 Setting CH(N) to be the convex hull of a non-convex object N in Rn,
the supercover of CH(N ′) is the convex hull of a polytope, where N ′ is the collec-
tion of grid points in N .

The supercovers N1 and N2 of the sets of points in N ′
1 and N ′

2 satisfies the relation

(N1 ⊆ N2) �⇒ (
N ′

1 ⊆ N ′
2

)
. (11.89)

Since K ⊆ CH(K), we have the relation

K ⊆ CH(K), (11.90)

and the visual hulls satisfy the relation

V H(S,D,K) ⊆ V H
(
S,D,CH(K)

)
. (11.91)

Moreover, since Theorem 16 implies the relation V H(S,D,CH(K)) ⊆ (CH(K)⊕
N0 ⊕ N0), we have the following theorem.
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Fig. 11.16 Reconstruction of
planar convex objects.
(a) Reconstructed object
using supercovers.
(b) Enlarged part of the
reconstructed object using
supercovers.
(c) Enlarged part of the
reconstructed object using
standard lines.
(d) Enlarged part of the
reconstructed object using
naive lines

Theorem 19 If an object K is non-convex, then V H(S,D,K) satisfies the relation

V H(S,D,K) ⊆ (
CH(K) ⊕ N0 ⊕ N0

)
, (11.92)

for all three types of discrete line.

For two-dimensional discrete objects, we have the following theorem.

Theorem 20 For two-dimensional non-convex discrete objects, we have the relation

CH(K) ⊆ V H(S,D,K) ⊆ (
CH(K) ⊕ N0 ⊕ N0

)
. (11.93)

11.5 Examples

In this section, we show four examples.

1. Reconstruction of a convex object in the plane, which shows ambiguity proper-
ties.

2. Reconstruction of a slice-convex object as the intersection of objects recon-
structed using a two-dimensional method on each slice.

3. Comparison of three-dimensional reconstructed objects using the supercover,
standard, and naive lines.

4. Reconstruction of convex and non-convex objects. An object in the visible hull
is reconstructed.

Figure 11.16 shows the reconstruction of a convex object in 2D. Figures 11.16(a),
11.16(b), 11.16(c) and 11.16(d) show a reconstructed object using supercovers, an
expanded part of the reconstructed object using supercovers, an expanded part of the
reconstructed object using standard lines, and an expanded part of the reconstructed
object using naive lines, respectively.
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Fig. 11.17 Reconstruction of a non-convex object as an intersection of slice-convex objects. (a),
(b) and (c) are reconstructed as an axial convex with respect to the x-, y- and z-axes, respectively.
(d) is the reconstructed object defined as the intersection of the three objects in (a), (b) and (c)

Fig. 11.18 Reconstruction of a non-convex object. (a) Multi-slice Method and (b) Shape from
Silhouette

Figure 11.17 shows a process for the reconstruction of a non-convex object as
the intersection of slice-convex objects. Figures 11.18(a) and 11.18(b) show the
reconstruction of a non-convex object using multi-slice method and the method
of Shape from Silhouettes, respectively. Figures 11.19(a), 11.19(b), and 11.19(c)
show reconstructed objects using supercovers, standard lines, and naive lines, re-
spectively.

Figures 11.20(a), 11.20(b), and 11.20(c) show the convex polyhedra used for
performance evaluation. Table 11.1 shows the number of voxels (card{K} = |K|)
of discrete geometric polyhedra; a tetrahedron, a cube, and dodecahedron in dis-
crete space. The numbers of over-reconstructed voxels are shown in Tables 11.2 and
11.3 for the three types of spatial discrete lines. Furthermore, Fig. 11.22 shows the

Fig. 11.19 Reconstruction of a non-convex object using the method of Shape from Silhouette.
(a) The reconstructed object using supercovers. (b) The reconstructed object using standard lines.
(c) The reconstructed object using naive lines
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Fig. 11.20 Testing convex polyhedra for evaluation of over-reconstruction

Table 11.1 Numbers of
voxels (card{K}) of discrete
geometric polyhedra

card{K}

Tetrahedron 17825

Cube 73759

Dodecahedron 65193

Table 11.2 Numbers of
over-reconstructed voxels
(card{V H(S,D,K)\K})

Supercover Standard Naive

Tetrahedron 1275 1252 86

Cube 151 133 0

Dodecahedron 320 300 0

reconstruction of a non-convex polyhedra. Table 11.4 shows the number of voxels
(card{K}) of three discrete non-convex polyhedra. Geometric properties of the num-
bers of over-reconstructed voxels are shown in Tables 11.5, 11.6, and 11.7 for the
three types of spatial discrete lines. Figure 11.21 shows over-reconstruction of the
discrete tetrahedron V H(S,D,K)\K .

Figure 11.23 shows the reconstruction of the discrete objects Knight and Human
from the IAPR TC18 test [1] data and the Hilbert curve of order 3 with step 5.
Table 11.8 shows the number of voxels (card{K}) of three discrete data objects. The
numbers of over-reconstructed voxels are shown in Tables 11.9 and 11.10 for the
three types of spatial discrete lines.

Table 11.3 card{(K ⊕N0 ⊕N0)\V H(S,D,K)}. If the entry of the
table is 0, V H(S,D,K) ⊆ K ⊕ N0 ⊕ N0

Supercover Standard Naive

Tetrahedron 0 0 0

Cube 0 0 0

Dodecahedron 0 0 0
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Fig. 11.21 Over-reconstruction of the discrete tetrahedron V H(S,D,K)\K

Fig. 11.22 Numerical evaluation of non-convex objects. From top to bottom: Discrete objects K ;
Convex hull CH(K) of K ; Over-reconstruction V HSup(S,D,K)\K
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Table 11.4 Numbers of
voxels in (card{K}) card{K}

Polyhedron1 18792

Polyhedron2 146568

Polyhedron3 26137

Table 11.5 Numbers of
over-reconstructed voxels
(card{V H(S,D,K)\K})

Supercover Standard Naive

Polyhedron1 90 85 0

Polyhedron2 168 72 0

Polyhedron3 3660 3660 3654

11.6 Discussion

In this section we consider cases of reconstruction of different shapes. At the end of
the section we consider some open problems.

11.6.1 Reconstruction of Spatial String

The reconstruction results for non-convex objects show that the Hilbert curve is
completely reconstructed from its silhouettes in the discrete space. This property of
the Hilbert curve suggests that we can use the method of Shape from Silhouettes
for the reconstruction of string-like objects in the space, since string-like objects
are locally multi-axial convex. DNA and proteins are biological string-like objects

Table 11.6 card{(CH(K)⊕N0 ⊕N0)\V H(S,D,K)}. If the entry
of the table is 0, V H(S,D,K) ⊆ CH(K) ⊕ N0 ⊕ N0

Supercover Standard Naive

Polyhedron1 0 0 0

Polyhedron2 0 0 0

Polyhedron3 0 0 0

Table 11.7 card{(K ⊕N0 ⊕N0)\V H(S,D,K)}. If the entry of the
table is 0, V H(S,D,K) ⊆ K ⊕ N0 ⊕ N0

Supercover Standard Naive

Polyhedron1 0 0 0

Polyhedron2 0 0 0

Polyhedron3 1331 1331 1330
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Fig. 11.23 Performance evaluation by test object sets. The images in the top row are the discrete
objects K and the images in bottom row are the over-reconstruction(V HSup(S,D,K)\K)

Table 11.8 Numbers of
voxels of discrete objects
(card{K})

card{K}

Knight 6513

Human 70413

Hilbert curve 2556

Table 11.9 Numbers of
over-reconstructed voxels
(card{V H(S,D,K)\K})

Supercover Standard Naive

Knight 396 216 18

Human 5187 5010 1213

Hilbert curve 0 0 0

Table 11.10 card{(K ⊕ N0 ⊕ N0)\V H(S,D,K)}. If 0, then
V H(S,D,K) ⊆ K ⊕ N0 ⊕ N0

Supercover Standard Naive

Knight 0 0 0

Human 0 0 0

Hilbert curve 0 0 0
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whose silhouettes are measured by electron microscopy computerized tomography
[6, 7, 11, 19]. Therefore, these string-like objects in the space are reconstructed us-
ing reconstruction techniques for the traditional x-ray tomography, which are based
on the Radon transform [8, 18, 21]. Our results show that for the reconstruction of
the shape of DNA and the proteins, the method of Shape from Silhouettes will help
to remove artifacts in the reconstructed objects caused by the numerical computation
of the inverse Radon transform.

11.6.2 Shape Carving

From Theorem 16, it follows that in shape carving and visible voting, smoothing
and weighting, respectively, there are operations to yield K ′ such that∣∣K̂ΔK ′∣∣ >

∣∣R′ΔR
∣∣, K ⊆ K ′ ⊂ K̂, (11.94)

where

AΔB = (A ∩ B) ∪ (A ∩ B) (11.95)

and |A| is the number of elements in the set A.
For the reconstruction, we define the modified naive and modified standard lines

as {
(x, y)

∣∣∣∣−1

2
|a|∞ ≤ a�x + μ <

1

2
|a|∞

}
, (11.96)

{
(x, y)

∣∣∣∣−1

2
|a|1 ≤ a�x + μ <

1

2
|a|1

}
. (11.97)

In Z
3,

−1

2

(|a| + |c|) ≤ ax + bz + μ1 <
1

2

(|a| + |c|),
−1

2

(|a| + |b|) ≤ ay + cz + μ2 <
1

2

(|a| + |b|), (11.98)

−1

2

(|b| + |c|) ≤ cx − by + μ3 <
1

2

(|b| + |c|),
is the modified standard line of the line

ax + bz + μ1 = 0,

ay + cz + μ2 = 0, (11.99)

cx − by + μ3 = 0

in R
3. The modified lines used for reconstruction eliminate some pixels/voxels in

{(K ⊕ N0 ⊕ N0) \ K} since these lines are symmetrical around the continuous line.
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11.6.3 Approximation of the Hybrid Model

In practice, we deal with the case s ∈ R
n and d ∈ Z

n. We call this setting a hybrid
model of shape reconstruction. For the case n = 2, s = (s1, s2)

�, there exist a pair of
rational numbers q/p and r/p which approximate s1 and s2, respectively. Therefore,
we can approximate the pair s ∈ R

2 and d ∈ Z
2 with the pair s ∈ Q

2 and d ∈ Z
2,

where Q is the set of all rational numbers. The line which passes through s ∈ Q
2

and d ∈ Z2 is represented as

Ax + By + M = 0, (11.100)

where A, B , and M are integers. However, gcd(A,B) = g ≥ 1. Therefore, if the
thickness of a discrete line is defined by A/g and B/g, for example, the supercover
is expressed as

|Ax + By + M| ≤ 1

2

( |A|
g

+ |B|
g

)
. (11.101)

This representation allows us to apply the algorithm presented earlier to the hybrid
model.

11.6.4 Open Problems

For the square D2(k) in Z
2 whose vertices are

(−k,−k)�, (−k, k)�, (k, k)�, (k,−k)�, (11.102)

if the source moves in the region

D2
m =

m⋃
k=n

D2(k), (11.103)

we have many more lines than in the case that the source moves on the D(3n), which
is the geometry we introduced in Sect. 11.4.1. For this geometry, the error bound for
the ambiguity theorem is an open problem. The error bound for the spatial case is
also an open problem.

The above problem, related to dealing with different sizes of reconstruction
space, is equivalent to selecting the resolutions of objects in the space and the sil-
houettes on the imaging planes. Since the size of the neighborhood N0 becomes
relatively small in higher resolutions, we can have the following conjecture.

Conjecture 1 The over-reconstruction (K ⊕ N0 ⊕ N0) converges to zero, that is,

lim
Δ→0

{
(K ⊕ N0 ⊕ N0) \ K

} = ∅, (11.104)

lim
Δ→0

∣∣{(K ⊕ N0 ⊕ N0) \ K
}∣∣ = 0, (11.105)

where Δ is the size of the length of a pixel and a voxel in the plane and in the space,
respectively.
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To analyze the mathematical properties of this conjecture, we have to use the
theory of multi-resolution discrete geometry [4, 23, 24].

11.7 Conclusions

In this paper, we formulated the method of Shape from Silhouettes in two- and three-
dimensional discrete space. This approach to the problem implied an ambiguity the-
orem for the reconstruction of objects in discrete space. Furthermore, we showed
that in three-dimensional space, it is possible to reconstruct a class of non-convex
objects from a set of silhouettes although in the plane a non-convex object is unre-
constructible from projections.

Shape reconstruction from a series of silhouettes is a conventional technique
for the detection of shape models and shape reconstruction in computer graphics,
computer vision [13], and robotics [16, 22, 25, 26]. Although these reconstruction
methods are mathematically formulated in the continuous framework [9, 20], the
reconstruction is achieved in discrete space. Therefore, we dealt with the Shape
from Silhouette problem in discrete space and showed the upper-bound of over-
reconstruction of objects.
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Chapter 12
Combinatorial Maps for 2D and 3D Image
Segmentation

Guillaume Damiand and Alexandre Dupas

Abstract This chapter shows how combinatorial maps can be used for 2D or 3D
image segmentation. We start by introducing combinatorial maps and we show
how they can be used to describe image partitions. Then, we present a generic
segmentation algorithm that uses and modifies the image partition represented by
a combinatorial map. One advantage of this algorithm is that one can mix dif-
ferent criteria and use different image features which can be associated with the
cells of the partition. In particular, it is interesting that the topological properties
of the image partition can be controlled through this approach. This property is
illustrated by the computation of classical topological invariants, known as Betti
numbers, which are then used to control the number of cavities or the number of
tunnels of regions in the image partition. Finally, we present some experimental
results of 2D and 3D image segmentation using different criteria detailed in this
chapter.

12.1 Introduction

In the image analysis framework, image segmentation is one of the main issues,
and probably the most discussed one in the literature. Image segmentation methods
were subject of numerous research papers. Surveys on existing approaches can be
found, for example, in [22–24, 32, 36]. Image segmentation is usually the first step
before any algorithm for computer vision, such as object recognition, is applied.
The segmentation operation consists of grouping the elements of an image, usually
known as pixels or voxels (for 2D and 3D images, respectively), in homogeneous
areas called regions. Each region is uniform regarding some properties based on
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intensity (gray levels), texture, or colors. The set of regions forms a partition of the
image elements, and thus any pixel or voxel of the image belongs to exactly one
region.

For efficiency purposes, some segmentation algorithms need an effective repre-
sentation of the image partition and operations so that the partition can easily be
modified. The cost related to the partition modification is closely connected to the
data structure related to the particular segmentation algorithm. One of the first data
structures described in the literature is the region adjacency graph, called RAG [33].
Regions of the image are represented by the vertices of a graph, and the edges are
linking each pair of vertices if the two corresponding regions are adjacent. How-
ever, a RAG does not describe all the relations between regions in 2D images, and
in higher dimensions it is even more so. To overcome this issue, other solutions are
available in the literature. In dual graphs approach [28, 35], two graphs are used:
a RAG is coupled with its dual. While dual graphs solve some of the issues of RAG,
this solution is not complete, and moreover it is meant to only represent 2D images
partitions.

Several solutions based on 2D combinatorial maps have been proposed [5–
7, 9, 14, 19], and then extended in 3D [4, 8]. These models have advantages that
justify their use. First, combinatorial maps fully describe the topology of the image
partition in regions, that is, the representation of all cells of the partition and all the
incidence and adjacency relations between these cells. Second, combinatorial maps
allow efficient algorithms to retrieve information and modify the partition. Finally,
combinatorial maps are defined in any dimension allowing to easily generalize the
algorithms. For these reasons, combinatorial map based models have been used in
many works in image segmentation [2, 3, 13, 15, 26].

The objective of this chapter is to present all the basic knowledge required to
implement a generic 2D and 3D image segmentation algorithm based on combi-
natorial maps. We start in Sect. 12.2 by introducing combinatorial maps and the
related definitions. Then, we give several notions about 2D and 3D images, and fi-
nally we define topological maps, which are specific combinatorial maps describing
a partition of an image in regions. In Sect. 12.3 we give the generic segmentation
algorithm based on the global merging operation. The algorithm is generic because
it is defined in any dimension, and it takes as parameter two functions allowing to
control its behavior depending on the image properties. To illustrate the genericity,
we introduce four different segmentation criteria based on different information. As
our interest in combinatorial maps is to fully describe the topology of image parti-
tions, we use this asset and propose a segmentation criterion based on a topological
invariant: the Betti numbers. In Sect. 12.4, we show how to compute Betti numbers
in the topological map framework, and we propose two segmentation criteria that
allow, with the generic segmentation algorithm, to explore a segmentation method
that take into account some topological features. Finally, Sect. 12.5 presents some
experiments of 2D and 3D image segmentation using the different criteria proposed
in this chapter.
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Fig. 12.1 (a) Example of 2D orientable subdivision. The object is composed of five 0-cells (num-
bered from 1 to 5), seven 1-cells (labeled from a to g) and four 2-cells (labeled f1 to f4). Edges
a and b are adjacent since they share vertex 4, and faces f1 and f2 are adjacent along edge a.
Thus, vertex 4 is incident to edge a, and edge a is incident to face f1. By transitivity, vertex 4 is
incident to face f1. (b) Corresponding 2D combinatorial map. Darts are represented by numbered
black segments ending with arrows. Two darts linked by β1 are drawn consecutively (for exam-
ple, β1(1) = 2) and two darts linked by β2 are drawn parallel to each other in reverse orientation
connected by a little gray segment (for example, β2(1) = 13)

12.2 Topological Maps

In this section, we introduce the basic notions leading to the definition of a topo-
logical model used to represent 2D and 3D image partition. We start by introduc-
ing combinatorial maps that describe subdivided objects in any dimension. Then,
we recall the basic notions related to images (pixels, voxels, adjacency, regions,
inter-elements). Last, we present 2D and 3D topological maps which are specific
combinatorial maps that describe 2D and 3D image subdivisions.

12.2.1 Combinatorial Maps

An nD combinatorial map is a model representing an nD subdivided orientable
object by describing all its cells, and all the neighborhood relations between these
cells. We denote by i-cell a cell in dimension i: 0-cells are called vertices, 1-cells
edges, 2-cells faces, and 3-cells volumes. Neighborhood relations are defined on the
basis of the incidence and adjacency relations. Two cells c1 and c2 are adjacent if
they have the same dimension i, and if they share a common (i − 1)-cell c. In this
case, c is said to be incident to c1 and to c2. Incidence relation is symmetric: if c1 is
incident to c2, then c2 is incident to c1. Moreover, the incidence relation is extended
by transitivity: two cells c1 and c2 are incident if there is a path of cells starting from
c1 to c2 such that each couple of consecutive cells are incident (see Fig. 12.1(a) for
an example in 2D).

Any orientable nD subdivided object cannot be described by an nD combina-
torial maps: only quasi-manifold orientable objects without boundary can. Quasi-
manifold means that an object consists only of (n − 1)D quasi-manifold orientable



362 G. Damiand and A. Dupas

objects glued together along (n − 1)-cells. Note that in 2D, quasi-manifolds are
manifolds, but this is no more true in higher dimension. “Orientable” means that it
is possible to define a global orientation “left” and “right” in each point of the ob-
ject. Lastly, “without boundary” means that each (n − 1)-cell is without boundary,
and that the boundary of each n-cell is fully described by (n − 1)-cells.

An nD combinatorial map is defined as a set of basic elements, called darts, with
one to one mappings defined onto the set of darts. Each dart describes a part of a
0-cell, a 1-cell, . . . , an n-cell. The mappings β allow to link together darts and thus
group the darts that describe the same cell. Definition 1 gives the definition of nD
combinatorial maps (see [29, 30] for definitions and more details on combinatorial
maps).

Definition 1 (nD combinatorial map) An nD combinatorial map (or an n-map) is
a n + 1-tuple M = (D,β1, . . . , βn) where:

1. D is a finite set of darts;
2. β1 is a permutation1 on D;
3. ∀i: 2 ≤ i ≤ n: βi is an involution2 on D;
4. ∀i, j : 1 ≤ i < i + 2 ≤ j ≤ n: βi ◦ βj is an involution.3

Intuitively, given a dart of an n-map, β1 gives the next dart of the same face, and
βi gives the dart of the adjacent i-cell (see example in Fig. 12.1(b)). The property
that the represented object is without boundary ensures that any dart is linked to
another dart by βi , which is a prerequisite of the permutation property. Moreover, the
quasi-manifold property ensures that there are at most two i-cells along each (i−1)-
cell belonging to the same (i + 1)-cell, which explains why βi is an involution. We
denote by β0 the permutation β−1

1 . Note that this is only a notation and not a new
permutation.

The last line of the definition (βi ◦βj is an involution) ensures the quasi-manifold
property. This condition guarantees that when two darts of two i-cells are linked by
βi+1, all the darts of the two cells are also linked two by two by βi+1. Intuitively,
this means that two i-cells are either disjointed or completely identified, but they
cannot be partially identified.

Now, thanks to darts and the β relations, we can retrieve the cells of the subdivi-
sion which are implicitly represented in combinatorial maps by sets of darts and by
the orbit notion.

Definition 2 (Orbit) Let Φ = {f1, . . . , fk} be a finite set of permutations on D. We
denote by 〈Φ〉 the permutation group generated by Φ . This is the set of permutations
obtained by any composition and inversion of permutations contained in Φ . The
orbit of a dart d with respect to Φ is defined by 〈Φ〉(d) = {φ(d)|φ ∈ 〈Φ〉}.

1A permutation on a set D is a one to one mapping from D onto D.
2An involution f on a set D is a one to one mapping from D onto D such that f = f −1.
3βi ◦ βj is the composition of both permutations: (βi ◦ βj )(x) = βi(βj (x)).
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Fig. 12.2 (a) Example of 3D orientable subdivision. The object is composed by nine 0-cells,
sixteen 1-cells, ten 2-cells and three 3-cells (the cube, the pyramid, plus an unbounded volume not
drawn). (b) Corresponding 3D combinatorial map having 144 darts. The 64 darts describing the
unbounded volumes are drawn in gray thin lines

Intuitively, the orbit 〈Φ〉(d) is the set of darts that can be reached from d by using
any combination of permutations in Φ . Each i-cell of an nD combinatorial map is
obtained by a specific orbit:

Definition 3 (i-cell) Let M = (D,β1, . . . , βn) an n-map, d ∈ D, and i ∈ {0, . . . , n}.
The i-cell incident to d , denoted by ci(d), is:

• if i = 0: 〈β1 ◦ β2, . . . , β1 ◦ βn〉(d);
• otherwise: 〈β1, . . . , βi−1, βi+1, . . . , βn〉(d).

Due to the definition of cells as sets of darts, the incident and adjacency relations
on cells can easily be tested. Two distinct cells c1 and c2 are incident if c1 ∩ c2 	= ∅,
and two distinct i-cells c1 and c2 are adjacent if there are two darts d1 ∈ c1 and
d2 ∈ c2 satisfying d1 = βi(d2) (or d2 = βi(d2) in the case of 1-cells).

We can see an example of 2D combinatorial map in Fig. 12.1(b). In 2D, a 2-
map is a triplet M = (D,β1, β2) and the last line of the definition (βi ◦ βj is an
involution) does not apply. Face f3 (2-cell) corresponds to 〈β1〉(7) = {7,8,9,10},
edge a (1-cell) corresponds to 〈β2〉(3) = {3,5} and vertex 1 (0-cell) corresponds to
〈β1 ◦ β2〉(13) = {2,9,13}. Edge b and face f3 are incident since b = {2,8} ∩ f3 =
{7,8,9,10} 	= ∅, and f2 and f3 are adjacent since 2 ∈ f2, 8 ∈ f3 and 2 = β2(8).

One main advantage of combinatorial maps is their definition in any dimension.
We can see an example in 3D in Fig. 12.2. A 3D combinatorial map is a 4-tuple M =
(D,β1, β2, β3) such that β1 ◦ β3 is an involution. A 3-cell (volume) corresponds to
〈β1, β2〉(d); a 2-cell (face) to 〈β1, β3〉(d); a 1-cell (edge) to 〈β2, β3〉(d); and a 0-cell
(vertex) to 〈β1 ◦ β2, β1 ◦ β3〉(d).

12.2.2 Removal Operations

The basic operations used to simplify a combinatorial map are the removal oper-
ations. These operations were first defined on generalized maps [10, 11] and then
transposed to combinatorial maps [20, 21]. An i-removal operation allows to re-
move an i-cell while possibly merging the two incident (i + 1)-cells around the
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removed cell. There are several removal operations since we can remove an i-cell
in an n-map for any i: 0 ≤ i < n.

However, removing an i-cell is not always possible: there is a constraint that the
i-cell must satisfy: the notion of removable cell. Intuitively the removable constraint
ensures that there are at most two (i + 1)-cells around the removed cell. Otherwise
it is not possible to automatically decide how to modify the different (i + 1)-cells
while removing the i-cell.

Definition 4 (Removable cell) An i-cell c in an n-map is removable if 0 ≤ i < n,
and if i = n − 1 or ∀d ∈ c, βi+1 ◦ βi+2(d) = βi+2 ◦ β−1

i+1(d).

As explained above, the notion of being removable is related to the number of
(i + 1)-cells around the removed cell which is the notion of degree of a cell.

Definition 5 (Cell degree) Let c be an i-cell in an n-map, with 0 ≤ i < n. The
degree of c is the number of (i + 1)-cells incident to c.

We can easily prove that if an i-cell c is removable, then its degree is at most 2
(i.e. equal to 1 or 2 since it is not possible to have a degree equal to 0 by definition
of cells).

Now, we give a generic definition of removal operations. This is Definition 6
which is valid for any removable i-cell with 0 < i < n. Intuitively, the definition
“modifies” only βi relations for the neighboring darts of the removed i-cell.

Definition 6 (i-removal operation) Let M = (D,β1, . . . , βn) be an n-map, and c

a removable i-cell, with 0 < i < n. The combinatorial map M ′ = (D′, β ′
1, . . . , β

′
n)

obtained by removing c from M is defined by:

• D′ = D \ c;
• ∀j : 1 ≤ j ≤ n: ∀d ∈ D′:

– if j = i and d ∈ β−1
i (c) \ c: β ′

j (d) = (βj ◦ βj+1)
k(βj (d)),

with k the smaller positive integer such that (βj ◦ βj+1)
k(βj (d)) /∈ c;

– otherwise: β ′
j (d) = βj (d).

β−1
i (c) is the set of darts {β−1

i (d)|d ∈ c}. This is the set of darts which are neigh-
bors of c by βi . In the removal definition, only darts of β−1

i (c) \ c have their βi

modified since all the darts of c are removed by the operation. For all these darts,
the new β ′

j are defined by β ′
j (d) = (βj ◦ βj+1)

k(βj (d)). Intuitively, we jump over
the removed darts until we obtain a dart that does not belong to c.

We can see in Fig. 12.3 two examples of removal operations in a 3D combi-
natorial map. First, we want to remove a 2-cell represented by the darts drawn
in bold black in Fig. 12.3(a). The darts, neighbors of the removed darts by β2

and drawn in bold gray, are the only darts modified by the operation, for exam-
ple β ′

2(1) = β2 ◦ β3 ◦ β2(1) = 2. Second, we want to remove the edge represented
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Fig. 12.3 Example of some removals operations in a 3D combinatorial map (only partially drawn).
(a) The initial configuration from which we want to remove the 2-cell drawn in bold black. (b) The
resulting map obtained after the 2-removal. The two volumes incident to the removed 2-cell are
merged. Now we want to remove the 1-cell drawn in bold black. (c) The resulting map obtained
after the 1-removal. The two faces incident to the removed edge are merged

by the darts drawn in bold black in Fig. 12.3(b). Only neighbor darts of these darts
by β0 are modified by the operation, for example β ′

1(3) = β1 ◦ β2 ◦ β1(3) = 4. Note
that this edge is removable in the combinatorial map of Fig. 12.3(b) (in the sense
of Definition 4) but not in the combinatorial map of Fig. 12.3(a) because there are
more than two 2-cells incident to this edge.

We have a specific case for 0-removal operation, that is the removal of a vertex.
This is due to the inhomogeneous definition of combinatorial maps where β1 is
a permutation while other β are involutions. We can see in Definition 7 the main
difference with the generic definition. Indeed, we need to modify all the β links of
neighbor darts of the removed cell. Moreover, the definition of the modified relation
is different.

Definition 7 (0-removal operation) Let M = (D,β1, . . . , βn) an n-map, and c a
removable 0-cell. The combinatorial map M ′ = (D′, β ′

1, . . . , β
′
n) obtained by re-

moving c from M is defined by:

• D′ = D \ c;
• ∀j : 1 ≤ j ≤ n: ∀d ∈ D′:

– if d ∈ β−1
j (c) \ c: β ′

j (d) = βj ((β1)
k(d)),

with k the smaller positive integer such that βj ((β1)
k(d)) /∈ c;

– otherwise: β ′
j (d) = βj (d).

Here, contrary to the general case, we do not need to only modify βi , but all
the β . This is due to the definition of cells. Indeed, given an i-cell c, with 0 < i < n,
we know that for any dart d ∈ c, βj (d) ∈ c, ∀j 	= i. This property ensures that only
βi has to be modified, but this is no more true for vertices.
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Fig. 12.4 Example of a 2D labeled image having 10 pixels in x axis, and 6 pixels in y axis.
Pixel p = (5,1) belongs to region R3. Pixel p is 4-adjacent to pixels p1 = (4,1), p2 = (5,0),
p3 = (6,1) and p4 = (5,2). The image contains five regions (labeled from R1 to R5), plus the
infinite region R0. R4 is enclosed into region R3, and regions R2 and R3 are enclosed into re-
gion R1

12.2.3 Images, Regions and Inter-elements

In this chapter we are interested in 2D and 3D images segmentation, and thus we
now recall some usual notions. A pixel (resp. voxel) is an element of the discrete
space Z

2 (resp. Z3), associated with a value (for example a color or a gray level).
A 2D image is a set of pixels and a 3D image is a set of voxels.

Two pixels p1 = (x1, y1) and p2 = (x2, y2) are 4-adjacent if |x1 − x2| +
|y1 − y2| = 1. Two voxels v1 = (x1, y1, z1) and v2 = (x2, y2, z2) are 6-adjacent if
|x1 − x2| + |y1 − y2| + |z1 − z2| = 1. A 4-path (resp. 6-path) between two pixels
(resp. voxels) b and e is a sequence of pixels (resp. voxels) (b = e1, . . . , ek = e)

such that any couple of consecutive pixels (resp. voxels) of the path are 4-adjacent
(resp. 6-adjacent).

A set of pixels S (resp. voxels) is 4-connected (resp. 6-connected) if there is a
4-path (resp. 6-path) between any couple of pixels (resp. voxels) of S with all the
elements of the path belonging to S.

A region R is a maximal set of 4-connected pixels (resp. 6-connected voxels)
having the same label. To avoid having a specific process for the image borders,
we consider an infinite region, usually called R0, that surrounds the image (i.e. this
region is the complement of the image). If a region Rj is completely surrounded by
a region Ri we say that Rj is enclosed in Ri .

We can see in Fig. 12.4 an example of a 2D labeled image and the illustrations
of the main notions.

In the interpixel or intervoxel framework [25, 27], pixels or voxels are not the
only considered elements. We also consider all the elements of a cellular decompo-
sition of the paving of Zn. In 2D, pixels are unit squares, linels are unit segments
separating two squares, and pointels are points at the extremity of linels. In 3D,
voxels are unit cubes, surfels are unit squares separating two voxels, and linels and
pointels definitions are similar to the 2D case (see example in Fig. 12.5).
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Fig. 12.5 Interpixel and
intervoxel elements

12.2.4 Topological Maps

A topological map is a combinatorial map describing an image. For this reason,
topological maps are not as general as combinatorial maps since they have some
particular properties implied by the specifics of the described partitions. We present
here only the main principle of topological maps. Interested readers can found more
details in the referenced papers.

Given a 2D labeled image, the problem is to describe the partition in regions us-
ing a combinatorial map. We want to describe the multi-adjacency relations between
regions, to retrieve all the regions adjacent to a given one, and to know how many
times two regions are adjacent. Thus, we have to build a combinatorial map where
each edge corresponds exactly to a maximal set of linels between two regions [1, 9].
However, using a combinatorial map is not enough to represent all the information
contained in the image. We need to add an interpixel matrix to represent the geom-
etry of the regions, and a tree of regions to describe the enclosed relations between
the regions. This is the notion of topological map given in Definition 8.

Definition 8 (2D topological map) Given a 2D labeled image, its 2D topological
map is a data structure composed of three parts:

• A minimal 2D combinatorial map describing the partition of regions: the external
boundary and each cavity of each region is described by one cycle of darts, linked
by β1. Note that the infinite region is a special case since it does not have an
external boundary but only one internal boundary. Each edge of the combinatorial
map corresponds to a maximal frontier between two regions;

• An interpixel matrix containing all the linels that belong to a region boundary,
and all the pointels having a degree greater than two;

• An enclosed tree of regions describing all the enclosed relations between the re-
gions.

The 2D combinatorial map is minimal in number of cells which means there is
no combinatorial map that describes the same partition in regions with a smaller
number of cells. This minimal property ensures that we represent each maximal
frontier between two regions by exactly one edge in the map. We can see in Fig. 12.6
an example of a 2D labeled image and the corresponding 2D topological map.

The topological map definition can be extended in 3D by using a 3D minimal
combinatorial map, an intervoxel matrix, and an enclosed tree of regions. This defi-
nition is given in Definition 9 and detailed in [8].
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Fig. 12.6 Example of 2D topological map. (a) A 2D labeled image. (b) The minimal combina-
torial map describing the image. Darts are numbered from 1 to 14. Regions R2, R4, and R5 have
only one external boundary, thus only one β1 cycle of darts. Regions R1 and R3 have one cavity,
and thus two β1 cycles of darts, one for their external boundary, and one for their cavity. (c) The
interpixel matrix. (d) The enclosed tree of regions

Definition 9 (3D topological map) Given a 3D labeled image, its 3D topological
map is a data structure composed of three parts:

• A minimal 3D combinatorial map describing the partition of regions: the exter-
nal boundary and each cavity of each region is described by volumes (i.e., orbits
〈β1, β2〉). As in 2D, the infinite region is a special case since it does not have an
external boundary; it has only one internal boundary. Each face of the combina-
torial map corresponds to a maximal frontier between two regions, and each edge
corresponds to a maximal junction between faces;

• An intervoxel matrix containing all the surfels that belong to a region boundary,
all the linels having a degree greater than two, and all the pointels having a degree
greater than two;

• An enclosed tree of regions describing all the enclosed relations between regions.

Figure 12.7 shows an example of a 3D labeled image and the corresponding
topological map.
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Fig. 12.7 An example of 3D
topological map. (a) A 3D
labeled image. (b) The
minimal combinatorial map
describing the image. (c) The
intervoxel matrix. (d) The
enclosed tree of regions

12.3 Image Segmentation Algorithm

Now, we present a bottom-up segmentation algorithm based on topological maps
[15]. The guiding principle consists in successively merging adjacent regions satis-
fying a given criterion starting with an initial partition represented by a topological
map. The initial partition can be a partition where each pixel/voxel is in its own
region, a partition where pixels/voxels having same color are grouped, a partition
which is an over-segmentation of the initial image, or any other kind of partition.

A bottom-up approach is chosen here since it allows to incrementally update re-
gions characteristics without the need of running through all the pixels/voxels of the
region. Such incremental update is not possible for top-down or mixed approaches.

12.3.1 The Global Merging Algorithm

The principle of the global merging algorithm consists in merging each couple of
adjacent regions of a given topological map satisfying a given criterion. To opti-
mize the algorithm and minimize topological maps modifications, we decompose
the process in two steps:

1. Symbolic merging: regions are “merged” by using union-find trees; no modifica-
tion is made on the topological map;

2. Effective merging: the topological map is modified to group together all regions
that belong to the same union-find tree.

For the symbolic merging, we use an union-find tree forest [34] to partition the set
of regions in disjointed sets. Each region has a reference to its father in a union-find
tree. To handle trees, we use two functions: find(r) which, given a region r , finds
the root of the union-find tree, and union(r1, r2) which, given two different regions
r1 and r2 merges their trees. Before starting the symbolic merging, we initialize the
pointer of each region to the region itself. This means that each region r is in its own
union-find tree since we have find(r) = r . During the symbolic merging, an external
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Fig. 12.8 Illustration of the symbolic merging. The father relation of union-find trees is repre-
sented by bold black arrows. (a) An initial forest of union-find trees where each pixel belongs to its
own region; thus each pixel is the root of its own union-find tree. (b) Result of the symbolic merg-
ing of each couple of 4-adjacent pixels having same label (in this example we do not use the two
heuristics to simplify the figure). Each pixel has an unique father, and thanks to these union-find
tree, we can simply test if two pixels belong to the same region just by testing if find(p1) = find(p2)

process successively merges couples of regions. The external process can be driven
by the user who selects some regions to merge during an interactive session, or as
we will see in the next section, by a segmentation algorithm. The merging of the
two union-find trees containing regions r1 and r2 is simply done by modifying the
father pointer of the root of one tree to the root of the other tree. To improve the
complexity of this step, we use the two following heuristics:

• We put the smaller tree (in terms of the number of regions) as a child of the largest
one during the union function;

• We compress the path from region r and its root r ′ during the find(r) function;
for that we assign the father of all the regions between r and its root to r ′.

Thanks to these two heuristics, it is proved in [34] that union and find operations
on disjoint sets represented by trees can be considered as constant time operations.
Figure 12.8 shows a simple example of the symbolic merging.

We use the union-find trees during the second step of the global merging al-
gorithm. The objective of this step, presented in Algorithm 1, is to merge all the
regions that belong to a same union-find tree in the topological map. The principle
of this algorithm is to test for each couple of adjacent regions r1 and r2 whether they
belong to the same union-find tree. In this case we remove all the (n − 1)-cells that
separate the two regions.

We can efficiently test each couple of adjacent regions thanks to the relations
represented in the topological map. We run through all the darts of the map. Each
dart d belongs to its region r1, and each dart βn(d) belongs to a region r2 adjacent
to r1. The foreach loop allows testing all the couples of adjacent regions in a
time linear to the number of darts. Moreover, if two regions are adjacent k times,
they are separated by k different (n− 1)-cells. If the two regions belong to the same
union-find tree, all these (n− 1)-cells are removed since during the foreach loop,
we will consider one dart for each of these cells, and for each of these darts the
condition find(region(d)) = find(region(βn(d))) will be satisfied.
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Algorithm 1: Effective merging step
Input: An nD topological map T ;

Disjointed sets partitioning the regions of T .
Result: T is modified so that all regions belonging to the same union-find tree

are merged in an unique region.

let toSimplify be an empty set of darts;
foreach dart d in T do

if find(region(d)) = find(region(βn(d))) then
toSimplify ← toSimplify ∪ one dart per (n − 2)-cell incident to
cn−1(d);
remove cn−1(d);

simplify(toSimplify);
recompute the enclosed tree of regions;

If we remove an (n − 1)-cell, we might need to simplify the topological map
because it does not possess the minimal number of cells property anymore. Indeed,
the degree of each (n − 2)-cell incident to the remove cell is decreased by one, and
thus these cells can possibly be simplified. To solve this issue, during the effective
merging, we keep one dart per each (n − 2)-cell incident to a removed (n − 1)-
cell, and these cells will be tested during a post-processing simplification step. This
simplification step is specialized for 2D and 3D topological maps since in 2D we
only need to test and possibly simplify vertices, while in 3D we need to test and
possibly simplify edges, then test and possibly simplify vertices (see [9] and [8] for
details and Fig. 12.9 for an example in 2D).

12.3.2 The Segmentation Algorithm

In our approach, the segmentation algorithm, given in Algorithm 2, is only a spe-
cific case of the global merging algorithm. In fact, as we have seen in the previous
section, it is enough to control the symbolic merging step to propose a segmentation
algorithm. Then, the effective merging step will modify the initial partition and will
produce the topological map representing the result of the segmentation.

Algorithm 2 is a generic segmentation algorithm taking as parameters an nD
topological map which describes an initial partition, two functions giving a weight
for each (n − 1)-cell, and a criterion to determine whether an (n − 1)-cell must be
removed.

The initial topological map can be either initialized with a region for each im-
age element, or it can be any initial partition, for example obtained by a pre-
segmentation step. The two functions allow to tune the segmentation algorithm by
using any kind of information associated with cells and regions of the topological
map (see Sect. 12.3.3 for some examples of such functions).
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Fig. 12.9 Example of effective merging. (a) A topological map describing a 2D labeled image
where each pixel is in its own region. (b) The combinatorial map obtained after the first step of
the effective merging (removal of 1-cells) given the disjoint sets shown in Fig. 12.8(b). This map
is not minimal since some vertices are removable. (c) The combinatorial map obtained after the
simplification step. This is the 2D topological map of the partition in regions given by the disjoint
sets

Algorithm 2: Generic segmentation algorithm
Input: An nD topological map T associated with an image I ;

A function weight(c) giving a weight of each (n − 1)-cell;
A boolean function criterion(d) returning true if cell c(n−1)(d) must be
removed.

Result: T represents the optimal segmentation of I for the weight and
criterion functions.

L ← sorted list of one dart per (n − 1)-cell of T according to weight;
foreach dart d ∈ L do

r1 ← region(b); r2 ← region(βn(b));
if r1 	= r2 and criterion(d) then

r ← union(r1, r2);
update region r ;

effective merging of regions of T ;
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Before processing the regions, we start by sorting the list of (n− 1)-cells accord-
ing to the weight function. This allows us to start with the consideration of a couple
of regions that are close with respect to the given weight. In Sect. 12.5, we show
that this approach gives a better result that processing edges randomly.

The main loop of the algorithm consists of testing all couples of adjacent regions,
and in merging them if the given criterion returns a true value. The merging is only
made in the symbolic way using the union find trees. The last line of the algorithm
is the effective merging step presented in Algorithm 1.

The algorithm is generic since it is defined in any dimension, and can be tuned
easily by modifying the weight and criterion functions. Its time complexity is linear
in number of darts of the topological map, times the complexity of the criterion
function. As we will see in the next section, most of our criteria have constant time
complexity, and thus the segmentation algorithm becomes linear in number of darts
of the map.

12.3.3 Different Criteria of Segmentation

The main interest of our approach is the genericity and the possibility to mix dif-
ferent criteria associated with a different type of cells (for example a colorimetric
criteria associated with the regions, and a gradient associated with the edges). To
illustrate these interests, we present here four segmentation criteria, based on:

• The range of gray levels in the regions;
• The gradient of the (n − 1)-cells separating regions;
• External/internal contrasts of the regions and (n − 1)-cells;
• The size of the regions and the gradient of (n − 1)-cells.

All these criteria are defined for nD topological maps, and use different kind
of information (cells, adjacency and incidence relations, geometrical information,
etc.). Moreover, the information used can often be initialized without additional
complexity cost during the topological map construction, and can often be used and
updated in constant time which results in efficient segmentation algorithms.

12.3.3.1 Range of Gray Levels

The first version is a basic criteria based on gray levels of pixels. We associate with
each region an interval [gmin, gmax] of min gray level and max gray level of all
the pixels contained in the region. The value of each interval is initialized during
the construction of the topological map (without modifying the complexity of the
construction).

The weight function is given in Algorithm 3. We define the weight of the removal
of a cell cn−1(d) by the difference between the length of the new interval of the
two merged regions around cn−1(d) and the maximum length of the two original
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intervals of r1 and r2. Thanks to this definition, the weight is zero if one interval is
included into another, or if the two interval are equal. The weight increases if the
two region intervals move away.

Algorithm 3: Weight function based on gray level ranges
Input: A dart d of an nD topological map.
Result: The weight of the removal of cn−1(d).

r1 ← region(d); r2 ← region(βn(d));
dist0 ← max(r1.gmax − r1.gmin, r2.gmax − r2.gmin);
dist1 ← max(r1.gmax, r2.gmax) − min(r1.gmin, r2.gmin);
return dist1 − dist0;

The removal criterion given in Algorithm 4 returns true if the length of the new
interval after the merging of the two regions around cn−1(d) is smaller than a thresh-
old τ given by the user.

Algorithm 4: Removal criterion based on gray level ranges
Input: A dart d of an nD topological map;

A threshold τ .
Result: true iff cn−1(d) must be removed.

r1 ← region(d); r2 ← region(βn(d));
dist1 ← max(r1.gmax, r2.gmax) − min(r1.gmin, r2.gmin);
return dist1 < τ ;

Since we associate an interval with each region, we have a direct access to each
information associated with the darts (region(b), βn(d), r.gmin and r.gmax) and thus
the two algorithms have a constant time complexity.

Moreover, when two regions r1 and r2 are merged during the symbolic merging,
we can easily, and in constant time, update the interval of the region r which is
the union of r1 and r2: we only have to set r.gmin ← min(r1.gmin, r2.gmin), and
r.gmax ← max(r1.gmax, r2.gmax).

12.3.3.2 Gradient on (n − 1)-Cells

Another criterion often used in image segmentation is an image gradient. We as-
sociate with each (n − 1)-cell c a value corresponding to the gradient of c. More
precisely, for each inter-element i belonging to c the gradient is the sum of the ab-
solute difference of the gray levels of the two image elements around i. As for the
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previous criterion, the gradient of each (n−1)-cell is initialized during the construc-
tion of the topological map without modifying the complexity of the construction.
However, gradients are associated with (n − 1)-cells and not with the regions. This
illustrate an interesting feature of topological maps as we can associate information
with any cell and possibly mix information associated with different type of cells.

The first approach to use the gradient in the segmentation algorithm is to consider
the gradient of each cell cn−1(d) as its weight. Then, the merging criterion returns
true if the gradient of cn−1(d) is smaller than a threshold τ given by the user. The
problem of this approach is that it does not account for the fact that if we remove
an (n − 1)-cell, it will result in the merging of the two regions around this cell,
and thus it will remove all the (n − 1)-cells between these two regions. If we only
consider the current (n − 1)-cell, the merging criterion can return true because its
associated gradient is small, even if merging the two incident regions will remove
other (n − 1)-cells with stronger gradients.

To solve this problem, we define the weight function given in Algorithm 5 which
takes into account all the (n − 1)-cells which will be removed if we merge the two
regions incident to the considered cell cn−1(d).

Algorithm 5: Weight function based on gradients
Input: A dart d of an nD topological map.
Result: The weight of the removal of cn−1(d).

res ← 0;
r2 ← region(βn(d));
foreach dart d ′ ∈ cn(d) do

if d ′ not marked treated then
if region(βn(d

′)) = r2 then
res ← res + cn−1(d

′).gradient;

mark treated all the darts of cn−1(d
′);

return res;

In this algorithm, we run through all the darts d ′ ∈ cn(d) to sum all the gradients
of all the (n − 1)-cells separating the same two regions.

The removal criterion given in Algorithm 6 returns true if the sum of all the gra-
dients of all the (n − 1)-cells separating the two regions is smaller than a threshold
τ given by the user. This test can be achieved by reusing the weight function and
comparing its value with the threshold.

Due to these definitions, all the (n − 1)-cells that separate the same couple of re-
gions have the same weight and thus give the same answer for the removal criterion.
Moreover, when two regions are merged during the symbolic merging, there is no
modification to apply to gradient values. Lastly, during the simplification step of the
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Algorithm 6: Removal criterion based on gradients
Input: A dart d of an nD topological map;

A threshold τ .
Result: true iff cn−1(d) must be removed.

return weight(d) < τ ;

effective merging, if two (n − 1)-cells are merged, the gradient of the new (n − 1)-
cell is the sum of the two gradients of the original cells. Note that the complexity of
the weight and removal criterion algorithms is linear in number of darts of cn(d).

12.3.3.3 External and Internal Contrasts

This method is based on the segmentation algorithm proposed by Felzenszwalb and
Huttenlocher in [17, 18] which uses a criterion based on intensity differences be-
tween neighboring pixels in 2D images. In the original work, authors used region
adjacency graphs to represent the image partition. In [15] we transposed this method
for topological maps and extended it to 3D, but as with the previous criteria, we can
extend this criterion in any dimension thanks to the topological maps.

To define this criterion, we associate with each region an internal contrast, called
int, which is the minimal gray level difference between two adjacent image elements
of the region. We also associate an external contrast (called ext) with each (n − 1)-
cell c, which is the minimal value for each inter-element i belonging to c of the
absolute difference of the gray level of the two image elements around i. These
contrasts are initialized during the construction of the topological map.

Thanks to these two values, we can define the weight function given in Algo-
rithm 7 which is equal to the external contrast of the considered (n − 1)-cell.

Algorithm 7: Weight function based on contrasts
Input: A dart d of an nD topological map.
Result: The weight of the removal of cn−1(d).

return cn−1(d).ext;

According to the original work of Felzenszwalb and Huttenlocher [17, 18], the
removal criterion given in Algorithm 8 returns true if the external contrast of the
considered (n − 1)-cell is smaller than the minimal internal contrast of the two
incident regions. These two internal contrasts are weighted by a threshold function f

allowing the user to control the degree to which the external variation can actually
be larger than the internal variations. We can use any defined positive function for f .
In practice, we use the same function than the one proposed by the authors of the
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original method: f (r) = k/|r| with |r| the size of region r (i.e., its number of image
elements), and k a constant defined by the user and allowing to tune the algorithm.

Algorithm 8: Removal criterion based on contrasts
Input: A dart d of an nD topological map;

A threshold function f .
Result: true iff cn−1(d) must be removed.

r1 ← region(d); r2 ← region(βn(d));
return cn−1(d).ext ≤ min(r1.int + f (r1), r2.int + f (r2));

The two algorithms have a constant time complexity since we have a direct access
to all the information. Moreover, when two regions are merged in region r during
the symbolic merging, it is proved in [17] that the internal contrast of r is equal to
the external contrast of the removed cell, while there is no modification on external
contrasts. Thus, we can update the contrast in constant time during the symbolic
merging.

12.3.3.4 Size of Regions

We present now the last criterion which illustrates one more time the interest of
our generic approach. Indeed, thanks to topological maps, we can use different cells
and associate different type of information with these cells, but we can also mix
colorimetric criteria and geometrical ones. To illustrate this possibility, we present
a criterion which mixes the size or regions and the range of gray levels given in
Sect. 12.3.3.1. Thanks to these two pieces of information, the proposed criterion
allows removing all the small regions (i.e., regions with size smaller than a given
threshold) by merging them to the closer regions in their neighborhood (closer in
the sense of range of gray levels).

For the weigh function, we use the function already given in Algorithm 3 based
on the distance between the ranges of the two regions, and the range of the region
after the union. This allows to start processing the cn−1(d) cells that separate closer
regions.

For the removal criteria, we use Algorithm 9 which do not use range of gray
levels, but which is based on region sizes. This criterion returns true if one of the
two regions incident to the considered (n− 1)-cell is smaller than a given threshold.
Thanks to this criterion, we ensure that at the end of the process, all the regions have
their size greater than the threshold. As we will see in our experiments, this process
can be used as post-processing step to remove small regions that are often due to
noise in the original image.

The range of gray levels and the size of regions can be computed during the topo-
logical map extraction, and can both be updated in constant time after the merging
of two regions during the symbolic merging.
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Algorithm 9: Removal criterion based on sizes
Input: A dart d of an nD topological map;

A threshold τ .
Result: true iff cn−1(d) must be removed.

r1 ← region(d); r2 ← region(βn(d));
return size(r1) < τ or size(r2) < τ ;

12.4 Betti Numbers and Topological Criteria

We presented a generic segmentation algorithm that is parametrized by two func-
tions weight, and criterion. The algorithm controls the symbolic merging step of
the global merge operation to produce the optimal segmentation of the image. We
also introduced several criteria based on intensity values of the image, or on simple
geometrical property like the region size. While such kind of criteria are commonly
used to define segmentation algorithm, topological features are equally important to
retrieve useful information from the image segmentation. The presence of a cavity in
a 2D region representing a plain object might indicate of a defect in the production
factory. Tunnels in a 3D region might be an indication of a segmentation error if, for
instance, the segmented object is known for not having any. Thus, we want to define
criteria that account for topological features, and that can be used in conjunction
with geometric or colorimetric criteria.

In computational topology, topological invariants characterize some of the topo-
logical feature we want to take into account. One of the most well known invariants
is the Euler characteristic χ of a 2D surface which is linked to the genus of the sur-
face. The genus allows to discriminate between sphere-like surfaces and torus-like
surfaces. Definition 10, found in [31], defines the value of the Euler characteristic as
the alternating sum of number of cells for cellular complexes. For instance, in 2D,
the Euler characteristic is equal to the sum of the number of faces and the number
of vertices minus the number of edges.

Definition 10 The Euler characteristic χ(r) of a region r in an nD space is defined
as: χ(r) = ∑n

i=0(−1)i#ci , with #ci is the number of i-cells belonging to r .

While the Euler characteristic allows to uniquely qualify a topological property
for 2D surfaces, it is not the same for 3D volumes like regions in a 3D topological
map. Other invariants are, for instance, Betti numbers that express some topological
features like the number of cavities or the number of tunnels of a region, and work
both in 2D and 3D.
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Fig. 12.10 Example of Betti numbers. (a) In 2D for region r1: b0 = 1, b1 = 1; (b) In 3D: b0 = 1,
b1 = 3, b2 = 2

12.4.1 Betti Numbers

In computational topology, Betti numbers are the rank of the homology group gen-
erators, an advanced topological invariant. From a practical point of view, Betti
numbers of an object represent the number of holes in each dimension. The first
Betti number, noted b0, counts connected components of the object. In 2D, the sec-
ond Betti number, b1 counts the number of cavities in the object. In 3D, the second
Betti number, b1 counts tunnels and the third Betti number, b2 is equal to the number
of cavities of the object. For closed oriented nD objects, as regions in a 2D or 3D
image, Betti numbers bk with k > n are equal to zero. For instance, non-zero Betti
numbers of the 2D region r1 in Fig. 12.10(a) are b0 = 1 and b1 = 1 and the non-zero
Betti numbers of the 3D object presented in Fig. 12.10(b) are b0 = 1, b1 = 3 and
b2 = 2.

Definition 11 of [31], establishes a relation between Betti numbers and the Euler
characteristic of an object. The relation gives an alternative approach to compute the
Euler characteristic.

Definition 11 The Euler characteristic χ(r) of a region r in nD is defined as the
alternating sum of Betti numbers: χ(r) = ∑n

i←0(−1)ibi(r), where the bi(r) are the
Betti numbers of region r .

Computing Betti numbers allows to use the number of connected components,
the number of tunnels (in 3D), or the number of cavities to serve as criteria during a
segmentation step. In the following sections, we present how Betti numbers can be
computed in topological maps and how they can be used as segmentation criteria.

12.4.2 Computation Algorithms Using Topological Maps

In this section, we present the computation of Betti numbers using information pro-
vided by the topological map representing an image partition. We avoid the complex
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computation of homology group generators as we only require the rank of these
groups. The goal is to compute Betti numbers in 2D and 3D image partitions us-
ing the practical definition of Betti numbers. Thus, depending on the dimension of
the topological map, we count the number of connected components, the number of
tunnels, and the number of cavities to obtain the Betti numbers.

In the following, the computation algorithms of Betti numbers of region r of
topological map M are explained. First, we detail the algorithms in the 2D case.
Second, we present the modifications needed to handle 3D image partitions.

12.4.2.1 Computation of Betti Numbers in 2D Image Partition

The number of connected components of region r in a 2D image partition is equal
to the first Betti number b0(r). By definition of topological maps, a region is a
4-connected set of pixels. Thus, each region has only one connected component.
The first Betti number is constant and equal to one: b0(r) = 1 for all region r .

The number of cavities of a region r in a 2D image partition is equal to the second
Betti number b1(r). Note that the set of enclosed regions of region r fills the cavities
of region r , and each 8-connected component of the enclosed regions fills exactly
one cavity of region r . Counting the number of connected components of enclosed
regions allows to retrieve the number of cavities, and thus the second Betti number.
In the topological map framework, a tree of region represents the enclosed relation.

The tree of regions is organized so that each connected component Renclosed of
regions enclosed in a region r is represented in the tree by a representative region
which is in direct relation with r . For instance, r has a direct enclosed relation
with ri ∈ Renclosed , and the other regions within Renclosed \ ri can be retrieved using
the connected component relation. Thus, in a 2D topological map, the second Betti
number b1(r) of region r is obtained by counting the number of regions having a
direct enclosed relation with r .

12.4.2.2 Computation of Betti Numbers in 3D Image Partition

There are analogies between the definition of the two first Betti numbers in 2D
and the definition of the first and third Betti numbers in 3D. By definition of a 3D
topological map, regions are 6-connected sets of voxels. Thus, as in 2D, there is
only one connected component for each region implying that the first Betti number
is constant and equal to one: b0(r) = 1 for any region r .

The third Betti number b2(r) counts the number of cavities of a region r follow-
ing the same principle as the second Betti number in a 2D topological map. The 3D
region tree represents the enclosed relation, and regions enclosed within region r

fill up the cavities of r . The tree of regions is organized as the tree of region in a 2D
topological map. Thus, in a 3D topological map, counting the number of regions in
direct enclosed relation with region r gives b2(r), the third Betti number of region r .



12 Combinatorial Maps for Image Segmentation 381

12.4.2.3 Computation of the Second Betti Number in 3D Image Partition

In 3D, the second Betti number b1(r) counts the number of tunnels of region r . As
there is no simple way to determine the number of tunnels of a region in 3D topolog-
ical maps, we use the relation between the Betti numbers and the Euler characteristic
given by Definition 11.

The computation of the Euler characteristic using the alternated sum of volumes,
faces, edges, and vertices is only valid if the volume is represented by a cellular
complex composed of i-cells homeomorphic to i-balls. As the topological map is
not a full cellular complex since it only represents cells that belong to the border
of the regions of the partition, the represented cells of a region do not satisfy the
prerequisite for direct computation of χ using Definition 10.

In [12], the authors present the computation of the sum of Euler characteristics
of each border of region r represented by a 3D topological map. We call this sum
Euler characteristic of the border of region r denoted χ ′(r). The computation of
the alternating sum of cells belonging to the border of a region is possible since the
topological map represents all cells belonging to the border of each region.

In [16], the authors define the notion of implicit cells that allows to convert a
region represented in a 3D topological map as a cellular complex. Using the fact that
the regions in topological maps are composed of only one connected component of
voxels, the authors prove Proposition 1 which gives a relation between χ and χ ′ for
region r represented by a 3D topological map.

Proposition 1 The Euler characteristic χ(r) is linked to the Euler characteristic of
the border χ ′(r) by the relation χ(r) = χ ′(r)/2 with r – a region of a 3D topological
map.

In Proposition 2, we use Definition 11 and Proposition 1 to obtain the second
Betti number of region r of a 3D topological map as a function of the Euler charac-
teristic of the border of r , the number of connected components of r , and the number
of cavities of r . The complete proof of Proposition 2 can be found in [16].

Proposition 2 In a 3D topological map, the second Betti number b1(r) of region r

is given by b1(r) = b0(r) + b2(r) − χ ′(r)/2.

We have defined the computation formulas of Betti numbers for regions repre-
sented by 2D and 3D topological maps. But these formulas do not allow to compute
the Betti numbers for a set of regions as the ones defined during the segmentation
process in the symbolic step of the global merging algorithm. To propose such a fea-
ture, we introduce in Sect. 12.4.3 the incremental computation algorithms of Betti
numbers.
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12.4.3 Incremental Computation Algorithms

In Sect. 12.4.2, we have defined simple formulas that allow to compute the Betti
numbers of any region in 2D and 3D topological maps. To use Betti numbers as
topological criteria during segmentation operation, we need incremental computa-
tion algorithms that efficiently update Betti numbers during merge operations.

Symbolic regions are a composition of regions merged in a same disjoint-set
of regions during the symbolic step of the global merging algorithm. Incremental
computation algorithms have to handle symbolic regions as if they already had been
merged together. We use special border coverage algorithms to this purpose remov-
ing the need to take a special care of such configurations.

In 2D and 3D image partitions represented by topological maps, the number of
connected components per region is constant and equals to one. The value of the
first Betti number b0(r) never changes. The second Betti number in 2D and the third
Betti number in 3D count the cavities of the region. In Sect. 12.4.3.1, we propose
an incremental approach that updates the number of cavities during the merging of
two regions from the symbolic merge step. In Sect. 12.4.2.3, the number of tun-
nels in a 3D image partition represented by a topological map cannot be obtained
directly. To overcome this issue, we give in Sect. 12.4.3.2 algorithms used to incre-
mentally compute the Euler characteristic of the border, the number of connected
components, and the number of cavities so that we can use the formula provided
by Proposition 2 linking these values to the value of the second Betti number in 3D
topological maps.

12.4.3.1 Incremental Computation of the Number of Cavities

The incremental computation of the number of cavities in a topological map during
the merging of two regions r1 and r2 consists in computing the number of connected
components of the enclosed regions after the merge which is the number of internal
borders of a region. Let region r1 and region r2 be adjacent. In the following, we
suppose that region r1 is not enclosed in region r2. This leads to three possible
configurations (we can assume this because if it is not the case we only have to
swap the notations of r1 and r2):

1. Merging r1 and r2 does not change the number of cavities;
2. Merging r1 and r2 removes a connected component of enclosed region, if r2 fills

completely a cavity of r1;
3. Merging r1 and r2 adds new connected components of enclosed regions (either

by surrounding new components of enclosed regions or splitting an existing con-
nected component into several chunks).

The number of components of the border of a region is linked to the number of
cavities: as there is only one connected component of regions, the number of cavities
is equal to the number of borders minus one, the external border. To compute the
changes in the number of borders, we use Proposition 3 proved for the 3D case in
[16] and also valid in 2D. In the proposition, k is the number of new internal borders.



12 Combinatorial Maps for Image Segmentation 383

Fig. 12.11 Example of inner
cells in a 2D topological map.
The inner cells of the union of
regions r1 ∪ r2 are the edges
e1, e2, e3, and the vertex 4.
Vertices 1, 2, 3, and 5 belong
to the boundary of the inner
border and thus are not
qualified as inner cells

Proposition 3 Let r1 and r2 be two adjacent regions such that r1 < r2. We have
#borders(r1 ∪ r2) = #borders(r1) + #borders(r2) + k − 2, where k is the number
of borders containing part of the external border of r2 and that are not between r1
and r2.

We have now a formula linking the number of cavities of a region with the num-
ber of borders of the union of two regions. Let us details the algorithm that we use
to effectively compute the number of new borders. First, we define the notion of
inner border of two regions r1 and r2 as the border composed by the cells that lies
between r1 and r2. We implement traversal algorithms allowing to run through darts
of the border ignoring inner borders. That algorithm is a slightly modified version
of the classical border traversing algorithm with the exception that if the next dart to
be traversed belongs to an inner border, we ignore the corresponding cell (an edge
in 2D), and proceed with the next suitable cell (the next non-inner edge around the
vertex in 2D). The principle is to cover the border as if region r1 and r2 are merged.

An example presenting inner cells in a 2D topological map is presented in
Fig. 12.11. The border traversing algorithm, starting in the top left corner of r1,
and going to the right comes to vertex 1. The classical coverage algorithm would
go through the edge e1. Since we want to cover the border as if r1 ∪ r2 is a unique
region, the coverage algorithm proceeds with the next edge that is not marked as
inner. Thus the next edge is the one leading to the top right corner.

Now, we implement the border counting mechanism which allows to compute
the number of borders of the union of two adjacent regions r1 and r2. The algorithm
first runs through the external border of r1 and marks as inner and processed each
dart d such as region(βn(d)) equals r2. Then, we count the number of connected
components of cells that contains a dart of r1 without traversing any inner border.
Using the previously computed and stored value for the number of borders of re-
gion r1 and region r2, the algorithm returns the number of borders of the union of
r1 and r2.

Figure 12.12 illustrates the incremental border counting algorithm during the
evaluation of the union of regions r1 ∪ r2 on a 2D topological map. In the figure, the
border counting algorithm, starting from a dart belonging to region r2 and edge e1
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Fig. 12.12 Illustration of the incremental computation of the number of cavities for the union of
regions r1 ∪ r2. Edges e1 and e2 are inner cells for r1 ∪ r2. For the purpose of this example, we
suppose the starting dart belongs to region r2 and to the edge e1. The two borders discovered by the
algorithm are the internal border composed of edges e3, e4, e5, and the external border composed
of edges e6 through e10

allows to discover two borders. The new internal border is surrounding regions r3
and r4 and the external border surrounding regions r1 and r2.

Now we can use this algorithm to compute incrementally the number of cavities
of two regions that are going to be merged. The differences between the number
of cavities in 2D regions and the number of cavities in 3D regions are the cells
used to describe the border of a region. In 2D topological maps, border cells are
vertices and edges whereas in 3D the border cells are vertices, edges, and faces.
The core algorithm does not change except for the orbit used in the border traversal
algorithms. In the 2D case, the orbit 〈β1〉 gives the darts of the border of a region
and the involution β2 is used to retrieve the region on the other side of the border.
In the 3D case, the orbit 〈β1, β2〉 describes the border of a region and a dart of the
region on the other side of the border is obtained by the involution β3.

The time complexity of the incremental computation of the number of cavities of
the union of regions r1 ∪ r2 depends on the number of darts of the external border
of r2 and the number of darts of the border of r1 in contact with region r2.

12.4.3.2 Incremental Computation of the Number of Tunnels in 3D

The incremental computation of the number of tunnels of a region r represented in
a 3D topological map consists in computing incrementally each member of the for-
mula presented in Proposition 2. The number of connected components is constant,
and since the number of cavities can be obtained incrementally using the method
proposed in Sect. 12.4.3.1, we detail here the incremental computation of the Euler
characteristic of the border of the union of r1 and r2, denoted χ ′(r1 ∪ r2).

In a 3D topological map, a border is a surface composed of faces, edges, and
vertices. There may be one or several surfaces between two adjacent regions; these
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Fig. 12.13 Illustration of the incremental computation of the number of tunnels for the union of
regions r1 ∪ r2 in a 3D topological map. Edges drawn in gray show the shape of the region. The
edges drawn in black are actual cells represented in the topological map. The faces drawn in dark
gray are inner faces, χ(inner(r1, r2)) is equal to two (two faces). The values of χ ′(r1) and χ ′(r2)

are equal to two (two vertices, three edges, and three faces). The resulting value for χ ′(r1 ∪ r2) is
equal to zero which corresponds to the expected value for a torus surface. The number of tunnels
obtained after using the formula is one

are the inner surfaces. We call inner cells the cells that entirely belong to the inner
surfaces: that is cells such that the region of each dart representing the cell is either
r1 or r2. Proposition 4 gives an incremental computation formula to obtain the Euler
characteristic of the border of the union of two regions r1 and r2 from the Euler
characteristic of the border of the two regions and the Euler characteristic of the
inner surfaces between the two regions. Proof of Proposition 4 is available in [16].

Proposition 4 χ ′(r1 ∪ r2) = χ ′(r1) + χ ′(r2) − 2χ(inner(r1, r2)).

Figure 12.13 presents an example of incremental computation of the number of
tunnels for the union of regions r1 ∪ r2 detailing the incremental computation of χ ′.
The resulting region has one tunnel and zero cavity.

We can ignore cells that partially belong to inner surfaces: they form the border
of the inner surfaces, and there is an equal number of edges and vertices. Since we
are only interested in the Euler characteristic and not in the actual number of cells
used to represent the union of regions r1 and r2 border, we can ignore these cells:
the Euler characteristic of the border of inner surfaces is always zero.

The algorithm that computes incrementally χ ′(r1 ∪ r2) for the union of two re-
gions r1 and r2 is defined as follow. The prerequisite for the incremental computa-
tion of χ ′ is to initialize the χ ′ value for each region in the first partition represented
by a topological map. This is done either by counting cells and using the algorithm
proposed in Sect. 12.4.2, or by using the incremental approach during the extraction
of the topological map as presented in [12]. The χ ′ value is stored for each region.

The incremental algorithm is divided in two processing loops. In the first loop,
we run through darts of the surface of r1 that are in contact with r2. Then each
dart belonging to an inner face is marked accordingly. We also count the number of
inner faces that are discovered. In the second loop, we count the number of the inner
vertices and the number of the inner edges. Using the fact that the darts belonging to
inner faces are marked, we conclude that a cell is inner if all darts used to represent
the cell are marked as inner. In the final step, we compute the Euler characteristic of
the inner border. We retrieve the χ ′ value for both region r1 and region r2, and we
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use the formula from Proposition 4 to obtain the Euler characteristic of the border
of the union of the two regions around the dart d . Then, with the incrementally
computed value for the number of cavities, we use the formula from Proposition 2
to obtain the number of tunnels.

The algorithm has a linear time complexity with the number of darts belonging to
〈β1, β2〉(d) (a subset of the darts used to represent cells of the border of region r1).
In fact, each dart of the orbit is processed at most four times during the course of
the algorithm. Darts belonging to the inner cells of r1 ∪ r2 are also covered during
the cell counting part of the algorithm, but their number is linearly proportional to
the number of darts in the orbit.

12.4.4 Implementation of Topological Criteria in the Segmentation

The incremental computation of Betti numbers allows to anticipate the number of
tunnels and cavities during a region merging process. Thus, we can use the number
of cavities, or the number of tunnels as a removal criterion during the segmenta-
tion.

Weight functions can be defined according to topological properties, for instance,
one can prioritize cells whose removal do not change the topology of the regions.
However, due to region merging, a cell removal that does not change topological
features such as the number of cavities in a simple two regions merging might do
so after several other removals. It seems unlikely that such a weight function has
any interest for the segmentation part, and thus we keep weight functions given in
Sect. 12.3.3 based on intensity values of the image.

We propose to define two new criteria that handle topological properties like:

1. Forbidding topological changes for regions;
2. Reducing the number of cavities.

These criteria can be mixed with other criteria such as the ones presented in
Sect. 12.3.3 to control some colorimetric properties of the resulting regions. In such
a case, the idea is to check successively the different criteria and allowing the merge
if all criteria return a true value.

The first criterion, known as constant topology criterion and given in Algo-
rithm 10, returns true if all the Betti numbers remain constant. That is, if each Betti
number of the resulting region is equal to the sum of the same Betti numbers of
the two initial regions (except for the number of connected components which is
constant).

The second criterion, given in Algorithm 11, returns true if the total number of
cavities is reduced. That is if the number of cavities of the resulting region is smaller
than the sum of the numbers of cavities of the initial regions.

Since we have a direct access to each information associated with darts
(region(b), βn(d)) and to each Betti number (bi(r)), the two algorithms have a
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Algorithm 10: Removal criterion based on constant Betti numbers
Input: A dart d of an nD topological map.
Result: true iff cn−1(d) must be removed.

r1 ← region(d); r2 ← region(βn(d));
for i ← 1 to n do

b ← compute incrementally bi for r1 ∪ r2;
if b 	= bi(r1) + bi(r2) then return false;

return true;

Algorithm 11: Removal criterion based on decreasing number of cavities
Input: A dart d of a 3D topological map.
Result: true iff c2(d) must be removed.

r1 ← region(d); r2 ← region(β3(d));
C ← compute incrementally the number of cavities of r1 ∪ r2;
return C ≤ #cavities(r1) + #cavities(r2);

time complexity equal to the time complexity of the incremental computation algo-
rithms which are linearly proportional to the number of darts used to represent the
cells of the border of the regions.

The incremental computation method implies that, if two regions r1 and r2 are
merged during the symbolic merging, we update in constant time the Betti numbers.
This is achieved by storing the values computed during the evaluation of the topo-
logical criteria and using them to update the values of the symbolic region r1 ∪ r2 if
the two regions are merged.

12.5 Experimental Results

We present some segmentation results obtained using the segmentation algorithm
proposed in the previous section. First, we present some results obtained using dif-
ferent criteria with the generic segmentation algorithm and topological maps. Then,
we introduce topological constraints inside the segmentation algorithm to obtain
partitions that constraint the number of cavities or tunnels.

12.5.1 Generic Criteria

We show some segmentation results obtained using the different criteria presented in
Sect. 12.3.3. Figure 12.14 shows the segmentation of a classical 2D image using the



388 G. Damiand and A. Dupas

Fig. 12.14 Sample partitions using the range and contrast criteria. (a) Original “fishing boat” im-
age; (b) Partition of the “fishing boat” image using the range criterion (range = 100); (c) Partition
of the “fishing boat” image using the range criterion with a random weight function (range = 100);
(d) Slice of a simulated body PET scan (luminosity and contrast have been edited); (e) Slice of the
simulated PET 3D image segmented using the contrast criterion with the removal of small regions
(k = 2500, minimum size for regions 500 voxels)

Fig. 12.15 Partitions obtained from a 2D image using the small region criterion. (a) Original
image; (b) Partition obtained using the range criterion with a threshold of 50; there are many small
regions; (c) Partition obtained from the previous partition, by using the segmentation algorithm
with the small region threshold set to 25. There are no more small regions of size less than 25 in
the partition

intensity range criterion, and the segmentation of simulated body positron emission
tomography (PET) 3D image using the contrast criterion. We also apply removal of
small regions to obtain a cleaner partition. In Fig. 12.14(c), we process edges in a
random order, that is without a meaningful weight function. The obtained partition
has more regions and some regions, which have a similar intensity (like background
regions) cannot be merged together due to the intensity range constraint.

The small region criterion allows removing small regions that do not appear to
be relevant to the obtained partition. An example of the use of such a criterion is
show in Fig. 12.15 where the initial partition Fig. 12.15(b), obtained using the range
criterion, contains lots of small regions. Using the small region removal criterion in
conjunction with a weight function that orders the edges by the intensity difference
between the two adjacent regions, we obtain the partition presented Fig. 12.15(c)
where the regions are larger.
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Fig. 12.16 Segmentation of a 2D image using a topological constraint to limit the number of
cavities. (a) Original image; (b) Initial partition obtained with a range criterion (threshold set to
100); (c) Partition obtained from (b) if the number of cavities is constant with a range threshold set
to 150; (d) Partition obtained from (b) if the number of cavities decreases with a range threshold
set to 150

Fig. 12.17 Segmentation of a 3D object using a topological constraint to limit the number of
tunnels. (a) Original partition of the object without a topological constraint on the number of
tunnels per region, the region has two tunnels; (b) Partition obtained if the number of tunnels is
minimized: the same object is represented by three regions without a tunnel; (c) Partition obtained
if the allowed number of tunnels does not excess one: the same object is represented by two regions,
one having a tunnel while the other has none

12.5.2 Constraint on Betti Numbers

In Fig. 12.16, we show the impact of topological constraints applied to a segmenta-
tion of the 2D image presented in Fig. 12.16(a). We use the range criterion to obtain
an initial segmentation shown in Fig. 12.16(b). In this segmentation there are re-
gions with cavities. Starting with the initial partition, increasing the range threshold,
and constraining the number of cavities by a constant, we obtain the segmentation
proposed in Fig. 12.16(c). If the cavity count is allowed to decrease from the cavity
count in the initial partition, the result is slightly different, as shown in Fig. 12.16(d).
Some objects disappeared as the regions representing them are merged with the
background. Moreover, some small cavities, like dots in the dice, are removed while
they are preserved if the number of cavities remains constant.

Figure 12.17 illustrates the results obtained by a segmentation algorithm that
controls the number of tunnels in objects. Without topological constraint, the seg-
mentation using the intensity range criteria produces a 2-torus (a region with two
tunnels) as seen in Fig. 12.17(a). If no tunnels are allowed, the segmentation re-
sult uses three regions to represent the same object, none of them having a tunnel
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(Fig. 12.17(b)). Finally, if one tunnel per region is allowed, the segmentation result
uses two regions to represent the object: one of them has a tunnel and the other one
has none. This is due to the ordering of the border of the segmentation algorithm
that merges the regions (Fig. 12.17(c)).

12.6 Open Problems and Discussion

In this chapter, we presented an efficient and generic image segmentation algorithm
based on topological maps. The algorithm is generic because it is defined in any
dimension, and it is controlled by two functions that change its behavior. In order
to specify the segmentation process, we define several segmentation criteria using
different kind of information associated with the regions or the cells represented
by topological maps. A method of computation of topological invariants, the Betti
numbers, based on the complete representation of cells and the relationship between
them in topological maps, is presented. We introduce new topological criteria using
Betti numbers that control the number of cavities and tunnels in regions of an im-
age partition. This process is an example of topological control during image seg-
mentation. We provide some experiments of 2D and 3D image segmentation using
different criteria to enlighten the use of topological maps for image segmentation.

There are several open problems and possible extensions for image segmenta-
tion using topological maps. From a theoretical point of view, the main issue to
tackle involves the definition of topological maps in any dimension. The problem
is to construct a minimal combinatorial map that describes an nD image partition
into regions. In 2D and 3D, we propose a constructive definition that is proved in
[8, 9]. Starting from a combinatorial map describing all the elements of the image,
the model is refined by successive simplifications using removal operations. The
process produces the minimal map representing the partition of the image. The prin-
cipal difficulty is to guarantee the preservation of all topological information during
the cell removals while obtaining the minimal number of cells in the combinatorial
map. One can directly extend the constructive definition in higher dimensions since
combinatorial maps and removal operations are defined in any dimension. The con-
straints required to preserve all the topological information may also be stated for
any dimension, but guaranteeing that the obtained combinatorial map is minimal,
remains an open problem. This is not an issue for the particular topic of image seg-
mentation since the generic algorithm does also work in non-minimal combinatorial
maps. However, this is not satisfying since two different combinatorial maps may
describe the same partition.

Another theoretical problem is the computation of Betti numbers and their use
as criteria for image segmentation in any dimension. Currently, we only have com-
putation algorithms in case of 2D and 3D topological maps. This issue is related
to the problem of combinatorial balls’ characterization. Actually, Betti numbers are
defined for a cellular complex where each cell is homeomorphic to a topological
ball. As there is no combinatorial way to recognize if a cell is a topological ball,
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there is no easy way to compute Betti numbers. This is also an open problem in
computational topology. In 2D and 3D, we solve this problem by using the Euler
characteristic of each border of regions and the implicit cells, but this solution is not
available in higher dimensions. An extension of this problem is the computation of
other topological invariants such as the homology group generators for regions in a
topological map.

Future works that do not raise theoretical questions might include the develop-
ment of alternative segmentation methods using topological maps. In this work, we
presented a bottom-up segmentation approach that uses the removal operation to
group regions and obtain the final segmentation. Using the split operation, which
divides a region in smaller regions, one can develop a top-down approach. Starting
with the whole image in a unique region, the final partition is obtained by succes-
sive splits of regions. New criteria based on region properties should be developed
to support the top-down approach as the method raises new issues. One aspect of
such criteria is to define how regions are split from the geometrical and topological
point of views. An example of topological criterion we envision is the split of a re-
gion based on the number of tunnels or cavities. An initial idea is to split a region
to remove a tunnel or a cavity from that region: this criteria might gain from the
computation of the homology group generators to guide the split operation. Another
idea is to split a region with multiple cavities such as each of the resulting regions
has exactly one cavity.

To broaden the use of topological maps in computer vision related works, we
also want to tackle real world image segmentation issues. In preliminary experi-
ments, we obtained interesting results regarding the use of Betti numbers as criteria
for image segmentation. Using image segmentation with topological maps, in con-
junction with topological criteria like constraints on Betti numbers, could ease the
development of image segmentation tools. This should be fully demonstrated by
applying image segmentation with topological maps to real use cases and compare
results to existing approaches. Experts from the field should be brought along to de-
fine the goals of the segmentation tool and evaluate the results. New criteria, based
on different parameters should also be introduced and mixed with the existing ones
to produce better results.
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Chapter 13
Multigrid Convergence of Discrete
Geometric Estimators

David Coeurjolly, Jacques-Olivier Lachaud, and Tristan Roussillon

Abstract The analysis of digital shapes requires tools to determine accurately their
geometric characteristics. Their boundary is by essence discrete and is seen by con-
tinuous geometry as a jagged continuous curve, either straight or not derivable.
Discrete geometric estimators are specific tools designed to determine geometric
information on such curves. We present here global geometric estimators of area,
length, moments, as well as local geometric estimators of tangent and curvature.
We further study their multigrid convergence, a fundamental property which guar-
antees that the estimation tends toward the exact one as the sampling resolution gets
finer and finer. Known theorems on multigrid convergence are summarized. A rep-
resentative subsets of estimators have been implemented in a common framework
(the library DGtal), and have been experimentally evaluated for several classes of
shapes. Thus, the interested users have all the information for choosing the best
adapted estimators to their applications, and readily dispose of an efficient imple-
mentation.

13.1 Introduction

Since early developments in image processing and image understanding, many tools
have been developed in order to quantify the geometry of a digital shape. Such
digital shapes can be defined for instance either from a segmentation process as a
subset of image pixels sharing the same colorimetric information, or as the result of
the digitization of a continuous object.
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In many applications, it is important to have a geometrical quantification or de-
scription from measurements which are invariant under a specific class of transforms
(rotation, translation, and scaling) or which preserve important geometrical features
(characteristic points, local convexity, etc.). In this context, we usually consider dif-
ferential or integral quantities evaluated either on the digital shape or its boundary.
Beside such type of quantification, we can distinguish two classes of geometrical de-
scriptors. The first class corresponds to global descriptors which associate a global
numerical quantity with each shape. In this class, we have arc length or perimeter es-
timators of digital shape boundaries, but also integral quantities such as geometrical
moments approximated on the digital shape. The second class contains local esti-
mators which usually associate a numerical quantity with each point of the shape.
For example, curvature or normal vector estimators at boundary points belong to
this class.

When defining an algorithm that evaluates such descriptors on digital shape, so
called estimator, the evaluation of such estimator accuracy may be challenging. In
the literature, several approaches have been proposed. The first one is application
driven and consists in validating the estimators within a complete shape description
pipeline. For instance, one can evaluate a curvature estimator in a global character-
istic points estimation framework of contours.

One can also evaluate the accuracy of the estimator in terms of expected prop-
erties. For instance, we can evaluate the stability of a curvature estimator when
rotations of input shapes are given.

A more formal evaluation process consists in comparing the estimated quantities
with exact Euclidean values on a family of continuous shapes in a multigrid asymp-
totic framework. More precisely, let X be a family of compact simply connected
subsets of R2 with continuous curvature fields. We denote by D(X,h) the Gauss
digitization of X ∈ X with grid step h, seen as a union of pixels of side h in R

2.
For sake of clarity, we shorten in the sequel D(X,h) into D and denote its com-
plementary by D̄. Moreover, let us assume that D contains at least one pixel, i.e.
|D| ≥ 1.

In this multigrid framework, comparing the estimated quantity to the expected
Euclidean one when h tends to zero is called the multigrid convergence analysis of
an estimator [35]. Indeed, at a given resolution, infinitely many shapes have the same
digitization, which hampers the objective comparison of estimators. For estimators
of local geometric quantities like tangent or curvature, few results exist. We may
quote some convergence results for tangent estimators [21, 42, 51]. And there is no
correct convergence results for curvature as far as we know.

In this chapter, we use this multigrid comparison framework in order to review
and evaluate existing local and global estimators on digital shapes. A important con-
tribution is to have considered a large set of estimators in a unique technical frame-
work: the DGtal open-source library [18]. DGtal is a generic open source library for
Digital Geometry programming for which the main objective is to structure different
developments from the digital geometry and topology community. For the purpose
of this chapter, we use DGtal to represent multigrid digital objects and shapes, to
define the geometric estimators and we provide ways to compare estimated values
to expected Euclidean ones.
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The chapter is organized as follows: Sect. 13.2 focuses on global estimators (area,
moments and arc length) and Sects. 13.3, 13.4, and 13.5 are devoted to local esti-
mators, tangent, and curvature, respectively. In all cases, each section starts with a
formal definition of the multigrid convergence of an estimator. In Sect. 13.6, we dis-
cuss on implementation details of both the estimator and the comparative evaluation
framework.

13.2 Global Estimators

13.2.1 Multigrid Convergence for Global Estimators

Multigrid convergence is an interesting way of relating digital and Euclidean ge-
ometries. The idea is to ask for discrete geometric estimations to converge toward
the corresponding Euclidean quantity when considering finer and finer shape digi-
tizations (here, Gauss digitization). The following definition is taken from Defini-
tion 2.10 of [35].

Definition 1 (Multigrid convergence for global geometric quantities) A discrete
geometric estimator Ê of some geometric quantity E is multigrid convergent for a
family of shapes X and a digitization process D iff for all shape X ∈ X, there exists a
grid step hX > 0 such that the estimate Ê(D(X,h),h) is defined for all 0 < h < hX

and ∣∣Ê(
D(X,h),h

) − E(X)
∣∣ ≤ τX(h),

where τX : R+ → R
+ is with null limit at 0. This function is the speed of conver-

gence of the estimator.

The convergence of most estimators depends on the family of shapes in the Eu-
clidean plane that is considered. We therefore introduce several standard families
that will be used to define the range of validity of multigrid convergence theorems.
A curve is said to be Cn if it has continuous n-th order derivatives.

• The family of all finite convex shapes in the Euclidean plane is denoted with X
C .

• The family of convex sets whose boundary is a Cn arc with positive curvature
everywhere is denoted by X

n-SC .
• The family of all planar piecewise n-smooth convex set is denoted with X

n-PW-SC .
These sets are convex sets whose boundary consists of a finite number of Cn

arcs with positive curvature everywhere except at arc endpoints. Clearly X
n-SC

�

X
n-PW-SC .

For experiments, we will use shapes that are representative of these families.
Several representative shapes digitized at different scales are illustrated in Fig. 13.1.
They will be used for the upcoming experiments on global and local geometric
estimators.
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Fig. 13.1 Digitization at two different grid steps (h = 1 or h = 0.1) of tests shapes: (a–d) the
square and triangle are in X

C ; the circle (e, f) and the ellipse (g, h) belongs to X
3-SC; the flower

(i, j), and the “accflower” (k, l) are in X
3-PW-SC. All shapes have diameter 20

13.2.2 Area and Moments

Designing a multigrid convergent estimator of the area is fairly simple. We define
the area estimator by counting Â as

Â(Y,h) = h2
∑

(i,j)∈Y

1, (13.1)

where Y is an arbitrary digital shape and h the grid step. This estimator just counts
the number of h-grid square in Y and normalizes the result with the area of each
grid square.

As reported in [36], Gauss and Dirichlet knew already that this area estimator
was multigrid convergent for finite convex shape (XC ) with a speed O(l · h), where

l is the shape perimeter. Huxley [28] improves the bound to O(h
15
11 (log 1

h
)

47
22 ) for

the family X
3-PW-SC . This simple estimator has thus super-linear convergence for a

rather wide class of shapes.
Klette and Žunić [36] follow the idea of (13.1) to design the discrete (p, q)-

moment estimator m̂p,q , for integers p,q ≥ 0, as follows:

m̂p,q(Y,h) = h2+p+q
∑

(i,j)∈Y

ip · jq. (13.2)

These estimators approximate the (p, q)-moments of a shape X, which are de-
fined as mp,q(X) = ∫∫

X
xpyqdxdy. Their speed of convergence is summed up in

Table 13.1. In a similar way, central moments may be approximated. We refer the
reader to [36] for further details. Note that moments can be used to determine for
instance the center of gravity or the orientation of a shape. Furthermore, several ro-
tational invariant quantities can be obtained as combination of (p, q)-moments. For
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instance, Zernike and Legendre moments widely used in many 2D and 3D shape
indexing and retrieval are linear combination of (p, q)-moments [56, 67]. Hence,
convergence results on (p, q)-moments lead to convergence of Zernike and Legen-
dre moments as well.

The previous estimators require to visit all points of the digital object, and
not only its boundary. The computational complexity of these estimators is thus
O(1/h2). However, a discrete variant of Green theorem allows to compute these
quantities by simply visiting the shape boundary, thus reducing the computational
complexity to O(1/h) for convex shapes. See Lien [47] for a generic discrete Green
theorem framework and Brlek et al. for a digital geometry application [3].

13.2.3 Perimeter and Length Estimators

It is more complex to estimate the perimeter of a digital shape. Indeed, enumerating
the number of grid steps of the digital shape boundary does not lead to a reliable
perimeter estimator. It is called the naive perimeter estimator L̂naive and is defined
as

L̂naive(Y,h) = h
∑

σ∈∂Y

1. (13.3)

This estimator overestimates the shape perimeter. Indeed, it is clear that it always
returns the perimeter of the axis-aligned bounding box of the shape.

Therefore first approaches to length estimation tried to assign different weights
to different local configurations so as to be more precise. The Rosen-Proffitt esti-
mator [59] and BLUE (best linear unbiased) estimator [19] belong to this category.
However it was proved in Tajine and Daurat [66] that all these approaches can never
achieve multigrid convergence, whatever the (finite) number of configurations taken
into account.

More complex approaches are required to achieve convergence. We list below
several of them, which are also experimentally compared (see Fig. 13.2). Most of
them are not only valid for perimeter estimation but also for curve length estimation.

• The DSS length estimator L̂DSS, proposed by Kovalevsky and Fuchs [37], re-
lies on a greedy decomposition of the input digital contour into Digital Straight
Segments (DSS). It starts from a point, then finds the longest DSS starting from
that point. The end point of the DSS defines a new starting point. The process
is repeated till the whole contour has been visited. The DSS end points form a
polygonal line. The length or perimeter of the digital contour is then simply de-
fined as Euclidean length of this polygonal line.

• The MLP length estimator L̂MLP, proposed by Sloboda et al. [65], also relies
on a polygonal approximation of the digital contour. For a given simple digi-
tal shape, the Minimum Length Polygon (MLP) is indeed the shortest Euclidean
curve which separates the interior pixel centers from the exterior pixel centers.
The length is then defined as the perimeter of this curve. Several linear-time al-
gorithms for computing the MLP are available [60, 63].
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Fig. 13.2 Absolute relative error for several length and perimeter estimators. It is clear that the
naive length estimator does not converge. The other estimators (DSS, MLP, FP, ST, λ-MST) present
a multigrid convergence. Note that experimentally the convergence speed for DSS, FP, and ST

on the ball is O(h) while MLP and λ-MST achieve a better bound of O(h
4
3 ). However, on the

boundary of a shape with linear parts, the convergence speed is O(h) for all the estimators except
the naive one

• The FP length estimator L̂FP, proposed in [63], relies on yet another polygonal
approximation of the digital contour. One can see it is a translated version of the
MLP, where convex turns are translated outwards and concave turns are translated
inwards by half-unit diagonal vectors. The advantage is that the polygon vertices
form a subset of the grid points of the input contour.

• Another approach to local length estimation and thus perimeter estimation is to
integrate the tangent estimation along the curve [8, 11] (see also the next section
on tangent estimation). The ST length estimator L̂ST is based on the symmet-
ric tangent while the λ-MST length estimator L̂λ-MST is based on the λ-convex
combination of maximal segments [42]. More precisely, if a grid edge σ has di-
rection vector t(σ ) and estimated unit tangent vector T̂(σ ), these two estimators
are defined as:

L̂ST(Y,h) = h
∑
σ∈∂Y

T̂ST(σ ) · t(σ ),

L̂λ-MST(Y,h) = h
∑

σ∈∂Y

T̂λ-MST(σ ) · t(σ ).
(13.4)

Some experimental evaluation of the multigrid convergence has been carried out
for these estimators and is illustrated in Fig. 13.2. It appears that the perimeter of
shapes with rectilinear boundaries is accurately estimated with any of the presented
length estimators but for the naive one. However, for shapes with sufficiently smooth
boundaries and positive curvature, the MLP and λ-MST have super-linear conver-
gence and should be preferred. Note finally that only DSS, MLP, and λ-MST have
proved multigrid convergence, but the found bounds are not necessarily tight. In
Fig. 13.3, we present computational time for estimators implemented in DGtal re-
lease 0.4 (Naive, BLUE, RosenProffitt, DSS, MLP, FP). Convergence results for ST
and λ-MST have been obtained from ImaGene library [29]. In these graphs, we can
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Fig. 13.3 Computation time for length estimators implemented in DGtal (Naive, BLUE, Rosen-
Proffitt, DSS, MLP, FP). For the sake of clarity, abscissa corresponds to the size of the contour
in number of grid points. Ordinate corresponds to timings in millisecond (Intel Xeon 2.27 GHz,
DGtal 0.4)

observe the linear computational cost of all estimators with respect to the size of
the contours. As expected, local estimators outperform the other ones, but a DSS
based estimator is a good compromise between efficiency and theoretical multigrid
convergence.

13.2.4 Summary

Table 13.1 summarizes multigrid convergence results for estimators of global geo-
metric quantities. It appears that some theoretical bounds are not tight and that some
others are yet to be proved.

13.3 Local Estimators

13.3.1 Multigrid Convergence for Local Estimators

Tangent direction, normal vector, curvature are local geometric quantities along the
shape boundary. Thus, each of them is a function of the shape boundary. However,
the contour of the shape digitization does not define the same domain. Therefore we
cannot directly compare the true geometric function with the estimated geometric
function. We provide below a definition of multigrid convergence for discrete local
estimators. It is neither a parametric definition as in [21] nor a point-wise defini-
tion as the standard multigrid convergence reported in [35]. Furthermore, for the
sake of simplicity, there is no direct mapping between the contour and its digitized
counterpart as proposed in [39]. It is a geometric definition, stating that any digital
point sufficiently close to the point of interest has its estimated geometric quantity
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Table 13.1 Known multigrid convergence for several estimators of global geometric quantities

Quantity Estimator Shape family Convergence speed References

Upper bound Observed

area Â X
C O(h) Gauss, Dirichlet

area Â X
3-PW-SC O(h

15
11 +ε) [28]

moments m̂p,q X
3-PW-SC O(h) [36]

moments m̂p,q X
3-SC O(h

15
11 +ε) [36]

length L̂DSS Convex polygons ≈ 4.5h [37]

length L̂DSS
X

3-PW-SC (unknown) O(h) [37]

length ε-sausage Convex polygons ≈ 5.844h [2]

length L̂ST
X

C (unknown) O(h) [11]

length L̂FP
X

C (unknown) O(h) [63]

length L̂MLP
X

C ≈ 8h [65]

length L̂MLP
X

3-PW-SC O(h) O(h
4
3 ) [65]

length L̂λ-MST
X

3-PW-SC O(h
1
3 ) O(h

4
3 ) [39]

which tends toward the expected local value of the geometric function. This defini-
tion of multigrid convergence imposes shapes with continuous geometric fields. Of
course, one can afterward relax this constraint by splitting the shape boundary into
individual parts where the geometric function is continuous.

Let us recall that X is some family of shapes in the Euclidean plane. We denote
by D(X,h) the Gauss digitization of X ∈ X with grid step h. For any x in the
topological boundary ∂X of X, let Q(X,x) be some local geometric quantity of ∂X

at x. A discrete local estimator Q̂ is a mapping which associates with any digital
contour C, a point y ∈ C and a grid step h, some value in a vector space (e.g., R for
the curvature). We are now in position to define the multigrid-convergence of this
estimator:

Definition 2 The estimator Q̂ is multigrid-convergent for the family X if and
only if, for any X ∈ X, there exists a grid step hX > 0 such that the estimate
Q̂(D(X,h), y,h) is defined for all y ∈ ∂D(X,h) with 0 < h < hX , and for any
x ∈ ∂X,

∀y ∈ ∂D(X,h) with ‖y − x‖1 ≤ h,
∣∣Q̂(

D(X,h), y,h
) − Q(X,x)

∣∣ ≤ τX,x(h),

where τX,x : R+∗ → R
+ has null limit at 0. This function defines the speed of con-

vergence of Q̂ toward Q at point x of ∂X. The convergence is uniform for X when
every τX,x is bounded from above by a function τX independent of x ∈ ∂X with null
limit at 0.

It is worthy to note that, for sufficiently regular shapes (par(r)-regular shapes
[43]), there exists a grid step below which the boundary of the shape digitization has
same topology as the shape boundary ([39], Theorem B.5). Furthermore, these two
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boundaries are very close. Indeed, there exists a grid step below which for any x ∈ X

there is a y ∈ ∂D(X,h) with ‖y − x‖1 ≤ h and conversely for any y ∈ ∂D(X,h),
there is a x ∈ X with ‖y − x‖1 ≤ h [39, Lemma B.9].

Therefore the previous definition of multigrid convergence guarantees that the
estimated local quantity converges toward the true local geometric quantity every-
where along the shape boundary.

13.3.2 Methodology for Experimental Evaluation

When multigrid convergence theorems have been established, we will reference
them and indicate the known convergence rate. We nevertheless carry out an experi-
mental evaluation of many different estimators for two reasons: (1) few convergence
theorems exist for local estimators, and (2) practical error bounds at finite scale are
also important for the end-user.

In the next sections, we apply the following methodology for analyzing estima-
tors:

1. Test shapes. We use the shapes of Fig. 13.1 for the experiments. They are rep-
resentative of the different shape families that we are studying. Indeed, shapes
composed of linear parts, smooth parts and corners, arise naturally in image anal-
ysis. When the tangent field is not continuous (square, triangle), only the average
error is significant.

2. Graphs of estimations with respect to ground truth. We display the graphs of the
estimated values for different estimators (functions Q̂) and the expected graph
(function Q).

3. Error measures for decreasing h. We study the following measures:

εabs(X,y,h) = ∣∣Q(
X,x(y)

) − Q̂
(
D(X,h), y,h

)∣∣
(13.5)

or (when a vector) εabs(X,y,h) = ∣∣det
(
Q

(
X,x(y)

)
, Q̂

(
D(X,h), y,h

))∣∣
(13.6)

εrel(X,y,h) = εabs(X,y,h)

|Q(X,x(y))| (13.7)

εabs(X,h) = 1

#D(X,h)

∑
y∈D(X,h)

εabs(X,y,h) (13.8)

εrel(X,h) = 1

#D(X,h)

∑
y∈D(X,h)

εrel(X,y,h) (13.9)

Here x(·) is a mapping associating to each digitized point a point on the shape
boundary that is close enough (‖y − x(y)‖1 ≤ h). The same mapping is used for
all estimators.

4. When known, computational complexities for computing estimators will be
given. Otherwise, for fair comparisons, we only measure computation times for
estimators implemented in the DGtal library (see Sect. 13.6).
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This methodology allows us to evaluate experimentally the accuracy and multi-
grid convergence properties of discrete local geometric estimators. Section 13.4
studies tangent estimators and Sect. 13.5 studies curvature estimators. Their im-
plementation in a common framework is discussed in Sect. 13.6.

13.4 Tangent

The aim of tangent estimators is to determine what is locally the shape boundary di-
rection. For curves γ (s) (at least C1) defined as functions of a curvilinear abscissa s,
the tangent vector is defined as dγ

ds
, which is a unit vector. The tangent direction φ(s)

is defined as the angle between this unit vector and the x-axis.

13.4.1 Tangent Estimators

Given a digital contour and a digital point, tangent estimators return a unit vector.
For easier view, it is also possible to plot the angle of the tangent vector w.r.t. the
x-axis. It is clear that the grid edge direction (see arrows in Fig. 13.9d for an illustra-
tion) is a very bad tangent estimator, since on any shape in X

1-SC it will have points
with εabs or εrel close to π

2 .
More complex approaches are necessary. Digital tangent estimators have been

thoroughly compared in [41, 42]. They have been compared to continuous ap-
proaches in [15, 16]. We describe below some representative tangent estimators,
which will be compared experimentally.

• A first natural approach is to use a local least-square fit of a polynomial [5, 46].
These techniques define a fixed window-size q . Around the point of interest they
use 2q + 1 samples which are used to find the polynomial of given degree that
best fit these data in the least-square sense. We focus here on low-degree polyno-
mials. The LR tangent estimator T̂LR-q is the linear-regression with the window
size q . The ICIPF tangent estimator T̂ICIPF-q is the implicit parabola fitting of
window size q , made independently on each coordinate. They were found to be
representative of that kind of methods [15, 16].

• A second approach is to see the digital contour as a discrete signal (x[t], y[t]) and
to convolve it with a Gaussian derivative of a given kernel σ . This is very similar
to the binomial convolution approach of [21, 23, 51]. Therefore, we choose the
H1-0GD tangent estimator T̂H1-0GD [16], which defines locally the window size
as the longest maximal digital straight containing the point. A slight variant is

proved to be multigrid convergent in O(h
1
3 ) for smooth shapes in X

3-SC , while its
experimental convergent rate is excellent [16] for smooth shapes.

• The MCMS tangent estimator T̂MCMS defines the tangent as the direction of the
most-centered maximal digital straight segment containing the point of interest

[22]. It is proved to be uniformly multigrid convergent in O(h
1
3 ) in [39, 42].
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• The λ-MST tangent estimator T̂λ-MST is based on the λ-convex combination of
the direction of the maximal digital straight segments containing the point of
interest [42]. The function λ is a mapping governing the way these directions
are combined. We use here a simple triangle function f , such that f (0) = 0,

f (1) = 0, f (0.5) = 1. It is proved to be uniformly multigrid convergent in O(h
1
3 )

in [39, 42].
• The BC tangent estimator T̂BC considers the digital contour as a discrete signal

(x[t], y[t]) and convolves it with discrete binomials and a discrete difference op-
erator, so as to mimic the convolution by a Gaussian derivative [21, 51]. We use

the suggested mask size of d.h− 4
3 , where d is the continuous shape diameter. It

is proved to be uniformly multigrid convergent in O(h
2
3 ) in [51].

• The MATAS tangent estimator T̂MATAS is an adaptation of the median filter com-
monly used in image processing [53]. If (Pi) are the vertices of the grid contour,
this method consists in choosing the median orientation among the following 2q

vectors centered on Pi : (Pi−qPi , . . . ,Pi−1Pi ,PiPi+1, . . . ,PiPi+q).

13.4.2 Experimental Evaluation

We have run these estimators on two representative shapes (the square is repre-
sentative of X

C , the ellipse is representative of X
3-SC) at different steps (coarse

h = 1, medium h = 0.1). Results are displayed in Fig. 13.4. Only MCMS and λ-
MST detect perfectly straight parts and corners. Others tend to smooth around cor-
ners, the amount of smoothing being dependent on the (chosen) size of the window.
Furthermore, LR and ICIPF oscillate around the correct value on straight parts. It
is more difficult to tell which estimator is the best along the boundary of smooth
curved parts. MCMS produces a staircase-like function but keeps the convexity of
the shape. MATAS, LR and ICIPF may also oscillate and create false concavities.
BC and λ-MST follow nicely the ground truth function. Overall, λ-MST seems to
be the most versatile and accurate at these resolutions. Experiments on other shapes
confirm the presented behaviors of these estimators.

We now turn ourselves to the asymptotic behavior of these estimators, namely
their possible multigrid convergence. We focus on the average absolute error of the
tangent vector, i.e. εabs(X,h) (see (13.8)). The error plots displayed in Fig. 13.5
show that tangent estimators with fixed window size are not multigrid convergent.
This is the case of LR, ICIPF and MATAS estimators. Interestingly, but not surpris-
ingly, small window sizes bring better precision at low scale while greater window
sizes bring better precision at fine scale. This is clearly the problem of such esti-
mators: they require a user to choose the best possible scale according to the input
data.

If we look at the other estimators (H1-0GD, MCMS, λ-MST, BC), the window
size is automatically determined, either globally by d.h− 4

3 for BC estimator, or lo-
cally by maximal digital straight segments for the remaining three. All these four es-
timators are experimentally multigrid convergent for most of the considered shapes.
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Fig. 13.4 Plots of tangent directions as a function of the grid edge index for several shapes and
several tangent estimators. For each row, the shape and the digitization step is given. Left column:
BC and MCMS estimators. Right column: MATAS estimator with window 10, ICIPF estimator
with window 0, LR estimator with window 10, λ-MST estimator, H1-0GD estimator. Note that for
a clearer view, only a representative part of the plot is displayed, and that due to implementation,
grid edges indices of the first column are different from the ones of the second column
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Fig. 13.5 Plots in log-scale of the average absolute errors of tangent vectors as a function of
the grid step for several shapes and several tangent estimators. For each row, the shape and the
digitization step is given. Left column: MATAS estimator with windows 5 and 10, LR estimator
with windows 5 and 10, ICIPF estimator with window 10. Right column: BC estimator, MCMS
estimator, λ-MST estimator, H1-0GD estimator

However, their convergence speed may vary greatly. BC is good for smooth con-
vex shapes, but has low convergence speed on shapes with inflexion points or linear
parts. H1-0GD is excellent on smooth shapes for a fine enough sampling, but is not
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Fig. 13.5 (Continued)

Table 13.2 Known multigrid convergence for several tangent estimators. LR, MATAS, ICIPF are
not multigrid convergent

Estimator Shape family Convergence speed References

Upper bound Observed

T̂BC Polygons ? O(h
1
3 ) (here)

T̂BC
X

1-SC O(h
2
3 ) O(h

2
3 ) [51]

T̂BC
X

1-PW-SC ? O(h
1
3 ) (here)

T̂λ-MST and T̂MCMS Polygons O(h) O(h) [39]

T̂λ-MST and T̂MCMS
X

1-PW-SC ? O(h
2
3 ) [16]

T̂λ-MST and T̂MCMS
X

3-SC O(h
1
3 ) O(h

2
3 ) [39]

T̂H1-0GD Polygons ? not convergent (here)

T̂H1-0GD
X

1-PW-SC ? ≈ O(h
2.5
3 ) [16]

T̂H1-0GD
X

3-SC O(h
1
3 ) O(h

2.5
3 ) [16]

good on shapes with linear parts. MCMS and λ-MST are the most versatile. λ-MST
is preferable to get a continuous tangent. Convergence results are summed up in
Table 13.2.
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13.5 Curvature

For curves γ (s) (at least C2) defined as functions of a curvilinear abscissa s, the
curvature κ can be defined in three different, but essentially equivalent ways:

(i) norm of the second derivative: κ(s) = | d2γ

ds2 |,
(ii) derivative of the tangent orientation: if φ(s) is the angle between the tangent

and a given line, κ(s) = dφ
ds

,
(iii) inverse of the osculating circle radius: if ρ(s) is the radius of the osculating

circle, κ(s) = 1/ρ(s).

Given a grid point of a digital contour, curvature estimators are expected to return
a value in R close to the curvature of the underlying shape. Estimating the curvature
by finite differences over the two neighbors of a given grid point returns either a
positive (resp. negative) high value in convex (resp. concave) corners (±1/

√
2) or a

null one in runs and is thus a very bad solution.
Many curvature estimators have been proposed in the literature to cope with this

problem. They are roughly based on one of the three above-mentioned definitions
as it has been noticed in [27, 70].

In methods (i) and (ii), derivatives are often approximated from the convolution
of either the tangent orientation [22, 68, 70] (i), or the digital contour viewed as a
discrete signal (x[t], y[t]) [21, 23, 51] (ii). They can also be computed from some
polynomials of a given degree locally fitted to the digital contour [27, 52].

Tangents and osculating circles used in methods (ii) and (iii) often rely on fitting
techniques, either in a continuous setting (least square line or arc fitting [70]), or in
a discrete setting to limit the arithmetic effects: digital straight segments [22, 68],
digital level layers (extension to polynomials of higher degrees) [25, 61], approx-
imation of the osculating circle with digital straight segments [12, 13, 27], digital
circular arcs [62].

In most approaches, a user-given window or smoothing parameter is used so
as to remove the jaggedness of digital contours and to make it continuous [21–
24, 49, 51, 68, 70]. Few curvature estimators do not require an external parameter
and we chose to focus on these methods.

13.5.1 Curvature Estimators

The curvature estimators that do not require any parameter either rely on discrete
primitives such as digital straight segment (DSS), digital circular arc (DCA), or on
global optimization such as the Global Minimum Curvature estimator [32].

In this section, we compare the following curvature estimators:

• The MS estimator κ̂MS [12] used only the length of maximal DSS to estimate the
radius of the osculating circle.

The method relies on the assumption that maximal DSS of the digitization of

a Euclidean circle behave like chords of height h and length Θ(h
1
2 ). Maximal
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DSS are however almost always tighter and the length of maximal DSS has been

proved to be in O(h
1
2 ) but in Θ(h

2
3 ) on average [17].

• The CC estimator κ̂CC [13] (HK2005 in [27]), associates with any grid point of a
digital contour, the curvature of the circumscribed circle of a triangle defined by
the extremities of its two digital half-tangents.

It has been proved to be convergent if the length of maximal DSS is in

Ω(h
1
2 ) [8]. This condition is however not fulfilled because the length of maxi-

mal DSS has been proved later to be in Θ(h
2
3 ) on average [17].

• Another estimation of the osculating circles can be obtained from the maximal
DCA along the digital contour [62]. The MDCA estimator κ̂MDCA is the piece-
wise constant function that associates with any grid point of a digital contour the
curvature value of the most centered maximal DCA.

Although this approach seems quite natural, it has been proposed only re-
cently due to the lack of available implementation of on-line DCA recognition
algorithms [10, 38, 64]. It is a natural extension of the tangent estimator based
on the most centered maximal DSS (MCMS tangent estimator in Sect. 13.4) to
the osculating circle estimation problem. As a result, the λ-MST tangent estima-
tor used to improve this tangent estimator may probably improve this curvature
estimator.

The MDCA estimator has been proved to be convergent [62] if the length of
the maximal DCA along the digital contour of the digitization of strictly convex

shapes with continuous curvature field is in Ω(h
1
2 ), which is observed on average.

• The GMC curvature estimator κ̂GMC [32] computes the curvature of the shape
that minimizes its squared curvature among all the Euclidean shapes that may be
digitized as a digital set close to the input.

The first step consists in computing the whole set of maximal DSS. This pro-
cessing provides tangent and arc length estimations (Sect. 13.2.3 and Sect. 13.4)
used to bound the set of valid shapes in the tangential space (φ(s), s). In this
tangential space, the polygonal line that minimizes its length is then computed to
approximate the shape of piecewise constant curvature that minimizes its squared
curvature.

The minimization is performed by an iterative numerical technique that stops
when the difference between the squared curvature of the last two solution shapes
is less than a small quantity, set to 1.10−8 in what follows.

• Finally, for comparisons, we also introduce the BC curvature estimator κ̂BC

[21, 51], which is computed from derivative estimations, obtained through a dis-
crete difference operator applied on the digital contour viewed as a discrete signal
(x[t], y[t]) convolved by a binomial kernel of a given size. The mask size is an
input parameter that is not easy to determine, but following [51], it has been set

to d.h− 4
3 where d is the diameter of the continuous shape.

The multigrid convergence of the estimation of the first (resp. second) deriva-

tive at rate O(h
2
3 ) (resp. O(h

4
9 )) has been proved in [21, 51].
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Fig. 13.6 Curvature plots for the flower, digitized with a grid step equal to 0.1 (Fig. 13.1j). MS
estimator in (a) and CC estimator in (b)

13.5.2 Experimental Evaluation

We first plot the curvature values provided by the MS estimator (resp. CC estimator)
in Fig. 13.6a (resp. Fig. 13.6b) when applied to the digital contour of Fig. 13.1j.

Because a maximal DSS is a good neighborhood to check the local convexity
and concavity of a digital curve [63], the MS estimator provides positive curvature
values in convex parts, negative curvature values in concave parts and null curva-
ture values around inflection points (Fig. 13.6a). However, the MS estimator sys-
tematically over-estimates the true curvature values in the convex parts and under-
estimates the true curvature values in the concave parts. The deviation is important
at low resolution and increases as the grid step h decreases. This is clearly a bad
(and not convergent) estimator.

The CC estimator does not respect the convex and concave parts of the dig-
ital contour (see the peak of positive curvature value near the starting point in
Fig. 13.6b), it oscillates a lot but gives correct results on average at low resolution.

In Fig. 13.7, we compare the curvature plots derived from the MDCA, GMC, BC
estimators to the ground-truth.

The visual deviation between the estimated graphs and the ground-truth graph
reflects the average absolute error. For either estimator, the curvature estimations
are more accurate for the ellipse than for the flower. For either shape, the curvature
values obtained from any estimator get closer to the ground-truth (Fig. 13.7) and the
absolute error decreases as the grid step h decreases.

For the ellipse and the flower, at grid step h = 0.01, the MDCA estimator and
the BC estimator are better than the GMC estimator. In Fig. 13.7, their graphs are
hardly confounded with the ground-truth graph.

In Fig. 13.8, the average absolute error has been plotted against the grid step h.
The CC estimator is not convergent and has the highest errors. However, the other
estimators (κ̂MDCA, κ̂GMC, κ̂BC) appear to be multigrid convergent.

We experimentally observed that the MDCA estimator has low absolute errors
that decrease as the grid step h decreases. The convergence speed on average of the
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Fig. 13.7 Curvature plots for two shapes digitized at three different resolutions, computed from
MDCA, GMC, BC estimators

MDCA estimator is O(h0.5) (even maybe O(hα) with α > 0.5) for the ellipse and
the flower (Fig. 13.8b and c) but O(h2) for the circle.

The GMC estimator and the BC estimator have usually higher errors. The BC
estimator has lower errors than the MDCA estimator for the ellipse and for the
flower at low resolution (when the grid step is decreasing from 1 to 0.3). The GMC
estimator has however always higher errors than the MDCA estimator.

The GMC estimator and the BC estimator have usually a slower convergence
speed:
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Fig. 13.8 The average
absolute error has been
plotted against the grid step h

for the digitization of a circle
in (a), an ellipse in (b) and a
flower in (c)

• respectively O(h1.2) and O(h0.6) for the circle (note that the GMC estimator is
sensitive to the stop criterion of its optimization process when errors are small),

• respectively O(h0.32) and O(h0.5) for the ellipse,



414 D. Coeurjolly et al.

• O(h0.32) for the flower (but note that the error graph of the BC estimator is not
straight and further experiments should be done at smaller grid steps to get the
convergence speed).

Eventually the MDCA, GMC, BC estimators appear to be experimentally
multigrid-convergent, but there is no correct theoretical convergence results for cur-
vature estimation as far as we know, contrary to the case of tangent estimation
(Sect. 13.4).

13.6 Implementation

In this section, we discuss about implementation details of both the geometrical es-
timators presented in the previous sections, and the experimental evaluation frame-
work. All the estimators described in this chapter have been implemented in DGtal
[18]. DGtal is an open-source C++ library focusing on the implementation of dig-
ital geometry objects and concepts. For short, it allows to represent images and
objects in n-dimensional digital spaces equipped with both geometrical and topo-
logical tools.

In the context of this chapter, we will only consider the representation and the
analysis of shape in dimension 2. As discussed in the introduction, the input digital
object can be obtained either from an explicit description, from a segmentation pro-
cess of an image (iso-level, . . . ), or as the digitization D(X,h) of a continuous shape
X ∈ X. For the first two cases, DGtal provides mechanisms to construct such digital
sets either explicitly or from a contour tracking process. For the last case, DGtal im-
plements various implicit and parametric continuous shapes for which some global
and local geometrical quantities are known. All such shape implementations are
model of a concept of CEuclideanShapes1 (see Fig. 13.1 for an illustration
of DGtal Euclidean shapes). A digital object is thus obtained from a GaussDig-
itizer parametrized by a model of CEuclideanShapes and a grid step h.
CEuclideanShapes models will be crucial for multigrid convergence analy-
sis.

As discussed above and whatever the way the input digital object is specified, we
need to access to its geometrical information in various ways:

• As a sequence of grid points, subset of Z2, e.g. for area and moment descriptors;
• As a representation of its boundary, e.g. for tangent or curvature estimators.

In the latter case, several options exist to define and represent a shape contour.
Most of the options depend on the underlying topological model (Kong’s like digi-
tal topology or cellular topology). Furthermore, depending on the algorithm used
to perform the analysis, one may prefer a sequence of chain codes, a sequence

1DGtal uses a generic programming paradigm based on concepts and models of concepts. If a
structure name starts from a capital “C”, we describe a concept.
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Fig. 13.9 Different representations of a Euclidean shape digitization: as a set of pixels (a), as a
sequence of 4-connected pixels (b), as a sequence of 1-cell or linels (c), as a sequence of grid point
displacements (d)

of linels or a sequence of 4-connected grid points to describe the contour (cf.
Fig. 13.9).

To obtain a generic and extensible implementation of contour based estimators,
we have defined a GridCurve structure constructed upon a topological cellular
model which aims to provide several facets of a shape contour. More precisely,
given the result of the contour tracking process, it provides mechanism (Ranges
and Iterators on Ranges) to process the boundary sequence either as a set
of grid points or a set of linels. Hence, a local geometrical estimator on contour, or
more precisely a model of CLocalGeometricalEstimator, have an interface
containing at least the two following methods:

• void init(double h, ConstIterator & begin, ConstIterator
& end,...): initialize the geometrical estimator with grid step h on a contour
defined between iterators begin and end;

• Quantity eval( ConstIterator & it): evaluate the estimator at the
position it of the contour and return a Quantity.

In our framework, the type ConstIterator is a template parameter chosen in
the contour iterator types provided in GridCurve.

Similarly, we have a concept of CGlobalGeometricalEstimator and
models of this concept have an eval() method which returns a unique quantity
for a shape (or subset of it).

Based on models of CEuclideanShapes, we can obtain expected continuous
values using TrueLocalEstimatorOnPoints and TrueGlobalEstima-
torOnPoints. Since both expected and estimated values are given by estimators
with a consistent interface, it makes the multigrid comparison very simple. Indeed, it
allows to design a generic CompareLocalEstimators which return a statistic
on the difference of two estimator values.

In the following example, we illustrate the multigrid Euclidean shape construc-
tion and the comparison of three length estimators (RosenProffitt, DSS and MLP).
In this example, we have detailed the overall process: shape construction and dig-
itization, domain and Khalimsky space construction, contour tracking and finally,
evaluation of estimators.
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/ / . . . .
/ / h and r a d i u s are p a r a m e t e r s here
/ / . . . .
/ / Types
t y p e d e f Ball2D <Space > Shape ;
t y p e d e f Space : : P o i n t P o i n t ;
t y p e d e f Space : : R e a l P o i n t R e a l P o i n t ;
t y p e d e f Space : : I n t e g e r I n t e g e r ;
t y p e d e f HyperRectDomain <Space > Domain ;
t y p e d e f KhalimskySpaceND <Space : : d imens ion , I n t e g e r > KSpace ;
t y p e d e f KSpace : : S C e l l S C e l l ;
t y p e d e f GridCurve <KSpace > : : P o i n t s R a n g e P o i n t s R a n g e ;
t y p e d e f GridCurve <KSpace > : : ArrowsRange ArrowsRange ;
t y p e d e f P o i n t s R a n g e : : C o n s t I t e r a t o r C o n s t I t e r a t o r O n P o i n t s ;

/ / E u c l i d e a n b a l l
Shape aShape ( P o i n t ( 0 , 0 ) , r a d i u s ) ;

/ / Gauss D i g i t i z a t i o n
G a u s s D i g i t i z e r <Space , Shape > d i g ;
d i g . a t t a c h ( aShape ) ; / / a t t a c h e s t h e shape .
d i g . i n i t ( aShape . getLowerBound ( ) , aShape . ge tUpperbound ( ) , h ) ;

/ / The domain s i z e i s g i v e n by t h e d i g i t i z e r a c c o r d i n g t o
/ / t h e window and t h e s t e p .
Domain domain = d i g . getDomain ( ) ;

/ / C r e a t e c e l l u l a r space
KSpace K;

bool ok = K. i n i t ( d i g . getLowerBound ( ) , d i g . getUpperBound ( ) , t rue ) ;
i f ( ! ok ) {

s t d : : c e r r << " "
<< " e r r o r i n c r e a t i n g KSpace . " << s t d : : e n d l ;

re turn f a l s e ;
}
t r y {

/ / E x t r a c t s shape boundary
S u r f e l A d j a c e n c y <KSpace : : d imens ion > SAdj ( t rue ) ;
S C e l l b e l = S u r f a c e s <KSpace > : : f indABel ( K, dig , 10000 ) ;

/ / G e t t i n g t h e c o n s e c u t i v e s u r f e l s o f t h e 2D boundary
s t d : : v e c t o r < P o i n t > p o i n t s ;
S u r f a c e s <KSpace > : : t r a c k 2 D B o u n d a r y P o i n t s ( p o i n t s ,

K, SAdj ,
dig , b e l ) ;

t r a c e . i n f o ( ) << " # t r a c k i n g . . . " << e n d l ;

/ / C r e a t e GridCurve
GridCurve <KSpace > g r i d c u r v e ;
g r i d c u r v e . i n i t F r o m V e c t o r ( p o i n t s ) ;
t r a c e . i n f o ( ) << " # g r i d c u r v e c r e a t e d , h=" << h << e n d l ;

/ / r a n g e s
ArrowsRange r a = g r i d c u r v e . ge tArrowsRange ( ) ;
P o i n t s R a n g e rp = g r i d c u r v e . g e t P o i n t s R a n g e ( ) ;

/ / Three l e n g t h e s t i m a t o r s work ing on d i f f e r e n t c o n t o u r
/ / r e p r e s e n t a t i o n s

R o s e n P r o f f i t t L o c a l L e n g t h E s t i m a t o r < ArrowsRange : : C o n s t I t e r a t o r >
R o s e n P r o f f i t t l e n g t h ;

R o s e n P r o f f i t t l e n g t h . i n i t ( h , r a . b e g i n ( ) , r a . end ( ) , g r i d c u r v e . i s C l o s e d ( ) ) ;

DSSLengthEs t imator < P o i n t s R a n g e : : C o n s t I t e r a t o r > DSSlength ;
DSSlength . i n i t ( h , rp . b e g i n ( ) , rp . end ( ) , g r i d c u r v e . i s C l o s e d ( ) ) ;
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MLPLengthEst imator < P o i n t s R a n g e : : C o n s t I t e r a t o r > MLPlength ;
MLPlength . i n i t ( h , rp . b e g i n ( ) , rp . end ( ) , g r i d c u r v e . i s C l o s e d ( ) ) ;

t r a c e . i n f o ( ) << " # E s t i m a t i o n s " << s t d : : e n d l ;
t r a c e . i n f o ( ) << " #h t r u e R o s e n P r o f f i t t DSS MLP " << s t d : : e n d l ;
t r a c e . i n f o ( ) << h << " " << M_PI ∗2 . 0

<< " " << R o s e n P r o f f i t t l e n g t h . e v a l ( )
<< " " << DSSlength . e v a l ( )
<< " " << MLPlength . e v a l ( )
<< s t d : : e n d l ;

} ca tch ( I n p u t E x c e p t i o n e ) {
s t d : : c e r r << " "

<< " e r r o r i n f i n d i n g a b e l . " << s t d : : e n d l ;
re turn f a l s e ;

}

13.7 Related Problems and Perspectives

13.7.1 Geometric Estimators Along Damaged or Noisy Contours

In real applications, images may have been damaged or acquisition devices may
induce noise in the image data. Furthermore, binarization algorithms and segmenta-
tion algorithms may also damage the boundary of the regions or shapes. These con-
tours are thus not anymore the perfect digitization of “nice” Euclidean shapes (e.g.
shapes in X

n-PW-SC), and have parts that are winding where they should be straight.
We will call them hereafter noisy contours (an example is given in Fig. 13.10 where
a kangaroo shape has been damaged by Gaussian noise).

In the pattern recognition community, a lot of tools have been developed to ana-
lyze the geometry of noisy contours, especially to detect corner or dominant points
(see for instance [52]). These points are related to curvature information. However,
these tools are not designed for estimating quantitatively the geometric character-
istics of the contours but rather qualitatively. We only quote here works that give
quantitative geometric information on perfect or noisy contours.

A common way to tackle noise along contours is to filter the contour with a
smoothing kernel. The size of the kernel given by the user is more or less propor-
tional to the amount of damage along the contour. The BC tangent estimator and
the BC curvature estimator are members of this family of techniques [21, 23, 51].
These techniques are efficient when the contour is rather uniformly damaged, but
they smooth indifferently noise and high-curvature parts of the contour (like cor-
ners).

Approaches based on fitting like the LR or ICIPF estimators [5, 46, 70] are also
able to tackle noise along contours, since they tend to find the median or average
polynomial that best approaches locally the data. Again, the window size parame-
ter is used to suppress at the same time arithmetic effects and noise artifacts. This
parameter is generally set by the user.

In the digital geometry community, a common technique is to use the so-called
blurred segments [14] instead of digital straight segment. Compared to digital
straight segment whose thickness is always less than 1, blurred segments have a
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Fig. 13.10 Noisy contour and noise detection along it by the method of [30]. The input image
has been damaged by two different Gaussian noises in different regions. The thresholded shape
has a boundary which is damaged in these regions (noisy contour in solid dark gray). The detector
indicates for each contour point what is the local scale at which this part of the contour should be
analyzed: the scale or noise level at a point is indicated by the size of the light gray box around it.
It is worthy to note that the noise level is almost everywhere proportional to the amount of contour
degradation

user-given maximal thickness. The noisy parts of contours are thus ignored when us-
ing a larger thickness. Several estimators just replace standard segments with blurred
segments so as to take into account noisy contours. For instance, the curvature esti-
mator presented in [55] is the noisy variant of the CC estimator. The GMC estimator
also uses blurred segments to handle noisy contours. The thickness is generally set
by the user.

Note that digital estimators based on digital straight segments (like the H0-1GD,
MCMS and λ-MST tangent estimators, or the MDCA curvature estimator) can also
be adapted to noisy contours by sub-sampling the input contour. For instance, we
can use a 3 × 3 tile over the input contour so as to remove perturbation no greater
than 1 pixel along the contour. However we have yet not run a full set of experiments
so as to know if this approach leads to better estimators than the ones quoted in the
preceding paragraphs.

Finally, all these techniques require the determination of one or several param-
eters in order to process at best noisy contours. This scale or smoothing parameter
must not be too low otherwise damaged parts are considered high-curvature places
or corners, but it must not be too high also in order to preserve features and to have
accurate estimates of geometric information.

If a gray-level input noisy image is available, scale space analysis may provide in-
formation on the amount of noise [7, 20, 26, 34]. They cannot handle directly noisy
contours. For noisy contours, Kerautret and Lachaud [30] have recently proposed a
method to automatically detect the meaningful scales of digital contours. It can give
locally along the contour what is the amount of noise and the first scale at which the
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contour should be analyzed (see Fig. 13.10, and on-line demonstration [33]). Their
technique relies on the asymptotic properties of maximal digital straight segments.
They have proposed a variant of λ-MST estimator for noisy contours, which uses
the noise information given by the meaningful scales [31].

13.7.2 Geometric Estimators in 3D and nD

In higher dimensions, several 2D estimators or frameworks can be extended. How-
ever, many open problems exist and beside the fact that a few proofs of multigrid
convergence exist, a complete experimental multigrid evaluation of curvature esti-
mators for instance has not been done yet on digital surfaces in Z

3. In this section,
we just give a brief overview of existing techniques:

• Surface area: to compute the area of a surface in Z
3, a first solution is based on

weighted local configurations [48, 69]. The idea is to associate weights with local
configurations of surface voxels or surfels. Then, given an object, the surface
area is approximated by summing all weights associated with all configurations
defined on the object surface. Similarly to the BLUE estimator, weights are given
by a statistical analysis to minimize surface area error for a given class of shapes.
By deriving results from the length case in dimension 2 [66], surface weighted
configuration estimators can never achieve multigrid convergence. In [50], the
authors use statistical analysis and integral geometry to design a fast estimation of
the surface area. Again, the quality of the estimation is controlled by a parameter
(number of line probes). Another option is to generalize the discrete normal vector
integration scheme as described in [8, 11]. As detailed in [9], we can prove that if
the normal vector estimation is multigrid convergent, then the integration of the
vector field leading to the surface area estimation is multigrid convergent as well.

• Normal vector field computation: at a point x on a smooth surface, the normal
vector at x can be defined as the cross product of first order derivatives at x (tan-
gent) of two curves lying on the surface crossing at x. In a digital context, given a
surface element of a cellular representation of a digital surface, two natural digital
4-connected curves can be defined by the intersection of the surface with the two
coordinate planes containing the surfel elementary normal vector. Hence, Lenoir
et al. suggested to compute the normal vector at a surfel as the cross product of
tangent computed on the two 2D digital curves [45]. Following this framework,
multigrid convergence can be achieved if the tangent estimator used on the 2D
curves is multigrid convergent [9, 39]. The normal vector field of a digital surface
in Z

n, for arbitrary n, can be computed with a similar approach [40].
• Curvature: For curvature computation on digital surfaces, only few estimators

have been proposed in the digital geometry framework. We can cite Lenoir’s slice
based approach for the mean curvature estimation [44], Gauss map area evalu-
ation for the Gaussian curvature [8], techniques based on integral invariants for
both mean and Gaussian curvatures [4, 57, 58]. Integral invariant techniques are
definitely relevant in the digital geometry context, even in case of a noisy surface.
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However, they require a window parameter which could be difficult to set for a
large class of shapes.

In computational geometry, several techniques have been proposed to con-
struct accurate curvature estimators with bounded errors. Usually, bounds are
parametrized by a sampling parameter for a given sampling hypothesis. An ex-
ample of a sampling hypothesis for a smooth surface would be that the sampling
density should be proportional to the curvature. In this context, convergence or
stability of geometric estimators have been proposed as a function of the sam-
pling parameter. In many situations the sampling theorems used in computational
geometry do not match with the specific isotropic behavior of digital surfaces. In
[1, 6, 54], estimators are defined on point sets based on Voronoi structures and
the error is given in terms of Hausdorff distance (which is consistent with digi-
tal surfaces). Investigating the links between computational geometry and digital
geometry on this subject is a challenging problem.

13.7.3 Current Bottlenecks and Open Problems

As detailed in the previous sections, we can overview current theoretical bottlenecks
in the design of discrete geometric estimators:

• Stability w.r.t. noise: Prior detection of the contour local noise level to be used
as an estimator parameter, or with estimators which are theoretically robust to a
given noise model.

• Estimators of differential quantity of order 2: From our point of view, existing
curvature estimators are not yet satisfactory since either no proof of multigrid
convergence exists, or the convergence is controlled by an external parameter
(e.g., window size or Gaussian kernel width). It would be interesting, for instance,
to focus on the multigrid behavior of circular arc segment on digital 2D contours.
Indeed, many proofs related to the length or the tangent estimation are based
on the multigrid behavior of DSS. On digital surfaces and in higher dimension,
we think that a better understanding of links between computational and digital
geometry results would lead to new results in this domain.

Beside these theoretical bottlenecks, complete experimental multigrid evalua-
tions are now mandatory when designing a new discrete estimator. With the help of
both a theoretical methodology (multigrid shape database and error measures) and
open-source libraries (ImaGene [29] or DGtal [18]), we expect to have a complete
and stable experimental framework. An important future work would be to continue
the implementation of existing estimators with comparative studies. In dimension 3,
main bottlenecks are related to efficiency and computational costs. Indeed, in many
Material sciences or Medical imaging applications, we may have to analyze digital
shapes whose size achieves up to 20483. In the implementation of 3D estimators,
several theoretical and technical problems have to be addressed, such as out-of-core
techniques, hierarchical data representation and adaptive algorithms, and others.



13 Multigrid Convergence of Discrete Geometric Estimators 421

Acknowledgements This work was partially funded by project KIDICO (ANR-2010-BLAN-
0205) of the French Research Agency (ANR).

References

1. Amenta, N., Kil, Y.: Defining point-set surfaces. In: ACM SIGGRAPH, vol. 23, p. 270. ACM,
New York (2004)

2. Asano, T., Kawamura, Y., Klette, R., Obokata, K.: Minimum-length polygons in approxima-
tion sausages. In: 4th International Workshop on Visual Form. Lecture Notes in Computer
Science, vol. 2059, pp. 103–112. Springer, Berlin (2001)

3. Brlek, S., Labelle, G., Lacasse, A.: The discrete green theorem and some applications in dis-
crete geometry. Theor. Comput. Sci. 346(2–3), 200–225 (2005)

4. Bullard, J.W., Garboczi, E.J., Carter, W.C., Fullet, E.R.: Numerical methods for computing
interfacial mean curvature. Comput. Mater. Sci. 4, 103–116 (1995)

5. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating
jets. Comput. Aided Geom. Des. 22, 121–146 (2005)

6. Chazal, F., Cohen-Steiner, D., Lieutier, A., Thibert, B.: Stability of Curvature Measures
(2008)

7. Chen, K.: Adaptive smoothing via contextual and local discontinuities. IEEE Trans. Pattern
Anal. Mach. Intell. 27(10), 1552–1566 (2005)

8. Coeurjolly, D.: Algorithmique et géométrie pour la caractérisation des courbes et des surfaces.
Ph.D. thesis, Université Lyon 2 (2002)

9. Coeurjolly, D., Flin, F., Teytaud, O., Tougne, L.: Multigrid convergence and surface area esti-
mation. In: Theoretical Foundations of Computer Vision “Geometry, Morphology, and Com-
putational Imaging”. Lecture Notes in Computer Science, vol. 2616, pp. 101–119. Springer,
Berlin (2003)

10. Coeurjolly, D., Gérard, Y., Reveillès, J.P., Tougne, L.: An elementary algorithm for digital arc
segmentation. Discrete Appl. Math. 139(1–3), 31–50 (2004)

11. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves.
IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)

12. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estima-
tion. In: 4th International Workshop on Visual Form. Lecture Notes in Computer Science,
vol. 2059, pp. 303–312 (2001)

13. Coeurjolly, D., Svensson, S.: Estimation of curvature along curves with application to fibres
in 3d images of paper. In: 13th Scandinavian Conference on Image Analysis. Lecture Notes in
Computer Science, vol. 2749, pp. 247–254 (2003)

14. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition
of noisy shapes in linear times. Comput. Graph. 30, 30–36 (2006)

15. de Vieilleville, F., Lachaud, J.O.: Experimental comparison of continuous and discrete tan-
gent estimators along digital curves. In: 12th International Workshop on Combinatorial Image
Analysis. Lecture Notes in Computer Science, vol. 4958, pp. 26–37. Springer, Berlin (2008)

16. de Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent estimators on dig-
ital curves. Pattern Recognit. 42(8), 1693–1707 (2009)

17. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Convex digital polygons, maximal digital straight
segments and convergence of discrete geometric estimators. J. Math. Imaging Vis. 27(2), 139–
156 (2007)

18. DGtal: digital geometry tools and algorithms library. http://liris.cnrs.fr/dgtal
19. Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Comput. Vis. Graph.

Image Process. 40(3), 311–333 (1987)
20. Elder, J., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans.

Pattern Anal. Mach. Intell. 20(7), 669–716 (1998)



422 D. Coeurjolly et al.

21. Esbelin, H.A., Malgouyres, R.: Convergence of binomial-based derivative estimation for c2-
noisy discretized curves. In: 15th Discrete Geometry for Computer Imagery. Lecture Notes in
Computer Science, vol. 5810, pp. 57–66 (2009)

22. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: applica-
tion to the curvature. In: Proc. 8th Discrete Geometry for Computer Imagery. Lecture Notes
in Computer Science, vol. 1568, pp. 31–40 (1999)

23. Fiorio, C., Mercat, C., Rieux, F.: Curvature estimation for discrete curves based on auto-
adaptive masks of convolution. In: Computational Modeling of Objects Presented in Images.
Lecture Notes in Computer Science, vol. 6026, pp. 47–59 (2010)

24. Fleischmann, O., Wietzke, L., Sommer, G.: A novel curvature estimator for digital curves
and images. In: 32th Annual Symposium of the German Association for Pattern Recognition.
Lecture Notes in Computer Science, vol. 6376, pp. 442–451 (2010)

25. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: 16th IAPR Inter-
national Conference Discrete Geometry for Computer Imagery. Lecture Notes in Computer
Science, vol. 6607, pp. 83–94. Springer, Berlin (2011)

26. Goshtasby, A., Satter, M.: An adaptive window mechanism for image smoothing. Comput.
Vis. Image Underst. 111, 155–169 (2008)

27. Hermann, S., Klette, R.: A comparative study on 2d curvature estimators. In: 17th International
Conference on Computer Theory and Applications, pp. 584–589 (2007)

28. Huxley, M.N.: Exponential sums and lattice points. Proc. Lond. Math. Soc. 60, 471–502
(1990)

29. ImaGene: generic digital image library. https://gforge.liris.cnrs.fr/projects/imagene
30. Kerautret, B., Lachaud, J.: Multiscale analysis of discrete contours for unsupervised noise

detection. In: 13th International Workshop on Combinatorial Image Analysis. Lecture Notes
in Computer Science, vol. 5852, pp. 187–200. Springer, Mexico (2009)

31. Kerautret, B., Lachaud, J.: Meaningful scales detection along digital contours for unsupervised
local noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. (submitted)

32. Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approxi-
mate global optimization. Pattern Recognit. 42(10), 2265–2278 (2009)

33. Kerautret, B., Lachaud, J.O.: Noise level and meaningful scale detection online demonstration.
http://kerrecherche.iutsd.uhp-nancy.fr/MeaningfulBoxes (2010)

34. Kervrann, C.: An adaptive window approach for image smoothing and structures preserv-
ing. In: 8th European Conference on Computer Vision. Lecture Notes in Computer Science,
vol. 3023, pp. 132–144. Springer, Berlin (2004)

35. Klette, R., Rosenfeld, A.: Digital Geometry—Geometric Methods for Digital Picture Analysis
(2004)
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