DESIGN AND ANALYSIS
OF DISTRIBUTED
ALGORITHMS

Nicola Santoro

Carleton University, Ottawa, Canada

NNNNNNNNNNNN
L]

"
NNNNNNNNNNNN

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Santoro, N. (Nicola), 1951-
Design and analysis of distributed algorithms / by Nicola Santoro.
p. cm. — (Wiley series on parallel and distributed computing)
Includes index.
ISBN-13: 978-0-471-71997-7 (cloth)
ISBN-10: 0-471-71997-8 (cloth)
1. Electronic data processing—Distributed processing. 2. Computer algorithms. 1. Title. 1II. Series.
QA76.9.D5.526 2007
005.1-dc22
2006011214

Printed in the United States of America

10987654321

To my favorite distributed environment: My children
Monica, Noel, Melissa, Maya, Michela, Alvin.

HEEE CONTENTS

Preface xiv
1. Distributed Computing Environments............................... 1
8 5 U U1 1
1.2 CommMUNICAtION\t e e e e e e e e e e e e e e e e 4
1.3 Axioms and Restrictions, 4
1301 AXIOMS .ottt ettt e et 5
1.3.2 ReStrictionsooiiiiii e 6

1.4 Costand Complexityo.ouuuiieeiniie i, 9
1.4.1 Amount of Communication Activities........................ 9
142 TIMeE . ..o 10

1.5 An Example: Broadcasting............ccoiiiiiiiiiiiiiennnnn. 10
1.6 Statesand Events.............. 14
1.6.1 Timeand Events........... 14
1.6.2 States and Configurations.o.vviuiiiiieennnenn... 16

1.7 Problems and Solutions (x)................ 17
1.8 Knowledgeovvnit e e 19
1.8.1 Levelsof Knowledge.............coooiiiiiiiiii .. 19
1.8.2 Typesof Knowledge, 21

1.9 Technical Considerations.couiiiiieeeneneeenn.... 22
L.9.1 MESSAZES & . vvvve et ettt et et e e 22
1.9.2 Protocol ... 23
1.9.3 Communication Mechanismccovvena... 24

1.10 Summary of Definitions.cooueiiiiiii .. 25
1.11 Bibliographical NOtes.c.utiiiiiiiii .. 25
1.12 Exercises, Problems, and AnsSwersccooviiiineeennn.. 26
1.12.1 Exercises and Problemsccoiiiiiiiiinnn.. 26
1.12.2 Answers to EXercises. 27

2. Basic Problems And Protocols..................................... 29
2.1 Broadcastt 29
2.1.1 TheProblem i, 29
2.1.2 Costof Broadcastingooovuuiiniinienieennn.. 30
2.1.3 Broadcasting in Special Networks 32

viii

CONTENTS

2.2 WaKe-Up . ..ot 36
2.2.1 Generic Wake-Up........ooiiiiiiiiiiii i 36
2.2.2 Wake-Up in Special Networks..............cooiiiiiiin, 37
2.3 Traversal 41
2.3.1 Depth-First Traversal. ...t 42
2.3.2 Hacking (%) . vvvveii et e 44
2.3.3 Traversal in Special Networks...............c..cooiiin... 49
2.3.4 Considerationson Traversal................................ 50
2.4 Practical Implications: Usea Subnet.....................oooeia.. 51
2.5 Constructing a Spanning Tree...........covviiiiiieiiiniieenn. 52
2.5.1 SPT Construction with a Single Initiator: Shout.............. 53
2.5.2 Other SPT Constructions with Single Initiator................ 58
2.5.3 Considerations on the Constructed Tree 60
2.5.4 Application: Better Traversal................... 62

2.5.5 Spanning-Tree Construction with
Multiple Initiators.ottt 62
2.5.6 Impossibility Result........... i 63
2.5.7 SPT with Initial Distinct Valuesccoooiinn.... 65
2.6 Computations in Treesoouuiiiitiiiiiiiii e 70
2.6.1 Saturation: A Basic Technique 71
2.6.2 Minimum Finding i 74
2.6.3 Distributed Function Evaluation............................ 76
2.6.4 Finding Eccentricities ..., 78
2.6.5 Center Findingoo . 81
2.6.6 Other ComputationsS.uuernueenneennenieenneenns 84
2.6.7 Computing in Rooted Treescovviiiiiianan. 85
2.7 SUMMATY . .ottt et ettt et 89
2.7.1 Summary of Problems.................. i 89
2.7.2 Summary of Techniques, 90
2.8 Bibliographical NOtes.ooviiit i 90
2.9 Exercises, Problems, and ANSWEISviiiiiiiiinnnennnnn. 91
2.9.1 EXCICISES .o vvie ittt 91
2.9.2 Problems.ttt 95
2.9.3 Answersto Exercises..............coiiiiiii i, 95
Election 99
3.1 Introduction 99
3.1.1 Impossibility Result.......... 99
3.1.2 Additional Restrictions................................... 100
3.1.3 Solution Strategiesuueeernne et 101
32 ElectioninTrees ...t 102
33 ElectioninRings....... 104

331 Allthe Wayo 105

CONTENTS ix

332 AsFarAsTtCan. ... 109
3.3.3 Controlled Distance............c.cooeiiiiiniiiiennn . 115
3.3.4 Electoral Stagesoviiiiii e 122
3.3.5 Stages with Feedbackt 127
3.3.6 Alternating Stepsovvntt it e 130
3.3.7 Unidirectional Protocols..............cooviiiiiiieanann.. 134
3.3.8 Limits to Improvements (%)ccooueeniiiiieennn.. 150
3.3.9 Summary and Lessons ..o, 157

3.4 Election in Mesh Networks........., 158
340 Meshes ..o 158
BA2 TOrT .ottt 161

3.5 Election in Cube Networks......... ..o, 166
3.5.1 Oriented Hypercubes.cooviiiiiiiiiiiiieeen.. 166
3.5.2 Unoriented Hypercubeso, 174

3.6 Election in Complete Networks............, 174
3.6.1 Stages and Territoryovuuueiteiniiii e 174
3.6.2 Surprising Limitation i 177
3.6.3 Harvesting the Communication Power 180

3.7 Election in Chordal Rings (%), 183
3.7.1 Chordal Rings.......couoiiiii i 183
372 LowerBounds. ... 184

3.8 Universal Election Protocols ..., 185
3.8.1 Mega-Mergercouitiit it 185
3.8.2 Analysis of Mega-Merger...........c.oviuuiiiinninneenn.. 193
383 YO-YO. . .o 199
3.8.4 Lower Bounds and Equivalences 209

3.9 Bibliographical Notesoiiiiiiiiniiiiiiiniean.. 212
3.10 Exercises, Problems, and Answerscoiiia... 214
3.10.1 EXeICISeS . ovvttt ettt 214
3,102 Problems ... 220
3.10.3 Answers to EXercisesc.oueeviiiiniiiniieniean 222

4. Message Routing and Shortest Paths.............................. 225
4.1 INtroduCtion.ttt e e ettt et 225
4.2 Shortest PathRoutingt 226
4.2.1 Gossiping the Network Maps............ccoviiiiieennnnn.. 226
4.2.2 Tterative Construction of Routing Tables................... 228
4.2.3 Constructing Shortest-Path Spanning Tree 230
4.2.4 Constructing All-Pairs Shortest Paths 237
425 Min-HopRouting 240
4.2.6 Suboptimal Solutions: Routing Trees...................... 250

4.3 Coping with Changesoiiiiiiiiiiii .. 253

4.3.1 Adaptive Routing......... ... 253

CONTENTS

4.3.2 Fault-Tolerant Tables.............cooiiiiiiiiiiii ... 255
4.3.3 On Correctness and Guaranteesc...ocevue... 259
4.4 Routing in Static Systems: Compact Tables 261
4.4.1 The Size of Routing Tablescoiiia.. 261
442 Interval Routing 262
4.5 Bibliographical NOtesc.uutiiiiii i, 267
4.6 Exercises, Problems, and AnSwersc.oovviiiiinnnnn.. 269
4.6.1 EXCICISES .o vvvttt ettt 269
4.6.2 Problemso.uiii 274
4.6.3 Answers to EXercises.oovviuiiiiiiiiiiiina... 274
. Distributed Set Operations............... 277
5.1 Introductionot it 277
5.2 Distributed Selection ...ttt 279
5.2.1 Order StatistiCS ... ovvvvee et 279
5.2.2 SelectioninaSmall DataSet, 280
5.2.3 Simple Case: Selection Among Two Sites 282
5.2.4 General Selection Strategy: RankSelect 287
5.2.5 Reducing the Worst Case: ReduceSelect.................... 292
5.3 Sorting a Distributed Set............ ... i 297
5.3.1 Distributed Sorting. ... 297
5.3.2 Special Case: Sorting on a Ordered Line 299
5.3.3 Removing the Topological Constraints:
Complete Graph......... .o 303
5.3.4 Basic LImitationsottt e 306
5.3.5 Efficient Sorting: SelectSort ..., 309
5.3.6 Unrestricted SOIting.cooueiiteiieiinean 312
5.4 Distributed Sets Operationsoueeiieeenneeenneann.. 315
5.4.1 Operations on Distributed Sets............................ 315
5.4.2 Local Structureovit i e 317
5.4.3 Local Evaluation (%)couiiiiineiiiieeenn. 319
5.4.4 Global Evaluationccoiiiiiiiiiiiiiiiinnnnnn. 322
5.4.5 Operational CostS.vvnuteinnttn i, 323
5.5 Bibliographical Noteso, 323
5.6 Exercises, Problems, and ANSWErScoviiniiniinnnennn. 324
5.6.1 EXCICISES it ee ettt ettt e et e e 324
5.6.2 Problems 329
5.6.3 Answers to EXercises.ovvviiiiiiiniiiieenninn... 329
. Synchronous Computationscoiiee.... 333
6.1 Synchronous Distributed Computingcooieean.... 333

6.1.1 Fully Synchronous Systems...............coiiieie.... 333

CONTENTS xi

6.1.2 Clocksand Unitof Time.............c.ooviiiiiiiiiean.. 334
6.1.3 Communication Delays and Size of Messages 336
6.1.4 On the Unique Nature of Synchronous Computations. 336
6.1.5 The Cost of Synchronous Protocols........................ 342

6.2 Communicators, Pipeline, and Transformers 343
6.2.1 Two-Party Communicationoovuueeeinnnnn... 344
6.2.2 Pipeline.ooouii 353
6.2.3 Transformers.............cooiiiiiiiiiiiii i 357

6.3 Min-Finding and Election: Waiting and Guessing................. 360
6.3.1 Waitingoontiii e 360
6.3.2 GUESSING . .« oottt ettt e e 370
6.3.3 Double Wait: Integrating Waiting and Guessing............. 378

6.4 Synchronization Problems: Reset, Unison, and Firing Squad....... 385
6.4.1 Reset/Wake-upouuuiiiiiiniiiiiiiiiiea.. 386
6.4.2 UNISON .« oottt ettt e 387
6.4.3 Firing Squad 389

6.5 Bibliographical Notes oo, 391
6.6 Exercises, Problems, and AnSWerscovviiiiinniinn.. 392
6.6.1 EXEICISES .. oottt 392
6.6.2 Problemso i 398
6.6.3 Answers to EXercises. ..., 400

. Computing in Presence of Faults 408
7.1 IntrodUuCtiono vttt 408
7.1.1 Faultsand Failures.............o, 408
7.1.2 Modelling Faults, 410
7.1.3 Topological Factors ... 413
7.1.4 Fault Tolerance, Agreement, and Common Knowledge 415

7.2 The Crushing Impact of Failures................................ 417
7.2.1 Node Failures: Single-Fault Disaster....................... 417
7.2.2 Consequences of the Single Fault Disaster.................. 424

7.3 Localized Entity Failures: Using Synchrony...................... 425
7.3.1 Synchronous Consensus with Crash Failures................ 426
7.3.2 Synchronous Consensus with Byzantine Failures............ 430
7.3.3 Limit to Number of Byzantine Entities for Agreement 435
7.3.4 From Boolean to General Byzantine Agreement............. 438
7.3.5 Byzantine Agreement in Arbitrary Graphs.................. 440

7.4 Localized Entity Failures: Using Randomization.................. 443
7.4.1 Random Actions and Coin Flips........................... 443
7.4.2 Randomized Asynchronous Consensus: Crash Failures 444

7.4.3 Concluding Remarks.............cooiiiiiiiiiiian.. 449

xii

CONTENTS
7.5 Localized Entity Failures: Using Fault Detection 449
7.5.1 Failure Detectors and Their Properties 450
7.5.2 The Weakest Failure Detector 452
7.6 Localized Entity Failures: Pre-Execution Failures................. 454
7.6.1 Partial Reliability ..o 454
7.6.2 Example: Election in Complete Network 455
7.7 Localized Link Failures........... oo, 457
7.7.1 A Tale of Two Synchronous Generals...................... 458
7.7.2 Computing With Faulty Links............................. 461
7.7.3 Concluding Remarks.............coooiiiiiiiiiiianan. 466
7.7.4 Considerations on Localized Entity Failures 466
7.8 Ubiquitous Faults 467
7.8.1 Communication Faults and Agreement..................... 467
7.8.2 Limits to Number of Ubiquitous Faults for Majority......... 468
7.8.3 Unanimity in Spite of Ubiquitous Faults.................... 475
7.84 Tightnessoouoiiii e 485
7.9 Bibliographical Notes il 486
7.10 Exercises, Problems, and AnSwersc..coviiiiiineann. 488
7101 EXEICISES < o .vveit ettt e et 488
7.102 Problemsoo i 492
7.10.3 Answers to EXercisescoueiiiiiiiiiiiin.. 493
8. Detecting Stable Properties..................... 500
8.1 IntroducCtionoinu i 500
8.2 Deadlock Detectionoouiiiiiiiiiiii i 500
8.2.1 Deadlockc.ovuuiii i 500
8.2.2 Detecting Deadlock: Wait-for Graph....................... 501
8.2.3 Single-Request Systems...........ccvviiiiiieennnnnn... 503
8.2.4 Multiple-Requests Systems............ ..., 505
8.2.5 Dynamic Wait-for Graphst 512
8.2.6 Other Requests Systems.............c.oiiiiiiiiionnn .. 516
8.3 Global Termination Detectionooian. 518
8.3.1 A Simple Solution: Repeated Termination Queries 519
8.3.2 Improved Protocols: Shrink............................... 523
8.3.3 Concluding Remarks.................cooiiiiiiia. .. 525
8.4 Global Stable Property Detectionc.cooviiiiean.. 526
8.4.1 General Strate@yueinniini i 526
8.4.2 Time Cuts and Consistent Snapshots....................... 527
8.4.3 Computing A Consistent Snapshot......................... 530
8.4.4 Summary: Putting All Together 531
8.5 Bibliographical NOtesovviiriiiiiiiii i, 532

CONTENTS xiii

8.6 Exercises, Problems, and AnSwersc..ooviiiiiean.. 534
8.0.1 EXOICISES ottt ettt e e 534
8.6.2 Problems ... 536
8.6.3 Answers to EXercises.o.ueeiiiiiiiiiiiiiiiiea.., 538

. Continuous Computations, 541

9.1 IntroduCtion .« vvnt ettt 541

9.2 Keeping Virtual Time. 542
9.2.1 Virtual Time and Causal Order............................ 542
9.2.2 Causal Order: Counter Clocks. ..., 544
9.2.3 Complete Causal Order: Vector Clocks..................... 545
9.2.4 Concluding Remarks..............ooiiiiiiiiiiiiiieann. 548

9.3 Distributed Mutual Exclusion. ... 549
9.3.1 TheProblemot 549
9.3.2 A Simple And Efficient Solution 550
9.3.3 Traversing the Network..........o iiiiiia.. 551
9.3.4 Managing a Distributed Queuecove.... 554
9.3.5 Decentralized Permissions.............cooviiiiieeiina.. 559
9.3.6 Mutual Exclusion in Complete Graphs: Quorum 561
9.3.7 Concluding Remarks..............coiiiiiiiiiiieen.. 564

9.4 Deadlock: System Detection and Resolution 566
9.4.1 System Detection and Resolution.......................... 566
9.4.2 Detection and Resolution in Single-Request Systems 567
9.4.3 Detection and Resolution in Multiple-Requests Systems 568

9.5 Bibliographical Notes, 569

9.6 Exercises, Problems, and AnSWersovuuiiiiniinannnn.. 570
0.6.1 EXeICISES oottt ettt et s 570
9.6.2 Problems 572
9.6.3 Answers to EXercises.oouiuiiiiiiiiiiii .. 573

I PREFACE

The computational universe surrounding us is clearly quite different from that envi-
sioned by the designers of the large mainframes of half a century ago. Even the sub-
sequent most futuristic visions of supercomputing and of parallel machines, which
have guided the research drive and absorbed the research funding for so many years,
are far from today’s computational realities.

These realities are characterized by the presence of communities of networked
entities communicating with each other, cooperating toward common tasks or the
solution of a shared problem, and acting autonomously and spontaneously. They are
distributed computing environments.

It has been from the fields of network and of communication engineering that the
seeds of what we now experience have germinated. The growth in understanding has
occurred when computer scientists (initially very few) started to become aware of and
study the computational issues connected with these new network-centric realities.
The internet, the web, and the grids are just examples of these environments. Whether
over wired or wireless media, whether by static or nomadic code, computing in such
environments is inherently decentralized and distributed. To compute in distributed
environments one must understand the basic principles, the fundamental properties,
the available tools, and the inherent limitations.

This book focuses on the algorithmics of distributed computing; that is, on how to
solve problems and perform tasks efficiently in a distributed computing environment.
Because of the multiplicity and variety of distributed systems and networked environ-
ments and their widespread differences, this book does not focus on any single one of
them. Rather it describes and employes a distributed computing universe that captures
the nature and basic structure of those systems (e.g., distributed operating systems,
data communication networks, distributed databases, transaction processing systems,
etc.), allowing us to discard or ignore the system-specific details while identifying
the general principles and techniques.

This universe consists of a finite collection of computational entities commu-
nicating by means of messages in order to achieve a common goal; for exam-
ple, to perform a given task, to compute the solution to a problem, to satisfy a
request either from the user (i.e., outside the environment) or from other entities.
Although each entity is capable of performing computations, it is the collection

ncredibly, the terms “distributed systems” and “distributed computing” have been for years highjacked
and (ab)used to describe very limited systems and low-level solutions (e.g., client server) that have little
to do with distributed computing.

XV

xvi PREFACE

of all these entities that together will solve the problem or ensure that the task is
performed.

In this universe, to solve a problem, we must discover and design a distributed
algorithm or protocol for those entities: A set of rules that specify what each entity
has to do. The collective but autonomous execution of those rules, possibly without
any supervision or synchronization, must enable the entities to perform the desired
task to solve the problem.

In the design process, we must ensure both correctness (i.e., the protocol we design
indeed solves the problem) and efficiency (i.e., the protocol we design has a “small”
cost).

As the title says, this book is on the Design and Analysis of Distributed Algorithms.
Its goal is to enable the reader to learn how to design protocols to solve problems in
a distributed computing environment, not by listing the results but rather by teaching
how they can be obtained. In addition to the “how” and “why”” (necessary for problem
solution, from basic building blocks to complex protocol design), it focuses on pro-
viding the analytical tools and skills necessary for complexity evaluation of designs.

There are several levels of use of the book. The book is primarily a senior-
undergraduate and graduate textbook; it contains the material for two one-term courses
or alternatively a full-year course on Distributed Algorithms and Protocols, Dis-
tributed Computing, Network Computing, or Special Topics in Algorithms. It covers
the “distributed part” of a graduate course on Parallel and Distributed Computing
(the chapters on Distributed Data, Routing, and Synchronous Computing, in partic-
ular), and it is the theoretical companion book for a course in Distributed Systems,
Advanced Operating Systems, or Distributed Data Processing.

The book is written for the students from the students’ point of view, and it follows
closely a well defined teaching path and method (the “course”) developed over the
years; both the path and the method become apparent while reading and using the
book. It also provides a self-contained, self-directed guide for system-protocol de-
signers and for communication software and engineers and developers, as well as for
researchers wanting to enter or just interested in the area; it enables hands-on, head-
on, and in-depth acquisition of the material. In addition, it is a serious sourcebook
and referencebook for investigators in distributed computing and related areas.

Unlike the other available textbooks on these subjects, the book is based on a very
simple fully reactive computational model. From a learning point of view, this makes
the explanations clearer and readers’ comprehension easier. From a teaching point of
view, this approach provides the instructor with a natural way to present otherwise
difficult material and to guide the students through, step by step. The instructors
themselves, if not already familiar-with the material or with the approach, can achieve
proficiency quickly and easily.

All protocols in the textbook as well as those designed by the students as part
of the exercises are immediately programmable. Hence, the subtleties of actual
implementation can be employed to enhance the understanding of the theoretical

2 An open source Java-based engine, DisJ, provides the execution and visualization environment for our
reactive protocols.

PREFACE Xvii

design principles; furthermore, experimental analysis (e.g., performance evaluation
and comparison) can be easily and usefully integrated in the coursework expanding
the analytical tools.

The book is written so to require no prerequisites other than standard undergrad-
uate knowledge of operating systems and of algorithms. Clearly, concurrent or prior
knowledge of communication networks, distributed operating systems or distributed
transaction systems would help the reader to ground the material of this course into
some practical application context; however, none is necessary.

The book is structured into nine chapters of different lengths. Some are focused on a
single problem, others on a class of problems. The structuring of the written material
into chapters could have easily followed different lines. For example, the material
of election and of mutual exclusion could have been grouped together in a chapter
on Distributed Control. Indeed, these two topics can be taught one after the other:
Although missing an introduction, this “hidden” chapter is present in a distributed way.
An important “hidden” chapter is Chapter 10 on Distributed Graph Algorithms whose
content is distributed throughout the book: Spanning-Tree Construction (Section 2.5),
Depth-First Traversal (Section 2.3.1), Breadth-First Spanning Tree (Section 4.2.5),
Minimum-Cost Spanning Tree (Section 3.8.1), Shortest Paths (Section 4.2.3), Centers
and medians (Section 2.6), Cycle and Knot Detection (Section 8.2).

The suggested prerequisite structure of the chapters is shown in Figure 1. As
suggested by the figure, the first three chapters should be covered sequentially and
before the other material.

There are only two other prerequisite relationships. The relationship between Syn-
chronous Compution (Chapter 6) and Computing in Presence of Faults (Chapter 7)
is particular. The recommended sequencing is in fact the following: Sections 7.1—
7.2 (providing the strong motivation for synchronous computing), Chapter 6 (de-
scribing fault-free synchronous computing) and the rest of Chapter 7 (dealing with
fault-tolerant synchronous computing as well as other issues). The other suggested

Election (3)

Synchronous (6)

Y
Continuous (9))

Figure 1: Prerequisite structure of the chapters.

xviii PREFACE

prerequisite structure is that the topic of Stable Properties (Chapter 8) be handled
before that of Continuous Computations (Chapter 9). Other than that, the sections
can be mixed and matched depending on the instructor’s preferences and interests.
An interesting and popular sequence for a one-semester course is given by Chapters
1-6. A more conventional one-semester sequence is provided by Chapters 1-3 and
6-9.

The symbol (%) after a section indicates noncore material. In connection with
Exercises and Problems the symbol (x) denotes difficulty (the more the symbols, the
greater the difficulty).

Several important topics are not included in this edition of the book. In particular,
this edition does not include algorithms on distributed coloring, on minimal inde-
pendent sets, on self-stabilization, as well as on Sense of Direction. By design, this
book does not include distributed computing in the shared memory model, focusing
entirely on the message-passing paradigm.

This book has evolved from the teaching method and the material I have designed
for the fourth-year undergraduate course Introduction to Distributed Computing and
for the graduate course Principles of Distributed Computing at Carleton University
over the last 20 years, and for the advanced graduate courses on Distributed Algorithms
I have taught as part of the Advanced Summer School on Distributed Computing at
the University of Siena over the last 10 years. I am most grateful to all the students of
these courses: through their feedback they have helped me verify what works and what
does not, shaping my teaching and thus the current structure of this book. Their keen
interest and enthusiasm over the years have been the main reason for the existence of
this book.

This book is very much work in progress. I would welcome any feedback that
will make it grow and mature and change. Comments, criticisms, and reports on
personal experience as a lecturer using the book, as a student studying it, or as a
researcher glancing through it, suggestions for changes, and so forth: I am looking
foreward to receiving any. Clearly, reports on typos, errors, and mistakes are very much
appreciated. I tried to be accurate in giving credits; if you know of any omission or
mistake in this regards, please let me know.

My own experience as well as that of my students leads to the inescapable conclu-
sion that

distributed algorithms are fun

both to teach and to learn. I welcome you to share this experience, and I hope you
will reach the same conclusion.

NicoLA SANTORO

I CHAPTER 1

Distributed Computing Environments

The universe in which we will be operating will be called a distributed computing
environment. It consists of a finite collection £ of computational entities communi-
cating by means of messages. Entities communicate with other entities to achieve
a common goal; for example, to perform a given task, to compute the solution to a
problem, to satisfy a request either from the user (i.e., outside the environment) or
from other entities. In this chapter, we will examine this universe in some detail.

1.1 ENTITIES

The computational unit of a distributed computing environment is called an entity .
Depending on the system being modeled by the environment, an entity could corre-
spond to a process, a processor, a switch, an agent, and so forth in the system.

Capabilities Each entity x € £ is endowed with local (i.e., private and nonshared)
memory M, . The capabilities of x include access (storage and retrieval) to local mem-
ory, local processing, and communication (preparation, transmission, and reception of
messages). Local memory includes a set of defined registers whose values are always
initially defined; among them are the status register (denoted by status(x)) and the
input value register (denoted by value(x)). The register status(x) takes values from
a finite set of system states S; the examples of such values are “Idle,” “Processing,”
“Waiting,”. . . and so forth.

In addition, each entity x € &£ has available a local alarm clock c, which it can set
and reset (turn off).

An entity can perform only four types of operations:

¢ local storage and processing

e transmission of messages

e (re)setting of the alarm clock

e changing the value of the status register

Design and Analysis of Distributed Algorithms, by Nicola Santoro
Copyright © 2007 John Wiley & Sons, Inc.

2 DISTRIBUTED COMPUTING ENVIRONMENTS

Note that, although setting the alarm clock and updating the status register can be
considered as a part of local processing, because of the special role these operations
play, we will consider them as distinct types of operations.

External Events The behavior of an entity x € £ is reactive: x only responds
to external stimuli, which we call external events (or just events); in the absence of
stimuli, x is inert and does nothing. There are three possible external events:

e arrival of a message
e ringing of the alarm clock
e spontaneous impulse

The arrival of a message and the ringing of the alarm clock are the events that are
external to the entity but originate within the system: The message is sent by ano-
ther entity, and the alarm clock is set by the entity itself.

Unlike the other two types of events, a spontaneous impulse is triggered by forces
external to the system and thus outside the universe perceived by the entity. As
an example of event generated by forces external to the system, consider an auto-
mated banking system: its entities are the bank servers where the data is stored, and
the automated teller machine (ATM) machines; the request by a customer for a cash
withdrawal (i.e., update of data stored in the system) is a spontaneous impulse for the
ATM machine (the entity) where the request is made. For another example, consider
a communication subsystem in the open systems interconnection (OSI) Reference
Model: the request from the network layer for a service by the data link layer (the
system) is a spontaneous impulse for the data-link-layer entity where the request is
made. Appearing to entities as “acts of God,” the spontaneous impulses are the events
that start the computation and the communication.

Actions When an external event e occurs, an entity x € £ will react to e by per-
forming a finite, indivisible, and terminating sequence of operations called action.

An action is indivisible (or atomic) in the sense that its operations are executed
without interruption; in other words, once an action starts, it will not stop until it is
finished.

An action is terminating in the sense that, once it is started, its execution ends
within finite time. (Programs that do not terminate cannot be termed as actions.)

A special action that an entity may take is the null action nil, where the entity does
not react to the event.

Behavior The nature of the action performed by the entity depends on the nature
of the event e, as well as on which status the entity is in (i.e., the value of starus(x))
when the events occur. Thus the specification will take the form

Status x Event —> Action,

ENTITIES 3

which will be called a rule (or a method, or a production). In arule s x e —> A, we
say that the rule is enabled by (s, e).

The behavioral specification, or simply behavior, of an entity x is the set B(x) of
all the rules that x obeys. This set must be complete and nonambiguous: for every
possible event e and status value s, there is one and only one rule in B(x) enabled
by (s,e). In other words, x must always know exactly what it must do when an event
occurs.

The set of rules B(x) is also called protocol or distributed algorithm of x.

The behavioral specification of the entire distributed computing environment is just
the collection of the individual behaviors of the entities. More precisely, the collective
behavior B(E) of a collection £ of entities is the set

B()={B(x):x € E}.

Thus, in an environment with collective behavior B(£), each entity x will be acting
(behaving) according to its distributed algorithm and protocol (set of rules) B(x).

Homogeneous Behavior A collective behavior is homogeneous if all entities in
the system have the same behavior, that is, Vx, y € £, B(x) = B(y).

This means that to specify a homogeneous collective behavior, it is sufficient to
specify the behavior of a single entity; in this case, we will indicate the behavior
simply by B. An interesting and important fact is the following:

Property 1.1.1 Every collective behavior can be made homogeneous.

This means that if we are in a system where different entities have different behaviors,
we can write a new set of rules, the same for all of them, which will still make them
behave as before.

Example Consider a system composed of a network of several identical worksta-
tions and a single server; clearly, the set of rules that the server and a workstation obey
is not the same as their functionality differs. Still, a single program can be written
that will run on both entities without modifying their functionality. We need to add
to each entity an input register, my_role, which is initialized to either “workstation”
or “server,” depending on the entity; for each status—event pair (s, €) we create a new
rule with the following action:

s x e —> { if my_role = workstation then Ayorkstation €ls€ Aserver endif },

where Ayorkstation (Ttespectively, Aserver) 18 the original action associated to (s, ¢) in the
set of rules of the workstation (respectively, server). If (s,) did not enable any rule for
a workstation (e.g., s was a status defined only for the server), then Ayorkstation = Dil
in the new rule; analogously for the server.

It is important to stress that in a homogeneous system, although all entities have
the same behavioral description (software), they do not have to act in the same way;

4 DISTRIBUTED COMPUTING ENVIRONMENTS

their difference will depend solely on the initial value of their input registers. An
analogy is the legal system in democratic countries: the law (the set of rules) is the
same for every citizen (entity); still, if you are in the police force, while on duty, you
are allowed to perform actions that are unlawful for most of the other citizens.

An important consequence of the homogeneous behavior property is that we can
concentrate solely on environments where all the entities have the same behavior.
From now on, when we mention behavior we will always mean homogeneous col-
lective behavior.

1.2 COMMUNICATION

In a distributed computing environment, entities communicate by transmitting and
receiving messages. The message is the unit of communication of a distributed envi-
ronment. In its more general definition, a message is just a finite sequence of bits.

An entity communicates by transmitting messages to and receiving messages from
other entities. The set of entities with which an entity can communicate directly is not
necessarily &; in other words, it is possible that an entity can communicate directly
only with a subset of the other entities. We denote by Ny (x) € & the set of entities
to which x can transmit a message directly; we shall call them the out-neighbors of
x . Similarly, we denote by Nj,(x) C £ the set of entities from which x can receive a
message directly; we shall call them the in-neighbors of x. ~

The neighborhood relationship defines a directed graph G = (V, E), where V
is the set of vertices and E C V x V is the set of edges; the vertices correspond to
entities, and (x, y) € Eifand only if the entity (corresponding to) y is an out-neighbor
of the entity (corresponding to) x.

The directed graph G= (V, E) describes the communication topology of the envi-
ronment. We shall denote by n(G), m(G), and d(G) the number of vertices, edges, and
the diameter of G, respectively. When no ambiguity arises, we will omit the reference
to G and use simply n, m, and d.

In the following and unless ambiguity should arise, the terms vertex, node, site,
and entity will be used as having the same meaning; analogously, the terms edge, arc,
and link will be used interchangeably.

In summary, an entity can only receive messages from its in-neighbors and send
messages to its out-neighbors. Messages received at an entity are processed there in
the order they arrive; if more than one message arrive at the same time, they will
be processed in arbitrary order (see Section 1.9). Entities and communication may
fail.

1.3 AXIOMS AND RESTRICTIONS

The definition of distributed computing environment with point-to-point communi-
cation has two basic axioms, one on communication delay, and the other on the local
orientation of the entities in the system.

AXIOMS AND RESTRICTIONS 5

Any additional assumption (e.g., property of the network, a priori knowledge by
the entities) will be called a restriction.

1.3.1 Axioms

Communication Delays Communication of a message involves many activities:
preparation, transmission, reception, and processing. In real systems described by
our model, the time required by these activities is unpredictable. For example, in a
communication network a message will be subject to queueing and processing delays,
which change depending on the network traffic at that time; for example, consider
the delay in accessing (i.e., sending a message to and getting a reply from) a popular
web site.

The totality of delays encountered by a message will be called the communication
delay of that message.

Axiom 1.3.1 Finite Communication Delays
In the absence of failures, communication delays are finite.

In other words, in the absence of failures, a message sent to an out-neighbor will
eventually arrive in its integrity and be processed there. Note that the Finite Commu-
nication Delays axiom does not imply the existence of any bound on transmission,
queueing, or processing delays; it only states that in the absence of failure, a message
will arrive after a finite amount of time without corruption.

Local Orientation An entity can communicate directly with a subset of the other
entities: its neighbors. The only other axiom in the model is that an entity can distin-
guish between its neighbors.

Axiom 1.3.2 Local Orientation
An entity can distinguish among its in-neighbors.
An entity can distinguish among its out-neighbors.

In particular, an entity is capable of sending a message only to a specific out-neighbor
(without having to send it also to all other out-neighbors). Also, when processing a
message (i.e., executing the rule enabled by the reception of that message), an entity
can distinguish which of its in-neighbors sent that message.

In other words, each entity x has a local function A, associating labels, also called
port numbers, to its incident links (or ports), and this function is injective. We denote
port numbers by A, (x, y), the label associated by x to the link (x, y). Let us stress that
this label is local to x and in general has no relationship at all with what y might call
this link (or x, or itself). Note that for each edge (x, y)e E, there are two labels: A, (x,
¥) local to x and A, (x, y) local to y (see Figure 1.1).

Because of this axiom, we will always deal with edge-labeled graphs (é, A), where
A= {A : x € V}is the set of these injective labelings.

6 DISTRIBUTED COMPUTING ENVIRONMENTS

X — y
Aotz g

FIGURE 1.1: Every edge has two labels

1.3.2 Restrictions

In general, a distributed computing system might have additional properties or capa-
bilities that can be exploited to solve a problem, to achieve a task, and to provide a
service. This can be achieved by using these properties and capabilities in the set of
rules.

However, any property used in the protocol limits the applicability of the protocol.
In other words, any additional property or capability of the system is actually a
restriction (or submodel) of the general model.

WARNING. When dealing with (e.g., designing, developing, testing, employing) a
distributed computing system or just a protocol, it is crucial and imperative that all
restrictions are made explicit. Failure to do so will invalidate the resulting communi-
cation software.

The restrictions can be varied in nature and type: they might be related to commu-
nication properties, reliability, synchrony, and so forth. In the following section, we
will discuss some of the most common restrictions.

Communication Restrictions The first category of restrictions includes those
relating to communication among entities.

Queueing Policy A link (x, y) can be viewed as a channel or a queue (see Section
1.9): x sending a message to y is equivalent to x inserting the message in the channel.
In general, all kinds of situations are possible; for example, messages in the channel
might overtake each other, and a later message might be received first. Different
restrictions on the model will describe different disciplines employed to manage
the channel; for example, first-in-first-out (FIFO) queues are characterized by the
following restriction.

e Message Ordering: In the absence of failure, the messages transmitted by an
entity to the same out-neighbor will arrive in the same order they are sent.

Note that Message Ordering does not imply the existence of any ordering for
messages transmitted to the same entity from different edges, nor for messages sent
by the same entity on different edges.

Link Property Entities in acommunication system are connected by physical links,
which may be very different in capabilities. The examples are simplex and full-duplex

AXIOMS AND RESTRICTIONS 7

links. With a fully duplex line it is possible to transmit in both directions. Simplex
lines are already defined within the general model. A duplex line can obviously be
described as two simplex lines, one in each direction; thus, a system where all lines
are fully duplex can be described by the following restriction:

* Reciprocal communication: Vx € &, Nin(x) = Noue(x). In other words, if
(x, y) € E then also (y, x)€ E.

Notice that, however, (x, y) # (v, x), and in general A, (x, y) # A, (y, x); furthermore,
x might not know that these two links are connections to and from the same entity. A
system with fully duplex links that offers such a knowledge is defined by the following
restriction.

e Bidirectional links: Yx € £, Nin(x) = Nou(x) and A, (x, ¥) = A (y, x).

IMPORTANT. The case of Bidirectional Links is special. If it holds, we use a
simplified terminology. The network is viewed as an undirected graph G = (V,E)
(i.e.,Vxye &, (x,y) = (y,x)), and the set N(x) = Nin(x) = Nout(x) will just be called
the set of neighbors of x. Note that in this case, m(G) = |E| =2 |E| = 2 m(G).

For example, in Figure 1.2 a graph G is depicted where the Bidirectional Links
restriction and the corresponding undirected graph G hold.

Reliability Restrictions Other types of restrictions are those related to reliability,
faults, and their detection.

@\ /@
"

G=(V, E) G=(V, E)

FIGURE 1.2: Inanetwork with Bidirectional Links we consider the corresponding undirected
graph.

8 DISTRIBUTED COMPUTING ENVIRONMENTS

Detection of Faults Some systems might provide a reliable fault-detection mecha-
nism. Following are two restrictions that describe systems that offer such capabilities
in regard to component failures:

e Edge failure detection: ¥ (x, y) € E, both x and y will detect whether (x, y) has
failed and, following its failure, whether it has been reactivated.

e Entityfailure detection: Vx € V,allin- and out-neighbors of x can detect whether
x has failed and, following its failure, whether it has recovered.

Restricted Types of Faults In some systems only some types of failures can occur:
for example, messages can be lost but not corrupted. Each situation will give rise to a
corresponding restriction. More general restrictions will describe systems or situations
where there will be no failures:

e Guaranteed delivery: Any message that is sent will be received with its content
uncorrupted.

Under this restriction, protocols do not need to take into account omissions or
corruptions of messages during transmission. Even more general is the following:

e Partial reliability: No failures will occur.

Under this restriction, protocols do not need to take failures into account. Note
that under Partial Reliability, failures might have occurred before the execution of a
computation. A totally fault-free system is defined by the following restriction.

e Total reliability: Neither have any failures occurred nor will they occur.

Clearly, protocols developed under this restriction are not guaranteed to work
correctly if faults occur.

Topological Restrictions In general, an entity is not directly connected to all
other entities; it might still be able to communicate information to a remote entity,
using others as relayer. A system that provides this capability for all entities is char-
acterized by the following restriction:

e Connectivity: The communication topology G is strongly connected.

That is, from every vertex in G itis possible to reach every other vertex. In case
the restriction “Bidirectional Links” holds as well, connectedness will simply state
that G is connected.

COST AND COMPLEXITY 9

Time Restrictions An interesting type of restrictions is the one relating to time.
In fact, the general model makes no assumption about delays (except that they are
finite).

e Bounded communication delays: There exists a constant A such that, in the
absence of failures, the communication delay of any message on any link is at
most A.

A special case of bounded delays is the following:

e Unitary communication delays: In the absence of failures, the communication
delay of any message on any link is one unit of time.

The general model also makes no assumptions about the local clocks.

e Synchronized clocks: All local clocks are incremented by one unit simultane-
ously and the interval of time between successive increments is constant.

1.4 COST AND COMPLEXITY

The computing environment we are considering is defined at an abstract level. It
models rather different systems (e.g., communication networks, distributed systems,
data networks, etc.), whose performance is determined by very distinctive factors and
costs.

The efficiency of a protocol in the model must somehow reflect the realistic costs
encountered when executed in those very different systems. In other words, we need
abstract cost measures that are general enough but still meaningful.

We will use two types of measures: the amount of communication activities and
the time required by the execution of a computation. They can be seen as measuring
costs from the system point of view (how much traffic will this computation generate
and how busy will the system be?) and from the user point of view (how long will it
take before I get the results of the computation?).

1.4.1 Amount of Communication Activities

The transmission of a message through an out-port (i.e., to an out-neighbor) is the basic
communication activity in the system; note that the transmission of a message that will
not be received because of failure still constitutes a communication activity. Thus,
to measure the amount of communication activities, the most common function used
is the number of message transmissions M, also called message cost. So in general,
given a protocol, we will measure its communication costs in terms of the number of
transmitted messages.

Other functions of interest are the entity workload Lyode = M/|V|, that is, the
number of messages per entity, and the transmission load Ly = M/|E|, that is,
the number of messages per link.

10 DISTRIBUTED COMPUTING ENVIRONMENTS

Messages are sequences of bits; some protocols might employ messages that are
very short (e.g., O(1) bit signals), others very long (e.g., .gif files). Thus, for a more
accurate assessment of a protocol, or to compare different solutions to the same
problem that use different sizes of messages, it might be necessary to use as a cost
measure the number of transmitted bits B also called bit complexity.

In this case, we may sometimes consider the bit-defined load functions: the en-
tity bit-workload Lbpoge = B/| V|, that is, the number of bits per entity, and the
transmission bit-load Lbjinx = B/|E]|, that is, the number of bits per link.

1.4.2 Time

An important measure of efficiency and complexity is the total execution delay, that
is, the delay between the time the first entity starts the execution of a computation and
the time the last entity terminates its execution. Note that “time” is here intended as
the one measured by an observer external to the system and will also be called real
or physical time.

In the general model there is no assumption about time except that communi-
cation delays for a single message are finite in absence of failure (Axiom 1.3.1).
In other words, communication delays are in general unpredictable. Thus, even in
the absence of failures, the total execution delay for a computation is totally un-
predictable; furthermore, two distinct executions of the same protocol might expe-
rience drastically different delays. In other words, we cannot accurately measure
time.

We, however, can measure time assuming particular conditions. The measure usu-
ally employed is the ideal execution delay or ideal time complexity, T: the execution
delay experienced under the restrictions “Unitary Transmission Delays” and “Syn-
chronized Clocks;” that is, when the system is synchronous and (in the absence of
failure) takes one unit of time for a message to arrive and to be processed.

A very different cost measure is the causal time complexity, Tcausal. It is defined
as the length of the longest chain of causally related message transmissions, over
all possible executions. Causal time is seldom used and is very difficult to measure
exactly; we will employ it only once, when dealing with synchronous computations.

1.5 AN EXAMPLE: BROADCASTING

Let us clarify the concepts expressed so far by means of an example. Consider a dis-
tributed computing system where one entity has some important information unknown
to the others and would like to share it with everybody else.

This problem is called broadcasting and it is part of a general class of problems
called information diffusion. To solve this problem means to design a set of rules that,
when executed by the entities, will lead (within finite time) to all entities knowing the
information; the solution must work regardless of which entity had the information
at the beginning. .

Let &€ be the collection of entities and G be the communication topology.

AN EXAMPLE: BROADCASTING 11

To simplify the discussion, we will make some additional assumptions (i.e.,
restrictions) on the system:

1. Bidirectional links; that is, we consider the undirected graph G. (see Section
1.3.2).

2. Total reliability, that is, we do not have to worry about failures.
Observe that, if G is disconnected, some entities can never receive the information,

and the broadcasting problem will be unsolvable. Thus, a restriction that (unlike the
previous two) we need to make is as follows:

3. Connectivity; that is, G is connected.

Further observe that built in the definition of the problem, there is the assumption that
only the entity with the initial information will start the broadcast. Thus, a restriction
built in the definition is as follows:

4. Unique Initiator, that is, only one entity will start.
A simple strategy for solving the broadcast problem is the following:

“if an entity knows the information, it will share it with its neighbors.”

To construct the set of rules implementing this strategy, we need to define the set S of
status values; from the statement of the problem it is clear that we need to distinguish
between the entity that initially has the information and the others: {initiator, idle} <
S. The process can be started only by the initiator; let I denote the information to be
broadcasted. Here is the set of rules B(x) (the same for all entities):

initiator xt —> {send(J) to N(x)}
idle x Receiving(I) —> {Process(I); send(/) to N(x)}

initiator X Receiving(l) —> nil

Eal

idle xi1 — nil

where ¢ denotes the spontaneous impulse event and nil denotes the null action.
Because of connectivity and total reliability, every entity will eventually receive
the information. Hence, the protocol achieves its goal and solves the broadcasting
problem.
However, there is a serious problem with these rules:

the activities generated by the protocol never terminate.

Consider, for example, the simple system with three entities x, y, z connected to each
other (see Figure 1.3). Let x be the initiator, y and z be idle, and all messages travel at
the same speed; then y and z will be forever sending messages to each other (as well
as to x).

12 DISTRIBUTED COMPUTING ENVIRONMENTS

e

~)

©)
O

Q)

FIGURE 1.3: An execution of Flooding.

To avoid this unwelcome effect, an entity should send the information to its neigh-
bors only once: the first time it acquires the information. This can be achieved by
introducing a new status done; that is S ={initiator, idle, done}.

initiator xt —> {send(I) to N(x); become done}

idle x Receiving(I) —> {Process(I); become done; send(/) to N (x)}
initiator x Receiving(I) — nil

idle x 1 —> mil

done x Receiving(l) —> nil

AN

done x 1 — nil

where become denotes the operation of changing status.

This time the communication activities of the protocol terminate: Within finite time
all entities become done; since a done entity knows the information, the protocol is
correct (see Exercise 1.12.1). Note that depending on transmission delays, different
executions are possible; one such execution in an environment composed of three
entities x, y, z connected to each other, where x is the initiator as depicted in Figure 1.3.

IMPORTANT. Note that entities terminate their execution of the protocol (i.e., be-
come done) at different times; it is actually possible that an entity has terminated while
others have not yet started. This is something very typical of distributed computations:
There is a difference between local termination and global termination.

AN EXAMPLE: BROADCASTING 13

IMPORTANT. Notice also that in this protocol nobody ever knows when the entire
process is over. We will examine these issues in details in other chapters, in particular
when discussing the problem of fermination detection.

The above set of rules correctly solves the problem of broadcasting. Let us now
calculate the communication costs of the algorithm.

First of all, let us determine the number of message transmissions. Each entity,
whether initiator or not, sends the information to all its neighbors. Hence the total
number of messages transmitted is exactly

Y oiee INX)| =2|E|=2m.

We can actually reduce the cost. Currently, when an idle entity receives the mes-
sage, it will broadcast the information to all its neighbors, including the entity from
which it had received the information; this is clearly unnecessary. Recall that, by the
Local Orientation axiom, an entity can distinguish among its neighbors; in particu-
lar, when processing a message, it can identify from which port it was received and
avoid sending a message there. The final protocol is as before with only this small
modification.

Protocol Flooding

. initiator xt — {send(I) to N(x); become done}
. idle x Receiving(I) —> {Process(I); become done; send(I) to N(x)-sender}
. initiator x Receiving(I) —> nil

1
2
3
4. idle xt —> nil
5. done x Receiving(I) — nil
6

. done x1 —> nil

where sender is the neighbor that sent the message currently being processed.

This algorithm is called Flooding as the entire system is “flooded” with the message
during its execution, and it is a basic algorithmic tool for distributed computing. As
for the number of message transmissions required by flooding, because we avoid
transmitting some messages, we know that itis less than 2m; in fact, (Exercise 1.12.2):

M{[Flooding]l = 2m —n + 1. (L.1)

Let us examine now the ideal time complexity of flooding.

Let d(x, y) denote the distance (i.e., the length of the shortest path) between x and y
in G. Clearly the message sent by the initiator has to reach every entity in the system,
including the furthermost one from the initiator. So, if x is the initiator, the ideal time
complexity will be r(x) = Max {d(x, y) : y € £}, which is called the eccentricity (or
radius) of x. In other words, the total time depends on which entity is the initiator and

14 DISTRIBUTED COMPUTING ENVIRONMENTS

thus cannot be known precisely beforehand. We can, however, determine exactly the
ideal time complexity in the worst case.

Since any entity could be the initiator, the ideal time complexity in the worst case
will be d(G) = Max {r(x) : x€ £}, which is the diameter of G. In other words, the
ideal time complexity will be at most the diameter of G:

T[Flooding] < d(G). (1.2)

1.6 STATES AND EVENTS

Once we have defined the behavior of the entities, their communication topology, and
the set of restrictions under which they operate, we must describe the initial conditions
of our environment. This is done first of all by specifying the initial condition of all
the entities. The initial content of all the registers of entity x and the initial value
of its alarm clock ¢, at time ¢ constitute the initial internal state o (x, 0) of x. Let
2(0) = {o(x, 0) : x € £} denote the set of all the initial internal states.

Once >(0) is defined, we have completed the static specification of the environ-
ment: the description of the system before any event occurs and before any activity
takes place.

We are, however, also interested in describing the system during the computational
activities, as well as after such activities. To do so, we need to be able to describe the
changes that the system undergoes over time. As mentioned before, the entities (and,
thus the environments) are reactive. That is, any activity of the system is determined
entirely by the external events. Let us examine these facts in more detail.

1.6.1 Time and Events

In distributed computing environments, there are only three types of external events:
spontaneous impulse (spontaneously), reception of a message (receiving), and alarm
clock ring (when).

When an external event occurs at an entity, it triggers the execution of an action
(the nature of the action depends on the status of the entity when the event occurs).
The executed action may generate new events: The operation send will generate a
receiving event, and the operation set_alarm will generate a when event.

Note first of all that the events so generated might not occur at all. For example, a
link failure may destroy the traveling message, destroying the corresponding receiving
event; in a subsequent action, an entity may turn off the previously set alarm destroying
the when event.

Notice now that if they occur, these events will do so at a later time (i.e., when
the message arrives, when the alarm goes off). This delay might be known precisely in
the case of the alarm clock (because it is set by the entity); it is, however, unpredictable
in the case of message transmission (because it is due to the conditions external to the
entity). Different delays give rise to different executions of the same protocols with
possibly different outcomes.

STATES AND EVENTS 15

Summarizing, each event e is “generated” at some time #(e) and, if it occurs, it will
happen at some time later.

By definition, all spontaneous impulses are already generated before the execution
starts; their set will be called the set of initial events. The execution of the protocol
starts when the first spontaneous impulses actually happen; by convention, this will
be time 7=0.

IMPORTANT. Notice that “time” is here considered as seen by an external ob-
server and is viewed as real time. Each real time instant ¢ separates the axis of time
into three parts: past (i.e., {t' < t}), present (i.e., 1), and future (i.e., {t' > t}). All
events generated before ¢ that will happen after ¢ are called the future at t and de-
noted by Future(t); it represents the set of future events determined by the execution
so far.

An execution is fully described by the sequence of events that have occurred. For small
systems, an execution can be visualized by what is called a Time x Event Diagram
(TED) . Such a diagram is composed of temporal lines, one for each entity in the
system. Each event is represented in such a diagram as follows:

A Receiving event r is represented as an arrow from the point #,(7) in the temporal
line of the entity x generating e (i.e., sending the message) to the point 7, (r)
in the temporal line of the entity y where the events occur (i.e., receiving the
message).

A When event w is represented as an arrow from point ¢/ (w) to point 7/ (w) in the
temporal line of the entity setting the clock.

A Spontaneously event ¢ is represented as a short arrow indicating point #,(¢) in
the temporal line of the entity x where the events occur.

For example, in Figure 1.4 is depicted the TED corresponding to the execution of
Protocol Flooding of Figure 1.3.

FIGURE 1.4: Time x Event Diagram

16 DISTRIBUTED COMPUTING ENVIRONMENTS

1.6.2 States and Configurations

The private memory of each entity, in addition to the behavior, contains a set of
registers, some of them already initialized, others to be initialized during the execution.
The content of all the registers of entity x and the value of its alarm clock c, at time
t constitute what is called the internal state of x at t and is denoted by o (x, 7). We
denote by 2_(7) the set of the internal states at time ¢ of all entities. Internal states
change with time and the occurrence of events.

There is an important fact about internal states. Consider two different environ-
ments, E1 and E,, where, by accident, the internal state of x at time # is the same.
Then x cannot distinguish between the two environments, that is, x is unable to tell
whether it is in environment £ or E>.

There is an important consequence. Consider the situation just described: At time f,
the internal state of x is the same in both £ and E;. Assume now that also by accident,
exactly the same event occurs at x (e.g., the alarm clock rings or the same message
is received from the same neighbor). Then x will perform exactly the same action in
both cases, and its internal state will continue to be the same in both situations.

Property 1.6.1 Let the same event occur at x at time t in two different executions,
and let o1 and oy be its internal states when this happens. If o1 = o2, then the new
internal state of x will be the same in both executions.

Similarly, if two entities have the same internal state, they cannot distinguish between
each other. Furthermore, if by accident, exactly the same event occurs at both of them
(e.g., the alarm clock rings or the same message is received from the same neighbor),
then they will perform exactly the same action in both cases, and their internal state
will continue to be the same in both situations.

Property 1.6.2 Let the same event occur at x and y at time t, and let o1 and o be
their internal states, respectively, at that time. If o1 = 02, then the new internal state
of x and y will be the same.

Remember: Internal states are local and an entity might not be able to infer from
them information about the status of the rest of the system. We have talked about the
internal state of an entity, initially (i.e., at time = 0) and during an execution. Let us
now focus on the state of the entire system during an execution.

To describe the global state of the environment at time ¢, we obviously need to
specify the internal state of all entities at that time; that is, the set 2_(¢). However, this
is not enough. In fact, the execution so far might have already generated some events
that will occur after time ¢; these events, represented by the set Future(t), are integral
part of this execution and must be specified as well. Specifically, the global state,
called configuration, of the system during an execution is specified by the couple

C(t) = (Z(t), Future(t))

PROBLEMS AND SOLUTIONS (x) 17

The initial configuration C(0) contains not only the initial set of states >-(0) but
also the set Future(0) of the spontaneous impulses. Environments that differ only in
their initial configuration will be called instances of the same system.

The configuration C(¢) is like a snapshot of the system at time ¢.

1.7 PROBLEMS AND SOLUTIONS (x)

The topic of this book is how to design distributed algorithms and analyze their
complexity. A distributed algorithm is the set of rules that will regulate the behaviors
of the entities. The reason why we may need to design the behaviors is to enable
the entities to solve a given problem, perform a defined task, or provide a requested
service.

In general, we will be given a problem, and our task is to design a set of rules that
will always solve the problem in finite time. Let us discuss these concepts in some
details.

Problems To give a problem (or task, or service) P means to give a description of
what the entities must accomplish. This is done by stating what the initial conditions
of the entities are (and thus of the system), and what the final conditions should be;
it should also specify all given restrictions. In other words,

P = (P, PriNaL, R),

where PiniT and PrinaL are predicates on the values of the registers of the entities,
and R is a set of restrictions. Let w;(x) denote the value of an input register w(x) at
time f and {w;} = {w,(x) : x € £} the values of this register at all entities at that time.
So, for example, {statusy} represents the initial value of the status registers of the
entities.

For example, in the problem Broadcasting (I)) described in Section 1.5, the initial
and final conditions are given by the predicates

PiniT(t) = “ only one entity has the information at time t” =
dx € £ (value;(x) =1 AVy # x (value,(y) = ¢)),

PriNaL(t) = “ every entity has the information at time t” =
Vx € € (value;(x) = 1I).

The restrictions we have imposed on our solution are BL (Bidirectional Links), TR
(Total Reliability), and CN (Connectivity). Implicit in the problem definition there is
also the condition that only the entity with the information will start the execution
of the solution protocol; denote by Ul the predicate describing this restriction, called
Unique Initiator. Summarizing, for Broadcasting, the set of restrictions we have made
is {BL, TR, CN, UI}.

18 DISTRIBUTED COMPUTING ENVIRONMENTS

Status A solution protocol B for P = (PNit, PrINaL, R) will specify how the
entities will accomplish the required task. Part of the design of the set of rules B(x) is
the definition of the set of status values S, that is, the values that can be held by the
status register starus(x).

We call initial status values those values of S that can be held at the start of the
execution of B(x) and we shall denote their set by Sinit. By contrast, terminal status
values are those values that once reached, cannot ever be changed by the protocol;
their set shall be denoted by Stgrm. All other values in S will be called intermediate
status values.

For example, in the protocol Flooding described in Section 1.5, Sinrr={initiator,
idle} and STerM={done}.

Depending on the restrictions of the problem, only entities in specific initial status
values will start the protocol; we shall denote by Sstart S SiniT the set of those
status values. Typically, SstarT consists of only one status; for example, in Flooding,
SstarTt={initiator}. It is possible to rewrite a protocol so that this is always the case
(see Exercise 1.12.5).

Among terminal status values we shall distinguish those in which no further activity
can take place; that is, those where the only action is nil. We shall call such status
values final and we shall denote by Spinap € SterM the set of those status values.
For example, in Flooding, SpinaL={done}.

Termination Protocol B terminates if, for all initial configurations C(0) satisfying
PiNiT, and for all executions starting from those configurations, the predicate

Terminate (t) = ({status;} € Sterm)A (Future(t) =)
holds for some ¢ > 0, that is, all entities enter a terminal status after a finite time and
all generated events have occurred.
We have already remarked on the fact that entities might not be aware that the

termination has occurred. In general, we would like each entity to know at least of its
termination. This situation, called explicit termination, is said to occur if the predicate

Explicit-Terminate (t) = ({status;} C SFINAL)

holds for some ¢ > 0, that is, all entities enter a final status after a finite time.

Correctness Protocol B is correct if, for all executions starting from initial con-
figurations satisfying PN,

3t > 0: Correct(t)

holds, where Correci(t) = (V1 > t, PrinaL(?)); that is, the final predicate eventually
holds and does not change.

KNOWLEDGE 19

Solution Protocol The set of rules B solves problem P if it always correctly
terminates under the problem restrictions R. As there are two types of termination
(simple and explicit), we will have two types of solutions:

Simple Solution[B,P] where the predicate

3t > 0 (Correct(t)\ Terminate(t))

holds, under the problem restrictions R, for all executions starting from initial con-
figurations satisfying Pinyt; and
Explicit Solution| B,P] where the predicate

dr > 0 (Correct(t)N Explicit-Terminate(t))

holds, under the problem restrictions R, for all executions starting from initial con-
figurations satisfying PiNiT.

1.8 KNOWLEDGE

The notions of information and knowledge are fundamental in distributed computing.
Informally, any distributed computation can be viewed as the process of acquiring
information through communication activities; conversely, the reception of a message
can be viewed as the process of transforming the state of knowledge of the processor
receiving the message.

1.8.1 Levels of Knowledge

The content of the local memory of an entity and the information that can be derived
from it constitute the local knowledge of an entity. We denote by

p € LK, [x]

the fact that p is local knowledge at x at the global time instant . By definition,
Ay € LK¢[x] for all ¢z, that is, the (labels of the) in- and out-edges of x are time-
invariant local knowledge of x.

Sometimes it is necessary to describe knowledge held by more than one entity at a
given time. Information p is said to be implicit knowledge in W C & at time ¢, denoted
by p € IK,[W], if at least one entity in W knows p at time ¢, that is,

p € IK,[W]iff 3x € W (p € LK, [x]).

A stronger level of knowledge in a group W of entities is held when, at a given
time ¢, p is known to every entity in the group, denoted by p € EK;[W], that is

p € BK,[W]iff Vx € W (p € LK, [x]).

20 DISTRIBUTED COMPUTING ENVIRONMENTS

In this case, p is said to be explicit knowledge in W C £ at time ¢.

Consider for example broadcasting discussed in the previous section. Initially, at
time ¢ = 0, only the initiator s knows the information 7; in other words, I € LKg[s].
Thus, at that time, I is implicitly known to all entities, that is, I € IKy[£]. At the end
of the broadcast, at time ¢/, every entity will know the information; in other words,
I € EK/[€].

Notice that, in the absence of failures, knowledge cannot be lost, only gained,
that is, for all ¢/ > ¢ and all W C &, if no failure occurs, IK,[W] C IK,/[W] and
EK[W] € EKy/[W].

Assume that a fact p is explicit knowledge in W at time ¢. It is possible that some
(maybe all) entities are not aware of this situation. For example, assume that at time
t, entities x and y know the value of a variable of z, say its ID; then the ID of z is
explicit knowledge in W={x, y, z}; however, z might not be aware that x and y know
its ID. In other words, when p € EK;[W], the fact “p € EK;[W]" might not be even
locally known to any of the entities in W.

This gives rise to the highest level of knowledge within a group: common knowl-
edge. Information p is said to be common knowledge in W C & at time ¢, denoted by
p € CK;[W], if and only if at time 7 every entity in W knows p, and knows that every
entity in W knows p, and knows that entity in W knows that every entity in W knows
p, and ..., etcetera, that is,

p € CKAWTiff Ay oo P

where the P;’s are the predicates defined by: Py = [p € ES;[W]] and P;1| = [P; €
EK;[W]].

In most distributed problems, it will be necessary for the entities to achieve com-
mon knowledge. Fortunately, we do not always have to go to co to reach common
knowledge, and a finite number of steps might actually do, as indicated by the fol-
lowing example.

Example (muddy forehead): Imagine n perceptive and intelligent school children
playing together during recess. They are forbidden to play in the mud puddles, and
the teacher has told them that if they do, there will be severe consequences. Each
child wants to keep clean, but the temptation to play with mud is too great to resist.
As a result, k of the children get mud on their foreheads. When the teacher arrives,
she says, “I see that some of you have been playing in the mud puddle: the mud
on your foreheads is a dead giveaway !” and then continues, “The guilty ones who
come forward spontaneously will be given a small penalty; those who do not, will
receive a punishment they will not easily forget.” She then adds, “I am going to leave
the room now, and I will return periodically; if you decide to confess, you must all
come forward together when I am in the room. In the meanwhile, everybody must
sit absolutely still and without talking.”

Each child in the room clearly understands that those with mud on their foreheads
are “dead meat,” who will be punished no matter what. Obviously, the children do

KNOWLEDGE 21

not want to confess if the foreheads are clean, and clearly, if the foreheads are dirty,
they want to go forward so as to avoid their terrible punishment for those who do not
confess. As each child shares the same concern, the collective goal is for the children
with clean foreheads not to confess and for those with muddy foreheads to go forward
simultaneously, and all of this without communication.

Let us examine this goal. The first question is as follows: can a child x find out
whether his/her forehead is dirty or not ? She/he can see how many, say fy, of the
other children are dirty; thus, the question is if x can determine whether k = f; or
k= fr+1.

The second, more complex question is as follows: can all the children with mud
on their foreheads find out at the same time so that they can go forward together ? In
other words, can the exact value of k become common knowledge ?

The children, being perceptive and intelligent, determine that the answer to both the
questions is positive and find the way to achieve the common goal and thus common
knowledge without communication (Exercise 1.12.6).

IMPORTANT. When working in a submodel, all the restrictions defining the sub-
model are common knowledge to all entities (unless otherwise specified).

1.8.2 Types of Knowledge

We can have various types of knowledge, such as knowledge about the communication
topology, about the labeling of the communication graph, about the input data of the
communicating entities. In general, if we have some knowledge of the system, we
can exploit it to reduce the cost of a protocol, although this may result in making the
applicability of the protocol more limited.

A type of knowledge of particular interest is the one regarding the communication
topology (i.e., the graph G). In fact, as will be seen later, the complexity of a com-
putation may vary greatly depending on what the entities know about G. Following
are some elements that, if they are common knowledge to the entities, may affect the
complexity.

1. Metric Information: numeric information about the network; for example, num-
ber n = |V| of nodes, number m = |E| of links, diameter, girth, etcetera. This
information can be exact or approximate.

2. Topological Properties: knowledge of some properties of the topology; for
example, “G is a ring network,” “G does not have cycles,” “G is a Cayley
graph,” etcetera.

3. Topological Maps: a map of the neighborhood of the entity up to distance d, a
complete “map” of G (e.g., the adjacency matrix of G); a complete “map” of
(G,2) (i.e., it contains also the labels), etcetera.

Note that some types of knowledge imply other knowledge; for example, if an
entity with k neighbors knows that the network is a complete undirected graph, then
it knows that n = k+ 1.

22 DISTRIBUTED COMPUTING ENVIRONMENTS

As a topological map provides all possible metric and structural information, this
type of knowledge is very powerful and important. The strongest form of this type is
full topological knowledge: availability at each entity of a labeled graph isomorphic
to (é,),), the isomorphism, and its own image, that is, every entity has a complete
map of (v, A) with the indication, “You are here.”

Another type of knowledge refers to the labeling A. What is very important is
whether the labeling has some global consistency property.

We can distinguish two other types, depending on whether the knowledge is about
the (input) data or the status of the entities and of the system, and we shall call them
type-D and type-S, respectively.

Examples of type-D knowledge are the following: Unique identifiers: all input
values are distinct; Multiset: input values are not necessarily identical; Size: number
of distinct values.

Examples of type-S knowledge are the following: System with leader: there is
a unique entity in status “leader”; Reset: all nodes are in the same status; Unique
initiator: there is a unique entity in status “initiator.” For example, in the broadcasting
problem we discussed in Section 1.5, this knowledge was assumed as a part of the
problem definition.

1.9 TECHNICAL CONSIDERATIONS

1.9.1 Messages

The content of a message obviously depends on the application; in any case, it consists
of a finite (usually bounded) sequence of bits.

The message is typically divided into subsequences, called fields, with a predefined
meaning (“type”) within the protocol.

The examples of field types are the following: message identifier or header used
to distinguish between different types of messages; originator and destination fields
used to specify the (identity of the) entity originating this message and of the entity
to whom the message is intended for; data fields used to carry information needed in
the computation (the nature of the information obviously depends on the particular
application under consideration).

Thus, in general, a message M will be viewed as a tuple M = (f1, f2, ... fx)
where k is a (small) predefined constant, and each f; (1 <i <k) is a field of a
specified type, each type of a fixed length.

So, for example, in protocol Flooding, there is only one type of message; it is
composed of two fields M = (fi, f») where fi is a message identifier (containing
the information: “this is a broadcast message”), and f; is a data field containing the
actual information 7 being broadcasted.

If (the limit on) the size of a message is a system parameter (i.e., it does not
depend on the particular application), we say that the system has bounded messages.
Such is, for example, the limit imposed on the message length in packet-switching
networks, as well as on the length of control messages in circuit-switching networks
(e.g., telephone networks) and in message-switching networks.

TECHNICAL CONSIDERATIONS 23

Bounded messages are also called packets and contain at most ©(G) bits, where
u(G)is the system-dependent bound called packet size. Notice that, to send a sequence
of K bits in G will require the transmission of at least [K /u(G)] packets.

1.9.2 Protocol

Notation A protocol B(x) is a set of rules. We have already introduced in Section
1.5 most of the notation for describing those rules. Let us now complete the description
of the notation we will use for protocols. We will employ the following conventions:

1. Rules will be grouped by status.

2. If the action for a (status,event) pair is nil, then, for simplicity, the corresponding
rule will be omitted from the description. As a consequence, if norule is described
for a (status,event) pair, the default will be that the pair enables the Null action.

WARNING. Although convenient (it simplifies the writing), the use of this conven-
tion must generate extra care in the description: If we forget to write a rule for an
event occurring in a given status, it will be assumed that a rule exists and the action
is nil.

3. If an action contains a change of status, this operation will be the last one before
exiting the action.

4. The set of status values of the protocol, and the set of restrictions under which
the protocol operates will be explicit.

Using these conventions, the protocol Flooding defined in Section 1.5 will be
written as shown in Figure 1.5.

Precedence The external events are as follows: spontaneous impulse (Sponta-
neously), reception of a message (Receiving), and alarm clock ring (When). Different
types of external events can occur simultaneously; for example, the alarm clock might
ring at the same time a message arrives. The simultaneous events will be processed
sequentially. To determine the order in which they will be processed, we will use the
following precedence between external events:

Spontaneously > When > Receiving;

that is, the spontaneous impulse takes precedence over the alarm clock, which has
precedence over the arrival of a message.

At most one spontaneous impulse can always occur at an entity at any one time.
As there is locally only one alarm clock, at any time there will be at most one When
event. By contrast, it is possible that more than one message arrive at the same time
to an entity from different neighbors; should this be the case, these simultaneous

24 DISTRIBUTED COMPUTING ENVIRONMENTS

PROTOCOL Flooding .

® Status Values: S = {INITIATOR, IDLE, DONE};
Sinit = {INITIATOR, IDLE};
Sterm = {DONE}.

® Restrictions: Bidirectional Links, Total Reliability, Connectivity, and Unique Initiator.

INITIATOR
Spontaneously
begin
send (M) to N(x);
become DONE;
end

IDLE
Receiving (1)
begin
Process (M) ;
send (M) to N(x)— {sender};
become DONE;
end

FIGURE 1.5: Flooding Protocol

Receiving events have all the same precedence and will be processed sequentially in
an arbitrary order.

1.9.3 Communication Mechanism

The communication mechanisms of a distributed computing environment must handle
transmissions and arrivals of messages. The mechanisms at an entity can be seen as
a system of queues.

Each link (x, y) € E corresponds to a queue, with access at x and exit at y; the
access is called out-port and the exit is called in-port.

Each entity has thus two types of ports: out-ports, one for each out-neighbor (or
out-link), and in-port, one for each in-neighbor (or in-link). At an entity, each out-
port has a distinct label (recall the Local Orientation axiom (Axiom 1.3.2)) called
port number: the out-port corresponding to (x, y) has label A, (x, y); similarly for the
in-ports.

The sets Nin and Ny will in practice consist of the port numbers associated to
those neighbors; this is because an entity has no other information about its neighbors
(unless we add restrictions).

The command “send M to W’ will have a copy of the message M sent through
each of the out-ports specified by W.

When a message M is sent through an out-port /, it is inserted in the corresponding
queue. In absence of failures (recall the Finite Communication Delays axiom), the
communication mechanism will eventually remove it from the queue and deliver it
to the other entity through the corresponding in-port, generating the Receiving (M)
event; at that time the variable sender will be set to /.

BIBLIOGRAPHICAL NOTES 25
1.10 SUMMARY OF DEFINITIONS

Distributed Environment: Collection of communicating computational entities.
Communication: Transmission of message.
Message: Bounded sequence of bits.

Entity’s Capability: Local processing, local storage, access to a local clock, and
communication.

Entity’s Status Register: At any time an entity status register has a value from a
predefined set of status values.
External Events: Arrival of a message, alarm clock ring, and spontaneous impulse.

Entity’s Behavior: Entities react to external events. The behavior is dictated by a set
of rules. Each rule has the form

STATUS x EVENT — Action

specifying what the entity has to do if a certain external event occurs when the
entity is in a given status. The set of rules must be nonambiguous and complete.

Actions: An action is an indivisible (i.e., uninterruptible) finite sequence of operations
(local processing, message transmission, change of status, and setting of alarm
clock).

Homogeneous System: A system is homogeneous if all the entities have the same
behavior. Every system can be made homogeneous.

Neighbors: The in-neighbors of an entity are those entities from which x can receive
a message directly; the out-neighbors are those to which x can send a message
directly.

Communication Topology: The directed graph G = (V, E) defined by the
neighborhood relation. If the Bidirectional Links restriction holds, then G is
undirected.

Axioms: There are two axioms: local orientation and finite communication delays.

Local Orientation: An entity can distinguish between its out-neighbors and its
in-neighbors.

Finite Communication Delays: In absence of failures, a message eventually arrives.

Restriction: Any additional property.

1.11 BIBLIOGRAPHICAL NOTES

Several attempts have been made to derive formalisms capable of describing both dis-
tributed systems and computations performed in such systems. A significant amount
of study has been devoted to defining formalisms, which would ease the task of
formally proving properties of distributed computation (e.g., absence of deadlock,
liveness, etc.). The models proposed for systems of concurrent processes do provide
both a formalism for describing a distributed computation and a proof system that

26 DISTRIBUTED COMPUTING ENVIRONMENTS

can be employed within the formalism; such is, for example, the Unity model of
Mani Chandi and Jayadev Misra [1]. Other models, whose intended goal is still to
provide a proof system, have been specifically tailored for distributed computations.
In particular, the Input—Output Automata model of Nancy Lynch and Mark Tuttle
[4] provides a powerful tool that has helped discover and fix “bugs” in well-known
existing protocols.

For the investigators involved in the design and analysis of distributed algorithms,
the main concern rests with efficiency and complexity; proving correctness of an
algorithm is a compulsory task, but it is usually accomplished using traditional
mathematical tools (which are generally considered informal techniques) rather than
with formal proof systems. The formal models of computation employed in these
studies, as well as in the one used in this book, mainly focus on those factors
that are directly related to efficiency of a distributed computation and complexity
of a distributed problem: the underlining communication network, the communi-
cation primitives, the amount and type of knowledge available to the processors,
etcetera.

Modal logic, and in particular the notion of common knowledge, is a useful tool to
reason about distributed computing environments in presence of failures. The notion
of knowledge used here was developed independently by Joseph Halpern and Yoram
Moses [2], Daniel J. Lehmann [3], and Stanley Rosenschein [5].

The model we have described and will employ in this book uses reactive enti-
ties (they react to external stimuli). Several formal models (including input—output
Automata) use instead active entities. To understand this fundamental difference, con-
sider a message in transit toward an entity that is expecting it, with no other activity
in the system. In an active model, the entity will attempt to receive the message, even
while it is not there; each attempt is an event; hence, this simple situation can actually
cause an unpredictable number of events. By contrast, in a reactive model, the entity
does nothing; the only event is the arrival of the message that will “wake up” the
entity and trigger its response.

Using the analogy of waiting for the delivery of a pizza, in the active model, you
(the entity) must repeatedly open the door (i.e., act) to see if the person supposed to
deliver the pizza has arrived; in the reactive model, you sit in the living room until
the bell rings and then go and open the door (i.e., react).

The two models are equally powerful; they just represent different ways of looking
at and expressing the world. It is our contention that at least for the description and
the complexity analysis of protocols and distributed algorithms, the reactive model is
more expressive and simpler to understand, to handle, and to use.

1.12 EXERCISES, PROBLEMS, AND ANSWERS

1.12.1 Exercises and Problems

Exercise 1.12.1 Prove that the flooding technique introduced in Section 1.5 is cor-
rect, that is, it terminates within finite time, and all entities will receive the information
held by the initiator.

EXERCISES, PROBLEMS, AND ANSWERS 27

Exercise 1.12.2 Determine the exact number of message transmissions required
by the protocol Flooding described in Section 1.5.

Exercise 1.12.3 In Section 1.5 we have solved the broadcasting problem under
the restriction of Bidirectional Links. Solve the problem using the Reciprocal
Communication restriction instead.

Exercise 1.12.4 In Section 1.5 we have solved the broadcasting problem under the
restriction of Bidirectional Links. Solve the problem without this restriction.

Exercise 1.12.5 Show that any protocol B can be rewritten so that SsTarT consists
of only one status. (Hint: Introduce a new input variable.)

Exercise 1.12.6 Consider the muddy children problem discussed in Section
1.8.1. Show that, within finite time, all the children with a muddy forehead can
simultaneously determine that they are not clean. (Hint: Use induction on k.)

Exercise 1.12.7 Half-duplex links allow communication to go in both directions, but
not simultaneously. Design a protocol that implements half-duplex communication
between two connected entities, a and b. Prove its correctness and analyze its
complexity.

Exercise 1.12.8 Half-duplex links allow communication to go in both directions, but
not simultaneously. Design a protocol that implements half-duplex communication
between three entities, a, b and ¢, connected to each other. Prove its correctness and
analyze its complexity.

1.12.2 Answers to Exercises

Answer to Exercise 1.12.1

Let us prove that every entity will indeed receive the message. The proof is by
induction on the distance d of an entity from the initiator s. The result is clearly true
for d = 0. Assume that it is true for all entities at most at distance d. Let x be a process
at distance d + 1 from s. Consider a shortest path s - x; — ... > xg_1 —> x
between s and x. As process x4_1 is at distance d — 1 from s, then by the induction
assumption it receives the message. If x;y_; received the message from x, then
this means that x already received the message and the proof is completed. Other-
wise, x4 received the message from a different neighbor, and it then sends the
message to all its neighbors, including x. Hence x will eventually receive the message.

Answer to Exercise 1.12.2

The total number of messages sent without the improvement was) .. [N(x)| =
2|E| = 2m; in Flooding, every entity (except the initiator) will send one message
less. Hence the total number of messages is 2m — (|V| — 1) =2m —n + 1.

28 DISTRIBUTED COMPUTING ENVIRONMENTS

Answer to Exercise 1.12.6 (Basis of Induction only)

Consider first the case k = 1: Only one child, say z, has a dirty forehead. In this case,
z will see that everyone else has a clean forehead; as the teacher has said that at least
one child has a dirty forehead, z knows that he/she must be the one. Thus, when the
teacher arrives, he/she comes forward. Notice that a clean child sees that z is dirty but
finds out that his/her own forehead is clean only when z goes forward.

Consider now the case k = 2: There are two dirty children, a and b; a sees the dirty
forehead of b and the clean one of everybody else. Clearly he/she does not know
about his status; he/she knows that if he/she is clean, b is the only one who is dirty
and will go forward when the teacher arrives. So, when the teacher comes and b does
not go forward, a understands that his/her forehead is also dirty. (A similar reasoning
is carried out by b.) Thus, when the teacher returns the second time, both a and b go
forward.

BIBLIOGRAPHY

[1] K.M. Chandi and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.

[2] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environ-
ment. Journal of the A.C.M., 37(3):549-587, 1987.

[3] D.J. Lehmann. Knowledge, common knowledge and related puzzles. In 3rd ACM Sympo-
sium on Principles of Distributed Computing, pages 62—67, Vancouver, 1984.

[4] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs of distributed algorithms.
In 6th ACM Symposium on Principles of Distributed Computing (PODC), pages 137-151,
Vancouver, 1987.

[51 S.J. Rosenschein. Formal theories of Al in knowledge and robotics. New Generation Com-
puting, 3:345-357, 1985.

I CHAPTER 2

Basic Problems and Protocols

The aim of this chapter is to introduce some of the basic, primitive, computational
problems and solution techniques. These problems are basic in the sense that their
solution is commonly (sometimes frequently) required for the functioning of the sys-
tem (e.g., broadcast and wake-up); they are primitive in the sense that their computa-
tion is often a preliminary step or a module of complex computations and protocols
(e.g., traversal and spanning-tree construction).

Some of these problems (e.g., broadcast and traversal), by their nature, are started
by a single entity; in other words, these computational problems have, in their defini-
tion, the restriction unique initiator (UI). Other problems (e.g., wake-up and spanning-
tree construction) have no such restriction. The computational differences created by
the additional assumption of a single initiator can be dramatic.

In this chapter we have also included the discussions on the (multiple-initiators)
computations in tree networks. Their fundamental importance derives from the fact
that most global problems (i.e., problems that, to be solved, require the involvement
of all entities), oftentimes can be correctly, easily, and efficiently solved by designing
a protocol for trees and executing it on a spanning-tree of the network.

All the problems considered here require, for their solution, the Connectivity (CN)
restriction (i.e., every entity must be reachable from every other entity). In general, and
unless otherwise stated, we will also assume Total Reliability (TR) and Bidirectional
Links (BL). These three restrictions are commonly used together, and the set R = {BL,
CN, TR} will be called the set of standard restrictions.

The techniques we introduce in this chapter to solve these problems are basic ones;
once properly understood, they form a powerful and an essential foolset that can be
effectively employed by every designer of distributed algorithms.

2.1 BROADCAST

2.1.1 The Problem

Consider a distributed computing system where only one entity, x, knows some im-
portant information; this entity would like to share this information with all the other
entities in the system; see Figure 2.1. This problem is called broadcasting (Bcast),

Design and Analysis of Distributed Algorithms, by Nicola Santoro
Copyright © 2007 John Wiley & Sons, Inc.

29

30 BASIC PROBLEMS AND PROTOCOLS

O OOQ
o .
o C

FIGURE 2.1: Broadcasting Process.

and already we have started its examination in the previous chapter. To solve this
problem means to design a set of rules that, when executed by the entities, will lead
(within finite time) to a configuration where all entities will know the information; the
solution must work regardless of which entity has the information at the beginning.

Built-in the definition of the problem, there is the assumption, Unique Initiator
(UD), that only one entity will start the task. Actually, this assumption is further
restricted, because the unique initiator must be the one with the initial information;
we shall denote this restriction by UI+.

To solve this problem, every entity must clearly be involved in the computation.
Hence, for its solution, broadcasting requires the Connectivity (CN) restriction (i.e.,
every entity must be reachable from every other entity) otherwise some entities will
never receive the information. We have seen a simple solution to this problem, Flood-
ing, under two additional restrictions: Total Reliability (TR) and Bidirectional Links
(BL). Recall that the set R = {BL, CN, TR} is the set of standard restrictions .

2.1.2 Cost of Broadcasting

As we have seen, the solution protocol Flooding uses O(m) messages and, in the worst
case, O(d) ideal time units, where d is the diameter of the network.

The first and natural question is whether these costs could be reduced significantly
(i.e., in order of magnitude) using a different approach or technique, and if so, by how
much. This question is equivalent to ask what is the complexity of the broadcasting
problem. To answer this type of questions we need to establish a lower bound: to
find a bound f (typically, a function of the size of the network) and to prove that the
cost of every solution algorithm is at least f. In other words, a lower bound is needed
irrespective of the protocol, and it depends solely on the problem; hence, it is an
indication of how complex the problem really is.

We will denote by M (Bcast/RI+) and 7 (Bcast/RI+) the message and the time
complexity of broadcasting under RI+ = R U UI+, respectively.

A lower bound on the amount of ideal time units required to perform a broadcast is
simple to derive: Every entity must receive the information regardless of how distant
they are from the initiator, and any entity could be the initiator. Hence, in the worst
case,

T (Beast/RI+) > Max{d(x, y) : x, y € V} = d. @.1)

BROADCAST 31

The fact that Flooding performs the broadcast in d ideal time units means that the
lower bound is tight (i.e., it can be achieved) and that Flooding is time optimal. In
other words, we know exactly the ideal time complexity of broadcasting:

Property 2.1.1 The ideal time complexity of broadcasting under RI+ is O(d).

Let us now consider the message complexity. An obvious lower bound on the number
of messages is also easy to derive: in the end, every entity must know the information;
thus a message must be received by each of the n—1 entities, which initially did not
have the information. Hence,

M(Bcast/RI+) > n — 1.
With a little extra effort, we can derive a more accurate lower bound:
Theorem 2.1.1 M(Bcast/RI+) > m.

Proof. Assume that there exists a correct broadcasting protocol A which, in each
execution, under RI4- on every G, uses fewer than m(G) messages. This means that
there is at least one link in G where no message is transmitted in any direction during
an execution of the algorithm. Consider an execution of the algorithm on G, and let
e=(x, y) € E be the link where no message is transmitted by A. Now construct a
new graph G’ from G by removing the edge e, and adding a new node z and two new
edges e; = (x, z) and ez = (y, z) (see Fig. 2.2). Set z in a noninitiator status. Run
exactly the same execution of A on the new graph G’: since no message was sent
along (x, y), this is possible. But since no message was sent along (x, y) in the original
execution, x and y never send a message to z in the current execution. As a result, z
will never receive the information (i.e., change status). This contradicts the fact that
A is a correct broadcasting protocol. |

(a) (b)
FIGURE 2.2: A message must be sent on each link.

32 BASIC PROBLEMS AND PROTOCOLS

This means that any broadcasting algorithm requires {)(m) messages.

Since Flooding solves broadcasting with 2m — n + 1 messages (see Exercise
2.9.1), this implies M(Bcast/RI+4) < 2m — n + 1. Since the upper bound and the
lower bound are of the same order of magnitude, we can summarize

Property 2.1.2 The message complexity of broadcasting under RI+ is O(m).

The immediate consequence is that, in order of magnitude, Flooding is a message-
optimal solution. Thus, if we want to design a new protocol to improve the 2m —
n + 1 cost of Flooding, the best we can hope to achieve is to reduce the constant
2; in any case, because of Theorem 2.1.1, the reduction cannot bring the constant
below 1.

2.1.3 Broadcasting in Special Networks

The results we have obtained so far apply to generic solutions; that is, solutions that
do not depend on G and can thus be applied regardless of the communication topology
(provided it is undirected and connected).

Next, we will consider performing the broadcast in special networks. Throughout
we will assume the standard restrictions plus UI4-.

Broadcasting in Trees Consider the case when G is a tree; that is, G is connected
and contains no cycles. In a tree, m = n—1; hence, the use of protocol Flooding for
broadcasting in a tree will cost2m — (n — 1) =2n — 1) —(n — 1) =n — 1
messages.

IMPORTANT. This cost is achieved even if the entities do not know that the network
is a tree.

IMPORTANT. An interesting side effect of broadcasting on a tree is that the tree
becomes rooted in the initiator of the broadcast.

Broadcasting in Oriented Hypercubes A communication topology that is
commonly used as an interconnection network is the (k-dimensional) labeled hyper-
cube, denoted by Hy.

A oriented hypercube H; of dimension k = 1 is just a pair of nodes called (in
binary) “0” and “1,” connected by a link labeled “1” at both nodes.

A hypercube Hj of dimension k > 1 is obtained by taking two hypercubes of
dimension k — l—Hlé_1 and Hj_1—and connecting the nodes with the same name
with a link labeled k at both nodes; the name of each node in H,éfl (respec-
tively H;' ,) is then modified by prefixing it with the bit O (respectively, 1); see
Figure 2.3.

BROADCAST 33

00 01
1
o0e——O0 1
2 2
1
10 1
100 101
3
2
000 ’ 111
2
010 011

FIGURE 2.3: Oriented Hypercube Networks

So, for example, node “0010” in H, will be connected to node “0010” in H)' by a
link labeled [= 5, and their names will become “00010” and “10010,” respectively.

This labeling A of the links is symmetric (i.e., A, (x, y)= A,(x, y)) and is called the
dimensional labeling of a hypercube.

IMPORTANT. These names are used only for descriptive purposes; they are not
known to the entities. By contrast, the labels of the links (i.e., the port numbers) are
known to the entities by the Local Orientation axiom.

A hypercube of dimension k has n = 2k nodes; each node has k links, labeled
1,2, ..., k. Hence the total number of links ism = nk/2 = (n/2)logn = O(nlogn).

A straightforward application of Flooding in ahypercube will cost2m — (n — 1) =
nlogn —(n — 1) =nlogn/2 + 1 = O(nlogn) messages. However, hypercubes are
highly structured networks with many interesting properties. We can exploit these
special properties to construct a more efficient broadcast. Obviously, if we do so, the
protocol cannot be used in other networks.

Consider the following simple strategy.

34 BASIC PROBLEMS AND PROTOCOLS

Strategy HyperFlood:

1. The initiator sends the message to all its neighbors.

2. Anode receiving a message from the link labeled / will send the messages only
to those neighbors with label I’ < 1.

NOTE. The only difference between HyperFlood and the normal Flooding is in step
2: Instead of sending the message to all neighbors except the sender, the entity will
forward it only to some of them, which will depend on the label of the port from
where the message is received.

As we will see, this strategy correctly performs the broadcast using only n — 1
messages (instead of O(n logn)). Let us first examine termination and correctness.

Let Hi(x) denote the subgraph of Hj induced by the links where messages are sent
by HyperFlood when x is the initiator. Clearly every node in Hj(x) will receive the
information.

Lemma 2.1.1 HyperFlood correctly terminates.

Proof. Let x be the initiator; starting from x, the messages are sent only on links with
decreasing labels, and if y receives the message from link 4 it will forward it only to
the ports 1, 2, and 3. To prove that every entity will receive the information sent by
x, we need to show that, for every node y, there is a path from x to y such that the
sequence of the labels on the path from x to y is decreasing. (Note that the labels on
the path do not need to be consecutive integers.) To do so we will use the following
property of hypercubes.

Property 2.1.3 In a k-dimensional hypercube Hy, any node x is connected to any
other node y by a path w € "[x, y] such that A(7) is a decreasing sequence.

Proof. Consider the k-bit names of x and of y in Hy: (xg, xx—1, ..., X1, Xo) and
(Vk» Yk=15 - --» Y1, Yo). If x # y, these two strings will differ in ¢+ > 1 positions.
Let ji, j2, ..., j: be the positions in decreasing order; that is, j; > ji4+1. Consider
now the nodes vg, vi, v2, ..., v;, where vg = x, and the name of v; differs from the
name of v; 41 only in the j;41-th position. Thus, there is a link labeled j;4+; con-
necting v; to v;41, and clearly v, = y. But this means that (vg, v, va, ..., V) is a
path from x to y, and the sequence of labels on this path is (ji, j2, ..., j:), which is
decreasing. |

Thus, Hj(x) is connected and spans (i.e., it contains all the nodes of) Hy, regardless
of x. In other words, within finite time, every entity will have the information. |

Let us now concentrate on the cost of HyperFlood. First of all observe that

M[HyperFlood/Hy] = n — 1. 2.2)

BROADCAST 35

To prove that only n — 1 messages will be sent during the broadcast, we just need
to show that every entity will receive the information only once. This is true because,
for every x, Hy(x) contains no cycles (see Exercise 2.9.9).

Also as an exercise it is left the proof that for every x, the eccentricity of x in Hy(x)
is k (see Exercise 2.9.10); this implies that the ideal time delay of HyperFlood in Hy
is always k. That is,

T[HyperFlood/Hy] = k 2.3)

These costs are the best that any broadcast algorithm can perform in a hypercube
regardless of how much more knowledge they have. However, they are obtained
here under the additional restriction that the network is a k-dimensional hypercube
with a dimensional labeling; that is, under H = {(G, A) = H;}. Summarizing, we
have

Property 2.1.4 The ideal time complexity of broadcasting in a k-dimensional
hypercube with a dimensional labeling under RI+ is O(k).

Property 2.1.5 The message complexity of broadcasting in a k-dimensional hyper-
cube with a dimensional labeling under RI+ is O(n).

IMPORTANT. The reason why we are able to “bypass” the ()(m) lower bound
expressed by Theorem 2.1.1 is because we are restricting the applicability of the
protocol.

Broadcasting in Complete Graphs Among all network topologies, the com-
plete graph is the one with the most links: Every entity is connected to all others;
thus m = n(n — 1)/2 = O(n?) (recall we are considering bidirectional links), and
d=1.

The use of a generic protocol will require O(n?) messages. But this is really
unnecessary.

Broadcasting in a complete graph is easily accomplished: Because everybody
is connected to everybody else, the initiator just needs to send the information to
its neighbors (i.e., execute the command “send(I) to N(x)”) and the broadcast is
completed. This uses only n — 1 messages and d = 1 ideal time.

Clearly this protocol, KBcast, works only in a complete graph, that is under the
additional restriction K = “G is a complete graph.” Summarizing

Property 2.1.6 The message and the ideal time complexity of broadcasting
in a complete graph under RI+ is O(k) are M(Bcast/RI+ ;K)=n—1 and
T (Bcast/RI+ ; K) = 1, respectively.

36 BASIC PROBLEMS AND PROTOCOLS

FIGURE 2.4: Wake-Up Process.

2.2 WAKE-UP

2.2.1 Generic Wake-Up

Very often, in a distributed environment, we are faced with the following situation:
A task must be performed in which all the entities must be involved; however, only
some of them are independently active (because of a spontaneous event, or having
finished a previous computation) and ready to compute, the others are inactive, not
even aware of the computation that must take place. In these situations, to perform
the task, we must ensure that all the entities become active. Clearly, this preliminary
step can only be started by the entities that are active already; however, they do not
know which other entities (if any) are already active.

This problem is called Wake-up (Wake-Up): An active entity is usually called
awake, an inactive (still) one is called asleep; the task is to wake all entities up; see
Figure 2.4.

It is not difficult to see the relationship between broadcasting and wake-up: Broad-
cast is a wake-up with only one initially awake entity; conversely, wake-up is a broad-
cast with possibly many initiators (i.e., initially more than one entity has the infor-
mation). In other words, broadcast is just a special case of the wake-up problem.

Interestingly, but not surprisingly, the flooding strategy used for broadcasting ac-
tually solves the more general Wake-Up problem. The modified protocol, called
WFlood, is described in Figure 2.5. Initially all entities are asleep; any asleep entity
can become spontaneously awake and start the protocol.

It is not difficult to verify that the protocol correctly terminates under the standard
restrictions (Exercise 2.9.7).

Let us concentrate on the cost of protocol WFlood. The number of messages is at
least equal to that of broadcast; actually, it is not much more (see Exercise 2.9.6):

2m > M[WFlood] > 2m —n + 1. 2.4

As broadcast is a special case of wake-up, not much improvement is possible
(except perhaps in the size of the constant):

M(Wake-Up/R) > M(Bcast/RI+) = Q(m)
The ideal time will, in general, be smaller than the one for broadcast:

T (Bcast/RI+) > T(Wake-Up/R)

WAKE-UP 37

PROTOCOL WFlood .

® Status Values: S = {ASLEEP,AWAKE};
Sinit = {ASLEEP};
Sterm = {AWAKE}.

® Restrictions: R.

ASLEEP
Spontaneously
begin
send(W) to N(x);
become AWAKE;
end

Receiving (W)

begin
send (W) to N(x)— {sender};
become AWAKE ;

end

FIGURE 2.5: Wake-Up by Flooding

However, in the case of a single initiator, the two cases coincide. As upper and lower
bounds coincide in order of magnitude, we can conclude that protocol WFlood is both
message and, worst case in the time optimal.

The complexity of Wake-Up is summarized by the following two proper-
ties,

Property 2.2.1 The message complexity of Wake-up under R is ®@m).

Property 2.2.2 The worst case ideal time complexity of Wake-up under R is O(d).

2.2.2 Wake-Up in Special Networks

Trees The cost of using protocol WFlood for wake-up will depend on the number
of initiators. In fact, if there is only one initiator, then this is just a broadcast and costs
only n — 1 messages. By contrast, if every entity starts independently, there will be
a total of 2(n — 1) messages. Let k, denote the number of initiators; note that this
number is not a system parameter like n or m, it is, however, bounded by a system
parameter: k, < n. Then the total number of messages when executing WFlood in a
tree will be exactly

M[WFlood/Tree]l = n + k, — 2. 2.5)

Labeled Hypercubes In Section 2.1, by exploiting the properties of the hyper-
cube and of the dimensional labeling, we have been able to construct a broadcast
protocol, which uses only O(n) messages, instead of the ()(n log n) messages required
by any generic protocol.

38 BASIC PROBLEMS AND PROTOCOLS

Letus see if we can achieve a similar result also for the wake-up. In other words, can
we exploit the properties of a labeled hypercube to do better than generic protocols?
The answer is, unfortunately, NO.

Lemma 2.2.1 M (Wake-Up/R ; H) = Q(nlogn).

As a consequence, we might as well employ the generic protocol WFlood, which
uses O(nlogn) messages. Summarizing,

Property 2.2.3 The message complexity of wake-up under R in a k-dimensional
hypercube with a dimensional labeling is ®(nlogn).

Complete Graphs Let us focus on wake-up in a complete graph. The use of
the generic protocolWFlood will require O(n?) messages. We can obviously use
the simplified broadcast protocol KBcast we developed for complete graphs. The
number of messages transmitted will be k,(n — 1), where k, denotes the number of
initiators. Even in the worst case (when every entity is independently awake and they
all simultaneously start the protocol) O(n?) messages will be transmitted.

Let us see if, by exploiting the properties of complete graphs, we have been able to
construct a wake-up protocol that uses only O(n) messages, instead of the O (n?) we
have achieved so far. (After all, we have been able to do it in the case of the broadcast
problem.)

Surprisingly, also in this case, the answer is NO.

Lemma 2.2.2 M (Wake-Up/R ; K) = Q(n?).

This implies that the use of WFlood for wake-up is a message-optimal solution. In
other words,

Property 2.2.4 The message complexity of wake-up under R in a complete network
is O(n?).

Complete Graphs with ID To reduce the number of messages, a more restricted
environment is required; that is, we need to make additional assumptions.

For example, if we add the restriction that the entities have unique names (re-
striction Initial Distinct values (ID)), then there are protocols capable of performing
wake-up with O(n log n) messages in a complete graph; they are not simple and actu-
ally solve a much more complex problem, Election, which we will discuss at length
in Chapter 3. Strangely, nothing better than that can be accomplished. In fact, let
IR + K = R U K; then the worst case message complexity of wake-up in a complete
graph under the standard restrictions R plus ID is as follows:

Property 2.2.5 M(Wake-Up/R;ID; K) > 0.5nlogn.

WAKE-UP 39

To see why this is true, we will construct a “bad” but possible case, which any
protocol can encounter, and show that, in such a case, O(n logn) messages will be
exchanged. The lower bound will hold even if there is message ordering. For simplicity
of discussion and calculation, we will assume that n is a power of 2; the results hold
also if this is not the case.

To construct the “bad” case for an (arbitrary) solution protocol A, we will consider a
game between the entities on one side and an adversary on the other: the entities obey
the rules of the protocol; the adversary will try to make the worst possible scenario
occur, so, to force the use of as many messages as possible.

The adversary has the following four powers:

1. it decides the initial values of the entities (they must be distinct);
2. it decides which entities spontaneously start the execution of A, and when;
3. it decides when a transmitted message arrives (it must be within finite time);

and
4. importantly, it decides the matching between links and labels: Letey, ea, .. ., ex
be the links incident on x, and let /1, I3, . . ., I} be the port labels to be used by x

for those links; during the execution, when x performs a “send to [” command,
and / has not been assigned yet, the adversary will choose which of the unused
links (i.e., through which no messages has been sent nor received) the label /
will be assigned to.

NOTE. Sending a message to more than one port will be treated as sending the
message to each of those ports one at a time (in an arbitrary order).

Whatever the adversary decides, it can happen in a real execution. Let us see how
bad a case can the adversary create for A.

Two sets of entities will be said to be connected at a time ¢ if at least a message
has been transmitted from an entities of one set to an entity of the other.

Adversary’s Strategy.

1. Initially, the adversary will wake up only one entity s, which we will call the
seed, and which will start the execution of the protocol. When s decides to send
a message to port number /, the adversary will wake up another entity y and
assign label / to the edge from s to y. It will then delay the transmission on that
link until also y decides to send a message to some port number ’; the adversary
will then assign label 7’ to the link from y to s and let the two messages arrive to
their destination simultaneously. In this way, each message will reach an awake
node, and the two entities are connected.

From now on, the adversary will act in a similar way; always ensure that
messages are sent to already-awake nodes, and that the set of awake nodes is
connected.

40 BASIC PROBLEMS AND PROTOCOLS

2. Consider an entity x executing a send operation to an unassigned label a.

(a) If x has an unused link (i.e., a link on which no messages have been sent so
far) connecting it to an awake node, the adversary will assign a to that link.
In other words, the adversary will always try to make the awake entities
send messages to other awake entities.

(b) If all links between x and the awake nodes have been used, then the adver-
sary will create another set of awake nodes and connect the two sets.

i. Let xg, ..., xx—1 be the currently awake nodes, ordered according to
their wake-up time (thus, xo = s is the seed, and x; = y). The ad-
versary will perform the following function: choose k inactive nodes
20, - - - » Zk—1; establish a logical correspondence between x; and z;
assign initial values to the new entities so that the order among them
is the same as the one among the values of the corresponding entities;
wake up these entities and force them to have the “same” execution
(same scheduling and same delays) as already did the corresponding
ones. (So, zo will be woken up first, its first message will be sent to zy,
which will be woken up next and will send a message to zg, and so forth)

ii. The adversary will then assign label a to the link connecting x to its
corresponding entity z in the new set; the message will be held in
transit until z (like x did) will need to transmit a message on an unused
link (say, with label b) but all the edges connecting it to its set of
awake entities have already been used.

iii. When this happens, the adversary will assign the label b to the link
from z to x and make the two messages between x and z arrive and be
processed.

Let us summarize the strategy of the adversary: The adversary tries to force the
protocol to send messages only to already-awake entities and awakens new entities
only when it cannot do otherwise; the newly awake entities are equal in number to
the already awake entities; and they are forced by the adversary to have the same
execution between them as did the other entities before any communication takes
place between the two sets. When this happens, we will say that the adversary has
started a new stage.

Let us now examine the situations created by the adversary with this strategy and
analyze the cost of the protocol in the corresponding executions.

Let Active(i) denote the awake entities in stage i and New(i) = Active(i) —
Active(i — 1) the entities that the adversary woke up in this stage; initially, Active(0)
is just the seed. The newly awake entities are equal in number to the already awake
entities; that is, |[New(i)| = |Active(i — 1)|).

Let w(i — 1) denote the fotal number of messages, which have been exchanged
before the activation of the new entities. The adversary forces the new entities to have
the same execution as did the entities in Active(i — 1), thus exchanging u(i — 1) of
messages, before allowing the two sets to become connected. Thus, the total number
of messages until the communication between the two sets takes place is 2u(i — 1).

TRAVERSAL 41

Once the communication takes place, how many messages (including those two)
are transmitted before the next stage?

The exact answer will depend on the protocol A, but regardless of which protocol
we are using, the adversary will not start anew stage i + 1 unless itis forced to; this will
happen only if an entity x issues a “send to /” command (where [is an unassigned
label) and all the links connecting x to the other awake entities have already been
used. This means that x must have either sent to or received from all the entities in
Active(i) = Active(i — 1) U New(i). Assume that x € Active(i — 1); then, of all these
messages, the ones between x and New(i) have only occurred in stage i (since those
entities were not active before); this means that at least |New(i)| = |Active(i —1)|
additional messages are sent before stage i + 1. If instead x € New(i), these messages
have all been transmitted in this stage (as x was not awake before); in other words, even
in this case, |New(i)| = |Active(i —1)| additional messages are sent before stagei + 1.

Summarizing, the total cost u(i — 1) before stage i is thus doubled and at least
additional |Active(i —1)| messages are sent before stage i 4 1. In other words,

w(@) > 2 u@ — 1)+ |Active(i —1)|.

As the awake entities double in each stage, and initially only the seed is active, then
|Active(i)| = 2'. Hence, observing that ;(0) = 0,

w() =2 pi — 1) +271 =201

The total number of stages is exactly log n as the awake processes double every stage.
Hence, with this strategy, the adversary can force any protocol to transmit at least
u(log n) messages. As

u(logn) > 0.5nlogn

it follows that any wake-up protocol will transmit {)(n log n) messages in the worst
case even if the entities have distinct identifiers (ids).

More efficient wake-up protocols can be derived if we have in our system a “good”
labeling of the links instead.

2.3 TRAVERSAL

Traversal of the network allows every entity in the network to be “visited” sequentially
(one after the other). Its main uses are in the control and management of a shared
resource and in sequential search processes. In abstract terms, the traversal problem
starts with an initial configuration where all entities are in the same state (say unvisited)
except the one that is visited and is the sole initiator; the goal is to render all the entities
visited but sequentially (i.e., one at the time).

A traversal protocol is adistributed algorithm that, starting from the single initiator,
allows a special message called “traversal token” (or simply, foken), to reach every

42 BASIC PROBLEMS AND PROTOCOLS

entity sequentially (i.e., one at the time). Once a node is reached by the token, it
is marked as “visited.” Depending on the traversal strategy employed, we will have
different traversal protocols.

2.3.1 Depth-First Traversal

A well known strategy is the depth-first traversal of a graph. According to this strategy,
the graph is visited (i.e., the token is forwarded) trying to go forward as long as
possible; if it is forwarded to an already visited node, it is sent back to the sender, and
that link is marked as a back-edge; if the token can no longer be forwarded (it is at a
node where all its neighbors have been visited), the algorithm will “backtrack” until
it finds an unvisited node where the token can be forwarded to.

The distributed implementation of depth-first traversal is straightforward.

1. When first visited, an entity remembers who sent the token, creates a list of
all its still unvisited neighbors, forwards the token to one of them (removing it
from the list), and waits for its reply returning the token.

2. When the neighbor receives the token, it will return the token immediately if
it had been visited already by somebody else, notifying that the link is a back-
edge; otherwise, it will first forward the token to each of its unvisited neighbors
sequentially, and then reply returning the token.

3. Upon the reception of the reply, the entity forwards the token to another unvis-
ited neighbor.

4. Should there be no more unvisited neighbors, the entity can no longer forward
the token; it will then send the reply, returning the token to the node from which
it first received it.

NOTE. When the neighbor in step (2) determines that a link is a back-edge , it knows
that the sender of the token is already visited; thus, it will remove it from the list of
unvisited neighbors.

We will use three types of messages: “T” to forward the token in the traversal,
“Backedge” to notify the detection of a back-edge, and “Return” to return the token
upon local termination.

Protocol DF _Traversal is shown in Figure 2.6, where the operation of extracting
an element from a set B and assigning it to variable a is denoted by a <= B. Let us
examine its costs.

Focus on a link (x,y)e E. What messages can be sent on it? Suppose x sends T
to y; then y will only send to x either Return (if it was idle when the T arrived) or
Backedge (otherwise). In other words, on each link there will be exactly two messages
transmitted. Since the traversal is sequential, T[DF _Traversal | = M[DF _Traversal |;
hence

T[DF _Traversal] = M[DF _Traversal] = 2m. (2.6)

TRAVERSAL 43

PROTOCOL DF _Traversal.

e Status: S = {INITIATOR,IDLE,VISITED,DONE};
Sinit = {INITIATOR,IDLE}; Stgrm = {DONE}.

® Restrictions: R ;UL

INITIATOR
Spontaneously
begin
Unvisited:= N(x) ;
initiator:= true;
VISIT;
end
IDLE
Receiving (T)
begin
entry: = sender;
Unvisited: = N(x)— {sender};
initiator: = false;
VISIT;
end
VISITED
Receiving (T)
begin
Unvisited: = Unvisited —{sender};

send (Backedge) to {sender};
end

Receiving (Return)
begin

VISIT;
end

Receiving (Backedge)
begin

VISIT;
end

Procedure VISIT
begin
if Unvisited # ¢ then
next <« Unvisited;
send (T) to next;
become VISITED
else
if not(initiator) then send (Return) to entry; endif
become DONE;
endif
end

FIGURE 2.6: DF_Traversal

To determine how efficient is the protocol, we are going to determine what is the
complexity of the problem.

Using exactly the same technique we employed in the proof of Theorem 2.1.1, we
have (Exercise 2.9.11):

Theorem 2.3.1 M(DFT/R) > m.

44 BASIC PROBLEMS AND PROTOCOLS

Therefore, the 2m message cost of protocol DF _Traversal is indeed excellent, and the
protocol is message optimal.

Property 2.3.1 The message complexity of depth-first traversal under R is ®(m).

The time requirements of a depth-first traversal are quite different from those of a
broadcast. In fact, since each node must be visited sequentially, starting from the sole
initiator, the time complexity is at least the number of nodes:

Theorem 2.3.2 T (DFT/R)>n — 1.

The time complexity of protocol DF _Traversal is dreadful. In fact, the upper bound
2m could be several order of magnitude larger than the lower bound n — 1. For
example, in a complete graph, 2m = n*> — n. Some significant improvements in the
time complexity can, however, be made by going into a finer granularity. We will
discuss this topic in greater details next.

2.3.2 Hacking (»)

Let us examine protocol Protocol DF _Traversal to see if it can be improved, especially
its time cost.

IMPORTANT. When measuring ideal time, we consider only synchronous exe-
cutions; however, when measuring messages and establishing correctness we must
consider every possible schedule of events, especially the nonsynchronous execu-
tions.

Basic Hacking The protocol we have constructed is totally sequential: in a syn-
chronous execution, at each time unit only one message will be sent, and every mes-
sage requires one unit of time. So, to improve the time complexity, we need to (1)
reduce the number of messages and/or (2) introduce some concurrency.

By definition of traversal, each entity must receive the token (message T) at least
once. In the execution of our protocol, however, some entities receive it more than
once; those links from which these other T messages arrive are precisely the back-
edges.

Question. Can we avoid sending T messages on back-edges?

To answer this question we must understand why T messages are sent on back-edges.
When an entity x sends a T message to y, it does not know whether the link is
a back-edge or not; that is, whether y has already been visited by somebody else
or not. If x knew which of its neighbors are already visited, it would not send a
T message to them, there would be no need for Backedge messages from them,
and we would be saving messages and time. Let us examine how to achieve such a
condition.

TRAVERSAL 45

Suppose that, whenever a node is visited (i.e., it receives T) for the first time, it
notifies all its (other) neighbors of this event (e.g., sending a “Visited” message) and
waits for an acknowledgment (e.g., receiving an “Ack” message) from them before
forwarding the token.

The consequence of such a simple act is that now an entity ready to forward the
token (i.e., to send a T message) really knows which of its neighbors have already
been visited.

This is exactly what we wanted. The price we have to pay is the transmission of
the Visited and Ack messages.

Notice that now an idle entity (that is an entity that has not yet been involved in the
traversal) might receive a Visited message as its first message. In the revised protocol,
we will make such an entity enter a new status, available.

Let us examine the effects of this change on the overall time cost of the protocol; call
DF+ the resulting protocol. The time is really determined by the number of sequential
messages. There are four types of messages that are sent: T, Return, Visited, and Ack.

Each entity (except the initiator) will receive only one T message and send only
one Return message; the initiator does not receive any T message and does not send
any Return; thus, in total there will be 2(n — 1) such messages. Since all these com-
munications occur sequentially (i.e., without any overlap), the time taken by sending
the T and Return messages will be 2(n — 1).

To determine how many ideal time units are added by the transmission of Visited
and Ack messages, consider an entity: its transmission of all the Visited messages
takes only a single time unit, since they are sent concurrently; the corresponding Ack
messages will also be sent concurrently, adding an additional time unit. Since every
node will do it, the sending of the Visited messages and receiving the Ack messages
will increase the ideal time of the original algorithm by exactly 2n.

This will give us a time cost of

T[DF+] = 4n — 2. 2.7)

It is also easy to compute how many messages this will cost. As mentioned above,
there is a total of 2(n — 1) T and Return messages. In addition, each entity (except
the initiator) sends a Visited message to all its neighbors except the one from which
it received the token; the initiator will send it to all its neighbors. Thus, denoting
by s the initiator, the total number of Visited messages is |[N(s)| + ZX #(|N x)| —
1) = 2m — (n — 1). Because for each Visited message there will be an Ack, the total
message cost will be

M[DF+] =4m —2(n — 1)+ 2(n — 1) = 4m. 2.8)
Summarizing, we have been able to reduce the time costs from O(m) to O(n) that,
because of Theorem 2.3.2, is optimal. The price has been the doubling of the number

of messages.

Property 2.3.2 The ideal time complexity of depth-first traversal under R is ©(n).

46 BASIC PROBLEMS AND PROTOCOLS

Advanced Hacking Let us see if the number of messages can be decreased with-
out significantly increasing the time costs.

Question. Can we avoid sending the Ack messages?

To answer this question we must understand what would happen if we do not send
Ack messages. Consider an entity x that sends Visited to its neighbors; (if we no
longer use Ack) x will proceed immediately with forwarding the token. Assume that,
after some time, the token arrives, for the first time, to a neighbor z of x (see Fig.
2.7); it is possible that the Visited message sent by x to z has not arrived yet (due
to communication delays). In this case, z would not know that x has already been
visited and would send the T message to it. That is, we will again send a T message
on a back-edge undoing what we had accomplished with the previous change to the
protocol.

But the algorithm now is rather different (we are using Visited messages, no longer
Backedge messages) and this situation might not happen all the time.

Still, if it happens, z will eventually receive the Visited message from x (recall
we are operating under total reliability); z can then understand its mistake, pretend
nothing happened (just the waste of a T message), and continue like T message was
never really sent. On its side, x upon receiving the token will also understand that
z made a mistake and ignore the message; x also realizes (if it did not know already)
that z is visited and will remove it from its list of unvisited neighbors.

Although the correctness will not be affected (Exercise 2.9.15), mistakes cost
additional messages. Let us examine what is really the cost of this modified protocol,
which we shall call DF4+.

As before, the “correct” T and Return yield a total of 2n — 2 messages, and the
Visited messages are 2m — n + 1 in total.

Then there are the “mistakes”; each mistake costs one message. The number of
mistakes can be very large. In fact, unfriendly time delays can force mistakes to

©)

l Visited
[T

(a) (b) (c)
FIGURE 2.7: Slow Visited message : z does not know that x has been visited.

TRAVERSAL 47

occur on every back-edge; on some back-edges, there can be two mistakes, one in
each direction. (Exercise 2.9.16). In other words, there will be at most 2(m — n + 1)
incorrect T messages. Summing up all, this yields

M[DF++] <4m —n + 1. 2.9)

Let us consider now the time. We have an improvement in that the Ack messages are
no longer sent, saving » time units.

As there are no more Ack to wait for, an entity can forward the token at the same
time as the transmission of the Visited messages; if it does not have any unvisited
neighbor to send the T to, the entity will send the Return at the same time as the
Visited. Hence, the sending of the Visited is done in overlap with the sending of
either a T or a Return message, saving another n time units.

In other words, without considering the mistakes, the total time will be 2n — 2.
Let us now also consider the mistakes and evaluate the ideal time of the pro-
tocol.

Strange as it might sound, when we attempt to measure the ideal execution time of
this protocol, in the execution no mistakes will ever occur. This is because mistakes
can only occur owing to arbitrarily long communication delays; on the contrary, ideal
time is only measured under unifary delays. But under unitary delays there are no
mistakes. Therefore,

T[DF++] = 2n — 2. (2.10)

IMPORTANT. It is crucial to understand this inherent limit of the cost measure we
call ideal time. Unlike the number of messages, ideal time is not a “neutral” measure;
it influences (thus limiting) the nature of what we want to measure. In other words, it
should be treated and handled with caution. Even greater caution should be employed
in interpreting the results it gives.

Extreme Hacking As we are on a roll, let us observe that we could actually use
the T message as an implicit Visited, saving some additional messages.

This saving will happen at every entity except those that, when they are reached
for the first time by a T message, do not have any unvisited neighbor. Let f, denote
the number of these nodes; thus the number of Visited messages we save is n — f,.
Hence, the total number of messagesis4m —n + 1 —n + f,.

Summarizing, the cost of the optimized protocol, called DF* and described in
Figures 2.8 and 2.9, is as follows:

T[DFx] = 2n — 2. @2.11)
M[DFx] = 4m — 2n + f, + 1. (2.12)

48 BASIC PROBLEMS AND PROTOCOLS

PROTOCOL DF*

e Status: S = {INITIATOR,IDLE,AVAILABLE,VISITED,DONE};
S;n17 = {INITIATOR,IDLE}; Sry = {DONE}.

® Restrictions: R ;UIL

INITIATOR

Spontaneously

begin
initiator:= true;
Unvisited:= N(x);
next < Unvisited;
send (T) to next;
send (Visited) to N(x)-{next};
become VISITED

end

IDLE
Receiving (T)
begin
Unvisited:= N(x) ;
FIRST-VISIT;
end

Receiving (Visited)

begin
Unvisited:= N(x)— {sender};
become AVAILABLE

end

AVAILABLE

Receiving (T)
FIRST-VISIT;

Receiving (Visited)
begin

Unvisited:= Unvisited — {sender};
end

VISITED

Receiving (Visited)
begin
Unvisited:= Unvisited —{sender};
if next = sender then VISIT; endif
end

Receiving (T)
begin
Unvisited:= Unvisited —{sender};
if next = sender then VISIT; endif
end

Receiving (Return)
begin

VISIT;
end

FIGURE 2.8: Protocol DF*

TRAVERSAL 49

Procedure FIRST-VISIT

begin
initiator:= false;
entry:=sender;
Unvisited:= Unvisited-{sender};

if Unvisited # ¢ then
next < Unvisited;
send (T) to next;
send (Visited) to N(x)—{entry,next};
become VISITED;

else
send (Return) to {entry};
send (Visited) to N(x)—{entry};
become DONE;

endif

end

Procedure VISIT
begin
if Unvisited # ¢ then
next < Unvisited;
send (T) to next;
else
if not (initiator) then send (Return) to entry; endif
become DONE;
endif
end

FIGURE 2.9: Routines used by Protocol DF*

IMPORTANT. The value of f,, unlike n and m, is not a system parameter. In fact,
it is execution-dependent.: it may change at each execution value. We shall indicate
this fact (for f as well as for any other execution-dependent value) by the use of the
subscript *.

2.3.3 Traversal in Special Networks

Trees In a tree network, depth-first traversal is particularly efficient in terms of
messages, and there is no need of any optimization effort (hacking). In fact, in any
execution of DF Traversal in a tree, no Backedge messages will be sent (Exercise
2.9.12). Hence, the total number of messages will be exactly 2(n — 1). The time
complexity is the same as the optimized version of the protocol: 2(n — 1).

MI[DF _Traversal/Tree] = T[DF _Traversal/Tree] = 2n — 2 (2.13)

An interesting side effect of a depth-first traversal of a tree is that it constructs a
virtual ring on the tree (Figure 2.10). In this ring some nodes appear more than
once; in fact the ring has size 2n — 2 (Exercise 2.9.13). This fact will have useful
consequences.

50 BASIC PROBLEMS AND PROTOCOLS

@ Virtual Node

Q Real Node

FIGURE 2.10: Virtual ring created by DF_Traversal.

Rings Inaringnetwork, every node has exactly two neighbors. Depth-first traversal
in a ring can be achieved in a simple way: the initiator chooses one direction and the
token is just forwarded along that direction; once the token reaches the initiator, the
traversal is completed. In other words, each entity will send and receive a single
T message. Hence both the time and the message costs are exactly n. Clearly this
protocol can be used only in rings.

Complete Graph In a complete graph, execution of DF* will require O (n*) mes-
sages. Exploiting the knowledge of being in a complete network, a better protocol can
be derived: the initiator sequentially will send the token to all its neighbors (which
are the other entities in the network); each of this entities will return the token to
the initiator without forwarding it to anybody else. The total number of messages is
2(n — 1), and so is the time.

2.3.4 Considerations on Traversal

Traversal as Access Permission The main use of a traversal protocol is in
the control and management of shared resources. For example, access to a shared
transmission medium (e.g., bus) must be controlled to avoid collisions (simultaneous
frame transmission by two or more entities). A typical mechanism to achieve this is
by the use of a control (or permission) token. This token is passed from one entity to
another according to the same set of rules. An entity can only transmit a frame when it
is in possession of the token; once the frame has been transmitted, the token is passed
to another entity. A traversal protocol by definition “passes” the token sequentially
through all the entities and thus solves the access control problem. The only proviso is
that, for the access permission problem, it must be made continuous: once a traversal
is terminated, another must be started by the initiator.

PRACTICAL IMPLICATIONS: USE A SUBNET 51

The access permission problem is part of a family of problems commonly called
Mutual Exclusion, which will be discussed in details later in the book.

Traversal as Broadcast 1t is not difficult to see that any traversal protocol solves
the broadcast problem: the initiator puts the information in the token message; every
entity will be visited by the token and thus will receive the information. The converse
is not necessarily true; for example, Flooding violates the sequentiality requirement
since the message is sent to all (other) neighbors simultaneously.

The use of traversal to broadcast does not lead to a more efficient broadcasting
protocol. In fact, a comparison of the costs of Flooding and DF* (Expressions 1.1
and 2.12) shows that Flooding is more efficient in terms of both messages and ideal
time. This is not surprising since a traversal is constrained to be sequential; flooding,
by contrast, exploits concurrency at its outmost.

2.4 PRACTICAL IMPLICATIONS: USE A SUBNET

We have considered three basic problems (broadcast, wake-up, and depth-first traver-
sal) and studied their complexity, devised solution protocols and analyzed their ef-
ficiency. Let us see what the theoretical results we have obtained tell us about the
situation from a practical point of view.

We have seen that generic protocols for broadcasting and wake-up require (m)
messages (Theorem 2.1.1). Indeed, in some special networks, we can sometimes
develop topology-dependent solutions and obtain some improvements.

A similar situation exists for generic traversal protocols: They all require (m)
messages (Theorem 2.3.1); this cost cannot be reduced (in order of magnitude) unless
we make additional restrictions, for example, exploiting some special properties of
G of which we have a priori (i.e., at design time) knowledge.

In any connected, undirected graph G, we have

n*—n)/2 > m > n—1,

and, for every value in that range, there are networks with those many links; in
particular, m = (n> — n)/2 occurs when G is the complete graph, and m =n — 1
when G is a tree.

Summarizing, the cost of broadcasting, wake-up, and traversal depends on the
number of links: The more links the greater the cost; and it can be as bad as 0(n?)
messages per execution of any of the solution protocols.

This result is punitive for networks where a large investment has been made in
the construction of communication links. As broadcast is a basic communication tool
(in some systems, it is a primitive one) dense networks are penalized continuously.
Similarly, larger operating costs will be incurred by dense networks every time a
wake-up (a very common operation, used as preliminary step in most computations)
or a traversal (fortunately, not such a common operation) is performed.

52 BASIC PROBLEMS AND PROTOCOLS

The theoretical results, in other words, indicate that investments in communication
hardware will result in higher operating communication costs.

Obviously, this is not an acceptable situation, and it is necessary to employ some
“lateral thinking.”

The strategy to circumvent the obstacle posed by these lower-bounds (Theorems
2.1.1 and 2.3.1) without restricting the applicability of the protocol is fortunately
simple:

1. construct a subnet G’ of G and
2. perform the operations only on the subnet.

If the subnet G’ we construct is connected and spans G (i. €., contains all nodes
of G), then doing broadcast on G’ will solve the broadcasting problem on G: Every
node (entity) will receive the information. Similarly, performing a traversal on G’ will
solve that problem on G.

The important consequence is that, if G’ is a proper subnet, it has fewer links than
G; thus, the cost of performing those operations on G’ will be lower than doing itin G.

Which connected spanning subnet of G should we construct?

If we want to minimize the message costs, we should choose the one with the
fewest number of links; thus, the answer is: a spanning tree of G. So, the strategy for
a general graph G will be

Strategy Use-a-Tree:

1. construct a spanning tree of G and
2. perform the operations only on this spanning tree.

This strategy has two costs. First, there is the cost of constructing the spanning tree;
this task will have to be carried out only once (if no failures occur). Then there are
the operating costs, that is the costs of performing broadcast, wake-up, and traversal
on the tree. Broadcast will cost exactly n — 1 messages, and the cost of wake-up and
traversal will be twice that amount. These costs are independent of m and thus do not
inhibit investments in communication links (which might be useful for other reasons).

2.5 CONSTRUCTING A SPANNING TREE

Spanning-tree construction (SPT) is a classical problem in computer science. In a
distributed computing environment, the solution of this problem has, as we have
seen, strong practical motivations. It also has distinct formulation and requirements.

In a distributed computing environment, to construct a spanning tree of G means
to move the system from an initial system configuration, where each entity is just
aware of its own neigbors, to a system configuration where

1. each entity x has selected a subset Tree-neighbors(x) € N(x) and
2. the collection of all the corresponding links forms a spanning tree of G.

CONSTRUCTING A SPANNING TREE 53

What is wanted is a distributed algorithm (specifying what each node has to do when
receiving a message in a given status) such that, once executed, it guarantees that a
spanning tree T(G) of G has been constructed; in the following we will indicate 7(G)
simply by T, if no ambiguity arises.

Note that 7 is not known a priori to the entities and might not be known after it
has been constructed: an entity needs to know only which of its neighbors are also its
neighbors in the spanning tree 7.

As before, we will restrict ourselves to connected networks with bidirectional links
and further assume that no failure will occur.

We will first assume that the construction will be started by only one entity (i.e.,
Unique Initiator (UI) restriction); that is, we will consider spanning-tree construction
under restrictions RI.

We will then consider the general problem when any number of entities can inde-
pendently start the construction. As we will see, the situation changes dramatically
from the single-initiator scenario.

2.5.1 SPT Construction with a Single Initiator: Shout

Consider the entities; they do not know G, not even its size. The only things an entity
is aware of are the labels on the ports leading to its neighbors (because of the Local
Orientation axiom) and the fact that, if it sends a message to a neighbor, the message
will eventually be received (because of the Finite Communication Delays axiom and
the Total Reliability restriction).

How, using just this information, can a spanning tree be constructed?

The answer is surprisingly simple. Each entity needs to know which of its
neighbors are also neighbors in the spanning tree. The solution strategy is just “ask:”

Strategy Ask-Your-Neighbors:

1. The initiator s will “ask™ its neighbors; that is, it will send a message Q = (“Are
you my neighbor in the spanning tree"?) to all its neighbors.

2. An entity x # s will reply “Yes” only the first time it is asked and, in this
occasion, it will ask all its other neighbors; otherwise, it will reply “No.” The
initiator s will always reply “No.”

3. Each entity terminates when it has received a reply from all neighbors to which
it asked the question.

For an entity x, its neighbors in the spanning tree 7 are the neighbors that have
replied “Yes” and, if x # s, also the neighbor from which the question was first asked.

The corresponding set of rules is depicted in Figure 2.11 where in bold are shown
the tree links and in dotted lines the nontree links. The protocol Shout implementing
this strategy is shown in Figure 2.12. Initially, all nodes are in status idle except the
sole initiator.

54 BASIC PROBLEMS AND PROTOCOLS

{H A A
|

TREE LINE

......... NOT-IN-TREE
FIGURE 2.11: Set of Rules of Shout.

Before we discuss the correctness and the efficiency of the protocol, consider
how it is structured and operates. First of all observe that, in Shout the question Q
is broadcasted through the network (using flooding). Further observe that, when an
entity receives Q, it always sends a reply (either Yes or No). Summarizing, the structure
of this protocol is a flood where every information message is acknowledged. This
type of structure will be called Flood + Reply.

CONSTRUCTING A SPANNING TREE 55

PROTOCOL Shout

e Status: S = {INITIATOR,IDLE,ACTIVE,DONE};
Sinir = {INITIATOR,IDLE};
Srerm = {DONE}.

® Restrictions: R ;UL

INITIATOR

Spontaneously

begin
root:= true;
Tree-neighbors:=0;
send (Q) to N(x);
counter:=0;
become ACTIVE;

end

IDLE
Receiving (Q)
begin
root := false;
parent:= sender;
Tree-neighbors:={sender};
send (Yes) to {sender};
counter:=1;
if counter=|N(x)| then
become DONE
else
send (Q) to N(x) — {sender};
become ACTIVE;
endif
end

ACTIVE
Receiving (Q)
begin
send (No) to {sender};
end

Receiving (Yes)
begin
Tree-neighbors:=Tree-neighbors U{sender};
counter:=counter+1;
if counter=|N(x)| then become DONE; endif
end

Receiving (No)
begin

counter:=counter+1;

if counter=|N(x)| then become DONE; endif
end

FIGURE 2.12: Protocol Shout

Correctness Let us now show that Flood + Reply, as used above, always con-
structs a spanning tree; that is, the graph defined by all the Tree-neighbors computed
by the entities forms a spanning tree of G; furthermore, this tree is rooted in the
initiator s.

56 BASIC PROBLEMS AND PROTOCOLS
Theorem 2.5.1 Protocol Shout correctly terminates.

Proof. This protocol consists of the flooding of Q, where every Q message is ac-
knowledged. Because of the correctness of flooding, we are guaranteed that every
entity will receive Q and by construction will reply (either Yes or No) to each Q it
receives. Termination then follows.

To prove correctness we must show that the subnet G’ defined by all the Tree-
neighbors is a spanning tree of G. First observe that, if x is in Tree-neighbors of y,
then y is in Tree-neighbors of x (see Exercise 2.9.18). If an entity x sends a Yes to y,
then it is in Tree-neighbors of y; furthermore, it is connected to s by a path where a
Yes is sent on each link (see Exercise 2.9.19). Since every x # s sends exactly one
Yes, the subnet G’ defined by all the Tree-neighbors contains all the entities (i.e., it
spans G), it is connected, and contains no cycles (see Exercise 2.9.20). Therefore, it
is a spanning tree of G.]

Note that G’ is actually a tree rooted in the initiator. Recall that, in a rooted tree ,
every node (except the root) has one parent: the neighbor closest to the root; all its
other neighbors are called children. The neighbor to which x sends a Yes is its parent;
all neighbors from which it receives a Yes are its children. This fact can be useful in
subsequent operations.

IMPORTANT. The execution of protocol Shout ends with local termination: each
entity knows when its own execution is over; this occurs when it enters status done.
Notice however that no entity, including the initiator, is aware of global termination
(i.e., every entity has locally terminated). This situation is fairly common in distributed
computations. Should we need the initiator to know that the execution has terminated
(e.g., to start another task), Flood + Reply can be easily modified to achieve this goal
(Exercise 2.9.24).

Costs The message costs of Flood+Reply, and thus of Shout, are simple to analyze.
As mentioned before, Flood+Reply consists of an execution of Flooding(Q) with the
addition of a reply (either Yes or No) for every Q. In other words,

M{[Flood+Reply] = 2 M[Flooding].

The time costs of Flood+Reply, and thus of Shout, are also simple to determine;
in fact (Exercise 2.9.21):

T[Flood+Reply] = T[Flooding]+1.

Thus
M[Shout] = 4m — 2n + 2 2.14)
T[Shout] =r(s,)+1 <d+1 (2.15)

CONSTRUCTING A SPANNING TREE 57

The efficiency of protocol Shout can be evaluated better taking into account the
complexity of the problem it is solving.

Since every node must be involved, using an argument similar to the proof of
Theorem 2.1.1, we have:

Theorem 2.5.2 M(SPT/RI) > m.

Proof. Assume that there exists a correct SPT protocol A that, in each execution under
RI on every G, uses fewer than m(G) messages. This means that there is at least one
link in G where no message is transmitted in any direction during an execution of the
algorithm. Consider an execution of the algorithm on G, and let e = (x, y) € E be
the link where no message is transmitted by A. Now construct a new graph G’ from G
by removing the edge e and adding a new node z and two new edges e; = (x, z) and
ez = (v, z) (see Fig. 2.2). Set z in a noninitiator status. Run exactly the same execution
of A on the new graph G’: since no message was sent along (x,y), this is possible. But
since no message was sent along (x,y) in the original execution in G, x and y never
send a message to z in the current execution in G’; and since z is not the initiator
and does not receive any message, it will not send any message. Within finite time,
protocol A terminates claiming that a spanning-tree T of G’ has been constructed;
however, z is not part of 7, and hence T does not span G'. ||

And similarly to the broadcast problem we have
Theorem 2.5.3 T (SPT/RI) > d.

This implies that protocol Shout is both time optimal and message optimal with
respect to order of magnitude. In other words,

Property 2.5.1 The message complexity of spanning-tree construction under Rl
is O(m).

Property 2.5.2 The ideal time complexity of spanning-tree construction under Rl is
Od).

In the case of the number of messages some improvement might be possible in
terms of the constant.

Hacking Let us examine protocol Shout to see if it can be improved, thereby,
helping us to save some messages.

Question. Do we have to send No messages?

When constructing the spanning tree, an entity needs to know who its tree-neighbors
are; by construction, they are the ones that reply Yes and, except for the initiator, also

58 BASIC PROBLEMS AND PROTOCOLS

the ones that first asked the question. Thus, for this determination, the No messages
are not needed.

On the contrary hand, the No messages are used by the protocol to terminate in
finite time. Consider an entity x that just sent Q to neighbor y; it is now waiting for a
reply. If the reply is Yes, it knows y is in the tree; if the reply is No, it knows y is not.
Should we remove the sending of No—how can x determine that y would have sent No?

More clearly: Suppose x has been waiting for a reply from y for a (very) long time;
it does not know if y has sent Yes and the delays are very long, or y would have sent
No and thus will send nothing. Because the algorithm must terminate, x cannot wait
forever and has to make a decision. How can x decide?

The question is relevant because communication delays are finite but unpredictable.

Fortunately, there is a simple answer to the question that can be derived by exam-
ining how protocol Shout operates.

Focus on a node x that just sent Q to its neighbor y. Why would y reply No ? It
would do so only if it had already said Yes to somebody else; if that happened, y sent
Q at the same time to all its other neighbors, including x. Summarizing, if y replies
No to x, it must have already sent Q to x. We can clearly use this fact to our advantage:
after x sent Q to y, if it receives Yes it knows that y is its neighbor in the tree; if it
receives Q, it can deduce that y will definitely reply No to x’s question. All of this can
be deduced by x without having received the No.

In other words: a message Q that arrives at a node waiting for a reply can act as
an implicit negative acknowledgment; therefore, we can avoid sending No messages.

Let us now analyze the message complexity of the resulting protocol Shout+-. The
time complexity is clearly unchanged; hence

T[Shoutl+ = r(s,) +1 < d + 1. (2.16)

On each link (x, y)€ E there will be exactly a pair of messages: either Q in one direction
and Yes in the other, or two Q messages, one in each direction. Thus

M([Shout+] = 2m. 2.17)

2.5.2 Other SPT Constructions with Single Initiator

SPT Construction by Traversal 1t is well known that a depth-first traversal
of a graph G actually constructs a spanning tree (df-tree) of that graph. The df-tree
is obtained by removing the back-edges from G (i.e., the edges where a Back-edge
message was sent in DF _Traversal). In other words, the tree-neighbors of an entity x
will be those from which it receives a Return message and, if x is not the initiator, the
one from which x received the first T.

Simple modifications to protocol DF* will ensure that each entity will correctly
compute their neighbors in the df-tree and locally terminate in finite time (Exer-
cise 2.9.25). Notice that these modifications involve just local bookkeeping and no

CONSTRUCTING A SPANNING TREE 59

additional communication. Hence the time and message costs are unchanged. The
resulting protocol is denoted by df — SPT ; then

M[df — SPT] = 4m — 2n + f. + 1. (2.18)
T{df — SPT] = 2n — 2. (2.19)

We can now better characterize the variable f,, which appears in the cost above.
In fact, f, is exactly the number of leaves of the df-tree constructed by df — SPT
(Exercise 2.9.26).

Expressions 2.18 and 2.19, when compared with the costs of protocol Shout, indi-
cate that depth-first traversal is not an efficient tool for constructing a spanning tree;
this is particularly true for its very high time costs.

Notice that, like in protocol Shout, all entities will become aware of their local
termination, but only the initiator will be aware of global termination, that is, that the
construction of the spanning tree has been completed (Exercise 2.9.27).

SPT Construction by Broadcasting We have just seen how, with simple mod-
ifications, the techniques of flooding and of df-traversal can be used to construct a
spanning tree, if there is a unique initiator. This fact is part of a very interesting and
more general phenomenon: under RI,

the execution of any broadcast protocol constructs a spanning tree.

Let us examine this statement in more details. Take any broadcast protocol B; by
definition of broadcast, its execution will result in all entities receiving the informa-
tion initially held by the initiator. For each entity x different from the initiator, call
parent the neighbor from which x received the information for the first time; clearly,
everybody except the initiator will have only one parent, and the initiator has none.
Denote by x > y the fact that x is the parent of y; then we have the following property
whose proof is left as an exercise (Exercise 2.9.28):

Theorem 2.5.4 The parent relationship > defines a spanning tree rooted in the
initiator.

As a consequence, it would appear that, to solve SPT, we just need to execute a
broadcast algorithm without any real modification, just adding some local variables
(Tree-neighbors) and doing some local bookkeeping.

This is generally not the case; in fact, knowing its parent in the tree is not enough for
an entity. To solve SPT, when an entity x terminates its execution, it must explicitly
know which neighbors are its children as well as which neighbor are not its tree-
neighbors.

If not provided already by the protocol, this information can obviously be acquired.
For example, if every entity sends a notification message to its parent, the parents will

60 BASIC PROBLEMS AND PROTOCOLS

know their children. To find out which neighbors are not children is more difficult
and will depend on the original broadcast protocol.

In protocol Shout this is achieved by adding the “Yes” (I am your child) and “No”
(I am not your child) messages to Flooding. In DF _Traversal protocol this is already
achieved by the “Return” (I am your child) and the “Backedge” (I am not your child)
messages; so, no additional communication is required.

This fact establishes a computational relationship between the broadcasting prob-
lem and the spanning-tree construction problem. If I know how to broadcast, then
(with minor modifications) I know how to construct a spanning tree with a unique
initiator. The converse is also trivially true: Every protocol that constructs a span-
ning tree solves the broadcasting problem. We shall say that these two problems are
computationally equivalent and denote this fact by

Bcast = SPT(UI). (2.20)

Since, as we have discussed in section 2.3.4, every traversal protocol performs a
broadcast, it follows that, under RI, the execution of any traversal protocol constructs
a spanning tree.

SPT Construction by Global Protocols Actually, we can make a much
stronger statement. Call a problem global if every entity must participate in its so-
lution; participation implies the execution of a communication activity: transmission
of a message and/or arrival of a message (even if it triggers only the Null action, i.e.,
no action is taken). Both broadcast and traversal are global problems. Now, every
single-initiator protocol that solves a global problem P solves also Beast; thus, from
Equation 2.20, it follows that, under RI,

the execution of any solution to a global problem P constructs a spanning tree.

2.5.3 Considerations on the Constructed Tree

We have seen how, with few more messages than those required by flooding and the
same messages as a df-traversal, we can actually construct a spanning tree.

As discussed previously, once such a tree is constructed, we can from now on
perform broadcast and traversal using only O(n) messages (which is optimal) instead
of O(m) (which could be as bad as O(n?)).

IMPORTANT. Different techniques construct different spanning trees. It is even
possible that the same protocol constructs different spanning trees when executed at
different times.

This is for example the case of Shout: Because communication delays are unpre-
dictable, subsequent executions of this algorithm on the same graph may result in
different spanning trees. In fact (Exercise 2.9.23)

every possible spanning tree of G could be constructed by Shout.

CONSTRUCTING A SPANNING TREE 61

Prior to its execution, it is impossible to predict which spanning tree will be con-
structed; the only guarantee is that Shout will construct one.

This has implications for the time costs of the strategy Use-a-Tree of broadcasting
on the spanning tree T instead of the entire graph G. In fact, the broadcast time will
be d(T) instead of d(G); but d(T) could be much greater than d(G).

For example, if G is the complete graph, the df-tree constructed by any depth-first
traversal will have d(T) =n — 1;but d(G) = 1.

In general, the trees constructed by depth-first traversal have usually terrible diam-
eters. The ones generated by Shout usually perform better, but there is no guarantee
on the diameter of the resulting tree.

This fact poses the problem of constructing spanning trees that have a good diame-
ter; that is, to find a spanning tree T’ of G such that d(T”) is not much more than d(G).
For obvious reasons, such a tree is traditionally called a broadcast tree. To construct a
broadcast tree we must first understand the relationship between radius and diameter.
The eccentricity (or radius) of a node x in G is the longest of its distances to the other
nodes:

rg(x) = Max{dg(x,y) : y €v}.

A node ¢ with minimum radius (or eccentricity) is called a center; that is, Vx €
V, rg(c) < rg(x). There might be more than one center; they all, however, have the
same eccentricity, denoted by r(G) and are called the radius of G:

r(G) = Min{rg(x) : x € V}.

There is a strong relationship between the radius and the diameter of a graph; in fact,
in every graph G,

r(G) < d(G) < 2r(G). 221

The other ingredient we need is a breadth-first spanning tree (bf-tree). A breadth-
first spanning tree of G rooted in a node u, denoted by BFT(u, G), has the following
property: The distance between a node v and the root in the tree is the same as their
distance in the original graph G.

The strategy to construct a broadcast tree with diameter d(T") < 2d(G) is then
simple to state:

Strategy Broadcast-Tree Construction:

1. determine a center ¢ of G;
2. construct a breadth-first spanning tree BFT(c, G) rooted in c.

This strategy will construct the desired broadcast tree (Exercise 2.9.29):

Theorem 2.5.5 BFT(c, G) is a broadcast tree of G.

62 BASIC PROBLEMS AND PROTOCOLS

To be implemented, this strategy requires that we solve two problems: Center
Finding and Breadth-First Spanning-Tree Construction. These problems, as we will
see, are not simple to solve efficiently; we will examine them in later chapters.

2.5.4 Application: Better Traversal

In Section 2.4, we have discussed the general strategy Use-a-Tree for problem solving.
Now that we know how to construct a spanning tree (using a single initiator), let us
apply the strategy to a known problem.

Consider again the traversal problem. Using the Use-a-Tree strategy, we can pro-
duce an efficient traversal protocol that is much simpler than all the algorithms we
have considered before:

Protocol Smart Traversal:

1. Construct, using Shout+, a spanning-tree 7 rooted in the initiator.
2. Perform a traversal of T, using DF _Traversal.

The number of messages of SmartTraversal is easy to compute: Shout+ uses
2m messages (Equation 2.17), while DF _Traversal on a tree uses exactly 2(n — 1)
messages (Equation 2.13). In other words,

M[SmartTraversal] = 2(m +n — 1). (2.22)

The problem with DF_Traversal was its time complexity: It was to reduce time
in which we developed more complex protocols. How about the time costs of this
simple new protocol? The ideal time of Shout+ is exactly d 4 1. The ideal time of
DF _Traversal in a tree is 2(n — 1). Hence the total is

T[SmartTraversal] <2n +d — 1. (2.23)

In other words, SmartTraversal not only is simple but also has optimal time and
message complexity.

2.5.5 Spanning-Tree Construction with Multiple Initiators

We have started examining the spanning-tree construction problem in Section 2.5
assuming that there is a unique initiator. This is unfortunately a very strong (and
“unnatural”) assumption to make, as well as difficult and expensive to guarantee.

What happens to the single-initiator protocols Shout and df-SPT if there is more
than one initiator?

Let us examine first protocol Shout. Consider the very simple case (depicted in
Fig. 2.13) of three entities, x, y, and z, connected to each other. Let both x and y be
initiators and start the protocol, and let the Q message from x to z arrive there before
the one sent by y.

CONSTRUCTING A SPANNING TREE 63

FIGURE 2.13: With multiple initiators, Shout creates a forest.

In this case, neither the link (x,y) nor the link (y,z) will be included in the tree;
hence, the algorithm creates not a spanning tree but a spanning forest, which is not
connected.

Consider now protocol df-SPT, discussed in Section 2.5.2. Let us examine its
execution in the simple network depicted in Figure 2.14 composed of a chain of four
nodes x, y, z, and w. Let y and z be both initiators, and start the traversal by sending
the T message to x and w, respectively.

Also in this case, the algorithm will create a disconnected spanning forest of the
graph. It is easy to verify that the same situation will occur also with the optimized
versions (DF+ and DF¥*) of the protocol (Exercise 2.9.30).

The failure of these algorithms is not surprising, as they were developed specifically
for the restricted environment of a Unique Initiator.

Removing the restriction brings out the true nature of the problem, which, as we
will now see, has a formidable obstacle.

2.5.6 Impossibility Result

Our goal is to design a spanning-tree protocol, which works solely under the standard
assumptions and thus is independent of the number of initiators. Unfortunately, any
design effort to this end is destined to fail. In fact

Theorem 2.5.6 The SPT problem is deterministically unsolvable under R.

Deterministically unsolvable means that there is no deterministic protocol that
always correctly terminates within finite time.

64 BASIC PROBLEMS AND PROTOCOLS

O Q=W

Return

®

Back Return

o
)
® O—00——0O
®

FIGURE 2.14: With multiple initiators, df-SPT creates a forest.

Proof. To see why this is the case, consider the simple system composed of three
entities x, y, and z connected by links labeled as shown in Figure 2.15. Let the three
entities have identical initial values (the symbols x, y, z are used only for description
purposes). If a solution protocol A exists, it must work under any conditions of message
delays (as long as they are finite) and regardless of the number of initiators. Consider
a synchronous schedule (i.e., an execution where communication delays are unitary)
and let all three entities start the execution of A simultaneously. Since they are in
identical states (same initial status and values, same port labels), they will execute the

FIGURE 2.15: Proof of Theorem 2.5.6.

CONSTRUCTING A SPANNING TREE 65

same rule, obtain the same results (thus, continuing to have the same local values),
compose and send (if any) the same messages, and enter the same (possibly new)
status. In other words, by Property 1.6.2, they will remain in identical states. In the
next time unit, all sent messages (if any) will arrive and be processed. If one entity
receives a message, the others will receive the same message at the same time, perform
the same local computation, compose and send (if any) the same messages, and enter
the same (possibly new) status. And so on. In other words, the entities will continue
to be in identical states.

If A is a solution protocol, it must terminate within finite time. A spanning tree of
our simple system is obtained by removing one of the three links, let us say (x,y). In
this case, Tree-neigbors will be the port label 2 for entity x and the port label 1 for
entity y; instead, z has in Tree-neighbors both port numbers. In other words, when
they all terminate, they have distinct values for their local variable Tree-neighbors.
But this is impossible, since we just said that the states of the entities are always
identical.

Thus, no such a solution algorithm A exists. ||

A consequence of this very negative result is that, to construct a spanning tree with-
out constraints on the number of initiators, we need to impose additional restrictions.
To determine the “minimal” restrictions that, added to R, will enable us to solve SPT
is an interesting research problem still open. The restriction that is commonly used is
a very powerful one, Initial Distinct Values, and we will discuss it next.

2.5.7 SPT with Initial Distinct Values

The impossibility result we just witnessed implies that, to solve the SPT problem, we
need an additional restriction. The one commonly used is Initial Distinct Values (ID):
Each entity has a distinct initial value. Distinct initial values are sometimes called
identifiers or ids or global names.

We will now examine some ways in which SPT can be solved under IR = R
U {ID}.

Multiple Spanning Trees As in most software design situations, once we have
a solution for a problem and are faced with a more general one, one approach is to
try to find ways to re-use and re-apply the already existing solution. The solutions
we already have are unique-initiator ones and, as we know, they fail in presence of
multiple initiators. Let us see how can we mend their shortcomings using distinct
values.

Consider the execution of Shout in the example of Figure 2.13. In this case, the
reason why the protocol fails is because the entities do not realize that there are two
different requests (e.g., when x receives Q from y) for spanning-tree construction.

But we can now use the entities’ ids to distinguish between requests originating
from different initiators.

The simplest and most immediate application of this approach is to have each
initiator construct “its own” spanning tree with a single-initiator protocol and to use

66 BASIC PROBLEMS AND PROTOCOLS

the ids of the initiators to distinguish among different constructions. So, instead of
cooperating to construct a single spanning tree, we will have several spanning trees
concurrently and independently built.

This implies that all the protocol messages (e.g., Q and Y es in Shout+) must contain
also the id of the initiator. It also requires additional variables and bookkeeping; for
example, at each entity, there will be several instances of the variable tree-neighbors,
one for each spanning tree being constructed (i.e., one for each initiator). Furthermore,
each entity will be in possibly different status values for each of these independent
SPT-constructions. Recall that the number k, of initiators is not known a priori and
can change at every execution.

The message cost of this approach depends solely on the number of initiators and
on the type of unique-initiator protocol used. But it is in any case very expensive. In
fact, if we employ the most efficient SPT-construction protocol we know, Shout+, we
will use 2mk, messages, which could be as bad as on3).

Selective Construction The large message cost derives from the fact that we
construct not one but k, spanning trees. Since our goal is just to construct one, there
is clearly a needless amount of communication and computation being performed.

A better approach consists of letting every initiator start the construction of its
own uniquely identified spanning tree (as before), but then suppressing some of these
constructions, allowing only one to complete. In this approach, an entity faced with
two different SPT-constructions will select and act on only one, “killing” the other;
the entity continues this selection process as long as it receives conflicting requests.

The criterion an entity uses to decide which SPT-construction to follow and which
one to terminate must be chosen very carefully. In fact, the danger is to “kill” all
constructions.

The criterion commonly used is based on min-id: Since each SPT-construction
has a unique id (that of its initiator), when faced with different SPT-constructions,
an entity will choose the one with the smallest id and terminate all the others. (An
alternative criterion would be the one based on max-id.)

The solution obtained with this approach has some very clear advantages over the
previous solution. First of all, each entity is at any time involved only in one SPT-
construction; this fact greatly simplifies the internal organization of the protocol (i.e.,
the set of rules), as well as the local storage and bookkeeping of each entity. Second,
upon termination, all entities have a single shared spanning tree for subsequent uses.

However, there is still competitive concurrency: An entity involved in one SPT-
construction might receive messages from another construction; in our approach, it
will make a choice between the two constructions. If the entity chooses the new one,
it will give up all the knowledge (variables, etc) acquired so far and start from scratch.
The message cost of this approach depends again on the number of initiators and on
the unique-initiator protocol used.

Consider a protocol developed using this approach, using Shout+ as the basic tool.

Informally, an entity u, at any time, participates in the construction of just one
spanning tree rooted in some initiator, x. It will ignore all messages referring to the
construction of other spanning trees where the initiators have larger ids than x. If

CONSTRUCTING A SPANNING TREE 67

instead u receives a message referring to the construction of a spanning tree rooted
in an initiator y with an id smaller than x’s, then u will stop working for x and start
working for y. As we will see, these techniques will construct a spanning tree rooted
in the initiator with the smallest initial value.

IMPORTANT. It is possible that an entity has already terminated its part of the
construction of a spanning tree when it receives a message from another initiator
(possibly, with a smaller id).

In other words, when an entity has terminated a construction, it does not know
whether it might have to restart again. Thus, it is necessary to include in the protocol
a mechanism that ensures an effective local termination for each entity.

This can be achieved by ensuring that we use, as a building block, a unique-
initiator SPT-protocol in which the initiator will know when the spanning tree has
been completely constructed (see Exercise 2.9.24). In this way, when the spanning
tree rooted in the initiator s with the smallest initial value has been constructed, s
will become aware of this fact (as well as that all other constructions, if any, have
been “killed”). It can then notify all other entities so that they can enter a terminal
status. The notification is just a broadcast; it is appropriate to perform it on the newly
constructed spanning-tree (so we start taking advantage of its existence).

Protocol MultiShout, depicted in Figures 2.16 and 2.17, uses Shout+ appropriately
modified so to ensure that the root of a constructed tree becomes aware of termination
and includes a final broadcast (on the spanning tree) to notify all entities that the task
has been indeed completed. We denote by v(x) the id of x; initially all entities are idle
and any of them can spontaneously start the algorithm.

Theorem 2.5.7 Protocol MultiShout constructs a spanning tree rooted in the ini-
tiator with the smallest initial value.

Proof. Let s be the initiator with the smallest initial value. Focus on an initiator x # s;
its initial execution of the protocol will start the construction of a spanning tree T
rooted in x. We will first show that the construction of 7y will not be completed. To
see this, observe that 7 must include every node, including s; but when s receives
a message relating to the construction of somebody’s else tree (such as Ty), it will
ignore it, killing the construction of that tree. Let us now show that 7y will instead
be constructed. Since the id of s is smaller than all other ids, no entity will ignore the
messages related to the construction of 7 started by s; thus, the construction will be
completed. |

Let us now consider the message costs of protocol MultiShout. It is clearly more
efficient than protocols obtained with the previous approach. However, in the worst
case, it is not much better in order of magnitude. In fact, it can be as bad as 0(n3).

Consider for example the graph, shown in Figure 2.18, where n — k of the nodes
are fully connected among themselves (the subgraph K,_i), and each of the other

68

BASIC PROBLEMS AND PROTOCOLS

PROTOCOL MultiShout

IDLE

Status: S = {IDLE, ACTIVE, DONE}; S;n;7 = {IDLE}; Sterm = {DONE}.
Restrictions: R ;ID.

Spontaneously

begin
root:= true;
root_id:=v(x);
Tree_neighbors:=0;
send (Q,root_id) to N(x);
counter:=0;
check_counter:=0;
become ACTIVE;

end

Receiving (Q, id)
begin

CONSTRUCT;
end

ACTIVE

Receiving (Q, id)
begin
if root_id = id then
counter:=counter+1;
if counter=|N(x)| then done:= true; CHECK; endif
else
if root_id > id then CONSTRUCT;
endif
end

Receiving (Yes, 1id)
begin
if root_id = id then
Tree-neighbors:=Tree-neighbors U{sender};
counter:=counter+1;
if counter=|N(x)| then done:= true; CHECK; endif
endif
end

Receiving (Check, id)
begin
if root_id = id then
check_counter:=check_counter+1;
if (done A check_counter=|Children|) then TERM; endif
endif
end

Receiving (Terminate)

begin
send (Terminate) to Children;
become DONE ;

end

FIGURE 2.16: Protocol MultiShout

CONSTRUCTING A SPANNING TREE

Procedure CONSTRUCT

begin
root : = false;
root_id:= id;
Tree_neighbors:={sender};
parent:= sender;
send (Yes, root_id) to {sender};
counter:=1;
check_counter:=0;
if counter=|N(x)| then

done:= true;

CHECK;
else

send (Q, root-id) to N(x) — {sender};
endif

become ACTIVE;
end

Procedure CHECK
begin
Children:= Tree_neighbors-{parent};
if Children = then
send (Check, root_id) to parent;
endif
end

Procedure TERM

begin
if root then
send (Terminate) to Tree-neighbors;
become DONE;
else
send (Check, root-id) to parent;
endif

end

FIGURE 2.17: Routines of MultiShout

O

Kn*k

[_1]

-/

FIGURE 2.18: The execution of MultiShout can cost O(k(n — k)?) messages.

69

70 BASIC PROBLEMS AND PROTOCOLS

k (nodes x1, x2, ..., xx) is connected only to a node in K,,_i. Suppose that these k
“external” nodes are the initiators and that v(x;) > v(x3) > --- > v(xg),

Consider now an execution where the Q messages from the external entities
arrive to K;_ in order, according to the indices (i.e., the one from x; arrives
first).

When the Q message from x; arrives to K,,_ it will trigger the SPT-construction
there. Notice that the Shout+ component of our protocol with a unique initiator will use
O((n — k)?) messages inside the subgraph K;,_;. Assume that the entire computation
inside K, triggered by x; is practically completed (costing O((n — k)*) messages)
by the time the Q message from x; arrives to K,,_¢. Since v(x1) > v(x3), all the work
done in K,,_; has been wasted and every entity there must start the construction of
the spanning tree rooted in x3.

In the same way, assume that the time delays are such that the Q message from
x; arrives to K,_; only when the computation inside K, _; triggered by x;_1 is
practically completed (costing O((n — k)?) messages).

Then, in this case (which is possible), work costing O ((n — k)?) messages will be
repeated k times, for a total of O(k(n — k)?) messages. If k is a linear fraction of n
(e.g., k = n/2), then the cost will be O(n3).

The fact that this solution is not very efficient does not imply that the approach of
selective construction it uses is not effective. On the contrary, it can be made efficient
at the expenses of simplicity. We will examine it in great details later in the book
when studying the leader election problem.

2.6 COMPUTATIONS IN TREES

In this section, we consider computations in free networks under the standard restric-
tions R plus clearly the common knowledge that the network is tree.

Note that the knowledge of being in a tree implies that each entity can determine
whether it is a leaf (i.e., it has only one neighbor) or an infernal node (i.e., it has more
than one neighbor).

We have already seen how to solve the Broadcast, the Wake-Up, and the Traversal
problems in a tree network. The first two are optimally solved by protocol Flooding,
the latter by protocol DF _Traversal. These techniques constitute the first set of algo-
rithmic tools for computing in trees with multiple initiators. We will now introduce
another very basic and useful technique, saturation, and show how it can be em-
ployed to efficiently solve many different problems in trees regardless of the number
of initiators and of their location.

Before doing so, we need to introduce some basic concepts and terminology about
trees. In a tree T, the removal of a link (x,y) will disconnect T into two trees, one
containing x (but not y), the other containing y (but not x); we shall denote them
by T[x — y] and T[y — x], respectively. Let d[x, y] = Max{d(x,z): z € T[y — x]}
be the longest distance between x and the nodes in 7[y — x]. Recall that the longest
distance between any two nodes is called diameter, and it is denoted by d. If d[x, y] =
d, the path between x and y is said to be diametral.

COMPUTATIONS IN TREES 71

2.6.1 Saturation: A Basic Technique

The technique, which we shall call Full Saturation, is very simple and can be au-
tonomously and independently started by any number of initiators.
It is composed of three stages:

1. the activation stage, started by the initiators, in which all nodes are activated;

2. the saturation stage, started by the leaf nodes, in which a unique couple of
neighboring nodes is selected; and

3. the resolution stage, started by the selected pair.

The activation stage is just a wake-up: each initiator sends an activation (i.e., wake-
up) message to all its neighbors and becomes active; any noninitiator, upon receiving
the activation message from a neighbor, sends it to all its other neighbors and becomes
active; active nodes ignore all received activation messages. Within finite time, all
nodes become active, including the leaves. The leaves will start the second stage.

Each active leaf starts the saturation stage by sending a message (call it M) to its
only neighbor, referred now as its “parent,” and becomes processing. (Note: M mes-
sages will start arriving within finite time to the internal nodes.) An internal node waits
until it has received an M message from all its neighbors but one, sends a M message
to that neighbor that will now be considered its “parent,” and becomes processing. If
a processing node receives a message from its parent, it becomes saturated.

The resolution stage is started by the saturated nodes; the nature of this stage
depends on the application. Commonly, this stage is used as a notification for all
entities (e.g., to achieve local termination).

Since the nature of the final stage will depend on the application, we will only
describe the set of rules implementing the first two stages of Full Saturation.

IMPORTANT. A “truncated” protocol like this will be called a “plug-in”. In its
execution, not all entities will enter a terminal status. To transform it into a full
protocol, some other action (e.g., the resolution stage) must be performed so that
eventually all entities enter a terminal status.

It is assumed that initially all entities are in the same status available.
Let us now discuss some properties of this basic technique.

Lemma 2.6.1 Exactly two processing nodes will become saturated; furthermore,
these two nodes are neighbors and are each other’s parent.

Proof. From the algorithm, it follows that an entity sends a message M only to its
parent and becomes saturated only upon receiving an M message from its parent.
Choose an arbitrary node x, and traverse the “up” edge of x (i.e., the edge along
which the M message was sent from x to its parent). By moving along “up” edges,
we must meet a saturated node s since there are no cycles in the graph. This node
has become saturated when receiving an M message from its parent s,. Since s

72 BASIC PROBLEMS AND PROTOCOLS

PLUG-IN Full Saturation .

e Status: S = {AVAILABLE, ACTIVE, PROCESSING, SATURATED};
Sinir = {AVAILABLE};

® Restrictions: RUT.

AVAILABLE

Spontaneously

begin
send (Activate) to N(x);
Initialize;
Neighbors:= N(x);
if| Neighbors|=1 then
Prepare_Message;
parent < Neighbors;
send (M) to parent;
become PROCESSING;
else become ACTIVE;
endif

end

Receiving (Activate)

begin
send (Activate) to N(x)— {sender};
Initialize;
Neighbors:= N(x);
if| Neighbors|=1 then
Prepare_Message;
parent < Neighbors;
send (M) to parent;
become PROCESSING;
else become ACTIVE;
endif

end

ACTIVE

Receiving(M)

begin
Process_Message;
Neighbors:= Neighbors—{sender};
if| Neighbors|=1 then
Prepare_Message;
parent < Neighbors;
send (M) to parent;
become PROCESSING;
endif

end

PROCESSING
Receiving(M)
begin
Process_Message;
Resolve;
end

FIGURE 2.19: Full Saturation

COMPUTATIONS IN TREES 73

Procedure Initialize
begin

nil;
end

Procedure Prepare_Message
begin

M:=("Saturation");
end

Procedure Process_Message
begin

nil;
end

Procedure Resolve
begin

become SATURATED;

Start Resolution stage;
end

FIGURE 2.20: Procedures used by Full Saturation

has sent an M message to sq, this implies that s must have been processing and
must have considered s its parent; thus, when the M message from s will arrive at
52, o will become saturated also. Thus, there exist at least two nodes that become
saturated; furthermore, these two nodes are each other’s parent. Assume that there
are more than two saturated nodes; then there exist two saturated nodes, x and vy,
such that d(x, y) > 2. Consider a node z on the path from x to y; z could not send
am M message toward both x and y; therefore, one of the nodes cannot be saturated.
Therefore, the lemma holds. |

IMPORTANT. It depends on the communication delays which entities will become
saturated and it is therefore totally unpredictable. Subsequent executions with the
same initiators might generate different results. In fact

any pair of neighbors could become saturated.

The only guarantee is that a pair of neighbors will be selected; since a pair of neighbors
uniquely identifies an edge, the one connecting them; this result is also called edge
election.

To determine the number of message exchanges, observe that the activation stage
is a wake-up in a tree and hence it will use n 4 k., — 2 messages (Equation 2.5), where
k, denotes the number of initiators. During the saturation stage, exactly one message
is transmitted on each edge, except the edge connecting the two saturated nodes on
which two M messages are transmitted, for a total of n — 1 + 1 = n messages. Thus,

M{[Full Saturation] = 2n + k, — 2. (2.24)

74 BASIC PROBLEMS AND PROTOCOLS

Notice that only n of those messages are due to the saturation stage.

To determine the ideal time complexity, let I € V denote the set of initiator nodes,
L C V denote the set of leaf nodes; #(x) the time delay, from the initiation of the
algorithm, until node x becomes active. To become saturated, node s must have waited
until all the leafs have become active and the M messages originated from them have
reached s; that is, it must have waited Max{t(/) 4+ d(l, s) : [€ L}. To become active,
a noninitiator node x must have waited for an “Activation” message to reach it, while
there is no additional waiting time for an initiator node; thus, #(x) = Min{d(x, y) +
t(y) : y € I}. Therefore, the total delay, from the initiation of the algorithm, until s
becomes saturated (and, thus, the ideal execution delay of the algorithm) is

T[Full Saturation] = Max{Min{d(l, y) +t(y)} +d(,y):ye Il,l € L}. (2.25)

We will now discuss how to apply the saturation technique to solve different
problems.

2.6.2 Minimum Finding

Let us see how the saturation technique can be used to compute the smallest among a
set of values distributed among the nodes of the network. Every entity x has an input
value v(x) and is initially in the same status; the task is to determine the minimum
among those input values. That is, in the end, each entity must know whether or not its
value is the smallest and enter the appropriate status, minimum or large, respectively.

IMPORTANT. Notice that these values are not necessarily distinct. So, more than
one entity can have the minimum value; all of them must become minimum. This
problem is called Minimum Finding (MinFind) and is the simplest among the class
of Distributed Query Processing problems that we will examine in later chapters: a
set of data (e.g., a file) is distributed among the sites of a communication network;
queries (i.e., external requests for information about the set) can arrive at any time at
any site (which becomes an initiator of the processing), triggering computation and
communication activities. A stronger version of this problem requires all entities to
know the minimum value when they enter the final status.

Let us see how to solve this problem in a tree network. If the tree was rooted, then this
task can be trivially performed. In fact, in a rooted tree not only is there a special node,
the root, but also a logical orientation of the links: “up” toward the root and “down”
away from the root; this corresponds to the “parent” and “children” relationship,
respectively. In a rooted tree, to find the minimum, the root would broadcast down
the request to compute the minimum value; exploiting the orientation of the links,
the entities will then perform a convergecast (described in more details in Section
2.6.7): starting from the leaves, the nodes determine the smallest value among the
values “down” and send it “up.” As a result of this process, the minimum value is
then determined at the root, which will then broadcast it to all nodes.

COMPUTATIONS IN TREES 75

PROCESSING
Receiving (Notification)
begin
send (Notification) to N(x)—parent;
if v(x) =Received_Value then
become MINIMUM;
else
become LARGE;
endif
end

Procedure Initialize
begin

min:=v(x);
end

Procedure Prepare_Message
begin

M:=("Saturation", min);
end

Procedure Process_Message
begin

min:= MIN{min, Received_Value};
end

Procedure Resolve
begin
Notification:= ("Resolution", min);
send (Notification) to N(x)—parent;
if v(x) =min then
become MINIMUM;
else
become LARGE;
endif
end

FIGURE 2.21: New Rule and Procedures used for Minimum Finding

Notice that convergecast can be used only in rooted trees. The existence of a root
(and the additional information existing in a rooted tree) is, however, a very strong
assumption; in fact, it is equivalent to assuming the existence of a leader (which, as
we will see, might not be computable).

Full Saturation allows to achieve the same goals without a root or any additional
information. This is achieved simply by including in the M message the smallest value
known to the sender. Namely, in the saturation stage the leaves will send their value
with the M message, and each internal node sends the smallest among its own value
and all the received ones. In other words, MinF-Tree is just protocol Full Saturation
where the procedures Initialize, Prepare_Message, and Process_Message are as shown
in Figure 2.21 and where the resolution stage is just a notification started by the two
saturated nodes, of the minimum value they have computed. This is obtained by
simply modifying procedure Resolve accordingly and adding the rule for handling
the reception of the notification.

76 BASIC PROBLEMS AND PROTOCOLS

The correctness follows from the fact that both saturated nodes know the minimum
value (Exercise 2.9.31).

The number of message transmission for the minimum-finding algorithm MinF-
Tree will be exactly the same as the one experienced by Full Saturation plus the ones
performed during the notification. Since a notification message is sent on every link
except the one connecting the two saturated nodes, there will be exactly n — 2 such
messages. Hence

M[MinF — Tree] = 3n + k, — 4. (2.26)

The time costs will be the one experienced by Full Saturation plus the ones required
by the notification. Let Sat denote the set of the two saturated nodes; then

T[MinF — Tree] = T[Full Saturation] + Max{d(s,x) : s € Sat,x € V}. (2.27)

2.6.3 Distributed Function Evaluation

An important class of problems are those of Distributed Function Evaluation; that is,
where the task is to compute a function whose arguments are distributed among the
processors of a distributed memory system (e.g., the sites of a network). An instance
of this problem is the the one we just solved: Minimum Finding. We will now discuss
how the saturation technique can be used to evaluate a large class of functions.

Semigroup Operations Let f be an associative and commutative function
defined over all subsets of the input values. Examples of this type of functions are: min-
imum, maximum, sum, product, and so forth, as well as logical predicates. Because
of their algebraic properties, these functions are called semigroup operations.

IMPORTANT. It is possible that some entities do not have an argument (i.e., initial
value) or that the function must only be evaluated on a subset of the arguments. We
shall denote the fact that x does not have an argument by v(x) = nil.

The same approach that has led us to solve Minimum Finding can be used to
evaluate f.

The protocol Function Tree is just protocol Full Saturation where the procedures
Initialize, Prepare_Message, and Process_Message are as shown in Figure 2.22 and
where the resolution stage is just a notification started by the two saturated nodes, of the
final result of the function they have computed. This is obtained by simply modifying
procedure Resolve accordingly and adding the rule for handling the reception of the
notification.

The correctness follows from the fact that both saturated nodes know the result of
the function (Exercise 2.9.32). For particular types of functions, see Exercises 2.9.33,
2.9.34, and 2.9.35.

COMPUTATIONS IN TREES

PROCESSING
Receiving (Notification)
begin
result:= received_value;
send (Notification) to N(x)—parent;
become DONE;
end

Procedure Initialize
begin
if v(x)# nil then
result:=f(v(x));
else
result:=nil;
end

Procedure Prepare_Message
begin

M:=("Saturation", result);
end

Procedure Process_Message
begin
if received_-value#nil then
if result #nil then
result:= f(result, received_-value);
else
result:= f (received-value) ;
endif
endif
end

Procedure Resolve

begin
Notification:= ("Resolution", result);
send (Notification) to N(x)—parent;
become DONE ;

end

FIGURE 2.22: New Rule and Procedures used for Function Tree

77

The time and message costs of the protocol are exactly the same as the one for
Minimum Finding. Thus, semigroup operations can be performed optimally on a tree

with any number of initiators and without a root or additional information.

Cardinal Statistics A useful class of functions are statistical ones, such as aver-
age, standard deviation, and so for. These functions are not semigroup operation but

can nevertheless be optimally solved using the saturation technique.

We will just examine, as an example, the computation of Ave, the average of the
(relevant) entities’ values. Observe that Ave = Sum / Size where Sum is the the sum of
all (relevant) values, and Size is the number of those values. Since Sum is a semigroup
operation, we already know how to compute it. Also Size is trivially computed using

saturation (Exercises 2.9.36 and 2.9.37).

78 BASIC PROBLEMS AND PROTOCOLS

We can collect at the two saturated nodes Sum and Size with a single execution of
Saturation: the M message will contain two data fields M=(“Saturation,” sum,size),
which are initialized by each leaf node and updated by the internal ones. The resolution
stage is just a notification started by the two saturated nodes, of the average they can
have computed.

Similarly, a single execution of Full Saturation with a final notification of the result
will allow the entities to compute cardinal statistics on the input values.

Notice that ordinal statistics (e.g., median) are in general more difficult to re-
solve. We will discuss them in the chapter on selection and sorting of distributed
data.

2.6.4 Finding Eccentricities

The basic technique has been so far used to solve single-valued problems; that is, prob-
lems whose solution requires the identification of a single value. It can also be used
to solve multi-valued problems such as the problem of determining the eccentricities
of all the nodes.

PROCESSING
Receiving (Notification)
begin
result:= received_value;
send (Notification) to N(x)—parent;
become DONE ;
end

Procedure Initialize
begin
sum:=v(x);
size:=1;
end

Procedure Prepare_Message
begin

M:=("Saturation", sum,size);
end

Procedure Process_Message
begin
sum:= sum + Received_sum;
size:=size + Received_size;
end

Procedure Resolve

begin
result := sum / size;
Notification:= ("Resolution", result);
send (Notification) to N(x)—parent;
become DONE;

end

FIGURE 2.23: New Rule and Procedures used for computing the Average

COMPUTATIONS IN TREES 79

The eccentricity of a node x, denoted by r(x), is the largest distance between x and
any other node in the tree: 7(x) = Max{d(x, y) : y € V}; note that a center is a node
with the smallest eccentricity. (We briefly discussed center and eccentricity already
in Section 2.5.3.)

To compute its own eccentricity, a node x needs to determine the maximum distance
from all other nodes in the tree. To accomplish this, x needs just to broadcast the
request, making itself the root of the tree, and, using convergecast on this rooted
tree, collect the maximum distance to itself. This approach would require 2(n — 1)
messages and it is clearly optimal with respect to order of magnitude. If we want
every entity to compute its eccentricity, this however would lead to a solution that
requires 2(n* — n) messages.

We will now show that saturation will yield instead a O(n), and thus optimal,
solution.

The first step is to use saturation to compute the eccentricity of the two saturated
nodes. Notice that we do not know a priori which pair of neighbors will become
saturated. We can nevertheless ensure that when they become saturated they will
know their eccentricity. To do so, it is enough to include, in the M message sent by
an entity x to its neighbor y, the maximum distance from x to the nodes in T'[x — y],
increased by 1. In this way, a saturated node s will know d[s, y] for each neighbor y;
thus, it can determine its eccentricity (Exercise 2.9.38).

Our goal is to have all nodes determine their eccentricity, not just the saturated
ones. The interesting thing is that the information available at each entity at the end of
the saturation stage is almost sufficient to make them compute their own eccentricity.

Consider an entity u; it sent the M message to its parent v, after it received one from
all its other neighbors; the message from y # v contained d[u, y]. In other words,
u knows already the maximum distance from all the entities except the ones in the
tree T'[v — u]. Thus, the only information « is missing is d[u, v] = Max{d(u, y) : y €
T[v — u]}. Notice that (Exercise 2.9.39)

dlu,vl=Max{d(u,y):y e T[v—ul} =1+ Max{d[v,z] : 2 #u € Nv)}.
(2.28)

Summarizing, every node, except the saturated ones, is missing one piece of infor-
mation: the maximum distance from the nodes on the other side of the link connecting
it to its parent. If the parents could provide this information, the task can be com-
pleted. Unfortunately, the parents are also missing the information, unless they are
the saturated nodes.

The saturated nodes have all the information they need. They also have the in-
formation their neighbors are missing: let s be a saturated node and x be an unsatu-
rated neighbor; x is missing the information d[x, s]; by Equation 2.28, this is exactly
d[x,s] =1+ Max{d[s, z] : x # z € N(s)}, and s knows all the d[s, z] (they were
included in the M messages it received). So, the saturated nodes s can provide the
needed information to their neighbors, who can then compute their eccentricity. The
nice property is that now these neighbors have the information required by their own
neighbors (further away from the saturated nodes). Thus, the resolution stage of Full

80 BASIC PROBLEMS AND PROTOCOLS

PROCESSING
Receiving (" Resolution" , dist)
begin
Resolve;
end

Procedure [Initialize
begin

Distance[x] := 0;
end

Procedure Prepare_Message
begin
maxdist:= 1+ Max{Distancel[*]};
M:=("Saturation", maxdist) ;
end

Procedure Resolve
begin
Process_Message;
Calculate_Eccentricity;
forall y e N(x)— {parent} do
maxdist:= 14 Max{Distance[z]: z € N(x) — {parent, y}};
send ("Resolution", maxdist) to y;
endfor
become DONE;
end

Procedure Process_Message
begin

Distance [sender] : = Received_distance;
end

Procedure Calculate_Eccentricity
begin

r(x):= Max{Distance[z]: z € N(x)};
end

FIGURE 2.24: New Rule and Procedures used for computing the Eccentricities

Saturation can be used to provide the missing information: starting from the satu-
rated nodes, once an entity receives the missing information from a neighbor, it will
compute its eccentricity and provide the missing information to all its other neighbors.

IMPORTANT. Notice that, in the resolution stage, an entity sends different infor-
mation to each of its neighbors. Thus, unlike the resolution we used so far, it is not a
notification.

The protocol Eccentricities will thus be a Full Saturation where the procedures Initial-
ize, Prepare_Message, and Process_Message are as shown in Figure 2.24. The rules
for handling the reception of the message, the procedure Resolve, and the procedure
to calculate the eccentricity are also shown in Figure 2.24.

Notice that, even though each node receives a different message in the resolu-
tion stage, only one message will be received by each node in that stage, except

COMPUTATIONS IN TREES 81

the saturated nodes, which will receive none. Thus, the message cost of protocol
Eccentricities will be exactly as the one of MinF-Tree and so will the time cost:

M{[Eccentricities] = 3n + k, — 4 < 4n — 4. (2.29)
T[Eccentricities] = TIMinF — Tree]. (2.30)

2.6.5 Center Finding

A center is a node from which the maximum distance to all other nodes is minimized.
A network might have more than one center. The Center Finding problem (Center) is
to make each entity aware of whether or not it is a center by entering the appropriate
terminal status center or not-center, respectively.

A Simple Protocol To solve Center we can use the fact that a center is exactly
a node with the smallest eccentricity. Thus a solution protocol consists of finding the
minimum among all eccentricities, combining the protocols we have developed so
far:

1. Execute protocol Eccentricities;
2. Execute the last two stages (saturation and resolution) of MinF-Tree.

Part (1) will be started by the initiators; part (2) will be started by the leaves once,
upon termination of their execution of Eccentricities, they know their eccentricity; the
saturation stage of MinF-Tree will determine at two new saturated nodes the minimum
overall eccentricity and will be broadcasted in the notification stage by them. At that
time, an entity can determine if it is a center or not.

This approach will cost 3n + k, — 4 messages forpart(1)andn +n —2 =2n — 2
for part (2), for a total of 5n + k, — 6 < 6n — 6 messages.

The time costs are no more than T[Eccentricities] +2d < 4d.

A Refined Protocol Animprovement can be derived by exploiting the structure
of the problem in more details. Recall that d[x, y] = Max{d(x,z):z € T[y — x]} is
the longest distance between x and the nodes in 7[y — x]. Let di[x] and d>[x] be the
largest and second-largest of all {d[x, y] : y € N(x)}, respectively. The centers of a
tree have some very interesting properties. Among them

Lemma 2.6.2 In a tree either there is a unique center or there are two centers and
they are neighbors.

Lemma 2.6.3 In a tree all centers lie on all diametral paths.

Lemma2.6.4 Anodexisacenterifandonlyifdi[x] — dy[x] < 1;ifstrict inequality
holds, then x is the only center.

82 BASIC PROBLEMS AND PROTOCOLS

Lemma 2.6.5 Lety and z be neighbors of x such that di[x] = d[x, y] and dy[x] =
dlx, z]. Ifd[x,y] — d[x, z] > 1, then all centers are in T[y — x].

Lemma 2.6.4 gives us the tool we need to devise a solution protocol: an entity x can
determine whether or not it is a center, provided it knows the value d[x, y] for each of
its neighbors y. But this is exactly the information that was provided to x by protocol
Eccentricities so it could compute r(x).

This means that to solve Center it suffices to execute Eccentricities. Once an entity
has all the information to compute its radius, it will check whether the largest and the
second largest received values differ at most by one; if so, it becomes center, otherwise
not-center. Thus, the solution protocol Center_Tree is obtained from Eccentricities
adding this test and some bookkeeping (Exercise 2.9.40).

The time and message costs of Center_Tree will be exactly the same as that of
Eccentricities.

M| Center_Tree] = 3n +k, —4 < 4n — 4. (2.31)
T[Center_Tree] = T[FullSaturation]. (2.32)

An Efficient Plug-In The solutions we have discussed are full protocols. In some

circumstances, however, a plug-in is sufficient; that is, when the centers must start
another global task. In these circumstances, the goal is just for the centers to know
that they are centers.

In such a case, we can construct a more efficient mechanism, always based on
saturation, using the resolution stage in a different way.

The properties expressed by Lemmas 2.6.4 and 2.6.5 give us the tools we need to
devise the plug-in.

In fact, by Lemma 2.6.4, x can determine whether or not it is a center once it
knows the value d[x, y] for each of its neighbors y. Furthermore, if x is not a center,
by Lemma 2.6.5, this information is sufficient to determine in which subtree T'[y — x]
a center resides.

Thus, the solution is to collect such values at a node x; determine whether x is a
center; and, if not, move foward a center until it is reached.

In order to collect the information needed, we can use the first two stages (Wake-
up and Saturation) of protocol Eccentricities. Once a node becomes saturated, it can
determine whether it is a center by checking whether the largest and the second
largest received values differ at most by one. If it is not a center, it will know that the
center(s) must reside in the direction from which the largest value has been received.
By keeping track at each node (during the saturation stage) of which neighbor has
sent the largest value, the direction of the center can also be determined. Furthermore,
a saturated node can decide whether it is closest to a center or its parent.

The saturated node, say x, closest to a center will then send a “Center” message,
containing the second largest received value increased by one, in the direction of the
center. A processing node receiving such a message will, in turn, be able to determine
whether it is a center and, if not, the direction toward the center(s).

COMPUTATIONS IN TREES 83

Once the message arrives at a center ¢, ¢ will be able to determine if it is the only
center or not (using Lemma 2.6.4); in this case, it will know which neighbor is the
other center and will notify it.

The Center Finding plug-in will then be the Full Saturation plug-in with the addi-
tion of the “Center” message traveling from the saturated nodes to the centers. In par-
ticular, the routines Initialize, Process_Message, Prepare_Message, Resolve, and the
new rules governing the reception of the “Center” messages are shown in Figure 2.25.

PROCESSING
Receiving ("Center", value)
begin
Process_Message;
Resolve;
end

Procedure Initialize
begin
Max_Value := 0;
Max2_Value := 0;
end

Procedure Prepare_Message
begin

M:=("Saturation", Max_Value+1l) ;
end

Procedure Process_Message

begin
if Max_Counter < Received_value then
Max2_Value := Max_Value;
Max_Value := Received_Value;
Max_Neighbor := sender;
else
if Max2_Value < Received_value then
Max2_Value := Received_value;
endif
endif
end

Procedure Resolve
begin
if Max_Value - Max2_Value =1 then
if Max Neighbor # parent then
send (Center,Max2_Value) to Max_Neighbor;
endif
become CENTER;
else
if Max_Value - Max2_Value > 1 then
send (Center,Max2_Value) to Max_Neighbor;
else
become CENTER;
endif
endif
end

FIGURE 2.25: Transforming Saturation into an efficient Plug-In for Center Finding

84 BASIC PROBLEMS AND PROTOCOLS

The message cost of this plug-in is easily determined by observing that, after the
Full Saturation plug-in is applied, a message will travel from the saturated node s
(closest to a center) to its furthermost center c; hence, d(s, ¢) additional messages are
exchanged. Since d(s, c) < n/2, the total number of message exchanges performed is

M([Center — Finding] = 2.5n + k, —2 < 3.5n — 2. (2.33)

2.6.6 Other Computations

The simple modifications to the basic technique that we have discussed in the previous
sections can be applied to solve a variety of other problems efficiently.

Following is a sample of them and the key properties employed toward their
solution.

Finding a Median A median is a node from which the average distance to all
nodes in the network is minimized. Since a median obviously minimizes the sum
of the distances to all other nodes, it is also called a communication center of the
network.

In a tree, the key properties are:

Lemma 2.6.6 In a tree either there is a unique median or there are two medians
and they are neighbors.

Given a node x, and a sub-tree 7', let g[T, x] = Zyer(x, y) denote the sum of
all distances between x and the nodes in 7, and let G[x, y] = g[T, x] — g[T, y] =
n+2—2x|T[y — x]|; then

Lemma 2.6.7 Entity x is a median if and only if G[x, y] > 0 for all neighbors y.
Furthermore,

Lemma 2.6.8 If x is not the median, there exists a unique neighbor y such that
Gly, x] < 0; such a neighbor lies in the path from x to the median.

Using these properties, it is simple to construct a full protocol as well as an efficient
plug-in, following the same approaches used for center finding (Exercise 2.9.41).

Finding Diametral Paths A diametral path is a path of the longest length. In a
network there might be more than one diametral path. The problem we are interested
in is to identify all these paths. In distributed terms, this means that each entity needs
to know if it is part of a diametral path or not, entering an appropriate status (e.g.,
on-path or off-path).

The key property to solve this problem is

Lemma 2.6.9 A node x is on a diametral path if and only if di[x] + da2[x] = d.

COMPUTATIONS IN TREES 85

Thus, a solution strategy will be to determine d, di[x], and d;[x] at every x and then
use Lemma 2.6.9 to decide the final status. A full protocol efficiently implementing
this strategy can be designed using the tools developed so far (Exercise 2.9.45).

Consider now designing a plug-in instead of a full protocol; that is, we are only
interested in that the entities on diametral paths (and only those) become aware of it.

In this case, the other key property is Lemma 2.6.4: every center lies on every
diametral path. This gives us a starting point to find the diametral paths: the centers.
To continue, we can then use Lemma 2.6.9. In other words, we first find the centers
(note: they know the diameter) and then propagate the information along the diametral
paths. A center (or for that matter, a node on a diametral path) does not know a priori
which one of its neighbors is also on a diametral path. It will thus send the needed
information to all its neighbors which, upon receiving it, will determine whether or
not they are on such a path; if so, they continue the execution (Exercise 2.9.46).

2.6.7 Computing in Rooted Trees

Rooted Trees 1Insome cases, the tree T'is actually rooted; that is, there is a distinct
node, r, called the root, and all links are oriented toward r. In this case, the tree 7 will
be denoted by Tj,.

If link (x,y) is oriented from y to x, x is called the parent of y and y is said to be
a child of x. Similarly, a descendant of x is any entity z for which there is a directed
path from z to x, and an ancestor of x is any entity z for which there is a directed path
from x to z.

Two important properties of a rooted tree are that the root has no parent, while
every other node has only one parent (see Fig. 2.26).

Before examining how to compute in rooted trees, let us first observe the important
fact that transforming a tree into a rooted one might be an impossible task.

N
N
™\

e -

(a) (b)
FIGURE 2.26: (a) A tree T; (b) the same tree rooted in s: T}

86 BASIC PROBLEMS AND PROTOCOLS

Oh —()

FIGURE 2.27: It is impossible to transform this tree into a rooted one.

Theorem 2.6.1 The problem of transforming trees into rooted ones is deterministi-
cally unsolvable under R.

Proof. Recall that deterministically unsolvable means that there is no deterministic
protocol that always correctly terminates within finite time. To see why this is true,
consider the simple tree composed of two entities x and y connected by links labeled
as shown in Figure 2.27. Let the two entities have identical initial values (the symbols
x, y are used only for description purposes). If a solution protocol A exists, it must
work under any conditions of message delays (as long as they are finite) and regard-
less of the number of initiators. Consider a synchronous schedule (i.e., an execution
where communication delays are unitary) and let both entities start the execution of
A simultaneously. Since they are identical (same initial status and values, same port
labels), they will execute the same rule, obtain the same results (thus, continuing to
have the same local values), compose and send (if any) the same messages, and enter
the same (possibly new) status. In other words, they will remain identical. In the next
time unit, all sent messages (if any) will arrive and be processed. If one entity receives
amessage, the other will receive the same message at the same time, perform the same
local computation, compose and send (if any) the same messages, and enter the same
(possibly new) status. And so on. In other words, the two entities will continue to be
identical. If A is a solution protocol, it must terminate within finite time; when this
occurs, one entity, say x, becomes the root. But since both entities will always have
the same state in this execution, y will also become root, contradicting the fact that A
is correct. Thus, no such a solution algorithm A exists. |

This means that being in a rooted tree is considerably different from being in a
tree. Let us see how to exploit this difference.

Convergecast The orientation of the links in a rooted tree is such that each entity
has anotion of “up” (i.e., towards the root) and “down” (i.e., away from the root). If we
are in a rooted tree, we can obviously exploit the availability of this globally consistent
orientation. In particular, in the saturation technique, the process performed in the
saturation stage can be simplified as follows:

Convergecast

1. aleaf sends its message to its parent;

2. each internal node waits until it receives a message from all its children; it then
sends a message to its parent.

In this way, the root (that does not have a parent) will be the sole saturated node
and will start the resolution stage.

COMPUTATIONS IN TREES 87

This simplified process is called convergecast. If we are in a rooted tree, we can
solve all the problems we discussed in the previous section (minimum finding, center
finding, etc.) using convergecast in the saturation stage.

In spite of its greater simplicity, the savings in cost due to convergecast is only
1 message (Exercise 2.9.47). Clearly, such an amount alone does not justify the
difference between general trees and rooted ones. There are however other advantages
in rooted trees, as we will see later.

Totally Ordered Trees 1In addition to the globally consistent orientation “up and
down,” a rooted tree has another powerful property. In fact, the port numbers at a
node are distinct; thus, they can be sorted, for example, in increasing order, and
the corresponding links can be ordered accordingly. This means that the entire tree
is ordered. As a consequence, also the nodes can be totally ordered, for example,
according to a preorder traversal (see Fig. 2.28).

Note that a node might not be aware of its order number in the tree, although this
information can be easily acquired in the entire tree (Exercise 2.9.49). This means
that, in a rooted tree the root assigns unique ids to the entities. This fact shows indeed
the power of rooted trees.

The fact that a rooted tree is totally ordered can be exploited also in other compu-
tations. Following are two examples.

Example: Choosing a Random Entity. In many systems and applications, it is
necessary to occasionally select an entity at random. This occurs for instance in
routing systems where, to reduce congestion, a message is first sent to an intermediate
destination chosen at random and then delivered from there to the final destination.
The same random selection is made, for example, for coordination of a computation,
for control of aresource, etc. The problem is how to determine an entity at random. Let
us concentrate on uniform choice; that is, every entity must have the same probability,
1/n, of being selected.

(@ (b)

FIGURE 2.28: A rooted tree is an ordered tree and unique names can be given to the nodes.

88 BASIC PROBLEMS AND PROTOCOLS

In a rooted tree, it becomes easy for the root to select uniformly an entity at random.
Once unique names have been assigned in preorder to the nodes and the root knows
the number r of entities, the root needs only to choose locally a number uniformly at
random between | and n; the entity with such a name will be the selected one. At this
point, the only thing that the root r still has to do is to communicate efficiently to the
selected entity x the result of the selection.

Actually, it is not necessary to assign unique names to the identities; in fact, it
suffices that each entity knows the number of descendents of each of its children,
and the entire process (from initial notification to all to final notification to x) can
be performed with at most 2(n — 1) 4 dr (s, x) messages and 2r(s) + dr (s, x) ideal
time units (Exercise 2.9.50).

Example: Choosing at Random from a Distributed Set. An interesting computa-
tion is the one of choosing at random an element of a set of data distributed (without
replication) among the entities. The setting is that of a set D partitioned among the
entities; that is, each entity x has a subset Dy, € D of the data where U, D, = D and,
forx #y, D, N Dy, =0.

Let us concentrate again on uniform choice; that is, every data item must have the
same probability, 1/|D| of being selected. How can this be achieved?

IMPORTANT. Choosing first an entity uniformly at random and then choosing an
item uniformly at random in the set stored there will NOT give a uniformly random
choice from the entire set (Exercise2.9.51).

Interestingly, this problem can be solved with a technique similar to that used for
selecting an entity at random and with the same cost (Exercise 2.9.52).

Application: Broadcast with Termination Detection Convergecast can be
used whenever there is a rooted spanning tree. We will now see an application of this
fact.

Itis a “fact of life” in distributed computing that entities can terminate the execution
of a protocol at different times; furthermore, when an entity terminates, it is usually
unaware of the status of the other entities. This is why we differentiate between local
termination (i.e., of the entity) and global termination (i.e., of the entire system).

For example, with the broadcast protocol Flooding the initiator of the broadcast
does not know when the broadcast is over. To ensure that the initiator of the broad-
cast becomes aware of when global termination occurs, we need to use a different
strategy.

To develop this strategy, recall that, if an entity s performs a Flood+Reply (e.g.,
protocol Shout) in a tree, the tree will become rooted in s: the initiator is the root;
for every other node y, the neighbor x from which it receives the first broadcasted
message is its parent, and all the neighbors that send the positive reply (e.g., “YES” in
Shout and Shout+) are its children. This means that convergecast can be “appended”
to any Flood+Reply protocol.

SUMMARY 89

Strategy Broadcast with Termination Detection:

1. The initiator s uses any Flood+Reply protocol to broadcast and construct a
spanning tree Tjs] of the network;

2. Starting from the leaves of T, the entities perform a convergecast on T.

At the end of the convergecast, s becomes aware of the global termination of the
broadcast (Exercise 2.9.48).

As for the cost, to broadcast with termination detection we need just to add the
cost of the convergecast to the one of the Flood+Reply protocol used. For example,
if we use Shout+, the resulting protocol that we shall call TDCast will then use
2m + n — 1 messages. The ideal time of Shout+ is exactly r(s) + 1; the ideal time of
convergecast is exactly the height of the tree T[], that is r(s); thus, protocol TDCast
has ideal time complexity 2r(s) 4+ 1. This means that termination detection can be
added to broadcast with less than twice the cost of broadcasting alone.

2.7 SUMMARY

2.7.1 Summary of Problems

Broadcast [Information problem] = A single entity has special information that
everybody must know.

¢ Unique Initiator
¢ Flooding: Messages = O(m); Time = O(d)

Wake-Up [Information/Synchronization problem] —> Some entities are awake;
everybody must wake-up.

e Wake-Up = (Broadcast with multiple initiators)
e WFlood: Messages = O(m); Time = O(d)

Traversal [Network problem] = Starting form the initiator, each entity is visited
sequentially.

¢ Unique Initiator
e DF-Traversal: Messages = O(m); Time = O(n)

Spanning-Tree Construction [Network problem]=—> Each entity identifies the sub-
set of neighbors in the spanning tree.

e SPT with unique initiator = Broadcast
¢ Unique Initiator: Shout: Messages = O(m); Time = O(d)
e Multiple Initiators: assume Distinct Initial Values

90 BASIC PROBLEMS AND PROTOCOLS

Election [Control problem] = One entity becomes leader, all others enter different
special status.

¢ Distinct Initial Values

Minimum Finding [Data problem] = Each entity must know whether its initial
value is minimum or not.

Center Finding [Network problem] = Each entity must know whether or not it is
a center of the network.

2.7.2 Summary of Techniques

Flooding: with single initiator = broadcast; with multiple initiators = wake-up.

Flooding with Reply (Shout): with single initiator, it creates a spanning tree rooted
in the initiator.

Convergecast: in rooted trees only.

Flooding with Replies plus Convergecast (TDCast): single initiator only,
initiator finds out that the broadcast has globally terminated.

Saturation: in trees only.
Depth-first traversal: single initiator only.

2.8 BIBLIOGRAPHICAL NOTES

Of the basic techniques, flooding is the oldest one, still currently and frequently
used. The more sophisticated refinements of adding reply and a convergecast were
discussed and employed independently by Adrian Segall [11] and Ephraim Korach,
Doron Rotem and Nicola Santoro [8]. Broadcasting in a linear number of messages
in unoriented hypercubes is due to Stefan Dobrev and Peter Ruzicka [6]. The use of
broadcast trees was first discussed by David Wall [12].

The depth-first traversal protocol was first described by Ernie Chang [3]; the first
hacking improvement is due to Baruch Awerbuch [2]; the subsequent improvements
were obtained by Kadathur Lakshmanan, N. Meenakshi, and Krishnaiyan Thulasira-
man [9] and independently by Israel Cidon [4].

The difficulty of performing a wake-up in labeled hypercubes and in complete
graphs has been proved by Stefan Dobrev, Rastislav Kralovic, and Nicola Santoro [5].

The first formal argument on the impossibility of some global computations under
R (e.g., the impossibility result for spanning-tree construction with multiple initiators)
is due to Dana Angluin [1].

The saturation technique is originally due to Nicola Santoro [10]; its application
to center and median finding was developed by Ephraim Korach, Doron Rotem, and
Nicola Santoro [8]. A decentralized solution to the ranking problem (Problem 2.9.4)
was designed by Ephraim Korach, Doron Rotem, and Nicola Santoro [7]; a less
efficient centralized one is due to Shmuel Zaks [13].

EXERCISES, PROBLEMS, AND ANSWERS 91

2.9 EXERCISES, PROBLEMS, AND ANSWERS

2.9.1 Exercises

Exercise 2.9.1 Show that protocol Flooding uses exactly 2m — n + 1 messages.

Exercise 2.9.2 Design a protocol to broadcast without the restriction that the unique
initiator must be the entity with the initial information. Write the new problem defi-
nition. Discuss the correctness of your protocol. Analyze its efficiency.

Exercise 2.9.3 Modify Flooding so to broadcast under the restriction that the
unique initiator must be an entity without the initial information. Write the new
problem definition. Discuss the correctness of your protocol. Analyze its effi-
ciency.

Exercise 2.9.4 We want to move the system from an initial configuration where
every entity is in the same status ignorant except the one that is knowledgeable to
a final configuration where every entity is in the same status. Consider this problem
under the standard assumptions plus Unique Initiator.

(a) Prove that, if the unique initiator is restricted to be one of the ignorant entities,
this problem is the same as broadcasting (same solution, same costs).

(b) Show how, if the unique initiator is restricted to be the knowledgeable entity,
the problem can be solved without any communication.

Exercise 2.9.5 Design a protocol to broadcast without the Bidirectional Link re-
striction. Discuss its correctness. Analyze its efficiency.

Exercise2.9.6 Prove that, in the worst case, the number of messages used by protocol
WFlood is at most 2m. Show under what conditions such a bound will be achieved.

Under what conditions will the protocol use only 2m — n 4+ 1 messages?

Exercise 2.9.7 Prove that protocol WFlood correctly terminates under the standard
set of restrictions BL,C, and TR.

Exercise 2.9.8 Write the protocol that implements strategy HyperFlood.

Exercise 2.9.9 Show that the subgraph Hj(x), induced by the messages sent when
using HyperFlood on the k-dimensional hypercube Hj with x as the initiator, contains
no cycles.

Exercise 2.9.10 Show that for every x the eccentricity of x in Hy(x) is k.

Exercise 2.9.11 Prove that the message complexity of traversal under R is at least m.
(Hint: use the same technique employed in the proof of Theorem 2.1.1.)

92 BASIC PROBLEMS AND PROTOCOLS

Exercise 2.9.12 Let G be a tree. Show that, in this case, no Backedge messages will
be sent in any execution of DF _Traversal.

Exercise 2.9.13 Characterize the virtual ring formed by an execution of
DF _Traversal in a tree network. Show that the ring has 2n — 2 virtual nodes.

Exercise 2.9.14 Write the protocol DF++-.
Exercise2.9.15 Prove that protocol DF++ correctly performs a depth-first traversal.

Exercise 2.9.16 Show that, in the execution of DF++, on some back-edges there
might be two “mistakes.”

Exercise 2.9.17 Determine the exact number of messages transmitted in the worst
case when executing DF* in a complete graph.

Exercise 2.9.18 Prove that in protocol Shout, if an entity x is in Tree-neighbors of
v, then y is in Tree-neighbors of x.

Exercise 2.9.19 Prove that in protocol Shout, if an entity sends Yes, then it is con-
nected to the initiator by a path where on every link a Yes has been transmitted. (Hint:

use induction.)

Exercise 2.9.20 Prove that the subnet constructed by protocol Shout contains no
cycles.

Exercise 2.9.21 Prove that T[Flood+Reply] = T[Flooding]+1.
Exercise 2.9.22 Write the set of rules for protocol Shout+.

Exercise 2.9.23 Determine under what conditions on the communication delays,
protocol Shout will construct a breadth-first spanning tree.

Exercise 2.9.24 Modify protocol Shout so that the initiator can determine when
the broadcast is globally terminated. (Hint: integrate in the protocol the convergecast
operation for rooted trees.)

Exercise 2.9.25 Modify protocol DF* so that every entity determines its neighbors
in the df-tree it constructs.

Exercise 2.9.26 Prove that f is exactly the number of leaves of the df-tree con-
structed by df-SPT.

Exercise 2.9.27 Prove that, in the execution of df-SPT, when the initiator becomes
done, a df-tree of the network has already been constructed.

EXERCISES, PROBLEMS, AND ANSWERS 93

Exercise 2.9.28 Prove that, for any broadcast protocol, the graph induced by rela-
tionship “parent” is a spanning tree of the network.

Exercise 2.9.29 Prove that the bf-tree of G rooted in a center is a broadcast tree
of G.

Exercise 2.9.30 Verify that, with multiple initiators, the optimized version DF+ and
DF* of protocol df-SPT will always create a spanning forest of the graph depicted in
Figure 2.14.

Exercise 2.9.31 Prove that when a node becomes saturated in the execution of
protocol MinF-Tree, it knows the minimum value in the network.

Exercise 2.9.32 Prove that when a node becomes saturated in the execution of
protocol Funct-Tree, it knows the value of f.

Exercise 2.9.33 Design a protocol to determine if all the entities of a tree network
have positive initial values. Any number of entities can independently start.

Exercise 2.9.34 Consider a tree system where each entity has a salary and a gen-
der. Some external investigators want to know if all the entities with a salary below
$50, 000 are female. Design a solution protocol that can be started by any number of
entities independently.

Exercise 2.9.35 Consider the same tree system of Question 2.9.34. The investigators
now want to know if there is at least one fermale with a salary above $50, 000. Design
a solution protocol that can be started by any number of entities independently.

Exercise 2.9.36 Design an efficient protocol to compute the number of entities in a
tree network. Any number of entities can independently start the protocol.

Exercise 2.9.37 Consider the same tree system of Question 2.9.34. The investigators
now want to know how many female entities are in the system. Design a solution
protocol that can be started by any number of entities independently.

Exercise 2.9.38 Consider the following use of the M message: a leaf will include a
value v = 1; an internal node will include one plus the maximum of all the received
values. Prove that the saturated nodes will compute their maximum distance from all
other nodes.

Exercise 2.9.39 Prove that for any link (i, v), d[u, v] = Max {d(u,y) : ye T[v — u]} =
14+ Max{d(v,y) : ye T[u—v]} =Max{d[v, z] : 7 # u € Nv)}.

Exercise 2.9.40 Modify protocol Eccentricities so it can solve Center, as discussed
in Section 2.6.5.

94 BASIC PROBLEMS AND PROTOCOLS

Exercise 2.9.41 Median Finding. Construct an efficient plug-in so that the median
nodes know that they are such.

Exercise 2.9.42 Diameter Finding. Design an efficient protocol to determine the
diameter of the tree. (Hint: use Lemma 2.6.2.)

Exercise 2.9.43 Rank Finding in Tree. Consider a tree where each entity x has an
initial value v(x); these values are not necessarily distinct. The rank of an entity x will
be the rank of its value; that is, rank(x)= 1 4 |{y € V: v(y) < v(x)}. So, whoever has
the smallest value, it has rank 1. Design an efficient protocol to determine the rank of
a unique initiator (i.e., under the additional restriction UI).

Exercise 2.9.44 Generic Rank Finding. Consider the ranking problem described
in Exercise 2.9.43. Design an efficient solution protocol that is generic; that is, it
works in an arbitrary connected graph.

Exercise 2.9.45 Diametral Paths. A path whose length is d is called diametral.
Design an efficient protocol so that each entity can determine whether or not it lies
on a diametral path of the tree.

Exercise 2.9.46 A path whose length is d is called diametral. Design an efficient
plug-in so that all and only the entities on a diametral path of the tree become aware
of this fact.

Exercise 2.9.47 Show that convergecast uses only 1 (one) message less than the
saturation stage in general trees.

Exercise 2.9.48 Prove that, when an initiator of a TDCast protocol receives the
convergecast message from all its children, the initial broadcast is globally terminated.

Exercise 2.9.49 Show how to assign efficiently a unique id to the entities in a rooted
tree.

Exercise 2.9.50 Random Entity Selection (x) Consider the task of selecting
uniformly at random an entity in a tree rooted at s. Show how to perform this task,
started by the root, with at most 2(n — 1) + dr (s, x) messages and 2r(s) + dr(s, x)
ideal time units. Prove both correctness and complexity.

Exercise 2.9.51 Show why choosing uniformly at random a site and then choosing
uniformly at random an element from that site is not the same as choosing uniformly
at random an element from the entire set.

Exercise 2.9.52 Random Item Selection (xx) Consider the task of selecting
uniformly at random an item from a set of data partitioned among the nodes of a
tree rooted at s. Show how to perform this task, started by the root, with at most

EXERCISES, PROBLEMS, AND ANSWERS 95

2(n — 1) 4+ dr(s, x) messages and 2r(s) + dr(s, x) ideal time units. Prove both cor-
rectness and complexity.

2.9.2 Problems

Problem 2.9.1 Develop an efficient solution to the Traversal problem without the
Bidirectional Links assumption.

Problem 2.9.2 Develop an efficient solution to the Minimum Finding problem in a
hypercube with a unique initiator (i.e., under the additional restriction UI). Note that
the values might not be distinct.

Problem 2.9.3 Solve the Minimum Finding problem is a system where there is
already a leader; that is, under restrictions R U UI. Note that the values might not be
distinct. Prove the correctness of your solution, and analyze its efficiency.

Problem 2.9.4 Ranking. (x) Consider a tree where each entity x has an initial
value v(x); these values are not necessarily distinct. The rank of an entity x will be
the rank of its value; that is, rank(x) = 1 + |[{y € v : v(¥) < v(x)}. So, whoever has
the smallest value, has rank 1. Design an efficient protocol to determine the rank of
all entities. prove the correctness of your protocol and analyze its complexity.

2.9.3 Answers to Exercises

Answer to Exercise 2.9.13

A node appears several times in the virtual ring; more precisely, there is an instance
of node z in R for each time z has received a Token or a Finished message. Let
x be the initiator; node x sends a Token to each of its neighbors sequentially and
receives a Finished message from each. Every node y # x receives exactly one
Token (from its parent) and sends one to all its other neighbors (its children); it will
also receive a Finished message from all its children and send one to its parent. In
other words every node z, including the initiator x, will appear n(z) = |N(z)| times
in the virtual ring. The total number of (virtual) nodes in the virtual ring is therefore

Y. evIN@I=2m =2(n—1).

Answer to Exercise 2.9.16

Consider a ring network with the three nodes x, y,and z. Assume that entity
x holds the Token initially. Consider the following sequence of events that take place
successively in time as a result of the execution of the DF++- protocol: x sends Visited
messages to y and z, sends the Token to y, and waits for a (Visited or Return) reply
from y. Assume that the link (x, z) is extremely slow.

When y receives the Token from x, it sends to z a Visited message and then the
Token. Assume that when z receives the Token, the Visited message from x has not
arrived yet; hence z sends Visited to x followed by the Token. This is the first mistake:
Token is sent on a back-edge to x, which has already been visited.

96 BASIC PROBLEMS AND PROTOCOLS

When z finally receives the Visited message from x, it realizes the Token it sent to
x was a mistake. Since it has no other unvisited neighbors, z sends a Refurn message
back to y. Since y has no other unvisited neighbors, it will then send a Return message
back to x. Assume that when x receives the Return message from y, x has not received
yet neither the Visited nor the Return messages sent by z. Hence, x considers z as
an unvisited neighbor and sends the Token to z. This is the second mistake on the
back-edge between x and z.

Answer to Exercise 2.9.19

Suppose some node x is not reachable from s in the graph 7 induced by the “parent”
relationship. This means that x never sent the Yes messages; this implies that x never
received the question Q. This is impossible because, since flooding is correct, every
entity will receive Q; thus, no such x exists.

Answer to Exercise 2.9.20

Suppose the graph T induced by the “parent” relationship (i.e., the Yes messages)
contains a directed cycle xg, x1, .. ., Xxxk—1; that is, x; is the parent of x; 4 (operations
on the indices are modulo k). This cycle cannot contain the initiator s (because it
does not send any Yes). We know (Exercise 2.9.19) that in T there is a path from s
to each node, including those in the cycle. This means that there will be in T a node
y not in the cycle that is connected to a node x; in the cycle. This means that x; sent
a Yes message to y; but since it is in the cycle, it also sent a Yes message to x;_
(operations on the indices are modulo k). This is impossible because an entity sends
no more than one Yes message.

Answer to Exercise 2.9.31

First show that if a node x sends M to neighbor y, N contains the smallest value in
T[x — y]; then, since a saturated node receives by definition a M message from all
neighbors, it knows the minimum value in the network. Prove that value sent by x to
y in M is the minimum value in 7'[x — y] by induction on the height & of T[x — y].
Trivially true if & = 1, that is, x is a leaf. Let it be true up to k > 1; we will now
show it is true for 2 = k + 1. x sends M to y because it has received a value from all
its other neighbors y1, y7, . . .; since the height of (T'[y; — x]) is less than /A, then by
inductive hypothesis the value sent by y; to x is the minimum value in (T [y; — x]).
This means that the smallest among v(x) and all the values received by x is the
minimum value in 7'[x — y]; this is exactly what x sends to y.

Answer to Exercise 2.9.41

It is clear that if node x knows |T[y — x]| for all neighbors y, then it can compute
G|y, x] and decide whether x is itself a median and, if not, determine the direction of
the median. Thus, to find a median is sufficient to modify the basic technique to supply
this information to the elected node from which the median is approached. This is
done by providing two counters, m| and my, with each M message: When a node
x sends a M message to y, thenm| = g[T[y —x], y] — landmy = |T[y — x]| — 1.
An active node x processes all received M messages so that, before it sends M to the

BIBLIOGRAPHY 97

last neighbor y, it knows G[T [x — z], x] and |T' [z — x]| for all other neighbors z. In
particular, the elected node can determine whether it is the median and, if not, can
send a message toward it; a node receiving such a message will, in turn, perform
the same operations until a median is located. Once again, the total number of
exchanged messages is the ones of the Full Saturation plug-in plus d(s,med), where
s is the saturated node closer to the medians, and med is the median furthermost from x.

Partial Answer to Exercise 2.9.48

By induction on the height of the rooted tree, prove that, in a TDCast protocol, when
an entity x receives the convergecast message from all its children, all its descendants
have locally terminated the broadcast.

Partial Answer to Exercise 2.9.49

Perform first a broadcast from the root to notify all entities of the start of the protocol,
and then a convergecast to collect at each entity the number of its descendents.
Afterwards use this information to assign distinct values to the entities according to
a preorder traversal of the tree.

Partial Answer to Exercise 2.9.51
Show that the data items from smaller sets will be chosen with higher probability than
that of the items from larger sets.

BIBLIOGRAPHY

[1] D. Angluin. Local and global properties in networks of processors. In Proc. of the 12th
ACM STOC Symposium on Theory of Computing, pages 82-93, 1980.

[2] B. Awerbuch. A new distributed depth-first search algorithm. Information Processing
Letters, 20:147-150, 1985.

[3] E.J.H. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE Trans-
actions on Software Engineering, SE-8(4):391-401, July 1982.

[4] I. Cidon. Yet another distributed depth-first search algorithm. Information Processing
Letters, 26:301-305, 1987.

[5] S. Dobreyv, R. Kralovic, and N. Santoro. On the difficulty of waking up. In print, 2006.

[6] S. Dobrev and P. Ruzicka. Linear broadcasting and O(n loglogn) election in unoriented
hypercubes. In Proc. of the 4th International Colloquium on Structural Information and
Communication Complexity, (Sirocco’97), Ascona, July 1997. To appear.

[7] E. Korach, D. Rotem, and N. Santoro. Distributed algorithms for ranking the nodes of a
network. In 13th SE Conf. on Combinatorics, Graph Theory and Computing, volume 36
of Congressus Numeratium, pages 235-246, Boca Raton, February 1982.

[8] E. Korach, D. Rotem, and N. Santoro. Distributed algorithms for finding centers and
medians in networks. ACM Transactions on Programming Languages and Systems,
6(3):380—401, July 1984.

[9] K.B. Lakshmanan, N. Meenakshi, and K. Thulasiraman. A time-optimal message-efficient
distributed algorithm for depth-first search. Information Processing Letters, 25:103-109,
1987.

98 BASIC PROBLEMS AND PROTOCOLS

[10] N. Santoro. Determining topology information in distributed networks. In Proc. 11th SE
Conf. on Combinatorics, Graph Theory and Computing, Congressus Numeratium, pages
869-878, Boca Raton, February 1980.

[11] A. Segall. Distributed network protocols. IEEE Transactions on Information Theory,
IT-29(1):23-35, Jan 1983.

[12] D. Wall. Mechanisms for broadcast and selective broadcast. PhD thesis, Stanford
University, June 1980.

[13] Shmuel Zaks. Optimal distributed algorithms for sorting and ranking. IEEE Transactions
on Computers, 34:376-380, 1985.

I CHAPTER 3

Election

3.1 INTRODUCTION

In a distributed environment, most applications often require a single entity to act tem-
porarily as a central controller to coordinate the execution of a particular task by the
entities. In some cases, the need for a single coordinator arises from the desire to sim-
plify the design of the solution protocol for a rather complex problem; in other cases,
the presence of a single coordinator is required by the nature of the problem itself.

The problem of choosing such a coordinator from a population of autonomous
symmetric entities is known as Leader Election (Elect). Formally, the task consists
in moving the system from an initial configuration where all entities are in the same
state (usually called available) into a final configuration where all entities are in
the same state (traditionally called follower), except one, which is in a different state
(traditionally called leader). There is no restriction on the number of entities that can
start the computation, nor on which entity should become leader.

We can think of the Election problem as the problem of enforcing restriction
Unique Initiator in a system where actually no such restriction exists: The multiple
initiators would first start the execution of an Election protocol; the sole leader will
then be the unique initiator for the subsequent computation.

As election provides a mechanism for breaking the symmetry among the entities in
a distributed environment, it is at the base of most control and coordination processes
(e.g., mutual exclusion, synchronization, concurrency control, etc.) employed in dis-
tributed systems, and it is closely related to other basic computations (e.g., minimum
finding, spanning-tree construction, traversal).

3.1.1 Impossibility Result

We will start considering this problem under the standard restrictions R: Bidirec-
tional Links, Connectivity, and Total Reliability. There is unfortunately a very strong
impossibility result about election.

Theorem 3.1.1 Problem Elect is deterministically unsolvable under R.

Design and Analysis of Distributed Algorithms, by Nicola Santoro
Copyright © 2007 John Wiley & Sons, Inc.

99

100 ELECTION

OOQQ OO.Q
® — o
o © o ©

FIGURE 3.1: Electing a leader.

In other words, there is no deterministic protocol that will always correctly termi-
nate within finite time if the only restrictions are those in R.

To see why this is the case, consider a simple system composed of two entities, x
and y, both initially available and with no different initial values; in other words, they
are initially in identical states. If a solution protocol P exists, it must work under any
conditions of message delays. Consider a synchronous schedule (i.e., an execution
where communication delays are unitary) and let the two entities start the execution
of P simultaneously. As they are in identical states, they will execute the same rule,
obtain the same result, and compose and send (if any) the same message; thus, they
will still be in identical states. If one of them receives a message, the other will receive
the same message at the same time and, by Property 1.6.2, they will perform the same
computation, and so on. Their state will always be the same; hence if one becomes
leader, so will the other. But this is against the requirement that there should be only
one leader; in other words, P is not a solution protocol.

3.1.2 Additional Restrictions

The consequence of Theorem 3.1.1 is that to break symmetry, we need additional
restrictions and assumptions.

Some restrictions are not powerful enough. This is the case, for example, with the
assumption that there is already available a spanning tree (i.e., restriction Tree). In
fact, the two-node network in which we know election is impossible is a tree.

To determine which restrictions, added to R, will enable us to solve Elect, we
must consider the nature of the problem. The entities have an inherent behavioral
symmetry: They all obey the same set of rules plus they have an initial state symmetry
(by definition of election problem). To elect a leader means to break these symmetries;
in fact, election is also called symmetry breaking. To be able to do so, from the start
there must be something in the system that the entities can use, something that makes
(at least one of) them different. Remember that any restriction limits the applicability
of the protocol.

The most obvious restriction is Unique Initiator (UI): The unique initiator, known
to be unique, becomes the leader. This is, however, “sweeping the problem under the
carpet,” saying that we can elect a leader if there is already a leader and it knows about
it. The problem is to elect a leader when many (possibly, all) entities are initiators;
thus, without UI.

INTRODUCTION 101

The restriction that is commonly used is a very powerful one, Initial Distinct Values
(ID), which we have already employed to circumvent a similar impossibility result
for constructing a spanning tree with multiple initiators (see Section 2.5.5). Initial
distinct values are sometimes called identifiers or ids or global names and, as we will
see, their presence will be sufficient to elect a leader; let id(x) denote the distinct value
of x. The use of this additional assumption is so frequent that the set of restrictions
IR = R U {ID} is called the standard set for election.

3.1.3 Solution Strategies

How can the difference in initial values be used to break the symmetry and to elect a
leader?

According to the election problem specifications, it does not matter which entity
becomes the leader. Using the fact that the values are distinct, a possible strategy is
to choose as a leader the entity with the smallest value; in other words, an election
strategy is as follows:

Strategy Elect Minimum:

1. find the smallest value;
2. elect as a leader the entity with that value.

IMPORTANT. Finding the minimum value is an important problem of its own,
which we have already discussed for tree networks (Section 2.6.2). Notice that in that
occasion, we found the minimum value without unique identifiers; it is the election
problem that needs them.

A useful variant of this strategy is the one restricting the choice of the leader to
the set of entities that initiate the protocol. That is,

Strategy Elect Minimum Initiator:

1. find the smallest value among the initiators;
2. elect as a leader the entity with that value.

IMPORTANT. Notice that any solution implementing the strategy Elect Minimum
solves Min as well as Elect, not so the ones implementing Elect Minimum Initiator.

Similarly, we can define the Elect Maximum and the Elect Maximum Initiator
strategies.

Another strategy is to use the distinct values to construct a rooted spanning tree of
the network and to elect the root as the leader. In other words, an election strategy is
as follows:

102 ELECTION

Strategy Elect Root:

1. construct a rooted spanning tree;
2. elect as the leader the root of the tree.

IMPORTANT. Constructing a (rooted) spanning tree is an important problem of
its own, which we have already discussed among the basic problems (Section 2.5).
Recall that SPT, like Elect, is unsolvable under R.

In the rest of this chapter, we will examine how to use these strategies to solve
Elect under election’s standard set of restrictions IR = R U{ID}. We will do so by
first examining special types of networks and then focusing on the development of
topology-independent solutions.

3.2 ELECTION IN TREES

The tree is the connected graph with the “sparsest” topology: m = n — 1.

We have already seen how to optimally find the smallest value using the saturation
technique: protocol MinF-Tree in Section 2.6.2. Hence the strategy Elect Minimum
leads to an election protocol Tree:Elect_Min where the number of messages in the
worst case is as follows:

M([Tree:Elect Min] = 3n + k, — 4 < 4n — 4.

Interestingly, also the strategy Elect Minimum Initiator will have the same complexity
(Exercise 3.10.1).

Consider now applying the strategy Elect Root. As the network is a tree, the only
work required is to transform it into a rooted tree. It is not difficult to see how saturation
can be used to solve the problem. In fact, if Full Saturation is applied, then a saturated
node knows that it itself and its parent are the only saturated nodes; furthermore, as
a result of the saturation stage, every nonsaturated entity has identified as its parent
the neighbor closest to the saturated pair. In other words, saturation will root the tree
not in a single node but in a pair of neighbors: the saturated ones.

Thus, to make the tree rooted in a single node we just need to choose only one of
the two saturated nodes. In other words, the “Election” among a/l the nodes is reduced
to an “election” between the two saturated ones. This can be easily accomplished by
having the saturated nodes communicate their identities and by having the node with
the smallest identity become elected, while the other stays processing.

Thus, the Tree:Elect_Root protocol will be Full Saturation with the new rules and
the routine Resolve shown in Figure 3.2.

The number of message transmissions for the election algorithm Tree_Election
will be exactly the same as the one experienced by Full Saturation with notification

ELECTION IN TREES 103

SATURATED
Receiving (Election, idx*)
begin
if id(x) <id+ then
become LEADER;
else
become FOLLOWER;
endif
send ("Termination") to N(x)— {parent};
end

PROCESSING
Receiving ("Termination")
begin
become FOLLOWER;
send ("Termination") to N(x)— {parent};
end

Procedure Resolve

begin
send ("Election",id(x)) to parent;
become SATURATED;

end

FIGURE 3.2: New rules and routine Resolve used for Tree:Elect_Root.

plus two “Election” messages, that is,
M([Tree:Elect_Root]= 3n + ky — 2 < 4n — 2.

In other words, it uses two messages more than the solution obtained using the strategy
Elect Minimum.

Granularity of Analysis: Bit Complexity From the discussion above, it would
appear that the strategy Elect Minimum is “better” because it uses two messages less
than the strategy Elect Root. This assessment is indeed the only correct conclusion ob-
tainable using the number of messages as the cost measure. Sometimes, this measure
is too “coarse” and does not really allow us to see possibly important details; to get a
more accurate picture, we need to analyze the costs at a “finer” level of granularity.

Let us re-examine the two strategies in terms of the number of bits. To do so,
we have to distinguish between different types of messages because some contain
counters and values, while others contain only a message identifier.

IMPORTANT. Messages that do not carry values but only a constant number of
bits are called signals and in most practical systems, they have significantly less
communication costs than value messages.

In Elect Minimum, only the n messages in the saturation stage carry a value, while
all the others are signals; hence, the total number of bits transmitted will be

B[Tree:Elect_ Min] = n (¢ + logid) 4+ ¢ 2n + k. —2), 3.1

104 ELECTION

where id denotes the largest value sent in a message, and c = O(1) denotes the number
of bits required to distinguish among the different messages.

In Elect Root, only the “Election” message carries a node identity; thus, the total
number of bits transmitted is

B[Tree:Elect_Root] =2 (¢ + logid) 4+ c 3n + ki — 2). 3.2)

That is, in terms of number of bits, Elect Root is an order of magnitude better than
Elect Minimum. In terms of signals and value messages, with Elect Root strategy we
have only two value messages and with Elect Minimum strategy we have n value
messages.

Remember: Measuring the number of bits gives us always a “picture” of the effi-
ciency at a more refined level of granularity. Fortunately, it is not always necessary
to go to such a level.

3.3 ELECTION IN RINGS

We will now consider a network topology that plays a very important role in distributed
computing: the ring, sometimes called loop network.

A ring consists of a single cycle of length n. In a ring, each entity has exactly
two neighbors, (whose associated ports are) traditionally called left and right (see
Figure 3.3).

IMPORTANT. Note that the labeling might, however, be globally inconsistent, that
is, ‘right’ might not have the same meaning for all entities. We will return to this point
later.

FIGURE 3.3: A ring network.

ELECTION IN RINGS 105

After trees, rings are the networks with the sparsest topology: m = n; however,
unlike trees, rings have a complete structural symmetry (i.e., all nodes look the
same).

We will denote the ring by R = (xo, x1, ..., Xx,—1). Let us consider the problem of
electing a leader in a ring R, under the standard set of restrictions for election, IR =
{Bidirectional Links, Connectivity, Total Reliability, Initial Distinct Values}, as well
as the knowledge that the network is a ring (Ring). Denote by id(x) the unique value
associated to x.

Because of its structure, in a ring we will use almost exclusively the approach of
minimum finding as a tool for leader election. In fact we will consider both the Elect
Minimum and the Elect Minimum Initiator approaches. Clearly the first solves both
Min and Elect, while the latter solves only Elect.

NOTE. Every protocol that elects a leader in a ring can be made to find the minimum
value (if it has not already been determined) with an additional » message and time
(Exercise 3.10.2). Furthermore, in the worst case, the two approaches coincide: All
entities might be initiators.

Let us now examine how minimum finding and election can be efficiently per-
formed in a ring.

Asin aring each entity has only two neighbors, for brevity we will use the notation
other to indicate N(x)—sender at an entity x.

3.3.1 All the Way

The first solution we will use is rather straightforward: When an entity starts, it
will choose one of its two neighbors and send to it an “Election” message con-
taining its id; an entity receiving the id of somebody else will send its id (if it has
not already done so) and forward the received message along the ring (i.e., send
it to its other neighbor) keeping track of the smallest id seen so far (including its
own).

This process can be visualized as follows: Each entity originates a message (con-
taining its id), and this message travels “all the way” along the ring (forwarded by
the other entities) (see Figure 3.4). Hence, the name All the Way will be used for the
resulting protocol.

Each entity will eventually see the id of everybody else id (finite communication
delays and total reliability ensure that) including the minimum value; it will, thus,
be able to determine whether or not it is the (unique) minimum and, thus, the leader.
When will this happen ? In other words,

Question. When will an entity terminate its execution?

Entities only forward messages carrying values other than their own: Once the
message with id(x) arrives at x, it is no longer forwarded. Thus, each value will
travel “All the Way” along the ring only once. So, the communication activities will
eventually terminate. But how does an entity know that the communication activities

106 ELECTION

FIGURE 3.4: All the Way: Every id travels along the ring.

have terminated, that no more messages will be arriving, and, thus, the smallest value
seen so far is really the minimum id?
Consider a “reasonable” but unfortunately incorrect answer:

An entity knows that it has seen all values once it receives its value back.

The “reason” is that the message with its own id has to travel longer along the
ring to reach x than those originated by other entities; thus, these other messages will
be received first. In other words, reception of its own message can be used to detect
termination.

This reasoning is incorrect because it uses the (hidden) additional assumption
that the system has first in first out (FIFO) communication channels, that is, the
messages are delivered in the order in which they arrive. This restriction, called
Message Ordering, is not a part of election’s standard set; few systems actually have
it built in, and the costs of offering it can be formidable.

So, whatever the answer, it must not assume FIFO channels. With this proviso, a
“reasonable” but unfortunately still incorrect answer is the following:

An entity counts how many different values it receives;, when the counter is equal to
n, it knows it can terminate.

ELECTION IN RINGS

PROTOCOL All the Way.

e States: S = {ASLEEP, AWAKE, FOLLOWER, LEADER};
Sinit = {ASLEEP};
Sterm = {FOLLOWER, LEADER}.

® Restrictions: IR URing.

ASLEEP
Spontaneously
begin
INITIALIZE;
become AWAKE;
end

Receiving ("Election", value*, counter™)
begin
INITIALIZE;
send ("Election", wvalue*, counter*+1) to other;
min:= Min{ min, value};
count:= count+1l;
become AWAKE ;
end

AWAKE
Receiving ("Election", value*, counter™)
begin
if value #id(x) then
send ("Election", value*, counter®*+1) to other;
min:= MIN{min, value*};
count:= count+1l;
if known then CHECK endif;
else
ringsize:= counter®;
known:= true;
CHECK;
endif
end

FIGURE 3.5: Protocol All the Way.

107

The problem is that this answer assumes that the entity knows n, but a priori
knowledge of the ring size is not a part of the standard restrictions for election. So it

cannot be used.

Itisindeed strange that the termination should be difficult for such a simple protocol
in such a clear setting. Fortunately, the last answer, although incorrect, provides us
with the way out. In fact, although n is not known a priori, it can be computed. This
is easily accomplished by having a counter in the Election message, initialized to 1
and incremented by each entity forwarding it; when an entity receives its id back, the

value of the counter will be n.

Summarizing, we will use a counter at each entity, to keep track of how many
different ids are received and a counter in each message, so that each entity can

determine n. The protocol is shown in Figures 3.5 and 3.6.

The message originated by each entity will travel along the ring exactly once.
Thus, there will be exactly n> messages in total, each carrying a counter and a value,

108 ELECTION

Procedure INITIALIZE
begin
count:= 0;
size:= 1;
known:= false;
send ("Election", id(x), size) to right;
min:= id(x);
end

Procedure CHECK

begin
if count = ringsize then
if min = id(x) then
become LEADER;
else
become FOLLOWER;
endif
endif
end

FIGURE 3.6: Procedures of protocol All the Way.

for a total of n? log(id + n) bits. The time costs will be at most 21 (Exercise 3.10.3).
Summarizing,

M[AlltheWay] = n> (3.3)
T[AlitheWay] < 2n — 1. (3.4)

The solution protocol we have just designed is very expensive in terms of commu-
nication costs (in a network with 100 nodes it would cause 10, 000 message trans-
missions).

The protocol can be obviously modified so as to follow strategy Elect Minimum
Initiator, finding the smallest value only among the initiators. In this case, those
entities that do not initiate will not originate a message but just forward the others’.
In this way, we would have fewer messages whenever there are fewer initiators.

In the modification we must be careful. In fact, in protocol All the Way, we were
using an entity’s own message to determine n so as to be able to determine local
termination. Now some entities will not have this information. This means that termi-
nation is again a problem. Fortunately, this problem has a simple solution requiring
only n additional messages and time (Exercise 3.10.4). Summarizing, the costs of the
modified protocol, All the Way:Minit, are as follows:

M[AlltheWay : Minit] = nky, +n (3.5
T[AlltheWay : Minit] <3n — 1 3.6)

The modified protocol All the Way:Minit will in general use fewer messages than
the original one. In fact, if only a constant number of entities initiate, it will use only

ELECTION IN RINGS 109

O(n) messages, which is excellent. By contrast, if every entity is an initiator, this
protocol uses n messages more than the original one.

IMPORTANT. Notice that All the Way (in its original or modified version) can be
used also in unidirectional rings with the same costs. In other words, it does not
require the Bidirectional Links restriction. We will return to this point later.

3.3.2 As Far As It Can

To design an improved protocol, let us determine the drawback of the one we already
have: All the Way. In this protocol, each message travels all along the ring.

Consider the situation (shown in Figure 3.7) of a message containing a large id,
say 22, arriving at an entity x with a smaller id, say 4. In the existing protocol, x will
forward this message, even though x knows that 22 is not the smallest value.

But our overall strategy is to determine the smallest id among all entities; if an
entity determines that an id is not the minimum, there is no need whatsoever for the
message containing such an id to continue traveling along the ring.

We will thus modify the original protocol All the Way so that an entity will only
forward Election messages carrying an id smaller than the smallest seen so far by

13|15 |4 |2

FIGURE 3.7: Message with a larger id does not need to be forwarded.

110 ELECTION

that entity. In other words, an entity will become an insurmountable obstacle for all
messages with a larger id “terminating” them.

Let us examine what happens with this simple modification. Each entity will orig-
inate a message (containing its id) that travels along the ring “as far as it can”: until it
returns to its originator or arrives at a node with a smaller id. Hence the name AsFar
(As It Can) will be used for the resulting protocol.

Question. When will an entity terminate its execution?

The message with the smallest id will always be forwarded by the other entities;
thus, it will travel all along the ring returning to its originator. The message containing
another id will instead be unable to return to its originator because it will find an entity
with a smaller id (and thus be terminated) along the way. In other words, only the
message with the smallest id will return to its originator. This fact provides us with a
termination detection mechanism.

If an entity receives a message with its own id, it knows that its id is the minimum,
that is, it is the leader; the other entities have all seen that message pass by (they
forwarded it) but they still do not know that there will be no smaller ids to come
by. Thus, to ensure their termination, the newly elected leader must notify them by
sending an additional message along the ring.

Message Cost This protocol will definitely have fewer messages than the previous
one. The exact number depends on several factors. Consider the cost caused by the
Election message originated by x. This message will travel along the ring until it finds
a smaller id (or complete the tour). Thus, the cost of its travel depends on how the ids
are allocated on the ring. Also notice that what matters is whether an id is smaller or
not than another and not their actual value. In other words, what is important is the
rank of the ids and how those are situated on the ring. Denote by #i the id whose rank
isi.

Worst Case Let us first consider the worst possible case. Id#1 will always travel
all along the ring costing n messages. Id #2 will be stopped only by id #1; so its cost
in the worst case is n — 1, achievable if id#2 is located immediately after id#1 in
the direction it travels. In general, id#(i 4+ 1) will be stopped by any of those with
smaller rank, and, thus, it will cost at most n — i messages; this will happen if all those
entities are next to each other, and id #(i + 1) is located immediately after them in the
direction it will travel. In fact, all the worst cases for each of the ids are simultaneously
achieved when the ids are arranged in an (circular) order according to their rank and
all messages are sent in the “increasing” direction (see Figure 3.9).

In this case, including also the n messages required for the final notification, the
total cost will be

nn+3)

n
M[AsFarl =n +) i = 5

i=1

3.7

ELECTION IN RINGS

PROTOCOL AsFar.

e States: S = {ASLEEP, AWAKE, FOLLOWER, LEADER};
Sinit = {ASLEEP};
Sterm = {FOLLOWER, LEADER}.

® Restrictions: IR URing.

ASLEEP
Spontaneously
begin
INITIALIZE;
become AWAKE ;
end

Receiving ("Election", value)
begin
INITIALIZE;
if value < min then
send ("Election", wvalue) to other;
min:= value;
endif
become AWAKE ;

end
AWAKE
Receiving ("Election", value)
begin
if value < min then
send ("Election", wvalue) to other;
min:= value;
else
if value min then NOTIFY endif;
endif
end

Receiving (Notify)
send (Notify) to other;
become FOLLOWER;

end

where the procedures Initialize and Notify are as follows:

Procedure INITIALIZE

begin
send ("Election", id(x)) to right;
min:= id(x);

end

Procedure NOTIFY

begin
send (Notify) to right;
become LEADER;

end

FIGURE 3.8: Protocol AsFar.

111

112 ELECTION

13

12

10

9

FIGURE 3.9: Worst case setting for protocol AsFar.

That is, we will cut the number of messages at least to half. From a theoretical
point of view, the improvement is not significant; from a practical point of view, this
is already a reasonable achievement. However we have so far analyzed only the worst
case. In general, the improvement will be much more significant. To see precisely
how, we need to perform a more detailed analysis of the protocol’s performance.

IMPORTANT. Notice that AsFar can be used in unidirectional rings. In other words,
it does not require the Bidirectional Links restriction. We will return to this point later.

The worst case gives us an indication of how “bad” things could get when the
conditions are really bad. But how likely are such conditions to occur? What costs
can we generally expect? To find out, we need to study the average case and determine
the mean and the variance of the cost of the protocol.

Average Case: Oriented Ring We will first consider the case when the ring is
oriented, that is, “right” means the same to all entities. In this case, all messages will
travel in only one direction, say clockwise.

IMPORTANT. Because of the unique nature of the ring network, this case coincides
with the execution of the protocol in a unidirectional ring. Thus, the results we will
obtain will hold for those rings.

ELECTION IN RINGS 113

To determine the average case behavior, we consider all possible arrangements of
the ranks 1, ..., n in the ring as equally likely. Given a set of size a, we denote by
C(a, b) the number of subsets of size b that can be formed from it.

Consider the id #i with rank i; it will travel clockwise exactly k steps if and only
if the ids of its k — 1 clockwise neighbors are larger than it (and thus will forward it),
while the id of its kth clockwise neighbor is smaller (and thus will terminate it).

There are i — 1 ids smaller than id#i from which to choose those k — 1 smaller
clockwise neighbors, and there are n — i ids larger than id #i from which to choose
the kth clockwise neighbor. In other words, the number of situations where id #i will
travel clockwise exactly k stepsis C(i — 1,k — 1)C(n — i, 1), out of the total number
of C(n — 1,k — 1)C(n — k, 1) possible situations.

Thus, the probability P(i, k) that id #i will travel clockwise exactly k steps is

o Cli—1k=1)C—i,1)
PGo = o Tk hecm—k 1) (3-8)

The smallest id, #1, will travel the full length n of the ring. The id#i, i > 1, will
travel less; the expected distance will be

n—1
E; = Zk P, k). (3.9)

k=1

Therefore, the overall expected number of message transmissions is

n—1n—1
E=n+ kP, k)y=n+ =nH, 3.10
121 kZI (i, k) Z P (3.10)
where H, = 1+ 5 1 +3 Ty o+ l is the nth Harmonic number.
To obtain a close formula we use the fact that the function f(x) = | is continu-
1
ous, linear, and decreasing; thus | loo)16 dx = limy— 0 [, 1")lc dx =limyeelnx| =
n

lim,(nn —Inl+c¢) =Inn + c.Hence, H, =Inn 4+ O(1) & .691logn + O(1);
thus

Theorem 3.3.1 In oriented and in unidirectional rings, protocol AsFar will cost
nH, ~ .69nlogn + O(n) messages on an average.

This is indeed great news: On an average, the message cost is an order of magnitude
less than that in the worst case. For n = 1024, this means that on an average we have
7066 messages instead of 525, 824, which is a considerable difference.

If we use the strategy of electing the Minimum Initiator instead, we obtain the
same bound but as a function of the number k., of initiators:

114 ELECTION

Theorem 3.3.2 In oriented and in unidirectional rings, protocol AsFar-Minit will
cost nHy, ~ .69n log k. messages on an average.

Average Case: Unoriented Ring Let us now consider what will happen on an
average in the general case, when the ring is unoriented. As before, we consider all
possible arrangements of the ranks 1, . . ., n of the values in the ring as equally likely.
The fact that the ring is not oriented means that when two entities send a message to
their “right” neighbors, they might send it in different directions.

Let us assume that at each entity the probability that “right” coincides with the
clockwise direction is % Alternatively, assume that an entity, as its first step in the
protocol, flips a fair coin (i.e., probability %) to decide the direction it will use to send
its value. We shall call the resulting probabilistic protocol ProbAsFar.

Theorem 3.3.3 In unoriented rings, Protocol ProbAsFar will cost @an ~
49n log n messages on an average.

A similar bound holds if we use the strategy of electing the Minimum Initiator:

Theorem 3.3.4 Inunoriented rings, protocol ProbAsFar-Minit will cost @n Hy, ~
.49n log k, messages on an average.

What is very interesting about the bound expressed by Theorem 3.3.3 is that it is
better (i.e., smaller) than the one expressed by Theorem 3.3.1. The difference between
the two bounds is restricted to the constant and is rather limited. In numerical terms,
the difference is not outstanding: 5018 instead of 7066 messages on an average when
n = 1024.

In practical terms, from the algorithm design point of view, it indicates that we
should try to have the entities send their initial message in different directions (as in
the probabilistic protocol) and not all in the same one (like in the oriented case). To
simulate the initial “random” direction, different means can be used. For example,
each entity x can choose (its own) “right” if id(x) is even, (its own) “left” otherwise.

This result has also a theoretical relevance that will become apparent later, when
we will discuss lower bounds and will have a closer look at the nature of the difference
between oriented and unoriented rings.

Time Costs The time costs are the same as the ones of All the Way plus an addi-
tional n — 1 for the notification. This can, however, be halved by exploiting the fact
that the links are bidirectional and by broadcasting the notification; this will require
an extra message but halve the time.

Summary The main drawback of protocol AsFar is that there still exists the pos-
sibility that a very large number of messages (O (1n?)) will be exchanged. As we have
seen, on an average, the use of the protocol will cost only O(n log n) messages. There

ELECTION IN RINGS 115

is, however, no guarantee that this will happen the next time the protocol will be used.
To give such a guarantee, a protocol must have a O (n log n) worst case complexity.

3.3.3 Controlled Distance

We will now design a protocol that has a guaranteed O (n log n) message performance.

To achieve this goal, we must first of all determine what causes the previous
protocol to use O(n”) messages and then find ways around it.

The first thing to observe is that in AsFar (as well as in All the Way), an entity makes
only one attempt to become leader and does so by originating a message containing
its id. Next observe that, once this message has been created and sent, the entity has
no longer any control over it: In All the Way the message will travel all along the ring;
in AsFar it will be stopped if it finds a smaller id.

Consider now the situation that causes the worst case for protocol AsFar: this
is when the ids are arranged in an increasing order along the ring, and all entities
identify “right” with the clockwise direction (see Figure 3.9). The entity x with id
2 will originate a message that will cause n — 2 transmissions. When x receives the
message containing id 1, x finds out that its own value is not the smallest, and thus
its message is destined to be wasted. However, x has no means to stop it as it has no
longer any control over that message.

Let us take these observations into account to design a more efficient protocol.
The key design goal will be to make an entity retain some control over the message
it originates. We will use several ideas to achieve this:

1. limited distance: The entity will impose a limit on the distance its message will
travel; in this way, the message with id 2 will not travel “as far as it can” (i.e.,
at distance n — 2) but only up to some predefined length.

2. return (or feedback) messages: If, during this limited travel, the message is not
terminated by an entity with smaller id, it will refurn back to its originator to
get authorization for further travel; in this way, if the entity with id 2 has seen
id 1, it will abort any further travel of its own message.

Summarizing, an entity x will originate a message with its own id, and this message
will travel until it is terminated or it reaches a certain distance dis; if it is not terminated,
the message returns to the entity. When it arrives, x knows that on this side of the
ring, there are no smaller ids within the traveled distance dis.

The entity must now decide if to allow its message to travel a further distance; it
will do so only if it knows for sure that there are no smaller ids within distance dis on
the other side of the ring as well. This can be achieved as follows:

3. check both sides: The entity will send a message in both directions; only if
they both return, they will be allowed to travel a further distance.

As aconsequence, instead of a single global attempt at leadership, an entity will go
through several attempts, which we shall call Electoral Stages: An entity enters the

116 ELECTION

dlSi +] disiﬂ

FIGURE 3.10: Controlled distances: A message travels no more than dis(i); if it is not dis-
carded, a feedback is sent back to the originator. A candidate that receives a feedback from
both sides starts the next stage.

next stage only if it passes the current one (i.e., both messages return) (see Fig. 3.10).
If an entity is defeated in an electoral stage (i.e., at least one of its messages does not
return), it still will have to continue its participation in the algorithm forwarding the
messages of those entities that are still undefeated.

Although the protocol is almost all outlined, some fundamental issues are still
unresolved. In particular, the fact that we now have several stages can have strange
consequences in the execution.

IMPORTANT. Because of variations in communication delays, it is possible that at
the same time instant, entities in different parts of the ring are in different electoral
stages. Furthermore, as we are only using the standard restrictions for elections,
messages can be delivered out of order; thus, it might be possible that messages from
a higher stage will arrive at an entity before the ones from the current one.

We said that an entity is defeated if it does not receive one of its messages back.
Consider now an entity x; it has sent its two messages and it is now waiting to know
the outcome. Let us say that one of its messages has returned but the other has not
yet. It is possible that the message is coming very slowly (e.g., experiencing long
transmission delays) or that it is not coming at all (i.e., it found a smaller id on the
way). How can x know ? How long will x have to wait before taking a decision (a
decision must be taken within finite time)? More specifically, what will x do if, in
the meanwhile, it receives a message from a higher stage ? The answer to all these

ELECTION IN RINGS 117
questions is fortunately simple:

4. the smallest id wins: If, at any time, a candidate entity receives message with a
smaller id, it will become defeated, regardless of the stage number.

Notice that this creates a new situation: A message returns to its originator and
finds it defeated; in this case, the message will be terminated.

The final issue we need to address is termination. The limit to the travel distance
for a message in a given stage will depend on the stage itself; let dis; denote the limit
in stage i. Clearly, these distances must be monotonically increasing, that is, dis; >
dis;_1. The messages from an entity whose id is not the minimum will sooner or later
encounter a smaller id in their travel and will not return to their originator.

Consider now the entity s with the smallest id. In each stage, both of its messages
will travel the full allocated distance (as no entity can terminate them) and return,
making s enter the next stage. This process will continue until dis; > n; at this time,
each message will complete a full tour of the ring reaching s from the other side.
When this happens, s will know that it has the smallest value and, thus, it is the leader.
It will then start a notification process so that all the other entities can enter a terminal
state.

A synthetic description of the protocol will thus be as follows:

* in each electoral stage there are some candidates;

e each candidate sends a message in both directions carrying its own id (as well
as the stage number);

¢ a message travels until it encounters a smaller id or it reaches a certain distance
(whose value depends on the stage);

« if a message does not encounter a smaller id, it will return back to its originator;

¢ a candidate that receives both of its own messages back survives this stage and
starts the next one;

with three meta rules:

« if a candidate receives its message from the opposite side it sent to, it becomes
the leader and notifies all the other entities of termination;

« if a candidate receives a message with a smaller id, it becomes defeated, regard-
less of the stage number;

¢ a defeated entity forwards the messages originating from the other entities; if
the message is notification of termination, it will terminate.

The fully specified protocol Control is shown in Figures 3.11 and 3.12, where dis
is a monotonically increasing function.

Correctness The correctness of the algorithm follows from the dynamics of the
rules: The messages containing the smallest id will always travel all the allocated

118 ELECTION

PROTOCOL Control.

® States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
Sinit = {ASLEEP};
Sterm = {FOLLOWER, LEADER}.

® Restrictions: IR URing.

ASLEEP
Spontaneously
begin
INITIALIZE;
become CANDIDATE;
end

Receiving ("Forth", id*, stage*, limit*)
begin
if id* < id(x) then
PROCESS-MESSAGE;
become DEFEATED
else
INITIALIZE;
become CANDIDATE;
endif
end

CANDIDATE
Receiving ("Forth", id*, stage*, limit*)
begin
if id* < id(x) then
PROCESS-MESSAGE;
become DEFEATED
else
if id* = id(x) then NOTIFY endif;
endif
end

Receiving ("Back", id¥)
begin

if id* = id(x) then CHECK endif;
end

Receiving (Notify)

begin
send (Notify) to other;
become FOLLOWER;

end

DEFEATED
Receiving (x)
begin
send (x) to other;
if x = Notify then become FOLLOWER endif;
end

FIGURE 3.11: Protocol Control.

ELECTION IN RINGS 119

Procedure INITIALIZE

begin
stage:= 1;
limit:= dis(stage);
count:= 0;

send ("Forth", id(x), stage, limit) to N(x);
end

Procedure PROCESS-MESSAGE
begin
limit*:=1limit*-1;
if limit* =0 then
send ("Back",id*, stage*) to sender;
else
send ("Forth", id*, stage*, limit*) to other;
endif
end

Procedure CHECK

begin
count :=count+1;
if count = 1 then
count:= 0
stage:= stage+l
limit:= dis(stage);
send ("Forth", id(x), stage, limit) to N(x);
endif
end

Procedure NOTIFY

begin
send (Notify) to right;
become LEADER;

end

FIGURE 3.12: Procedures used by protocol Control.

distance, and every entity still candidate they encounter will be transformed in
defeated; the distance is monotonically increasing in the number of stages; hence,
eventually, the distance will be at least n. When this happens, the messages with the
smallest value will travel all along the ring; as a result, their originator becomes leader
and all the others are already defeated.

Costs The costs of the algorithm depend totally on the choice of the function dis
used to determine the maximum distance a “Forth” message can travel in a stage.

Messages 1f we examine the execution of the protocol at some global time ¢,
because communication delays are unpredictable, we can find not only that entities
in different parts of the ring are in different states (which is expected) but also that
entities in the candidate state are in different stages. Moreover, because there is no
Message Ordering, messages from high stages (the “future””) might overtake messages
from lower stages and arrive at an entity still in a lower stage (the “past”).

Still, we can visualize the execution as proceeding in logical stages; it is just that
different entities might be executing the same stage at different times.

120 ELECTION

Focus on stage i > 1 and consider the entities that will start this stage; these n;
entities are those that survived stage i — 1.

To survive stage i — 1, the id of x must be smaller than the ids of its neighbors at
distance up to dis(i) on each side of the ring. Thus, within any group of dis(i) + 1 con-
secutive entities, at most one can survive stage i — 1 and start stage i. In other words,

n

An entity starting stage i will send “Forth” messages in both directions; each message
will travel at most dis(7), for a total of 2n; dis(i) message transmissions.

Let us examine now the “Back” messages. Each entity that survives this stage
will receive such a message from both sides; as n;4; entities survive this stage,
this gives an additional 2n;; dis(i) messages. Each entity that started but did not
survive stage i will receive either no or at most one “Back” message, causing a cost
of at most dis(i); as there are n; — n; 41 such entities, they will cost no more than
an additional (n; — n;41)dis(i) messages in total. So, in total, the transmissions for
“Back” messages are at most 2n;4+1dis(i) + (n; — nj+1)dis(i).

Summarizing, the total number of messages sent in stage i > 1 will be no more
than

2 n; dis(i) + 2 njqy dis(i) + (n; — niy1) dis(i) = 3 ni + njy1) dis(i)
> dis(i)
= Gl + L)) dis) <n (3 disi—n + 1)-

The first stage is a bit different, as every entity starts; the n, entities that survive
this stage will have caused the messages carrying their id to travel to distance dis(1)
and back on both sides, for a total of 4n; dis(1) messages. The n — n» entities that will
not survive will cause at most three messages each (two “Forth” and one “Back™) to
travel distance dis(1), for a total of 3(n| — n7) dis(1) messages. Hence the first stage
will cost no more than

(3n -+ n2) dis(1) = (3n + gy) dis(1) < G dis(1) +1).

To determine the total number of messages, we then need to know the total number
k of stages. We know that a leader is elected as soon as the message with the smallest
value makes a complete tour of the ring, that is, as soon as dis(i) is greater or equal
to n. In other words, k is the smallest integer such that dis(k) > n; such an integer is
called the pseudo-inverse of n and denoted by dis~'(n).

So, the total number of messages used by protocol Control will be at most

dis™'(n) dis(i)
M[Control] < 33— +1 , 3.12
[Control] < n ; (dis(i—l)+)—i—n ()

where dis(0) = 1 and the last » messages are those for the final notification.

ELECTION IN RINGS 121

To really finalize the design, we must choose the function dis. Different choices
will result in different performances.
dis(i)
dis(—1)
the distance every time) and dis~'(n) = [logn] + 1, which in Expression 3.12 yields

Consider, for example, the choice dis(i) = 2i=1: then = 2 (i.e., we double

M[Control] <7nlogn + O(n),

which is what we were aiming for: a O(n logn) worst case.

The constant can be, however, further improved by carefully selecting dis. It is
rather difficult to determine the best function. Let us restrict the choice to among the
functions where, like the one above, the ratio between consecutive values is constant,
that is, dfil(sl.(i)l) = c. For these functions, dis~!(n) = [log,(n)] + 1; thus, Expression
3.12 becomes

ietinlogn + O(n).

Thus, with all of them, protocol Control has a guaranteed O (n log n) performance.
The “best” among those functions will be the one where 315;1 is minimized; as
distances must be integer quantities, also ¢ must be an integer. Thus such a best choice

is ¢ = 3 for which we obtain

M| Control] < 6.309 nlogn + O(n). (3.13)

Time The ideal time complexity of procedure Control is easy to determine; the time
required by stage i is the time needed by the message containing the smallest id to
reach its assigned distance and come back to its originator; hence exactly 2dis(i) time
units. An additional » time units are needed for the final notification, as well as for
the initial wake-up of the entity with the smallest id. This means that the total time
costs will be at most

dis~'(n)
T[Control] < 2n + Z 2 dis(i). (3.14)

i=1

Again, the choice of dis will influence the complexity. Using any function of the
form dis(i) = ¢!~!, where c is a positive integer, will yield O(n) time. The determi-
nation of the best choice from the time costs point of view is left as an exercise.

Electing Minimum Initiator (x) Let us use the strategy of electing a leader only
among the initiators. Denote as usual by k, the number of initiators. Let us analyze
the worst case.

In the analysis of protocol Control, we have seen that those that survive stage i
contribute 4 dis(i) messages each to the cost, while those that do not survive contribute
at most 3 dis(7) messages each. This is still true in the modified version Control-Minit,

122 ELECTION

what changes is the values of the number n; of entities that will start that stage. Initially,
n1 = k,. In the worst case, the k, initiators are placed far enough from each other
in the ring that each completes the stage without interfering with the others; if the
distances between them are large enough, each can continue to go to higher stages
without coming into contact with the others, thus, causing 4 dis(i) messages.

For how many stages can this occur ? This can occur as long as dis(i) < k*"ﬁ
That is, in the worst case, n; = k, in each of the first/ = dis™! (# — 1) stages, and
the cost will be 4 k,dis(i) messages. In the following stages instead, the initiators will
start interfering with each other, and the number of survivors will follow the pattern
of the general algorithm: n; < | g7yt |-

Thus, the total number M[Control-Minit] of messages in the worst case will be at
most

I dis~!(n) dis(i)
M(Control-Minit] < 4k, » "dis(i) + n Y _ <3 i 1) + n.
1S(1 —
i=1 i=[+1

(3.15)

3.3.4 Electoral Stages

In the previous protocol, we have introduced and used the idea of limiting the distances
to control the complexity of the original “as far as it can” approach. This idea requires
that an entity makes several successive attempts (at increasing distances) to become
a leader.

The idea of not making a single attempt to become a leader (as it was done in All
the Way and in AsFar), instead of proceeding in stages, is a very powerful algorithmic
tool of its own. It allows us to view the election as a sequence of electoral stages :
At the beginning of each stage, the “candidates” run for election; at the end of the
stage, some “candidates" will be defeated, the others will start the next stage. Recall
that “stage” is a logical notion, and it does not require the system to be synchronized;
in fact, parts of the system may run very fast while other parts may be slow in their
operation, so different entities might execute a stage at totally different times.

We will now see how the proper use of this tool allows us to achieve even better
results, without controlling the distances and without return (or feedback) messages.

To simplify the presentation and the discussion, we will temporarily assume that
there is Message Ordering (i.e., the links are FIFO); we will remove the restriction
immediately after.

As before, we will have each candidate send a message carrying its own id in both
directions. Without setting an a priori fixed limit on the distance these messages can
travel, we still would like to avoid them to travel unnecessarily far (costing too many
transmissions). The strategy to achieve this is simple and effective:

¢ A message will travel until it reaches another candidate in the same (or higher)
stage.

ELECTION IN RINGS 123

The consequence of this simple strategy is that in each stage, a candidate will receive a
message from each side; thus, it will know the ids of the neighboring candidate on each
side. We will use this fact to decide whether a candidate x enters the next stage: x will
survive this stage only if the two received ids are not smaller than its own id(x) (recall
we are electing the entity with the smallest id); otherwise, it becomes defeated. As
before, we will have defeated entities continue to participate by forwarding received
messages.

Correctness and termination are easy to verify. Observe that the initiator with the
smallest identity will never become defeated; by contrast, at each stage, its message
will transform into defeated the neighboring candidate on each side (regardless of their
distance). Hence, the number of candidates decreases at each stage. This means that
eventually, the only candidate left is the one with the minimum id. When this happens,
its messages will travel all along the ring (forwarded by the defeated entities) and reach
it. Thus, a candidate receiving its own messages back knows that all other entities are
defeated; it will then become leader and notify all other entities of termination.

Summarizing (see also Figure 3.13):

¢ A candidate x sends a message in both directions carrying its identity; these
messages will travel until they encounter another candidate node.

e By symmetry, entity x will receive two messages, one from the “left" and one
from the “right" (independently of any sense of direction); it will then become
defeated if at least one of them carries an identity smaller than its own; if both
the received identities are larger than its own, it starts the next stage; finally, if
the received identities are its own, it becomes leader and notifies all entities of
termination.

¢ A defeated node will forward any received election message, and each nonini-
tiator will automatically become defeated upon receiving an election message.

The protocol is shown in Figure 3.14, where close and open denote the operation
of closing a port (with the effect of enqueueing incoming messages) and opening a
closed port (dequeueing the messages), respectively, and where procedure Initialize
is shown in Figure 3.15.

] ()
\/ \/

x > Min{y,z} => x defeated
x < Min{y,z} => x candidate next stage

x = Min{y,z} => x leader
FIGURE 3.13: A candidate x in an electoral stage.

124 ELECTION

PROTOCOL Stages.

e States: S = {ASLEEP, CANDIDATE, WAITING, DEFEATED, FOLLOWER, LEADER};
Sinit = {ASLEEP); Sterm = (FOLLOWER, LEADER].

® Restrictions: IR URing.

ASLEEP
Spontaneously
begin
INITIALIZE;
become CANDIDATE;
end

Receiving ("Election", id*, stage*)
begin

INITIALIZE;

min:= Min (id*,min) ;

close (sender) ;

become WAITING;
end

CANDIDATE
Receiving ("Election", id*, stage*)
begin
if id* #id(x) then
min:= Min(id*,min) ;
close (sender) ;
become WAITING;
else
send (Notify) to N(x);
become LEADER;
end

WAITING
Receiving ("Election", id*, stage*)
open (other) ;
stage:= stage+l;
min:= Min(id*,min) ;
if min= id(x) then
send ("Election", id(x), stage) to N(x);
become CANDIDATE;
else
become DEFEATED;
endif
end

DEFEATED
Receiving (x)
begin
send (x) to other;
if x = Notify then become FOLLOWER endif;
end

FIGURE 3.14: Protocol Stages.

Messages 1t is not so obvious that this strategy is more efficient than the previ-
ous one.

Let us first determine the number of messages exchanged during a stage. Con-
sider the segment of the ring between two neighboring candidates in stage i, x, and

ELECTION IN RINGS 125

Procedure INITIALIZE
begin
stage:
count:= 0;
min:= id(x);
send ("Election", id(x), stage) to N(x);
end

1;

FIGURE 3.15: Procedure Initialize used by protocol Stages.

y = r(i, x); in this stage, x will send a message to y and y will send one to x. No
other messages will be transmitted during this stage in that segment. In other words,
on each link, only two messages will be transmitted (one in each direction) in this
stage. Therefore, in total, 2n message exchanges will be performed during each stage.

Let us determine now the number of stages. Consider a node x that is candidate
at the beginning of stage i and is not defeated during this stage; let y = r(i, x) and
z = I(i, x) be the first entity to the right and to the left of x, respectively, that are also
candidates in stage i (Figure 3.16).

It is not difficult to see that if x survives stage i, both r(i, x) and I(7, x) will be
defeated. Therefore, at least half of the candidates are defeated at each stage. In other
words, at most half of them survive:

n; < ﬂfl.
Asny = n, the total number of stages is at most ostages < [logn] + 1.

Combining the two observations, we obtain,

M([Stages] < 2nlogn + O(n). (3.16)
That is, protocol Stages outperforms protocol Control.

Observe that equality is achievable in practice (Exercise 3.10.9). Further note that
if we use the Minimum Initiator approach the bound will become

M([Stages:Minit] < 2 nlogk, + O(n). 3.17)

(—e—e——o——0—() —0o——0—-—0——0—)

I(i,x) x r(i,x)

@ defeated O candidate
FIGURE 3.16: If x survives this stage, its neighboring candidates will not.

Removing Message Ordering The correctness and termination of Stages are
easy to follow also because we have assumed in our protocol that there is Message

126 ELECTION

Ordering. This assumption ensured that the two messages received by a candidate in
stage i are originated by candidates also in stage i . If we remove the Message Ordering
restriction, it is possible that messages arrive out of order and that a message sent in
stage j > i arrives before a message sent in stage i.

Simple Approach The simplest way to approach this problem is by enforcing the
“effects” of Message Ordering, without really having it.

1. First of all, each message will also carry the stage number of the entity origi-
nating it.

2. When a candidate node x in stage i receives a message M * with stage j > i, it
will not process it but will locally enqueue it until it has received from that side
(and processed) all the messages from stages i,7 + 1, ..., j — 1, which have
been “jumped over” by M; it will then process M.

The only modification to protocol Stages as described in Figure 3.14 is the addition
of the local enqueueing of messages (Exercise 3.10.6); as this is only local processing,
the message and time costs are unchanged.

Stages* An alternative approach is to keep a track of a message “jumping over”
others but without enqueueing it locally. We shall describe it in some details and call
Stages* the corresponding protocol.

1. Firstof all, we will give a stage number to all the nodes: For a candidate entity, it
is the current stage; for a defeated entity, it is the stage in which it was defeated.
We will then have a defeated node forward only messages from higher stages.

2. A candidate node x in stage i receiving an Election message M* with stage
j > i will use the id included in the message, id*, and will make a decision
about the outcome of the stage i as if both of them were in the same stage.

e If x is defeated in this round, then it will forward the message M x.

e If x survives, it means that id(x) is smaller not only than id* in M but also
than the ids in the messages “jumped over” by Mx (Exercise3.10.13).

In this case, x can act because it has received already from that side all the
messages from stages i, i + 1, ..., j, and they all have an id larger than id(x).
We will indicate this fact by saying that x has now a credit of j — i messages
on that port. In other words, if a candidate x has a credit ¢ > 0 associated with
a port, it does not have to wait for a message from that port during the current
stage. Clearly, the credit must be decreased in each stage.

To write the set of rules for protocol Stages* is a task that, although not difficult,
requires great care and attention to details (Exercise 3.10.12); similar characteristics
has the task of proving the correctness of the protocol Stages* (Exercise 3.10.14).

As for the resulting communication complexity, the number of messages is never
more (sometimes less) than that with Message Ordering (Exercise 3.10.15).

ELECTION IN RINGS 127

Interestingly, if we attempt to measure the ideal time complexity, we will only see
executions with Message Ordering. In other words,

the phenomenon of messages delivered out of order will disappear.

This is yet another case showing how biased and limited (and thus dangerous) ideal
time is as a cost measure.

3.3.5 Stages with Feedback

‘We have seen how, with the proper use of electoral stages in protocol Stages, we can
obtain a O(n log n) performance without the need of controlling the distance travelled
by a message.

In addition to controlled distances, protocol Control uses also a “feedback” tech-
nique: If a message successfully reaches its target, it returns back to its originator,
providing it with a “positive feedback™ on the situation it has encountered. Such a
technique is missing in Stages: A message always successfully reaches its target (the
next candidate in the direction it travels), which could be at an unpredictable distance;
however, the use of the message ends there.

Let us integrate the positive feedback idea in the overall strategy of Stages: When
an “Election” message reaches its target, a positive feedback will be sent back to its
originator if the id contained in the message is the smallest seen by the target in this
stage.

More precisely, when a candidate x receives Election messages containing id(y)
and id(z) from its neighboring candidates, y = r(i, x) and z = I(i, x), it will send
a (positive) “feedback” message: to y if id(y) < Min{id(x), id(z)}, to z if id(z) <
Min{id(x), id(y)}, and to none otherwise. A candidate will then survive this stage
and enter the new one if and only if it receives a feedback from both sides.

In the example of Figure 3.17, candidates with ids 2, 5, and 8 will not send any
feedback; of these three, only candidate with id 2 will enter next stage. The fate of
entity with id 7 depends on its other neighboring candidate, which is not shown; so,
we do not know whether it will survive or not.

If a node sends a “feedback” message, it knows that it will not survive this stage.
This is the case, for example, of the entities with ids 6, 9, 10, and 11.

Some entities, however, do not send any “feedback” and wait for a “feedback” that
will never arrive; this is, for example, the case of the entities with ids 5 and 8. How
will such an entity discover that no “feedback” is forthcoming and it must become
defeated? The answer is fortunately simple. Every entity that survives stage i (e.g.,

-— B — -~ -

@ ® ® O ©, © ® (W

@ defeated O candidate
FIGURE 3.17: Only some candidates will send a feedback.

128 ELECTION

the node with id 2) will start the next stage; its Stage message will act as a negative
feedback for those entities receiving the message while still waiting in stage i.

More specifically, if while waiting for a “feedback” message in stage i, an entity
receives an “Election” message (clearly with a smaller id) in stage i + 1, it becomes
defeated and forwards the message.

We shall call the protocol Stages with Feedback; our description was assuming
message ordering. As for protocol Stages, this restriction can and will be logically
enforced with just local processing.

Correctness The correctness and termination of the protocol follows from the fact
that the entity xpni, with the smallest identity will always receive a positive feedback
from both sides; hence, it will never be defeated. At the same time, x;, never sends
a positive feedback; hence, its left and right neighboring candidates in that stage do
not survive it. In other words, the number n; of candidates in stage i is monotonically
decreasing, and eventually only xpi, will be in such a state. When this happens, its
own “Election” messages will travel along the ring, and termination will be detected.

Messages We are adding bookkeeping and additional messages to the already
highly efficient protocol Stages. Let us examine the effect of these changes.

Let us start with the number of stages.

Asin Stages, if a candidate x in stage i survives, itis guaranteed that its neighboring
candidates in the same stage, r(i, x) and [(i, x), will become defeated. With the
introduction of positive feedback, we can actually guarantee that if x survives, neither
will the first candidate to the right of r(i, x) survive nor will the first candidate to the
left of I(i, x) survive.

This is because if x survives, it must have received a “feedback” from both r(i, x)
and [(i, x) (see Figure 3.18). But if (7, x) sends “feedback” to x, it does not send one
to its neighboring candidate rZ(i , x); similarly, I(i, x) does not send a “Feedback” to
12(i, x). In other words,

nj_|
ng < =5

That is, at most one third of the candidates starting a stage will enter the next one. As
n1 = n , the total number of stages is at most osgges < [logz n] + 1. Note that there

are initial configurations of the ids that will force the protocol to have exactly these
many stages (Exercise 3.10.22).

O—o—o0—o(ro—oo{)rooo{ rooo()

i) I(i.x) x r(ix) (i)

@ defeated Q candidate
FIGURE 3.18: If x survives, those other candidates do not.

ELECTION IN RINGS 129

In other words, the number of stages has decreased with the use of “feedback”
messages. However, we are sending more messages in each stage.

Let us examine now how many messages will be sent in each stage. Consider
stage 7; this will be started by n; candidates. Each candidate will send an “Election”
message that will travel to the next candidate on either side. Thus, exactly like in
Stages, two “Election” messages will be sent over each link, one in each direction, for
a total of 2n “Election” messages per stage. Consider now the “feedback” messages;
a candidate sends at most one “feedback” and only in one direction. Thus, in the
segment of the ring between two candidates, there will be at most one “feedback”
message on each link; hence, there will be no more than n “feedback” transmissions
in total in each stage. This means that in each stage there will be at most 3n messages.

Summarizing,

M(StagesFeedback] < 3 n logzn + O(n) < 1.89 nlogn 4+ O(n). (3.18)

In other words, the use of feedback with the electoral stages allows us to reduce the
number of messages in the worst case. The use of Minimum Initiator strategy yields
the similar result:

M([StagesFeedback—Minit] < 1.89 nlogk, + O(n). (3.19)

In the analysis of the number of “feedback” messages sent in each stage, we can
be more accurate; in fact, there are some areas of the ring (composed of consecutive
defeated entities between two successive candidates) where no feedback messages
will be transmitted at all. In the example of Figure 3.17, this is the case of the area
between the candidates with ids 8 and 10. The number of these areas is exactly equal
to the number n; 1 of candidates that survive this stage (Exercise 3.10.19). However,
the savings are not enough to reduce the constant in the leading term of the message
costs (Exercise 3.10.21).

Granularity of Analysis: Bit Complexity The advantage of protocol Stages
with Feedback becomes more evident when we look at communication costs at a
finer level of granularity, focusing on the actual size of the messages being used. In
fact, while the “Election” messages contain values, the “feedback” messages are just
signals, each containing O(1) bits. (Recall the discussion in Section 3.2.)

In each stage, only the 2n “Election” messages carry a value, while the other n are
signals; hence, the total number of bits transmitted will be at most

2n(c +logid) logyn +nc logzn +1l.0.t.,

where id denotes the largest value sent in a message, c = O(1) denotes the number
of bits required to distinguish among the different types of message, and o.z. stands
for “lower order terms.” That is,

B[StageswithFeedback] < 1.26 nlogn logid + [.0.t. (3.20)

130 ELECTION

The improvement on the bit complexity of Stages, where every message carries a
value, is, thus, in the reduction of the constant from 2 to 1.26.

Further Improvements? The use of electoral stages allows us to transform the
election process into one of successive “eliminations,” reducing the number of can-
didates at each stage. In the original protocol Stages, each surviving candidate will
eliminate its neighboring candidate on each side, guaranteeing that at least half of
the candidates are eliminated in each stage. By using feedback, protocol Stages with
Feedback extends the “reach” of a candidate also to the second neighboring candi-
date on each side, ensuring that at least two third of the candidates are eliminated
in each stage. Increasing the “reach” of a candidate during a stage will result in a
larger proportion of the candidates in each stage, thus, reducing the number of stages.
So, intuitively, we would like a candidate to reach as far as possible during a stage.
Obviously the price to be paid is the additional messages required to implement the
longer reach.

In general, if we can construct a protocol that guarantees a reduction rate of at least
b, thatis, n; < ""b’ L then the total number of stages would be log;,(n); if the messages
transmitted in each stage are at most an, then the overall complexity will be

an log,(n) = nlogn.

a
logb

To improve on Stages with Feedback, the reduction must be done with a number of
messages such that @ < 1.89. Whether this is possible or not is an open problem

(Problem 3.10.3).

3.3.6 Alternating Steps

It should be clear by now that the road to improvement, on which creative ingenuity
will travel, is oftentimes paved by a deeper understanding of what is already available.

A way to achieve such an understanding is by examining the functioning of the
object of our improvement in “slow motion,” so as to observe its details.

Let us consider protocol Stages. It is rather simple and highly efficient. We have
already shown how to achieve improvements by extending the “reach” of a candidate
during a stage; in a sense, this was really “speeding up” the functioning of the protocol.
Let us examine now Stages instead by “slowing down” its functioning.

In each stage, a candidate sends its id in both directions, receives an id from each
direction, and decides whether to survive, be elected, or become defeated on the basis
of its own value and the received ones.

Consider the example shown in Figure 3.19; the result of stages will result in
candidates w, y, and v being eliminated and x and z surviving; the fate of u will
depend on its right candidate neighbor, which is not shown.

We can obviously think of “sending in both directions” as two separate steps: send
to one direction (say “right”) and send to the other. Assume for the moment that the
ring is oriented: “right” has the same meaning for all entities. Thus, the stage can be
thought of having two steps: (1) The candidate sends to the “right” and receives from
the “left”; (2) it will then send to the “left” and receive from the “right.”

ELECTION IN RINGS 131

® @ O, ® O, O,
w x y z v u
@ defeated O candidate

FIGURE 3.19: Alternating Steps: slowing down the execution of Stages.

Consider the first step in the same example as shown in Figure 3.19; both candidates
y and v already know at this time that they would not survive. Let us take advantage
of this “early” discovery. We will use each of these two steps to make an electoral
decision, and we will eliminate a candidate after step (1) if it receives a smaller id in
this step. Thus, a candidate will perform step (2) only if it is not eliminated in step (1).

The advantage of doing so becomes clear observing that by eliminating candidates
in each step of a phase, we eliminate more than that in the original phase; in the
example of Figure 3.19, also x will be eliminated.

Summarizing, the idea is that at each step, a candidate sends only one message
with its value, waits for one message, and decides on the basis of its value and the
received one; the key is to alternate at each step the direction in which messages are
sent.

This protocol, which we shall call Alternate, is shown in Figure 3.20, where close
and open denote the operation of closing a port (with the effect of enqueueing incom-
ing messages) and opening a closed port (dequeueing the messages), respectively;
and the procedures Initialize and Process_Message are shown in Figure 3.21.

Correctness The correctness of the protocol follows immediately from observing
that, as usual, the candidate xni, with the smallest value will never be eliminated
and that, on the contrary, it will in each step eliminate a neighboring candidate.
Hence, the number of candidates is monotonically decreasing in the steps; when only
Xmin 18 left, its message will complete the tour of the ring transforming it into the
leader. The final notification will ensure proper termination of all entities.

Costs To determine the cost is slightly more complex. There are exactly n messages
transmitted in each step, so we need to determine the total number of steps o Alternate
(or, where no confusion arises, simply o) until a single candidate is left, in the worst
case, regardless of the placement of the ids in the ring, time delays, and so forth.

Let n; be the candidate entities starting step i; clearly ny =n and n, = 1. We
know that two successive steps of Alternate will eliminate more candidates than a
single stage of Stages; hence, the total number of steps will be less than twice the
number of stages of Stages:

o < 2logn.

We can, however, be more accurate regarding the amount of elimination performed
in two successive steps.

132 ELECTION

PROTOCOL Alternate.

® States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
Sinit = {ASLEEP};
Sterm = {FOLLOWER, LEADER}.

® Restrictions: IR UOriented Ring U MessageOrdering.

ASLEEP
Spontaneously
begin
INITIALIZE;
become CANDIDATE;
end

Receiving ("Election", id*, step*)
begin
INITIALIZE;
become CANDIDATE;
PROCESS_MESSAGE;
end

CANDIDATE
Receiving ("Election", id*, step*)
begin
if id* #id(x) then
PROCESS_MESSAGE;
else
send (Notify) to N(x);
become LEADER;
end

DEFEATED
Receiving (x)
begin
send (x) to other;
if x = Notify then become FOLLOWER endif;
end

FIGURE 3.20: Protocol Alternate.

Assume that in step i, the direction is “right” (thus, it will be “left” in step i + 1).
Let d; denote the number of candidates that are eliminated in step i. Of those n;
candidates that start step i, d; will be defeated and only n; 1 will survive that step.
That is,

ni =di +njt

Consider a candidate x that survives both step i and step i + 1. First of all observe
that the candidate to the right of x in step i will be eliminated in that step. (If not, it
would mean that its id is smaller than id(x) and thus would eliminate x in step i + 1;
but we know that x survives.)

This means that every candidate that, like x, survives both stages will eliminate
one candidate in the first stage; in other words,

d; > njyo,

ELECTION IN RINGS 133

Procedure INITIALIZE
begin
step:= 1;
min:= id(x);
send ("Election", id(x), step) to right;
close (right) ;
end

Procedure PROCESS_MESSAGE
begin
if id*< min then
open (other) ;
become DEFEATED;
else
step:= step+1l;
send ("Election", id(x), step) to sender;
close (sender) ;
open (other) ;
endif
end

FIGURE 3.21: Procedures used by protocol Alternate.

but then

ni = nit1 +ni42. (3.2D)

The consequence of this fact is very interesting. In fact, we know that n, = 1 and,
obviously, ny_1 > 2. From Equation 3.21, we have ny_; > ng—j+1 + Ho—i+2-

Consider now the Fibonacci numbers F; defined by F; = Fj1 + Fj2, where
F_1 =0and Fy = 1. Then, clearly

Ng—i > Fiy1.

It follows that ny > F,, but n; = n; thus o is the index of the largest Fibonacci
number not exceeding n. This helps us in achieving our goal of determining o, the
number of steps until there is only one candidate left. As F; = b (#)] , where b
is a positive constant, we have

n Z Fa = b (—1+2ﬁ)ﬂ

from where we get,
OAlternate < 1.44logn + O(1).
That means that after atr most so many steps, there will be only one candidate left.
Observe that what we have derived is actually achievable. In fact, there are allocations

of the ids to the nodes or a ring that will force the protocol to perform o ajernare
steps before there is only one candidate left (Exercise 3.10.26). In the next step, this

134 ELECTION

candidate will become leader and start the notification. These last two operations
require n messages each.
Thus the total number of messages will be

MJAlternate] < 1.44 nlogn 4+ O(n). (3.22)

In other words, protocol Alternate is not only simple but also more efficient than
all other protocols seen so far.

Recall, however, that it has been described and analyzed assuming that the ring is
oriented.

Question. What happens if the ring is not oriented ?

If the entities have different meaning for “right,” when implementing the first step,
some candidates will send messages clockwise while others in a counterclockwise
direction.

Notice that in the implementation for oriented rings described above, this would
lead to deadlock because we close the port we are not waiting to receive from; the
implementation can be modified so that the ports are never closed (Exercise 3.10.24).
Consider this to be the case.

It will then happen that a candidate waiting to receive from “left” will instead
receive from “right.” Call this situation a conflict.

What we need to do is to add to the protocol a conflict resolution mechanism to
cope with such situations. Clearly this complicates the protocol (Problem 3.10.2).

3.3.7 Unidirectional Protocols

The first two protocols we have examined, All the Way and AsFar, did not really require
the restriction Bidirectional Links; in fact, they can be used without any modification in
adirected or a unidirectional ring. The subsequent protocols Distances, Stages, Stages
with Feedback, and Alternate all used the communication links in both directions, for
example, for obtaining feedback. It was through them that we have been able to reduce
the costs from O(n?)to a guaranteed O (n log n) messages. The immediate and natural
question is as follows:

Question. Is “Bidirectional Links” necessary for a O(nlogn) cost ?

The question is practically relevant because if the answer is positive, it would
indicate that an additional investment in communication hardware (i.e., full duplex
lines) is necessary to reduce the operating costs of the election task. The answer is
important also from a theoretical point of view because if positive, it would clearly
indicate the “power” of the restriction Bidirectional Links. Not surprisingly, this
question has attracted the attention of many researchers.

We are going to see now that the answer is actually No.

ELECTION IN RINGS 135

We are also going to see that, strangely enough, we know how to do better with
unidirectional links than with bidirectional ones.

First of all, we are going to show how the execution of protocols Stages and
Alternate can be simulated in unidirectional links yielding the same (if not better)
complexity. Then, using the lessons learned in this process, we are going to develop
a more efficient unidirectional solution.

Unidirectional Stages What we are going to do is to show how to simulate the
execution of protocol Stages in unidirectional rings R, with the same message costs.
Consider how protocol Stages works. In a stage, a candidate entity x

1. sends a message carrying a value (its id) in both directions and thus receives a
message with the value (the id) of another candidate from each directions, and
then,

2. onthe basis of these three values (i.e., its own and the two received ones), makes
a decision on whether it (and its value) should survive this stage and start the
next stage.

Let us implement each of these two steps separately.

Step (1) is clearly the difficult one because, in a unidirectional ring, messages can
only be sent in one direction. Decompose the operation “send in both directions” into
two substeps: (I) “send in one direction” and then (II) “send in the other direction.”

Substep (I) can be executed directly in R; as a result, every candidate will receive
a message with the value of its neighboring candidate from the opposite direction
(see Figure 3.22 ¢). The problem is in implementing now substep (II); as we cannot
send information in the other direction, we will send information again in the same
direction, and, as it is meaningless to send again the same information, we will send
the information we just received. As a result, every candidate will receive now the
value of another candidate from the opposite direction (see Figure 3.22d).

Every entity in R has now three values at its disposal: the one it started with plus
the two received ones. We can now proceed to implement Step (2). To simulate the
bidirectional execution, we need that a candidate decides on Whether to survive or to
become passive on the basis of exactly the same information in R as in the bidirectional
case. Consider the initial configuration in the example shown in Figure 3.22 and focus
on the candidate x with starting value 7; in the bidirectional case, x decides that the
value 7 should survive on the basis of the information: 7, 15, and 8. In the unidirectional
case, after the implementation of Step (1), x knows now 4 and 15 in addition to 7. This
is not the same information at all. In fact, it would lead to totally different decisions
in the two cases, destroying the simulation.

There is, however, in R a candidate that, at the end of Step (1), has exactly the
same information that x has at the end of Step (1) in the bidirectional case: This is the
candidate that started with value 8. In fact, the information available in R exists in R
(compare carefully Figures 3.22 (b) and (d)), but it is shifted to the “next” candidate
in the ring direction. It is, thus, possible to make the same decisions in R as in R; they
will just have to be made by different entities in the two cases.

136 ELECTION

12 1279

© @

FIGURE 3.22: (a) Initial configuration; (b) information after the first full stage of Stages
with Bidirectional Links; (c) information after first substep in the unidirectional simulation;
(d) information after the second substep.

In each stage, a candidate makes a decision on a value. In protocol Stages, this
value was always the candidate’s id. In the unidirectional algorithm, this value is not
the id; it is the first value sent by its neighboring candidate in Step (1). We will call
this value the envelope.

IMPORTANT. Be aware that unless we add the assumption Message Ordering, it
is possible that the second value arrives before the envelope. This problem can be
solved (e.g., by locally enqueueing out-of-order messages).

It is not difficult to verify that the simulation is exact: In each stage, exactly the
same values survive in R as in R; thus, the number of stages is exactly the same.

ELECTION IN RINGS 137

PROTOCOL UniStages.

e States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
Sinit = {ASLEEP};
Sterm = {FOLLOWER, LEADER}.

® Restrictions: IR UUnidirectional Ring.

ASLEEP
Spontaneously
begin
INITIALIZE;
become CANDIDATE;
end

Receiving ("Election", value*, stage*,order¥*)
begin
send ("Election", value*, stage*, order¥);
become DEFEATED;
end

CANDIDATE
Receiving ("Election", value*, stage*, order¥)
begin
if value* # valuel then
PROCESS_MESSAGE;
else
send (Notify) ;
become LEADER;
end

DEFEATED
Receiving (x)
begin
send (*) ;
if x = Notify then become FOLLOWER endif;
end

FIGURE 3.23: Protocol UniStages.

The cost of each stage is also the same: 2n messages. In fact, each node will send (or
forward) exactly two messages.
In other words,

M[UniStages] < 2nlogn + O(n). (3.23)

This shows that O(nlogn) guaranteed message costs can be achieved in ring
networks also without Bidirectional Links.

The corresponding protocol UniStages is shown in Figure 3.23, described not as a
unidirectional simulation of Stages (which indeed it is) but directly as a unidirectional
protocol.

NOTES. In this implementation,

1. we elect aleader only among the initiators (using approach Minimum Initiator);

2. Message Ordering is not assumed; within a stage, we use a Boolean variable,
in order to distinguish between value and envelope and to cope with messages

138 ELECTION

from different stages arriving out of order: If a candidate receives a message
from the “future” (i.e., with a higher stage number), it will be transformed
immediately into defeated and will forward the message.

Unidirectional Alternate We have shown how to simulate Stages in a unidi-

rectional ring, achieving exactly the same cost. Let us focus now on Alternate; this

protocol makes full explicit use of the full duplex communication capabilities of the

bidirectional ring by alternating direction at each step. Surprisingly, it is possible to

achieve an exact simulation also of this protocol in a unidirectional ring R.
Consider how protocol Alternate works. In a “left” step,

1. a candidate entity x sends a message carrying a value v(x) to the “left”, and
receives a message with the value of another candidate from the “right”;

Procedure INITIALIZE

begin
stage:= 1;
count:= 0;
order:= 0

valuel:= id(x);
send ("Election", valuel, stage, order);
end

Procedure PROCESS_MESSAGE
begin
if stage* = stage then
if order* = 0 then
envelope:= value¥*;
order:= 1;
send ("Election", value*, stage*, order);
else
value2:= value¥*;
endif
count:=count+1;
if count=2 then
if envelope < Min(valuel, value2) then
order:= 0;
count: 0;
stage:= stage+l;
valuel:= envelope;
send ("Election", valuel, stage, order);
else
become DEFEATED;
endif
endif

else
if stage* > stage then
send ("Election", value*, stage*, order*);
become DEFEATED;
endif
endif
end

FIGURE 3.24: Procedures used by protocol UniStages.

ELECTION IN RINGS 139

(c) (d)

FIGURE 3.25: (a-b) Information after (a) the first step and (b) the second step of Alternate in
an oriented bidirectional ring. (c-d) Information after (c) the first step and (d) the second step
of the unidirectional simulation.

2. on the basis of these two values (i.e., its own and the received one), x makes a
decision on whether it (and its value) should survive this step and start the next
step.

The actions in a “right” step are the same except that “left” and “right” are inter-
changed.

Consider the ring R shown in Figure 3.25, and assume we can send messages only
to “right”. This means that the initial “right” step can be trivially implemented: Every
entity will send a value (its own) and receive another; it starts the next step if and only
if the value it receives is not smaller that its own.

140 ELECTION

Let us concentrate on the “left” step. As a candidate cannot send a value to the
left, it will have to send the value to the “right”. Let us do so. Every candidate in R
has now two values at its disposal: the one it started with and the received one.

To simulate the bidirectional execution, we need that a candidate makes a decision
on whether to survive or to become passive on the basis of exactly the same information
in R as in the bidirectional case. Consider the initial configuration in the example
shown in Figure 3.25. First of all observe that the information in the “right” step is the
same both in the bidirectional (a) and in the unidirectional (c) case. The differences
occur in the “left” step.

Focus on the candidate x with starting value 7; in the second step of the bidirectional
case, x decides that the value 7 should not survive on the basis of the information: 5
and 7. In the unidirectional case, after the second step, x knows now 7 and 8. This is
not the same information at all. In fact, it would lead to totally different decisions in
the two cases, destroying the simulation.

There is, however, in R a candidate that, at the end of the second step, has exactly the
same information that x has in the bidirectional case: This is the candidate that started
with value 5. As we havg seen already in the simulation of Stages, the information
available in R exists in R (compare cagefully Figures 3.25(b) and (d)). It is, thus,
possible to make the same decisions in R as in R; they will just have to be made by
different entities in the two cases.

Summarizing, in each step, a candidate makes a decision on a value. In protocol
Alternate, this value was always the candidate’s id. In the unidirectional algorithm,
this value changes depending on the step. Initially, it is its own value; in the “left”
step, it is the value it receives; in the “right” step, it is the value it already has.

In other words,

1. in the “right” step, a candidate x survives if and only if the received value is
larger than v(x);

2. in the “left” step, a candidate x survives if and only if the received value is
smaller than v(x), and if so, x will now play for that value.

Working out a complete example will help clarify the simulation process and dispel
any confusion (Exercise 3.10.33).

IMPORTANT. Be aware that unless we add the assumption Message Ordering, it is
possible that the value from step i + 1 arrives before the value for step i.

It is not difficult to verify that the simulation is exact: In each step, exactly the
same values survive in R as in R; thus, the number of steps is exactly the same. The
cost of each step is also the same: n messages. Thus,

M{[UniAlternate] < 1.44 nlogn + O(n). (3.24)

The unidirectional simulation of Alternate is shown in Figure 3.26; it has been
simplified so that we elect a leader only among the initiators, and assuming Message

ELECTION IN RINGS 141

PROTOCOL UniAlternate.

e States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
Sinit = {ASLEEP};
Sterm = {FOLLOWER, LEADER}.

® Restrictions: IR UUnidirectional Ring U MessageOrdering.

ASLEEP
Spontaneously
begin
INITIALIZE;
become CANDIDATE;
end

Receiving ("Election", value*, stage*,order¥)
begin
send ("Election", value*, stage*, order¥);
become DEFEATED;
end

CANDIDATE
Receiving ("Election", wvalue*, stage*)
begin
if value* # value then
PROCESS_MESSAGE;
else
send (Notify) ;
become LEADER;
end

DEFEATED
Receiving (x)
begin
send (*) ;
if x = Notify then become FOLLOWER endif;
end

FIGURE 3.26: Protocol UniAlternate.

Ordering. The protocol can be modified to remove this assumption without changes in
its cost (Exercise 3.10.34). The procedures Initialize and Prepare_Message are shown
in Figure 3.27.

An Alternative Approach In all the solutions we have seen so far, both for
unidirectional and bidirectional rings, we have used the same basic strategy of min-
imum finding; in fact in all of the protocols so far, we have elected as a leader the
entity with the smallest value (either among all the entities or among just the initia-
tors). Obviously, we could have used maximum finding in those solution protocols,
just substituting the function Min with Max and obtaining the exact same perfor-
mance.

A very different approach consists in mixing these two strategies. More precisely,
consider the protocols based on electoral stages. In all of them, what we could do is
to alternate strategy in each stage: In “odd” stages we use the function Min, and in
“even” stages we use the function Max. Call this approach min-max.

142 ELECTION

Procedure INITIALIZE

begin

step:= 1;

direction:= "right";

value:= id(x);

send ("Election", value, step, direction);
end

Procedure PROCESS_MESSAGE

begin
if direction = "right" then
if value < value* then
step:= step+1l;
direction:= "left";
send ("Election", value, step, direction);
else
become DEFEATED;
endif
else
if value > value* then
step:= step+1l;
direction:= "right";
send ("Election", value, step, direction);
else
become DEFEATED;
endif
endif
end

FIGURE 3.27: Procedures used by protocol UniAlternate.

Itis not difficult to verify that all the stage-based protocols we have seen so far, both
bidirectional and unidirectional, still correctly solve the election problem; moreover,
they do so with the same costs as before (Exercises 3.10.11, 3.10.23, 3.10.28, 3.10.31,
3.10.36).

The interesting and surprising thing is that this approach can lead to the design of
a more efficient protocol for unidirectional rings.

The protocol we will construct has a simple structure. Let us assume that every
entity starts and that there is Message Ordering (we will remove both assumptions
later).

1. Each initiator x becomes candidate, prepares a message containing its own
value id(x) and the stage number i = 1, and sends it (recall, we are in a unidi-
rectional ring, so there is only one out-neighbor); x is called the originator of
this message and remembers its content.

2. When a message with value b arrives at a candidate y, y compares the received
value b with the value a it sent in its last message.

(a) If a = b, the message originated by y has made a full trip around the ring;
y becomes the leader and notifies all other entities of termination.

(b) If a # b, the action y will take depends on the stage number j:

(1) if j is “even,” the message is discarded if and only if a < b (i.e., b
survives only if max);

ELECTION IN RINGS 143

9,2 ~ 11,2) ~ (10,2) — (20,2) — 22,2) ~ 3,2)

D) D) O
(@)
12,3) aL3) (22,3)
> e——O——@
(b)
(21, 4) (11,4)

® @ @) D

(©

FIGURE 3.28: Protocol MinMax: (a) In an even stage, a candidate survives only if it receives
an envelope with a larger value; (b) it then generates an envelope with that value and starts
the next stage; (c) in an odd stage, a candidate survives only if it receives an envelope with a
smaller value; if so, it generates an envelope with that value and starts the next stage.

(i) if j is “odd,” the message is discarded if and only if @ > b (i.e., b
survives only if min).

If the message is discarded, y becomes defeated; otherwise, y will enter

the next stage: Originate a message with content (b, j 4 1) and send it.

3. A defeated entity will, as usual, forward received messages.

For example, see Figure 3.28.
The correctness of the protocol follows from observing that,

(a) inanevenstagei,the candidate x receiving the largest of all values in that stage,
Vimax (1), will survive and enter the next stage; by contrast, its “predecessor”
[(i, x) that originated that message will become defeated (Exercise 3.10.37),
and

(b) in an odd stage j, the candidate y receiving the smallest of all values in that
stage, vpin(j), will survive and enter the next stage; furthermore, its “prede-
cessor” I(j, y) that originated that message will become defeated.

In other words, in each stage at least one candidate will survive that stage, and
the number of candidates in a stage is monotonically decreasing with the number
of stages. Thus, within finite time, there will be only one candidate left; when that
happens, its message returns to it transforming it into a leader-.

144 ELECTION

IMPORTANT. Note that the entity that will be elected leader will be neither the one
with the smallest value nor the one with the largest value.

Let us now consider the costs of this protocol, which we will call MinMax. In a
stage, each candidate sends a message that travels to the next candidate. In other
words, in each stage there will be exactly n messages. Thus, to determine the total
number of messages, we need to compute the number oy maqx Of stages.

We can rephrase the protocol in terms of values instead of entities. Each value sent
in a stage j travels from its originator to the next candidate in stage j. Of all these
values, only some will survive and will be sent in the next stage: In an even stage, a
value survives if it is larger than its “successor” (i.e., the next value in the ring in also
this stage); similarly, in an odd stage, it survives if it is smaller than its successor. Let
n; be the number of values in stage i; of those, d; will be discarded and n;4+1 will be
sent in the next stage. That is,

nit+1 =n; —d;.

Let i be an odd (i.e., min) stage, and let value v survive this stage; this means that the
successor of v in stage 7, say u, is larger than v that is, # >v. Let v survive also stage
i + 1 (an even, i.e., max, stage). This implies v must have been discarded in stage i: If
not, the entity that originates the message (i + 1, #) would discard (i + 1, v) because
u > v, but we know that x survives this stage. This means that every value that, like
v, survives both stages will eliminate one value in the first of the two stages; in other
words,

niy2 < dj,
but then
ni > niy1 +ni4o. (3.25)

Notice that this is exactly the same equation as the one (Equation 3.21) we derived
for protocol Alternate. We thus obtain that

oMinMax < 1.441logn + O(1).

After at most these many stages, there will be only one value left. Observe that this
bound we have derived is actually achievable. In fact, there are allocations of the ids
to the nodes or a ring, which will force the protocol to perform oy, pmax Steps before
there is only one value left (Exercise 3.10.38). The candidate sending this value will
receive its message back and become leader; it will then start the notification. These
last two steps require n messages each; thus the total number of messages will be

M[MinMax] < 1.44 nlogn + O(n). (3.26)

ELECTION IN RINGS 145

PROTOCOL MinMax

e States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
Sinit = {ASLEEP}; Stgrm = {FOLLOWER, LEADERY.

® Restrictions: IR UUnidirectional Ring U MessageOrdering.

ASLEEP
Spontaneously
begin
stage:= 1; value:= id(x);
send ("Envelope", value, stage);
become ORIGINATOR;
end

Receiving ("Envelope", value*, stage*)
begin
send ("Envelope", value*, stage*);
become DEFEATED;
end

CANDIDATE
Receiving ("Envelope", value*, staget)
begin
if value* # value then
PROCESS_ENVELOPE;

else
send (Notify) ;
become LEADER;
end
DEFEATED
Receiving ("Envelope", value*, staget*)
begin
send ("Envelope", value*, stage¥*);
end

Receiving ("Notify")
begin
send ("Notify");
become FOLLOWER ;
end

FIGURE 3.29: Protocol MinMax.

In other words, we have been able to obtain the same costs of UniAlternate with
a very different protocol, MinMax, described in Figure 3.29.

We have assumed that all entities start. When removing this assumption we have
two options: The entities that are not initiators can be (i) made to start (as if they were
initiators) upon receiving their first message or (ii) transformed into passive and just
act as relayers. The second option is the one used in Figure 3.29.

We have also assumed Message Ordering in our discussion. As with all the other
protocols we have considered, this restriction can be enforced with just local book-
keeping at each entity, without any increase in complexity (Exercise 3.10.39).

146 ELECTION

Procedure PROCESS_ENVELOPE
begin
if odd(stage*) then
if value* < value then
stage= stage+l;
value:= value*;
send ("Envelope", value*, stage);
else
become DEFEATED;
else
if value* > value then
stage= stage+l;
value:= value*;
send ("Envelope", value, stage);
else
become DEFEATED;
endif
endif
end

FIGURE 3.30: Procedure Process_Envelope of Protocol MinMax.

Hacking: Employing the Defeated (x) The different approach used in protocol
MinMax has led to a different way of obtaining the same efficiency as we had already
with UniAlternate. The advantage of MinMax is that it is possible to obtain additional
improvements that lead to a significantly better performance.

Observe that like in most previous protocols, the defeated entities play a purely
passive role, that is, they just forward messages. The key observation we will use to
obtain an improvement in performance is that these entities can be exploited in the
computation.

Let us concentrate on the even stages and see if we can obtain some savings for
those steps. The message sent by a candidate travels (forwarded by the defeated
entities) until it encounters the next candidate. This distance can vary and can be very
large. What we will do is to control the maximum distance to which the message will
travel, following the idea we developed in Section 3.3.3.

(I) in an even step j, a message will travel no more than a predefined distance
dis(j).

This is implemented by having in the message a counter (initially set to dis(j))
that will be decreased by one by each defeated node it passes. What is the appropriate
choice of dis(i) will be discussed next.

Every change we make in the protocol has strong consequences. As a consequence
of (1), the message from x might not reach the next candidate y if it is too far away
(more than dis(j)) (see Figure 3.31). In this case, the candidate y does not receive
the message in this stage and, thus, does not know what to do for the next stage.

IMPORTANT. It is possible that every candidate is too far away from the next one
in this stage, and hence none of them will receive a message.

ELECTION IN RINGS 147

<O
i

O———>ee O——0——
X

(b

FIGURE 3.31: Protocol MinMax+. Controlling the distance: In even stage j, the message
does not travel more than dis(j) nodes. (a) If it does not reach the next candidate y, the defeated
node reached last, z, will become candidate and start the next step; (b) in the next step, the
message from z transforms into defeated the entity y still waiting for the stage j message.

However, if candidate y does not receive the message from x, it is because the
counter of the message containing (v, j) reaches 0 at a defeated node z, on the way
from x to y (see Figure 3.31). To ensure progress (i.e., absence of deadlock), we will
make that defeated z become candidate and start the next stage j + 1 immediately,
sending (v,j+1). That is,

(II) in an even step j, if the counter of the message reaches O at a defeated node
Z, then z becomes candidate and starts stage j + 1 with value = v¥, where v*
is the value in the transfer message.

In other words, we are bringing some defeated nodes back into the game making
them candidates again. This operation could be dangerous for the complexity of the
protocol as the number of candidates appears to be increasing (and not decreasing).
This is easily taken care of: The originators, like y, waiting for a transfer message
that will not arrive will become defeated.

Question. How will y know that it is defeated?

The answer is simple. The candidate that starts the next stage (e.g., z in our
example) sends a message; when this message reaches a candidate (e.g., y) still
waiting for a message from the previous stage, that entity will understand, become
defeated, and forward the message. In other words,

(IIT) when, in an even step, a candidate receives a message for the next step, it
becomes defeated and forwards the message.

We are giving decisional power to the defeated nodes, even bringing some of them
back to “life.” Let us push this concept forward and see if we can obtain some other
savings.

Let us concentrate on the odd stages.

148 ELECTION

Consider an even stage i in MinMax (e.g., Figure 3.28). Every candidate x sends
its message containing the value and the stage number and receives a message; it
becomes defeated if the received value is smaller than the one it sent. If it survives,
x starts stage i + 1: It sends a message with the received value and the new stage
number (see Figure 3.28(b)); this message will reach the next candidate.

Concentrate on the message (11, 3) in Figure 3.28(b) sent by x. Once (11, 3)
reaches its destination y, as 11 < 22 and we are in a odd (i.e., min) stage, a new
message (11, 4) will be originated. Observe that the fact that (11, 4) must be originated
can be discovered before the message reaches y (see Figure 3.32(c)). In fact, on its
travel from x to y, message (11, 3) will reach the defeated node z that originated
(20, 2) in the previous stage; once this happens, z knows that 11 will survive this stage
(Exercise 3.10.40). What z will do is to become candidate again and immediately send
(11, 4).

(IV) When, in an even stage, a candidate becomes defeated, it will remember the
stage number and the value it sent. If, in the next stage, it receives a message
with a smaller value, it will become candidate again and start the next stage
with that value.

In our example, this means that the message (11, 3) from x will stop at z and never
reach y; thus, we will save d(z, y) messages. Notice that in this stage every message
with a smaller value will be stopped earlier. We have, however, transformed a defeated
entity into a candidate. This operation could be dangerous for the complexity of the

9,2) (11,2) (10,2) (20, 2) (22,2) (13,2)
A1) 10) 50) 57 13)
()
X z y
(a)
1z2,3) (1L 3) (22,3)
X z y
(b)
(12, 3) (1, 4) Q
x z ¥
(c)

FIGURE 3.32: Protocol MinMax+. (a) Early promotion in odd stages. (b) The message (11, 3)
from x, on its way to y, reaches the defeated node z that originated (20, 2). (c) Node z becomes
candidate and immediately originates envelope (11, 4).

ELECTION IN RINGS 149

protocol as the number of candidates appears to be increasing (and not decreasing).
This is easily taken care of: This candidates, like y, waiting for a message of an odd
stage that will not arrive will become defeated.

How will y know that is defeated ? The answer again is simple. The candidate that
starts the next stage (e.g., z in our example) sends the message; when this message
reaches an entity still waiting for a message from the previous stage (e.g., y), that
entity will understand, become defeated, and forward the message. In other words,

(V) When, in an odd step, a candidate receives a message for the next step, it
becomes defeated and forwards the message.

The modifications to MinMax described by (I)~(V) generate a new protocol that
we shall call MinMax+ (Exercises 3.10.41 and 3.10.42).

Messages Let us estimate the cost of protocol MinMax+. First of all observe
that in protocol MinMax, in each stage a message (v, i) would always reach the next
candidate in that stage. This is not necessarily so in MinMax+. In fact, in an even
stage i no message will travel more than dis(i), and in an odd stage a message can be
“promoted” by a defeated node on the way. We must concentrate on the savings in
each type of stages.

Consider a message (v, i); denote by h;(v) the candidate that originates it, and if
the message is discarded in this stage, denote by g;(v) the node that discards it. For
the even stages, we must first of all choose the maximum distance dis(i) a message
will travel. We will use

dis(i) = Fiy2
With this choice of distance, we have a very interesting property.

Property 3.3.1 Leti be even.
If message (v, i) is discarded in this stage, then d(h;(v), gi(v)) > F;.
For any message (v,i + 1), d(h;(v), hi+1(v)) > Fiy1.

This property allows us to determine the number of stages opsinmax+: In an even
stage i, the distance traveled by any message is at least F;; however, none of these
messages travels beyond the next candidate in the ring. Hence, the distance between
two successive candidates in an odd stage i is at least F;; this means that the number
n; of candidates is at most n; < %’ Hence, the number of stages will be at most

Fn_1 + O(1), where F,~ lis the smallest integer j such that F ; > n.Thus the algorithm
will use at most

oMinMax+ < 1.44logn + O(1)

stages. This is the same as protocol MinMax.

150 ELECTION

The property also allows us to measure the number of messages we save in the odd
stages. In our example of Figure 3.32(b), message (11, 3) from x will stop at z and
never reach y; thus, we will save d(z, y) transmissions. In general, a message with
value v that reaches an even stage i + 1 (e.g., (11, 4)) saves at least F; transmissions
in stage i (Exercise 3.10.44). The total number of transmissions in an odd stage i is,
thus, at most

n—ni F;,

where n;41 denotes the number of candidates in stage i + 1.

The total number of messages in an even stage is at most #. As in an even stage
i + 1 each message travels at most F;,3 (by Property 3.3.1), the total number of
message transmissions in an even stage i + 1 will be at most n;4 F;+3. Thus, the
total number of messages in an even stage i + 1 is at most

Min{n, n; 1 Fiy3}.

If we now consider an odd stage i followed by an even stage i + 1, the total number
of message transmissions in the two stages will be at most

Min{n + ni+1(Fit3 — Fi),2n —ni1 Fi} < 2n — n% <n@— 5+ ¢ %),

where ¢ = 1+T“6 Hence,

4—4/5
M[MinMax+] < Tfn logy(n) + O(n) < 1.271 nlogn + O(n). (3.27)

Thus, protocol MinMax+ is the most efficient protocol we have seen so far, with
respect to the worst case.

3.3.8 Limits to Improvements (x)

Throughout the previous sections, we have reduced the message costs further and
further using new tools or combining existing ones. A natural question is how far
we can go. Considering that the improvements have only been in the multiplicative
constant of the n log n factor, the next question becomes: Is there a tool or a technique
that would allow us to reduce the message costs for election significantly, for example,
from O(nlogn)to O(n)?

These type of questions are all part of a larger and deeper one: What is the message
complexity of election in a ring ? To answer this question, we need to establish a lower
bound, a limit that no election protocol can improve upon, regardless of the amount
and cleverness of the design effort.

In this section we will see different bounds, some for unidirectional rings and
others for bidirectional ones, depending on the amount of a priori knowledge the

ELECTION IN RINGS 151

entities have about the ring. As we will see, in all cases, the lower bounds are all of
the form (n log n). Thus, any further improvement can only be in the multiplicative
constant.

Unidirectional Rings We want to know what is the number of messages that any
election algorithm for unidirectional rings must transmit in the worst case. A subtler
question is to determine the number of messages that any solution algorithm must
transmit on the average; clearly, a lower bound on the average case is also a lower
bound on the worst case.

We will establish a lower bound under the standard assumptions of Connectivity
and Total Reliability, plus Initial Distinct Values (required for election), and obviously
Ring. We will actually establish the bound assuming that there is Message Ordering;
this implies that in systems without Message Ordering, the bound is at least as bad.
The lower bound will be established for minimum-finding protocols; because of the
Initial Distinct Values restriction, every minimum-finding protocol is also an election
protocol. Also, we know that with the additional n messages, every election protocol
becomes a minimum-finding protocol.

When a minimum-finding algorithm is executed in a ring of entities with distinct
values, the total number of transmitted messages depends on two factors: communi-
cation delays and the assignment of initial values.

Consider the unidirectional ring R = (xg, x1, ..., X,—1); let s; = id(x;) be the
unique value assigned to x;. The sequence s = (s, 2, ..., $,), thus, describes the
assignment of ids to the entities.

Denote by S the set of all such assignments. Given a ring R of size n and an
assignment s € S of n ids, we will say that R is labeled by s, and denote it by i?(s).

Let A be a minimum-finding protocol under the restrictions stated above. Consider
the executions of A started simultaneously by all entities and their cost. The average
and the worst-case costs of these executions are possibly better but surely not worse
than the average and the worst-case costs, respectively, over all possible executions;
thus, if we find them, they will give us a lower bound.

Call global state of an entity x at time ¢, the content of all its local registers and
variables at time 7. As we know, the entities are event driven. This means that for a
fixed set of rules A, their next global state will depend solely on the current one and
on what event has occurred. In our case, once the execution of A is started, the only
external events are the arrival of messages.

During an action, an entity might send one or more messages to its only out-
neighbor; if it is more than one, we can “bundle” them together as they are all sent
within the same action (i.e., before any new message is received). Thus, we assume
that in A, only one message is sent in the execution of an action by an entity.

Associate to each message all the “history” of that message. That is, with each
message M, we associate a sequence of values, called frace, as follows: (1) If the
sender has id s; and has not previously received any message, the trace will be just

!'The converse is not true.

152 ELECTION

(s;). (2) If the sender has id s; and its last message previously received has trace
(1, ..., lg—1), k > 1, the trace will be {I1, ..., lx_1, s;), which has length k.

Thus, a message M with trace (s;, si+1, ..., Si+k) indicates that a message was
originally sent by entity x;; as a reaction, the neighbor x; | sent a message; as a
reaction, the neighbor x; 4, sent a message; ...; as a reaction, x;4 sent the current
message M.

IMPORTANT. Note that because of our two assumptions (simultaneous start by all
entities and only one message per action), messages are uniquely described by their
associated trace.

We will denote by ab the concatenation of two sequences a and b. If d = abec,
then a, b, and ¢ are called subsequences of d; in particular, each of a, ab, and abc
will be called a prefix of d; each of ¢, be, and abc will be called a suffix of d. Given
a sequence a, we will denote by len(a) the length of a and by C(a) the set of cyclic
permutations of a; clearly, |C(a)| = len(a).

Example If d = (2,15,9,27), then len(d) = 4; the subsequences (2), (2, 1)
(2,15,9), and (2, 15,9, 27) are prefixes; the sequences (27), (9, 27), (15,9,2
and (2,15,9,27) are suffixes; and C(d)={(2,15,9,27), (15,9,27,)
9,27,2,15), (27,2, 15, 9)}.

\/

The key point to understand is the following: If in two different rings, for example,
in R(a) and in R(b) an entity executing A happens to have the same global state, and
it receives the same message, then it will perform the same action in both cases, and
the next global state will be the same in both executions. Recall Property 1.6.1.

Let us use this point.

Lemma 3.3.1 Let a andb both contain ¢ as a subsequence. If a message with trace
c is sent in an execution of A on R(a), then c is sent in an execution of A on R(b).

Proof. Assume that a message with trace ¢ = (s;, ..., 5;+x) is sent when executing A
on k(a). This means that when entity x; started the trace, it had not received any other
message, and so, the transmission of this message was part of its initial “spontaneous”
action; as the nature of this action depends only on A, x; will send the message both in
R(a) and in R(b) This message was the first and only message x; .+ received from x;
both in R(a) and in R(b) in other words, its global state until it received the message
with trace starting with (s;) was the same in both rings; hence, it will send the same
message with trace (s;, s;4+1) to xj4» in both situations. In general, between the start
of the algorithm and the arrival of a message with trace (s;, ..., sj_1), entity x; with
idsj,i(j J= i + k is in the same global state and sends and receives the same message
in both R(a) and R(b) thus, it will send a message with trace (s;,...,s;—1,5;)
regardless of whether the input sequence is a or b.

Thus, if an exegution of A in fe(a) has a message with trace ¢, then there is an
execution of A in R(b) that has a message with trace c. |

ELECTION IN RINGS 153

In other words, if i?(a) and f?(b) have a common segment ¢ (i.e., a consecutive
group of len(c) entities in k(a) has the same ids as a consecutive group of entities in
i@(b)), the entity at the end of the segment cannot distinguish between the two rings
when it sends the message with trace c.

As different assignments of values to rings may lead to different results (i.e.,
different minimum values), the protocol A must allow the entities to distinguish
between those assignments. As we will see, this will be the reason ()(n log n) messages
are needed. To prove it, we will consider a set of assignments on rings, which makes
distinguishing among them “expensive” for the algorithm.

A set E C S of assignments of values is called exhaustive if it has the following
two properties:

1. Prefix Property: For every sequence belonging to E, its nonempty prefixes also
belong to E, thatis, if ab € E and len(a) > 1,thena € E.

2. Cyclic Permutation Property: Whether an assignment of values s belongs or
not belongs to E, at least one of its cyclic permutations belongs to E, that is, if
se S, then C(s)NE # ¢

Lemma 3.3.2 A has an exhaustive set E(A) C S.

Proof. Define E(A) to be the set of all the arrangements s € S such that a message
with trace s is sent in the execution of A in R(s). To prove that this set is exhaustive,
we need to show that the cycle permutation property and the prefix property hold.

To show that the prefix property is satisfied, choose an arbitrary s=ab € E(A)
with len(a) > 1; by definition of E(A), there will be a message with trace ab when
executing A in i?(ab); this means that in i?(ab) there will also be a message with
trace a. Consider now the (smaller) ring i%(a); asaisa subsgquence of both ab and
(obviously) a, and there was a message with that trace in R(ab), by Lemma 3.3.1
there will be a message with trace a also in R(a); but this means that a € E(A). In
other words, the suffix property holds.

To show that the cyclic permutation property is satisfied, choose an arbitrary
s = {(s1,...,5) € S and consider k(s). At least one entity must receive a message
with a trace of length k, otherwise the minimum value could not have bgen determined;
then t is a cyclic permutation of s. Furthermore, as t is a trace in R(t), t € E(A).
Summarizing, t € E(A) U S(s). In other words, the cyclic permutation property
holds. |

Now we are going to measure how expensive it is for the algorithm A to distinguish
between the elements of E(A).

Let m(s, E) be the number of sequences in E C S, which are prefixes of some
cyclic permutation of s € S, and my(s, E) denote the number of those that are of
length k > 1.

Lemma 3.3.3 The execution of A in k(s) costs at least m(s, E(A)) messages.

154 ELECTION

Proof. Let t € E(A) be the prefix of some r € C(s). That is, a message with trace
1; is sent in R(t) and because of Lemma 3.3.1, a message with trace t is sent also in
R(r); as r € C(s), a message with trace t is sent also in R(r). That is, for each prefix
t € E(A) of a cyclic permutation of s, there will be a message sent with trace t. The
number of such prefixes t is by definition m(s, E(A)). |

Let I = {s1, s2, ..., s,} be the set of ids, and Perm(/) be the set of permutations
of 1. Assuming that all n! permutations in Perm(/) are equally likely, the average
number ave, (/) of messages sent by A in the rings labeled by I will be the average
message cost of A among the rings R(s), where s € Perm(/). By Lemma 3.3.3, this
means the following:

avea(I) = & Y m(s, E(A)).
sePerm(/)

By definition of my(s, E(A)), we have

wvesN= L Y Y EA) =LY Y mis. EA)).

sePerm(/) k=1 k=1 sePerm(/)

We need to determine what Zseperm(,) my(s, E(A)) is. Fix k and s € Perm([/).
Each cyclic permutation C(s) of s has only one prefix of length k. In total, there are n
prefixes of length k among all the cyclic permutations of s € Perm(/). As there are n!
elements in Perm(/), there are n! n instances of such prefixes for a fixed k. These n! n
prefixes can be partitioned in groups G’; of size k, by putting together all the cyclic
permutations of the same sequence; there will be ¢ = '“T" such groups. As E(A) is

exhaustive, by the cyclic permutation property, the set £(A) intersects each group,
that is, |E(A) U G’;| > 1.

q
> mi(s, E(A) = Y |E(A)U G = B2
sePerm(/) j=1

Thus,
1 % a! 1
avea(I) > . Y- %t >n) ¢ =nH,,
k=1 k=1

where H), is the nth harmonic number. This lower bound on the average case is also
a lower bound on the number worst (/) of messages sent by A in the worst case in
the rings labeled by I:

worst4(I) > aves(I) > nH, = 0.69 nlogn + O(n). (3.28)

This result states that (4(n logn) messages are needed in the worst case by any
solution protocol (the bound is true for every A), even if there is Message Ordering.
Thus, any improvement we can hope to obtain by clever design will at most reduce the
constant; in any case, the constant cannot be smaller than 0.69. Also, we cannot expect

ELECTION IN RINGS 155

to design election protocols that might have a bad worst case but cost dramatically
less on an average. In fact,)(n logn) messages are needed on an average by any
protocol.

Notice that the lower bound we have established can be achieved. In fact, protocol
AsFarrequires on an average n H, messages (Theorem 3.3.1). In other words, protocol
AsFar is optimal on an average.

If the entities know n, it might be possible to develop better protocols exploiting
this knowledge. In fact, the lower bound in this case leaves a little more room but
again the improvement can only be in the constant (Exercise 3.10.45):

1
worst4 (I |[n known) > ave4 (I |n known) > (4_1 — 8) nlogn. (3.29)

So far no better protocol is known.

Bidirectional Rings In bidirectional rings, the lower bound is slightly different
in both derivation and value (Exercise 3.10.46):

1
worsta (1) > aveus(I) > 2 nH, ~0.345 nlogn + O(n). (3.30)
Actually, we can improve this bound even if the entities know n (Exercise 3.10.47):
1
worsta (I : n known) > ave (I : n known) > Enlog n. (3.31)

That is, even with the additional knowledge of n, any improvement can only be in
the constant. So far, no better protocol is known.

Practical and Theoretical Implications The lower bounds we have discussed
so far indicate that Q(n log n) messages are needed both in the worst case and on the
average, regardless of whether the ring is unidirectional or bidirectional, and whether
n is known or not. The only difference between these cases will be in the constant. In
the previous sections, we have seen several protocols that use O(nlogn) messages
in the worst case (and are thus optimal); their cost provides us with upper bounds on
the complexity of leader election in a ring.

If we compare the best upper and lower bounds for unidirectional rings with those
for bidirectional rings, we notice the existence of a very surprising situation: The
bounds for unidirectional rings are “better’” than those for bidirectional ones; the upper
bound is smaller and the lower bound is bigger (see Fig. 3.33 and 3.34). This fact has
strange implications: As far as electing a leader in a ring is concerned, unidirectional
rings seem to be better systems than bidirectional ones, which in turn implies that
practically

half-duplex links are better than full-duplex links.

156 ELECTION

[bidirectional] worst case [average [notes
All the Way n’ n?
AsFar n? 0.69nlogn + O(n)
ProbAsFar n? 0.49nlogn + O(n)
Control 6.31nlogn + O(n)
Stages 2nlogn + O(n)
StagesFbk 1.89nlogn + O(n)
Alternate 1.44nlogn + O(n) oriented ring
BiMinMax 1.44nlogn + O(n)
[lower bound | | 0.5nlogn+ O(m) | n =27 known |

FIGURE 3.33: Summary of bounds for bidirectional rings.

This is clearly counterintuitive: In terms of communication hardware, Bidirectional
Links are clearly more powerful than half-duplex links. On the contrary, the bounds
are quite clear: Election protocols for unidirectional rings are more efficient than those
for bidirectional ones.

A natural reaction to this strange status of affairs is to suggest the use in bidirectional
rings of unidirectional protocols; after all, with Bidirectional Links we can send in
both directions, “left” and “right,” so we can just decide to use only one, say “right.”
Unfortunately, this argument is based on the hidden assumption that the bidirectional
ring is also oriented, that is, “right” means the same to all processors. In other words,
it assumes that the labeling of the port numbers, which is purely local, is actually
globally consistent.

This explains why we cannot use the (more efficient) unidirectional protocol in a
generic bidirectional ring. But why should we do better in unidirectional rings?

The answer is interesting—In a unidirectional ring, there is orientation: Each
entity has only one out-neighbor; so there is no ambiguity as to where to send a
message. In other words, we have discovered an important principle of the nature of
distributed computing:

Global consistency is more important than hardware communication power.

[unidirectional | worst case [average [notes
All the Way n’ n?
AsFar n? 0.69nlogn + O(n)
UniStages 2nlogn + O(n)
UniAlternate 1.44nlogn + O(n)
MinMax 1.44nlogn + O(n)
MinMax+ 1.271nlogn + O(n)
lower bound 0.69nlogn + O(n)
lower bound 0.25nlogn + O(n) | n = 2P known

FIGURE 3.34: Summary of bounds for unidirectional rings.

ELECTION IN RINGS 157

This principle is quite general. In the case of rings, the difference is not much, just
in the multiplicative constant. As we will see in other topologies, this difference can
actually be dramatic.

If the ring is both bidirectional and oriented, then we can clearly use any unidirec-
tional protocol as well as any bidirectional one. The important question is whether in
this case we can do better than that. That is, the quest is for a protocol for bidirectional
oriented rings that

1. fully exploits the power of both full-duplex links and orientation;

2. cannot be used or simulated in unidirectional rings, nor in general bidirectional
ones; and

3. is more efficient than any unidirectional protocol or general bidirectional one.

We have seen a protocol for oriented rings, Alternate; however, it can be simu-
lated in unidirectional rings (protocol UniAlternate). To date, no protocol with such
properties is known. It is not even known whether it can exist (Problem 3.10.7).

3.3.9 Summary and Lessons

We have examined the design of several protocols for leader election in ring networks
and analyzed the effects that design decisions have had on the costs.

When developing the election protocols, we have introduced some key strategies
that are quite general in nature and, thus, can be used for different problems and for
different networks. Among them are the idea of electoral stages and the concept of
controlled distances. We have also employed ideas and tools, for example, feedback
and notification, already developed for other problems.

In terms of costs, we have seen that ®(n log n) messages will be used both in the
worst case and on the average, regardless of whether the ring is unidirectional or
bidirectional, oriented or unoriented, and n is known or not. The only difference is
in the multiplicative constant. The bounds are summarized in Figures 3.33 and 3.34.
As a consequence of these bounds, we have seen that orientation of the ring is, so far,
more powerful than presence of Bidirectional Links.

Both ring networks and tree networks have very sparse topologies: m = n — 1 in
trees and m = n in rings. In particular, if we remove any single link from a ring,
we obtain a tree. Still, electing a leader costs ®(n logn) in rings but only O(n) in
trees. The reason for such a drastic complexity difference has to be found not in the
number of links but instead in the properties of the topological structure of the two
types of networks. In a tree, there is a high level of asymmetry: We have two types
of nodes internal nodes and leaves; it is by exploiting such asymmetry that election
can be performed in a linear number of messages. On the contrary, a ring is a highly
symmetrical structure, where every node is indistinguishable from another. Consider
that the election task is really a task of breaking symmetry: We want one entity to
become different from all others. The entities already have a behavioral symmetry:
They all have the same set of rules and the same initial state, and potentially they

158 ELECTION

are all initiators. Thus, the structural symmetry of the ring topology only makes the
solution to the problem more difficult and more expensive. This observation reflects a
more general principle: As far as election is concerned, structural asymmetry is to the
protocol designer’s advantage; on the contrary, the presence of structural symmetry
is an obstacle for the protocol designer.

3.4 ELECTION IN MESH NETWORKS

Mesh networks constitute a large class of architectures that includes meshes and fori;
this class is popular especially for parallel systems, redundant memory systems, and
interconnection networks. These networks, like trees and rings, are sparse: m = O(n).
Using our experience with trees and rings, we will now approach the election problem
in such networks. Unless otherwise stated, we will consider Bidirectional Links.

3.4.1 Meshes

A mesh M of dimensions a x b has n =a x b nodes, x; j, 1 <i <a,1 <j<b.
Each node x;, ; is connected to x; 1, j, Xi j—1, Xi+1,j, Xi, j+1 if they exist; let us stress
that these names are used for descriptive purposes only and are not known to the
entities. The total number of links is thus m = a(b — 1)+ b(a — 1) =2ab—a — b
(see Figure 3.35).

Observe that in a mesh, we have three types of nodes: corner (entities with only
two neighbors), border (entities with three neighbors), and interior (with four neigh-
bors) nodes. In particular, there are four corner nodes, 2(a + b) border nodes, and
n — 2(a + b — 2) interior nodes.

Unoriented Mesh The asymmetry of the mesh can be exploited to our advantage
when electing a leader: As it does not matter which entity becomes leader, we can
elect one of the four corner nodes. In this way, the problem of choosing a leader
among (possibly) n nodes is reduced to the problem of choosing a leader among the

X11

O—O—0O0—"0—=0
O—O—O0——0O—=0
O—O—O—0O0——0
O—O0—ACO—~C0—=0

FIGURE 3.35: Mesh of dimension 4 x 5.

ELECTION IN MESH NETWORKS 159

four corner nodes. Recall that any number of nodes can start (each unaware of when
and where the others will start, if at all); thus, to achieve our goal, we need to design
a protocol that first of all makes the corners aware of the election process (they might
not be initiators at all) and then performs the election among them.

The first step, to make the corners aware, can be performed doing a wake-up of all
entities. When an entity wakes up (spontaneously if it is an initiator, upon receiving
a wake-up message otherwise), its subsequent actions will depend on whether it is a
corner, a border, or an interior node.

In particular, the four corners will become awake and can start the actual election
process.

Observe the following interesting property of a mesh: If we consider only the
border and corner nodes and the links between them, they form a ring network. We
can, thus, elect a leader among the corners by using a election protocol for rings: The
corners will be the only candidates; the borders will act as relayers (defeated nodes).
When one of the corner nodes is elected, it will notify all other entities of termination.

Summarizing, the process will consist of:

1. wake-up, started by the initiators;
2. election (on outer ring), among the corners;
3. notification (i.e., broadcast) started by the leader;

Let us consider these three activities individually.

(1) Wake up is straightforward. Each of the k, initiators will send a wake-up to
all its neighbors; a noninitiator will receive the wake-up message from a neighbor
and forward it to all its other neighbors (no more than three); hence the number of
messages (Exercise 3.10.48) will be no more than

3n + k.

(2) The election on the outer ring requires a little more attention. First of all, we
must choose which ring protocol we will use; clearly, the selection is among the
efficient ones we have discussed at great length in the preceding sections. Then we
must ensure that the messages of the ring election protocol are correctly forwarded
along the links of the outer ring.

Let us use protocol Stages and consider the first stage. According to the protocol,
each candidate (in our case, a corner node) sends a message containing its value
in both directions in the ring; each defeated entity (in our case, a border node) will
forward the message along the (outer) ring.

Thus, in the mesh, each corner node will send a message to the only two neighbors.
A border node y, however, has three neighbors, of which only two are in the outer
ring; when y receives the message, it does not know to which of the other two ports
it must forward the message. What we will do is simple; as we do not know to which
port the message must be sent, we will forward it to both: One will be along the
ring and proceed safely, and the other will instead reach an interior node z; when the

160 ELECTION

interior node z receives such an election message, it will reply to the border node y
“I am in the interior,” so no subsequent election messages are sent to it. Actually, it is
possible to avoid those replies without affecting the correctness (Exercise 3.10.50).

In Stages, the number of candidates is at least halved every time. This means that
after the second stage, one of the corners will determine that it has the smallest id
among the four candidates and will become leader.

Each stage requires 2n’ messages, where n’ = 2(a + b — 2) is the dimension of the
outer ring. An additional 2(a + b — 4) messages are unknowingly sent by the border
to the interior in the first stage; there are also the 2(a + b — 4) replies from those
interior nodes, that, however, can be avoided (Exercise 3.10.50). Hence, the number
of messages for the election process will be at most

4a+b—-2)+2a+b—4) =6(a+Db)—16.

IMPORTANT. Notice that in a square mesh (i.e., a="b), this means that the election
process proper can be achieved in O(/n) messages.

(3) Broadcasting the notification can be performed using Flood, which will require
less than 3n messages as it is started by a corner. Actually, with care, we can ensure
that less than 2n messages are sent in total (Exercise 3.10.49).

Thus in total, the protocol ElectMesh we have designed will have cost

6(a + b) + 5n + k, — 16.

With a simple modification to the protocol, it is possible to save an additional
2(a + b — 4) messages (Exercise 3.10.51), achieving a cost of at most

M|ElectMesh] < 4(a + b) + 5n + k, — 32. (3.32)
NOTE. The most expensive operation is to wake up the nodes.

Oriented Mesh A mesh is called oriented if the port numbers are the traditional
compass labels (north, south, east, west) assigned in a globally consistent way. This
assignment of labels has many important properties, in particular, one called sense
of direction that can be exploited to obtain efficient solutions to problems such as
broadcast and traversal (Problems 3.10.52 and 3.10.53). For the purposes of election,

in an oriented mesh, it is trivial to agree on a unique node.

For example, there is only one corner with link labels “south’ and “west.” Thus, to
elect a leader in an oriented mesh, we must just ensure that that unique node knows
that it must become leader.

In other words, the only part needed is a wake-up: Upon becoming awake, and
participating in the wake-up process, an entity can immediately become leader or
follower depending on whether or not it is southwest corner.

ELECTION IN MESH NETWORKS 161

Notice that in an oriented mesh, we can exploit the structure of the mesh and the
orientation to perform a wakeup with fewer than 2n messages (Problem 3.10.54).

Complexity These results mean that regardless of whether the mesh is oriented or
not, a leader can be elected with O(n) messages, the difference being solely in the
multiplicative constant. As no election protocol for any topology can use fewer than
n messages, we have

Lemma 3.4.1 M(Elect/IR ; Mesh) = O(n)

3.4.2 Tori

Informally, the forus is a mesh with “wrap-around” links that transform it into a
regular graph: Every node has exactly four neighbors.

Atorus of dimensionsa x bhasn =ab nodesv; (0 <i <a—-10=<j<b-1)
each node v; ; is connected to four nodes v; jy1, Vi j—1, Vi+1,j, and v; 1, ;, where all
the operations on the first index are modulo a, while those on the second index are
modulo b (e.g., see Figure 3.36). In the following sections, we will focus on square
tori (i.e., where a = b).

Oriented Torus We will first develop an election protocol assuming that there is
the compass labeling (i.e., the links are consistently labeled as north, south, east, and
west, and the dimensions are known); we will then see how to solve the problem also
when the labels are arbitrary. A torus with such a labeling is said to be oriented.

In designing the election protocol, we will use the idea of electoral stages developed
originally for ring networks and also use the defeated nodes in an active way. We will
also employ a new idea, marking of territory.

(D) Instage i, each candidate x must “mark” the boundary of a territory 7; (a d; x
d; region of the torus), where d; = o' for some fixed constant & > 1; initially

v

A N

/ / - \

—(
—C

FIGURE 3.36: Torus of dimension 4 x 5.

%
I
N
I
N
I
N
e

N
I
N
I
N
M)
N

e

162 ELECTION

i+2

X

FIGURE 3.37: Marking the territory. If the territories of two candidates intersect, one of them
will see the marking of the other.

the territory is just the single candidate node. The marking is done by origi-
nating a “Marking” message (with x’s value) that will travel to distance d; first
north, then east, then south, and finally west to return to x.

A very important fact is that if the territory of two candidates have some elements
in common, the “Marking” message of at least one of them will encounter the marking
of the other (Figure 3.37).

(II) If the “Marking” message of x does not encounters any other marking of the
same stage, x survives this stage, enters stage i + 1, and starts the marking
of a larger territory 7;41.
(III) If the “Marking” message arrives at a node w already marked by another
candidate y in the same stage, the following will occur:
1. If y has a larger id, the “Marking” message will continue to mark the
boundary, setting a boolean variable SawLarger to true.
2. If the id of y is instead smaller, then w will terminate the “Marking”
message from x; it will then originate a message “SeenbyLarger(x, i)”
that will travel along the boundary of y’ territory.

If candidate x receives both its “Marking” message with SawLarger = frue
and a “SeenbyLarger” message, x survives this stage, enters stage i + 1, and
starts the marking of a larger territory 7;4.

Summarizing, for a candidate x to survive, it is necessary that it receives its “Mark-
ing” message back. If SawLarger = false, then that suffices; if SawLarger = true, x
must also receive a “SeenbyLarger” message.

Note that if x receives a “SeenbyLarger(z, i)” message, then z did not finish mark-
ing its boundary; thus z does not survives this stage. In other words, if x survives,
either its message found no other markings, or at least another candidate does not
survive.

2 Distances include the starting node.

ELECTION IN MESH NETWORKS 163

(IV) A relay node w might receive several “Marking” messages from different
candidates in the same stage. It will only be part of the boundary of the
territory of the candidate with the smallest id.

This means that if w was part of the boundary of some candidate x and now
becomes part of the boundary of y, a subsequent “SeenbyLarger” message intended
for x will be sent along the boundary of y. This is necessary for correctness. To keep
the number of messages small, we will also limit the number of “SeenbyLarger”
messages sent by a relayer.

(V) A relay node will only forward one “SeenbyLarger” message.

The algorithm continues in this way until d; > /. In this case, a candidate will
receive its “Marking” message from south instead of east because of, the “wrap-
around” in the torus; it then sends the message directly east, and will wait for it to
arrive from west.

(VD) When a wrap-around is detected (receive its “Marking” message from south
rather than from east), a candidate x sends the message directly east, and
waits for it to arrive from west.

If it survives, in all subsequent stages the marking becomes simpler.

(VII) In every stage after wrap-around, a candidate x sends its “Marking” mes-
sage first north and waits to receive it from south, then it sends it east, and
waits for it to arrive from west.

The situation where there is only one candidate left will be for sure reached after
a constant number p of stages after the wrap-around occurs, as we will see later.

(VIII) If a candidate x survives p stages after wrap-around, it will become leader
and notify all other entities of termination.

Let us now discuss the correctness and cost of the algorithm, protocol MarkBound-
ary, we have just described.

Correctness and Cost For the correctness, we need to show progress, that is, at
least one candidate survives each stage of the algorithm, and fermination, that is, p
stages after wrap-around there will be only one candidate left.

Let us discuss progress first. A candidate whose “Marking” message does not
encounter any other boundary will survive this stage; so the only problem would be
if, in a stage, every “Marking” message encounters another candidate’s boundary, and
somehow none of them advances. We must show that this cannot happen. In fact, if
every “Marking” message encounters another candidate’s boundary, the one with the
largest id will encounter a smaller id; the candidate with this smaller id will go onto
the next stage unless its message encounters the boundary with an even smaller id, and
so on; however, the message of the candidate with the smallest id cannot encounter
a larger id (because it is the smallest) and, thus, that entity would survive this stage.

For termination, the number of candidates does decrease overall, but not in a
simple way. However, it is possible to bound the maximum number of candidates

164 ELECTION

in each stage, and that bound strictly decreases. Let n; be the maximum number
of candidates in stage i. Up until wrap-around, there are two types of survivors:
(a) those entities whose message did not encounter any border and (b) those whose
message encountered a border with a larger id and whose border was encountered by
a message with a larger id. Let @; denote the number of the first type of survivors;
clearlya; < n/ dl.z. The number of the second type will be at most (n; — a;)/2 as each
defeated one can cause at most one candidate to survive. Thus,

niv1 < ai + (i —a;)/2 = (i +a;)/2 < (n; + dn—_z)/z

As d; = ' is increasing each stage, the upper bound #; on the number of candi-
dates is decreasing. Solving the recurrence relation gives

niv1 <nj/a? 2 —a?). (3.33)

Wrap-around occurs when « > /n; in that stage, only one candidate can com-
plete the marking of its boundary without encountering any markings and at most
half the remaining candidates will survive. So, the number of candidates surviving
this stage is at most (2 — «?)~!. In all subsequent stages, again only one candidate
can complete the marking without encountering any markings and at most half the
remaining candidates will survive. Hence, after

p > [log(Z - (xz)_l—|

additional stages for sure there will be only one candidate left. Thus, the protocol
correctly terminates.

To determine the total number of messages, consider that in stage i before wrap-
around, each candidate causes at most 4d; “Marking” messages to mark its boundary
and another 4d; “SeenbyLarger” messages, for a total of 84; = 8’ messages; as the
number of candidates is at most as expressed by equation 3.33, the total number of
messages in this pre-wrap-around stage will be at most

Ona? /(2 — a®)(a — 1)).

In each phase after wrap-around, there is only a constant number of candidates,
each sending O(/n) messages. As the number of such phases is constant, the total
number of messages sent after wrap-around is O (y/n).

Choosing o ~ 1.1795 yields the desired bound

M[MarkBorder] = O(n). (3.34)

The preceding analysis ignores the fact that o is not an integer: The distance
to travel must be rounded up and this has to be taken into account in the analysis.

ELECTION IN MESH NETWORKS 165

However, the effect is not large and will just affect the low-order terms of the cost
(Exercise 3.10.55).

The algorithm as given is not very time efficient. In fact, the ideal time can be as bad
as O(n) (Exercise 3.10.56). The protocol can be, however, modified so that without
changing its message complexity, the algorithm requires no more than O(4/n) time
(Exercise 3.10.57).

The protocol we have described is tailored for square tori. If the torus is not square
but rectangular with length / and width w (I < w), then the algorithm can be adapted
to use O(n + [log I/w) messages (Exercise 3.10.58).

Unoriented Torus The algorithm we just described solved the problem of electing
a leader in an oriented torus, for example, among the buildings in Manhattan (well
known for its mesh-like design), by sending a messenger along east-west streets
and north-south avenues, turning at the appropriate corner. Consider now the same
problem when the streets have no signs and the entities have no compass.

Interestingly, the same strategy can be still used: A candidate needs to mark off a
square; the orientation of the square is irrelevant. To be able to travel along a square,
we just need to know how to

1. forward a message “in a straight line,” and
2. make the “appropriate turn.”

We will discuss how to achieve each, separately.

(1) Forwarding in a Straight Line. We first consider how to forward a message
in the direction opposite to the one from which the message was received, without
knowing the directions.

Consider an entity x, with its four incident links, and let a, b, ¢, and d be the
arbitrary port numbers associated with them; (see Figure 3.38); to forward a message
in a straight line, x needs to determine that a and d are opposite, and so are b and c.
This can be easily accomplished by having each entity send its identity to each of its
four neighbors, which will forward it to its three other neighbors; the entity will in
turn acquire the identity and relative position of each entity at distance 2. As a result,

D)

(

FIGURE 3.38: Even without a compass, x can determine which links are opposite.

166 ELECTION

x will know the two pairs of opposite port numbers. In the example of Figure 3.38, x
will receive the message originating from z via both port a and port b; it, thus, knows
that a is not opposite to b. It also receives the message from y via ports a and c; thus
x knows also that a is not opposite to c. Then, x can conclude that a is opposite to d.

It will then locally relabel one pair of opposite ports as east, west, and the other
north, south; it does not matter which pair is chosen first.

(2) Making the Appropriate Turn. As a result of the the previous operation, each
entity x knows two perpendicular directions, but the naming (north, south) and (east,
west) might not be consistent with the one done by other entities. This can create
problems when wanting to make a consistent turn.

Consider a message, originating by x which is traveling “south” (according to x’s
view of the torus); to continue to travel “south” can be easily accomplished as each
entity knows how to forward a message in a straight line. At some point, according
to the protocol, the message must turn, say to “east” (always according to x’s view
of the torus), and continue in that direction.

To achieve the turn correctly, we add a simple information, called handrail, to a
message. The handrail is the id of the neighbor in the direction the message must
turn and the name of the direction. In the example of Figure 3.38, if x is sending a
message south that must then turn east, the handrail in the message will be the id
of its eastern neighbor ¢ plus the direction “east.” Because every entity knows the
ids and the relative position of all the entities within distance 2, when y receives this
message with the handrail from x, it can determine what x means by “east,” and thus
in which direction the message must turn (when the algorithm prescribes it).

Summarizing, even without a compass, we can execute the protocol MarkBorder,
by adding the preprocessing phase and including the handrail information in the
messages.

The cost of the preprocessing is relatively small: Each entity receives four messages
for its immediate neighbors and 4 x 3 for entities at distances 2, for a total of 16n
messages.

3.5 ELECTION IN CUBE NETWORKS

3.5.1 Oriented Hypercubes

The k-dimensional hypercube Hy, which we have introduced in Section 2.1.3, is a
common interconnection network, consisting of n = 2k nodes, each with degree k;
hence, in Hj there are m = k2K=1 = O(nlogn) edges.

In an oriented hypercube Hy, the port numbers 1, 2, . .., k for the k edges incident
on a node x are called dimensions and are assigned according to the “construction
rules” specifying Hj (see Fig. 2.3).

We will solve the election problem in oriented hypercubes using the approach
electoral stages that we have developed for ring networks. The metaphor we will use
is that of a fencing tournament: in a stage of the tournament, each candidate, called
duelist, will be assigned another duelist, and each pair will have a match; as a result

ELECTION IN CUBE NETWORKS 167

of the match, one duelist will be promoted to the next stage, the other excluded from
further competition. In each stage, only half of the duelists enter the next stage; at the
end, there will be only one duelist that will become the leader and notify the others.

Deciding the outcome of a match is easy: The duelist with the smaller id will win;
for reasons that will become evident later, we will have the defeated duelist remember
the shortest path to the winning duelist.

The crucial and difficult parts are how pairs of opposite duelists are formed and
how a duelist finds its competitor. To understand how this can be done efficiently, we
need to understand some structural properties of oriented hypercubes.

A basic property of an oriented hypercube is that if we remove from Hj all the
links with label greater than i (i.e., consider only the first i dimensions), we are left
with 2K~7 disjoint oriented hypercubes of dimension i; denote the collection of these
smaller cubes by Hy.;. For example, removing the links with label 3 and 4 from Hy
will result into four disjoint oriented hypercubes of dimension 2 (see Figure 3.39
(aand b)).

What we will do is to ensure that

(D) at the end of stage i — 1, there will be only one duelist left in each of the
oriented hypercubes of dimension i — 1 of Hj.;_1.

So, for example, at the end of stage 2, we want to have only one duelist left in each
of the four hypercubes of dimension 2 (see Figure 3.39(c)).

Another nice property of oriented hypercubes is that if we add to Hi.;—1 the links
labeled i (and, thus, construct Hy.;) the elements of Hy.;—1 will be grouped into pairs.

We can use this property to form the pairs of duelists in each stage of the tournament:

(II) A duelistx starting stage i will have as its opponent the duelist in the hypercube
of dimension i — 1 connected to x by the link labeled i.

Thus, in stage i, a duelist x will send a Match message to (and receive a Match
message from) the duelist y in hypercube (of dimension i — 1) that is on the other
side of link i. The Match message from x will contain the id id(x) (as well as the path
traveled so far) and will be sent across dimension i (i.e., the link with label i). The
entity z on the other end of the link might, however, not be the duelist y and might
not even know who (and where) y is (Figure 3.40).

We need the Match message from x to reach its opponent y. We can obtain this
by having z broadcast the message in its (i — 1)-dimensional hypercube (e.g., using
protocol HyperFlood presented in Section 2.1.3); in this way, we are sure that y will
receive the message. Obviously, this approach is an expensive one (as determined in
Exercise 3.10.59).

To solve this problem efficiently, we will use the following observation. If node
z is not the duelist (i.e., z # y), node z was defeated in a previous stage, say i| < i;
it knows the (shortest) path to the duelist z;,, which defeated it in that stage, and
can thus forward the message to it. Now, if z;; = y, then we are done: The message
from x has arrived and the match can take place. Otherwise, in a similar way, z;, was

168 ELECTION

@)

(b)

(c)

FIGURE 3.39: (a) The four-dimensional hypercube H,, (b) the collection Hy, of two-
dimensional hypercubes obtained by removing the links with labels greater than 2, and (c)
duelists (in black) at the end of stage 2.

/ y
| 4

FIGURE 3.40: Each duelist (in black) sends a Match message that must reach its opponent.

ELECTION IN CUBE NETWORKS 169

defeated in some subsequent stage i», i] < iy < i; it, thus, knows the (shortest) path
to the duelist z;,, which defeated it in that stage and can thus forward the message to
it. In this way, the message from x will eventually reach y; the path information in
the message is updated during its travel so that y will know the dimensions traversed
by the message from x to y in chronological order. The Match message from y will
reach x with similar information.

The match between x and y will take place both at x and y; only one of them, say
x, will enter stage i + 1, while the other, y, is defeated.

From now on, if y receives a Match message, it will forward it to x; as mentioned
before, we need this to be done on the shortest path. How can y (the defeated duelist)
know the shortest path to x (the winner)?

The Match message y received from x contained the labels of a walk to it,

not necessarily the shortest path. Fortunately, it is easy to determine the shortcuts
in any path using the properties of the labeling. Consider a sequence « of labels
(with or without repetitions); remove from the sequence any pair of identical labels
and sort the remaining ones, obtaining a compressed sequence «. For example, if
a = (231345212), then o = (245).
The important property is that if we start from the same node x, the walk with labels
« will lead to the same node y as the walk with labels &. The other important property
is that @ actually corresponds to the shortest path between x and y. Thus, y needs
only to compress the sequence contained in the Match message sent by x.

IMPORTANT. We can perform the compression while the message is traveling from
X to y; in this way, the message will contain at most k labels.

Finally, we must consider the fact that owing to different transmission delays, it
is likely that the computation in some parts of the hypercube is faster than in others.
Thus, it may happen that a duelist x in stage i sends a Match message for its opponent,
but the entities on the other side of dimension i are still in earlier stages.

So, itis possible that the message from x reaches a duelist y in an earlier stage j < i.
What y should do with this message depends on future events that have nothing to do
with the message: If y wins all matches in stages j, j + 1,...,i — 1, then y is the op-
ponent of x in stage i, and it is the destination of the message; on the contrary, if it loses
one of them, it must forward the message to the winner of that match. In a sense, the
message from x has arrived “too soon”; so, what y will do is to delay the processing of
this message until the “right” time, that is, until it enters stage i or it becomes defeated.
Summarizing,

1. A duelist in stage i will send a Match message on the edge with label i.

2. When a defeated node receives a Match message, it will forward it to the winner
of the match in which it was defeated.

3. When a duelist y in stage i receives a Match message from a duelist x in stage i,
ifid(x) > id(y), then y will enter stage i + 1, otherwise it will become defeated
and compute the shortest path to x.

170 ELECTION

4. When a duelist y in stage j receives a Match message from a duelist x in stage
i > j,y will enqueue the message and process it (as a newly arrived one) when
it enters stage i or becomes defeated.

The protocol terminates when a duelist wins the kth stage. As we will see, when
this happens, that duelist will be the only one left in the network.

The algorithm, protocol HyperElect, is shown in Figures 3.41 and 3.42. Next-
Duelist denotes the (list of labels on the) path from a defeated node to the duelist
that defeated it. The Match message contains (Id*, stage*, source*, dest*), where
1d* is the identity of the duelist x originating the message; stage* is the stage of
this match; source* is (the list of labels on) the path from the duelist x to the entity
currently processing the message; and dest* is (the list of labels on) the path from the
entity currently processing the message to a target entity (used to forward message
by the shortest path between a defeated entity and its winner). Given a list of labels
list, the protocol uses the following functions:

— first(list) returns the first element of the list;
— list @ i (respectively, ©) updates the given path by adding (respectively, elimi-
nating) a label i to the list and compressing it.

To store the delayed messages, we use a set Delayed that will be kept sorted by
stage number; for convenience, we also use a set delay of the corresponding stage
numbers.

Correctness and termination of the protocol derive from the following fact
(Exercise 3.10.61):

Lemma 3.5.1 Let id(x) be the smallest id in one of the hypercubes of dimension i
in Hy.;. Then x is a duelist at the beginning of stage i + 1.

This means that when i = k, there will be only one duelist left at the end of that
stage; it will then become leader and notify the others so to ensure proper termination.

To determine the cost of the protocol, we need to determine the number of messages
sent in a stage i. For a defeated entity z, denote by w(z) its opponent (i.e., the one that
won the match). For simplicity of notation, let w/ (2) = wiw/~1(2)) where w9(z) = z.

Consider an arbitrary H € Hy.;_1; let y be the only duelist in H in stage i and let
z be the entity in H that receives first the Match message for y from its opponent.
Entity z must send this message to y; it forwards the message (through the shortest
path) to w(z), which will forward it to w(w(z)) = w2(z), which will forward it to
ww?(z)) = w3(z), and so on, until w'(z) = y. There will be no more than i such
“forward” points (i.e., t < i); as we are interested in the worst case, assume this to be
the case. Thus, the total cost will be the sum of all the distances between successive
forward points, plus one (from x to z). Denote by d(j — 1, j) the distance between
w/~1(z) and w/ (z); clearly d(j — 1, j) < j (Exercise 3.10.60); then the total number
of messages required for the Match message from a duelist x in stage i to reach its

ELECTION IN CUBE NETWORKS

PROTOCOL HyperElect.

e States: S = {ASLEEP, DUELLIST, DEFEATED, FOLLOWER, LEADER};
Sivr = {ASLEEP}; Srgrm = {FOLLOWER, LEADER}.

® Restrictions: IR UOriented Hypercube.

ASLEEP

Spontaneously

begin
stage:= 1; delay:=0; value:= id(x);
Source:= [stage];
Dest:= [];
send ("Match", value, stage, Source, Dest) to 1;
become DUELLIST;

end

Receiving ("Match", value*, stage*, Source*, Dest*)

begin
stage:= 1; value:= id(x);
Source:= [stagel;
Dest:= [];

send ("Match", value, stage, Source, Dest) to 1;
become DUELLIST;
if stage* =stage then

PROCESS_MESSAGE;
else
DELAY_MESSAGE;
endif
end
DUELLIST
Receiving ("Match", value*, stage*, Source*, Dest*)
begin
if stage* =stage then
PROCESS_MESSAGE;
else
DELAY_MESSAGE;
endif
end
DEFEATED
Receiving ("Match", value*, stage*, Source*, Dest*)
begin
if Dest* = [] then Dest*:= NextDuelist; endif
[:=first (Dest*); Dest:=Dest* ©Ol; Source:= Source* @I;
send ("Match", value*, stage*, Source, Dest) to [/;
end

Receiving ("Notify")

begin
send ("Notify") to {{ € N(x):I > sender};
become FOLLOWER;

end

FIGURE 3.41: Protocol HyperElect.

171

172 ELECTION

Procedure PROCESS_MESSAGE
begin
if value* > value then
if stage* =k then
send ("Notify") to N(x);
become LEADER;
else
stage:= stage+l; Source:=[stage] ; dest:= [];
send ("Match", value, stage, Source, Dest) to stage;
CHECK;
endif
else
NextDuelist := Source;
CHECK_ALL;
become DEFEATED;
endif
end

Procedure DELAY _MESSAGE

begin
Delayed « (value*, stage*, Source*, Dest*);
delay <« stage*;

end

Procedure CHECK
begin
if Delayed #{ then
next:=Min{delay};
if next = stage then
(value*, stage*, Source*, Dest*) <« Delayed;
delay:= delay-{next};
PROCESS_MESSAGE
endif
endif
end

Procedure CHECK_ALL
begin
while Delayed # ¢ do
(value*, stage*, Source*, Dest*) <« Delayed;
if Dest* [] then Dest*:= NextDuelist; endif

l:=first (Dest*) ; Dest:=Dest* ©/ ; Source:= Source* @l
send ("Match", value*, stage*, Source, Dest) to [;
endwhile

end

FIGURE 3.42: Procedures used by Protocol HyperElect.
opposite y will be at most
. i . i iG—1)

Jj=1 Jj=1

Now we know how much does it cost for a Match message to reach its destination.
What we need to determine is how many such messages are generated in each stage;

ELECTION IN CUBE NETWORKS 173

in other words, we want to know the number n; of duelists in stage i (as each will
generate one such message). By Lemma 3.5.1, we know that at the beginning of stage
i, there is only one duelist in each of the hypercubes H € Hj.;_1; as there are exactly

2}’—_] = 2k=i+1 guch cubes,

ni = k=it

Thus, the total number of messages in stage i will be
miL(i) =26 (14 HED)
and over all stages, the total will be

k , i ko ko, ko
22k1+1<]+l~(12)):2k<22il_l+zl2_i+2§>:62k—k2—3k—7.
i=l1 i=1 i=I i=l1

As 2K = n, and adding the (n — 1) messages to broadcast the termination, we have

M{[HyperElect] < Tn — (logn)* — 3logn — 7. (3.35)

That is, we can elect a leader in less than 7n messages! This result should be
contrasted with the fact that in a ring we need ()(n log n) messages.

As for the time complexity, it is not difficult to verify that protocol HyperFlood
requires at most O(log3 N) ideal time (Exercise 3.10.62).

Practical Considerations The O(n) message cost of protocol HyperElect is
achieved by having the Match messages convey path information in addition to the
usual id and stage number. In particular, the fields Source and Dest have been
described as lists of labels; as we only send compressed paths, Source and Dest
contain at most log n labels each. So it would appear that the protocol requires “long”
messages. We will now see that in practice, each list only requires log n bits (i.e., the
cost of a counter).

Examine a compressed sequence of edge labels « in Hy (e.g., & = (1457) in Hg);
as the sequence is compressed, there are no repetitions. The elements in the sequence
are a subset of the integers between 1 and k; thus o can be represented as a binary
string (b1, b2, ..., by) where each bit b; = 1 if and only if j is in &. Thus, the list
o = (1457) in Hg is uniquely represented as (10011010). Thus, each of Source and
Dest will be just a k = log n bits variable.

This also implies that the cost in terms of bits of the protocol will be no more than

B[HyperElect] < Tn(logid + 2logn + loglogn), (3.36)

where the loglogn component is to account for the stage field.

174 ELECTION

3.5.2 Unoriented Hypercubes

Hypercubes with arbitrary labellings obviously do not have the properties of oriented
hypercubes. It is still possible to take advantage of the highly regular structure of
hypercubes to do better than in ring networks. In fact (Problem 3.10.8),

Lemma 3.5.2 M(Elect/IR; Hypercube) < O(nloglogn)

To date, it is not known whether it is possible to elect a leader in an hypercube in
just O(n) messages even when it is not oriented (Problem 3.10.9).

3.6 ELECTION IN COMPLETE NETWORKS

We have seen how structural properties of the network can be effectively used to over-
come the additional difficulty of operating in a fully symmetric graph. For example,
in oriented hypercubes, we have been able to achieve O(n) costs, that is, comparable
to those obtainable in trees.

In contrast, aring has very few links and no additional structural property capable of
overcoming the disadvantages of symmetry. In particular, it is so sparse (i.e., m = n)
that it has the worst diameter among regular graphs (to reach the furthermost node, a
message must traverse d = n/2 links) and no short cuts. It is thus no surprising that
election requires ()(n log n) messages.

The ring is the sparsest network and it is an extreme in the spectrum of regular
networks. At the other end of the spectrum lies the complete graph K,,; in K,;, each
node is connected directly to every other node. It is thus the densest network

m= %n(n -1
and the one with smallest diameter
d=1.

Another interesting property is that K, contains every other network G as a subgraph!
Clearly, physical implementation of such a topology is very expensive.

Let us examine how to exploit such very powerful features to design an efficient
election protocol.

3.6.1 Stages and Territory

To develop an efficient protocol for election in complete networks, we will use elec-
toral stages as well as a new technique, territory acquisition.

In territory acquisition, each candidate tries to “capture” its neighbors (i.e., all
other nodes) one at a time; it does so by sending a Capture message containing its id
as well as the number of nodes captured so far (the stage). If the attempt is successful,
the attacked neighbor becomes captured, and the candidate enters the next stage and

ELECTION IN COMPLETE NETWORKS 175

continues; otherwise, the candidate becomes passive. The candidate that is successful
in capturing all entities becomes the leader.

Summarizing, at any time an entity is candidate, captured, or passive. A captured
entity remembers the id, the stage, and the link to its “owner” (i.e., the entity that
captured it). Let us now describe an electoral stage.

1. A candidate entity x sends a Capture message to a neighbor y.

2. If y is candidate, the outcome of the attack depends on the stage and the id of
the two entities:

(a) If stage(x) > stage(y), the attack is successful.
(b) If stage(x) = stage(y), the attack is successful if id(x) < id(y); otherwise
x becomes passive.
(c) If stage(x) < stage(y), x becomes passive.
3. If y is passive, the attack is successful.

4. If y is already captured, then x has to defeat y’s owner z before capturing y.
Specifically, a Warning message with x’s id and stage is send by y to its owner z.
(a) If zis a candidate in a higher stage, or in the same stage but with a smaller
id than x, then the attack to y is not successful: z will notify y that, in turn,
will notify x.

(b) In all other cases (z is already passive or captured, z is a candidate in a
smaller stage, or in the same stage but with a larger id than x), the attack
to y is successful: z notifies x via y, and if candidate it becomes passive.

5. If the attack is successful, y is captured by x, x increments stage(x) and
proceeds with its conquest.

Notice that each attempt from a candidate costs exactly two messages (one for
the Capture, one for the notification) if the neighbor is also a candidate or passive;
instead, if the neighbor was already captured, two additional messages will be sent
(from the neighbor to its owner, and back).

The strategy just outlined will indeed solve the election problem (Exercise 3.10.65).
Even though each attempt costs only four (or fewer) messages, the overall cost can
be prohibitive; this is because of the fact that the number n; of candidates at level i
can in general be very large (Exercise 3.10.66).

To control the number n;, we need to ensure that a node is captured by at most one
candidate in the same level. In other words, the territories of the candidates in stage
i must be mutually disjoint. Fortunately, this can be easily achieved.

First of all, we provide some intelligence and decisional power to the captured
nodes:

(D If a captured node y receives a Capture message from a candidate x that is in
a stage smaller than the one known to y, then y will immediately notify x that
the attack is unsuccessful.

176 ELECTION

As a consequence, a captured node y will only issue a Warning for an attack at the
highest level known to y. A more important change is the following:

(I) If a captured node y sends a Warning to its owner z about an attack from x, y
will wait for the answer from z (i.e., locally enqueue any subsequent Capture
message in same or higher stage) before issuing another Warning.

As a consequence, if the attack from x was successful (and the stage increased),
y will send to the new owner x any subsequent Warning generated by processing the
enqueued Capture messages. After this change, the territory of any two candidates in
the same level are guaranteed to have no nodes in common (Exercise 3.10.64).

Protocol CompleteElect implementing the strategy we have just designed is shown
in Figures 3.43, 3.44, and 3.45.

Let us analyze the cost of the protocol.

How many candidates there can be in stage i? As each of them has a territory
of size i and these territories are disjoint, there cannot be more than n; < n/i such
candidates. Each will originate an attack that will cost at most four messages; thus,
in stage i, there will be at most 4n/i messages.

Let us now determine the number of stages needed for termination. Consider
the following fact: if a candidate has conquered a territory of size 5 + 1, no other
candidate can become leader. Hence, a candidate can become leader as soon as it
reaches that stage (it will then broadcast a termination message to all nodes).

Thus the total number of messages, including then — 1 for termination notification,
will be

n/2 n/2
n+l4+Y 4n < n+l+4n) ¢
i=1 i=1

= 4dnHyp+n+1,

which gives the overall cost
M([CompleteElect] <2.76 nlogn — 1.76n + 1. (3.37)

Let us now consider the time cost of the protocol. It is not difficult to see that in
the worst case, the ideal time of protocol CompleteElect is linear (Exercise 3.10.67):

T[CompleteElect] = O(n). (3.38)

This must be contrasted with the O (1) time cost of the simple strategy of each entity
sending its id immediately to all its neighbors, thus receiving the id of everybody else,
and determining the smallest id. Obviously, the price we would pay for a O(1) time
cost is O(n?) messages.

Appropriately combining the two strategies, we can actually construct protocols
that offer optimal O(n log n) message costs with O(n/ log n) time (Exercise 3.10.68).

The time can be further reduced at the expense of more messages. In fact, it
is possible to design an election protocol that, for any logn < k < n, uses O(nk)
messages and O(n/k) time in the worst case (Exercise 3.10.69).

ELECTION IN COMPLETE NETWORKS 177

PROTOCOL CompleteElect.

® S = {ASLEEP, CANDIDATE,PASSIVE, CAPTURED, FOLLOWER, LEADER};
Sinit = {ASLEEP}; Sterm = {FOLLOWER, LEADER}.

® Restrictions: IR UCompleteGraph.

ASLEEP

Spontaneously

begin
stage:= 1; value:= id(x);
Others:= N(x);
next < Others;
send ("Capture", stage, value) to next;
become CANDIDATE;

end

Receiving ("Capture", stage*, value*)
begin
send ("Accept", stage*, valuex) to sender;
stage:= 1;
owner:= sender;
ownerstage:= stage* +1;
become CAPTURED;
end

CANDIDATE
Receiving ("Capture", stage*, value¥*)
begin
if (stage* < stage) or ((stage* = stage) and
(value* > value)) then
send ("Reject", stage) to sender;
else
send ("Accept", stage*, valuex*) to sender;
owner:= sender;
ownerstage:= stage* +1;
become CAPTURED;
endif
end

Receiving ("Accept", stage, value)
begin
stage:= stage+1l;
if stage >1+4n/2 then
send ("Terminate") to N(x);
become LEADER;

else
next < Others;
send ("Capture", stage, value) to next;
endif
end
(CONTINUES ...)

FIGURE 3.43: Protocol CompleteElect (1).

3.6.2 Surprising Limitation

We have just developed an efficient protocol for election in complete networks. Its
cost is O(nlogn) messages. Observe that this is the same as we were able to do in
ring networks (actually, the multiplicative constant here is worse).

178 ELECTION

CANDIDATE
Receiving ("Reject", stage*)
begin
become PASSIVE;
end

Receiving ("Terminate")
begin

become FOLLOWER;
end

Receiving ("Warning", stage*, value¥*)
begin
if (stage* < stage) or ((stage* = stage) and
(value* > value)) then
send ("No", stage) to sender;
else
send ("Yes", stage*) to sender;
become PASSIVE;

endif
end
PASSIVE
Receiving ("Capture", stage*, value*)
begin
if (stage* < stage) or ((stage* = stage) and
(value* > value)) then
send ("Reject", stage) to sender;
else
send ("Accept", stage*, value*) to sender;
ownerstage:= stage* +1;
owner:= sender;
become CAPTURED;
endif
end

Receiving ("Warning", stage*, value¥*)
begin
if (stage* < stage) or ((stage* = stage) and
(value* > value)) then
send ("No", stage) to sender;
else
send ("Yes", stage*) to sender;
endif
end

Receiving ("Terminate")
begin

become FOLLOWER;
end

(CONTINUES ...)

FIGURE 3.44: Protocol CompleteElect (11).

Unlike rings, in complete networks, each entity has a direct link to all other entities
and there is a total of O(n?) links. By exploiting all this communication hardware,
we should be able to do better than in rings, where there are only » links, and where
entities can be O(n) far apart.

ELECTION IN COMPLETE NETWORKS 179

CAPTURED
Receiving ("Capture", stage*, value¥*)
begin
if stage* < ownerstage then
send ("Reject", ownerstage) to sender;
else
attack:= sender;
send ("Warning", value*, stage*) to owner;
close N(x)— {owner};
endif
end
Receiving ("No", stage¥)
begin
open N(x);
send ("Reject", stage*) to attack;
end

Receiving ("Yes", stage¥)

begin

ownerstage:= stage*+1;

owner:= attack;

open N(x);

send ("Accept", stage*, value*) to attack;
end

Receiving ("Warning", stage*, value¥)
begin
if (stage* < ownerstage) then
send ("No", ownerstage) to sender;
else
send ("Yes", stage*) to sender;
endif
end

Receiving ("Terminate")
begin

become FOLLOWER ;
end

FIGURE 3.45: Protocol CompleteElect (111).

The most surprising result about complete networks is that in spite of having
available the largest possible amount of connection links and a direct connection
between any two entities, for election they do not fare better than ring networks.

In fact, any election protocol will require in the worst case {)(n log n) messages,
that is,

Property 3.6.1 M(Elect/IR; K) = Q(nlogn)

To see why this is true, observe that any election protocol also solves the wake-up
problem: To become defeated or leader, an entity must have been active (i.e., awake).
This simple observation has dramatic consequences. In fact, any wake-up protocol
requires at least .5nlogn messages in the worst case (Property 2.2.5); thus, any
Election protocol requires in the worst case the same number of messages.

180 ELECTION

This implies that as far as election is concerned, the very large expenses due to
the physical construction of m = (n> 4 n)/2 links are not justifiable as the same
performance and operational costs can be achieved with only m = n links arranged
in a ring.

3.6.3 Harvesting the Communication Power

The lower bound we have just seen carries a very strong and rather surprising message
for network development: in so far election is concerned, complete networks are not
worth the large communication hardware costs. The facts that Election is a basic
problem and its solutions are routinely used by more complex protocols makes this
message even stronger.

The message is surprising because the complete graph, as we mentioned, has the
most communication links of any network and the shortest possible distance between
any two entities.

To overcome the limit imposed by the lower bound and, thus, to harvest the com-
munication power of complete graphs, we need the presence of some additional tools
(i.e., properties, restrictions, etc.). The question becomes: which tool is powerful
enough? As each property we assume restricts the applicability of the solution, our
quest for a powerful tool should be focused on the least restrictive ones.

In this section, we will see how to answer this question. In the process, we will
discover some intriguing relationships between port numbering and consistency and
shed light on some properties of whose existence we already had an inkling in earlier
section.

We will first examine a particular labeling of the ports that will allow us to make
full use of the communication power of the complete graph.

The first step consists in viewing a complete graph K,, as a ring R,, where any
two nonneighboring nodes have been connected by an additional link, called chord.
Assume that the label associated at x to link (x, y) is equal to the (clockwise) distance
from x to y in the ring. Thus, each link in the ring is labeled 1 in the clockwise
direction and n — 1 in the other. In general, if A,(x, y) =i, then /ly(y, x)=n-—1I
(see Figure 3.46); this labeling is called chordal.

Let us see how election can be performed in a complete graph with such a labeling.

First of all, observe the following: As the links labeled 1 and n — 1 form aring, the
entities could ignore all the other links and execute on this subnet an election protocol
for rings, for example, Stages. This approach will yield a solution requiring 2n log n
messages in the worst case, thus already improving on CompleteElect. But we can do
better than that.

Consider a candidate entity x executing stage i: It will send an election message
each in both directions, which will travel along the ring until they reach another
candidate, say y and z (see Figure 3.47). This operation will require the transmission
of d(x, y) + d(x, z) messages. Similarly, x will receive the Election messages from
both y and z, and decide whether it survives this stage or not, on the basis of the
received ids.

ELECTION IN COMPLETE NETWORKS 181

FIGURE 3.46: A complete graph with chordal labeling. The links labeled 1 and 4 form a ring.

Now, in a complete graph, there exists a direct link between x and y, as well as
between x and z; thus, a message from one to the other could be conveyed with only
one transmission. Unfortunately, x does not know which of its n — 1 links connect it
to y or to z; y and z are in a similar situation. In the example of Figure 3.47, x does not
know that y is the node at distance 5 along the ring (in the clockwise direction), and
thus the port connecting x to it is the one with label 5. If it did, those four defeated
nodes in between them could be bypassed. Similarly, x does not know that z is at
distance —3 (i.e., at distance 3 in the counterclockwise direction) and thus reachable
through port n — 3. However, this information can be acquired.

Assume that the Election message contains also a counter, initialized to one, which
is increased by one unit by each node forwarding it. Then, a candidate receiving the
Election message knows exactly which port label connects it to the originator of that
message. In our example, the election message from y will have a counter equal to
5 and will arrive from link 1 (i.e., counterclockwise), while the message from z will

FIGURE 3.47: If x knew d(x, y) and d(x, z), it could reach y and z directly.

182 ELECTION

have a counter equal to 3 and will arrive from link n» — 1 (i.e., clockwise). From this
information, x can determine that y can be reached directly through port 5 and z is
reachable through link n — 3. Similarly, y (respective z) will know that the direct link
to x is the one labeled n — 5 (respective 3).

This means that in the next stage, these chords can be used instead of the corre-
sponding segments of the ring, thus saving message transmissions. The net effect will
be that in stage i 4 1, the candidates will use the (smaller) ring composed only of
the chords determined in the previous stage, that is, messages will be sent only on
the links connecting the candidates of stage i, thus, completely bypassing all entities
defeated in stage i — 1 or earlier.

Assume in our example that x enters stage i + 1 (and thus both y and z are de-
feated); it will prepare an election message for the candidates in both directions,
say u and v, and will send it directly to y and to z. As before, x does not know
where u and v are (i.e., which of its links connect it to them) but, as before, it can
determine it.

The only difference is that the counter must be initialized to the weight of the
chord: Thus, the counter of the Election message sent by x directly to y is equal to 5,
and the one to z is equal to 3. Similarly, when an entity forwards the Election message
through a link, it will add to the counter the weight of that link.

Summarizing, in each stage, the candidates will execute the protocol in a smaller
ring. Let R(7) be the ring used in stage 7; initially R(1) = R,. Using the ring protocol
Stages in each stage, the number of messages we will be transmitting will be exactly
2(n(1) + n2) + ...+ n(k)), where n(i) is the size of R(i) and k < log n is the number
of stages; an additional n — 1 messages will be used for the leader to notify the
termination.

Observe that all the rings R(2), ..., R(k) do not have links in common (Exercise
3.10.70). This means that if we consider the graph G composed of all these rings,
then the number of links m(G) of G is exactly m(G) = n(2) + ... 4+ n(k). Thus, to
determine the cost of the protocol, we need to find out the value of m(G).

This can be determined in many ways. In particular, it follows from a very in-
teresting property of those rings. In fact, each R(i) is “contained” in the interior of
R(i + 1): All the links of R(i) are chords of R(i + 1), and these chords do not cross.
This means that the graph G formed by all these rings is planar; that is, can be drawn
in the plane without any edge crossing. A well known fact of planar graphs is that
they are sparse, that is, they contain very few links: not more than 3(n — 2) (if you
did not know it, now you do). This means that our graph G has m(G) < 3n — 6. As
our protocol, which we shall call Kelect-Stages, uses 2(n(1) + m(G)) + n messages
in the worst case, and n(1) = n, we have

M[Kelect—Stages] < 8n — 12.

A less interesting but more accurate measurement of the message costs follows
from observing that the nodes in each ring R(i) are precisely the entities that were
candidatesinstagei — 1;thus,n(i) = n;_1.Recalling thatn; < %ni_l,andasnl =n,

ELECTION IN CHORDAL RINGS () 183

we have n(l) +n(2Q)+...+nk) <n+ Zfz_ll n; < 3n, which will give

M[Kelect-Stages] < Tn (3.39)

Notice that if we were to use Alternate instead of Stages as ring protocol (as we
can), we would use fewer messages (Exercise 3.10.72).

In any case, the conclusion is that the chordal labeling allows us to finally harvest
the communication power of complete graphs and do better than in ring networks.

3.7 ELECTION IN CHORDAL RINGS (x)

We have seen how election requires {)(n logn) messages in rings and can be done
with just O (n) messages in complete networks provided with chordal labeling. Inter-
estingly, oriented rings and complete networks with chordal labeling are part of the
same family of networks, known as loop networks or chordal rings.

3.7.1 Chordal Rings

A chordal ring C,(dy, da, ..., dy) of size n and k-chord structure (d1, da, ..., d), with
d; = 1, is aring R, of n nodes {po, p1, ..., pn—1}, Where each node is also directly
connected to the nodes atdistance d; and N — d; by additional links called chords. The
link connecting two nodes is labeled by the distance that separates these two nodes
on the ring, that is, following the order of the nodes on the ring: Node p; is connected
to the node p; d; mod n through its link labeled d; (as shown in Figure 3.48). In
particular, if the link between p and q is labeled d at p, this link is labeled n — d at q.

Note that the oriented ring is the chordal ring C,, (1) where label 1 corresponds to
“right,” and n — 1 to “left.” The complete graph with chordal labeling is the chordal

FIGURE 3.48: Chordal ring Cy;(1, 3).

184 ELECTION

ring C, (1,2, 3, ---, |n/2]) Infact, rings and complete graphs are two extreme topolo-
gies among chordal rings.

Clearly, we can exploit the techniques we designed for complete graph with chordal
labeling to develop an efficient election protocol for the entire class of chordal ring
networks. The strategy is simple:

1. Execute an efficient ring election protocol (e.g., Stages or Alternate) on the
outer ring. As we did in Kelect, the message sent in a stage will carry a counter,
updated using the link labels, that will be used to compute the distance between
two successive candidates.

2. Use the chords to bypass defeated nodes in the next stage.

Clearly, the more the distances can be “bypassed” by the chords, the more
the messages we will be able to save. As an example, consider the chordal ring
Cn(1,2,3,4, ..., t), where every entity is connected to its distance-t neighborhood
in the ring. In this case (Exercise 3.10.76), a leader can be elected with a number of
messages not more than

O (n+%log?).

A special case of this class is the complete graph, where t = |[n/2]]; in it we can
bypass any distance in a single “hop” and, as we know, the cost becomes O(n).

Interestingly, we can achieve the same O(n) result with fewer chords. In fact,
consider the chordal ring C, (1,2, 4, 8, ..., 2M19¢"/21). it is called double cube and
k = [logn]. In a double cube, this strategy allows election with just O(n) messages
(Exercise 3.10.78), like if we were in a complete graph and had all the links.

At this point, an interesting and important question is what is the smallest set of
links that must be added to the ring to achieve a linear election algorithm. The double
cube indicates thatk = O(log n) suffices. Surprisingly, this can be significantly further
reduced (Problem 3.10.12); furthermore, in that case (Problem 3.10.13), the O(n) cost
can be obtained even if the links have arbitrary labels.

3.7.2 Lower Bounds

The class of chordal rings is quite large; it includes rings and complete graphs, and
the cost of electing a leader varies greatly depending on the structure. For example,
we have already seen that the complexity is @(n log n) and ®(n) in those two extreme
chordal rings.

We can actually establish precisely the complexity of the election problem for
the entire class of chordal rings C,’, = Cp(1,2,3,4....t). In fact, we have (Exercise
3.10.77)

M(Elect/IR; C) = Q (n n ?log ;) . (3.40)

UNIVERSAL ELECTION PROTOCOLS 185

Notice that this class includes the two extremes. In view of the matching upper
bound (Exercise 3.10.76), we have

Property 3.7.1 The message complexity of Elect in C!, under IR is @)(n + % log ?)

3.8 UNIVERSAL ELECTION PROTOCOLS

We have so far studied in detail the election problem in specific topologies; that is,
we have developed solution protocols for restricted classes of networks, exploiting
in their design all the graph properties of those networks so as to minimize the costs
and increase the efficiency of the protocols. In this process, we have learned some
strategies and principles, which are, however, very general (e.g., the notion of electoral
stages), as well as the use of known techniques (e.g., broadcasting) as modules of our
solution.

We will now focus on the main issue, the design of universal election protocols,
that is, protocols that run in every network, requiring neither a priori knowledge of
the topology of the network nor that of its properties (not even its size). In terms
of communication software, such protocols are obviously totally portable, and thus
highly desirable.

We will describe two such protocols, radically different from each other. The first,
Mega-Merger, which constructs a rooted spanning tree, is highly efficient (optimal in
the worst case); the protocol is, however, rather complex in terms of both specifications
and analysis, and its correctness is still without a simple formal proof. The second,
Yo-Yo, is a minimum-finding protocol that is exceedingly simple to specify and to
prove correct; its real cost is, however, not yet known.

3.8.1 Mega-Merger

In this section, we will discuss the design of an efficient algorithm for leader elec-
tion, called Mega-Merger. This protocol is topology independent (i.e., universal) and
constructs a (minimum cost) rooted spanning tree of the network.

Nodes are small villages each with a distinct name, and edges are roads each with
a different distance. The goal is to have all villages merge into one large megacity.
A city (even a small village will be considered such) always tries to merge with the
closest neighboring city.

When merging, there are several important issues that must be resolved. First
and foremost is the naming of the new city. The resolution of this issue depends
on how far the involved cities have progressed in the merging process, that is, on
the level they have reached and on whether the merger decision is shared by both
cities.

The second issue to be resolved during a merging is the decision of which roads of
the new city will be serviced by public transports. When a merger occurs, the roads
of the new city serviced by public transports will be the roads of the two cities already
serviced plus only the shortest road connecting them.

186 ELECTION

Let us clarify some of these concepts and notions, as well as the basic rules of the
game.

1. A cityis arooted tree; the nodes are called districts, and the root is also known
as downtown.

2. Each city has a level and a unique name; all districts eventually know the name
and the level of their city.

3. Edges are roads, each with a distinct distance (from a totally ordered set). The
city roads are only those serviced by public transport.

4. Initially, each node is a city with just one district, itself, and no roads. All
cities are initially at the same level.

Note that as a consequence of rule (1), every district knows the direction (i.e.,
which of its links in the tree leads) to its downtown (Figure 3.49).

5. A city must merge with its closest neighboring city. To request the merging,
a Let-us-Merge message is sent on the shortest road connecting it to that
city.

6. The decision to request for a merger must originate from downtown and until
the request is resolved, no other request can be issued from that city.

4 N

D(A)

:

- /

FIGURE 3.49: A city is a tree rooted in its downtown.

UNIVERSAL ELECTION PROTOCOLS 187

7. When a merger occurs, the roads of the new city serviced by public transports
will be the roads of the two cities already serviced plus the shortest road
connecting them.

Thus, to merge, the downtown of city A will first determine the shortest link,
which we shall call the merge link, connecting it to a neighboring city; once this is
done, a Let-us-Merge is sent through that link; the message will contain information
identifying the city, its level, and the chosen merge link. Once the message reaches the
other city, the actual merger can start to take place. Let us examine the components
of this entire process in some details.

We will consider city A, denote by D(A) its downtown, by level(A) its current
level, and by e(A) = (a, b) the merge link connecting A to its closest neighboring
city; let B be such a city. Node b will be called the entry point of the request from A
to B, and node a the exit point.

Once the Let-us-Merge message from a in A reaches the district b of B, three cases
are possible.

If the two cities have the same level and each asks to merge with the other, we
have what is called a friendly merger: The two cities merge into a new one; to avoid
any conflict, the new city will have a new name and a new downtown, and its level is
increased:

8. If level(A) = level(B) and the merge link chosen by A is the same as that
chosen by B (i.e., e(A) = e(B)), then A and B perform a friendly merger.

If a city asks a merger with a city of higher level, it will just be absorbed, that is,
it will acquire the name and the level of the other city:

9. Iflevel(A) < level(B), A is absorbed in B.

In all other cases, the request for merging and, thus, the decision on the name are
postponed :

10. If level(A) = level(B), but the merge link chosen by A is not the same as
that chosen by B (i.e., e(A) # e(B)), then the merge process of A with B is
suspended until the level of b’s city becomes larger than that of A.

11. If level(A) > level(B), the merge process of A with B is suspended: x will
locally enqueue the message until the level of b’s city is at least as large as the
one of A. (As we will see later, this case will never occur.)

Let us see these rules in more details.

Absorption The absorption process is the conclusion of a merger request sent
by A to a city with a higher level (rule 9). As a result, city A becomes part of city

188 ELECTION

B acquiring the name, the downtown, and the level of B. This means that during
absorption,

(1) the logical orientation of the roads in A must be modified so that they are
directed toward the new downtown (so rule (1) is satisfied);

(i1) all districts of A must be notified of the name and level of the city they just
joined (so rule (2) is satisfied).

All these requirements can be easily and efficiently achieved. First of all, the entry
point b will notify a (the exit point of A) that the outcome of the request is absorption,
and it will include in the message all the relevant information about B (name and level).
Once a receives this information, it will broadcast it in A; as a result, all districts of
A will join the new city and know its name and its level.

To transform A so that it is rooted in the new downtown is fortunately simple.
In fact, it is sufficient to logically direct toward B the link connecting a to b and to
“flip” the logical direction only of the edges in the path from the exit point a to the
old downtown of A (Exercise 3.10.79), as shown in Figure 3.50. This can be done
as follows: Each of the districts of B on the path from a to D(A), when it receives
the broadcast from a, will locally direct toward B two links: the one from which the
broadcast message is received and the one toward its old downtown.

4 N

D(A)

TN

. v

FIGURE 3.50: Absorption. To make the districts of A be rooted in D(B), the logical direction
of the links (in bold) from the downtown to the exit point of A has been “flipped.”

Friendly Merger 1f A and B are at the same level in the merging process (i.e.,
level(A) = level(B)) and want to merge with each other (i.e., e(A) = e(B)), we have

UNIVERSAL ELECTION PROTOCOLS 189

a friendly merger. Notice that if this is the case, a must also receive a Let-us-Merge
message from b.

The two cities now become one with a new downtown, a new name, and an in-
creased level:

(i) The new downtown will be the one of @ and b that has smaller id (recall that
we are working under the ID restriction).

(ii)) The name of the new city will be the name of the new downtown.
(iii) The level will be increased by one unit.

Both a and b will independently compute the new name, level, and downtown.
Then each will broadcast this information to its old city; as a result, all districts of A
and B will join the new city and know its name and its level.

Both A and B must be transformed so that they are rooted in the new downtown.
As discussed in the case of absorption, it is sufficient to “flip” the logical direction
only of the edges in the path from the a to the old downtown of A, and of those in the
path from b to the old downtown of B (Figure 3.51).

Suspension 1In two cases (rules (10) and (11)), the merge request of A must be
suspended: b will then locally enqueue the message until the level of its city is such
that it can apply rule (8) or (9). Notice that in case of suspension, nobody from city
A knows that their request has been suspended; because of rule (6), no other request
can be launched from A.

Choosing the Merging Edge According to rule (6), the choice of the merging
edge e(A) in A is made by the downtown D(A); according to rule (5), e(A) must be
the shortest road connecting A to a neighboring city. Thus, D(A) needs to find the
minimum length among all the edges incident on the nodes of the rooted tree A; this
will be done by implementing rule (5) as follows:

(5.1) Eachdistricta; of A determines the length d; of the shortest road connecting
it to another city (if none goes to another city, then d; = 00).

(5.2) D(A) computes the smallest of all the d;.

Concentrate on part (5.1) and consider a district g;; it must find among its incident
edges the shortest one that leads to another city.

IMPORTANT. Obviously, a; does not need to consider the internal roads (i.e., those
that connect it to other districts of A). Unfortunately, if a link is unused, that is, no
message has been sent or received through it, it is impossible for a; to know if this
road is internal or leads to a neighboring city (Figure 3.52). In other words, a; must
also try the internal unused roads.

190 ELECTION

4 N

D(A)

O/O?\
RES

o v

(@

/\ s a

AN
P

- /

(b)

FIGURE 3.51: Friendly merger. (a) The two cities have the same level and choose the same
merge link. (b) The new downtown is the exit node (a or b) with smallest id.

Thus, a; will determine the shortest unused edge e, prepare a Outside? message,
send it on e, and wait for a reply. Consider now the district ¢ on the other side of e,
which receives this message; ¢ knows the name(C) and the level(C) of its city (which
could, however, be changing).

UNIVERSAL ELECTION PROTOCOLS 191

4 N

D(A)

/;Q‘ /_@%

- /

FIGURE 3.52: Some unused links might lead back to the city.

If name(A) = name(C) (recall that the message contains the name of A), ¢ will
reply Internal to a;, the road e will be marked as internal (and no longer used in the
protocol) by both districts, and a; will restart its process to find the shortest local
unused edge.

If name(A) # name(C), it does not necessarily mean that the road is not internal.
In fact, it is possible that while ¢ is processing this message, its city C is being
absorbed by A. Observe that in this case, level(C) must be smaller than level(A)
(because by rule (8) only a city with smaller level will be absorbed). This means that
if name(A) # name(C) but level(C) > level(A), then C is not being absorbed by A,
and C is for sure a different city; thus, ¢ will reply External to a;, which will have,
thus, determined what it was looking for: d; = length(e).

The only case left is when name(A) # name(C) and level(C) < level(A), the case
in which ¢ cannot give a sure answer. So, it will not: ¢ will postpone the reply until
the level of its city becomes greater than or equal to that of A. Note that this means
that the computation in A is suspended until c is ready.

NOTE. As a consequence of this last case, rule (11) will never be applied
(Exercise 3.10.80).

In conclusion to determine if a link is internal should be simple, but, due to con-
currency, the process is neither trivial nor obvious.

Concentrate on part (5.2). This is easy to accomplish; it is just a minimum finding in
arooted tree, for which we can use the techniques discussed in Section 2.6.7. Specifi-
cally, the entire process is composed of a broadcast of a message informing all districts
in the city of the current name and level (i) of the city, followed by a covergecast.

Issues and Details We have just seen in details the process of determining the
merge link as well as the rules governing a merger. Because of the asynchronous

192 ELECTION

nature of the system and its unpredictable (though finite) communication delays, it
will probably be the case that different cities and districts will be at different levels at
the same time. In fact, our rules take explicitly into account the interaction between
neighboring cities at different levels. There are a few situations where the application
of the rules will not be evident and thus require a more detailed treatment.

(I) Discovering a friendly merger

We have seen that when the Let-us-Merge message from A to B arrives at b, if
level(A) = level(B), the outcome will be different (friendly merger or postponement)
depending on whether e(A) = e(B) or not. Thus, to decide if it is a friendly merger,
b needs to know both e(A) and e(B). When the Let-us-Merge message sent from a
arrives to b, it knows e(A) = (a, b).

Question. How does b know e(B)?

The answer is interesting. As we have seen, the choice of e(B) is made by the
downtown D(B), which will forward the merger request message of B towards the
exit point.

If e(A) = e(B), b is the exit point and, thus, it will eventually receive the message
to be sent to a; then (and only then) b will know the answer to the question, and that
it is dealing with a friendly merger.

If e(A) # e(B), b is not the exit point. Note that, unless b is on the way from
downtown D(B) to the exit point, b will not even know what e(B) is.

Thus, what really happens when the Let-us-Merge message from A arrives at b, is
the following. If b has received already a Let-us-Merge message from its downtown
to be sent to a, then b knows that is a friendly merger; also a will know when it
receives the request from b.

(Note for hackers: thus, in this case, no reply to the request is really necessary.)

Otherwise b does not know; thus it waits: if it is a friendly merger, sooner or later the
message from its downtown will arrive and b will know; if B is requesting another city,
eventually the level of b’s city will increase becoming greater than level(A) (which,
as A is still waiting for the reply, cannot increase), and thus result in A being absorbed.

(Il) Overlapping discovery of an internal link

In the merge-link calculation, when the Outside? message from a in A is sent to
neighbor b in B, if name(A) = name(B) then the link (a, b) is internal and should be
removed from consideration by both a and b. As b knows (it just found out receiving
the message) but a possibly does not, b will send to a the reply Internal. However, if
b also had sent to a an Outside? message, when a receives that message, it will find
out that (a, b) is internal, and the Internal reply would be redundant. In other words,
if a and b from the same city independently send to each other an Outside ? message,
there is no need for either of them to reply Internal to the other.

(IIT) Interaction between absorption and link calculation
A situation that requires attention is due to the interaction between merge-link
calculation and absorption. Consider the Lez-us-Merge message sent by a on merge

UNIVERSAL ELECTION PROTOCOLS 193

link e(A) = (a, b) to b, and let level(A) = j < i = level(B); thus, A will have to be
absorbed in B.

Suppose that, when b receives the message, it is computing the merge link for
its city B; as its level is i, we will call it the i-level merge link. What b will do in
this case, is to first proceed with the absorption of A (so to involve it in the i-level
merge-link computation), and then to continue its own computation of the merge link.
More precisely, b will start the broadcast in A of the name and level of B asking the
districts there to participate in the computation of the i-level merge link for B, and
then resume its computation.

Suppose instead that b has already finished computing the i-level merge link for
its city B; in this case, b will broadcast in A the name and level of B (so to absorb A),
but without requesting them to participate in the computation of the i-level merge
link for B (it is too late).

(IV) Overlap between notification and i-level merge-link calculation

As mentioned, the i-level merge-link calculation is started by a broadcast informing
all districts in the city of the current name and level (i) of the city. Let us call “start-
next" the function provided by these messages.

Notice that broadcasts are already used following the discovery of a friendly merger
or an absorption. Consider the case of a friendly merger. When the two exit points
know that it is a friendly merger, the notification they broadcast will inform all districts
in the merged city of the new level, new name, and to start computing the next merge
link. In other words, the notification is exactly the “start next” broadcast.

In the case of an absorption, as we just discussed, a “start-next” broadcast is needed
only if it is not too late for the new districts to participate in the current calculation
of the merge link. If it is not too late, the notification message contains the request
to participate in the next merge-link calculation; thus, it is just the propagation of the
current “start-next” broadcast in this new part of the city.

In other words, the “notification” broadcasts act as “start-next” broadcasts, if
needed.

3.8.2 Analysis of Mega-Merger

A city only carries out one merger request at a time, but it can be asked concurrently
by several cities, which in turn can be asked by several others. Some of these requests
will be postponed (because the level is not right, or the entry node does not (yet)
know what the answer is, etc.) Due to communication delays, some districts will be
taking decisions on the basis of the information (level and name of its city) that is
obsolete. It is not difficult to imagine very intricate and complex scenarios that can
easily occur.

How do we know that, in spite of concurrency and postponements and commu-
nication delays, everything will eventually work out? How can we be assured that
some decisions will not be postponed forever, that is, there will not be deadlock?
What guarantees that, in the end, the protocol terminates and a single leader will be
elected? In other words, how do we know that the protocol is correct?

194 ELECTION

Because of its complexity and the variety of scenarios that can be created, there is
no satisfactory complete proof of the correctness of the Mega-Merger protocol. We
will discuss here a partial proof that will be sufficient for our learning purposes. We
will then analyze the cost of the Protocol. Finally, we will discuss the assumption of
having distinct lengths associated to the links, examine some interesting connected
properties, and then remove the assumption.

Progress and Deadlock We will first discuss the progress of the computation
and the absence of deadlock. To do so, let us pinpoint the cases when the activity of a
city C is halted by a district d of another city D. This can occur only when computing
the merge edge, or when requesting a merger on the merge edge e(C); more precisely,
there are three cases:

(i) When computing the merge edge, a district ¢ of C sends the Outside ? message
to d and D has a smaller level than C.
(ii) A district ¢ of C sends the Let-us-Merge message on the merge edge e(C) =
(c, d); D and C have the same level but it is not a friendly merger.
(iii) A district ¢ of C sends the Let-us-Merge message on the merge edge e(C) =
(c, d); D and C have the same level and it is a friendly merger, but d does not
know yet.

In cases (i) and (ii), the activities of C are suspended and will be resolved (if the
protocol is correct) only in the “future,” that is, after D changes level. Case (iii) is
different in that it will be resolved within the “present” (i.e., in this level); we will
call this case a delay rather than a suspension.

Observe that if there is no suspension, there is no problem.

Property 3.8.1 If a city at level | will not be suspended, its level will eventually
increase (unless it is the megacity).

To see why this is true, consider the operations performed by a city C at a level
[: Compute the merge edge and send a merge request on the merge edge. If it is not
suspended, its merge request arrives at a city D with either a larger level (in which
case, C is absorbed and its level becomes level(D)) or the same level and same merge
edge (the case in which the two cities have a friendly merger and their level increases).
So, only suspensions can create problems, but not necessarily so.

Property 3.8.2 Let city C at level | be suspended by a district d in city D. If the level
of the city of D becomes greater than I, C will no longer be suspended and its level
will increase.

This is because once the level of D becomes greater than the level of C, d can an-
swer the Outside ? message in case (i), as well as the Let-us-Merge message in case (ii).

Thus, the only real problem is the presence of a city suspended by another whose
level will not grow. We are now going to see that this cannot occur.

UNIVERSAL ELECTION PROTOCOLS 195

Consider the smallest level [of any city at time 7, and concentrate on the cities C
operating at that level at that time.

Property 3.8.3 No city in C will be suspended by a city at higher level.

This is because for a suspension to exist, the level of D can not be greater than the
level of C (see the cases above).

Thus, if a city C € C is suspended, it is for some other city C’ € C. If C’ is not
suspended at level /, its level will increase; when that happens, C will no longer be
suspended. In other words, there would be no problems as long as there are no cycles
of suspensions within C, that is, as long as there is no cycle Cy, Cy, . .., Cx_1 of cities
of C where C; is suspended by C;+1 (and the operation on the indices are modulo k).
The crucial property is the following:

Property 3.8.4 There will be no cycles of suspensions within C.

The proof of this property is based heavily on the fact that each edge has a unique
length (we have assumed that.) and that the merge edge e¢(C) chosen by C is the
shortest of all the unused links incident on C. Remember this fact and let us proceed
with the proof.

By contradiction, assume that the property is false. That is, assume there is a
cycle Cy, Cy, ..., Cx—1 of cities of C where C; is suspended by C; 1 (the operation
on the indices are modulo k). First of all observe that as all these cities are at the
same level, the reason they are suspended can only be that each is involved in an
“unfriendly” merger, that is, case (ii). Let us examine the situation more closely:
Each C; has chosen a merge edge ¢(C;) connecting it to C;1; thus, C; is suspending
C;_1 and is suspended by C; 1. Clearly, both e(C;_1) and e(C;) are incident on C;. By
definition of merging edge (recall what we said at the beginning of the proof), e(C;)
is shorter than e(C;_1) (otherwise C; would have chosen it instead); in other words,
the length d; of the road e(C;) is smaller than the length d; 1 of e(C;1). This means
that dy > d; > ... > di_1, but as it is a circle of suspensions, C_1 is suspended
by Cy, that is, dy—1 > do. We have reached a contradiction, which implies that our
assumption that the property does not hold is actually false; thus, the property is true.

As a consequence of the property, all cities in C will eventually increase their level:
first, the ones involved in a friendly merger, next those that had chosen them for a
merger (and thus absorbed by them), then those suspended by the latter, and so on.

This implies that at no time there will be deadlock and there is always progress:
Use the properties to show that the ones with smallest level will increase their value;
when this happens, again the ones with smallest level will increase it, and so on.
That is,

Property 3.8.5 Protocol Mega-Merger is deadlock free and ensures progress.

Termination We have just seen that there will be no deadlock and that progress
is guaranteed. This means that the cities will keep on merging and eventually the

196 ELECTION

megacity will be formed. The problem is how to detect that this has happened. Recall
that no node has knowledge of the network, not even of its size (it is not part of the
standard set of assumptions for election); how does an entity finds out that all the
nodes are now part of the same city? Clearly, it is sufficient for just one entity to
determine termination (as it can then broadcast it to all the others).

Fortunately, fermination detection is simple to achieve; as one might have sus-
pected, it is the downtown of the megacity that will determine that the process is
terminated.

Consider the downtown D(A) of city A, and the operations it performs: It coor-
dinates the computation of the merge link and then originates a merge request to be
sent on that link. Now, the merge link is the shortest road going to another city. If A is
already the megacity, there are no other cities; hence all the unused links are internal.
This means that when computing the merge link, every district will explore every
unused link left and discover that each one of them is internal; it will thus choose
oo as its length (meaning that it does not have any outgoing links). This means that
the minimum-finding process will return co as the smallest length. When this hap-
pens, D(A) understands that the mega-merger is completed, and can notify all others.
(Notification is not really necessary: Exercise 3.10.81.)

As the megacity is a rooted tree with the downtown as its root, D(A) becomes the
leader; in other words,

Property 3.8.6 Protocol Mega-Merger correctly elects a leader.

Cost In spite of the complexity of protocol Mega-Merger, the analysis of its cost
is not overly difficult. We will first determine how many levels there can be and then
calculate the total number of messages transmitted by entities at a given level.

The Number of Levels A district acquires a larger level because its city has been
either absorbed or involved in a friendly merger. Notice that when there is absorption,
only the districts in one of the two cities increase their level, and thus the max level
in the system will not be increased. The max level can only increase after a friendly
merger.

How high can the max level be ? We can find out by linking the minimum number
of districts in a city to the level of the city.

Property 3.8.7 A city of level i has at least 2! districts.

This can be proved easily by induction. It is trivially true at the beginning (i.e.,
i =0).Letitbetruefor0 <i < k — 1. Alevel k city can only be created by a friendly
merger of two level £ — 1 cities; hence, by inductive hypothesis, such a city will have
at least 2 2¥—1 = 2K districts; thus the property is true also for i = k.

As a consequence,

Property 3.8.8 No city will reach a level greater than logn.

UNIVERSAL ELECTION PROTOCOLS 197

The Number of Messages per Level Consider a level i; some districts will reach
this level from level i — 1 or even lower; others might never reach it (e.g., because of
absorption, they move from a level lower than i directly to one larger than i). Consider
only those districts that do reach level i and let us count how many messages they
transmit in this level. In other words, as each message contains the level, we need to
determine how many messages are sent in which the level is i.

We do know that every district (except the downtown) of a city of level i receives
a broadcast message informing it that its current level is 7, and to start computing the
i-level merge-link (this last part may not be included). Hence at most every district
will receive such a message, accounting for a total of n messages.

If the received broadcast also requests to compute the i-level edge-merge link, a
district must find its shortest outgoing link, by using Outside? messages.

IMPORTANT. For the moment, we will not consider the Outside ? messages sent to
internal roads (i.e., where the reply is Internal); they will be counted separately later.

In this case, the district will send at most one Outside? message that causes a reply
External. The district will then participate in the convergecast, sending one message
toward the downtown. Hence, all these activities will account for a total of at most
3n messages.

Once the i-level merge-links have been determined, the Let-us-Merge messages
are originated and sent to and across the merge-links. Regardless of the final outcome
of the request, the forwarding of the i-level Lez-us-Merge message from the downtown
D(A) to the new city through the merge edge e¢(A) = (a, b) will cause at most n(A)
transmissions in a city A with n(A) districts (n(A) — 1 internal and one on the merge
edge). This means that these activities will cost in total at most

> n(A)<n

AeCity(i)

messages where City(i) is the set of the cities reaching level i.
This means that excluding the number of level i messages Outside? whose reply
is Internal, the total number of messages sent in level i is

Property 3.8.9 Cost(i) < 5n

The Number of Useless Messages In the calculation so far we have excluded
the Outside? messages whose reply was Internal. These messages are in a sense
“useless” as they do not bring about a merger; but they are also unavoidable. Let
us measure their number. On any such road there will be two messages, either the
Outside? message and the Internal reply, or two Outside? messages. So, we only
need to determine the number of such roads. These roads are not part of the city (i.e.,
not serviced by public transport). As the final city is a tree, the total number of the
publicly serviced roads is exactly n — 1. Thus, the total number of the other roads is
exactly m — (n — 1). This means that the total number of useless messages will be

Property 3.8.10 Useless = 2(m —n + 1)

198 ELECTION

The Total Combining Properties 3.8.8,3.8.9, and 3.8.10, we obtain the total number
of messages exchanged in total by protocol Mega-Merger during all its levels of
execution.

To these, we need to add then — 1 messages because of the downtown of the megac-
ity broadcasting termination (eventhough these could be saved: Exercise 3.10.81), for
a total of

M[Mega—Merger] < 2m + 5Snlogn +n + 1. (3.41)

Road Lengths and Minimum-Cost Spanning Trees In all the previous dis-
cussions we have made some nonstandard assumptions about the edges. We have in
fact assumed that each link has a value, which we called length, and that those values
are unique.

The existence of link values is not uncommon. In fact, dealing with networks,
usually there is a value associated with a link denoting, for example, the cost of using
that link, the transmission delays incurred when sending a message through it, and so
forth.

In these situations, when constructing a spanning tree (e.g., to use for broadcasting),
the prime concern is how to construct the one of minimum cost, that is, where the sum
of the values of its link is as small as possible. For example, if the value of the link is
the cost of using it, a minimum-cost spanning tree is one where broadcasting would
be the cheapest (regardless of who is the originator of the broadcast). Not surprisingly,
the problem of constructing a minimum-cost spanning tree is important and heavily
investigated.

We have seen that protocol Mega-Merger constructs a rooted spanning tree of the
network. What we are going to see now is that this tree is actually the unique minimum-
cost spanning tree of the network. We are also going to see how the nonstandard
assumptions that we have made about the existence of unique lengths can be easily
removed.

Minimum-Cost Spanning Trees 1In general, a network can have several minimum-
cost spanning trees. For example, if all links have the same value (or have no value),
then every spanning tree is minimal. By contrast,

Property 3.8.11 Ifthe link values are distinct, a network has a unique minimum-cost
spanning tree.

Assuming that there are distinct values associated to the links, protocol Mega-
Merger constructs a rooted spanning tree of the network. What we are going to see
now is that this tree is actually the unique minimum-cost spanning tree of the network.

To see why this is the case, we must observe a basic property of the minimum-cost
spanning tree 7. A fragment of T is a subtree of T'.

Property 3.8.12 Let A be a fragment of T, and let e be the link of minimum value
among those connecting A to other fragments; let B be the fragment connected by A.
Then the tree composed by merging A and B through e is also a fragment of T.

UNIVERSAL ELECTION PROTOCOLS 199

This is exactly what the Mega-Merger protocol does: It constructs the minimum-
cost spanning tree T (the megacity) by merging fragments (cities) through the ap-
propriate edges (merge link). Initially, each node is a city and, by definition, a single
node is a fragment. In general, each city A is a fragment of T'; its merge link is chosen
as the shortest (i.e., minimum value) link connecting A to any neighboring city (i.e.,
fragment); hence, by Property 3.8.12, the result of the merger is also a fragment.

Notice that the correctness of the process depends crucially on Property 3.8.11,
and thus on the distinctness of the link values.

Creating Unique Lengths We will now remove the assumptions that there are
values associated to the links and these values are unique.

If there are no values (the more general setting), then a unique value can be easily
given to each link using the fact that the nodes have unique ids: To link e = (a, b)
associate the sorted pair d(e) = (Min{id(a), id(b)}, Max{id(a), id(b)}) and use the
lexicographic ordering to determine which edge has smaller length. So, for example,
the link between nodes with ids 17 and 5 will have length (5, 17), which is smaller
than (6, 5) but greater than (4, 32). To do this requires, however, that each node knows
the id of all its neighbors. This information can be acquired in a preprocessing phase,
in which every node sends to its neighbors, its id (and will receive theirs from them);
the cost will be two additional messages on each link. Thus, even if there are no values
associated to the links, it is possible to use protocol Mega-Merger. The price we have
to pay is 2m additional messages.

If there are values but they are not (known to be) unique, they can be made so,
again using the fact that the nodes have unique ids. To link e = (a, b) with value v(e)
associate the sorted triple d(e) = (v(e), Min{id(a), id(b)}, Max{id(a), id(b)}). Thus,
links with the same values will now be associated to different lengths. So, for example,
the link between nodes with ids 17 and 5 and value 7 will have length (7, 5, 17), which
is smaller than (7, 6, 5) but greater than (7, 4, 32). Also, in this case, each node needs
to know the id of all its neighbors. The same preprocessing phase will achieve the
goal with only 2m additional messages.

Summary Protocol Mega-Merger is a universal protocol that constructs a
(minimum-cost) spanning tree and returns it rooted in a node, thus electing a leader.
If there are no initial distinct values on the links, a preprocessing phase needs to be
added, in which each entity exchanges its unique id with its neighbors; then the actual
execution of the protocol can start. The total cost of the protocol (with or without
preprocessing phase) is O(m + nlogn), which, we will see, is worst case optimal.

The main drawback of Mega-Merger is its design complexity, which makes any
actual implementation difficult to verify.

3.8.3 YO-YO

We will now examine another universal protocol for leader election. Unlike the pre-
vious one, it has simple specifications, and its correctness is simple to establish. This
protocol, called YO-YO, is a minimum-finding algorithm and consists of two parts: a
preprocessing phase and a sequence of iterations. Let us examine them in detail.

200 ELECTION

Setup In the preprocessing phase, called Setup, every entity x exchanges its id
with its neighbors. As a result, it will receive the id of all its neighbors. Then, x will
logically orient each incident link (x, y) in the direction of the entity (x or y), with
the largest id. So, if id(x) = 5 and its neighbor y has id(y) = 7, x will orient (x, y)
toward y; notice that y will also do the same. In fact, the orientation of each link will
be consistent at both end nodes.

Consider now the directed graph G soobtained. Thereisa very simple but important

property:
Property 3.8.13 G is acyclic.

To see why this is true, consider by contradiction the existence of a directed cycle
X0, X1, - - . , X; this means that id(xp) < id(x1) < ... < id(xx—1) but, as it is a cycle,
id(xr_1) < id(xp), W_}hiCh is impossible.

This means that G is a directed acyclic graph (DAG). In a DAG, there are three
types of nodes:

— source is a node where all the links are out-edges; thus, a source in G is a node
with an id smaller than that of all its neighbors, that is, it is a local minimum;

— sink is a node where all the links are in-edges; thus, a sink in G is a node whose
id is larger than that of all its neighbors, that is, it is a local maximum;

— internal node is a node, which is neither a source nor a sink.

As a result of the setup, each node will know whether it is a source, a sink, or
an internal node. We will also use the terminology of “down” referring to the di-
rection toward the sinks, and “up” referring to the direction toward the sources (see
Figure 3.53).

Once this preprocessing is completed, the second part of the algorithm start. As
YO-YOs is a minimum-finding protocol, only the local minima (i.e., the sources) will
be the candidates (Figure 3.54).

Iteration The core of the protocol is a sequence of iterations. Each iteration acts as
an electoral stage in which some of the candidates are removed from consideration.
Each iteration is composed of two parts, or phases, called YO- and -YO.

YO- This phase is started by the sources. Its purpose is to propagate to each sink the
smallest among the values of the sources connected to that sink (see Figure 3.54(a)).

1. A source sends its value down to all its out-neighbors.

2. An internal node waits until it receives a value from all its in-neighbors. It
then computes the minimum of all received values and sends it down to its
out-neighbors.

3. A sink waits until it receives a value from all its in-neighbors. It then computes
the minimum of all received values and starts the second part of the iteration.

3 In the sense that there is a directed path from the source to that sink.

UNIVERSAL ELECTION PROTOCOLS 201

(b)

FIGURE 3.53: In the Setup phase, (a) the entities know their neighbors’ ids and (b) orient
each incident link toward the smaller id, creating a DAG.

-YO This phase is started by the sinks. Its purpose is to eliminate some candidates,
transforming some sources into sinks or internal nodes. This is done by having the
sinks inform their connected sources of whether or not the id they sent is the smallest
seen so far (see Figure 3.54(b)).

4. A sink sends YES to all in-neighbors from which the smallest value has been
received. It sends NO to all the others.

5. An internal node waits until it receives a vote from all its out-neighbors. If all
votes are YES, it sends YES to all in-neighbors from which the smallest value

202 ELECTION

(b)

FIGURE 3.54: In the Iteration stage, only the candidates are sources. (a) In the YO- phase,
the ids are filtered down to the sinks. (b) In the - YO phase, the votes percolate up to the sources.

has been received and NO to all the others. If at least a vote was NO, it sends
NO to all its in-neighbors.

6. A source waits until it receives a vote from all its out-neighbors. If all votes are
YES, it survives this iteration and starts the next one. If at least a vote was NO,
it is no longer a candidate.

Before the next iteration can be started, the directions on the links in the DAG
must be modified so that only the sources that are still candidate (i.e., those that
received only YES) will still be sources; clearly, the modification must be done

UNIVERSAL ELECTION PROTOCOLS 203

(b)

FIGURE 3.55: (a) In the -YO phase, we flip the logical direction of the links on which a NO
is sent, (b) creating a new DAG, where only the surviving candidates will be sources.

without creating cycles. In other words, we must transform the DAG into a new
one, whose only sources are the undefeated ones in this iteration. This modifica-
tion is fortunately simple to achieve. We need only to “flip” the direction of each
link where a NO vote is sent (see Figure 3.55(a)). Thus, we have two meta-rules for
the -YO part:

7. When a node x sends NO to an in-neighbor y, it will reverse the (logical)
direction of that link (thus, y becomes now an out-neighbor of x).

8. When a node y receives NO from an out-neighbor x, it will reverse the (logical)
direction of that link (thus, x becomes now an in-neighbor of y).

204 ELECTION

As aresult, any source that receives a NO will cease to be a source; it can actually
become a sink. Some sinks may cease to be such and become internal nodes, and
some internal nodes might become sinks. However, no sink or internal node will ever
become a source (Exercise 3.10.83). A new DAG is, thus, created, where the sources
are only those that received all YES in this iteration (see Figure 3.55(b)).

Once a node has completed its part in the -YO phase, it will know whether it is
a source, a sink, or an internal node in the new DAG. The next iteration could start
now, initiated by the sources of the new DAG.

Property 3.8.14 Applying an iteration to a DAG with more than one source will
result into a DAG with fewer sources. The source with smallest value will still be a
source.

In each iteration, some sources (at least one) will be no longer sources; in contrast
to this, the source with the smallest value will be eventually the only one left under
consideration. In other words, eventually the DAG will have a single source (the
overall minimum, say c), and all other nodes are either sinks or internal nodes. How
can ¢ determine that it is the only source left, and thus it should become the leader?

If we were to perform an iteration now, only ¢’s value will be sent in the YO- phase,
and only YES votes will be sent in the -YO phase. The source ¢ will receive only YES
votes; but ¢ has received only YES votes in every iteration it has performed (that is
why it survived as a source). How can ¢ distinguish that this time is different, that
the process should end? Clearly, we need some additional mechanisms during the
iterations.

We are going to add some meta-rules, called Pruning, which will allow to reduce
the number of messages sent during the iterations, as well as to ensure that termination
is detected when only one source is left.

Pruning The purpose of pruning is to remove from the computation, nodes and
links that are “useless,” do not have any impact on the result of the iteration; in other
words, if they were not there, still the same result would be obtained: The same
sources would stay sources, and the others defeated. Once a link or a node is declared
“useless,” during the next iterations it will be considered nonexistent and, thus, not
used.

Pruning is achieved through two meta-rules.

The first meta-rule is a structural one. To explain it, recall that the function of the
sinks is to reduce the number of sources by voting on the received values. Consider
now a sink that is a leaf (i.e., it has only one in-neighbor); such a node will receive
only one value; thus it can only vote YES. In other words, a sink leaf can only agree
with the choice (i.e., the decision) made by its parent (i.e., its only neighbor). Thus,
a sink leaf is “useless.”

9. If asinkis aleaf (i.e., it has only one in-neighbor), then it is useless; it then asks
its parent to be pruned. If a node is asked to prune an out-neighbor, it will do so
by declaring useless (i.e., removing from consideration in the next iterations)
the connecting link.

UNIVERSAL ELECTION PROTOCOLS 205

O

FIGURE 3.56: Rules of pruning.

Notice that after pruning a link, a node might become a sink; if it is also a leaf,
then it becomes useless.

The other meta-rule is geared toward reducing the communication of redundant
information. During YO- phase, a (internal or sink) node might receive the value of the
same source from more than one in-neighbor; this information is clearly redundant as,
to do its job (choose the minimum received value), it is enough for the node to receive
just one copy of that value. Let x receive the value of source s from in-neighbors
X1, ..., Xk, k > 1. This means that in the DAG, there are directed paths from s to (at
least) k distinct in-neighbors of x. This also means that if the link between x and one
of them, say x1, did not exist, the value from s would still arrive to x from those other
neighbors, x7, ..., xx. In fact, if we had removed the links between x and all those
in-neighbors except one, x would still have received the value of s from that neighbor.
In other words, the links between x and xq, ..., x; are redundant: It is sufficient to
keep one; all others are useless and can be pruned. Notice that the choice regarding
the link that should be kept is irrelevant.

10. If in the YO- phase, a node receives the same value from more than one in-
neighbor, it will ask all of them except one to prune the link connecting them
and it will declare those links useless. If a node receives such a request, it
will declare useless (i.e., remove from consideration in the next iterations) the
connecting link.

Notice that after pruning a link because of rule (10), a sink might become a leaf and
thus useless (by rule (9)) (see Figure 3.57).

206 ELECTION

(b)

FIGURE 3.57: The effects of pruning in the first iteration: Some nodes (in black) and links
are removed from consideration.

The pruning rules require communication: In rule (7), a sink leaf needs to ask its
only neighbor to declare the link between them useless; in rule (8), a node receiving
redundant information needs to ask some of its neighbors to prune the connecting
link. We will have this communication take place during the -YO phase: The message
containing the vote will also include the request, if any, to declare that link useless.
In other words,

pruning is performed when voting.

Let us return now on our concern on how to detect termination. As we will see,
the pruning operations, integrated in the -YO phase, will do the trick. To understand
how and why, consider the effect of performing a full iteration (with pruning) on a
DAG with only one source.

UNIVERSAL ELECTION PROTOCOLS 207

NO

(b)

FIGURE 3.58: The effects of pruning in the second iteration: Other nodes (in black) and links
are removed from consideration.

Property 3.8.15 If the DAG has a single source, then, after an iteration, the new
DAG is composed of only one node, the source.

In other words, when there is a single source c, all other nodes will be removed,
and ¢ will be the only useful node left. This situation will be discovered by ¢ when,
because of pruning, it will have no neighbors (Figure 3.59).

Costs The general formula expressing the costs of protocol YO-YO is easy to
establish; however, the exact determination of the costs expressed by the formula is
still an open research problem. Let us derive the general formula.

In the Setup phase, each node sends its value to all its neighbors; hence, on each
link there will be two messages sent, for a total of 2m messages.

208 ELECTION

(a) (b)

FIGURE 3.59: The effects of pruning in the third iteration: Termination is detected as the
source has no more neighbors in the DAG.

Consider now an iteration. In the YO- stage, every useful node (except the sinks)
sends a message to its out-neighbors; hence, on each link still under consideration,
there will be exactly one message sent. Similarly, in the -YO stage, every useful node
(except the sources) sends a message to its in-neighbors; hence, on each link there
will be again only one message sent. Thus, in total in iteration i there will be exactly
2m; messages, where m; is the number of links in the DAG used at stage i.

The notification of termination from the leader can be performed by broadcasting
on the constructed spanning tree with only n — 1 messages.

Hence, the total cost will be

k(G)
2y mi +n—1,
i=0
where mo = m and k(G) is the total number of iterations on network G.

We need now to establish the number of iterations k(G). Let D(1) = G be the
original DAG obtained from G as a result of setup. Let G(1) be the undirected graph
defined as follows: There is a node for each source in D(1) and there is a link between
two nodes if and only if the two corresponding sources have a sink in common.
Consider now the diameter d(G(1)) of this graph.

Property 3.8.16 The number of iteration is at most [log diam(G(1))] + 1.

To see why this is the case, consider any two neighbors a and b in G(1). As, by
definition, the corresponding sources in D(1) have a common sink, at least one of
these two sources will be defeated (because the sink will vote YES to only one of
them). This means that if we take any path in G(1), at least half of the nodes on that
path will correspond to sources that will cease to be such at the end of this iteration.

4In a DAG, two sources a and b are said to have a common sink ¢ if ¢ is reachable from both a and b.

UNIVERSAL ELECTION PROTOCOLS 209

Furthermore, if (the source corresponding to) a survives, it will now have a sink
in common with each of the undefeated (sources corresponding to) neighbors of b.
This means that if we consider the new DAG D(2), the corresponding graph G(2) is
exactly the graph obtained by removing the nodes associated to the defeated sources,
and linking together the nodes previously at length two. In other words, d(G(2)) <
[d(G(1))/2].

Similar will be the relationship between the graphs G(i — 1) and G (i) correspond-
ing to the DAG D(i — 1) of iteration i — 1 and to the resulting new DAG D(i), re-
spectively. In other words, d(G(i)) < [d(G(i — 1))/27. Observe thatdiam(G(i)) = 1
corresponds to a situation where all sources except one will be defeated in this iter-
ation, and d(G(i)) = 0 corresponds to the situation where there is only one source
left (which does not know it yet). As d(G(i)) < 1 after at most [log diam(G(1))]
iterations, the property follows:

As the diameter of a graph cannot be greater than the number of its nodes, and as
the nodes of G(1) correspond to the sources of G, we have that

k(G) < [logs(G)] < [logn].

We can thus establish that without pruning, that is, with m; = m, we have a
O(mlogn) total cost

M{[Yo - Yo (without pruning)] < 2m logn + l.o.t. (3.42)

The unsolved problem is the determination of the real cost of the algorithm, when
the effects of pruning are taken into account.

3.8.4 Lower Bounds and Equivalences

We have seen a complex but rather efficient protocol, MegaMerger, for electing a
leader in an arbitrary network. In fact, it uses O(m + nlog n) messages in the worst
case. This means that in a ring network it uses O(nlogn) messages and it is thus
optimal, without even knowing that the network is a ring.

The next question we should ask is how efficient a universal election protocol can
be. In other words,

what is the complexity of the election problem?

The answer is not difficult to derive.

First of all observe that any election protocol requires to send a message on every
link. To see why this is true, assume by contradiction that indeed there is a correct
universal election protocol A that in every network G and in every execution under IR
does not send a message on every link of G. Consider a network G and an execution
of A in G; let z be the entity that becomes leader and let e = (x, y) € E be a link
where no message is transmitted by A (Figure 3.60(a)).

210 ELECTION

4 H N\
Y YN YN
G G’ G”
X X’ X’,
° °
a a a
[] [] []
z 7 A
b
° b b
v ® o~
N o .
\ %

(a) (b)

FIGURE 3.60: Every universal election protocol must send messages on every link.

We will now construct a new graph H as follows: We make two copies of G
and remove from both of them the edge e; we then connect these two graphs G’
and G” by adding two new edges e; = (x/, x”) and e; = (y’, "), where x’ and x”
(respective y’ and y”') are the copies of x (respective y) in G’ and G”, respectively,
and where the labels are: A,/(e1) = A,r(e1) = Ax(e) and Ay(er) = Ayr(ez) = Ay(e)
(see Figure 3.60(b)).

Run exactly the same execution of A we did in G on the two components G’ and
G” of H: As no message was sent along (x, y) in G, this is possible, but as no message
was sent along (x, y) in the original execution, x” and x”" will never send messages to
each other in the current execution; similarly, y" and y” will never send messages to
each other. This means that the entities of G’ will never communicate with the entities
of G” during this execution; thus, they will not be aware of their existence and will
operate solely within G’; similarly for the entities of G”.

This means that when the execution of A in G’ terminates, entity z’ will become
leader; but similarly, entity z” in G” will become leader as well. In other words, two
leaders will be elected, contradicting the correctness of protocol A. In other words,

M(Elect /IR) > m.

This lower bound is powerful enough to provide us with interesting and useful
information; for example, it states that Q(n?) messages are needed in a complete
graph if you do not know that is a complete graph. By contrast, we know that there
are networks where election requires way more than m messages; for example, in
rings m = n but we need (}(n log n) messages. As a universal election protocol must
run in every network, including rings, we can say that in the worst case,

M(Elect/IR) > Q(m + nlogn). (3.43)

UNIVERSAL ELECTION PROTOCOLS 211

This means that protocol MegaMerger is the worst case optimal and we know the
complexity of the election problem.

Property 3.8.17 The message complexity of election under IR is @(m + nlogn).

We are now going to see that constructing a spanning tree SPT and electing a leader
Elect are strictly equivalent: Any solution to one of them can be easily modified so
as to solve the other with the same message cost (in order of magnitude).

First of all, observe that , similarly to the Election problem, SPT also requires a
message to be sent on every link (Exercise 3.10.85):

M(SPT/IR) > m. (3.44)

We are now going to see how we can construct a spanning-tree construction al-
gorithm from any existing election protocol. Let A be an election protocol; consider
now the following protocol B:

1. Elect a leader using A.
2. The leader starts the execution of protocol Shout.

Recall that protocol Shout (seen in Section 2.5) will correctly construct a spanning
tree if there is a unique initiator. As the leader elected in step (1) is unique, a spanning

tree will be constructed in step (2). So, protocol B solves SPT. What is the cost ? As
Shout uses exactly 2m messages, we have

M[B] = M[A] + 2m.
In other words, with at most O (m) additional messages, any election protocol can

be made to construct a spanning tree; as {)(m) messages are needed anyway (Equation
3.44), this means that

M(SPT/IR) < M(Elect/IR). (3.45)

Focus now on a spanning-tree construction algorithm C. Using C as the first step,
it is easy to construct an election protocol D where (Exercise 3.10.86)

M[D] = M[C]+ O(n).
In other words, the message complexity of Elect is no more than that of Elect

plus at most another O(n) messages; as election requires more than O(n) messages
anyway (Property 3.8.17), this means that

M(Elect/IR) < M(SPT/IR). (3.46)

212 ELECTION

Combining Equations 3.45 and 3.46, we have not only that the problems are com-
putationally equivalent

Elect(/R) = SPT(IR) (3.47)
but also that they have the same complexity:
M(Elect/IR) = M(SPT/IR). (3.48)

Using similar arguments, it is possible to establish the computational and com-
plexity equivalence of election with several other problems (e.g., see Exercise
3.10.87).

3.9 BIBLIOGRAPHICAL NOTES

Election in a ring network is one of the first problems studied in distributed computing
from an algorithmic point of view. The first solution protocol, All the Way, is due to
Gerard Le Lann [29] proposal for unidirectional rings. Also for unidirectional rings,
protocol AsFar was developed by Ernie Chang and Rosemary Roberts [12]; it was
later analyzed experimentally by Friedman Mattern [34] and analytically by Christian
Lavault [31]. The probabilistic bidirectional version ProbAsFar was proposed
and analyzed by Ephraim Korach, Doron Rotem, and Nicola Santoro [28]. Hans
Bodlaender and Jan van Leeuwen later showed how to make it deterministic and
provided further analysis [8]; the exact asymptotic average value has been derived by
Christian Lavault [30].

The idea beyond the first @(n log n) worst-case protocol, Control, is due to Dan
Hirschberg and J.B. Sinclair [22]. Protocol Stages was designed by Randolph Franklin
[17]; the more efficient Stages with Feedback was developed by Ephraim Korach,
Doron Rotem, and Nicola Santoro [27].

The first O(n logn) worst case protocol for unidirectional rings, UniStages, was
designed by Danny Dolev, Maria Klawe, and Michael Rodeh [15]. The more efficient
MinMax is due to Gary Peterson [39]. The even more efficient protocol MinMax+ has
been designed by Lisa Higham and Theresa Przytycka [21]. Bidirectional versions
of MinMax with the same complexity as the original (Problem 3.10.4) have been
independently designed by Shlomo Moran, Mordechai Shalom, and Shmuel Zaks
[35], and by Jan van Leeuwen and Richard Tan [44].

The lower bound for unidirectional rings is due to Jan Pachl, Doron Rotem, and
Ephraim Korach [36]. James Burns developed the first lower bound for bidirectional
rings [9]. The lower bounds when 7 is known (Exercises 3.10.45 and 3.10.47), as well
as others, are due to Hans Bodlaender [5-7].

The O(n) election protocol for tori was designed by Gary Peterson [38] and later
refined for unoriented tori by Bernard Mans [33].

BIBLIOGRAPHICAL NOTES 213

The quest for a O (n) election protocol for hypercubes with dimensional labelings
was solved independently by Steven Robbins and Kay Robbins [40], Paola Flocchini
and Bernard Mans [16], and Gerard Tel [43]. Stefan Dobrev [13] has designed a
protocol that allows O(n) election in hypercubes with any sense of direction, not just
the dimensional labeling (Exercise 3.10.63). The protocol for unoriented hypercubes
has been designed by Stefan Dobrev and Peter Ruzicka [14].

The first optimal ®(nlogn) protocol for complete networks was developed by
Pierre Humblet [23]; an optimal protocol that requires O(n) messages on the average
(Exercise 3.10.74) was developed by Mee Yee Chan and Francis Chin [10]. The lower
bound is due to Ephraim Korach, Shlomo Moran, and Shmuel Zaks [26], who also
designed another optimal protocol. The optimal protocol CompleteElect, reducing
the O(nlogn) time complexity to O(n), was designed by Yeuda Afek and Eli Gafni
[2]; the same bounds were independently achieved by Gary Peterson [38]. The time
complexity has been later reduced to O(3) without increasing the message costs
(Exercise 3.10.68) by Gurdip Singh [42].

The fact that a chordal labeling allows to fully exploit the communication power of
the complete graph was observed by Michael Loui, Teresa Matsushita, and Douglas
West, who developed the first O(n) protocol for such a case [32]. Stefan Dobrev
[13] has designed a protocol that allows O (n) election in complete networks with any
sense of direction, not just the chordal labeling (Exercise 3.10.75).

Election protocols for chordal rings, including the doublecube, were designed and
analyzed by Hagit Attiya, Jan van Leeuwen, Nicola Santoro, and Shmuel Zaks [3].
The quest for the smallest cord structure has seen k being reduced from O(log) first
to O(loglogn) by T.Z. Kalamboukis and S.L. Mantzaris [24], then to O (logloglogn)
by Yi Pan [37], and finally to O(1) (Problem 3.10.12) by Andreas Fabri and Gerard
Tel [unpublished]. The observation that in such a chordal ring, election can be done
in O(n) messages even if the links are arbitrarily labeled (Problem 3.10.13) is due to
Bernard Mans [33].

The first O(m + n log n) universal election protocol was designed by Robert Gal-
lager [18]. Some of the ideas developed there were later used in MegaMerger, devel-
oped by Robert Gallager, Pierre Humblet, and Philip Spira, that actually constructs
a min-cost spanning tree [19]. The O(n logn) time complexity of MegaMerger has
been reduced first to O(nlog* n) by Mee Yee Chan and Francis Chin [11] and then
to O(n) (Problem 3.10.14) by Baruch Awerbuch [4] without increasing the message
complexity. It has been further reduced to ®(d) (Problem 3.10.15) by Hosame Abu-
Amara and Arkady Kanevsky but at the expense of a O(m logd) message cost [1];
the same reduction has been obtained independently by Juan A. Garay, Shay Kutten,
and David Peleg [20]. Protocol YO-YO was designed by Nicola Santoro ; the proof
that it requires at most O (log n) stages is due to Gerard Tel.

The computational relationship between the traversal and the election problems
has been discussed and analyzed by Ephraim Korach, Shay Kutten, and Shlomo
Moran [25]. The Q(m + nlogn) lower bound for universal election as well as some
of the other computational equivalence relationships were first observed by Nicola
Santoro [41].

214 ELECTION

3.10 EXERCISES, PROBLEMS, AND ANSWERS

3.10.1 Exercises

Exercise 3.10.1 Modify protocol MinF-Tree (presented in Section 2.6.2) so as to
implement strategy Elect Minimum Initiator in atree. Prove its correctness and analyze
its costs. Show that, in the worst case, it uses 3n + k, — 4 < 4n — 4 messages.

Exercise 3.10.2 Design an efficient single-initiator protocol to find the minimum
value in a ring. Prove its correctness and analyze its costs.

Exercise 3.10.3 Show that the time costs of protocol All the Way will be at most
2n — 1. Determine also the minimum cost and the condition that will cause it.

Exercise 3.10.4 Modify protocol All the Way so to use strategy Elect Minimum
Initiator.

Exercise 3.10.5 Modify protocol AsFar so to use strategy Elect Minimum Initiator.
Determine the average number of messages assuming that any subset of &, entities is

equally likely to be the initiators.

Exercise 3.10.6 Expand the rules of protocol Stages described in Section 3.3.4, so
as to enforce message ordering.

Exercise 3.10.7 Show that in protocol Stages, there will be at most one enqueued
message per closed port.

Exercise 3.10.8 Prove that in protocol Stages with Feedback, the minimum distance
between two candidates in stage i is d(i) > 2i—1,

Exercise 3.10.9 Show an initial configuration for n = 8 in which protocol Stages
will require the most messages. Describe how to construct the “worst configuration”
for any n.

Exercise 3.10.10 Determine the ideal time complexity of protocol Stages.

Exercise 3.10.11 Modify protocol Stages using the min-max approach discussed in
Section 3.3.7. Prove its correctness. Show that its message costs are unchanged.

Exercise 3.10.12 Write the rules of protocol Stages* described in Section 3.3.4.
Exercise 3.10.13 Assume that in Stages* candidate x in stage i receives a message
M with stage j > i. Prove that if x survives, then id(x) is smaller not only of idx

but also of the ids in the messages “jumped over” by M.

Exercise 3.10.14 Show that protocol Stages* correctly terminates.

EXERCISES, PROBLEMS, AND ANSWERS 215

Exercise 3.10.15 Prove that the message and time costs of Stages* are no worse
that those of Stages. Produce an example in which the costs of Stages* are actually
smaller.

Exercise 3.10.16 Write the rules of protocol Stages with Feedback assuming mes-
sage ordering.

Exercise3.10.17 Derive the ideal time complexity of protocol Stages with Feedback.

Exercise 3.10.18 Write the rules of protocol Stages with Feedback enforcing mes-
sage ordering.

Exercise 3.10.19 Prove that in protocol Stages with Feedback, the number of ring
segments where no feedback will be transmitted in stage i is 7;1.

Exercise3.10.20 Prove thatin protocol Stages with Feedback, the minimum distance
between two candidates in stage i is d(i) > 3'~ L

Exercise 3.10.21 Give a more accurate estimate of the message costs of protocol
Stages with Feedback.

Exercise 3.10.22 Show an initial configuration for n = 9 in which protocol Stages
with Feedback will require the most stages. Describe how to construct the “worst
configuration” for any n.

Exercise 3.10.23 Modify protocol Stages with Feedback using the min-max ap-
proach discussed in Section 3.3.7. Prove its correctness. Show that its message costs

are unchanged.

Exercise 3.10.24 Implement the alternating step strategy under the same restrictions
and with the same cost of protocol Alternate but without closing any port.

Exercise 3.10.25 Determine initial configurations that will force protocol Alternate
to use k steps when n = Fy.

Exercise 3.10.26 Show that the worst case number of steps of protocol Alternate is
achievable for every n > 4.

Exercise 3.10.27 Determine the ideal time complexity of protocol Alternate.

Exercise 3.10.28 Modify protocol Alternate using the min-max approach discussed
in Section 3.3.7. Prove its correctness. Show that its message costs are unchanged.

Exercise 3.10.29 Show the step-by-step execution of Stages and of UniStages in
the ring of Figure 3.3. Indicate for each step, the values know at the candidates.

216 ELECTION
Exercise 3.10.30 Determine the ideal time complexity of protocol UniStages.

Exercise 3.10.31 Modify protocol UniStages using the min-max approach discussed
in Section 3.3.7. Prove its correctness. Show that its message costs are unchanged.

Exercise 3.10.32 Design an exact simulation of Stages with Feedback for unidirec-
tional rings. Analyze its costs.

Exercise 3.10.33 Show the step-by-step execution of Alternate and of UniAlternate
in the ring of Figure 3.3. Indicate for each step, the values know at the candidates.

Exercise 3.10.34 Without changing its message cost, modify protocol UniAlternate
so that it does not require Message Ordering.

Exercise 3.10.35 Prove that the ideal time complexity of protocol UniAlternate is
O(n).

Exercise 3.10.36 Modify protocol UniAlternate using the min-max approach dis-
cussed in Section 3.3.7. Prove its correctness. Show that its message costs are un-
changed.

Exercise 3.10.37 Prove that in protocol MinMax, if a candidate x survives an even
stage i, its predecessor [(i, x) becomes defeated.

Exercise 3.10.38 Show that the worst case number of steps of protocol MinMax is
achievable.

Exercise 3.10.39 Modify protocol MinMax so that it does not require Message
Ordering. Implement your modification and throughly test your implementation.

Exercise 3.10.40 For protocol MinMax, consider the configuration depicted in Fig-
ure 3.32. Prove that once envelope (11, 3) reaches the defeated node z, z can determine
that 11 will survive this stage.

Exercise 3.10.41 Write the rules of Protocol MinMax—+ assuming message ordering.

Exercise 3.10.42 Write the rules of Protocol MinMax+ without assuming message
ordering.

Exercise 3.10.43 Prove Property 3.3.1.
Exercise 3.10.44 Prove that in protocol MinMax+, if an envelope with value v

reaches an even stage i + 1, it saves at least F; messages in stage i with respect to
MinMax (Hint: Use Property 3.3.1.).

EXERCISES, PROBLEMS, AND ANSWERS 217

Exercise 3.10.45 Prove that even if the entities know n, ave s (|n known) > (4—1‘ —€)
nlog n for any election protocol A for unidirectional rings.

Exercise 3.10.46 Prove that in bidirectional rings, ave 4 (1) > % n Hy, for any election
protocol A.

Exercise3.10.47 Prove that even if the entities know n, ave 4 (I |n known) > %n logn
for any election protocol A for unidirectional rings.

Exercise 3.10.48 Determine the exact complexity of Wake-Up in a mesh of dimen-
sions a X b.

Exercise 3.10.49 Show how to broadcast from a corner of a mesh dimensions a x b
with less than 2n messages.

Exercise 3.10.50 In Protocol ElectMesh, in the first stage of the election process,
if an interior node receives an election message, it will reply to the sender “I am in
the interior,” so that no subsequent election messages are sent to it. Explain why it is
possible to achieve the same goal without sending those replies.

Exercise 3.10.51 Consider the following simple modification to Protocol
ElectMesh: When sending a wake-up message, a node includes the information of
whether it is an internal, a border, or a corner node. Then, during the first stage of
the election, a border node uses this information if possible to send the election mes-
sage only along the outer ring (it might not be possible.). Show that the protocol so
modified uses at most 4(a + b) + 5n + k, — 32 messages.

Exercise 3.10.52 Broadcasting in Oriented Mesh. Design a protocol that allows
to broadcast in an oriented mesh using n — 1 messages regardless of the location of
the initiator.

Exercise 3.10.53 Traversal in Oriented Mesh. Design a protocol that allows to
traverse an oriented mesh using n — 1 messages regardless of the location of the
initiator.

Exercise 3.10.54 Wake-Up in Oriented Mesh. Design a protocol that allows to
wake-up all the entities in an oriented mesh using less than 2n messages regardless
of the location and the number of the initiators.

Exercise 3.10.55 Show that the effect of rounding up o does not affect the order
of magnitude of the cost of Protocol MarkBorder derived in Section 3.4.2 (Hint:
Show that it amounts to at most eight extra messages per candidate per stage with an
insignificant change in the bound on the number of candidates in each stage).

218 ELECTION

Exercise 3.10.56 Show that the ideal time of protocol MarkBorder can be as bad
as O(n).

Exercise 3.10.57 Improving Time in Tori (xx) Modify Protocol MarkBorder so
that the time complexity is O(/n) withoutincreasing the message complexity. Ensure
that the modified protocol is correct.

Exercise 3.10.58 Election in Rectangular Torus (x) Modify Protocol MarkBorder
so that it elects a leader in a rectangular torus of dimension [x w (I < w), using
O + [log I/w) messages.

Exercise 3.10.59 Determine the cost of electing a leader in an oriented hypercube if
in protocol HyperElect the propagation of the Match messages is done by broadcasting
in the appropriate subcube instead of “compressing the address.”

Exercise 3.10.60 Prove thatin protocol HyperElectthe distance d(j — 1, j) between
w/~1(z) and w/(z) is at most j.

Exercise 3.10.61 Prove Lemma 3.5.1, that is, that during the execution of protocol
HyperElect, the only duelists in stage i are the entities with the smallest id in one of
the hypercubes of dimension i — 1 in H.;_1.

Exercise 3.10.62 Show that the time complexity of Protocol HyperFlood is
O(log> N).

Exercise 3.10.63 (xx) Prove that it is possible to elect a leader in a hypercube using
O(n) messages with any sense of direction (Hint: Use long messages).

Exercise 3.10.64 Prove that in the strategy CompleteElect outlined in Section 3.6.1,
the territories of any two candidates in the same stage have no nodes in common.

Exercise 3.10.65 Prove that the strategy CompleteElect outlined in Section 3.6.1
solves the election problem.

Exercise 3.10.66 Determine the cost of the strategy CompleteElect described in
Section 3.6.1 in the worst case (Hint: Consider how many candidates there can be at
level §).

Exercise 3.10.67 Analyze the ideal time cost of protocol CompleteElect described
in Section 3.6.1.

Exercise 3.10.68 Design an election protocol for complete graphs that, like Com-
pleteElect, uses O(nlogn) messages but uses only O(n/logn) time in the worst
case.

EXERCISES, PROBLEMS, AND ANSWERS 219

Exercise 3.10.69 Generalize the answer to Exercise 3.10.68. Design an election
protocol for complete graphs that, for any logn < k < n, uses O(nk) messages and
O(n/k) time in the worst case.

Exercise 3.10.70 Prove that all the rings R(2), ..., R(k) where messages are sent
by protocol Kelect do not have links in common.

Exercise 3.10.71 Write the code for, implement, and test protocol Kelect-Stages.

Exercise 3.10.72 (x) Consider using the ring protocol Alternate instead of Stages
in Kelect. Determine what will be the cost in this case.

Exercise 3.10.73 (xx) Determine the average message costs of protocol Kelect-
Stages.

Exercise 3.10.74 (x) Show how to elect a leader in a complete network with
O(nlog n) messages in the worst case but only O(n) on the average.

Exercise 3.10.75 (xx) Prove that it is possible to elect a leader in a complete graph
using O(n) messages with any sense of direction.

Exercise 3.10.76 Show how to elect a leader in the chordal ring C,(1, 2, 3, 4..., t)
with O (n + % log %) messages.

Exercise 3.10.77 Prove that in chordal ring C}, electing a leader requires at least
Q(n + %log %) messages in the worst case (Hint: Reduce the problem to that of
electing a leader on a ring of size n/t).

Exercise 3.10.78 Show how to elect a leader in the double cube Cy(1,2,4,8...,
2MognTy with O(n) messages.

Exercise 3.10.79 Consider a merger message from city A arriving at neighbouring
city B along merge link (a, b) in protocol Mega-Merger. Prove that if we reverse the
logical direction of the links on the path from D(A) to the exit point a and direct
toward B the merge link, the union of A and B will be rooted in the downtown of A.

Exercise 3.10.80 District b of B has just received a Let-us-Merge message from a
along merge link (a, b). From the message, b finds out that level(A) > level(B); thus,
it postpones the request. In the meanwhile, the downtown D(B) chooses (a, b) as its
merge link. Explain why this situation will never occur.

Exercise 3.10.81 Find a way to avoid notification of termination by the downtown
of the megacity in protocol Mega-Merger (Hint: Show that by the time the downtown
understands that the mega-merger is completed, all other districts already know that
their execution of the protocol is terminated).

220 ELECTION

Exercise 3.10.82 Time Costs. Show that protocol Mega-Merger uses at most
O(nlogn) ideal time units.

Exercise 3.10.83 Prove that in the YO-YO protocol, during an iteration, no sink or
internal node will become a source.

Exercise 3.10.84 Modify the YO-YO protocol so that upon termination, a spanning
tree rooted in the leader has been constructed. Achieve this goal without any additional
messages.

Exercise 3.10.85 Prove that to solve SPT under IR, a message must be sent on
every link.

Exercise 3.10.86 Show how to transform a spanning-tree construction algorithm C
so as to elect a leader with at most O(n) additional messages.

Exercise 3.10.87 Prove that under IR, the problem of finding the smallest of the
entities’ values is computationally equivalent to electing a leader and has the same
message complexity.

3.10.2 Problems

Problem 3.10.1 Josephus Problem. Consider the following set of electoral rules.
In stage i, a candidate x sends its id and receives the id from its two neighboring
candidates, r(i, x) and [(i, x): x does not survive this stage if and only if its id is larger
than both received ids. Analyze the corresponding protocol Josephus, determining in
particular the number of stages and the total number of messages both in the worst
and in the average case. Analyze and discuss its time complexity.

Problem 3.10.2 Alternating Steps (x) Design a conflict resolution mechanism
for the alternating steps strategy to cope lack of orientation in the ring. Analyze the
complexity of the resulting protocol

Problem 3.10.3 Better Stages (xx) Construct a protocol based on electoral stages
t1h§t9 guarantees n; < ”‘T‘l with cn messages transmitted in each stage, where @ <

Problem 3.10.4 Bidirectional MinMax (x) Design a bidirectional version of Min-
Max with the same costs.

Problem 3.10.5 Distances in MinMax+ (»x) In computing the cost of protocol
MinMax+ we have used dis(i) = Fjy,. Determine what will be the cost if we use
dis(i) = 2' instead.

EXERCISES, PROBLEMS, AND ANSWERS 221

Problem 3.10.6 MinMax+ Variations (xx) In protocol MinMax+ we use “pro-
motion by distance” only in the even stages and “promotion by witness” only in the
odd stages. Determine what would happen if we use

1. only “promotion by distance” but in every stage;

2. only “promotion by witness” but in every stage;

3. “promotion by distance” in every stage and “promotion by witness” only in odd
stages;

4. “promotion by witness” in every stage and “promotion by distance” only in
even stages;

5. both “promotion by distance” and “promotion by witness” in every stage.

Problem 3.10.7 Bidirectional Oriented Rings. (xxx) Prove or disprove that there
is an efficient protocol for bidirectional oriented rings that cannot be used nor simu-
lated neither in unidirectional rings nor in general bidirectional ones with the same
or better costs.

Problem 3.10.8 Unoriented Hypercubes. (x) Design a protocol that can elect a
leader in a hypercube with arbitrary labelling using O(n loglogn) messages. Imple-
ment and test your protocol.

Problem 3.10.9 Linear Election in Hypercubes. (xxx) Prove or disprove that it
is possible to elect a leader in an hypercube in O(n) messages even when it is not
oriented.

Problem 3.10.10 Oriented Cube-Connected Cycles (x) Design an election pro-
tocol for an oriented CCC using O(n) messages. Implement and test your protocol.

Problem 3.10.11 Oriented Butterfly. Design an election protocol for an oriented
butterfly. Determine its complexity. Implement and test your protocol.

Problem 3.10.12 Minimal Chordal Ring (»x) Find a chordal ring with k = 2
where it is possible to elect a leader with O(n) messages.

Problem 3.10.13 Unlabelled Chordal Rings (xx) Show how to elect a leader
in the chordal ring of Problem 3.10.12 with O(n) messages even if the edges are
arbitrarily labeled.

Problem 3.10.14 Improved Time (x) Show how to elect a leader using O(m +
n log n) messages but only O(n) ideal time units.

Problem 3.10.15 Optimal Time (xx) Show how to elect a leader in O(d) time
using at most O (m log d) messages.

222 ELECTION

3.10.3 Answers to Exercises

Answer to Exercise 3.10.21

The size of the areas where no feedback is sent in stage i can vary from one another,
from stage to stage, and from execution to execution. We can still have an estimate
of their size. In fact, the distance d; between two candidates in stage i is d(i) > 3i-1
(Exercise 3.10.20). Thus, the total number of message transmissions caused in
stage i by the feedback will be at most n — n;;13'~!, yielding a total of at most

1 i
3n — Z[zofw] niy13'~! messages.

Answer to Exercise 3.10.44

Let h j(a) denote the candidate that originated message (a, j). Consider a message
(v,i + 1) and its originator z = h;41(v); this message was sent after receiving (v, i)
originated by x = h;(v).

Let y = h;(u) be the first candidate after x in the ring in stage i, and (u, i) the
message it originated. As v survives this stage, which is odd (i.e., min), it must be that
V< u

Message (v, i) travels from x toward y; upon receiving (v, i), node z in this
interval will generate (v,i + 1). Now z cannot be after node A;_1(u) in the ring
because by rule (IV) w = h;_j(u) would immediately generate (v,i 4 1) after
receiving (v, i). In other words, either z = w or z is before w. Thus we save at least
d(z,y) = dw,y) =d(hi—1(u), h;(w)) > F;, where the last inequality is by Property
3.3.1.

Partial Answer to Exercise 3.10.66

Consider a capturednode y that receives an attack after the other, say from a candidates
x1 in level i. According to the strategy, y will send a Warning to its owner z to
inform it of this attack and wait for a reply; depending on the reply, it will notify
x1 of whether the attack was successful (the case in which y will be captured by
x1) or not. Assume now that while waiting, y receives an attack after the other, say
from candidates x, ..., x; in that order, all in the same level i. According to the
strategy, y will issue a Warning to its owner z for each of them. Observe now that if
id(z) > id(x1) > ... > id(xg), each of these attacks will be successful, and y will in
turn be captured by all those candidates.

BIBLIOGRAPHY

[1] H. Abu-Amara and A. Kanevsky. On the complexities of leader election algorithms. In 5th
IEEE International Conference on Computing and Information, pages 202—-206, Sudbury,
May 1993.

[2] Y. Afek and E. Gafni. Time and message bounds for election in synchronous and asyn-
chronous complete networks. SIAM Journal on Computing, 20(2):376-394, 1991.

[3] H. Attiya, J. van Leeuwen, N. Santoro, and Shmuel Zaks. Efficient elections in chordal
ring networks. Algorithmica, 4:437-446, 1989.

[4] B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree, count-

ing, leader election, and related problems. In 19th Annual ACM Symposium on Theory of
Computing, pages 230-240, New York City, May 1987.

BIBLIOGRAPHY 223

[5] H.L. Bodlaender. A better lower bound for distributed leader finding in bidirectional,
asynchronous rings of processors. Information Processing Letters, 27(6):287-290, 1988.

[6] H.L. Bodlaender. New lower bound techniques for distributed leader finding and other
problems on rings of processors. Theoretical Computer Science, 81:237-256, 1991.

[7] H.L. Bodlaender. Some lower bound results for decentralized extrema-finding in rings of
processors. Journal on Computing and System Sciences, 42(1):97-118, 1991.

[8] H.L. Bodlaender and J. van Leeuwen. New upperbounds for distributed extrema-finding
in a ring of processors. In Proc. Ist International Workshop on Distributed Algorithms
(WDAG 1), pages 504-512, Ottawa, Aug 1985.

[9] J. Burns. A formal model for message passing systems. Technical Report UTR-91, Indiana
University, 1981.

[10] M.Y. Chan and EL.Y. Chin. Distributed election in complete networks. Distributed Com-
puting, 3(1):19-22, 1988.

[11] M.Y.Chan and EL.Y. Chin. Improving the time complexity of message-optimal distributed
algorithms for minimum-weight spanning trees. SIAM Journal on Computing, 19(4):612—
626, 1990.

[12] E.J.H. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in
circular configurations of processes. Communications of the ACM, 22(5):281-283, May
1979.

[13] S. Dobrev. Leader election using any sense of direction. In 6¢h International Colloguium
on Structural Information and Communication Complexity, pages 93—104, Lacanau, July
1999.

[14] S. Dobrev and P. Ruzicka. Linear broadcasting and O(n loglogn) election in unoriented
hypercubes. In 4th International Colloquium on Structural Information and Communica-
tion Complexity, pages 53—-68, Ascona, July 1997.

[15] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional algorithm for extrema-
finding in a circle. Journal of Algorithms, 3:245-260, 1982.

[16] P. Flocchini and B. Mans. Optimal elections in labeled hypercubes. Journal of Parallel
and Distributed Computing, 33(1):76-83, 1996.

[17] W.R. Franklin. On an improved algorithm for decentralized extrema-finding in a circular
configuration of processes. Communications of the ACM, 25(5):336-337, May 1982.

[18] R.G. Gallager. Finding a leader in a network with O(e) + O(n log n) messages. Technical
Report Internal Memo, M.L.T., 1979.

[19] R.G. Gallager, P.A. Humblet, and PM. Spira. A distributed algorithm for minimum
spanning tree. ACM Transactions on Programming Languages and Systems, 5(1):66-77,
1983.

[20] J. A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for minimum-
weight spanning trees. SIAM Journal on Computing, 27(1):302-316, February 1998.

[21] L. Higham and T. Przytycka. A simple, efficient algorithm for maximum finding on rings.
Information Processing Letters, 58:319-324, 1996.

[22] D.S. Hirschberg and J.B. Sinclair. Decentralized extrema finding in circular configurations
of processors. Communications of the ACM, 23:627-628, 1980.

[23] P.A. Humblet. Selecting a leader in a clique in O(n logn) messages. In Proc. 23rd Conf.
on Decision and Control, pages 1139-1140, Las Vegas, Dec. 1984.

[24] T.Z. Kalamboukis and S.L. Mantzaris. Towards optimal distributed election on chordal
rings. Information Processing Letters, 38(5):265-270, 1991.

224 ELECTION

[25] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of efficient
distributed leader finding algorithms. ACM Transactions on Programming Languages
and Systems, 12(1):84-101, January 1990.

[26] E. Korach, S. Moran, and S. Zaks. Optimal lower bounds for some distributed algorithms
for a complete network of processors. Theoretical Computer Science, 64:125-132, 1989.

[27] E. Korach, D. Rotem, and N. Santoro. Distributed election in a circle without a global
sense of orientation. International Journal of Computer Mathematics, 16:115-124, 1984.

[28] E. Korach, D. Rotem, and N. Santoro. Analysis of a distributed algorithm for extrema
finding in a ring. Journal of Parallel and Distributed Computing, 4:575-591, 1987.

[29] G. Le Lann. Distributed systems: Toward a formal approach. In IFIP Conference on
Information Processing, pages 155-160, 1977.

[30] C. Lavault. Average number of messages for distributed leader-finding in rings of proces-
sors. Information Processing Letters, 30(4):167-176, 1989.

[31] C. Lavault. Exact average message complexity values for distributed election on bidirec-
tional rings of processors. Theoretical Computer Science, 73(1):61-79, 1990.

[32] M.C. Loui, T.A. Matsushita, and D.B. West. Election in complete networks with a sense
of direction. Information Processing Letters, 22:185-187, 1986. see also Information
Processing Letters, vol.28:327, 1988.

[33] B. Mans. Optimal distributed algorithms in unlabeled tori and chordal rings. Journal of
Parallel and Distributed Computing, 46(1):80-90, 1997.

[34] F. Mattern. Message complexity of simple ring-based election algorithms-an empirical
analysis. In 9th IEEFE International Conference on Distributed Computing Systems, pages
94-100, 1989.

[35] S. Moran, M. Shalom, and S. Zaks. An 1.44...nlogn algorithm for distributed leader
finding in bidirectional rings of processors. Technical Report RC 11933, IBM Research
Division, 1986.

[36] J. Pachl, D. Rotem, and E. Korach. Lower bounds for distributed maximum finding algo-
rithms. Journal of the ACM, 31:905-917, 1984.

[37] Y. Pan. An improved election algorithm in chordal ring networks. International Journal
of Computer Mathematics, 40(3-4):191-200, 1991.

[38] G.L. Peterson. Improved algorithms for elections in meshes and complete networks. Tech-
nical report, Georgia Institute of Techchnology, December 1986.

[39] G.L. Peterson. An O(n log n) unidirectional algorithm for the circular extrema problem.
A.C.M. Transactions on Programming Languages and Systems, 4(4):758-762, oct 1982.

[40] S. Robbins and K.A. Robbins. Choosing a leader on a hypercube. In N. Rishe, S. Na-
jathe, and D. Tal, editors, PARBASE-90, International Conference on Databases, Parallel
Aarchitectures and their Applications, pages 469-471, Miami Beach, 1990.

[41] N. Santoro. On the message complexity of distributed problems. Journal of Computing
and Information Sciences, 13:131-147, 1984.

[42] G. Singh. Leader election in complete networks. STAM Journal on Computing, 26(3):772—
785, 1997.

[43] G. Tel. Linear election in oriented hypercubes. Parallel Processing Letters, 5:357-366,
1995.

[44] J. van Leeuwen and R.B. Tan. An improved upperbound for distributed election in bidi-
rectional rings of processors. Distributed Computing, 2(3):149-160, 1987.

I CHAPTER 4

Message Routing and Shortest Paths

4.1 INTRODUCTION

Communication is at the base of computing in a distributed environment, but the task
to achieve it efficiently is neither simple nor trivial.

Consider an entity x that wants to communicate some information to another entity
y; for example, x has a message that it wants to be delivered to y. In general, x does
not know where y is or how to reach it (i.e., which paths lead to it); actually, it might
not even know if y is a neighbor or not.

Still, the communication is always possible if the network Gis strongly connected.
In fact, it is sufficient for x to broadcast the information: every entity, including y will
receive it. This simple solution, called broadcast routing, is obviously not efficient;
on the contrary, it is impractical, expensive in terms of cost, and not very secure (too
many other nodes receive the message), even if it is performed only on a spanning-tree
of the network.

A more efficient approach is to choose a single path in G from x to y: The message
sent by x will travel along this path only, relayed by the entities in the path, until it
reaches its destination y. The process of determining a path between a source x and a
destination y is known as routing.

If there is more than one path from x to y, we would obviously like to choose the
“best” one, that is, the least expensive one. The cost 6(a, b) > 0 of a link (a, b),
traditionally called length, is a value that depends on the system (reflecting, e.g.,
time delay, transmission cost, link reliability, etc.), and the cost of a path is the sum
of the costs of the links composing it. The path of minimum cost is called shortest
path; clearly, the objective is to use this path for sending the message. The process of
determining the most economic path between a source and a destination is known as
shortest-path routing.

The (shortest-path) routing problem is commonly solved by storing at each entity
x the information that will allow to address a message to its destination through a
(shortest) path. This information is called routing table.

In this chapter we will discuss several aspects of the routing problem. First of
all, we will consider the construction of the routing tables. We will then address

Design and Analysis of Distributed Algorithms, by Nicola Santoro
Copyright © 2007 John Wiley & Sons, Inc.

225

226 MESSAGE ROUTING AND SHORTEST PATHS

@) (b)

FIGURE 4.1: Determining the shortest paths from s to the other entities.

the problem of maintaining the information of the tables up to date, should changes
occur in the system. Finally, we will discuss how to represent routing information in
a compact way, suitable for systems where space is a problem. In the following, and
unless otherwise specified, we will assume the set of restrictions IR: Bidirectional
Links (BL), Connectivity (CN), Total Reliability (TR), and Initial Distinct Values (ID).

4.2 SHORTEST PATH ROUTING

The routing table of an entity contains information on how to reach any possible
destination. In this section we examine how this information can be acquired, and
the table constructed. As we will see, this problem is related to the construction
of particular spanning-trees of the network. In the following, and unless otherwise
specified, we will focus on shortest-path routing.

Different types of routing tables can be defined, depending on the amount of
information contained in them. We will consider for now the full routing table: For
each destination, there is stored a shortest path to reach it; if there are more than one
shortest path, only the lexicographically smallest! will be stored. For example, in the
network of Figure 4.1, the routing table R7(s) for s is shown in Table 4.1.

We will see different approaches to construct routing tables, some depending on
the amount of local storage an entity has available.

4.2.1 Gossiping the Network Maps

A first obvious solution would be to construct at every entity the entire map of the
network with all the costs; then, each entity can locally and directly compute its
shortest-path routing table. This solution obviously requires that the local memory
available to an entity is large enough to store the entire map of the network.

! The lexicographic order will be over the strings of the names of the nodes in the paths.

SHORTEST PATH ROUTING 227

TABLE 4.1: Full Routing Table for Node s

Routing Shortest
Destination Path Cost

h (s, h) 1
k (s, h)(h, k) 4
c (s, c) 10
d (s, c)c,d) 12
e (s, e)

f (s, e)e, f) 8

The map of the network can be viewed as an n x n array MAP(G), one row and one
column per entity, where for any two entities x and y, the entry MAP[x, y] contains
information on whether link (x, y) exists, and if so on its cost. In a sense, each entity
x knows initially only its own row MAP[x, x]. To know the entire map, every entity
needs to know the initial information of all the other entities.

This is a particular instance of a general problem called input collection or gossip:
every entity has a (possibly different) piece of information; the goal is to reach a final
configuration where every entity has all the pieces of information. The solution of the
gossiping problem using normal messages is simple:

every entity broadcasts its initial information.

Since it relies solely on broadcast, this operation is more efficiently performed in
a tree. Thus, the protocol will be as follows:

Map_Gossip:

1. An arbitrary spanning tree of the network is created, if not already available;
this tree will be used for all communication.

2. Each entity acquires full information about its neighborhood (e.g., names of
the neighbors, cost of the incident links, etc.), if not already available.

3. Each entity broadcasts its neighborhood information along the tree.

At the end of the execution, each entity has a complete map of the network with
all the link costs; it can then locally construct its shortest-path routing table.

The construction of the initial spanning-tree can be done using O(m + nlogn)
messages, for example using protocol MegaMerger. The acquisition of neighborhood
information requires a single exchange of messages between neighbors, requiring in
total just 2m messages. Each entity x then broadcasts on the tree deg(x) items of
information. Hence the total number of messages will be at most

>, deg(x)(n—1) = 2m(n—1).
Thus, we have

M[Map_Gossip] = 2mn + lo.t. “.1)

228 MESSAGE ROUTING AND SHORTEST PATHS

This means that, in sparse networks, all the routing tables can be constructed with
at most O(n?) normal messages. Such is the case of meshes, tori, butterflies, and so
forth.

In systems that allow very long messages, not surprisingly the gossip problem, and
thus the routing table construction problem, can be solved with substantially fewer
messages (Exercises 4.6.3 and 4.6.4).

The time costs of gossiping on a tree depend on many factors, including the
diameter of the tree and the number of initial items an entity initially has (Exercise
4.6.2).

4.2.2 Iterative Construction of Routing Tables

The solution we have just seen requires that each entity has locally available enough
storage to store the entire map of the network. If this is not the case, the problem of
constructing the routing tables is more difficult to resolve.

Several traditional sequential methods are based on an iterative approach. Initially,
each entity x knows only its neighboring information: for each neighbor y, the entity
knows the cost 6(x, y) of reaching it using the direct link (x,y). On the basis of
this initial information, x can construct an approximation of its routing table. This
imperfect table is usually called distance vector, and in it the cost for those destinations
x knows nothing about will be set to co. For example, the initial distance vector for
node s in the network of Figure 4.1 is shown in Table 4.2.

This approximation of the routing table will be refined, and eventually corrected,
through a sequence of iterations. In each iteration, every entity communicates its
current distance vector with all its neighbors. On the basis of the received information,
each entity updates its current information, replacing paths in its own routing table if
the neighbors have found better routes.

How can an entity x determine if a route is better ? The answer is very simple:
when, in an iteration, x is told by a neighbor y that there exists a path m» from y to z
with cost g, x checks in its current table the path 71 to z and its cost g1, as well as the
costO(x, y). If 6(x, y) + g2 < g1, then going directly to y and then using 7, to reach
z is less expensive than going to z through the path 7y currently in the table. Among
several better choices, obviously x will select the best one.

TABLE 4.2: Initial Approximation of RT(s)

Routing Shortest
Destination Path Cost
h (s, h) 1
k ? 00
c (s, c) 10
d ? o0
e (s, e) 5
f ? 00

SHORTEST PATH ROUTING 229

TABLE 4.3: Initial Distance Vectors

L [s [h] k[c] d] e] []
s | - 1 | cof 10| 0| 5 | o©
h| 1 - 3| o0 o0 | 00| o
k| oo| 3 - | c0o| oo | 3 5
c| 10| oo | o0 | - 2 | o0 | o©
d| co| c0o| 0| 2 - 8 | o
e| 5| ocof| 3| oo 8 3
f|l o] c0of 5| o0 00| 3 -

Specifically, let V)’; [z] denote the cost of the “best” path from y to z known to y
in iteration i; this information is contained in the distance vector sent by y to all its
neighbors at the beginning of iteration i + 1. After sending its own distance vector
and upon receiving the distance vectors of all its neighbors, entity x computes

wlz] = Minyen (@ (x, y) + Vilz])

for each destination z. If w[z] < V)f [z], then the new cost and the corresponding path
to z is chosen, replacing the current selection.

Why should interaction just with the neighbors be sufficient follows from the fact
that the cost y,(b) of the shortest path from a to b has the following defining property:

0 if a=b
Property 4.2.1 b) = .
perty Ya(D) { MinweN(a) {6(a, w) + yw(b)} otherwise.

The Protocol Iterated_Construction based on this strategy converges to the correct
information and will do so after at most n — 1 iterations (Exercise 4.6.8). For example,
in the graph of Figure 4.1, the process converges to the correct routing tables after
only two iterations; see Tables 4.3—4.5 : for each entity, only the cost information for
every destination is displayed.

The main advantage of this process is that the amount of sforage required at an
entity is proportional to the size of the routing table and not to the map of the entire
system.

TABLE 4.4: Distance Vectors After First Iteration

| [s[r] k] c] d] e] f]
s - 1 4 10 12| 5 8
h 1 - 3 11] c0o| 6 8
k| 4 3 - oo | 11 3 5
c| 10 11 | o - 2 10 | o0
d| 12| oo | 11 2 - 8 11
e| 5 6 10 | 8 3
fl 8 8 51 oo | 11 3 -

230 MESSAGE ROUTING AND SHORTEST PATHS

TABLE 4.5: Distance Vectors After Second Iteration
L I s n] k[c[d] e[[]

s | - 1 4] 10] 12] 5 8
h 1 3] 11| 13| 6 8
k| 4 [13| 11| 3 5
c| 10| 11| 13] - 2 [10] 13
d| 12 n| 2 8 | 11
e| 5 6 3 10| 8 - 3
IARE 8 5 13| 11| 3 -

Let us analyze the message and time costs of the associated protocol.

In each iteration, an entity sends its distance vector containing costs and path
information; actually, it is not necessary to send the entire path but only the first hop
in it (see discussion in Section 4.4). In other words, in each iteration, an entity x needs
to send n items of information to its deg(x) neighbors. Thus, in total, an iteration
requires 2nm messages. As this process terminates after at most n — 1 iterations, we
have

M| Iterated_Construction] =2 (n — 1) n m. “4.2)

That is, this approach is more expensive than the one based on constructing all the
maps; it does, however, require less local storage.

As for the time complexity, let t(n) denote the amount of ideal time required to
transmit # items of information to the same neighbor; then

T[lterated_Construction] = (n — 1) t(n). 4.3)

Clearly, if the system allows very long messages, the protocol can be executed
with fewer messages. In particular, if messages containing O (n) items of information
(instead of O(1)) are possible, then in each iteration an entity can transmit its entire
distance vector to a neighbor with just one message and 7(n) = 1. The entire process
can thus be accomplished with O(n, m) messages and the time complexity would
then be justn — 1.

4.2.3 Constructing Shortest-Path Spanning Tree

The first solution we have seen, protocol Map_Gossip, requires that each entity has
locally available enough storage to store the entire map of the network. The second
solution, protocol Iterative_Construction, avoids this problem, but it does so at the
expense of a substantially increased amount of messages.

Our goal is to design a protocol that, without increasing the local storage re-
quirements, constructs the routing tables with a smaller amount of communication.
Fortunately, there is an important property that will help us in achieving this goal.

SHORTEST PATH ROUTING 231

Consider the paths contained in the full routing table RT(s) of an entity s, for
example, the ones in Table 4.1.These paths define a subgraph of the network (as not
every link is included). This subgraph is special: It is connected, contains all the
nodes, and does not have cycles (see Figure 4.1 where the subgraph links are in bold);
in other words,

it is a spanning tree!

It is called the shortest path spanning tree rooted in s(PT(s)), sometimes also known
as the sink tree of s.

This fact is important because it tells us that, to construct the routing table RT(s)
of s, we just need to construct the shortest path spanning tree PT(s).

Protocol Design To construct the shortest path spanning tree PT(s), we can adapt
a classical serial strategy for constructing PT(s) starting from the source s:

Serial Strategy

e We are given a connected fragment 7 of PT(s), containing s (initially, 7 will be
composed of just s).

¢ Consider now all the links going outside of 7 (i.e., to nodes not yet in 7). To each
such link (x, y) associate the value v(x, y) = ys(x) 4+ 0(x, y), that is, v(x, y) is
the cost of reaching y from the source s by first going to x (through a shortest
path) and then using the link (x, y) to reach y.

e Add to T the link (a, b) for which v(a, b) is minimum; in case of a tie, choose
the one leading to the node with the lexicographically smallest name.

The reason this strategy works is because of the following property:

Property 4.2.2 Let T and (a, b) be as defined in the serial strategy. Then T U (a, b)
is a connected fragment T of PT(s).

That is, the new tree, obtained by adding the chosen (a, b) to T, is also a connected
fragment of PT(s), containing s, and it is clearly larger than 7. In other words, using
this strategy, the shortest path spanning-tree PT(s) will be constructed, starting from
s, by adding the appropriate links, one at the time.

The algorithm based on this strategy will be a sequence of iterations started from the
root. In each iteration, the outgoing link (a, b) with minimum cost v(a, b) is chosen;
the link (a, b) and the node b are added to the fragment, and a new iteration is started.
The process terminates when the fragment includes all the nodes.

Our goal is now to implement this algorithm efficiently in a distributed way.

First of all, let us consider what a node y in the fragment 7" knows. Definitely y
knows which of its links are part of the current fragment; it also knows the length
ys(y) of the shortest path from the source s to it.

232 MESSAGE ROUTING AND SHORTEST PATHS

IMPORTANT. Letus assume for the moment that y also knows which of its links are
outgoing (i.e., lead to nodes outside of the current fragment) and which are internal.

In this case, to find the outgoing link (a, b) with minimum cost v (a, b) is rather
simple, and the entire iteration is composed of four easy steps:

Iteration

1. The root s broadcasts in T the start of the new iteration.

2. Upon receiving the start, each entity x in the current fragment 7' computes
locally v(x, y)= ys(x) + 8(x, y) for each of its outgoing incident links (x, y); it
then selects among them the link e = (x, y) for which v(x,) is minimized.

3. The overall minimum v(a, b) among all the locally selected v(e)’s is computed
at s, using a minimum-finding for (rooted) trees (e.g., see Section 2.6.7), and
the corresponding link (a, b) is chosen as the one to be added to the fragment.

4. Theroot s notifies b of the selection; the link (a, b) is added to the spanning-tree;
b computes y,(b), and s is notified of the end of the iteration.

Each iteration can be performed efficiently, in O(n) messages, as each operation
(broadcast, min-finding, notifications) is performed on a tree of at most n nodes.

There are a couple of problems that need to be addressed. A small problem is how
can b compute y,(b). This value is actually determined at s by the algorithm in this
iteration; hence, s can communicate it to b when notifying it of its selection.

A more difficult problem regards the knowledge of which links are outgoing (i.e.,
they lead to nodes outside of the current fragment); we have assumed that an en-
tity in 7 has such a knowledge about its links. But how can such a knowledge be
ensured?

As described, during an iteration, messages are sent only on the links of 7"and on
the link selected in that iteration. This means that the outgoing links are all unexplored
(i.e., no message has been sent or received on them). As we do not know which are
outgoing, an entity could perform the computation of step 2 for each of its unexplored
incident links and select the minimum among those. Consider for example the graph
of Figure 4.2(a) and assume that we have already constructed the fragment shown
in Figure 4.2(b). There are four unexplored links incident to the fragment (shown
as leading to square boxes), each with its value (shown in the corresponding square
box); the link (s, ¢) among them has minimum value and is chosen; it is outgoing and
it is added to the segment. The new segment is shown in Figure 4.2(c) together with
the unexplored links incident on it.

However, not all unexplored links are outgoing: An unexplored link might be
internal (i.e., leading to a node already in the fragment), and selecting such a link
would be an error. For example, in Figure 4.2(c), the unexplored link (e, k) has value
v(e, k) = 7, which is minimum among the unexplored edges incident on the fragment,
and hence would be chosen; however, node e is already in the fragment.

We could allow for errors: We choose among the unexplored links and, if the
link (in our example: (e, k)) selected by the root s in step 3 turns out to be internal

SHORTEST PATH ROUTING 233

(@) (b)

(c) (d)
FIGURE 4.2: Determining the next link to be added to the fragment.

(k would find out in step 4 when the notification arrives), we eliminate that link from
consideration and select another one. The drawback of this approach is its overall
cost. In fact, since initially all links are unexplored, we might have to perform the
entire selection process for every link. This means that the cost will be O (nm), which
in the worst case is O(n>): a high price to construct a single routing table.

A more efficient approach is to add a mechanism so that no error will occur.
Fortunately, this can be achieved simply and efficiently as follows.

When a node b becomes part of the tree, it sends a message to all its neighbors
notifying them that it is now part of the tree. Upon receiving such a message, a
neighbor ¢ knows that this link must no longer be used when performing shortest
path calculations for the tree. As a side effect, in our example, when the link (s, e)
is chosen in Figure 4.2(b), node e already knows that the link (e, k) leads to a node
already in the fragment; thus such a link is not considered, as shown in Figure 4.2(d).

RECALL. We have used a similar strategy with the protocol for depth-first traversal,
to decrease its time complexity.

IMPORTANT. Itis necessary for b to ensure that all its neighbors have received its
message before a new iteration is started. Otherwise, due to time delays, a neighbor

234 MESSAGE ROUTING AND SHORTEST PATHS

¢ might receive the request to compute the minimum for the next iteration before the
message from b has even arrived; thus, it is possible that ¢ (not knowing yet that b is
part of the tree) chooses its link to b as its minimum, and such a choice is selected as
the overall minimum by the root s. In other words, it is still possible that an internal
link is selected during an iteration.

Summarizing, to avoid mistakes, it is sufficient to modify rule 4 as follows:

4." The root s sends an Expand message to b and the link (a, b) is added to the
spanning tree; b computes y;(b), sends a notification to its neighbors, waits for
their acknowledgment, and then notifies s of the end of the iteration.

This ensures that there will be only n — 1 iterations, each adding a new node to
the spanning tree, with a total cost of O (n%) messages. Clearly we must also consider
the cost of each node notifying its neighbors (and them sending acknowledgments),
but this adds only O(m) messages in total.

The protocol, called PT_Construction, is shown in Figures 4.3—4.6.

Analysis Letusnow analyze the cost of protocol PT_Construction in details. There
are two basic activities being performed: the expansion of the current fragment of
the tree and the announcement (with acknowledgments) of the addition of the new
node to the fragment.

Let us consider the expansion first. It consists of a “start-up” (the root broadcasting
the Start_Iteration message), a “convergecast” (the minimum value is collected at the
root using the MinValue messages), two “notifications” (the root notifies the new
node using the Expansion message, and the new node notifies the root using the
Iteration_Completed message). Each of these operations is performed on the current
fragment, which is a tree, rooted in the source. In particular, the start-up and the
convergecast operations each cost only one message on every link; in the notifications,
messages are sent only on the links in path from the source to the new node, and there
will be only one message in each direction. Thus, in total, on each link of the tree
constructed so far, there will be at most four messages due to the expansion; two
messages will also be sent on the new link added in this expansion. Thus, in the
expansion at iteration i, at most 4(n; — 1) 4+ 2 messages will be sent, where n; is the
size of the current tree. As the tree is expanded by one node at the time, n; = i. In
fact, initially there is only the source; then the fragment is composed of the source
and a neighbor, and so on. Thus, the total number of messages due to the expansion is

n—1 n—1
S @ni—1)+2)= 3 4i —2)=2nn—1)—2n—1)=2n% —4n +2.

i=1 i=1

The cost due to announcements and acknowledgments is simple to calculate: Each
node will send a Notify message to all its neighbors when it becomes part of the tree

SHORTEST PATH ROUTING 235

PROTOCOL PT_Construction.

e States: S = { INITIATOR, IDLE, AWAKE, ACTIVE, WAITING_FOR_ACK, COMPUTING,
DONE };
St = { INITIATOR,IDLE }; Stgrym = { DONE }.

® Restrictions: IR ; UL

INITIATOR

Spontaneously

begin
source:= true;
my_distance:= 0;
ackcount:= |N(x)|;
send (Notify) to N(x);

end

Receiving (Ack)
begin
ackcount:= ackcount - 1;
if ackcount = 0 then
iteration:= 1;
v(x, y) = MIN{V(X, Z) VS N(x)};
path_length:= v(x, y);
Children:={y};
send (Expand, iteration, path_length) to y;
Unvisited:= N(x)—{y};
become ACTIVE;
endif
end

IDLE
Receiving (Notify)
begin
Unvisited:= N(x)— {sender};
send (Ack) to sender;
become AWAKE;
end
AWAKE

Receiving (Expand, iteration*, path_value*)
begin
my_distance:= path_value* ;
parent:= sender;
Children:= 0;
if [N(x)| > 1 then
send (Notify) to N(x)— {sender};

ackcounter:= |[N(x)| —1;
become WAITING_FOR_ACK;
else

send (/terationCompleted) to parent;
become ACTIVE;
endif
end

FIGURE 4.3: Protocol PT-Construction (1)

236 MESSAGE ROUTING AND SHORTEST PATHS

AWAKE
Receiving (Notify)
begin
Unvisited:= Unvisited—{sender};
send (Ack) to sender;
end

WAITING_FOR_ACK
Receiving (Ack)
begin
ackcount:= ackcount - 1;
if ackcount = 0 then
send (/terationCompleted) to parent;
become ACTIVE;
endif
end

ACTIVE
Receiving (Iteration_-Completed)
begin
if not (source) then
send (Iteration_Completed) to parent;
else
iteration:= iteration + 1;
send (Start_Iteration, iteration) to children;
Compute_Local _Minimum ;
childcount:= 0;
become COMPUTING;
endif
end

Receiving (Start _Iteration, iteration*)
begin
iteration:= iteration*;
Compute_Local _Minimum ;
if children = ¢ then
send (MinValue, minpath) to parent;
else
send (Start_Iteration, iteration) to children;
childcount:=0;
become COMPUTING;
endif
end

FIGURE 4.4: Protocol PT-Construction (II)

and receives an Ack from each of them. Thus, the total number of messages due to
the notifications is

23 IN@)| =2 Y deg(x) =4m.

xeV xeV

To complete the analysis, we need to consider the final broadcast of the Termination
message, which is performed on the constructed tree; this will add n — 1 messages to
the total, yielding the following:

M[PT_Construction] < 2n% +4m —3n+ 1 “4.4)

ACTIVE

SHORTEST PATH ROUTING

Receiving (Expand, iteration*, path_value*)
begin
send (Expand, iteration*, path_value*) to exit;
if exit = mychoice then
Children := Children U {mychoice};
Unvisited := Unvisited — {mychoice};
endif
end

Receiving (Notify)

begin
Unvisited:= Unvisited —{sender};
send (Ack) to sender;

end

Receiving (Terminate)

begin
send (T erminate) to children;
become DONE;

end

COMPUTING

Receiving (MinValue, path_value*)
begin
if path_value < minpath then
minpath:= path_value*;
exit:= sender;

endif
childcount :=childcount + 1;
if childcount = |Children| then

if not (source) then
send (MinValue, minpath) to parent;
become ACTIVE;

else
Check_for_Termination;

endif

endif
end

FIGURE 4.5: Protocol PT_Construction (1IT)

237

By adding a little bookkeeping, the protocol can be used to construct the routing
table RT(s) of the source (Exercise 4.6.13). Hence, we have a protocol that constructs
the routing table of a node using O (n?) messages.

We will see later how more efficient solutions can be derived for the special case
when all the links have the same cost (or, alternatively, there is no cost on the links).

Note that we have made no assumptions other than that the costs are non-negative;
in particular, we did not assume first in first out (FIFO) channels (i.e., message
ordering).

4.2.4 Constructing All-Pairs Shortest Paths

Protocol PT_Construction allows us to construct the shortest-path tree of a node,
and thus to construct the routing table of that entity. To solve the original problem of
constructing all the routing table, also known as all-pairs shortest-paths construction,

238 MESSAGE ROUTING AND SHORTEST PATHS

Procedure Check_for_Termination
begin
if minpath= inf then
send (Terminate) to Children;
become DONE;
else
send (Expand, iteration, minpath) to exit;
become ACTIVE;
endif
end

Procedure Compute_Local _Minimum
begin
if Unvisited = (then
minpath:= inf;
else
link_length:= v(x,y) = MIN{v(x, z) : z € Unvisited};
minpath:= my_distance + link_length;
mychoice:= exit:= y;
endif
end

FIGURE 4.6: Procedures used by protocol PT_Construction

this process must be repeated for all nodes. The complexity of resulting protocol
PT_All follows immediately from equation 4.4:

M[PTAll] <2n® —3n* +4(m — Dn 4.5)

The costs of protocols Map_Gossip, Iterative_Construction, and PT_All are shown
in Figure 4.7. Definitively better than protocol Iterative_Construction, protocol PT_All
matches the worst case cost of Map_Gossip without requiring large amounts of local
storage. Hence, it is an efficient solution.

It is clear that some information computed when constructing PT(x) can be reused
in the construction of PT(y). For example, the shortest path from x to y is just the
reverse of the one from y to x (under the bidirectional links assumption we are using);
hence, we just need to determine one of them. Even stronger is the so-called optimality
principle:

Property 4.2.3 If a node x is in the shortest path w from a to b, then m is also a
fragment of PT(x)

Hence, once a shortest path 7 has been computed for the shortest path tree of an
entity, this path can be added to the shortest path tree of all the entities in the path.
So, in the example of Figure 4.1, the path (s, e)(e, f) in PT(s) will also be a part of

[Algorithm [Cost [restrictions |
Map_Gossip O(n m) Q) (m) local storage
Iterative_Construction on* m)
PT_All on?)
SparserGossip O(n”logn)

FIGURE 4.7: Constructing all shortest path routing tables.

SHORTEST PATH ROUTING 239

PT(e) and PT(f). However, to date, it is not clear how this fact can be used to derive
a more efficient protocol for constructing all the routing tables.

Constructing a Sparser Subgraph Interestingly, the number of messages can
be brought down from O(n®) to O(n* logn) not by cleverly exploiting information
but rather by cleverly constructing a spanning subgraph of the network, called sparser
and then simulating the execution of Map_Gossip on it. To understand this subgraph,
we need some terminology.

Given a subset V' C V of the nodes, we call the eccentricity of x € V' in V' its
largest distance from the other nodes of V', that is, r(x, V') = maxyecy/{dg(x, y)};
then #(V") = max,cy/ {r(x, V')} is called the radius of V'. The density of x € V'
in V/ instead is the number of its neighbors that are in V’, that is, den(x, V') =
|N(x) U V'|; the density of V' is the sum of the densities of all its nodes: den(V’) =
> ey den(x, V).

Given a collection A of subsets of the nodes, the radius r(A) of A will be just the
largest among the radii of those subsets; the density den(A) will be just the sum of
the densities of those subsets. A (a, b)-sparser is just a partition of the set V of nodes
into subsets such that its radius is 7(S) = a and its density is den(S) = b.

The basic idea is to first of all

1. construct a sparser V' = (V/, ..., V{);
2. elect a leader x; in each of its sets Vl.’ ;
3. establish a path connecting the two leaders of each pair of neighboring subsets.

Then the execution of the protocol in G is simulated in the sparser. What this means
is that

4. each leader executes the algorithm for each node in its subset;

5. whenever in the algorithm a message is sent from a node in V/ to a node in V/,
the message is sent by x; to x;.

An interesting consequence of (5) above is that the cost of a node u sending
a message to all its neighbors, when simulated in the sparser, will depend on the
number of subsets in which u has neighbors as well as on the distance between the
corresponding leaders.

This means that for the simulation to be efficient, the radius should be small,
r(V’) = O(logn), and the density at most linear, den(S) = O(n). Fortunately we
have (Exercise 4.6.15):

Property 4.2.4 Any connected graph G of n nodes has a (logn, n)-sparser.

The existence of this good sparser is not enough; we must be able to construct
it with a reasonable amount of messages. Fortunately, this is also possible (Exercise

240 MESSAGE ROUTING AND SHORTEST PATHS

4.6.16). When constructing it, there are several important details that must be taken
care; in particular, the paths between the centers must be uniquely determined.

Once all of this is done, we must then define the set of rules (Exercise 4.6.17) to sim-
ulate protocol MapGossip. At this point, the resulting protocol, called SparserGossip,
yields the desired performance

M([SparserGossip] = O(n2 logn). 4.6)

Using Long Messages In systems that allow very long messages, not surpris-
ingly the problem can be solved with fewer messages. For example, if messages can
contain O(n) items of information (instead of O(1)), all the shortest path trees can
be constructed with just O(n*) messages (Exercise 4.6.18). If messages can contain
O(n?) items, then any graph problem including the construction of all shortest path
trees can be solved using O(n) messages once a leader has been elected (requiring at
least O(m + nlogn) normal messages). A summary of all these results is shown in
Figure 4.7.

4.2.5 Min-Hop Routing

Consider the case when all links have the same cost (or alternatively, there are no
costs associated to the links), that is, 8(a, b) = 6 for all (a, b) € E.

This case is special in several respects. In particular, observe that the shortest path
from a to b will have cost y,(b) = 6 dg(a, b), where dg(a, b) is the distance (in
number of hops) of a from b in G; in other words, the cost of a path will depend solely
on the number of hops (i.e., the number of links) in that path. Hence, the shortest path
between two nodes will be the one with minimum hops. For these reasons, routing in
this situation is called min-hop routing.

An interesting consequence is that the shortest path spanning tree of a node co-
incides with its breadth-first spanning tree. In other words, a breadth-first spanning
tree rooted in a node is the shortest path spanning tree of that node when all links
have the same cost.

Protocol PT_Construction works for any choice of the costs, provided they are
non-negative; so it constructs a breadth-first spanning tree if all the costs are the
same. However, we can take advantage of the fact that all links have the same costs
to obtain a more efficient protocol. Let us see how.

Breadth-First Spanning-Tree Construction Without any loss of generality,
let us assume that 6 = 1; thus, ys(a) = dg(s, a).

We can use the same strategy of protocol PT_Construction of starting from s and
successively expanding the fragment; only, instead of choosing one link (and thus one
node) at the time, we can choose several simultaneously: In the first step, s chooses all
the nodes at distance 1 (its neighbors); in the second step, s chooses simultaneously
all the nodes at distance 2; in general, in step i, s chooses simultaneously all the nodes
at distance #; notice that before step i, none of the nodes at distance i was a part of the

SHORTEST PATH ROUTING 241

fragment. Clearly, the problem is to determine, in step i, which nodes are at distance
i from s.

Observe this very interesting property: All the neighbors of s are at distance 1 from
s; all their neighbors (not at distance 1 from s) are at distance 2 from s; in general,

Property 4.2.5 If a node is at distance i from s, then its neighbors are at distance
eitheri — 1l oriori + 1 froms.

This means that once the nodes at distance i from s have been chosen (and become
part of the fragment), we need to consider only their neighbors to determine which
nodes are at distance i + 1.

So the protocol, which we shall call BF, is rather simple. Initially, the root s sends
a “start iteration 1” message to each neighbor indicating the first iteration of the
algorithm and considers them its children. Each recipient marks its distance as 1,
marks the sender as its parent, and sends an acknowledgment back to the parent. The
tree is now composed of the root s and its neighbors, which are all at distance 1 from s.

In general, after iteration i all the nodes at distance up to i are part of the tree.
Furthermore, each node at distance i knows which of its neighbors are at distance
i — 1 (Exercise 4.6.19).

In iteration i + 1, the root broadcasts on the current tree a “start iteration i + 1”
message. Once this message reaches a node x at distance 7, it sends a “explore i + 1”
message to its neighbors that are not at distance i — 1 (recall, x knows which they
are) and waits for a reply from each of them. These neighbors are either at distance i
like x itself, or at i 4 1; those at distance i are already in the tree and so do not need
to be included. Those at distance i + 1 must be attached to the tree; however, each
must be attached only once (otherwise we create a cycle and do not form a tree; see
Figure 4.8).

When a neighbor y receives the “Explore” message, the content of its reply will
depend on whether or not y is already part of the tree. If y is not part of the tree, it now
knows that it is at distance i 4 1 from s; it then marks the sender as its parent, sends a
positive acknowledgment to it, and becomes part of the tree. If y is part of the tree (even
if it just happened in this iteration), it will reply with a negative acknowledgment.

When x receives the reply from y, if the reply is positive, it will mark y as a
child, otherwise, it will mark y as already in the tree. Once all the replies have been
received, it participates in a convergecast notifying the root that the iteration has been
completed.

Cost Letus now examine the cost of protocol BF. Denote by n; the number of nodes
at distance at most i from s. In each iteration, there are three operations involving
communication: (1) the broadcast of “Start”on the tree constructed so far; (2) the
sending of “Explore” messages sent by the nodes at distance 7, and the corresponding
replies; and (3) the convergecast to notify the root of the termination of the iteration.

Consider first the cost of operation (2), that is, the cost of the “Explore” messages
and the corresponding replies. Consider a node x at distance i. As already mentioned,
its neighbors are at distance eitheri — 1 or i ori 4 1. The neighbors at distance i — 1

242 MESSAGE ROUTING AND SHORTEST PATHS

® o i

(0 0odd oood goon) i

FIGURE 4.8: Protocol BF expands an entire level in each iteration.

sent an “Explore” message to x in stage i — 1, so x sent a reply to each of them. In
stage i x sent an “Explore” message to all its other neighbors. Hence, in total, x sent
just one message (either “Explore” or reply) to each of its neighbors. This means that
in total, the number of “Explore” and “Reply” messages is

Y | N = 2m.

xeV

We will consider now the overall cost of operations (1) and (3). In iteration i + 1,
both broadcast and convergecast are performed on the tree constructed in iteration i,
thus costing n; — 1 messages each, for a total of 2n; — 2 messages. Therefore, the
total cost will be

> 2n— 1),

1<i<r(s)

where r(s) denotes the eccentricity of s (i.e., the hight of the breadth-first spanning
tree of).
Summarizing

M[BF] <2m + Z 2m; — 1) < 2m + 2(n — 1) d(G), 4.7)

1<i<r(s)

where d(G) is the diameter of the graph. We know that n; < n;11 and that n, ;) = n
in any network G and for any root s, but the actual values depend on the nature of G

SHORTEST PATH ROUTING 243

and on the position of s. For example, in the complete graph, r(s) = 1 for any s, so
the entire construction is completed in the first iteration; however, m = n(n — 1)/2;
hence the cost will be

nn—1D+2m—D=n*4+n-2.

On the contrary, if G is a line and s is an endpoint of the line, r(s) =n — 1 and
in each iteration we only add one node (i.e., n; = i); thus }) ;) 2(n; — 1) =
n? — 4n + 3; however, m = n — 1; hence the cost will be

2n—D+n?—4n+3=n?>—-2n+1.

As for the time complexity, in iteration i, the “Start” messages travel from the root
s to the nodes at distance i — 1, hence arriving there after i — 1 time units; therefore,
the nodes at distance i will receive the “Explore i” message after i time units. At
that time, they will start the convergecast to notify the root of the termination of the
iteration; this process requires exactly i time units. In other words, iteration i will cost
exactly 2i time units. Summarizing,

T[BF] =2 Z i =r(s)rGs)+ 1) < d(G)* +d(G). (4.8)

1<i<r(s)

Multiple Layers: An Improved Protocol To improve the costs, we must un-
derstand the structure of protocol BF. We know that the execution of protocol BF is
a sequence of iterations, started by the root.

Eachiterationi + 1 of protocol BF can be thought of as composed of three different
phases:

1. Initialization: the root node broadcasts the “start iteration i 4+ 1 along the
already constructed tree, which will reach the leaves (i.e., the nodes at distance
i from the root).

2. Expansion: in this phase, which is started by the leaves, new nodes (i.e., all
those of level i + 1) are added to the tree forming a larger fragment.

3. Termination: the root is notified of the end of this iteration using a convergecast
on the new tree.

Initialization and termination are bookkeeping operations that allow the root to
somehow synchronize the execution of the algorithm, iteration by iteration. For this
reason, the two of them, together, are also called synchronization. Each synchroniza-
tion costs O(n) messages (as it is done on a tree). Hence, this activity alone costs

O(nlL)

messages where L is the number of iterations.
In the original protocol BF, we expand the tree one level at the time; hence
L = d(G) and the total cost for synchronization alone is O(n d(G)) messages (see

244 MESSAGE ROUTING AND SHORTEST PATHS

N

t e 00000 0000

t+1 []

FIGURE 4.9: Protocol BF _Levels expands [levels in each iteration.

expression 4.7). This means that to reduce the cost of synchronization, we need to
decrease the number of iterations. To do so, we need each iteration to grow the current
tree by more than a single level, that is, we need each expansion phase to add several
levels to the current fragment.

Let us see how to expand the current tree by / > 1 levels, in a single iteration,
efficiently (see Figure 4.9). Assume that initially each node x # r has a variable
level, = 00, while level, = 0.

Let ¢ be the current level of the leaves; each leaf will start the exploration by
sending Explore(t + 1, 1) to its still unexplored neighbors. In general, the expansion
messages will be of the form Explore(level, counter), where level is the next level to
be assigned and counter denotes how many more levels should be expanded by the
node receiving the message.

When a node x not yet in the tree receives its first expansion message, say Ex-
plore(j, k) from neighbor y, it will accept the message, consider the sender y as its
parent in the tree and set its own level to be j. It then considers the number & of levels
still to be expanded. If k = 0, x sends immediately a Positive(j) reply to its parent y.
Instead, if k > 0, x will send Explore(j + 1, k — 1) to all its other neighbors and wait
for their reply: Those that reply Positive(j + 1) are considered its children, those that
reply Negative(j + 1) are considered not-children; if/when all have sent a reply with
level j + 1, x sends a Positive(j) reply to its parent y.

SHORTEST PATH ROUTING 245

Note that this first “Explore” message will not necessarily determine x’s parent or
level in the final tree; in fact, it is possible that x will receive later an Explore(j’, k')
message with a smallerlevel j* < j from aneighbor z. (Note: it might even be possible
that y = z.) What we will do in this case is to have x “trow away” the work already
done and “start from scratch” with the new information: x will accept the message,
consider z its parent, set its level to j’, send Explore(j' + 1, k" — 1) to all its other
neighbors (assuming k& > 0), and wait for their reply. Note that x might have to “trow
away” work already done more than once during an iteration. How many times ? It
is not difficult to figure out that it can happen at most t — j 4 1 times, where j is the
first level it receives in this iteration (Exercise 4.6.22).

We still have to specify under what conditions will a node x send a negative reply
to a received message Explore(j, k); the rule is simple: x will reply Negative(j) if no
shorter path is found from the root s to x, that is, if j > levely.

A more detailed description of the expansion phase of the protocol, which we
will call BF _Levels, is shown in Figure 4.10, describing the behavior of a node
x not part of the current fragment. As mentioned, the expansion phase is started
by the leaves of the current fragment, which we will call sources of this phase,
upon receiving the start iteration message from the root. Each source will then send
Explore(t + 1, 1) to their unexplored neighbors, where ¢ is the level of the leaves and
[(a design parameter) is the number of levels that will be added to the current frag-
ment in this iteration. The terminating phase also is started by the sources (i.e., the
leaves of the already existing fragment), upon receiving a reply to all their expansion
messages.

When x receives Explore(j, k) from its neighbor y:

1. If j < level,, a shorter path from the root s to x has been found.
(a) If x already has a parent, then x disregards all previous information (including the
identity of its parent).
(b) x considers y to be its parent, and sets level, = j.

(c) Ifk > 0,xsends Explore(j + 1, k — 1) to all its neighbors except its parent. If k = 0,
then a positive reply Positive(j) is sent to the parent y.

2. Let j > level,. In this case, this is not a shorter path to x; x replies with a negative
acknowledgment Negative().

When x receives a reply from its neighbor z:

1. If the level of the reply is (level, + 1) then:
(a) if the reply is Negative(level, + 1), then x considers z a non-child.
(b) if the reply is Positive(level, + 1) then x considers z a child.

(c) If, with this message, x has now received a reply with level (level, + 1) from all its
neighbors except its parent, then it sends Positive(level,) to its parent.

2. If the level of the reply is not (level, + 1) then the message is discarded.
FIGURE 4.10: Exploration phase of BF_Levels: x is not part of the current fragment

246 MESSAGE ROUTING AND SHORTEST PATHS

Correctness During the extension phase all the nodes at distance at most ¢ + [
from the root are indeed reached, as can be easily verified (Exercise 4.6.23). Thus, to
prove the correctness of the protocol, we need just to prove that those nodes will be
attached to the existing fragment at the proper level.

We will prove this by induction on the levels. First of all, all the nodes at level ¢ + 1
are neighbors of the sources and thus each will receive at least one Explore(t + 1,1)
message; when this happens, regardless of whatever has happened before, each will
set its level to ¢ 4 1; as this is the smallest level that they can ever receive, their level
will not change during the rest of the iteration.

Let it be true for the nodes up to level r + k, 1 <k <[— 1; we will show that it
also holds for the nodes in level # + k 4 1. Let 7w be the path of length # + k + 1 from
s to x and let u be the neighbor of x in this path; by definition, u is at level ¢ 4 k and, by
inductive hypothesis, it has correctly set (level,) = ¢ + k. When this happened, u sent
a message Explore(t +k 4+ 1,1 — k — 1) to all its neighbors, except its parent. As x
is clearly not u’s parent, it will eventually receive this message; when this happens,
x will correctly set (level,) =t + k + 1. So we must show that the expansion phase
will not terminate before x receives this message. Focus again on node u; it will not
send a positive acknowledgment to its parent (and thus the phase can not terminate)
until it receives a reply from all its other neighbors, including x. As, to reply, x must
first receive the message, x will correctly set its level during the phase.

Cost To determine the cost of protocol BF_Levels, we need to analyze the cost of
the synchronization and of the expansion phases.

The cost of a synchronization, as we discussed earlier, is atmost 2(n — 1) messages,
as both the initialization broadcast and the termination convergecast are performed
on the currently available tree. Hence, the total cost of all synchronization activities
depends on the number of iferations. This quantity is easily determined. As there
are radius(r) < d(G) levels, and we add [levels in every iteration, except in the last
where we add the rest, the number of iterations is at most [d(G)/[]. This means that
the total amount of messages due to synchronization is at most

10 00 4s)

2(”_1)[7 = ;

Let us now analyze the cost of the expansion phase initerationi, | <i < [d(G)/I].
Observe that in this phase, only the nodes in the levels L(i) = {(i —)]+ 1,
(i—DI+2,...,il —1,il} as well as the sources (i.e., the nodes at level (i — 1)I)
will be involved, and messages will only be sent on the m; links between them.
The messages sent during this phase will be just Explore(t + 1, 1), Explore(t + 2,
[— 1), Explore(t +3,1 —2), ..., Explore(t + 1, 0), and the corresponding replies
will be Positive(j) or Negative(j),t +1 < j <t +1.

A node in one of the levels in L(i) sends to its neighbors at most one of each
of those Explore messages; hence there will be on each of edge at most 2/ Explore
messages (/ in each direction), for a total of 2/m;. As for each Explore there is at most
one reply, the total number of messages sent in this phase will be no more than 4/m;.

SHORTEST PATH ROUTING 247

This fact, observing that the set of links involved in each iteration are disjoint, yields
less than

[d(G)/1
> 4lmp =4lm (4.10)
i=1

messages for all the explorations of all iterations. Combining equations (4.9) and
(4.10), we obtain

MI[BF Levels] < w + 41m. 4.11)

If we choose [= O(n//m), expression (4.11) becomes
M([BF _Levels|= O(n /m).

This formula is quite interesting. In fact, it depends not only on # but also on the
square root of the number m of links.
If the network is sparse (i.e., it has O(n) links), then the protocol uses only

0(1’11'5)

messages; note that this occurs in any planar network.
The worst case will be with very dense networks (i.e., m = O(n?)). However, in
this case the protocol will use at most

0(n?)

messages, which is no more than protocol BF'.

In other words, protocol BF_Levels will have the same cost as protocol BF only
for very dense networks and will be much better in all other systems; in particular,
whenever m = o(n?), it uses a subquadratic number of messages.

Let us consider now the ideal time costs of the protocol. Iteration i consists of
reaching levels L(i) and returning to the root; hence the ideal time will be exactly 2il
if 1 <i < [d(G)/!], and time 2d(G) in the last iteration. Thus, without considering
the roundup, in total we have

dG)/1 4(G)?
T[BF Levels]= Y 21i = +d(G). 4.12)
i=1

l

The choice [= O(n/+/m) we considered when counting the messages will give

T[BF _Levels]= O(d(G)*>\/m/n),

248 MESSAGE ROUTING AND SHORTEST PATHS

TABLE 4.6: Summary: Costs of Constructing a Breadth-first Tree

Network Algorithm Messages Time
General BF O(m + nd) od?
General BF _Levels O(n+/m) o(d*/m/n +d)
Planar BF _Levels on'?) Od?/J/n+d)

which, again, is the same ideal time as protocol B F only for very dense networks,
and less in all other systems.

Reducing Time with More Messages (x) If time is of paramount importance,
better results can be obtained at the cost of more messages. For example, if in protocol
BF _Levels we were to choose | = d(G), we would obtain an optimal time costs.

T[BF _Levels]= 2d(G).

IMPORTANT. We measure ideal time considering a synchronous execution where
the communication delays are just one unit of time. In such an execution, when
| = d(G), the number of messages will be exactly 2m + n — 1 (Exercise 4.6.25). In
other words, in this synchronous execution, the protocol has optimal message costs.
However, this is not the message complexity of the protocol, just the cost of that
particular execution. To measure the message complexity we must consider all possi-
ble executions. Remember that to measure ideal time we consider only synchronous
executions, while to measure message costs we must look at all possible executions,
both synchronous and asynchronous (and choose the worst one).

The cost in messages choosing / = d(G) is given by expression (4.11) that
becomes

O(m d(G)).

This quantity is reasonable only for networks of small degree. By the way, a priori
knowledge of d(G) is not necessary to obtain these bounds (either time or messages;
Exercise 4.6.24).

If we are willing to settle for a low but suboptimal time, it is possible to achieve it
with a better message complexity. Let us see how.

In protocol BF_Levels the network (and thus the tree) is viewed as divided into
“strips,” each containing / levels of the tree. See Figure 4.11.

The way the protocol works right now, in the expansion phase, each source (i.e.,
each leaf of the existing tree) constructs its own bf-tree over the nodes in the next
[levels. These bf-trees have differential growth rates, some growing quickly, some
slowly. Thus, it is possible for a quickly growing bf-tree to have processed many
more levels than a slower bf-tree. Whenever there are conflicts due to transmission
delays (e.g., the arrival of a message with a better level) or concurrency (e.g., the
arrival of another message with the same level), these conflicts are resolved, either

SHORTEST PATH ROUTING 249

©“

FIGURE 4.11: We need more efficient expansion of / levels in each iteration.

by “trowing away” everything already done and joining the new tree or sending a
negative reply. It is the amount of work performed to take care of these conflicts that
drives the costs of the protocol up. For example, when a node joins a bf-tree and has a
(new) parent, it must send out messages to all its other neighbors; thus, if a node has a
high degree and frequently changes trees, these adjacent edge messages dominate the
communication complexity. Clearly, the problem is how to perform these operations
efficiently.

Conflicts and overlap occurring during the constructions of those different bf-trees
in the / levels can be reduced by organizing the sources into clusters and coordinating
the actions of the sources that are in the same cluster, as well as coordinating the
different clusters.

This in turn requires that the sources in the same cluster must be connected so as to
minimize the communication costs among them. The connection through a tree is the
obvious option and is called a cover tree. To avoid conflicts, we want that for different
clusters the corresponding cover trees have no edges in common. So we will have a
forest of cover trees, which we will call the cover of all the sources. To coordinate
the different clusters in the cover, we must be able to reach all sources; this, however,
can already be done using the current fragment (recall, the sources are the leaves of
the fragment).

The message costs of the expansion phase will grow with the number of different
clusters competing for the same node (the so-called load factor); on the contrary, the
time costs will grow with the depth of the cover trees (the so-called depth factor).
Notice that it is possible to obtain tradeoffs between the load factor and the depth
factor by varying the size of the cover (i.e., the number of trees in the forest), for
example, increasing the size of the forest reduces the depth factor while increasing
the load factor.

We are thus faced with the problem of constructing clusters with small amount of
competition and shallow cover trees. Achieving this goal yields a time cost of O(d'*<)
and a message cost of O(m!*¢) for any fixed € > 0. See Exercise 4.6.26.

250 MESSAGE ROUTING AND SHORTEST PATHS

4.2.6 Suboptimal Solutions: Routing Trees

Up to now, we have considered only shortest-path routing, that is, we have been look-
ing at systems that always route a message to its destination through the shortest path.
We will call such mechanisms optimal. To construct optimal routing mechanisms, we
had to construct n shortest path trees, one for each node in the network, a task that
we have seen is quite communication expensive.

In some cases, the shortest path requirement is important but not crucial; actually,
in many systems, guarantee of delivery with few communication activities is the only
requirement.

If the shortest path requirement is relaxed or even dropped, the problem of con-
structing a routing mechanism (tables and forwarding scheme) becomes simpler and
can be achieved quite efficiently. Because they do not guarantee shortest paths, such
solutions are called suboptimal. Clearly there are many possibilities depending on
what (suboptimal) requirements the routing mechanism must satisfy.

A particular class of solutions is the one using a single spanning tree of the network
for all the routing, which we shall call routing tree. The advantages of such an approach
are obvious: We need to construct just one tree. Delivery is guaranteed and no more
that diam(T) messages will be used on the tree 7. Depending on which tree is used,
we have different solutions. Let us examine a few.

e Center-Based Routing. As the maximum number of messages used to deliver a
message is at most diam(T), a natural choice for a routing tree is the spanning tree
with a small diameter. One such a tree is shortest path tree rooted in a center of
the network. In fact, let ¢ a center of G (i.e., a node where the maximum distance
is minimized) and let PT(c) be the shortest path tree of c¢. Then (Exercise 4.6.27),

diam(G) < diam(PT(c)) < 2diam(G).

To construct such a tree, we need first of all to determine a center ¢ and then
construct PT(c), for example, using protocol PT_Construction.

e Median-Based Routing. Once we choose a tree T, an edge e = (x, y) of T linking
the subtree T[x — y] to the subtree T[y — x] will be used every time a node
in T[x — y] wants to send a message to a node in T[y — x], and viceversa
(see Figure 4.12), where each use costs 8(e). Thus, assuming that overall every
node generates the same amount of messages for every other node and all nodes
overall generate the same amount of messages, the cost of using 7 for routing
all this traffic is

Traffic(T) = Y. |Tlx —yll [Ty — x]| 6(x, y).
(x,y)eT

It is not difficult to see that such a measure is exactly the sum of all distances
between nodes (Exercise 4.6.28). Hence, the best tree T to use is one that

SHORTEST PATH ROUTING 251

T [x-y] T [y—x]

FIGURE 4.12: The message traffic between the two subtrees passes through edge e = (x, y).

minimizes the sum of all distances between nodes. Unfortunately, to construct
the minimum-sum-distance spanning tree of a network is not simple. In fact, the
problem is NP-hard. Fortunately, it is not difficult to construct a near-optimal
solution. In fact, let z be a median of the network (i.e., a node for which the sum
of distances Sum Dist(z) =).y dg(x, z) to all other nodes is minimized) and
let PT(z) be the shortest path tree of z. If Tx is the spanning tree that minimizes
traffic, then (Exercise 4.6.29)

Traffic(PT(z)) < 2 Traffic(Tx).

Thus, to construct such a tree, we need first of all to determine a median z and
then construct PT(z), for example, using protocol PT_Construction.

e Minimum-Cost Spanning-Tree Routing. A natural choice for routing tree is a
minimum-cost spanning tree (MST) of the network. The construction of such
a tree can be done, for example, using protocol MegaMerger discussed in
Chapter 3.

All the solutions above have different advantages; for example, the center-based
one offers the best worst-case cost, while the median-based one has the best average
cost. Depending on the nature of the systems and of the applications, each might be
preferable to the others.

There are also other measures that can be used to evaluate a routing tree. For
example, a common measure is the so-called stretch factor og(T) of a spanning tree
T of G defined as

dr(x,y)

T)=M , .
O'G() aXx,yeV d(;(x,y)

(4.13)

In other words, if a spanning tree T has a stretch factor «, then for each pair of
nodes x and y, the cost of the path from x to y in 7 is at most « times the cost of
the shortest path between x and y in G. A design goal could thus be to determine
spanning trees with small stretch factors (see Exercises 4.6.30 and 4.6.31). These
ratios are sometimes difficult to calculate.

Alternate, easier to compute, measures are obtained by taking into account only
pairs of neighbors (instead of pairs of arbitrary nodes). One such measure is the

252 MESSAGE ROUTING AND SHORTEST PATHS

so-called dilation, that is the length of the longest path in the spanning tree T corre-
sponding to an edge of G, defined as

dilationg(T) = Max(x,y)eg dr(x,y). 4.14)

We also can define the edge-stretch factor e(T') (or dilation factor) of a spanning
tree T of G as

dr(x,y)

€g(T) = Max, —_—.
G() (x,y)eE G(x,y)

(4.15)

As an example, consider the spanning tree PT(c) used in the center-based solution;
if all the link costs are the same, we have that for every two nodes x and y

1 <dg(x,y) <dpr)(x,y) < dpr() =dg.

This means that in PT(c) (unweighted) stretch factor oG (T'), dilation dilationg(T),
and edge-stretch factor € (7') are all bounded by the same quantity, the diameter dg
of G.

For a given spanning tree 7, the stretch factor and the dilation factor measure the
worst ratio between the distance in 7 and in G for the same pair of nodes and the
same edge, respectively. Another important cost measure is the average stretch factor
describing the average ratio:

dr(x,y)

0G(T) = Average, .y m

(4.16)

and the average edge-stretch factor (or average dilation factor) €(7") of a spanning
tree T of G as

_ dr(x, y)
GG(T) = Average(x’y)eE Q(x—y) (417)

Construction of spanning trees with low average edge-stretch can be done effec-
tively (Exercises 4.6.35 and 4.6.36).

Summarizing, the main disadvantage of using a routing tree for all routing tasks
is the fact that the routing path offered by such mechanisms is not optimal. If this is
not a problem, these solutions are clearly a useful and viable alternative to shortest
path routing.

The choice of which spanning tree, among the many, should be used depends on
the nature of the system and of the application. Natural choices include the ones
described above, as well as those minimizing some of the cost measures we have
introduced (see Exercises 4.6.31, 4.6.32, 4.6.33).

COPING WITH CHANGES 253
4.3 COPING WITH CHANGES

In some systems, it might be possible that the cost associated to the links change
over time; think, for example, of having a tariff (i.e., cost) for using a link during
weekdays different from the one charged in the weekend. If such a change occurs, the
shortest path between several pairs of node might change, rendering the information
stored in the tables obsolete and possibly incorrect. Thus, the routing tables need to
be adjusted.

In this section, we will consider the problem of dealing with such events. We will
assume that when the cost of a link (x, y) changes, both x and y are aware of the change
and of the new cost of the link. In other words, we will replace the Total Reliability
restriction with Total Component Reliability (thus, the only changes are in the costs)
in addition to the Cost Change Detection restriction.

Note that costs that change in time can also describe the occurrence of some link
failures in the system: The crash failure of an edge can be described by having its
cost becoming exceedingly large. Hence, in the following, we will talk of link crash
failures and of cost changes as the same types of events.

4.3.1 Adaptive Routing

In these dynamical networks where cost changes in time, the construction of the
routing tables is only the first step for ensuring (shortest path) routing: There must
be a mechanism to deal with the changes in the network status, adjusting the routing
tables accordingly.

Map Update A simple, albeit expensive solution is the Map_Update protocol.

It requires first of all that each table contains the complete map of the entire
network; the next “hop” for a message to reach its destination is computed on the
basis of this map. The construction of the maps can be done, for example, using
protocol Map_Gossip discussed in Section 4.2.1. Clearly, any change will render the
map inaccurate. Thus, integral part of this protocol is the update mechanism:

Maintenance

¢ as soon as an entity x detects a local change (either in the cost or in the status of
an incident link), x will update its map accordingly and inform all its neighbors
of the change through an “update” message;

e as soon as an entity y receives an “update” from a neighbor, it will update its
map accordingly and inform all its neighbors of the change through an “update”
message.

NOTE. In several existing systems, an even more expensive periodic maintenance
mechanism is used: Step 1 of the maintenance mechanism is replaced by having each
node, periodically and even if there are no detected changes, send its entire map to all
its neighbors. This is, for example, the case with the second Internet routing protocol:

254 MESSAGE ROUTING AND SHORTEST PATHS

The complete map is being sent to all neighbors every 10-60 s (10 s if there is a cost
change; 60 s otherwise).

The great advantage of this approach is that it is fully adaptive and can cope with
any amount and type of changes. The clear disadvantage is the amount of information
required locally and the volume of transmitted information.

Vector Update To alleviate some of the disadvantages of the Map_Update pro-
tocol, an alternative solution consists in using protocol Iterative_Construction, that
we designed to construct the routing tables, to keep them up-to-date should faults or
changes occur. Every entity will just keep its routing table.

Note that a single change might make all the routing tables incorrect. To complicate
things, changes are detected only locally, where they occur, and without a full map
it might be impossible to detect if it has any impact on a remote site; furthermore, if
more several changes occur concurrently, their cumulative effect is unpredictable: A
change might “undo” the damage inflicted to the routing tables by another change.

Whenever an entity x detects a local change (either in the cost or in the status of
an incident link), the update mechanism is invoked, which will trigger an execution
of possibly several iterations of protocol Iterative_Construction.

In regard to the update mechanism, we have two possible choices:

¢ recompute the routing tables: everybody starts a new execution of the algorithm,
trowing away the current tables, or

e update current information: everybody starts a new iteration of the algorithm
with x using the new data, continuing until the tables converge.

The first choice is very costly because, as we know, the construction of the routing
tables is an expensive process. For these reasons, one might want to recompute only
what and when is; hence the second choice is preferred.

The second choice was used as the original Internet routing protocol; unfortunately,
it has some problems.

A well known problem is the so-called count-to-infinity problem. Consider the
simple network shown in Figure 4.13. Initially all links have cost 1. Then the cost
of link (z, w) becomes a large integer K >> 1. Both nodes z and w will then start
an iteration that will be performed by all entities. During this iteration, z is told by y
that there is a path from y to w of cost 2; hence, at the end of the iteration, z sets its
distance to w to 3. In the next iteration, y sets its distance from w to 4 because the best
path to w (according to the vectors it receives from x and z) is through x. In general,
after the (2i + 1)th iteration, x and z will set their cost for reaching wto 2(i + 1) + 1,
while z will set it to 2(i + 1). This process will continue until z sets its cost for w

O— O——O——®

FIGURE 4.13: The count-to-infinity problem.

COPING WITH CHANGES 255

to the actual value K. As K can be arbitrarily large, the number of iterations can be
arbitrarily large.
Solving this problem is not easy. See Exercises 4.6.38 and 4.6.39.

Oscillation We have seen some approaches to maintain routing information in
spite of failures and changes in the system.

A problem common to all the approaches is called oscillation. It occurs if the cost
of alink is proportional to the amount of traffic on the link. Consider, for example, two
disjoint paths 71 and 7, between x and y, where initially m is the “best” path. Thus,
the traffic is initially sent to m1; this will have the effect of increasing its cost until
17 becomes the best path. At this point the traffic will be diverted on 7 increasing
its cost, and so forth. This oscillation between the two paths will continue forever,
requiring continuous execution of the update mechanism.

4.3.2 Fault-Tolerant Tables

To continue to deliver a message through a shortest path to its destination in presence
of cost changes or link crash failures, an entity must have up-to-date information on
the status of the system (e.g., which links are up, their current cost, etc.). As we have
seen, maintaining the routing tables correct when the topology of the network or the
edge values may change is a very costly operation. This is true even if faults are very
limited.

Consider, for example, a system where at any time there is at most one link down
(not necessarily the same one at all times), and no other changes will ever occur in
the system; this situation is called single link crash failure (SLF).

Even in this restricted case, the amount of information that must be kept in addition
to the shortest paths is formidable (practically the entire map). This is because the
crash failure of a single edge can dramatically change all the shortest path information.
As the tables must be able to cope with every possible choice of the failed link, even
in such a limited case, the memory requirements soon become unfeasible.

Furthermore when a link fails, every node must be notified so that it can route
messages along the new shortest paths; the subsequent recovery of that node also will
require such a notification. Such a notification process needs to be repeated at each
crash failure and recovery, for the entire lifetime of the system. Hence, the amount of
communication is rather high and never ending as long as there are changes.

Summarizing, the service of delivering a message through a shortest path in pres-
ence of cost changes or link crash failures, called shortest path rerouting (SR), is
expensive (sometimes to the point of being unfeasible) both in terms of storage and
communication.

The natural question is whether there exists a less expensive alternative. Fortu-
nately, the answer is positive. In fact, if we relax the shortest path rerouting require-
ment and settle for lower quality services, then the situation changes drastically; for
example, as we will see, if the requirement is just message delivery (i.e., not neces-
sarily through a shortest path), this service be achieved in our SLF system with very
simple routing tables and without any maintenance mechanism.

256 MESSAGE ROUTING AND SHORTEST PATHS
In the rest of this section, we will concentrate on the single-link crash failure case.

Point-of-failure Rerouting To reduce the amount of communication and of
storage, a simple and convenient alternative is to offer, after the crash failure of
an arbitrary single link, a lower quality service called point-of-failure rerouting (PR):

Point-of-failure (Shortest path) Rerouting:

1. if the shortest path is not affected by the failed link, then the message will be
delivered through that path;

2. otherwise, when the message reaches the node where the crash failure has
occurred (the “point of failure”), the message will then be rerouted through a
(shortest) path to its destination if no other failure occurs.

This type of service has clearly the advantage that there is no need to notify the
entities of a link crash failure and its subsequent reactivation (if any): The message is
forwarded as there are no crash failures and if, by chance, the next link it must take
has failed, it will be just then provided with an alternative route. This means that once
constructed with the appropriate information for rerouting,

the routing tables do not need to be maintained or updated.

For this reason, the routing tables supporting such a service are called fault-tolerant
tables.

The amount of information that a fault-tolerant table must contain (in addition to
the shortest paths) to provide such a service will depend on what type of information
is being kept at the nodes to do the rerouting and on whether or not the rerouting is
guaranteed to be through a shortest path.

A solution consists in every node x knowing two (or more) edge-disjoint paths
for each destination: the shortest path, and a secondary one to be used only if the
link to the next “hop” in the shortest path has failed. So the routing mechanism is
simple: When a message for destination r arrives at x, x determines the neighbor y in
the shortest path to r. If (x,y) is up, x will send the message to y, otherwise, it will
determine the neighbor z in the secondary path to » and forward the message to z.

The storage requirements of this solution are minimal: For each destination, a
node needs to store in its routing table only one link in addition to the one in the
fault-free shortest path. As we already know how to determine the shortest path trees,
the problem is reduced to the one of computing the secondary paths (see Exercise
4.6.37).

NOTE. The secondary paths of a node do not necessarily form a tree.

A major drawback of this solution is that rerouting is not through a shortest path: If
the crash failure occurs, the system does not provide any service other than message
delivery. Although acceptable in some contexts, this level of service might not be

COPING WITH CHANGES 257

tolerable in general. Surprisingly, itis actually possible to offer shortest path rerouting
storing at each node only one link for each destination in addition to the one in the
fault-free shortest path.

We are now going to see how to design such a service.

Point-of-Failure Shortest Path Rerouting Consider a message originated by x
and whose destination is s; its routing in the system will be according to the information
contained in the shortest path spanning tree PT(s). The tree PT(s) is rooted in s; so
every node x # s has a parent p,(x), and every edge in PT(s) links a node to its parent.

When the link es[x] = (ps(x), x) fails, it disconnects the tree into two subtrees,
one containing s and the other x; call them T'[s — x] and T[x — s]; see Figure 4.14.

When e, fails, a new path from x to s must be found. It cannot be any: It must be
the shortest path possible between x and s in the network without e [x].

Consider a link e = (u,v) € G \ PT(s), not part of the tree, that can reconnect
the two subtrees created by the crash failure of eg[x], thatis, u € T[s —x] and v €
T[x — s]. We will call such a link a swap edge for e;[x].

Using e we can create a new path from x to s. The path will consist of three parts: the
path from x to vin T [x /e], the edge (u, v), and the path from u to s; see Figure 4.15.
The cost of going from x to s using this path will then be

dpr(s)(s, u) + 0(u, v) + dprs)(v, x) = d(s,u) +60(u,v) +dv, x).
This is the cost of using e as a swap for es[x]. For each es[x] there are several edges
that can be used as swaps, each with a different cost. If we want to offer shortest path

rerouting from x to s when e, [x] fails, we must use the optimal swap, that is the swap
edge for ez[x] of minimum cost.

P

T [s—x] T [x—s]

FIGURE 4.14: The crash failure of e;[x] = (p,(x), x) disconnects the tree PT(s).

258

MESSAGE ROUTING AND SHORTEST PATHS

o

FIGURE 4.15: Point-of-failure rerouting using the swap edge ¢ = (u, v) of e;[x].

So the first task that must be solved is to how find the optimal swap for each
edge es[x] in PT(s). This computation can be done efficiently (Exercises 4.6.40 and
4.6.41); its result is that every node x knows the optimal swap edge for its incident
link eg[x]. To be used to construct the routing tables, this process must be repeated n
times, one for each destination s (i.e., for each shortest path spanning tree PT(s)).

Once the information about the optimal swap edges has been determined, it needs
to be integrated in the routing tables so as to provide point-of-failure shortest path
rerouting.

The routing table of a node x must contain information about (1) the shortest paths
as well as about (2) the alternative paths using the optimal swaps:

1. Shortest path information. First and foremost, the routing table of x contains

for each destination s the link to the neighbor in the shortest path to s if there
are no failures. Denote by p,(x) this neighbor. The choice of symbol is not
accidental: This neighbor is the parent of x in PT(s) and the link is really

es[x] = (ps(x), x).

. Alternative path information. In the entry for the destination s, the routing

table of x must also contain the information needed to reroute the message if
es[x] = (ps(x), x) is down. Let us see what this information is.

Let e = (u, v) be the optimal swap edge that x has computed for es[x]; this
means that the shortest path from x to s if es[x] fails is by first going from x to
v, then over the link (u, v), and finally from « to s. In other words, if e;[x] fails,
x must reroute the message for s to v, that is, x must send it to its neighbor in
the shortest path to v. The shortest paths to v are described by the tree PT(v); in
fact, this neighbor is just p,(x) and the link over which the message to s must
be sent when rerouting is precisely e,[x] = (py(x), x) (see Exercise 4.6.42).

Concluding, the additional information x must keep in the entry for desti-
nation s are the rerouting link e,[x] = (p,(x), x) and the closest node v on the
optimal swap edge for e;[x]; this information will be used only if e;[x] is down.

COPING WITH CHANGES 259

TABLE 4.7: Entry in the Routing Table of x; e=(u,v) is the
Optimal Swap Edge for eg[x]

Final Normal Rerouting Swap Swap
Destination Link Link Destination Link
s (ps(x), x) (pv(x),x) v (u,v)

Any message must thus contain, in addition to the final destination (node s in our
example), also a field indicating the swap destination (node v in our example), the
swap link (link (u, v) in our example), and a bit to explain which of the two must
be considered (see Table 4.7). The routing mechanism is rather simple. Consider a
message originating from r for node s.

PSR Routing Mechanism

1. Initially, r sets the final destination to s, the swap destination and the swap link
to empty, and the bit to 0; it then sends the message toward the final destination
using the normal link indicated in its routing table.

2. If a node x receives the message with final destination s and bit set to 0, then
(a) ifx = s, the message has reached its destination: s processes the message;
(b) ifes[x] = (ps(x), x)is up, x forwards the unchanged message on that link;
(c) ifeg[x] = (ps(x), x) is down, then x

i. copies to the swap destination and swap link fields of the message the
swap destination and swap link entries for s in its routing table;
ii. sets the bit to 1;
iii. sends the message on the rerouting link indicated in its table.

3. If a node x receives the message with final destination s and bit set to 1, and
swap destination set to v, then

(a) if x = v, then
i. it sets the bit to O;
ii. it sends the message on the swap link;
(b) otherwise, it forwards the unchanged message on the link e, [x] = (p,(x), x).

4.3.3 On Correctness and Guarantees

Adaptive Routing 1In all adaptive routing approaches, maintenance of the tables
is carried out by broadcasting information about the status of the network; this can

Destination Mode SwapDest SwapLink Content

S 1 % (u, v) INFO

FIGURE 4.16: Message rerouted by x using the swap edge e =(u, v) of e;[x].

260 MESSAGE ROUTING AND SHORTEST PATHS

be done periodically or just when changes do occur. In all cases, news of changes
detected by a node will eventually reach any node (still connected to it). However,
because of time delays, while an update is being disseminated, nodes still unaware
will be routing messages on the basis of incorrect information. In other words, as
long as there are changes occurring in the system (and for some time afterwards),
the information in the tables is unreliable and might be incorrect. In particular, it is
likely that routing will not be done through a shortest path; it is actually possible
that messages might not be delivered as long as there are changes. This sad status of
affairs is not due to the individual solutions but solely due to the fact that time delays
are unpredictable. As a result,

it is impossible to make any guarantee on correctness and in particular on shortest
path delivery for adaptive routing mechanisms.

This situation occurs even if the changes at any time are few and their nature limited,
as the SLF. It would appear that we should be able to operate correctly in such a
system; unfortunately this is not true:

It is impossible to provide shortest path routing even in the single-link
crash failure case.

This is because the crash failure of a single edge can dramatically change all the
shortest path information; thus, when the link fails, every node must be notified so
that it can route messages along the new shortest paths; the subsequent recovery of
that node will also require such a notification. Such a notification process needs to be
repeated at each crash failure and recovery, and again the unpredictable time delays
will make it impossible to guarantee correctness of the information available at the
entities, and thus of the routing decision they make on the basis of that information.

Question. What, if anything, can be guaranteed?

The only think that we can say is that, if the changes stop (or there are no changes
for a long period of time), then the updates to the routing information converge to
the correct state, and routing will proceed according to the existing shortest paths. In
other words, if the “noise” caused by changes stops, eventually the entities get the
correct result.

Fault-Tolerant Tables 1In the fault-tolerant tables approach, no maintenance of
the routing tables is needed once they have been constructed. Therefore, there are
no broadcasts or notifications of changes that, because of delays, might affect the
correctness of the routing.

However, also, fault-tolerant tables suffer because of the unpredictability of time
delays. For example, even with the single-link crash failure, point-of-failure shortest-
path rerouting can not be guaranteed to be correct: While the message for s is being
rerouted from x toward the swap edge es[x], the link e;[x] might recover (i.e., come
up again) and another link on the may go down. Thus, the message will again be
rerouted and might continue to do so if a “bad” sequence of recovery failure occurs.

ROUTING IN STATIC SYSTEMS: COMPACT TABLES 261

In other words, not only the message will not reach s through a shortest path from the
first point-of-failure, but it will not reach s at all as long as there is a change. It might
be argued that such a sequence of events is highly unlikely, but it is possible. Thus,
again,

Question. What, if anything, can be guaranteed?

As in the case of adaptive routing, the only guarantee is that if the changes stop (or
there are no changes for a long period of time), then messages will be (during that
time) correctly delivered through point-of-failure shortest paths.

4.4 ROUTING IN STATIC SYSTEMS: COMPACT TABLES

There are systems that are static in nature; for example, if Total Reliability holds, no
changes will occur in the network topology. We will consider static also any system
where the routing table, once constructed, cannot be modified (e.g., because they are
hardcoded/hardwired). Such is, for example, any system etched on a chip; should
faults occur, the entire chip will be replaced.

In these systems, an additional concern in the design of shortest path routing tables
is their size, that is, an additional design goal is to construct table that are as small as
possible.

4.41 The Size of Routing Tables

The full routing table can be quite large. In fact, for each of its n — 1 destinations, it
contains the specification (and the cost) of the shortest path to that destination. This
means that each entry possibly contains O(n logw) bits, where w > n is the range
of the entities’ names, for a total table size of O(n? log w) bits. Assuming the best
possible case, that is, w = n, the number of bits required to store all the » full routing
tables is

SrULL = O(n3 logn).

For large n, this is a formidable amount of space just to store the routing tables.

Observe that for any destination, the first entry in the shortest path will always be
a link to a neighbor. Thus, it is possible to simplify the routing table by specifying
for each destination y only the neighbor of x on the shortest path to it. Such a table is
called short. For example, the short routing table for s in the network of Figure 4.1 is
shown in Table 4.8.

Inits shortrepresentation, each entry of the table of an entity x will contain log w bits
to represent the destination’s name and another log w bits to represent the neighbor’s
name. In other words, the table contains 2(n — 1) log w bits. Assuming the best pos-
sible case, that is, w = n , the number of bits required to store all the routing tables is

2n(n — 1)logn.

262 MESSAGE ROUTING AND SHORTEST PATHS

TABLE 4.8: Short Representation of RT(s)

Destination Neighbor
h h
k h
c c
d c
e e
f e

This amount of space can be further reduced if, instead of the neighbors’ names
we use the local port numbers leading to them. In this case, the size will be (n — 1)
(logw + log p,) bits, where p, > deg(x) is the range of the local port numbers of x.
Assuming the best possible case, that is, w = n and p, = deg(x) for all x, this implies
that the number of bits required to store all the routing tables is at least

SsHorT = y_, (n — 1)logdeg(x) = (n — 1)log I deg(x),

which can be still rather large.

Notice that the same information can be represented by listing for each port the des-
tinations reached via shortest path through that port; for example, see Table 4.9. This
alternative representation of RT(x) uses only deg(x) + (n — 1) log(n) bits for a total of

Sair = Y (deg(x) + (n — 1)logn) = 2m + n(n — 1)logn. (4.18)

It appears that there is not much more that can be done to reduce the size of the
table. This is, however, not the case if we, as designers of the system, had the power
to choose the names of the nodes and of the links.

4.4.2 Interval Routing

The question we are going to ask is whether it is possible to drastically reduce this
amount of storage if we know the network topology and we have the power of choosing
the names of the nodes and the port labels.

An Example: Ring Networks Consider for example a ring network, and assume
for the moment that all links have the same cost.

TABLE 4.9: Alternative Short Representation of RT(s)

Port Destinations
ports(h) h,k
ports(c) c,d

portg(e) e, f

ROUTING IN STATIC SYSTEMS: COMPACT TABLES 263

0 right
right 3,4,5,6
5 2 left 7,8,0,1
4
(a) (b)

FIGURE 4.17: (a) assigning names and labels; (b) Routing table of node 2.

Suppose that we assign as names to the nodes consecutive integers, starting from
0 and continuing clockwise, and we label the ports right or left depending on whether
or not they are in the clockwise direction. See Figure 4.17(a).

Concentrate on node 0. This node, like all the others, has only two links. Thus,
whenever 0 has to route a message for z > 0, it must just decide whether to send it
to right or to left. Observe that the choice will be right for 1 < z < |n/2] and left
for |[n/2] + 1 < z < n — 1. In other words, the destinations are consecutive integers
(modulo n). This is true not just for node O: If x has to route a message for z # x, the
choice will be right if z is in the interval (x + 1, x +2,...x + |n/2]) and left if z is
in the interval (x + |n/2] + 1, ..., x — 1), where the operations are modulo n. See
Figure 4.17(b).

In other words, in all these routing tables, the set of destinations associated to a
port is an interval of consecutive integers, and, in each table, the intervals are disjoint.
This is very important for our purpose of reducing the space.

In fact, an interval has a very short representation: It is sufficient to store the two
end values, that is, just 2logn bits. We can actually do it with just logn bits; see
Exercise 4.6.43. As a table consists just of two intervals, we have routing tables of
4log n bits each, for a grand total of just

4nlogn.

This amount should be contrasted with the one of Expression 4.18 that, in the case
of rings, becomes n” logn + [.0.t.. In other words, we are able to go from quadratic

264 MESSAGE ROUTING AND SHORTEST PATHS

to just linear space requirements. Note that it is true even if the costs of the links are
not all the same; see Exercise 4.6.44.
The phenomenon we have just described is not isolated, as we will discuss next.

Routing With Intervals Consider the names of the nodes in a network G. Without
any loss of generality, we can always assume that the names are consecutive positive
integers, starting from O, that is, the set of names is Z, = {0, 1,...,n — 1}.

Given two integers j, k € Z,, we denote by (j, k) the sequence

k)=, j+1,j+2,....kifj <k
G K=, j+1,j+2,...,n—1,0,1,...,k)if j > k.

Such a sequence (j, k) is called a circular interval of Z,; the empty interval ¥ is
also an interval of Z,,.

Suppose that we are able to assign names to the nodes so that the shortest path
routing tables for G have the following two properties. At every node x,

1. interval: for each link incident to x, the (names of the) destinations associated
to that link form a circular interval of Z,;;

2. disjointness: each destination is associated to only one link incident to x.

If this is the case, then we can have for G a very compact representation of the
routing tables, like in the example of the ring network. In fact, for each link the set of
destinations is an interval of consecutive integers, and, like in the ring, the intervals
associated to the links of a given nodes are all disjoint.

In other words, each table consists of a set of intervals (some of them may be
empty), one for each incident link. From the storage point of view, this is very good
news because we can represent such intervals by just their start values (or, alterna-
tively, by their end values).

In other words, the routing table of x will consist of just one entry for each of its
links. This means that the amount of storage for its table is only deg(x) logn bits. In
turn, this means that the number of bits used in total to represent all the routing tables
will be just

SINTERVAL = Z deg(x)logn = 2mlogn. (4.19)

X

How will the routing mechanism then work with such tables? Suppose x has a
message whose destination is y. Then x checks in its table which interval y is part of
(as the intervals are disjoint, y will belong to exactly one) and sends the message to
the corresponding link.

Because of its nature, this approach is called interval routing. If it can be done, as
we have just seen, it allows for efficient shortest-path routing with a minimal amount
of storage requirements.

ROUTING IN STATIC SYSTEMS: COMPACT TABLES 265

15

0 1 4 5 10 11 12

FIGURE 4.18: Naming for interval routing in trees

It, however, requires that we, as designers, find an appropriate way to assign names
to nodes so that the interval and disjointness properties hold. Given a network G, it is
not so obvious how to do it or whether it can be done at all.

Tree Networks First of all we will consider tree networks. As we will see, in a tree
it is always possible to achieve our goal and can actually be done in several different
ways.

Given a tree T, we first of all choose a node s as the source, transforming 7 into
the tree 7'(s) rooted in s; in this tree, each node x has a parent and some children
(possibly none). We then assign as names to the nodes consecutive integers, starting
from 0, according to the post-order traversal of T (s), for example, using procedure

Post_Order _Naming(x, k)
begin
Unnamed_Children(x) := Children (x) ;
while Unnamed_Children (x) # @ do
y <« Unnamed_Children (x) ;
Post_Order _Naming (y, k)

endwhile
myname:= k;
k:= k + 1;

end

started by calling Post_Order_Naming(s, 0). This assignment of names has several
properties. For example, any node has a larger name than all its descendents. More
importantly, it has the interval and disjointness properties (Exercise 4.6.48). Infor-
mally, the interval property follows is because when executing Post_Order_Naming
with input (x, k), x and its descendents will be given as names consecutive integers
starting from k. See for example Figure 4.19.

266 MESSAGE ROUTING AND SHORTEST PATHS

<9,10, 11,12, 13,14,15,0,1,2,3 >

<4,5,6> <7>
FIGURE 4.19: Disjoint intervals

Special Networks Most regular network topologies we have considered in the
past can be assigned names so that interval routing is possible. This is for example the
case of the p x g mesh and rorus, hypercube, butterfly, and cube-connected-cycles;
see Exercises 4.6.51 and 4.6.52. For these networks the construction is rather simple.

Using a more complex construction, names can be assigned so that interval routing
can be done also in any outerplanar graph (Exercise 4.6.53); recall that a graph is
outerplanar if it can be drawn in the plane with all the nodes lying on a ring and all
edges lying in the interior of the ring without crossings.

Question. Can interval routing be done in every network?

The answer is unfortunately No. In fact there exist rather simple networks, the so-
called globe outerplanar graph (one is shown in Figure 4.20), for which interval
routing is impossible (Exercise 4.6.55).

Multi-Intervals As we have seen, interval routing is a powerful technique but the
classes of networks in which it is possible are rather limited.

To overcome somehow this limitation without increasing excessively the size of
the routing table an approach is to associate to each link a small number of intervals.
An interval-routing scheme that uses up to & intervals per edge is called a k-intervals
routing scheme.

® ®
FIGURE 4.20: A globe graph: interval routing is not possible.

BIBLIOGRAPHICAL NOTES 267

Clearly, with enough intervals we can find a scheme for every connected graph.
The question is whether this can be achieved with a small k. The answer again is No.

In fact, there are graphs where O(n) intervals are needed in each edge
(Exercise 4.6.56).

Suboptimal Interval Routing A reason why it is impossible to do interval rout-
ing in all graphs is that we require the tables to provide shortest path. The situation
changes if we relax this requirement.

If we ask the tables to provide us just with a path to destination, not necessarily
the shortest one, then we can use the approach already discussed in Section 4.2.6: We
construct a single spanning tree T of the network G and use only the edges of T for
routing.

Once we have the tree 7, we then assign the names to the nodes using the naming
algorithm for trees that provides interval routing. In this way, we obtain for G the
very compact routing tables provided by interval routing. Clearly, the interval routing
mechanism so constructed is optimal (i.e., shortest path) for the tree T but not neces-
sarily so for the original network G. This means that suboptimal interval routing is
always possible in any network.

Question. How much worse can a path provided by this approach be than the shortest
one to the destination?

If we choose as tree T a breadth-first spanning tree rooted in a center of the graph
G, then its diameter is at most twice the diameter of the original graph (the worst
case is when G is a ring). This means that the longest route is never more than
2 diam(G).

We can extend this approach by allowing the longest route to be within a factor
B < 2 of the diameter of G and by using more than one interval. We have seen that it is
possible to obtain 8 = 2 using a single interval per edge. The question then becomes
whether using more intervals we can obtain a better scheme (i.e., a smaller 8). The
answer is again not very positive; for example, to have the longest route shorter than
% diam(G), then we need O(logn) labels (Exercise 4.6.58).

4.5 BIBLIOGRAPHICAL NOTES

The construction of routing table is a prerequisite for the functioning of many net-
works. One of the earliest protocols is due to William Tajibnapis [31]. The basic
MapGossip for the construction of all routing tables is due to Eric Rosen [29]. Proto-
col IteratedConstruction is the distributed version of Bellman’s sequential algorithm
designed by Lestor Ford and D. Fulkerson [13]; from the start it has been the main
routing algorithm in the Internet.

The same cost as IteratedConstruction, O(nzm), was incurred by several other
protocols designed much later, including the ones of Philip Merlin and Adrian Segall
[25] and by Jayadev Misra and Mani Chandy [22]. The improvement to O(n>) is due
to Baruch Awerbuch, who designed a protocol to construct a single shortest path tree

268 MESSAGE ROUTING AND SHORTEST PATHS

using O (n?) message [6]. The same bound is achieved by protocol PT_Construction,
the efficient distributed implementation of Dijkstra’s sequential algorithm designed by
K. Ramarao and S. Venkatesan [28]. The even more efficient Protocol SparserGossip
is due to Yeuda Afek and Moty Ricklin [1].

A protocol for systems allowing long messages was designed by Sam Toueg with
cost O(nm) [32]; the reduction to O(n?) is easy to achieve using protocol MapGossip
by Eric Rosen [29] (Exercise 4.6.4), constructing, however, complete maps at each
entity; the same cost but with less local storage (Exercise 4.6.18) has been obtained
by S. Haldar [20].

The distributed construction of min-hop spanning trees has been extensively in-
vestigated. Protocol BF (known as the “Coordinated Minimum Hop Algorithm”) is
due to Bob Gallager [17]; a different protocol with the same cost was independently
designed by To-Yat Cheung [8]. Also to Gallager [17] is due the idea of reducing
time by partitioning the layers of the breadth-first tree into groups (Section 4.2.5) and
a series of time-messages tradeoffs. Protocol BF_Layers has been designed by Greg
Frederickson [15]. The problem of reducing time while maintaining a reasonable
message complexity has been investigated by Baruch Awerbuch [3], Baruch Awer-
buch and Bob Gallager [5], and Y. Zhu and To-Yat Cheung [35]. The near-optimal
bounds (Exercise 4.6.26) have been obtained by Baruch Awerbuch [4].

The suboptimal solutions of center-based and median-based routing were first
discussed in details by David Wall and Susanna Owicki [34]. The lower-bound on
average edge-stretch and the construction of spanning trees with low average edge-
stretch (Exercises 4.6.34, 4.6.35 and 4.6.36) are due to Noga Alon, Richard Karp,
David Peleg, and Doug West [2].

The idea of point-of-failure rerouting was suggested independently by Enrico
Nardelli, Guido Proietti, and Peter Widmayer[27] and by Hiro Ito, Kazuo Iwama,
Yasuo Okabe, and Takuya Yoshihiro [21]. The distributed algorithm for computing
the swap edges (Exercise 4.6.41) was designed by Paola Flocchini, Linda Pagli, Tony
Mesa, Giuseppe Prencipe, and Nicola Santoro [12].

The idea of compact routing was introduced by Nicola Santoro and Ramez Kathib
[30], who designed the interval routing for trees; this idea was then extended by
Jan van Leeuwen and Richard Tan [24]. The interval routing for outerplanar graphs
(Exercise 4.6.53) is due to Greg Frederickson and Ravi Janardan [16].

The more restrictive notion of /inear interval routing (Exercise 4.6.54 and Problem
4.6.1) was introduced and studied by Erwin Bakker, Jan van Leeuwen, and Richard
Tan [7]; the more general notion of Boolean routing was introduced by Michele
Flammini, Giorgio Gambosi, and Sandro Salomone [11].

Several issues of compact routing have been investigated, among others, by Greg
Frederickson and Ravi Janardan [16], Pierre Fraigniaud and Cyril Gavoille [14], and
Cyril Gavoille and David Peleg [19]. Exercises 4.6.56, 4.6.57, and 4.6.58 are due to
Cyril Gavoille and Eric Guevremont [18], Evangelos Kranakis and Danny Krizanc
[23], and Savio Tse and Francis Lau [33], respectively.

Characterizations of networks supporting interval routing are due to Lata
Narayanan and Sunil Shende [26], Tamar Eilam, Shlomo Moran, and Shmuel Zaks
[9], and Michele Flammini, Giorgio Gambosi, Umberto Nanni, and Richard Tan [10].

EXERCISES, PROBLEMS, AND ANSWERS 269

4.6 EXERCISES, PROBLEMS, AND ANSWERS

4.6.1 Exercises

Exercise 4.6.1 Write the set of rules corresponding to Protocol Map_Gossip de-
scribed in Section 4.2.1.

Exercise 4.6.2 (xxx) Consider a tree network where each entity has a single item
of information. Determine the time costs of gossiping. What would the time costs be
if each entity x initially has deg(x) items?

Exercise 4.6.3 Consider a tree network where each entity has f(r) items of informa-
tion. Assume that messages can contain g(n) items of information (instead of O(1));
with how many messages can gossiping be performed?

Exercise 4.6.4 Using your answer to question 4.6.3, with how many messages can
all routing tables be constructed if g(n) = O(n)?

Exercise 4.6.5 Consider a tree network where each entity has f(n) items of informa-
tion. Assume that messages can contain g(n) items of information (instead of O(1));
with how many messages can all items of information be collected at a single entity?

Exercise 4.6.6 Using your answer to question 4.6.5, with how many messages can
all routing tables be constructed at that single entity if g(n) = O(n)?

Exercise4.6.7 Write the set of rules corresponding to Protocol Iterated_Construction
described in Section 4.2.2. Implement and properly test your implementation.

Exercise 4.6.8 Prove that Protocol Iterated_Construction converges to the correct
routing tables and will do so after at most n — 1 iterations. Hint: Use induction to
prove that V[z] is the cost of the shortest path from x to z using at most i hops.

Exercise 4.6.9 We have assumed that the cost of a link is the same in both directions,
thatis, 8(x, y) = 0(y, x). However, there are cases when 8(x, y) can be different from
6(y, x). What modifications have to be made so that protocol Iterated_Construction
works correctly also in those cases?

Exercise 4.6.10 In protocol PT_Construction, no action is provided for an idle entity
receiving an Expand message. Prove that such a message will never be received in
such a state.

Exercise 4.6.11 In procedure Compute_Local Minimum of protocol PT_Cons-
truction, an entity might set path_length to infinity. Show that if this happens, this
entity will set path_length to infinity in all subsequent iterations.

270 MESSAGE ROUTING AND SHORTEST PATHS

Exercise 4.6.12 In protocol PT_Construction, each entity will eventually set
path_length to infinity. Show that when this happens to a leaf of the constructed
tree, that entity can be removed from further computations.

Exercise 4.6.13 Modify protocol PT_Construction so that it constructs the routing
table RT(s) of the source s.

Exercise4.6.14 We have assumed that the cost of a link is the same in both directions,
thatis, 6(x, y) = 6(y, x). However, there are cases when 6 (x, y) can be different from
0(y, x). What modifications have to be made so that protocol PT_Construction works
correctly also in those cases?

Exercise 4.6.15 Prove that any G has a (logn, n) sparser.

Exercise 4.6.16 Show how to construct a (logn, n) sparser with O(m + nlogn)
messages.

Exercise 4.6.17 Show how to use a (logn, n) sparser to solve the all-pairs shortest
paths problem in O(n” log n) messages.

Exercise 4.6.18 Assume that messages can contain O(n) items of information (in-
stead of O(1)). Show how to construct all the shortest path trees with just 0(n?)
messages.

Exercise 4.6.19 Prove that, after iteration i — 1 of protocol BF_Construction,
(a) all the nodes at distance up to i — 1 are part of the tree;
(c) each node at distance i — 1 knows which of its neighbors are at distance i — 1.

Exercise 4.6.20 Write the set of rules corresponding to protocol BF described in
Section 4.2.2. Implement and properly test your implementation.

Exercise 4.6.21 Write the set of rules corresponding to protocol BF_Levels. Imple-
ment and properly test your implementation.

Exercise 4.6.22 Let Explore(j, k) be the first message x accepts in the expansion
phase of protocol BF _Levels. Prove that the number of times x will change its level
in this phase isat most j — ¢t 4+ 1 < [.

Exercise 4.6.23 Prove that in the expansion phase of an iteration of protocol
BF _Levels, all nodes in levels ¢ 4 1 to ¢ 4- [are reached and attached to the existing
fragment, where 7 is the level of the sources (i.e., the leaves in the current fragment).

Exercise 4.6.24 Consider protocol BF _Levels when | = d(G). Show how to obtain
the same message and time complexity without any a priori knowledge of d(G).

EXERCISES, PROBLEMS, AND ANSWERS 271

Exercise 4.6.25 Prove that if we choose ! = d(G) in protocol BF _Levels, then in any
synchronous execution the number of messages will be exactly 2m +n — 1.

Exercise 4.6.26 (xx) Show how to construct a breadth-first spanning tree in time
0d(G)'*¢) using no more than O(m'*¢) messages, for any € > 0.

Exercise 4.6.27 Let c be a center of G and let SPT(c) be the shortest path tree of c.
Prove that diam(G) < 2 diam(SPT(c)).

Exercise 4.6.28 Let T be a spanning tree of G. Prove that Z(x’y)eT | T[x — y]|
ITLy — x1Iw(x, y) = D, er dr(W,V).

Exercise 4.6.29 (median-based routing)

Let z be a median of G (i.e., a node for which the sum of distances to all other nodes is
minimized) and let PT(z) be the shortest path tree of z. Prove that Traffic(PT(z)) < 2
Traffic(T x), where T x is the spanning tree of G for which Traffic is minimized.

Exercise 4.6.30 Consider aring network R, with weighted edges. Prove or disprove
that PT(c¢) = MSP(R,,), where c is a center of R,, and MSP(R,,) is the minimum-cost
spanning tree of R,,.

Exercise 4.6.31 Consider a ring network R, with weighted edges. Let ¢ and z be a
center and a median of R,, respectively.

1. For each of the following spanning trees of R,, compare the stretch factor
and the edge-stretch factor: PT(c), PT(z), and the minimum-cost spanning tree
MSP(R,).

2. Determine bounds on the average edge-stretch factor of PT(c), PT(z), and
MSP(R,).

Exercise 4.6.32 (x) Consideraa x a square mesh M, , where all costs are the same.

1. Isitpossible to construct two spanning trees 7" and 7" such that o (T”) < o (T")
but €(T’) > €(T") ? Explain.

2. Isitp