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Preface

This book presents, in a unitary and novel perspective, some of the research work
the authors have carried out over the last decade, along with several collaborators and
students. The roots of this book can be traced back to the design of adaptive sequence
detection algorithms for channels with parametric uncertainty. The explosion of turbo
codes and iterative decoding around the middle of the Nineties has motivated the
design of iterative (turbo and graph-based) detection algorithms.

This book aims at providing the reader with a unified perspective on the design of
detection algorithms for wireless communications. What does this statement really
mean? It has become clear to us, in recent years, that most of the proposed detection
algorithms evolve from a simple idea, which can be described as finite-memory de-
tection and synthesized by a simple metric. This unique metric is the key ingredient
to derive:

• sequence detection algorithms based on the Viterbi algorithm;

• symbol detection algorithms based on the forward-backward algorithm;

• graph-based detection algorithms based on the sum-product algorithm.

Although simple, and probably familiar to several researchers working in this
area, to the best of our knowledge a unified approach to the design of detection al-
gorithms, based on a single metric, has never been proposed clearly in the literature.
This book tries to address this lack, by giving a comprehensive treatment, with sev-
eral examples of application.

This book should, however, be interpreted by the reader as a starting point, rather
than a purely tutorial work. In fact, we believe that the proposed simple unifying
idea can find many applications beyond those explored in this book. We would like
to mention a single (and significant) example. In current and future wireless com-
munication systems, it will be more and more important to support high data-rate
transmissions. Multiple-input multiple-output systems, based on the use of multiple
antennas, have received significant interest from the research community over the

xi



xii Preface

last years. All the detection algorithms presented in this book apply to single-input
single-output systems. The reader is therefore invited to entertain herself/himself by
trying to extend these algorithms to multiple-input multiple-output communication
scenarios.

A final comment is related to the subtitle: "With Applications to Wired and Stor-
age Systems." As the reader will see, most of the examples presented in this book are
related to wireless communication systems. However, several of the proposed com-
munication scenarios apply also to storage and wired systems: for example, proper
inter-symbol interference channels may characterize several storage systems. More-
over, the proposed approach is general and, therefore, suitable for application to sce-
narios different from those considered explicitly. Again, the reader is invited to use
the tools proposed in this book and apply them to solve her/his own communication
problems.

As an extra resource we have set up a companion website for our book containing
a solutions manual and a sample chapter. Also, for those wishing to use this material
for lecturing purposes, electronic versions of most of the figures from our book are
available. Please go to the following URL and take a look: ftp://ftp.wiley.co.uk
/pub/books/ferrari.
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Wireless Communication Systems

1.1 Introduction

In the era of Information and Communication Technology, we are all familiar with
the concept of digital transmission of information. The adjective "digital" encom-
passes the fact that the transmitted message is one out of a finite number of possible
messages. In more practical terms, a digital message is composed of a sequence of
digits, or symbols, belonging to a finite alphabet. This digital model of information
arises for a number of reasons. There exist information sources which inherently
generate digital messages. A written text or a computer memory are simple exam-
ples of sources of digital information. There also exist, however, information sources
that inherently generate analog messages, such as voice and sounds. These analog
messages can be approximated with the desired degree of accuracy in terms of digital
messages by means of sampling and quantization.

The goal of any digital transmission system is the delivery of a sequence of dig-
ital information symbols to a destination. The transmission of a digital information
symbol, or transmission act, takes place by selecting an analog signal, or waveform,
out of a finite set of possible signals and sending this waveform through a transmis-
sion medium, or channel, which connects the transmitter to a receiver located at the
destination.

Wireless communications will have an increasing importance for future applica-
tions, where connectivity will be required everywhere and anyhow. In particular, the
large flow of information coming from the optical communication backbone calls
for wireless systems able to support large information transmission capacity. It is
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becoming more and more important to push to the limit wireless access and distribu-
tion, since larger and larger quantities of information need to be carried. For instance,
in third generation (3G) mobile communication systems [1], multimedia data will be
transferred and this will call for effective and efficient wireless communication sys-
tems. In particular, increased signal processing capabilities for lower cost will allow
the deployment of advanced detection algorithms in the receivers of wireless termi-
nals. Several wireless communication systems are currently operational, and a few
significant examples will be summarized in the following.

In passing through a wireless channel, the transmitted waveform is altered in
several possible ways. A primary alteration is due to thermal noise which is superim-
posed on the transmitted waveform and effectively modeled as an additive Gaussian
random process. There is, however, a plethora of other possible modifications which
may be inflicted upon the signal by the transmission link. In radio transmission, the
amplitude of the received signal, i.e., the signal at the output of the channel, is a func-
tion of the link attenuation, which in turn may depend on the physical link geometry,
such as the distance between transmitter and receiver antennas and their heights,
but it may also depend on the simultaneous presence of several propagation paths,
or multipath, which may contribute constructively or destructively. As a result, the
(possibly time-varying) signal amplitude may not be perfectly known by the receiver,
which must adopt suitable countermeasures. In bandpass transmission, similar con-
siderations hold for the phase of the received signal, which is usually unknown at the
receiver. When the amount of variability of multipath phenomena over space or time
is significant, the received signal may be characterized by unknown amplitude and
phase, which collectively manifest themselves as multiplicative noise termed fading.

In general terms, the transformation inflicted by a channel upon the transmitted
waveforms must be suitably modeled. This modeling is needed in order to enable the
definition of an effective strategy to be undertaken by the receiver in order to decide
which message was actually transmitted on the basis of the signal actually received.
This decision process, or detection, should obviously result in a minimal number
of decision errors. By adopting a random model for both the information source
and the transmission channel, the detection strategy can be optimized according to
a meaningful criterion, for example to minimize the probability of decision error. A
receiver operating in accordance with such a strategy is said to be optimal.

There are several important applications in which random channel models are
useful for devising optimal receivers characterized by affordable implementation
complexity, among which is the classical additive white Gaussian noise (AWGN)
channel. There are, however, applications where the implementation complexity of
an optimal receiver becomes prohibitive from a practical viewpoint. The simple pres-
ence of a random time-invariant channel parameter, such as a phase rotation or a mul-
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tiplicative fading coefficient inflicted upon the received signal, may significantly in-
crease the complexity of the optimal receiver. Time-varying random channel parame-
ters may also be responsible for the intractable complexity of an optimal receiver. In
present-day communication systems, examples of such time-varying random chan-
nel models arise to describe the effects of fading due to multiple transmission paths,
phase noise due to the inherent instabilities of up- and down-conversion oscillators,
or Doppler shift encountered in low- and medium-earth satellite communications.

It might be sometimes necessary to model some channel parameters as unknown
deterministic quantities. This modeling assumption has the desirable consequence
of reducing the receiver complexity, by means of a decomposition approach. In this
case, the receiver could be designed as the concatenation of a detection block, de-
vised under the idealizing assumption of perfect knowledge of these deterministic
channel parameters, and one or more estimation blocks devoted to the acquisition of
the necessary information about the channel parameters. Nonetheless, this modeling
assumption has the disadvantage that the concept of optimality, in terms of minimal
error probability, vanishes because an optimal detection strategy can only be defined
for specific known cases of deterministic channel parameters [2].

In the rest of the book, the focus will be mainly on channels characterized by
stochastic parameters. In particular, detection algorithms will be designed taking
into account a statistical description of the parameters, e.g., by means of their joint
probability density function (pdf). This type of approach is usually referred to as
Bayesian. Since taking into account the stochastic nature of the transmission chan-
nel may lead to a significant increase of the complexity of the detection algorithm,
suitable complexity reduction techniques will also be considered. It is also important
to underline that, for the design of a detection algorithm, it is sometimes expedient
to consider a simplified channel model, with respect to the effective transmission
channel.

In this initial chapter, we will also present a brief overview of the concepts of
modulation and coding, providing a few significant examples for wireless commu-
nication scenarios. The analysis is by no means complete, since it goes beyond the
scope of this book. However, the proposed set of examples should provide the reader
with a basic understanding of the concepts and schemes which will be considered in
the following chapters.

Modulation can be, as a first instance, separated by coding. It is somehow pos-
sible to state that modulation comes conceptually before coding, in the sense that it
represents the way in which a signal needs to be shaped before undergoing channel
transmission. In particular, in the remainder of the book we will focus on digital
modulations, where the information to be transmitted belongs to a suitable set of
finite cardinality. In this case, considering a suitable set of orthonormal functions
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it is possible to represent a modulated signal as a point in a constellation of finite
cardinality.

After the breakthrough brought by the mathematical theory of communication
developed by Shannon [3], it has been clear that coding the information to be trans-
mitted can make the communication more efficient and reduce the probability of er-
roneous reception at the receiver side. In particular, the main application areas regard
source coding and channel coding [4-7]. While in the first case the main principle
is that of compressing the source information still guaranteeing complete recovery,
the main idea in the second case (of interest in this book) consists of adding redun-
dancy to the generated information in order to increase the protection against channel
impairments.

While modulation and coding can be considered separate as a first instance, sem-
inal work in the Seventies [8] culminated with the clear description of trellis coded
modulation (TCM) [9], which showed that modulation and coding should be regarded
as two faces of the same coin. This is intuitive, since once the information to be
transmitted is suitably coded, the way in which this coded information is actually
transmitted over the channel is strictly related to the considered modulation. In the
remainder of this chapter, we will review some basic concepts, relevant for the de-
tection algorithms for wireless communications derived in the following chapters,
such as the capacity of a transmission channel and some interesting types of modu-
lation and coding formats. Note that the focus, rather than on standard coding and
modulation techniques, will rather lie on interesting schemes to which the detection
algorithms presented in the following chapters can be suitably applied.

1.2 Overview of Wireless Communication Systems

There are various examples of wireless communication systems. We consider here a
simple summary of a few communication systems for which the detection algorithms
discussed in the remainder of this book might have significant impact.

• Broadband radio access networks are gaining more and more interest, since
radio traffic is increasingly based on multimedia applications, requiring signif-
icant transmission capabilities. Point to multipoint radio access is an important
example of this radio communication paradigm.

• Cellular radio networks represent the current structure devoted to personal
wireless communications [10]. They are based on the subdivision of territory
into cells, with a base station placed in each cell and acting as a "reservoir" for
transmissions coming from mobile terminals in the cell.
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• Satellite communication systems are widely used to guarantee ubiquitous con-
nectivity and to allow transfer of information between distant locations [11].
In particular, mobile and satellite communication systems could merge, in the
near future, to guarantee ubiquitous coverage.

• Wireless local area networks (such as IEEE 802.11 [12]) represent a new com-
munication paradigm which is under continuous development. Its applications
are currently limited to multiple access in limited areas, such as university
campuses, airports, and buildings. However, novel scenarios with extended
coverage are emerging.

• Personal area networks are currently becoming more and more popular, with
multiple diverse applications. The network communication system nicknamed
"bluetooth" is a de facto standard which is developing to guarantee the inter-
communication between digital devices in very limited areas [13]. This is the
case, for example, for communication among electronic appliances (comput-
ers, video cameras, stereo systems) within a room.

• Mobile ad hoc wireless networks are emerging as a new communication paradigm
which could have numerous applications in the near future [14,15]. In partic-
ular, the fundamental idea behind this type of network communication is the
fact that radio communication should be supported by a nonhierarchical archi-
tecture as long as the spatial distribution of the communicating terminals is
sufficiently dense.

1.3 Wireless Channel Models

In general, radio communications are affected by large (time) scale path loss (e.g.,
free space propagation model) and small scale phenomena [16]. This book will fo-
cus on small scale phenomena. In the following, we will consider a few significant
examples of communication channels which are relevant for the analysis of wireless
communication systems. Various combinations of the proposed channel models may
also be of interest. The collection of examples is by no means complete, but the
aim of the book is to develop a general framework for the design of detection algo-
rithms to be used for transmissions over wireless channels. The interested reader is
invited to use the tools presented in the following chapters to derive new detection
strategies for other channel models not considered explicitly in this book. Almost all
considered models will correspond to the base-band equivalent of the effective trans-
mission channels [17]. Moreover, the derived detection algorithms will almost al-
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ways stem from discrete-time equivalent versions of the transmission channels—the
equivalence, in terms of statistical sufficiency, of the obtained discrete-time observ-
ables will always be guaranteed, possibly by means of oversampling. Appendix A is
devoted to a characterization of sampling as a means to derive sufficient statistics.

1.3.1 Additive White Gaussian Noise Channel

The basic communication channel is the AWGN channel, shown in Figure 1.1 (a). In
particular, the transmitted signal s(t) is corrupted by the additive noise n(t), yielding
the received signal r(t), which can be written as follows:

The noise process n(t) is usually associated with the ubiquitous thermal noise at the
input of the receiver [16-18]. In particular, the assumption of AWGN means that
n(t) is a circularly symmetric Gaussian process with constant power spectral density.

1.3.2 Frequency Nonselective Fading Channel

In this case, the transmitted signal is distorted by multiplicative noise f ( i ) modeled
as a circularly symmetric complex Gaussian random process, yielding the following
expression for the received signal:

We recall that a circularly symmetric Gaussian complex random variable is charac-
terized by independent and identically distributed (iid) Gaussian real and imaginary
components [19]. If f ( t ) is zero mean, then the fading amplitude \f(t)\ and phase
arg {/(£)} are Rayleigh and uniformly distributed, respectively. In the frequency do-
main, this channel can be interpreted as a time-varying frequency nonselective (flat)
linear filter. Figure 1.1 (b) shows this channel model. If the bandwidth of f ( t ) is
significantly narrower than that of the transmitted signal, its time variations can be
neglected and a slow fading model results. As an extension of this model, in the case
of a Rice fading channel, f ( t ) has nonzero mean.

In order to describe the "memory" introduced by the channel it is expedient to
consider the autocorrelation function,1 usually characterized by the Clarke model [20,
21]. The Clarke model assumes a fixed transmitter with a vertically polarized and
isotropic antenna [16], and uniform scattering around the mobile terminal—for this

lrThis is meaningful in the case of circularly symmetric Gaussian fading with zero mean.
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Figure 1.1: Examples of wireless channel models.

reason, this model is usually referred to as the isotropic scattering model. In partic-
ular, the statistical description of the received signal depends on (uniform) scattering
phenomena experienced by the transmitted waveform: under the assumption of the
absence of a direct line-of-sight component, the envelope of the received signal has a
Rayleigh distribution. In [22], a spectral characterization of Clarke's model is stud-
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ied. The power spectral density of the received signal can be written as follows:

where /D is the maximum Doppler shift and /c is the carrier frequency. Symbol rate
sampling may not be accurate in the case of large Doppler spread, in which case
oversampling, as shown in Appendix A, becomes necessary. In particular, the auto-
covariance function can be written as RC(T) = Jo(27r/Dr), where J0(-) is the Bessel
function of order zero [23]. For large values of r the Bessel function approaches
zero, so that one can conclude that two fading samples temporally distant from each
other are uncorrelated. This idea of uncorrelatedness between observations distant in
time will be one of the basic ideas behind all detection strategies proposed in the rest
of the book. In fact, owing to the intuitive idea that observations far from the one at
hand cannot carry too much useful information, a suitable finite memory condition
(FMC) can often be considered without significant performance degradation.

1.3.3 Frequency Selective Fading Channel

The effect of this channel can be described by assuming that the transmitted signal is
distorted by a time- vary ing tapped-delay-line filter with tap delays {TI} and weight
processes {fe(t)}, each modeled as in Section 1.3.2. In other words, indicating with
L the number of taps in the equivalent tapped-delay-line model, the received signal
can be expressed as follows:

where

Note that we are implicitly assuming that TO = 0. In the frequency , this channel can
be interpreted as a time-varying frequency selective (dispersive) linear filter. Fig-
ure 1.1 (c) shows a block diagram of this channel model with L = 3 taps. In general,
the z-th tap corresponds to a dominant propagation path with delay r\ + r2 + . . . + r*.

The frequency selective fading channel can then be interpreted as a time-variant
inter-symbol interference (ISI) channel. En passant, we remark that ISI channels
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represent a very important communication channel model, which can arise for var-
ious reasons (e.g., mismatch between transmit and receive filters). In particular, a
wired communication channel or a magnetic storage channel are usually modeled
as ISI channels. We point out that although the book's main topic is wireless com-
munications, many of the proposed detection algorithms—in particular those related
to ISI channels—can also be applied to wired communications and magnetic or op-
tical storage systems. Simplified models for fading channels are often desirable to
allow a more efficient derivation of detection algorithms. As an example, Gaussian
quadrature rule (GQR) channel models can be used [24]. From an implementation
viewpoint, the applicability of these models is limited at high transmission data rates:
in fact, in this regime, the channel becomes slowly varying, and selectivity arises only
in the frequency domain.

1.3.4 Phase-Uncertain Channel: Channel with Phase and
Frequency Instabilities

In this case, the communication channel introduces phase noise, generating phase
rotation in the transmitted signal. We assume that the phase of the transmitted signal
is rotated by a stochastic process 9(t) in order to model various instabilities of up- and
down-conversion oscillators or a possibly time-varying Doppler shift (e.g., typical
of low- and medium-orbit satellite systems). The received signal assumes then the
following expression:

Figure 1.1 (d) shows a block diagram of this channel model. Depending on the as-
sumptions on 0(t), the following special cases can be distinguished:

1. a. phase noncoherent channel can be modeled by assuming that 0(t) = 9 is a
uniformly distributed random variable (i.e., constant with respect to time);

2. a. frequency offset (or Doppler shift) channel is obtained for 0(t) = lirvt, where
v is the Doppler rate;

3. a phase noisy channel is modeled by assuming 0(t) is a Wiener random pro-
cess [19].

Combinations of these special cases are also possible. Note that considering the
channel phase as a random variable, i.e., considering a noncoherent channel, can
also be used as a useful assumption to derive detection algorithms. This channel
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model will often be considered in the remainder of the book — a channel with a single
stochastic parameter (for instance the phase) represents indeed a very attractive study
case.

In this case as well, we want to initially explore the correlation characteristics
among observations at different epochs, in order to motivate the approach, based on
an FMC, proposed to perform detection of a signal transmitted over a phase-noisy
channel. In particular, in the presence of linear modulation and in the absence of
frequency offset and ISI, an equivalent discrete-time version, relative to sampling
instants corresponding to multiples of the symbol period, of the received signal in
(1.6) becomes:

where ck is the transmitted (and possibly coded) symbol, {6k} is the discrete-time
channel phase process, and {nk} is the additive noise process. A very common model
for the phase process {6k} is a discrete-time Wiener process [19] described by the
following recursion

where {Afc} are iid Gaussian random variables with zero mean and variance cr^. In
this case, it can be shown (see Problem 1.2) that the autocovariance of the process

It is immediately realized that for large values of n, i.e., considering observations
temporally distant from each other, the autocorrelation is very low. This motivates a
finite memory detection approach, which exploits the idea that, in order to derive an
explicit (or implicit) estimate of the channel parameter at epoch k, it is sufficient to
consider a limited ensemble of observations at instants close to k.

Several other models may be of interest in practical applications, among which
are channels affected by like-signal (or co-channel) interference and nonlinear chan-
nels modeling the saturation effects of high-power amplifiers [25,26].

1.4 Demodulation, Detection, and Parameter
Estimation

The received signal is the observation used by the receiver for decoding the trans-
mitted information sequence. In Figure 1.2, a single block is used to represent a
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Figure 1.2: Classical model of a communication system.

combined demodulation and decoding process. Inside this block, the subblocks indi-
cate a possible decomposition of the various receiver functions. This decomposition
deserves attention because it is a traditional and conceptually straightforward choice
in the fact that basic receiver functionalities are implemented by corresponding sub-
systems. Specifically, a demodulation (or detection) block performs the inverse of
the modulation function under the assumption that the necessary channel parameters
are known to a certain accuracy. These parameters are estimated by a specific block
which observes the available information, namely the received and demodulated sig-
nals and, possibly, the decoded data. Finally, the decoding function is performed on
the basis of the demodulated (or detected) signal.

It is important to point out that the separation between these receiver functions,
though traditional, is somehow limiting. In fact, the advent of coding techniques such
as TCM and continuous phase modulation (CPM) [27-30], and decoding/detection
techniques such as iterative decoding/detection techniques [31-33], has changed the
way of approaching system design. In particular, the receiver functions of demod-
ulation, decoding, and parameter estimation tend to be combined in contemporary
wireless communication systems. In other words, a detection algorithm can be de-
signed by embedding parameter estimation in the decoding process. This idea, which
is the core of the principle of per-survivor processing (PSP) [34], will be used dif-
fusely in the remainder of the book and in the derived detection algorithms. More-
over, the receiver functions indicated in Figure 1.2—i.e., demodulation, decoding,
and parameter estimation—should not be seen as isolated. The basic principle of it-
erative detection makes it clear, indeed, that the exchange of information along with
the decoding/detection process can significantly enhance the receiver performance.
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1.5 Information Theoretic Limits

After a clear modeling of a communication system, Shannon went on and introduced
the concept of capacity of a single-input single-output communication channel [3,
35]. A possible definition for the channel capacity is the maximum of the mutual
information between the input and the output of the transmission channel. Although
this idea is intuitive (a channel can reliably carry a maximum information flow which
ultimately depends on the channel itself), quantifying it with precise formulas in
specific cases was one of Shannon's breakthroughs of paramount importance.

1.5.1 Additive White Gaussian Noise Channel

In the case of an AWGN channel, the work of Shannon [3] shows that the channel
capacity can be written as follows:

where E! represents the signal-to-noise ratio (SNR), defined as Ps/Pn, where Ps is the
received signal power and Pn is the AWGN noise power. In particular, the capacity
CAWGN of a generic single-input single-output channel can also be interpreted in
the following way, with profound implications in the research effort of the coding
community after the work of Shannon. For any coding rate rc < CAWGN, there exists
an (n, A:) (where k is the length of the input information word, n is the length of the
codeword and rc = k/ri) code, with suitably long codeword length n, such that the
error probability, with maximum likelihood (ML) decoding, can approach zero as
closely as desired.

1.5.2 Frequency Nonselective Fading Channel

The computation of the capacity of a channel affected by fading is, in a general
case where the fading is time-varying, extremely difficult. By relaxing some of the
assumptions regarding the fading correlation characteristics, it is possible, however,
to derive a closed-form expression for the channel capacity.

Considering an equivalent discrete-time communication model with linear coded
modulation at the transmitter side and absence of ISI, the observable at time epoch k
can be written as follows:
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where fk is a discrete-time Rayleigh fading coefficient and xk is the transmitted sym-
bol.2 If the process {fk} is given by a sequence of iid variables (i.e., the channel
is memoryless or, equivalently, ideal channel interleaving is considered) and perfect
channel state information (CSI) is given to the receiver, it is possible to show that the
capacity is [36,37]

where E = Ps/Pn, with Ps corresponding to the power of the transmitted symbol
and Pn corresponding to the AWGN noise power, and

The capacity of the channel is reached when xk is circularly symmetric complex
Gaussian with zero mean and variance Pn. The extension of this result to the case
where no CSI is available at the receiver is the subject of [38], whereas the case
where CSI is available at both receiver and transmitter is considered in [39,40]. An
excellent overview of information-theoretic and communication-theoretic aspects of
fading channels can be found in [41].

The capacity of the single-input single-output Rayleigh fading channel with CSI
at the receiver can be interpreted as a particular case of the general result, relative
to multiple-input multiple-output Gaussian channels, obtained in [42]. The analysis
of the capacity of a multiantenna channel in the absence of CSI at the receiver, as
opposed to the scenario considered in [42], is the subject of [43]. Note that the
expression of the capacity in (1.12) can also be interpreted as a special case (relative
to a single-input single-output channel) of the perfect-knowledge upper bound given
in [43].

This book will mainly consider single-input single-output communication sys-
tems. However, we point out that the proposed general approach to performing de-
tection over channels with memory can be extended to a more general situation where
multiple antennas are used.

2Note that in the remainder of the book the symbol c^ will often be used to refer to
coded/modulated symbols. In this case, the transmitted symbol Xk is not necessarily constrained
to belong to a constellation with a fi nite number of points.
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1.5.3 Phase-Uncertain Channel

While it is possible to compute the channel capacity in closed form in the case of
simple channels, in several cases, corresponding to possible wireless channels, this
is not possible, but the capacity can rather be bounded or numerically evaluated. As
an example, in the case of transmission over a channel introducing a time-invariant
random phase rotation, i.e., a noncoherent channel, the observation at the receiver
can be written as

where xk is the transmitted symbol, 9 is a time-invariant random phase rotation in-
troduced by the channel, and nk is a complex AWGN sample with variance Pn. The
input to the channel is modeled as a vector x = (xi, x2,..., XN)T of TV complex
symbols and the output is a vector r = (n, r 2 , . . . , r/v)T. Based on these definitions,
the channel capacity, indicated as Cnc, can be lower bounded as follows [44]:

where E represents the SNR per information symbol and is defined as follows:

where ||x||2 = x\ 2 4 . . . 4 \XN
 2 and ||r||2 = |ri 2 + . . . 4- rN

 2. The integral in
(1.15) may be numerically computed and the result is shown in Figure 1.3 for various
values of the parameter TV. It is immediately recognized that for relatively few obser-
vations (TV = 30) the capacity of this channel approaches that of an AWGN channel.
This is in agreement with the experience which says that the limit represented by
the performance of an ideal coherent receiver may be reached, for constant or slowly
varying channel phase and continuous transmissions, with practical pseudocoherent3

or noncoherent schemes [45-47]. This also motivates the study of detection strategies
for this channel in the following chapters, since there is a clear performance bench-
mark which can be theoretically achieved. Note that the capacity of a blockwise
noncoherent channel was also studied, in special cases, in [48-50].

3In a pseudocoherent receiver for noncoherent communications, a phase estimate is fi rst generated,
and then used as if it were the correct phase.



Coding and Modulation 15

Figure 1.3: Lower bound on the noncoherent channel capacity for different values of
TV. Reproduced from [44] with permission of John Wiley & Sons.

1.6 Coding and Modulation

We briefly outline some basic concepts relative to coding and modulation, relevant
for transmissions over wireless channels.

1.6.1 Block and Convolutional Coding

Since the early work of Shannon proved the existence of error correction codes guar-
anteeing error-free communication for code rates lower than the capacity, many cod-
ing techniques have been developed to fulfill this prediction. In particular, the idea
of channel coding is that of introducing redundancy to protect against the noise in-
troduced by the channel.

A binary block code is such that an information word, i.e., a sequence of informa-
tion bits, is mapped into a codeword, i.e., another sequence of bits in number larger
than the number of information bits. The ensemble of the codewords can be depicted
in a Hamming space of suitable dimension, where each codeword lies on a particular
point of this discrete coordinate system. The performance of the block code depends
ultimately on the distribution of the codewords in this space, and on the relative dis-
tances between them. In this case, the Hamming distance between two codewords is
defined as the number of bits in which the two codewords differ. A compact param-
eter describing the asymptotic performance, for large SNR, is the minimum (or free)
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distance between any possible pair of codewords [4,7].
A convolutional code can be instead considered as generated by a convolutional

encoder, where this term indicates that the output sequence can be seen as the con-
volution of the input information sequence with the impulse response of the en-
coder [7,51-53]. In detail, a convolutional encoder can be usually represented as
a time-invariant finite state machine (FSM), with state /i^ belonging to a set of finite
cardinality. In the case of a convolutional code with rate k/n, this FSM is character-
ized by two basic time-invariant functions:4

• a next-state function ns(/^m,am), whose output represents the state [im+\ at
epoch m + 1 to which the encoder evolves from state ̂ m at epoch ra upon the
arrival of a suitable sequence of k information symbols, concisely indicated as
Q"m->

• an output function o(/im, am), whose output represents a vector cm of n coded
bits.

Since a convolutional encoder can be described as an FSM, a useful and simple de-
scription of its evolution is obtained by considering a suitable trellis diagram. The
structure of the branches connecting trellis states at consecutive epochs is determined
by the code. In the case of a convolutional code, it is possible to show (the idea
is intuitive but a rigorous proof is not trivial) that the performance depends on the
"weight," defined as the number of Is among the coded bits, of the shortest trellis
path diverging from the all-0 path [56].

Note that the symbols n and k used for a convolutional code have a different
meaning compared to the case when they are used for a block code. In fact, in the
case of a block code, k indicates the entire length of the information message, which
is then transformed, through a linear matrix operation, in a coded sequence with
n symbols. In the case of convolutional coding, the information symbols enter, in
groups of /c, into the convolutional encoder, which generates n corresponding coded
symbols. The two categories of code, block and convolutional, are comparable in
terms of coding rate rc = k/n. For more details, see many of the available books on
coding [4-7].

1.6.2 Linear Modulation Without Memory

Several modulation formats for digital transmission over radio channels have been
studied. In particular, we refer the interested reader to the ample literature available

4As shown in [54,55], a block encoding process can be described over a time-varying trellis dia-
gram, in which case the next-state and output functions depend on the particular epoch.
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on the subject (see [17] and references therein). In the remainder of this book, the
following main linear modulation formats without memory will be considered:

• Phase Shift Keying (PSK). In this case, the information to be transmitted is
embedded in the phase of the transmitted signal.

• Quadrature Amplitude Modulation (QAM). In this case, the information to
be transmitted is embedded in the amplitude and phase of the signal to be
transmitted.

Other types of modulation, such as CPM, are not linear and represent an example of
modulation with memory. In this sense, they can be considered as coded modulation.
Hence, this type of modulation is considered in the following subsection.

1.6.3 Combined Coding and Modulation

The idea that coding should be combined with modulation is intuitive and very subtle.
It is intuitive, since the generated information is processed through the concatenation
between coder and modulator, so it seems natural that they constitute, combined, the
transmitter. However, the impact of this combination in terms of spectral and energy
efficiency is not immediately understood. As previously mentioned, the first clear in-
tuition is due to Massey in 1974 [8], but the idea was clearly formalized in the 1982
milestone paper by Ungerboeck [9], where the concept and principles of TCM are
presented [57]. We summarize below a few interesting coded modulation formats.
Some of them will be considered in the following chapters. Other formats, recently
proposed, represent possible attractive formats to which the proposed detection algo-
rithms could be extended.

• Trellis coded modulation. The designed codes are binary trellis codes, whose
output is mapped into modulated symbols of suitable dimensions. Increasing
the cardinality of the output modulation leads to a degradation of the perfor-
mance, in terms of bit error rate (BER). However, careful assignment of the
trellis transitions to coded symbols determines an increase of the minimum
Euclidean distance—which represents the natural extension, for modulated
signals, of the Hamming distance for binary signals—in such a way that the
overall performance may improve. The concept of TCM has been extended to
multidimensional TCM [57].

• Continuous phase modulation. The characteristics of this signaling technique
were first clearly formalized by Aulin and Sundberg in the early Eighties [27-
29], The information is embedded in the transmitted signal phase, which has
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to be continuous. The continuity of the phase signal determines a very com-
pact power spectral density. Moreover, this modulation is very attractive, since
the envelope of the modulated signal is constant. These reasons motivated
the choice of a CPM signal, more precisely Gaussian minimum shift keying
(GMSK), as the modulation format for the pan-European Group Special Mo-
bile (GSM) communication system [58]. It has been shown that a CPM signal
can be decomposed into the sum of several pulse amplitude modulated (PAM)
signals [59, 60]. This suggests a receiver structure based on a bank of fil-
ters matched to the linear components of the CPM signal. It was also shown
that any CPM modulator can be decomposed into the sequence of a continu-
ous phase encoder (CPE), given by a recursive rate IIn binary encoder, and a
memory less mapper (MM) [61]. Therefore, CPM can be considered as a spe-
cial case of coded linear modulation. Instead of considering a bank of filters
relative to the PAM decomposition of the CPM signal, it is possible to simply
consider a single filter matched to the MM and then consider a decoder relative
to the recursive CPE.

Multilevel coding (MC). Originally introduced in the Seventies [62], the idea
is that of protecting each bit of a high-order constellation symbol through the
use of (block) codes. This coded modulation scheme is very attractive, since
it allows one to approach the ultimate performance limits predicted by Shan-
non. The design rules for the various subcodes of a multilevel code have been
recently listed and described in a clear way [63]. These rules, which basically
make coding for each bit independent of the final high-order modulation for-
mat, show somehow that the Ungerboeck paradigm (which states that coding
and modulation should be designed jointly to maximize the communication
system performance) can be practically overcome.

Bit interleaved coded modulation (BICM). This coded modulation, first intro-
duced in [64] and studied in detail in [65], is very effective for transmission
over fading channels. The key idea is that of considering channel interleaving
on the coded bits before mapping these bits on suitable high-order modulated
symbols. In this case as well, coding and modulation can be designed sepa-
rately, even though they are eventually combined.
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1.7 Approaching Shannon Limits: l\irbo Codes and
Low Density Parity Check Codes

Originally introduced in 1993 by Berrou, Glavieux, and Thitmajshima [33,66], the
ideas of turbo coding, and above all iterative decoding, represent the major break-
through in communication and information theory of (at least) the last decade [67].
The main contribution of this work is to clearly indicate that concatenated codes,
originally introduced in [68], with particular structures, can be decoded in a simple,
suboptimal way entailing minor performance loss with respect to an optimal sym-
bol or sequence maximum a posteriori (MAP) decoding. A classical turbo code is
constituted by a parallel concatenation of two component convolutional codes. At
the receiver side, there are two soft-input soft-output (SISO) modules, corresponding
to the two component codes, which exchange information refining their decisions.
Provided that the SNR at the input of the receiver is above a critical threshold, the
iterative process converges.

The idea of iterative decoding opened a "highway" in terms of research activ-
ity [69-72]. Various blocks of a communication system can "talk" to each other in
order to refine the quality of knowledge they hold about suitable quantities of the
communication system under consideration. In particular, an immediate extension of
the original work in [33,66] consists of observing that the channel can be considered
as a particular block: this led to what is referred to as "turbo-equalization" or, more
correctly, "turbo-detection" [73,74].

The characteristics of turbo codes, and more generally of concatenated (either
serially or in parallel) codes, have been widely considered in the literature. It has been
pointed out that these codes show remarkable performance for an SNR larger than a
value in correspondence with which the BER curve has a characteristic "knee:" more
precisely, the BER curve is very steep above the knee value and exhibits a waterfall
behavior, whereas for lower values of the BER the curve flattens and a characteristic
"floor" appears [70]. This is due to the fact that the minimum distance of a turbo
code is relatively small. Hence, various researchers tried to understand what the
characteristic of a turbo code is, in terms of the distance spectrum, which determines
such performance. This characteristic was soon recognized as the spectral thinning,
i.e., a distance spectrum where the multiplicities of the low weight codewords are
limited [75]. In other words, at low SNR the whole distance spectrum, and not only
the minimum distance, is relevant. In [76], it is shown that, in the case of linear
block codes, maximization of the minimum distance is expected to guarantee optimal
performance above the channel cut-off rate. It is still an open question to understand
which "aspect" of the distance spectrum is significant in this SNR region (i.e., below
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the cut-off rate rate SNR).
The success of iterative decoding, based on the exchange of soft information be-

tween blocks, revived the research activity on low density parity check (LDPC) codes.
In particular, in 1962 Gallager, besides inventing these codes, suggested clearly in his
PhD thesis a suboptimal iterative processing, related to the codes' graphical structure,
which enables one to decode them [31,32]. At that time, he could not verify the va-
lidity of his intuition, due to limited computing processing possibilities. This was
first done in [77,78]. The idea of iterative decoding for particular block codes with
a sparse parity check matrix was clearly formalized in terms of a message passing
algorithm over a bipartite graph, where there are two groups of nodes: variable nodes
and check nodes [79,80]. This graph representation of block codes, proposed in the
Eighties by Tanner5 [81], has been rediscovered in recent years. The idea of message
passing algorithms for block codes can be interpreted as the equivalent of the idea
of iterative decoding for concatenated convolutional codes: nodes (instead of blocks)
exchange information to refine it. More recently, parallel or serially concatenated
codes that can be decoded by using a message passing algorithm operating on the
Tanner graph of the overall code, have been proposed [82].

Simulations of iterative decoding schemes might be very intensive. Simple tech-
niques have been introduced to analytically estimate their performance. For exam-
ple, an analysis based on density evolution associates the logarithmic likelihood ratio
(LLR) generated by a SISO module [83] with a suitable pdf and tracks the evolution
of this pdf for increasing input SNR and number of decoding iterations [84,85]. An-
other analytical technique is based on the use of extrinsic information transfer (EXIT)
charts [86,87]. Intuitively, the EXIT chart of a SISO module can be considered as its
characteristic "amplification" curve.

1.8 Space Time Coding

This class of codes can be used in communication systems with multiple transmit-
ter and receiver antennas. The main idea behind the design of these codes is that of
exploiting, besides multiple dimensions in the signal space, spatial diversity (espe-
cially at the transmitter side) obtained by using multiple antennas. The attention of
the scientific community to this type of codes was boosted by theoretical work on the
capacity of multiple-antenna systems [42, 88] in the late Nineties. This theoretical
work has clearly shown that the capacity of a multiple-input multiple-output chan-
nel is significantly larger than the capacity of a single-input single-output channel.

'For this reason, this type of graph is usually referred to as a 'Tanner" graph.
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Space time codes, clearly introduced in [89], represent an efficient way to approach
the capacity of multiple-input multiple-output channels. In particular, they exploit
in an efficient way the transmit diversity—receiver diversity, especially in multipath
fading channels, had been long exploited [90]. In particular, both trellis space time
codes [89] and block space time codes [91] were proposed. In both cases, the codes
must respect precise rules in order for the spatio-temporal diversity of the multiple-
input multiple-output system to be effectively exploited.

1.9 Summary

In this chapter, we have considered an overview of wireless communication systems,
in order to provide the reader with a few basic concepts which represents a theoretical
background for the material presented in this book. After a brief overview of wire-
less communication systems, we have described a few channel models which will
be frequently used in the following chapters, namely additive white Gaussian noise
channels, frequency nonselective and selective fading channels, and phase-uncertain
channels. The concepts of demodulation, detection and parameter estimation have
been introduced, and considerations about the capacity of the considered channels
have been made. The relation between channel coding and modulation has been
analyzed, culminating with the description of turbo codes and LDPC codes, which
have recently allowed one to "approach" the ultimate limits predicted by Shannon in
1948. The chapter terminates with a discussion about space time codes: while all the
detection algorithms in the book will be derived for single-input single-output chan-
nels, they can be extended to multiple-input multiple-output channels in a standard
fashion.

1.10 Problems

Problem 1.1: Show that the power spectral density of the fading process ac-
cording to Clarke's model has the expression given by (1.3) [20].

Problem 1.2: Considering a phase-uncertain communication system with lin-
ear modulation and absence of ISI, show that if the phase process is Wiener
with equivalent discrete-time phase model given by (1.8), then the autocovari-
ance can be written as in (1.9). Compare your solutions with that proposed in
Chapter 3.
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Figure 1.4: Rate-1/2 convolutional encoder with generators G1 = 5 and G-2 — 7.

Problem 1.3: With the help of classic information theory books (e.g., [35]),
derive expression (1.10) of the capacity of an AWGN channel.

Problem 1.4: Derive the lower bound (1.15) for the capacity of a noncoherent
channel. Compare your derivation with the derivation in [44].

Problem 1.5: Consider a rate-1/2 convolutional encoder with generators (in
octal notation) G1 = 5 and G2 = 7, pictured in Figure 1.4: for each informa-
tion symbol ak, two coded symbols (c , c^') are generated.

A. Determine the minimum Euclidean distance of the code.

B. Characterize the encoder as an FSM: define a state uk and determine the
"next-state" function ns(uk ak) and the "output" function o(uk, ak).

Problem 1.6: Consider the (6,3) binary linear block characterized by the fol-
lowing parity check matrix:

A. Design the time-varying trellis diagram associated with this block code [54].
Compare your solution with that in [79, Example 2].

B. In this case, the "next-state" and "output" functions are time-varying. De-
termine suitable functions nS k (u k , ak] and ok(uk, ak)-
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Problem 1.7: Consider the serial concatenation of a time-invariant encoder
and a linear modulator characterized by a causal pulse with duration equal to
three symbol periods. Assume that the encoder can be described as an FSM
with state ̂  and "next-state" and "output" functions given by ns^, a&) and
o(//fc,afc), respectively. The serially concatenated system can be seen as an
overall FSM. Define a state for the latter FSM and determine suitable "next-
state" and "output" functions to describe its evolutions.

Problem 1.8: Assume that complex information symbols {a/c}, belonging to
a given constellation, are mapped into coded symbols {ck} according to a dif-
ferential encoding rule, i.e., c/^ = c^-ia^, with c0 given. Define a suitable state
for the differential encoder, and determine "next-state" and "output" functions
to describe its evolution.

Problem 1.9: You have been commissioned by a telecommunication company
to design a 4-state and rate-2/3 TCM code with 8-PSK [57]. Denote by a(^

(2)and ak the two bits at the input of the encoder.

A. Design the code by determining the transitions in a section of a trellis
diagram with state //fc = (ak_v 0^-2)-

B. Show that there are parallel transitions in the trellis diagram, and compute
the minimum distance dmin of this TCM code.

C. Design the code by determining the transitions in a section of a trellis
diagram with state \j!k = (ak_^ al-i)-

D. Show that in the trellis diagram with state p!k there are no parallel transi-
tions and compute the minimum distance d'min in this case.

Problem 1.10: Consider a binary CPM signal with h = 1/2 and 2REC pulse [30].

A. Design the tree phase of this coded modulation (see [28-30]).

B. Compute the number of states necessary to describe this signal.

C. According to the decomposition approach proposed in [61], each CPM
modulator can be equivalently implemented as a serial concatenation of a
rate-l/n binary recursive continuous phase encoder (CPE) followed by a
memoryless mapper (MM). Describe the relation between the FSM model
of the CPE with the tree phase.





A General Approach to Statistical
Detection for Channels with Memory

2.1 Introduction

Wireless channels, as seen in Chapter 1, can be of various types, and a plethora of
detection strategies can be derived, as shown by the vast existing literature on the
subject. Each detection strategy is based on a specific channel model and on suitable
assumptions. It is, however, interesting to derive a general approach, applicable
to many communication scenarios, for the design of detection algorithms. More
precisely, finding a general framework could ultimately provide significant intuition
for the design of new detection algorithms, beyond those proposed in this book.

We consider in this chapter a preliminary general approach to statistical detection
for channels with memory. The main characteristics of the proposed approach can be
summarized as follows.

• The transmission channel models hereafter considered will be mainly charac-
terized by stochastic parameters. Most of the proposed detection strategies
will be derived by assuming that knowledge of the statistical distribution of the
channel parameters is available at the receiver.

• Stochastic channels are important examples of channels with memory. A sim-
ple and unified definition of the memory of the channel is not immediate. An
intuitive description could be based, as a first attempt, on the assumption that
channel observations at different time epochs are correlated with each other.

Detection Algorithms for Wireless Communications- G. Ferrari, G. Colavolpe and R. Raheli
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Figure 2.1: M-ary signaling and detection.

This is the case, for example, for a phase noncoherent channel or a frequency
nonselective fading channel.

In the remainder of this book, the central idea of the proposed unified approach
to the design of detection algorithms is based on the fact that the channel memory,
even if theoretically unlimited in several cases (such as in the case of time-invariant
stochastic channels), can be assumed as finite for practical purposes. This, finite mem-
ory condition (FMC) is shown to lead to a variety of solutions that appear in the
literature and allows one to unify them in a simple way.

2.2 Statistical Detection Theory

In this section, we review the basics of statistical detection theory [2,92]. We consider
the transmission of an information message, belonging to a finite alphabet of possible
messages, by means of a signal waveform extracted by a corresponding set of possi-
ble known signals in a one-to-one correspondence with the information messages. An
information message may be thought of as a single information symbol transmitted
in a single transmission act or a finite sequence of information symbols transmitted
in a corresponding sequence of transmission acts. This distinction, viewed as purely
formal in this section, is worth mentioning because practical transmission of infor-
mation takes place almost solely in the latter form.

As shown in Figure 2.1, let m be an information message drawn from an alpha-
bet of M possible messages denoted by {rrii}^. The notation m denotes a generic
random message (i.e., a random variable), whereas m; denotes the i-th element of the
alphabet (i.e., a possible realization of this random variable). Message m^ is trans-
mitted by means of a signal Si(t) belonging to a set of M possible signals {^(t)}^,
rigidly associated with the messages by the transmitter. Hence, the notation s(t) de-
notes a random process with sample functions {^(t)}^. The received signal r(t)
is observed by the receiver, which decides in favor of a message m G {irii}^- If
m 7^ m the detected and transmitted messages differ, and a detection error takes
place.

Adopting a probabilistic model of the transmission system, we may use the error
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Table 2.1: A posteriori probabilities of the information messages.

probability as an optimality criterion and derive a detection strategy minimizing this
probability. To this purpose we may assign a priori probabilities P{m = ra^} to
the possible messages. As a consequence, the received signal is a random process
because it depends on the random transmitted signal and the random alteration intro-
duced by the channel, which at least introduces thermal noise. Finally, the detected
message is a random variable as well, because it is deterministically related to the
random received signal.1

Denoting by {m ^ m} an error event, we seek to minimize the error probability
P {m ^ m} based on the observation of the received signal r(t). Equivalently, we
could maximize the probability of correct detection P (ra = ra) = 1 — P {ra ^ ra}.
The average probability of a correct decision can be expressed, in terms of the con-
ditional probability of a correct decision given the observation, as

in which E{-} denotes statistical expectation and P {ra = ra r(t)} is a random vari-
able because it depends on the realization of the random process r(t).

In order to derive a decision rule, or detection strategy, which maximizes P{m =
m}, let us denote by p(t) the observed realization of the received signal. Given this
realization, a decision in favor of message raz, i.e., ra = ra;, yields a conditional
probability of correct detection

The conditional probability of correct detection for a specific decision equals the
a posteriori probability (APP) of the corresponding information message given the
observation {r(t) = p(t)}. Table 2.1 shows these probabilities for any possible de-
cision. As these probabilities are positive quantities for any p(t), the maximization

1 We are implicitly assuming a deterministic detection strategy.



28 A General Approach to Statistical Detection for Channels with Memory

of the average probability of correct detection (2.1) is achieved by maximizing the
APP of the possible messages for any given observation. Hence, the optimal de-
tection strategy can be realized by computing the right column of Table 2.1 for the
given signal observation and deciding in favor of the row corresponding to the maxi-
mum entry. The resulting optimal detection strategy operates in accordance with the
maximum a posteriori (MAP) criterion and can be formally expressed as

where "argmax" denotes the argument which maximizes the following function with
respect to the variable of interest, i.e., m^. For notational conciseness, this formula-
tion can be abbreviated as

where the event ra^ denotes the transmission of the i-th information message and r(t)
denotes the signal observation.

We remark that the described approach is general, in the sense that the considered
messages are still unspecified. In particular, should the message be the entire trans-
mitted information sequence, the considered optimality criterion would lead to MAP
sequence detection. On the other hand, if the considered message is an information
symbol, then the considered optimality criterion leads to MAP symbol detection.

The computation of the APPs in (2.4) can be approached through a process of
discretization of the involved signals. This process entails the representation of a
continuous-time signal by means of a sequence of discrete-time variables. A discrete
representation of the received signal is obtained in terms of the components of its or-
thogonal projection onto an orthonormal basis spanning a suitable signal space [92].
As shown in Appendix A, discretization leads to negligible loss of information, pos-
sibly considering oversampling.

In a number of important applications, this relevant signal space has finite dimen-
sionality and the resulting discrete representation of a signal can be geometrically
interpreted as a finite-dimensional image vector. This occurs whenever the channel
introduces time-invariant perturbations on the M-ary signals at its input, besides ad-
ditive white Gaussian noise (AWGN). As described in Section 2.1, an interesting case
is obtained when these perturbations are of a stochastic nature, provided that they can
be described in terms of a finite number of random parameters. Examples of chan-
nel models of this type are all those depicted in Figure 1.1, under the assumption
of time-invariance, i.e., including the cases with known static dispersion, flat slow
fading, dispersive slow fading, and phase noncoherence.
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Figure 2.2: Discretization of the received signal.

It is worth noting that all that is needed for optimal detection are the compo-
nents of the received signal in the relevant signal space. In fact, the resulting image
vector is only representative of the orthogonal projection of the received signal onto
this signal space. The received signal itself cannot in general be reconstructed from
its image.2 Nonetheless, the received signal image vector encompasses all relevant
information for optimal detection, that is it is a sufficient statistic. Figure 2.2 shows
this information-preserving discretization function applied to the received signal r (t),
yielding the image vector r. The block in Figure 2.2 can be thought of as the receiver
front- end.

Assuming a sufficient statistic r is obtained by discretization, an optimal de-
tection strategy equivalent to (2.4) can be formulated in terms of the APPs of the
information messages given the observed image vector r, as follows

where p(r ra^) is the conditional probability density function (pdf) of the observation
vector given the transmission of the i-th message and P{m^} is the a priori proba-
bility of this message. The second line in (2.5) is immediately obtained by applying
the Bayes rule and discarding irrelevant factors, i.e.:

in which p ( r ) is the unconditional pdf of the observation vector and the symbol ~
denotes a monotonic relationship with respect to the argument of interest (m* in this
case). We remark at this point the significant impact of the Bayes rule in the deriva-
tion of the proposed detection algorithms. Ultimately, for all detection algorithms
derived in the following chapters, the starting point will be given by the application
of this rule.

2The ubiquitous thermal noise is a suffi cient reason for the inherent nonrepresentability or infi nite
dimensionality of the received signal; for example, AWGN is not representable due to its infi nite
variance.
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Figure 2.3: Decision regions.

According to (2.5), the MAP detection strategy allows a pleasing geometrical
interpretation. In fact, assuming that K denotes the dimension of the observation
vector r, each point in the observation vector space yields a decision for message m^
which maximizes the APPs P{m^|r}. Hence, this space can be partitioned into M
decision regions, as pictorially exemplified in Figure 2.3 in a simple bi-dimensional
case. When the observation vector falls into region DI, the receiver makes a decision
for message m*. Generalizations of this basic idea to the space of stochastic chan-
nel parameters have recently led to an interesting approach to perform polynomial-
complexity optimal detection over particular channels [93].

The formulation of the MAP detection strategy (2.5) emphasizes that an optimal
receiver needs only statistical characterizations of: (i) the cascade of transmitter and
channel, i.e., the conditional pdfs p(r m*), and (ii) the information source, i.e., the a
priori message probabilities P{m^}. While the latter quantities P{mJ are needed a
priori in any detection algorithm, the key part of the derivation of a detection algo-
rithm consists of the computation of the conditional pdf p(r mi). In fact, the quality
and efficiency of a detection algorithm depends on finding a clever way to compute
these pdfs at the received point r.

When all the a priori message probabilities are equal, the factors P{mJ in (2.5)
are irrelevant and can be discarded. In this case, the MAP detection strategy is equiv-
alent to the maximum likelihood (ML) detection strategy, a logical detection proce-
dure useful when the a priori message probabilities are unknown.3 For this reason,
the terminology MAP and ML is used interchangeably when these probabilities are

3 We remark that the notion of optimality as previously introduced is not defi ned in the absence of
complete statistical information.



Statistical Detection Theory 31

known and equal, perhaps inappropriately, despite the fact that strictly speaking the
terminology ML refers to the case where a priori message probabilities are unknown.

A general condition for the irrelevance of signal components in the detection
problem can be derived as follows. Let the observation vector be the concatenation
of two subvectors r\ and r2. The MAP detection strategy (2.5) can be formulated in
terms of the conditional joint pdf of these vectors

where the chain factorization rule has been employed in the second line. If the fol-
lowing irrelevance condition is met

vector r2 is independent of m*, conditionally on 7*1, and can be discarded because it
is irrelevant to the decision (see Problem 2.12).

The MAP detection strategy formulated in (2.5) is very general and depends on
the conditional pdf of the observation. Considering specific applications, the statistics
of this function can be used and more explicit formulations of the strategy obtained.
A particularly important case is that of M-ary signaling in an AWGN channel, where
the receiver has perfect knowledge of the signal waveforms {si(£)}£i- In this case,
the received signal has the expression

where n(t) is a white circular complex Gaussian noise process. The relevant sig-
nal space for this detection problem is the space spanned by the signal waveforms
{si(t)}iLi> Denoting by {<£i(i)}2i an orthonormal basis for this space, where Ds is
the space dimension, a sufficient statistic is given by the components of the orthogo-
nal projection of the received signal onto this space. Hence, the fc-th element of this
discrete observable r is

where T denotes the signaling interval4 and (•)* denotes complex conjugation.

*This implicitly assumes that { s i ( t ) } have duration equal to T.
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Given the transmitted waveform .§;(£), the discrete observable is a conditional
Gaussian random vector, due to thermal noise. As the projection of white noise onto
any orthonormal basis has independent components with equal variance, the com-
ponents of r have equal variance. Therefore, conditionally on the transmission of
message ra^, the observation vector is r = Si + n, where Si is the image of the i-th
signal waveform and n is a Gaussian random vector with independent zero-mean
equal- variance elements. We conclude that the MAP strategy entails the maximiza-
tion of the following quantity:

where cr2 is the variance of the real and imaginary components of the complex noise
samples, (-)T denotes vector or matrix transposition and !R(-) denotes the real part of
a complex number—a direct time-domain formulation is given in the last line.

2.3 Transmission Systems with Memory

The transmission of a significant amount of information is normally achieved by pe-
riodically repeating M-ary signaling and detection acts. In a repetition, or signaling,
interval an M-ary information symbol or, equivalently, Iog2 M information bits are
transmitted. If proper conditions are verified these subsequent signaling acts do not
influence each other and optimal detection can be realized based on independent sig-
nal observations. In this case, the transmission system is memory/less.

There may exist situations, however, in which the received signal in the "current"
transmission act is affected by "past" and, possibly, "future" transmission acts. More
generally, the detection process may benefit from the observation of the received
signal over more than one signaling interval. Specifically, this may occur because of
the following reasons.

1. Channel coding is employed for error protection. In this case, the codewords
are sequences of code symbols characterized by the fact that not all sequences
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Figure 2.4: Transmission system.

are possible codewords. This means that the encoder operates introducing re-
dundancy in the code sequence.

2. The transmission channel is dispersive. Because of that, the received signal is
affected by inter-symbol interference (IS I) and in a given signaling interval it
may depend on a group of transmitted symbols.

3. The model of the transmission channel includes stochastic parameters, such as
a phase rotation or a complex fading weight. The received signal may therefore
depend on the entire sequence of previous symbols.

4. The channel additive Gaussian noise is colored, i.e., its power spectral den-
sity is not constant. In this case, the detection process may benefit from the
observation of the received signal over several signaling intervals because, im-
plicitly, it may predict the realization of the correlated noise process.

These situations are commonly characterized by the fact that an optimal detection
process of each information symbol requires the observation of the received signal
over several signaling intervals, e.g., beyond the signaling interval of the information
symbol being detected. As a consequence, the transmission system is inherently
characterized by memory.

A general model of a transmission system with memory is shown in Figure 2.4.
An information symbol belonging to an M-ary alphabet is denoted as a^, where
the index k now refers to the discrete-time instant. We assume that K information
symbols are transmitted successively from time 0 to time K — 1. A sequence of
information symbols in the discrete time interval (k\, k2) is denoted in vector notation
as

For brevity, the entire information sequence is denoted as a = a^ 1. This sequence
is input to the encoder and modulator. The coded and modulated signal is denoted
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as s(t, a) to emphasize its dependence on the information sequence. The channel is
viewed as a noiseless filter (possibly stochastic) with output signal x(t, a), rendered
noisy by the addition of thermal noise n(t). The received signal r(t) is observed by
the demodulation and decoding block which outputs the decision sequence d. We
remark that the indexing used in the current notation refers to time, instead of the
element of the message alphabet as in Section 2.2.

The encoder/modulator block in Figure 2.4 is a generic system which evolves,
upon receiving at its input the information sequence a, through a sequence of states
{/IG,/^!, • • •}• In many realistic cases, the encoder/modulator can be described as
a time-invariant finite state machine (FSM) (e.g., trellis-coded or continuous phase
modulation). The state //& belongs in this case to a set of finite cardinality and a
time-invariant "next-state" function ns(-, •) describes the evolution of the system as

The evolution of the encoder/modulator can therefore be described through a trellis
diagram, in which there are M exiting branches (in correspondence with M different
information symbols) from each state. Hereafter, the initial state /i0 of the FSM will
be assumed known.

The received signal can be expressed as

By means of a discretization process, the received signal r(t) can be converted into
an equivalent discrete-time sequence r [94]. Let us consider a discrete observable r
with dimensionality equal to that of the information sequence a. As a consequence,
there is one observable r^ per information symbol a* or, formally, r — rjf"1, with a
notation similar to that used for the information sequence. For the sake of simplicity,
this formulation does not account for border effects due to slight differences in the
dimension of r and a. For example, in the case of ISI channels characterized by an
equivalent discrete-time model with more than one tap, the number of observables
{rf~} could be larger than the number of effectively transmitted information symbols
{a/c}. The extension of the proposed formulation to account for this situation is
straightforward.

The considered model is based on a sampling rate of one sample per symbol,
which is practically sufficient in many cases. In a more general setting, there may
be two or more elements of r per information symbol a^, e.g., when a convolutional
code or a time-varying channel is considered. These cases can be encompassed by
the proposed formulation interpreting each observation r^ as a vector of suitable
(small) dimensionality. The choice of a unitary sampling rate is expedient to make
the following derivation clear.
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Under a causality condition, the received signal in the signaling interval kT <
t < (k + 1)T can be written as

i.e., it depends on the information sequence up to epoch k. In the equivalent discrete-
time model the continuous causality condition in (2.15) becomes

2.3.1 Causality and Finite Memory

In this subsection, we introduce key conditions for the derivation of a general class
of detection algorithms applicable to channels with memory. Note that some of the
proposed conditions or part of the derivation might seem to come out, at this point
in the book, without a clear motivation. The true reason is the fact that after trying
to derive various specific algorithms one can realize that there are a few unifying
conditions, which are applicable in many situations and encompass the derivation of
several algorithms. Hence, the reader should not pretend to understand immediately
why the conditions in the following represent the foundation of the unified detection
approach described in this book. The reader should instead try to understand these
conditions through an iterative learning process: first, he/she should read these con-
ditions; then he/she should study the algorithms proposed in the following chapters;
finally, he/she should go back to these conditions to convince himself/herself that
they are the basic necessary conditions.

Taking into account the above considerations, it is possible to show that the fol-
lowing FMC constitutes the basic assumption to derive many detection algorithms:

where C is a suitable finite memory parameter and fik-c represents the state, at
epoch k — C, of the encoder/modulator. The finite memory condition (2.17) is an
extension of the folding condition introduced in [95], obtained by accounting for the
encoder/modulator state /^. For the algorithm derivation proposed in the following
chapters, it is very useful to consider other conditions which are obtained as conse-
quences of causality and finite memory conditions. In particular, the following two
results will be very useful.

1. The first useful consequence is that
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Proof. In fact,

where the notation a^ D l at the bottom of the sum operator indicates that
the sum is considered over all possible information sequences a^~D~l. If a se-
quence a,Q~D~l, given //0, is incompatible with //£_£>, then P{O,Q~D~I \fik-o} —
0. Hence, for any sequence a^D~l compatible with //&_£>, one can write:

where the last equality is based on the FMC (2.17). Hence, (2.19) becomes:

Since

from (2.21) it follows that

which completes the proof.

2. The second useful consequence of causality and finite memory conditions is
that
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Proof. In fact,

Based on the independence between information symbols and on the system
causality assumption, it follows that

Applying the chain rule, one can immediately write:

where, based on the causality and finite memory conditions, each term in (2.27)
can be expressed as

Using (2.28) in (2.27) we may write:

Finally, (2.25) becomes:

which completes the proof. 

The encoder/modulator block in Figure 2.4 can be often decomposed into a cas-
cade of an encoder and a memoryless mapper. In this case, the causality and finite
memory conditions imply analogous relations between the observation sequence r
and code sequence c = c^""1, where Ck is a generic code symbol. These conditions
can accordingly be formulated as follows:
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These conditions, however, involve only the transmission channel and do not imply
(2.16) and (2.17) in general. A case of interest may be that of a linear block code
followed by a memoryless modulator. In particular, a linear block code is not guar-
anteed to be causal,5 so that channel causality (2.31) does not imply system causality
(2.16).

In the case of a linear block code, a trellis representation is possible, but the trellis
is time-variant both in terms of states and branches [54,55], In this case, the evolution
of the encoder/modulator over a trellis diagram should be described by a time-variant
next-state function ns^(-, •). One can immediately conclude that a Tanner graph [81]
(or other suitable graphical) representation for a linear block code—where the parity
checks determine the structure of the graph—can be more appealing, especially if
the parity check equations involve a few symbols (as in the case of low density parity
check, LDPC, codes) [78].

A significant example where causality and finite memory conditions strictly hold
is given by transmission over channels with ISI, possibly encompassing a nonlinear-
ity with finite memory. The pdf at the right-hand side of (2.17) simplifies, by dropping
the conditioning observables, to

where in this case the finite memory parameter C equals the channel dispersion.
While it will be shown in much more detail in the following chapters, we now remark
that the pdf in (2.33) can be directly used both in a Viterbi algorithm (VA) and
a forward backward (FB) algorithm. A similar property holds for (2.32): this is
of interest, for example, in the case of transmission of linear block codes over ISI
channels. Hence, a sum-product (SP) algorithm based on the same basic metric can
also be applied (see Chapter 5 for more details).

2.3.2 Stochastic Channels: Channels with Infinite Memory

While in Section 2.3.1 the case of detection for channels with strictly finite memory
has been considered, it is important to underline that this is rarely observed in the
case of wireless communication channels.

In the case of a channel affected by stochastic uncertainty, the observations {rk}
are dependent, so that the channel memory may not be finite. A very general para-
metric model for the observation rk is the following:

5Block-wise causality must be indeed satisfi ed.
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where L is an integer, 0 J is a sequence of stochastic parameters independent of a, and
Uk is an additive noise sample.6 Under this channel model, the following conditional
Markov property (CMP)

where TV is the order of Markovianity, is sufficient to guarantee an FMC. It is possible
to show that (2.35) implies the following:

where the finite memory parameter is C = N + L. In fact, based on (2.35), one can
write

The conditional pdf in the numerator of (2.37) can be expressed, by applying the total
probability theorem, as follows:

Owing to the considered observation model (2.34), it is immediately concluded that

where C — N + L. As the stochastic parameters are independent from the in-
formation symbols, the second pdf inside the integral in (2.38) can be equivalently
expressed as p(0^ a\_L_c, nk-L-c}- Finally, the integral (2.38) becomes:

6The additive noise is not required to be Gaussian for the validity of the following result. We
also point out that the symbol 6 will be used, in the remainder of the book, to indicate a possible
channel phase rotation, besides a generic channel stochastic parameter, as in the subsection at hand.
The context should eliminate any ambiguity.
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Applying the same reasoning to the denominator of (2.37) (taking also into account
the causality of the system), one can conclude that

which corresponds to (2.36). One can immediately recognize that (2.36) represents
a special case of (2.17). As a consequence, all the derivations in the previous section
hold.

A statistical description of the stochastic parameter allows one to compute the
basic pdf in (2.36) as follows:

Unfortunately, the above exact result is limited by the fact that in realistic sce-
narios the CMP (2.35) is seldom exactly met [47,95]. However, this result suggests
a reasonable approach to devising good approximate detection algorithms whenever
the conditional observations are asymptotically independent for increasing index dif-
ference.

2.4 Overview of Detection Algorithms for Stochastic
Channels

As described in Section 2.1, the design of detection algorithms involves many as-
pects, such as the channel model, the considered modulation/coding format, and pos-
sible constraints on the complexity of the algorithm. In particular, a major classifica-
tion among detection algorithms is the following.

• Hard-output detection algorithms generate "hard" decisions on the transmit-
ted message, in the sense that their output is one of the possible messages
in the transmission alphabet. The most common of these algorithms is the
VA [96,97], which performs MAP sequence detection. This algorithm will be
described in more detail in Chapter 3.

• Soft-output detection algorithms, instead of generating hard decisions, compute
reliability values on the transmitted messages. The most common algorithm is
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the FB algorithm [54]. These reliability values can be of various types and
they are usually related to the APP of the transmitted messages P{m^ r}. In
particular, this type of algorithm is generally used to perform (exact or approx-
imated) MAP symbol detection, so that the calculated APP can be written as
P{dk r}. In the case of binary information symbols, a commonly considered
reliability value is given by the logarithmic likelihood ratio (LLR), defined as

One can immediately recognize that an LLR captures within a single quantity
the relationship between the APP of a transmitted "1" and that of a transmit-
ted "0." Note that the formulation, based on the use of the LLR, can be also
extended to the case of larger information symbol cardinality. In the case of
M-ary symbols, (M — 1) LLRs are needed: the LLR relative to the m-th
symbol, m = 1, . . . , M — 1, is given by the logarithm of the ratio between
P{ak — m r} and P{ak = 0|r} — in other words, the reference probability
still remains the APP of zero symbol, for which the LLR is thus 0.

The transmission model described in Section 2.3 can be viewed as based on a
single MK-ary signaling act or K repetitions of M-ary signaling acts. In the for-
mer interpretation, the message is the entire information sequence, whereas in the
latter the message is each individual information symbol. According to these inter-
pretations, two MAP detection strategies are obtained. MAP sequence detection is
optimal in the sense that it minimizes the probability of erroneously detecting the
entire sequence, i.e., selecting a sequence not equal to the transmitted one. MAP
symbol detection minimizes the probability of erroneously detecting each informa-
tion symbol. Specializing (2.4), we may derive the following general formulations of
these detection strategies:

Although in principle which of these detection strategies is best may depend on
the specific application, the difference is mainly of a conceptual nature.7 In fact, the
most frequent erroneous decisions occurring in sequence detection are those charac-
terized by only very few symbol errors. For high signal-to-noise ratios (SNRs), where

7Note, however, that the use of symbol detection becomes essential in the case of iterative detec-
tion, as will be shown in detail in Chapter 4.
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most frequent errors dominate, most sequence errors entail only very few symbol er-
rors, typically one in uncoded systems or the minimum allowed number in coded
systems. As a consequence, the symbol error rates attained by receivers designed
according to these two strategies tend to become equal for increasing SNR.

The receiver complexity necessary to implement these detection strategies may
be significantly different. Sequence detection is often simpler to implement thanks to
the well-known and celebrated VA. Symbol detection, however, has an important in-
herent feature which has attracted much attention in recent years, namely it generates
the APP of each information symbol. This APP can be regarded as soft information
about a symbol, in the sense that besides symbol decisions, taken by selecting the
symbol with maximum APP, they provide information about the reliability of these
decisions. If the APP of a specific symbol is much greater than those of the other
symbols, a decision in favor of that symbol is more reliable with respect to the case
when that APP is just a little greater than the others. The usefulness of soft informa-
tion can be immediately understood considering a receiver implementation, as in the
"decomposed" block diagram in Figure 1.2. The decoding function can be signifi-
cantly facilitated, and its performance improved, if the demodulation function outputs
soft information about the code sequence, instead of just the code symbol decisions.
This soft information is also the basis of iterative detection techniques [33,98]. In
this case, in order to compute P{a^ r}, one could average (by applying the total
probability theorem) over the probabilities of all paths containing a^. However, this
is not efficient. A much more efficient algorithm is the FB algorithm, which will be
described in more detail in Chapter 4.

Particular attention must finally be devoted to a soft-output decoding/detection
technique which has been developing over the last few years, namely graph-based
decoding. As mentioned in Section 1.6.1, while a trellis representation is attractive
for a convolutional code, in the case of a linear block code a graphical representation
is more appealing. For example, one can consider a factor graph constituted by two
kinds of node: variable nodes (relative to the transmitted coded symbols) and check
nodes (relative to the parity check equations characterizing the linear block code).
Such a graphical representation is practical if the number of edges in the considered
graph is not too large. This is the case, for instance, for a linear block code such
that each parity check equation involves a limited number of coded symbols. Linear
block codes of this type are, for example, LDPC codes. In particular, a simple and,
under certain conditions, almost optimal decoding algorithm, referred to as a message
passing algorithm, is based on the exchange of soft information between check and
variable nodes.

As will be shown in the following chapters, several of the proposed algorithms
will guarantee almost optimal performance. However, the price to pay in terms of
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complexity will sometimes be very heavy. In particular, one of the main conclusions
which stem from the general framework proposed in this book is that the goal in
designing a detection algorithm is not that of approaching8 the optimal performance
of a receiver which perfectly knows the channel (regardless of the algorithmic com-
plexity), but rather to approach the ideal performance with limited complexity.

2.5 Summary

This Chapter represents the "key" to understanding, with a unitary perspective, the
entire book. After a brief discussion about statistical detection theory, the focus
moved to transmission systems with memory. A statistical definition of causality
and finite-memory represents the root for the derivation of most of the detection al-
gorithms presented in the following chapters. In fact, these simple techniques lead
to a unified approach to finite memory detection, which allows one to systematically
derive MAP (trellis-based) sequence and (trellis-based and graph-based) symbol de-
tection algorithms. In the case of stochastic channels, which correspond to the reality
of wireless communication systems, we have shown that the application of a con-
ditional Markov property still leads to finite memory detection. In particular, while
not rigorous in most cases, the conditional Markov property practically allows one to
describe well a stochastic channel, provided that the order of Markovianity is suffi-
ciently large.

2.6 Problems

Problem 2.1: Consider a 12-cross QAM constellation, obtained from a 16-
QAM constellation by removing the four points at the corners of the constel-
lation. Assuming uncoded transmission, determine the decision regions for
symbol-by-symbol detection at the receiver side.

Problem 2.2: Consider a 32-ary amplitude PSK (32-APSK) constellation, as
shown in Figure 2.5. The three radii r l5 r2 and r3 are suitably optimized values.
Assuming uncoded transmission, determine the decision regions for symbol-
by-symbol decision at the receiver side.

Problem 2.3: [92, Section 4.2] In the transmission schemes considered in Fig-
ure 2.6, HI and n2 are additive noise vectors independent from each other and

^Note that reaching the optimal performance might be basically impossible in some cases.
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Figure 2.5: Constellation for 32-APSK.

from the discrete-time transmitted signal vector s. Determine, in each of the
three cases shown in Figure 2.6, if vector r2 is irrelevant in detecting the trans-
mitted signal, i.e., if r i is a sufficient statistic (see Appendix A).

Problem 2.4: Consider a single-input single-output channel with additive noise
whose output is a scalar r = s + n, where the noise n is a Gaussian ran-
dom variable with zero mean and variance cr2. Assume a binary transmission:
s € {si, §2}, with P{SI} = p. Determine the decision regions depending on p.

Problem 2.5: Consider a bidimensional channel with additive Gaussian noise.
The received discrete-time vector can be written as r = s + n, where the signal
vector s can assume the following values (ternary transmission):

and the noise vector n has independent components, with zero mean and vari-
ance cr2. Determine the decision regions in the following cases.

A. Equally probable messages.

B. The probabilities of the messages are P{mi} = 1/9, P^m?} =
4/9,

Problem 2.6: The observation vector at the output of a fading channel can be
expressed as
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Figure 2.6: Possible communication systems. Reproduced from [92] by permission
of John Wiley & Sons.

where 0 denotes an element-by-element product of vectors or matrices. Show
that the conditional mean vector and covariance matrix of the observation vec-
tor can be written as follows:

where rjf and C/ indicate, respectively, the mean vector and covariance matrix
of the fading vector /, and Cn is the covariance matrix of the additive noise n.

Problem 2.7: In a binary transmission system over a fading channel, the ob-
servation can be written as:

where s G {sl7 s2}, with
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Assume that the random variables /i and /2 are zero-mean, independent Gaus-
sian variables with equal variance a^, and that n\ and n-2 are zero-mean, inde-
pendent Gaussian variables as well, with equal variance cr^. Derive the MAP
decision strategy and the decision regions.

Problem 2.8: A transmission system uses QPSK with the following signals:

where u — 2?r/T and

Derive the structure of the optimal receiver assuming that the signals are equally
likely and transmitted over an AWGN channel.

Problem 2.8: Provide an intuitive or physical explanation of the reason why
the MAP detection strategy for known signals {s^(t)}^1 transmitted over an
AWGN channel cannot be expressed as an explicit function of the following
integral:

where T0 is a suitable time interval at least equal to the transmission interval.

Problem 2.9: Consider transmission of independent and identically distributed
antipodal binary symbols {o^} belonging to {+!,—!}. Assume that these in-
formation symbols are coded into symbols {c/J through the following differ-
ential encoding rule: Ck = c^-ia^. Show that MAP sequence and MAP symbol
detection criteria coincide.

Problem 2.10: Consider the transmission of PSK symbols {a^} belonging to
the set {exp(j27Tjj) , k = 0, . . . , M — 1} and suppose that they are encoded
through the following differential encoding rule: c^ — Ck-icik- Show that the
optimal receiver, according to the MAP sequence detection criterion, reduces
to a symbol-by- symbol receiver for coded symbols {ck}, emitting symbol de-
cisions {ck} from which the estimated information symbols are recovered ac-
cording to ak

Problem 2.11: Suppose that the discrete-time observation at the receiver can
be written as r^ = a& + n^. Suppose that a^ is real and n^ is complex. Show
that ^{n/j} is irrelevant for any detection strategy.



Problem 2.12: Let the observation vector be the concatenation of two subvec-
tors:

and assume that the following condition is satisfied:

Show that vector r2 is irrelevant, given r i? in the decision problem and can be
discarded (Theorem of irrelevance).

Hint: formulate the MAP detection strategy in terms of the conditional joint
pdf of these vectors and use chain factorization.

Problem 2.13: Consider an M-ary signaling scheme with signal set {

Assuming signal Si(t) is sent, the received signal at the output of an AWGN
phase-noncoherent channel is

where 0 is uniformly distributed over 2yr.

A. Determine a discretization process for the received signal which provides
a sufficient statistic for MAP detection.

B. Derive the noncoherent MAP strategy.

C. Give examples of signal sets suitable for noncoherent detection.

Problem 2.14: Prove that in the case of transmission over a channel with
strictly finite memory, (2.33) holds.

problems 47





Sequence Detection: Algorithms and
Applications

3.1 Introduction

In this chapter, we consider a generic approach to maximum a posteriori (MAP)
sequence detection, with emphasis on detection over stochastic channels. In particu-
lar, the principle of MAP sequence detection, equivalent to the maximum likelihood
(ML) sequence detection principle for equal a priori sequence probabilities, was in-
troduced in the literature long ago [2]. The most celebrated and used MAP sequence
detection algorithm, the Viterbi algorithm (VA), was introduced by Viterbi in 1967
and represents a very efficient solution for hard-output sequence detection [96,97].

In the remainder of this chapter the principle of sequence detection will be first
introduced and revisited, recalling the main characteristic of a VA and describing
some details about one of its possible extensions, namely the soft-output Viterbi al-
gorithm (SOVA) [99]. The application of the general approach for detection over
channels with memory proposed in Chapter 2 will then be specialized for the case of
sequence detection. We will also consider a general discussion on detection and esti-
mation, culminating with the description of the principle of per-survivor processing
(PSP) [34].

Detection Algorithms for Wireless Communications- G. Ferrari, G. Colavolpe and R. Raheli
©John Wiley & Sons, Ltd. ISBN: 0-470-85828-1

49

6



50 Sequence Detection: Algorithms and Applications

3.2 MAP Sequence Detection Principle

As seen in Chapter 1, the MAP sequence detection strategy can be formulated, refer-
ring to the equivalent discrete-time observation r — r^~l, where K is the transmis-
sion length, as

In particular, a brute-force approach to the identification of a consists of the eval-
uation of P{a r} for all possible information sequences a, selecting the sequence
which maximizes the a posteriori probability. By chain factorization and owing to
the independence of the information symbols, the MAP sequence detection strategy
in (3.1) can be formulated in terms of the conditional probability density functions
(pdfs) p(r a) and the a priori sequence probabilities P(a):

where the symbol ~ indicates that two quantities are monotonically related with re-
spect to the variable of interest (in this case, a); a discrete-time version of the system
causality (see Chapter 2) is assumed to hold in the second line; and the monotonicity
of the logarithm is used in the third line. In particular, if the a priori probabilities
{P{ak}} are equal, the MAP sequence detection criterion coincides with the ML
sequence detection criterion.

The maximization of (3.2) over all possible sequences {a} can be implemented
as a search of a path in a tree diagram where each branch is in a one-to-one corre-
spondence with an information symbol ak. Consequently, a path is in a one-to-one
correspondence with a partial sequence a* up to epoch k. Assign first a metric equal
to the k-th term of (3.2) to a branch at epoch k associated with symbol a&. Defining
a path metric as the sum of the metrics of the branches forming that path, the MAP
sequence detection strategy implements a search for the path with largest metric in
this tree diagram.

As assumed in Chapter 1 , the encoder/modulator can be described as a finite state
machine (FSM) with state jj,k and characterized by the following "next-state" and
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"output" functions:

Considering a channel with complex additive white Gaussian noise (AWGN) with
circular symmetry, i.e., with independent real and imaginary components, each with
variance d1 — a simple and very common example of memoryless channel — the generic
observation at epoch k can be written as

where nk is the AWGN sample. In this case, it follows that

and (3.2) can be reformulated as

As mentioned above, a brute-force approach to the implementation of the MAP se-
quence detection criterion would consist of evaluating (3.6) for all possible informa-
tion sequences, choosing the maximizing sequence. Assuming M-ary information
symbols, the complexity of this brute-force approach would be MK, i.e., exponential
with the transmission length. Hence, this implementation of the MAP sequence de-
tection principle is feasible only for short transmission lengths, whereas it becomes
highly inefficient for longer transmission lengths. A much more efficient and appeal-
ing MAP sequence detection algorithm is the VA, which will be described in the next
section.

3.3 Viterbi Algorithm

In the case of a strictly finite memory channel, MAP sequence detection can be for-
mulated as indicated in (3.6), possibly by redefining symbol ck and the underlying
FSM model. In particular, the optimal tree diagram can be folded into a trellis dia-
gram, where the possible states at each epoch are given by all possible values of the
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state Hk of the encoder/modulator FSM. In the remainder of this chapter the num-
ber of states of the encoder/modulator FSM will be indicated by Sc. Denoting by
tk — (/4b, flfc) a transition in the trellis diagram, a branch metric associated with this
transition can be defined as follows:

Upon the definition of the branch metric (3.7), the a posteriori sequence probability
can be written as follows:

Without entering into the details (the interested reader can find plenty of literature re-
garding the VA [17,56]), the implementation principle of the VA is that of associating
to each state /in a partial path metric relative to the corresponding path originating
from a known state /IQ, at epoch k — 0, and terminating into //„. This partial path
metric, indicated by An(/^n), can be written as follows:

Obviously, P{a r} = A# (///<•). Based on the trellis representation of the under-
lying FSM, the partial metrics, associated with the trellis states, can be computed
recursively. For the sake of simplicity, we consider binary information symbols, i.e.,
M = 2. A pictorial description of a step of the VA is shown in Figure 3.1. The path
metrics associated with states p,k and nk ' are indicated as A^/i^, ') and Afc(/4 ),
respectively. The VA associates with state jj,k+i (the common ending state of both
transitions rk ' — (prk ,ak) and tk = (ijrk , ak )) the following path metric:

In this sense, the basic operation of the VA is defined as an add-compare- select
(ACS) operation, since: (i) the path metrics associated with the two starting states
are summed with the branch metrics of the two branches entering into the common
final state; (ii) the obtained partial path metrics are compared; and (iii) the largest
path metric is selected as the path metric associated with /ifc+i-

The evaluation of path metrics as indicated above guarantees that, at each state
and epoch, the path terminating in that state is, among all entering paths, the one to
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Figure 3.1: Add-compare-select operation in a VA.

which the largest metric is associated. At any epoch, the Sc paths with the largest
possible path metrics are therefore tracked. Consequently, in correspondence to the
final trellis section at epoch K, the largest path metric among those associated with
the final states is such that the corresponding information sequence satisfies the MAP
sequence detection criterion in (3.1).

Even if the complexity of the VA is proportional to KSC (i.e., the dependence on
the transmission length is linear and not exponential anymore), the delay would still
be unacceptable in the case of long transmission lengths, since one should wait for
the transmission of the entire information sequence before being able to output the
sequence of symbols satisfying the MAP sequence detection criterion. An appealing
feature of the VA, however, consists of the fact that the surviving paths at each state
at a given epoch k converge backwards at epoch k — D, where D is related to the
memory of the underlying FSM. The probability of convergence rapidly approaches
1 for increasing values of D. Hence, at epoch k, it is possible to emit the decision
at~-D relative to the final MAP information sequence. In other words, by assuming
that consecutive observations are sequentially available, the latency corresponds to
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only D symbol intervals.

3.4 Soft-Output Viterbi Algorithm

While the VA represents an efficient algorithm to determine the information sequence
satisfying the MAP sequence criterion, it does not provide any measure of the like-
lihood of the estimated sequence. Considering a trellis section at a generic epoch,
given that the trellis is regular, in the case of binary information symbols there are
two branches entering each state, as indicated in Figure 3.1. In this case, an heuris-
tic and reasonable approach to associating a likelihood to the information symbol
relative to the winning entering path consists of estimating such a likelihood as the
absolute value of the difference between the path metrics of the two entering paths.
In fact, the larger the difference between the two path metrics, the more reliable the
winning path will be. This is the basic principle of the SOVA.

In particular, as will be made clearer in Chapter 4, the SOVA does not produce
soft outputs by considering all paths in the trellis diagram as in the case of the for-
ward backward (FB) algorithm, but only two paths: the maximum likelihood path
and its strongest competitor. We do not describe further the SOVA here, since it will
be considered in Chapter 4 in the context of iterative detection.

3.5 Finite Memory Sequence Detection

As seen in Section 3.2, the formulation of the MAP sequence detection principle
requires, according to (3.2), a search over a tree. It was shown that in the case of
a memoryless channel the computation of (3.2) can be carried out over a trellis di-
agram, by using the VA. This conclusion holds also in the case of a channel with
strictly finite memory, provided that the state is properly redefined accounting for
modulator/encoder and channel memories.

If the causality condition and the finite memory condition (FMC) introduced in
Chapter 2 hold, the independence between information symbols and the chain factor-



Finite Memory Sequence Detection 55

ization rule allows one to derive the following:

Note that the last step in (3.11), where the FMC is applied, holds if k > C, i.e., in a
regime situation for the VA. In the initial transient, for k < C, (3.11) holds assuming
that negative indexes are replaced by 0. In the logarithmic domain, one can write:

Defining the augmented trellis state and transition as follows:

the &-th term in (3.12) can be considered as a branch metric, i.e., one can define:

At this point, one can immediately recognize that the MAP sequence detection prin-
ciple can be implemented with a VA running over a trellis with state Sk and branch
metric (3.15). The state Sk is augmented with respect to the state p,k of the en-
coder/modulator. This corresponds to considering combined detection and decoding.
The next-state function NS(-, •), describing the transitions in the augmented trellis
(and, consequently, the operations of the VA), can be straightforwardly expressed as
follows:

In Chapter 2, we showed that under the general stochastic channel model (2.34),
if the conditional Markov property (CMP) (2.35) holds, the branch metric (3.15) can
be further simplified as follows:



56 Sequence Detection: Algorithms and Applications

where TV is the order of Markovianity, and the finite memory parameter can be written
as C — N + L, where L is an integer characterizing the expression of the observa-
tion (e.g., it can take into account the presence of inter-symbol interference, ISI). In
particular, a generic model for the observation at the output of a stochastic channel
could be the following:

where #ch(', •, •) is a known deterministic function, {9k} is the sequence of (possibly
vectorial) channel stochastic parameters, and {n^} is the additive noise process. Note
that the first term of the branch metric (3.17) is the logarithm of a conditional pdf
in which the conditioning part is given by a window of observations of length N.
Assuming that, at the receiver, the statistics of the stochastic channel parameters are
available, the branch metric (3.17) can be written as follows:

Although important from a conceptual viewpoint, expression (3.19) for the branch
metric is not operative because of its dependence from a sequence of k stochastic pa-
rameters. In a special (although very important) case, the observation can be written
as follows:

In this case, (3.19) specializes to the following:

The observation model (3.20) suggests also another generic approach for the com-
putation of the branch metric in this case. In fact, one could consider a suitable
estimate1 Ok based on the previous observations. A general expression for such an
estimate is

Note that while the computation of the branch metric according to (3.21) is, given
statistical knowledge of the channel stochastic parameters, exact, the computation of

JThe criterion for the computation of 9k could be any 'reasonable" criterion.
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the branch metric using an estimate as in (3.22) may not be exact—for example, in the
case of frequency nonselective fading channels for which the estimate is a minimum
mean square error (MMSE) estimate based on linear prediction, the obtained metric
is exact. In order to clarify the two proposed approaches for the computation of the
branch metric (3.17), two interesting examples are considered.

3.5.1 Inter-Symbol Interference Channel

As an important specific application, we consider a communication system where a
linearly modulated and possibly encoded signal is transmitted over a static dispersive
AWGN channel, i.e., an ISI channel. Being a static channel, its deterministic re-
sponse can be measured or estimated with the desired accuracy; hence, we assume it
is perfectly known at the receiver. After discretization, normally achieved by filtering
and sampling (see the Appendix for more details), this channel can be modeled by the
following mapping from the information sequence {a^} to the discrete observable:

where: {//}/L0 denotes the overall white noise discrete equivalent of the ISI chan-
nel [100]; {ck} is a code sequence at the output of a channel encoder; and {n^} is
an independent and identically distributed (iid) Gaussian noise sequence with vari-
ance cr2 per component. All quantities in (3.23) may be complex in order to model the
discrete-time equivalent of a bandpass system.2 The code sequence is in a one-to-one
correspondence with the information sequence according to the encoder/modulator
FSM structure characterized by (3.3).

For the system model in (3.23), the conditional pdf of the observation at epoch k
has the following form:

In fact, given the information sequence aj, the coded sequence is specified; in par-
ticular the most recent L + 1 code symbols in (3.23) are uniquely determined and
the conditional pdf of rk in the right-hand side of (3.24) is equal to that of the noise
sample nk shifted by the signal component, i.e., the summation in (3.23). Defining
an augmented system state in the usual manner, i.e.:

zln this case, the noise sequence is circularly symmetric.
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where C > L, the dependence of the conditional observation on the information
sequence can be formulated as a dependence on the current information symbol ak

and the system state Sk, i.e.:

where the notation

has been introduced. The assumed FSM model is a finite memory system by defini-
tion and complies with (2.17) by a suitable choice of the total memory C, which may
exceed L to account for the code memory.

Based on (3.23), we can now easily derive the branch metric (3.15) in the form

In the special case of equally likely information symbols, the a priori probabilities
are irrelevant and the following branch metric is sufficient:

3.5.2 Flat Slow Fading Channel

As a second important application, let us consider transmission of a linearly modu-
lated, possibly encoded, signal over a flat slowly fading channel. After discretization,
the observation model is

where / is a circular complex Gaussian random variable, ck is the code symbol and
nk is an AWGN noise sample. This discrete channel model is a special case of (3.23),
in the sense that there is no ISI (i.e., L = 0), but it is an extension of (3.23), in the
sense that the channel coefficient / is a random variable. Being a static channel, the
discretization process can be identical to that used in the derivation of (3.23).

For the system model (3.30), the conditional observation is Gaussian and its de-
pendence on the information sequence can be formulated as
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where the conditional mean and variance are

Unfortunately, the dependence of the conditional mean and variance, hence the ob-
servation, on the information sequence is not strictly finite memory in the sense
of (2.17). This FMC can be imposed as an approximation in order to force the appli-
cability of the proposed finite memory sequence detection algorithms. In particular,
one can consider the following approximate conditional mean and variance (condi-
tioned on a finite sequence of previous observations):

The approximation quality improves with increasing values of the assumed memory
N, which is now a design parameter. Selecting a sufficiently large value for TV may
entail minor performance degradation. It is possible to show that for the considered
Gaussian observation model in (3.30), the approach proposed in this subsection is
equivalent to linear predictive detection [101] (see Problem 3.8).

3.6 Estimation-Detection Decomposition

In the previous section, we derived a general VA for combined detection and decod-
ing of an information bearing signal transmitted through a channel, possibly modeled
as stochastic and time- varying. We showed that a starting point is the availability of
a statistical characterization of the overall mapping from information sequence a to
discrete observable r. If this mapping is causal and the FMC holds, sequence detec-
tion algorithms,3 based on the branch metric defined in (3.15), can be derived.

The FMC holds in important situations. As shown in Section 3.5.1, transmission
on known static dispersive AWGN channels is an important case where this condi-
tion is strictly verified. However, there are other important applications in which the
FMC does not hold, such as those where the channel inflicts some stochastic alter-
ation upon the transmitted signal, besides thermal noise. At the end of Section 3.5,
we considered explicitly the special case of flat slow fading, which is the simplest

3Note that in Chapter 4 we will show that the same approach is also the basis for the derivation of
FB algorithms to implement MAP symbol detection.



60 Sequence Detection: Algorithms and Applications

stochastic channel model because it depends on just one complex Gaussian random
parameter. Even in this simple case, we observed that the channel-induced memory
is not strictly finite and (2.17) does not hold. In fact, the conditional pdf of the ob-
servation (3.31) depends on the entire previous information sequence aj through the
conditional mean and variance. This unlimited memory feature is present in other
simple stochastic models, such as the phase noncoherent channel, characterized by
a single random parameter, i.e., the channel phase. Nonetheless, the statistics of a
conditional observation depend on all previous observations.

In general, we may conclude that any channel model described in terms of stochas-
tic time-invariant parameters yields a nonfinite memory in the sense of (2.17). As
a consequence, optimal sequence detection algorithms can be exactly implemented
only by resorting to some type of exhaustive search accounting for all possible trans-
mission acts. The relevant implementation complexity increases exponentially with
the length of transmission, i.e., the number of transmitted information symbols K.
Hence, optimal detection is implementable only for very limited transmission lengths.
Practical transmission lengths are, however, much larger with respect to values com-
patible with a tractable implementation, even for block or packet transmissions, and
the problem of designing suitable suboptimal approximate detection algorithms arises.

A general method for devising detection algorithms for transmission systems with
stochastic channels, such that the FMC (2.17) does not hold, can be based on the
idea of "decomposing" the data detection and parameter estimation functions. This
design approach allows one to derive detection algorithms under the assumption of
knowledge, to a certain degree of accuracy, of the (channel) parameters and to devise
an estimation algorithm for extracting information about the parameters, which is
necessary in the detection process. If statistical knowledge about the parameters
is available, it can be exploited in this estimation process (but not in the detection
process). The detection function can be designed under the assumption of perfect
knowledge of the parameters, or it can incorporate a statistical characterization of the
estimated parameters (instead of the true ones). We remark, however, that the latter
option is often too complex to be pursued.4

This general decomposed estimation-detection design approach has the inherent
feature of not requiring statistical knowledge about the parameters. In fact, by a
subtle modification of the modeling assumptions, stochastic static parameters can be
viewed as just unknown quantities and modeled as deterministic; hence, estimation
algorithms for unknown deterministic parameters can be employed. If a statistical
characterization of the channel parameters is not available, this approach is a viable

4If a detection algorithm accounting for a statistical parameter characterization is implementable,
one would devise it taking directly into account the statistics of the true parameters.
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Figure 3.2: Receiver based on estimation-detection decomposition.

alternative.
This estimation-detection approach has the great advantage of conceptually de-

coupling the detection and estimation problems and physically simplifying the re-
ceiver implementation. A general block diagram depicting a receiver based on this
decomposed estimation-detection approach is shown in Figure 3.2, where 0 denotes
the estimate of an unknown parameter vector 9. The figure suggests that the estima-
tion process observes explicitly the received signal r(i) and possibly the detected data
sequence a—the latter being an option to be investigated in the following sections.
We remark that this approach must be viewed as a logical ad-hoc solution and that no
claim of optimality can be made in general. The optimal solution, with minimal error
probability, can only be attained if the statistical information about the parameter is
known and exploited directly in the detection process.

In general terms, we may refer to the presence of stochastic or unknown deter-
ministic parameters as parametric uncertainty affecting the detection problem. Para-
metric uncertainty can be of a static nature, as in the previous examples, or it can
be time-varying, as in several channel models described in Chapter 1. Time-varying
stochastic parameters are in fact random processes, but if their correlation properties
are such that their time variation is slow enough, they can be considered static in
the detection process. As a consequence, one can view these parameters as static in
the detection algorithm and account for their slow time variation in the estimation
process, which must be capable of tracking the parameter values. A critical issue af-
fecting the performance of decoupled estimation-detection schemes in the presence
of time-varying (channel) parameters is the ability of the estimation function to track
their time variation—the faster this time variation, the more critical the estimation
and tracking function.

The reader may wonder whether the previously described unlimited memory
caused by a time-invariant stochastic parameter is alleviated when this parameter
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is a time-varying random process. The answer in general is negative as can be con-
cluded by considering the case of flat fading, which is one of the simplest examples
of a stochastic time-varying channel model. Let us assume that, after discretization,
the observation can be modeled as

where {fk} is a circular complex Gaussian random sequence, ck is the code symbol,
and nk is an AWGN noise sample with variance u2 per component. The conditional
statistics of the observation (3.36) can be again described by the pdf (3.31). The dif-
ference, with respect to the case of slow fading considered in Section 3.5, is implicit
in the conditional mean and variance, which now take into account the fading corre-
lation properties. Nonetheless, these conditional moments are still dependent on the
entire information sequence and the FMC (2.17) does not hold.

In Section 2.2, it was noted that a discretization process capable of providing a
sufficient statistic in the presence of time-invariant random channel parameters exists.
If the parameters are modeled as random processes, the discretization of the received
signal must account for their time variation. As an example, if the discretization of
the received signal is achieved by time sampling, a larger number of samples per
signaling interval might be necessary with respect to the number sufficient in a static
random channel. The model (3.36) characterized by one sample per code symbol, i.e.,
per signaling interval, is in fact only an approximation to be considered valid if the
bandwidth of the fading process is significantly smaller than that of the transmitted
signal. In the time domain, this condition means that the fading sequence is highly
correlated, so that it changes very slowly from one signaling interval to the following
one.

In order to introduce a formal framework for estimation-detection decomposition,
one may recall the results of Section 3.5: MAP sequence detection algorithms can be
solely based on the branch metrics (3.15), provided that the FMC is verified. Let us
assume that this condition is verified provided some undesired parameters, collected
into a vector Ok, are known. For generality, we model this parameter vector as time-
varying, as denoted by the time index k. Viewing these undesired parameters as
stochastic, we modify the notation to incorporate them and denote the conditional pdf
of the observation as p(rk rj"1, o-o, Ok). With this notation, & parameter-conditional
analog of the FMC can be formulated as

To exemplify this condition, let us consider the simple flat fading channel model
(3.36). As observed, the FMC is not verified for this model, basically because of
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the random fading sequence {/*}. In fact, considering this sequence as an undesired
parameter, i.e., letting 0k = fk in (3.37), the conditional observation becomes

As the code symbols are the output of the FSM relative to the encoder/modulator,
the conditional FMC (3.37) is verified for some value of C. In the special case of
an uncoded system, ck = ak and C = 0; in other words, the observation becomes
conditionally memory less.

This simple example shows that by a clever choice of the parameters to be in-
cluded in the set of undesired ones, it is possible to transform the transmission sys-
tem into a conditionally finite memory system. Of course, this property holds con-
ditional on the undesired parameters, i.e., only if they are known. This remark is
the key to a decomposed estimation-detection design: one can assume that some
undesired parameters are known in devising the detection algorithms, thus avoiding
intractable complexity, and can devote some implementation complexity to the es-
timation of these undesired parameters. These detection algorithms can be simply
derived by using a parameter-conditional branch metric obtained by replacing the
unlimited memory pdf p(rk rjp1, aj) with its conditionally finite memory counter-
part p(rk\r^~l, ajfc_c-, Ok) and computing the corresponding branch metric for an es-
timated parameter value, in an attempt to approximate the true parameter. Sequence
detection algorithms for the estimation of the undesired parameters are the subject of
the following Section 3.7.

We conclude this section with a terminological remark. In the technical litera-
ture, the word synchronization is often used as a synonym of estimation when the
channel parameters of interest are the timing epoch, the carrier phase or the carrier
frequency [46, 102]. These specific channel parameters must be estimated in vir-
tually any passband communication system,5 so that a general design methodology
can be based on the synchronization-detection decomposition depicted in Figure 3.2,
in which the estimation block can be equivalently termed "synchronization block."
Although in the following we continue to refer to parameter estimation in general
terms, this terminological remark is appropriate.

3.7 Data-Aided Parameter Estimation

In this section, we address the problem of effectively estimating the undesired pa-
rameter vector Ok in order to provide the detection subsystem with an estimate 9k

5 A base-band system requires the estimation of the timing epoch only.
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in accordance with the estimation-detection decomposed design shown in Figure 3.2.
This estimation problem can be viewed as the "dual" of the detection problem consid-
ered in Section 3.6. In fact, the undesired parameters are now parameters of interest
which we would like to estimate, whereas the "parameters" of interest in the detection
process, namely the data symbols, are now just nuisance (or undesired) parameters.6

As the knowledge of the undesired parameters simplifies significantly the detection
problem, possible knowledge of the data sequence would facilitate the estimation of
these undesired parameters. This is quite intuitive, as the overall "randomness" of
the received signal is due to all possible sources, including the data symbols; hence,
having exact knowledge of these symbols may reduce the degree of randomness and
facilitate the estimation of the parameters of interest. Since in coded systems the
transmitted signal is directly modulated by the code sequence, knowledge of this
sequence is particularly helpful. In this section, we assume that the code sequence
plays the role of a data sequence aiding the parameter estimation process.

A general formal description of a data-aided parameter estimator can be obtained
by considering the functional dependence of the estimator on the time-continuous
received signal r(t) and the code sequence c according to

where < / & [ • , • ] denotes this (vector) functional dependence. If the discretization pro-
cess is such that the observed sequence r is also a sufficient statistic for the estimation
of the undesired parameter 9k, expression (3.39) can be equivalently formulated in
discrete time as follows:

where gk[-, •} denotes the functional dependence on the time-discrete sequences r
and c.

Conditions for the statistical sufficiency of the discrete observable r are con-
sidered in Appendix A. If this discrete observation is a sufficient statistic for the
original detection problem, it is intuitive that it is so also for the estimation-detection
decomposed design. On the other hand, it is intuitive that the simplified detection
problem based on the knowledge of the undesired parameters would allow a simpli-
fied discretization of the received time-continuous signal. Should this be the case,
one should pay attention to the fact that the simplified discretization, sufficient for
detection, could not be sufficient for parameter estimation. With this cautionary re-
mark, we assume that the discrete observable is indeed a sufficient statistic for both
detection and estimation and we proceed with a discrete-time model.

6We recall that the word 'detection" is used to exactly mean estimation of a discrete-valued quan-
tity.
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The general data-aided estimator (3.40) bases its operation on the sequence of
observations and information symbols. This means that an estimate of the "present"
parameter, at the A;-th epoch, is based on "past" as well as "future" signal observations
and data symbols. This assumption is not compatible with the causality property of
any physical system; we must therefore restrict the observation sequence up to the
current epoch. Regarding the data symbols, should they be exactly known at the re-
ceiver, they could be entirely exploited in parameter estimation. However, it is typical
that in tracking the time variation of the undesired parameters the estimator uses deci-
sions as approximation of the true data: in this decision-directed realization, a causal
dependence of the estimator on the data sequence must be assumed as well. As a
consequence, we need to modify the data-aided parameter estimator (3.40) in order
to incorporate this causality property. As the observation of a few successive signal
samples and the knowledge of further data symbols with respect to the current in-
stant may improve the estimation quality, in order to meet the causality condition we
could consider the possibility of using current observations for estimating a previous
value of the parameter, or we could introduce an estimation lag [2,103]. Nonetheless,
there might be cases in which a future parameter estimate is useful in the detection
process. This case corresponds to a negative estimation lag and is referred to as pre-
diction. Finally, we could consider the possibility that in decision-directed operation
the data symbols are available after some decision delay. The resulting formalization
of a generic causal data-aided estimator is

where / and d are integers denoting the estimation delay and the delay affecting the
available data sequence, respectively.

Expression (3.41) emphasizes that an estimate of the value of the parameter vec-
tor at epoch k — I is obtained at epoch k observing the received sequence up to the
current epoch k and knowing the data sequence up to epoch k — d. In particular, for
d = 1 the most recent data symbol available for this estimation function, i.e., c^-i,
is used. The condition d — 1 is descriptive of the fact that in decision-directed op-
eration the current estimation of the parameter is used in the detection of the current
data symbol; hence, only the immediately previous symbol is available for parameter
estimation, at most. We sometimes refer to this minimal value of d, which verifies
the causality condition, as zero delay. In other words, an estimator which is causal
with respect to the data sequence requires d > 1. Negative or zero values of delay
d are only compatible with strictly known data symbols (including future ones). For
/ > d an estimate of the parameter at the current or previous time instants with re-
spect to the available data sequence is performed; in particular, for / = d there is
no estimation lag. On the contrary, for / < d a prediction is performed. We remark
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that a delay of / time instants is inherent in the estimate 0*. with respect to the true
parameter vector. Hence, a good estimator would provide Ok ~ 0 fe_j.

3.8 Joint Detection and Estimation

In the previous section, we introduced a decomposed estimation-detection design
method. We showed that a significant reduction of the system memory, hence the
implementation complexity, can be achieved by a clever choice of some undesired
parameters 9k. If these parameters were perfectly known, the branch metrics (3.15)
could be computed on the basis of the parameter-conditional finite memory pdf
p(fk ro~l, afe-c> A4*' 0fc)- In Section 3.7, the problem of estimating these undesired
parameters by means of data- aided techniques was considered under the assumption
of perfectly known data, i.e., code sequence. In this section, we consider the combi-
nation of these detection and estimation functions.

The detection algorithm is obtained by computing the branch metrics on the basis
of the parameter-conditional finite memory pdf (3.37) with the true parameter vector
Ok replaced by its estimate 0k. Hence, the branch metric used in the desired sequence
detection algorithm can be expressed as

with proper definition of trellis state Sk- The parameter estimate used in (3.42) is
obtained using a data-aided estimator according to (3.41). The central point is then
the choice of the code sequence c to be used in this parameter estimation.

Usually, transmission systems employ a known training data sequence to aid the
parameter estimator. This aiding data sequence is transmitted during a training pe-
riod of short duration in order to allow the estimator to provide the detector with
a sufficiently reliable parameter estimate. Once this estimate has been obtained it
can be used for data detection. If, however, the parameter is time-varying, it could
be tracked in its time variation by simply using previous data decisions to aid the
parameter estimator, i.e., in a decision-directed mode.

A general scheme, depicting the operation of a receiver designed according to
the estimation-detection decomposition in the training and tracking modes, is shown
in Figure 3.3. In this figure, the received signal r(t) is first discretized, possibly by
filtering and time sampling, to yield the sequence {rk}. These discrete observables
are used in both data detection and parameter estimation. The detection block outputs
the detected information sequence {ak-n} with a delay D accounting for the overall
detection delay of the considered detection scheme. Specifically, this delay can be the
typical detection delay of the VA in sequence detection (or the processing delay of
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Figure 3.3: Training and tracking operational mode.

the FB algorithm in symbol detection, as shown in Chapter 4), which might include
the latency due to the sequence duration. The detection block also outputs a detected
code sequence {c^-d} with a delay d, usually different than D, which is used in the
decision-directed tracking mode for parameter estimation.7 This emphasizes that the
information and code sequences may not verify the coding rule (3.3). The reason why
a different value of detection delay is used in parameter estimation, with respect to
the delay in the output information sequence, is that the former directly carries over
to a delay in the parameter estimate. For this reason, it may be useful to have d < D.
We refer to d as preliminary or tentative decision delay, to emphasize the fact that
the decisions used in parameter estimation are made earlier with respect to the final
decisions delayed by D epochs. In the training mode the detected data are replaced
by the true data as an aiding sequence. For temporal consistency, in Figure 3.3 the
true data are delayed by the same delay d.

3.8.1 Phase-Uncertain Channel

As an example of joint data detection and parameter estimation, let us consider a
phase-uncertain channel, as depicted in Figure 1.1 (d). The discrete observable can
be modeled as

where: {Ok} is the phase rotation process introduced by the channel; {ck} are the
code symbols; and {nk} are AWGN samples with variance a2 per component. Sim-
ilarly to the case of flat fading, modeling {Ok} as a discrete-time random process

7Given the different detection delay of the detected information sequence with respect to the code
sequence used for parameter estimation, we denote the latter by a double hat.
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causes unlimited memory, with the additional drawback that, given the data sequence,
the observation is not even conditionally Gaussian. However, if 9k is known, the
parameter-conditional FMC (3.37) holds and one can write:

where o(ak,p,k) = ck is the output of the FSM characterized by (3.3). In the spe-
cial case of an uncoded system, ck = ak and the observation becomes conditionally
memory less (C = 0).

In order to exploit this conditional FMC, we can decompose the phase synchro-
nization and detection functions. A data-aided phase estimate Ok can be obtained
through a first order phase-locked loop (PLL) according to the recursion [46]

where: (i) the parameter 77 controls the loop bandwidth, (ii) S(-) denotes the imagi-
nary part of a complex number and (iii) operation in the training mode is assumed.
The estimated phase is inherently delayed by d discrete time instants. However,
as (3.45) is relative to the training mode, parameter d can be chosen arbitrarily, ex-
cept for the causality condition upon the observation which imposes d > 0. Clearly,
the value d = 0 is convenient because it reduces the loop delay to the minimum
possible value.

The estimated phase (3.45) can be used in place of the true unknown phase in
the computation of the branch metric. From (3.44), the following branch metric is
obtained:

Equations (3.45) and (3.46) show that the receiver detection and synchronization
functions can be based on the phase synchronized observation

In the decision-directed tracking mode, the data sequence aiding the phase syn-
chronizer is replaced by the sequence of tentative decisions {c^-d} yielding the mod-
ified recursion
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Unlike (3.45), the tentative decision delay must now comply with the causality con-
dition upon the detected data, which implies d > 1. The estimated phase (3.47) can
be used in the computation of the branch metric (3.46).

3.8.2 Dispersive Slow Fading Channel

Another example of joint detection and estimation can be considered for a dispersive
fading channel as in Figure 1.1 (c). Assuming a slow time variation, a discretization
based on sampling with one sample per signaling interval may be sufficient. We
relax, to some extent, this statistical sufficiency assumption by modeling the thermal
noise as an iid sequence.8 Hence, the overall mapping from information sequence to
observation can be formulated as

where: {fi^iLo denotes the overall time-varying discrete equivalent impulse re-
sponse at the k-th instant and is collected as an L + 1 column vector fk =
(/o.fcj /i,fcj • • • 7 /L,fc)T; {ck} is a code sequence at the output of a channel encoder and
is collected as an L + 1 column vector ck = (c^, Ck-i, • • • , Ck-i)T'> and {nk} is an iid
Gaussian noise sequence. In fading channels, fk is a circularly symmetric complex
Gaussian random vector, as a result of the Gaussian nature of the fading weights of
the physical channel and the linear filtering and sampling operation performed for
signal discretization by the receiver front-end [19].

The observation model (3.48) is just a generalization of the flat fading model (3.36),
in the sense that it accounts for the ISI generated by the channel time dispersion.
The statistics of the observation sequence {r^} are again, given the data sequence,
Gaussian, and can be characterized by the conditional pdf (3.31), repeated here for
convenience:

with conditional mean

and conditional variance

8 We are assuming a suboptimal receiver front-end based on a fi xed receiver fi Iter instead of a fi Iter
matched to the channel response.
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Clearly, the dependence of the conditional mean and variance, hence, the observation,
on the information sequence is not strictly finite memory in the sense of (2.17). The
differences between the cases of (i) dispersive fading considered here, (ii) flat fading
considered in Section 3.6 and (iii) slow flat fading addressed in Section 3.5 lie solely
in the conditional mean and variance, which incorporate the specific fading statistics.

As for the previously considered stochastic channel models, the unlimited mem-
ory property exhibited by (3.49) suggests an estimation-detection decomposition in
which the equivalent fading channel vector fk is viewed as an undesired parameter.
In fact, knowing exactly the channel realization fk eliminates the stochastically in-
duced unlimited memory, leaving the system with the ISI and the possible coding
memory. As in previous similar cases, the resulting parameter-conditional branch
metric is

where the system state 5* is defined as in (3.25), cr2 denotes the variance of each com-
ponent (real and imaginary) of the complex noise, and c^ — (cfc, c / - _ i , . . . , Ck~L)T de-
notes the code symbol vector uniquely associated with the considered trellis branch
(afc, Sfc), in accordance with the considered coding rule.

In the estimation-detection decomposition, the branch metric (3.52) must be com-
puted replacing the true undesired parameter vector fk with a data-aided estimate. A
simple method for estimating this overall channel impulse response may be based on
adaptive identification techniques [104]. The least mean squares (LMS) algorithm
minimizes the mean square error between the observed signal and the output of a
channel identification filter with adaptive coefficients9 f k . The use of a standard
gradient algorithm for channel identification [105] leads to the following recursion:

where the parameter j3 must be selected as a compromise between adaptation speed
and algorithm stability.

Clearly, the LMS identification algorithm (3.53) is a data-aided identification
technique. In fact, the code vector Ck-d depends on the data sequence. During the

are assuming that the overall ISI length is known or can be estimated.
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training mode, this aiding sequence is directly available at the receiver, even with the
minimal delay d = 0 compatible with the causality condition upon the observation.
During the decision-directed tracking mode, the aiding data vector ck^d must be
replaced by a corresponding vector defined in terms of tentative decisions according
to

The recursion (3.53) must be accordingly modified:

In (3.55), the tentative decision delay must verify d > 1 in order to comply with the
causality condition upon the data.

Depending on the use of either (3.53) or (3.55) in the training or tracking mode,
respectively, the branch metric becomes

3.9 Per-Survivor Processing

In the previous sections, we considered the detection and estimation functions of a re-
ceiver designed according to the decomposition principle. The resulting branch met-
ric (3.42) is computed using the data- aided parameter estimator (3.41). In the training
operational mode, the aiding data sequence cj~d is known. In the decision-directed

'xs**i j

tracking mode, this sequence is replaced by a sequence of preliminary decisions c0~
yielding the following parameter estimate:

As we noted, the tentative decision delay must comply with the causality property
of the data-aided estimator, namely d > 0 in the training phase and d > 1 in the
tracking phase. We also mentioned that during training the minimal delay d = 0 can
be chosen because it allows minimal estimation delay.

Let us now consider the choice of the tentative decision delay in the decision-
directed tracking phase. The selected detection algorithm releases final decisions
with a delay D which is inherent to the structure of the algorithm itself—good quality,
or optimal, decisions cannot be made with a reduced delay, i.e., earlier. Preliminary
decisions, with delay d < D, can be obtained by these algorithms only with degraded
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quality. As an example, considering sequence detection implemented by a VA, the
detection delay D must be such that the probability of converging survivors within
the time span of the survivor memory is one or several orders of magnitude lower
than the desired error probability. In order to release decisions with reduced delay
d < D, one must accept a significantly larger probability of unmerged survivors. As
a consequence, the quality of the tentative decision sequence may be considerably
worse than that of the final decisions. From this viewpoint, one would try to choose
a large value of d. On the other hand, we have seen that the parameter estimation
algorithm is affected by the delay d of the aiding data sequence—the larger this delay,
the larger the delay affecting the parameter estimate.10 Clearly, delayed estimation
may affect the detection quality when the true parameter is time-varying. For this
reason, during training we would select the minimal value of delay d — 0. From this
viewpoint, one should select a small value of tentative decision delay d, possibly the
minimal value d = 1 compatible with the causality condition.

The above discussion indicates that, during the decision-directed tracking mode,
good values of tentative decision delay d must be the result of a trade-off between
two conflicting requirements:

• large values, to aid the estimation with a data sequence of good quality;

• small values, to limit the parameter estimation delay.

In practice, one would have to experiment with several values of d, measuring the
overall error probability each time, in order to select a good compromise value.

Note that a decision-feedback mechanism characterizes the tracking phase, as
clearly shown in Figure 3.3, with decisions used for parameter estimation and, there-
fore, to detect the successive data. In this decision-feedback mechanism, temporary
error propagation may take place. Namely, wrong data decisions may negatively
affect the parameter estimate and cause further decision errors. Although this effect
is usually not catastrophic, it may affect the overall performance.

As an alternative to the use of tentative decisions during the tracking mode, a
per-survivor estimation of the unknown parameters can be implemented [34]. In this
technique, the code sequence associated with each survivor is used as the aiding data
sequence for per-survivor estimation of the unknown parameters. In order to provide
a formal description, let Sk be a trellis state descriptive of the overall FSM modeling
the transmission system. Denoting the code sequence associated with the survivor of
state Sk as cj"1^), per-survivor estimates of the parameter vector Ok, based on the

10Using prediction, i.e., letting / < d, would allow one to recover this delay at the cost of reduced
estimation quality.
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Figure 3.4: PSP-based detection.

data-aided estimator (3.41), can be expressed as

These per-survivor estimates can be used in the computation of the branch metric
(3.42) according to

The structure of the branch metric (3.58) is inherently different with respect to the
previous cases in the sense that it also depends on the state Sk through the parameter
estimate, which is now based on the survivor sequences. Note that there is now a
data-aided parameter estimator per trellis state. The estimator uses, as aiding data
sequence, the one associated with the survivor of this state. The resulting parame-
ter estimates, one per state, are inherently associated with the survivor sequences—
hence, the terminology "per-survivor processing." A block diagram showing a re-
ceiver based on this design approach is more difficult to draw because the detection
and estimation functions are not clearly separated as in the previous cases based
on the estimation-detection decomposition. An attempt to draw a block diagram is
shown in Figure 3.4, where a set of parameter estimators observe the received se-
quence rj and are aided by the survivor sequences cj~d(crfc). A corresponding set of
per-survivor parameter estimates Ok(&k) is passed to the detection block.

The intuitive rationale for this type of approximate detection algorithm is the fol-
lowing: whenever the incomplete knowledge of some quantities prevents one from
calculating a particular branch metric in a precise and predictable form, it is advisable
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Figure 3.5: Trellis evolution: universal and PSP-based estimation.

to estimate those quantities based on the data sequence associated with the survivor
leading to that branch. If any particular survivor is correct (an event of high proba-
bility under normal operating conditions), the corresponding estimates are evaluated
using the correct data sequence. Since we do not know which survivor is correct
(or the best) at each stage of decoding, we extend each survivor based on estimates
obtained using its associated data sequence. Roughly speaking, the best survivor is
extended using the best data sequence available (which is the sequence associated
with it), regardless of our temporary ignorance as to which survivor is the best.

Pictorial descriptions of trellis evolution according to a "universal" estimation
scheme, such as that based on tentative decision (or training), and PSP are shown in
Figure 3.5. In the universal estimation scheme, only one estimate of the undesired
parameter is used for computing all branch metrics. In PSP-based estimation, branch
metrics of candidate survivors are computed using the different parameter estimates
associated with the survivors of each initial state. In the latter case, the per-survivor
parameter estimates are updated along the evolving survivors.

Before concluding this section, let us review, in a PSP-based perspective, the two
examples considered in Section 3.8 in the context of universal (decision-directed)
parameter estimation, namely phase synchronization and LMS tracking of the overall
discrete channel impulse response.
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3.9.1 Phase-Uncertain Channel

For the first example considered in Section 3.8.1, one can implement a correspond-
ing PSP-based phase estimation and detection scheme by replacing the branch met-
ric (3.46) with the following one:

and the phase estimate update recursion (3.47) with the following one:

in which Ck-d(^k) is the code symbol at epoch k — d in the survivor associated with
state /ifc. The update recursions (3.60) must take place along the branches which
actually extend the survivor of state /!&, i.e., after the "usual" ACS step has been
performed.

3.9.2 Dispersive Slow Fading Channel

Considering now LMS tracking of a slowly time-varying fading channel, in order
to implement a PSP-based scheme the branch metric (3.52) can be replaced by the
following:

and the channel estimate update recursion (3.55) with the following:

where Ck-d(Sk) denotes the following vector:

whose elements are code symbols associated with the survivor of state Sk. The re-
cursion (3.62) must take place over those branches which comply with the VA ACS
step at the ending state Sk+i-

3.9.3 Remarks

A feature of PSP emerges by examining the parameter update equations (3.60) and
(3.62) in the two examples considered above. Unlike decision-directed schemes
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based on a tentative decision sequence, where good values of the delay d are a result
of a trade-off between decision quality and estimation delay, in PSP-based estima-
tion this delay is not necessary. This means that, since the parameter estimates are
updated along each survivor, the best survivor is extended according to its associated
data sequence, despite the fact that we do not know which survivor is the best at the
current epoch.11 In this mechanism, there is no reason for delaying the aiding data
sequence of the best survivor beyond the minimal delay d = 1 complying with the
causality condition. Considering now the other survivors, their associated data se-
quences do not approximate the correct one, regardless of the value of d. We may
conclude that in PSP-based sequence detection schemes the minimal value d = 1 of-
fers the best overall performance. This remark suggests that the PSP approach allows
one to design receivers that are particularly robust when the undesired parameters are
time-varying.

3.10 Complexity Reduction Techniques for VA-based
Detection Algorithms

As considered in the previous section, we assume an FSM system model based on
some FMC (in the strict sense or conditional). A generic VA-based detection al-
gorithm will make use of a suitable branch metric A(afc, 5fc), where Sk is a proper
system state, defined as

where //fc is the encoder/modulator state. We refer to the characterization of the
encoder/modulator FSM in terms of "output" and "next-state" functions, as given in
(3.3). Assuming that the number of states of the encoder/modulator is Sc and that the
cardinality of the information symbols is M, we can immediately conclude that the
number of expanded states is f = SCMC '. For example, if Sc = M = C = 4, then
C = 4 x 44 = 1024, indicating that state complexity may be significantly large.

We previously observed that in some cases the next-state function might not be
invertible, i.e., given Sk+i and a* it is not possible to identify a state Sk in a unique
way — this is the case, for instance, for a nonrecursive convolutional code, such that
branches terminating in the same trellis state are associated with the same informa-
tion symbol. In particular cases (for example, for particular recursive convolutional

1! Eventually, the best survivor will be identifi ed after D further steps, when a survivor merge has
likely occurred.
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codes), the next-state function is invertible. If this is the case, then an equivalent
definition of the system state is the following:12

In the following, we outline possible strategies to perform reduced-state sequence
detection (RSSD).

3.10.1 State Reduction by Memory Truncation

Assuming that the coding rule is invertible, i.e., assuming that the equivalent defini-
tion of state given by (3.65) can be used, we consider a genie-aided trellis folding.
Suppose that at each epoch k a genie passes a group of (previous) correct symbols
(flfc_Q_i, . . . , cik-c) to the branch metric computer, with Q < C — if Q = C then the
genie's help is not needed. The genie-aided branch metric could be defined as

for each state Sk whose first Q + 1 entries coincide with those in

It is possible to realize that the group of states

in the trellis would have identical path metrics V(afc_Q_i, . . . , dk-c] and could then
be folded into a reduced (partial, folded or super) state

The MAP sequence search based on a VA could be equivalently performed over a
folded trellis diagram with this reduced state wk. The genie-aided branch metric in
the reduced-state (RS) trellis can therefore be written as follows:

12One can immediately notice that the only difference between the state defi nition given by (3.65)
and that given by (3.64) is the fact that the encoder/modulator FSM state embedded in (3.65) is at
epoch k rather than at epoch k — C. If defi nitions (3.64) and (3.65) are equivalent, the coding rule will
be referred to as invertible.
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Figure 3.6: Pictorial description of trellis folding.

where Sk(wk) is a pseudo-state defined as

where (ak-Q-i,..., a^-c) is the genie information. Thus there is a genie-aided
azfr'orz of the system memory, with RS parameter Q < C. The reduced number of
states is then (' = SCMQ < C = SCM°. Finally, the full-state trellis folds into an RS
trellis. A pictorial description of trellis folding is shown in Figure 3.6.

In the above derivation we assumed that the coding rule is invertible. If this is not
the case, then, in order to perform RS sequence detection, the genie should provide
(a f c _Q- i , . . . , flfe-c, ft-k-c)' In other words, the main difference with respect to the
previous case consists of the fact that the starting state of the encoder/modulator in
the considered window, i.e., p,k-c>nas also to be assigned by the genie. Reasoning as
before, one can conclude that in this case the number of reduced states would simply
be £' = M®. For ease of derivation, in the following we will refer to the case of an
invertible coding rule.

At this point, assuming that the genie disappears, the information symbols
(dk-Q-i, • • • , flfc-c) can be viewed as an undesired set of parameters. Hence, a
parameter-conditional reduced memory property holds. The estimation-detection de-
composition can (again) be the route to the approximation of the branch metric in the
presence of this special parametric uncertainty. In other words, the genie information
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( a j f e _ g _ i , . . . , dk-c) must be estimated in order to implement detection schemes with
reduced state-complexity. Note that we do not need a data-aided parameter estima-
tor, but only the aiding code sequence. In particular, two strategies are possible: one
based on tentative decisions and the other based on PSR

1. As shown before, indicating by X k ( a k , S k ) the branch metric in the original
full-state trellis, the branch metric in the RS trellis is Xk(ak, Sk) —
Afc(afc, Sk(wk)), in which, in the case of tentative-decision feedback, the pseudo-
state is defined as

where (ak-Q-i, • • • , flfc-c*) are preliminary decisions on the code sequence.

2. In this case, the pseudo state §k is

where (<ik-Q-i, • • • , o>k-c) are the code symbols in the survivor associated with
reduced state wk. As a result, the pseudo state depends on wk through the
feedback of survivor symbols as well. As an example, consider the case of
linear modulation on a static dispersive channel, whose output is

where {fi} are the channel coefficients and nk is a complex AWGN sample
with variance per component equal to a1. The branch metric in the original
full-state trellis (C = L, £ = SCML states) can be written as:

where the sequence of code symbols c£_L is uniquely identified by the tran-
sition Tk = (a,k,Sk)- In the case of an RS trellis, the branch metric can be
written as
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where (ck-i(wk), . . . , Ck-Q(wk)} are code symbols uniquely identified by re-
duced state Wk, whereas (ck-Q-i(wk), • • • , ck-L(wk}) are the c°de symbols in
the survivor associated with reduced state wk.

3.10.2 State Reduction by Set Partitioning

Another possible approach to performing state reduction is based on folding by set
partitioning. In the following derivation, we will assume, for ease of notational sim-
plicity, that the output function, besides the next-state function, is invertible. Given
this, the "full" state Sk and transition Tk can be equivalently defined in terms of coded
symbols, i.e.:

The basic idea of set partitioning consists of replacing the code symbols {ck-i} in
the full state with subsets of the code symbol alphabet (or constellation), which will
be indicated by A. A reduced state is then defined as

where Ik-i(i) €. 0(z) , i = 1, . . . , L, are subsets of the constellation A, and fi(i) , i =
1, . . . , L constitute a partition of the code constellation A. A given reduced state in
this case specifies only the constellation subsets {Ik-i(i)}, and ck_i G Ik-i(i) is
a code symbol compatible with the given state. Let J; — card{£7(x)} and M' =
card{.4} (1 < J» < M'), and denote Jj as the partition depth at level i. The reduced
state is well-defined if current state wk and subset I k ( l ) (to which the current symbol
Cfc belongs) uniquely specify the next state

It follows that Q(«) must be a further partition of fi(z + 1).
The partition depths { J^} must satisfy the condition:

If Q is such that JQ > 1 and JQ+I
state can be simplified as follows:

= JL — 1, the definition of the reduced



Complexity Reduction Techniques for VA-based Detection Algorithms 81

Figure 3.7: Set partitioning for 8-PSK constellation.

If Ji = . . . — JQ = M', memory truncation, i.e., the state reduction technique
considered in Section 3.10.1, arises as a special case.

As an example of state complexity reduction, in Figure 3.7 a possible partition
of an 8-ary phase shift keying (8-PSK) constellation is shown, where the starting
constellation (A) and two successive constellations (B and C} are shown. Assuming
uncoded transmission13 and a channel length L — 2, the full-complexity state is

and the number of states is £ = ML =
possible, as indicated in the following.

82 = 64. Various set partitionings are

1. A reduced state could be obtained by memory truncation considering Q = 1.
This corresponds to considering a set partitioning state reduction with Jl = S
and J2 = 1 • In this case, the reduced state can be written as

and the number of reduced states is ' =
13In this case, there is no encoder at the transmitter side, so that, as the modulation is memoryless,

the possible encoder/modulator state //& disappears from the defi nition of state Sk.
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2. A reduced state can be obtained by considering set partition with

The reduced state can be written as follows:

and the number of reduced states is given by f ' = 3\Ji ~ 4 x 2 = 8.

3. Finally, we consider the set partitioning characterized by

In this case the reduced state can be written as

and the number of reduced states is f ' = Ji J2 = 4 x 4 = 16.

It is worth observing that set partitioning should follow the partition rules used in
trellis coded modulation (TCM) [9]. Note also that if J\ < M' parallel transitions
may occur (they do, for sure, in the uncoded case). In particular, if Ji < M' a
state transition and the corresponding branch metric are defined as (/&(!), Wk) and
Afc(4(l) 3 wk), respectively. The branch metric can then be written as follows:

where the pseudo state Sk(wk) must be compatible with w^ in the sense that ck-i 6
Ik-i(i)- The missing information can be based on tentative decisions or PSP. In
particular, the PSP-based pseudo state can be expressed as

where (ck-i(wk)i • • • , ck-Q(wk)) are code symbols compatible with state wk to be
found in the survivor history of state wk, and (ck-Q-i(wk), . . . , Ck-L(wk)) are c°de
symbols in the survivor of state wk.

Considering linear modulation on a static dispersive channel, the branch metric in
the full-state trellis (with £ = SCML states) has the expression (3.76). In the case of
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state reduction by set partitioning, the branch metric in the corresponding RS trellis
can be written as follows:

where ak(ck, wk) is the information symbol associated with code symbol ck and re-
duced state wk—recall that we are considering an invertible coding rule. In partic-
ular, (ck-i(wk), • • • , Ck-Q(wk)) are code symbols associated with the reduced state
Wk, while (ck-Q-i(wk), • • • , ck-L(wk)) are code symbols in the survivor associated
with state wk.

3.10.3 A Case Study: TCM on an ISI Channel

As an example of an application of the state reduction techniques considered above,
namely memory truncation and set partitioning, we consider the case of TCM sig-
naling on an ISI channel. In particular, we consider TCM characterized by a 3/4-rate
convolutional code followed by mapping over a 16-ary quadrature amplitude modula-
tion (QAM) constellation. The convolutional code has Sc — 4 states. The structure of
the convolutional encoder is shown in Figure 3.8. The information bits are {ak }2=0

and the code bits are indicated as {ck}f=0- Note that the gross spectral efficiency of
the TCM code is 3 bits/s/Hz. Using raised cosine pulses with roll-off e = 0.3 [17], the
spectral efficiency has to be reduced by the expansion factor 1 + e = 1.3, so that the
net spectral efficiency is 2.3 bits/s/Hz. In Figure 3.8, the mapping over the branches
relative to a trellis transition is also indicated. In particular, note that each branch
indicated in the section of the trellis diagram corresponds to 22 parallel branches—as
one can see, two of the three bits at the input of the convolutional encoder do not
influence the evolution of the encoder and are systematic bits. In Figure 3.9, the set
partition for the considered 16-QAM modulation and the mapping rule are shown. In
particular, note that each branch in the trellis section shown in Figure 3.9 is associated
with a subset of C.

The model of the discrete observable is the following:
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Figure 3.8: TCM encoder and mapping for 16-QAM (the subsets are specified in
Figure 3.9).

Figure 3.9: Set partition and mapping rule for 16-QAM constellation.

where {//j^o ^s me white noise discrete equivalent impulse response of the ISI chan-
nel, {nk} is an iid Gaussian noise sequence with variance cr2 per component, and
{ck} is the code sequence. The parameter L, representing the discrete-time equiva-
lent channel length, must be large enough to accommodate the significant pulses. In
particular, we consider L — 3, and the distribution of the channel coefficients {//} is
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Figure 3.10: Equivalent discrete-time channel response of an ISI channel.

shown in Figure 3.10. The full-complexity state, in this case, is

and the number of states is f = SCML — 4 x 83 = 2048. Various state reductions
are possible and in the following we enumerate a few interesting options.

1. The first possibility is to consider memory truncation with Q = 1, in which
case the reduced state can be written as follows:

and the number of reduced states is £' = SCMQ = 4 x 81 = 32. Note that
memory truncation corresponds to set partitioning with Jj = 16, J% — J% — 1.

2. It is possible to consider set partition with

In this case, the partial state can be written as

and the number of reduced states is £' = Sc^ = 4 x 4 = 16.

3. Another possible set partition is characterized by

In this case, the partial state is

and the number of reduced states i s / = S ' c = 4 x 2 x 2 = 16.
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Figure 3.11: Performance of TCM with 16-QAM for transmission over the 4-tap
ISI channel considered in Figure 3.10. Reproduced from [106], ©1996 IEEE, by
permission of the IEEE.

4. Another possible set partition is characterized by

In this case, the partial state becomes

and the number of reduced states is = — 4 x 2 = 8.

5. Finally, one can consider the case of memory truncation with Q = 0, i.e.,
considering only the code trellis. This results in w^ = //*. and the number of
states is £' = Sc = 4.

We now analyze the performance of a receiver using VA-based algorithms for
combined detection/decoding and the state complexity reduction techniques enumer-
ated above. The results are shown in Figure 3.11, in terms of bit error rate (BER)
versus E^/TVo, E^ being the received energy per information bit and N0 the one-sided
noise power spectral density. In particular, two numbers are indicated in correspon-
dence to each curve: the first one corresponds to the number of reduced states—recall
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that the number of full states in this case is f = 2048—and the second one corre-
sponds to the number of estimators considered in the PSP-based VA (more details
can be found in [106]). In particular:

• the case with (' = 32 corresponds to the reduced combined code/ISI trellis
(case 1);

• the case with ("' = 16 corresponds to the reduced combined code/ISI trellis
(case 2);

• the case with £' = 4 corresponds to the code trellis only (case 5).

For comparison, the performance curve relative to the case of absence of ISI is also
shown.

3.10.4 Reduced-Search Algorithms

If optimal processing is infeasible, any type of suboptimal processing may deserve
our attention. Nevertheless, ranking of suboptimal solutions is difficult because of
lacking reference criteria. Note that RSSD must be considered but an alternative
among many others. More precisely, while the state reduction techniques proposed
in the previous subsection allow for systematic state reduction over successive trel-
lis transitions, another approach to performing complexity reduction is possible. In
particular, reduced-search (or sequential) algorithms may be used to search a small
part of a large FSM trellis diagram or a non-FSM tree diagram. As opposed to state-
complexity reduction, the original full-complexity trellis (or tree) diagram is partially
searched. These algorithms date back to the pre-VA era [107]. They were first pro-
posed to decode convolutional codes. The denomination "sequential" emphasizes the
"novelty" compared to the then-established algebraic decoding of block codes [4].
These algorithms can be applied to any system characterized by large memory or
state complexity (if an FSM model holds).

In the following, we assume that an FSM model exists, and we refer to its cor-
responding trellis diagram. A general formulation of breadth-first algorithms is pre-
sented in [108,109]. Assuming that an FSM model holds, let £ be the number of states
in the full-size trellis. It is possible to partition the f states into nc\ disjoint classes—
that is, these classes constitute a partition of the ensemble of f states. We assume that
npa paths per class are maintained, by selecting those which maximize the a poste-
riori probabilities (APPs) under the constraint imposed by the partition rule and the
class structure. The resulting search algorithm is denoted as SA(npa,nci) [108]. In
the following, M corresponds to the cardinality of the symbols at the input of the
FSM. Special interesting cases can be summarized as follows.
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• npa > 1 and nc\ = £: the SA(npa, nc\) reduces to the list Viterbi algorithm
(LVA) with B survivors per state.

• ^pa = 1 and nc\ = £: the classical VA is obtained.

• npa = 1 and nc\ < £: this situation corresponds to RSSD with nc\ states.

• npa > 1 and nc\ < f: this corresponds to list RSSD with npa survivors per state
and nci states.

• npa = M and nc\ — 1: the M-algorithm is obtained.

Whenever nc\ < £, the branch metric can be computed by applying the principle of
PSP. Moreover, PSP allows also the above formalization to be applied when an FSM
model does not hold (£ —> oo). For this class of algorithms the complexity level is
related to the total number of paths being traced, i.e., the product npanc\. Imposing
a constraint on the complexity, i.e., npanci < 77, where r? is a suitable complexity
threshold, constrained optimality can be defined. According to this constrained opti-
mality criterion, it is possible to show that the M-algorithm is the constrained optimal
search algorithm [108].

Finally, we mention another reduced-search technique, namely the T-algorithm,
where T stands for threshold. This algorithm is applicable to a VA running over
a full-complexity (or possibly reduced-complexity) trellis. The basic idea of this
algorithm consists of maintaining only the paths with partial metric above a pre-
defined threshold. If a path has a partial path metric above the threshold, the path is
discarded. Note that while the SA(npa, nci) class of algorithms has a predetermined
complexity (in terms of total number of paths being traced), the T-algorithm has
a time-varying complexity, since the number of paths maintained can vary across
consecutive trellis transitions.

In this section, we show how the general approach proposed in Section 3.5 allows
one to derive, in a unified manner, novel, as well as known, sequence detection algo-
rithms. In particular, we focus on the case of sequence detection for phase-uncertain
channels and fading channels. Various algorithms, depending on the considered
channel model and particular estimation/detection approach, will be derived.

88

3.11    Appplications to Wireless Communications
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3.11.1 Adaptive Sequence Detection: Preliminaries and Least
Mean Squares Estimation

Broadly speaking, the channel model parameters can be time-varying (e.g., car-
rier phase, timing epoch and channel impulse response). A receiver based on the
estimation-detection decomposition must be able to track these time variations, pro-
vided they are not too fast. The receiver must adapt itself to the time- varying channel
conditions: the concept of PSP can then be successfully applied to the design of
adaptive receivers.

• The per-survivor estimator associated with the best survivor is derived from
data information which can be perceived as high-quality zero-delay decisions.
PSP is thus useful in fast time- varying channels.

• Many hypothetical data sequences are simultaneously considered in the param-
eter estimation process. In this sense, acquisition without training (blind) may
be facilitated.

Assume a parameter-conditional FSM model with state Sk (i.e., we are implicitly
assuming that the FMC holds). In this case, it is possible to consider two types of
PSP-based parameter estimation strategy: feed-forward and feedback.

• A PSP-based feed-forward data-aided parameter estimator at time k can be
written as follows:

where p[-, •] is a suitable function of the observations and coded symbols. The
estimator is a function of the TV most recent signal observations14 r^~l

N and the
per-survivor aiding data sequence cjp1^) is associated with state Sk> Based
on the computation of a parameter estimate, the branch metric associated with
a transition at epoch k starting from state Sk can be written as follows:

and the update rule of the parameter estimate at epoch k + 1 becomes

Note that these estimates are simply recomputed for the new observation vec-
tor r%_N+l and each new survivor sequence cfa(Sk+i)- In this sense, they are

14A CMP, implying an FMC, is implicitly assumed.
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formally independent from the estimates at the previous epoch. Examples of
applications, considered in the following, are the designs of linear predictive
and noncoherent detection algorithms.

• We indicate a PSP-based feedback data-aided parameter estimate at time k as

0k (Sk). Based on this estimate, the branch metric associated with a branch
starting from state Sk is

and the update rule of the parameter estimate at epoch k + 1 can be written as

where p[-, •] has the same meaning as in the feed-forward parameter estimate
in (3.101), whereas q[-, •] is a function of the n^ previous feedback estimates.
These estimates are computed for the TV most recent observations rk_N+l

and each new survivor sequence cfc(Sk+i)- The previous n^ parameter val-
^ k fb

ues Ok_nfb+1(Sk) are those associated with the survivors of states Sk in the
transitions (Sk —> Sk+i) selected during the ACS step. Feedback parameter
estimation is usually used in adaptive receivers [105].

~k
Note that in feed-forward and feedback parameter estimation, tentative decisions c0

can be used in place of the survivor data sequences cJ(Sfc+1) for updating the param-
eter estimate. If this is the case, then the parameter estimate becomes universal, i.e.,
identical for all survivors. Formally, the updating recursions yield identical estimates
for all survivors. The parameter estimator becomes external to the detection block.
During training the correct data sequence would be used.

In the following, we consider a few significant examples of sequence detection
algorithms using feedback parameter estimation.

Tracking of a Dispersive Time-Varying Channel

Assume the following model for a linearly modulated discrete observable (slow vari-
ation):

where: fk = (fak, fi,k, • • • •> /L,k)T is the overall time-varying discrete equivalent
impulse response at the /c-th epoch, ck — (ck, C f e _ i , . . . , Cfc_^)T is a code sequence of
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length L relative to the encoder/modulator FSM with state fa, and nk is an AWGN
sample with variance per component equal to cr2. We define as Sk =
(afe_i, a f c _ 2 , . . . , ak-L, A^-L) the system state including the encoder/modulator and
the channel. The code symbol vector uniquely associated with the considered trellis
branch (ak, Sk), in accordance with the coding rule, is indicated as follows:

• Considering LMS adaptive identification, the parameter estimator updating
rule can be written as

where d > I represents a suitable delay and complies with the causality con-
dition upon the data. The parameter /3 compromises between adaptation speed
and algorithm stability [105]. In this case, the branch metric can be expressed
as

In the (tentative) decision-directed tracking mode, the recursive estimator up-
dating rules are

In the case of PSP-based LMS adaptive identification, the branch metric be-
comes

where the channel estimate f k ( S k ) depends in this case on the survivor asso
ciated with state Sk. The channel estimate update recursion can be written a:
follows:

where
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Figure 3.12: SER performance of uncoded QPSK transmission over a 3-tap disper-
sive fading channel and LMS-based adaptive detection. The normalized Doppler rate
is /DT = 1.85 x 1(T3. Reproduced from [34], ©1995 IEEE, by permission of the
IEEE.

The parameter estimate update recursions must take place along the transitions
(Sk —> Sk+i) which extend the survivors of states {S^}, i.e., those selected
during the ACS step at time epoch k.

As an example of application, we consider the case of transmission of uncoded
quaternary PSK (QPSK) (M = 4) over a Rayleigh fading channel with 3 independent
tap weights. The channel power delay profile (standard deviations of the tap gains)
is -4(1,2,1). We consider data blocks of K = 60 symbols, with training preamble
and tail. In Figure 3.12, the performance, in terms of symbol error rate (SER) versus
signal-to-noise ratio (SNR), in the case of a normalized Doppler rate /DT = 1.85 x
10~3 is shown. In particular, in the 1.8 GHz band this Doppler rate corresponds to (i)
I/T = 24.3 kHz in the case of a speed of 32.5 km/h and to (ii) 1/T = 270.8 kHz for
a speed equal to 300 km/h. Note that the results shown in Figure 3.12 refer to the case
of full-state sequence detection with Q — L = 2 (£ = 16 states). In Figure 3.13, the
performance in the case of a normalized Doppler rate /DT = 3.69 x 10~3 is shown.
In particular, in the 1.8 GHz band this Doppler rate corresponds to (i) 1/T = 24.3
kHz in the case of a speed of 65 km/h and to (ii) 1/T = 270.8 kHz for a speed equal
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Figure 3.13: SER performance of uncoded QPSK transmission over a 3-tap disper-
sive fading channel and LMS-based adaptive detection with dual diversity. The nor-
malized Doppler rate is fDT = 3.69 x 1CT3.

to 600 km/h. In this case as well, a full-state receiver is considered and dual diversity
is used.

Joint Detection and Phase Synchronization

The problem of optimal detection of a possibly encoded information sequence trans-
mitted over a bandpass AWGN channel is commonly approached by trying to ap-
proximately implement coherent detection. In applications in which a coherent phase
reference is not available, this approximation is based on the use of a phase synchro-
nization scheme, which extracts a phase reference from the incoming signal, in con-
junction with a detection scheme which is optimal under the assumption of perfect
synchronization. Since the reconstructed phase reference is only an approximation
of the correct one, the overall detection scheme is only an approximation of ideal,
i.e., with perfect phase reference, coherent detection. Although widely adopted, this
solution should be regarded as just an ad hoc heuristic procedure based on one pos-
sible logical approach and will be referred to as pseudocoherent. In this subsection,
we examine a simple strategy characterized by PLL-based estimation.
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The model of the linearly modulated discrete observable is the following (valid
in the case of slow variation):

where: 9k is a channel-induced phase rotation; {ck} is the coded/modulated sequence
generated by an encoder/modulator modeled as an FSM with state /^; and {nk} is an
iid Gaussian noise sequence with variance per component equal to a2. In this case,
the feedback parameter estimation is based on the use of a first order data-aided PLL
and reads as follows:

where the parameter 77 controls the loop bandwidth. In the following, we briefly recall
two possible phase tracking strategies: decision-directed and PSP-based.

• In the case of decision-directed phase tracking, the branch metric can be written
as follows:

where ck(ak, Sk) is the code symbol associated with transition (ak^k). The
PLL phase-update (feedback) recursion is

The tentative decision delay d must comply with the causality condition upon
the detected data, which implies d > 1.

• In the case of PSP-based phase tracking, the branch metric can be written as
follows:

The phase estimate update recursion in this case is

where ck(ak,^k) is the code symbol associated with transition (ak,Hk)- The
phase estimate update recursions must take place along the transitions (p,k — >
fjtk+i) which extend the survivors of states {/^k}, i.e., those selected in corre-
spondence to each state p,k+i during the ACS step in correspondence to the
trellis section at epoch k.
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Figure 3.14: SER performance of PSP-based detection of a TCM with 8-PSK. For
comparison, the performance of a conventional data-aided receiver (with d = 2) is
also shown. Reproduced from [34], ©1995 IEEE, by permission of the IEEE.

As an example of application, we consider the transmission of TCM over a chan-
nel introducing a phase noise modeled as a Wiener process according to

where A& are Gaussian, iid random variables with standard deviation <TA = 2 de-
grees. In particular, the considered TCM scheme has Sc — 4 states and the output
modulation is 8-PSK. The performance of a PSP-based receiver is shown in Fig-
ure 3.14, where it is also compared to that of a conventional data-aided receiver with
d — 2. As one can immediately see, the improvement brought about by the use of a
PSP-based detection strategy, compared with the case where a conventional detection
strategy is used, is significant.

3.11.2 Noncoherent Sequence Detection for Phase-Uncertain
Channels

Unlike in the approach considered in the previous subsection, where the use of a
PLL and explicit recursive phase estimation were presented, noncoherent sequence
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detection (NSD) stems from communication over channels affected by a random
time-invariant phase rotation [47]—this channel is usually referred to as noncoherent.
In [47], the starting point for the derivation of VA-based algorithms is the approxima-
tion of the overall likelihood function according to the considered channel model. In
the following, we cast this class of receivers into the proposed finite memory detec-
tion framework introduced in Chapter 2. By first applying a CMP, we simply evaluate
the basic branch metric on the basis of the specific noncoherent channel model. This
approach is somehow the "specular version"15 of that proposed in [47] and the final
VA-based detection algorithm is obviously the same. We will further comment on
this aspect below.

In principle, the time-invariant phase model is a key assumption because the in-
formation contained in the received signal may be shown to be unaffected by such a
phase uncertainty, provided that a sufficiently long observation is available. On the
other hand, the approximations involved in the derivation of the proposed detection
schemes have the convenient side-effect of allowing time-varying phase models.

We consider the case of linear coded modulations (the interested reader is referred
to [47] for an extension to the case of continuous phase modulation, CPM). The
information sequence {an}, composed of independent symbols belonging to an M-
ary alphabet, is mapped into a code sequence {cn} by means of some coding rule.
This code sequence is further mapped by a modulator in cascade with a channel filter
into a time-continuous signal with complex envelope s(t, o), which depends on the
information sequence denoted by the vector a. This signal undergoes a phase rotation
0 and is transmitted over an AWGN channel modeled by a complex-valued Gaussian
white noise process n(t) with independent components, each with two-sided power
spectral density yV0. The complex envelope of the received signal may be expressed
as

The phase rotation 0 is modeled as a random variable with uniform distribution in the
interval [0,2?r). Hence, it is assumed to be constant during the entire transmission.
In the case of absence of ISI, the discrete-time equivalent of (3.122) leads to the
following expression for the observation at time epoch k:

where rik has variance per component equal to cr2 = NQ. In this case, since the statis-
tical distribution of the parameter 9 is known, it is possible to evaluate the conditional

15In [47], fi rst there is averaging over the channel phase and then truncation, whereas here we fi rst
consider truncation and then averaging.
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pdf in the branch metric characterizing a VA with branch metric based on the FMC.
First of all, observe that

where I0(-) is the zero-th order modified Bessel function of the first kind [110].
Hence, one can immediately conclude that in this case the branch metric to be used
to perform MAP sequence detection with a VA can be written as follows:

Moreover, since ln!0(x) ~ x for large values of the argument [110], (3.125) can be
approximately computed as follows:
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Note that the metric (3.125) was obtained in [47]. However, as mentioned above in
this subsection, the approach in [47] is specular to the general approach proposed in
this book. More precisely, in [47] the sequence detection strategy is first written as
follows

where JVo is the one-sided power spectral density of the AWGN process. From the
likelihood function (3.127), it is possible to derive an expression for a partial path
metric. At this point, by considering a truncation assumption on the observation
window (i.e., equivalent to the FMC considered before) on which a partial path metric
depends, one can immediately obtain (3.125).

The performance of receivers using this detection strategy is assessed by means
of computer simulation in terms of BER versus Eb/N0. Besides full-state receivers,
RS techniques introduced in Section 3.10 will be considered to limit the complexity
of the proposed solutions.

As a first example of application, the performance of 16-ary differential QAM
(16-DQAM) is analyzed. In particular, we assume that symbols {cn} belong to a
16-QAM alphabet and are derived from information symbols {an}, belonging to the
same alphabet, by means of the following quadrant differential encoding rule [111].
The generic information symbol is uniquely represented as an — fj,npn, where p,n
belongs to the first quadrant and pn G {±1, ±j}. The encoded symbol cn is given by
cn — UnQm where qn G {±1, ±j} is defined by qn = pnqn-i> i-e-> the usual differen-
tial encoding rule for QPSK modulations applied to symbols {pn}. The branch metric
(3.126) must be expressed in terms of the information symbols in such a way that the

A T 1

VA also implements differential decoding. Multiplying the terms
and Eila1 rn-*cn-i in (3.126) by \qn = 1, noting that16

16Symbols fin, pn, qn are defined by this differential encoding rule applied to the data sequence
{an}.
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and cn = an = \fj,n , from (3.126) one can immediately obtain:

where the trellis state is evidently defined as

The number of states f = \MN depends exponentially on the integer TV. Com-
plexity reduction techniques may also be adopted. We only consider schemes with
a number of states £' = 4 (i.e., the reduced state is defined as wn = /}n) and £' = 1
(i.e., symbol-by-symbol detection with decision-feedback is performed). Figure 3.15
shows the relevant performance, obtained by computer simulation, for various values
of TV and compares it with that of optimal coherent detection. It may be observed that
the proposed receivers exhibit a loss of only 0.5 dB at a BER of 10 ~5 with respect
to coherent detection, with affordable complexity. For larger complexity, the per-
formance approaches that of coherent detection. We also note that the performance
tends to that of coherent detection with a rate which is independent of the SNR.

We then consider the application of NSD to TCM. Two 8-state trellis coded (TC)
16-QAM schemes, optimal under coherent detection, are considered: the first is a
nonrotationally invariant (NRI) code [9] and the second a 90° rotationally invariant
(RI) code [57]. The RI code is used in conjunction with a differential encoder and,
in the proposed algorithms, the VA also implements differential decoding. Various
noncoherent receivers with different complexities have been analyzed. Figure 3.16
shows the performance of the considered receivers along with that of coherent de-
tection. Receivers based on the code trellis (f' = 8) exhibit a performance loss of
about 1.5 dB (for TV = 8), but with an increase of the number of states to (,' = 64
the performance loss becomes negligible. The state of the receivers with £' = 16 is
defined by a complete representation of the previous information symbol an_i and a
partial representation of symbol an_2.

The proposed approach can also be extended to the case of ISI channels. In fact,
proceeding as in [112], an alternative set {zk} of sufficient statistics an be obtained
through a whitened matched filter (WMF) whose output may be expressed as
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Figure 3.15: BER of NSD detection schemes for 16-DQAM with various degrees of
complexity. Reproduced from [47], ©1999 IEEE, by permission of the IEEE.

in which {n/-} are Gaussian zero-mean independent complex random variables of
variance per component equal to cr2 = NQ and

where L is a channel memory parameter. The equivalent discrete-time channel im-
pulse response {/&} can be obtained from sequence {gk} following the method de-
scribed in [112], where g^ = g(kT) represents a sample of the overall channel im-
pulse response g(t). Reasoning in the same way as in the absence of ISI, it can be
immediately concluded that, in this case, the branch metric can be eventually written
as follows:

As an example of application, we consider the case of transmission of 16-DQAM
over two ISI channels with L — 2. The receiver is composed of a WMF and a
VA based on branch metric (3.133). The considered channels correspond to the fol-
lowing overall discrete impulse responses at the output of the WMF: (/0, /i, f i ) =
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Figure 3.16: BER of NSD detection schemes for 8-state TC-16-QAM. Reproduced
from [47], ©1999 IEEE, by permission of the IEEE.

(0.3,0.9,0.3) for Channel 1 and (/0,/i,/2) = (0.408,0.816,0.408) for Channel 2
[17]. The optimal coherent receiver is characterized by Sc = 256 states—in this
case the ISI channel is the underlying FSM. In Figure 3.17, the performance of the
optimal coherent receiver for both channels is shown and compared with the perfor-
mance of the proposed NSD schemes with various values of TV. For a given value
of TV, the number of states resulting from (3.133) is C = \MN+L = 4 x 16jv+1.
In the simulations, we used the described state-complexity reduction techniques and
considered a number of states (,' = 256, i.e., the same number of states of the opti-
mal coherent receivers for the two channels. The state of these noncoherent receivers
is defined by a complete representation of the symbols an_i and an_2. Despite the
constraint on state-complexity, for increasing values of TV the BER tends to approach
that of coherent detection. State-complexity reduction has also been considered, both
in noncoherent and in coherent receivers. In the figure, the performance for £ = 16
states is shown for the considered channels. The state definition takes into account a
complete representation of the single symbol an_i. We then have a two-fold compar-
ison between a coherent receiver and an NSD-based receiver. With reference to the
proposed noncoherent receivers, the figure shows their performance loss, under an
equal state-complexity constraint, and their complexity increase, under an approxi-
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Figure 3.17: BER of the proposed detection schemes for 16-DQAM on the two con-
sidered ISI channels and various values of N. The noncoherent detectors search a
trellis with £' = 256 states. Reproduced from [47], ©1999 IEEE, by permission of
the IEEE.

mate equal-performance constraint.
As stated in Chapter 1, it is possible to derive an algorithm considering a par-

ticular channel model (which usually simplifies the design) and then apply the same
algorithm to other channel models—which must be obviously related to the original
channel model and somehow compatible with it. Owing to the FMC applied in the
derivation of the proposed detection algorithm for phase noncoherent channels, these
detection algorithms can also be applied in the case of dynamic channel conditions.
As an example, the performance under dynamic channel conditions has also been
investigated, assuming the transmitter and receiver filters have square root raised-
cosine frequency response with roll-off 0.5. Two types of time-varying phase model
are jointly considered.

• The first is the well-known stochastic model of phase jitter. Accordingly, the
phase of the received signal is modeled as a time-continuous Wiener process
0(t) with incremental variance over a signaling interval equal to a\.

• The second is a deterministic model of a frequency offset A/.
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Figure 3.18: BER of the proposed receiver for DQPSK with TV = 5 and £' = 1 for
various values of phase jitter standard deviation (white marks) and frequency offset
(black marks). Reproduced from [47], ©1999 IEEE, by permission of the IEEE.

The proposed noncoherent receivers are robust to phase jitter and frequency offset,
as may be observed in Figure 3.18 for differential QPSK (DQPSK), TV = 5 and
C' = 1. A jitter standard deviation up to 5 degrees (per signaling interval) does
not degrade significantly the receiver performance. Values of the frequency offset
A/, normalized to the symbol frequency 1/T, up to A/71 = 10~2 do not entail
appreciable degradation.

The proposed approach can also be extended to the case of transmission over a
channel affected by frequency uncertainty, besides phase noise. In this case, the as-
sumed model is depicted in Figure 3.19, where 9 is modeled as a random variable
with uniform distribution in [0, 2vr), while the frequency offset v is assumed deter-
ministic. We consider the case of linearly modulated signals, so that the information
bearing signal can be written as

where: K denotes the number of transmitted code symbols; T is the signaling in-
terval; and h(t) is a properly normalized shaping pulse. Assuming perfect symbol
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Figure 3.19: System model in the case of a channel with phase and frequency uncer-
tainty.

synchronization and absence of frequency offset, the output, sampled at time t = kT,
of a filter matched to the shaping pulse h(t) is a sufficient statistic for this detection
problem. If a moderate frequency offset is present, this is not true in a strict sense;
however, this sampled output may still be considered as an approximate sufficient
statistic. This assumption is commonly used in the derivation of frequency estima-
tion algorithms (see [113,114] and references therein).17 Assuming that a genie tells
us the value of the (unknown but deterministic) frequency offset, one could use the
following metric, obtained by directly extending the metric in (3.125):

where cr2 is the variance per component of the AWGN sample. In particular, it is
possible to consider an estimate based on the L most recent observations r%_L and
code symbols cJ:_L, so that we can write:

17For larger values of the frequency offset z/, a different front-end, possibly based on oversampling
techniques, could be used [94].
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and rewrite (3.135) as follows:

The frequency estimate v may be obtained, for instance, from ML data-aided esti-
mation based on the algorithm proposed in [115]. However, in general, a simpler
data-aided algorithm may be used. We consider some of the algorithms described
in [114], namely those in [116] and in [113]. In the technical literature, these algo-
rithms have been used for M-ary PSK (M-PSK) signals [113,114]. They may be
easily extended to the general case of non-equal-energy signals such as M-ary QAM
(M-QAM) [117]. In particular, in [117] the starting point for the derivation of this
class of algorithms is the likelihood function for joint data detection and frequency
estimation, which can be written as

where; c = c^ l is the code sequence uniquely associated with the information
sequence a by the given coding rule; v denotes a trial value of the frequency offset;

and rk = r(t) <g> h(—t)\t=kT is the matched filter output, sampled at time t = kT.
The likelihood function (3.138) is similar to that obtained in [47] in the absence of
frequency offsets—the likelihood function considered in [47] may be obtained by
letting v = 0 in (3.138). A property of interest of the likelihood function (3.138) is
now described. Let us assume that two code sequences c^ and c^ corresponding
to distinct information sequences a^ and a^\ respectively, are such that ck =

/ -i \
ck 'e^27ri/okT+9\ where ^0 is some frequency value and 9 is some phase rotation. The
structure of the likelihood function (3.138) implies that
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A consequence of this property is that if the coding rule admits such sequences, a
decoding strategy based on (3.138), directly or by means of some approximations,
will not be able to distinguish between the information sequences a^ and a^.

For generality, the concept of phase rotation of order I may be introduced. A
time-varying phase rotation <j)k is said to be of order / if it may be expressed as

where l . . . , 4> are suitable constants. The above property (3.139) may be refor-
mulated in the following terms: two code sequences which differ for a phase rotation
of the first order are indistinguishable. For this reason, a code which admits code se-
quences that differ for a first order phase shift is catastrophic when decoded by means
of the strategy entailed by (3.138). Note that this problem resembles, in a higher or-
der sense, the characteristic of noncoherent receivers of being unable to distinguish
code sequences which differ for a phase rotation of zero-th order [47]. Although the
usual differential encoding (DE) rule solves this zero-th order ambiguity, it is catas-
trophic in a first order sense. In fact, DE has the property that two code sequences
which differ for a zero-th order phase rotation are associated with the same informa-
tion sequence, but code sequences which differ for a first order phase rotation may
derive from different information sequences.

The proposed detector with branch metric (3.135) may be affected by the catas-
trophic property (3.139). In order to overcome this problem, two possible solutions
can be derived by extending simple countermeasures for the zero-th order ambigu-
ity problems of noncoherent receivers to the first order case. An example of indis-
tinguishable sequences in a noncoherent receiver for uncoded QPSK modulation is
shown in Figure 3.20 (a). Sequence a^ is a rotation of sequence a/1) by Tr/2 and
cannot be distinguished. However, if the phase rotation 9 is limited as \9\ < ?r/4,
as in the case of the sequence {zk} = {ak ej61}, the sequence a^ can be correctly
recovered. Alternatively, differential encoding/decoding associates code sequences
which differ for a constant phase shift with the same information sequence, eliminat-
ing this ambiguity. In Figure 3.20(b), a first order analogy is shown. Sequence a^ is
a first order rotation of sequence a^ with vT = 1/4 and cannot be distinguished.18

However, if the frequency offset is limited to vT\ < 1/8, as in the case of sequence
izk} — {ak V27rzyfcT}, the ambiguity may be resolved. Alternatively, double differ-
ential encoding (DDE) with suitable differential decoding may be adopted [45,118].
These solutions are described in the following.

The first solution (method 1) consists of limiting the frequency offset range and
estimation interval. Denote by I/JQ the angle of invariance of the considered constel-

18In (3.140), 0 =27rz/.
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Figure 3.20: Examples of indistinguishable sequences: (a) noncoherent receiver
(zero-th order); (b) advanced receiver with frequency estimation (first order). Re-
produced from [117], ©2002 IEEE, by permission of the IEEE.

lation. In the case of M-PSK signals, ^0 = 2?r/M, whereas, in the case of square
M-QAM, ^0 = 7T/2. As 27rz/T is the phase rotation introduced by the channel in
one signaling interval, when —^o/2 < 2?r^T < ^0/2, this phase rotation does not
yield ambiguities. At the same time, this condition should be also satisfied by the
estimate p£,(on). To this purpose, each estimate such that |27rPi(an)T| > ^o/2 may
be replaced by the closest value in the allowed interval. This method may only be
applied for limited values of the frequency offset. That means that for QPSK the con-
dition vT\ < 1/8 = 0.125 must be satisfied, whereas the allowed interval reduces to
\vT < 0.03125 for 16-PSK constellations. To avoid zero-th order ambiguities, DE
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can be used.
An alternative solution (method 2) consists of the use of DDE, possibly followed

by a code invariant to first order rotations.19 As a consequence, unlike the previous
case in which a limitation of the estimation interval must be imposed at the receiver,
this solution does not require any modifications of the receiver operation (except for
the fact that the new encoding rule must be taken into account). DDE is described
for M-PSK modulations in [45, Chapter 8] and [118]. In this case, symbols {ck}
belonging to an M-PSK alphabet are derived from symbols {a^}, belonging to the
same alphabet, by means of the following DDE rule:

In the case of M-QAM signals, quadrant DDE may be used. Expressing the
generic information symbol of an M-QAM constellation as ak = /J,kpk, where p.k
belongs to the first quadrant and pk G {±1, ±j}, the encoded symbol ck is given by
ck = [ikqk, where qk G {±1, ±j} are defined by the DDE rule for QPSK modulations
applied to symbols {pk}, that is according to the rule

At this point it is possible to consider a PSP-based estimate of the frequency off-
set. In other words, the frequency estimate could be based on the survivor associated
with a reduced state wk, so that one can substitute v by P, defined as

where the state wk has to be properly defined and FS(wk) indicates the survivor20

associated with the reduced state wk. Note that in (3.136) the definition of PS(wk)
is very general, since, depending on the coding/modulation structure, the definition
of the survivor could change. Moreover, this technique allows one to choose the pa-
rameters N and L independently from the number of states f of the VA. The number
of reduced states £' may therefore be limited retaining sufficiently large values for N
and L. In order to compute the branch metric in an RS trellis, the necessary symbols
not included or not completely specified in the reduced state definition wk are found
in the survivor history embedded in FS(wk).

The performance of the receiver based on branch metric (3.137) for DQPSK,
N = 6, C' = 16, various values of L, and limitation of the estimation interval (method
1), is shown in Figure 3.21. The algorithm in [116] has been used for frequency

19These codes may be viewed as an extension of the usual RI codes [119].
20The terminology used to indicate the survivor, i.e., FS, recalls the fact that the recursion in the VA

proceeds, time-wise, forwards. In Chapter 4 it will be shown that in an FB algorithm the backward
recursion might rely on a backward survivor.
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Figure 3.21: BER of the receiver based on (3.137) (white marks) for DQPSK and
comparison with NSD (black marks) and coherent receivers. The frequency offset is
v — 0. Reproduced from [117], ©2002 IEEE, by permission of the IEEE.

estimation, but no differences can be observed using more complex algorithms such
as those in [113,115]. The optimal coherent receiver and a NSD receiver with N — 6
and C' = 16 are also considered for comparison. The frequency offset is v = 0.
It may be observed that, for increasing values of L, the performance of the NSD
receiver may be approached at least at high SNR. For L = 6, a loss of about 1 dB
is exhibited at a BER of 10~4. This power loss reduces to 0.2 dB for L = 11 and is
negligible for L = 15.

In Figure 3.22, the performance of the proposed receiver based on branch metric
(3.137) under dynamic channel conditions is evaluated. It is also compared with that
of an NSD receiver in order to assess its robustness. The modulation format and the
considered receiver are those in the previous figure with L — 11. The transmit and
receive filters have square root raised-cosine frequency response with roll-off 0.5.21

In addition to a frequency offset, a phase noise is considered, modeled as a time-
continuous Wiener process with incremental standard deviation over a signaling in-
terval equal to <j&. The performance of the NSD receiver rapidly degrades for values
of normalized frequency offset greater than 10~2, whereas the proposed receiver is

'Under dynamic channel conditions, this specifi cation is necessary as well.
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Figure3.22: BERof the receiver based on (3.137) (white marks) for DQPSK, TV = 6,
L = 11, and £' = 16. The performance of an NSD receiver (black marks) with TV = 6
and (' = 16 is also shown for comparison. Reproduced from [117], ©2002 IEEE,
by permission of the IEEE.

practically unaffected by frequency offset up to 10 l and phase noise standard devia-
tion up to 5 degrees. As already mentioned, in the case of DQPSK, the limiting value
of vT\ is 0.125 (method 1). On the other hand, for higher values of i/T\ the receiver
performance would be limited, in any case, by the front-end bandwidth and the in-
terference generated by the resulting mismatch. As previously noted, the algorithm
used for frequency estimation is irrelevant.

In the previous figures, receivers based on branch metric (3.137) and limitation
of the estimation interval (method 1) for DQPSK were considered. Alternatively,
method 2 can be used, but in this case DDE has to be employed. The different
behavior of the receivers based on the two methods as well as the robustness of
the proposed schemes is emphasized in Figure 3.23, in which the BER versus the
normalized frequency offset z/T1, for E^/N^ — 10 dB, is shown for two receivers. The
modulation format, the transmit and the receive filters are those of the previous figure.
The curve with white marks corresponds to the performance of the receiver based on
branch metric (3.137) with N = 6, L = 6, and C' = 16 for DQPSK with limitation
of the estimation interval (method 1). The curve with black marks corresponds to
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Figure 3.23: BER at an SNR of 10 dB versus the normalized frequency offset of the
receiver based on (3.137) for DQPSK and TV = 6, L = 6, and £' = 16. Method 1
(white marks) based on a limitation of the estimation interval and method 2 (black
marks) based on DDE are considered. The performance of an NSD receiver with
N — 6 and £' = 16 is also shown for comparison. Reproduced from [117], ©2002
IEEE, by permission of the IEEE.

a receiver based on the same branch metric, the same values of TV, L, and ("', and
using DDE (method 2). Frequency offset values up to 10% of the symbol rate do not
affect the receiver performance. We can also note that the performance of a receiver
based on method 1 rapidly degrades when the normalized frequency offset exceeds
the limiting value which, for QPSK, is 0.125. On the contrary, the receiver based on
method 2 has a performance which slowly degrades with the frequency offset due to
the front-end filter. The performance of the NSD receiver already degrades rapidly
for v equal to 1% of the signaling interval.

3.11.3 Noncoherent Sequence Detection for Slowly Varying
Frequency Nonselective Fading Channels

The system model is shown in Figure 3.24. An information sequence {an}, com-
posed of iid symbols belonging to an M-ary alphabet, is mapped into a code sequence
by means of some coding rule. We assume a burst-mode transmission with K code
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Figure 3.24: System model for transmission over a frequency nonselective fading
channel. Reproduced from [120], ©2000 IEEE, by permission of the IEEE.

symbols per burst and denote with c = (c0, c i , . . . , cK-i)T a column vector whose
elements are the code symbols transmitted in a burst. The code sequence is further
mapped by a modulator into a time-continuous signal s(t,c) which is transmitted
over a frequency nonselective slowly fading channel, represented by a multiplicative
complex random variable /, modeled as Gaussian with mean rjf and variance cr2.
The transmitted signal also undergoes a phase rotation 0, modeled as a random vari-
able with uniform distribution in the interval [0,2?r) and independent of /. Although
both / and 0 are assumed to be constant during the transmission of each data burst,
the application of the CMP has the convenient feature of allowing one to remove the
channel time-invariance assumption and encompass time-varying models.

The choice of the value of rjf allows us to take into account both Rayleigh (rjf =
0) and Rice fading distributions, with a factor KR = \rjf\2/cr2. The channel also
introduces AWGN of complex envelope n(t) with independent real and imaginary
components, each with single-sided power spectral density cr2. Assuming rjf — 1
and cr2 = 0, one obtains the limiting case of an AWGN channel.

Assuming that signal s(t, c) is linearly modulated, it may be easily shown that
sampling the output of a filter matched to the shaping pulse, with one sample per
signaling interval, yields a sufficient statistic for optimal detection of the information
sequence.22 In the absence of ISI, this sampled output may be expressed as

where {nk} are iid complex noise samples with independent components, each with
variance cr2. In the following, the samples {rn} will be referred to as observations.

Perfect Channel State Information

We now assume that the receiver has perfect channel state information (CSI), rep-
resented by the channel gain | /1. As an example, this knowledge may be well ap-

22This is not true in the case of a time-varying fading channel, where a suffi cient statistic may
require the use of oversampling [121].
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proximated by means of a simple data-aided estimate based on a known preamble
preceding the data burst. In the case of perfect CSI, an alternative sufficient statistic
may be obtained by normalizing the received samples {rn} using the known gain
value as

Using polar coordinates to express the fading coefficient as / = \ f \ e ^ a , we have

where

With respect to a channel which introduces only an unknown phase shift, considered
in detail in Section 3.11.2, we now have two differences: (i) the phase shift is 9' and
(ii) the variance of the noise samples is c r 2 / \ f \ 2 . The random variable 0' has uniform
distribution, regardless of the distribution of a. Under the final channel dependence
approximation, the noise variance does not affect the receiver strategy. Therefore,
the results in Section 3.11.2 still apply and the receiver, in the case of perfect CSI, is
based on a VA with branch metric

where Tk = (o^, Sk) is a transition in a suitably expanded trellis and N is the order
of Markovianity of the channel.

Limited Channel State Information

We now turn our attention to the case characterized by the absence of CSI, in the
sense that the receiver has statistical information about the fading gain only. Specif-
ically, using polar coordinates to express the mean rj/ of the random variable / as
rjf — \r]f\e^9f, we assume that the receiver knows the value |?y/|, the fading variance
cry and the noise variance cr2. In principle, an estimation of these parameters could be
obtained from the observation of a few preambles of consecutive bursts. However, it
is shown in the following that in all significant cases estimation of these parameters
is not necessary.

Recalling (3.144), given a code vector c and a hypothetical phase 0 the condi-

tional pdf of the observation vector r = (r0, r i , . . . , TK-I)T is obviously Gaussian:
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where [-]H is the transpose conjugate operator and

are the conditional mean and covariance matrix, respectively. Using equation (3.54)
of [122], it is possible to express the inverse covariance matrix as

The following relation may also be easily verified

where det(-) denotes the determinant of a matrix.
Substituting (3.152) and (3.153) into (3.149), after some tedious but straightfor-

ward manipulations, one obtains:

where, in the last step, £ = cr2/2<72 has been introduced. This quantity is useful
because the branch metric derived below from (3.154) can be expressed as a func-
tion of l/£ in order to avoid numerical problems for high SNR, when £ —* +oc.
Averaging (3.154) with respect to 9 (recall that p(9) — l/2?r for 9 G [0,7r)), we
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obtain

As intuitively expected, due to the noncoherent nature of the strategy, the result in
(3.155) is independent of Of. Knowledge of this phase is therefore irrelevant for
the detection process. In order to perform ML detection, we should maximize the
following likelihood function:

Equation (3.156) represents the exact expression of the likelihood function. Some
approximations are now introduced in order to realize simple suboptimal detection
schemes based on a VA. In the following, we pursue the same conceptual approach
considered in [120]—this is the direct extension to the case of fading channels of the
approach proposed in [47] in the case of phase noncoherent channels. More precisely,
the starting point is the approximation of the likelihood function, and consequently
the introduction of a suitable branch metric. Moreover, we point out that exactly
the same final result would be obtained by starting from a generic metric based on a
CMP, and then averaging over the fading coefficient (see Problem 3.9).

We adopt the approximation In IQ(X) ~ x, valid for large values of the argument.
Although this approximation is valid for high values of \rjf\ and I/a2, i.e., for high
SNR and a high Rice factor KR, simulation results show that it is very good even
in the case of a Rayleigh fading channel. With this approximation, (3.156) may be
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expressed as

According to a CMP, we may define a partial sequence metric at the A>th signaling
interval



Applications to Wireless Communications 117

and an incremental metric

The difficulty inherent in the incremental metric (3.159) is its unlimited memory.
In fact, this metric depends on the entire previous code sequence. This implies that
the maximization of the sequence metric may, in principle, be realized by a search
of the path in a properly defined tree diagram. From an implementation viewpoint,
approximate tree search algorithms must be used, unless a very short transmission
length is assumed. In order to limit the memory of the incremental metric (3.159)
we apply a CMP, which allows one to search a trellis diagram by means of a VA. To
this end, in (3.159) we may consider (TV + 1) <C K most recent observations r%_N

and code symbols c%_N only. After an initial transient period, i.e., for k > TV, the
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resulting approximate finite memory incremental, or branch, metric is

where S^ = (a^- i , . . . , ak_N,ijik-N) and the transition Tfc = (afc, 5^) uniquely iden-
tify the code symbols c%_N used in (3.160). As already mentioned, the correspond-
ing receiver is based on a VA and requires knowledge of the parameters |T?/|, cr2 and
<r2. The branch metric (3.160) is valid in the case of any linear modulation and any
(Rayleigh, Rice or AWGN) channel. However, they may be significantly simplified
in the following special cases.

1. Equal-energy Signals
We now concentrate on the special case of equal-energy signals, such as PSK
modulations in the absence of ISI. Eliminating from (3.160) the terms which do
not depend on the hypothetical code vector c, because the code symbols have
now constant modulus, one obtains the following expression of the sequence
metric:

Adding the term
fi f \

'
£2 independent of c, the following equivalent sequence



Applications to Wireless Communications 119

metric is obtained:

In the last step, the fact that the square of a positive quantity is monotonically
increasing on the quantity has been exploited.

Introducing partial sequence metrics and then finite memory branch metrics,
we finally obtain:

which evidently does not require any statistical information about the channel,
because it does not depend on |?7/|, cr'j and cr2. This result coincides with
that found in Section 3.11.2 for a noncoherent channel, in agreement with the
intuition that the channel gain is irrelevant in the detection of equal-energy
signals.

2. Rayleigh Fading Channels
The branch metric in the case of a Rayleigh fading channel may be obtained
letting \r]f | = 0 in (3.160). Accordingly, one has

The evaluation of this branch metric obviously requires knowledge of <j2 and
£ (or, equivalently, cr2 and cr2). Since high values of SNR are typical of com-
munications over Rayleigh fading channels, we may use the approximations
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<j2 ~ 0 and 0, obtaining the following expression:

which is clearly independent of the channel parameters. Simulation results
show that the performance of a receiver based on (3.165) is equivalent to that
of the receiver based on (3.164), in which a2 and a2 are assumed perfectly
known. Therefore, the approximation used in the derivation of (3.165) may be
considered valid.

An interesting result obtained by means of computer simulations is that, in the
case of a Rice fading channel, a receiver based on branch metric (3.165) is
practically equivalent, in terms of performance, to a receiver based on branch
metric (3.160) in which |/7/|, a2 and a2 are assumed perfectly known (see [120]
for more details). We note that a receiver based on branch metric (3.165) would
deliver reliable decisions independently of the actual value of the fading gain,
given that this gain is slowly varying. This provides some intuitive understand-
ing of the fact that this receiver would work regardless of the distribution of the
fading gain, although it is difficult to predict that its performance is good. For
these reasons, the branch metric (3.165) will be used in the numerical results
for non-equal-energy signals and both Rice and Rayleigh fading channels.

3. AWGN Channels
For an AWGN channel, the results in [47] may be obtained letting a2 = 0,
£ = 0 and \rjf\ — 1. Multiplying the numerator and denominator of each
fraction in (3.160) by £, one can immediately obtain

which coincides with the result in [47].

Interestingly, simulation results show that the branch metric (3.165) may also
be used in this case as well, with a minor energy loss (of a fraction of dB only),
with respect to the use of the metric (3.166). This fact confirms the correctness
of the interpretation given at the end of the previous paragraph.
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4. Summary of NSD without CSI
In Table 3.11.3, the expressions of the proposed branch metrics in the consid-
ered cases are summarized. In all cases, knowledge of channel statistics is not
required.

Table 3.1: Summary of the derived branch metrics in the case of the absence of CSI.

Rayleigh channels
Rice channels

AWGN channels

Equal-energy signals

eq. (3.163)

Non-equal-energy signals

eq. (3.165)

eq. (3.166) or (3. 165)

The performance of the proposed detection algorithms is assessed by means of
computer simulations in terms of BER versus Eb/N0, Eb being the average received
signal energy per information bit.

The state-complexity of the proposed detection schemes may be limited by means
of RSSD techniques introduced in Section 3.10. These techniques allow one to
choose independently the two parameters: phase memory TV and number of states
C' of the VA. Hence, the number of states may be limited without excessively reduc-
ing the value of N. In order to compute the branch metrics (3.148), (3.163), (3.165)
or (3.166) in an RS trellis, the necessary symbols not included or not completely
specified in the state definition are found in the survivor history according to PSP.
Receivers with £' = 1 and £' = 4 are considered. We note that, in the limiting
case of £ = 1, the trellis diagram degenerates and symbol-by-symbol detection with
decision feedback is performed.

The transmitter and receiver filters are assumed to have equal square root raised-
cosine frequency response with roll-off 0.5. Each burst is composed of a preamble
and an information field of K = 100 symbols. CSI-based receivers use a preamble
of 10 symbols. These known symbols are used to estimate the fading gain |/| using a
simple method based on the sample mean. A more refined estimation may be imple-
mented but, in the case of a slow fading channel, the proposed method guarantees a
performance equal to that achievable with a perfect knowledge of |/|. For receivers
without CSI, a preamble of TV symbols is used. These symbols are necessary to ini-
tialize state and branch metrics of the VA. In both cases of presence or absence of
CSI, a postamble of 1 symbol for the receivers with S = 4 is present in order to
correctly terminate the VA.

In the case of 16-QAM, quadrant differential encoding is used. The performance
of the proposed receivers with S = 4 and TV = 2 for Rice fading with K^ — 10 dB
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Figure 3.25: BER of the proposed receivers with and without CSI, S = 4 and TV = 2,
for differentially encoded 16-QAM and Rice fading with KR — 10 dB. The per-
formance of an ideal coherent receiver is also shown for comparison. Reproduced
from [120], ©2000 IEEE, by permission of the IEEE.

and Rayleigh fading is shown in Figure 3.25 and Figure 3.26, respectively. The
performance of an ideal coherent receiver, i.e., a receiver which perfectly knows the
fading coefficient / and the channel phase 9, is also shown for comparison. It may
be observed that the proposed receivers exhibit a moderate performance loss with
respect to that of the ideal coherent detector. Furthermore, the receivers with and
without CSI are practically equivalent.

The robustness of these receivers in the case of time-varying fading channels is
also investigated. The fading autocorrelation function is assumed equal to Jo(2yr/DT),
where J0(-) is the Bessel function of zero-th order, according to an isotropic scatter-
ing model [20] considered in Chapter 1. The fading speed depends on the normalized
Doppler rate /DT, which is set to the values 0.005 and 0.002 for Rice and Rayleigh
fading, respectively. From Figure 3.25 and Figure 3.26, we may conclude that, in the
presence of time-varying fading, the receivers which operate without CSI are clearly
more robust than those with CSI, whose performance rapidly degrades. The high
error floor exhibited by the CSI-based receiver is mainly due to the significant time
variation of the fading amplitude within the data burst and to the fact that the consid-
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Figure 3.26: BER of the proposed receivers with and without CSI, £' = 4 and TV =
2, for differentially encoded 16-QAM and Rayleigh fading. The performance of
an ideal coherent receiver is also shown for comparison. Reproduced from [120],
©2000 IEEE, by permission of the IEEE.

ered receivers do not employ a tracking subsystem in order to adaptively estimate the
channel gain value.

Figure 3.27 compares the performance of the proposed noncoherent receiver with
N — 3 and £' = 1 for differentially encoded QPSK and a slow Rayleigh fading chan-
nel, with that of a coherent receiver based on a second order maximum-likelihood
decision-directed PLL. In this case, the coherent receiver does not need any knowl-
edge about the fading coefficient and is based on a symbol-by-symbol receiver fol-
lowed by a differential decoder. For the considered burst-mode transmission scheme,
the PLL is ideally reinitialized at the beginning of each data burst with the correct
phase value; hence, it starts in the lock-in condition. In the figure, the value of the
PLL noise equivalent bandwidth has been optimized by simulation for each value of
SNR. As we may note, a phase noise standard deviation up to 5 degrees does not de-
grade significantly the performance of the proposed noncoherent receiver. This may
also be noted in Figure 3.28 which shows, for both receivers, the SNR for a BER
of 10~3, as a function of the phase noise standard deviation. Unlike the proposed
receivers, the PLL-based ones are affected by unavoidable losses of the lock-in con-
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Figure 3.27: BER of the proposed receiver without CSI, (' = 4 and TV = 3, for
differentially encoded QPSK, slow Rayleigh fading and various values of phase noise
standard deviation (black marks). The performance of a coherent receiver based on
a decision-directed PLL (white marks) is also shown for comparison. Reproduced
from [120], ©2000 IEEE, by permission of the IEEE.

dition within the data burst for high phase noise.

3.11.4 Linear Predictive Sequence Detection for Phase-Uncertain
Channels

Linear prediction has been widely used in estimation problems in various technical
areas [123]. In particular, linear predictive detection for fading channels was pro-
posed in [101] for CPM, extended in [124] to PSK and generalized by means of
the innovations process in [125]. The starting point of these works is the observa-
tion that, conditional on the knowledge of the transmitted signal, linear predictive
receivers with increasing prediction order for flat fading channels are asymptotically
optimal. Therefore, it is shown that a finite prediction order causes minimal perfor-
mance degradation.23

23 Note that considering a fi nite prediction order is equivalent to applying the CMP.
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Figure 3.28: E^/NQ as a function of the phase noise standard deviation for BER equal
to 10~3 of the proposed receiver without CSI, f' = 1 and TV = 3, for differentially
encoded QPSK, slow Rayleigh fading (black marks), and comparison with a coherent
receiver based on a decision-directed PLL (white marks). Reproduced from [120],
©2000 IEEE, by permission of the IEEE.

In the following, we consider MAP sequence detection based on linear prediction.
Since the concept of detection based on linear prediction can be generalized, linear
predictive receivers can be designed for transmission over any channel where the
transmitted signal is affected by a multiplicative distortion. In particular, we focus on
the case of a channel causing an unknown phase rotation in the transmitted signal. We
will show how the proposed linear predictive sequence detection schemes compare
with other solutions considered in Section 3.11.2.

We consider the base-band complex equivalent system depicted in Figure 3.29.
We assume that a sequence of K independent and uniformly distributed M-ary sym-
bols {a,k}£~Q, denoted by the vector a in the figure, feeds an encoder/modulator,
which can be modeled as an FSM with state Sk and the output of which is the se-

quence c of coded symbols. We also define the relevant state transition as tk —
(dfc, Sk). The linearly modulated continuous-time signal s(t,d) is obtained by letting
the code symbol Ck be carried by a suitable shaping pulse p ( t ) . Although suboptimal
in the presence of a time-varying channel, a matched-filter front-end with sampling
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Figure 3.29: System model for linear prediction-based receivers.

rate of one sample per symbol can be practically used, provided that the phase pro-
cess is not affected by very strong variations [114]. The resulting observation model
is

where {nk} is an iid complex AWGN sequence with variance per component <j2 =
NQ. The channel phase process Ok is assumed stationary and zero-mean, and the auto-

correlation sequence of the phasor process ej'0fc is denoted by R0(n) = E{eJ'0fe+ne~-7'0fc }.
Should the phase process {0k} be known exactly, a coherent sequence detector

based on the VA (run over a trellis diagram relative to the encoder/modulator FSM)
could be derived, with branch metric

Awhere r'k — rk/ck is a normalized observation—note that by using the metric in
(3.168) the VA has to perform recursive maximization. By assuming that an infor-
mation symbol is a priori equally likely to assume any of the M possible values, i.e.,
assuming that P{ak} = 1/M, a metric equivalent to (3.168) is the following:

If only a statistical characterization of the phase process is available, a practical
sequence detector can be obtained by using (3.168) with the exact value Ok replaced
by a suitable estimate 9k. In the general case of a time-varying phase process, the
data-aided MMSE phase estimate based on N previous observations is given by the
following conditional mean:

where an indexed vector notation is used to denote code symbols and observations
from time epoch k — N to k — 1. The expectation in (3.170) leads to a nonlinear
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estimate, which is usually rather difficult to compute. Instead of directly estimating
the phase, we use the following indirect estimation strategy. We note that for large
SNR it holds that r'k ~ ej9k, so that Bk ~ argjrjj. In order to exploit the phase
correlation characteristics in the estimation process, we consider a data-aided linear
prediction r'k of rk based on the previous N normalized observations r'kk~2l

N, defined
as

where {pi}^=i are the prediction coefficients and TV is the prediction order. The pre-
diction coefficients in (3.171) can be computed by solving the MMSE problem [101,
124-126]

which leads to a Wiener Hopf linear system Rp — b, where R is a square N x TV
matrix whose elements have the following expression

P — [PI ' " PN]T is the unknown vector and b = [#0(1), #0(2), • • • , R0(N)]T. Con-
sidering the set of prediction coefficients solving the problem given by (3.172), it is
easy to express the corresponding MMSE, indicated as e|, as follows:

The solution of this Wiener Hopf system entitles one to consider the following indi-
rect data-aided phase estimate:

A
Upon the definition of an extended state 5^ = (flfe-i, • • • , Q>k-N, sk-N\ one can im-
mediately conclude that the optimal prediction coefficients depend in general on 5*.,
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and the MMSE depends on the corresponding transition Tk = (a*, Sk). Observe that
the prediction order TV corresponds to the order of Markovianity (and finite memory
parameter) introduced in the general framework in Chapter 2. Defining an extended
trellis diagram (with respect to the trellis diagram relative to the encoder/modulator
FSM) in terms of the state Sk, a VA with the following branch metric can be adopted:

In this case, the VA based on metric (3.176) performs combined detection and de-
coding with a per-survivor linear predictive estimate, based on TV consecutive obser-
vations, of the channel phase.

In the case of equal-energy signaling, since the system matrix R in (3.173) no
longer depends on {ck-i}iLi, the prediction coefficients and the MMSE do not de-
pend on Tk, but only on the SNR. In this case, they can be precomputed at once
off-line and then used in the VA. Moreover, if the a priori symbol probabilities are
the same, the metric in (3.176) can be simplified as in the coherent case, obtaining:

With respect to classical linear predictive receivers for fading channels [101,124-
126], the proposed solution features a few differences.

• First, the denominator in (3.176) normalizes the phasor estimate to unit mod-
ulus. This normalization is essential for non-equal-energy signaling such as
QAM.

• Second, the correlation matrix R models the statistics of the phase process,
whereas in classical receivers it models the amplitude process as well.

Since in this case the channel does not introduce any amplitude variations, it is
rather intuitive to expect that the linear predictive detection strategy for transmis-
sion over phase-uncertain channels will offer good performance. The complexity of
the proposed receivers can be limited by applying RSSD techniques introduced in
Section 3.10.
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In the case of, non-equal-energy signaling, a simple modification which leads to
the calculation of the prediction coefficients associated with any transition, regardless
of the sequence of coded symbols, consists of considering a modified mean square
error (MSB), where the expectation is carried out with respect to both the channel
phase and the coded symbols. In other words, the prediction coefficients are obtained
by solving the following minimization problem:

The minimization problem in (3.178) leads to a Wiener Hopf system RS[mpp' = b,
where the generic element [Rsimp]i,j of the system matrix Rs-imp has the following
expression:

Assuming that a code symbol c^ can coincide with any point of the modulation con-
stellation with equal probability, it follows that the quantity E < . 1

 2 > depends only
on the specific linear modulation format. For example, in the case of 16-QAM, it is
easy to show that

where ES is the average symbol energy.
As an example of application, we consider approximate MAP sequence detec-

tion, based on linear prediction, of an eight-state rate-3/4 TCM with 16-QAM output
modulation and 90 degree rotational invariance [57]. The performance of the system,
shown in Figure 3.30, was investigated for a phase jitter standard deviation CTA equal
to 0 degrees and to 5 degrees. For comparison the performance of the simplified algo-
rithm proposed above was also evaluated. The number of states was kept fixed to 64
(Q = 2) in all linear predictive receivers. While for <JA = 0 degrees the receiver with
prediction order TV — 7 asymptotically approaches the performance of the coherent
system, for <TA = 5 degrees the best performance is obtained with a small prediction
order, namely TV = 2. A possible explanation is that a large prediction order com-
bined with heavy state reduction is likely to degrade the performance for significant
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Figure 3.30: BER of a TCM scheme with 16-QAM. Linear predictive receivers with
various complexity levels are considered. For comparison, the performance of the
equivalent coherent receiver is also shown.

phase jitters. It is also worth observing that the simplified predictive receiver shows
a small performance loss with respect to the original one.

Consider a phase process {ipk} modeled as a discrete-time Wiener process [19]
described by the following recursion:

where {A/J are iid Gaussian increments with zero mean and variance a^, descriptive
of the phase noise intensity. In this case, the autocorrelation of the corresponding
phasor process {ej^k} becomes

It is possible to interpret E{ejAfc-* } as the characteristic function, evaluated in one, of
the Gaussian random variables A^-i. Since {A^-j} are equally distributed, it follows
that E{ejAk~i} = exp(— 0-^/2), and consequently that
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The presence of a time-invariant random frequency offset can also be incorporated
by indicating the channel phase as 9k — ipk + litvkT, where v is a random variable
uniformly distributed in (—a/T, a/T), a is the normalized frequency offset intensity,
and T denotes the signaling interval. For this phase model, assuming that the phase
jitter and the frequency offset are independent, it follows that

where sinc(:c) = sin(7nr)/7nc. In the absence of phase noise (crA = 0) and frequency
offset (a = 0), the metric in (3.176) reduces to one of the NSD solutions proposed
in [47] for equal-energy signaling. Other phase models may be considered, possi-
bly incorporating a time varying frequency offset, such as that caused by a Doppler
rate [127].

Figure 3.31 shows the prediction coefficients as a function of the phase noise
standard deviation crA for an equal-energy modulation, either PSK or CPM, a pre-
diction order TV = 4 and Eb/N0 — 4 dB, where Eb denotes the received energy per
information bit. Three values of frequency offset intensity a are considered, namely
0, 0.01 and 0.02. In the absence of phase instabilities (<JA = 0 and a = 0) all the
prediction coefficients are equal, as expected due to the equivalence with NSD. For
increasing phase noise or frequency offset, the prediction coefficients take on differ-
ent values—the stronger the phase variations, the larger the difference.

DQPSK is considered in Figure 3.32. The performance of the communication
system is assessed by computer simulations in terms of BER as a function of the
phase noise standard deviation <JA for various values of the frequency offset inten-
sity a and Eb/N0 = 10 dB. We consider symbol-by-symbol detection with decision
feedback (i.e., Q = 0). The performance of the proposed linear predictive receiver
for TV = 5 is compared with that of the NSD algorithm proposed in Section 3.11.2.
For a = 0, the curve corresponding to the proposed receiver is the "envelope" of
the performance curves of the NSD algorithm for TV = 1, 2 , . . . , 5. For any given
crA and a, there exists an optimum value of TV within the considered range such that
the BER obtained with the NSD algorithm is minimized—this optimal TV reduces for
increasing values of crA and a. The proposed linear predictive receiver with TV = 5
automatically minimizes the BER, provided the prediction coefficients are adaptively
updated. In the presence of frequency offset, the advantage of the proposed receiver
over NSD is even more pronounced, as it appears from the curves relative to a = 0.02
and a = 0.05. In the latter case, the performance of NSD schemes with TV > 1 is
appreciably worse.

The case of a random constant channel phase can be derived from the Wiener
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Figure 3.31: Prediction coefficients as a function of the phase noise standard devi-
ation <JA, for an equal-energy modulation, prediction order TV = 4 and E^/NQ = 4
dB. Various values of the frequency offset intensity a are considered. Reproduced
from [128], ©2003 IEEE, by permission of the IEEE.

phase process model previously considered by imposing crA = 0. Assuming equal-
i n

yenergy modulation, the Wiener Hopf system can be written as RTlipTl = bTl where
TIthe system matrix R is

I being the identity matrix and 6TI = [1 • • • 1]T. After a few simple manipulations, it
follows that the solution of the Yule Walker system consists of a sequence of identical
prediction coefficients, i.e., pjl = p , i e { l , . . . , ./V}, where
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Figure 3.32: BER as a function of the phase noise standard deviation <JA for DQPSK,
symbol by symbol decision, and various values of the frequency offset intensity a.
Reproduced from [128], ©2003 IEEE, by permission of the IEEE.

Hence, the estimate ei9k becomes

and the corresponding branch metric can be written, in the case of equally probable
information symbols, as follows:

In [129], it is shown that the basic metric used in [47] can be approximately
written, in the case of equally probable information symbols, as
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where

After simple manipulations, it can be immediately concluded that the branch metric
(3.189) coincides with (3.188) in the case of equal-energy modulation. More gener-
ally, the metric (3.188) coincides with that proposed in [130].

Considering a generic modulation format (not necessarily with constant ampli-
tude), for large SNR, i.e., o- /\ck —> 0, the system matrix R in (3.185) can be
approximated as follows:

which implies p^ ~ I/TV , i G {1,..., AT}. The same phasor estimate (3.187) (exact
in the case of equal-energy modulation) can therefore be approximately used in this
case (i.e., for any linear modulation format) as well.

3.11.5 Linear Predictive Sequence Detection for Frequency Flat
Fading Channels

In the case of linear coded modulation, we assume that the discrete observable can
be written as follows:

where: {//J is a circular complex Gaussian random sequence; {ck} is a code se-
quence; and {rik} is an iid Gaussian noise sequence with variance per component
equal to cr2. We assume that the encoder/modulator can be modeled as an FSM with
state /ifc, characterized by "output" and "next-state" functions as given in (3.3).

The statistics of the observable, conditioned on the data, are Gaussian. More
precisely, the conditional pdf of the observation at time epoch k can be written as
follows:24

24We are implicitly assuming that the starting state ^o of the encoder/modulator is known.
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where the conditional mean and conditional variance are

In particular, the conditional mean and variance depend on the entire previous infor-
mation sequence, so that one can conclude that the memory of the system is unlim-
ited. By considering the CMP, one can conclude that

where the second equality follows immediately upon the considered observation
model in (3.192). The intuitive motivation is that "old" observations do not con-
tribute much information regarding the current observation. If this condition were
strictly met, the random sequence rk would be Markov of order TV, conditional25

upon a*. This Markov assumption is never verified in an exact sense for a realistic
fading channel. Even assuming a Markov fading model, thermal noise destroys the
Markovianity of the observation. The quality of this approximation depends on the
autocovariance sequence of the fading process {fk} and the value of TV, which is an
important design parameter.

Upon the application of the CMP, we can concentrate on

The conditional mean and variance in (3.197), i.e.,

are, respectively, (i) the TV-th order mean square prediction of current observation rk,
given the previous TV observations and the information sequence, and (ii) the rele-
vant prediction error. Note the difference with respect to the previously introduced
notation ̂ (aj) and a2(ag), which denote similar quantities given the entire previous
observation history rjp1 (k-th order prediction at time k).

For Gaussian random sequences, the conditional mean (i.e., the mean square es-
timation) is linear in the observation:

25Note that the CMP can be equivalently reinterpreted as a Markovianity condition of order N.
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At time epoch k, the linear prediction coefficients Pijk and the mean square predic-
tion error a2, are the solution of the following (linear) matrix equation (Wiener Hopf
system):

where

The observation correlation matrix ,Rfc(ao) incorporates the dependence on the data
sequence ak and vectors p and q include the unknowns.

Given the flat fading model, the observation vector can be expressed as

where C(
k
N} = diag(ck

k_N) and fk
k_N = (fk, fk-i,..., A-/v) and nk

k_N =
(rifc, Uk-i,. • . , rik-N)- Hence, the observation correlation matrix is

where F = E{/^_Ar(/^_7V)H} is the fading correlation matrix, which does not de-
pend on k under the assumption of stationary fading. This expression shows that
the dependence of JJfc(aJ) on the information sequence can be compacted26 into the
dependence on the code sequence ck

k_N. Hence, considering the "usual" expanded
state Sk — (fl j t-i j • • • , Q>k-Ni A^fc-Tv). we can further write:

It can be immediately concluded that a similar dependence on the couple (afc, Sk)
characterizes the prediction coefficients, the conditional mean and variance, and the

26It is possible to arrive at the same conclusion immediately after the application of the CMP, since
a limited dependence on the observations implies a limited dependence on the information sequence
as well, as shown in Chapter 2.
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entire conditional statistics of the observation. More precisely, carefully analyzing
the previously introduced Wiener Hopf system, it is possible to write:

where the unnecessary time indexes can be dropped assuming a stationary fading
regime. The resulting branch metric to be used in a VA is

The branch metric (3.212) makes use of the linear prediction ?k(Sk) of the current
observation rk, based on the previous observations and path-dependent prediction
coefficients.

The derived linear predictive detection algorithm can be given the following in-
terpretation. Based on the conditional Gaussian nature of the observation and the
CMP, we can concentrate on the Gaussian pdf p(rk rk~]y, ak-,Sk}. The conditional
mean f fc(a fc, 5*) and variance &2(ak, Sk) can be viewed as system parameters to be
estimated, and the following steps should be considered.

1. Adopt a linear feed-forward data-aided parameter estimator of order TV (see
Section 3. 11.1).

2. Use a set of estimators by associating one estimator to each trellis path.

3. Compute the estimation coefficients in order to minimize the mean square es-
timation error with respect to the random variable rk, conditional on the path
data sequence.

The resulting estimator is exactly the described path-dependent linear predictor. Lin-
ear prediction of rk based on the previous observations is a form of PSP-based/^eJ-
forward parameter estimation. We obtained it naturally in the derivation of the de-
tection algorithm.
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It is possible to obtain an alternative formulation of the branch metric. In fact, the
observation prediction can be expressed as follows:

k-i(Sk)} indicates the coded symbols associated with state Sk.
In particular, fk(Sk) denotes a state-dependent linear prediction of the fading coef-
ficient at time fc, based on previous observations.27 The coefficients {p"(Sk}} are
state -dependent prediction coefficients of the fading process based on previous ob-
servations of noisy fading -like state-dependent sequences {rk-i/Ck-i(Sk)}^Li- The
mean square prediction error of observation and fading coefficient are similarly re-
lated as follows:

The branch metric can then be expressed as

In particular, the fading prediction coefficients p"(Sk) and mean square prediction
error a2f(ak, Sk) are the solution of the following Wiener Hopf equation:

27Note that in the case of application of state reduction techniques, some of the symbols Ck-i have
to be retrieved on the survivor associated with the reduced state replacing Sk. In this case, the linear
predictions of the fading coeffi cients can be interpreted as path-dependent. The same comment holds
also for the prediction coeffi cients {jf' (5fc)}.
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where

The dependence of the solution on the hypothetical sequence is only through the
moduli of the code symbols.

For code symbols with constant modulus, the prediction coefficients do not de-
pend on the state £& and symbol ak. For instance, this is the case for PSK, i.e.,

= 1. In this case, the branch metric simplifies as follows:

This solution is remarkably similar to what we would obtain in a decomposed estima-
tion-detection strategy by estimating the "undesired" parameter fk according to PSP.
Note that the (Gaussian) prediction error variance a2 affects the "overall" thermal
noise power.

It is possible to interpret the designed algorithm as embedding linear predic-
tive estimation of the fading coefficient fk. In particular, the observation model
fk = ckfk + nk satisfies a parameter-conditional FMC by viewing fk as un unde-
sired parameter. In order to estimate this parameter, the following steps should be
considered.

1. Adopt a linear feed-forward data-aided parameter estimator of order N (see
Section 3.11.1).

2. Use a set of estimators by associating one estimator to each trellis path.

3. Compute the estimation coefficients in order to minimize the mean square esti-
mation error with respect to the random variable rk/ck, conditional on the path
data sequence.
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The resulting estimator is exactly the described state-dependent linear predictor.
Hence, linear prediction of fk based on previous observations is a form of PSP-based
feed-forward parameter estimation.

The state-complexity of a linear predictive receiver can be naturally decoupled
from the prediction order TV by means of state reduction techniques. For the sake of
simplicity, we consider folding by memory truncation, but set partitioning could be
used as well. Let Q < N denote the memory parameter to be taken into account in
the definition of a reduced trellis state, so that a reduced state wk can be written as
follows:

The branch metric can be obtained by defining a pseudo- state28 as

where (ak_Q+i(wk), • • • ,ak-]y(wk)) and fik-Nfak) are information symbols and a
state in the survivor of state wk, respectively. The branch metric in the RS trellis can
be defined as usual according to

For coded PSK, the branch metric is

The prediction order N and RS parameter Q are design parameters to be jointly op-
timized by experiment to yield a good compromise between performance and com-
plexity. As an example, we consider the case of uncoded QPSK signaling (the cardi-
nality of the information symbols is M = 4) over a time-varying flat fading channel.
The BER performance, as a function of the SNR, is shown in Figure 3.33. The nor-
malized maximum Doppler rate is indicated as foT. In particular, we consider a
prediction order TV = 10 and a reduced state parameter Q ~ 2 (16 possible reduced

28Note that the formulation in (3.225) is very general and accounts for the case of a recursive state
as well. In the case of a nonrecursive state, a simplifi ed formulation is possible.
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Figure 3.33: BER of a linear predictive receiver for transmission of QPSK over a
time-varying flat Rayleigh fading channel. Various values of the normalized maxi-
mum Doppler rate are considered. Reproduced from [124], ©1995 IEEE, by per-
mission of the IEEE.

states). Pilot symbols are periodically inserted in the transmitted sequence (the inser-
tion rate is 1 every 9 data symbols). For comparison, the curve relative to the case of
perfect channel state information (i.e., when the fading process is perfectly known at
the receiver side) is shown.

3.11.6 Linear Predictive Sequence Detection for Frequency
Selective Fading Channels

A frequency selective fading channel can be visualized as a time-varying ISI chan-
nel. In particular, if the channel response is time-vary ing according to an arbitrary,
but known, stochastic model, we assume that the detector has knowledge of the un-
derlying statistics. In the following, we apply the CMP to derive sequence detection
algorithms for signals transmitted over frequency selective fading channels with arbi-
trary statistics (i.e., amplitude distribution and correlation). No assumption of Gaus-
sian fading or additive noise is therefore made a priori, although specific solutions
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are proposed for the case of Rayleigh fading channels.
The final discrete-time expression (A.32) for the observable derived in Appendix A

can be rewritten by making explicit the indexing of the overall symbol period and of
the sampling instants inside each period:

Defining the following quantities 

29

one can compactly indicate the oversamples relative to the k-th signaling interval as
follows:

The CMP extends naturally to the case of oversampling, provided that a vector nota-
tion is used. In other words, one can write:

where TV is the order of Markovianity, C is the finite memory parameter given by
C = TV + L, and rk

k~^l
N is a /3(N + 1) x 1 column vector defined as

In other words, in the case of oversampling we assume that the set of (3 conditional
observations relative to a signaling interval depends only on the TV most recent pre-
vious sets. Hence, the branch metric has formally the general expression given by
(3.17). By defining Sk — (a*!^), one can write:

29Note that while the observation rk is a vector with elements the oversamples considered in the k-
th signaling interval, the information sequence {a/d is such that there is only one symbol per signaling
interval.
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Note that (3.236) holds for any fading or noise statistics, as long as the CMP is
satisfied. This metric could thus be used for non-Gaussian fading (e.g., Nakagami
fading) and non-Gaussian additive noise (e.g., impulsive noise or noise generated by
interfering signals).

In the important case of Rayleigh fading, the conditional observation and the rel-
evant pdfs are multivariate zero-mean Gaussian and further simplifications are possi-
ble. Defining the following covariance matrices:

simple algebra leads one to the following expression for the branch metric (3.236):

We note that the matrices Rk_N(ak_c) and Rk~
l
N(ak~

l
c) are actually independent

of time epoch k if the channel and noise are stationary.
In the considered case of a Rayleigh fading channel, the branch metric (3.239)

can also be given a different equivalent formulation. In fact, by applying the chain
factorization rule to the conditional pdf (3.234) over the corresponding samples of a
vectorial observation rk = [rkji, . . . , rk^]T, one can write:

Each conditional observation sample has Gaussian distribution, so that one can fur-
ther rewrite (3.240) as follows:

where rk,i\k,i-i(rk,i-i, • • • , ^,1, rk_
l
N, ak

k_c) and ^|M_i(a£_c) indicate the condi-
tional mean and variance, respectively, and can be evaluated by solving a suitable
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MMSE problem.30 We remark that only the conditional mean depends on both ob-
servations and information symbols, whereas the conditional variance is indeed in-
dependent of the observations [131].

The complexity of the proposed algorithms can be straightforwardly reduced by
applying the state reduction techniques introduced in Section 3.10.1. In particular,
considering the application of memory truncation techniques, it is possible to define
a reduced state as

where Q £ {!,...,!/} represents the RS parameter. In order to compute the branch
metric (3.241), the information symbols (flfc-L, • • • , ak-Q+i) are recovered from the
survivor (based on stored decision feedback) associated with reduced state s^.

For Rayleigh fading, assuming that the tap coefficients {fi,n}f=0
 m (A.32) obey

an autoregressive moving average (ARMA) model, the conditional mean and condi-
tional variance which appear in (3.241) may be computed recursively using a bank
of Kalman filters as shown in [132,133]. Although these algorithms may be oper-
ated with trellis diagrams of various state complexities, this aspect is only implicit
in [132,133], where the ISI trellis diagram is often used. These detection schemes
based on per-survivor Kalman channel estimation may be shown to coincide with
the proposed detection algorithm in the case with Q — L, if the CMP expressed
by (3.234) holds. As a matter of fact, a Kalman filtering technique is hidden in the
proposed algorithms, as shown in [121].

We now present a performance analysis of the proposed detection algorithms for
frequency selective fading channels. The assumed performance measure is the aver-
age BER versus E^/No, where Eb denotes the received signal energy per information
bit averaged over the data and channel statistics. The assumed receiver filter is a root
Nyquist filter regardless of the selected oversampling factor. In the case of an over-
sampled front-end, a root Nyquist filter frequency response with vestigial symmetry
around 1/(2TS) satisfies both (A.19) and (A.20) if

where 6 is the roll-off factor of the receiving filter.
The overall time-discrete channel is modeled according to (A.32), in which the

span of the ISI is set to L = 2 and the time-varying channel tap coefficients {fi>n}^=Q

30Note that for an optimal fi Itering approach, the dependence on the entire observation sequence
should be considered. However, in (3.241) we are already considering the application of the CMP.
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are assumed to be characterized by the following first order ARM A model:

where p is a forgetting factor and {zijn}^=0 are independent, white, complex, Gaus-
sian random processes with independent real and imaginary components. This sim-
ple time-discrete model is suitable to be employed both for symbol-spaced sampled
detectors ((3 — 1) and for oversampled detectors (f3 > 1). However, the received sig-
nal is not strictly bandlimited and the observation sequence is only an approximate
sufficient statistic, even for (3 > 1. The correlation between fading samples whose
distance in time is a symbol interval is always p, regardless of the selected oversam-
pling factor (3. The simulations are performed assuming that (A.31) is met for j3 — I
and neglecting the cross-correlation among taps for (3 > 1. The latter assumption
is known to be pejorative with respect to the case in which this cross-correlation is
taken into account [133].

The standard deviation of the tap gains (/o,n, /i,n, /2,n) is set to the values (0.407,
0.815,0.407). Different values of p have been considered (the smaller the parameter
p, the faster the channel variations associated with it), and two different modulation
formats: binary phase shift keying (BPSK, M = 2) and QPSK (M = 4). An in-
formation block length of K — 60 symbols is assumed, with a known preamble and
postamble of 2 symbols.31

In Figure 3.34, we show the BER of the blind recursive receiver employing one
sample per symbol interval ((3 = 1) as a function of the overall assumed memory
C, for BPSK modulation. This figure is intended to validate the CMP, which allows
us to factorize the conditional pdf. Since L = 2 is fixed because of the assumed
channel model and since we consider a full-complexity solution (Q = L), the figure
allows us to infer empirically the value of the channel dependence parameter N. We
can see that for the considered values of p, the BER levels out for increasing values
of N. In fact from an order of Markovianity equal to TV = 8 (C = 10) onwards,
the BER curves exhibit an error floor indicating that no BER improvement is further
achievable by increasing the assumed order of Markovianity N.

Figure 3.35 shows the performance curves of the blind recursive detector with
13 = I for QPSK modulation and p — 0.998. One can notice that a larger (but
not dramatic) performance loss, with respect to BPSK, is exhibited by the reduced-
complexity receiver (compare C = 5, Q = 5,4,3). Furthermore, for an equal number
of trellis states (Q = 5), the use of state reduction techniques allows one to improve

3'The presence of the preamble and postamble are expedient for the initialization and the termina-
tion of the VA. More details can be found in [121].
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Figure 3.34: BER of the blind recursive detector with (3 = 1 for Eb/N0 = 40 dB
and BPSK as a function of the assumed memory N. Reproduced from [121] by
permission of John Wiley & Sons.

significantly the performance by increasing the assumed channel memory from C =
5 to 6 and 7.

In Figure 3.36, we present a performance comparison between symbol-spaced
sampled and oversampled blind detectors, for BPSK modulation and p = 0.99. The
oversampled receivers employing two samples per symbol interval ((3 = 2) exhibit
an error floor which is remarkably lower than that of the corresponding symbol-
spaced sampled receivers. Oversampling the received signal may also be a way to
compromise in terms of complexity and computational needs. For example, we can
compare the curve obtained with C = Q — 6 and (3 — 2 with that obtained with
C = Q — 7 and ( 3 — 1 : the oversampled receiver performs slightly better. This is
due to the fact that even if it has half the number of states, the branch metric makes
use of matrices and observation vectors which have double length with respect to that
of a symbol-spaced receiver.

3.12 Summary

This chapter has been devoted to MAP sequence detection. After describing this
concept, the Viterbi algorithm, the most famous and successful detection algorithm
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Figure 3.35: BER versus Eb/N0 of the blind recursive detector with (3 — 1 for QPSK
modulation and p = 0.998. Reproduced from [121] by permission of John Wiley &
Sons.

to date, has been described and shown to exactly implement MAP sequence detec-
tion. Finite memory sequence detection has been introduced, as an instance of the
general approach introduced in Chapter 2. After a discussion about the relation be-
tween detection and estimation, a few preliminary examples of data-aided param-
eter estimation and joint detection and estimation have been considered. The con-
cept of per-survivor processing has been presented, along with examples of applica-
tion to phase-uncertain channels and dispersive slow fading channels. This concept
turns out to be related, explicitly or implicitly, to several detection algorithms con-
sidered in this book. In order to limit the complexity of finite memory sequence
detection, state reduction techniques for detection strategies based on the Viterbi al-
gorithm have been introduced. Finally, several applications to wireless communica-
tions have been considered: adaptive sequence detection based on least mean squares
estimation for tracking a dispersive fading channel and joint detection and phase syn-
chronization; noncoherent sequence detection for phase-uncertain and slowly vary-
ing frequency nonselective fading channels; linear predictive sequence detection for
phase-uncertain and fading channels.
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Figure 3.36: BER versus Eb/N0 of the blind recursive detector with (3 = 1 and (3 = 2
for BPSK modulation and p = 0.99. Reproduced from [121] by permission of John
Wiley & Sons.

3.13 Problems

Problem 3.1: Consider a base-band binary transmission system which uses
equally probable symbols a/- G { — !,+!} and linear modulation. The channel
is affected by AWGN. The samples at the output of a matched filter can be
expressed as

where {c/c} are the transmitted symbol and {g^} is the overall discrete impulse
response such that

The noise process {n£ } is colored, with autocorrelation equal to Rn (k) —

A. Design a digital noise- whitening filter to process the observations
and determine the overall discrete-time impulse response.
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B. Consider MAP sequence detection based on the samples at the output of
the whitening filter: define a suitable state and design the corresponding
trellis diagram.

Problem 3.2: Consider a linearly modulated signal with QPSK. The complex
envelope of the transmitted signal can be written as follows:

where the symbols {ck} are differentially encoded according to the rule ck —
Ck-iOik- The information and code symbols belong the alphabet {±l,±j}.
Assume that there is AWGN, the information symbols are equally likely and
the condition for absence of ISI is satisfied. At the receiver we consider a
detector based on the VA.

A. Draw the trellis diagram of the detector.

B. Show that the survivors at epoch k + 1 can be obtained by directly ex-
tending the survivor at epoch k with the best metric (in other words, the
depth of convergence of the survivors is one).

C. Show that considering sequence detection based on the VA is, in this case,
equivalent to symbol by symbol demodulation.

D. Discuss the effects on the decision process of a phase rotation in the re-
ceived signal equal to a multiple of Tr/2.

Problem 3.3: Independent and equally likely information symbols {ak} £
{±1} are coded according to the following rule:

A coded symbol ck thus belongs to the alphabet {—2,0, +2}. The coded sym-
bols are transmitted through a base-band linear modulation with shaping pulse
p ( t ) , whose Fourier transform is a raised root cosine with no excess bandwidth
(i.e., it is a rectangular spectrum). The transmitted signal has therefore the
following expression:

Considering transmission over an AWGN channel and assuming that the re-
ceiver front-end is a sampled matched filter, derive the VA to implement MAP
sequence detection.
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Problem 3.4: Consider the general class of reduced-state algorithms, indi-
cated as SA(npa, nc\) in Section 3.10.4 and originally described in [108]. Jus-
tify why, for a given maximum complexity level given by the product npanci,
the reduced-state sequence detection algorithm which provides the best per-
formance is the M-algorithm, i.e., the algorithm with M = npa and nc\ = 1.
Compare your solution with the results in [108, 109].

Problem 3.5: The observation at the output of a phase-uncertain channel can
be written as follows:

where nk is an AWGN sample. It is easy to show that

A gradient algorithm for estimating the channel phase process would be based
on the following recursive estimation:

Comment on the relationship of this algorithm with the joint phase synchro-
nization and MAP sequence detection strategy considered in Section 3.8.1
(data-aided) and Section 3.9.1 (PSP-based) where a first order PLL is used.

Problem 3.6: Suppose transmission of independent and equally distributed
symbols belonging to an 8-PSK constellation over an ISI channel with memory
L = 4. Draw all possible trellis diagrams with four states to perform reduced-
state detection. Considering various ISI channel impulse responses, describe
the pros and cons of the considered state reduction techniques.

Problem 3.7: In the case of application of NSD to fading channels, derive
the basic branch metric (3.160) by considering the approach specular to that
proposed in the text. In other words, first apply the CMP, and then average
over the (known) channel statistics.

Problem 3.8: Considering the observation model (3.30) for a flat slow fad-
ing channel in Section 3.5.2, show that linear predictive sequence detection is
equivalent to the strategy proposed in Section 3.5.2 and based on the correla-
tion properties of the observation sequence.
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Problem 3.9: Starting from (3.138), derive the metric (3.135). Note that this
approach is the "specular" version of that proposed in this book, where, first,
an approximate application of the CMP is used, i.e., memory truncation is
introduced, and then statistical averaging is performed.

Problem 3.10: Derive (3.160) using the "standard" approach proposed in this
book: first apply (approximately) the CMP and then average out the channel
statistical parameters.

Problem 3.11: Verify by computer simulations that the use of the approx-
imation lnlo(x) ~ x does not entail major performance degradation in the
performance of a VA-based receiver using (3.160).

Problem 3.12: Verify that the performance of a VA-based receiver using (3. 164)
and (3.165) is the same.

Problem 3.13: Verify that the performance of a VA-based receiver using (3. 165)
is equivalent, in the case of Rice fading, to that obtained by (3.160). Devise
suitable approximations which allow one to derive (3.165) from (3.160).

Problem 3.14: Consider uncoded transmission of binary symbols ak € {±1}
through a static dispersive channel with white noise discrete equivalent impulse
response/ = (l,2,l)/\/6.

A. Define a suitable system state jj,k and draw the relevant trellis diagram.

B. Express explicitly the branch metric as a function of the received signal
sample rk for any possible transition.

Assume that the received sequence is

(r0, r-!, r2, r3, r4, r5, r6, r7) = (1.7, 1.2, 1.1, 0.3, -0.2, -1.1, 0.7, 0.4)

and the initial state is //o = (+!,+!).

C. Use the VA to detect the MAP sequence

Problem 3.15: Consider the model of discrete observable

where 9 is the overall phase rotation introduced by the channel. Let 9 be an
estimate of the channel phase and define the "phase- synchronized" observation
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A. Derive an explicit expression of the MSB E f^ — c^|2 as a function of 9.

B. Obtain an estimate of 0 minimizing the MSB.

C. Formulate a data-aided iterative stochastic gradient algorithm with the
aim to minimize the MSB.

D. Comment on the functional relationship of the obtained synchronization
scheme with a first order PLL.

Hint: Define a stochastic gradient by differentiating the MSB with respect
to 9 and discarding the expectation.

Problem 3.16: Consider the model of discrete observable:

where / is the overall discrete equivalent channel impulse response.

Let / be an estimate of the channel response. Assume that the code symbols
are zero-mean and uncorrelated.

/\ T1

A. Derive an explicit expression of the MSB E{ rk — f ck
 2} as a function

of/.

B. Formulate a data-aided iterative stochastic gradient algorithm to mini-
mize the MSB.

C. Comment on the functional relationship of the obtained identification
scheme and the LMS algorithm.

Hint: Define a stochastic gradient by differentiating the MSB with respect
to f and discarding the expectation.

Problem 3.17: Assume a first order autoregressive fading model

where p G [0, 1] is a constant and {vk} is an iid zero-mean Gaussian sequence
with variance o^.

A. Show that the fading sequence is Markovian of first order.

Assume /0 is Gaussian with variance a\.

B. Show that fk is a stationary Gaussian sequence.

C. Check if the conditional observation {rk} satisfies a Markov property.
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Problem 3.18: Consider the random-phase discrete channel model

Define a feed-forward data-aided phase estimate 9 based on the previous N
observations by minimizing the MSB

A. Show that this estimate must verify the condition

B. Show that the result in part A coincides with the data-aided ML phase
estimate based on the previous N observations.





Symbol Detection: Algorithms and
Applications

4.1 Introduction

This chapter focuses on the application of the general framework proposed in Chap-
ter 2 to the case of maximum a posteriori (MAP) symbol detection. In particular,
performing MAP symbol detection requires the explicit computation of a symbol a
posteriori probability (APP), i.e., the probability that a particular symbol has been
transmitted given the observation of the entire received signal, or, considering an
optimal discretization of the received signal, the entire sequence of discrete-time
channel observations. Since, in various cases, the calculation of the exact APP may
be computationally very intensive, one can resort to the computation of suboptimal
values which approximate the APPs.

While the bit error rate (BER) performance of a given transmission system based
on the MAP symbol detection criterion is substantially identical1 to that obtained
by applying the MAP sequence detection criterion, the discovery of the concept of
iterative decoding/detection [33] spurred a strong interest and attention for symbol
detection algorithms. The most commonly used algorithm to perform MAP symbol
detection is the so-called forward backward (FB) algorithm. Seminal work in the
design of algorithms for soft-output decoding dates back to the late Sixties [134,135].
An instance of the FB algorithm was proposed in [136], but a clear formalization is

Detection Algorithms for Wireless Communications- G. Ferrari, G. Colavolpe and R. Raheli
©John Wiley & Sons, Ltd. ISBN: 0-470-85828-1

'This is exactly correct for large signal-to-noise ratios, but it represents a good approximation also
at low signal-to-noise ratios (SNRs).
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Figure 4. 1 : Transmission system and MAP symbol detection.

due to Bahl, Cocke, Jelinek and Raviv in 1974 [54] — for this reason, the FB algorithm
is also often referred to as BCJR algorithm from the initials of the last names of the
authors of [54],

4.2 MAP Symbol Detection Principle

We assume that the transmission system can be represented as shown in Figure 4. 1 . In
particular, a source generates a sequence a = a£~l of information symbols, which
is transformed by the encoder/modulator into a time-continuous signal s(t,a). For
the sake of simplicity, we assume that the duration of the signal is KT, where T
denotes the symbol interval. The MAP symbol detection criterion leads to the choice
of the symbol dk which minimizes the probability of error with respect to the received
signal. More precisely, this criterion can be formulated as follows:

where r(t) is the received signal observed over the entire information-bearing inter-
val TQ. Due to the system memory, T0 may include the interval (0, KT), possible
border intervals or, ideally, the entire time axis. Considering a suitable discretization
process, through which the received signal r(t) is converted into an equivalent se-
quence of discrete-time observations r, whose dimension depends on the number of
samples per symbol interval T, the strategy (4.1) can be reformulated as follows:

In order to compute the APP P{ak r} one can write:

where the notation a : ak denotes all possible information sequences containing ak,
or compatible with ak. Note that the computation of the APP, as indicated in (4.3),
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requires the computation of the same metric as in the case of MAP sequence detec-
tion (i.e., p(r a)P{a}) and a further marginalization based on the sum over all the
information sequences compatible with symbol ak. Assuming that the information
symbols are independent, one can further express the APP as follows:

The first and simplest possible approach for the evaluation of the APP could be
based on the computation of expression (4.4). It is immediately concluded that the
efficiency of this computation is very low, since one must compute a large number
of sequence metrics and then marginalize by adding them together. The complexity
would obviously be exponential in the transmission length K. The FB algorithm,
introduced in more detail in the following section, represents an efficient way to
compute the APP, with a complexity linear with the transmission length K, as in the
case of a Viterbi algorithm (VA) for MAP sequence detection.

4.3 Forward Backward Algorithm

As already mentioned, the first clear formulation of the FB algorithm can be found
in [54]. In the following, we propose a simple derivation of the FB algorithm for
transmission over a memoryless channel. We assume that the encoder/modulator can
be represented as a finite state machine (FSM), with state fik and output symbol ck.
As in Chapter 2, we assume that the next- state and the output functions are known:2

The couple (/^, a*) uniquely identifies a transition in the trellis diagram of the en-
coder/modulator FSM. We denote this transition as tk. After a suitable discretization
process with one sample per information symbol, we assume that the observable at
epoch k can be written as

2 Note that the derivation shown in the following holds also in the case of a channel with strictly
fi nite memory, the only difference being the interpretation of pk as the state of the FSM obtained by
concatenating the encoder/modulator and the channel. Moreover, we assume generation of a single
output symbol ck in correspondence to an information symbol ak, but the derivation can be straight-
forwardly extended to the case of multiple output symbols by using a vector notation.
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In this case, the APP can be expressed as follows:

Owing to the independence between the information symbols, since fj,k may depend
on ajp1, it follows that

Upon the assumption of transmission over a memoryless channel, the remaining con-
ditional probability density functions (pdfs) in (4.8) can be simplified as

Hence, the APP in (4.8) can be rewritten as follows:

By defining

where, for the sake of notational simplicity, the dependence of //fc+1 on /i^ and a^ is
not explicitly indicated.3 In the following, since the generated soft-output value is a

the desired symbol APP finally becomes

3This simplifying notational assumption (and other similar assumptions) will also be considered
later in the book. The context should eliminate any ambiguity.
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quantity monotonically related to (or approximating) the APP, we will indicate this
value with the general notation S[ak]. In other words, one can write:

Note that the operation (4.18), where the quantities {ctk(fJ-k)} and {/3k+i(Hk+i)} are
combined to generate the extrinsic information, is usually referred to as completion.

The quantities Oik(nk) and (3k+i(^k+i) can be computed by means of forward and
backward recursions, respectively. More precisely, one can write:

where the index of the summation indicates all possible transitions
compatible, through the next-state function, with p,k—this notation is general and
accounts also for the case of underlying recursive and nonrecursive FSM models.
The summation in (4.19) can be re-interpreted as being carried over all possible trellis
branches {tk-i} compatible with the final state f i k . Since we are considering possible
combinations of iik-i and a^-\ compatible with nk, it follows that

Based on the independence between the information symbols and on the absence of
channel memory, one can write:



160 Symbol Detection: Algorithms and Applications

Finally, a step in the forward recursion in (4.19) can be concisely expressed as fol-
lows:

A similar derivation holds also for the backward recursion. More precisely, one
can write:

Based on the independence between information symbols and the absence of memory
of the considered transmission channel, the following simplifications hold:

A step in the backward recursion, as indicated in (4.25), can be rewritten as follows:

Note that, unlike the forward recursion, in the backward recursion there is no ambigu-
ity in the summation index. In fact, the trellis diagram corresponding to any possible
coding/modulation scheme, either recursive or nonrecursive, is such that branches
exiting from a state are associated with different information symbols.

Given the inherent complexity of the FB algorithm, a number of suboptimal ap-
proximate versions have been proposed in the literature. Among the various approx-
imations, we consider one which arises naturally once the algorithm is formulated
in the metric (or logarithmic) domain. Unlike sequence detection, taking the natural



Forward Backward Algorithm 161

logarithm of (4.18), (4.24), and (4.29) would not seem very helpful because the log-
arithm does not commute with the summations. However, given two values x and y,
and noting that for large x — y\

and, consequently, that

it is possible to formulate a computationally efficient approximation of the FB al-
gorithm. This formulation of the FB algorithm is usually referred to either as max-
log [137] or min-sum [98]. The following definitions are expedient:4

In the metric domain, the completion operation in (4.18) therefore becomes:

where, in the last step, the max-log approximation has been used. Similarly, the two

4Note that the second defi nition derives naturally from the defi nitions of the branch metric
(afc, fJik] in Chapter 2 and 7fc(a/c, Hk)- In particular, 7^ can be interpreted as an 'exponential met-

c.
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recursions can be written as follows:

The "beauty" of the max-log approximation is that forward and backward recur-
sions in the metric domain, given by (4.36) and (4.37), respectively, can be imple-
mented by two VAs and the two quantities A]T(/^) and Aj? (//&) can be interpreted
directly as forward and backward path metrics associated with state //fc, respectively.
Specifically, the first VA is run forward, with usual branch metric A f c(t f c), to compute
the forward path metrics {A£(^)}, whereas the second VA is run backward, still
with branch metric Ajt(t/c), to compute the backward path metrics {Aj? (//&)}. Finally,
the forward and backward path metrics are combined with the branch metrics and a
comparison is performed to determine the APPs, or the symbol decisions, according
to (4.35).

The computational efficiency of the max-log FB algorithm obviously comes at the
price of a slight performance degradation; hence, a number of different approxima-
tions have been studied as intermediate solutions between the full-complexity opti-
mal FB algorithm and its max-log approximation. For conciseness, we do not pursue
this topic further and refer the interested reader to the existing literature [98, 137].
The max-log approximation of the FB algorithm is sufficient for our purposes be-
cause of its direct interpretation in terms of VAs running in direct and inverse time
directions.

4.4 Iterative Decoding and Detection

The concept of iterative detection is a natural extension of the concept of iterative
decoding. The latter, originally introduced by Gallager in his Ph.D. thesis [31], was
crystallized by Berrou and Glavieux in 1993 with the introduction of turbo codes



Iterative Decoding and Detection 163

Figure 4.2: Parallel concatenated convolutional code, or turbo code.

and the concept of iterative decoding [33,66]. In this revolutionary work, the au-
thors showed that a complicated code, with a particular structure, can be decoded
efficiently with limited complexity. In particular, they considered a parallel concate-
nated convolutional code (PCCC), constituted by the parallel concatenation, through
interleaving, of two convolutional codes.

The structure of a parallel concatenated convolutional code is shown in Fig-
ure 4.2, where the interleaver is indicated with the symbol TT. As shown in Figure 4.2,
the output sequences from the two component convolutional codes can be punctured
in order for the overall code to have the desired code rate.

The receiver is based on two component decoders corresponding to the two con-
stituent convolutional encoders. In Figure 4.3, the basic structure of a turbo decoder,
corresponding to the encoder in Figure 4.2, is shown. The two component decoders
exchange soft information between each other, and it can thus be obtained by using
soft-output algorithms at each component decoder. More precisely, the decoders ex-
change extrinsic information, which represents the component of the generated soft
output on a symbol not depending on the soft-input information on the same sym-
bol [33]. Referring to the FB algorithm formulation proposed in Section 4.3, one
can immediately recognize that the final soft-output quantity (4.18), can be always
written as follows:

where

and
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Figure 4.3: Turbo decoder for a PCCC.

In Figure 4.3, the extrinsic information values on information symbol a/- gener-
ated by the first and second decoders in the n-th iteration are denoted by S^'^aJ
and Sj^'^fafc], respectively. Note that the a priori probability P{a^} of an infor-
mation symbol used by each component decoder is given, in the iterative decoding
process, by the extrinsic information generated by the other decoder. Assuming, as
a convention, that an iteration is constituted by the sequence of decoding acts of
the first and second component decoders, the soft-output values generated by each
component decoder can be rewritten as follows:

In other words, the soft-output value generated by the first decoder at the n-th it-
eration is the product of the soft value at its input, corresponding to the extrinsic
information generated by the second decoder at the (n — l)-th iteration, and the gen-
erated extrinsic information. The soft-output value generated by the second decoder
at the n-th iteration is the product of the soft value at its input, corresponding to the
extrinsic information generated by the first decoder at the same iteration, and the gen-
erated extrinsic information. The two soft-output values in (4.41) and (4.42) indicate
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clearly that the soft-output decoding processes (based on the FB algorithm) in the
two component decoders are coupled. A decoding iteration is basically constituted
by four steps:

1. The first decoder generates the extrinsic information on an information symbol
dk by using the extrinsic information generated by the second decoder—note
that at the very first iteration the first decoder cannot rely on the extrinsic in-
formation generated by the second decoder.

2. The extrinsic information sequence generated by the first decoder is interleaved
and passed to the second decoder.

3. The second decoder, upon receiving the sequence of soft reliability values gen-
erated by the first decoder, generates a sequence of extrinsic information val-
ues.

4. The extrinsic information sequence generated by the second decoder is de-
interleaved and passed to the first decoder. At this point, a single iteration
ends, and a new iteration can start.

The concept of extrinsic information is very subtle. This information can be in-
terpreted as the "surplus" of information, on the reliability of a symbol, generated by
a component decoder. The extrinsic information value of a symbol at epoch k is un-
biased with respect to the corresponding soft-input information at the same epoch.5

In this way, considering the turbo decoder scheme shown in Figure 4.3, each decoder
receives from the other decoder a "new" suggestion regarding the reliability of a sym-
bol. This is fundamental for the iterative decoding process to converge to a correct
decision. In fact, suppose that the first decoder does not decode correctly symbol a&,
i.e., it attributes to this symbol a wrong reliability value—this means that the extrin-
sic information value corresponding to a* suggests that a specific wrong realization
is more likely than the others. Upon receiving this wrong reliability value, if the sec-
ond decoder passed back to the first decoder a "complete" soft-output information
S^ [ajfc], then the latter decoder would be heavily influenced by previous decisions of
the former decoder. In other words, the second decoder would "push" the first de-
coder to decide in the same way. Instead, if the second decoder manages to generate
a correct surplus of information (i.e., the extrinsic information is a reliability value
consistent with the correct information symbol o^), then this surplus of information
can positively influence the first decoder, which can decide in the right direction in
the following iterations.

5Note that the extrinsic information at epoch k depends, however, on all soft-input information
values at epochs different from k.
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Figure 4.4: Typical BER performance curves of a turbo code for an increasing num-
ber of iterations. Reprinted from [33], ©IEEE, by permission of the IEEE.

Note that performing MAP sequence or symbol decoding of the entire turbo code,
seen as a single FSM, is practically impossible, since the presence of the interleaver
makes the overall FSM possess a huge number of states. Hence, nobody knows ex-
actly the ultimate BER performance of a turbo code, but various analyses suggest
that it is reasonable to assume that the performance obtained with iterative decod-
ing basically approaches that obtained performing sequence decoding of the overall
code. Typical BER curves for iterative decoding of a parallel concatenated code are
shown in Figure 4.4. In particular, the BER curves shown in Figure 4.4 refer to the
turbo code originally introduced in [66], which is a rate-1/2 turbo code, with con-
stituent 16-state recursive systematic convolutional (RSC) codes with generators (in
octal notation) G\ — 37, G2 = 21, and interleaving 256 x 256 (i.e., the transmitted
information sequence has length K = 65 536) as described in [33]. The considered
number of iterations increases from 1 to 18. One can immediately recognize a char-
acteristic waterfall effect of the BER curves, as the number of decoding iterations
increases above a specific threshold value of the signal-to-noise ratio (SNR). In the
particular case considered in Figure 4.4, the threshold SNR value is around 0.7 dB.
In other words, if the SNR value at the channel output (i.e., at the input of the turbo
decoder) is larger than this value, then the iterative decoding process converges, in
the sense that the number of errors (on the eventually decided symbol) rapidly re-
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duces to a very small value. If, on the other hand, the SNR is below this value, then
the iterative decoding process does not converge and the BER remains unacceptable.

In the light of the previous interpretation of the iterative decoding process, the
existence of a threshold in terms of SNR can be further interpreted as follows. If the
SNR is too low, then the first decoder, at the very first iteration, passes completely
wrong reliability values to the second decoder. The latter decoder is "pushed too
hard" in the wrong direction by the first decoder, and it passes back soft-output values
which aim in the same wrong decision direction. The successive iterations worsen
the situation, so that the final decisions made by the iterative decoder are completely
wrong.

In the last few years, in order to avoid long computer simulations with numer-
ical problems, new techniques have been developed to evaluate the performance of
concatenated codes decoded by iterative decoding techniques. In particular, as indi-
cated in the previous paragraph, a figure of interest may be the threshold SNR value
above which there is convergence, i.e., above which the BER rapidly decreases to
zero for an increasing number of iterations. Among these techniques, we recall two
interesting ones.

• A first technique is based on density evolution [84]. According to this ap-
proach, the generated extrinsic information is associated with a pdf, and the
evolution of this pdf over successive decoding iterations is tracked—this is re-
lated to the approach proposed in Section 4.5.

A second technique is based on the extrinsic information transfer (EXIT) charts
[86, 87], which characterize the input output SNR relation for a considered
code. For example, comparing the EXIT curves of both component convolu-
tional encoders of a turbo code allows determination of the value of the SNR
threshold and the speed of the iterative decoding process.

In the following Section 4.5, we propose a different (and simpler) approach to ana-
lyzing the iterative decoding process on the basis of the mean value and variance of
the generated extrinsic information. In particular, it will be shown that simply scaling
the generated soft-output information, whenever produced by algorithms introducing
suboptimal approximations, may lead to substantial performance improvements. As
an example, this will be the case using state reduction techniques.
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4.5 Extrinsic Information in Iterative Decoding: a
Unified View

As described in the previous sections, the principle of iterative decoding is based on
the exchange, between component subdecoders, of soft information [33,138]. More
precisely, in [33,138] the original concept of extrinsic information was introduced to
identify the component of the reliability value generated by a decoding subsystem,
relative to a specific input or output variable, which does not depend on the input soft
information on the same variable.6

In this section, we analyze the extrinsic information, showing that simply scal-
ing, in the logarithmic domain, the soft information generated by each decoder can
improve in some cases the overall performance. For the sake of simplicity, we will
refer to the case of transmission over a memoryless channel. The same conclusions
hold, however, also in the case of iterative detection over channels with memory,
as will be shown in the following sections. We consider, as examples, a PCCC,
or turbo code, and a serially concatenated convolutional code (SCCC) transmit-
ted over an additive white Gaussian noise (AWGN) channel. In particular, we con-
sider as component algorithms at the receiver side the FB algorithm, and the soft-
output VA (SOVA) [99,139]. In both cases, we derive the two algorithms in the
logarithmic domain. In fact, a natural reliability value, in the binary case,7 is the
logarithmic likelihood ratio (LLR), defined as

where the word "inputs" refers to all decoder inputs. We remark that we consider a
binary input ak belonging to the set {—1, +1}, in a one-to-one correspondence to the
set {0,1}. We consider this notation because it will make the following derivation
simpler. The LLR can be exactly computed employing the FB algorithm, which
allows one to calculate the APPs P{ak = i|inputs}, i e {±1} [54]. As we have
seen, the FB algorithm is the optimal algorithm to generate the sequence of APPs,
but its computational complexity is large with respect to that of the VA. Besides
"hard" symbol decisions, SOVA provides a symbol reliability information which can
be interpreted as an approximation of the LLR [33,139,140].

For both the FB algorithm and SOVA, in the literature there exist essentially two
methods to process the extrinsic information at the input of a soft-output decoder.

6In [138], the extrinsic information is referred to as 'refi nement factor."
7In this section, we limit our attention to the case of binary information symbols. The proposed

derivation can, however, be extended to the case of information symbols with larger cardinality.
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1. In a first method, the extrinsic information at the input of a decoder is modeled
as the output of an AWGN meta-channel [33,141,142].

2. In a second method, the extrinsic information is used to update the a priori
probabilities used in the next decoding step, in the sense that the APPs com-
puted by a decoder become a priori probabilities for the other one [73,143,
144]—this method was discussed in Section 4.4 when introducing the concept
of iterative decoding.

In this section, we present a unified interpretation of these two methods and em-
phasize their commonalities and differences. More precisely, we show that, either
using the FB algorithm or SOVA, the two methods only differ for a multiplicative
factor used in the metric computation. When the input is modeled as a Gaussian
random variable, this multiplicative factor depends on the variance and mean of the
sequence of LLRs, whereas, in the case of extraction of the a priori probabilities, it is
a constant equal to 1/2. We finally consider the use of an heuristic multiplicative pa-
rameter for both algorithms and evaluate the performance of the considered decoding
schemes for various values of this parameter.

4.5.1 A Review of the Use of the Extrinsic Information

As mentioned in Section 4.4, decoding of parallel and serially concatenated codes is
based on a suboptimal iterative processing in which each component decoder takes
advantage of the extrinsic information produced by the other decoder at the previous
time [33]. This iterative decoding process is made possible by employing soft-output
component decoders. As an example, for the rate-1/2 turbo code described in [33],
the turbo decoder is shown in Figure 4.5—we recall that this turbo code is com-
posed of two rate-1/2 RSC codes, with puncturing on the coded symbols generated
by the two encoders. In the figure: blocks II and II"1 denote the interleaver and
deinterleaver, respectively; {r[ }, j = 1,2, denote the channel output sequences;
and [Zfr }, j = 1,2, denote the extrinsic information sequence at the input of the
j-th soft-output decoder (i.e., produced by the other one). This sequence is derived,
by means of an interleaver or a deinterleaver, from the sequences {w^ }, j — 1,2,
produced by the other component decoder. Obviously, a serial concatenated decoder
presents a serial concatenation, instead of a parallel concatenation, of two component
decoders. In particular, while in a parallel decoder at the input of each component
subdecoder there are channel observations, in a serial decoder only the inner subde-
coder is directly connected to the channel.
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Figure 4.5: Decoder for a turbo code of rate 1/2.

In this subsection, we describe the possible methods for the use of the extrinsic
information at the input of each decoder. To this purpose we consider, without loss of
generality, a soft-output decoder which receives a sequence {r^} of channel outputs
and a sequence {zk} of extrinsic information values generated by another decoder
and produces a sequence {wk} of soft-output values—this is the case for decoder 2
in Figure 4.5, but may be easily generalized to the other decoder with an extended
vector notation for rk. Moreover, we assume that the input sequence {zk} and the
generated sequence {w^} are both relative to the sequence {ak} of information sym-
bols. The proposed formulation can be generalized computing the extrinsic informa-
tion relative to the code symbols {ck} if the relevant soft outputs are needed, besides
those for information symbols, as in the case of nonsystematic codes. In [83,138],
this generalization is carried out considering the FB algorithm; however, an exten-
sion to SOVA is straightforward. For simplicity, we consider an RSC code (usually
the component code of a turbo code and the inner code of a serially concatenated
code), in which case the extrinsic information on an information symbol needs to be
computed.

We assume that a channel output, after suitable filtering and sampling, can be
expressed as

where {nk} is a sequence of independent, zero-mean, real Gaussian random vari-
ables, with variance a2. In (4.44) we assume that c^ <G {±1}, i.e., Ck represents a
symbol modulated with binary phase shift keying (BPSK). In the original paper on
turbo codes and turbo decoding [33], the input sequence {zk}, i.e., the extrinsic in-
formation relative to the information sequence {ak}, is interpreted as the output of a
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Gaussian meta-channel. Specifically, it is assumed that

where the information symbols {a/-} belong to the binary alphabet {±1}, {n'k}
are independent, zero-mean, real Gaussian random variables, with variance a^ and
r\z = \E{zk ak}\. In [33], it is observed that the Gaussian assumption, even if not
satisfied in the initial iterations, is a good approximation when the number of iter-
ations increases. The values of r)z and a* are estimated for each data block. The
Gaussian assumption has acquired a new and more powerful interpretation in recent
works appearing in the literature on the analysis of the convergence of iterative de-
coding based on the concept of density evolution [84], where the term density refers
to the pdf of the extrinsic information, interpreted as a Gaussian random variable.

An alternative method, which does not require an estimation of r\z and o\, is
proposed in [73,143]. In this case, the extrinsic information zk at the input of the
considered decoder is used to extract a new estimate of the a priori probabilities to
be employed in the next decoding step. In fact, each decoder interprets zk as an
approximation of the LLR of the a priori probabilities according to

which allows one to derive (taking into account that P{ak = +1} + P{ak — — 1} =
1)

Therefore, the APPs generated by a decoder are used as a priori probabilities by the
other one. This approach can be generalized. In fact, it is possible to consider a
normalization of a generic soft-input information Slfa/t] [98]. For example, defining
SI[afc] = P{ak}, i.e., defining the soft-input quantity as the "ideal" a priori probabil-
ity, and MI[aJ = In SI[aJ, one can rewrite zk as

One can consider a normalization such that MI[a/c — — 1] = 0 , Vfc, and therefore
write
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In the following, we will consider the alternative normalization expressed as

It is easy to show that any shift in the logarithmic domain, i.e., adding a constant value
to all soft inputs epoch by epoch, creates an equivalent set of soft measures [98]. In
the binary case, what really matters is the difference, in the logarithmic domain, be-
tween the soft values associated with +1 and — 1. This is why the LLR "captures," as
a single quantity, all the soft information relative to a binary symbol ak. Generaliz-
ing, if M-ary symbols are considered, instead of considering M different soft values
it is sufficient to consider (M — 1) LLRs.

4.5.2 Forward Backward Algorithm

In Section 4.3, we proposed a simple derivation of the FB algorithm for the compu-
tation of soft-output reliability values. In order to simplify the comparison of the FB
algorithm with the SOVA, we limit our attention to the case of binary information
symbols. Considering the formulation proposed in [33]—slightly different from, but
equivalent to, the one we considered in Section 4.3—one can immediately show that
the LLR can be written as follows:

The pdfs 7fc(i, m', m), i G {±1}, are defined as

where: (i) Rk = (rk, zk) if zk is interpreted as the output of a Gaussian meta-channel,
or (ii) Rk = rk if zk is used to update the a priori probabilities; P{ak — i\ij,k =
m, [ik-i — m/} is either one or zero depending on whether bit i is or is not associated
with the transition from state m' to state m, respectively; and P{^k = ra|/Ltfc_i = m'}
is the transition probability.

As we have previously seen, the pdfs {ak(m)} and {j3k(m)} can be calculated
using forward and backward recursions, respectively. As an example, using the no-
tation introduced in this subsection, a generic step in the forward recursion for the
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computation of ak(m) can be written as follows:

Note that, unlike (4.24), the ensemble (0^(777)} is normalized (with their sum) over
all possible states at each epoch. In this case, the quantity ak(m) can be interpreted as
the "state probability." Such normalization has no influence on the value of the LLR,
but it is often useful for numerical stability. Moreover, from (4.51) and (4.53), it is
obvious that 7fc(i, m', m) may be arbitrarily multiplied by any constant independent
of i, m' and m.

In the following two subsections, we present the mentioned methods for using the
extrinsic information within a unified interpretation. In the third subsection, we pro-
pose an heuristic method to treat the extrinsic information. Finally, in the fourth sub-
section, we present some numerical results relative to iterative decoding of a PCCC
and an SCCC using the FB algorithm with the proposed methods for using the ex-
trinsic information.

Extrinsic Information as Gaussian-distributed Input

In this case, the information symbols are assumed independent and identically dis-
tributed (iid), i.e., P{ak = 4-1} = P{ak = —1} = 1/2. Hence, P{^k = m\Hk-\ —
m'} = 1/2 for each possible transition. Since Rk = (rk, zk] and due to the assumed
independence of rk and zk, we may write:

Recalling (4.45) and the Gaussian assumption for zk, we have:
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Thus, from (4.52) we may express the pdf ik(i, ra', ra) used in the forward and back-
ward recursions as

where 6k is a suitable constant, independent of i, ra' and ra.
In this case, the LLR (4.51) can be expressed as

where wk is the extrinsic component of the generated LLR defined as

where

Extrinsic Information Used to Update the a Priori Probabilities

In this case, Rk = rk and it is easy to show (see Section 4.5.1) that

" "Defining p^ = e"2"(l + e^)"1, one may write:
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Substituting into (4.52), one obtains:

In this case, we can express the LLR (4.51) as

where Wk, the extrinsic component of the generated LLR, is defined as in (4.58), the
only difference being the expression for 7^., which in this case is

This corresponds to the normalization (4.50) for the soft inputs relative to a symbol
ak.

Discussion and Heuristic Method

Based on the above results we may observe that, with the exception of the irrelevant
constants 6k and pk, the two methods presented above differ in the sense that the
extrinsic information is weighted by different coefficients. This may be noted by
comparing the expressions of the pdfs 7^(1, ra', m) (4.52) and (4.62) (the coefficient
is rfe/o^ in the first method and 1/2 in the second one), and the relations which
implicitly define the extrinsic information Wk, i.e., (4.57) and (4.63) (the coefficient
is 2rjz/(T% in the first method and 1 in the second one).

Based on this interpretation, an heuristic method can be conceived with the aim
of determining an "optimal" weight for the extrinsic information. In this case, the
extrinsic information zk is weighted by a parameter 9 to be optimized by trial and
error. The performance of the receiver for various values of the parameter 9 leads
to useful remarks about the way the extrinsic information should be processed when
the FB algorithm is used in the component decoders. In particular, in the following,
the parameter 9 substitutes r)z/cr% (first method) or 1/2 (second method). It is ob-
vious that multiplication by a constant 9 in the logarithmic domain is equivalent to
exponentiation in the probability domain.8 In fact

8This aspect will be considered again in Section 4.8.5, where generalized reduced-state FB algo-
rithms will be introduced.
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We now make another comment, regarding density evolution analysis of the con-
vergence of iterative decoding techniques [84, 145, 146]. In this case, a fictitious
SNR for the extrinsic information, interpreted as a random variable, is defined as
rjl/ol = rjz^f. In particular, if the extrinsic information has a pdf which is Gaussian

and symmetric,9 then rjz/al — 1/2. As shown in the following numerical results, the
approach where the extrinsic information is interpreted as a Gaussian random vari-
able will prove asymptotically optimal if r/z/o^ —» 1/2. A possible interpretation
of the obtained result is that the Gaussian approach, when asymptotically optimal,
satisfies the symmetry condition.

Numerical Results

The performance achieved by the FB algorithm in the proposed iterative decoding
schemes is assessed for the classical turbo code of rate-1/2, 16-state RSC constituent
codes with generators G\ — (37)8, G% = (21)8 (octal notation), and 256 x 256
nonuniform interleaver described in [33], and for an SCCC of rate 1/4, outer 4-
state nonrecursive nonsystematic convolutional (NRNSC) code with generators G\ —
(7)8, G2 — (5)8 and inner 4-state RSC code with generators G\ = (5)8, G2 = (7)8

and 64 x 64 nonuniform interleaver [72].10 We refer to the method in which the ex-
trinsic information is assumed Gaussian, as the first method; similarly, the method in
which the extrinsic information is used to update the a priori probabilities, and the
heuristic method described in Section 4.5.2 are referred to as the second method and
third method, respectively. The same formalism will be adopted when considering
SOVA as the component decoding algorithm. We first consider the performance of
the turbo code and then the performance of the serially concatenated code. In the
following simulation results, the performance is expressed in terms of BER versus
the bit SNR E^/NQ, E^ being the received signal energy per information bit and 7V0

the one-sided noise power spectral density.
In Figure 4.6, the BER performance relative to the FB algorithm is shown for var-

ious numbers of iterations. It may be observed that the second method, in which the
extrinsic information is used to update the a priori probabilities, gives better perfor-
mance (i.e., the extrinsic information is better used) than the first method, which mod-
els the extrinsic information as a Gaussian-distributed random variable. Specifically,
the second method exhibits a BER of 10~5 for an SNR value equal to approximately
0.7 dB. Moreover, the third (heuristic) method does not give any improvement. In

Indicating by /(A) the pdf of the extrinsic information, the symmetry condition is satisfi ed if

10In the case of a recursive code, the generator G\ refers to the feedback line, whereas in the case
of a nonrecursive code the same generator is relative to the fi rst generated code symbol.
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Figure 4.6: BER of a turbo code and the FB algorithm. The extrinsic information
generated by each decoder is either modeled as a Gaussian-distributed random vari-
able (first method) or used to update the a priori probabilities (second method). The
considered numbers of iterations are 1, 3, 6 and 18. Reproduced from [147], ©2001
IEEE, by permission of the IEEE.

fact, for each iteration and each SNR, the best value of 0 is 1/2, which corresponds
to the second method.

For the first method, Figure 4.7 shows the behavior of the average value of the
ratio riz/cr% for the extrinsic information at the input of the first decoder as a func-
tion of the number of iterations and for various values of SNR. It may be observed
that, almost regardless of the considered number of iterations, for values of SNR be-
low a convergence threshold (about 0.7 dB), this ratio takes on values greater than
1/2. Therefore, in the case of the first method, the extrinsic information is overesti-
mated. This has been previously observed in [33], where an heuristic normalization
of the extrinsic information has been proposed with the aim of improving the perfor-
mance at low SNR. We may conclude that, in the FB algorithm, the second method
corresponds to a better use of the extrinsic information, whereas the first method is
asymptotically optimal for an SNR above 0.7 dB and a sufficiently large number of
iterations. In addition, the second method does not require the estimation of the ratio
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Figure 4.7: Average value of ratio r/2/cr^ versus the number of iterations, for various
values of SNR and a turbo code. The component decoders use the FB algorithm. The
extrinsic information generated by each decoder is modeled as a Gaussian-distributed
random variable (first method). Reproduced from [147], ©2001 IEEE, by permis-
sion of the IEEE.

As for a PCCC, when considering an SCCC in conjunction with the FB algo-
rithm, the optimal method proves to be the second one. In Figure 4.8, only the BER
performance of the first two methods is shown, since for values of 9 different from
0.5 (third method) the performance degrades. In this case, the first method is not
asymptotically optimal. In fact, Figure 4.9 shows that the ratio r^/crf at the input of
the first encoder tends to a value approximately equal to 0.35, whereas the optimal
performance was obtained with the second method, i.e., with 9 = 0.5.

4.5.3 Soft-Output Viterbi Algorithm

An alternative to the FB algorithm is represented by SOVA [33,139,140], whose
soft output is an approximation of the LLR. In the numerical results, we use the
soft-output Viterbi decoder architecture proposed in [33] (with the updating rule pro-
posed in [139]) in order to obtain a real-time scheme, whose complexity is roughly
doubled with respect to that of a classical Viterbi decoder. The conclusions drawn
when using this algorithm also hold for a suboptimal version of the FB algorithm,
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Figure 4.8: BER of a serially concatenated code and FB algorithm. The considered
numbers of iterations are 1, 3, 6 and 18. Reproduced from [147], ©2001 IEEE, by
permission of the IEEE.

obtained by applying the max-log approximation [137], since these two algorithms
are equivalent [148].

Recalling that K indicates the number of samples of each data block, we define
by r = {r/cj^Q1 and z = {zk}£=Q the sequences of observations and input extrinsic
information, respectively. We also denote by R = {Rk}%=Q the sequence of inputs
of the considered decoder and by a = {a^}^1 the sequence of information symbols.
As in the case of the FB algorithm, (i) Rk — (r^, Zk) if Zk is interpreted as the output
of a Gaussian meta-channel, or (ii) R^ = r^ if Zk is used to update the a priori
probabilities. The MAP sequence detection strategy corresponds to the maximization
of the following metric:

This metric may
mation sequence

be arbitrarily multiplied by any constant independent of the infor-
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Figure 4.9: Average value of ratio r/z/cr^ versus number of iterations, for various
values of SNR and a serially concatenated code. The component decoders use the
FB algorithm. The extrinsic information generated by each decoder is modeled
as a Gaussian-distributed random variable (first method). Reproduced from [147],
©2001 IEEE, by permission of the IEEE.

Extrinsic Information as Gaussian-Distributed Input

Since Rk — (rk, zk) and due to the assumed independence of rk from
write:

The pdfs in (4.67) may be expressed as

In this case, the information symbols are assumed iid, i.e., P{ak = +1}
-1} = 1/2. Therefore,

one can

P{ak =
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Substituting (4.68), (4.69), and (4.70) into (4.67) and discarding irrelevant terms, we
obtain the equivalent metric

which may be recursively computed using the following branch metric:

SOVA does not produce soft outputs by considering all paths in the trellis diagram
as in the case of the FB algorithm, but only two paths — the maximum likelihood path
and its strongest competitor. Considering a binary RSC code such that paths terminat-
ing in a specific state [ik are relative to different information symbols,11 i.e., ak = +1
and a,k = — 1. We denote the corresponding code symbols by c^1 and c^1 and the
corresponding cumulative metrics by A^"1 and A^1, respectively. Assuming that the
winning path includes state p,k at time k, an initial reliability value for symbol ak is
obtained by considering the absolute value of the difference between the cumulative
metrics of the two paths terminating in state //*..

Let us consider the case A^1 > A^1. An initial reliability value is [33, 139, 140]

where

Similarly, in the case A^1 > A^1, one can write A^1 - A^1 = — ̂ jj^—E. In general,
the initial reliability value may be expressed as

This value is then updated at successive time instants (k + 1, k + 2 , . . . ) , according to
a suitable rule [99,139,140]. Denoting by vk the final reliability value derived from
(4.75), a reasonable definition of the extrinsic information component wk of the LLR
relative to symbol ak is

"This is not the case if a nonrecursive code is considered, since all paths entering into a state are
associated with the same information symbol.
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Extrinsic Information Used to Update the a Priori Probabilities

In this case, Rk = rk and the decoder assumes that P{ak = +1} and P{ak = — 1}
can be obtained from the expression in (4.61). Since

andp(r a) is given by (4.68), substituting (4.68) and (4.77) into (4.66) and discarding
terms independent of the information sequence, we obtain

Adding the constant Y^k=o [^f +ln( 1+eZfc)], independent of a, we have the equivalent
metric

and the corresponding branch metric

In this case, the extrinsic information at the decoder output can be written as

Discussion and Heuristic Method

As in the case of the FB algorithm, the two methods differ for the constant which
multiplies the received extrinsic information zk, both in the expression of the branch
metrics (4.72) and (4.80) (T/Z/O^, which appears in the first method, is substituted by
1/2 in the second one), and in the definition of the soft output Wk in (4.76) and (4.81)
(in this case, the constant is 2rjz/cr% in the first method and 1 in the second one).12

12In [142], the reliability value zk at the input of each component decoder is normalized by multi-
plying it by the factor 2rjz/<7^, and is used to update the a priori probabilities. Although [142] claims
to use the second method, because of this normalization the method actually used is the fi rst one.



Extrinsic Information in Iterative Decoding: a Unifi ed View 183

Figure 4.10: BER of the proposed detection schemes for a turbo code and SOVA.
The extrinsic information generated by each decoder is either modeled as a Gaussian-
distributed random variable (first method) or used to update the a priori probabilities
(second method) or heuristically weighted (third method). The considered numbers
of iterations are 1, 3 and 18. Reproduced from [147], ©2001 IEEE, by permission
of the IEEE.

Even in this case, an heuristic method may be implemented by introducing a
weighting parameter 9 to be optimized by trial and error.

Numerical Results

Similar simulations as for the FB algorithm, but considering SOVA as the component
decoding algorithm, are considered. The performance of the three proposed methods
for decoding the considered PCCC is shown in Figure 4.10. As expected, for any of
the three methods, the performance degrades with respect to that of the corresponding
scheme which uses the FB algorithm, due to the suboptimality of SOVA (compare
the results in Figure 4.10 with those in Figure 4.6). Using SOVA, we may note that,
unlike the FB algorithm, the best method is the heuristic method, with a value 0 ~ 0.4
(optimal for any number of iterations). Moreover, in this case the second method is
even worse than the first one. As observed in [142,144], SOVA overestimates the
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Figure 4.11: Average value of the ratio rjz/cr^ versus the number of iterations, for var-
ious values of SNR by considering a turbo code. The component decoders use SOVA.
The extrinsic information generated by each decoder is considered as a Gaussian-
distributed random variable (first method).

reliability values—the obtained results are consistent with these observations. In
fact, the coefficient 0 multiplies the extrinsic information Zk generated by the other
decoder; hence, a reduced value of 9 "compresses" the sequence {z^}, correcting
the overestimation. Figure 4.11 shows the behavior of the average value of the ratio
TJZ/(T^ in this case. As one can see, this ratio does not tend to the optimal value
6 — 0.4 when the number of iterations increases and the SNR is sufficiently high. A
simple conclusion is that in this case the first method is not asymptotically optimal.

Similarly to the case of turbo codes, when using SOVA to iteratively decode the
considered serially concatenated code, the best method is the third one, and the opti-
mal value of 9 is approximately 0.3. Figure 4.12 shows the performance of the first
and third method. This is consistent with the analysis of the limit of the ratio rjz/(7^
shown in Figure 4.13. We can conclude that the first method is asymptotically opti-
mal in this case. However, in Figure 4.13 there is no evidence of the convergence,
in terms of BER, of the first and third methods. According to the proposed analysis
there should be convergence, which could actually occur at a lower BER.

We now comment further on the numerical results obtained with SOVA. In fact,
both in the PCCC case and in the SCCC case, the best performance was obtained
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Figure 4.12: BER of a serially concatenated code and SOVA. The considered num-
bers of iterations are 1, 3, 6 and 18. Reproduced from [147], ©2001 IEEE, by
permission of the IEEE.

considering the third approach with an heuristic parameter 0 < 0.5 (0.4 in the PCCC
case and 0.3 in the SCCC case). This is because of the overestimation in the gener-
ated reliability values, and this phenomenon is most likely due to the suboptimality of
the decoding algorithm. A general intuitive conclusion is that any suboptimal soft-
output algorithm might suffer from the same overestimation problem. A practical
example is given by reduced-state FB algorithms developed in Section 4.8. In that
case, simply scaling the generated soft output helps significantly the iterative decod-
ing convergence. Scaling the soft outputs in the logarithmic domain consists indeed
of smoothing strong variations, and this is intuitively useful for the stability of the
iterative decoding process.

4.6 Finite Memory Symbol Detection

We now show how to apply the general framework proposed in Chapter 2 to derive
FB algorithms for channels with memory. The considered communication system
model is shown in Figure 4.14. We recall briefly a few basic assumptions introduced
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Figure 4.13: Average value of the ratio rjz/v* versus the number of iterations, for
various values of SNR and a serially concatenated code. The component decoders
use SOVA. The extrinsic information generated by each decoder is considered as a
Gaussian-distributed random variable (first method).

Figure 4.14: Communication system.

in Chapter 2. The encoder/modulator block can be described as a time-invariant FSM
with state Hk, which evolves according to a suitable "next-state" function ns(-, •) such
that:

The received signal, written as r(t) = x(t, a) + n(t), is converted, through a suit-
able discretization process (see Appendix A), into a time-discrete sequence r. The
following two statistical conditions are the keys to deriving detection algorithms for
channels with memory:
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causality condition:

• finite memory condition (FMC):

where C is a suitable finite memory parameter and p,k-c represents the state,
at epoch k — C, of the encoder/modulator.

Based on causality and FMC, the following probabilistic derivation of an FB
algorithm is obtained:

where Bayes', marginalization and chain rules have been used. Based on (2.24) and
causality, it follows that

Based on causality, one can also write:

Recalling the independence between information symbols, (4.85) can be rewritten as
follows:
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Considering the augmented state13 Sk = (ak
k^c,(jik-c} and the transition Tk

(5fc, flfe), and defining

the APP in (4.85) can be finally formulated as follows:

Based on the causality condition and FMC, the quantities ak(Sk) and /3k+i(Sk+i)
can be computed by means of forward and backward recursions, respectively. We
first consider the forward recursion. Applying Bayes' and marginalization rules, one
can write:

Indicating concisely by T^-i : Sk the index of the summation in (4.93) (i.e., all tran-
sitions Tfc_! compatible with state Sk) and applying Bayes' and chain factorization
rules, (4.93) can be expressed as follows:

Owing to causality and independence of the information symbols, respectively, the
following identities hold:

13 As explained in Chapter 2, one can immediately introduce an augmented trellis diagram, with
state Sk, characterized by a 'next-state"function NS(5 /c, «fc) = (ns(^/c_ci, flfc-c), a^_
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and, finally, (4.94) can be expressed as follows:

The backward recursion can be similarly obtained. In fact, by applying Bayes' and
marginalization rules and recalling the independence between information symbols,
one obtains:

Using (4.86), it follows that the backward recursion can be finally rewritten as

Proper boundary conditions for the initial forward metrics (ao(>So)} and backward
metrics {/?#•_i (SK-I)} must be specified. Assuming that the starting state 5o is
known and that the final state is unknown (i.e., trellis termination is not considered),
the correct boundary conditions can be written as follows:

where Sc is the number of states of the encoder/modulator FSM and M is the cardi-
nality of the information symbols.

The obtained FB algorithm can also be formulated in the logarithmic domain. It
can also be approximated applying the max-log approximation introduced in Sec-
tion 4.3. More precisely, defining the following metrics (as direct extensions of those
introduced in the case of detection over channels without memory):
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an approximation of the APP, i.e., a reliability value close to the APP, can be written
as follows:

The quantities A^(Sk) and Af (5*) (corresponding to forward and backward path
metrics), can be recursively computed as follows:

Obviously, the two recursions given by (4.105) and (4.106) can be implemented by
two VAs. It can therefore immediately be concluded that any detection strategy de-
signed for sequence detection can be systematically extended to the case of symbol
detection.

In the case of a channel characterized by parameters affected by stochastic uncer-
tainty, the observations {rk} are dependent, so that the channel memory may not be
finite. A very general parametric model for the observation rk is the following:

where L is an integer, 0$ is a sequence of stochastic parameters independent of a, and
nk is an additive noise sample.14 Under this channel model, the following conditional
Markov property (CMP) is sufficient to guarantee an FMC:

where N is the order of Markovianity. In fact, (4.108) implies the following:

where the finite memory parameter is C — N + L. It is immediately recognized that
(4.109) represents a special case of (2.17). As a consequence, all the derivations in
the previous section hold.

A statistical description of the stochastic parameter allows one to compute
o n

14The additive noise is not required to be Gaussian for the validity of the following result.
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Unfortunately, the above exact result is limited by the fact that in realistic sce-
narios the CMP (4.108) is seldom met exactly [47,95]. However, this result suggests
a reasonable approach to devising approximate detection algorithms whenever the
conditional observations are asymptotically independent for increasing index differ-
ence.

4.7 An Alternative Approach to Finite Memory
Symbol Detection

In this section, we present an alternative formulation to derive an FB algorithm for
channels with memory.15 For the sake of simplicity, we refer directly to the case
where a CMP holds and L = 0—a more general formulation, where an FMC (not
involving any truncation of the number of conditioning observables) applies, can be
straightforwardly obtained. In this case, we slightly modify the CMP, referring to
it as an extended CMP (ECMP). More precisely, we refer to the present property as
extended in the sense that we consider the dependence of an observation from N + 1
previous observations, and not from TV as before. In other words, we assume that

We now focus on the computation of the APP P{ak\r}, which can be given the
following expression (alternative to (4.85)):

where Sk and Tk are the "usual" expanded state and transition, and independence
between information symbols has been used considering P{Tk ak} = P{Sk}> We

15This is a possible example, nonexhaustive, which shows that in the case of FB algorithms, it is
possible to consider detection strategies which are not obtained directly from the VA. However, it is
likely that any solution 'borrowed" from a sequence detection algorithm, can be extended to modifi ed
FB algorithms as well [149].
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define

and, applying the ECMP, we can simplify the pdf p\ as follows:

The introduced quantities ak(Tk) and J3k(Tk) can be recursively computed by means
of forward and backward recursions, respectively. We point out that, unlike in the
derivation proposed in Section 4.6, in this case the quantities ak(Tk) and /3k(Tk),
computed during the two recursions, depend on a transition Tk, rather than on a state
Sk.

We first consider the forward recursion. Given a state Sk, there are M possible
predecessor states {Sk-i}. For ease of derivation, we assume that each predecessor
state is in a one-to-one correspondence to an information symbol16 ak-N-i- It follows
thatT fe_i = (Sk-i,Sk) = (ak_N,Sk). Hence, given Tk = (5fe,Sfc+i) and afc_jv-i,
the transition Tfc_i can be uniquely identified. Therefore,

where the fact that P{ak^N-i rk_N, Tk} — P{ak-N-±} has been used. Considering
the CMP and observing that (ak-N-i,Tk) — (Tfc_i,Tfc), one can write:

Defining

16Note that this is true for particular recursive codes. However, the fi nal obtained formulation
applies also to nonrecursive codes.
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the forward recursion can be expressed as follows:

The backward recursion can be derived in a similar way. In fact:

Observing that (7^, ak+i) = (Tkj Tk+i) and applying the ECMP, it follows that

By defining

the backward recursion can finally be written as

At this point, indicating the APP in (4. 112) with the general notation17 S[aJ, one can
finally write:

Proper boundary conditions must be introduced in terms of initial and final states
of the encoder. A reasonable approximation for the computation of -PjSfc} in ak(Tk)
is that of assuming18 P{Sk} ^ H^Li p{ak-j}- While the final FB algorithm ob-
tained in Section 4.6 is a natural extension of the coherent FB algorithm [54] (with a

17If the ECMP applies only approximately, then S[afc] is only an approximation of the APP.
18This implicitly assumes that the recursive states //& are all equiprobable.
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properly extended metric 7^(7^)), the FB algorithm summarized in (4.119), (4.123)
and (4.124) represents an alternative nonimmediate generalization. We refer to this
class of algorithms as FB-type algorithms. We will consider again these algorithms
in Section 4.8, where suitable state reduction techniques will be introduced.

We now comment on the relationship between the FB algorithm derived in this
section and the FB algorithm proposed in Section 4.6. For a given value of the pa-
rameter N, it is intuitive that the algorithm derived in this section, due to the ECMP,
should perform better than the one proposed in Section 4.6. In fact, one can equiva-
lently describe the two algorithms by saying that the former assumes a "correlation
span" of length (7V+2) among the observations, while the latter reduces it to (JV+1).
However, the simpler formulation in Section 4.6 may be more appealing for the fol-
lowing reasons.

• From a complexity viewpoint, given a specific number of trellis states, the FB-
type algorithms proposed in this section present an increased complexity, with
respect to the FB algorithms of Section 4.6. We now intuitively quantify the
increase of complexity. We assume that a unit of complexity is associated with
a transition Tk. Indicating by £ = SCMN the number of states {Sk} at the de-
coder (Sc is the number of states of the encoder/modulator FSM), we observe
that, considering an FB algorithm, each step in the two recursions has com-
plexity £M. The same complexity is associated with the completion at each
epoch. Then, the complexity of an FB algorithm is approximately 3£MK.
Considering FB-type algorithms, each step in the two recursions involves two
consecutive transitions, with complexity (,M2. Since the combination has the
same complexity as for an FB algorithm, the complexity of FB-type algorithms
is ^MK(2M + 1). Finally, the increase in complexity of FB-type algorithms
with respect to FB algorithms is approximately (2M + l)/3. If the cardinality
of the information symbols is large, as in the case of spectrally efficient trellis
coded modulation (TCM) [9], the increase in complexity may become signifi-
cant, and could be justified only for a proportional performance improvement.
As we will show later on in this section, in the case of a noncoherent channel
the performance improvement, if any, is not remarkable.

• The complexity can be further reduced by applying state reduction techniques.
In particular, the state reduction technique which will be introduced in Sec-
tion 4.8, with possible generalizations, can be applied. As will become clearer
below, one can refer to the FB algorithms of Section 4.6 as feed-forward. The
feed-forward structure allows simple implementation of state reduction tech-
niques, whereas for FB-type algorithms the application of state reduction tech-
niques is more complicated.
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As a specific example of comparison between the proposed FB algorithmic classes,
we focus on transmission over a noncoherent channel. We assume that the channel
introduces an unknown phase rotation, modeled as a time-invariant random variable
with uniform distribution in [0, 2?r). We consider linear modulation at the transmit-
ter side. In this case, the samples at the output of a matched filter are a sufficient
statistic [47] and have the following expression:

where ck represents the modulated, and possibly coded, symbol and nk is a complex
AWGN sample with variance per component equal to cr2. In this case, the order of
Markovianity TV is related to the phase memory parameter introduced in [47].

We first consider the feed-forward FB algorithm proposed in Section 4.6. Based
on the considered channel model, one can write:

The final expression (4.126) is obtained by considering the approximation log IQ(X) ~
x as in [47]. In the following, we will refer to this algorithm as the NCSOa algorithm.

When considering the FB-type algorithm proposed in Section 4.7, the pdfs t/jk (Tk_i,
and 0jt(Tfe_i, Tk) can be computed by averaging over the stochastic parameters as for
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7fc(7fc), and have the following expressions:

As one can see from (4.127) and (4.128), the FB-type algorithm is such that:

• in the forward recursion, the phase at epoch (k — N — 1) is implicitly estimated
based on future observations (the observations r%_Ny,

• in the backward recursion, the phase at epoch k is estimated based on the past
(the observations rj^l]v_1).

This means that in the forward recursion there is a sort of backward phase estimation,
and vice versa in the backward recursion. The completion is such that the two quan-
tities are "linked" together by the pdf ^k(Tk], which has the following expression

We will refer to this algorithm as the NCSOb algorithm.
The structure of the estimation process embedded inside the NCSOa algorithm

is shown in Figure 4.15. Figure 4.16 shows the estimation strategy embedded in the
NCSOb algorithm. As one can catch from these figures, both algorithms consider
an implicit phase estimation19 (in different ways) and their performance is basically

19For more details, see Section 4.9.3.
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comparable, as will become apparent in the following. However, there is a substan-
tial difference. In the NCSOa algorithm, the feed-forward phase estimate at epoch
k is the same in the recursions and in the completion. On the other hand, in the
NCSOb algorithm the phase estimate at epoch k is different in each recursion and
in the completion. In particular, we observe that the NCSOb algorithm hints at an-
other perspective in the design of soft-output algorithms with implicit estimation.
More precisely, it suggests that during the two recursions suitable estimation strate-
gies could be used, while in the completion a simpler combination of the quantities
recursively computed in the two recursions could be considered (see [149] for further
extensions in this direction).

We shortly compare the performance obtained by considering the NCSOa al-
gorithm and the NCSOb algorithm as component detection algorithms for iterative
detection of concatenated codes. As examples, we consider two concatenated codes,
namely a PCCC and an SCCC. The performance of the proposed decoding algorithms
is assessed by means of computer simulations in terms of BER versus the bit SNR
E^/NQ, Ei) being the received energy per information bit and NO the one-sided noise
power spectral density. In the simulation programs we considered, for numerical and
practical reasons, the max-log versions of the NCSOa and NCSOb algorithms inside
each component adaptive decoder at the receiver side.

We first consider a PCCC of rate-1/2 with 16-state binary RSC codes as compo-
nent codes with generators G\ = (37)g and G<2 — (21)s- The inner pseudorandom
bit interleaver is 32 x 32 [33]. The output modulation is BPSK. The RSC code is
noncoherently noncatastrophic [150]. In Figure 4.17, the performance when con-
sidering both algorithms is shown in the case with N = 2. For comparison, the
performance in the coherent case, i.e., assuming perfect channel state information
(CSI) at the receiver side, is also shown. In all cases, 1, 5, and 10 decoding iterations
are considered. As one can see, the performance when using the NCSOb algorithm
is slightly better (about 0.3 dB) for any number of decoding iterations, but this brings
an increase in complexity: if M = 2 is the cardinality of the information sequence
at the input of each component encoder, the complexity will increase on the order of
(2M + l)/3 = (2 • 2 + l)/3 = 5/3 times. The already small performance gap can be
completely eliminated, without additional complexity increase in the NCSOa algo-
rithm, by using state reduction techniques for FB algorithms which will be described
in more detail in Section 4.8. In particular, we will make use of this technique in the
following numerical example relative to an SCCC.

The considered SCCC consists of an outer 4-state, rate-1/2 convolutional code
connected through a 32 x 32 pseudorandom interleaver to an inner 4-state, rate-2/3
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Figure 4.15: Implicit phase estimation in the forward recursion, backward recursion
and completion for the NCSOa algorithm.

convolutional code. The corresponding generator matrices are given by

where Go(D) is the generator matrix of the outer code and G^(D) is the generator
matrix of the inner code. The output symbols are mapped to an 8-ary phase shift
keying (8-PSK) constellation with natural mapping, resulting in an overall code of
spectral efficiency of 1 b/s/Hz. The inner adaptive decoder uses either the NCSOa
algorithm or the NCSOb algorithm, while the outer decoder uses the coherent FB
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Figure 4.16: Implicit phase estimation in the forward recursion, backward recursion
and completion for the NCSOb algorithm.

algorithm. The performance when considering both NCSOa and NCSOb algorithms
is shown in Figure 4.18 in various cases. In particular, each setting is identified by
a couple of parameters (TV, Q). The parameter TV has the usual meaning, but in this
case its value is decoupled from the complexity of the considered algorithm. In fact,
the reduced-state parameter Q is related to the actual memory of the decoder, i.e.,
the number of states in the corresponding trellis. In Figure 4.18, the performance is
shown for (TV, Q) = (5, 2) and (7,2), considering both algorithms. For comparison,
the performance of a coherent receiver is also shown. In all cases, 1 and 5 decoding
iterations are considered. As one can see, the performance of the NCSOa algorithm
with (TV, Q) = (7,2) is the same as that of the NCSOb algorithm with (TV, Q) =
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Figure 4.17: Noncoherent iterative decoding of a PCCC with BPSK. For comparison
the performance of the corresponding coherent receiver is also shown. In all cases 1,
5, and 10 decoding iterations are considered.

(5,2). As the inner code rate is equal to 2/3, the information symbols at its input
are quaternary. The complexity of the NCSOb algorithm is then (2M + l)/3 =
(2 • 4 + l)/3 = 3 times that of the NCSOa algorithm. For a comparable complexity
level, the NCSOa algorithm, besides being simpler, shows a better performance than
the NCSOb algorithm.

4.8 State Reduction Techniques for Forward Backward
Algorithms

In this section, we propose a general approach to obtaining reduced-complexity FB
algorithms by means of state reduction techniques.

In particular, in Section 4.8.1 a very intuitive trellis-based state reduction tech-
nique is presented, suggested by the systematic relationship between the FB algo-
rithm and VA—in fact, as shown in Section 4.6, in both cases the same metric (con-
sidering the FB algorithm in the logarithmic domain) is used. Considering a reduced-
state trellis, the key idea is simple. During the forward recursion a survivor, based
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Figure 4.18: Noncoherent iterative decoding of an SCCC with 8-PSK. For compar-
ison the performance of the corresponding coherent receiver is also shown. In all
cases 1 and 5 decoding iterations are considered.

on decision feedback, is associated with each state at each epoch. The ensemble of
the survivors is then used in the backward recursion. We will refer to the obtained
reduced-state (RS) algorithms as forward-only (Fwd-only) RS-FB algorithms.

In Section 4.8.5, the proposed state reduction technique is generalized, with a
final formulation which includes, as special cases, Fwd-only RS-FB algorithms and
bi-directional (BiD) RS-FB algorithms, i.e., RS-FB algorithms where the survivors
are constructed in both recursions, as originally proposed in [151].

4.8.1 Forward-Only RS-FB Algorithms

For simplicity, we refer to a general FB algorithm for channels with memory as
proposed in Section 4.6, and relative to a communication system based on the serial
concatenation of an encoder/modulator and a channel with stochastic uncertainty.
The total memory of the system is limited on the basis of an FMC (or a suitable
CMP). In the following, we will assume that the portion of memory to be reduced
is relative to the channel. This assumption can be relaxed, and in Section 4.8.5 we
will consider the application of state reduction techniques to more general cases, for
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example to decode convolutional codes.
Defining p,k as the state of the encoder/modulator, at the receiver side we consider

an expanded state Sk = (tik-N, afcl]v)' wnere {ak} is a sequence of independent and
identically distributed M-ary information symbols at the input of the encoder and
N is the order of Markovianity. The corresponding transition is defined as Tk =
(Sfc, ak). We use the same notation introduced in Section 4.6. As an example, we
consider the case where the channel introduces an infinite memory and the CMP is
applied. In this case, the quantities used in the FB algorithms derived in Section 4.6
have the following expressions:

where rk is the channel observation at epoch k after suitable filtering and sampling.
As considered in Section 4.6, we assume for simplicity that there is one sample rk

per information symbol ak. We recall that the quantities ak(Sk) and (3k(Sk) can be
computed by means of forward and backward recursions, respectively, as in (4.97)
and (4.99). The generated soft output can be written as follows:

Given that the number of states {//&} of the encoder/modulator is Sc, the total number
of states of the receiver is £ = SCMN . We simply define a reduced state as

where Q will be referred to as the reduced-state parameter. One can immediately
recognize that the reduced state sk is obtained from Sk by substituting the order of
Markovianity TV with the reduced-state parameter Q. A transition in the reduced-
state trellis is defined as ek = (sk,ak,sk+i). This redundant definition simplifies
the derivation of the following state reduction techniques. The number of states in
the reduced-state trellis is C' = SCMQ. Given a transition efc, in order to compute
7fc(efc) it is necessary to somehow recover the information symbols a^T.^1- A simple
approach based on reduced-state sequence detection (RSSD) [34, 152], as shown in
Chapter 3, is that of associating a forward survivor with each reduced state sk.

20 We
20More complex techniques, such as those based on set partitioning introduced in Chapter 3 for

sequence detection, may also be employed [153,154]. For the sake of simplicity, we consider only
state reduction techniques based on memory truncation.
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define this survivor by the general notation af (sk), with the implicit assumption that
it includes any "segment" of information symbols aj^~^m , Vra > 0, embedded in
the survivor associated with state sk. A more refined formalism will be considered in
Section 4.8.3. The ensemble of the survivors for all states and all epochs is denoted
by df and we call it the (forward) survivor map.

Assuming a forward survivor map has been constructed, it is reasonable to com-
pute the soft output relative to a symbol ak as follows:

In particular, it is worth remarking that the quantities ak(sk) and (3k+i(sk+i) are
formally equivalent to the corresponding quantities in the full-state case, but, due to
state reduction, they are quantitatively different.

We now show how a forward survivor map af can be recursively constructed
during the forward recursion. We assume that the forward survivors are known up to
epoch k — 1 . A generic step at epoch k of the forward recursion can be written as
follows:

As the survivors are known up to epoch k — 1, a reasonable way to compute the pdf
p(rk_i r^_1; e f c_i) is the following:

so that one can write:
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Hence, the forward recursion can be written as

The forward survivor associated with state sk is associated with the survivor df

of the state s™j^ such that the corresponding term in the sum (4.140) is the largest
one.

Once the forward survivor map has been constructed, it can be used in the back-
ward recursion, which can be written in the following way:

The computational complexity of the forward and backward recursions is related to
the number of branches in a section of the receiver trellis, which is proportional to
the number of states. Hence, the complexity of the proposed RS-FB algorithms is
approximately M^N~Q"> times lower than that of the full-state case.

A direct extension of the Fwd-only RS-FB algorithm proposed in this section
can be defined the as backward-only (Bwd-only) RS-FB algorithm. In this case, a
backward survivor map a° is constructed during the backward recursion, run first,
and then used in the forward recursion and in the completion. We remark that a lin-
ear time-invariant (LTI) maximum-phase system is a causal and stable system with
the maximum energy delay property among all systems with the same frequency
response magnitude [155]. As we will see in the case of iterative detection for
inter-symbol interference (ISI) channels, use of Bwd-only RS-FB algorithms can be
greatly beneficial for maximum-phase ISI channels.

The basic structural idea can be further generalized. One could construct two
distinct survivor maps during forward and backward recursions, and use an extended
metric in the completion. This has been partially proposed in [151], and will be
considered in Section 4.8.5.

4.8.2 Examples of Application of Fwd-Only RS-FB Algorithms

As examples of application of the Fwd-only state reduction technique for FB algo-
rithms introduced in Section 4.8.1, we consider the cases of coherent detection for
an ISI channel (i.e., assuming perfect knowledge of the ISI channel coefficients),
noncoherent detection (using the noncoherent FB algorithm, indicated as NCSOa,
introduced in Section 4.6) and linear predictive detection based on linear prediction
for a Rayleigh flat fading channel.
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ISI Channel

In the case of an ISI channel, we assume uncoded transmission, i.e., there is no
state fik inside the expanded state Sk (suitably defined as explained in the following).
The observation sample at the output of a whitened matched filter (WMF) can be
expressed as [100]

The noise samples {nk} are real independent Gaussian random variables, with zero
mean and variance cr2. The distortion on the elementary shaping pulse makes each
sample rk dependent on L information symbols, each weighted by a different coeffi-
cient f^ By defining an expanded state21 as Sk = aj:!^ (consequently, Tk = «-^_L), it
is easy to show that the FB algorithm can be directly applied [54]. Hence, the metric
7fc(Tfc) reduces to

where the symbol ~ denotes proportionality.
We remark that an LTI system is minimum-phase if it is causal and stable and has

a causal and stable inverse [155]. A minimum-phase system has the minimum energy
delay property among all systems with the same frequency response magnitude [155].
If the impulse response of the equivalent time-discrete channel {fi}^=0 is minimum-
phase, effective state reduction is obtained by defining a reduced state sk = ak-Q'
with Q < L, and, consequently, a transition ek = (sfc ,Sfc+i) = a>k-Q [100» 152-
154]. Hence, searching in the survivor path associated with state sk, it is possible to
recover22 d f ~ l a n d then write

2'This would correspond to setting the fi nite memory parameter C to the length L of the ISI channel,
and suppressing the dependence of an observation from previous observations.

22For the sake of notational simplicity, in the following we do not explicitly indicate the depen-
dence of the information symbols associated with the survivor path from the state Sk- The correct
interpretation should be clear from the context.
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Figure 4.19: Forward recursion for the computation of ak(sk) for a Fwd-only RS-
FB algorithm in the case of coherent detection for an ISI channel. Reproduced
from [156], ©2001 IEEE, by permission of the IEEE.

In Figure 4.19, it is shown how the forward recursion proceeds in the reduced-state
trellis in the case of coherent detection for an ISI channel. In this case, we associate
with each state Sk a state Sk-i, chosen among the beginning states of the M branches
ending in s^, according to the corresponding path metrics — the chosen state s/~_i
is such that the corresponding path metric is the largest. The backward recursion
proceeds similarly, by using the survivors selected during the forward recursion.

If the overall impulse response {fi}^0 is maximum-phase, e.g., if a causal whiten-
ing filter is selected [100], efficient definitions of trellis state and transition are s'k —
afc_L+Q_i and e/^ = a

k
k~L+Q^ respectiveiy A Bwd-only RS-FB algorithm can

be designed, which starts with the backward recursion, constructs a backward sur-
vivor map compatible with the new reduced state s'k, and runs the forward recursion.
Related reverse-time processing structures, suited to impulse responses with energy
concentrated towards the end, are considered in [157, 158]. In this "specular" version
of the previously introduced algorithm, during the backward recursion the informa-
tion symbol ak-L is relative to the transition from state s'k+1 to state s'k and symbol
dk-L+Q is discarded. The formulation is a straightforward extension of that pre-
viously introduced, the only modification being a termination of the reduced-state
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Figure 4.20: Backward recursion for the computation of I3k(s'k} for a Bwd-only RS-
FB algorithm in the case of coherent detection for an IS I channel. The survivor
map is constructed during this recursion. Reproduced from [156], ©2001 IEEE, by
permission of the IEEE.

trellis necessary to better initialize the backward recursion. Figure 4.20 schemati-
cally shows how the backward recursion proceeds in a Bwd-only RS-FB algorithm.

This example leads to a more general conclusion on the possible applications of
the proposed state reduction techniques. Survivors can be constructed during both
recursions, depending on the overall channel impulse response and, consequently,
on the structure of the observations. As an example, a proper use of survivor maps
constructed during both recursions may prove useful if the overall impulse response
is "mixed-phase."23 This will be considered in detail in Section 4.8.5.

As an example of coherent iterative detection for an ISI channel we consider the
scheme of iterative equalization proposed in [73]. The performance is assessed by
means of computer simulations in terms of BER versus the SNR Eb/N0, E^ being the
received signal energy per information bit and 7V0 being the one-sided noise power

23In this context, the term 'mixed-phase" channel will be loosely used for channels in which most
of the energy is not concentrated around the channel coeffi cients that are associated with the most
recent or the earliest input symbols.
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spectral density. In any component decoder we consider a simplified logarithmic
version of the corresponding FB or RS-FB algorithm [156]. More precisely, we
consider a binary (M = 2) transmission system characterized by a rate-1/2 16-state
RSC encoder with generators GI = (23)8, G2 = (35)8 (octal notation), followed by
a 64 x 64 pseudorandom interleaver [33]. The bits at the output of the interleaver
are sent through the channel with BPSK. The minimum-phase discrete-time channel
impulse response is characterized by the following coefficients [73]:

The receiver is based on a serial concatenation of an inner detector, which uses the
RS-FB algorithm, and an outer decoder which is a standard FB module [83]. The ex-
trinsic information is used according to the heuristic method proposed in Section 4.5.
By trial and error, we found that a good performance is obtained when the extrinsic
information generated by the inner detector is weighted, i.e., multiplied, in the loga-
rithmic domain, by a constant24 equal to 0.6 and the extrinsic information generated
by the outer decoder is weighted by a constant equal to 1 (i.e. it is not modified).
The state reduction technique is applied to the inner detector. In Figure 4.21, the
performance of the full-state receiver (inner detector with £ = 16 states) is compared
with the performance of the receiver with reduced complexity (inner detector with
£' = 8,4 or 2 states). In all cases, we consider 1 and 6 decoding iterations. At 6 de-
coding iterations, the performance loss for a detector with £' = 4 states with respect
to that of a receiver without state reduction is only 0.75 dB at a BER of 10~4, and it
reduces to 0.25 dB for a reduced-state detector with £' = 8 states. For comparison,
the performance in the absence of ISI, i.e., for coded transmissions over an AWGN
channel, is also shown. In this case, the receiver reduces to the outer decoder of the
RSC code considered above.

Noncoherent Channel

We consider the transmission scenario described at the end of Section 4.7, and we
assume linear modulation. The channel introduces an unknown phase rotation, which
is modeled as a time-invariant random variable with uniform distribution in [0, 2?r).
A sample at the output of a matched filter has the following expression:

24Note that in Section 4.5, since we were referring to LLRs, the multiplicative constant used in
the heuristic method had to be lower than 0.5. However, without considering the LLR and referring
directly to the generated soft-output values, the multiplicative constant is between 0 and 1.
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Figure 4.21: Application of the proposed technique to iterative decoding/detection
for an ISI channel. Receivers with various levels of complexity are considered and
compared with the full-state receiver (£ = 16). The considered numbers of iterations
are 1 and 6 in all cases. The performance in the case of coded transmission over an
AWGN channel, without ISI, is also shown (solid lines with circles). Reproduced
from [156], ©2001 IEEE, by permission of the IEEE.

where Ck represents the modulated, and possibly coded, symbol and n^ is a complex
AWGN sample with variance per component equal to cr2. Considering the NCSOa
algorithm derived and used in Section 4.7, the exponential metric 7^ (TJ-) can be ex-
pressed as follows:

Introducing a reduced-state parameter Q, which replaces JV, a reduced-state trellis
is obtained and a forward survivor map df can be constructed during the forward
recursion. Based on this map, a full-state metric can be associated with each reduced
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transition ek as follows

where the notation 4_» is relative to a coded and modulated symbol obtained by using
the constructed forward survivors. We do not show any numerical result relative to
this particular application, since in Section 4.9.1 detailed examples of noncoherent
iterative detection schemes will be proposed.

Fading Channel

We consider transmission of differentially encoded M-ary phase shift keying (M-
PSK) over a Rayleigh flat fading channel. We refer to the transmission system con-
sidered in [159] and denote by foT the normalized Doppler rate of the channel. We
assume that each information symbol ak corresponds to a group of Iog2 M = ra
bits, i.e., ak = (aj^, . . . , a(™}). The bits (a(^\ . . . , a(™}) are mapped to an M-PSK
symbol ak through Gray mapping. The differentially encoded M-ary symbols ck are
defined by the rule ck = akCk-it with c0 = 1 (c0 acts as a reference symbol). The
corresponding received signal at the matched filter output can be written as

where the sequence of channel coefficients {fk} is a complex random sequence
whose real and imaginary components are independent, Gaussian with zero mean,
and {nk} are samples of a zero-mean complex-valued circularly symmetric white
Gaussian noise process. The autocorrelation of the fading process is assumed to fol-
low the classical isotropic scattering model [20].

Assuming that the information bits are independent within each symbol, we can
consider P{ak} = P{ak } • • • P{ak }. Considering a bit-wise interleaver as in [159],
soft outputs on bits {a .̂ } have to be calculated. To obtain these soft outputs, equation
(4.92) (or (4.134)) can be modified as follows:
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where the notation Tk : a(Tk)^ indicates all the transitions {T*} compatible with the
z'-th bit component of the symbol ak associated with Tk. Since the specific realizations
of the channel coefficients {fk} are unknown, linear prediction [101,123,125,126]
can be used to derive estimates of these coefficients. Denoting by TV the prediction
order and setting the finite memory parameter as C = N, the metric ~/k(Tk) can be
written as follows [159]:

where fk is the fading gain prediction, {pn} are the prediction coefficients and cr2
re

is the variance of the prediction error, which can be computed as shown in [160]. We
may observe that CfccJ_- = n}=o a^-j- By defining Sk — oj!l]v+1, the corresponding
trellis diagram has MN~l states.25 Assuming that the autocorrelation sequence of the
channel fading process is known, the optimal prediction coefficients pnj I < n < TV,

25Note that this defi nition of state depending on only (N — I) symbols, instead of C
to the use of differential encoding.

N, is due
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are obtained by solving Wiener Hopf equations [159]. Hence

Noting that \ak
 2 and r/- 2 do not depend on Tk and defining

one finally obtains

The first term inside the exponential in (4.154) was dropped in [159]. However, it
depends on Sk and should not be neglected, unless one assumes perfect CSI.

To reduce the number of trellis states, we proceed as in the case of an ISI channel.
We may define a reduced state sk = a{!lg+1, with Q < N, obtaining (the formulation
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is similar to that used in Section 4.8.2)

where the notation s~(ek) indicates the beginning state sk of transition ek. Similarly,
hereafter the notation s+(ek) will refer to the ending state sk+i of transition ek. An
identical notation will be used in the full-state case, too.

As an example of application, we consider transmission of differentially en-
coded quaternary PSK (DQPSK) signals over a flat fading channel, as in [159].
The outer code is a 64-state nonrecursive convolutional (NRC) code with genera-
tors GI = (133)8 and G2 = (171)8. This code is concatenated, through a 64 x 64
nonuniform bit interleaver, with an inner differential encoder. In fact, bit interleaving
is an appropriate means to combat the effects of fading [65, 161]. The normalized
fading rate is foT — 0.01. The differential inner detector uses linear prediction and
state reduction. In Figure 4.22, the performance of the full-state receiver, with pre-
diction orders TV = Q = 3 and 4, respectively, is compared with the performance
of a receiver with various levels of complexity reduction, specified by the couple of
parameters (TV, Q). In all cases, 1 and 6 decoding iterations are considered. At 6
decoding iterations, a detector with TV = 3 and Q = 2 exhibits a performance loss of
only 0.2 dB at a BER of 10~4, with respect to the full-state detector (TV = Q = 3).
For (TV, Q) — (5,3), the performance gain with respect to the full-state receiver with
TV = 3 is about 0.6 dB at a BER of 10~4. For comparison, the performance curve in
the case of perfect knowledge of the fading coefficients (coherent detection) is also
shown.

4.8.3 Forward-Only RS FB-type Algorithms

We now consider the FB-type algorithms proposed in Section 4.7. We consider the
same communication scenario (an encoder/modulator followed by a channel with
memory) as in Section 4.6, and we adopt the same formalism. We recall the defini-
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Figure 4.22: Application of the proposed Fwd-only state reduction technique to it-
erative decoding/detection, through linear prediction, for flat fading channels with
fDT — 0.01. Receivers with various levels of complexity (in terms of prediction
order N and reduced-state parameter Q} are shown. The considered numbers of
iterations are 1 and 6 in all cases. The performance in the case of decoding with
perfect knowledge of the fading coefficients is also shown (solid lines). Reproduced
from [156], ©2001 IEEE, by permission of the IEEE.

tions of the following quantities:

where TV is the order of Markovianity. According to the structure of the introduced
FB-type algorithms, the soft-output reliability value on an information symbol ak can
be expressed as follows:

where the summation is extended over all transitions of epoch k compatible with the
information symbol a&, and P{Sk} represents the a priori probability of state Sk,
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respectively. As seen in Section 4.7, ak(Tk) and /3k(Tk) can be computed by means
of forward and backward recursions, as in (4.119) and (4.123), respectively.

We proceed exactly as in the case of Fwd-only RS-FB algorithms. We consider a
trellis diagram with a reduced number of states f ' < £ and denote its generic state by
sk = (fJ-k-Qj ak-Q+i), with Q < N. The question of how to define a survivor in the
case of RS FB-type algorithms arises.

A full-state FB-type algorithm runs first a forward recursion to compute ak(Tk)
for each transition Tk and epochs k = 0, 1, . . . , AT — 1. Due to the structure of FB-
type algorithms, ak is associated with a transition Tk, instead of a single state Sk as in
the case of an FB algorithm. Hence, a survivor associated with a single transition has
to be defined. By considering the algorithm in the logarithmic domain, the forward
recursion of ak (equation (4. 1 19)) can be expressed as

where S+(Tk_i) indicates the final state of transition Tk-i and S~(Tk) indicates the
initial state of transition Tk. We can approximate this recursion by using the max-log
approximation [137], obtaining

In equation (4.161), it is intuitive to interpret the term to be maximized as a "met-
ric" associated with a path ending with transition Tk, as in a classical VA. However,
this VA is an "extended" VA, where a single step involves two consecutive trellis
transitions.

Considering the reduced-state trellis and assuming that the forward survivor (FS)
of each transition ek-i is known, we now show how the survivors can be extended
to epoch k by using the forward recursion. We define26 by FSj£_-(efc_i) the se-
quence of i transitions reaching epoch k — j along the survivor of transition e^-i,
i.e., F S . ( e f c _ i ) - e£:_m = aJ_~Q

+l. Any transition efc_,, for / G {j, . . . , j +

i— 1}, inFSJj._ -(ejfe-i) and any information symbol af
k_j_h, forh G {Q, • • • , Q+i— 1},

depend on the transition e f c_i. Therefore, the couple (FS|j._2 (e^-i), e/t-i) uniquely
identifies the sequence of information symbols (a^]^_l^ak

ki
l_l) where afc'_]y_^2

26In Section 4.8.1 we considered the generic notation af to indicate the forward decision feedback.
In the current section we use an explicit notation to indicate a segment of an FS. We also suppress
the explicit dependence of the recovered information symbols on the transition ek-i to simplify the
notation. Any ambiguity should be clear from the context.
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represent the information symbols in the path history of transition e f c_i. With these
definitions, it is easy to extend the survivors by a step, i.e., to epoch k. In the reduced-
state trellis, taking into account the survivor path FSj._1(efc_i) associated with transi-
tion efe_i, equation (4.161) reduces to

For each transition efc, the branch e™ that maximizes (4.162) has to be stored.
Given the above definitions, we can reformulate equations (4.159)-(4.162), ob-

taining:

When a recursive state //fe is embedded in sk, one can use the following approxima-
tion for the a priori probability of state sk: P{sk} ~ JlSi1 P{ak-i} [162]—this im-
plicitly assumes that all recursive states are considered equiprobable. In Figure 4.23,
it is shown how the forward recursion proceeds in the reduced-state trellis according
to equation (4.164). In order to compute ak(ek), one should consider the M quanti-
ties {ak-i(ck-i)} such that s+(ek-i) = s~(ek) and, for each of them, compute the
metric ipk by considering the symbols associated with the survivor of transition ek-i.
The backward recursion proceeds similarly using the survivor map generated during
the forward recursion, as shown in Figure 4.24.

4.8.4 Examples of Application of Fwd-Only RS FB-type
Algorithms

Noncoherent Channel

We consider the so-called NCSOb algorithm proposed in Section 4.7. We remark
that in this case, the application of the proposed state reduction technique is "tricky."
We now show a possible derivation, successfully employed in [163].
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Figure 4.23: Forward recursion of the pdf djb(efe) for a general Fwd-only RS FB-type
algorithm. Reproduced from [156], ©2001 IEEE, by permission of the IEEE.

Figure 4.24: Backward recursion of the pdf ft(^fc) for a general Fwd-only RS FB-
type algorithm. The metric 0^ is calculated using the survivor map previously con-
structed in the forward recursion. Reproduced from [156], ©2001 IEEE, by permis-
sion of the IEEE.

Assuming a forward survivor map has been constructed, the pdf 7^ can be com-
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puted as follows:

In the reduced-state case, we recall that the two quantities ak and J3k can be written,
directly extending (4.156) and (4.158), as

If Q < N, then ak(ek), as defined in (4.167) for the reduced-state case, is different
from ak(Tk) in (4.156) for the full-state case. Similarly, /?*(€&) ^ fik(Tk).

We now show the mathematical derivation which leads to the forward recursion
in the reduced-state trellis. More precisely, assuming the survivor map is known up
to epoch (k — 1), we show how to extend it to epoch k. The detailed mathematical
derivation of the forward recursion proposed in Section 4.7 for the full-state case can-
not be applied. For ease of derivation, we consider the case of an encoder/modulator
FSM such that the next-state function is invertible. In other words, we assume that
(ajb_Q_i, efc) uniquely identifies ek-i- A correct formulation of a step in the reduced-
state forward recursion is the following:

Assuming Q < N (state reduction), ak-Q-i depends on r%_N. Hence
P {afc-Q_i |efc, rk_N } ^ P {O/C_Q_I}, making it impossible to evaluate this proba-
bility. As a consequence, another approach has to be considered. More precisely, we
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may express ak as follows:

Since P{a/c_g_i e/c} = P{afc_g_i}, observing that e^-i is uniquely determined by
(afc_Q_i, efc) and applying the CMP, i.e.:

the following forward recursion in the reduced-state trellis is obtained:

where

in agreement with (4.167).
The problem in the computation of (4.172) is the evaluation of the two pdfs

P (r%-N-i ak-Q-i,tk) and p (r^_N ek). In fact, since Q < TV, each of the two
pdfs should be correctly computed by averaging over previous information sym-
bols. Since at epoch k the survivor of each transition e fc_i is known and since
(a f c_Q_i,e f c) = (efc_i, ek), we replace p^^^ \ak-Q-i,ek) = p(r}

k_N_1\ek^llek)

with the pdf p(r^_7V_1 FS^g ( e f e - i ) j e f e - i j e f c ) » obtaining the following modified
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recursion:

We now express the forward recursion (4.174) in the logarithmic domain as follows:

and using the max-log approximation one obtains:

The choice of the survivor associated with ek may be based on the maximiza-
tion operation in (4.176), which can be correctly carried out since the quantities

can be computed. The term ]i\.p(r*_N \ek) does not affect the maximization (and,
consequently, the survivor selection), but affects the numerical value of In ak(ek).

We denote by ej™1* the transition selected by maximization in (4.176). Equiva-
lently, the symbol CL™Q may be considered. Once the transition e™_fj has been asso-
ciated with ek, we replace \np(rk_N e k ) with the following pdf in the logarithmic
domain:
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The resulting forward recursion becomes:

The obtained forward recursion in the reduced-state trellis exhibits some analogies
with the corresponding forward recursion in the full-state trellis. This indirectly con-
firms the validity of the proposed intuitive approximations.

The backward recursion can be similarly obtained with the further simplification
that the survivor map is now already available because it was previously determined
during the forward recursion. More precisely, observing that (efc, ak) uniquely iden-
tifies ejb+i, the backward recursion may be written as follows:

As an example of application, we consider a single 16-state RSC binary code with
generators G\ = (37)g, G^ — (21)8 and rate 2/3, obtained by means of puncturing,
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Figure 4.25: Application of the RS-NCSOb algorithm to noncoherent decoding of an
RSC code. Receivers with various levels of complexity are considered and compared
with a full-state receiver (TV = 2) and the coherent receiver. Reproduced from [156],
©2001 IEEE, by permission of the IEEE.

used as a component of the turbo code presented in [33]. The modulation format
is BPSK. In Figure 4.25, the performance of the noncoherent decoder using the RS-
NCSOb algorithm is assessed for various levels of state reduction and compared with
that of a coherent receiver. With respect to a decoder with N = 2 and f = 64 states,
for TV = 5 and £' = 64 states the performance is appreciably improved at low SNRs.
For TV = 1 and (' = 16, the performance loss with respect to the full-state receiver
with TV = 2 is less than 1 dB for every SNR, and reduces to only 0.5 dB for an SNR
value larger than 5 dB. As mentioned previously, we do not consider any example of
noncoherent iterative detection, since Section 4.9.1 will be entirely dedicated to this
topic.

4.8.5 Generalized RS-FB Algorithms

In this subsection, we present a generalized class of RS-FB algorithms. We first
consider a probabilistic derivation, and we then introduce a generalized structure.
Various examples of applications of these generalized state reduction techniques for
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FB algorithms are proposed. More details about generalized RS-FB algorithms can
be found in [164].

Probabilistic Derivation

In this section, a probabilistic approach to deriving generalized RS-FB algorithms
is proposed [165]. Let a/-, Sk, and Xk be the input, state, and output of an FSM
(it could be the encoder/modulator FSM or the encoder/modulator/channel FSM), re-
spectively, at epoch fce{0,l,...,.&"—1}, where K represents the length of the infor-
mation sequence at the input of the FSM. The input symbols {a^}^1 are assumed to
be iid. A valid transition Tk is defined by (Sfe, afc, Sk+i), where Sk+i ~ nsk(Sk, a-k)-
The generated output symbol is denoted by Xk — 0^(5^, a^). The next-state (nsfc(-, •))
and output (ofc(-, •)) functions are determined by the encoder/modulator structure. In
order to simplify the notation, we assume, in the remainder of this subsection, that
a single output symbol Xk is generated in correspondence to a single input symbol
afc. The extension to a more general case is straightforward by considering a vector
notation.

To simplify the derivation, a state of an FSM is assumed to be defined by a se-
quence of consecutive input symbols Sk = a>k-L> where the parameter L is related to
the memory of the FSM. We refer to this kind of FSM as simple [98]. This is the case,
for example, for the FSM corresponding to an ISI channel with L + 1 taps—as con-
sidered, for instance, in Section 4.8.2. Therefore, in the full-state case, a transition
Tfc is associated with L + 1 information symbols, i.e., Tk = (Sk, a>k-> Sk+i) = ak-L-
For the reduced-state case, a state is simply defined as Sk = of^L , with LI < L.
Similarly to the full-state trellis case, a reduced-state transition tk is also defined by
(fit, at, Sfe+i) = a>k-Li • Thus, there are L — LI + 1 possible reduced-state transitions
{tk-(L-Li), • • • , tk} embedded in (i.e., uniquely determined by) a full-state transition
Tk. In both reduced-state recursions we want to associate with each trellis branch, at
any epoch, a metric corresponding to one in the full-state case. Hence, a reduced-state
transition has to be associated in a unique way with a particular full-state transition,
and this will be done on the basis of decision feedback. In general, a full-state tran-
sition Tk can be truncated differently in the two recursions. Specifically, Tk can be
reduced to tk-n{ in the forward recursion, and to tf~-nb in the backward recursion,
where rif and n^ are suitable integer parameters such that 0 < HI < n^ < L — LI.

Let us suppose that the forward recursion is run first. An intuitive approach to
performing reduced-state detection consists of reducing Tk to tk in the forward re-
cursion (i.e., nf = 0) and to ^-L2 in the backward recursion (i.e., n^ — L^, where
L2 € {0, . . . , L — LI}. In the following, we derive an RS-FB algorithm for this spe-
cific case, and generalizations to other cases can be dealt with in the same way. For
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the sake of simplicity, we refer to a discrete-time communication system, where the
output sequence x^~l of a simple FSM is transmitted over an AWGN channel. The
observation at the output of the channel at epoch k, indicated as rk, can be written as

where nfi l is a sequence of zero-mean uncorrelated Gaussian random variables.
The goal of this derivation is to compute the a posteriori likelihood, i.e., the extrinsic
soft output, of ak based on the observations r $~l. The extrinsic soft output, indicated
as SO[afc], can be written as

where P(rjf \ ak) is the joint probability distribution function27 of the observation
sequence r^~l and information symbol ak, S[ak] is the "complete" soft output (cor-
responding, in principle, to the APP) and SI[a J is the a priori input soft information
on ak (corresponding, in principle, to the a priori probability on the symbol). In
the following, we will focus on the computation of the joint probability distribution
function P(r^~l,ak) over a reduced-state trellis.

Let us assume that forward and backward survivors have been somehow already
associated with each reduced state at each epoch (at this point of the derivation we do
not know how, yet). The ensembles of forward and backward survivors are indicated
with the general notation df and db, respectively. A reasonable approximation, useful
for computing the desired soft output (4.181), is the following:

27 We use the term probability distribution function to denote a continuous pdf with some discrete
probability masses. For a probability distribution function we will use the symbol P(.).
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Using elementary conditional probability relations, one obtains:

where the pdfs in (4.183), denoted by pi,p2, and p3, respectively, are further analyzed
below.

Pi. Based on the causality of the system (i.e., tk = o,%_Ll), pi can be written as

which we define as follows:28

p2- As the channel is memoryless and assuming that a forward survivor af (sk) and
a backward survivor db(sk+i) are associated with states Sk and sfe+1, respec-
tively, the extended metric p2 can be computed as

28In fact, since P(r^ l,sk af) =
the quantity ak(sk).

o^^s/c, at)P{sk}, the quantity defi ned in (4.185) is exactly
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and we correspondingly define:

PS. The quantity p3 can be expressed in different ways, depending on L2. If L2

L — LI (e.g., [151]), we can write:

However, if L2 < L — LI (e.g., L2 = 0 in [156]), then rfc+L2+i depends on
all the information symbols embedded in a reduced transition tk and, possibly,
on a portion of df. Thus, it is not true that r%+£ +1 depends only on Sk+i and
db. However, by assuming that df contains the information, relative to tk, not
included in sk+i, one can write:

and one can correspondingly define:

The likelihood of (i.e., the extrinsic soft-output value associated with) ak can be
finally obtained through the following completion operation:

As one can see, we have dropped from the definitions of the introduced quantities
(SO[afc], afc(sfc), Gfr+L2(tk) and /^+i(sfc+i)) the dependence on the survivors. They
have been used, however, to justify and motivate the above derivation. The notation

is used to indicate the time interval relative to the considered observation
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sequence, i.e., from ktok+L2. This represents a difference with respect to a standard
FB algorithm. In fact, instead of considering just the observation at epoch k, we
consider a window of observations. The quantities ctk(sk) and /3k+i(sk+i) can be
computed by means of forward and backward recursions, respectively. During these
recursions, the survivors df and db are recursively constructed. Soft-output values
relative to output symbols {x^} can be generated in a similar way.

Let us consider the computation associated with the trellis transition at epoch k —
1. Assuming that a forward survivor d f ( s k - i ) is associated with each state Sk-i, the
corresponding step in the forward recursion allows one to recursively compute ak(sk)
on the reduced-state trellis and, simultaneously, to extend the existing survivors to the
states at epoch k. In fact, &k(sk) can be expressed as follows:

By defining

where a^_^!2 depend on the forward survivor, the (A: — l)-th step in the forward
recursion becomes:

A reasonable way to associate a survivor with Sk consists of associating with it the
survivor relative to the state sk-i such that the corresponding term in the summation
(4.194) is the largest one [151,156]. Proper boundary conditions, in terms of QO(SO)»
have to be considered, depending on the initial state of the FSM.

Similarly to the forward recursion, the quantity pk(&k) can be computed through
a backward recursion assuming that backward survivors are known down to states
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{sk+i}. Moreover, the backward survivors are simultaneously extended to states
at the /c-th epoch step in the backward recursion. Thus,

Defining

a step in the backward recursion at epoch k reads:

Similarly to the forward recursion, it is reasonable to associate with state sk the back-
ward survivor relative to state sk+i corresponding to the largest term in the summa-
tion in (4.197). Note that, unlike the case where forward-only state reduction tech-
niques are used, in this case the step at epoch k in the backward recursion involves
the observation at epoch k + L2, rather than that at epoch k + 1. This is due to the
extended observation window used in the completion operation.

For the sake of clarity, we consider a few interesting cases for the backward re-
cursion by focusing on the metric Gk+L2(tk)-
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• If L2 = L — LI, then

In this case, the backward recursion relies only on a backward survivor, which
means that backward and forward recursions can be run independently [151].

• If 0 < L2 < L — LI, during the backward recursion backward decision
feedback survivors are constructed relying on both forward and backward sur-
vivors. This means that the forward recursion has to be run first, and must rely
only on forward survivors.

• At another extreme case, i.e., L2 = 0 [156], no survivor is built during the
backward recursion. In other words, the decision feedback relies completely
on the forward survivors, and one obtains:

This corresponds to the approach considered in Section 4.8.1.

Generalized Structures of RS-FB Algorithms

The probabilistic derivation in Section 4.8.5 provides a unified framework for de-
riving RS-FB algorithms, generalizing previously published solutions [151, 156].
However, further improvements, based on intuition, are possible (for more details,
see [164, 166]). In fact, further generalizations can be obtained by modifying various
aspects of the derived RS-FB algorithmic structure, including the forward recursion,
the backward recursion, and the soft output generation. As in the previous section,
for the sake of simplicity we will consider only the generation of soft-output values
relative to the inputs of the FSM, i.e., {ak}.

First, let us consider forward and backward recursions. In the previous derivation,
the forward recursion is run first, by using only forward decision feedback. The
backward recursion, where a backward decision feedback might be constructed, can
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utilize both forward and backward decision feedbacks. However, both recursions
could be designed to use either forward or backward decision feedback, or both, thus
providing different RS-FB structures. Moreover, the soft input relative to a^ does
not necessarily need to be included in the metric corresponding to the reduced-state
trellis section at epoch k. In fact, it could be included at any epoch /, provided that
ak can be extracted from the reduced transition at epoch /. Indicating by of (sk) the
forward decision feedback associated with the reduced state sk and by a°(sk+i) the
backward decision feedback associated with Sk+i, the soft-input information on xk+i,
relative to the reduced-state transition tk = (sfc, a&, SAH-I)» can be generally indicated
with the following notation:

in which the sequence of symbols a^L+i is extracted from df (sk), tk, and db(sk+i).
For example, if tk = ak

k_Li (simple FSM), the forward and backward recursions in
(4.194) and (4.197) can then be equivalently rewritten as follows:

where raf and mb are suitable integers such that — LI < mf < 0 and —L\ < mb <
0. These integer values indicate which soft-input information is embedded in the
transition at epoch k. Therefore, the forward and backward recursions corresponding
to the case where Tk is reduced to tk_n{ in the forward recursion and to t/c_nb in the
backward recursion, with 0 < rif < nb < L — LI, —L\ < m? < 0 and —Li < rab <
0, can be generally written as

If the parameters rif and nb in the two recursions are set so that both recursions
are based only on the forward (backward) decision feedback, the derived algorithm
corresponds to a Fwd-only (Bwd-only) RS-FB algorithm. On the other hand, if one
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of these two recursions makes use of both forward and backward decision feedbacks,
the corresponding RS-FB algorithm will be referred to as a BiD RS-FB algorithm.

At this point, let us consider the completion operation in (4.191). By using the
notation introduced in (4.200), one can rewrite (4.191) as follows:

where SOk[ak] represents a soft output value on ak, generated through the completion
corresponding to the reduced-state transition tk (the notation will be clear in the fol-
lowing). In this case, the forward and backward recursions are defined as in (4.201)
and (4.202), with 0 < L2 < L - LI and raf = rab = 0 (as used in Section 4.8.5).

• The Fwd-only RS-FB algorithm introduced in Section 4.8.1 is obtained by
setting 1/2 = 0:

One can immediately notice that this completion is formally identical to that in
the full-state case. This structure will be referred to as the standard completion
operation.

• At the other extreme, if L2 = L — LI, only backward decision feedback is used
during the backward recursion. Therefore, for this BiD RS-FB algorithm, the
backward recursion can be run independently from the forward recursion. The
completion operation (4.205) for the generation of a soft output value on ak at
the trellis section corresponding to time epoch k can be written as

Comparing this BiD RS-FB algorithm with the BiD RS-FB algorithm proposed
in [151], one can immediately recognize that both algorithms utilize the same
forward and backward recursions. Nevertheless, there is a difference in the
completion operation. In fact, the completion operation proposed in [151] can
be written as
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The completion in (4.208) has the same structure as the completion of the (full-
state) FB algorithm (i.e., a standard completion). Hence, the completions in
(4.207) and (4.208) utilize a different amount of soft-input information in order
to generate the desired soft-output information. In fact, it is possible to show
that the proposed BiD RS-FB algorithm, with the completion (4.207), uses
each of the soft inputs SI[xk] and SI[ajb], for k — 0 , . . . , K — 1, exactly once29

to generate the quantity SO^a*;]. On the other hand, for the BiD RS-FB algo-
rithm in [151] (with completion in (4.208)), the soft output SOk[ak] does not
depend on the soft-input values {SI[xjfc+i], SI[xfc+ 2] , . . . , Sl[xk+(L-Li)}}- The
set of missing soft-input values will be referred to as the gap. In the RS-FB
algorithm in [151], this gap is due to the time misalignment between the soft
input SI[xk] used in the metric of the forward recursion step at epoch k and the
soft input SI[xfc+L2] used in the metric of the backward recursion step at epoch
k. In this sense, the completion (4.207) of the proposed BiD RS-FB algorithm
fully fills the gap.

In order to further generalize the completion in (4.205), weight exponents for the
soft-input values can be introduced as follows:

The weight exponents wc
x(k, i) are used to identify whether the soft inputs SI[xfe+i]

should be included in the completion. If a particular soft input is included (excluded)
in the completion, its associated weight exponent is set to 1 (0). In general, a weight
exponent can be any real number 0 G (0,1]. The completion (4.209) refers to the
sum-product version of an RS-FB algorithm—in the min-sum version, a weight ex-
ponent becomes a scaling factor that multiplies the soft-input information, i.e., it
corresponds to the heuristic parameter introduced in Section 4.5 to scale the extrinsic
information for optimized iterative detection. Referring to the generalized forward
and backward recursions (4.203) and (4.204), the corresponding generalized comple-

29 A situation where each soft-input Sljxfc] and Slfa^], k = 0 , . . . , N — 1, is used more than once
will be referred to as double counting and should be avoided if possible.
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tion operation in the reduced-state trellis at epoch k can be written as

where the weight exponents {w£(fc, m)} have been introduced for the soft-input val-
ues on the information symbols and the parameters nf,nb,ra,f and rab previously
introduced are such that rif < nb and raf < mb. In this case, each soft input is
utilized at most once. The weight exponents wc

x(k,n) and wc
a(k,m) can be tuned

to use the desired amount of soft-input information. Specifically, {SlfajJ}^^"1 U
{SIHJIT'"1 and {SI[^]}~^nb+1 U {SIiai]},1^mb+1 are the soft-input values
used during the forward and backward recursions to generate the state metrics otk(sk)
and (3k+i (sfc+i)— note that SI[xfc+nf]SI[afc+mf ] and SI[zfc+nb]SI[afc+mb] are the metrics
of the forward and backward recursions in (4.203) and (4.204), respectively.

Standard completion is equivalent to setting wc
a(k, m) = 5^(m—raf) and wx(k, n)

= 6K(n — nf), where 6K(-) is the Kronecker delta function defined as

The corresponding RS-FB algorithm is identified by not filling the gap (Nfg). The
gap is in this case constituted by {SI[xfc+i]}2nf+1 U {SI[afc+i]}™b

mf+1. For instance,
there is no gap if nf = rib and raf = rab (e.g., nf = nb = raf = rab = 0). On
the other hand, the gap can be fully filled if w°(k, ra) = wc

x(k, n) — 1, Vra, n. This
option will be referred to as fully filling the gap (Ffg). The option where only a
portion of the gap is filled, by setting wc

a(k, ra) = ^K(^ — ̂ f) + ^K(^ - ^b) and/or
w°(k, n) — S^(n — nf) + ^K(^ — ̂ b)» will be referred to as partially filling the gap
(Pfg).

Another possible improvement can be obtained by considering multiple comple-
tion, as originally suggested in [98, Problem 3.10]. The idea is simple. Instead of
simply generating the soft output on a^ when averaging over t^ a soft output rela-
tive to ak could be generated by averaging over any transition embedding a^. To be
more specific, we could obtain various reliability values on a/- by averaging over tk,
tk+i,..., tk+Li- Due to the suboptimality of RS-FB algorithms, based on the construc-
tion and use of survivors, it is likely that the LI generated soft outputs are different.
Suitably combining them could refine, owing to a diversity effect, the final soft-output
information on a*. In the logarithmic domain (min-sum version), an intuitive way to
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combine them is considering the arithmetic mean—in fact, this operation returns the
same output as the FB algorithm in the absence of state reduction. In the probability
domain (sum-product version), this corresponds to the geometric mean. Indicating
by SOk+i[dk\ the soft output on ak obtained by averaging over tk+i, the final soft
output can be expressed as

In this case as well, weight exponents can be introduced to generalize the multiple
completion in (4.212). More precisely, the soft output on a^ could be written as

where the weight exponents w°a(k, i) in (4.213) have to be properly set—in (4.212),
we are implicitly considering 9 — l/(Li + 1). Typically, a soft-output value on ak is
generated through a single completion at epoch k. This corresponds to considering
w°(k, i) = 06x(i), and will be referred to as a single completion (sc). At the other
extreme, the final soft-output value on ak could be obtained by using all the possible
quantities in (4.213). An instance of this option is obtained by setting w°(k,i) =
0/(l + LI), Vi 6 {0, . . . , LI} and will be referred to as full multiple completion
(Fmc). Finally, if only a portion of the soft-input values in (4.213) is considered to
generate the final value on ak, such as w°(k, i) — f #K W + f ^K(* — LI), this option
will be called partial multiple completion (Pmc).

The factor 9 introduced above is used to control the influence of the soft-input
information in the generation of the soft output. This might be very useful when
considering exchange of soft information in iterative data detectors, as seen in Sec-
tion 4.5. In fact, RS-FB algorithms usually lead, because of suboptimality, to over-
estimation of the soft-output reliability information. The beneficial effect of using
weight exponents lower than 1 will be confirmed by the considered numerical re-
sults.

A probabilistic derivation of generalized RS-FB algorithms has been proposed.
However, further useful and effective modifications (e.g., use of weight exponents
and multiple completion) are dictated by intuition and do not have an analytical ba-
sis. A graphical approach represents a systematic way to design RS-FB algorithms,
which can take into account all the considered intuitive modifications. In fact, a
suitable graph structure should possess the following characteristics:

• it should allow the application of different state reduction techniques;
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• it should account for multiple completion;

• in the absence of state reduction, the probabilistic propagation in the graph
should provide the same (or exact) soft output as the FB algorithm.

More details about state reduction techniques based on the use of suitable graphical
structures, based on the concept of an over-structured graph, can be found in [164,
167]. In the following subsection, we further comment on RS-FB algorithms, in
order to provide the reader with more intuition regarding state reduction techniques.

Comments on Generalized RS-FB Algorithms for ISI Channels

For any specific communication system, it would be of interest to find the RS-FB
algorithm that guarantees the best possible performance for a given complexity—this
is a legitimate question, since an RS-FB algorithm is an approximation of the FB
algorithm. The case of an ISI channel, whose corresponding FSM output xk can be
written as

is important and easy to understand. Hence, we will comment on the proposed RS-
FB algorithms referring to an ISI channel, according to the values of the channel
coefficients {/0 , . . . , /L}. This analysis can be extended to various types of FSM,
especially any LTI system. In the following, the discussion will be based on the three
general categories of RS-FB algorithm previously introduced: Fwd-only, Bwd-only,
and BiD RS-FB algorithms.

First, let us consider Fwd-only RS-FB algorithms, where both forward and back-
ward recursions utilize only forward decision feedback in the metric computation. In
other words, this algorithm uses RSSD only during the forward recursion, where a
forward survivor (corresponding to a sequence of "past" decided symbols) is associ-
ated with each state at each epoch. This algorithm can be obtained from the generic
recursions (4.203) and (4.204), by setting rif = n^, = m? = rab = 0. Since the
reduced state s^ = o^L is the most recent portion of the full state Sk = &%-},> me

Fwd-only RS-FB algorithm is the best choice if the ISI channel is minimum-phase,
because in this case the taps of the ISI channel, where most of the energy is con-
centrated, are the ones relative to the information symbols embedded in the reduced
state. In this way, the past information symbols, recovered by decision feedback,
correspond to the smallest taps and have little influence. The error propagation is not
significant, and the backward recursion is then based on a set of reliable survivors.
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However, if the channel is not minimum-phase, the symbols associated with the re-
duced state may not be the ones corresponding to the taps of the channel with most
of the energy. In the worst case, if the channel is maximum-phase, they correspond
to the taps of the channel with lower energy. The information symbols corresponding
to the taps with most of the energy are thus recovered with decision feedback, and
error propagation, with severe performance degradation, is very likely. In any case,
there is no gap in the completion operation. Multiple completion is also unnecessary,
since completion operations at different epochs, used to derive a soft output on a/t,
provide the same extrinsic information.

On the other hand, the Bwd-only RS-FB algorithm is obtained by applying RSSD
only in the backward recursion, where a backward survivor (corresponding to a se-
quence of "future" decided symbols) is associated with each state at each epoch.
In this case, the backward recursion is run first and the forward recursion is then
operated with the same metric as the backward recursion. As an example, this al-
gorithm can be obtained from the generic recursions (4.203) and (4.204), by setting
nf = nb = L — LI and raf = rab = 0. The Bwd-only RS-FB algorithm is a specular
version of the Fwd-only RS-FB algorithm. Reasoning as in the case of the Fwd-only
RS-FB algorithm, one can conclude that the Bwd-only RS-FB algorithm is the best
choice if the ISI channel is maximum-phase. In fact, in this case the taps of the ISI
channel, where most of the energy is concentrated, are the ones relative to the infor-
mation symbols embedded in the reduced state. Error propagation and, consequently,
performance degradation increase if the channel is not maximum-phase. The worst
case is given by a minimum-phase channel. As for a Fwd-only RS-FB algorithm, in
this case as well there is no need to fill the gap and to consider multiple completion.

In BiD RS-FB algorithms, forward and backward decision feedback is used. Ei-
ther one of the recursions, run first, must be designed in such a way that only the
decision feedback in its direction is used. The other recursion, run later, can partly
rely on the decision feedback generated in the first recursion. At the extreme, each
recursion utilizes only the decision feedback in the corresponding direction. In this
case, the two recursions can be run independently—this is the only case, relative to
BiD RS-FB algorithms, considered for the numerical results in Section 4.8.6. As
an example, this BiD RS-FB algorithm can be obtained from the general recursions
(4.203) and (4.204), by setting nf = raf = rab = 0 and nb = L2 (0 < L2 < L - LI).
The special case of independent recursions is obtained by setting L2 = L — L\.
Obviously, for a given number of (reduced) states, BiD RS-FB algorithms have a
larger complexity than Fwd-only and Bwd-only RS-FB algorithms. This complex-
ity increase is due to the fact that BiD RS-FB algorithms utilize both forward and
backward survivor maps. Filling the gap and multiple completion further increase
the complexity. Hence, a trade-off between complexity and performance has to be
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properly found.
Performance-wise, since each recursion contains the decision feedback in its

direction, it might happen that even if there is severe error propagation in one of
the recursions (e.g., the forward recursion using only forward decision feedback for
maximum-phase channels), only little error propagation may affect the other recur-
sion. A sort of diversity is then provided by the two recursions, and multiple com-
pletion can exploit this phenomenon. By properly filling the gap, setting multiple
completion, and selecting suitable weight exponents, more reliable soft-input values
could dominate over less reliable soft-input values. Unfortunately, an appropriate se-
lection is likely to be problem-dependent and possibly difficult to predict in advance
without a trial-and-error process. Nevertheless, intuitively, it is possible to find a
BiD RS-FB algorithm that performs relatively well in almost any ISI channel. This
is important especially when the ISI channel is mixed-phase (or for any FSM with
an equivalent property), in which case Fwd-only and Bwd-only RS-FB algorithms
offer unsatisfying performance. Moreover, BiD RS-FB algorithms may yield a better
performance, with respect to Fwd-only or Bwd-only RS-FB algorithms, in the case
of strong state reduction, especially for mixed-phase ISI channels.

4.8.6 Examples of Application of Generalized RS-FB Algorithms

The performance of the considered receivers is assessed by means of computer sim-
ulations in terms of BER versus bit SNR E^/N^, E^ being the received signal energy
per information bit and 7V0 being the one-sided noise power spectral density. In all
cases, we assume perfect CSI at the receiver side. All considered FSMs are sim-
ple FSMs with memory L. The simple FSM corresponding to a reduced-state trellis
has memory LI. In any component decoder, the min-sum version of the particular
RS-FB/FB algorithm is considered.

According to the general structure proposed in Section 4.8.5, a particular structure
of RS-FB algorithms can be realized through an assignment of LI, Z/2, raf, ?if, m\>,
nb, w

c
a(k, m), wc

x(k, n), and w°a(k, q) in (4.209), (4.210), and (4.213). In Table 4.1,
a summary of a few possibilities, which are considered in the following, is given. In
particular, in all considered schemes mf = rif = m^ — 0, so that these parameters
are not indicated in Table 4.1. The parameter 9 G (0,1] appearing in Table 4.1
represents the scaling factor embedded in the weight exponents. Note that Fwd-
only and BiD-Nfg-sc RS-FB algorithms are equivalent to the existing Fwd-only and
BiD RS-FB algorithms in [156] and [151], respectively. The BiD-Ffg-Fmc and BiD-
Pfg-Pmc RS-FB algorithms may be viewed as extensions of the BiD-Nfg-sc RS-FB
algorithms, where the completion and soft-output combining make use of a larger
portion of the available information. The particular structure of the BiD-Pfg-Pmc RS-
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Table 4.1: Different parameter settings for RS-FB algorithms.

Fwd-only

BiD-Nfg-sc

BiD-Ffg-Fmc

BiD-Pfg-Pmc

L2

0

L-Li

T T ,

L - L I

w°(k,m)

5K(m)

6K(m)

SK(m)

6K(m)

w^.(k,n)

8K(n)

5K(n)

1

SK(n)
+8K(n~ L2)

<(M)

95K(q)

98K(q)

e
LI+I

ISK(q)

+ ISK(q-Li)

nb

0

L2

L2

L2

FB algorithm depends on the considered system. The choices in Table 4.1 guarantee
good performance and robustness in the considered cases.

Uncoded BPSK Transmission over ISI/AWGN Channels

In this case, we consider uncoded transmission with BPSK over two 12-tap (L = 11)
and one 8-tap (L = 7) ISI/AWGN channels. The sample rk at the receiver side has
the following expression:

where / = (/0, . . . , /L) is the channel discrete impulse response and {nk} is a se-
quence of iid zero-mean Gaussian random variables with variance 7V0. The three
considered channels are the following:

• Channel A (12-tap): /0 = . . . = /n — c\ (equal-weight ISI channel).

• Channel B (12-tap): /0 =
(triangular ISI channel).

= c2,/i = /io = 2c 2 , . . . , / 5 = /6 = 6c

Channel C (8-tap): fi = c^) • Vi(f) where v^), i — 0, . . . , 7 are iid Gaussian
random variables with zero mean and unitary variance (random ISI channel30,
where £ indicates a specific realization).

30Channel C can be interpreted as a particular fading channel. This will be confi rmed by the behav-
ior of the BER curves, relative to this channel, shown in Figure 4.29.
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Figure 4.26: Transmitter and receiver for the uncoded BPSK transmission over
ISI/AWGN channels.

The constants ci, c% and c^(£) are suitable normalization constants such that ||/||2 =
Yjf=o \fi\2 — 1- Figure 4.26 shows the transmitter and self-iterative receiver for
this isolated ISI system. In all cases, the receiver is constituted by a single RS-FB
decoder and the performance results with Channels A, B and C, optimized over 0,
are illustrated in Figure 4.27 (9 = 0.3), Figure 4.28 (0 = 0.3), and Figure 4.29
(9 = 0.6), respectively. For BiD RS-FB algorithms the performance for / = 1
(solid lines) and 7 = 5 (dashed lines) self-iterations is shown. Note that a single
self-iteration corresponds to a single activation of the reduced-state decoder. In this
sense, for / = 1 there is no "real" self-iteration, i.e., the generated soft-output values
are not fed back to the input of the decoder. However, for the Fwd-only RS-FB
algorithm, only the performance for / = 1 (i.e., no self-iteration) is illustrated, since,
based on our results, there is no significant improvement by increasing /. A possible
explanation for this phenomenon is that the self-iteration for the Fwd-only RS-FB
algorithm is likely to reinforce the decision from the previous iteration, since only
forward survivor paths are used in the algorithm.

In Figure 4.27, the performance of the Fwd-only RS-FB algorithm with LI = 3
(C' = 8 states) is about 2 dB away from the performance of the full-state receiver
(C = 2L = 2048) and there is no substantial improvement by increasing (' up to 128.
Considering LI = 1 (f' = 2 states) the performance of the BiD-Ffg-Fmc RS-FB
algorithm worsens for an increasing number of iterations at low SNR, whereas the
performance of other BiD RS-FB algorithms shows a gain of about 2 dB. This fact
suggests that when considering a strong state reduction with Channel A, using all
available soft-input information may degrade the performance, while partially using
it may help. However, for £' = 4, the performance improves for an increasing number
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Figure 4.27: Performance comparisons of various self-iterative detection algorithms
for Channel A assuming perfect CSI. The number of considered self-iterations / is
1 (solid lines) or 5 (dashed lines), and the number of states is indicated by (' in the
case of state reduction. For comparison, the performance of the full-state receiver
(£ = 2048) is also shown. Reproduced from [166], ©2002 IEEE, by permission of
the IEEE.

of self-iterations in all BiD cases.

In Figure 4.28, the performance results obtained with Channel B are shown. As
above, the performance obtained considering the FB algorithm with f = 2048 states
is compared to the performance obtained considering different RS-FB algorithms.
When considering the Fwd-only RS-FB algorithm a performance gain of 1 dB is
observed when increasing the number of states from ("' = 32 (L\ = 5) to f' = 128
(Li — 7). In the latter case, the performance loss, compared to the case with the full-
state FB algorithm, is around 2 dB. In both Fwd-only cases, the performance is better
than the one obtained with the considered BiD RS-FB algorithms with f' = 8, both
for / = 1 and / = 5 self-iterations. The BiD-Pfg-Pmc RS-FB algorithm with £' = 16
and 7 = 5 self-iterations shows a gain, in terms of SNR, of 1 dB with respect to the
Fwd-only RS-FB algorithm with £' = 128, and the performance loss, compared to
the full-state case, is reduced to 1 dB. As for Channel A, the best performance was
obtained in all reduced-state cases by considering 9 = 0.3.
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Figure 4.28: Performance comparisons of various self-iterative detection algorithms
for Channel B assuming perfect CSI. The number of considered self-iterations / is
1 (solid lines) or 5 (dashed lines), and the number of states, in the case of state re-
duction, is indicated by £'. For comparison, the performance of the full-state receiver
(C = 2048) is also shown. Reproduced from [166], ©2002 IEEE, by permission of
the IEEE.

Finally, in Figure 4.29, the performance with Channel C is analyzed. In this case
as well, we compare the performance of the Fwd-only RS-FB algorithm and various
BiD RS-FB algorithms to that of the full-state FB algorithm. When considering the
Fwd-only RS-FB algorithm with £' = 64 states, the performance loss, with respect to
the full-state receiver with £ = 128, is around 2 dB. Considering the BiD-Nfg-sc RS-
FB algorithm with £' = 8 and £' = 16, the performance degrades when increasing
the number of self-iterations from / = 1 to 7 = 5. The best performance is obtained
by considering the BiD-Ffg-Fmc RS-FB algorithm. This is intuitively reasonable,
since the channel is random. In fact, due to this randomness, it turns out that the best
strategy is using all the available soft-input information.

When considering a minimum-phase channel, the Fwd-only RS-FB algorithm
has a very good performance [151, 156]. On the other hand, the performance of
this RS-FB algorithm worsens dramatically if the channel is maximum-phase. In
contrast, BiD RS-FB algorithms can cope well with different channels through self-
iterative decoding, even when the number of states is drastically reduced. However,
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Figure 4.29: Performance comparisons of various self-iterative detection algorithms
for Channel C assuming perfect CSI. The number of considered self-iterations / is
1 (solid lines) or 5 (dashed lines), and the number of states is indicated, in the case
of state reduction, by £'. For comparison, the performance of the full-state receiver
(C = 2048) is also shown. Reproduced from [166], ©2002 IEEE, by permission of
the IEEE.

the implementation complexity of BiD RS-FB algorithms is higher than that of the
Fwd-only RS-FB algorithm.

Convolutionally Coded Transmission over an AWGN Channel

Besides an AWGN/ISI channel, we also consider, as an example of an isolated sys-
tem, a single convolutional code, whose output sequence is transmitted over an
AWGN channel. In particular we consider the following two NRC codes [17]:

• Convolutional code 1 (CC1): (2,1,9) NRC code31 with generators (in octal
form) Gi = (7604)8 and G2 = (4174)8.

• Convolutional code 2 (CC2): (2, 1,1 2) NRC code with generators
and G2 = (77304)8.

- (42554)8

31The notation (n, k, L), used for a convolutional code, indicates that the rate of the code is k/n
and the memory is L + 1 .
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Figure 4.30: Performance of a (2,1,9) NRC code with generators GI = 7604 and
G2 = 4174 with BPSK on an AWGN channel. / = 1 (solid lines) and / = 5 (dashed
lines) self-iterations are considered for different numbers of reduced states (' and
different packet length K. The performance in the full-state case (£ — 512 states) is
also shown.

In both cases, we evaluate the performance of various RS-FB algorithms considering
different transmission lengths, namely K = 1024 and K = 128. For long transmis-
sion length (K = 1024), the numerical results show that the performance degrades
rapidly when reducing the number of states [168]. A possible explanation of this
phenomenon is that the modulo-2 arithmetic used for a binary convolutional code
may induce a catastrophic behavior when considering reduced-state decoding. In
other words, error propagation is more likely to occur in modulo-2 arithmetic than in
the real number arithmetic used in the ISI case. However, by reducing the transmis-
sion length (K — 128) a better performance can be obtained, probably because of
the reduced potential catastrophic behavior. When considering self-iterative decod-
ing jointly with BiD RS-FB algorithms, the best performance is obtained in all cases
with 6 = 0.3.

In Figure 4.30, the performance of CC1 is shown. When considering K = 1024
and the Fwd-only RS-FB algorithm, there is basically no improvement by increasing
the number of states from (' = 16 to (J = 32. Considering BiD RS-FB algorithms,
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Figure 4.31: Performance of a (2,1,12) NRC code with generators G\ = 42554 and
G2 = 77304 with BPSK on an AWGN channel. / = 1 (solid lines) and / = 5
(dashed lines) self-iterations are considered for different numbers of reduced states
CJ. A packet length K = 128 is considered in all cases, and for comparison, the
performance of a full-state (f = 128) (2,1,7) convolutional code is also shown.

the performance for / = 5 decoding iterations (dashed lines), with K = 1024, im-
proves by about 1.2 dB with respect to the Fwd-only case. Reducing the packet
length to K = 128 and considering BiD-Pfg-Pmc, a further improvement of 1 dB is
observed. The performance loss, with respect to the full-state receiver, reduces to 0.6
dB at a BER of 10~5. In Figure 4.31, the performance of CC2 with a packet length
K = 128 is shown, considering various BiD RS-FB algorithms with f' = 64 states.
As one can see, the performance at / = 5 self-iterations (dashed lines) is almost iden-
tical in all cases. For comparison, the performance of a (2,1,7) convolutional code is
shown. In particular, the performance is basically the same as the one obtained by
considering CC2 and BiD RS-FB algorithms.

TCM over an ISI/AWGN Channel

In this system, a sequence of bits is encoded by an 8-state, rate-2/3 Ungerboeck code
with 8-PSK (see [9, Figure 9]). The modulated sequence is then interleaved by a
32 x 32 block interleaver and transmitted over an equal-weight ISI channel with 5
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Figure 4.32: Transmitter and receiver for the TCM system over an ISI/AWGN chan-
nel.

taps. The noise samples are iid complex-circular Gaussian random variables with
zero mean and variance 7V0. At the receiver side, the outer decoder, relative to the
Ungerboeck code, uses the FB algorithm, while the inner detector, relative to the ISI
channel, makes use of an RS-FB algorithm. Figure 4.32 illustrates this communi-
cation system. The performance of the system is analyzed by considering different
possible settings of the RS-FB algorithm. The parameter LI is related to the mem-
ory of this algorithm. We denote by (/i? J0) the number of inner self-iterations and
outer iterations, respectively, and the parameters 0\ and 00 refer to the scaling factors
considered in the inner self-iterative detection and in the outer iterative decoding.

In Figure 4.33, we compare the performance of the BiD-Nfg-sc RS-FB algorithm
proposed in [151] and the BiD-Pfg-Pmc RS-FB algorithm. For 6{ = 00 = 1 and
(/i, /0) — (3, 5), the performance of the two algorithms is compared in the cases
of LI = 1 (C' = 8 states) and LI = 2 (C = 64 states). The BiD-Pfg-Pmc RS-
FB algorithm guarantees a performance gain, with respect to the BiD-Nfg-sc RS-FB
algorithm, of the order of 0.3 dB in both cases. The performance of the 64-state
BiD-Nfg-sc RS-FB algorithm is comparable to that of the full-state (4096-state) FB
algorithm with (/i,/0) = (1,1). However, considering 0\ = 0.62 and 00 — 0.37,
the performance can be greatly improved. The performance of the BiD-Pfg-Pmc
RS-FB algorithm is shown for LI = 1 and LI = 2, and considering, in both cases,
(/i,/0) = (2,6) and (/i,/0) = (2,10). As one can see, in both cases there is an
improvement of the order of 1 dB with respect to the previous case with 0\ = 90 = \.
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Figure 4.33: Performance comparison of various iterative detection algorithms for
the TCM/ISI channel (Opt. 1: (7i}/0) - (1,1), (Mo) = (1,1); Opt. 2: (/i,/0) -
(3,5), (Mo) = (1,1); Opt. 3: (/i,/0) = (2,6), (Mo) = (0.625,0.375); Opt. 4:
(/i,/0) = (2,10), (Mo) = (0.625,0.375)). Reproduced from [166], ©2002 IEEE,
by permission of the IEEE.

4.9 Applications to Wireless Communications

In this section, we discuss a few applications of the general framework for FB algo-
rithms previously introduced. We wish to point out that the considered examples are
limited, and the interested reader should try to apply the proposed detection tools to
other classes of transmission system, where iterative detection techniques, based on
the use of FB algorithms, are attractive.

4.9.1 Noncoherent Iterative Detection of Binary Linear Coded
Modulation

Consider the communication system depicted in Figure 4.34. An information se-
quence {a/t}, composed of iid symbols belonging to a binary alphabet, is encoded
and linearly modulated at the receiver side, and then transmitted as a time-continuous
signal. The transmitted signal undergoes a phase rotation 9(t) and is transmitted over
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Figure 4.34: Communication system model for transmission over phase-uncertain
channels.

an AWGN channel. The phase rotation 0(t) is initially assumed to be constant during
the entire transmission and modeled as a random variable 9 with uniform distribution
in the interval [0,2?r) and independent from the transmitted symbols.

Based on this static phase assumption, it may be easily shown that the sampled
output of a filter matched to the shaping pulse is a sufficient statistic for optimal detec-
tion of the information sequence [47]. In the absence of ISI and assuming a sampling
rate of one sample per modulated symbol, this channel output may be expressed as

where ck is aBPSK (possibly coded) symbol, and {nk} are iid complex noise samples
with independent real and imaginary components, each with variance <72 = NQ. The
extension to the case of higher order modulation will be considered in the following
subsection.

In this subsection, we will consider the noncoherent FB algorithms already par-
tially described in Section 4.7 and referred to as NCSOa and NCSOb algorithms, and
another algorithm obtained by applying the principle of SOVA to the noncoherent
sequence detection (NSD) algorithm described in Chapter 2, defined as soft-output
(SO)-NSD in [162]. The expanded state Sk is defined, as usual, as (//£_#, ajjl^),
where nk is the state of the encoder/modulator and N is the order of Markovianity.
A transition Tk is defined as (Sk, ak, Sk+i).

We first review the considered algorithms. The completion and the two recursions
in the NCSOa algorithm can be written as follows:
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where S[ak] indicates the soft-output value on ak and the exponential metric
is

The NCSOb algorithm is described by the following equations:

where the metrics 7fc(Tfc), i/jk(Tk_i,Tk) and 0fc(Tfc,Tfe+i) are defined as

The SO-NSD algorithm is obtained by applying the principle of SOVA and using
a metric at epoch k with the following expression (see Section 3.11.2):
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where we recall that MI[afc] = mSI[aJ. We remark that the SO-NSD generates
reliability values corresponding to LLRs (this is expected, since they derive from
metric differences). The generated soft outputs are obtained based on successive
updatings which depend on the particular channel realization, so that there is no
simple expression for the final generated LLR relative to an information symbol a^.
Since an LLR is just a normalized version of a soft output (i.e., in the logarithmic
domain it is the reliability of the bit being one assuming that the reliability of the bit
being zero is set to 0), we can define:

where S[afc] is the reliability, in the probability domain, relative to a*. From this
final reliability, the extrinsic information, i.e., the portion of the soft output to be ex-
changed in an iterative detection process, in the logarithmic domain, can be obtained
as follows:

More details about SO-NSD can be found in [162].
For the purpose of comparison, we consider two receiver schemes.

• In the first scheme, which will be referred to as separate detection and decod-
ing, the coding memory is somehow separated, at the receiver side, from the
channel memory. This means that there is a block dedicated to detection which
recovers the impairments introduced by the channel, and a block dedicated to
decoding which exploits the memory introduced at the transmitter side.

• In the second scheme, referred to ̂  joint detection and decoding, the memory
introduced at the transmitter side and the memory introduced by the channel
are exploited simultaneously.

Separate Detection and Decoding

In the first scheme, shown in Figure 4.35, we consider the serial concatenation of a
PCCC and a differential encoder. At the receiver side, noncoherent detection is sepa-
rated from the decoding of the PCCC. For this purpose, the code sequence at the out-
put of the PCCC is interleaved, by means of the block denoted by II in Figure 4.35 (a),
and differentially encoded. At the receiver, shown in Figure 4.35 (b), the detection
is performed by means of one of the described soft-output noncoherent algorithms,
designed to take into account differential encoding. The soft output of this noncoher-
ent block is then deinterleaved, by the block denoted by U"1, and sent to a standard
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Figure 4.35: Schemes with separate detection and decoding using the proposed soft-
output noncoherent algorithms: (a) transmitter and (b) receiver.

turbo decoder which provides symbol decisions after the iterations necessary for the
decoding process to converge. These iterations do not involve the soft-output nonco-
herent predetection block. The interleaver is placed before the differential encoder in
order to break up the dependence introduced by the PCCC. Differential encoding is
a simple way to obtain a noncoherently noncatastrophic code [150]. We remark that
in this case no further performance improvement is obtained by iterating between
the outer turbo decoder and the inner differential detector. Numerical results and a
comparison with a combined detection and decoding scheme relative to a PCCC will
be considered in the next section.

Joint Detection and Decoding

In this case, we first consider a PCCC. The receiver is based on a standard turbo
decoder, where each component decoder implements combined noncoherent detec-
tion and decoding, using one of the proposed noncoherent soft-output algorithms. In
this case, it is not necessary to use differential encoding if the constituent RSC codes
are noncoherently noncatastrophic [150]. We consider for example the case of the
systematic PCCC with rate 1/2 proposed in [33], where, for each transmitted sys-
tematic bit, an additional parity bit is transmitted, obtained by alternately puncturing
the coded bits generated by the two component encoders. The receiver is shown in
Figure 4.36, in which rjj.1' and r^ denote the channel observations relative to system-
atic and parity bits, respectively. In Figure 4.36, the soft outputs generated by each
component decoder are carried by dashed lines, whereas solid lines carry channel
(noncoherent) outputs.
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Figure 4.36: Receiver with combined detection and decoding for a PCCC of rate 1/2.
Reproduced from [162], ©2000 IEEE, by permission of the IEEE.

A remark on the role of switch S in Figure 4.36 is in order. Depending on its
position, two schemes for noncoherent iterative decoding can be obtained. In the
first one, referred to as asymmetric, the second soft-output decoder does not directly
use the channel outputs {rk }, suitably interleaved, relative to the transmitted sys-
tematic bits. This configuration is obtained when the switch S is in position "1." A
second scheme, referred to as symmetric, may be obtained when the switch S is in
position "2." The symmetric and asymmetric schemes are not equivalent for both
conceptual and practical reasons. Except for channels with constant or slowly vary-
ing phase over each data block, where both symmetric or asymmetric schemes may
be adopted, for a time-varying phase, only the asymmetric scheme exhibits good per-
formance. In fact, interleaving the channel outputs {rk } in order to pass them to the
second component decoder may increase the phase difference between consecutive
observations. Therefore, the performance of the symmetric scheme necessarily de-
grades. On the contrary, the asymmetric configuration is very robust with respect to
a time-vary ing phase, as will be shown in the numerical results. For a channel phase
constant over each data block, the symmetric scheme allows one to obtain a better
performance because the second noncoherent component decoder operates with a
double number of noncoherent channel outputs and, therefore, with a more refined
implicit phase estimation.32 This second component decoder is the bottleneck in the
asymmetric scheme and, for this reason, may require a larger value of the parameter
TV and thus have larger complexity.

We now show the performance when considering joint noncoherent iterative de-

32If puncturing is used, the number of channel outputs used by the second decoder may be more
than doubled.
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Figure 4.37: BER of the proposed iterative detection schemes using the NCSOb
algorithm with predetection (dot-dashed curves), combined detection and decoding
(solid curves), coherent decoding (dashed curves), and coherent predetection (dotted
curves). The numbers of iterations are 1, 3, 6, and 18 in all cases. Reproduced
from [162], ©2000 IEEE, by permission of the IEEE.

tection and decoding in the case of a PCCC, and compare the performance with that
obtained when considering separate detection and decoding. The performance of the
proposed schemes is assessed by means of computer simulations in terms of BER
versus Eb/N0, Eb being the received signal energy per information bit and 7V0 the
one-sided noise power spectral density. Unless otherwise stated, the channel phase is
assumed constant.

We consider the PCCC of rate 1/2, with 16-state RSC constituent codes with gen-
erators GI = (37)8, G2 = (21)8, and 256 x 256 inner interleaver described in [33],
and BPSK. The RSC code is noncoherently noncatastrophic. Therefore, differential
encoding is not used with combined noncoherent detection and decoding. The per-
formance of the considered schemes using the NCSOb algorithm and SO-NSD has
been evaluated. Numerical results for the NCSOb algorithm are shown in Figure 4.37
for various numbers of iterations (1, 3, 6, and 18, in all cases). A value of TV = 2
is used for the noncoherent predetection block of Figure 4.35 and each noncoherent
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soft-output decoder of Figure 4.36. A performance loss of about 3 dB at a BER of
10~4 is exhibited by the predetection scheme in Figure 4.35 with respect to coher-
ent combined decoding. This predetection scheme exhibits a loss of only 0.25 dB
with respect to a reference scheme which performs soft-output coherent differential
predetection followed by turbo decoding. This reference scheme is obtained by sub-
stituting the predetection block based on the NCSOb algorithm, with the coherent
FB algorithm operating on the differential encoder trellis (see [169-171] for similar
decoding schemes). An improvement of about 1 dB is achieved using noncoherent
combined detection and decoding and the asymmetric scheme (switch S in position
"1"). Considering the performance of a single component decoder, shown in [162],
the remaining performance loss of this combined scheme appears to be related to the
SNR threshold, above which the single component decoder performs well.

The performance of SO-NSD with combined detection and decoding is shown in
Figure 4.38 for the same PCCC. Both asymmetric (switch in position "1") and sym-
metric (switch in position "2") schemes are considered. For the asymmetric scheme,
the constituent decoders have33 TV = 8 and £' = 128 states, whereas in the symmetric
scheme these values are N = 8 and £' = 64 states. For comparison, the performance
for coherent decoding and 18 iterations is also shown. At a BER of 1CT4, the per-
formance loss with respect to coherent decoding is about 0.7 dB for the symmetric
scheme and 1.1 dB for the asymmetric scheme. The specific choices of parameters
N and f' correspond to levels of complexity such that the computer simulation time
is in the order of that necessary when using the NCSOb algorithm with N = 2. A
comparison of the NCSOb algorithm and SO-NSD for equal values of N shows the
superiority of the first scheme. Moreover, by employing the Fwd-only state reduction
techniques for FB algorithms introduced in Section 4.8, it is possible to decouple the
number of states from the parameter TV in the case of the NCSOb algorithm. This is
shown in the following example.

We consider a PCCC having the same component encoders as that considered in
the previous paragraph, concatenated by a 32 x 32 pseudorandom interleaver, i.e., we
consider an interleaver with reduced length compared with the previous case. At the
receiver, each noncoherent component decoder uses the Fwd-only RS-NCSOb algo-
rithm, and Q is the reduced-state parameter. The extrinsic information generated by
each component decoder is passed to the other one by following the heuristic method
discussed in Section 4.5. By trial and error, we found that the best performance is
obtained when the extrinsic information generated by both component decoders is
weighted by a parameter equal to 0.3. Figure 4.39 shows the performance of the re-

33When considering SO-NSD, the number of reduced states £' can be decoupled from the order of
Markovianity N by considering standard RSSD techniques [162].
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Figure 4.38: BER of the proposed receivers using SO-NSD with combined detec-
tion and decoding for asymmetric (dotted curves) and symmetric (dashed curves)
schemes. The numbers of iterations are 1, 3, 6 and 18 in both cases. The perfor-
mance for coherent decoding (solid curve) and 18 iterations is also shown. Repro-
duced from [162], ©2000 IEEE, by permission of the IEEE.

ceiver for various levels of state reduction, specified by the values of N and Q, and
compares it to that of a coherent receiver and a noncoherent receiver with N = Q = 2
and C — 64 (full complexity). In all cases, the considered numbers of iterations are
1, 3 and 6. The RS NCSOb algorithm with TV = 1 and C' = 16 (Q = 0) exhibits a
performance loss of about 3.2 dB at 6 decoding iterations with respect to the coherent
receiver. For N = 5 and f' = 64 (Q = 2), at a BER of 1CT4 a performance gain of
about 1.2 dB is obtained with respect to the full-state case with N = Q = 2 and the
same number of states (£ = 64).

The assumption of a channel introducing a phase rotation constant over each data
block, used in the derivation of the algorithms, may be removed for the asymmet-
ric scheme. Considering the presence of phase noise, modeled as a time-continuous
Wiener process with incremental variance over a signaling interval equal to cr^, we
investigated the robustness of the proposed algorithms for the system described in the
previous paragraph. In Figure 4.40, the performance of an asymmetric scheme with
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Figure 4.39: Application of the Fwd-only RS NCSOb algorithm to noncoherent de-
coding of a PCCC. Receivers with various levels of complexity are considered and
compared with a full-state receiver (with N = 3) and a coherent receiver. The con-
sidered numbers of iterations are 1, 3 and 6 in all cases. Reproduced from [156],
©2000 IEEE, by permission of the IEEE.

a 256 x 256 inner interleaver employing SO-NSD in the constituent decoders char-
acterized by N = 8 and f = 128 is shown. Various levels of phase noise with six
decoding iterations are considered. As shown in the figure, for a phase noise standard
deviation of 5 degrees, the performance loss, with respect to the case of phase noise
with zero jitter, is only 0.3 dB at a BER of about 10~4. It is interesting to note that, for
the considered range of BER values, the phase noise only affects the Eb/N0 threshold
above which convergence of the iterative process takes place—a larger phase noise
has the effect of increasing this threshold. Incidentally, we note that the robustness
of the proposed noncoherent algorithms to phase noise is higher for lower values of
the phase memory parameter TV. If a specific application requires a high robustness,
the NCSOb algorithm may be the proper option. In Section 4.9.3 an analysis of the
performance of noncoherent iterative decoding schemes for strong phase variations,
both with separate or combined detection and decoding, will be considered, together
with the insertion of pilot symbols. In that case, we will consider short block lengths,
much shorter than the length K = 65536 considered in Figure 4.40, and the robust-
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Figure 4.40: BER of the proposed detection scheme using SO-NSD with combined
detection and decoding for various levels of phase noise. In all cases, the number of
iterations is 6. Reproduced from [162], ©2000 IEEE, by permission of the IEEE.

ness will be reduced. This suggests that a long interleaver length, besides improving
the performance in the case of perfect CSI at the receiver side, can also increase the
robustness of noncoherent iterative decoding to strong phase variations.

We now analyze iterative noncoherent detection of SCCCs. We first consider the
concatenation of two interleaved convolutional codes [72]. A special case of this gen-
eral scheme is given by a serial concatenation of a convolutional code followed by
a nonuniform interleaver and a differential code [159,172]. This allows the separa-
tion of the noncoherent detector, which takes into account only the channel memory
(together with differential encoding), from the decoder corresponding to the convo-
lutional code. In this sense, this scheme belongs to the class of separate detection and
decoding schemes considered in Section 4.9.1. However, as this scheme is a special
case of SCCC, we present a few numerical results in the following.

The considered receiver is composed of two decoders concatenated by a dein-
terleaver as shown in Figure 4.41. The inner decoder is noncoherent and utilizes
the proposed algorithms. The outer coherent decoder uses a coherent FB algorithm.
Since the inner decoder operates on code symbols, the outer decoder has to provide
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Figure 4.41: Iterative decoding of serially concatenated interleaved codes. Repro-
duced from [162], ©2000 IEEE, by permission of the IEEE.

the a posteriori probabilities of these code symbols in order to perform iterative de-
coding.

We now show some examples relative to noncoherent iterative decoding of SC-
CCs. In the first case, we consider the concatenation of a 4-state NRNSC code with
generators GI = (7)8, G? = (5)8 and rate 1/2, and a 4-state RSC code with gen-
erators GI = (5)8, G2 — (7)8 and rate 1/2. A 256 x 256 nonuniform interleaver
is used [33]. The performance for various numbers of iterations, with N = 2 and
TV = 4, is shown in Figure 4.42 and compared with that of the corresponding coher-
ent system. One can again observe that the performance of the noncoherent receiver
at each iteration is lower-bounded by that of the corresponding iterative coherent sys-
tem for the same number of iterations. For 18 iterations, the performance loss of a
noncoherent iterative detector, with respect to that of a coherent iterative detector, for
TV = 4 is about 0.7 dB at a BER of 10~5.

In the second case, the overall code is composed of a concatenation of the 16-state
RSC code with generators GI = (37)8, G2 = (21)8 and rate-1/2, a 256 x 256 non-
uniform interleaver and a differential code. The corresponding transmission scheme
is shown in Figure 4.43. The performance using the NCSOb algorithm in the inner
differential detector is shown in Figure 4.44 for various numbers of iterations (1,3
and 10). The component noncoherent decoder assumes TV = 4. For comparison, the
performance of optimal coherent decoding of the RSC code and iterative coherent
decoding of the overall code is also shown. As one may observe, the performance
of the noncoherent receiver is obviously lower-bounded by that of the corresponding
iterative coherent receiver, for an equal number of iterations. For 10 iterations, the
performance loss of the noncoherent receiver with respect to that of the coherent
is about 0.3 dB at a BER of 10~5. At low BER, the iterative noncoherent system
outperforms the optimal coherent detector for the single RSC code. This behavior,
observed also in [159, 169-171, 173], is related to the fact that the concatenation
of a convolutional code and a differential code, through interleaving, may generate
a new code with better performance, even if the differential encoder has a unitary
coding rate. This is due to the recursive nature of differential encoding. In fact,
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Figure 4.42: BER of the proposed detection scheme using the NCSOb algorithm
with N = 2 (dashed curves) and N = 4 (dotted curves) for the serial concatenation
of two interleaved convolutional codes. For comparison, the performance of iterative
coherent decoding (solid curves) is also shown. The numbers of iterations are 1,3,6
and 18. Reproduced from [162], ©2000 IEEE, by permission of the IEEE.

in a serial concatenation, an interleaver gain is possible only for a recursive inner
code [72,170,171].

The performance of the predetection scheme considered in Figure 4.37 is now
further investigated in view of the results in Figure 4.44. As shown in Figure 4.37,
the receiver with prediction and inner noncoherent detection exhibits a loss of only
0.25 dB with respect to a reference scheme which performs soft-output coherent pre-
detection followed by turbo decoding. This result, theoretically analyzed in [174],
shows the intrinsic limit of schemes based on predetection and was not recognized
in [175], where the performance loss was erroneously interpreted as being due to the
noncoherent approach. An improved reference receiver, in which the iteration pro-
cess incorporates a coherent predetection block, was also considered. This scheme,
where extrinsic information is exchanged between the predetection block and the two
component decoders, exhibits a further performance improvement of only 0.25 dB
compared with the previously described reference coherent scheme and confirms the
intrinsic limit of predetection schemes. There are two possible alternative interpreta-
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Figure 4.43: Transmission scheme relative to a concatenated code constituted by an
outer rate-1/2 RSC code and an inner differential encoder.

tions for this result.

1. According to the first interpretation, differential encoding may render the over-
all concatenated code significantly worse than the original PCCC. In fact, by
adding an interleaver and a differential encoder a new code is obtained, whose
performance may be intuitively worse than that of the "practically optimal"
PCCC described in [33]. This interpretation does not contradict the results
obtained in Figure 4.44 and [169-171] for the concatenation of a differential
code and a convolutional code, where the resulting code is better than the sim-
ple convolutional code.

2. According to the second interpretation, the overall concatenated code may in-
deed be no worse34 than the original PCCC, but for this specific concatenation
the iterative decoding process may fail. This second interpretation is suggested
in [176].

34The overall code cannot be appreciably better than the original PCCC, whose performance is
close to the theoretical limit.
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Figure 4.44: BER of the proposed detection scheme using the NCSOb algorithm
with N — 3 (dashed curves) for the serial concatenation of a convolutional code, an
interleaver and a differential encoder. For comparison, the performance of iterative
coherent decoding (dotted curves) and optimal coherent decoding of the single con-
volutional code (solid curve) is also shown. In the cases with iterative detection, the
numbers of iterations are 1, 3, and 10. Reproduced from [162], ©2000 IEEE, by
permission of the IEEE.

4.9.2 Noncoherent Iterative Detection of Spectrally Efficient
Linear Coded Modulation

In this subsection we consider linearly modulated concatenated schemes with high
spectral efficiency, obtained by using TCM. As in Section 4.9.1, we distinguish two
groups of transmission scheme, namely a first group, where separate detection and
decoding is considered, and a second one, where combined detection and decoding
is considered.

Separate Detection and Decoding

The first considered class of spectrally efficient schemes uses coding structures based
on the concatenation of a turbo TCM (T-TCM) block followed by an inner differen-
tial encoder. At the receiver side, a noncoherent differential detector computes a
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Figure 4.45: Berrou-type PCCC followed by differential encoding on the modulated
symbols. Reproduced from [163] by permission of GET/Hermes Science.

posteriori bit probabilities which are passed to the following coherent turbo decoder.
As pointed out in the previous section, the introduction of inner differential encoding
allows one to obtain noncoherently noncatastrophic coding schemes [47,150].

The scheme proposed in [177] is basically a systematic PCCC of rate 1/3 followed
by a puncturer and a mapper. An immediate extension of this scheme to noncoher-
ent decoding is shown in Figure 4.45, where a sequence of independent bits {u^}
undergoes systematic turbo encoding. The code bits {6^} at the output of the turbo
encoder are punctured according to a suitable pattern [72]. The systematic and code
bits, after being serialized, are interleaved. After interleaving, they are grouped into
ra = Iog2 M bits and mapped to M-ary complex symbols, undergoing differential
encoding. In all block diagrams describing the proposed schemes, we associate solid
lines with binary symbols and dashed lines with complex symbols. Furthermore, we
use the symbols a& and Ck to denote, respectively, the input and output symbols of
the component encoders which are noncoherently decoded according to the described
algorithm. Note that the symbols {a^} are made independent by the interleaver.

The performance of the considered separate scheme is assessed by means of com-
puter simulations in terms of BER versus Eb/NQ. The considered noncoherent soft-
output algorithm is the NCSOb algorithm, with the max-log approximation [137].
The generated extrinsic information is weighted by a coefficient as described in Sec-
tion 4.5: the value of this coefficient, obtained by trial and error, is about 0.6 in all
schemes considered hereafter.

In Figure 4.46, the performance in the case of the code shown in Figure 4.45
is shown. The code is that proposed in [177], with internal random 32 x 32 inter-
leaver. The component RSC codes of the PCCC have generators35 GI = (37)g and
G2 = (21)8. The PCCC has rate 1/2: every 2 information bits (ra = 2) two code bits
(ra — ra = 2) are retained, with the puncturing pattern considered in [177]. After

35In the case of binary codes, for example RSC codes, we refer to the generators of the code as
i}. When referring to Ungerboeck codes, we indicate the generators of the code as {hi}.
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Figure 4.46: Performance of the system shown in Figure 4.45. The considered num-
bers of inner iterations are 1,3 and 5 in all cases. Reproduced from [163] by permis-
sion of GET/Hermes Science.

random bit interleaving, groups of m = 4 bits are mapped to a 16-QAM symbol.
It is important to observe that the particular chosen mapping (Gray, reordered, natu-
ral, etc.) does not seem to noticeably influence the performance of the noncoherent
system. This may be due to the presence of bit interleaving followed by differential
encoding. The spectral efficiency of this system is 2 b/s/Hz. The inner noncoherent
differential detector at the receiver side uses the RS-NCSOb algorithm, by reducing
the number of states to £' = 16. The order of Markovianity TV is set equal to 3 and
5. For comparison, we also show the performance of the equivalent coherent system
(i.e., considering differential encoding after the PCCC). In all cases, the iterations are
carried out in the outer coherent turbo decoder, and the numbers of considered itera-
tions are 1, 3 and 5. It is evident that there is a slight improvement in the performance
of the noncoherent system by increasing N from 4 to 6, and the loss, with respect to
the noncoherent case, is about 1 dB at BER values below 1CT4.

A similar scheme derived from one of the structures proposed in [72] is shown
in Figure 4.47. This scheme is basically composed of two parallel concatenated
Ungerboeck codes, and puncturing on information bits is considered before map-
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Figure 4.47: Benedetto-type PCCC followed by differential encoding on the modu-
lated symbols. Reproduced from [163] by permission of GET/Hermes Science.

ping. In the figure, a sequence of couples of information bits (uk , uk ) enter the
encoder. Both encoders receive this sequence and generate two sequences of coded
bits (b[ , bf '), but the systematic bits are punctured symmetrically in the two codes,
as shown in Figure 4.47. We simply consider differential encoding after mapping.
Strictly speaking, symbols {a^} are not independent as assumed in the derivation
of a noncoherent decoding algorithm. However, one can observe, through simula-
tions, that breaking this dependence by means of an interleaver (both bit-wise before
mapping or symbol-wise after mapping) does not yield substantial performance im-
provement. This behavior may be related to the implicit puncturing considered in the
outer PCCC, which, in a certain sense, decorrelates the bits carried by a modulated
symbol.

In Figure 4.48, the performance of noncoherent decoding of the code proposed
in Figure 4.47 is shown. The component 16-state recursive Ungerboeck codes of
the PCCC have generators h0 = (23)8, hi = (16)8, and h2 = (27)8 [72], and
there are two different 32 x 32 random bit-interleavers. A 16-QAM modulation
format is considered. The system has an efficiency of 2 b/s/Hz. As for the previous
scheme, we also consider the inner noncoherent detector with the number of states
reduced to £' = 16 and order of Markovianity TV equal to 3 and 5. For comparison,
the performance of the equivalent coherent system is also shown. The numbers of
iterations are 1, 3 and 6 in all cases. The performance loss of the noncoherent system
with TV = 5 with respect to the coherent system is about 1 dB.

We remark that the schemes considered in this subsection have a very low com-
plexity, since the inner noncoherent detector is relative to simple differential encod-
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Figure 4.48: Performance of the system shown in Figure 4.47. The considered num-
bers of iterations are 1, 3 and 6 in all cases. Reproduced from [163] by permission of
GET/Hermes Science.

ing. In particular, the proposed schemes show a much lower complexity with respect
to the schemes illustrated in the following section, where joint detection and decod-
ing of trellis codes is considered.

Joint Detection and Decoding

In this case, we consider coding structures which do not employ differential encod-
ing. The proposed schemes perform noticeably well in the case of ideal coherent
decoding, i.e., assuming perfectly known phase at the receiver side.

As shown in Section 4.9.1, SCCCs have remarkable performance (even better
than that of PCCCs) with very simple component codes [72]. However, this perfor-
mance is obtained at the expense of the spectral efficiency of the code. For example,
with rate-1/2 inner and outer convolutional codes, the overall code rate is 1/4. In
order to increase the efficiency of the serial code, an inner Ungerboeck code can be
considered, as shown in Figure 4.49. A similar structure was also considered in [178],
where an outer Reed Solomon code and an inner Ungerboeck code were used. Van-
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Figure 4.49: SCCC constituted by an outer convolutional code and an inner Unger-
boeck code. Reproduced from [163] by permission of GET/Hermes Science.

ous combinations of serial codes are considered, where the outer convolutional code
is a simple nonrecursive code [17,72], whereas the inner Ungerboeck code may be
a recursive systematic code [57] or a nonrecursive one [47]. It is worth noting that
interleaving is bit-wise. In fact, the coded bits generated by the outer encoder are
serialized and then interleaved. Figure 4.49 refers to the case of an outer rate-1/2
code and inner rate-2/3 code. After interleaving, the bits feed the inner encoder in
groups of two. The receiver is based on an inner noncoherent decoder of the inner
Ungerboeck code, which gives reliability values on the systematic bits of each mod-
ulated symbol (bits ajj/ and 0% in Figure 4.49) by using a noncoherent soft-output
algorithm. Obviously, the overall serial code is noncoherently noncatastrophic de-
pending on the characteristics of the inner Ungerboeck code. Hence, particular care
has to be used in choosing this code as noncoherently noncatastrophic [47,150].

In Figure 4.50, the performance of the serial scheme shown in Figure 4.49 is
presented. The outer code is NRNSC, with generators G\ — (7)8 and G2 = (5)8 and
rate 1/2. The inner Ungerboeck code is recursive and systematic, with generators
hQ = (23)8, hi = (16) s and h2 = (27) 8 [72]. The inner interleaver is a 32 x 32
pseudorandom bit-interleaver. The bits at the output of the inner code are mapped
to an 8-PSK symbol, considering reordered mapping [72]. The spectral efficiency of
this system is 1 b/s/Hz. The inner noncoherent decoder at the receiver side makes
use of the RS NCSOb algorithm. Various complexity reduction levels, denoted by
the couple (TV, Q), are considered. The order of Markovianity N ranges from 3 to
15, while Q is kept fixed to 2 ((' = 64 states). For comparison, the performance of
the equivalent coherent system is also shown, i.e., assuming perfect knowledge of the
channel phase at the receiver side. In all cases, the number of considered iterations
is 10. As one can see, for increasing values of the order of Markovianity N, the
performance of the noncoherent scheme approaches that of the coherent scheme. For
N = 15 the performance loss at a BER of 10~5 is around 1 dB.

In Figure 4.51, a coding structure as in Figure 4.49 is considered, with the same
inner Ungerboeck code of Figure 4.50 but considering an outer NRNSC code, with
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Figure 4.50: Performance of the system shown in Figure 4.49. The outer code has
8 states and the number of iterations is 10 in all cases. Reproduced from [163] by
permission of GET/Hermes Science.

generators G\ = (15)8 and GI — (13)g and rate 1/2. Hence, we replace an outer
8-state code with a 16-state code. As in the previous case, the noncoherent inner
decoder is identified by the couple (TV, Q). The order of Markovianity TV ranges
from 3 to 15, and Q = 1. The number of considered iterations for both the coherent
and noncoherent systems is 10. For N — 16 the performance loss of the noncoherent
scheme with respect to that of the coherent scheme is only 0.5 dB at a BER of 10~4.

In Figure 4.52, the performance of a serial structure as in Figure 4.49 is evaluated,
considering an outer rate-2/3 nonrecursive code with 16 states and generators GI —
(17)g, G?2 = (06) s and G% = (15)g [17] and an inner rate-3/4 nonrecursive code
with 8 states and generators GI = (040)8, G2 = (402)8, G3 = (240)8 and G4 =
(100)s [47]. The inner random interleaver is bit-wise, with length 1536. The spectral
efficiency is 2 b/s/Hz and we consider a 16-QAM modulation format at the output
of the inner encoder. The inner noncoherent decoder at the receiver side uses the
Fwd-only RS NCSOb algorithm. Various complexity reduction levels, denoted by
the couple (TV, Q), are considered. The numbers of iterations are 1, 5 and 10 in all
cases, and, for comparison, the performance of the equivalent coherent system is
also shown. The performance of this scheme is comparable with the performance of
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Figure 4.51: Performance of the system shown in Figure 4.49. The outer code has
16 states and the number of iterations is 10 in all cases. Reproduced from [163] by
permission of GET/Hermes Science.

the schemes of Figure 4.46 and Figure 4.48. A further performance improvement is
expected considering an inner recursive code [72].

Besides serially concatenated coding structures, it is interesting to explore the
possibility of deriving parallel concatenated coding structures suitable for combined
noncoherent detection and decoding. The scheme proposed in [179], employing 8-
PSK as modulation format at the output of each encoder, cannot be used when consid-
ering a noncoherent detection strategy. In fact, because of puncturing, the proposed
noncoherent soft-output algorithms fail. A simple explanation of this failure can be
given. It is easy to show that in this case the exponential metric 7fc(T)t) for the NC-
SOa algorithm, the metrics ^k(Tk-i,Tk) and (f)k(Tk^i,Tk) for the NCSOb algorithm
and the metric Xk(Tk) for SO-NSD reduce to 1 every other epoch. Hence, for every
other transition in the decoder trellis the forward and backward (only forward for
SO-NSD) recursions cannot be correctly extended. This problem obviously affects
the reduced-state version of these algorithms. On the other hand, the scheme pro-
posed in [72] can be directly employed for transmissions over noncoherent channels,
provided that the overall code is noncoherently noncatastrophic. With respect to the
scheme in [72], the only proposed modification consists of considering a single bit-
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Figure 4.52: Performance of the system shown in Figure 4.49. The modulation for-
mat is 16-QAM and the number of iterations is 1, 5 and 10 in all cases. Reproduced
from [163] by permission of GET/Hermes Science.

interleaver between the two Ungerboeck codes (as shown in Figure 4.53), instead of
considering a different bit interleaver for each bit stream. The two input bit streams
are serialized in a single bit stream before being interleaved. The interleaved bit
stream is then parallelized and undergoes trellis encoding. It can be verified that us-
ing a single interleaver instead of separate interleavers for each bit stream improves
the performance, at least at high SNR [180]. This is intuitively related to the fact
that low reliability values associated with the couple of bits embedded in the same
symbol may be better spread over the whole bit sequence. Hence, the receiver has
a structure similar to that of a turbo decoder, where each component decoder uses
the reduced-state noncoherent soft-output decoding algorithm previously introduced.
This scheme may be considered as a direct extension to spectrally efficient modula-
tion schemes of the noncoherent schemes proposed in [162] for binary modulations.

In Figure 4.53, we consider, for simplicity, the case of a turbo trellis encoder
where each of the component Ungerboeck encoders receives a sequence of couples
of information bits (a^, aj^) and generates a parity bit (cj^ in the upper encoder and
df in the lower encoder). Puncturing may be considered for one of the two infor-
mation bits (symmetrically in the two encoders): in the upper encoder the systematic
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Figure 4.53: Turbo trellis-coded scheme by Benedetto et al with 8-PSK modula-
tion. Puncturing may be embedded in the component Ungerboeck codes to take into
account QPSK modulation. Reproduced from [163] by permission of GET/Hermes
Science.

bit ck — ak is transmitted, whereas in the lower encoder the bit dk = aik is trans-
mitted.36 As shown in Figure 4.53, after interleaving the two original bit streams

(2)have to be separated in order to consider proper puncturing on a\k . This is possible
if the single interleaver is odd odd, i.e., if it maps the bits stored in odd positions
(bits {a^ }) to odd positions, so that they can be recovered after interleaving. In
this case, the single odd odd interleaver is equivalent to two separate interleavers. A
QPSK symbol is generated at the output of each component encoder. The spectral
efficiency in this case is 1 b/s/Hz.

Although the above scheme with QPSK has remarkable performance with co-
herent decoding, it can be observed that the performance noticeably degrades when
considering noncoherent decoding, due to the catastrophic nature of the code. This
motivates the following modification. The spectral efficiency remains unchanged by
eliminating puncturing, hence transmitting an 8-PSK symbol at the output of each
component encoder. In this case, both systematic bits at the input of each encoder
are mapped to the corresponding generated complex symbol (in Figure 4.53 we indi-

36The time instant of the second encoded bit is denoted by ik because of the presence of interleav-
ing.
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cate by dotted lines the supplementary connections which must be considered). This
means adding redundancy, at the cost of decreasing the robustness of the modula-
tion constellation. In the coherent case, the performance worsens, whereas in the
noncoherent case it improves. Combining modulation and coding when dealing with
a noncoherent channel cannot be carried out as in the case of an AWGN channel,
because the noncoherent catastrophic nature must be taken into account. Moreover,
based on an exhaustive search using different constellation mappings, it can be shown
that the receiver performance in the noncoherent case does not seem to be appreciably
influenced by the particular mapping rule (Gray, reordered, etc. [72]).

The last considered parallel scheme deserves some remarks about its noncoherent
catastrophic nature. By reducing the modulation constellation from 8-PSK to QPSK,
the code properties, in terms of modulated output symbols, may change. Hence,
a code may not be simultaneously noncoherently noncatastrophic with and without
puncturing. An open problem is the design of a good code for such a transmitter
structure when considering puncturing and QPSK. An important aspect to be consid-
ered is the rotational invariance of the component codes, taking into account punc-
turing and mapping. The methods proposed in [119,181,182] may be considered.
A relevant analysis concerning the rotational invariance of T-TCM schemes is ad-
dressed in [183], while in [184] a similar analysis is considered in the case of serially
concatenated TCM (SCTCM).

In Figure 4.54, we show the performance of noncoherent iterative decoding of
the code proposed in Figure 4.53. The component 16-state recursive Ungerboeck
codes of the considered scheme have generators h0 = (23)8, hi = (16)8 and h2 =
(27)s [72] and there is a single 64 x 64 pseudorandom bit-interleaver [33]. At the
output of each component encoder, both systematic bits are retained and mapped,
together with the parity bit, to an 8-PSK symbol. Reordered mapping is considered.
The system efficiency is 1 b/s/Hz. The two component noncoherent decoders have
a number of states reduced to £' = 64 and order of Markovianity N equal to 3 and
5. For comparison, we also show the performance of the equivalent coherent system.
The numbers of iterations are 1, 3 and 6 in all cases. Considering TV = 5 and 6
decoding iterations, the performance loss of the noncoherent scheme with respect to
the coherent scheme is about 1.5 dB.

Comments on Noncoherent Iterative Decoding of Spectrally Effi cient Linear
Coded Modulations

In the previous subsections, the communication schemes have been presented accord-
ing to the detection strategy, i.e., separate or combined detection and decoding. The
same schemes could have also been organized in terms of their spectral efficiency. In
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Figure 4.54: Performance of the system proposed in Figure 4.53. The modulation
format is 8-PSK and the number of iterations is 1, 3 and 6 in all cases. Reproduced
from [163] by permission of GET/Hermes Science.

fact, schemes with spectral efficiency of 1 b/s/Hz or 2 b/s/Hz have been considered.
The performance results may be summarized as follows.

• Schemes with spectral efficiency of 2 b/s/Hz: the coherent receivers show a
BER of 10~4 at an SNR between 5 and 6 dB, while the corresponding nonco-
herent schemes show a performance degradation of about 1 dB.

• Schemes with spectral efficiency of 1 b/s/Hz: the coherent receivers show a
BER of 10~4 at an SNR between 3 and 4 dB, while the corresponding nonco-
herent schemes exhibit a performance loss of less than 1 dB.

Taking into consideration the complexity of the receiver, it turns out that simple
schemes with separate detection and decoding offer a very good compromise.
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4.9.3 Pilot Symbol-Assisted Iterative Detection for Phase-
Uncertain Channels

In this subsection, we are concerned with noncoherent iterative detection for chan-
nels characterized by strong phase variations. Due to the underlying CMP in all the
considered soft-output noncoherent algorithms, even if they are derived assuming a
time-invariant channel phase modeled as a random variable uniformly distributed in
[0,2vr), they show a very good performance when considering a time-vary ing channel
phase, as partially remarked in Section 4.9.2.

In the following, the proposed schemes will be divided into two classes as well:
separate detection and decoding schemes and combined detection and decoding
schemes. We also introduce a suitable classification for the soft-output algorithms—
which can also be applied to other cases previously analyzed. The considered nonco-
herent soft-output algorithms can be generally defined as feed-forward or open-loop
(OL) algorithms, since there is an implicit nonrecursive phase estimate based on
a window of consecutive channel observations—in particular, these algorithms are
direct extensions of the NCSOa algorithm introduced in Section 4.7. In the follow-
ing, we will compare the performance of the proposed noncoherent algorithms with
the performance obtained considering closed-loop (CL) soft-output algorithms [185,
186], where the phase is recursively estimated. Before giving more details on OL
and CL soft-output algorithms, we note that in the remainder of this subsection, the
following model for the discrete-time observable is considered:

where {Ok} represents the discrete-time phase process,37 and {nk} are iid complex
noise samples with independent real and imaginary components of equal variance
cr2 = 7V0.

Closed-Loop Adaptive FB Algorithms

Although the theoretical framework developed in [185,186] for adaptive soft-decision
algorithms is quite general, we describe here only one instance of these algorithms
that is relevant to this specific application and to the proposed comparison. The ba-
sic idea of the CL approach is to view the set of all possible sequences a = af
as paths of a depth-K tree. Searching over all these sequences is required to ob-
tain the exact solution of the detection problem. The CL algorithm approximates

37It is assumed that the continuous-time phase process is slow compared to the symbol duration,
and thus a symbol-spaced matched fi Iter provides suffi cient statistics for detection.
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this solution by reducing the "optimal" tree search over all possible sequences a
to a limited number of sequences, according to a tree-pruning strategy. In particu-
lar, by applying the CMP, the sequence tree reduces to a trellis where the generic
state is, as usual, Sk = (nk-N, afcl]v)' m which the state Hk-N is relative to the en-
coder/modulator FSM. The parameter N > 0 is, in this case, a design choice and
determines the expanded trellis size.38 A transition in the expanded trellis is indi-
cated by Tk = (5fc, ak) = (p,k-N, ak-N)- ^n tms case' me APP can be approximated
as follows [186]:

where Ol
k(Sk) , i 6 {f, b} are forward and backward phase estimates, respectively,

which are obtained as described in the following. For the sake of simplicity, we will
simply use the notation Ol

k to indicate an estimate of Ok — the dependence on a state
Sk should be clear from the context. By defining

the soft output on the right-hand side of (4.231) generated by an adaptive CL algo-
rithm, which we denote by SCL[ak], can be written as

It is important to remark that we explicitly consider the dependence on the observa-
tion and the phase estimate only in the expression of the exponential metric 7fc 'c,
assuming an implicit dependence on it in the expressions of the quantities o^ and
flk+i. In [186], it is shown that the metric ^LjC(Tk) characterizing the completion
operation (4.235) can be written as

38N — 0 corresponds to the case Sk = M/c, i.e., there is no trellis expansion.
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where 9 is either Of
k or 0JJ+1, and (see [186] for details)

where the meaning of the parameter A, which is related to the recursive phase estima-
tion strategy, is clarified below. The quantities ak(Sk) and /?fe+1(5fc+1) in (4.235) can
be computed by means of forward and backward recursions, during which forward
and backward phase estimates are computed, respectively.

Let us consider the forward recursion. In general, it can be written as follows:

The phase estimate 9{ is updated in a per-survivor processing (PSP) fashion, using a
first order phase-locked loop (PLL). The PLL update equation is given by

where the transition T™ax (and the corresponding beginning state 5™**) is the one
determined by an add-compare- select operation similar to the one in (4.239), de-
rived by exchanging the summation operation J]Tfc .5fc l by a maximization operation

maxTfc.Sfc+1 . The backward recursion, during which a backward phase estimate 0£ is
updated, is similar to the forward recursion.

At this point, we would like to emphasize that the CL algorithm only keeps and
updates a limited number of phase estimates. Each of these estimates corresponds
to each of the survivors, i.e., each of the tree paths that are explored in the limited
tree search procedure. However, due to the recursive nature of the parameter update
equations, the entire memory of the channel is retained in each of these estimates (for
this reason, this class of adaptive algorithms is referred to as closed-loop adaptive al-
gorithms). This is a unique feature of the CL algorithm which allows almost coherent
performance for low phase dynamics. This feature is, however, one of its drawbacks
for fast phase dynamics, as will be evident from the results shown in the following.
In all considered transmission schemes where a CL detection strategy is used, pilot
symbols are inserted in the output modulated symbols, as indicated in Figure 4.55,
Figure 4.57, Figure 4.58.
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Open-Loop Adaptive FB Algorithms

We recall, for ease of comparison, the expression of the exponential metric
NCSOa algorithm:39

of the

Comparing the expressions in (4.237) and (4.241), it can be observed that there is
no explicit phase estimate involved in the metric 7°L. However, by proper manip-
ulations and slight approximations it is possible to interpret this metric as implicitly
performing phase estimation, based on a window of consecutive observations. More
precisely, observing that I0(x) ~ ex for sufficiently large x, and that, for a generic
complex number c, c = ce~jZc = 3ft(ce~jZc), (4.129) can be approximated as fol-
lows:

where the implicit phase estimates are defined as

39The current notation for the exponential metric is slightly different with respect to that used in the
description of the NCSOa algorithm in Section 4.7. This is expedient to make the comparison with
CL FB algorithms clearer.
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If 0(
k
N+l} ~ 0(

k
N\ then (4.242) can be further approximated as

For a time-invariant channel phase rotation, the last approximation is reasonable for
values of TV large enough [163, 187], while for a time-varying channel phase ro-
tation an optimal value of TV exists as will be evident from the numerical results.
Moreover, the final expression in (4.244) is formally identical to the corresponding
metric for the CL approach in (4.237), and clearly shows the connection between
7JpL(Tfc, r

k
k_N) and the implicit OL phase estimate 0k in (4.243). Since the OL

phase estimate depends on the current observation window, two consecutive esti-
mates Ok_\ and Ok are not explicitly related by a recursive formula. In this sense,
it is possible to interpret the phase estimation strategy embedded in (4.244) as open-
loop phase estimation, as opposed to the CL estimation in CL algorithms. In all the
considered transmission schemes with OL detection strategy, pilot symbols are in-
serted in the input information stream, as indicated in Figure 4.55, Figure 4.57 and
Figure 4.58.

Separate Detection and Decoding

In Sections 4.9.1 and 4.9.2, the schemes with separate detection and decoding were
based on the use of differential encoding before transmission over the channel. Hence,
the terminology "separate" is not formally correct since, in the detection process, be-
sides taking into account the memory of the channel, the memory introduced by the
differential encoder was also considered. A differential code is the simplest nonco-
herently noncatastrophic code [150], and its use allows one to overcome the unknown
phase rotation introduced by the channel. However, the insertion of pilot symbols is
an alternative simple way to combat the unknown channel phase rotation, making
the overall code noncoherently noncatastrophic. In Figure 4.55, a possible scheme is
shown. The output bits of a binary PCCC are grouped and mapped, through a memo-
ryless mapper, to modulated symbols {c^}. The pilot symbols can be inserted either
before mapping (for example Np binary pilot symbols could be inserted every TV^ in-
formation symbols) or after mapping (as complex pilot symbols). In either case, the
noncoherent adaptive soft demodulator (A-SODEM), which generates soft-output re-
liability values based on the received observations, must be given knowledge of the
pilot symbols insertion strategy. The considered noncoherent soft-output algorithms
have simply to take advantage of this knowledge. For example, if the pilot symbols
are inserted among the information bits as zero bits, the soft input SI[afc] (in the nat-



Applications to Wireless Communications 277

Figure 4.55: Parallel concatenated coding scheme with separate detection and decod-
ing: transmitter, channel and iterative decoder constituted by the concatenation of an
A-SODEM and a coherent turbo decoder. Reproduced from [129], ©2004 IEEE, by
permission of the IEEE.

ural or probabilistic domain) at an epoch k corresponding to the insertion of a pilot
bit is set as

If, instead, we consider insertion of pilot symbols among the modulated output sym-
bols {cfc}, a simple way to modify the basic exponential metric 7^ is that of assuming
that pilot symbols are sent as supplementary complex symbols. Considering a vector
notation, it is very simple to take into account the inserted pilot symbols. Basically, a
generic correlation sum Y^i=o rk-icl-i involved in this metric is extended by adding
an extra term relative to the inserted pilot symbol.

The performance of the proposed receivers is assessed by means of computer
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simulations mainly in terms of BER and frame-error rate (PER) versus Eb/N0, E^
being the received energy per information bit. The SNR loss due to the insertion of
pilot symbols is accounted for in all the results presented herein. In all cases, Np =
I pilot symbol is inserted every Nd symbols. The performance of the considered
systems under dynamic channel conditions is investigated. The time-varying phase
process {Ok} used in the simulations is a random walk with independent Gaussian
increments, with variance over a signaling interval equal to cr^. In the following, we
will also assume that any adaptive FB algorithm is in the min-sum form, while any
coherent FB algorithm is the standard FB algorithm [54]. In all presented results, we
assume that the initial forward and backward phase estimates (only forward in the OL
case and both in the CL case) are ideal. This assumption is justified, since insertions
of an initial and a final training sequence result in negligible bandwidth efficiency
and energy loss for the considered codeword lengths. In all systems examined in
this work, a number of simulations were run to roughly optimize the different system
parameters (e.g., TV, Q, Nd, A, etc.). However, for conciseness, only a limited number
of these results are presented in order to demonstrate the main conclusions.

In Figure 4.56, the performance of the PCCC-based separate detection and de-
coding scheme considered in Figure 4.55 is shown. The purpose of these simulations
is not to compare separate and combined strategies (see [186] for such a compar-
ison), but rather to compare CL and OL strategies in the specific case of separate
detection/decoding. In this case, the PCCC is almost identical to the combined
scheme [33] described earlier. The only difference is that at every epoch the two
output bits are mapped to a QPSK symbol with Gray mapping, resulting in an over-
all spectral efficiency of 1 bit/s/Hz. At the receiver side, the inner A-SODEM uses
either the OL FB algorithm or the CL FB algorithm. The iterative detection and de-
coding process can be characterized by /e external iterations between the A-SODEM
and the inner turbo decoder, and by I[ internal iterations in the turbo decoder. The
performance of the proposed adaptive algorithms is compared with the performance
of the corresponding coherent scheme. In all cases, the number of external iterations
/e is set to 5. In the CL case, for <JA = 5 degrees, the performance for TV = 0
(single-state decoder) is shown—it is the same either for I[ = 2 or /j = 3 internal
decoding iterations. The best performance is obtained in this case by considering
Nd = 4. When increasing the phase jitter to <JA = 10 degrees, the performance
for TV = 1 and /i = 2 internal decoding iterations is shown. As one can see, the
loss with respect to the coherent limit is significant. Increasing the pilot insertion
rate to Nd = 2, a performance improvement around 3 dB is observed at a BER of
10~4. In the OL case the A-SODEM uses the proposed noncoherent algorithm with
(TV, Q) = (7,3): /i = 2 and I\ = 3 internal decoding iterations are considered. For
<JA = 5 degrees the best performance is obtained with Nd = 16, while for crA = 10
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Figure 4.56: BER of the separate scheme with rate-1/2 PCCC and QPSK output
modulation. In all cases, 7e = 5 external iterations between the A-SODEM and the
turbo decoder are considered. Various numbers I\ of inner decoding iterations are
considered. In the CL case, the adaptive algorithm is characterized by TV = 0 for
CTA = 5 degrees and by TV = 1 for <JA = 10 degrees. In the OL case, the detection
algorithm is characterized by (N,Q) = (7,3). Reproduced from [129], ©2004
IEEE, by permission of the IEEE.

degrees with Nj = 8. Both for CTA = 5 degrees and u& = 10 degrees, increasing 1^
from 2 to 3 leads to a performance improvement of less than 0.3 dB. The complexity
with (/e, Jj) = (5, 2) is roughly comparable to the performance of the perfect CSI
scheme with It = 10 decoding iterations. As one can see, the OL approach is more
robust to strong phase variations with a reduced insertion rate with respect to the CL
case, i.e., with a reduced bandwidth expansion. However, this comes at the expense
of an increased number of states in the A-SODEM (Q = 3 corresponds to £' = 64
states).

Combined Detection and Decoding

We consider both an SCCC and a PCCC. The equivalent base-band discrete-time
transmission system of an SCCC is shown in Figure 4.57. The bit sequence {6/J
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Figure 4.57: Serially concatenated coding scheme with combined detection and de-
coding: transmitter, channel and adaptive iterative decoder. Reproduced from [129],
©2004 IEEE, by permission of the IEEE.

is encoded using an outer code and interleaved using a symbol-wise or bit-wise in-
terleaver. The resulting sequence of M-ary symbols {a^} is coded by an inner code,
producing the coded sequence {ck}. The resulting coded symbols are further mapped
to the complex symbols {c/-} and transmitted over an AWGN channel, which, in addi-
tion, introduces an unknown carrier phase offset. The statistics of the phase process
need not be specified at this point. The complex equivalent signal can be written,
after a suitable discretization process, as in (4.230). The receiver consists of an adap-
tive inner block, that jointly estimates the phase and produces soft information on
symbols {0^}, and a nonadaptive outer block that produces soft decisions on {a^},
as well as hard decisions for {bk}. The details of the inner adaptive decoder, which
can be either a CL or an OL FB algorithm, are discussed in the next section.

In Figure 4.58, a transmission scheme employing a PCCC is shown. In this case,
the PCCC is constituted by two component RSC codes. For simplicity, rate-1/2 RSC
codes are considered. After possible puncturing, the sequences of information and
coded bits are serialized, mapped to a BPSK constellation and transmitted over the
channel. At the receiver side, the turbo decoder consists of two adaptive component
decoders. It should be emphasized at this point that a combined detection scheme for
PCCCs, such as the one described here, can become quite complicated when higher
order constellations are used, as demonstrated in [186]. Therefore, only BPSK modu-
lation is considered in this case, while higher modulations are considered in conjunc-
tion with separate detection and decoding, as described in the following subsection.

The CL and OL algorithms are first compared considering iterative decoding of
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Figure 4.58: Parallel concatenated coding scheme with combined detection and de-
coding: transmitter, channel and iterative decoder constituted by two adaptive com-
ponent decoders. Reproduced from [129], ©2004 IEEE, by permission of the IEEE.

two SCCCs using combined detection and decoding. The first SCCC consists of an
outer 4-state, rate-1/2 convolutional code connected through a length-1024 pseudo-
random interleaver to an inner 4-state, rate-2/3 convolutional code.40 The respective
generator matrices are given by

The output symbols are mapped to an 8-PSK constellation with natural mapping,
40The constituent codes in all SCCC and PCCC schemes examined herein are properly terminated

using tail bits.
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Figure 4.59: BER of an SCCC with OL and CL inner decoding algorithm, for phase
jitter standard deviation CTA = 5 degrees and <TA = 10 degrees. The spectral ef-
ficiency is 1 bit/s/Hz. For comparison, the performance of the equivalent coherent
scheme is shown. In all cases, 10 decoding iterations are considered. Reproduced
from [129], ©2004 IEEE, by permission of the IEEE.

resulting in an overall code of spectral efficiency of 1 bit/s/Hz. The numerical results
for this system are shown in Figure 4.59, in terms of BER. For comparison, the
idealized performance of the equivalent coherent receiver, i.e., with perfect phase
reference, is also shown. In all cases, 10 decoding iterations are considered. In
the OL case, for increasing phase jitter the performance improves by reducing the
order of Markovianity N (N = 4 for CTA = 5 degrees and TV = 3 for CTA = 10
degrees) and the state reduction level (Q = 0 for o& = 5 degrees and Q — 1 for
CTA = 10 degrees). For the case of CL phase estimation, the considered number of
decoder states is (' = 4 and f' = 16, for CTA = 5 degrees and CTA = 10 degrees,
respectively, so that the overall complexity of the CL and OL receivers is roughly
the same. Simulation results show that for CTA — 5 degrees, the performance of the
CL-based and the OL-based receivers is almost identical at BER values of practical
importance. When increasing the phase jitter to 10 degrees, the CL scheme shows a
performance loss of 0.5 dB with respect to the OL scheme. A possible explanation for
this degradation is that CL estimation may result in losses of lock which are difficult
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to recover from. We remark that the CL scheme requires a double number of pilot
symbols to obtain a performance similar to that of the OL scheme. However, with
the considered values of Nj in the two cases (16 for the OL scheme and 8 for the
CL scheme), in order to support the same information rate the CL scheme requires a
bandwidth expansion of only 7% with respect to the OL scheme. Similar conclusions
can be drawn by looking at the PER curves (see Problem 4.10).

The second considered SCCC consists of an outer 4-state, rate-2/3 nonrecursive
convolutional code and an inner 4-state, rate-3/3 recursive convolutional code, con-
nected through a length-1024 symbol interleaver [188]. The outer encoder is obtained
by parallelizing two identical encoders with generator G0(D) as in (4.246), and punc-
turing every other coded bit. The inner code is essentially the antirotational invariant
version of Code 1 in [189]. As in the previously considered SCCC, the three output
bits are mapped to an 8-PSK symbol with natural mapping. The spectral efficiency
of the overall code is then 2 bits/s/Hz. The performance of the CL and OL schemes is
shown in Figure 4.60 and compared with the performance of the equivalent coherent
system. In all cases, 10 decoding iterations are considered. In the CL case the best
performance is obtained with Nj = 4, while in the OL case, the best performance
is obtained with N^ = 8. In the latter case, for increasing phase dynamics the best
performance is obtained by considering a reduced observation window (N = 4 for
CTA = 5 degrees and N = 3 for CTA = 10 degrees). Results on the PER (not shown
here) revealed similar behavior.

The performance of the two considered detection strategies for this communica-
tion system has been further analyzed by evaluating the SNR necessary to obtain a
prescribed BER of 10~3, at 10 decoding iterations, as a function of the jitter stan-
dard deviation cr&. The results are presented in Figure 4.61. Two curves for each
of the two detection strategies are shown. In the CL case, one curve corresponds
to Nd — 4, while the other curve is obtained by optimizing the insertion rate for
each specific value of the phase noise jitter standard deviation <JA. In the OL case,
both curves correspond to the optimized value 7V^ = 8: one of the curves corre-
sponds to the case with (TV, Q) = (5,2), while the other curve refers to the case
with (TV, Q) — (4,1). As one can see, the CL detection strategy is better than the
OL detection strategy for low phase jitter standard deviation, while it worsens for
increasing standard deviation. On the other hand, the OL approach is more robust at
high phase dynamics, and the SNR required to attain the desired BER is almost con-
stant for CTA < 5 degrees. Moreover, the optimized value Nd in the OL case does not
seem to depend on the phase jitter standard deviation CTA- As shown in Figure 4.61,
for increasing phase jitter the OL scheme with a short observation window (N = 4)
outperforms the one with a larger observation window (TV = 5). The same analysis
was carried out with the other considered communication systems, as well as with
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Figure 4.60: BER of an SCCC with OL and CL inner decoding algorithms, for phase
jitter standard deviation crA — 5 degrees and CTA = 10 degrees. The spectral effi-
ciency is 2 bits/s/Hz. For comparison, the performance of the equivalent coherent
scheme is shown. In all cases, 10 decoding iterations are considered. Reproduced
from [129], ©2004 IEEE, by permission of the IEEE.

PER as the performance measure, and the same conclusion was reached: there is a
threshold value for <JA of the order of 1 to 2 degrees, such that CL is better than OL
for <7 A values lower than the threshold, and OL is better than CL for <JA values higher
than the threshold.

In Figure 4.62, the performance of the PCCC scheme with combined detection
and decoding is shown. The component encoders are as in [33], with an inner pseudo-
random interleaver of length 1024. BPSK modulation is used, resulting in an overall
rate of 1/2, and spectral efficiency of 0.5 bit/s/Hz. In all cases, 10 decoding itera-
tions are considered. It can be seen that the performance of the CL receiver is 1.5 dB
worse than that of the OL receiver (at a BER of 10~3) for CTA = 5 degrees, while the
CL-based receiver does not work at all for a A = 10 degrees. To further investigate
this difference in performance between the OL and CL schemes, the FER is shown
in Figure 4.63. Note that the CL scheme is slightly better than the OL scheme (for
crA = 5 degrees) in terms of FER, while the situation is reversed in terms of BER.
This fact shows that a catastrophic behavior is observed each time a frame error oc-
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Figure 4.61: Eb/N0 required to obtain a BER of 10 3 at 10 decoding iterations versus
the phase jitter standard deviation cr&. Both the OL and CL strategies are considered.
Reproduced from [129], ©2004 IEEE, by permission of the IEEE.

curs in the CL scheme, which is very likely related to the loss of lock in the PLL.
This behavior was not noticed when considering SCCCs, in which case there is sub-
stantial agreement between BER and PER curves. A possible explanation is based
on the fact that the first component decoder of the turbo receiver can use a reduced
number of channel observables (due to puncturing). Hence, the very first iteration is
less effective than in the SCCC case, so that, if the observations are noisy, the CL-
based iterative receiver for a PCCC does not recover (in other words, the embedded
PLL cannot recover the channel phase rotation).

4.9.4 Linear Predictive Iterative Detection for Phase-Uncertain
Channels

The linear predictive detection schemes proposed in Chapter 3 for sequence detection
can be straightforwardly extended to the case of symbol detection. We review a
few preliminaries in order to derive linear predictive FB algorithms. We consider
the lowpass complex equivalent system depicted in Figure 4.34. We assume that
a sequence of K independent and uniformly distributed M-ary symbols {o-fc}^1,
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Figure 4.62: BER of a PCCC with OL and CL component decoding algorithms, for
phase jitter standard deviation <JA = 5 degrees and CJA = 10 degrees. For compar-
ison, the performance of the equivalent coherent scheme is shown. In all cases, 10
decoding iterations are considered. Nj = 16 in all the adaptive cases. Reproduced
from [129], ©2004 IEEE, by permission of the IEEE.

denoted by the vector a in the figure, feeds an encoder/modulator, which can be
modeled as an FSM with state /^and transition tk = (ajt, p>k)- The linearly modulated
continuous-time signal s(i, a) is obtained by letting the code symbol ck be carried by
a suitable shaping pulse p(t). Although suboptimal in the presence of a time-varying
channel, a matched-filter front-end with sampling rate of one sample per symbol can
be practically used, provided that the phase process is not affected by very strong
variations [114]. The resulting observation model is

where {nk} is an iid complex additive Gaussian noise sequence with variance per
component equal to a2 = N0. The channel phase process 9k is assumed stationary
and zero mean, and the autocorrelation sequence of the phasor process ej6/fc is denoted

A
by R0(n) — E{ejdk+ne J0k}, and is assumed known at the receiver side. In particular,
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Figure 4.63: PER of a PCCC with OL and CL component decoding algorithms for
phase jitter standard deviation CTA = 5 degrees and <TA = 10 degrees. For com-
parison, the performance of the equivalent coherent scheme is shown. In all cases,
10 decoding iterations are considered. 7V^ = 16 in all adaptive cases. Reproduced
from [129], ©2004 IEEE, by permission of the IEEE.

in the case of linear prediction with order41 TV, the metric can be expressed as (for
details, see Chapter 3)

where the prediction coefficients {p^ are obtained by solving a suitable Yule Walker
system, depending on the phasor autocorrelation and the state Sk (see Chapter 3). In
particular, in the case of equal-energy modulation the prediction coefficients become
independent from the state Sk-

41 Note that the prediction order coincides with the order of Markovianity if one sample per symbol
period is considered. In the case of oversampling, the prediction order is larger than the order of
Markovianity. This will be illustrated by considering a system where CPM is used.
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A very common model for the phase process {^} is a discrete-time Wiener pro-
cess [19] described by the following recursion:

where {Afc} are iid Gaussian increments with zero mean and variance cr^, descriptive
of the phase noise intensity. In this case, the autocorrelation of the process {e^k}
becomes R$(n) = exp(— n 0^/2). The case of a time-invariant random frequency
offset can also be incorporated by indicating the channel phase as 9k = ^k + ZnvkT,
where v is a random variable uniformly distributed in (—a/71, a/T), a is the normal-
ized frequency offset intensity, and T denotes the signaling interval. For this phase
model, assuming that the phase jitter and the frequency offset are independent, it
follows that

where sinc(x) = sin(7nc)/7nr.
As an example of application, we consider linear predictive iterative detection

of an SCCC. In particular, the considered SCCC is constituted by an outer 4-state,
rate-1/2 code connected through a length-1024 pseudorandom bit-interleaver to an
inner 4-state, rate-2/3 code—this is the code considered in Section 4.9.3. The output
symbols are mapped to an 8-PSK constellation with natural mapping. Pilot symbols
are introduced with a rate of 1 pilot every 16 information symbols. At the receiver
side, the inner decoder uses the proposed linear predictive FB algorithm, perform-
ing joint detection and decoding. The relevant numerical results are shown in Fig-
ure 4.64. For comparison, the performance of the corresponding coherent system is
also shown. In all cases, five decoding iterations are considered. We evaluated the
performance of the system for increasing phase jitter standard deviation a A (from
2 degrees to 10 degrees) and for various complexity levels, indicated by the couple
(TV, Q). In particular, the performance loss, with respect to the coherent system, con-
sidering (TV, Q) = (6, 2) and crA = 2 degrees is about 0.5 dB at a BER of 10"4. The
loss increases to 1.4 dB for <JA = 10 degrees.

The performance of this system is further analyzed in Figure 4.65, in terms of
BER versus phase noise standard deviation, for increasing values of the frequency
offset. The SNR is fixed to 4 dB in all cases. For TV — 5 and Q = 2, the proposed
iterative detection scheme is very robust to phase instabilities up to <JA = 10 degrees
and a = 0.01. A less complex receiver, with TV = 3 and Q = 1, has still acceptable
performance for low values of a& and a. The performance of the proposed scheme
degrades significantly for a > 0.02.



Applications to Wireless Communications 289

Figure 4.64: BER of an SCCC with 8-PSK and inner linear prediction at the receiver
side. Various receiver complexity levels are considered. For comparison, the perfor-
mance of the coherent system is also shown. In all cases, 5 decoding iterations are
considered.

As an interesting example, we consider the application of linear predictive sym-
bol detection techniques to the case of continuous phase modulation (CPM) trans-
mission. The decomposition approach to CPM proposed in [61] clearly shows that
any CPM can be interpreted as a serial concatenation of a continuous phase encoder
(CPE) and a memoryless mapper (MM). In particular, the CPE is a rate-l/L recursive
encoder with state sk = (c^-i , . . . , ak-L+i,V>k-L+i)> where L is the duration of the
frequency impulse characterizing the CPM signal and [ik is a p-ary variable which
is recursively updated according to fj,k = Rp[^tk_i -f a k ] , where Rp[*\ indicates the
integer remainder of * in base p. The integer p is related to the CPM modulation
index h: it holds indeed that h = k/p, with k and p relatively prime numbers. The
equivalent base-band CPM signal Sbt>(£,a) can be written as [61]

where the tilted phase t/j has the following expression:
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Figure 4.65: BER as a function of the phase noise standard deviation CTA for an SCCC
with 8-PSK, an inner linear predictive detector, Eb/N0 = 4 dB, various values of
frequency offset intensity and levels of receiver complexity. In all cases, 5 decoding
iterations are considered. Reproduced from [128], ©2003 IEEE, by permission of
the IEEE.

where f ( t ) is the CPM phase pulse and W(T) is a function of time only, not depending
on information symbols [61].

A simple and almost optimal receiver structure consists of a bandpass filter fol-
lowed by oversampling (see Appendix A for more details). Considering f3 samples
per symbol interval, the samples relative to the time interval at epoch k have the
following expression:

The bandwidth expansion, due to oversampling, in the front-end bandpass filter makes
the variance of the Gaussian noise sample n£ equal to /32cr2. As the channel noise is

/ . - . _ u\

white, it follows that {n^ } are independent. In this case, we assume that e? * is esti-
* j u j u. / («)/ (/?-!)/ (O)/ (/3-1)/ (O)/mated based on the sequence (rk_N, • • • , r^_N , • ? rfe_i 5 • • • > rfc-i ? rk •> • • •

, rj[.1 ' ). Figure 4.66 highlights the sliding window prediction strategy considered in
the case of oversampling. Different strategies, based on an expanding window of ob-
servations, could be considered. With the current estimation strategy, the prediction
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Figure 4.66: Sliding window linear prediction strategy in the case of oversampling
with J3 = 4.

order becomes N(3 and the basic exponential metric can be expressed as

where (e£)2 is the minimum mean square error (MMSE) in the current case with
oversampling. In particular, denoting by R°9~ (j) the autocorrelation of the oversam-
pled phase process {0£ }, it is possible to extend the MMSE problem in (3.172) as
follows:

where [pi] represent the prediction coefficients for the considered oversampled de-
tection strategy. Solving the MMSE problem (4.255) in order determine the predic-
tion coefficients {p°} leads to a Yule Walker system in the form R°p° = b°, where
R° is a square N/3 x N(3 matrix whose elements have, owing to the fact that
the following expression:

= 1,
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Finally, the MMSE in the case of oversampling is formally identical to the case with-
out oversampling, and has the following expression:

As an example of application of linear predictive detection to the case of CPM
signaling, we consider a serially concatenated scheme obtained by concatenating an
outer convolutional code and an inner Gaussian minimum shift keying (OMSK) mod-
ulator [17]. In particular, we refer to the GSM standard [190], where the outer code
is a 16-state NRNSC code with rate-1/2 and generator matrix

The outer code and the GMSK modulator are connected through a length-1024 pseu-
dorandom bit-interleaver [33]. The spectral efficiency of the overall code is 0.5
bit/s/Hz. At the receiver side, we consider j3 = 2 samples per symbol interval. The
numerical results are shown in Figure 4.67. As one can see, for sufficiently large N
and Q the performance loss, with respect to the coherent receiver, is within 1.2 dB
for crA < 10.

4.9.5 Noncoherent Iterative Detection for Slow Frequency
Nonselective Fading Channels

Considering, as a first approximation, the case of a time-invariant frequency nonse-
lective fading channel, an observation can be written as

where / is modeled as a complex Gaussian random variable with mean r// and vari-
ance cr^, 9 is modeled as a random variable with uniform distribution in the interval
[0, 2vr) and independent of the multiplicative fading coefficient, and nk is a complex
AWGN sample with variance per component equal to a2 = 7V0. The exponential
metric can be written as follows:
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0

Figure 4.67: BER of a serially concatenated scheme given by an outer convolutional
code and inner OMSK modulator. At the receiver side there is inner linear prediction
with a sampling rate of (3 = 2 samples per symbol. Various receiver complexity
levels are considered. For comparison, the performance of the coherent system is also
shown. In all cases, 5 decoding iterations are considered. Reproduced from [128],
©2003 IEEE, by permission of the IEEE.

Assuming that crj and \rjf are known, following the derivation in Section 3.11.3, it
is possible to obtain



294 Symbol Detection: Algorithms and Applications

where u = cr2/2cr2. By assuming a Rayleigh fading channel (r// = 0) and large SNR
(u ^> 1), the metric (4.260) can be further expressed as follows:

Considering finally equal-energy signaling (\ck — 1), the metric (4.260) can be fur-
ther simplified as

As an example of application, we consider transmission of an SCCC over a
Rayleigh flat fading channel with normalized Doppler rate foT = 0.01. The code
consists of an outer 4-state, rate-1/2 convolutional code connected through a length-
1024 pseudorandom interleaver to an inner 4-state, rate-1/2 convolutional code. The
respective generator matrices are given by

The output symbols are mapped to a QPSK constellation with Gray mapping, result-
ing in an overall code of spectral efficiency 0.5 bit/s/Hz. In Figure 4.68, the perfor-
mance, in terms of BER versus Eb/N0, Eb being the received energy per information
bit, is shown. In particular, the inner adaptive decoder/detector (using linear predic-
tion) makes use of an FB algorithm in the logarithmic domain (based on the max-log
approximation), whereas the outer coherent decoder is the coherent FB algorithm.
Various complexity levels, in terms of the couple (N, Q), are considered.

4.9.6 Linear Predictive Iterative Detection for Fading Channels

In this case, the observation r^ is modeled as follows:
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Figure 4.68: BER of an SCCC with inner noncoherent combined detection and de-
coding over a Rayleigh flat fading channel with normalized bandwidth /DT = 0.01.
In all cases, 5 decoding iterations are considered. Reproduced from [149], ©2003
IEEE, by permission of IEEE.

where {ck} is a sequence of linearly modulated (and possibly coded) symbols, {fk}
is a sequence of complex random variables, jointly Gaussian and with mean r?/, and
{nk} is a complex AWGN process with variance per component equal to a2 = N0.
The autocorrelation of this process follows the isotropic scattering model [21]

where J0(-) is the zero-th order Bessel function of the first kind and foT is the nor-
malized fading bandwidth. As rk is conditionally Gaussian, a possible approach to
the computation of 7^ consists of estimating rk based on the previous TV observations.
By introducing the modified observation42

the metric 7^ can be expressed as follows

42This is an extension of the approach proposed in [101] and was considered in [160].
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where

The prediction coefficients {pi } — {pi (Sk) } correspond to the solution of a Wiener Hopf
linear system Rp = b where R is a square N x N matrix whose elements have the
following expression

p = [pi • • • pjv]T is the unknown vector and 6 = [#/(!), fl/(2), • • •
As an example of application, we consider iterative detection of the same SCCC

considered in Section 4.9.5. The considered modulation format is QPSK. The nu-
merical results are shown in Figure 4.69. Comparing the BER performance in Fig-
ure 4.69, relative to linear predictive iterative detection, with that in Figure 4.68,
relative to noncoherent iterative detection, one can immediately recognize minimal
differences. This suggests that the performance in the case of finite memory detec-
tion depends ultimately on the finite memory parameter TV, rather than on the specific
considered detection strategy. For more details, see [149].

4.10 Summary

This chapter has been dedicated to MAP symbol detection based on the use of for-
ward backward algorithms. After deriving the forward backward algorithm in the
case of a memoryless channel for the exact computation of symbol a posteriori prob-
abilities, iterative detection and decoding has been introduced and described. The
concept of extrinsic information, exchanged in an iterative decoding process, has
been introduced and its impact on the process has been evaluated. Trellis-based finite
memory symbol detection, based on the forward backward algorithm, has then been
described as a particular instance of the general framework developed in Chapter 2.
State reduction techniques for forward backward algorithms have been thoroughly
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Figure 4.69: BER of an SCCC with inner linear prediction-based combined detection
and decoding over a Rayleigh flat fading channel with normalized bandwidth foT =
0.01. In all cases 5 decoding iterations are considered. Reproduced from [149],
©2003 IEEE, by permission of IEEE.

investigated and demonstrated, especially for ISI channels. Several examples of ap-
plications to wireless communications have been illustrated: noncoherent iterative
detection for phase-uncertain and fading channels; pilot symbol-assisted iterative de-
tection for phase-uncertain channels; linear predictive iterative detection for phase-
uncertain and fading channels.

4.11 Problems

Problem 4.1: Consider the linear block code considered in Problem 1.6. De-
rive an FB algorithm to be run over the time-varying trellis diagram relative to
the linear block code. Compare your solution with the general results presented
in [54,55,191].

Problem 4.2: Re-do the same derivation of Fwd-only RS-FB algorithms in
Section 4.8.1 considering an FMC rather than a CMP.

Problem 4.3: In [98, Section 3.2], the authors propose a method to alter the
convergence rate of iterative decoders, by filtering the soft information. Con-
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sidering the turbo decoder in Figure 4.3, this soft information filtering, when
applied to the values at the input of the second component decoder, consists
of replacing the extrinsic information S^'^aJ on a^ generated by the first
component decoder at the n-th iteration by the value cscai x Sj^'^fa/c] + (1 —
Cscai) x $n-l [ajb], where the parameter cscai e (0,1] can be chosen to adjust the
bandwidth of the corresponding filter. Compare this result with the heuristic
approach, based on multiplying the generated reliability value, in the logarith-
mic domain, with a multiplicative parameter 9 G (0,1] (use of this parameter
is considered, for example, for SOVA-based iterative detection in Section 4.5.3
and in reduced-state detection techniques proposed in Section 4.8). In particu-
lar, discuss the relation between 9 and cscai.

Problem 4.4: Verify by computer simulations that adding an interleaver be-
tween the 16-QAM mapper and the differential encoder in Figure 4.47 does
not modify the performance results shown in Figure 4.48. Try to justify this
result.

Problem 4.5: Considering a serial structure as in Figure 4.49, find a recursive
inner convolutional code such that, by keeping the spectral efficiency equal to
2 b/s/Hz, the performance is better than that of the code considered in Fig-
ure 4.52. Use computer simulations.

Problem 4.6: Show that for sufficiently large values of SNR and TV, assuming
that 0(N+1) ~ 0W in (4.243) is a good approximation for a time-invariant
channel phase rotation.

Problem 4.7: Verify by computer simulations that the performance results,
in terms of HER, shown in Figure 4.59 and relative to iterative detection of
an SCCC are qualitatively the same when considering the FER performance.
Compare this behavior with that of a PCCC shown in Figure 4.62 and Fig-
ure 4.63: in this case, performance results, in terms of BER and FER, are
different. Try to justify these different behaviors of PCCCs and SCCCs.

Problem 4.8: Let max *{xi , . . . , xn} = ln(exi + . . . + eXn).

A. Show that max*{max*{#1, rr2}, £3} = max*{o;i,X2,X3}.

B. Show that max *{xi,x2} = max{xi,^2} + ln(l + e ~ \ X l ~ X 2 \ ) .

C. Show that the exact FB algorithm can be formulated replacing the max
operator with max * in the max-log approximation.
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D. Discuss the computational complexity of the FB algorithm and compare
it with the complexity of the max-log FB algorithm.

Problem 4.9: Consider uncoded transmission of binary symbols ak £ {±1}
through a static dispersive channel with white noise discrete equivalent impulse
response / = (1,2, l)/\/6. Assume that the received sequence and the initial
state are as in Problem 3.14. Use the max-log FB algorithm to approximately
detect the sequence of MAP symbols {ak }7

k=0 and compare this result with
the MAP sequence found in Problem 3.14. What can you conclude? Compare
this result with that obtained in [148].

Problem 4.10: Consider the serially concatenated scheme in Figure 4.57. Us-
ing the same code as in Figure 4.59, verify that, when OL-based and CL-based
iterative detection with the algorithms described in Section 4.9.3 is carried out,
the performance in terms of PER is basically the same. Compare your results
with those in Figure 4.63 and comment on this.

Problem 4.11: In Section 4.9.4, linear predictive iterative detection of a serial
scheme given by the concatenation of an outer convolutional code and an inner
GMSK modulator is considered. At the receiver side, the inner linear predictive
detector is based on the decomposed representation of a CPM signal into a
sequence of a CPE and an MM [61]. Is it possible to extend this approach if
the CPM signal is represented as a superposition of pulse amplitude modulation
(PAM) waveforms [59,60]? If so, comment on the relative complexity of this
solution with that proposed in Section 4.9.4.





Graph-Based Detection: Algorithms
and Applications

5.1 Introduction

In this chapter, a graph-based approach to maximum a posteriori (MAP) symbol
detection will be applied to derive new algorithms for joint detection and decod-
ing. Namely, we introduce a factor graph (FG)-based approach to represent the joint
a posteriori probability (APP) of the transmitted sequence, and we apply the sum-
product (SP) algorithm to derive the desired symbol APPs necessary to implement
MAP symbol detection. After a brief description of FGs and the SP algorithm (for
more insights, the interested reader may refer to [79]), we will focus on the appli-
cation of the general framework introduced in Chapter 2 to perform graph-based
detection. By means of a factorization of the joint APP of the transmitted symbols
and application of the finite memory condition (FMC) introduced in Chapter 2, we
derive an FG representing both the code constraints and the channel model. In this
FG, the channel parameters are not explicitly represented since they are a priori aver-
aged out. The application of the SP algorithm to this FG leads to an iterative scheme
for joint detection and decoding. The above mentioned factorization is exact in the
case of channels with finite memory, such as a channel with known inter-symbol
interference (ISI), and approximate for channels with infinite memory. This latter
case includes a noncoherent channel and a flat correlated Rayleigh fading channel.
For these channels, the factorization is based on the application of the conditional
Markov property (CMP) introduced in Chapter 2. In the derived general FG, the

Detection Algorithms for Wireless Communications- G. Ferrari, G. Colavolpe and R. Raheli
©John Wiley & Sons, Ltd. ISBN: 0-470-85828-1

301

5



302 Graph-Based Detection: Algorithms and Applications

function associated with a generic factor node modeling the channel will be the same
basic metric (7^) used in the previous chapters. As already pointed out in Chapter 2,
detection strategies considered for Viterbi algorithm (VA)-based sequence detection
algorithms (in Chapter 3) and forward backward (FB)-based symbol detection algo-
rithms (in Chapter 4) can be systematically extended to derive graph-based detection
algorithms.

When the SP algorithm is run over the derived FGs, the computational complexity
is concentrated at the factor nodes modeling the channel. In fact, the computation
complexity at these nodes is, in general, exponential in the finite memory parameter
(or Markovianity order). Techniques for complexity reduction are therefore studied
and illustrated in the following. In a few particular cases of practical relevance, the
complexity of the proposed graph-based detection algorithms becomes linear in the
finite memory parameter. This does not happen in the same cases when detection is
performed by using the VA or the FB algorithm, suggesting that the use of FGs and
the SP algorithm might be computationally more appealing.

An alternative approach to graph-based detection for phase-uncertain channels
will be also considered at the end of this chapter. This approach is inspired by [192]
where a general framework to solve the problem of joint decoding and estimation, in
the presence of unknown parameters, is described. The approach is Bayesian, i.e.,
the channel parameters are modeled as stochastic processes with known statistics and
the use of FGs that include both code constraints and channel statistics is advocated
in a very general setting. The SP algorithm is then used to implement the MAP sym-
bol detection strategy. Since the channel parameters, which are continuous random
variables, are explicitly represented in the graph, the application of the SP algorithm
becomes impractical. To solve this problem, the method of canonical distributions
is adopted. We will show that the choice of the used canonical distribution becomes
crucial in determining the performance and the complexity of the derived algorithms.
In particular, we will show that this approach can produce, in some cases, algorithms
with better performance or lower complexity.

The graph-based algorithms described in this chapter are inherently iterative. As
a consequence, although they can be used to decode a general channel code, they are
particularly suited to turbo codes and low density parity check (LDPC) codes whose
decoding is iterative even when they are transmitted over a memoryless channel.
In almost all numerical results shown to illustrate the proposed algorithms, we will
consider LDPC codes since the methods described in Chapter 4 cannot be applied to
them unless trellis-based detection, performed by means of FB algorithms, is used.
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Figure 5.1: The FG corresponding to the factorization (5.1).

5.2 Factor Graphs and the Sum-Product Algorithm

We now briefly recall the basics of FGs and the SP algorithm. Let x = {xi, . . . , XN}
denote a set of variables and /(x) a multivariate function. Let B I , . . . , Bm denote
subsets of x. We say that f ( x ) admits a factorization with supports #1, . . . , Bm, if
/(x) can be written as the product of the functions {fj -, : j = 1, . . . , m}, where fj has
the variables in Bj as arguments. The FG representing the factorization / = Ylj fj is
a bipartite graph Q — {V, F ^ 8}, such that nodes in V (variable nodes) are associated
with the variables X{ G x, nodes in J7 (factor nodes) are associated with the functions
/j, and there exists an edge e € £ joining x^ and /j if and only if Xi £ #j (i.e., if X{
is an argument of fj). A cyc/e is a closed path in the graph and its length is defined
as the corresponding number of path edges. The length of the smallest cycle is the
girth of the graph.

Example 1. Let / be a function of five variables, and suppose that it can be
expressed as the product

In this case, m = 5, B\ = {xi}, B2 = {x2}, B3 = {x\, £2, x3}, B4 = {x3, x4}, and
Bm = {^4, £5}- The corresponding FG is shown in Figure 5.1. It can be observed
that in this graph there are no cycles. D

Example 2. Let / be a function of five variables, and suppose that it can be
expressed as the product

In this case, m = 5, BI = {xi}, B2 = {x2}, B3 = {xi,x2,x3}, ^4 = {x3,x4,x5},
and Bm = {x4, x5}. The corresponding FG is shown in Figure 5.2. As one can see,



304 Graph-Based Detection: Algorithms and Applications

Figure 5.2: The FG corresponding to the factorization (5.2).

there is a cycle of length 4 highlighted with thicker lines. Hence, the graph has girth
4. D

We now specialize the concepts introduced above regarding FGs to the derivation
of SP algorithms. Let now f ( x ) be a probability mass function (pmf). If the FG
corresponding to the factorization of / has no cycles, the marginal pmfs can be com-
puted exactly in a finite number of steps by the SP algorithm [79]. The SP algorithm
is defined by the computation rules at variable and factor nodes, and by a suitable
node activation schedule. Denoting by //^^.(o^) a message sent from the variable
node Xi to the factor node /j, by ^ f j ^ X i ( x i ) a message in the opposite direction,
and by Ai the set of functions fj having xi as argument, the message computations
performed at variable and factor nodes are, respectively [79]

where, following the notation of [79], we indicate1 by ^2~{Xi}
 me summary operator,

i.e., a sum over all variables excluding a^. It can be observed that the message sent
on an edge does not depend on the message previously received on the same edge,
i.e., only extrinsic information is exchanged [33],

If the FG contains cycles, convergence to the exact marginal pmfs is not guaran-
teed in general. Moreover, the SP algorithm is inherently iterative. Nevertheless, for
many relevant problems characterized by FGs with cycles, the SP algorithm has been

IThe symbol ~ usually indicates a proportionality relation throughout the book. The context
eliminates any ambiguity.
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found to provide very good results and therefore it represents a viable solution to
the approximated marginalization of multivariate pmfs when exact calculation is not
feasible because of complexity. Remarkably, the ubiquitous belief propagation (BP)
iterative decoding algorithm used to decode LDPC codes [80], the turbo-decoding
algorithm [33,79,193], turbo multiuser detection/decoding [194] and turbo equaliza-
tion algorithms [73,74] are instances of the SP algorithm or approximations thereof.

The messages in (5.3) and (5.4) may be also computed in the logarithmic domain.
Defining ~pfj_>Xi(xi) = l u ^ f j ^ X i ( x i ) andJIXi_f.(xi) = m/^/^), the message
computations performed at variable and factor nodes become

The implementation of (5.6) does not require multiplications but only additions and
the evaluation of a nonlinear function. In fact, by using the Jacobian logarithm [137,
195,196], it is well known that, if Xi and x2 are real numbers then

and ln(l + e ^ Xl ) is the nonlinear function whose evaluation requires a look-up
table. Evaluation of lu(exi + eX2 + • • • + eXn) can be done recursively [137]. A further
simplification of the updating rule (5.6) may be approximated by using the so-called
max-log approximation (see Section 4.3):

having denoted by max^{Xi} a maximization over all variables excluding xi.
A message passing schedule in the SP algorithm is the specification of the order

in which messages are updated. In general, especially for graphs with cycles, the
so-called flooding schedule is adopted [197]: in each iteration, all variable nodes and
subsequently all factor nodes pass new messages to their neighbors. This schedule
is well suited for a fully parallel implementation of the iterative detectors/decoders
presented in this chapter. Other schedules may be adopted, serial or mixed serial par-
allel, according to the specific implementation requirements.
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FGs and the SP algorithm can be also used to describe and marginalize a joint
probability density function (pdf) or even a joint pdf with some discrete probability
masses. In this case, in the computation of the messages at factor nodes, the sum-
mary operator involves integration with respect to the continuous random variables.
Obviously, in this case the implementation complexity of the exact SP algorithm is
impractical. A solution for this problem is suggested in [192] and consists of the use
of canonical distributions. In Section 5.7, we will consider several canonical distri-
butions, yielding different algorithms for joint detection and decoding over a channel
which introduces a strong phase noise.

FGs are a generalization of other remarkable graphs proposed in the literature.
In 1981, Tanner introduced the so-called Tanner graphs, which can be used to de-
scribe the LDPC codes [81]. LDPC codes are linear codes specified by a sparse
parity check matrix and were first introduced by Gallager [32] in their original reg-
ular version. A (dv, dc)-regular LDPC code, is a binary linear code such that every
code bit participates in exactly dv parity check equations and every check equation
involves exactly dc code bits. In other words, the corresponding parity check matrix
H has dv ones in each column and dc ones in each row. As originally suggested
by Tanner [81], LDPC codes are well represented by bipartite graphs in which the
variable nodes represent the elements of a codeword and the factor nodes, also called
in this case check nodes, correspond to the set of parity check constraints which
define the code. This graph can be drawn by direct inspection of a parity check ma-
trix H of the code. Regular LDPC codes are such that all nodes of the same type
have an equal number of edges. On the contrary, for irregular LDPC codes, the edge
degree of each node in each set is not equal but chosen according to an optimized
distribution [146,198,199]. In terms of performance, regular LDPC codes are only
slightly inferior to parallel and serial concatenated convolutional codes. However,
in their irregular version, they exhibit an impressive performance outperforming the
best known turbo codes [146,198,199].

The decoding algorithm for LDPC codes, the so-called BP working on the code
Tanner graph, is an instance of the SP algorithm [79]. We now review the BP decod-
ing algorithm. Let us denote by A a suitable message propagating on an edge of the
code Tanner graph. This message represents the logarithmic likelihood ratio (LLR)
related to the code bit corresponding to the variable node from which the considered
edge originates. At the ra-th iteration, we denote by A(m/u^c) a message sent from
a variable node to a check node and by A(m'c^) a message in the opposite direc-
tion. A variable node of degree dv receives and processes the messages Ajm~ >c~^v^
i = 1 , . . . , dv, and sends back to its j'-th (j = 1 , . . . , dv) neighboring check node the
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message [32, 80]

where A° is the initial message received by the considered variable node as a function
of the channel output corresponding to the considered code bit. When m = 1, the
variable node simply propagates its initial received message A°.

A check node of degree dc receives and processes the messages Ai , i =
1, . . . , dc, and sends back to its j-th (j — 1, . . . , dc) neighboring variable node the
message [32, 80]

It can be easily shown that the message computations (5.9) and (5.10) derive from
(5.3) and (5.4) (see Problem 5.2). The decoding algorithm proceeds iteratively until
the code parity check constraints are all verified or a maximum number of iterations
is reached. Although this decoding algorithm is provably optimal for bipartite graphs
without cycles [80], in practice it is necessary to only avoid cycles of length up to 4
to attain good performance [199].

In [200], in his PhD dissertation, Wiberg proposed the application of FGs beyond
coding and the introduction of hidden variable nodes representing the states of the
demodulator trellis. The resulting FGs, denoted as Wiberg graphs, do not have cycles.
The FB algorithm described in Chapter 3 can be interpreted as an instance of the SP
algorithm applied to these graphs with a natural forward backward schedule (see
Problem 5.3). Wiberg graphs will not be further considered in this chapter since
trellis-based MAP symbol detection was profusely analyzed in Chapter 4.

5.3 Finite Memory Graph-Based Detection

Without loss of generality, we assume that the code C admits an encoding function
//£, mapping information sequences a into the codewords c. As shown in Chap-
ter 4, the optimal MAP symbol detection rule minimizing the average symbol-error
probability is given by
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where P{ak r} denotes the a posteriori pmf for the k-th information symbol given
the received signal vector r = ( r 0 , . . . , r/^-i). The application of the SP algo-
rithm [79] to an FG representing the joint APP of the transmitted information se-
quence a conditioned on a given observation sequence r, allows the exact or approx-
imate computation of the marginal APPs P{ak r} [79]. Therefore, this algorithm
may be used to perform MAP symbol detection. From the definition of the encoding
function /x<r, one obtains the following factorization2:

where (i) the causality condition (2.16), (ii) the fact that the output signal pdf p(r)
does not depend on a, and (iii) the fact that the information symbols are independent,
have been used. The notation x[c — Me(a)] indicates the code indicator function,
equal to 1 if c is the codeword corresponding to a and to zero otherwise.

If the probability density function p(rk\r^~l, CQ), which appears in (5.12), satis-
fies the FMC (2.17) introduced in Chapter 2, one can write that

where C is the finite memory parameter. Substituting (5.13) into (5.12), the informa-
tion sequence joint a posteriori pmf P{a r} may be expressed as

The corresponding FG is shown in Figure 5.3 for C = 2, and represents both the code
constraints (described by x(c)) and the channel behavior. In general, the code con-
straint function can be also represented by means of an FG. This graph is a portion
of the overall graph and is connected with the graph representing the channel behav-
ior. With respect to SP-based decoding schemes for LDPC codes over a memoryless
channel, additional factor nodes must be added at the bottom of the graph, as shown
in Figure 5.3. These additional factor nodes perform a marginalization, based on the
channel model, without taking into account the code constraints. The complexity of

2In this chapter, we use extensively the proportionality relationship / ~ g, indicating that / = ag
for some real constant a, since the SP algorithm is defi ned up to scaling its messages by positive
factors, independent of the variables represented in the graph.
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Figure 5.3: Factor graph corresponding to the factorization (5.14) for C = 2. Repro-
duced from [201], ©2004 IEEE, by permission of the IEEE.

Figure 5.4: Factor graph corresponding to the factorization (5.12).

this marginalization is, in general, exponential in C. Note that in the derived FG,
the channel parameters are not explicitly represented since they are a priori averaged
out.

The FMC (5.13) is exactly verified in the case of channels with known ISI. In
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fact, in this case it holds that

where L is the length of the discrete-time channel impulse response. If the FMC
(5.13) is not verified in an exact sense, as for a noncoherent or a fading channel
(channels with infinite memory), an FG may still be devised. In other words, we
may build the FG corresponding to the factorization (5.12). This FG is shown in
Figure 5.4. However, the complexity of the message computation at the generic
factor node p(rk\rQ~l, c^)P{ak} would grow exponentially with k and thus become
impractical. Assuming that the CMP introduced in Chapter 2 holds, then one can
write:

where TV denotes the order of Markovianity and is such that N < C. This property,
in general adopted in all practical detection schemes, is intuitive in the case of time-
varying channels. In fact, in this case the conditional observations are asymptotically
independent for increasing epoch difference. Hence, although an approximation,
(5.16) can be applied in many practical cases with little discrepancy from the non-
truncated version. The resulting (approximate) expression of P{a r} becomes

where

The quantity 7/c(c^_c) is the equivalent of the basic exponential metric ~/k(Tk) intro-
duced in Chapter 2, where Tk = (Sk, ak) is a transition in a suitable trellis diagram.
In this case, there is no need to explicitly defined a state3 Sk, and we simply indicate
the sequence of consecutive coded symbols. The FG associated with (5.17) is shown
in Figure 5.5 for C = 2 (for simplicity, the arguments of {7^} are omitted).

The function (5.18) associated with the generic factor node modeling the chan-
nel is the same basic exponential metric used in the Viterbi algorithm when MAP
sequence detection is applied or in the FB algorithm implementing MAP symbol
detection (see the previous chapters). This fact suggests that all the solutions previ-
ously proposed for Viterbi and FB algorithms simply extend to graphical models. An

3The trellis diagram associated with a linear block code is usually time-variant [54], so that trellis-
based detection would be more complicated than graph-based detection with the SP algorithm. In
particular, the set of possible states could be time-dependent.
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Figure 5.5: Factor graph corresponding to the factorization (5.17) for C = 2. Repro-
duced from [201], ©2004 IEEE, by permission of the IEEE.

important application of the proposed class of graph-based detection algorithms is
related to stochastic channels. As in Section 2.3.2, we consider the following general
parametric model:

where L is an integer, 0J is a sequence of stochastic parameters independent from a,
and rik is an additive noise sample. As shown in Chapter 2, application of a CMP
with order of Markovianity equal to N is sufficient to guarantee an FMC where finite
memory parameter C = N + L. In this case, the function 7/t(c^_c) which appears
in (5.17) may be computed as

The quality of the convergence of the SP algorithm to the exact marginal probabil-
ities is, in general, determined by the girth of the graph. As an example, in designing
LDPC codes, cycles of length 4 must be avoided to ensure decoding convergence.
The FG derived from the proposed factorization has, in general, girth 4 (as one can
see in Figure 5.5). However, we verified by computer simulations that these length-4
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Figure 5.6: Complexity reduction in graph-based detection. The messages in some
of the incoming branches (dashed lines) are hard-quantized, so only the remaining
branches carry soft information to be used. The considered case corresponds to C ~
3andQ = 1.

cycles involving two factor nodes which model the channel behavior often do not af-
fect the convergence of the algorithm. If this is not the case, as for transmissions over
ISI channels, FG transformations can be adopted, as will be shown in Section 5.5.

5.4 Complexity Reduction for Graph-Based Detection
Algorithms

The complexity of the proposed graph-based detection algorithms may be reduced by
applying techniques similar to those described in Chapter 3 for VA-based detection
algorithms or in Chapter 4 for FB algorithms. In fact, by choosing an integer Q <
C, the updating rule (5.4) at factor nodes modeling the channel can be simplified
as follows: the C — Q symbols with highest reliability are hard-quantized based
on the messages on the graph, and the sum is performed over the Q symbols with
lowest reliability.4 In this way, the complexity becomes exponential in Q. With
respect to VA and FB algorithm, the complexity of graph-based detection algorithms
can be reduced more efficiently. In fact, symbols with the highest reliability can be

partial representation by using set partitioning can be also adopted.
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hard-quantized regardless of their position. On the contrary, when the VA or the FB
algorithm is used, the constraints imposed by the trellis structure are more stringent
(see Chapter 3 and Chapter 4 for more details). Figure 5.6 shows a graphical example.
A channel factor node (square) is associated with C + 1 variable nodes (circles). The
messages in C — Q = 2 of the incoming branches (dashed lines) are hard-quantized
and only Q = 1 incoming branch (solid line) carries soft information.

For equal-energy signals, a modified version of the described FG for noncoherent
and flat fading channels may be devised. In fact, in Section 5.6.3 we will show that for
fading channels the function p(r c) can be factorized into the product of functions
of two code symbols. For noncoherent channels this factorization is not exact but
involves a simple approximation. The SP algorithm on these modified graphs has a
complexity linear in C, allowing a low-complexity receiver implementation for all
practical values of C: in other words, no complexity reduction is needed.

5.5 Strictly Finite Memory: Inter-Symbol Interference
Channels

In this section, we consider graph-based detection for known ISI channels [202]. By
representing on an FG the joint APP of the transmitted symbols and applying to this
graph the SP algorithm, we derive a simple soft-input soft-output (SISO) algorithm
that can be used for turbo equalization [73]. The same approach and the resulting
detection algorithm is also considered in [203]. However, from the observation that
in general the FG describing the channel has cycles, the authors of [203] conclude
that the derived algorithm is suboptimal and therefore they discard this approach.
Unlike [203], it is possible to verify by computer simulations that when the girth
of the graph is at least 6, the performance is practically optimal. In addition, for
graphs of girth 4, we apply the SP algorithm to a new FG obtained by transforming
the original one. The resulting new algorithm has a negligible performance loss with
respect to optimal detection.

The proposed algorithms have a complexity which depends on the number of
non-zero interferers only. As a consequence, with respect to the FB algorithm, whose
complexity depends on the channel memory, the proposed algorithms are more suited
for sparse ISI channels, i.e., channels characterized by a large memory but a small
number of interferers, as may occur in high frequency transmissions due to multi-
path [204], With respect to other algorithms devised for sparse channels [204,205],
the proposed graph-based detection algorithms are more general.

Another advantage with respect to trellis-based FB algorithms consists of the
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intrinsic parallel structure of the SP algorithm with flooding schedule, allowing very
high-speed detection. This aspect is very important when an LDPC code is used and
turbo detection is performed. In fact, if detection is performed by using the proposed
algorithms, an overall graph taking into account both the code and the channel model
can be built, allowing combined detection and decoding in a fully parallel manner
without a complexity increase with respect to separate detection and decoding. On
the contrary, when the BCJR algorithm is used for detection, combined detection and
decoding is not possible and the serial structure of the BCJR algorithm prevents the
possibility of a parallel implementation of the receiver.

In the technical literature relative to applications of LDPC codes for magnetic
recording, the FB algorithm is often considered for soft-output detection relative to
the single channel [206-210]. In order to overcome intrinsic speed limitations of
the FB algorithm, several schemes have been proposed in which the FB algorithm
is run only once or one time each Kj iterations of the LDPC decoder [208-210],
although it has been shown that the best schedule is obtained for KI = 1 [203]. In
order to allow parallel joint detection and decoding, in [203] a version of the BCJR
algorithm with parallel schedule has been proposed. A very fast implementation of
the BCJR algorithm, based on the construction of a suitable tree structure, is proposed
in [211]. As already mentioned, the graph-based detection schemes considered in the
following represent an alternative solution to these problems.

Finally, as described in Section 5.4, the complexity of the proposed graph-based
detection algorithms can be reduced more efficiently. In fact, the interfering symbols
with highest reliability can be truncated regardless of their position.

5.5.1 Factor Graph

For an ISI channel, the observation at the output of a whitened matched filter (WMF)
[100] can be expressed as (see also Chapter 3 and Chapter 4):

in which {n/J are independent complex Gaussian random variables with zero-mean
and variance a2 per component, L is the channel memory, and / = {fe}i=Q rep-
resents the equivalent discrete-time channel impulse response, assumed perfectly
known at the receiver. The joint APP distribution of the transmitted symbols may
be expressed as
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Figure 5.7: Factor graph for an ISI channel with L = 4 and /2 = 0.

where

For an ISI channel with C = L = 4 and /2 = 0, the FG corresponding to the
global function given in (5.17) is shown in Figure 5.7. The graph representing the ISI
channel may have cycles. Hence, the application of the SP algorithm to this graph
leads to an iterative detection process. Since we are interested in the performance
analysis of the proposed graph-based detection algorithm, we limit ourselves to the
case of absence of coding. Hence, symbols {c^} can be assumed independent and
identically distributed and the upper part of the graph in Figure 5.7, representing the
code constraints, is not present.

As already mentioned, the graph representing an ISI channel may have cycles.
Let us introduce another parameter that is relevant for an ISI channel: the number J
of non-zero interferers. When J <C L, the channel is called sparse. The following
three possible cases can be distinguished.

1. If there is only one interferer (J = 1), the graph is cycle-free.5 In a cycle-free
graph, the SP algorithm computes exactly the APP for each variable, regardless

5In this case, if L > I — J, the original graph is composed of L independent subgraphs [205] on
which L independent instances of the algorithm can be run.
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of the considered schedule [212]. The use of a flooding schedule, rather than a
serial schedule starting from leaf vertices and with a natural termination [79],
has the advantage of allowing parallel detection at the expense of a complexity
increase, due to the need for iterative processing.

2. If the differences between the indexes of the channel interferers are all differ-
ent, the graph has girth 6.

3. If the previous conditions are not verified, the graph has girth 4.

In cases 2. and 3., the SP algorithm is approximate. However, as verified through
extensive computer simulations, if the girth of the graph is 6 and the channel is
minimum- or maximum-phase, after a few iterations the algorithm always converges
to the performance of the optimal FB algorithm. For mixed-phase channels, we ver-
ified that convergence is obtained when there is only a dominant interferer. How-
ever, a mixed-phase channel can always be converted into an equivalent minimum-
or maximum-phase channel. For graphs with girth 4, the proposed algorithm usually
does not converge. However, as will be shown in Section 5.5.2, the original girth-4
graph may be transformed into an equivalent girth-6 graph on which the SP algorithm
converges. In addition, we will see that the presence of a powerful channel code of-
ten helps the convergence even in the presence of cycles of length 4 in the part of the
graph describing the channel behavior.

Since the most demanding computation is that performed at factor nodes (com-
pare the updating rules (5.5) and (5.6)), we may define a cost per coded symbol of
the considered algorithms, indicated as costs as related to the above mentioned sum-
mary operations (see (5.6)). Hence, we may say that for the proposed algorithm
costfrop = I(J + 1)MJ+1, where / is the number of iterations performed. In fact,
for the computation of the M values of a message sent on one of the J + 1 edges
coming out from a factor node, a summary operation involving MJ terms is needed.
Note that the same unit can be used to measure the complexity of the BCJR algo-
rithm. In fact, as already mentioned in Section 5.2, this algorithm can be viewed
as the application of the SP algorithm to the cycle-free Wiberg graph of the chan-
nel [200]. Hence, functions associated with factor nodes are of the same form, and a
complexity comparison is fair. For the BCJR algorithm, the cost per coded symbol is
costfCJR = 3ML+1. In fact, for the forward (backward) recursion, the computation
of the ML values of the propagating message requires a summary operation involv-
ing M terms, whereas the computation of the M values of the marginal APP of the
/c-th symbol requires a summary operation involving ML terms. As may be observed
comparing costProp with costfCJR, the proposed algorithm is a valid alternative to the
BCJR for sparse ISI channels or when parallel detection is preferred.
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The described algorithm is similar to that, called bit-based message passing, de-
veloped in [203] for partial response channels. However, the authors of [203] ob-
served that the graph has cycles and therefore opted for the state-based message
passing which is the SP algorithm with a parallel schedule applied to the cycle-free
Wiberg graph [200] of the channel, that is a BCJR algorithm with parallel schedule.
This algorithm, which will be denoted in the following as p-BCJR, has a cost given

The complexity of the proposed algorithm may be reduced following the tech-
nique described in Section 5.4. However, in this case we have the further alter-
native of computing (5.6) summing over the Q interfering symbols with strongest
weights and substituting the remaining J — Q interfering symbols with a decision
made on the basis of the messages on the graph. In both cases, the cost becomes

The performance of the proposed detection schemes is assessed by computer sim-
ulations in terms of bit error rate (BER) versus Eb/N0, E^ being the received signal
energy per information bit and NO the one-sided noise power spectral density. The
performance of the BCJR algorithm for the same channel is given as a benchmark.
Although formally incorrect, since BCJR and p-BCJR algorithms are also instances
of the SP algorithm, the BER curves corresponding to the proposed algorithm are
labeled with SP in the following figures.

In Figure 5.8, we consider a sparse ISI channel characterized by L = 5, J = 2,
and the following discrete-time impulse response:

The FG corresponding to the channel has girth 6. In fact, the set of differences be-
tween the indexes of the channel interferers is {1,4,5} and they are all different (see
condition 2.). Uncoded binary phase-shift keying (BPSK) and 8-PSK modulations
are considered. It can be observed that the performance of the proposed algorithm
converges in 5 iterations to the optimal performance of the BCJR for both modula-
tion formats. In addition, one can note the dramatic performance improvement from
the first and the third iteration. Similar considerations also hold for multiamplitude
modulation formats such as quadrature amplitude modulation (QAM) schemes.

In Figure 5.9, the impact of the application of complexity reduction techniques to
the BCJR and the proposed algorithms is analyzed. The considered girth-6 minimum-
phase channel is characterized by L — 5, J = 2, and the following coefficients:

Also in this case, an uncoded BPSK modulation is adopted. A reduced-state 16-state
BCJR algorithm can be obtained by applying the state reduction techniques consid-
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Figure 5.8: Performance for a sparse ISI channel.

ered in Chapter 4. In particular, one can define a reduced state as (an-i, Q-n-2, fln-3?
an_4) and recover the symbol an_s in the survivor history. Hence, the only possi-
bility we have is the truncation, in the trellis definition, of the farthest symbol. The
proposed graph-based detection algorithm, instead, is not constrained by a trellis
structure and the interfering symbol with lowest weight may therefore be truncated,
regardless of its position (for the ISI channel in this example, symbol an_4). In the
computation of the messages at factor nodes, this symbol can be substituted with a
decision made on the basis of the messages on the graph. The advantage with respect
to a reduced-state BCJR algorithm, in terms of signal-to-noise ratio required for a
BER equal to 10~4, is about 1 dB, as shown in Figure 5.9.

5.5.2 Modified Graph

In [79], an FG transformation, called stretching, is introduced to obtain a cycle-free
graph. Denoting by Ni(xi) the set of variable nodes that can be reached from node
Xi through a path of length 2, one can replace any node xt G A/2(x;) with a node
representing the pair (x^, xg). In this way, it is possible for an edge (or a variable
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Figure 5.9: Performance in the case of complexity reduction.

node) to become redundant. Hence, it can be removed "without damage."
Our goal is to remove a minimum number of edges so that the girth of the trans-

formed graph becomes 6 instead of 4, and the complexity of the resulting SP algo-
rithm remains the same. As a consequence, we adopt the following stretching rule.

• Given an edge e connecting a variable node x^ to a factor node /,,, in order to
preserve the information lost by cutting this edge, we choose an arbitrary path
P(xi, fj) connecting Xi and fj and not involving e and stretch the variable node
Xi to all variable nodes xg E P(XI, fj).

Obviously, for a given girth-4 graph, there are different choices of edges such that
their removal can lead to a girth-6 graph. However, we verified that the application
of the SP algorithm to the resulting girth-6 graphs gives similar performance, even if
the minimum required number of iterations can be different, depending on the weight
of the interfering symbol whose corresponding edge has been removed.

An example of a girth-6 graph, obtained by transforming the girth-4 graph in
Figure 5.7, is shown in Figure 5.10 (considering the relevant part describing only the
channel behavior). In order to remove the edge connecting the variable node CQ to
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Figure 5.10: Part of the factor graph in Figure 5.7 after stretching.

factor node 74, one can choose the path c0 — 73 — 03 — 74 connecting CQ to 74 and not
involving the above mentioned edge, and stretch c0 to all variable nodes belonging
to this path, i.e., to c^. The SP algorithm applied to the transformed graph has a cost
given by cost™od = I(J + 1 — R)MJ+l, where R is the number of edges removed
per factor node. Hence, the complexity remains on the same order of magnitude.6

A further application of the described stretching rule to obtain a cycle-free graph
leads to a sort of Wiberg graph of the channel — the SP algorithm applied to this graph
becomes the state-based message passing algorithm described in [203]. We do not
further pursue this approach since it gives an unnecessary increase in complexity.

As an example, we now consider the so-called E2PR4 channel encountered in
magnetic storage systems [213,214], i.e., an ISI channel with L = 4, J = 3, and

An uncoded binary pulse amplitude modulation (PAM) with symbols a^ E {±1} is
considered. The corresponding graph, shown in the lower part of Figure 5.7, has girth
4. In this case, the SP algorithm, if directly applied to this graph, does not converge
to the performance of the BCJR algorithm, as shown in Figure 5.11, where a loss
of about 1 dB is observed, even for a large number of iterations. Therefore, a graph
transformation is expedient. By using the described stretching technique, we obtain
the graph in Figure 5.10. When run over this graph, the SP algorithm converges in
about 10 iterations to the optimal performance. In Figure 5.11, the performance of

6We are neglecting the increase in computational complexity at variable nodes related to the need
for a marginalization of the messages associated with the pair of symbols, since this computation is
limited with respect to that associated with the factor nodes.
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Figure 5.11: Performance of the SP algorithm on a modified graph.

the p-BCJR algorithm is also shown. We may observe that, even if for a sufficiently
large number of iterations this algorithm has an optimal performance, at least in
the considered BER range, for 5 and 10 iterations it performs worse than the SP
algorithm and exhibits an error floor. This floor has been already observed in [203],
where a precoder has been introduced to overcome this problem. Its presence is due
to the structure of the FGs. In fact, in the graphs of Figure 5.7 and Figure 5.10, the
message relative to a variable node rapidly propagates to other nodes, whereas in the
Wiberg graph this propagation, in the case of a parallel schedule, is slower.

We now consider the application of the derived algorithms to combined detection
and decoding (the so-called "turbo equalization") in the presence of an LDPC code.
Due to the structure of an LDPC code, an interleaver is not necessary. The considered
channel is still the E2PR4 magnetic channel and the modulation format is the above
mentioned binary PAM. Two LDPC codes are considered, namely (i) a regular (3,6)
code of rate 0.5 and codeword length 4000 and (ii) an irregular code of rate 0.82 and
codeword length 4095 [215]. Considering the SP algorithm on the original or the
modified graph, a maximum number of 150 iterations is allowed. When detection
is performed considering an inner block using the BCJR algorithm relative to an ISI
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Figure 5.12: BER in the case of application to LDPC codes.

channel, an inner detection step is executed at each outer LDPC decoder iteration
(for a maximum allowed number of iterations of 150). This choice has been shown
to be optimal in [203]. The BER performance, shown in Figure 5.12, demonstrates
that, in the case of a powerful channel code, the SP algorithm guarantees optimal
performance even on the original girth-4 graph. For the rate-0.82 LDPC code, the SP
algorithm run over the original graph exhibits a performance loss of about 0.5 dB,
whereas this loss is reduced to about 0.15 dB for the SP algorithm working on the
modified graph. Hence, side information provided in the iterative detection/decoding
process by the decoder of a powerful code helps the detector convergence, even in
the presence of cycles of length 4 in the part of the graph describing the ISI channel.

5.6 Applications to Wireless Communications

In this section, we consider the application of the described framework to the case of
noncoherent and flat correlated Rayleigh fading channels [201].
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5.6.1 Noncoherent Graph-Based Detection

The channel phase is assumed to be a time-invariant random variable 0 with uniform
distribution in [0, 2?r). However, application of the CMP leads to a detection algo-
rithm that can be used for slowly varying channels also. In this case, the order of
Markovianity TV coincides with the finite memory parameter C and the basic expo-
nential metric ik(c%-c) which appears in (5.17) can be expressed, based on (5.20),
as

where IQ(X) is the zero-th order modified Bessel function of the first kind. Unless
complexity reduction techniques are considered, such as those introduced in Sec-
tion 5.4, at the corresponding factor node the SP algorithm performs a marginaliza-
tion whose computational burden grows exponentially with C.

In Figure 5.13, the performance of the described detection algorithm, for differ-
ent values of C, is shown in the case of transmission of a (3,6)-regular LDPC code
with codewords of length 4000 [215]. A comparison with the performance of the
ideal coherent receiver is also shown (curve labeled "perfect channel state informa-
tion (CSI)"). The considered modulation format is BPSK and the maximum allowed
number of decoding iterations of the SP algorithm, with flooding schedule, is 200. A
pilot symbol every 19 code bits is added for ambiguity problems. This corresponds
to a decrease in the effective transmission rate, resulting in an increase in the re-
quired signal-to-noise ratio of about 0.223 dB which has been arbitrarily introduced
in the curve labeled "perfect CSI" for the sake of comparison. Hence, the gap be-
tween the "perfect CSI" curve and the others is uniquely due to the need for phase
estimation/compensation, and not to the rate decrease due to pilot symbols insertion.
Complexity reduction techniques are also applied to increase the phase memory C
with no complexity increase. Considering Q = 1 (i.e., fixing a low complexity level),
the performance of the ideal coherent receiver is approached for increasing values of
C.

5.6.2 Linear Predictive Graph-Based Detection for Phase-
Uncertain Channels

For a general time-varying phase process Ok, assumed stationary, zero-mean and de-
scribed by a given autocorrelation sequence of the phasor process {ejdk}, denoted by
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Figure 5.13: BER performance of an LDPC code transmitted over a noncoherent
channel. Reproduced from [201], ©2004 IEEE, by permission of the IEEE.

Ro(n) — E{e^n+fee~J^}, the linear predictive approach described in Section 3.11.4
for VA-based approximate MAP sequence detection and in Section 4.9.4 for approx-
imate MAP symbol detection based on FB algorithms can be adopted. In this case,
the probability density function 7/c(cj|:_c,) may be approximated, omitting irrelevant
constant terms, as

where, in this case, C corresponds to theprediction order, {pi}=i are the prediction
coefficients and G\ is the mean square prediction error. The prediction coefficients
{Pi}%=i can be computed by solving a Wiener Hopf linear system Rp = 6, where R
is a square C x C matrix whose elements have the following expression

A
P — [PI ''' Pc]T is the unknown vector, 6 = [/^(l), ̂ (2), • • • , ̂ (C)]1^, and
2d2 is the variance of the discrete-time complex AWGN samples. The mean square
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prediction error may be expressed as (see Section 3.11.4)

For PSK signals, the prediction coefficients and the mean square prediction er-
ror become independent of the considered sequence. In addition, approximating7

^iLi Pi » and taking into account that ck — 1, one obtains

where

This further factorization has a direct impact on the graph structure. In fact, each
factor node can be decomposed into C simpler degree-2 factor nodes. As an example,
for (7 = 2, the corresponding FG is shown in Figure 5.14 (for brevity, the arguments
of functions gk-ifk(ck^i,ck) are omitted). Hence, for increasing values of C, the
number of factor nodes increases linearly but the computational burden at each factor
node remains the same. In addition, in this modified FG there are no cycles of length
4 in the part of the graph modeling the channel. This approach can also be used when
the phase is time-invariant. In this case, as shown in Section 3.11.4 pi = l/C and
vl = 2a2.

In Figure 5.15, we compare the performance of this algorithm, denoted as "linear
predictive," with that of the algorithm described in Section 5.6.1, denoted as "nonco-
herent," in the case of a time-varying channel. The same code and modulation format
as in Figure 5.13 are adopted. The phase noise is modeled as a discrete-time Wiener
process with incremental variance over a signaling interval equal to <j\. The perfor-
mance of the algorithms, with the corresponding values of C optimized by computer

7This approximation is valid for large signal-to-noise ratios.
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Figure 5.14: Simplified overall factor graph for PSK signals and C = 2. Reproduced
from [201], ©2004 IEEE, by permission of the IEEE.

simulations, is shown for <JA = 6, 12, and 16 degrees. Both the proposed detection
algorithms are very robust, especially the linear predictive-based one which has been
designed taking into account the channel statistics.

5.6.3 Linear Predictive Graph-Based Detection for Frequency Flat
Fading Channels

We now consider the case of transmission over a flat Rayleigh fading channel. The
system model is the same as that considered in Section 3.11.5 and Section 4.9.6. As in
Section 5.6.2, the Markovianity order TV coincides with the finite memory parameter
C. The basic exponential metric 7fe(c^_c) which appears in (5.17) can be expressed
as

As for the detection algorithm in Section 5.6.2, the parameter C can be interpreted
as the prediction order, {pi}^=l are the prediction coefficients, and a\ represents the
mean square prediction error. Coefficients {p^ and the mean square prediction error
can be computed by solving a Wiener Hopf linear system, and in general depend on
the considered code sequence.
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Figure 5.15: Performance in the case of a time- varying channel phase. The value of
C is optimized in each individual case. Reproduced from [201], ©2004 IEEE, by
permission of the IEEE.

For PSK signals, the prediction coefficients and the mean square prediction error
become independent of the considered sequence. Taking into account that
after straightforward manipulations, one obtains:

= 1,

Substituting (5.31) into (5.17), it can be easily shown that the resulting joint a poste-
riori pmf of the information symbols can be expressed as (see Problem 5.7)
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Figure 5.16: Performance of graph-based finite memory detection in the case of a flat
correlated Rayleigh fading channel with /DT = 10~2.

where

The corresponding FG is similar to that depicted in Figure 5.14 and the complexity
thus becomes linear in C.

The performance of the described algorithm, considering the same LDPC code
and modulation format used for Figure 5.13, is shown in Figure 5.16. The normal-
ized Doppler rate of the flat fading process is foT — 10~2. For comparison, the
performance in the case of perfect channel state information (CSI) is considered.
Obviously, for increasing values of the finite memory parameter C, the performance
improves. In addition, due to the linear complexity of the detection algorithm, it
is possible to implement receivers with values of C higher than that used in Chap-
ter 3 and Chapter 4 for the VA or FB algorithm, respectively, and this allows a better
approach to the performance of a receiver with perfect CSI.
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5.7 Strong Phase Noise: An Alternative Approach to
Graph-Based Detection

In the case of communication over a phase-uncertain channel, possibly affected by
strong phase noise, we now develop new algorithms expanding upon the frame-
work described in [192]. As in the approach described in Section 5.3, the chan-
nel parameters are modeled as stochastic processes with known statistics and the
use of FGs and the SP algorithm will be considered to implement the MAP sym-
bol detection strategy. The difference with respect to the approach in Section 5.3 is
that the channel parameters are now explicitly represented in the graph. Therefore,
since these channel parameters are continuous random variables, the application of
the exact SP algorithm becomes impractical. To solve this problem, the method of
canonical distributions is adopted. By specializing the approach of [192] to particular
channel phase statistics and canonical distributions, several algorithms for noncoher-
ent detection of LDPC codes have been proposed [216-219]. As will be shown, the
choice of the canonical distribution becomes crucial in determining the performance
and the complexity of the derived algorithms.

In the literature, other approaches have been proposed to perform LDPC decoding
taking explicitly into account the stochastic channel parameters. In [50], the authors
consider a noncoherent channel model where the unknown carrier phase is constant
over a block of N symbols and independent from block to block (the so-called block
noncoherent channel), and detection algorithms for LDPC codes based on this model
are developed. A non-Bayesian approach is adopted in [220]: the channel parameters
are estimated by using the expectation-maximization (EM) algorithm, as originally
proposed in [221,222] for turbo codes, and the estimation algorithm is embedded into
the LDPC iterative decoding process. On the contrary, in [93] a class of problems is
identified for which the optimal (in the sense of the generalized-likelihood ratio test)
computation of the symbol a posteriori probabilities can be performed with polyno-
mial complexity and the application to LDPC codes transmitted over a noncoherent
channel is discussed. A comparison of the proposed graph-based detection algorithm
with some of these algorithms will be considered in Section 5.7.3.

5.7.1 System Model and Exact Sum-Product Algorithm

As considered in Chapter 3 and Chapter 4, the observation at the output of a generic
phase-uncertain channel can be expressed as follows:
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where {9k} is a channel phase noise process and {rik} are the independent and identi-
cally distributed Gaussian noise samples with variance a2 per component. As already
considered in Section 5.6.2, a common model for the phase noise process {9k} is the
random-walk (Wiener) model described by

where {Afc} is a discrete-time real white Gaussian process with Afc e A/"(0,cr*J.8

Assuming further that #0 has uniform distribution in [0,2?r), it follows that

where we define p&((j)) as the pdf of the increment A& mod [0,2?r), i.e.,

The Wiener phase noise model will be considered in the following as a working
assumption in order to derive efficient iterative detection and decoding algorithms.
This assumption will be relaxed in Section 5.7.3, where the proposed detection al-
gorithms will be applied to a DVB-S2-compliant model provided by the European
Space Agency (ESA) and described in [223,224]. This phase noise model considers
{9k} as the sum of the outputs of two infinite impulse response filters driven by white
Gaussian noise with unit variance, where the filters are chosen to fit an experimental
phase noise mask. The transfer functions of these filters are [223,224]:

where T is the symbol interval.
Let P(a, 0\r) denote the joint a posteriori probability distribution function9 of

the information symbols and of the phase noise vector 9, given r. Clearly, the desired
8 In the following, a complex circularly symmetric (real) Gaussian random vector v with mean m

and covariance matrix X will be denoted by v G A/^(m, S) (and by v e A/*(m, S)). We will denote
the multivariate complex circularly symmetric (real) Gaussian pdf with mean ra, covariance matrix
S and argument x by g<£(m, S, a;) (and by g(ra, S, x)).

9We use the term probability distribution function to denote a continuous pdf with some discrete
probability masses. For a probability distribution function we will use the symbol P(.).
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P{ak r} can be obtained by marginalizing P(a, 0\r) with respect to 9 and to all Q.J
for j ^ k. This can be accomplished in an approximate (but low-complexity) way by
running the SP algorithm on the FG of P(a, 0\r), as illustrated in the following.

From the definition of the encoding function JJL^ and the channel model (5.34),
one obtains the factorization

where we have used the fact that the output signal pdf p(r) does not depend on a, that
the AWGN channel for a given 9 is memoryless, and we have defined the functions

In the following, we will also assume that the information symbols are independent,
identically and uniformly distributed. As a consequence, P{a} = 1/MK, and this
term can be discarded. The FG corresponding to (5.40) is shown in Figure 5.17.

Assuming a first order Markov model for the phase noise, we can further factorize
the term p(0) as p(0) = p(00) fl^Li P&(0k ~ #fc-i)> obtaining

The corresponding FG, sketched in Figure 5.18, represents the starting point for the
derivation of the proposed algorithms.

The SP algorithm applied to the FG in the upper box, corresponding to the code
constraints, consists of the well-known standard BP whose efficient implementation
depends on the structure of the code € and needs no details here. Hence, we shall
concentrate on the SP algorithm message propagation in the lower part of the graph.
Omitting, for notational simplicity, the explicit reference to the current iteration, let
us denote by Pd{ck} the message from variable node ck to factor node fk, and by
Pu{ck} the message in the opposite direction (see Figure 5.18)—note that Pd{ck}
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Figure 5.17: Factor graph corresponding to (5.40).

Figure 5.18: Factor graph corresponding to (5.42).
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and Pu{ck} are, in general, reliability values which approximate the APPs. The
message Pd(@k) from factor node fk to variable node 6k can be expressed as

where C denotes the constellation of the code symbols. We also assume that in the
lower part of the FG, describing the phase-noise evolution, a forward backward node
activation schedule is adopted. Therefore, messages pt(0k) from factor node p<\(0k —
Ok-i) to variable node Ok, andpb(0k) from factor node p&(Ok+i — Ok) to variable node
Ok, can be recursively computed as follows:

with uniform pdfs as initial conditions:

The message Pu{ck} from fk to ck is given by

The vector of messages {Pu{ck} : fc = 0 , . . . ,K — 1} represents the observation (in
the form of a sequence of approximate APPs) of the coded symbols "seen" through a
virtual memoryless channel, and is processed by the upper part of the graph according
to the standard BP algorithm. At each iteration, this produces updated messages
{Pd{ck} : k = 0 , . . . , K - 1} and updated estimates of the APPs {P{ak r}}.

Equations (5.44), (5.45), and (5.47) form the main part of the SP algorithm for
iterative detection and decoding in the presence of phase noise.

5.7.2 Proposed Algorithms

It is clear that the implementation complexity of the exact SP algorithm is impracti-
cal, since the messages from and to the variable nodes [Ok] are continuous pdfs. In
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order to obtain practical algorithms, we follow the canonical distribution approach
proposed in [192]. This consists of constraining the messages from/to the contin-
uous variables to take values in a prescribed family of pdfs, that admits a compact
parametric representation. Hence, the message computation reduces to the compu-
tation of the pdf parameters. This representation can be exact or, more often, may
involve some approximations. In the latter case, finding good choices of the pdf pa-
rameterization, such that the resulting algorithm yields good performance and low
computational complexity is generally nontrivial. In the following, we discuss dif-
ferent options to attack this problem.

Discretization of the Channel Parameters

This case corresponds to letting the canonical distribution be a weighted sum of
impulses. This approach has been adopted for Viterbi- and BCJR-like receivers
in [173,217,225], respectively. We assume that the channel phase Ok may take on the
following L values: 6 = {0,27T/L, . . . , 2yr(L - 1)/L}.10 Obviously, this approach
becomes "optimal" (in the sense that it approaches the performance of the exact SP
algorithm) for a sufficiently large number of discretization levels, at the expense of
an increasing computational complexity.

Fourier Parameterization

The function /&(<%, Ok) defined in (5.41) is periodic in Ok- Hence, it can be expanded
in Fourier series. We use the well-known identity [110, equation (9.6.34)]

where Ii(x) is the modified Bessel function of the first kind of order L Letting, for
a complex number z, (f)(z) = arg(z), after some straightforward manipulations one
obtains

Substituting (5.49) into (5.43), we may express

10In [173], the authors state that for M-PSK signals, L — 8M values are suffi cient to have negligi-
ble performance loss.
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having defined

(e\
Note that for PSK signals, the expression of coefficient Ak , neglecting irrelevant
terms, simplifies to

The pdfs j9f (0fc) and Pb(@k) take on the same form, i.e., they are periodic as well
and can be expanded in Fourier series as

Substituting (5.50) and (5.53) into (5.44), one obtains

Note that, for practical values of CTA, the pdf PA(^) is essentially zero for argument 0
outside an interval centered on 0 of size much smaller than 2?r. Hence, one can write
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where

By using (5.56) in (5.55), it follows that

The above result leads to a forward recursion for the computation of the Fourier
coefficients {Bf'k}. The step at epoch k becomes:

where <g> denotes convolution of sequences. From condition (5.46), the following
initial condition can be derived:

where ^K(^) denotes the Kronecker delta function, defined in Chapter 4. Similarly, a
step in the backward recursion to compute the coefficients {#£ £} is given by

with initial condition

Note that the computation of these coefficients can be simplified taking into account
the following symmetries:

Finally, substituting (5.49), (5.53), and (5.54) into (5.47) and defining

one obtains
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The convolution of the infinite-duration Fourier coefficients can be effectively im-
plemented by truncation. In fact, a reduced number TV of coefficients must be taken
into account due to the fact that, for a given x, the sequence {^(x)} is monotoni-
cally decreasing for increasing values of L Standard smoothed truncation methods
(windowing) can be applied [155]. In particular, by means of computer simulations,
one can show that the Kaiser window [155] with an optimized parameter yields good
results, as will be shown in Section 5.7.3.

Tikhonov Parameterization

Consider (5.43). If the messages {Pd{ck}} were the exact probabilities of the code
symbols, it would hold that

We approximate p(rk\6k) by the Gaussian pdf with the same mean and variance (first
and second moment matching). It can be shown that this is equivalent to an ap-
proximation of p(rk\0k) by the Gaussian pdf at minimum divergence [35] (see Prob-
lem 5.10). By direct computation, one obtains:

where a^ and b^ are the first and second order moments of the discrete random vari-
able ck with pmf Pd{ck}, and are given by

Hence, we approximate p(rk\0k) ~ g^(ake^°k^2(T2 +
Gaussian approximation, it follows that

— ak
 2,rk), Under this



338 Graph-Based Detection: Algorithms and Applications

Substituting (5.73) into the forward recursion (5.44), one obtains

When the channel phase is slowly varying, i.e., for <JA — >• 0, p&(0k — Qk-i) =
0fc_i). In this case, the solution of the recursion given by (5.74) with initial condition
(5.46) is a sequence of Tikhonov pdfs, given by

where can be recursively computed as

with initial condition o^o = 0. Similarly, the solution of the backward recursion
(5.45) under the above approximations is the sequence of Tikhonov pdfs

where {ab,/c} can be recursively computed as

with initial condition ab K_I = 0. From (5.75), (5.77) and (5.47), it follows that

When the phase is rapidly varying, the approximation p&(Qk — Ok-\) —
Ok-i) does not hold any longer. However, one can show that good approximations
of the functions Pf(0k) and p^(9k) are still given by (5.75) and (5.77), where the
coefficients {a^} and {ab,fc} are updated by the following modified forward and
backward recursions
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where the real function F(XI, x2), of real arguments x\ and x% can be numerically
computed and stored in a look-up table. The motivation of (5.80) and (5.81) and
a closed-form approximated expression of the correction factor F can be derived as
described in the following. Consider the function

where 2 is a complex number and x and y are real numbers. By discarding irrelevant
multiplicative factors, we shall show that f(y) ~ where z\)
is a real function of |z and o\. This can be seen using the following approximation
which holds for large positive values of the real parameter a (in practice, a > 5):

In fact, for sufficiently large values of a, the Tikhonov pdf exp(a cos(;r — y))/27rI0(a)
has its support in a small interval around y. Hence, by using a second-order Taylor
expansion, it follows that cos(x — y) ~ 1 — (x — y)2/2. A normalization constant
has been further added to obtain a pdf.

The correction term F in (5.80) and in (5.81) can be derived using the approxi-
mation (5.83). In fact, we let
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where (a) follows from the observation that, for crA <C 1, the function exp[— (x —
2/)2/2<j^J has its support in a small interval around y, (b) and (d) follow from the
approximation (5.83) and (c) follows from the following property of a Gaussian dis-
tribution (see Problem 5.12):

The same relationship holds for complex Gaussian pdfs. Hence,

If pilot symbols are used and arranged in bursts (training sequences) separated by
long blocks of code symbols, as in the case of the DVB-S2 system [226], it is nec-
essary to slightly modify the algorithm in order to speed up the convergence process
and to avoid the risk of a phase ambiguity. In fact, consider the recursive integral
equation (5.44) from the second iteration on. If the product

contains a dominant exponential term, i.e., if there exists a value c £ C such that

where e is a real parameter to be optimized by computer simulation, it is preferable
to let O& = c and b& = c|2. Otherwise, one can choose o^ and bfc as in (5.71) and
(5.72). This corresponds to using a decision-aided scheme based on hard decisions
for some symbols {cfc}. Similar considerations also hold for the recursive integral
equation (5.45). In the numerical results relative to the DVB-S2 system, we found
that e = 1.5 yields satisfactory results.

Gaussian Parameterization

Another application of the canonical distribution approach consists of modeling the

phasor process hk = ek as a complex circularly symmetric Gauss Markov process
and treating h — (^o, . . . , fo/r-i) and the observation sequence r as jointly Gaussian.
This assumption yields the forward and backward recursions (5.44) and (5.45) in the
form of a Kalman smoother [227].
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As for the Tikhonov parameterization of the previous section, we impose a jointly
Gaussian structure on the observation {rk} and the phasor process {hk} by the ap-
proximation based on first and second order moment matching of the pdf of rk

given hk, i.e., we let p(rk\hk) ^ 9£ (akhk: 2cr2 + bk - ak\
2,rk) where the condi-

tional mean and variance of rk given hk are given by E{rk\hk} — akhk and by
VAR{rk\hk} — 2<J2 + bk — ak

 2, with a^ and bk given in (5.71) and (5.72), respec-
tively.

Under the Gauss Markov assumption for {hk} and the above joint Gaussianity,
we can define the "state" and "observation" equations by

where {vk} and {wk} are independent Gaussian processes with independent compo-
nents such that Vk € A/"^(0,1 — p2) and wk G jV(^(0,2cr2 + b^ — \&k\2)- F°r me

Wiener phase noise model, one obtains explicitly that p = e~a&/2. The time-reversal
process (HK-I, • • • , ̂ i, ^o) is also Gauss Markov [227] with state and observation
equations given by hk-i — phk + v'k and by rk = akhk + wk, respectively, where
{v'k} and {w'k} have the same statistics as {vk} and {wk}.

Under this model, we have p(hk\{rj : j ^ k}) = g^(mk^kjhk), where
the conditional mean and variance can be computed iteratively using the Kalman
smoother [227, 228]. The derivation of the Kalman filter via the SP algorithm is
given in [79]. The forward and backward recursions (5.44) and (5.45) are evaluated
explicitly by a repeated application of (5.85) and this following further property of
Gaussian distributions (see Problem 5.13):

Let rafc|jfe_i,Efc|fc_i be the conditional mean and variance of hk given {r, : j =
0 , . . . , & — 1} (prediction) and mk\k and E^ be the conditional mean and vari-
ance of hk given {TJ : j = 0, . . . , & } (filtering). Similarly, let / / fc | fe+i j^fc |A;- i be
the conditional mean and variance of hk given {rj : j = k + 1 , . . . , K — 1} (back-
ward prediction) and jt/fc | j fc and S^ be the conditional mean and variance of hk given
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j = &, . . . , K — 1} (backward filtering). The resulting recursions are given by

for A: = 0, . . . , K — 1, with initial conditions E0|-i = 1 and ra0|-i = 0, and by

for fc = K — 1, . . . , 0, with initial conditions
Finally, for each fc we obtain

= 1 and P,K-I\K = 0.

It remains to find an expression for the message Pu(ck), that is, the probability of the
code symbol ck given the observation rk and the phasor estimate hk € A/^m/c, Ejt).
We let /ifc = Rke

j°k and, after some manipulations, we obtain (see Problem 5.14):

The above integral can be easily computed using Gauss Laguerre quadrature rules [23].
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Figure 5.19: Performance of the algorithms based on discretization of channel pa-
rameters and Fourier parameterization. BPSK and two different phase models are
considered.

5.7.3 Numerical Results

In this section, we assess the performance of the proposed schemes. Unless otherwise
stated, the considered code is a regular (3,6) LDPC code with codewords of length
4000 [215]. A maximum of 200 iterations for the SP algorithm on the overall graph
is allowed, and BPSK is the considered modulation format. Pilot symbols are in-
serted in the transmitted codeword in order to make the iterative decoding algorithms
bootstrap. As previously observed, the gap between the "known phase" curve and
the others is uniquely due to the need for phase estimation/compensation, and not to
the rate decrease caused by the insertion of pilot symbols.

In Figure 5.19, two of the algorithms described in Section 5.7.2 (discretization
of channel parameters and Fourier parameterization) have been considered, assum-
ing the insertion of a pilot symbol every 20 transmitted symbols. The ESA phase
noise model and a more severe Wiener model (5.35) with CTA = 6 degrees have been
considered. This latter case has been used to stress the robustness of the described
schemes to a strong phase noise and to select the best algorithm, from a performance-
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complexity trade-off point of view, to be used for high order modulations. In the case
of the ES A model, all the receivers were designed by assuming a Wiener phase noise
model with crA — 0.3 degrees.

In the case of the Wiener model, different values of the number L of discretization
levels and different values of the number N of considered Fourier coefficients have
been considered. No improvement has been observed for L > 16 and this is in
agreement with a result in [173]. Similarly, values of TV > 17 are not considered
since they do not produce any performance improvement. Therefore, the value of
N = 17 (i.e., —8 < i < 8 in all the equations of Section 5.7.2) can be considered as
optimal for CTA = 6 degrees. Hence, a gap of about 0.2 dB with respect to the curve
labeled "known phase" is only due to the loss in channel capacity for a time-varying
channel phase.

In the binary case considered in the previous figure, the proposed algorithms have
a practically optimal performance and a similar complexity. However, for a modu-
lation format characterized by a more dense constellation, if for the discretization-
based algorithm the optimal number of discretization levels, and thus the complexity,
must be increased, it can be expected that the number TV of considered Fourier coef-
ficients in the proposed algorithm remains practically the same. This aspect is shown
in Figure 5.20, where QPSK (M = 4) is used. The phase noise has CTA = 6 degrees
and even in this case we have a pilot symbol in every block of 20 transmitted sym-
bols. For the discretization-based algorithm L = 8 x M = 32 quantization levels are
considered, whereas for the algorithm based on Fourier parameterization, the number
of Fourier coefficients is still TV = 17.

In Figure 5.21, the performance of the algorithms based on Tikhonov and Gaus-
sian parameterizations is shown under the same conditions as Figure 5.19. One
can observe that, despite the very low complexity, these algorithms have practi-
cally the same performance of more computationally demanding algorithms based
on discretization and Fourier parameterization. This fact can be also observed from
Figure 5.22, where all the considered algorithms are compared for a Wiener phase
model with crA = 6 degrees. In this figure, the performance of two other algorithms
described in the literature is also shown for the sake of comparison: the first one is
the "ultra fast" algorithm with overlapped windows described in [93], with the value
of TV optimized by computer simulation; the second one is based on the EM algo-
rithm [220-222]. In order to adapt the algorithm to a time-varying channel phase,
different phase estimates are computed for each code symbol, taking into account
the contribution of the adjacent symbols belonging to a window whose dimension is
optimized by computer simulation. For this reason, the algorithm is denoted by EM
with sliding window (EM-SW). We found that the optimal window has a width of
60 symbols for the considered phase noise. In both cases, the performance loss is
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Figure 5.20: Performance of the algorithms based on discretization of channel pa-
rameters and Fourier parameterization. QPSK and the Wiener model with crA = 6
degrees are considered.

due to the fact that these two algorithms are designed for a different phase model,
i.e., a block-constant phase. Based on the above experiments and on extensive nu-
merical evidence, it is possible to conclude that all the algorithms proposed in Sec-
tion 5.7.2 exhibit a practically optimal performance (i.e., they perform as well as the
discretization approach). Among them, those based on Tikhonov and Gaussian pa-
rameterizations, because of their low complexity (roughly equivalent to that of the
EM-SW algorithm), represent the best candidates. For this reason, these two al-
gorithms will be considered in the remaining results. By comparing the results in
Figure 5.22 with those in Figure 5.15, one can also observe that, for CTA = 6 degrees,
the linear-predictive algorithm described in Section 5.6.2 has a practically optimal
performance, although with a complexity higher than that of the algorithm based on
Tikhonov parameterization.

The sensitivity to distributions of the pilot symbols is considered in Figure 5.23.
In the case of the Wiener model with cr/^ = 6 degrees, two different distributions
are considered, namely 1 pilot symbol in each block of 20 consecutive bits and 20
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Figure 5.21: Performance of the algorithms based on Tikhonov and Gaussian param-
eterizations. BPSK and two different phase models are considered.

pilots in each block of 400 consecutive bits (hence, the effective transmission rate is
the same). We may observe that the algorithm based on Tikhonov parameterization
is almost insensitive to the pilot symbol insertion strategy thanks to the algorithm
modification described in Section 5.7.2. A similar modification is not possible in the
case of the algorithm based on Gaussian parameterization, since it can be shown that
the choice of a dominant term corresponds to a hard decision based uniquely on the
decoder outcome Pd{ck}- We verified that this modification of the algorithm does
not provide any performance improvement. Note that, in general, the distribution of
the pilots has to be optimized for the specific detection algorithm employed.

Finally, we consider the application of the algorithms to the DVB-S2 system. We
consider two standardized LDPC codes with codeword length equal to 64,800 [226]:
the first one has rate 2/3 and is mapped onto an 8-PSK modulation; the second one
has rate 4/5 and is mapped onto a 32-amplitude phase shift keying (APSK) modu-
lation.11 A maximum number of 50 iterations is considered and 36 pilot symbols

11 In this case, the constellation is composed of three concentric PSK constellations with different
radii, namely a QPSK, a 12-PSK and a 16-PSK. See Problem 2.2.
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Figure 5.22: Performance of all the proposed algorithms and comparison with other
algorithms proposed in the literature. BPSK and the Wiener phase model with CTA =
6 degrees are considered.

are inserted every 1476 symbols, as prescribed by the existing standard [226]. The
above mentioned phase noise ESA model is considered. The performance is shown
in Figure 5.24. For the algorithm based on Tikhonov parameterization, the loss due
to phase noise is less than 0.1 dB in both cases. Notice that a further improvement
in performance may be obtained if the maximum number of iterations is not limited
to 50. The Kalman smoother (Gaussian parameterization) does not perform as well
mainly because of the bursty allocation of pilot symbols.

5.8 Summary

In this chapter, we have extended the general framework developed in the previous
chapters for VA-based MAP sequence detection and FB-based MAP symbol detec-
tion, to the case of graph-based MAP symbol detection. In particular, using the FMC
or the CMP, we have described how to build a factor graph representing the joint a
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Figure 5.23: Performance of the algorithms based on Tikhonov and Gaussian param-
eterizations. BPSK and two different pilot distributions are considered.

posteriori probability of the information symbols and taking into account channel
statistics and code constraints. In this FG, the channel parameters are not explicitly
represented. The desired marginals necessary to implement MAP symbol detection
are approximately derived using the SP algorithm. The cases of ISI, phase-uncertain
and flat-fading channels have been considered in the numerical results, showing the
effectiveness of the described approach.

An alternative approach inspired by [192] has also been considered for phase-
uncertain channels. In this case, the channel parameters are explicitly represented
in the FG and the method of canonical distributions has been used to simplify the
implementation of the SP algorithm. We have shown that a clever choice of the used
canonical distribution allows one to derive graph-based detection algorithms with
very low complexity and practically optimal performance.
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Figure 5.24: Performance of the algorithms based on Tikhonov and Gaussian param-
eterizations. The ESA phase model is considered along with 8-PSK and 32-APSK
modulations.

5.9 Problems

Problem 5.1: Consider a rate-2/3 binary block code with parity check matrix

and recall that c is a codeword iff HCT = 0, where c = (GI, c2, €3). Assume
that this code is transmitted over a channel which introduces AWGN noise and
let r = (7*1, r2, rs) denote the received sequence.

A. Draw the factor graph of the joint APP P(c r) and verify that the graph
does not contain cycles.

B. Using the sum-product algorithm, compute the marginals P(ci r), i =
1,2,3.
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C. Compute the LLRs

Problem 5.2: Derive the message computations (5.9) and (5.10) from (5.3)
and (5.4).

Problem 5.3: Show that the FB algorithm described in Chapter 3 can be in-
terpreted as an instance of the SP algorithm applied to Wiberg graphs with a
natural forward backward schedule.

Problem 5.4: For an ISI channel, demonstrate that if the differences between
the indexes of the channel interferers are all different, the graph has girth 6.

Problem 5.5: For an ISI channel with L = 4 and /2 = 0 and an uncoded trans-
mission (lower part of the graph in Figure 5.7), identify all possible stretching
transformations which allow one to obtain a girth-6 graph.

Problem 5.6: For an ISI channel with L = 4 and /2 = 0 and an uncoded
transmission (lower part of the graph in Figure 5.7), transform the original
graph into a cycle-Wiberg graph.

Problem 5.7: Substituting (5.31) into (5.17), show that for frequency flat fad-
ing channels the joint a posteriori pmf of the information symbols P(a r) has
the expression (5.32).

Problem 5.8: Compute the phase noise power spectral density for the ESA
model described in Section 5.7.1.

Problem 5.9: Restate the algorithm based on Fourier parameterization in Sec-
tion 5.7.2 assuming the following phase model:

where T is the symbol interval and {vn} is a sequence of independent and iden-
tically distributed frequency offsets with uniform distribution in [—a/T, a/T]
(a is a known constant).

Problem 5.10: Let p(x) and q(x) be two probability density functions. The
divergence D(p\ q) (also known as cross-entropy, or Kullbach Leibler distance
[35]) is defined by
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A. Let f(x) be a probability density function of a real random variable with
mean /// and variance aj. Show that the solution to the divergence mini-
mization problem min eg D(f\\g), where Q is the set of all real Gaussian
pdfs, is given by #(///, &2f,x), i.e., it is the Gaussian pdf with the same
mean and variance.

B. Let f(x) be the probability density function of a complex random variable
with mean /// and variance a2

f. Show that the solution to the divergence
minimization problem min Q> D(f\\g), where Q' is the set of all com-
plex circularly-symmetric Gaussian pdfs, is given by p<^(///, 0y, x), i.e.,
it is the complex circularly-symmetric Gaussian pdf with the same mean
and variance.

Problem 5.11: Reformulate the algorithm based on Tikhonov parameteriza-
tion derived in Section 5.7.2 in the case of a flooding schedule.

Problem 5.12: Prove (5.85).

Problem 5.13: Given two Gaussian distributions g^(Ai, EI, x) and
E2, x), show that (5.89) is true.

Problem 5.14: Show that (5.93) is true.





Appendix A

Discretization by Sampling

A.I Introduction

In several chapters of this book, sampling has been considered at the receiver side to
extract a sufficient statistic for data detection. Most of the time, it has been simply
assumed that one sample per symbol interval is "sufficient." In this appendix, we
discuss statistical sufficiency of a sequence of discrete-time signal samples, and we
derive relevant sufficient conditions. This derivation provides a theoretical justifica-
tion of many signal discretization schemes considered in the previous chapters. As a
representative example of application of the concept of sufficient statistics, through-
out the appendix we will consider the case of a frequency and time selective fading
channel.

We first consider a continuous-time model of the communication system, and we
derive conditions for the receiver filter to provide sufficient statistics at its output. We
finally consider the corresponding discrete-time model.

A.2 Continuous-Time Signal Model

The considered transmission system is shown in Figure A.I, in which the informa-
tion sequence {a&} consists of independent, M-ary valued, equiprobable complex
symbols with rate 1/T, T being the symbol interval. We denote by g(t) and v(t)
the impulse responses of transmitter and receiver filters, respectively. The physical
channel is modeled as a time-varying linear filter with impulse response h(r, t), de-
fined as the response at time t to a delta pulse applied at time t — T. Thermal noise
n(t) is assumed to be zero-mean and white with one-sided power spectral density
NQ. The output r(i) of the receiver filter is sampled with period Ts related to the

353
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symbol period by T = /3TS, where (3 is assumed to be an integer interpretable as an
oversampling factor.

In order to obtain an expression for signal r(t) at the input of the sampler, we may
consider the following time-varying impulse responses: p(r, t), denoting the cascade
of g(t) and /i(r, t), and /(T, t), denoting the cascade of p(r, t) and the receiver filter
v(t). By straightforward manipulations, one obtains:

Substituting (A.I) into (A.2) and changing the integration variables by letting £ =
a + A, it follows that

Hence, the signal r(t) may be expressed as
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where nc(t) = n(t) 0 v(t) is the colored noise process at the output of the receiver
filter (the symbol 0 denotes convolution).

In the case of a frequency and time selective fading channel, the time-varying
physical channel may be modeled as a transversal filter with the following time-
varying impulse response:

where E is the number of echos due to multipath propagation, hi (t) are time- varying
tap weights, and r/ are the echo delays. Note that a frequency nonselective fading
channel can be interpreted as a special case with E = 1.

In the case of Rayleigh fading, the weights hi (t) are modeled as zero-mean, in-
dependent, complex, Gaussian stochastic processes with variance d^ , each with in-
dependent real and imaginary components of identical power spectrum. This model,
commonly used in applications [58], satisfies the assumptions of wide-sense sta-
tionary uncorrelated scattering (WSSUS) and the channel Doppler power spectrum
coincides with the power spectrum of the tap weights [229]. Using (A.5), we may
specialize (A.3) as follows:

In order to describe the assumptions on the transmitter and receiver filters, let
us denote with N€^(f) a function of / satisfying the Nyquist criterion for absence
of inter-symbol interference (ISI) with vestigial symmetry around 1/2T and excess
bandwidth factor e, such as a raised-cosine function with roll-off e [17]. The Fourier
transform of the transmitter filter i s G ( f ) — \/N^r(f) and that of the receiver filter,
denoted by V(f), is specified in the following subsections.

A.2.1 Power Spectrum of a Rayleigh Faded Signal

In the remainder of the appendix we will consider, as a representative communica-
tion scenario where oversampling can be used, the case of transmission over a fast
Rayleigh fading channel. Before describing in more detail oversampling, we first
derive the expression of the signal power spectrum at the output of a Rayleigh fading
channel.

In order to determine the power spectrum of the received signal, we refer to the
transmission system shown in Figure A.I, where: a(t) = Y^ka^(^
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signal generated by the source; g(t) is the transmission filter at the input of the time-
varying channel; /i(r, t) is the time- varying channel impulse response and has the
expression (A.5); x(t) is the output signal of the time- varying channel filter and n(t)
is the AWGN process independent from x(t).

The overall received signal y(t) at the input of the receiver is thus given by the
sum of two independent stochastic processes. The autocorrelation and power spec-
trum of the received signal y(t) is then simply the sum of the corresponding quanti-
ties for x(t) and n(t). For this reason, it is sufficient to compute the autocorrelation
function and the power spectrum of the process x(t) containing the source message.
Recalling the expressions of the transmitted signal and the channel impulse response
h(r, t), the process x(t) can be expressed as follows:

The autocorrelation function of x(t) is:

Recalling that the transmitted symbols {a^} are independent and assuming1 that
E{ak} = 0, it follows that

According to the WSSUS model of the considered Rayleigh fading channel, the pro-

lrThis is respected for most modulation formats of practical interest. The general case can be easily
dealt with by standard methods.
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cesses {hi(t)}jL~Q
l are independent, so that

where Rh^At) is the autocorrelation function of hi(t 4- At). According to the
isotropic scattering model (Clarke's model [20,21]), Rht(At) has the following ex-
pression:

where G\ is the power of the /-th fading process, J0(-) is the Bessel function of zero
order, and /D is the maximum Doppler shift.

By using (A.9) and (A. 10) in (A.8), the autocorrelation of the transmitted signal
can finally be written as follows:

From expression (A. 12), one can immediately conclude that Rx(t + At, t) is a peri-
odic function with period T in the variable t, so that x(t) is cyclostationary. Using
stationarization techniques, e.g., time averaging Rx(t + At, t) with respect to t, the
autocorrelation function R'x(At) of the stationarized process becomes:
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where

Using (A. 11) in (A. 13), one obtains:

where

is the overall power of the fading processes. The power spectrum Sx(f) of the process
x(t) can be obtained considering the Fourier transform, denoted by the notation JF(-)
of the stationarized autocorrelation function of the process x(t):

where So(f) is the normalized power spectral density of the fading process according
to Clarke's model and has the expression (1.3). Using known properties of convo-
lution, one can immediately conclude that the bandwidth B of the process x(t), i.e.,
the bandwidth of its power spectrum, is the sum of the bandwidth of the power spec-
tral densities corresponding to the autocorrelation functions p5(At) and J0(27r/D At).
Considering, for example, a transmitter filter g(t) with transfer function given by a
raised-cosine function with roll-off e, the bandwidth of the transfer function corre-
sponding to p5(A£) is (1 4- f)/2T. The power spectral density of the second term is
instead the Doppler spectrum, with maximum Doppler shift equal to /D . The overall
bandwidth of the process x(t) is therefore the following:
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A.2.2 Signal Oversampling

Assume that the received signal component x(t) is a strictly band-limited stationary
random process with bandwidth B. As an example, for a Rayleigh faded signal
this bandwidth is the result of the Doppler spread introduced by the channel on the
(base-band) transmission bandwidth (1 + e)/2T and may be easily shown to have the
expression (A. 18).

It is well known that the sampled sequence is a sufficient statistic for data detec-
tion if:

• the receiver filter frequency response is such that [94]

in which By denotes the filter bandwidth;

• the sampling rate satisfies the condition

The proof that a filter satisfying (A.19) and (A.20) produces, after sampling, suffi-
cient statistics for the estimation of the information sequence can be based on the
concept of reversibility [92]. According to this concept, any reversible (or invertible)
transformation carried out on the received signal does not modify the performance of
an optimal receiver [92]. In order to clarify this concept in the context of the consid-
ered scenario, we assume that the received signal y(t) is processed in two different
ways, and we then show that the results of these processing operations are statisti-
cally equivalent. The two different processing schemes are shown in the upper and
lower branches, respectively, in Figure A.2.

• As one can observe from Figure A.2, in the upper branch the received signal
y(t) passes through an ideal lowpass analog filter with the following transfer
function:

The signal ra(t) at the output of the filter with transfer function HL(/) is
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Figure A.2: Application of the concept of reversibility.

given by the sum of the signal component x(t) (see Figure A.I)—unmodified
by this filtering operation (since the filter bandwidth coincides with the signal
bandwidth)—and a noise component na(t), which is now band-limited. The
signal ra(t) is a sufficient statistic for the estimation of the information se-
quence. In fact, it is possible to invert this lowpass filtering operation, which
modifies only the noise component, by adding to r a ( t ) a suitable highpass inde-
pendent Gaussian noise process: the obtained process is statistically equivalent
to the original noise process n(i) affecting y(i). Since ra(t) is band-limited,
it can be sampled with no information loss. The resulting samples {ra(nTs)}
at the Nyquist rate /s = 1/TS = 2B are discrete sufficient statistics. Note that
this solution is simply an idealization of practical cases, since an ideal lowpass
filter cannot be implemented in practice.

• The lower branch in Figure A.2 corresponds to a practical receiver structure.
In particular, the signal y(t) passes through a filter with transfer function V(f)
which satisfies (A. 19): after filtering, the output signal is sampled with a suit-
able period Ts satisfying (A.20). The obtained samples {r(nTs)} are a suffi-
cient statistic for the estimation of the information sequence: in fact, from them
it is possible to derive another sufficient statistic, equivalent to the signal ra(t).
This is due to the reversibility of the filtering and sampling operation. To this
purpose, the discrete-time process {r(nTs)} can be filtered with a digital filter
with frequency response H(e:i27rfTs) which cancels out the effects of the analog
filter V(f) in the bandwidth of the signal component x(t). From a mathemat-
ical viewpoint, canceling out the effects of a filter in a given band consists of
requiring that the second filter has a transfer function equal to the inverse of the
transfer function of the first filter, so that the transfer function obtained as the
product of the two is constant in the interval of interest (in our case, the band
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(-B, B}}. In other words:

where V^e-7'271"-^8) is the frequency response of the digital filter with impulse re-
sponse {vn} = {v(nTs)} equivalent to the analog filter with impulse response
v(t) (impulse invariance [155]). The effect of H(ej27rfTs) is the desired one:
within frequency intervals centered around 0,1/TS , 2/Ts,... and with band-
width equal to 2B, the power spectrum of the signal component at the output
of this digital filter remains unchanged with respect to the input.

The reconstruction operation is completed by sending the samples (r(nTs)} to
an ideal lowpass digital filter with transfer function HL(ej2nfTs)—the digital
equivalent of (A.21)—which eliminates the noise spectral components outside
the bandwidth B. Finally, an analog signal rb(t) is obtained from the samples
{rb(nTs)} through an analog/digital converter equipped with an analog low-
pass filter with the following transfer function:

In [94], the authors show that the two analog signals ra(t) and rb(t) at the output of
the two processing branches considered in Figure A.2 are such that

In other words, (A.24) means that the signals ra(t) and rb(t) are equal in the mean
square error sense. It therefore follows that rb(i] is a sufficient statistic as well.
Since the signal rb(i) is obtained (indirectly) from the samples (r(nTs)}, for the
reversibility principle it is immediately concluded that the samples {r(nTs)} also are
a sufficient statistic for the estimation of the transmitted information sequence.

Having shown that the samples (r(nTs)} represent a sufficient statistic if the ana-
log filter V(f) has the form given by (A. 19) does not necessarily mean that the signal
r(t) can be reconstructed from its samples {r(nTs)}. In fact, the initial filter has a
bandwidth Bv which can be larger than 1/2TS, and this implies that the sampling
theorem, which imposes the condition /s = 1/TS > 2Bv cannot be applied to the
noise component in y(t). However, the samples {r(nTs)} are sufficient to recover
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Figure A.3: Sampling and filtering operations.

the information sequence {an}. In other words, aliasing would be present in the re-
covered noise component. However, this spectral overlap does not impact the signal.
A pictorial description of the filter transfer function is shown in Figure A.3.

Summarizing, the filter at the receiver with transfer function V(f) in (A. 19) al-
lows one (i) to limit the bandwidth of the noise process n(t), (ii) to leave unmodified
the spectrum of the signal x(t) or to modify it in a reversible manner, (iii) to apply
the sampling theorem to the signal component of r(t) only, undersampling the noise
component of r(t), and (iv) to generate, as sufficient statistics, the samples (r(nTs)}.

At this point, one can make interesting remarks on the noise components after
sampling. According to the conditions imposed on the filter v(t), since the overall
noise spectrum is obtained by adding the noise spectral components placed around
multiples of the sampling frequency /s = 1/TS, these noise spectra overlap in the
frequency intervals such that

where i > 0 is an integer value. Since the noise process at the input of the re-
ceiver is white with bilateral power spectral density N0/2, the noise power spec-
tral density after the filter v(t) is N 0 \ V ( f ) \ 2 / 2 , which, after sampling, becomes
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(7V0/2TS) £n \V(f - n/Ts)|
2. Owing to the arbitrary value of V(f) (given that the

conditions in (A. 19) are satisfied), one can investigate the possibility of obtaining
uncorrelated noise samples—if the noise is Gaussian, besides white, these samples
would thus be independent. Assuming that V(f) is constant in the band B of the
signal, it is sufficient that the behavior of V(f) in its transition band makes the noise
spectrum constant, i.e.:

If the squared amplitude response of the receiver filter, i.e., |V(/)|2, has vestigial
symmetry around 1/2TS in the interval [B,Bv], then condition (A.26) is satisfied:
this is the case, for example, of a root raised-cosine filter. Figure A.3 shows a possible
power spectrum of the received signal along with a possible receiver filter response
of the root raised-cosine type V(f) = ^N§>Ts(f), in which 6 is the roll-off factor,
and exemplifies the sampling and filtering operations. The choice of V(f) and 1/TS

in the figure is such that (A. 19) and (A.20) are satisfied. In addition, (A.27) holds
and the noise samples are independent.

An oversampling factor {3 > 1 is needed to satisfy (A.20) and in many cases of
practical significance (3 = 2 may be sufficient. Moreover, if we assume that V(f)
has a flat frequency response within the signal band B (as considered in Figure A.3),
(A.6) may be simplified by noting that the receiver filter does not introduce any fur-
ther shaping (i.e., it acts as having impulse response v(t) = 6(t)) but only limits the
noise. In the case of a frequency selective fading channel, this implies:

A.2.3 Signal Symbol-Rate Sampling

When (3 = 1, it may not be possible to obtain sufficient statistics. This is particularly
true in a communication scenario with fading, especially for fast fading variations.
However, one can derive an attractive simplified transmission model, assuming slow
variation of hi(i). In fact, the factor hi(t — A) in (A.6) can be moved outside the
integral. As a consequence, (A.6) becomes
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A
where p(t) = v(t) <S> g(t). In this case, a natural assumption is V(f) = G(f) =

U) (i-e-> e = £)» for which p(t) is a Nyquist pulse with Fourier transform

It is worth remarking that if hi(t) = hi, i.e., it is time-invariant, then sampling at
symbol rate does provide a sufficient statistic.

A.3 Discrete-Time Signal Model

The described models for Nyquist- and symbol-rate sampling are used in the follow-
ing. Sampling r(t) with period Ts — T/fi, one obtains:

. A
where, in the last expression, the summation index is i — [|] — k ([•] denotes the

A
smallest integer equal to or larger than the argument) and wn = w(nTs) is a discrete-
time white noise process.

In the case of a frequency selective fading channel, the coefficients fi)n have the
following expression:

The resulting discrete-time model (A.29) has the structure of a tapped delay line in
which the time-varying coefficients {/i,n}

 are> m general, correlated random pro-
cesses.

If the following conditions are met: (i) {3 — 1, (ii) p(t) is a Nyquist pulse, and
(iii) TI — IT, then (A.30) simplifies to

and the cross-correlation of different tap coefficients (/i>n and f^n for i ^ j ) is zero.
Although perhaps not realistic, this assumption has been often used in the technical
literature because of its simplicity (e.g., see [58]).
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Since both g(t) and p(i) are physically causal and approximately time-limited
pulses, we may consider a finite ISI span L affecting the sampled signal. Hence,
(A.29) may be modified by noting that the summation index takes on the values
i = 0 , 1 , . . . , L, resulting in
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