

Data-Intensive Computing

The world is awash with digital data from social networks, blogs, business, science, and
engineering. Data-intensive computing facilitates understanding of complex problems
that must process massive amounts of data. Through the development of new classes of
software, algorithms, and hardware, data-intensive applications can provide timely and
meaningful analytical results in response to exponentially growing data complexity and
associated analysis requirements. This emerging area brings many challenges that are
different from traditional high-performance computing.

This reference for computing professionals and researchers describes the dimensions
of the field, the key challenges, the state of the art, and the characteristics of likely
approaches that future data-intensive problems will require. Chapters cover general
principles and methods for designing such systems and for managing and analyzing
the big data sets of today that live in the cloud, and describe example applications in
bioinformatics and cyber-security that illustrate these principles in practice.

ian gorton is a Laboratory Fellow in Computational Sciences and Math at Pacific
Northwest National Laboratory (PNNL), where he manages the Data Intensive Scientific
Computing group and was the Chief Architect for PNNL’s Data Intensive Computing
Initiative. Gorton is a Senior Member of the IEEE Computer Society and a Fellow of
the Australian Computer Society.

deborah k. gracio joined Pacific Northwest National Laboratory in 1990 and is
currently the Director of the Computational and Statistical Analytics Division and of
the Data Intensive Computing Research Initiative. Since joining the laboratory, she has
led the research, development, and management of multiple cross-disciplinary, multi-
laboratory projects focused in the basic sciences and national security sectors.

Data-Intensive Computing
Architectures, Algorithms, and Applications

Edited by

IAN GORTON
Pacific Northwest National Laboratory

DEBORAH K. GRACIO
Pacific Northwest National Laboratory

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521191951

C© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Data-intensive computing : architectures, algorithms, and applications / [edited by]
Ian Gorton, Deborah K. Gracio.

pages cm
Includes bibliographical references and index.

ISBN 978-0-521-19195-1
1. High performance computing. 2. Database management. 3. Computer storage devices.

4. Software architecture. 5. Data transmission systems. I. Gorton, Ian.
II. Gracio, Deborah K., 1965–

QA76.88.D38 2012
004.5–dc23 2012015720

ISBN 978-0-521-19195-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for
external or third-party Internet Web sites referred to in this publication and does not guarantee

that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

List of Contributors page vii

1 Data-Intensive Computing: A Challenge for the
21st Century 1
Ian Gorton and Deborah K. Gracio

2 Anatomy of Data-Intensive Computing Applications 12
Ian Gorton and Deborah K. Gracio

3 Hardware Architectures for Data-Intensive Computing
Problems: A Case Study for String Matching 24
Antonino Tumeo, Oreste Villa, and Daniel Chavarrı́a-Miranda

4 Data Management Architectures 48
Terence Critchlow, Ghaleb Abdulla, Jacek Becla, Kerstin
Kleese-Van Dam, Sam Lang, and Deborah L. McGuinness

5 Large-Scale Data Management Techniques in Cloud
Computing Platforms 85
Sherif Sakr and Anna Liu

6 Dimension Reduction for Streaming Data 124
Chandrika Kamath

7 Binary Classification with Support Vector Machines 157
Patrick Nichols, Bobbie-Jo Webb-Robertson, and
Christopher Oehmen

8 Beyond MapReduce: New Requirements for Scalable
Data Processing 180
Bill Howe and Magdalena Balazinska

v

vi Contents

9 Let the Data Do the Talking: Hypothesis Discovery from
Large-Scale Data Sets in Real Time 235
Christopher Oehmen, Scott Dowson, Wes Hatley, Justin
Almquist, Bobbie-Jo Webb-Robertson, Jason McDermott,
Ian Gorton, and Lee Ann McCue

10 Data-Intensive Visual Analysis for Cyber-Security 258
William A. Pike, Daniel M. Best, Douglas V. Love, and
Shawn J. Bohn

Index 287

List of Contributors

Ghaleb Abdulla Lawrence Livermore National Laboratory

Justin Almquist Pacific Northwest National Laboratory

Magdalena Balazinska University of Washington

Jacek Becla Stanford University

Daniel M. Best Pacific Northwest National Laboratory

Shawn J. Bohn Pacific Northwest National Laboratory

Daniel Chavarrı́a-Miranda Pacific Northwest National Laboratory

Terence Critchlow Pacific Northwest National Laboratory

Scott Dowson Pacific Northwest National Laboratory

Ian Gorton Pacific Northwest National Laboratory

Deborah K. Gracio Pacific Northwest National Laboratory

Wes Hatley Future Point Systems

Bill Howe University of Washington

Chandrika Kamath Lawrence Livermore National Laboratory

Sam Lang Pacific Northwest National Laboratory

Anna Liu National ICT Australia (NICTA), University of New South Wales

Kerstin Kleese-Van Dam Pacific Northwest National Laboratory

Douglas V. Love Pacific Northwest National Laboratory

Lee Ann McCue Pacific Northwest National Laboratory

vii

viii List of Contributors

Jason McDermott Pacific Northwest National Laboratory

Deborah L. McGuinness Rensselaer Polytechnic Institute

Patrick Nichols Pacific Northwest National Laboratory

Christopher Oehmen Pacific Northwest National Laboratory

William A. Pike Pacific Northwest National Laboratory

Sherif Sakr National ICT Australia (NICTA), University of New South Wales

Antonino Tumeo Pacific Northwest National Laboratory

Oreste Villa Pacific Northwest National Laboratory

Bobbie-Jo Webb-Robertson Pacific Northwest National Laboratory

1
Data-Intensive Computing: A Challenge

for the 21st Century

Ian Gorton and Deborah K. Gracio

1.1 Introduction

In our world of rapid technological change, occasionally it is instructive to
contemplate how much has altered in the last few years. Remembering life
without the ability to view the World Wide Web (WWW) through browser
windows will be difficult, if not impossible, for less “mature” readers. Is it only
seven years since YouTube first appeared, a Web site that is now ingrained in
many facets of modern life? How did we survive without Facebook all those
(actually, about five) years ago?

In 2010, various estimates put the amount of data stored by consumers and
businesses around the world in the vicinity of 13 exabytes, with a growth rate
of 20 to 25 percent per annum. That is a lot of data. No wonder IBM is pursuing
building a 120-petabyte storage array.1 Obviously there is going to be a market
for such devices in the future. As data volumes of all types – from video and
photos to text documents and binary files for science – continue to grow in
number and resolution, it is clear that we have genuinely entered the realm of
data-intensive computing, or as it is often now referred to, big data.2

Interestingly, the term “data-intensive computing” was actually coined by
the scientific community. Traditionally, scientific codes have been starved of
sufficient compute cycles, a paucity that has driven the creation of ever larger
and faster high-performance computing machines, typically known as super-
computers. The Top 500 Web site3 shows the latest benchmark results that
characterize the fastest supercomputers on the planet. While this fascination
with compute performance continues, scientific computing has been gradually
coming to terms with the challenges brought by ever-increasing data size and

1 http://www.technologyreview.com/computing/38440/page1/.
2 http://en.wikipedia.org/wiki/Big_data.
3 http://www.top500.org/.

1

2 1 Data-Intensive Computing

Computations have spatial and
temporal locality
Problems fit into memory
Methods require high precision
arithmetic
Data is static

Matrix Algebra
Equations and first principles
Structured algorithms
FFT/signal transformations

Computations have no or little
locality
Problems do not fit into memory
Variable precision or integer
based arithmetic
Data is dynamic

Text processing, image analysis
Clustering, organization,
browsing
Iterative refinement and
interrogation
Not possible to know up front
what calculations will be done,
nor in what order

Data Intensive Sciences

Problems where data is the domina�ng factor

Rate of acquisi�on
Volume

Complexity
Uncertainty

Modeling & Simula�on Analysis

Tradi�onal Computa�onal Sciences

Figure 1.1. The major concerns of computational and data-intensive applications.

complexity. In 1998, William Johnston’s paper at the Seventh IEEE Sympo-
sium on High Performance Distributed Computing [1] described the evolu-
tion of data-intensive computing over the previous decade. The achievements
described in that paper, while state of the art at the time, now seem modest in
comparison to the scale of the problems that are routinely tackled in present-day
data-intensive computing applications.

More recently, others including Hey and Trefethen [2], Bell et al. [3], and
Newman et al. [4] have described the magnitude of the data-intensive problems
faced by the e-science community. Their descriptions of the data deluge that
future applications must process, in domains ranging from science to business
informatics, create a compelling argument for research and development (R&D)
to be targeted at discovering scalable hardware and software solutions for data-
intensive problems. While multi-petabyte data sets and gigabit data streams are
today’s frontier of data-intensive applications, no doubt ten years from now we
will fondly reminisce about these problems, and will be concerned about the
looming exascale applications we need to address.

Figure 1.1 lists the general features of traditional computational science
applications and their data-intensive counterparts. The former focuses more
on solving mathematical equations for static data sets, whereas the latter is
concerned with more exploratory search and processing of large, dynamic, and
complex data collections.

1.2 Some Examples 3

1.2 Some Examples

The challenge of managing massive and complex data sets is one faced by
many enterprises already. The following are some examples of the current state
of the art that illustrate the magnitude of what is currently possible.

1.2.1 Internet Search

Internet search is the current poster child for data-intensive computing. While
the precise amounts of data held by Google, Yahoo!, Microsoft, and other
search providers is a closely guarded commercial secret, it is pretty obvious
that “building a copy of the Internet” to answer Internet searches is going
to result in a daunting data archive. In 2008, it was reported that Google
processed about 24 petabytes of data per day [5], but other hard facts from
the search engine providers are difficult to come by. As of November 2011, an
estimate of the number of Web pages indexed by Google is in the vicinity of
50 billion.4 We’ll leave it to the reader to extrapolate an actual data size from this
value, but discussions at a recent workshop (overheard by one of the authors)
strayed into descriptions of 70 petabytes (PBs) of data in a single Google
BigTable.5

In order to manage and rapidly search these multi-petabyte repositories to
answer searches, Google has custom built a specialized file system and indexing
scheme that allows queries to execute in parallel across clusters of thousands of
commodity machines. As a contrast, and slightly tangential to Internet search,
the Internet Archive (http://www.archive.org/) contained about 5.8 petabytes
of data as of December 2010 and was growing at the rate of about 100 terabytes
per month in March 2009.

1.2.2 Internet Applications

Of course, the Internet is much more than search. Many Web sites manage
and deliver data to millions of users around the world, and each faces its own
data challenges. In May 2010, YouTube, for example, had more than 14 billion
views of videos and more than 48 hours of new videos are uploaded to the site
every minute. Given the size of video files, this inevitably leads to a repository
of many, many petabytes. In 2009, YouTube was serving 1 billion page views

4 http://www.worldwidewebsize.com/.
5 http://en.wikipedia.org/wiki/BigTable.

4 1 Data-Intensive Computing

per day.6 In a similar vein, Netflix has more than 1 petabyte of data stored on
Amazon’s EC2 cloud.

Not all large data repositories on the Internet store video. eBay, for example,
holds its data in multi-petabyte databases, using technology from Teradata. In
2010, these databases were of the order of 15 petabytes, spanning user data and
Web and network event logs.7 Facebook relies heavily on MySQL databases
and the distributed object cache, Memcached (http://memcached.org/). While
no data sizes are known, the Facebook infrastructure is reported to divide its
MySQL database into 4,000 shards in order to handle the site’s massive data
volume, and runs 9,000 instances of Memcached to process the number of
transactions the database must serve.8

1.2.3 Business Applications

Large businesses such as financial institutions, telecommunications operators,
and retail outlets all must deal with daunting complex data collections. In
2010, AT&T carried 19 petabytes of data each day on its network9 and was one
of the first organizations to report having a petabyte data warehouse. Others
include Walmart, Dell, and Bank of America, and there are no doubt many
more. Traditionally, large business data collections execute on data warehouse
technology from organizations such as Teradata, Oracle, and IBM. These data
warehouses integrate key business data (such as call records or sales records
across regions) from multiple operational systems in each business and make
the data available for querying and reporting through specialized business
intelligence tools.10 More recently, Hadoop-based data warehouses are making
an impact; the most prominent example is Facebook’s 21-PB warehouse.11

1.2.4 Science

Modern science is becoming increasingly data intensive, driven by mod-
ern instrumentation and high-fidelity simulations running on ever-growing
supercomputers. In terms of data generation, CERN’s Large Hadron Collider
(LHC)12 particle accelerator is currently the most challenging experiment in

6 http://www.datacenterknowledge.com/archives/2009/10/09/1-billion-page-views-a-day-for-
youtube/.

7 http://www.dbms2.com/2010/10/06/ebay-followup-greenplum-out-teradata-10-petabytes-
hadoop-has-some-value-and-more/.

8 http://gigaom.com/cloud/facebook-trapped-in-mysql-fate-worse-than-death/.
9 http://www.att.com/gen/press-room?pid=4800&cdvn=news&newsarticleid=30623.

10 http://en.wikipedia.org/wiki/Business intelligence tools.
11 http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html.
12 http://lhc.web.cern.ch/lhc/.

1.2 Some Examples 5

terms of data size, producing around 13 PBs of data per year. Detectors in the
LHC generate approximately 300 gigabytes (GBs) per second of data. This
data is processed to search for events of interest, which reduces the data that
is stored for further processing to about 300 megabytes per second (MB/s).
Processed data from experiments is distributed from CERN to several other
institutions around the world, which act as backups for CERN data and serve
as regional data centers to support a whole range of science with universities in
their region. Within a decade, astronomy may take over as the largest generator
of scientific data when the Square Kilometer Array radio telescope is built.13

This massive project will create a telescope fifty times more sensitive than
exists today. The anticipated 1-TB/s data stream (or an exabyte of data every
thirteen days when in full operation) will need to be processed in real time to
reduce it to a size that can be meaningfully stored and processed. Even then,
estimates are that a 100-petaflop supercomputer, an order of magnitude more
powerful than exists today, will be needed for scientific analysis.

Simulations are also generators of complex and massive data sets. For exam-
ple, climate simulations executing on petaflop supercomputers produce thou-
sands of data sets that contain the predicted values of various climate variables
(temperature, wind speed, and so on) for the duration of the simulation, often
for hundreds of years. These data sets fuel scientific investigations around the
world on the effects of climate change. To address the challenge of managing
the results from multiple simulations with different characteristics (scale, time,
or initial conditions), the climate community has invested in the Earth System
Grid (ESG).14 ESG provides a gateway to a data collection of hundreds of
terabytes of results from climate simulations that are physically hosted at data
centers across the United States and supports 2,500 users.

Systems biology is another scientific discipline that is heavily data dependent.
The discipline is characterized by numerous GB-TB data collections, typically
accessed through applications made available to users for downloading and
processing specified data sets. Examples of such sites are GenBank15 and
KEGG.16 Currently, these applications are hosted at institutional sites and
accessed through Web-based interfaces or custom-built software applications.
The range of features supported by each application for interactive users varies
in range and quality, as does the extent of programmatic facilities for building
access to the data collections into complex and multistage analyses. As the
size and complexity of biological data sets continue to grow, this approach to

13 http://www.skatelescope.org/.
14 www.earthsystemgrid.org.
15 http://www.ncbi.nlm.nih.gov/genbank/.
16 http://www.genome.jp/kegg/.

6 1 Data-Intensive Computing

Data-intensive
problems

Current
problems

Computational
Complexity

Data
Complexity

(volume/format/
distribution)

Homogeneous format
Nondistributed
MBs to GBs

Heterogenous formats
distributed
PetaBytes

Statistical models
Decision support

Knowledge generation

Compute-intensive
problems

Data/Compute-intensive
problems

Model Solvers
Simulation

Simple Search

Figure 1.2. Data-intensive computing dimensions.

data analysis is becoming increasingly demanding, and new architectures for
serving data and providing analytics are required. An early example of this is
the iPlant Collaborative [6] at the University of Texas.

1.3 Characterizing Data-Intensive Applications

As the previous section illustrates, data-intensive computing challenges can be
found in many different application domains. Across these domains, the specific
challenges vary in their characteristics, scale, and complexity. Fundamentally,
however, data-intensive applications have two major challenges:

1. Manage and process exponentially growing data volumes, often arriving in
streams from sensors, networks, or outputs from simulations.

2. Significantly reduce data analysis cycles so that timely analyses and deci-
sions can be made.

Undoubtedly, there is an overlap between data- and compute-intensive prob-
lems. Figure 1.2 shows a simple diagram that can be used to classify the
application space between data and compute intensiveness.

Existing and purely data-intensive applications process multi-terabyte to
petabyte size data sets. This data is routinely distributed and in heterogeneous
formats, requiring multistep processing by analytical pipelines that incorporate

1.3 Characterizing Data-Intensive Applications 7

various transformations and fusion of data. Processing typically scales near-
linearly with data size, and is often amenable to straightforward parallelization.
Key research issues involve data management, filtering and fusion techniques,
and efficient querying and distribution.

In addition, combined data/compute-intensive problems exhibit an increase
in computational complexity. Processing typically scales super-linearly with
data size and requires complex searches, analyses, and fusion in order to pro-
duce key insights from the data. Application requirements may also place
time limits on producing useful results. Key research issues include new algo-
rithms, signature generation, and specialized processing platforms for algorithm
acceleration (such as reduced memory latency and hardware accelerators like
GPGPUs).

To offer another perspective on data-intensive application characteristics,
we’ve defined a number of key criteria that enable the quantitative and qualita-
tive assessment of different applications. These criteria are as follows:

Data Size: The absolute size of the data that must be processed for an
application is a key characteristic. As data sizes grow, issues that are straight-
forward for small data sets become problematic. As a simple example, it takes
a minute or so to upload a low-quality video of thirty seconds from your phone
to YouTube. But try uploading a 5-GB high-definition video and you’ll find
that at the very least it takes a few hours and greatly increases the chance of
encountering a network error (or loss of battery power). Massive data sets take
longer to write, search, and transmit over a network, and any bottlenecks in
your software or hardware are cruelly exposed, which limits overall system
performance.

Complexity of analysis: Single pass algorithms through a data collection –
for example, a search through a text file for keywords – scale linearly with
size. Building indexes over data sets in a single pass can speed up subsequent
access if the index can be used. Using the text search example again, Lucene17

is an open-source technology for full text indexing and searching and is widely
used behind many Web sites to power fast text searches. Indexes in databases
serve a similar purpose. However, many applications require complex analysis
where algorithms do not scale linearly with data size. For example, sorting
large data sets is expensive, with a Bubble sort having a time complexity of
O(n2) for n items being sorted. Breadth-first graph searches have a worst-case
time complexity of O(number of edges + number of nodes). Of course, parallel
implementations of algorithms and specialized hardware architectures can be

17 http://lucene.apache.org.

8 1 Data-Intensive Computing

used to reduce execution times, but data set sizes are still a significant factor in
the speedups that can be achieved.

Space complexity also plays a part in analysis complexity. Attractive algo-
rithms minimize the amount of memory and disk space that an algorithm needs.
However, there is often a trade-off between time and space complexity for an
algorithm. Classic examples of such trade-offs are:

� the space taken by an index in order to speed up search time;
� storing data in compressed formats at the expense of the time taken to

uncompress the data when processing is needed; and,
� storing images of commonly accessed charts and analyses, for example

historical rainfall amounts, instead of calculating the images from raw data
each time a request is made.

Number of data sources: An additional complexity factor in data-intensive
applications is the number of data sources that must be accessed. For example,
processing network packets to determine connections between machines is
nontrivial on a high-speed network, but life gets much more complex when
a recognized IP address must be correlated with data from other sources to
try to determine the identity of a user. Multiple data sources also exacerbate
the complexity of application reliability, as a required data source may fail
independently and, therefore, be unavailable when needed.

Heterogeneity of the data: Another key challenge is the heterogeneity
of the data required by an application. For example, many bioinformatics
applications must query several external databases and relate the returned data to
experimental data from sequencing machines. Also, the proliferation of formats,
both proprietary and standardized, greatly complicates this task. Even data in
the same format, for example NetCDF, may have data items that represent
different concepts that need correlating in an application. Appropriate metadata,
controlled vocabularies, and ontologies are all key components of making
handling data heterogeneity both tractable and scalable.

Distribution of data: Distributed data sources bring both reliability and
latency challenges. Applications that access external distributed data must deal
with possible failures, and access to data over wide area networks incurs latency
costs that can become prohibitive as data sets grow in size, even when com-
pression is used.

Timeliness of processing: Most data-intensive applications, such as search-
ing for new stars from telescope data, just need to execute as fast as possible
in producing a result. Others have time constraints within which analyses must
complete in order to produce useful results. Video processing is a good exam-
ple. Loading a video onto YouTube is an example of the former, whereas

1.3 Characterizing Data-Intensive Applications 9

Table 1.1. Using the assessment framework for two different data-intensive
applications

Application
Characteristic Cyber-Security Bioinformatics

Data size 10s of TBs per day from
network sensors, in the form
of processed raw network
data

TBs of data in experimental
databases

Complexity of
analysis

Multistage, comprising
signature generation,
clustering, anomaly
detection, and visualization

Multistage, comprising
input data transformations,
HPC analysis code,
and interactive visualization

Heterogeneity
of data

Correlation of Web-mined
text information with
structured network data

Need to process both
proteomic and genomic data

Number of
data sources

For core processing
pipeline, there is one major
source that receives reduced
data from many network
sensors that perform
preliminary processing.

Databases for relevant gene
and protein data sets

Distribution of
data

Core processing pipeline
handles one incoming data
stream from network
sensors and stores results in
a single database.

Processing pipeline needs to
retrieve data sets from
geographically distributed
databases. This can be costly
if transfers occur over the
Internet.

Timeliness of
processing

Results of analysis required
in seconds to a minute

“As fast as possible”
processing requirements, but
ideally a few 10s of seconds
or less for interactive
exploration of data

automated recognition and tracking of vehicles by citywide surveillance sys-
tems obviously has time constraints for processing. For low-latency real-time
constraints, specialized hardware is often the only solution for a given applica-
tion. When constraints are of the order of seconds to minutes, parallel processing
and high-speed networks can often meet the necessary deadlines.

As an example of how this framework can be used, we classify the major
characteristics of two applications that are described in later chapters in
Table 1.1. As can be seen, this framework gives a concise representation that

10 1 Data-Intensive Computing

can be used to compare applications across the broad spectrum of data-intensive
and big data computing.

1.4 Summary

This chapter lays out the broad landscape of data-intensive computing, describ-
ing example application domains where such problems are prevalent and pre-
senting a framework for characterizing data-intensive software systems. Given
the exponentially increasing data volumes being generated, and the new and
innovative ways being discovered for analyzing and exploiting that data, we are
now only at the beginning of the data-intensive, or the big data computing era.

The future will require the creation of breakthrough technologies to address
many key data-intensive computing problems, bringing together results from
various disciplines in computer science, engineering, and mathematics. For
example, the following are all pieces of the puzzle required by data-intensive
computing solutions:

� New algorithms that can scale to search and process massive data sets.
� New metadata management technologies that can scale to handle complex,

heterogeneous, and distributed data sources.
� Advances in high-performance computing platforms to provide uniform

high-speed memory access to multi-terabyte data structures.
� High-performance, high-reliability, and petascale distributed file systems.
� Flexible and high-performance software integration technologies that facili-

tate “plug and play” integration of software components running on diverse
computing platforms to quickly form analytical pipelines.

� Data signature generation techniques for data reduction and rapid process-
ing.

� Mobile code-based analytics, where processing is moved to the data.

The remainder of this book describes the current state of the art and poten-
tial futures in many of these areas. The next chapter dissects the anatomy
of data-intensive applications, describing the various computational methods,
software components, and technologies that are relevant. The following col-
lection of chapters delves into detail on hardware architectures, data man-
agement approaches, and cloud-based technologies that are all fundamental
application building blocks. Next, the book contains chapters on fundamental
algorithms for data classification, clustering, and dimensionality reduction.
Finally, data-intensive applications in biology and cyber-security are described,
giving insights into how the various building blocks covered in earlier chapters
can be brought together to create innovative solutions to challenging big data
problems.

References 11

References

1. Johnston, W. “High-Speed, Wide Area, Data Intensive Computing: A Ten Year Ret-
rospective.” Presented at 7th IEEE Symposium on High Performance Distributed
Computing, Chicago, July 1998.

2. Hey, A. J. G. and Trefethen, A. E. “The Data Deluge: An e-Science Perspective.”
In Berman, F., Fox, G. C. and Hey, A. J. G. (eds.), Grid Computing – Making
the Global Infrastructure a Reality. 809–24. Wiley and Sons, 2003. From http://
eprints.soton.ac.uk/257648/.

3. Bell, G., Gray, J., and Szalay, A. “Petascale Computational Systems.” Computer 39,
no. 1 (2006): 110–12.

4. Newman, H. B., Ellisman, M. H., and Orcutt, J. A. 2003. “Data-Intensive e-Science
Frontier Research.” Commun. ACM 46, no. 11 (Nov. 2003): 68–77.

5. Dean, J., and Ghemawat, S. “MapReduce: Simplified Data Processing on Large
Clusters.” Commun. ACM 51, no. 1 (Jan. 2008): 107–13.

6. Stanzione, Dan. “The iPlant Collaborative: Cyberinfrastructure to Feed the World,”
IEEE Computer (Nov. 2011), 44–52.

2
Anatomy of Data-Intensive Computing

Applications

Ian Gorton and Deborah K. Gracio

2.1 An Architecture Blueprint

As the previous chapter describes, data-intensive applications arise from the
interplay of ever-increasing data volumes, complexity, and distribution. Add
the needs of applications to process this complex data mélange in ever more
interesting and faster ways, and you have an expansive landscape of specific
application requirements to address.

Not surprisingly, this breadth of specific requirements leads to many alter-
native approaches to developing solutions. Different application domains also
leverage different technologies, adding further variety to the landscape of data-
intensive computing. Despite this inherent diversity, several model solutions
for contemporary data-intensive problems have emerged in the last few years.
The following briefly describes each one:

Data processing pipelines: Emerging from scientific domains, many
large data problems are addressed using processing pipelines. Raw data that
originates from a scientific instrument or a simulation is captured and stored.
The first stage of processing typically applies techniques to reduce the data
in size by removing noise and then processes the data (such as index, sum-
marize, or markup) so that it can be more efficiently manipulated by down-
stream analytics. Once the capture and initial processing takes place, complex
algorithms search and process the data. These algorithms create information
and/or knowledge that can be digested by humans or further computational
processes. Often, these analytics require large-scale distribution or specialized
high-performance computing platforms to execute, making the execution envi-
ronment of most pipelines both distributed and heterogeneous. Finally, the anal-
ysis results are presented to users so that they can be digested and acted upon.
This stage can utilize advanced visualization tools, and ideally enables the user
to step back through the processing steps that have been executed in order to

12

2.1 An Architecture Blueprint 13

Manage
the Explosion

of Data
(high-throughput

data capture)

Reduce Data
(facilitate human
understanding)

Modeling &
Simulations

Instruments

Sensors

Near real-time

Multimedia

Extract
Knowledge

from Massive
Datasets

(fusion, active
analysis, predictive

modeling)

Figure 2.1. Blueprint for a data-intensive processing pipeline.

perform forensic investigations to validate the outcome. Also, users typically
need functionality to modify parameters on some of the analytics that have
been performed and reexecute various steps in the processing pipeline.

As Figure 2.1 depicts, processing pipelines start with large data volumes
with low information content. This data is reduced by the subsequent pro-
cessing steps in the pipeline to create relatively small data sets that are rich
in information and are suitable for visualization or human understanding. In
many applications, for example the Atlas1 high-energy physics experiment,
large data sets are moved between sites over high-speed, wide-area networks
for downstream pipeline processing.

Data warehouses: Commercial enterprises are voracious users of data ware-
housing technologies. These are supplied by mainstream database technology
vendors to provide archival storage of business transactions for business analy-
sis purposes. As enterprises capture and store more data, data warehouses have
grown into the petabyte (PB) range. Best known is Walmart’s, which in more
than a decade has grown to store more than a petabyte in 2007, and is fueled by
daily data from more than 800 million transactions generated by its 30 million
customers.2

The data warehousing approach is now finding traction in science. The Sloan
Digital Sky Survey3 (SDSS) SkyServer stores the results of processing raw

1 http://atlas.web.cern.ch/Atlas/index.html.
2 Information Week, August 6, 2007 issue.
3 http://cas.sdss.org/dr6/en/.

14 2 Anatomy of Data-Intensive Computing Applications

astronomical data from the SDSS telescope in a data warehouse for subsequent
data mining by astronomers. Although the SkyServer data warehouse currently
only stores a few tens of terabytes (TB), its fundamental design principles are
being leveraged in the design of the data warehouse for the Large Synoptic
Survey Telescope4 (LSST) that will commence data production in 2019. Each
year the telescope will produce 6.8 PBs of raw data, requiring the resulting data
warehouse to grow at an expected rate of 300 TBs per year.

Data centers: Driven by the explosive growth of the Internet, Internet search
enterprises such as Google and Microsoft have developed multi-petabyte data
centers based on low-cost commodity hardware. Data is stored across a number
of widely geographically distributed physical data centers, each of which might
contain more than 100,000 nodes. Programming models such as MapReduce
(Dean 2008) and its open source counterpart, Hadoop,5 provide abstractions
that simplify writing applications that access this massively distributed data
collection.

Essentially, MapReduce distributes data and processing across clusters of
commodity computers, and processes the data in parallel and locally at each
node. In this way, massively parallel processing can be simply achieved using
clusters that comprise thousands of nodes. In addition, the supporting run-time
environment provides transparent fault tolerance by automatically duplicating
data across nodes and detecting and restarting computations that fail on a
particular node.

This approach is also attracting interest from the scientific community. The
National Science Foundation is partnering with Google and IBM to provide a
1,600 node cluster for academic research.6 Supported by Hadoop’s open source
software, this provides an experimental platform for scientists and researchers
to investigate new data-intensive computing applications.

Regardless of the style of data-intensive solutions, there are a number of
stages that are common to most, if not all, data-intensive applications. These
include data acquisition, reduction, analysis, and visualization. In addition,
applications leverage scalable software infrastructures for data management
and workflow orchestration that enable the various components of a solution
to communicate and share both intermediate and final results.

The following sections delve into each of these areas and present overviews
of the general approaches that are widely utilized. They also describe some
of the state-of-the-art technologies that are prominent in today’s data-intensive
applications.

4 www.lsst.org.
5 http://hadoop.apache.org/.
6 http://www.nsf.gov/news/news summ.jsp?cntn id=111186.

2.3 Data Reduction 15

2.2 Data Acquisition

Data acquisition is concerned with making the required input data available
for a data-intensive application and is typically the first step in a processing
pipeline. In large experimental facilities such as the Large Hadron Collider,
highly specialized hardware and software systems are used to deal with streams
of data coming from instruments at a rate of several gigabytes per second (GB/s)
[1]. Data from these experiments are stored in large archives and subsequently
become the input to further downstream data analyses.

In many applications, data acquisition consists of gathering together data
sets from multiple sources to perform an analysis. Bioinformatics is an exam-
ple where multiple distributed data bases are often accessed by biologists to
download data sets to local servers where they can be easily processed. For
example, MG-RAST7 is a system for annotation and comparative analysis of
metagenomes (genetic material recovered directly from environmental sam-
ples that contain multiple genes). MG-RAST users upload raw sequence data,
which is normalized and processed, and subsequently made available to users
through several tools, for example to compare the metabolism and annotations
of one or more metagenomes and genomes. Users can also download all the
data generated by the MG-RAST pipeline in a variety of common formats using
protocols such as FTP and HTTP. Many other bioinformatics databases operate
in an analogous fashion, providing biologists with a rich, albeit fragmented,
collection of public data sets for their work.

Downloads of large data sets over the Internet can be an extremely time-
consuming exercise. In fact, much data is still shipped around on disk (see
http://aws.amazon.com/importexport/ for how one cloud provider handles this).
Ensuring that all the data sets are ready and available for processing is an
important element in data-intensive applications. This is especially true when
computations have to be scheduled, for example on a supercomputer, or you
are paying for cycles from a cloud provider. Waiting for a few TBs of data
to download while you hold compute resources idle is never a desirable
situation.

2.3 Data Reduction

Simply put, data reduction is the transformation of data into a simplified form,
which is more amenable to downstream processing. An extreme example of
this is found again in the realm of high-energy physics, in which the Belle II

7 http://metagenomics.anl.gov/.

16 2 Anatomy of Data-Intensive Computing Applications

accelerator8 is projected to produce approximately 250 PB of raw data for
processing. It is estimated that only 1 percent of this data will contain events that
are interesting for various analyses, representing a large-scale data reduction
challenge.

In fact, data-intensive applications demand that data-reduction techniques
are one pass in order to be scalable. It is simply not computationally efficient
to process massive data sets many times in their entirety in order to produce
a reduced form. In network packet processing applications, simple reduction
techniques such as throwing away acknowledgement packets can be used. In
many experimental domains, data is often reduced during acquisition from
an instrument, and further techniques are used to cluster, collate, or index
the remaining data for efficient processing. Indexing is particularly efficient
in applications where the raw data cannot be thrown away. Indexing using
a database or some file-system based approach provides an efficient way for
applications to search over very large data collections.

Google’s search engine works using a combination of data reduction and
indexing. Crawled Web pages are passed to an indexer function that indexes
each word in a document, storing a list of documents in which the term appears
and the precise location of the word in the text. Stop words such as the and it
are not indexed, reducing data volumes. This design supports rapid access to
the documents that contain user query terms in response to Google searches.

Another common data reduction technique is the generation of mathematical
signatures. A signature is a unique or distinguishing measurement, pattern, or
collection of data that identifies a phenomenon (object, action, or behavior) of
interest. Signatures are analogous to people’s fingerprints – providing compact
and computationally efficient representations of complex data sets.

Across multiple domains, signatures are used in a variety of ways:

� biomarkers can be used to indicate the presence of disease or identify a drug
resistance;

� acoustic signals distinguish one maritime vessel from another; and
� anomalous network traffic is often an indicator of a computer virus or mal-

ware.

Useful signatures often exist at the boundary of knowledge domains. For
example, signatures created from text, multimedia, and sensor data can be used
to produce new ways of summarizing key features in large, heterogeneous
data sets. Signature attributes may be generated from underlying data through

8 http://belle2.kek.jp/.

2.4 Data Analysis and Visualization 17

very complex and nonlinear relationships, and typically require expert domain
knowledge to help identify the characteristics of useful signatures.9

Data reduction is an integral part of any data-intensive application. Chapter 6
presents an in-depth description of data reduction techniques for streaming
that illustrates many of the fundamental principles required for effective data
reduction.

2.4 Data Analysis and Visualization

Once data has been reduced to a manageable size, applications perform various
analyses to recognize patterns in the data and often find obscure relationships
between data items. Even with reduced data sizes, efficient processing can typi-
cally only be achieved by using data parallel algorithms that exploit underlying
computational clusters. Data parallel applications partition the data into multi-
ple segments, which can be processed independently and concurrently across
multiple compute nodes, and then reassemble the partial results to produce the
outputs.

A wide range of algorithms are commonly used for data-intensive applica-
tions, and precise needs are obviously application-specific. The following are
some examples we often use:

� Classifiers: The ability to classify data using some application-defined clas-
sification scheme is widely used across domains, from Internet search to
biology. Many classification algorithms exist, based on statistical (such as
regression or Bayesian Networks) or structural (such as rule-based or neural
networks) techniques. Classifiers require a training phase based on reference
structures that divide the space of all possible data points into a set of non-
overlapping classes. An example of a classifier in action is in Chapter 7,
which describes using a highly efficient implementation of Support Vector
Machines for data-intensive biological applications.

� Clustering: Clustering assigns sets of data items into groups (called clus-
ters), such that the data items in the same cluster are more similar (in some
application-defined sense) to each other than to those in other clusters. Many
clustering algorithms exist, each with their own strengths and weaknesses
in terms of efficiency and exactly what characteristics of data constitute
a cluster. Examples are centroid- (such as k-means), distribution- (such as
multivariate normal distributions) and connectivity-based (such as hierar-
chical) methods.

9 Signature discovery, generation, and validation are active research areas. See http://signatures
.pnnl.gov/ for more details.

18 2 Anatomy of Data-Intensive Computing Applications

� Search: Searching large and complex data sets efficiently is necessary in
many data-intensive applications in order to find a data object with speci-
fied properties among a collection of objects. Search approaches abound,
but the most effective is dictated by the organization of the data being
searched. For simple structures, brute-force searches can be made to scale on
massively parallel platforms. Heuristic searches, where knowledge about
structure of the data is exploited to increase search efficiency, are also
widely used. Numerous algorithms exist for searching graph-based data.
However, traversing large graphs is not computationally efficient on com-
modity clusters, and specialized hardware can be exploited gainfully to
increase graph algorithm performance. Chapter 3 includes a description of the
Cray XMT, a thread-based hardware architecture for processing graph-based
data.

Providing meaningful visual representations of the results of data-intensive
applications helps users understand and explore the results, distilling complex
relationships into graphs, images, and charts that communicate information
clearly and effectively through graphical means. As an everyday example,
Figure 2.2 shows a visual representation of Facebook relationships. The tight
clusters of nodes represent groups of people who are more closely related in
Facebook; sparsely connected nodes are visualized on the edge of the graph,
indicating they are less connected to others in this group. This is a common data
visualization technique. Tools such as InSpire10 enable users to visually explore
such representations through panning and zooming, and then by selecting nodes
to view the data associated with a specific node in the graph.

Visualization is a reasonably mature area of investigation in computer sci-
ence and mathematics. This means that a data-intensive application developer
can draw upon a rich collection of open source and commercial tools for
their specific visualization needs. Scientific visualization technologies such as
VisiT11 and ParaView12 provide many capabilities for advanced data visualiza-
tion and can run in client-server mode, whereby the server processes the data
on the compute node it resides and transmits only the generated visualization
to the user. This provides a highly attractive and efficient approach for visu-
alizing massive data sets without incurring the costs of moving the data to a
site for visualization. Other powerful visualization tools and libraries, which

10 http://in-spire.pnnl.gov/.
11 https://wci.llnl.gov/codes/visit/.
12 http://www.paraview.org/.

2.5 Data Processing Pipeline Infrastructure 19

Figure 2.2. Visualization of Facebook relationships.

are routinely used in all data-intensive domains, include gnuplot,13 Java 3D,14

MATLAB,15 and OpenGL.16

2.5 Data Processing Pipeline Infrastructure

Data-intensive applications inevitably comprise a number of processing steps
to transform massive and complex data sets into information that is usable by
humans and other computational systems. Scientists and engineers commonly

13 http://www.gnuplot.info/.
14 http://java3d.java.net/.
15 http://www.mathworks.com/index.html.
16 http://www.opengl.org/.

20 2 Anatomy of Data-Intensive Computing Applications

refer to these multistage data-processing systems as pipelines, and in many
instances these pipelines are structured according to the pipe and filter archi-
tecture pattern [2]. Stages in the pipeline typically communicate using files or
network protocols such as HTTP or sockets, and each stage is an executable
program that performs the processing needed at that stage in the pipeline.

In practice, many different approaches, from lightweight scripting languages
to graphical workflow tools, have been used effectively to build pipelines. The
most common approach is to use scripting languages such as Perl, Python, or
shell scripts. These work well for simple pipelines, as the lightweight infras-
tructure and familiar programming tools provide an effective development
environment. However, as the complexity of pipelines grows, the general pur-
pose nature of the abstractions in these languages make it difficult to explicitly
handle concurrency, distributed communications, and asynchronous messag-
ing. This leads to scripts that are overly complex and increasingly expensive
to evolve and test. This is especially true when the outputs of one stage of the
pipeline must be routed to and processed by multiple, concurrent downstream
processes [3]. Additional complexity is introduced when using scripts to auto-
mate a pipeline that is distributed across multiple compute nodes and utilizing
heterogeneous communication protocols [4]. Recently, the scripting approach
has been extended in the Swift project [5], which has created a custom script-
ing language targeted at applications running on grid and high-performance
computing platforms.

Generalized workflow tools can be used to create pipelines. Tools such
as Kepler, BPEL-based technologies, and Taverna [6] can be used to visu-
ally script a pipeline-style workflow, link in existing components and services
through a variety of protocols, including Web services, and then deploy and
orchestrate the pipeline. These tools and approaches can be used to describe
pipelines, but similar to scripting languages, they must explicitly describe con-
currency and buffering requirements. This can add considerable complexity
to pipeline descriptions. In addition, they are heavyweight in terms of devel-
opment infrastructure (that is, they require visual programming with custom
languages) and run-time overheads. The run-time overheads make them particu-
larily inappropriate for building pipelines that need to process high-volume data
streams, where fast context switching, lightweight concurrency, and buffering
are paramount.

Custom approaches also exist for building pipelines. Prominent in this cate-
gory are Pipeline Pilot [7] and the MeDICi Integration Framework (MIF) [8].
Pipeline Pilot provides a client-server architecture similar to that of BPEL-
based tools. The client tools are used to visually create pipelines in a custom
graphical language, based upon underlying service-oriented components. The

2.6 Data Management 21

server executes pipelines defined by the client, orchestrating externally defined
components through SOAP-based communications. The client also provides
a proprietary scripting language to enable custom manipulation of data as it
flows between the main steps of the pipeline. In contrast, MIF is built upon
a commercial-grade enterprise service bus, Mule,17 and represents pipeline
stages as components that are connected into pipelines using connectors that
can utilize any protocols through simple configuration. Concurrent processing
and buffering between stages are implicit in a MIF application and are tuned
through configuration parameters. Explicit abstractions for handling large data
sets and moving them between distributed compute nodes in the pipeline greatly
ease the difficulty of creating high-performance and data-intensive applications
for pipeline designers.

As data-intensive applications continue to grow in both scale and fidelity, the
demands placed on the computational pipeline infrastructures proportionally
increase. In the last five years, we have frequently seen the following application
drivers for change in deployed pipeline-based systems:

� Scalability: Pipeline-based applications need to scale to handle larger
and more complex data sets without significant increases in processing
times.

� Modifiability: Scientists and engineers wish to experiment with different
algorithms at various stages in the pipeline, and hence need to easily change
the algorithms for a given pipeline stage.

� Complexity: New codes need to be incorporated into the pipeline, resulting
in a more complex pipeline topology based on processing path forks and
joins.

2.6 Data Management

Architectures and technologies for data management play essential roles in
data- intensive applications. Chapter 1 describes how petascale repositories
exist already and are built upon technologies ranging from relational data ware-
houses to column-oriented data stores such as HBase, parallel file systems such
as Lustre, and specialized hardware storage appliances such as Netezza. Many
factors dictate the most appropriate solution for given application requirements.
Chapters 4 and 5 explore such factors in depth.

Often, different data persistence mechanisms are used at different stages of
the data processing pipeline. During data acquisition, it may be necessary to

17 http://www.mulesoft.com/.

22 2 Anatomy of Data-Intensive Computing Applications

write data using simple structures to a high-performance file system so that
data capture can keep up with data production from an instrument, simulation,
or sensor. The data reduction phase, perhaps in parallel with data capture, will
operate on these structures, and write its outputs to a structured data store such
as a column-oriented database, upon which downstream analytics can more
efficiently operate. The results from the analytics stage may subsequently be
loaded into a relational data warehouse so users can explore the data using the
interactive query tools that are packaged with the data warehousing technology.

2.7 Summary

This chapter breaks down data-intensive applications into their constituent
stages and describes various approaches, techniques, and technologies that
are appropriate at each stage. Although not every stage in this abstract data-
intensive processing pipeline will be equally applicable in every application,
the underlying pipeline-based architecture can be viewed as a blueprint, or
pattern [9], for designing such applications.

Exactly how specific data-intensive applications are conceived and imple-
mented depends very much on the application characteristics, deployment envi-
ronment, and the skills of system architecture and development team. The range
of alternative concrete software architectures (such as MapReduce or MPI),
deployment infrastructures (such as public cloud or private HPC cluster), and
data management platforms (such as column-oriented data stores or parallel
file systems) is daunting, requiring the design team to take a broad view of the
application requirements, and crucially explore how it is expected to evolve
in terms of data sizes and analytical needs. Big data problems have a habit of
quickly teasing out any inherent bottlenecks and performance weaknesses in
an application design and implementation. This calls for careful design, proto-
typing, and stress testing of potential solutions so that unpleasant surprises are
minimized in sometimes merciless production environments.

References

1. Roukoutakis, F., S., Chapeland, and Cobanoglu, O. “The ALICE-LHC Online Data
Quality Monitoring Framework: Present and Future.” Real-Time Conference, 2007
15th IEEE-NPSS, (April 29 2007–May 4 2007): 1–6. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?reload=true&arnumber=4382730&contentType=Conference+
Publications.

2. Shaw, M., and Garlan, D. Software Architecture: Perspectives on an Emerging
Discipline. Upper Saddle River, New Jersey: Prentice-Hall, Inc., 1996.

References 23

3. McPhillips, T., Bowers, S., Zinn, D., and Ludascher, B. “Scientific Workflow Design
for Mere Mortals.” Future Generation Computer Systems 25, no. 5, (May 2009):
541–51.

4. Ludscher, Bertram, Mathias Weske, Timothy Mcphillips, and Shawn Bowers. “Sci-
entific Workflows: Business as Usual?” In Proceedings of the 7th International
Conference on Business Process Management (BPM ’09), edited by Umeshwar
Dayal, Johann Eder, Jana Koehler, and Hajo A. Reijers. 31–47. Berlin, Heidelberg:
Springer-Verlag, 2009.

5. Wilde, I. F., Iskra, K., Beckman, P., Zhang, Z., Espinosa, A., Hategan, M., Clifford,
B., and Raicu, I. “Parallel Scripting for Applications at the Petascale and Beyond.”
Computer 42, no. 11, (2009): 50–60.

6. Barker, A., and van Hemert, J. “Scientific Workflow: A Survey and Research Direc-
tions.” In Lecture Notes in Computer Science, Volume 4967/2008. 746–53. Berlin,
Heidelberg: Springer-Verlag, 2008.

7. Yang, Xiaoyu, Richard P. Bruin, and Martin T. Dove. “Developing an End-to-End
Scientific Workflow,” Computing in Science and Engineering, (May/June 2010),
52–61.

8. Gorton, I., Wynne, A., Liu, Y., and Yin, J. “Components in the Pipeline.” Software,
IEEE 28, no. 3 (May-June 2011): 34–40.

9. Gorton, I. Essential Software Architecture (2nd ed.). Berlin, Heidelberg: Springer-
Verlag, 2011.

3
Hardware Architectures for Data-Intensive

Computing Problems: A Case Study
for String Matching

Antonino Tumeo, Oreste Villa, and Daniel Chavarrı́a-Miranda

3.1 Introduction

Data-intensive applications have special characteristics that in many cases pre-
vent them from executing well on traditional cache-based processors. They can
have highly irregular access patterns with very little locality that do not match
the expectations of automatically controlled caches. In other cases, such as
when they process data in streaming, they do not have temporal locality at all
and only limited spatial locality, therefore reducing the effectiveness of caches.

We present an application-driven study of several architectures that are suit-
able for data-intensive algorithms. Our chosen application is high-speed string
matching, which exhibits two key properties of data-intensive codes: highly
irregular access patterns and high-speed streaming data. Irregular access pat-
terns appear in string matching when traversing graph-based representations of
the pattern dictionaries being used. String matching is typically used in cyber-
security applications to scan incoming network traffic or files for the presence
of signatures (such as specific sequences of symbols), which may relate to
attack patterns, viruses, or other malware.

3.1.1 String Matching

String matching algorithms check and detect the presence of one or more
known symbol sequences inside the analyzed data sets. Besides their well-
known application to databases and text processing, they are the basis of sev-
eral other critical, real-world applications. String matching algorithms are key
components of DNA and protein sequencing, data mining, security systems,
such as Intrusion Detection Systems (IDS) for Networks (NIDS), Applications
(APIDS), Protocols (PIDS), or Systems (Host based IDS [HIDS]), anti-virus
software, and machine learning problems. All of these applications process

24

3.1 Introduction 25

large quantities of textual data and require extremely high performance to pro-
duce meaningful results in an acceptable time: for NIDS, modern Ethernet
connections can provide more than 10 GB of data per second. In addition,
the number of patterns of malicious threats to search nowadays is well over
1 million, and is exponentially increasing [16]. Furthermore, in cases like
NIDS, string matching should also allow for real-time behavior, guaranteeing
predictable performance independently of the size of the input streams and the
number of symbols to search, without hindering the overall performance of the
system by reducing the available bandwidth or raising the latency.

Performing string matching with real-time or predictable performance has
always been a problem for software-based solutions, because of their tendency
to exhibit large performance variabilities when dealing with different sizes of
inputs and matching patterns. This behavior is exacerbated by modern Central
Processing Units (CPUs), which integrate advanced and complex cache archi-
tectures. Intuitively, if a pattern resides in the cache, the matching is fast. If
it does not, it has to be retrieved from memory and the algorithm performs
poorly. With small dictionaries, or when the same few patterns are matched,
the processor accesses only the cache with very high performance. With large
dictionaries, when many patterns are matched, they cannot fit all in the cache. If
the patterns matched progressively change (for example, there is not locality),
this may generate many cache misses and many cache replacement operations.
Consequently, the data in the cache are constantly thrashed and the cache
becomes ineffective. In many applications, when the input is not known and
the data cannot be adequately preprocessed to guarantee some locality, such as
network traffic, the matching algorithm accesses pattern data in unpredictable
locations of the main memory, leading to highly variable performance.

For these reasons, a large amount of research has been done to design effi-
cient implementations of string matching algorithms using Field Programmable
Gate Arrays (FPGAs) [3, 4, 8, 15], highly multithreaded architectures like the
Cray XMT [19], multicore processors [11], or heterogeneous processors like
the CELL Broadband Engine [14, 20]. Recently, Graphic Processing Units
(GPUs) have been demonstrated as a suitable platform for some classes of string
matching algorithms for NIDS such as SNORT [6, 12, 18]. Designers of string
matching solutions are challenged at the same time along a multi-dimensional
space: performance (throughput), performance variability, dictionary size, and
flexibility (system customization). FPGA solutions are limited because of their
lack of flexibility and difficulty of customization; in addition, they typically can-
not support large dictionaries in result of their limited memory sizes. CELL-
based implementations require a significant programming effort to extract the

26 3 Hardware Architectures for Data-Intensive Computing Problems

performance, therefore making them difficult to integrate and modify for dif-
ferent application areas.

With the emergence of multicore and multithreaded architectures, full
software-based approaches have become feasible for high-throughput string
matching applications. Architectures such as the multithreaded Sun Niagara
2 and Cray XMT hide memory latencies, common applications with irregular
access patterns, by scheduling multiple thread contexts on a cycle-by-cycle
basis. Multicore architectures such as the Nehalem-based Intel Xeon and the
AMD Opteron processors today contain up to six cores in the same die and
twelve on the same socket. Nehalem processors can even use multithreading
to maximize the utilization of each core. In the last few years, GPUs have
become more flexible and more easily programmable for nongraphic-related
computing through interfaces such as CUDA or OpenCL. Because of their
large amount of functional units and the high memory bandwidth, GPUs have
become an appealing platform for the acceleration of some massively parallel,
throughput-oriented applications, and have been appearing more frequently in
high performance system configurations. String matching is usually a good
candidate for execution on all these parallel architectures. Depending on the
specific algorithm, the matching process can be parallelized by dividing the
input data set in smaller subsets, each one processed by a single thread. How-
ever, maximizing its performance on different architectures requires different
optimization techniques that accurately exploit the features of each platform.
Even doing so, it may not be sufficient to reach the desired trade-off among
throughput, performance variability, dictionary size, and flexibility.

3.1.2 Application Study

In the remainder of this chapter, we present and compare several software-
based implementations of the Aho-Corasick string searching algorithm for
high-performance systems. We look at how each solution achieves the objec-
tives of supporting large dictionaries, obtaining high performance, enabling
flexibility and customization, and limiting performance variability. We discuss
the implementation of the algorithm on a range of high-performance architec-
tures, with shared or distributed memory, and with homogeneous or heteroge-
neous processing elements. For the shared memory solutions, we consider: a
Cray XMT with up to 128 processors (128 threads per core), a dual-socket Nia-
gara 2 (8 cores per processor, 8 threads per core), and a dual-socket Intel Xeon
5560 (Nehalem architecture, 4 cores per processor, 2 threads per core). For the
distributed memory systems, we evaluate a homogeneous cluster of Xeon 5560

3.2 Background 27

processors (10 nodes, 2 processors per node) interconnected through Infini-
band QDR and a heterogeneous cluster where the Xeon 5560 processors are
accelerated with Tesla C1060 GPUs (10 nodes, 2 GPUs per node).

3.2 Background

We analyze the problem of string matching using the Aho-Corasick algorithm
on high-performance systems. We consider a typical situation where the input
is coming from a single source. For example, this is the case of NIDS, where
the data is streamed from the network connection. In this scenario, the input set
must initially be buffered in memory, and then sent to the processing elements.
There is no possibility to prepartition the data, so that in distributed memory
architectures they cannot be preallocated to the different nodes. These applica-
tions need to reach very high performance to match the bandwidth of today’s
internet connections (over 10 Gbps). In particular, with NIDS the string matcher
should perform well in order to guarantee real-time behavior, without slowing
down the network to perform the analysis or letting packets pass uninspected to
maintain the connection rate. An aspect that is often not thoroughly considered
with NIDS is that for these reasons the performance should not only be high,
but also predictable and stable, independent of variations in the dictionaries
or the input streams. In fact, as previously introduced, in many implementa-
tions the throughput of the matching algorithm depends on the number and
the distribution of matching strings in the input, and may significantly change
during the matching process itself. An attacker may exploit this weakness by
overloading a NIDS with packets that contains specific packets, forcing it to
leave subsequent packets unchecked or completely blocking the whole network
it is monitoring.

Another crucial element is the size of the dictionaries. Modern high-
performance pattern matching applications use dictionaries that contain well
over hundreds of thousands, if not millions, of patterns, so approaches that
provide a limited amount of memory are not suitable for them or require a
significant effort to make the dictionaries fit in the tight constraints. High-
performance machines are appealing for pattern matching because they have
large memory pools, compared to custom architectures, which can be effectively
utilized for software implementations without giving up on the performance or
increasing the complexity of the software implementation.

The focus of our evaluation has been the Aho-Corasick string matching
algorithm [1]. The algorithm scans an input text T of length m and detects
any exact occurrence of each of the patterns of a given dictionary, including

28 3 Hardware Architectures for Data-Intensive Computing Problems

partially and completely overlapping occurrences. A detailed presentation of
the algorithm can be found in [1] and descriptions of its high-performance
implementations can be found in [14 ,19, 20].

The following sections describe the architectures that we used for our evalu-
ation of the Aho-Corasick string matching algorithm.

3.2.1 Cray XMT

The Cray XMT is the commercial name for a shared-memory multithreaded
machine developed by Cray under the code name “Eldorado” [2, 5]. The system
is composed of dual-socket Opteron AMD service nodes and custom-designed
multithreaded compute nodes with Threadstorm processors. The entire system
is connected using the Cray Seastar-2.2 high-speed interconnect. The XMT
system can scale up to 8,192 Threadstorm processors and 128 TB of shared
memory.

Each Threadstorm processor is able to schedule 128 fine-grained hardware
threads to avoid memory-access generated pipeline stalls on a cycle-by-cycle
basis. At runtime, a software thread is mapped to a hardware stream comprised
of a program counter, a status word, a target register, and thirty-two general
purpose registers. Each Threadstorm processor has a Very Long Instruction
Word (VLIW) pipeline containing operations for the Memory functional unit,
the Arithmetic unit and the Control unit. The Arithmetic unit is capable of
performing a floating-point multiply-add per cycle. In conjunction with the
control unit doubling as arithmetic unit, a Threadstorm is capable of achieving
1.5 GFlops at a clock rate of 500 MHz. A 64 KB, 4-way associative instruction
cache helps in exploiting code locality.

Each Threadstorm is associated with a memory system that can accommodate
up to 8 GB of 128-bit wide DDR memory. Each memory controller is comple-
mented with a 128 KB, 4-way associative data cache to reduce access latencies
(this is the only data cache present in the entire memory hierarchy). Memory is
structured with full-empty-, pointer forwarding-, and trap-bits to support fine
grained thread synchronization with little overhead. The memory is hashed at a
granularity of 64 bytes (see Figure 3.1) and fully accessible through load/store
operations to any Threadstorm processor connected to the Seastar-2.2 network,
which is configured in a 3-D toroidal topology. Although memory is completely
shared among Threadstorm processors, it is decoupled from the main mem-
ory in the AMD Opteron service nodes. Communication between Threadstorm
nodes and Opteron nodes is performed through a Lightweight Communication
Library (LCM). Continuous random accesses to memory by the Threadstorm
processor will top memory bandwidth at around 100 M requests per second.

3.2 Background 29

Figure 3.1. Cray XMT Threadstorm memory subsystem.

The software environment on the Cray XMT includes a custom, multi-
threaded operating system for the Threadstorm compute nodes (MTX), a paral-
lelizing C/C++ cross-compiler targeting Threadstorm, a standard Linux 64-bit
environment executing on the service and I/O nodes, as well as the necessary
libraries to provide communication and interaction between the two parts of
the XMT system.

The XMT machine used in our analysis is composed of 128 nodes, with
ThreadStorm processors at 500 MHz, and has 1 TB of memory.

3.2.2 Niagara2

The Niagara 2 processor (also known as the UltraSPARC T2) is the follow on to
the Niagara 1 (UltraSPARC T1), a power-efficient chip processor based on the
Chip MultiThreading architecture (CMT) optimized for Space, Watts (Power)
and Performance (SWaP) [9]. The Niagara 2 has 8 SPARC cores, and each core
supports the concurrent execution of 8 threads, for a total of 64 threads per
chip. The cores implement the 64-bit SPARC V9 instruction set and have one
Load/Store Unit, two execution units, one FPU and a Cryptographic/Stream
Processing Unit. The cores have an 8-way 16 KB instruction cache, a 4-way
8 KB data cache, and fully associative 64-entry instruction-TLB, and 128-entry
data-TLB. The integer pipeline is eight stages long whereas the floating point
pipeline has twelve stages for most operations. The eight threads share the
instruction cache, but have their own instruction buffers. The Fetch unit loads

30 3 Hardware Architectures for Data-Intensive Computing Problems

up to four instructions per cycle, and puts them in the thread’s instruction buffer.
The threads in the fetch unit can be in two states: Ready, or Wait if there has been
a miss in the instruction-TLB, the instruction cache, or the instruction buffer is
full. A least-recently-fetched algorithm selects the thread that fetches the next
instruction. At the execution level, the threads are divided in two groups of four
threads each, and they can be again in the Ready or the Wait state, depending
on misses on the data cache, the data-TLB, or a data dependency. A thread from
each group is selected for execution with a least-recently-picked algorithm.

The eight cores access a shared 4 MB level 2 16-way set associative cache,
which is divided into eight banks of 512 KB each. Niagara 2 has four mem-
ory controllers on chip, each controlling 2 FBDIMM channels, clocked at
400 MHz. Read transactions take two clock cycles, whereas write transactions
take four clock cycles, for a read bandwidth of 51.2 GB/s and a write band-
width of 25.6 GB/s. Niagara 2 uses the high number of active threads per core
to cover miss latencies in the cache, thus tolerating a smaller second Level
cache compared to other processors.

Our Niagara 2 system is an UltraSparc T5240, which is composed of 2
processors at 1165 MHz (for a total of 128 threads) and 32 GB of memory,
and runs SunOS 5.10. In the following, we refer to the whole system as the
Niagara 2.

3.2.3 Nehalem

Nehalem is the codename for the latest Intel microarchitecture for x86 proces-
sors. Nehalem-based processors have currently two, four, six and eight cores,
depending on their target market. The processors used in our machines are all
four-core implementations, manufactured at 45 nm. Nehalem has a powerful
out-of-order core, able to decode up to four x86 istructions per clock cycle
through its four decoders (three simple and one complex), and to issue up to
7 μops per cycle. The processor has a 128-entry reservation station and a 128-
entry reorder buffer, dispatching up to 6 μops to the execution units through
its six ports. Three of these ports access three 128-bit SSE (Streaming SIMD
Extension) units, two 128-bit floating point units, and three 64-bit integer units,
the other three access the memory units, respectively the store data unit, the
store address unit, and the load address unit. Each core has a 32 KB level 1
instruction cache, a 32 KB level 1 data cache, and a 256 KB level 2 cache. All
the cores share, in the 4-core implementations, an 8 MB level 3 cache. The
caches are inclusive, meaning that the data from a lower level is contained in
the higher level. Nehalem has a two-level data TLB hierarchy, where the first
level has 64 entries and the second level 512 entries, both 4-way associative.

3.2 Background 31

The cores support Simultaneous Multithreading (commercially named
HyperThreading), which allows executing multiple threads per core. In these
complex cores, multithreading is used to maximize the utilization of the execu-
tion units of the processor by choosing the instructions to execute from multiple
threads. Nehalem integrates a memory controller, supporting up to three chan-
nels of DDR3 SDRAM and four FB-DIMM channels. Multiple processors
and Intel’s Northbridge are interconnected through the integrated QuickPath
Interconnect (QPI).

For the performance analysis presented in this chapter, we used a system
composed of 2 Nehalem-based Xeon 5560 processors, with 24 GB of DDR3
memory at 667 MHz (1333 mega-transfers per second). In the following, we
refer to this machine as the x86 SMP.

3.2.4 CUDA-Based GPUs

The Compute Unified Device Architecture (CUDA) [10] is defined by NVIDIA
both as an architectural paradigm and a programming model for developing
General Purpose applications on Graphic Processing Units (GPGPU). NVIDIA
provides a toolkit with a C compiler (C for CUDA) that supports some custom
extensions for mapping the program onto the architecture. The GPU is consid-
ered as a coprocessor to which parallel parts of the application are offloaded.
The portion of the program offloaded to the GPU, known as kernel, is divided
in a grid of up to 65,356 thread blocks. Each thread block is composed of up
to 512 threads.

We consider the Tesla T10 GPU architecture, which supports compute capa-
bility 1.3 and is used in the Tesla C1060 solution. The basic blocks in the
architecture are the Streaming Multiprocessors (SM), which are composed of
8 Streaming Processors (SPs), 2 Super Function Units (SFUs), a Dual Preci-
sion Streaming Processor (DP), a shared memory of 16 KB, the instruction
unit (I-Unit), the instruction cache (I-Cache), and a constant cache (C-Cache).
The SPs are the basic single precision Arithmetic Logic Units (ALUs) that
perform the basic integer and floating point computations, the SFUs instead
are used for the computation of special functions such as transcendental and
trigonometric operations. The I-Unit fetches a single operation for a group of
thirty-two threads (or, a warp) at a time, which are executed by a single SM in a
Single Instruction Multiple Data (SIMD) fashion. This means that in a branch,
if threads of the same warp takes different directions (divergence), the I-Unit
must fetch the instructions for all the sides of the branch and the threads must
wait for each other, making the execution time equal to the sum of the execution
times for all the directions taken. A thread block contains up to sixteen warps,

32 3 Hardware Architectures for Data-Intensive Computing Problems

and does not migrate from the SM where it started. Multiple SMs are combined
in a Texture Processor Cluster (TPC), which provides a Texture Unit and a
Texture Cache. In the T10, three SMs form a single TPC.

All SMs in the GPU access a unified, globally shared memory space known
as global memory, which is typically on the order of several GB in current
implementations. This memory is built out of GDDR RAM, specialized for the
bandwidth and access pattern requirements of GPUs. The SMs communicates
with the global memory through a crossbar connected to several 64-bit memory
controllers. The global memory is accessed also by the host CPU through the
PCI Express bus, whereas the shared memory can be read and wrote exclusively
by the GPU threads running on the specific SM. The global memory contains
kernels and data shared among all SMs. Shared memories, instead, work like
scrathpads (for example, they are managed by the programmer) and can contain
data shared only among the threads of the same thread block. The memory
operations to the shared and the global memory are issued for a half-warp
(sixteen threads). The latency of the global memory is in the range of 400-600
cycles, whereas the shared memory, when accessed without bank conflicts, is
as fast as the registers (single clock cycle). It is very important to correctly align
the accesses of a half-warp to the global memory to coalesce them in a single
memory transaction, whereas for the shared memory it is useful to minimize
bank conflicts.

Each SM of a device with compute capability 1.3 has 16,384 registers and
can keep simultaneously active up to 1,024 threads from different thread blocks.
The registers are statically partitioned among all the active threads, whereas
the shared memory is allocated per thread block. A low register utilization
and a correct sizing of the shared memory are crucial for maximizing the
number of active threads. Keeping more threads active means having more
warps available to switch in and out of the execution units for covering the
latency of the memory operations.

3.2.5 Clustered Machines

Clusters are by far the most common approach for implementing high per-
formance systems today. A compute cluster is composed of individual nodes
interconnected together through a dedicated network. The de facto standard
for programming these machines is the Message Passing Interface (MPI).
For our Aho-corasick distributed memory implementations, we used a high-
performance cluster with a homogeneous and a heterogeneous configuration
of the nodes. The homogeneous configuration uses nodes composed of two
Nehalem-based Intel Xeon 5560 at 2.8 GHz on SuperMicro motherboards.

3.3 Aho-Corasick Algorithmic Design and Optimization 33

Each processor has 4 cores with 2 threads per cores and 8 MB of second level
cache. Our homogeneous cluster has 10 nodes, with 24 GB of DDR 3 memory
each (triple channel) at 667 MHz, interconnected through Mellanox Connect
X QDR Infiniband.

Our cluster uses 4 Infiniband links (2.5 Gbps each) with quad data signalling
rates, reaching a peak rate of 40 Gbps (32 Gbps worth of data) in each direction.
For the heterogeneous configurations, we use 5 Tesla S1070 boxes. A Tesla
S1070 presents 4 Tesla C1060 GPUs with 4 GB of GDDR3 memory each. The
Tesla C1060 is composed of 30 Streaming Multiprocessors (240 Streaming
Processors), working at 1.3 GHz. In our 20-GPU cluster, 2 Tesla GPUs are
connected to a single node through a switch with a PCI Express 2.0 x16
connection, so they both share a peak bandwidth of 8 GB/s.

3.3 Aho-Corasick Algorithmic Design and Optimization

The basic implementation of the Aho-Corasick Algorithm starts from similar
principles for all the architectures analyzed in this work. However, there are
aspects in the implementations and the optimizations that are obviously differ-
ent. In this section, we present the overall basic algorithmic design and then
focus on the specific modifications and optimizations for the various platforms.

Starting from the same basis, we designed shared memory implementations
using pthreads for the Niagara 2, x86 SMP, and the proprietary programming
model of the Cray XMT. For the GPU kernel, we used NVIDIA CUDA. For
the heterogeneous and homogeneous cluster, instead we designed a MPI load
balancer, which can be used alone, or integrated with pthreads or CUDA.

3.3.1 Basic Design

Our algorithm design is based on the following cornerstones:

� minimize the number of memory references
� reduce memory contention

This is true for all the implementations. The searched patterns are represented
as a Deterministic Finite Automaton (DFA). As the input symbols are scanned,
the search algorithm traverses the different nodes of the DFA. For each possible
input symbol, there is always a valid transition to another node in the graph.
This key feature guarantees that for each input symbol there is always the
same amount of work to perform. In detail, the Aho-Corasick string matching
algorithm works as shown in Algorithm 3.1.

34 3 Hardware Architectures for Data-Intensive Computing Problems

Algorithm 3.1 Basic steps of the DFA-based Aho-Corasick string matching
algorithm.

1. Load node “0” (or root) from main memory (DFA) in current node.
2. Load one input symbol from main memory in symbol.
3. Load the next node from main memory (DFA) (following the link from the

current node, labeled by symbol).
4. Check if the transition to next node is final (if it is, the last symbols are a

matching pattern).
5. Assign next node to current node.
6. Repeat starting from step 2 until there are no more input symbols.

For a given dictionary the data structures in main memory (DFA and input
symbols) are readonly. For all the implementations, the common parallelization
stategy is to use multiple threads or processes that concurrently execute the
algorithm. Each thread or process has a current node and operates on a distinct
section of the input.

For each input symbol, there are conceptually two loads to perform, one for
the symbol itself (Step 2 in Algorithm 3.1) and one for the next node in the
DFA (Step 3 in Algorithm 3.1). Step 4 could also involve an extra load for
checking if the transition is final or not, but in our implementation it does not,
as we explain later.

Step 2 loads contiguous symbols of 8-bits each (ASCII alphabet in our
experiments) from main memory. In 32- or 64-bit architectures, the frequency
of this load can be reduced respectivively to only one load for every four or
eight symbols, shifting and masking to extract the right symbol. Furthermore,
accessing the scanned symbols has very high spatial locality.

The load in Step 3 (for next node) is quite different. It is not predictable
because it depends on the symbol just loaded and on the current node. This
load is the main cause of performance degradation on conventional cache-
based architectures for this class of algorithms. If the input text contains a large
number of patterns that are present in the dictionary, then the entire graph will
likely be accessed during the matching process (“heavy” matching). On the
other hand, if there is “light” or no matching (such as a dictionary against a
random pattern) most of the time the search algorithm will stay on the DFA’s
node 0 (root) because the failure transitions jump again on node 0 itself.

As already presented in [19], our first algorithmic decision was to implement
a scanning engine that performs Step 3 with only one load per symbol. To
achieve this goal, we represent the DFA graph as a sparse State Transition
Table (STT). The STT is large table composed of as many rows as there are

3.3 Aho-Corasick Algorithmic Design and Optimization 35

nodes in the DFA and as many columns as there are symbols of the alphabet.
Each STT line represents a node in the original DFA. Each entry of a STT
line (cell) (indexed by a current node and a symbol) stores the address of the
beginning of the STT line that represents the next node for that transition in
the DFA. This sparse STT representation is somewhat expensive in terms of
the amount of memory required, but it guarantees that Step 3 will only require
one load operation. The boolean information indicates if a transition is For
the Cray XMT and pthreads pattern matchers, the STT lines are 256-byte
aligned such that the least significant byte of the address is equal to zero. This
property allows us to store in the least significant bit of each STT cell the
boolean information indicating if that transition is final or not, removing the
need for the extra load in Step 4.

As discussed previously, the load in Step 3 is crucial because this operation
could have the highest performance variability. In fact, Step 1 is executed
only once, Step 2 loads contiguous symbols that most likely are in the cache,
Steps 4, 5, and 6 are arithmetic/logic operations on registers. This basic design
is at the core of the pthreads implementation for the x86 SMP and the
Niagara 2 platforms. Because one of the objectives of our work is to verify
if content-independent performance can be provided, we need to obtain a
relatively uniform latency for this load.

3.3.2 Cray XMT Implementation

In comparison to other solutions where absolute latency matters, the approach
for exploiting the highly multithreaded architecture of the Cray XMT focuses
mostly on reducing latency variability. If the latency is constant or low variable,
the system is able to schedule a sufficient number of threads to hide it.

On the Cray XMT, the main cause of variability in the memory access time
is the presence of hotspots. Hotspots are memory regions frequently accessed
by multiple threads simultaneously. Nevertheless, the Cray XMT employs a
hardware-hashing mechanism which spreads data in all the system’s memory
banks with a granularity of 64 bytes (block) [5]. However, if different blocks
corresponding to different memory banks have different access ratios, the
“pressure” on the memory banks is not equally balanced, producing variability
in the access time. In our implementation, there are two reasons why this can
happen:

� Each 64-byte block in the XMT’s memory can contain multiple STT cells.
Thus, it is possible that for, say English text, there might contention and
hotspotting on the same memory block for contiguous ASCII symbols.

36 3 Hardware Architectures for Data-Intensive Computing Problems

D

Figure 3.2. Access distribution for an English dictionary with different inputs.

� The first few states of the top levels of a Breadth-First Search (BFS) of the
DFA graph are responsible for most of the accesses. Thus, there can be hot-
spotting if too many threads are reading those entries simultaneously. Figure
3.2 shows, for an English dictionary with 20,000 patterns, the distribution of
the accessed nodes in the DFA as function of the levels when scanned against
English Text, a TCP traffic dump, random input, and the dictionary itself.

In order to alleviate the preceding problems, we propose two solutions as shown
in [19]:

� Alphabet shuffling: The alphabet symbols in a STT line can be shuffled
using a relatively simple linear transformation, to ensure that symbols that
are contiguous in the alphabet (such as standard English characters in ASCII)
are spread out over multiple memory blocks.

� State replication: We replicate the STT states corresponding to the first two
levels of the BFS exploration of the DFA.

The details of how these mechanisms are implemented on the XMT are dis-
cussed in [19]. On cache-based architectures (x86 and Niagara 2), these opti-
mizations would not bring significant benefits, but rather reduce the spatial
locality of the cache.

3.3.3 GPU Implementation

The GPU implementation starts from the same principles of the basic design, but
requires some specific adaptations. Each CUDA thread independently performs

3.3 Aho-Corasick Algorithmic Design and Optimization 37

the matching on a chunk of the input text. This allows reasonably sized chunks,
while maintaining a high utilization of each thread. The main differences reside
in the STT: the rows still represent the states, columns, and symbols, but states
are addressed by indices, not by pointers. Each cell of the table, which in our
GPU code has a size of 32-bits, contains the index of the next state in the
first 31-bits and the flag that tags final states in the last bit. Therefore, we thus
reduce memory usage, which is critical for GPUs that can address only up to
4 GB of memory. However, the organization of memory controllers on CUDA-
based GPUs requires to further optimize the STT layout. In fact, similar to the
basic Cray XMT implementation, it is possible to generate memory hotspots.
The reasons are that each memory controller manages a 256-byte wide memory
partition, and depending on the number of memory controllers and partitions,
the input set and the pattern dictionary, the accesses may concentrate only
on a single partition (single memory controller). This problem is known in
the GPGPU community as partition camping [13]. To solve this problem, we
added padding to each line of the STT corresponding to the size of a partition,
allowing a more even access pattern.

The unpredictable nature of the loads on the STT makes it impossible to
coalesce the accesses of half-warps in a single memory transaction: with high
probability, they are not sequential and not aligned. Thus, we decided to bind the
STT to the texture memory. Binding data to texture memory allows fetching the
data through the texture units, which do not require coalescence (but still suffer
from partition camping), and using the texture caches, which are optimized
for 2-D locality. Depending on the particular input set, we underline that the
benefits in using the texture cache derive mainly from the hits on the first levels,
as shown in Figure 3.2. Textures have a limit on their size (227 elements) in
CUDA, so we only bind the first few levels of the STT to textures, which gives
the most performance benefits.

In applications with a single point of input, where the data is streamed from
the input connection, the symbols are saved in memory sequentially. This means
that if they are moved in the same layout to the global memory of the GPU,
and each thread starts processing its own chunk, the accesses by a half-warp
of threads will be uncoalesced. In fact, each thread will start reading input
symbols with the stride of a chunk. Figure 3.3a shows the situation. To offset
this problem, we transpose the input in groups of four characters. With this
transformation, blocks of four symbols each from each chunk are interleaved
so that threads from the same half-warp can read from sequential memory
locations four characters at a time with a single 32-bit load. The transformation
on the input is shown in Figure 3.3b.

38 3 Hardware Architectures for Data-Intensive Computing Problems

(a) Uncoalesced reads (b) Coalesced reads

Figure 3.3. Uncoalesced versus coalesced reads on a GPU.

The matching results are collected per chunk. A reduction is applied to
gather all the results and send them back to the host through a single memory
copy operation. The complete details on the GPU implementation are described
in [17].

3.3.4 Distributed Memory Implementation

For distributed memory architectures, we wrapped our string matching engine
in an MPI load balancer. MPI is the de facto message passing application pro-
gramming interface for distributed memory machines and it is the dominant
model used in high-performance computing today [7]. We developed a master/
slave scheduler, where the master MPI process distributes the work, and the
slaves perform the effective computation. From the same scheduler, we devel-
oped three slightly different implementations for the various configurations of
the clustered architectures:

� A MPI-only solution for the homogeneous x86 cluster, where each slave
process is mapped to a core and wraps a single-threaded version of our string
matching engine.

� A MPI with pthreads solution, where each slave process is mapped to an
entire node of the cluster and wraps a multithreaded version of our string
matching engine.

� A MPI with CUDA solution, where each slave process is mapped to a GPU
and wraps a CUDA kernel.

In the basic master/slave implementation, the master divides the input in
several chunks and sends data to the slaves as they progressively finish previous
chunks. As previously explained in cache-based architectures, the performance
of pattern matching strictly depends on the number of matches in the (unknown)
input stream. This is also true for our GPU implementation, which uses the

3.4 Experimental Results 39

Figure 3.4. Distributions of the symbols in the dictionaries.

cached texture memory to store the STT. The MPI load balancer uses dynamic
assignment of fixed chunks of input to each MPI slave to avoid load imbalance
between them.

Generally, communication bandwidth among the nodes of a cluster is limited
with respect to the computing resources available on each node. If the compu-
tational kernels are well optimized for the target computing resources and can
reach high throughputs, communication bandwidth may become a significant
bottleneck for an application. To overcome this problem, in our distributed
string-matching implementations we use multibuffering coupled together with
non-blocking MPI communication, allowing overlapping of communication
with computation.

3.4 Experimental Results

We have implemented various versions of the Aho-Corasick parallel algorithm
as previously described for the Cray XMT multithreaded system, the x86 SMP
architecture, the Niagara 2, the GPU cluster, and the x86 cluster. Our imple-
mentations are composed of two phases: building the State Transition Table
(STT) and executing string matches against the built STT. The STT building
phase is performed offline and stored in a file representation. Therefore, we
focus our experiments on the string matching phase, because this is the critical
portion in the realistic use of this algorithm for network content analysis.

Our experiments utilize four different dictionaries: Dict 1: an ≈ 190, 000-
pattern data set with mostly text entries with an average length of 16 bytes;
Dict 2: an ≈ 190,000-pattern data set with mixed text and binary entries with
an average length of 16 bytes; English: a 20,000-pattern data set with the
most common words from the English language, with an average length of 8.5
bytes; and, Random: a 50,000-pattern data set with entries generated at random
from the ASCII alphabet with an uniform distribution and an average length of
8 bytes. Figure 3.4 presents the distribution of ASCII symbols present in each
of the experimental dictionaries. Dictionaries with more text-like entries have
higher frequencies of alphabetical ASCII symbols. We also use four different

40 3 Hardware Architectures for Data-Intensive Computing Problems

(a) English dictionary (b) Dictionary 1

(c) Dictionary 2 (d) Random dictionary

Figure 3.5. Performance on the Cray XMT machine.

input streams for each dictionary: Text, which corresponds to the English
text of the King James Bible; TCP, which corresponds to captured TCP/IP
traffic; Random, which corresponds to a random sample of characters from
the ASCII alphabet; and Itself, which corresponds to feeding the dictionary
itself as an input stream for string matching. As previously discussed, using the
dictionary itself as an input will exhibit the “heaviest” matching behavior, thus
significantly influencing the performance of the algorithm.

Figure 3.5 shows the performance obtained by the XMT implementations,
and compares the basic design to the optimized version which exploits both
alphabet shuffling and state replication. With the basic implementation, when
using more than 48 processors, the performance remains far from the linear scal-
ing curve, and often the tests with 64 and 128 processors results in slow downs,
in particular with the text and TCP input sets, because of the memory hotspots
present in accessing the STT representation by a large number of threads.

3.4 Experimental Results 41

(a) English dictionary (b) Dictionary 1

(c) Dictionary 2 (d) Random dictionary

Figure 3.6. Scaling on the SMP dual Xeon X5560 solution.

We can see how, when the optimizations are used, the performance instead is
very close to linear scaling, with little differences among the different input
sets for all the dictionaries.

The results on the XMT should be compared with the performance of the
algorithm on the x86 SMP and the Niagara 2, both with shared memory. We
implemented a pthreads-based version of the basic algorithm, which has been
compiled with the Intel C Compiler (icc) 11.1 for the x86 SMP and with the
Sun C compiler 5.9 for the Niagara 2. Figure 3.6 shows the performance of the
x86 SMP. On this system, we executed the benchmarks with HyperThreading
enabled, raising the number of threads from 1 to 16 (8 per processor). Figure
3.6 shows that the scaling is not linear and that, in a few low matching cases,
raising the number of threads, can slightly reduce the performance. The main
reason for this behavior is the complex hierarchy of caches of the Nehalem
solution, in particular the shared L3, which may get different access patterns

42 3 Hardware Architectures for Data-Intensive Computing Problems

(a) English dictionary (b) Dictionary 1

(c) Dictionary 2 (d) Random dictionary

Figure 3.7. Scaling on the dual Niagara 2.

when changing the number of threads and the chunks processed by each thread.
Figure 3.7 presents the performance of the Niagara 2. On this system, we
executed the algorithm raising the number of threads one by one from 1 to
128, but in the figure we report only the most relevant runs. Niagara 2 obtains
significant speedups, albeit not linear, with up to 80 threads. At 80 threads, we
start getting reduced speedups and over 96 threads the speedups are marginal
as the system gets clearly saturated. The Niagara 2 architecture does not seem
to be able to cope with heavy matching conditions (dictionaries matched with
themselves, and STTs thorougly accessed), because of thrashing of the small
second level cache and memory hotspots. For the x86 platform, instead, the
performance is more evenly distributed, depending on the type of input streams
matched against the dictionary.

It is also worth comparing the best results on the these three shared memory
machines with the throughputs obtained by our optimized GPU implementa-
tion on a single Tesla C1060 GPU, which may be considered a shared memory

3.4 Experimental Results 43

Figure 3.8. Comparison among all the shared memory solutions.

platform, because the STT data structure is shared among the various process-
ing elements. We compiled the kernel with CUDA 3.0. Figure 3.8 presents
this comparison and also shows the performance variability on the various
architectures with our data sets.1 All the implementations that exploit caching
for the STTs show high variability. The GPU implementation’s worst perfor-
mance is 95 percent slower than the best, the x86 SMP implementation 92.2
percent slower than its best and the Niagara 90.3 percent slower than its best.
Thus, even if GPUs and Niagara exploit multithreading to cover the memory
latencies, they remain still limited by their memory subsystem. The Cray XMT
solution with 48 processors, instead, shows a performance variability of only
2.5 percent with the different combinations of dictionaries and input stream,
and on average is faster than the GPU, the x86, and the Niagara systems.
On the Cray XMT solution with 128 processors, the performance rises up to
28 Gbps, the highest reported in the literature for a software solution with very
large dictionaries, with a variability of only ≈ 12 percent.

For the scaling tests with the full, 10-node x86 cluster, we only show the
pthreads implementation with the MPI load balancer. Instead, the GPU cluster
implementation, uses an MPI process for each CUDA device, thus each node
runs two MPI processes. Figure 3.9 shows the performance obtained while
raising the number of nodes on the x86 cluster from one to ten (thus, from
two to twenty CPUs), while Figure 3.10 shows the performance of the GPU
cluster, again moving from one to ten nodes, corresponding to two to twenty
Tesla C1060 GPUs. In the clustered implementations, the master MPI process
streams the input text to the other nodes in blocks of 3 MB each.

The plots show some interesting behavior. First of all, we notice that the
GPU-accelerated cluster reaches a saturation point with all the datasets. With

1 Note that without the optimizations presented earlier the GPU would hardly obtain speed ups
with respect to a sequential x86 implementation, in particular for the noncoalescent accesses.

44 3 Hardware Architectures for Data-Intensive Computing Problems

(a) English dictionary (b) Dictionary 1

(c) Dictionary 2 (d) Random dictionary

Figure 3.9. Scaling on multiple nodes of the x86 cluster.

an adequate number of nodes, also the heavy-matching benchmarks reach the
performance of the light matching benchmarks. This does not happen for the
x86 tests, where the heavy-matching benchmarks (the dictionary matched with
itself) continue to scale but never reach the performance of the light matching
tests. The main bottleneck here appears to be the Infiniband bandwidth.

More detailed analysis of these experimental results appears in [17].

3.5 Conclusion

We have presented several software implementations of the Aho-Corasick pat-
tern matching algorithm for high-performance systems, and carefully analyzed
their performance. We have considered the various tradeoffs in terms of peak
performance, performance variability, and dataset size. We presented optimized

3.5 Conclusion 45

(a) English dictionary (b) Dictionary 1

(c) Dictionary 2 (d) Random dictionary

Figure 3.10. Scaling on multiple nodes of the GPU cluster.

designs for the various architectures, discussing several algorithmic strategies
for shared memory solutions, GPU accelerated systems, and distributed mem-
ory systems.

We found that the absolute performance obtained on the Cray XMT system
is one of the highest reported in literature, at ≈ 28 Gbps (using 128 proces-
sors) for a software solution with very large dictionaries, and because of its
multithreading and memory hashing features the machine is able to maintain
stable performance across very different sets of dictionaries and input streams.
The Niagara 2 multithreaded solution obtains stable performance only in low
and medium matching conditions, whereas a dual Xeon X5660 machine has
more varied results, obtaining high peak rates for low-matching conditions, but
progressively reducing its performance as the number of matches increases.
Our optimized GPU implementation, which exploits the texture cache, obtains
varied results depending on the dictionaries and the input streams, but is able
to reach on average the same performance as a dual Niagara 2 and a dual Xeon

46 3 Hardware Architectures for Data-Intensive Computing Problems

5660 on a single Tesla C1060 GPU. A Cray XMT machine with 48 proces-
sors is able, on average, to beat these results, while maintaining substantially
the same performance (≈ 2 percent variability) on all the dictionaries and all
input sets. On clustered architectures, our optimized GPU implementation was
able to saturate the communication bandwith with all the data sets when using
10 GPUs. Nevertheless, even with a higher Infiniband bandwidth, we would still
be limited by the PCI-Express bandwidth. On the x86 platform, an MPI-only
solution with large dictionaries is not practical, while a mixed solution with
MPI for internode communication and pthreads for intranode computation
is not able to reach to reach the same performance on benchmarks that exhibit
heavy matching.

Software-based implementations of string matching algorithms can reach
high throughputs on modern high-performance systems. Such software-based
implementations require moderate programming efforts and simpler code struc-
tures with respect to custom solutions on FPGAs or to ad hoc implementations
for multimedia processors such as the IBM CELL/B.E. However, they still
present significant performance variability, depending on the characteristics of
the dictionary and the input stream. By comparing a wide range of high per-
formance machines, we think that our work may lay a foundation for a better
understanding of the behavior of such irregular, data-intensive algorithms on
current architectures.

References

1. Aho, A. V., and Corasick, M. J. “Efficient String Matching: An Aid to Bibliographic
Search.” Communications of the ACM 18, 6(1975): 333–40.

2. Chavarrı́a-Miranda, D., Marquez, A., Nieplocha, J., Maschhoff, K., and Scherrer, C.
Early Experience with Out-of-Core Applications on the Cray XMT. In IPDPS ’08:
22nd IEEE International Parallel and Distributed Processing Symposium (April
2008), pp. 1–8.

3. Cho, Y. H., and Mangione-Smith, W. H. “Deep Packet Filter with Dedicated Logic
and Read Only Memories.” In FCCM ’04: 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (April 2004), pp. 125–34.

4. Clark, C. R., and Schimmel, D. E. “Scalable Pattern Matching for High Speed
Networks.” In FCCM ’04: 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (Apr. 2004), pp. 249–57.

5. Feo, J., Harper, D., Kahan, S., and Konecny, P. Eldorado. In CF ’05: Proceedings
of the 2nd conference on Computing frontiers (New York, NY, USA, 2005), ACM,
pp. 28–34.

6. Jacob, N., and Brodley, C. “Offloading IDS Computation to the GPU.” In
ACSAC ’06: 22nd Annual Computer Security Applications Conference (Dec. 2006),
pp. 371–80.

References 47

7. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Version 2.2, September 2009.

8. Mitra, A., Najjar, W., and Bhuyan, L. “Compiling PCRE to FPGA for accelerating
SNORT IDS.” In ANCS ’07: The 3rd ACM/IEEE Symposium on Architecture for
Networking and Communications Systems (2007), pp. 127–36.

9. Nawathe, U., Hassan, M., Yen, K., Kumar, A., Ramachandran, A., and Greenhill,
D. “Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a
Chip.” Solid-State Circuits, IEEE Journal of 43, 1 (Jan. 2008): 6–20.

10. Nvidia Nvidia Cuda: Compute Unified Device Architecture. Programming guide.
Version 2.0, July 2008.

11. Pasetto, D., Petrini, F., and Agarwal, V. Tools for Very Fast Regular Expression
Matching. Computer 43 (2010): 50–58.

12. Roesch, M. Snort: Lightweight Intrusion Detection for Networks. In LISA (1999),
pp. 229–38.

13. Ruetsch, G., and Micikevicius, P. “NVIDIA Whitepaper: Optimizing Matrix Trans-
pose in CUDA.”

14. Scarpazza, D. P., Villa, O., and Petrini, F. “Exact Multi-Pattern String Matching
on the Cell/B.E. Processor.” In CF ’08: Proceedings of the 2008 conference on
Computing frontiers (New York, NY, USA, 2008), ACM, pp. 33–42.

15. Sourdis, I., and Pnevmatikatos, D. Fast, Large-Scale String Match for a 10Gbps
FPGA-Based Network Intrusion. In FPL ’03: 13th Conference on Field Pro-
grammable Logic and Applications (September 2003), pp. 880–89.

16. Symantec Global Internet Security Threat Report. White Paper (April 2008).
17. Tumeo, A., Villa, O., Chavarria-Miranda, D. “Aho-Corasick String Matching on

Shared and Distributed-Memory Parallel Architectures,” IEEE Transactions on
Parallel and Distributed Systems, pp. 436–43, March, 2012.

18. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E. P., and Ioannidis, S.
“Gnort: High Performance Network Intrusion Detection Using Graphics Proces-
sors.” In RAID ’08: 11th international symposium on Recent Advances in Intrusion
Detection (2008), pp. 116–34.

19. Villa, O., Chavarria-Miranda, D., and Maschhoff, K. “Input-Independent, Scalable
and Fast String Matching on the Cray XMT.” In IPDPS ’09: The 2009 IEEE
International Symposium on Parallel & Distributed Processing (2009), pp. 1–12.

20. Villa, O., Scarpazza, D. P., and Petrini, F. “Accelerating Real-Time String Searching
with Multicore Processors.” Computer 41, 4 (2008): 42–50.

4
Data Management Architectures

Terence Critchlow, Ghaleb Abdulla, Jacek Becla,
Kerstin Kleese-Van Dam, Sam Lang, and

Deborah L. McGuinness

Data management is the organization of information to support efficient access
and analysis. For data-intensive computing applications, the speed at which
relevant data can be accessed is a limiting factor in terms of the size and com-
plexity of computation that can be performed. Data access speed is impacted
by the size of the relevant subset of the data, the complexity of the query used
to define it, and the layout of the data relative to the query. As the underlying
data sets become increasingly complex, the questions asked of it become more
involved as well. For example, geospatial data associated with a city is no longer
limited to the map data representing its streets, but now also includes layers
identifying utility lines, key points, locations, and types of businesses within the
city limits, tax information for each land parcel, satellite imagery, and possibly
even street-level views. As a result, queries have gone from simple questions,
such as, “How long is Main Street?,” to much more complex questions such as,
“Taking all other factors into consideration, are the property values of houses
near parks higher than those under power lines, and if so, by what percentage?”
Answering these questions requires a coherent infrastructure, integrating the
relevant data into a format optimized for the questions being asked.

Data management is critical to supporting analysis because, for large data
sets, reading the entire collection is simply not feasible. Instead, the relevant
subset of the data must be efficiently described, identified, and retrieved. As
a result, the data management approach taken effectively defines the analysis
that can be efficiently performed over the data. To support the variety of com-
plex query specifications required by different types of analysis, specialized
data management architectures have evolved over time. These predominantly
software-centric architectures enable efficient searching across large data sets
for well-defined subsets of the data. This chapter gives an overview of the
approaches to large-scale data management currently in popular use.

48

4.1 Data Storage and Architectures 49

The first section presents an overview of large-scale file systems, including
the standard interfaces and libraries that have been designed to support large-
scale experimental and simulation data sets as well as the challenges these
systems face. This is the most general data management architecture, but also
the hardest to use effectively. It is particularly suitable for problems where
either raw throughput is critical, or where data can be easily organized into files
that will be read in their entirety. For many applications, significant increases
in efficiency can be found by optimizing the layout of data on disk through a
preprocessing step. Geospatial information is not only large, but often requires
complex analytics such as computing distance and overlap between regions.
To address these needs, geospatial database systems have been developed and
deployed. Typically these systems use specialized data structures hidden from
the user to efficiently support the complex queries they perform. No discus-
sion of large-scale data management technology would be complete without
an overview of relational and next-generation database management systems.
Relational systems form the basis for most business data management infras-
tructures as well as for many scientific environments. These systems use a
layer of abstraction, called relational tables, to hide the complexity of stor-
ing and accessing categorical data. The third section discusses why this basic
abstraction is being extended to manage multi-modal data as well as queries
beyond the traditional standard SQL select-project-join specifications. Finally,
this chapter concludes with a discussion of the role of metadata in supporting
data access. The fourth section demonstrates how the effective use of metadata
can determine whether or not a problem is tractable.

4.1 Data Storage and Architectures

A major part of the data management picture includes storing data persistently
and reliably on behalf of the application. Large computing systems include
a storage area known as the storage system for placing data sets. In data-
intensive computing, the storage system plays a vital role of not only providing
a location for persistent and reliable storage of data, but also the means to
organize information that enables efficient access and analysis. The hardware
devices and network connections that make up the storage system consist of
many storage components, provide the capacity necessary to store massive data
sets, and enable parallel access to data.

Data-intensive computing applications often distribute one large coor-
dinated computation across many compute elements and periodically dis-
patch I/O accesses from these compute elements in parallel. The underlying
data-intensive computing architectures vary widely, from high-performance

50 4 Data Management Architectures

computing systems used for computational science and advanced computa-
tion to massive enterprise data centers that run complex data mining codes on
petabyte data sets. These architectures differ in their capacity, performance, and
workload requirements, but they all share basic design principles fundamental
to supporting and managing massive data sets common to the various types
of data-intensive applications. To frame our discussion of the storage system,
we focus on storage architectures typically deployed within high-performance
computing. Many of the design principles we describe in the HPC storage
system carry over into large enterprise data centers and other systems as well.

Computational science focuses on solving problems in science and tech-
nology that are too large or too complex to be addressed through laboratory
experiments. These applications generate massive quantities of data and have
a wide variety of data models and access patterns. A typical I/O workload in
HPC might consist of mining a large data set for desired information, with
many queries on the same data set executing concurrently. Data sets could be
anywhere from terabytes (TB) to a few petabytes (PB) in size and so are too
large to fit entirely in memory. The storage system that supports this workload
must not only provide enough capacity to store terabytes of data, it must pro-
vide enough parallel bandwidth to allow access to these large data sets quickly.
It must also provide a degree of reliability, ensuring that data will not be lost
or corrupted should failures of various storage system components occur. The
challenges of capacity, performance, and reliability are seen across all areas of
data-intensive computing and as a result, the various storage architectures built
to meet these challenges have similar design criteria.

Storage systems in HPC are built from many individual hardware compo-
nents, enabling parallel access and preventing single points of failure. The
storage hardware is often physically partitioned from the compute system, with
separate machines dedicated to managing secondary storage for the cluster.
These machines, shown as the storage nodes in Figure 4.1, are connected to the
compute cluster or front-end nodes through a high-speed I/O network. Each
storage node manages a subset of the storage devices, which may consist of
directly attached RAID controllers and a few disk drives, or network attached
enterprise storage controllers with hundreds of disks. The I/O network, storage
nodes, and collection of storage devices make up the storage system of large
data centers and HPC clusters, providing persistent data storage for applica-
tions. This design enables high performance from all the compute elements in
the cluster, and allows the I/O system to scale as needed. Current installations at
some of the largest supercomputing centers in the world consist of hundreds of
storage nodes and thousands of disk drives [31, 63], whereas some of the largest
enterprise data centers manage petabytes of data across thousands of storage
nodes [8].

4.1 Data Storage and Architectures 51

Compute
System

I/O Network

S
to

ra
ge

 S
ys

te
m

Storage nodes

Storage Devices

Figure 4.1. Typical I/O system in high-performance computing.

Computational science applications typically store their data sets in files. As
an unstructured stream of bytes, a file can be easily split up by the storage
system to optimize performance and provide versatility for a wide variety of
I/O workloads. Some applications lay out data so that each compute element
stores parts of a data set in a separate file, or they may store all the application
data sets in only a few files.

A parallel or distributed file system brings together the various components
of the I/O hardware to provide applications with a single file interface to
secondary storage. It is designed to provide parallel and high-performance
access to data and ensure a consistent view of the data across all the compute
elements in the cluster. Figure 4.2 illustrates the parts of the parallel file system
(PFS) software running on the hardware components of the I/O system. The
PFS client software executes on the compute elements, and communicates over
the I/O network to the PFS I/O and metadata servers running on the storage

Logical File

PFS I/O
Servers

Layout
Algorithm

PFS Clients

PFS Metadata
Servers

Figure 4.2. Components of the parallel file system.

52 4 Data Management Architectures

nodes. The I/O servers provide direct access to file data from the clients, and
the metadata servers maintain file metadata and the directory structure. They
also organize the layout of file data across the I/O servers. Parallel file systems
either manage file data across I/O servers in units of fixed sized bytes (known
as blocks) [57], or they manage data across I/O servers in objects of variable
size, as is the case with Lustre [51], PanFS [67], and PVFS [32].

Parallel file systems provide direct access to the data at an I/O server through
well-defined layout patterns stored at the metadata server. This allows PFS
clients to write or read data by direct communication with the I/O servers,
avoiding the metadata server as a potential bottleneck. In most cases, the paral-
lel file system uses a simple round-robin layout scheme, so that a file becomes
uniformly distributed across I/O servers as the file grows. This allows an appli-
cation to access different regions of the file from different I/O servers, ensuring
that no single I/O server becomes bottlenecked by a multitude of I/O requests
from many compute elements. This performance optimization is so ubiquitous
in parallel file systems that it has been adopted by the NFS specification [56], a
standard file system networking protocol. The specification includes standard-
ized layout schemes (collectively called parallel NFS or pNFS) allowing direct
access to I/O servers from file system clients.

Parallel file systems must be resilient to failures. Storage node or storage
device failures should not cause data loss or prevent applications from accessing
their data. To provide this degree of resilience, parallel file systems rely partly
on the storage devices to be fault-tolerant. Large supercomputing centers invest
in expensive storage devices with built-in redundancy mechanisms to ensure
that a failed disk drive does not cause a loss of data. Multiple paths to the
data guard against failures of controllers and specialized hardware performs
rebuilds of failed disk drives. The parallel file system provides high-availability
by integrating a failure detection and automatic recovery, enabling it to detect a
failed storage component and provide access to needed data through alternative
paths.

The standard POSIX file interfaces [47] (such as open(), read(), and write())
exported by parallel file systems and used by many HPC applications require
sequential consistency [14] between writes, where each write operation must
be atomic and appear to have occurred in the same order by all compute
elements. This requirement places a greater burden on the parallel file system
than other types of file systems, because a file’s data is distributed across the
I/O servers and requests are made directly from clients. In order to provide
consistent behavior between concurrent requests from two or more clients,
many parallel file systems provide exclusive access to regions of a file by
granting a lock for those regions to one client at a time. This ensures consistent

4.1 Data Storage and Architectures 53

Application

High-level I/O Libraries

I/O Middleware

I/O Hardware

Parallel File System

Figure 4.3. The I/O software stack in HPC.

behavior, but can limit performance as clients must first acquire a lock from
a lock manager running on a separate server before performing requests to
the I/O servers. Although locking regions of the file can hinder performance
for some I/O workloads, it does allow the PFS client to cache the locked
file regions, which has shown to improve performance for applications that
perform many small I/O requests. With a lock acquired, small requests to a file
can be aggregated together so that a single large request can be sent to the I/O
servers. Still, file systems that implicitly lock file accesses to provide sequential
consistency not only require extra communication to grant lock requests, but
must also coordinate between competing compute elements, adding significant
complexity to the file system. Sequential consistency is necessary in some
distributed applications, but for computational science it most often provides
stronger guarantees than are usually required. Extensions to the POSIX I/O
standard have been proposed to address this issue, known as Lazy I/O. Lazy
I/O relaxes POSIX sequential consistency for certain I/O accesses, allowing
applications to choose the degree of consistency required.

Because the I/O workloads of computational science have such intensive
and unique data requirements, a simple POSIX interface on top of the paral-
lel file system is usually not enough to provide high-performance I/O to the
application. Instead, a suite of I/O libraries and software are utilized to improve
performance and convenience for applications as they perform I/O to storage.
Figure 4.3 shows the HPC I/O software stack. As discussed, the parallel file
system manages the I/O hardware components. Above the parallel file system,
I/O middleware aggregates and optimizes I/O accesses from the application
to the file system. MPI-IO [62] and ADIOS [35] are examples of I/O middle-
ware used in HPC. Lastly, the high-level I/O library provides I/O interfaces
that fit with the application’s data models, allowing it to access data based on
multi-dimensional variables instead of as a flat stream of bytes. The following
describes each of these software interfaces in more detail.

54 4 Data Management Architectures

HPC applications often coordinate computation and share state between com-
pute elements using the message-passing interface (MPI) [20]. This provides
an opportunity for coordinating accesses to files directly instead of requiring
the file system to perform that coordination on the application’s behalf. The
MPI-IO interface [62] was designed with this goal in mind. By leveraging the
existing MPI framework, MPI-IO is able to ensure consistent access across
process in the MPI application. MPI-IO is also able to optimize I/O through
message passing. Multi-dimensional arrays can be distributed across compute
elements with individual processes getting many small regions of the data set.
This leads to many small I/O accesses, which are not optimal for parallel file
systems. MPI-IO optimizes these small I/O accesses by designating a few com-
pute elements as buffering nodes so that many small requests can be aggregated
into a single large I/O request before sending the request to the file system [61].
In MPI-IO, this is known as collective buffering because the compute elements
act collectively to perform I/O through the buffering nodes.

High-level libraries (HLLs) allow computational science applications to store
their data sets in a much more natural way than writing bytes to a file. Instead,
applications using HLLs can generate and store data directly into variables,
and the library takes care of converting the structured data of a variable into
a flat stream of bytes to be stored in a file. This not only simplifies the task
of storing large data sets, it also allows the HLL to optimize the layout of
the structured data sets in the file for performance. Two common HLLs used
in computational science are pNetCDF [33] and HDF5 [24]. Both libraries
support parallel I/O access to structure data sets using MPI-IO to aggregate and
optimize I/O accesses to the parallel file system.

Computational science applications tend to generate data sets that match the
scale at which they run. Larger scales allow applications to examine problems
at finer granularities, or solve larger, more complex systems. This means that
applications will generate larger and larger data sets as supercomputing systems
increase in capability and performance. Data sets generated on the largest
systems today are terabytes in size and are often stored in millions of files. If
trends continue, by 2020 the largest supercomputing systems will consist of
100 million application tasks and have somewhere between 20 to 50 petabytes
of memory [28]. This presents a challenge to the storage system to provide not
only the bandwidth required to generate and store these large data sets, but also
to place the data within the storage system efficiently so that it can be easily
accessed during analysis. Storage systems will need to organize and manage
data that improves locality of access as well as continue to provide reliability
and performance.

4.1 Data Storage and Architectures 55

I/O Aggregator Node

I/O
 S

ys
te

m

Figure 4.4. I/O Aggregator nodes.

Many of the challenges arising in HPC storage systems today are perfor-
mance related. Parallel file systems often struggle with applications that choose
to share a data set in a single file across thousands of compute elements in the
system. This type of workload can cause contention for locks to shared data
regions and reduce system throughput to a fraction of peak bandwidth. Storage
systems also struggle to support simultaneous parallel access to millions of files,
because of the heavy load on the metadata server this workload creates [12].
As the number of individual compute elements increases exponentially over
the next decade, these problems will only get worse. To address the increase
in core counts, storage systems researchers have added a buffering layer for
the file system. Similar to collective buffering in MPI-IO, I/O aggregation pro-
vides dedicated nodes within the compute system to perform I/O on behalf of
a portion of the compute elements. Instead of the parallel file system receiving
I/O requests from each of the compute elements, it receives fewer and larger
requests from the I/O aggregator nodes. Figure 4.4 shows the architecture of an
HPC system with I/O aggregator nodes. Along with separate hardware compo-
nents, I/O aggregation requires special I/O forwarding software to efficiently
aggregate and buffer the I/O requests from compute elements. The I/O for-
warding scalability layer (IOFSL) [4] is a joint project to provide portable and
highly efficient I/O forwarding software.

The I/O demands of data-intensive computing create other challenges as well.
To support capacity and performance requirements, systems are being deployed
with tens of thousands of disk drives and thousands of storage nodes. Storage
systems will only be able to scale with compute performance by continuing to
increase this count of individual components, in turn increasing the likelihood
of failure of any single component. Storage systems face a daunting challenge
to provide storage that is resilient to failures yet still maintaining the highest
possible degree of performance.

56 4 Data Management Architectures

These challenges will not be met easily. Most data-intensive applications
quickly consume all I/O and storage resources made available and experts
anticipate that they will continue to do so. Only the right mixture of system
designs and software will allow storage systems to continue to scale to exabyte
data sets and beyond.

4.2 Spatial and Temporal Information

Spatial data is data about objects in space, which can be points, lines, regions, or
volumes. A feature set defines attributes that are associated with spatial objects;
for example, date, temperature, humidity, altitude, longitude, and latitude are
features that could be associated with a city. The object’s feature values and
spatial location can be updated over time, adding a temporal dimension. An
instance in the time dimension captures the state of the object at that time and the
feature values for an object over multiple time instances represent the history
of that object as it evolved over time. The time dimension can quickly cause a
data explosion. For example, high-resolution environmental sensing and high-
resolution satellite or telescope imaging can produce terabytes to petabytes of
data each day (the LSST is expected to collect 20 TB/night [37]); the amount
of data stored increases linearly with the number of days recorded. This in turn
introduces several challenges: reliable spatio-temporal data storage, efficient
and scalable retrieval algorithms, efficient data analysis algorithms, and data
provenance management (including defining, querying, and controlling access
to provenance data) [26].

If a spatial object has fixed location overtime then it is referred to as a static
object; otherwise, it is a moving object. We will motivate the spatio-temporal
data management challenges using tracking of moving objects as an example.
Data sets for moving objects and trajectories for moving objects (such as GPS-
tracks or celestial objects’ tracks) are either collected from devices such as cell
phones or GPS’s or extracted from spatial images. In the case of GPS or cell
phones, the data can be used to create hour-by-hour census for cities to facilitate
understanding human behavior in urban areas. In the case of Astrophysics or
medical images, behavior modeling is not as important, however, keeping
track of objects, their location, and how the attributes’ values change is still
important. Tracking of moving objects and predicting future locations for these
objects can introduce several challenges, especially because the behavior of
the moving object depends on the application domain. For example, movement
of astronomical objects is predictable in most cases (a planet or a comet will
follow a certain trajectory). Theoretically, three spatial data points can be used
to predict the next location of the spatial object; however, several real-world

4.2 Spatial and Temporal Information 57

complexities could make the prediction erroneous. First, simply identifying
which objects are the moving objects is challenging [30] and requires matching
objects with high certainty using non-spatial features. Then, if the object passes
behind or in front off another spatial object non spatial features need to be
used to help resolve the objects identity. For objects such as cars or trucks,
predicting the next location is even harder because the object can make sudden
turns or stops. Fusing data with other information sources such as road maps or
traffic information could help in tracking a moving object and predict its next
location.

Spatio-temporal data poses several interesting research challenges and it is
useful to classify the research challenges into categories:

1. Data management algorithms, which include algorithms for efficient data
storage and retrieval.

2. Spatio-temporal data mining.
3. Query processing and optimization for spatio-temporal data.
4. Hardware and software architectures for spatio-temporal data.
5. Algorithms for real-time sensor spatio-temporal data.
6. Ontology and structure of spatial data.
7. Data provenance.
8. Uncertainty quantification, representation, and propagation in spatio-

temporal databases.
9. Formal models and languages for representing spatio-temporal data.

Although there is a lot of work that spans these nine areas, there is little work
that has been done with respect to large data sets, with scalable data mining
algorithms as one exception. For space considerations, we consolidate these
nine research areas into the following three general challenges and present the
current state of the art in these areas in relation to anticipated exascale data
sets.

1. Performance related challenges, which include categories 1, 3, and 4.
2. Spatio-temporal data analytics and real-time analysis, which includes cate-

gories 2 and 5.
3. Uncertainty quantification representation and propagation in spatio-

temporal databases.

After discussing the ongoing research in these areas, this section concludes
with an example of spatio-temporal analysis based on work done for the Large
Synoptic Survey Telescope project (LSST). This example illustrates how these
approaches may be applied in a real-world setting.

58 4 Data Management Architectures

4.2.1 Performance-Related Research and Challenges

This area of research includes, but is not limited to, benchmarking of spatio-
temporal databases, query processing and optimization, and efficient data stor-
age and indexing. After observing that existing spatio-temporal benchmarks
lack the ability to thoroughly evaluate the temporal capabilities and assume
that temporal events are evenly spaced in time, [48] proposes a new set of
spatio-temporal queries that require significant temporal processing and eval-
uate the ability of a database to handle three-dimensional data. In addition
to evaluating the database performance, the proposed thirty-six queries can
evaluate the impact of the operating system enhancements including file sys-
tems, virtual memory management, and process scheduling enhancements on
the query performance. It has been shown that success in designing efficient
database-indexes relies on empirical studies and proposes a benchmark for
evaluating the indexing of current and near-future positions of moving objects.
Although benchmarking measures the performance of the data management
systems, the underlying spatio-temporal access methods implemented in these
systems are a major factor in affecting the performance.

Mokbel et al. [41] is a short, yet excellent, survey of spatio-temporal access
methods and it provides a classification of these methods that distinguishes
between access methods that index the past (static data) and ones that indexes
current and future predictions (streaming data). Static access methods deal with
time in three different ways. First, as another dimension where the focus is on
handling spatial queries efficiently whereas temporal queries are considered
less important. The RT-tree, which is based on the R-tree for spatial indexing
and the TSB-tree for temporal indexing, are examples of this class of access
methods [68].

Second, the temporal dimension is dealt with as a separate dimension and
each time instance has its own spatial tree. The MR-tree, which is an optimized
implementation using overlapping B-trees of a series of R-trees over time,
implements this data structure.

Third, access methods are focused on objects that move over time and the
data structure is optimized for trajectory queries. For indexing current position,
several access methods have been proposed, however, the differences between
these methods are primarily because of scalability of these algorithms. Most of
these methods, however, try to separate the historical data from the current data.
An example of such access methods is the LUR-tree. For indexing current and
predicting future positions, extra information, such as velocity and destination,
needs to be stored. In some cases, the object’s movement can be modeled
by a linear equation, whereas in other cases it could have multiple future

4.2 Spatial and Temporal Information 59

locations (such as a car coming to an intersection) that needs to be updated
in real time once more information is available. The PMR-quadtree is an
example of an access method that can be used to index future trajectories. The
survey concludes that more work should be done to support operators that are
important to the spatio-temporal domain such as nearest-neighbor queries and
spatio-temporal joins.

Most of the work in industry focuses on building specialized distributed
systems that will scale traditional DBMS’s. For example, Oracle TimesTen
[OT] is an in-memory database that uses a traditional database architecture, and
its main advantage is that it relies on large memory to cache the data that will be
processed. Netezza [44], on the other hand, took a different direction by using
“active disks” to speed up database operations. Netezza is distinguished by
employing FPGAs and PowerPC processors rather than standard disk controller
chips and Intel CPUs to build their own customized hardware. A Netezza system
distributes data across the disks and queries it in parallel, at the disk level, using
the FPGAs.

In summary, to meet the exascale data analysis challenge, more spatio-
temporal benchmarks and use case studies are needed to explore and uncover
the weaknesses in the current database architectures. Specifically, proposed
benchmarks should be able to uncover weaknesses of a data management
system with respect to the specific data-intensive application requirements. For
example, if the application will need to answer a set of different spatio temporal
queries with both space and time constraints, the time to rebuild the index or
redistribute the data must be considered in the benchmark. More use cases are
clearly needed in the distributed data processing area; for example, there is a
need for efficient and dynamic declustering algorithms to improve parallel data
analysis performance. Similarly, data preparation (loading or redistributing),
which can be time consuming and expensive, has a significant impact on query
performance. Finally, R-tree indexing is implemented in most of the modern
database systems; more complex indexing schemes may be implemented as
customized stored procedures within the database system, but at the cost of
performance. The trade-off between making these algorithms (such as the zones
algorithm [22]) native to the database versus building customized solutions
must be thoroughly evaluated.

4.2.2 Spatio-Temporal Data Analytics Research and Challenges

Spatial data mining is the application of data-mining techniques to spatial
data with the objective of finding patterns in spatial data. Spatio-temporal data
mining is similar, but with the goal of finding patterns across both spatial and

60 4 Data Management Architectures

temporal domains. The work in this area is motivated by the need to identify
complex and time-sensitive patterns hidden in large data sets in domains as
varied as sensor streams, climate data, astrophysics, and traffic monitoring.
Currently, the work in this area handles spatio-temporal data the same as any
other type of data without special consideration for the semantics of the spatial
and temporal dimensions. This approach is attractive because the clustering
and other data analytic algorithms can be used to immediately explore the data.
However, the semantics of the spatio-temporal relationships are lost. Ideally,
a theoretical framework can be developed to capture the relationships of the
spatio-temporal components to the other data, providing a powerful analysis
capability.

Spatio-temporal data mining is a very active field and there are an increas-
ing number of publications in the popular data-mining conferences such as
SIGKDD. Roddick et al. [49] developed a bibliography of the publications in
the spatio-temporal data-mining field divided into nine categories that reflects
the wealth of research in this area. Among the identified categories are time
series mining, association rule mining in spatio-temporal data, and discovery
of temporal patterns.

There are several new domains of science to benefit from spatial-temporal
data mining in particular. For example, Twa et al. [64] discusses an interesting,
but small-scale clinical application of spatial data mining: a classification tree
is used to classify a sample of normal patients versus patients with corneal
distortion caused by keratoconus. Spatial features that can help classify normal
patients versus patients with corneal distortion are extracted from images of
patients’ eyes. The shape of the cornea is modeled using Zernike polynomials
and the coefficients of the polynomial are used as features for a decision tree
classifier.

Nanni et al. [45] provides an overview of spatio-temporal data mining
research. It uses highway traffic to introduce spatio-temporal queries and con-
cepts that need to be supported by a spatio-temporal database. The authors dis-
tinguish between local pattern mining, where the objective is to search and find
interesting spatio-temporal patterns (for example, a periodic pattern for a group
of people travelling together from one city to another), and global pattern mining
where the objective is to mine the full data for all patterns or to create predictive
models. The first task is similar to information retrieval where the objective
is to match a specific pattern within a specific context, whereas the latter task
uses clustering and classification techniques to extract global patterns across
the data (exploratory activity).

To move beyond the current state of the art and enable complex spatio-
temporal analysis, a systematic approach that integrates spatio-temporal seman-
tics (for example, the notions of proximity and temporal order define when an

4.2 Spatial and Temporal Information 61

event comes before or after another event) into data management frameworks
is needed. Formally defining these relationships and operation (such as inter-
sects, overlaps, and contains), allows data-mining algorithms to reason over the
relationships between spatial objects and to identify interesting and emerging
spatio-temporal patterns.

4.2.3 Uncertainty Quantification, Representation, Visualization,
and Propagation in Spatio-Temporal Databases

The literature includes several approaches to support uncertainty in spatial data,
including visualizing uncertainty [43], models and data types for uncertainty
in spatial databases [52], and spatial data mining with uncertainty. What uncer-
tainty means for spatio-temporal data is still unclear, with at least two common
definitions being used. In the first, uncertainty is defined in terms of fuzzy spa-
tial objects, or objects that do not have well-defined boundaries such as polluted
areas. The location, center, and boundaries of these objects can be represented
with range of values or with error bars. In [52], an abstract data model to han-
dle fuzzy objects introduces fuzzy operations that can be used to manipulate
these objects. As a first step, spatial objects can be defined with an uncertainty
measure as one of the attributes. For example, a fuzzy point that belongs to
an air-polluted cloud can have a numeric attribute that measures the degree of
pollution of that point. In turn, this decides the strength of membership of the
point to the cloud and helps define the cloud’s (or region’s) boundaries. Spatial
operations, such as intersects or contains, can also be implemented while con-
sidering the uncertainty. A fuzzy spatial algebra is proposed that can be used
to address the uncertainty in the spatial operations.

Realizing the challenges of visualizing uncertainty in spatial data, [43]
reviews and assesses progress toward visual tools and methods to help ana-
lysts manage and understand information uncertainty. The paper discusses
the value of visualizing uncertainty and raises two related questions: “Is it
helpful to include uncertainty in the visualization?” and “Do users with dif-
ferent knowledge level use uncertainty differently?” For example, do domain
experts understand a particular visualization of uncertainty better than a novice
user?

Similar to other research areas in the spatio-temporal domain, the area of
spatio-temporal data mining with uncertainty is an open research area. More
work on the semantics of uncertainty with respect to the spatial objects is needed
to fully develop the field. For example, formal models, such as the one suggested
in [52], need to be extended, generally accepted, and ultimately standardized.
Before gaining acceptance, these models need to be evaluated against new use
cases to test their completeness. In the context of database design, more work is

62 4 Data Management Architectures

needed on data structures that can support fuzzy manipulation of spatial objects
and indexing techniques.

4.2.4 Crossmatching of Astronomical Objects

This section describes our experience evaluating different database architec-
tures to implement the crossmatch algorithm (such as identification of the same
moving object across different images taken at different times) for a large data
set. The LSST is an example of a data-intensive application that drives towards
examining new hardware/software data-intensive architectures because it com-
bines two important challenges: large data volumes and real-time or near-real-
time data querying and analysis. Moreover, when fully operational, the multi-
petabyte data set captured by the LSST is expected to be used by many research
studies from the astronomy community. As a result, efficient solutions to the
LSST data capture, processing, cataloging, and analysis pipelines are likely to
have broad scientific impact.

Our task is to identify the same object in different images of the sky. In
addition to the object moving relative to other objects within the image, these
images are taken at different times, possibly days or weeks apart, and under
different conditions (such as cloud cover or angles). To do this, we start by
comparing objects based on their distances from each other. This requires fast
retrieval of candidate objects from a large historical catalog. Once the candidate
objects have been retrieved, the crossmatch operation tries to match the new
object to this historical data. The focus of our evaluation is to determine the
best architecture to identify the candidate historical objects.

We examine different database system configurations and indexing strategies
to speedup the data access and processing operations. First, we investigate
techniques for constructing spatial indices on large streaming data. We look
at the performance of a spatial index library (SaIL [25]) for creating spatial
indices on large data volumes as they are ingested, and for efficiently searching
and retrieving objects using these indices. We then develop parallel versions of
the index creation and querying steps provided with the library distribution. The
spatial indexing is customized – by selecting an appropriate value for the fan-out
factor of the tree-based index – for optimal performance based on the analysis
steps that follow it. Although this is a promising direction, we conclude that
the performance of the spatial index is limited by the query selectivity. In our
case, we have to rebuild the distributed index to get the targeted performance.
Unfortunately, this is a very expensive operation and cannot be avoided.

Second, we evaluate a set of database systems with different architectural
configurations and identify performance differences and bottlenecks in these

4.2 Spatial and Temporal Information 63

Single Query

F

F1

M1 M2 M3 Mn M1 M2 M3 Mn

F2 F3 Fn
F

D1 D2

+ Parallel Query Execution

+ Multiple Concurrent Queries
(high throughput)

+ Memory-based storage

+ Multiple Concurrent Queries
(high throughput)

+ Memory-based storage

+ Joins executed at backend

+ Non-transactional storage engine

+ User-controlled data partitioning

– Replica consistency

– Joins executed on frontend

– Transactional storage engine

+ Synchronous data replication
(high availability)

+ Joins executed at backend

+ Active disk-style processing

– Disk-based storage

– Transactional storage engine

– Not optimized for multiple
concurrent queries

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

Dn
D1 D2 DnD3 D1 D2 DnD3

Frontend
(Parallel database)

Backend
(Disk-
based)

Frontend

Multiple
Concurrent
Queries

QnQ3Q2Q1 QnQ3Q2Q1

Backend
(Memory-
based)

Frontend

Multiple
Concurrent
Queries

Backend
(Memory-
based)

Figure 4.5. Alternative database architecture configurations, their pros and cons.

systems for spatial crossmatch operations. We investigate the execution of two
database-oriented crossmatch algorithms, the zones algorithm [22] and the
optimized zones algorithm [6], on three different architectures (see Figure 4.5).

� Netezza Performance Server R, a parallel database management system with
active disk architecture support for certain types of database operations;

� MySQL Cluster, a database system designed for high-availability and high-
throughput; and,

� A distributed collection of independent database system instances with sup-
port for data replication. In this configuration, we combine the best features
from the two previous configurations to achieve the best performance for this
use case. The achieved performance is not specifically unique to the MySql
server and it can be obtained using other database engines if used in the
same way.

The tested algorithms are very well known to the astronomy community
and were developed by a team from the computer science and the astronomy
fields. For test data, we use the USNO-B catalog (a public astronomy catalog
generated by U.S. Naval Observatory at Flagstaff containing more than a billion
objects) because it closely emulates the LSST data when it becomes operational
[30]. Our experimental evaluations are based on real queries put forth by the

64 4 Data Management Architectures

Table 4.1. Crossmatch time using 16 × 1 strategy and OptZone

Prepare Transfer Time Query Time Total Time

High 1.9 s 5.6 s 1.3 s 7 s

LSST astrophysicists and provide important insights about how architectural
characteristics of these systems affect the performance of these techniques. In
particular, our evaluation shows that the choice of a database configuration
can significantly impact the performance of the object association process. We
evaluate the queries using different FOV region densities, but we are mostly
interested in the high-density fields because of its closeness in density to the
average LSST case. This case involves searching for approximately 30,000
detections in approximately 30 million objects using spatial attributes. These
objects need to be matched within 5 to 10 seconds. For brevity, we show the
results from the hybrid (third) configuration previously described. However,
the reader is advised to go to [30] for greater details of the work.

In our evaluation, the algorithms behave differently on different database
system configuration. On the Netezza system, one of our benchmarks performed
poorly because of the overhead of creating disk-based tables on-demand for
each of the spatial regions and the lack of support for stored procedures in the
system, which results in overheads because of external scripts being treated
as independent queries. On the MySQL system, however, neither algorithm
performs as well as it does on the first configuration because it does not execute a
query in parallel and executes JOINs on the frontend. This drawback is remedied
to an extent by partitioning a query into a set of smaller queries and executing
these subqueries as a batch query. This takes advantage of the high-throughput-
oriented design of the second configuration. The third configuration enables
different partitioning and replication of the catalog tables across a collection
of the independent database system instances. Although query performance
is enhanced for this configuration, the data preparation phase and distribution
remains a challenge and adds to the time of the query.

Table 4.1 shows the results from running the query on a 16-node clus-
ter with data replicated on all nodes. The table also lists the three different
important phases that data has to go through before getting the results. We
measure the time for data movement and preparation because in some cases it
could delay the query results and we believe this should not be ignored. These
results show that we can satisfy the high-speed matching requirements for the
application.

4.3 Relational Databases and On-Line Analytical Processing 65

Realistic evaluations are key to understanding the performance of complex
and data-intensive applications. To that end, there is a need to develop bench-
marks and realistic use cases in order to help evaluate data-intensive algorithms
and architectures. These benchmarks should include a detailed description of
how the data is queried and used, and should cover all nine of the research
challenges previously mentioned.

4.3 Relational Databases, On-Line Analytical Processing,
and Nontraditional Database Environments

Relational database management systems (RDBMS) are the standard, nearly
ubiquitous, technology used to store and search categorical data. The rela-
tional model was first outlined by Cobb [13] and is based on relational algebra.
Many books have been written on the design and use of relational databases
and the interested reader is directed to [58] for a more detailed overview. For
our purposes, it is sufficient to know that in the relational model all concepts
are mapped to a set of two-dimensional tables, where the columns represent
attributes of concept and the rows represent a specific instance of that con-
cept, and queried through a standard language called SQL. Relational database
implementations support definition of keys and indices to enforce integrity
constraints and enable efficient querying of the data.

Beyond the ease with which these complex tasks can be performed, the
popularity of databases in commercial environments can be traced to three
guarantees they provide. The first is ensuring atomicity: a set of commands can
be grouped into a single transaction that will either be completed in its entirety
or not at all, but under no circumstances will only part of the transaction
be performed (specifically, the collection is treated as an atomic instruction).
Second, multiple transactions are serializable: the result of executing a set
of transactions must correspond to a sequential execution of the transactions,
even if the individual commands are performed concurrently. Finally, databases
are highly fault tolerant, with checkpoints supporting long-running series of
transactions by enabling rollbacks and restarts if the database is interrupted.
These benefits of relational databases come at a cost; throughput on these
systems is typically far from the raw disk bandwidth because of locking and
synchronous disk writes.

Traditional relational databases are extremely useful for applications that
take advantage of their guarantees. However, they do have significant limi-
tations as well. A database is typically designed to serve a specific function
(such as tracking sales) and is isolated from other databases. As a result, it
is not uncommon for an organization’s data to be distributed across multiple

66 4 Data Management Architectures

databases; for example, for each store to keep its own sales data. Furthermore,
the resulting record-centric view is often optimized for data ingest, making it
less useful for higher-level data analysis and reporting. To enable multi-terabyte
or petabyte database analysis alternative data management approaches, specif-
ically data warehouses and data cubes, have been developed.

Data warehouses [5, 15] may still be stored within an RDBMS, but have
several important differences from traditional transaction-oriented databases.

� They are updated on a regular schedule, not as transactions occur, and thus
may not have the most current information. Whether they are updated hourly,
daily, weekly, or monthly depends both on the number of transactions being
processed and the reporting requirements.

� They are focused on summary information. Aggregations, for example sales
by item by store by day, are often created to reduce the size of the database and
enable faster query responses. Although this removes access to the detailed
records, these aggregations are usually all that is needed for reports and
analysis.

� A star or snowflake schema [21] is used to organized data around facts
and specified dimensions (columns in the original database). By reducing
the number of dimensions and organizing the data around them, it is easier
to generate the summarizations and views of the data required to perform
analysis or generate reports.

� Data warehouses often integrate information from multiple transactional
databases to provide a more comprehensive view; for example, from each
store within a chain.

Data warehouses have been popular in business for more than a decade,
and have resulted in some of the first multi-terabyte data sets. Although
integration of the underlying data should be a simple process, in practice
a significant data cleaning step is required to resolve semantic inconsisten-
cies between the databases (such as converting data when an update has not
been consistently applied). Despite this additional cost, analysis over data
warehouses has allowed businesses to better understand their data and become
significantly more efficient.

Unfortunately, even with a star schema, it can be challenging to interact
with data warehouses because of the volume and relational organization of
the data. Online Analytical Processing (OLAP) [9], otherwise known as data
cubes, are a non-relational data structure in which the N-dimensional cube,
derived from the dimensions of the associated star schema, is stored in a
format that supports fast projections of data summaries onto a small number
of dimensions. Conceptually, the cube stores metrics, such as counts, totals, or

4.3 Relational Databases and On-Line Analytical Processing 67

averages in an efficient, but sparse N-dimensional matrix, a representation that
is often several orders of magnitude smaller than the original database. Queries
then project this data onto a view comprised of a relatively small number
of dimensions (typically two to four), further aggregating the information.
Identifying informative views is typically performed by an expert. However,
some research in user guided view discovery has been performed [27]. Because
the projection can be efficiently computed, data cubes, through the associated
interfaces, provide an interactive way to explore large data sets. Several vendors
provide excellent graphical interfaces to data cubes, enabling drag-and-drop
data selection tied to charts and maps of the data.

Although relational databases are extremely important for managing data
that requires atomicity and serializability, as much business information does,
these benefits apply primarily to categorical data. The associated overhead
and table-oriented structure makes RBDMS less than ideal for other types of
information:

� Temporal data: Time is represented as a singular value (in particular a
timestamp), and as a result relativistic queries (such as age or three days ago)
can be asked, but are not directly supported by SQL. More complex temporal
queries (such as identifying overlapping periods or sequences of events) can
be challenging to perform in a relational environment.

� Semi-structured data (XML): Semi-structured data does not map well to
a traditional relational format, although it can be represented using Name-
Value pairs to map attributes to the associated entities. Unfortunately, this
type of structure makes it harder to do complex searches across objects and
usually requires a significant number of (costly) joins. If the information
being represented is primarily structured, adding semi-structured tables to
a standard relational format may be acceptable. Because of the popularity
and importance of this type of data, many RDBMS vendors are providing
the ability to read, store, and write semi-structured data in an optimized data
structure.

� Image or video data: Images do not map well to the table structure of
relational environments, and thus are usually treated as single and binary large
objects (BLOBs). This type of information can be read, but not searched,
compared, or otherwise analyzed within the database.

� Text: Unstructured data such as text data can be stored within a relational
database, in a form similar to a BLOB. Simple keyword searching is typ-
ically supported and many vendors provide additional search capabilities.
However, more complex analysis (such as entity extraction, version control,
or clustering) are not generally supported. Document management systems

68 4 Data Management Architectures

are evolving to address this need and will likely become integral components
of future database systems.

Scientific data has also remained a significant challenge for relational
database technology. In part, this is because the associated applications typi-
cally require extremely fast I/O and are not concerned about serializability or
atomicity [39]. Additionally, a simulation typically maps its data to a small
number of extremely large tables. Analysis would require these tables to be
repeatedly searched, joined, and sorted, which are expensive operations even
with indices. Nonetheless, there have been some clear examples where rela-
tional technology has been extremely beneficial to scientific domains. One of
the best known examples, is Jim Gray’s release of the Sloan Digital Sky Survey
(SDSS) server using a relational database backend [59]. The SDSS is a digital
map of the northern sky that has enabled detection of hundreds of millions of
new objects. Concluded in 2005, the initial SDSS project generated several ter-
abytes of data, which was freely accessible to both astronomers and the public
through a web-based query interface. Follow-on projects have brought the total
data set size up to 49.5 TB, with approximately half of that representing the raw
data. The key to the success of this project was to define the specific queries
that need to be enabled and to develop an appropriate set of metadata. The
queries focused the database design leading to a more efficient implementation
than would be possible if the database was required to fully support ad hoc
queries. The metadata provided additional semantic information (such as from
post-processing the data, tracking provenance, and soliciting user annotations)
about the data, which were then stored and used to efficiently answer these
queries.

Despite these limited successes, there remains a disconnect between what the
relational data model offers and what scientific data analysis needs that hampers
widespread adoption. Most modern experimental science makes extensive use
of sensor arrays to measure whatever physical phenomenon is the subject of
study, be it an astronomical star, a wild fire, or diseased tissue.1 Each of these
observable features are typically represented as co-located pixels or objects
derived from pixel data. Multiple observations of the same phenomenon are
often recorded, yielding time series – in some cases with frequency exceeding
hundreds of observations per second. In other words, data tends to have well-
defined neighborhoods, and is inherently ordered in both space and time. For
these reasons, an array data model, with implicit ordering and notions of

1 Similar challenges can be observed in certain types of commercial applications such as risk man-
agement systems in financial applications, analysis of web log data, deep sequencing analytics
for drug discovery or digital medical imaging analysis.

4.3 Relational Databases and On-Line Analytical Processing 69

“adjacency” or “neighborhood,” is far more desirable than tabular tables offered
by relational technology.

Moreover, because of many factors, including imperfect observing condi-
tions, detector misalignments, and hardware limitations and failures, data is typ-
ically sparse and imperfect (“noisy” and uncertain). To process such data, spe-
cialized, mathematically, and algorithmically sophisticated processing methods
are required. Expressing these sophisticated algorithms through rich-but-
constraining SQL is often next to impossible – allowing scientists to “package”
their algorithms into reusable user defined functions (UDFs), and executing
these functions where the data resides is far more desirable.

To illustrate the reasoning behind the preceding claims, consider a few typical
scientific analyses: pairwise comparisons of observation or entity records, such
as searching for near-neighbor entities; computing regional densities; or, find-
ing spatial patterns. A naı̈ve implementation for these analysis requires O(N2)
comparisons, and with N measured in billions or trillions this becomes too
expensive and slow to be practical. A common solution to dealing with a large
data set is to partition it and analyze each partition in parallel. This approach
is particularly popular for noncorrelated data sets, as evidenced by the popu-
larity of the map/reduce paradigm. Scientific observational data, however, is
highly correlated and thus a naı̈ve partitioning into chunks, and processing
these chunks in parallel is not a viable option. For example, pairwise analyses
near partition edges requires “adjacent” partitions, leading to unbearably large
internode data transfers needed to compute results across the edges. An effective
data “de-correlation” can be done at the expense of small data duplication, com-
monly called overlapping partitioning. Unfortunately, overlapping partitioning
is not implemented in any existing off-the-shelf data management system.

To illustrate need for new data abstractions and associated interfaces, con-
sider analyses that involve finding pairs of objects within “similar” time series:
because measurements of different objects are typically taken at different
times, some measurements are missing, and those not missing are uncertain.
Expressing an algorithm that compares these imperfect time series through
SQL is a daunting task. Consequently, scientists tend to run data analyses using
an extract-transform-load (ETL) approach: data is extracted from database,
processed using a procedural language in custom application software, and
results are pushed back to the database. This means data is moved to the com-
putation – something that was works well on megabytes or gigabytes of data,
but fails miserably when terabytes or petabytes of data are required. For large
data sets, moving computation to data is highly preferred, and this is typically
achieved through UDFs. Although UDFs have been implemented in DBMSs
for many years, they were never extensively used for scientific analyses.

70 4 Data Management Architectures

As a result data-intensive applications typically perform extreme-scale data
analytics by building systems from the “bare metal” up. In some cases, work-
flow management tools [2, 31, 34] have been used to simplify the process of
organizing large-scale analytical systems. These tools work best when data col-
lections involve large numbers of moderately-sized files and are not optimized
for observational data sets that contain immense number of relatively small
records. Analyses involving processing entire data sets are typically planned
and scheduled as production jobs, prohibiting curiosity-driven, what-if, and
ad-hoc analysis further delaying scientific discoveries. For this reason, many
data-intensive industrial users, in particular Internet companies, have turned
to the map/reduce (MR) model. The MR approach works particularly well on
uncorrelated and unstructured data sets: segments of data are randomly dis-
tributed (hashed) across the available nodes and processed in parallel. This
approach is less well-suited for the type of spatial or temporal correlations
previously described. Additionally, the MR model leaves the record structure
for the user to define in code.2

This recent trend, observed in industry and underlined by MR, departs
from traditional, highly-centralized database architectures. Instead, a system
is deployed over a network of computers, each with its own locally attached
storage. Each compute/storage node runs a semiautonomous instance of a
database engine, providing communications, query processing, and a local stor-
age manager. All instances share access to a centralized system catalog database
(which could be logical) that stores information about the nodes, data distri-
bution, user-defined extensions, and so on. This architecture allows for incre-
mental (horizontal) upgrades of the system and provides dramatically better
resilience against failures as well as simplifying recovery.

SciDB [11, 55], is one example of a new breed of database management
systems designed to overcome these shortcomings and extend the benefits of
database management systems to a broader community.3 SciDB is an open
source system currently under construction focused on addressing the chal-
lenges present in scientific analytics on highly dimensional, correlated, large-
scale data sets. SciDB is not a traditional database: it is not optimized for online
transaction processing (OLTP) and only minimally supports transactions at all;
it does not have a rigidly-defined and difficult-to-modify schema. Instead,
everything is designed to support analytics. Storage is write-once, read-many
with bulk loading, rather than single-row inserts as the primary input method.

2 This has been addressed to some extent by implementing limited RDBMS functionality on top
of MR, including Hive and HadoopDB.

3 See [3] for additional references on column-oriented databases.

4.4 Metadata and Provenance Management 71

Functions and procedures can execute in parallel as close to the data being
operated on as possible. SciDB natively supports an array data model and
query language with facilities that allow users to extend the system through
new scalar data types and array operators.

4.4 Metadata and Provenance Management

Metadata captures and provides information about other objects, often digital
ones. This information can include details such as the following:

� Topic: Keywords describing the domain the object belongs to.
� Description: natural language comment about the object.
� Access conditions: information concerning who and how the object can be

accessed.
� Structure: Description of the organization (physical or virtual) of the object.
� Content: Key parameters distinguishing and characterizing the content of

the object.
� Location: Navigational information to where the object can be found (often

geospatial in nature).
� Related material: References to other objects into the literature and com-

munity providing context about the object.

In data-intensive computing, metadata is of particular importance because it
can be used to help organize and characterize the data and to enable effective
discovery, access, and analysis of relevant data. In addition, it can be used to help
to document important links between different data sets, scholarly publication,
or other sources of complimentary information, providing vital background and
guidance for the exploration of a particular data-intensive environment.

Repeatability, reproducibility, and transparency are qualities that are at the
heart of good research practices. In data-intensive environments with high lev-
els of distribution of data and/or compute resources, complex computational
analysis, and evaluation pipelines and processes, these qualities become even
more important. In order to support repeatability, reproducibility, and trans-
parency in such complex settings, it is important to provide for the automated
capture of information about the data creation process as well as information
concerning potential later additional analysis and manipulations. Provenance
metadata provides the history of ownership and creation of an object, and
thus is a well-suited means to capture, manage, and make accessible this kind
of information to enable future use and reuse with confidence. The analysis
of the provenance metadata can help to ascertain data quality and the rigor of
the research process, establishing the data’s “pedigree,” in both human and

72 4 Data Management Architectures

machine-readable form. Moreover, an increasing number of data generators
are interested in having their authorship and affiliation associated with their
data. Provenance metadata can help to provide attribution information along
with data thus helping data generators begin to gain and maintain credit for
their contributions.

Metadata provenance information is best captured in a structured and well
understood format so that programs and humans accessing the information can
understand what it means. It is also important for the metadata to be accessible.
Thus, a preferred solution is often to store it in what appears to be a centralized
repository that is web accessible. Such a repository may truly be centralized
or it may just have interface options that support centralized search and access
over what may be a distributed backend.

Although metadata and provenance are critical across a broad range of set-
tings, this section focuses on how effective metadata and provenance manage-
ment plays an essential role in data-intensive simulations and analysis. Given
this discussion, the relevance and applicability to other areas should become
apparent.

4.4.1 Support for Data-Intensive Application Execution

Researchers today rarely engage any longer directly with their research object,
but do so via digitally captured, reduced, calibrated, analyzed, synthesized, and
visualized data. Often at least some of the data is generated by other researchers
and then reused. Advances in experimental and computational technologies
have led to an exponential growth in the volumes, variety, and complexity of
this data, resulting in a growing number of petabyte and soon exabyte scale
collections, predicted to outstrip the volumes of data available on the Internet
[16]. Leading examples of data-intensive simulations are:

� Climate models, expected to reach exascale by 2020.4

� Computational astrophysics – including predictions for the gravitational lens-
ing signal – could reach 20 petabytes per simulation in 2012 (today 0.03
petabytes).

� New experimental facilities, for example the LSST will produce a multi-
petabyte data set to include 10 billion galaxies and a similar number of stars.
Therefore, energy research such as the European XFEL will require near

4 Challenges in Climate Change Science and the Role of Computing at the Extreme Scale,
http://extremecomputing.labworks.org/climate/report.stm.

4.4 Metadata and Provenance Management 73

real-time analysis of experimental results produced at multi-petabytes per
day from 2014 (today 3 petabytes per year at comparable facilities).

� The U.S. Department of Defense is expecting yottabytes (1024) of sensor
data by 2015.

� Internet services such as Google, Yahoo, and Microsoft have already reached
data volumes of hundreds of petabytes.

A wide range of supporting technologies is required to allow applications
to effectively utilize these large data sets. Metadata plays an essential role
in most of these enabling technologies, making them effective in reducing the
data space and volume as well as enabling them to exploit relevant relationships
between different, often heterogeneous, and potentially distributed data objects.
Challenging areas of data-intensive computing support, where metadata and
provenance have a crucial impact include: data identification and assessment,
data subsetting, monitoring and control of the simulation, provenance for simu-
lation, data management for distributed applications, and the annotation of the
results for future analysis, reuse, and attribution. The following explore each
of these areas.

Data identification and assessment: With exponentially growing data diver-
sity and volumes, the selection of the most suitable data for any task at hand can
be time consuming. Appropriate metadata and metadata systems can cut efforts
dramatically, providing easily searchable summary information on provenance,
content, quality, and access conditions. Depending on the extent of the meta-
data, it can be possible to make very detailed assessments and comparisons
between data sets, without the need to download and access the data directly.
This is because provenance and key parameters from the data have been cap-
tured in the metadata systems and can themselves be analyzed. An example of
the type of question that can be asked about provenance is:

give me only data sets where value Z is in the range of F-G produced by radar A,
with positions a Lat c – long D, at altitude X, which worked 100% during the
selected period, and shows high quality verified data . . .

In data-rich environments, metadata is fundamental to this kind of automated
processing, because it identifies relevant data effectively and efficiently. One
emerging trend in virtual observatories is to use exactly this strategy to support
two levels of queries – one identifying sources that contain data of interest and
another query to actually obtain (and often plot) data (such as VSTO [40]). In
contrast, however, to the World Wide Web, only selected scientific communities
offer this type of identification and assessment support across organizational
boundaries [36, 42, 53].

74 4 Data Management Architectures

Data subsetting: It is very common that only a subset of a particular data
file is required to initialize a simulation, and the simulation might need similar
subsets from a collection of files or databases. In less data-rich environments,
with smaller data volumes, it is still possible at times to download the complete
data object and filter out the required data during preprocessing. However, in
data-intensive applications the volumes become prohibitive. For these applica-
tions, remote preselection and filtering is required to reduce the data to only the
necessary subset, thus reducing the volume that needs to be transferred. Meta-
data guided identification, assessment, and selection reduces the volume of data
to be accessed. Further metadata describing the structure, specific content, and
coverage of each data file allows algorithms to identify and extract the specific
subset of the file(s) or databases that the user requires. Some communities have
taken the concept further and provide the capabilities to:

� Capture specific data requirements of an applications through metadata;
� drive repackaging of the data by matching data file and application metadata

information (including execution environment); and,
� deliver the right data to the right place for the simulation run such as in the

cloud, on a campus grid computing environment, or on a leadership class
computing facility requiring parallel I/O.

Metadata makes it possible here to create and guide automated processes
that can respond flexibly to changing user requirements.

Monitoring and control of the simulation: Complex simulations require
coupling simulation models that span different domains and different levels
of theory, time, and scale to provide increased simulation fidelity. Computing
environments themselves are also increasing in complexity with distributed data
sources, leadership class computer systems, and grid and cloud computing. The
factors combined make it increasingly difficult to manage, monitor, and control
the execution of a particular simulation run – or even more so a combinatorial
or ensemble run with tens to hundreds of runs. Computational workflows
and accompanying dashboard applications [1] can support the automation and
monitoring of single applications, and do so usually based on the simulation
output. However, for data-intensive applications the volume of the output makes
it very difficult to quickly identify the relevant information directly from the
outputs. The incorporation of metadata can make it more efficient to capture
and track the progress of applications. Metadata can be used to capture key
derived values from simulation runs, enabling a quick assessment of application
progress and correctness without the need to analyze voluminous simulation
output files. By collecting and analyzing this metadata not only for single runs,
but also across a larger number of simulations, metadata can help identify both

4.4 Metadata and Provenance Management 75

important trends in the scientific results and areas of operational concern. If
key parameters of the simulation run have been collected, simple analysis or
visualization programs can be used to give an overview of the result spread
or trends across potentially thousands of runs, allowing the user to hone in on
the important executions, without the need to analyze all resulting data sets
in full [65]. Similarly potential problem areas and trends in the code can be
easily identified and tracked, some of which would otherwise be impossible to
pin down. Scientists who have extensively collected this type of metadata have
reported that they have been able to improve the quality and accuracy of their
code significantly [29] because of the ability to track both intermittent errors
and to spot trends in their calculations. Scientists found that with the support
of provenance metadata they were able to carry out and analyze many more
simulations in a shorter time, leading to greater accuracy of their results because
of more complete information. Again, metadata is used to identify relevant
information more quickly, aiding the monitoring, analysis, and improvement
of applications and simulation processes. If stored, this information also forms
a critical part of the provenance of a simulation run, allowing users to assess a
workflow execution after its execution.

Provenance for applications: With the increase in data and complexity
of compute environments, there has been a corresponding increase in the
number of applications carried out (such as for scenario analysis, parame-
ter sweeps, ensemble runs, distributed applications, or large scale collaborative
projects). In each of these scenarios, it is of fundamental importance for the
assessment of the results to have information available on how the results are
obtained:

� Which code and code versions were used?
� What was the input set and code configuration?
� Where and how was it compiled and executed?
� Were there any special occurrences such as restarts, warnings, or errors?

Provenance metadata is designed to capture and make this type of infor-
mation available; ideally any such provenance information should be captured
automatically as it becomes available to ensure ease of use for the scientists
and reliable quality and accuracy of the data. This metadata enables scientists
to retrace an execution, and for example verify if some unexpected findings are
potentially caused by a problem in the code or input values. Further, at the time
of execution additional information such as key parameters in the output could
be captured.

Data management for distributed applications: A particular class of data-
intensive applications run in highly distributed environments, where data and/or

76 4 Data Management Architectures

computing are found in many different locations. Examples are climate simu-
lations driven by a variety of observational data reaching from NASA satellite
data to sensor network measurements, or meta genomics analysis in biology,
which results from many different experimental results. Given the volumes
of data involved in data-intensive applications, it is not feasible to move all
data into a single location, either before analysis or afterward. Therefore, it
is paramount to support applications in locating and managing their data, in
particular for highly distributed applications. Metadata available for input data
locations and captured during the application run can help to track the location
of input and output data for particular simulations or related to particular simu-
lation components. It can provide an easy-to-use logical link to each data object,
independent of its physical location to enable access to the data at any stage.
In addition, the metadata can capture detailed information about the actual
physical location of each data object and the organization of any compound
data set. It can be used to support services to resolve the logical link to the data
used by applications into the data’s actual physical location and accompanying
access mechanism at any given point in time. This information can be used
both during and after the simulation run to coordinate access to the data and
support scheduling of computational tasks close to the data, whether for further
analysis, data exchange, or final data collection for archival if required. This
type of metadata can also be used to add an additional layer of monitoring,
control, and audit for complex data movement processes.

Annotation of results for analysis and future reuse: Closing the circle
with the large volumes of data produced by data-intensive application codes, it
is paramount to annotate the results appropriately to allow for further analysis
and potential future reuse of the data by students, collaborators, and the wider
scientific community. In this step, a range of different metadata components are
combined, including those described in the previous sections as well as topic,
access conditions, and content and related materials, all of which form a full
descriptive record.

To make the capture of the metadata and provenance information practical
and reliable, it is essential to automate most of the processes involved in
its capture, management, and analysis. Furthermore, these metadata-related
processes are best tightly integrated into computing environments, as studies
have shown that the usage of metadata is most beneficial and transformational
when seamlessly integrated into the research process. An excellent example is
the U.S. Earth Systems Grid (ESG) [53].

U.S. Earth Systems Grid: This project provides scientists with access to
essential climate data from worldwide distributed resources as well as anal-
ysis capabilities. It uses community agreed data and metadata formats and
standards to describe data content and structure. International resources are

4.4 Metadata and Provenance Management 77

linked through mappings between their own data formats and the ESG for-
mats, giving scientists seamless access to all resources. To allow users to
explore the large number and size of the different data holding the project has
developed a multi-tier metadata-based approach for data discovery and assess-
ment. Further, standardized services allow the user to select particular subsets
of the data to minimize the size of data that needs to be transported; these
subset definitions are based on standardized metadata description of the data
structure and content. With growing data sizes, this is often not enough and the
ESG also offers remote analysis capabilities, whereby a copy of the required
data nearest to a suitable computing resource is identified and efficiently moved
with special protocols; metadata records help to identify suitable data replicates
worldwide. The results of climate simulations are automatically annotated and
archived where desired. The infrastructure has been successfully used for a
number of international climate intercomparison studies, because of the acces-
sibility and value of the results. In result of the extensive metadata, the climate
community has been able to analyze the data effectively, resulting in many
hundreds of peer reviewed scientific papers and contributing to the Nobel
Prize-winning IPCC Fourth Assessment Report (AR4).

4.4.2 Support for Data Analysis and Exploitation
in Data-Intensive Environments

The analysis of extreme scale data has many challenges. The key is moving
large amounts of data and the identification of relevant information in large
volumes of data. Metadata can be of essential help in addressing both of these
challenges through support of: efficient search and retrieval, capture of key
parameters, feature identification and extraction, and inference support. As the
significant reduction of search effort through descriptive provenance metadata
and availability of key parameters for data files has already been described, this
discussion focuses on feature identification and inference support, which are
of particular benefit for the data-intensive analysis of extreme scale data.

Feature identification and cataloguing: When assessing and analyzing the
output of application runs or experimental/observational studies, researchers
often are not so much interested in the data as a whole (statistical analysis) or
the developments of particular variables over time or space, but are aiming to
identify particular complex phenomena such as features within the data like
a dying star, tornado, or group of suspect individuals communicating. Cur-
rently, much of this identification work has to be done by visually tracing
through large amounts of data. In data-intensive computing environments, this
task can no longer be accomplished by a single researcher or group. Instead,
some are exploiting social data analysis [18, 19], where the general public is

78 4 Data Management Architectures

encouraged to look through visualizations or run small analysis on their sys-
tems to identify particular phenomena in the data and contribute results back
to the repository. To make the most of the effort expended in identifying the
various features in the data, researchers want to catalogue these described by
metadata, so that they and others such as collaborators can quickly find and
access them again for further analysis. Formalizing such metadata descriptions
of phenomena and features will allow the identification, extraction, and com-
parison of such events across different sources and systems found in biology,
astronomy, climate, and earth systems communities [23, 66].

Next to quantitative and qualitative analysis of events enabled through
advanced access to features in the data, this also supports ongoing work further
characterizing such events, and eventually enabling the automated detection
of such features in the data – a development which, if it can be used with
confidence in its accuracy, would speed up research processes in data rich
environments tremendously. Again, metadata is instrumental here in providing
efficient access to the relevant data, increasing the accuracy of methods through
access to more complete data.

Inference support: Given the volume of data generated in data-rich environ-
ments, it is important to develop efficient analysis methods to enable researchers
to explore the information and knowledge contained in the raw data. Advanced
analysis methods and their support through metadata and provenance data
are essential to identify features and patterns of interest in the data, semantic
inference support builds on these and aims to draw new conclusions from data
that have not been explicitly expressed in the data itself. Deductive inference
can be supported using existing reasoners providing standard inference rule
chaining. Biology is a key scientific discipline that utilizes this technique, such
as the discovery of regulatory gene networks, which encode gene function, and
can be aided by using prior biological knowledge captured through ontolo-
gies to infer likely function in combination with the analysis of experimental
results [54]. In the latter, the meaning contained in the metadata is encoded
in mathematical terms (vectors in highly dimensional space), a closeness of
concepts can be deduced through distance calculations (between vectors), and
probabilities through analysis of clustering of concepts (vectors).

4.4.3 Particular Metadata Challenges in Data-Intensive
Computing Environments

Just as access and management of data presents specific challenges in data-
intensive computing environments, metadata faces its own set of hurdles.
These include the rate at which metadata needs to be created and captured, the

References 79

appropriate granularity for metadata annotation, the volume of metadata poten-
tially created, and the overhead that the creation of metadata might introduce
into an application. As data is produced at ever faster rates and volumes, the
rate and volume of the metadata increases too, requiring the optimization and
intelligent design of the underlying metadata systems to keep a pace with the
increased demand. The emphasis will be placed on efficient metadata systems,
which may mean compact metadata formats (such as non-XML), efficient
syntax (capturing as much information as required in the least verbose way),
optimized access options, and/or partitioning strategies. In some cases, where
the volume of metadata grows significantly, it might also be necessary to review
if the level of detail captured is still appropriate or if reduced summary informa-
tion, along with optional follow-up systems that may gather more provenance
information only when requested, would be better. Finally, optimized database
structures and connection mechanisms (such as connection pooling) may need
to be employed to provide both the necessary speed and volume.

As the world is becoming more data rich and connected, the ability to
focus quickly not only on the relevant data, but particular features within them
becomes crucial. As more data is being processed by ever more complex pro-
cesses, it is essential that is possible to verify these workflows, so that the
resulting outcomes can be used with confidence. Without metadata and prove-
nance, none of this could be accomplished, making it a fundamental enabling
technology for data-intensive computing.

References

1. Altintas, I. “Lifecycle of Scientific Workflows and Their Provenance: A Usage Pers-
pective.” IEEE Congress on Services – Part I. 474–75, Honolulu, HI, July 2008.

2. Altintas, I., Bhagwanani, S., Buttler, D., Chandra, S., Cheng, Z., Coleman, M.,
Critchlow, T., Gupta, A., Han, W., Liu, L., Ludaescher, B., Pu, C., Moore, R.,
Shoshani, A., and Vouk, M. “A Modeling and Execution Environment for Dis-
tributed Scientific Workflows.” Proceedings of the 15th IEEE International Con-
ference on Scientific and Statistical Database Management (SSDBM), Cambridge,
MA, July 2003.

3. Adabi, D. J., Boncz, P. A., and Harizopoulos, S. “Column-Oriented Database Sys-
tems.” Proceedings of the VLDB Endowment 2, no. 2 (August 2009): 1664–65.
Available: http://cs-www.cs.yale.edu/homes/dna/papers/columnstore-tutorial.pdf.

4. Ali, N., Carns, P., Iskra, K., Kimpe, D., Lang, S., Latham, R., Ross, R., Ward, L., and
Sadayappan, P. “Scalable I/O Forwarding Framework for High-Performance Com-
puting Systems.” IEEE International Conference on Cluster Computing (Cluster
2009), New Orleans, LA, September 2009.

5. Agrawal, R., Gupta, A., and Sarawagi, S. “Modeling Multidimensional Databases.”
Proceedings of the 13th International Conference on Data Engineering, Birming-
ham, U.K., April 1997.

80 4 Data Management Architectures

6. Becla, J., Lim, K.-T., Monkewitz, S., Nieto-Santisteban, M., and Thakar, A. “Orga-
nizing the Extremely Large LSST Database for Real-Time Astronomical Process-
ing.” 17th Annual Astronomical Data Analysis Software and Systems Conference
(ADASS 2007), London, England, September 2007.

7. Benedict, J. L., McGuinness, D. L., and Fox, P. “A Semantic Web-based Method-
ology for Building Conceptual Models of Scientific Information.” American Geo-
physical Union, Fall Meeting (AGU2006), San Francisco, CA, December 2007.

8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E. “Bigtable: A Distributed Storage System
for Structured Data.” 7th USENIX Symposium on Operating Systems Design and
Implementation, Boston, MA, May 2006.

9. Codd, E. F., Codd, S. B., and Salley, C. T. Providing OLAP (On-Line Analytical
Processing) to User-Analysts: An IT Mandate. Report. Codd & Associates, 1993.

10. Carns, P., Harms, K., Allcock, W., Lang, S., Latham, R., and Ross, R. “Storage
Access Characteristics of Computational Science Applications.” Proceedings of
Supercomputing, New Orleans, LA, November 2010.

11. Cudre-Mauroux, P., Kimura, H., Lim, K.-T., Rogers, J., Simakov, R., Soroush, E.,
Velikhov, P., Wang, D. L., Balazinska, M., Becla, J., DeWitt, D., Heath, B., Maier,
D., Madden, S., Patel, J., Stonebraker, M., and Zdonik, S. A Demonstration of
SciDB: A Science-Oriented DBMS. VLDB’09 2, no. 1 (August 2009): 1534–37.
Available: http://www.vldb.org/pvldb/2/vldb09–76.pdf.

12. Carns, P., Lang, S., Ross, R., Vilayannur, M., Kunkel, J., and Ludwig, T. “Small-
File Access in Parallel File Systems.” Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium, Rome Italy, May 2009.

13. Codd, E. F. “A Relational Model for Large Shared Data Banks.” Communications
of the ACM 13, no. 6 (June 1970): 377–87.

14. Culler, D., Singh, J., and Gupta, A. Parallel Computer Architecture: A Hardware/
Software Approach. San Francisco, CA: Morgan Kaufmann, 1999.

15. Chaudhuri, S., and Dayal, U. “An Overview of Data Warehousing and OLAP
Technology.” ACM SIGMOD Record 26, no. 1 (1997): 65–74.

16. Department of Defense. JASON Defense Advisory Panel Report. Data Analysis
Challenges, JSR-08–142, December 2008.

17. Dehne, F., Eavis, T., and Rau-Chaplin, A. “The cgmCUBE Project: Optimizing
Parallel Data Cube Generation for ROLAP.” Journal of Distributed and Parallel
Databases 19, no. 1 (2006): 29–62.

18. Freire, J., and Silva, C. “Towards Enabling Social Analysis of Scientific Data.”
Proceedings of CHI Social Data Analysis Workshop, Florence, Italy, April 2008.

19. Goodman, A. A., and Wong, C. G. 2009. “Bringing the Night Sky Closer: Dis-
coveries in the Data Deluge.” In The Fourth Paradigm: Data-Intensive Scientific
Discovery, 39–44, edited by T. Hey, S. Tansley, K. Tolle. Microsoft Research.
Redmond WA, 2006.

20. Gropp, W., Huss-Lederman, S. Lumsdaine, A. Lusk, E. Nitzberg, B. Saphir, W.,
and Snir, M. MPI – The Complete Reference, Volume 2, The MPI Extensions.
Cambridge, MA: The MIT Press, 1998.

21. Gopalkrishnan, V., Li, Q., and Karlapalem, K. “Star/Snow-Flake Schema Driven
Object-Relational Data Warehouse Design and Query Processing Strategies.” In
Lecture Notes in Computer Science. Volume 1676/1999, 11–22. Berlin/Heidelberg:
Springer, 1999.

References 81

22. Gray, J., Nieto-Santisteban, M. A., and Szalay, A. S. “The Zones Algorithm
for Finding Points-Near-a-Point or Cross-Matching Spatial Datasets.” In The
ACM Computing Research Repository (CoRR). Vol abs/cs/0701171. Microsoft:
2007.

23. Hirschman, J. E., Balakrishnan, R., Christie, K. R., Costanzo, M. C., Dwight, S. S.,
Engel, S. R., Fisk, D. G., Hong, E. L., Livstone, M. S., Nash, R., Park, J., Oughtred,
R., Skrzypek, M., Starr, B., Theesfeld, C. L., Williams, J., Andrada, R., Binkley,
G., Dong, Q., Lane, C., Miyasato, S., Sethuraman, A., Schroeder, M., Thanawala,
M. K., Weng, S., Dolinski, K., Botstein, D., and Cherry, J. M. “Genome Snapshot:
A New Resource at the Saccharomyces Genome Database (SGD) Presenting an
Overview of the Saccharomyces cerevisiae Genome.” Nucleic Acids Research 34,
no. 1: D442–D445.

24. The Hierarchical Data Format, Version 5 (HDF5). Available: http://www.hdfgroup.
org/HDF5/doc/.

25. Hadjieleftheriou, M., Hoel, E., and Tsotras, V. J. “Sail: A Spatial Index Library for
Efficient Application Integration.” GeoInformatica 9, no. 4 (2005): 367–89.

26. Hey, T., Tansley, S., and Tolle, K. The Fourth Paradigm, Data-Intensive Scientific
Discovery. Redmond, Washington: Microsoft Research, October 2009.

27. Joslyn, C., Burke, J., Critchlow, T., Hengartner, N., and Hogan, E. “View Discovery
in OLAP Databases through Statistical Combinatorial Optimization.” Proceedings
of the 21st International Conference on Scientific and Statistical Database Man-
agement. New Orleans, LA, June 2009.

28. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau,
M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein,
D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T.,
Williams, R. S., and Yelick, K. Exascale Computing Study: Technology Challenges
in Achieving Exascale Systems. Technical Report DARPA, 2008.

29. Kleese van Dam, K., James, M., and Walker, A. “Integrating Data Management
and Collaborative Sharing with Computational Science Research Processes.” In
Handbook of Research on Computational Science and Engineering: Theory and
Practice, edited by J. Leng and W. Sharrock. 506–38, Hershey, PAIGI Global,
September 2011.

30. Kumar, V. S., Kurc, T., Abdulla, G., Kohn, S. R., Saltz, J., and Matarazzo, C.
“Architectural Implications for Spatial Object Association Algorithms.” Proceed-
ings of the IEEE International Parallel and Distributed Processing Symposium,
Rome, Italy, IPDPS, May 2009.

31. Ludaescher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.
A., Tao, J., and Zhao, Y. Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice & Experience 18, no 10: (August 2006)
1039–65.

32. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., and Allcock, W. “I/O Perfor-
mance Challenges at Leadership Scale.” SC ’09: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, New York, NY,
November 2009.

33. Li, J., Liao, W.-K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., and Latham, R.
“Parallel netCDF: A Scientific High-Performance I/O Interface.” Technical Report
ANL/MCS-P1048–0503, Mathematics and Computer Science Division, Argonne
National Laboratory, May 2003.

82 4 Data Management Architectures

34. Ludaescher, B., and Goble, C. A., eds. “ACM SIGMOD Record.” Special Section
on Scientific Workflows 34, no. 3: September 2005.

35. Lofstead, J. F., Klasky, S., Schwan, K., Podhorszki, N., and Jin, C. “Flexible IO and
Integration for Scientific Codes Through the Adaptable IO System.” Proceedings
of the International Workshop on Challenges of Large Applications in Distributed
Environments. 15–24, Boston, MA, June 2008.

36. Lawrence, B. N., Lowry, R., Miller, P., Snaith, H., and Woolf, A. “Information in
Environmental Data Grids.” Phil Trans R Soc A 367 (2009): 1003–14.

37. http://www.lsst.org/lsst/science/concept data.
38. Mokbel, M. F., and Aref, W. G. “PLACE: A Scalable Location-Aware Database

Server for Spatio-Temporal Data Streams.” Data Engineering Bulletin 28, no. 3
(2005): 3–10.

39. Musick, R., and Critchlow, T. “Practical Lessons in Supporting Large Scale Com-
putational Science.” SIGMOD Record 28, no. 4 (December 1999): 49–57.

40. McGuinness, D., Fox, P., Cinquini, L., West, P., Garcia, J., Benedict, J. L.,
and Middleton, D. “The Virtual Solar-Terrestrial Observatory: A Deployed
Semantic Web Application Case Study for Scientific Research.” Proceedings of
the Nineteenth Conference on Innovative Applications of Artificial Intelligence
(IAAI-07). Vancouver, British Columbia, Canada, July 22–26, 2007. Available:
http://www.ksl.stanford.edu/KSL Abstracts/KSL-07–01.html.

41. Mokbel, M. F., Ghanem, T. M., and Aref, W. G. Spatio-Temporal Access Methods.
IEEE Data Engineering Bulletin 26, no. 2 (2003): 40–49.

42. Matthews, B., Sufi, S., Flannery, D., Lerusse, L., Griffin, T., Gleaves, M., and
Kleese van Dam, K. “Using a Core Scientific Metadata Model in Large-Scale
Facilities.” 5th International Digital Curation Conference (IDCC 2009), London,
U.K., December 2009.

43. Maceachren, A. M., Robinson, A., Gardner, S., Murray, R., Gahegan, M., and
Hetzler, E. “Visualizing Geospatial Information Uncertainty: What We Know and
What We Need to Know.” Cartography and Geographic Information Science 32,
no. 3 (2005): 139–60.

44. http://www.netezza.com/.
45. Nanni, M., Kuijpers, B., Korner, C., May, M., and Pedreschi, D. Spatiotemporal

Data Mining. In Giannotti, F., and Pedreschi, D., eds. Mobility, Data Mining, and
Privacy: Geographic Knowledge Discovery. Berlin, Germany: Springer-Verlag,
2008.

46. Oracle Times Ten. In-Memory Database Architectural Overview. Release 6.0.
Available: http://www.oracle.com/us/products/database/timesten/overview/index
.html.

47. IEEE/ANSI Standard. 1003.1 Portable Operating System Interface (POSIX) – Part
1: System Application Program Interface (API) [C Language], 1996.

48. Werstein, P. “A Performance Benchmark for Spatio-Temporal Databases.” Proceed-
ings of the 10th Annual Colloquium of the Spatial Information Research Centre,
The University of Otago, Dunedin, New Zealand. 365–73, December 1998.

49. Roddick, J. F., Hornsby, K. and Spiliopoulou, M “An Updated Bibliography of Tem-
poral, Spatial and Spatio-Temporal Data Mining Research.” In Post-Workshop Pro-
ceedings of the International Workshop on Temporal, Spatial and Spatio-Temporal
Data Mining. Lecture Notes in Artificial Intelligence. Roddick, J. F. and Hornsby,
K., eds. 147–63. Berlin: Springer, 2001.

References 83

50. Sellis, T. “Research Issues in Spatio-Temporal Database Systems.” In Güting,
R. H., Papadias, D., and Lochovsky, F., eds., SSD’99, LNCS 1651. 5–11, Berlin,
Heidelberg: Springer-Verlag, 1999.

51. Schwan, P. “Lustre: Building a File System for 1000-Node Clusters.” Proceedings
of the 2003 Linux Symposium, Ottawa, Canada, July 2004.

52. Schneider, M. “Fuzzy Spatial Data Types for Spatial Uncertainty Management in
Databases.” Handbook of Research on Fuzzy Information Processing in Databases.
Edited by J. Galindo Ed. 490–515. Hershey, PA: IGI Global, 2008.

53. Siebenlist, F., Ananthakrishnan, R., Bernholdt, D. E., Cinquini, L., Foster, I. T.,
Middleton, D. E., Miller, N., and Williams, D. N. “Enhancing the Earth Sys-
tem Grid Security Infrastructure Through Single Sign-on and Autoprovisioning.”
Proceedings of the 5th Grid Computing Environments Workshop, Portland, Ore-
gon, November 14–20, 2009. GCE ’09. ACM, New York, NY, 1–8. Available:
http://doi.acm.org/10.1145/1658260.1658278.

54. Sanfilippo, A., Baddeley, B., Beagley, N., McDermott, J., Riensche, R., Taylor,
R., and Gopalan, B. “Using the Gene Ontology to Enrich Biological Pathways.
International Journal of computational Biology and Drug design 2, no. 3 (2009):
221–35.

55. Stonebraker, M., Becla, J., DeWitt, D., Lim, K-T., Maier, D., Ratzesberger, O.,
and Zdonik, S. “Requirements for Science Data Bases and SciDB.” CIDR 2009
Conference, Asilomar, CA, January 2009. Available: http://www-db.cs.wisc.edu/
cidr/cidr2009/Paper 26.pdf.

56. Shepler, S., Eisler, M., and Noveck, D. Network File System (NFS) Version 4
Minor Version 1 Protocol. January 2010. Available: http://datatracker.ietf.org/doc/
rfc5661/.

57. Schmuck, F., and Haskin, R. “GPFS: A Shared-Disk File System for Large Com-
puting Clusters.” Proceedings of the FAST 2002 Conference on File and Storage
Technologies, Monterey, CA, January 2002.

58. Silberschatz, A., Korth, H., and Sudarshan, S. Database Systems Concepts. New
York: McGraw-Hill Publishing, January 2010.

59. Szalay, A. S., Gray, J., Thakar, A., Kunszt, P. Z., Malik, T., Raddick, J., Stoughton,
C., and vandenBerg, J. “The SDSS SkyServer: Public Access to the Sloan Digital
Sky Server Data.” SIGMOD Conference, Madison, WI, June 2002: 570–81.

60. Shi, W., Wang, S., Li, D., and Wang, X. “Uncertainty-Based Spatial Datamining.”
ASIAGIS, Wuhan, China, October 2003.

61. Thakur, R., Gropp, W., and Lusk, E. “Data Sieving and Collective I/O in ROMIO.”
Proceedings of the Seventh Symposium on the Frontiers of Massively Parallel
Computation, Los Alamitos CA, Feb.1999.

62. Thakur, R., Gropp, W., and Lusk, E. “On Implementing MPI-IO Portably and
with High Performance.” Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems. Atlanta, GA: ACM Press, May 1999.

63. Top500 List, November 2009. Available: http://www.top500.org/list/2009/11/100.
64. Twa, M., Parthasarathy, S., Rosche, T., and Bullmer, M. “Decision Tree Classi-

fication of Spatial Data Patterns.” From Videokeratography Using Zernike Poly-
nomials. SIAM International Conference on Data Mining, San Francisco, CA,
May 2003.

65. Walker, A. M., Bruin, R. P., Dove, M. T., White, T. O. H., Kleese van Dam,
K., and Tyer, R. P. Integrating Computing, Data and Collaboration Grids: The

84 4 Data Management Architectures

RMCS Tool. Phil Trans R Soc A 367, no. 1890 (March 13, 2009): 1047–50; DOI:
10.1098/rsta.2008.0159.

66. Woolf, A., Lawrence, B., Lowry, R., Kleese van Dam, K., Cramer, R., Gutierrez,
M., Kondapalli, S., Latham, S., Lowe, D., O’Neill, K., and Stephens, A. Data
Integration with the Climate Science Modeling Language. Adv Geosci 8 (2006):
83–90. Available: www.adv-geosci.net/8/83/2006/.

67. Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B., Small, J., Zelenka,
J., and Zhou, B. “Scalable Performance of the Panasas Parallel File System.”
Proceedings of the 6th USENIX Conference on File and Storage Technologies, San
Jose, CA, February 2008.

68. Xu, X., Han, J., and Lu, W. “RT-Tree: An Improved R-Tree Index Structure for
Spatiotemporal Databases.” Proceedings of the 4th International Symposium on
Spatial Data Handling (SDH), Zurich Switzerland, July 1990.

5
Large-Scale Data Management Techniques

in Cloud Computing Platforms

Sherif Sakr and Anna Liu

5.1 Introduction

In the last two decades, the continuous increase of computational power has
produced an overwhelming flow of data, which called for a paradigm shift
in the computing architecture and large scale data processing mechanisms. In
a speech given just a few weeks before he was lost at sea off the California
coast in January 2007, Jim Gray, a database software pioneer and a Microsoft
researcher, called the shift a “fourth paradigm” [32]. The first three paradigms
were experimental, theoretical and, more recently, computational science. Gray
argued that the only way to cope with this paradigm is to develop a new
generation of computing tools to manage, visualize, and analyze the data flood.
In general, the current computer architectures are increasingly imbalanced
where the latency gap between multicore CPUs and mechanical hard disks is
growing every year, which makes the challenges of data-intensive computing
harder to overcome [6]. Therefore, there is a crucial need for a systematic and
generic approach to tackle these problems with an architecture that can also
scale into the foreseeable future. In response, Gray argued that the new trend
should instead focus on supporting cheaper clusters of computers to manage
and process all this data instead of focusing on having the biggest and fastest
single computer. Figure 5.1 illustrates an example of the explosion in scientific
data, which creates major challenges for cutting-edge scientific projects. For
example, modern high-energy physics experiments, such as DZero,1 typically
generate more than one terabyte of data per day. With data sets growing beyond
a few hundreds of terabytes, scientists have no off-the-shelf solutions that
they can readily use to manage and analyze these data [32]. Thus, significant

1 http://www-d0.fnal.gov/.

85

86 5 Large-Scale Data Management Techniques

Figure 5.1. Data explosion in scientific computing [32].

human and material resources were allocated to support these data-intensive
operations, which lead to high storage and management costs.

Additionally, the recent advances in Web technology have made it easy for
any user to provide and consume content of any form. For example, building a
personal Web page (such as Google Sites2), starting a blog (such as WordPress,3

Blogger,4 LiveJournal5), and making both searchable for the public have now
become a commodity. Therefore, one of the main goals of the next wave is to
facilitate the job of implementing every application as a distributed, scalable,
and widely-accessible service on the Web. For example, it has been recently
reported that the famous social network Web site, Facebook,6 serves 570 billion
page views per month, stores 3 billion new photos every month, manages 25
billion pieces of content (such as status updates and comments) every month,
and runs its services to over thirty thousand servers. Although services such
as Facebook, YouTube,7 and LinkedIn8 are currently leading this approach, it
becomes an ultimate goal to make it easy for everybody to achieve these goals
with the minimum amount of effort.

Recently, there has been a great deal of hype about cloud computing. Cloud
computing is on the top of Gartners list of the ten most disruptive technologies of
the next years [27]. Cloud computing is associated with a new paradigm for the
provision of computing infrastructure. This paradigm shifts the location of this

2 http://sites.google.com/.
3 http://wordpress.org/.
4 http://www.blogger.com/.
5 http://www.livejournal.com/.
6 http://www.facebook.com/.
7 http://www.youtube.com/.
8 http://www.linkedin.com/.

5.1 Introduction 87

Figure 5.2. Technology evolution towards cloud computing.

infrastructure to the network to reduce the costs associated with the management
of hardware and software resources [31]. Therefore, businesses and users are
now able to access application services from anywhere in the world on demand.
This represents the long-held dream of envisioning computing as a utility [4]
where the economy of scale principles help to drive the cost of computing
infrastructure effectively down. For example, Amazon Web Services (AWS)9

offer Amazon Elastic Compute Cloud (EC2)10 as a commodity that can be
purchased and utilized. In principle, the concept of renting computing power
goes back decades to the days when companies would share space on a single
mainframe with big spinning tape drives. The technology industry has matured
to the point where there is now an emerging mass market for this rental model.
Therefore, cloud computing is not a revolutionary new development. However,
it is an evolution that has taken place over several decades. As illustrated in
Figure 5.2, the trend toward cloud computing started in the early 1990s with the
concepts of grid computing [25] when the idea of using the resources of many
computers in a network to solve a single problem (usually scientific) at the same
time was introduced. Over the years, the research community has developed
a wide spectrum of funding and usage models to address the ever growing
need for computing resources. From locally owned clusters to national centers
and from campus grids to national grids, researchers combine campus and
federal funding with competitive and opportunistic compute time allocations
to support their research [23]. This approach follows the principle that not all
of the computing resources are needed at the same time, and when a project
does not need their own resources, these resources can be made available to
others in the broader collaboration.

In practice, the main goal of cloud computing is to provide the basic ingre-
dients such as storage, CPUs, and network bandwidth as a commodity by
specialized service providers at low unit cost. Therefore, users of cloud ser-
vices should not need to worry about scalability because the storage provided is

9 http://aws.amazon.com/.
10 http://aws.amazon.com/ec2/.

88 5 Large-Scale Data Management Techniques

Figure 5.3. Layers of cloud services.

virtually infinite. In addition, cloud computing provides full availability where:
1) Users can read and write data at any time without ever being blocked.
2) The response times are (virtually) constant and do not depend on the number
of concurrent users, the size of the database or any other system parameter.
Furthermore, users do not need to worry about backups. If components fail,
it is the responsibility of the service provider to replace them and make the
data available using replicas in the meantime. Another important reason to
build new services based on cloud computing is that no investments are needed
upfront and the cost grows linearly and predictably with the increase of usage
(pay-as-you-go). For example, if a company is launching a new product that
requires a large database, it does not need to go out and buy one. However, it
can use one hosted by a cloud provider such as Amazon or Google. Therefore,
all of these advantages allow companies to focus on their business innovation
rather than focusing on building larger data centers to achieve scalability goals.
Figure 5.3 illustrates the three layers of cloud services, which are described as
follows [8].

1. Infrastructure as a Service (IaaS): Provision resources such as servers (often
in the form of virtual machines), network bandwidth, storage, and related
tools necessary to build an application environment from scratch (such as
Amazon EC2).

2. Platform as a Service (PaaS): Provides a higher-level environment where
developers can write customized applications (such as Microsoft Azure11

and Google AppEngine12). The service provider is responsible for the
maintenance, load-balancing, and scale-out of the platform such that the
developer can concentrate on implementing the main functionalities of his
application.

11 http://www.microsoft.com/windowsazure/.
12 http://code.google.com/appengine/.

5.2 Cloud Data Management: Goals and Challenges 89

3. Software as a Service (SaaS): Refers to special-purpose software that are
made available through the Internet (such as SalesForce13). Therefore, it
does not require each end-user to manually download, install, configure,
run, or use the software applications on their own computing environments.

This chapter gives an overview of numerous approaches and mechanisms
of deploying data-intensive applications in the cloud, which are gaining a
lot of momentum in both research and industrial communities. We discuss the
advantages and the disadvantages of each approach and its suitability to support
certain classes of applications and end-users. The remainder of this chapter is
organized as follows. The following section gives an overview of the main goals
and challenges of deploying data-intensive applications in cloud environments.
The chapter then surveys the state-of-the-art of cloud data management systems
before turning to a discussion of the different programming models for cloud
applications. Finally, several real-world case studies are discussed before we
conclude the chapter.

5.2 Cloud Data Management: Goals and Challenges

This section gives an overview of the main goals and challenges for deploying
data-intensive computing application in cloud environments.

5.2.1 Goals

In general, successful cloud data management systems are designed to satisfy
key items in the following wish list [2,17]:

� Availability: They must be always accessible even on the occasions where
there is a network failure or a whole datacenter has gone offline.

� Multitenancy: They must be able to support many applications (tenants) on
the same hardware and software infrastructure. However, the performance of
these tenants must be isolated from each another. Adding a new tenant should
require little or no effort beyond ensuring that enough system capacity has
been provisioned for the new load.

� Scalability: They must be able to support very large databases with very high
request rates at very low latency. They should be able to take on new tenants
or handle growing tenants without much effort beyond that of adding more
hardware. In particular, the system must be able to automatically redistribute
data to take advantage of the new hardware.

13 http://www.salesforce.com/.

90 5 Large-Scale Data Management Techniques

� Elasticity: They must be able to satisfy changing application requirements
in both directions (scaling up or scaling down). Moreover, the system must
be able to gracefully respond to these changing requirements and quickly
recover to its steady state.

� Performance: On public cloud computing platforms, pricing is structured
in a way such that one pays only for what one uses, so the vendor price
increases linearly with the requisite storage, network bandwidth, and com-
pute power. Therefore, the system performance has a direct effect on its
costs. Moreover efficient system performance is a crucial requirement to save
money.

� Load and tenant balancing: They must be able to automatically move load
between servers so that most of the hardware resources are effectively utilized
and to avoid any resource overloading situations.

� Fault tolerance: For transactional workloads, a fault tolerant cloud data
management system needs to be able to recover from a failure without losing
any data or updates from recently committed transactions. Moreover, it needs
to successfully commit transactions and make progress on a workload even
in the face of worker node failures. For analytical workloads, a fault tolerant
cloud data management system should not need to restart a query if one of
the nodes involved in query processing fails.

� Ability to run in a heterogeneous environment: On cloud computing plat-
forms, there is a strong trend towards increasing the number of nodes that
participate in query execution. It is nearly impossible to get homogeneous
performance across hundreds or thousands of compute nodes. Part failures
that do not cause complete node failure, but result in degraded hardware per-
formance become more common at scale. A cloud data management system
should be designed to run in a heterogeneous environment and must take
appropriate measures to prevent its performance from degrading because of
parallel processing on distributed nodes.

� Flexible query interface: They should support both SQL and non-SQL inter-
face languages (such as MapReduce). Moreover, they should provide mecha-
nism for allowing the user to write user defined functions (UDFs) and queries
that utilize these UDFs and should be automatically parallelized during their
processing.

5.2.2 Challenges

Deploying data-intensive applications on cloud environment is not a trivial or
straightforward task. Armbrust et al. [4] and Abadi [1] argued a list of obstacles
to the growth of cloud computing applications as follows.

5.2 Cloud Data Management: Goals and Challenges 91

� Availability of a service: Organizations worry about whether cloud computing
services will have adequate availability. High availability is one of the most
challenging goals because even the slightest outage can have significant
financial consequences and impacts customer trust.

� Data confidentiality: In general, moving data off premises increases the
number of potential security risks and appropriate precautions must be made.
Transactional databases typically contain the complete set of operational data
needed to power mission-critical business processes. This data includes detail
at the lowest granularity, and often includes sensitive information such as
customer data or credit card numbers. Therefore, unless such sensitive data is
encrypted using a key that is not located at the host, the data may be accessed
by a third party without the customers knowledge.

� Data lock-in: APIs for cloud computing have not yet been a subject of
active standardization. Thus, customers cannot easily extract their data and
programs from one site to run on another. The concerns about the difficul-
ties of extracting data from the cloud is preventing some organizations from
adopting cloud computing. Customer lock-in may be attractive to cloud com-
puting providers but cloud computing users are vulnerable to price increases,
reliability problems, or even providers going out of business.

� Data transfer bottlenecks: Various vendors deploy varying technology, data
writing systems, and protocols to render their services at different rates.
Cloud users and cloud providers have to think about the implications of
placement and traffic at every level of the system if they want to minimize
costs because of the data transfer restrictions (such as limits on volume of
data).

� Application parallelization: Computing power is elastic but only if workload
is parallelizable. Getting additional computational resources is not as simple
as a magic upgrade to a bigger and more powerful machine on the fly. How-
ever, the additional resources are typically obtained by allocating additional
server instances to a task.

� Shared-nothing architecture: Data management applications designed to run
on top of cloud environment should follow a shared-nothing architecture
[41] where each node is independent and self-sufficient and there is no single
point of contention across the system. Most of transactional data management
systems do not typically use a shared-nothing architecture.

� Application debugging in large-scale distributed systems: A challenging
aspect in cloud computing programming is the removal of errors in these
very large-scale distributed systems. A common occurrence is that these
bugs cannot be reproduced in smaller configurations, so the debugging must
occur at the same scale as that in the production datacenters.

92 5 Large-Scale Data Management Techniques

5.3 Cloud Data Management Systems: State of the Art

The task of storing data persistently has been traditionally achieved through
filesystems or relational databases. In recent years, this task is increasingly
achieved through simpler storage systems that are easier to build and maintain
at large scale while achieving reliability and availability as primary goals.
This section provides a survey of state-of-the-art large-scale data management
systems in the cloud environments organized by their source service provider
(such as Google, Yahoo!, Microsoft, and open source projects).

5.3.1 Google: Bigtable

5.3.1.1 Bigtable
Bigtable is a distributed storage system for managing structured data that is
designed to scale to a very large size (petabytes of data) across thousands of
commodity servers [15]. It has been used by more than sixty Google prod-
ucts and projects such as Google search engine,14 Google Finance,15 Orkut,16

Google Docs,17 and Google Earth.18 These products use Bigtable for a variety of
demanding workloads, which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users. The Bigtable clusters used
by these products span a wide range of configurations, from a handful to thou-
sands of servers, and store up to several hundred terabytes of data.

Bigtable does not support a full relational data model. However, it provides
clients with a simple data model that supports dynamic control over the data
layout and format. In particular, a Bigtable is a sparse, distributed, persistent,
multidimensional, and sorted map. The map is indexed by a row key, column
key, and a timestamp. Each value in the map is an uninterpreted array of bytes.
Thus, clients usually need to serialize various forms of structured and semi-
structured data into these strings. A concrete example that reflects some of the
main design decisions of Bigtable is the scenario of storing a copy of a large
collection of web pages into a single table. Figure 5.4 illustrates an example of
this table where URLs are used as row keys and various aspects of web pages
as column names. The contents of the web pages are stored in a single column,
which stores multiple versions of the page under the timestamps when they
were fetched.

14 http://www.google.com/.
15 http://www.google.com/finance.
16 http://www.orkut.com/.
17 http://docs.google.com/.
18 http://earth.google.com/.

5.3 Cloud Data Management Systems: State of the Art 93

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Figure 5.4. Sample BigTable Structure [15].

The row keys in a table are arbitrary strings where every read or write of data
under a single row key is atomic. Bigtable maintains the data in lexicographic
order by row key where the row range for a table is dynamically partitioned.
Each row range is called a tablet, which represents the unit of distribution
and load balancing. Thus, reads of short row ranges are efficient and typically
require communication with only a small number of machines. Bigtables can
have an unbounded number of columns, which are grouped into sets called
column families. These column families represent the basic unit of access
control. Each cell in a Bigtable can contain multiple versions of the same data,
which are indexed by their timestamps. Each client can flexibly decide the
number of n versions of a cell that need to be kept. These versions are stored
in decreasing timestamp order so that the most recent versions can be always
read first.

The Bigtable API provides functions for creating and deleting tables and
column families. It also provides functions for changing cluster, table, and
column family metadata such as access control rights. Client applications can
write or delete values in Bigtable, look up values from individual rows, or
iterate over a subset of the data in a table. On the transaction level, Bigtable
supports only single-row transactions, which can be used to perform atomic
read-modify-write sequences on data stored under a single row key (such as no
general transactions across row keys).

On the physical level, Bigtable uses the distributed Google File System
(GFS) [29] to store log and data files. The Google SSTable file format is used
internally to store Bigtable data. An SSTable provides a persistent, ordered
immutable map from keys to values, where both keys and values are arbitrary
byte strings. Bigtable relies on a distributed lock service called Chubby [12]
that consists of five active replicas, one of which is elected to be the master
and actively serve requests. The service is live when a majority of the replicas
are running and can communicate with each other. Bigtable uses Chubby for a
variety of tasks such as: 1) Ensuring that there is at most one active master at
any time. 2) Storing the bootstrap location of Bigtable data. 3) Storing Bigtable
schema information and the access control lists. The main limitation of this

94 5 Large-Scale Data Management Techniques

Tablet
controller

Tablet
controller

Region 1

broker
Message RoutersRouters

Region 2

Storage units Storage units

Figure 5.5. PNUTS system architecture [18].

design is that if Chubby becomes unavailable for an extended period of time,
the whole Bigtable becomes unavailable.

On the runtime, each Bigtable is allocated to one master server and many
tablet servers, which can be dynamically added (or removed) from a cluster
based on the changes in workloads. The master server is responsible for assign-
ing tablets to tablet servers, balancing tablet-server load, and garbage collection
of files in GFS. In addition, it handles schema changes such as table and column
family creations. Each tablet server manages a set of tablets. The tablet server
handles read and write requests to the tablets that it has loaded, and also splits
tablets that have grown too large.

5.3.2 Yahoo!: PNUTS/Sherpa

The PNUTS system (renamed later to Sherpa) is a massive-scale hosted database
system that is designed to support Yahoo!s web applications [18]. The main
focus of the system is on data serving for web applications, rather than complex
queries. It relies on a simple relational model where data is organized into tables
of records with attributes. In addition to typical data types, blob is a main valid
data type, which allows storing arbitrary structures inside a record, but not
necessarily large binary objects such as images or audio. The PNUTS system
does not enforce constraints such as referential integrity on the underlying data.
Therefore, the schema of these tables are flexible where new attributes can be
added at any time without halting any query or update activity. In addition, it
is not required that each record have values for all attributes.

Figure 5.5 illustrates the system architecture of PNUTS. The system is
divided into regions where each region contains a full complement of system
components and a complete copy of each table. Regions are typically, but
not necessarily, geographically distributed. Therefore, on the physical level,
data tables are horizontally partitioned into groups of records called tablets.

5.3 Cloud Data Management Systems: State of the Art 95

These tablets are scattered across many servers where each server might have
hundreds or thousands of tablets. The assignment of tablets to servers is flexible
in a way that allows balancing the workloads by moving a few tablets from an
overloaded server to an underloaded server.

The query language of PNUTS supports selection and projection from a
single table. Operations for updating or deleting existing record must specify
the primary key. The system is designed primarily for online serving workloads
that consist mostly of queries that read and write single records or small groups
of records. Thus, it provides a multiget operation, which supports retrieving
multiple records in parallel by specifying a set of primary keys and an optional
predicate. The router component (Figure 5.5) is responsible for determining
which storage unit need to be accessed for a given record to be read or written by
the client. Therefore, the primary-key space of a table is divided into intervals
where each interval corresponds to one tablet. The router stores an interval
mapping, which defines the boundaries of each tablet and maps each tablet to
a storage unit. The query model of PNUTS does not support join operations,
which are too expensive in such massive scale systems.

The PNUTS system does not have a traditional database log or archive data.
However, it relies on a pub/sub mechanism that acts as a redo log for replaying
updates that are lost before being applied to disk because of failure. In particular,
PNUTS provides a consistency model that is between the two extremes of
general serializability and eventual consistency [47]. The design of this model
is derived from the observation that web applications typically manipulate one
record at a time whereas different records may have activity with different
geographic locality. Thus, it provides per-record timeline consistency where
all replicas of a given record apply all updates to the record in the same order.
In particular, for each record, one of the replicas (independently) is designated
as the master where all updates to that record are forwarded to the master. The
master replica for a record is adaptively changed to suit the workload where
the replica receiving the majority of write requests for a particular record is
selected to be the master for that record. Relying on the per-record timeline
consistency model, the PNUTS system supports the following range of API
calls with varying levels of consistency guarantees:

� Read-any: This call has the lower latency as it returns a possibly stale version
of the record.

� Read-critical (required version): It returns a version of the record that is
strictly newer than, or the same as the required version.

� Read-latest: This call returns the latest copy of the record that reflects all
writes that have succeeded. It is expected that the read-critical and read-latest

96 5 Large-Scale Data Management Techniques

can have a higher latency than read-any if the local copy is too stale and the
system needs to locate a newer version at a remote replica.

� Write: This call gives the same ACID guarantees as a transaction with a
single write operation in it (such as blind writes).

� Test-and-set-write (required version): This call performs the requested write
to the record, if and only if the present version of the record is the same as
the required version. This call can be used to implement transactions that
first read a record and then do a write to the record based on the read such as
incrementing the value of a counter.

Because the system is designed to scale to cover several worldwide replicas,
automated failover and load balancing is the only way to manage the operations
load. Therefore, for any failed server, the system automatically recovers by
copying data from a replica to other live servers.

5.3.3 Amazon: Dynamo / S3 / SimpleDB / RDS

Amazon runs a worldwide e-commerce platform that serves tens of millions
customers at peak times using tens of thousands of servers located in many
data centers around the world. In this environment, there are strict operational
requirements on Amazons platform in terms of performance, reliability and
efficiency, and to be able to support continuous growth the platform needs
to be highly scalable. Reliability is one of the most important requirements
because even the slightest outage has significant financial consequences and
impacts customer trust. To meet these needs, Amazon has developed a number
of storage technologies such as Dynamo System [22], Simple Storage Service
(S3),19 Sim-pleDB,20 and Relational Database Service (RDS).21

5.3.3.1 Dynamo
The Dynamo system [22] is a highly available and scalable distributed key/value
based datastore built for supporting Amazon’s internal applications. Dynamo is
used to manage the state of services that have very high reliability requirements
and need tight control over the tradeoffs between availability, consistency, cost-
effectiveness, and performance. There are many services on Amazons platform
that only need primary-key access to a data store. The common pattern of
using a relational database would lead to inefficiencies and limit scale and
availability. Thus, Dynamo provides a simple primary-key only interface to

19 https://s3.amazonaws.com/.
20 http://aws.amazon.com/simpledb/.
21 http://aws.amazon.com/rds/.

5.3 Cloud Data Management Systems: State of the Art 97

A

B

C

D E

F

G

Key K

Nodes B, C,
and D store

keys in
range (A,B)
including

K.

Figure 5.6. Partitioning and replication of keys in Dynamo ring [22].

meet the requirements of these applications. The query model of the Dynamo
system relies on simple read and write operations to a data item that is uniquely
identified by a key. State is stored as binary objects (blobs) identified by unique
keys. No operations span multiple data items.

Dynamo’s partitioning scheme relies on a variant of consistent hashing mech-
anism [33] to distribute the load across multiple storage hosts. In this mech-
anism, the output range of a hash function is treated as a fixed circular space
or ring (for example, the largest hash value wraps around to the smallest hash
value). Each node in the system is assigned a random value within this space,
which represents its position on the ring. Each data item identified by a key is
assigned to a node by hashing the data items key to yield its position on the
ring, and then walking the ring clockwise to find the first node with a position
larger than the items position. Thus, each node becomes responsible for the
region in the ring between it and its predecessor node on the ring. The principle
advantage of consistent hashing is that the departure or arrival of a node only
affects its immediate neighbors whereas other nodes remain unaffected.

In the Dynamo system, each data item is replicated at N hosts where N is
a parameter configured per-instance. Each key k is assigned to a coordinator
node. The coordinator is in charge of the replication of the data items that fall
within its range. In addition to locally storing each key within its range, the
coordinator replicates these keys at the N – 1 clockwise successor nodes in the
ring. This results in a system where each node is responsible for the region of
the ring between it and its Nth predecessor. As illustrated in Figure 5.6, node
B replicates the key k at nodes C and D in addition to storing it locally. Node
D will store the keys that fall in the ranges (A, B], (B, C], and (C, D]. The list
of nodes that is responsible for storing a particular key is called the preference

98 5 Large-Scale Data Management Techniques

list. The system is designed so that every node in the system can determine
which nodes should be in this list for any particular key.

5.3.3.2 S3 / SimpleDB / RDS
Amazon Simple Storage Service (S3) is an online public storage web service
offered by Amazon Web Services. Conceptually, S3 is an infinite store for
objects of variable sizes. An object is simply a byte container, which is identified
by a URI. Clients can read and update S3 objects remotely using a simple web
services (SOAP or REST-based) interface. For example, get(uri) returns an
object and put(uri, bytestream) writes a new version of the object. In S3, stored
data is organized over a two-level namespace: buckets and objects. Buckets
are similar to folders or containers that can store an unlimited number of data
objects. Objects are composed from two parts: an opaque blob (of up to 5 GB
in size) and metadata, which includes user-specified key/value pairs for each
object (up to 2 KB) and a small number of predefined HTTP metadata entries
(e.g., Last-Modified). In S3, search function is limited to a single bucket and is
based on the object name only. Metadata or content-based search capabilities
are not provided. Thus, S3 can be considered as an online backup solution for
storing large objects that are not frequently updated.

Brantner et al. [9] present initial efforts of building Web-based database
applications on top of S3. They describe various protocols in order to store,
read, and update objects and indexes using S3. For example, the record man-
ager component is designed to manage records where each record is composed
of a key and payload data. Both key and payload are bytestreams of arbitrary
length where the only constraint is that the size of the whole record must be
smaller than the page size. Physically, each record is stored in exactly one
page, which in turn is stored as a single object in S3. Logically, each record is
part of a collection (such as a table). The record manager provides functions
to create new objects, read objects, update objects, and scan collections. The
page manager component implements a buffer pool for S3 pages. It supports
the reading of pages from S3, pinning the pages in the buffer pool, updating
the pages in the buffer pool, and marking the pages as updated. All these func-
tionalities are implemented in a straightforward way just as in any standard
database system. Furthermore, the page manager implements the commit and
abort methods where it is assumed that the write set of a transaction (for exam-
ple, a set of updated and newly created pages) fits into the clients main memory
or secondary storage (flash or disk). If an application commits, all the updates
are propagated to S3 and all the affected pages are marked as unmodified in
the clients’ buffer pool. Moreover, they implemented standard B-tree indexes
on top of the page manager and basic redo log records. On the other side,

5.3 Cloud Data Management Systems: State of the Art 99

there are many database-specific issues that have not yet been addressed by this
work. For example, DB-style strict consistency and transactions mechanisms.
Furthermore, query processing techniques (such as join algorithms and query
optimization techniques) and traditional database functionalities such as bulk-
load a database, create indexes, and drop a whole collection need to be devised.

Similar to S3, Amazon has not published the details of its other two products:
SimpleDB and RDS. Generally, SimpleDB is designed for running queries
on structured data. In SimpleDB, data is organized into domains (such as
tables) within which we can put data, get data, or run queries. Each domains
consist of items (such as records), which are described by attribute name/value
pairs. It is not necessary to predefine all of the schema information as new
attributes can be added to the stored dataset when needed. Thus, the approach
is similar to that of a spreadsheet and does not follow the traditional relational
model. SimpleDB provides a small group of API calls that enables the core
functionality to build client applications such as CreateDomain, DeleteDomain,
PutAttributes, DeleteAttributes, GetAttributes, and Select. The main focus of
SimpleDB is fast reading. Therefore, query operations are designed to run
on a single domain. SimpleDB keeps multiple copies of each domain where
a successful write operation guarantees that all copies of the domain will
durably persist. In particular, SimpleDB supports two read consistency options:
eventually consistent read [47] and consistent read.

Amazon Relational Database Service (RDS) is another recent service that
gives access to the full capabilities of a familiar MySQL database. Therefore,
the code, applications, and tools which are already designed on existing MySQL
databases can work seamlessly with Amazon RDS. Once the database instance
is running, Amazon RDS can automate common administrative tasks such
as performing backups or patching the database software. Amazon RDS can
also manage synchronous data replication and automatic failover management.
Recently, RDS announced the availability of using Oracle Database 11g via the
Amazon Relational Database Service.22

5.3.4 Microsoft SQL Azure

Microsoft has recently released the Microsoft SQL Azure Database system.23

It has been announced as a cloud-based relational database service which
has been built on Microsoft SQL Server technologies. It provides a highly
available, scalable, multitenant database service hosted by Microsoft in the

22 http://aws.amazon.com/rds/oracle/.
23 http://www.microsoft.com/windowsazure/sqlazure/.

100 5 Large-Scale Data Management Techniques

cloud. Applications can create, access, and manipulate tables, views, indexes,
roles, stored procedures, triggers, and functions. The SQL Azure Database
system can also execute complex queries and joins across multiple tables where
support is available for Transact-SQL (T-SQL), native ODBC, and ADO.NET
data access.24 In particular, the SQL Azure service can be seen as running
an instance of SQL server in a cloud hosted server, which is automatically
managed by Microsoft instead of running it on an on-premise managed server.
In SQL Azure, the size of each hosted database cannot exceed the 50 GB
limit. An important capability of Cloud SQL Server is its support of ACID
transactions. The transaction commitment protocol requires that only a quorum
of the replicas be up. A Paxos-like [14] consensus algorithm is used to maintain
a set of replicas to deal with replica failures and recoveries. Dynamic quorums
are used to improve availability in the face of multiple failures. SQL Azure is
currently used as the storage system for two large-scale web services: Exchange
Hosted Archive25 and an e-mail and instant messaging repository.

In Microsoft SQL Azure, a logical database is called a table group [7]. A table
group can be keyless or keyed. If a table group is keyed then all of its tables must
have a common column called the partitioning key. SQL Azure requires that
each transaction executes on one table group. The consistency unit of an object
is the set of data that can be read and written by ACID transaction. Each copy
of consistency unit is fully contained in a single instance of SQL server running
on one machine. Hence, there is no need for a two-phase commit. A query can
execute on multiple partitions of a keyed table group with an isolation level of
read-committed. Thus, data that the query reads from different partitions may
reflect the execution of different transactions. Transactionally consistent read
beyond a consistency unit are not supported.

At the physical level, a keyed table group is split into partitions based on
ranges of its partitioning key. Replicas of each partition are scattered across
servers such that no two copies reside in the same failure domain (such as
under the same network switch or in the same rack). Replicas of each partition
are assigned to servers independently of the assignment of other partitions to
servers, even if the partitions are from the same table group. For each partition,
at each point in time one replica is designated to be the primary. The primary
replica is responsible of processing all queries and update operations. The
system currently does not allow any reads to be executed on the secondary
replicas.

24 http://msdn.microsoft.com/en-us/library/h43ks021(VS.71).aspx.
25 http://www.microsoft.com/online/exchange-hosted-services.mspx.

5.3 Cloud Data Management Systems: State of the Art 101

5.3.5 Open Source Projects

In practice, most of the cloud data management systems provided by the major
suppliers (such as BigTable, Dynamo, PNUTS) are designed for their internal
use and are not available for public use. Therefore, many open source projects
have been built to implement the concepts of these systems and are made
available for public users. Some of these systems have started to gain a lot of
interest from the research community. There are not much details that have
been published about the implementation most of these systems yet. Therefore,
we give a brief introduction about some of these projects. However, for the full
list, refer to the NoSQL database Web site.26

Cassandra27 is presented as a highly scalable, eventually consistent, dis-
tributed, structured key-value store [35]. It has been open sourced by Facebook
in 2008. It is designed by Avinash Lakshman (one of the authors of Amazon’s
Dynamo) and Prashant Malik (Facebook Engineer). Cassandra brings together
the distributed systems technologies from Dynamo and the data model from
Google’s Bigtable. Like Dynamo, Cassandra is eventually consistent. Like
Bigtable, Cassandra provides a ColumnFamily-based data model that is richer
than typical key/value systems. In Cassandra’s data model, the column is the
lowest/smallest increment of data. It’s a tuple (triplet) that contains a name, a
value and a timestamp. A column family is a container for columns, which is
analogous to the table in a relational system. It contains multiple columns, each
of which has a name, value, and a timestamp, and are referenced by row keys.
A keyspace is the first dimension of the Cassandra hash, and is the container for
column families. Keyspaces are of roughly the same granularity as a schema or
database (such as a logical collection of tables) in RDBMS. They can be seen as
a namespace for ColumnFamilies and is typically allocated as one per applica-
tion. SuperColumns represent columns that themselves have subcolumns (such
as Maps).

The HyperTable28 project is designed to achieve a high performance, scal-
able, distributed storage, and processing system for structured and unstructured
data. It is designed to manage the storage and processing of information on
a large cluster of commodity servers, providing resilience to machine and
component failures. In HyperTable, data is represented in the system as a
multi-dimensional table of information. The HyperTable systems provides a

26 http://nosql-database.org/.
27 http://cassandra.apache.org/.
28 http://hypertable.org/.

102 5 Large-Scale Data Management Techniques

low-level API and Hypertable Query Language (HQL) that allows the user
to create, modify, and query the underlying tables. The data in a table can
be transformed and organized at high speed by performing computations in
parallel and pushing them to where the data is physically stored.

Voldemort29 is an open-source Java-based database, which is created by
LinkedIn based on Amazon Dynamo concepts. It provides client-tunable con-
sistency where applications can choose the read and write quorum sizes as
required for specific operations. It supports sophisticated conflict detection
using vector clocks when data inconsistencies occur because of network par-
titions or concurrent updates. This allows application-specific data conflict
resolution instead of simple last timestamp wins solutions, and means less
reliance on accurate clock synchronisation between all nodes. Voldemort has a
pluggable architecture that allows the underlying storage engine to be specifi-
cally selected for an application. Supported storage engines include MySQL,
BerkeleyDB, Hadoop, and in-memory storage.

CouchDB30 is a document-oriented database that can be queried and indexed
in a MapReduce fashion using JavaScript. In CouchDB, documents are the pri-
mary unit of data. A CouchDB document is an object that consists of named
fields. Field values may be strings, numbers, dates, or even ordered lists and
associative maps. Therefore, a CouchDB database is a flat collection of docu-
ments where each document is identified by a unique ID. CouchDB provides
a RESTful HTTP API for reading and updating (add, edit, or delete) database
documents. The CouchDB document update model is lockless and optimistic.
Document edits are made by client applications. If another client was editing
the same document at the same time, the client gets an edit conflict error on
save. To resolve the update conflict, the latest document version can be opened,
the edits reapplied and the update retried again. Document updates are all or
nothing, either succeeding entirely or failing completely. The database never
contains partially saved or edited documents.

Many other variant projects have recently started to follow the NoSQL
movement and support different types of data stores such as key-value stores (for
example, Redis31 and Dynomite32), document stores (for example, MongoDB33

and Riak34) and graph stores (for example, Neo4j35 and DEX36).

29 http://project-voldemort.com/.
30 http://couchdb.apache.org/.
31 http://redis.io/.
32 http://wiki.github.com/cliffmoon/dynomite/dynomite-framework.
33 http://www.mongodb.org/.
34 http://wiki.basho.com/display/RIAK/Riak.
35 http://neo4j.org/.
36 http://www.dama.upc.edu/technology-transfer/dex.

5.3 Cloud Data Management Systems: State of the Art 103

Table 5.1. Design decisions of cloud storage systems

System Data Model Consistency Query Interface

BigTable Column families Eventually
consistent

Low-level API

Google AppEng Objects store Strictly
consistent

Python API – GQL

PNUTS Key-value store Timeline
consistent

Low-level API

Dynamo Key-value store Eventually
consistent

Low-level API

S3 Large objects store Eventually
consistent

Low-level API

SimpleDB Key-value store Eventually
consistent

Low-level API

RDS Relational store Strictly
consistent

SQL

SQL Azure Relational store Strictly
consistent

SQL

Cassandra Column families Eventually
consistent

Low-level API

Hypertable Multi-dimensional
table

Eventually
consistent

Low-level API, HQL

Voldemort Key-value store Eventually
consistent

Low-level API

CouchDB Document-oriented
store

Optimistically
consistent

Low-level API

5.3.6 Cloud Data Management: Trade-Offs

An important issue in designing large-scale data management applications is to
avoid the mistake of trying to be “everything for everyone.” As with many types
of computer systems, no one system can be best for all workloads and different
systems make different tradeoffs in order to optimize for different applications.
Therefore, the most challenging aspects in these application is to identify the
most important features of the target application domain and to decide about
the various design trade-offs, which immediately lead to performance trade-
offs. To tackle this problem, Jim Gray came up with the heuristic rule of “20
queries” [32]. The main idea of this heuristic is that on each project, we need to
identify the twenty most important questions the user wanted the data system to
answer. He said that five questions are not enough to see a broader pattern and
a hundred questions would result in a shortage of focus. Table 5.1 summarizes
the design decisions of our surveyed systems.

104 5 Large-Scale Data Management Techniques

In general, it is hard to maintain ACID guarantees in the face of data repli-
cation over large geographic distances. The CAP theorem [10, 30] shows that
a shared-data system can only choose at most two out of three properties: Con-
sistency (all records are the same in all replicas), Availability (all replicas can
accept updates or inserts), and tolerance to Partitions (the system still functions
when distributed replicas cannot talk to each other). When data is replicated
over a wide area, this essentially leaves just consistency and availability for a
system to choose between. Thus, the ‘C’ (consistency) part of ACID is typically
compromised to yield reasonable system availability [1]. Therefore, most of
the cloud data management overcome the difficulties of distributed replication
by relaxing the ACID guarantees of the system. In particular, they implement
various forms of weaker consistency models (such as eventual consistency,
timeline consistency, and session consistency [44]) so that all replicas do not
have to agree on the same value of a data item at every moment of time.
Therefore, transactional data management applications (such as banking, stock
trading, and supply chain management), which rely on the ACID guarantees
that databases provide, tend to be fairly write-intensive or require microsec-
ond precision are less obvious candidates for the cloud environment until
the cost and latency of wide-area data transfer decrease significantly. Cooper
et al. [5] discusses the tradeoffs facing cloud data management systems as
follows:

� Read performance versus write performance: On the one hand, log structured
systems that only store update deltas can be very inefficient for reads if the
data is modified over time. On the other hand, writing the complete record to
the log on each update avoids the cost of reconstruction at read time but there
is a correspondingly higher cost on update. Unless all data fits in memory,
random I/O to the disk is needed to serve reads (such as opposed to scans).
However, for write operations, much higher throughput can be achieved by
appending all updates to a sequential disk-based log.

� Latency versus durability: Writes may be synched to disk before the system
returns a success result to the user or they may be stored in memory at
write time and synchronized later. The advantages of the latter approach are
that avoiding disk operations greatly improves write latency, and potentially
improves throughput. The disadvantage is the risk of data loss if a server
crashes and loses unsynchronized updates.

� Synchronous versus asynchronous replication: Synchronous replication
ensures all copies are up to date but potentially incurs high latency on
updates.

5.4 Cloud Applications: Programming Models 105

Furthermore, availability may be impacted if synchronously replicated
updates cannot complete whereas some replicas are offline. Asynchronous
replication avoids high-write latency but allows replicas to be stale. Further-
more, data loss may occur if an update is lost due to failure before it can be
replicated.

� Data partitioning: Systems may be strictly row-based or allow for column
storage. Row-based storage supports efficient access to an entire record and
is ideal if we typically access a few records in their entirety. Column-based
storage is more efficient for accessing a subset of the columns, particularly
when multiple records are accessed.

Kossmann et al. [34] conducted an end-to-end experimental evaluation on
the performance and cost of running enterprise web applications with OLTP
workloads on alternative cloud services (such as RDS, SimpleDB, S3, Google
AppEngine, and Azure). The results of the experiments showed that the alter-
native services varied greatly both in cost and performance. Most services
had significant scalability issues. They confirmed the observation that pub-
lic clouds lack the ability to support the upload of large data volumes. It
was difficult for them to upload 1 TB or more of raw data through the
APIs provided by the providers. With regard to cost, they concluded that
Google seems to be more interested in small applications with light workloads,
whereas Azure is currently the most affordable service for medium to large
services.

With the goal of facilitating performance comparisons of the trade-offs on
cloud data management systems, Cooper et al. [5] have presented the Yahoo!
Cloud Serving Benchmark (YCSB) framework and a core set of benchmarks.
The benchmark tool has been made available via open source37 in order to allow
extensible development of additional cloud benchmark suites that represent
different classes of applications and to allow evaluating different cloud data
management systems.

5.4 Cloud Applications: Programming Models

This section provides a survey of state-of-the-art alternative programming mod-
els which have been proposed to implement the application logics over cloud
data storage systems.

37 http://wiki.github.com/brianfrankcooper/YCSB/.

106 5 Large-Scale Data Management Techniques

Figure 5.7. An Example MapReduce program [20].

5.4.1 MapReduce

MapReduce is a simple and powerful programming model that enables easy
development of scalable parallel applications to process vast amounts of data on
large clusters of commodity machines [20, 21]. It isolates the application from
the details of running a distributed program such as issues on data distribution,
scheduling, and fault tolerance. In this model, the computation takes a set of
input key/value pairs and produces a set of output key/value pairs. The user
of the MapReduce framework expresses the computation using two functions:
Map and Reduce. The Map function takes an input pair and produces a set
of intermediate key/value pairs. The MapReduce framework groups together
all intermediate values associated with the same intermediate key I and passes
them to the Reduce function. The Reduce function receives an intermediate
key I with its set of values and merges them together. Typically just zero or
one output value is produced per Reduce invocation. The main advantage of
this models is that it allows large computations to be easily parallelized and
re-execution to be used as the primary mechanism for fault tolerance. Figure 5.7
illustrates an example MapReduce program expressed in pseudo-code for
counting the number of occurrences of each word in a collection of docu-
ments. In this example, the map function emits each word plus an associated
mark of occurrences while the reduce function sums together all marks emitted
for a particular word.

The MapReduce framework has been designed according to the following
main principles [50]:

� Low-cost unreliable commodity hardware: Instead of using expensive, high-
performance, reliable symmetric multiprocessing (SMP) or massively paral-
lel processing (MPP) machines equipped with high-end network and storage
subsystems, the MapReduce framework is designed to run on large clus-
ters of commodity hardware. This hardware is managed and powered by
open-source operating systems and utilities so that the cost is low.

5.4 Cloud Applications: Programming Models 107

� Extremely scalable RAIN cluster: Instead of using centralized RAID-based
SAN or NAS storage systems, every MapReduce node has its own local
off-the-shelf hard drives. These nodes are loosely coupled in rackable sys-
tems connected with generic LAN switches. These nodes can be taken out of
service with almost no impact to still-running MapReduce jobs. These clus-
ters are called Redundant Array of Independent (and Inexpensive) Nodes
(RAIN).

� Fault-tolerant yet easy to administer: MapReduce jobs can run on clusters
with thousands of nodes or even more. These nodes are not very reliable
as at any point in time, a certain percentage of these commodity nodes
or hard drives will be out of order. Therefore, the MapReduce framework
applies straightforward mechanisms to replicate data and launch backup
tasks so as to keep still-running processes going. To handle crashed nodes,
system administrators simply take crashed hardware offline. New nodes can
be plugged in at any time without much administrative hassle. There is no
complicated backup, restore and recovery configurations like the ones that
can be seen in many DBMS.

� Highly parallel yet abstracted: The most important contribution of the
MapReduce framework is its ability to automatically support the paralleliza-
tion of task executions. Hence, it allows developers to focus mainly on the
problem at hand rather than worrying about the low-level implementation
details such as memory management, file allocation, parallel, multi-threaded
or network programming. Moreover, MapReduce’s shared-nothing architec-
ture [41] makes it much more scalable and ready for parallelization.

Hadoop38 is an open source Java software that supports data-intensive dis-
tributed applications by realizing the implementation of the MapReduce frame-
work. On the implementation level, the Map invocations are distributed across
multiple machines by automatically partitioning the input data into a set of
M splits. The input splits can be processed in parallel by different machines.
Reduce invocations are distributed by partitioning the intermediate key space
into R pieces using a partitioning function (such as hash(key) mod R). The
number of partitions (R) and the partitioning function are specified by the user.
Figure 5.8 illustrates an example of the overall flow of a MapReduce operation,
which goes through the following sequence of actions:

1. The input files of the MapReduce program is split into M pieces and starts
up many copies of the program on a cluster of machines.

38 http://hadoop.apache.org/.

108 5 Large-Scale Data Management Techniques

split 0

split 1

split 2

split 3

split 4

(1) fork

(3) read
(4) local write

(1) fork
(1) fork

(6) write

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

worker

worker

(2)
assign
map

(2)
assign
reduce

(5) remote

(5) read

Input
files

Map
phasr

Intermediate files
(on local disks)

Reduce
phase

Output
files

Figure 5.8. An overview of the flow of execution a MapReduce operation [20].

2. One of the copies of the program is elected to be the master copy whereas
the rest are considered as workers that are assigned their work by the master
copy. In particular, there are M map tasks and R reduce tasks to assign.
The master picks idle workers and assigns each one a map task or a reduce
task.

3. A worker who is assigned a map task reads the contents of the corresponding
input split and parses key/value pairs out of the input data and passes each
pair to the user-defined Map function. The intermediate key/value pairs
produced by the Map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned into R
regions by the partitioning function. The locations of these buffered pairs
on the local disk are passed back to the master, who is responsible for
forwarding these locations to the reduce workers.

5. When a reduce worker is notified by the master about these locations, it
reads the buffered data from the local disks of the map workers, which is
then sorted by the intermediate keys so that all occurrences of the same
key are grouped together. The sorting operation is needed because typically
many different keys map to the same reduce task.

5.4 Cloud Applications: Programming Models 109

6. The reduce worker passes the key and the corresponding set of intermediate
values to the user’s Reduce function. The output of the Reduce function is
appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master pro-
gram wakes up the user program. At this point, the MapReduce invocation
in the user program returns back to the user code.

During the execution process, the master pings every worker periodically. If
no response is received from a worker in a certain amount of time, the master
marks the worker as failed. Any map tasks marked completed or in progress
by the worker are reset back to their initial idle state and therefore become
eligible for scheduling on other workers. Completed map tasks are re-executed
on a failure because their output is stored on the local disk(s) of the failed
machine and is therefore inaccessible. Completed reduce tasks do not need to
be re-executed because their output is stored in a global file system.

The original implementation of the MapReduce framework had some limita-
tions that have been tackled by many research efforts in following up work. For
example, Yang et al. [50] have proposed the Map-Reduce-Merge model that
enables processing of multiple datasets in one pass. Condie et al. [43] proposed
a modified architecture in which intermediate data is pipelined between oper-
ators while preserving the programming interfaces and fault tolerance models
of previous MapReduce frameworks. Nykiel et al. [38] propose MRShare as a
sharing framework, which is tailored to transform a batch of queries into a new
batch that will be executed more efficiently by merging jobs into groups and
evaluating each group as a single query. Based on a defined cost model, they
describe an optimization problem that aims of deriving the optimal grouping of
queries in order to avoid performing redundant work and save processing time
and money. Dittrich et al. [24] present the Hadoop++ system, which aims of
boosting the query performance of the Hadoop project (the open source imple-
mentation of the MapReduce framework) without changing any of the system
internals. They achieve this goal by injecting trojan indices and trojan joins
through user-defined function (UDFs), which only affect the Hadoop system
from inside without any external effect. Bu et al. [11] present the HaLoop
system, which is designed to efficiently support iterative computations. In
particular, HaLoop extends the basic MapReduce framework with two main
functionalities: 1) Caching the invariant data in the first iteration and then reuse
them in later iterations. 2) Caching the reducer outputs, which makes checking
for a fixpoint more efficient, without an extra MapReduce job.

Recently, several research efforts have reported about applying the Map-
Reduce framework for solving challenging data processing problems on

110 5 Large-Scale Data Management Techniques

large-scale datasets in different domains. For example, Wang et al. [48] present
the MapDupReducer system for detecting near duplicates over massive datasets.
Surfer [16] and Pregel [37] systems have been designed to achieve efficient dis-
tributed processing of large-scale graphs. Mahout39 is an apache project, which
is designed with the aim of building scalable machine learning libraries by using
the MapReduce framework. Ricardo [19] is a scalable platform for applying
sophisticated statistical methods over huge data repositories. It is designed to
facilitate the trading between R (a famous statistical software packages) and
Hadoop where each trading partner performs the tasks that it does best. Cary
et al. [13] present an approach for applying the MapReduce model in the domain
of spatial data management. In particular, they focus on the bulk-construction
of R-Trees and aerial image quality computation, which involves vector and
raster data.

5.4.2 SQL-Like

For programmers, a key appealing feature in the MapReduce framework is that
there are only two high-level declarative primitives (map and reduce) that can
be written in any programming language of choice and without worrying about
the details of their parallel execution. However, the MapReduce programming
model has its own limitations such as:

� Its one-input and two-stage data flow is extremely rigid. As we previously
discussed, to perform tasks having a different data flow (such as joins or n
stages), inelegant workarounds have to be devised.

� Custom code has to be written for even the most common operations (such
as projection and filtering), which leads to the fact that the code is usually
difficult to reuse and maintain.

� The opaque nature of the map and reduce functions impedes the ability of
the system to perform optimizations.

Moreover, many programmers could be unfamiliar with the MapReduce
framework and they would prefer to use SQL (because they are more proficient
in the language) as a high level declarative language to express their task while
leaving all of the execution optimization details to the backend engine. In
the following subsection discusses research efforts that have been proposed
to tackle these problems and add the SQL flavor on top of the MapReduce
framework.

39 http://mahout.apache.org/.

5.4 Cloud Applications: Programming Models 111

Figure 5.9. An Example SQL query and its equivalent pig Latin program [28].

5.4.2.1 Pig Latin
Olston et al. [28] present a language called Pig Latin that takes a middle position
between expressing task using high-level declarative querying model in the
spirit of SQL and low-level/procedural programming using MapReduce. Pig
Latin is implemented in the scope of Pig project40 and is used by programmers
at Yahoo! for developing data analysis tasks.

Writing a Pig Latin program is similar to specifying a query execution
plan (such as a data flow graph). To experienced programmers, this method is
more appealing than encoding their task as an SQL query and then coercing the
system to choose the desired plan through optimizer hints. In general, automatic
query optimization has its limits especially with uncataloged data, prevalent
user-defined functions, and parallel execution, which are all features of the data
analysis tasks targeted by MapReduce framework. Figure 5.9 shows an example
SQL query and its equivalent Pig Latin program. Given a URL table with the
structure (url, category, pagerank), the task of the SQL query is to find each
large category and its average pagerank of high-pagerank urls (> 0.2). A Pig
Latin program is a sequence of steps where each step represents a single data
transformation. This characteristic is appealing to many programmers. At the
same time, the transformation steps are described using high-level primitives
(such as filtering, and grouping, and aggregation) much like in SQL.

Pig Latin has several other features that are important for casual ad-hoc data
analysis tasks. These features include support for a flexible, fully nested data
model, extensive support for user-defined functions, and the ability to operate
over plain input files without any schema information. In particular, Pig Latin
has a simple data model consisting of the following four types:

1. Atom: An atom contains a simple atomic value such as a string or a number,
like “alice”.

2. Tuple: A tuple is a sequence of fields, each of which can be any of the data
types such as (“alice”, “lakers”).

40 http://incubator.apache.org/pig.

112 5 Large-Scale Data Management Techniques

3. Bag: A bag is a collection of tuples with possible duplicates. The schema
of the constituent tuples is flexible whereas not all tuples in a bag need
to have the same number and type of fields. For example, the following{

(“alice”, “lakers”)
(“alice”, (“iPod”, “apple”))

}
4. Map: A map is a collection of data items, where each item has an associated

key through which it can be looked up. As with bags, the schema of the
constituent data items is flexible. However, the keys are required to be data

atoms, such as

{
“k1” → (“alice”, “lakers”)
“k2” → “20”

}

To accommodate specialized data processing tasks, Pig Latin has extensive
support for UDFs. The input and output of UDFs in Pig Latin follow its fully
nested data model. Pig Latin is architected such that the parsing of the Pig Latin
program and the logical plan construction is independent of the execution plat-
form. Only the compilation of the logical plan into a physical plan depends on
the specific execution platform chosen. Currently, Pig Latin programs are com-
piled into sequences of MapReduce jobs, which are executed using the Hadoop
MapReduce environment. In particular, a Pig Latin program goes through a
series of transformation steps [39] before being executed. The parsing steps
verifies that the program is syntactically correct and that all referenced variables
are defined. The output of the parser is a canonical logical plan with a one-to-
one correspondence between Pig Latin statements and logical operators, which
are arranged in a directed acyclic graph (DAG). The logical plan generated
by the parser is passed through a logical optimizer. In this stage, logical opti-
mizations such as projection pushdown are carried out. The optimized logical
plan is then compiled into a series of MapReduce jobs, which are then passed
through another optimization phase. The DAG of optimized MapReduce jobs
is then topologically sorted and jobs are submitted to Hadoop for execution.

5.4.2.2 SQL/MapReduce
In general, a UDF is a powerful database feature that allows users to customize
database functionality. Friedman et al. [26] introduces the SQL/MapReduce
(SQL/MR) UDF framework, which is designed to facilitate parallel computa-
tion of procedural functions across hundreds of servers working together as a
single relational database. The framework is implemented as part of the Aster
Data Systems41 nCluster shared-nothing relational database.

The framework leverage ideas from the MapReduce programming paradigm
to provide users with a straightforward API through which they can implement

41 http://www.asterdata.com/.

5.4 Cloud Applications: Programming Models 113

SELECT ...

FROM functionname(

ON table-or-query

[PARTITION BY expr, ...]

[ORDER BY expr, ...]

[clausename(arg, ...) ...]

)

Figure 5.10. Basic syntax of SQL/MR query function [26].

a UDF in the language of their choice. Moreover, it allows maximum flexibility
as the output schema of the UDF is specified by the function itself at query
plan-time. This means that a SQL/MR function is polymorphic as it can process
arbitrary input because its behavior as well as output schema are dynamically
determined by information available at query plan-time. This also increases
reusability as the same SQL/MR function can be used on inputs with many
different schemas or with different user-specified parameters. In particular,
SQL/MR allows the user to write custom-defined functions in any programming
language and insert them into queries that otherwise leverage traditional SQL
functionality. A SQL/MR function is defined in a manner similar to Map-
Reduce’s map and reduce functions.

The syntax for using a SQL/MR function is depicted in Figure 5.10 where the
SQL/MR function invocation appears in the SQL FROM clause and consists of
the function name followed by a parenthetically enclosed set of clauses. The
ON clause specifies the input to the invocation of the SQL/MR function. It is
important to note that the input schema to the SQL/MR function is specified
implicitly at query plan-time in the form of the output schema for the query
used in the ON clause.

In practice, a SQL/MR function can be either a mapper (Row function) or
a reducer (Partition function). The definitions of row and partition functions
ensure that they can be executed in parallel in a scalable manner. In the Row
Function, each row from the input table or query will be operated on by exactly
one instance of the SQL/MR function. Semantically, each row is processed
independently, allowing the execution engine to control parallelism. For each
input row, the row function may emit zero or more rows. In the Partition
Function, each group of rows as defined by the PARTITION BY clause will be
operated on by exactly one instance of the SQL/MR function. If the ORDER BY
clause is provided, the rows within each partition are provided to the function
instance in the specified sort order. Semantically, each partition is processed
independently, allowing parallelization by the execution engine at the level of a
partition. For each input partition, the SQL/MR partition function may output
zero or more rows.

114 5 Large-Scale Data Management Techniques

5.4.3 Hybrid Systems

5.4.3.1 Hive
The Hive project42 is an open-source data warehousing solution, which has
been built by the Facebook Data Infrastructure Team on top of the Hadoop
environment [45]. The main goal of this project is to bring the familiar relational
database concepts (such as tables, columns, and partitions) and a subset of SQL
to the unstructured world of Hadoop while still maintaining the extensibility
and flexibility that Hadoop enjoyed. Thus, it supports all the major primitive
types (such as integers, floats, doubles, and strings) as well as complex types
(such as maps, lists, and structs). Hive supports queries expressed in a SQL-
like declarative language, HiveQL,43 and therefore can be easily understood by
anyone who is familiar with SQL. These queries are compiled into MapReduce
jobs that are executed using Hadoop. In addition, HiveQL enables users to plug
in custom MapReduce scripts into queries. HiveQL supports data definition
language (DDL) statements, which can be used to create, drop, and alter tables
in a database [46]. It allows users to load data from external sources and
insert query results into Hive tables via the load and insert data manipulation
language (DML) statements respectively. However, HiveQL currently does
not support the update and deletion of rows in existing tables (in particular,
INSERT INTO, UPDATE, and DELETE statements), which allows the use
of very simple mechanisms to deal with concurrent read and write operations
without implementing complex locking protocols.

The metastore component is the Hive’s system catalog, which stores meta-
data about the underlying table. This metadata is specified during table creation
and reused every time the table is referenced in HiveQL. The metastore distin-
guishes Hive as a traditional warehousing solution when compared with similar
data processing systems that are built on top of MapReduce-like architectures
such as Pig Latin [39].

5.4.3.2 HadoopDB
Parallel database systems have been commercially available for nearly two
decades and there are now about a dozen of different implementations
in the marketplace (such as Teradata,44 Aster Data,45 Netezza,46 Vertica,47

42 http://hadoop.apache.org/hive/.
43 http://wiki.apache.org/hadoop/Hive/LanguageManual.
44 http://www.teradata.com/.
45 http://www.asterdata.com/.
46 http://www.netezza.com/.
47 http://www.vertica.com/.

5.4 Cloud Applications: Programming Models 115

ParAccel,48 Greenplum).49 The main aim of these systems is to improve per-
formance through the parallelization of various operations such as loading data,
building indexes, and evaluating queries. These systems are usually designed
to run on top of a shared-nothing architecture [41] where data may be stored in
a distributed fashion and input/output speeds are improved by using multiple
CPUs and disks in parallel.

Pavlo et al. [40] conducted a large-scale comparison between the Hadoop
implementation of MapReduce framework and parallel SQL database manage-
ment systems in terms of performance and development complexity. On the
one hand, the results of this comparison show that parallel database systems
displayed a significant performance advantage over MapReduce in executing a
variety of data-intensive analysis tasks. On the other hand, the Hadoop imple-
mentation was much easier and straightforward to set up and use in comparison
to that of parallel database systems. MapReduce has also shown to have supe-
rior performance in minimizing the amount of work that is lost when a hardware
failure occurs. In addition, MapReduce (with its open source implementations)
represents a very cheap solution in comparison to the very financially expen-
sive parallel DBMS solutions (the price of an installation of a parallel DBMS
cluster usually consists of seven figures of U.S. dollars)[42].

The HadoopDB project50 is a hybrid system that tries to combine the scalabil-
ity advantages of MapReduce with the performance and efficiency advantages
of parallel databases [2]. The basic idea behind HadoopDB is to connect mul-
tiple single node database systems (PostgreSQL) using Hadoop as the task
coordinator and network communication layer. Queries are expressed in SQL
but their execution are parallelized across nodes using the MapReduce frame-
work, however, as much of the single node query work as possible is pushed
inside of the corresponding node databases. Thus, HadoopDB tries to achieve
fault tolerance and the ability to operate in heterogeneous environments by
inheriting the scheduling and job tracking implementation from Hadoop. Par-
allely, it tries to achieve the performance of parallel databases by doing most
of the query processing inside the database engine.

Figure 5.11 illustrates the architecture of HadoopDB, which consists of two
layers: 1) A data storage layer or the Hadoop Distributed File System51 (HDFS).
2) A data processing layer or the MapReduce Framework. In this architecture,
HDFS is a block-structured file system managed by a central NameNode.
Individual files are broken into blocks of a fixed size and distributed across

48 http://www.paraccel.com/.
49 http://www.greenplum.com/.
50 http://db.cs.yale.edu/hadoopdb/hadoopdb.html.
51 http://hadoop.apache.org/hdfs/.

116 5 Large-Scale Data Management Techniques

SMS Planner

SQL Query

MapReduce Job

Master node

Hadoop core

MapReduce
FrameworkHDFS

NameNode JobTracker

InputFormat Implementations

C
atalog

D
ata

Loader

Node 1

TaskTracker

DataNodeDatabase

Node 2

TaskTracker

DataNodeDatabase

Node n

TaskTracker

DataNodeDatabase

Database Connector

MapReduce
Job

Task with
InputFormat

Figure 5.11. The Architecture of HadoopDB [2].

multiple DataNodes in the cluster. The NameNode maintains metadata about
the size and location of blocks and their replicas. The MapReduce Framework
follows a simple master-slave architecture. The master is a single JobTracker
and the slaves or worker nodes are TaskTrackers. The JobTracker handles the
runtime scheduling of MapReduce jobs and maintains information on each
TaskTracker’s load and available resources. The Database Connector is the
interface between independent database systems residing on nodes in the clus-
ter and TaskTrackers. The Connector connects to the database, executes the
SQL query, and returns results as key-value pairs. The Catalog component
maintains metadata about the databases, their location, replica locations, and
data partitioning properties. The Data Loader component is responsible for
globally repartitioning data on a given partition key upon loading and break-
ing apart single node data into multiple smaller partitions or chunks. The
SMS planner extends the HiveQL translator [45] and transforms SQL into
MapReduce jobs that connect to tables stored as files in HDFS. Abouzeid
et al. [3] demonstrate HadoopDB in action by running two different application

5.5 Real-World Case Studies 117

types: 1) A semantic web application that provides biological data analysis of
protein sequences and 2) a classical business data warehouse.

Teradata [49] has recently started to follow the same approach of integrat-
ing Hadoop and parallel databases. It provides a fully parallel load utility
for loading Hadoop data to its datawarehouse store. Moreover, it provides a
database connector for Hadoop, which allows MapReduce programs to directly
access Teradata datawarehouses data via JDBC drivers without the need of any
external steps of exporting (from DBMS) and loading data to Hadoop. It also
provides a Table UDF, which can be called from any standard SQL query to
retrieve Hadoop data directly from Hadoop nodes in parallel. This means that
any relational tables can be joined with the Hadoop data that are retrieved by
the Table UDF and any complex business intelligence capability provided by
Teradata’s SQL engine can be applied to both Hadoop data and relational data.
Therefore, no extra steps of exporting/importing Hadoop data to/from Teradata
datawarehouse are required.

5.5 Real-World Case Studies

In principle, many Cloud providers (such as Amazon, Microsoft, Google,
VMWare,52 Rackspace,53 Terremark,54 GoGrid)55 are currently working hard
to convince companies to give up building and managing their own data centers
and to utilize the computing computing that is supplied by the Cloud providers
instead. Recently, many businesses have started to rethink their strategy for
managing their computing resources.

Given the falling costs of transferring data over the Internet and companies’
realization that managing complicated hardware and software building blocks
is often a losing proposition, many are willing to outsource some of the job.
Therefore, one of the things that Amazon concluded was that cloud computing
can allow having access to a workforce that is based around the world and is
able to do things that computer algorithms are not really good for. Therefore,
Amazon has launched the Mechanical Turk (MTurk) system56 as a crowdsourc-
ing Internet marketplace where computer programmers (Requesters) are able
to pose tasks known as HITs (Human Intelligence Tasks) such as choosing the
best among several photographs of a storefront, writing product descriptions,
or identifying performers on music CDs. Workers (Providers) can then browse

52 http://www.vmware.com/.
53 http://www.rackspace.com/.
54 http://www.terremark.com/.
55 http://www.gogrid.com/.
56 https://www.mturk.com/mturk/.

118 5 Large-Scale Data Management Techniques

among existing tasks and complete them for a monetary payment set by the
Requester. Requesters can ask that workers fulfill the required qualifications
before engaging a task and they can set up a test in order to verify these
qualifications. They can also accept or reject the result sent by the Worker, which
reflects on the Worker’s reputation. Recently, Amazon has announced that the
MTurk system has over two hundred thousand workers in hundred different
countries.

In practice, many companies have used the cloud services for different pur-
poses such as application hosting (99designs,57 the Guardian News, and Me-
dia,58 ftopia)59 data backup and storage (ElephantDrive60 and Jungle Disk),61

media hosting (fotopedia,62 SmugMug63), and Web hosting (Digitaria64 and
ShareThis).65 Moreover, more than eighty companies and organizations (such
as AOL, LinkedIn, Twitter, and Adobe) are listed as users of Hadoop for pro-
cessing their large scale data sources.66 On one hand, most cloud services
have largely been aimed at start-ups, like the legion of Facebook and iPhone
applications developers who found that they could rent a first-class computing
infrastructure on the fly. In addition, some venture capital firms have made it
almost a precondition of investing in startups that they use Amazon’s cloud
software. On the other hand, the U.S Federal Government has announced the
moving of Recovery.gov,67 which specializes in tracking economic recovery,
to Amazon’s EC2 platform. It is considered as the first federal government
production system to run on Amazon EC2. However, it seems that many other
federal agencies are also planning to be shifting aggressively into full-scale
adoption of the cloud services model.68

Webmail.us69 uses Amazon S3 to host more than 350,000 paid mailboxes
with 10GB of mail per user. Netflix,70 a company that offers online services for
a flat rate fee on DVD rental-by-mail and video streaming in the United States,
has decided to move most of its Web technology (such as customer movie
queues and search tools) to Amazon. Netflix has recently announced that it has
more than ten million subscribers, over 100,000 DVD titles, fifty distribution

57 http://99designs.com/.
58 http://www.guardian.co.uk/iphone.
59 http://www.ftopia.com/.
60 http://www.elephantdrive.com/.
61 https://www.jungledisk.com/.
62 http://www.fotopedia.com/.
63 http://www.smugmug.com/.
64 http://www.digitaria.com/.
65 http://sharethis.com/.
66 http://wiki.apache.org/hadoop/PoweredBy.
67 http://www.recovery.gov/.
68 http://www.informationweek.com/blog/main/archives/2010/06/federal agencie.html.
69 http://webmail.us/.
70 http://www.netflix.com/.

5.6 Conclusion 119

centers, and attracts over 12,000 instant titles. VISA71 has also announced that
they are using the Hadoop framework for analyzing its massive volumes of data
and for applying analytic models to individual clients and not only for client
segments.

In 2007, the New York Times launched a project named TimesMachine.72

The aim of this project is to build a service that provides access to any New
York Times issue since 1851. Therefore, the bulk of 11 million articles had
to be served in the form of PDF files. To tackle the challenge of converting
4 Terabyte of source data into PDF, the project members decided to make use
of Amazon’s Web Services Elastic Compute Cloud (EC2) and Simple Storage
Service (S3). They uploaded the source data to S3 and started a Hadoop cluster
of customized EC2 Amazon Machine Images (AMIs). With one hundred EC2
AMIs running in parallel, it was possible to complete the task of reading the
source data from S3, converting it to PDF and storing it back to S3 within a
total time of thirty-six hours.

AzureBlast [36] is a system that is designed to show the applicability of
cloud platforms for science applications. BLAST is one of the most widely used
bioinformatics algorithms in life science applications. It is designed to discover
the similarities between the two bio-sequences (such as Protein). AzureBlast is
a parallel BLAST engine that runs on the Windows Azure cloud fabric. Instead
of using some high-level programming models or runtimes such as MapRe-
duce, AzureBlast is built directly on the fundamental services of Windows
Azure.

5.6 Conclusion

In the last two decades, the continuous increase of computational power has
produced an overwhelming flow of data. The result of this is the appearance of
a clear gap between the amount of data that is being produced and the capacity
of traditional systems to store, analyze, and make the best use of this data.
Cloud computing has gained much momentum in recent years because of its
economic advantages. In particular, cloud computing has promised a number of
advantages for its ability to host the deployments of data-intensive applications
such as:

� Reduced time-to-market by removing or simplifying the time-consuming
hardware provisioning, purchasing, and deployment processes.

� Reduced cost by following a pay-as-you-go business model.

71 http://www.slideshare.net/cloudera/hw09-large-scale-transaction-analysis.
72 http://timesmachine.nytimes.com/.

120 5 Large-Scale Data Management Techniques

� Reduced operational cost and pain by automating IT tasks such as security
patches and fail-over.

� Unlimited (virtually) throughput by adding servers if the workload increases.

In this chapter, we highlighted the main goals and basic challenges of deploy-
ing data-intensive applications in cloud environments. We provided a survey
on numerous approaches and mechanisms of tackling these challenges and
achieving the required goals. We analyzed the various design decisions of
each approach and its suitability to support certain class of applications and
end-users. A discussion of open issues pertaining to finding the right bal-
ance between scalability, consistency, and economical aspects of the trade-off
design decisions was then provided. Finally, we reported about some real-world
applications and case studies that started to realize the momentum of cloud
technology.

In general, there are several important classes of existing applications that
seems to be more compelling with cloud environments and contribute further
to its momentum in the near future [4].

1. Mobile interactive applications: Such applications will be attracted to the
cloud not only because they must be highly available but also because these
services generally rely on large data sets, which are difficult to be stored
on small devices with limited computing resources. Hence, these large data
sets are most conveniently hosted in large data centers and accessed through
the cloud on demand.

2. Parallel batch processing: Cloud computing presents a unique opportunity
for batch-processing and analytics jobs that analyze terabytes of data and
may take many hours to finish. If there is enough data parallelism in the
application, users can take advantage of the cloud’s reduced cost model to
use hundreds of computers for a short-time cost instead of achieving the
same result by using a few computers for a longer time cost.

3. The rise of analytical applications: While the large database industry was
originally dominated by transaction processing, this fact is currently chang-
ing. A growing share of companies’ resources is now directed to large-scale
data analysis applications such as understanding customers behavior, effi-
cient supply chains management, and recognizing buying habits. Therefore,
decision support systems are growing rapidly, shifting the resource balance
in database processing from online transaction processing (OLTP) systems
to business analytics.

4. Backend-support for compute-intensive desktop applications: In general,
CPU-intensive applications (for example multimedia applications) are

References 121

among the best candidates for successful deployment on cloud environ-
ments. The latest versions of the mathematics software packages Matlab
and Mathematica are capable of using cloud computing to perform expen-
sive evaluations. Therefore, an interesting alternative model might be to
keep the data in the cloud and rely on having sufficient bandwidth to enable
suitable visualization and a responsive GUI back to the human user (such
as offline image rendering or 3D animation applications).

Recently, Amazon’s chief executive predicted that its cloud computing division
will one day generate as much revenue as its retail business does now. However,
Amazon and other cloud providers need to advance their technology to the level
that they can convince big companies to rely on using cloud services so as to
achieve this goal.

References

1. Abadi D. “Data Management in the Cloud: Limitations and Opportunities.” IEEE
Data Eng. Bull. 32, no. 1 (2009): 3–12.

2. Abouzeid A., Bajda-Pawlikowski K., Abadi D., Rasin A., and Silberschatz A.
“Hadoopdb: An Architectural Hybrid of Mapreduce and Dbms Technologies for
Analytical Workloads.” PVLDB 2, no. 1 (2009): 922–33.

3. Abouzeid A., K. Bajda-Pawlikowski, Huang J., Abadi D., and Silberschatz A.
“HadoopDB in Action: Building Real World Applications.” In SIGMOD, 2010.

4. Armbrust M., Fox A., Rean G., Joseph A., Katz R., Konwinski A., Gunho L., David
P., Rabkin A., Stoica I., and Zaharia M. Above the Clouds: A Berkeley View of Cloud
Computing. Feb. 2009.

5. Tam E., Ramakrishnan R., Cooper B., Silberstein A., and Sears R. “Benchmarking
Cloud Serving Systems with YCSB.” In ACM SoCC, 2010.

6. Bell G., Gray J., and Szalay A. “Petascale Computational Systems.” IEEE Computer
39, no. 1 (2006): 110–12.

7. Bernstein P., Cseri I., Dani N., N. Ellis, Kalhan A., Kakivaya G., Lomet D., Manne
R., Novik L., and Talius T. “Adapting Microsoft SQL Server for Cloud Computing.”
In ICDE, pages 1255–1263, 2011.

8. Binnig C., Kossmann D., Kraska T., and Loesing S. “How is the Weather Tomor-
row?: Towards a Benchmark for the Cloud.” In DBTest, 2009.

9. Brantner M., Florescu D., Graf D., Kossmann D., and Kraska T. “Building a
Database on S3.” In SIGMOD, pages 251–264, 2008.

10. Brewer E. Towards Robust Distributed Systems (abstract). In PODC, page 7, 2000.
11. Bu Y., Howe B., Balazinska M., and Ernst M. HaLoop: Efficient Iterative Data

Processing on Large Clusters. PVLDB 3, no. 1 (2010): 285–96.
12. Burrows M. The Chubby Lock Service for Loosely-Coupled Distributed Systems.

In OSD, pages 335–350, 2006.
13. Cary A., Sun Z., Hristidis V., and Rishe N. “Experiences on Processing Spatial

Data with MapReduce.” In SSDBM, pages 302–319, 2009.

122 5 Large-Scale Data Management Techniques

14. Deepak T. Chandra, Griesemer R., and Redstone J. Paxos made live: an engineering
perspective. In PODC, pages 398–407, 2007.

15. Chang F., Dean J., Ghemawat S., Hsieh W., Wallach D., Burrows M., Chandra T.,
Fikes A., and Gruber R. “Bigtable: A Distributed Storage System for Structured
Data.” ACM Trans. Comput. Syst. 26, no. 2 (2008).

16. Chen R., Weng X., He B., and Yang M. “Large Graph Processing in the Cloud.” In
SIGMOD, pages 1123–1126, 2010.

17. Cooper B., Baldeschwieler E., Fonseca R., Kistler J., Narayan P., Neerdaels C.,
Negrin T., Ramakrishnan R., Silberstein A., Srivastava U., and Stata R. Building a
Cloud for Yahoo! IEEE Data Eng. Bull. 32, no. 1 (2009): 36–43.

18. Cooper B., Ramakrishnan R., Srivastava U., Silberstein A., Bohannon P., H. Ja-
cobsen, Puz N., Weaver D., and Yerneni R. “Pnuts: Yahoo!’s Hosted Data Serving
Platform.” PVLDB 1, no. 2 (2008): 1277–88.

19. Das S., Sismanis Y., Beyer K., Gemulla R., Haas P., and McPherson J. “Ricardo:
Integrating R and Hadoop.” In SIGMOD, pages 987–998, 2010.

20. Dean J., and Ghemawat S. “Mapreduce: Simplified Data Processing on Large
Clusters.” In OSDI, pages 137–150, 2004.

21. Dean J., and Ghemawat S. Mapreduce: Simplified Data Processing on Large
Clusters. Commun. ACM 51, no. 1 (2008): 107–13.

22. DeCandia G., Hastorun D., Jampani M., Kakulapati G., Lakshman A., Pilchin
A., Sivasubramanian S., Vosshall P., and Vogels W. “Dynamo: Amazon’s Highly
Available Key-Value Store.” In SOSP, pages 205–220, 2007.

23. Deelman E., Singh G., Livny M., Berriman G., and Good J. “The Cost of Doing
Science on the Cloud: The Montage Example.” In SC, page 50, 2008.

24. Dittrich J., Quiané-Ruiz J., Jindal A., Kargin Y., Setty V., and Schad J. Hadoop++:
Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB,
3, no. 1 (2010): 518–29.

25. Foster I. and Kesselman C. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

26. Friedman E., Pawlowski P., and Cieslewicz J. Sql/mapreduce: A Practical
Approach to Self-Describing, Polymorphic, and Parallelizable User-defined Func-
tions. PVLDB 2, no. 2 (2009): 1402–13.

27. Gartner. Gartner top ten disruptive technologies for 2008 to 2012. Emerging trends
and technologies roadshow, 2008.

28. Gates A., Natkovich O., Chopra S., Kamath P., Narayanam S., Olston C., Reed B.,
Srinivasan S., and Srivastava U. “Building a Highlevel Dataflow System on Top of
Mapreduce: The Pig Experience.” PVLDB 2, no. 2 (2009): 1414–25.

29. Ghemawat S., Gobioff H., and Leung S. The Google File System. In SOSP, pages
29–43, 2003.

30. Gilbert S. and Lynch N. Brewer’s Conjecture and the Feasibility of Consistent,
available, partition-tolerant web services. SIGACT News, 33(2): 51–59, 2002.

31. Gonzalez L., Merino L., Caceres J., and Lindner M. “A Break in the Clouds:
Towards a Cloud Definition.” Computer Communication Review 39, no. 1 (2009):
50–5.

32. Hey T., Tansly S., and Tolle K., eds. The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, October 2009.

References 123

33. Karger D., Lehman E., Leighton F., Panigrahy R., Levine M., and Lewin D. “Con-
sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web.” In STOC, pages 654–663, 1997.

34. Kossmann D., Kraska T., and Loesing S. “An Evaluation of Alternative Architec-
tures for Transaction Processing in the Cloud.” In SIGMOD, 2010.

35. Lakshman A., and Malik P. “Cassandra: Structured Storage System on a p2p Net-
work.” In PODC, page 5, 2009.

36. Lu W., Jackson J., and Barga R. “AzureBlast: a case study of developing science
Applications on the Cloud.” In HPDC, pages 413–420, 2010.

37. Malewicz G., Austern M., Bik A., Dehnert J., Horn I., Leiser N., and Czajkowski G.
Pregel: A System for Large-Scale Graph Processing. In SIGMOD, pages 135–146,
2010.

38. Nykiel T., Potamias M., Mishra C., Kollios G., and Koudas N. “MRShare: Sharing
Across Multiple Queries in MapReduce.” PVLDB 3, no. 1 (2010): 494–505.

39. Olston C., Reed B., Srivastava U., Kumar R., and Tomkins A. “Pig Latin: A Not-
So-Foreign Language for Data Processing.” In SIGMOD, pages 1099–1110, 2008.

40. Pavlo A., Paulson E., Rasin A., Abadi D., DeWitt D., Madden S., and M. Stone-
braker. “A Comparison of Approaches to Large-Scale Data Analysis.” In SIGMOD,
pages 165–178, 2009.

41. Stonebraker M. “The Case for Shared Nothing.” IEEE Database Eng. Bull. 9,
no. 1 (1986): 4–9.

42. Stonebraker M., Abadi D., DeWitt D., Madden S., Paulson E., Pavlo A., and Rasin
A. “MapReduce and Parallel DBMSs: Friends or Foes?” Commun. ACM 53, no. 1
(2010): 64–71.

43. Alvaro P., Hellerstein J., Elmeleegy K., Condie T., Conway N., and Sears R.
“Mapre-duce Online.” In NSDI, 2010.

44. Tanenbaum A., and Steen M., eds. Distributed Systems: Principles and Paradigms.
Prentice Hall, 2002.

45. Thusoo A., Sarma J., Jain N., Shao Z., Chakka P., Anthony S., Liu H., Wyckoff P.,
and Murthy R. “Hive – A Warehousing Solution Over a Map-reduce Framework.”
PVLDB 2, no. 2 (2009): 1626–29.

46. Thusoo A., Sarma J., Jain N., Shao Z., Chakka P., Zhang N., Anthony S., Liu H.,
and Murthy R. “Hive – A Petabyte Scale Data Warehouse Using Hadoop.” In ICDE,
pages 996–1005, 2010.

47. Vogels W. Eventually consistent. Commun. ACM 52, no. 1 (2009): 40–44.
48. Wang C., Wang J., Lin X., Wang W., Wang H., Li H., Tian W., Xu J., and R.

Li. “MapDupReducer: Detecting Near Duplicates Over Massive Datasets.” In
SIGMOD, pages 1119–1122, 2010.

49. Xu Y., Kostamaa P., and Gao L. “Integrating Hadoop and Parallel Dbms.” In
SIGMOD, pages 969–974, 2010.

50. Yang H., Dasdan A., Hsiao R., and Parker D. “Map-Reduce-Merge: Simplified
Relational Data Processing on Large Clusters.” In SIGMOD, pages 1029–1040,
2007.

6
Dimension Reduction for Streaming Data

Chandrika Kamath

6.1 Introduction

With sensors becoming ubiquitous, there is an increasing interest in mining the
data from these sensors as the data are being collected. This analysis of stream-
ing data, or data streams, is presenting new challenges to analysis algorithms.
The size of the data can be massive, especially when the sensors number in
the thousands and the data are sampled at a high frequency. The data can be
non-stationary, with statistics that vary over time. Real-time analysis is often
required, either to avoid untoward incidents or to understand an interesting
phenomenon better. These factors make the analysis of streaming data, whether
from sensors or other sources, very data- and compute-intensive. One possi-
ble approach to making this analysis tractable is to identify the important
data streams to focus on them. This chapter describes the different ways in
which this can be done, given that what makes a stream important varies from
problem to problem and can often change with time in a single problem. The
following illustrate these techniques by applying them to data from a real prob-
lem and discuss the challenges faced in this emerging field of streaming data
analysis.

This chapter is organized as follows: first, I define what is meant by stream-
ing data and use examples from practical problems to discuss the challenges
in the analysis of these data. Next, I describe the two main approaches used
to handle the streaming nature of the data – the sliding window approach and
the forgetting factor approach. I discuss how these can be incorporated into
commonly-used dimension reduction methods such as identification of corre-
lated features, random projections, principal component analysis, and sub-space
trackers. Next, I present the results obtained by applying these techniques to
streaming data from a simulator, which models a network of sensors monitoring
the chlorine concentration in a water distribution piping system. The chapter

124

6.2 Background and Motivation 125

concludes by suggesting areas of research in this emerging field of streaming
data analysis, in particular the task of identifying important data streams.

6.2 Background and Motivation

The traditional focus of data analysis endeavors has been on data that have been
collected over time and which are analyzed as a whole, after the data collection
has been completed. However, more recently, there has been an increasing
interest in analyzing data as they are being collected. There are several factors
driving this. The first is the advances in sensor technology, which have enabled
sensors to be deployed in various locations ranging from physics experiments
to the power grid and the Internet. The second is the all pervasiveness of
the Internet, which has enabled easy access to multiple streams of data in
fields as diverse as finance and weather prediction. The third is the increase in
computational power, which has made possible the analysis of these massive
amounts of data. Finally, there is the realization that by analyzing data as they
are being collected, we have the opportunity to prevent untoward incidents,
assign additional resources to investigate interesting events, and improve the
monitoring and running of complex systems, ranging from the power grid to
physics experiments.

This new modality of data is referred to as streaming data, data streams, or
semiinfinite time series data. There are several application domains where such
data arise. Consider, for example, sensors monitoring a physics experiment.
The physicist may be interested in identifying when the experiment transitions
from one normal operating state to another, so the controls can be changed
appropriately. Or, they may want to know when the experiment is about to
get into an anomalous state, which may cause damage to the experimental set
up. Sometimes they may want to mine the data from the sensors so subsets of
the data representing interesting events can be sent to remote researchers for
further investigation or used to determine the parameter settings for the next
set of experiments.

As another example, consider the problem of integration of wind energy into
the power grid. Wind is an intermittent resource and can be difficult to manage
as the forecasts of power generation are often inaccurate and a control room
operator in a power utility may not know how much wind energy to schedule
when the forecasts do not match the actual generation. In addition, there are
ramp events, where the energy can increase or decrease by a large amount in a
small time interval, making it difficult to keep the load balanced. In such cases,
it may be helpful to consider weather data in the local area near the wind farm
to see if they can help guide the scheduling. For example, a storm brewing near

126 6 Dimension Reduction for Streaming Data

the region of the wind farm may indicate a higher chance of observing ramp
events in the near future.

There are several other applications where monitoring of data streams is
important. For example, with multi-core systems becoming the norm, massively
parallel computers at the peta-scale have hundreds of thousands of cores. The
health of such systems is monitored using hardware and software monitors,
which detect bottlenecks in the system or the failure of a component that may
require a task to be migrated to another component. Other examples of health
monitoring systems include the sensors monitoring the space shuttle or the
power grid, as well as the problem of network intrusion detection, where the
network traffic is monitored to detect anomalous events such as break-ins or
denial of service attacks. In the case of the Internet, the incoming packets on
a computer can be examined to detect suspicious patterns. In other problems,
the properties of the network, such as the number of links between nodes, may
change, indicating an anomaly.

Figures 6.1 and 6.2 show examples of data from two problems – the first is
wind-generation weather data and the second is data from four sensors monitor-
ing the DIII-D experiment [12]. These illustrate several of the challenges faced
in the analysis of streaming data. The data sizes can be very large, especially
if there are a large number of streams and the data are being sampled at a high
frequency. The different sensors may sample the different streams at different
rates, for example, newer sensors monitoring a physics experiment may collect
samples more frequently than older sensors on the same experiment as they
have larger memories to store the data. Often, the number of sensors can be very
large, for example, thousands of phasor measurement units or synchrophasors
are being deployed to convert the power grid into the smart grid. In some prob-
lems, the different streams may measure very different quantities, for example,
a finance application may monitor various stocks, the price of gold, the interest
rate, and so on. Frequently, the data are of poor quality, with noise or missing
values due to faulty or inoperable sensors. There may be a spatial aspect to the
data if the spatial locations of the sensors are also relevant to the analysis.

Although these challenges are prevalent in nonstreaming data as well, stream-
ing data present some unique issues [3, 14, 15]. Often, the data are nonstationary,
that is, their statistical properties change over time. Thus, any models built to
represent the data must also evolve with time. As the data are analyzed during
the collection process, the analysis typically focuses on a small window around
the current time interval, and past data, which lie outside this time window, are
ignored. If the data are used in decision making, it introduces a real-time aspect
to the analysis, which can aggravate the computational requirements to process
the data. This can be addressed by using fast, but less accurate, algorithms.

)b(
)a((c

(
)

d)

Fi
gu

re
6.

1.
W

in
d-

ge
ne

ra
tio

n
w

ea
th

er
da

ta
fo

r
th

e
fir

st
w

ee
k

of
Fe

br
ua

ry
20

10
fr

om
a

m
et

eo
ro

lo
gi

ca
l

st
at

io
n

in
th

e
vi

ci
ni

ty
of

w
in

d
fa

rm
s

in
th

e
C

ol
um

bi
a

B
as

in
re

gi
on

ne
ar

th
e

O
re

go
n-

W
as

hi
ng

to
n

bo
rd

er
.(

a)
w

in
d

sp
ee

d
in

m
ile

s
pe

r
ho

ur
;

(b
)

w
in

d
di

re
ct

io
n

in
de

gr
ee

s;
(c

)
te

m
pe

ra
tu

re
in

de
gr

ee
s

Fa
re

nh
ei

t;
an

d
(d

)
pe

rc
en

ta
ge

re
la

tiv
e

hu
m

id
ity

.

127

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
6.

2.
D

at
a

fr
om

fo
ur

di
ff

er
en

t
se

ns
or

s
m

on
ito

ri
ng

an
ex

pe
ri

m
en

ta
l

sh
ot

of
th

e
D

II
I-

D
to

ka
-m

ak
[1

2]
.T

he
x-

ax
is

sh
ow

s
th

e
tim

e
in

st
an

ts
.N

ot
e

th
at

no
ta

ll
th

e
se

ns
or

s
st

ar
to

r
en

d
at

th
e

sa
m

e
tim

e
in

st
an

t.
T

he
sa

m
pl

in
g

fr
eq

ue
nc

y
of

th
e

di
ff

er
en

ts
en

so
rs

is
di

ff
er

en
t,

w
ith

th
e

va
ri

ab
le

be
ta

t(
pa

ne
la

)h
av

in
g

20
sa

m
pl

es
,w

hi
le

va
ri

ab
le

s
di

am
ag

3
an

d
ip

(p
an

el
s

b
an

d
c,

re
sp

ec
tiv

el
y)

ha
ve

40
96

sa
m

pl
es

an
d

pa
ne

l(
d)

ha
ve

ov
er

26
0,

00
0

sa
m

pl
es

.O
bs

er
ve

th
at

th
e

ev
en

to
cc

ur
ri

ng
ju

st
af

te
r

tic
k

2,
20

0
ca

us
es

a
m

aj
or

ch
an

ge
in

th
e

va
lu

es
of

al
ls

en
so

rs
.

128

6.3 Dimension Reduction Techniques 129

However, it can result in a high rate of false positives in tasks such as anomaly
detection.

A typical approach to analysis of streaming data is composed of three phases.
First, the preprocessing of the data to address issues such as noise in the data
and a mismatch of sampling frequencies; second, dimension reduction, or the
identification of the important data streams; and, third, the actual analysis,
which depending on the problem may constitute detection of concept drift
anomalies, or interesting events. This chapter focuses on one aspect of the
analysis of streaming data, namely dimension reduction or the selection of key
data streams. I start by describing the need for dimension reduction in streaming
data, and then discuss ways in which the streaming nature of the data can be
accommodated in the algorithms.

6.3 Dimension Reduction Techniques

In the context of streaming data, we can consider each time instant to be
represented by a vector of floating-point values, one from each of the data
streams. These values can be considered as a representation of the state of the
system, as seen by the sensors, at that time instant. The time instant could be
every minute, or every second, depending on the problem. In some cases, where
the exact time is less important, these time instants could just be an increasing
sequence of consecutive integer values.

This chapter assumes that issues such as noise in the data streams or the differ-
ent sampling rates for the different data streams have already been addressed.
These are usually problem-dependent issues and their solutions vary, with
problem-specific approaches often yielding better results than more general
approaches.

Our goal in dimension reduction is to reduce the number of data streams, d.
This is referred to as the dimension of the problem as each instant, represented
by d values, can be considered as a point in a d–dimensional space. The idea
of reducing the dimension of a data analysis problem is not new. Many of
the reasons why we want to reduce the number of dimensions in streaming
data are the same as for nonstreaming data. Some of the data streams may
be correlated with others, or may be irrelevant to the problem. By keeping
and monitoring only the more important data streams, we can reduce the
memory requirements and computational time for the analysis algorithms.
Fewer data streams may also lead to simpler and more interpretable models,
say for anomaly detection. These models may also be more accurate, especially
if the data streams being ignored were mainly noise. A large number of streams
also leads to the “curse of dimensionality” – for problems in classification,

130 6 Dimension Reduction for Streaming Data

a data set with high dimensionality can require a large number of training
samples, whereas clustering can be a challenge as it is difficult to interpret
distances between two points in the high-dimensional space.

Dimension reduction, in the context of data streams, where there is a temporal
component to the data presents an interesting challenge. It is possible that either
the number, or the set, of streams, which are considered important, vary with
time. This is especially true if the data have concept drift, that is, the underlying
statistical distributions of the data change over time. This means that we need to
monitor all the data streams at all times. It also implies that dimension reduction
algorithms must accommodate this nonstationarity of the data, making them
more complex than the algorithms used for non-streaming data. At the same
time, when the number or set of important data streams changes, it can provide
insights into the data as such changes could indicate anomalies or a change
point in the data.

Because data streams are considered semiinfinite, any analysis is done using
data from just the recent past, with data that are older than some time period
being ignored. This is especially important in the case of nonstationary data
as old data, with different statistics from recent data, should not influence the
decisions made based on the recent data. There are two ways in which we can
“forget” the old data:

� Sliding window approach: In this approach, only the data from the recent
past are considered in the analysis. The more commonly used option con-
siders a fixed-sized time window and the data that fall within this window
are used in the analysis. Thus, for a window length of lw, if the current time
instant is t, we consider only the values at time instants from (t − lw + 1)
through t, with both end points included. At the next time instant, t + 1, the
oldest set of values in the window, corresponding to time instant (t − lw + 1),
are removed and the values at the new time instant (t + 1) are added.

The fixed-size sliding window approach requires that we select a window
size at the start of the analysis; this is usually done by trial and error or by
exploiting any information we might know about the data. It is also possible
to use a landmark-based window, where a new window starts when a certain
landmark occurs in the data. This typically grows until the landmark occurs
again or the window size become too large and the oldest data values are
dropped from the window.

� Forgetting factor approach: The idea behind the forgetting factor (also
called the damping factor) is to incorporate a multiplicative factor 0 < α

< 1.0 into the analysis, which essentially acts as a way of reducing the

6.3 Dimension Reduction Techniques 131

contribution of older values. For example, to calculate the mean of the values
in a data stream, we could keep a running sum of the values seen until a
time instant, and multiply this by α before adding the value at the new time
instant. Because α is typically chosen to be a bit smaller than 1.0, repeated
multiplications by α over time will progressively reduce the contributions
of the oldest values. A value of α close to 1.0 (say 0.99) will reduce the
contributions of past values slower than a value farther from 1.0 (say 0.96).
α is typically chosen to be greater than 0.95, with the choice depending on
how fast we want the older values to be forgotten. For time instants t � 1,
the use of a forgetting factor α results in an effective window length of
1/(1 − α).

When algorithms used for analyzing nonstreaming data are extended to work
on streaming data, they can be extended using either the sliding window or the
forgetting factor approach. In the case of the sliding window, the idea is to
exploit as much as possible the computation that has already been done on the
previous window, while incorporating the newest data and removing the oldest
data. Although it is possible to redo the analysis using the data in the new
window, this is often time consuming, and an incremental approach is required
to meet the real-time requirements of many streaming data problems. When an
algorithm is modified using a forgetting factor, the idea is to suitably incorporate
α into the analysis so that it has the desired effect of appropriately reducing the
contributions of the older data values. Note that the two approaches do not give
identical results as they treat the current and past data values differently. Also,
the sliding window approach, unlike the use of the forgetting factor, requires
additional memory to store the values in the window.

The preceding assumes that the updates to the data streams are done syn-
chronously, that is, the latest values for all sensor streams are available at the
same time. This may not be true in all problems. In some problems, each of
the sensors may be sampled at a fixed, known frequency, but the frequency
may differ from sensor to sensor. This sampling mismatch must be addressed
first, prior to the dimension reduction step. We may also have situations where
a sensor may provide a measurement at nonperiodic intervals, for example,
when it takes a reading only when certain conditions are satisfied.

Underlying the discussion so far is the idea that we are monitoring a set of
sensors that provide data samples over time. Thus, if we look at the data over
a time window, we can treat them as a matrix where the rows (or columns) are
the time instants and the columns (or rows) are the sensor values. This matrix
is dense as there is a sensor value corresponding to each instant and the number

132 6 Dimension Reduction for Streaming Data

of sensors is assumed fixed. There are also streaming data problems where
the time aspect is implicit. For example, recommender systems use a small
sample of customer preferences to predict likes and dislikes over a wider set of
products. The matrix is then formed using the customer × product scores. This
matrix is sparse, with many of the scores unknown. In addition, the number
of rows and columns can change over time with products and customers being
added and removed, and the value for a specific customer and product can
change as the customer revises and updates their score for a product.

The next section describes streaming variants of some of the commonly used
dimension reduction techniques. First, a note about terminology, the vector of
sensor values describing each instant is also referred to as a feature vector,
where each variable measured by a sensor is a feature. Dimension reduction
techniques consist of feature selection methods, where a subset of the original
features are selected and feature transform methods, where the original features
are transformed into a different space of a lower dimension.

6.3.1 Correlation-Based Techniques

In the case of classification and regression problems in nonstreaming data, we
can identify key features by considering how correlated the features are to each
other and to the target output variable [16]. Given two vectors, x and y, each of
length n, the Pearson correlation coefficient between them is given by

1

n

∑n
i=1 (xi − x̄)(yi − ȳ)

σ (x) σ (y)
(6.1)

where xi is the i-th element of the vector x, x̄ is its mean value, and σ (x) is its
standard deviation.

In the case of streaming data, we rarely have an output or class label assigned
to each time instant as the data are being analyzed as they are being collected. So,
one approach to reducing the dimension is to identify the correlated data streams
and monitor or display only the uncorrelated ones. It may also be possible to
detect concept drift or anomalies by considering how the correlations among
the data streams change over time.

To accomplish this, we need to incrementally calculate the correlation co-
efficient between two data streams. By expanding the product in the numerator
of Equation 6.1, and substituting

σ (x) =
√∑n

i=1 x2
i

n
−

{∑n
i=1 xi

n

}2

(6.2)

6.3 Dimension Reduction Techniques 133

for the standard deviation in the denominator, we can rewrite the correlation
coefficient between vectors x and y as:

n
∑n

i=1 (xiyi) − ∑n
i=1 xi

∑n
i=1 yi√

n
∑n

i=1 x2
i − {∑n

i=1 xi

}2
√

n
∑n

i=1 y2
i − {∑n

i=1 yi

}2
(6.3)

So, to calculate the correlation between two vectors, we need to keep track of
five quantities: the sum of the values for each of the vectors, the sum of the
values squared for each vector, and the sum of the element-wise product of the
values of the two vectors. In the case of d features, the sufficient statistics are
the d values each for the sum and sum squared of each feature as well as a
d × d matrix of the sum of element wise product of the features taken two as a
time. Because this matrix is symmetric, only half of it can be calculated, stored,
and updated.

The calculation of correlation coefficients is simple in the case of the sliding
window as we can update each of these terms by removing the contributions of
the oldest time instant and adding the contribution of the newest time instant.
However, observe that floating point errors are likely to accumulate over time in
the three sums because of the additions and subtractions. After a while, this will
result in a difference between the sums calculated incrementally over time and
over just the values in the current window. One option may be to periodically
recalculate these terms using the most recent data in the current window.

In the case of the forgetting factor approach, an approximation to the cor-
relations is a bit more complex as the forgetting factor has to be incorporated
appropriately into Equation 6.3 for the correlation coefficient. By reducing
the contribution of each term in Equation 6.3 by the forgetting factor α, we
obtain

1

n

∑n
i=1 α(n−i)(xi − x̄α)α(n−i)(yi − ȳα)

σα(x) σα(y)
(6.4)

where the mean and standard deviation are defined as

x̄α = 1

1/(1 − α)

n∑
i=1

α(n−i)xi (6.5)

and

σα(x) =
√√√√ 1

1/(1 − α)

n∑
i=1

α2(n−i)(xi − x̄α)2, (6.6)

respectively. Note that the 1/(1 − α) term acts as an equivalent window length
for a forgetting factor of α. The inclusion of the α < 1.0 term in the summation

134 6 Dimension Reduction for Streaming Data

progressively reduces the contribution of the oldest values. The sufficient statis-
tics to obtain the correlation coefficients using the forgetting factor are:

n∑
i=1

α2(n−i),

n∑
i=1

α(n−i)xi,

n∑
i=1

α2(n−i)xi,

n∑
i=1

α2(n−i)x2
i and

n∑
i=1

α2(n−i)xiyi .

(6.7)
The idea of using correlation functions to identify correlated data streams

and observe only one, but not all of them is particularly useful in problems
where the sensors are homogeneous and placed spatially close to each other
so that the quantities they measure are often correlated. The method is also
appealing as we are working with the original features and can thus identify the
specific sensors that must be monitored. However, correlation coefficients may
not be the best approach for determining concept drift as they do not detect
changes in amplitude or phase if the streams remain correlated.

6.3.2 Random Projections

Random projections is a recent approach to dimension reduction that is gaining
popularity because of its simplicity, ease of implementation, and low com-
putational cost. It projects data, which are originally in a high-dimensional
space of dimension d, onto a lower dimensional space of dimension k < d
such that all pairwise distances are approximately preserved. More formally,
it is based on the Johnson-Lindenstrauss lemma [2], which asserts that any
set of n points in a d–dimensional Euclidean space can be embedded into k–
dimensional Euclidean space, where k is logarithmic in n and independent of d,
so that all pairwise distances are maintained within an arbitrarily small factor.
The projection in the lower dimensional space can then be used in algorithms,
which utilize the distance between two points, with the assurance that the result
will be a good approximation to the same algorithm applied in the original,
higher-dimensional space.

Practically, a random projection is obtained by multiplying the input matrix
A, of order n × d, which represents the n d–dimensional data points, by a dense
matrix, R, of order d × k of real numbers. Achlioptas [2] shows that if the
elements rij of R are chosen from either one of the following two very simple
probability distributions

rij =
{+1 with probability 1/2

−1 with probability 1/2
(6.8)

rij =
√

3

⎧⎨
⎩

+1 with probability 1/6
0 with probability 2/3

−1 with probability 1/6
(6.9)

6.3 Dimension Reduction Techniques 135

then the projections of the original data matrix A onto R will be a k–dimensional
dataset where the distances between the data points are preserved in accordance
with the Johnson-Lindenstrauss lemma.

Random projections have been used in several practical applications involv-
ing nonstreaming data, including image and text analysis [6], optical character
recognition [11], cluster ensemble methods [13], and assessing the stability of
gene expression clustering [5].

The extension of random projections to streaming data is very simple, with
the reduced dimension representation of the new data obtained by projecting it
onto the random matrix. If the random matrix has a large size, then it is possible
to generate it on the fly by storing only the seeds used to generate the random
numbers for each row or by considering the row number as the seed itself [20].

Unlike the correlation approach described in earlier, random projections
would be used not to identify the important features, but to transform the
original data into a lower dimensional space so that the transformed data can
be used in distance-based techniques such as clustering and nearest neighbor
algorithms.

6.3.3 Incremental Singular Value Decomposition

A commonly used technique for dimension reduction in nonstreaming data is
Principal Component Analysis (PCA) [17]. This starts with a data set consisting
of a large number of possibly interrelated features and transforms it into a
new set of features, which are uncorrelated and ordered so that the first few
transformed features contain most of the variation present in the original data.
These few features can be used to represent the original data in the reduced
dimension space. A practical way of performing PCA is using the Singular
Value Decomposition (SVD) [26]. Suppose we have a real matrix M of r rows
and c columns. Then, the SVD decomposition of M can be written as

M = U�VT (6.10)

where U is an r × r orthogonal matrix, V is a c × c orthogonal matrix, and � is
an r × c diagonal matrix with entries (σ 1, σ 2, . . . , σ p), where p = min(r, c) and
σ 1 ≥ σ 2 ≥ . . . ≥ σ p ≥ 0). The σ are the singular values of M and the columns
of U and V are the left and right singular vectors, respectively, of M. A reduced
dimensional representation Mk of M can then be obtained by considering only
the top largest k singular values (also called the principal singular values) and
the corresponding column vectors of U and V, which form the submatrices Uk

and Vk, respectively:

Mk = Uk�kVT
k .

136 6 Dimension Reduction for Streaming Data

In the signal processing domain, this reduced dimensional space is often called
the signal space as k is chosen so that the singular values that are excluded are
small and form the noise in the data.

A naive approach to extending PCA to streaming data using the windowing
concept would be to implement the SVD decomposition from scratch each time
the values in the window were updated. If the streaming data have concept drift,
that is, their statistics vary over time, it would then be very easy to keep track
of the changing rank of the signal space over time. However, the operation
count to obtain an SVD of an r × c matrix is O(rc2), assuming that r � c. This
can be an issue when real-time response is required, which is often the case in
streaming data applications.

To address this, SVD algorithms for streaming data often consider approxi-
mations to the singular values and vectors. These approximations keep just the
information in the lower dimensional signal space, discarding the noise com-
ponent. As new data arrive, this information in the signal subspace is updated
appropriately, along with any changes in the rank of the signal subspace.

The following describes a fast algorithm for tracking the singular values
and singular vectors of streaming data, called Fast Approximate Subspace
Tracking (FAST), that was proposed by Real, Tufts and Cooley in 1997 [22,
30]. It considers the sliding window as a sequence of overlapping matrices.
Suppose at a given time instant, the data in the window are represented by the
r × c matrix Mold, which can be considered to be the sum of a reduced-rank
signal matrix Sold of rank k and a full-rank noise matrix Nold:

Mold = Sold + Nold

The rows of Mold represent the data streams and the columns represent the time
instants in the window. Representing Mold in terms of its column vectors mi,
i = 1, . . . , c, we have

Mold = [
m1 m2 . . . mc

]
Because the data at each time instant are in the form of a column of the matrix
representing the sliding window, we are interested in the left singular values of
the matrix. If we had represented the data as row vectors, we would consider
the right singular values.

When the data at the new time instant arrive, the data in the sliding window
can be represented as:

Mnew = [
m2 m2 . . . m(c+1)

]

6.3 Dimension Reduction Techniques 137

where the oldest values are removed from one end of the matrix and the new
ones added at the other end. Our goal is to track the k singular values and
vectors of the signal subspace as the matrix representing the data in the sliding
window transitions from Mold to Mnew.

Suppose that we have a sufficiently accurate approximation to the k principal
singular values and the corresponding left singular vectors of Mold. Let these
k orthonormal approximate left singular vectors be represented as the columns
of an r × k matrix Uold as

Uold = [
u1 u2 . . . uk

]
where ui is associated with the i-th largest approximate singular value. These
column vectors form the basis for the signal space corresponding to Mold. By
definition, the error in reconstruction resulting from the use of only the largest
k singular values and their corresponding vectors is given by the squared
Frobenius norm of the difference between the original matrix Mold and its
projection onto the reduced dimension space spanned by the columns of Uold:

εold = ||Mold − UoldUT
oldMold||2F .

The FAST algorithm updates the approximate singular values and vectors in
two steps. First, it creates a low-rank approximation A, of r rows and c columns,
to Mnew such that

||Mnew − A||2F ≤ εold.

Thus, if the error εold was acceptable in the prior step, the error in the new
approximation will be no greater, and therefore, should be acceptable as well.
The second step uses the information in the matrix A to construct a smaller
matrix F, which is then used to obtain the approximate singular values and
vectors of Mnew.

Let the approximation to Mold be written as:

Mold ≈ Uold UT
old Mold

= Uold

[
a1 a2 . . . ac

]
= [

g1 g2 . . . gc

]
where aj = UT

old mj is a k × 1 column vector, mj is the j-th column of Mold, and
gj is the j-th column of Uold UT

old Mold. Because Mnew differs from Mold in two
columns, we can exploit the existing decomposition of the approximation to

138 6 Dimension Reduction for Streaming Data

Mold to create the matrix A, which is the rank (k + 1) approximation to Mnew,
as follows:

A = [
Uold q

] [
a2 a3 . . . ac a(c+1)

0 0 . . . 0 b

]
(6.11)

= [
Uold q

]
E.

The first matrix on the right-hand side is an r × (k + 1) matrix, while the second
matrix, E, is a (k + 1) × c matrix. The r × 1 column vector q and the scalar
b are obtained by decomposing the new column m(c+1) into two components –
one (that is, Uold a(c+1)), which is in the column space of Uold and one (that is,
bq), which is in the space orthogonal to Uold:

a(c+1) = UT
oldm(c+1)

z = m(c+1) − Uolda(c+1)

b = ||z||
q = z

b

By expanding the right-hand side of Equation 6.11, we can write A as:

A = [
g2 g3 . . . gc m(c+1)

]
.

and the resulting error in approximating Mnew by A is given by:

||Mnew − A||2F =
c∑

i=2

{||mi − gi ||2} + ||m(c+1) − m(c+1)||2

with the second term on the right-hand side being zero. When compared with
the error at the prior step:

εold = ||Mold − UoldUT
oldMold ||2F

=
c∑

i=1

||mi − gi ||2,

we see that the new error is less than or equal to the old error (as the sum
goes from 2 to c instead of 1 to c), making A an acceptable rank (k + 1)
approximation to Mnew.

However, A is the same size as Mnew. So, the next step in the FAST algorithm
is to reduce the amount of computations required to update Uold by working
with a matrix of a smaller size than Mnew. We first observe that the first matrix
on the right-hand side of Equation 6.11 has, by definition, (k + 1) orthonormal

6.3 Dimension Reduction Techniques 139

columns. Therefore, if we construct the singular value decomposition of the
second matrix, E, of size (k + 1) × c, as follows:

E = UE�EVT
E

then, we can generate the singular value decomposition of A as:

A = ([
Uold q

]
UE

)
�EVT

E

= UA�AVT
A

where

UA = [
Uold q

]
UE (6.12)

�A = �E

VA = VE.

This allows us to obtain the (k + 1) principal left singular vectors of A as
the columns of the r × (k + 1) matrix UA by calculating the singular value
decomposition of the smaller matrix E. Because A is an approximation to
Mnew, this gives us the approximation to the left singular values of Mnew. The
approximation to the singular values of Mnew can be obtained by considering
the (k + 1) elements from the main diagonal of �E .

It is possible to reduce the computations even further by considering the
matrix F defined as:

F = EET (6.13)

= (
UE�EVT

E

) (
VE�EUT

E

)
= UE�E�EUT

E (6.14)

= UE�EVT
F .

The matrix F is a smaller (k + 1) × (k + 1) matrix and its singular
value decomposition can be obtained more easily than that of E, which is a
(k + 1) × c matrix.

From the preceding, we see that the singular value decomposition of F gives
us the information we need to obtain the singular values and vectors of A. The
singular vectors of F are the columns of UF. Because these are also the columns
of UE, we can use Equation 6.12 to calculate the left singular vectors of A. In
addition, from Equation 6.14, it follows that the singular values of A are the
square-root of the singular values of F.

In summary, using the FAST algorithm, we can obtain an approximation
to the singular values and vectors of Mnew by calculating the singular values
and vectors of F and combining them with Uold from the previous step and

140 6 Dimension Reduction for Streaming Data

the vector q, which is obtained using Uold and the vector m(c+1) representing
the new values in Mnew. The steps in the FAST method are summarized in
Algorithm 6.1.

Algorithm 6.1 FAST algorithm.

Obtain initial estimate of k principal singular values and left singular vectors
Uold of the initial matrix M
while new data arrive do

Obtain new data vector m(c+1)

ai = UT
old mi, i = 2, 3, . . . , (c + 1)

z = m(c+1) − Uold a(c+1)

b = ‖z‖
q = z/b

E =
[

a2 a3 . . . ac a(c+1)

0 0 . . . 0 b

]
F = EET

Compute SVD: F = UF�FVF

Replace columns of Uold with columns of [Uold q]UF

Replace old singular values with square root of singular values of �F

Update data vectors: mi ← m(i+1), i = 1, 2, . . . , c
end while

We observe that the FAST algorithm tracks the change in approximate sin-
gular values and vectors as the matrix of observations changes from Mold to
Mnew. It can also be used to detect any changes in the dimension of the signal
subspace [22].

The typical approach to identifying the dimension of the signal subspace
is to consider the top k singular values and vectors such that a reconstruction
using them explains most of the energy in the data. The energy of the data
is the sum of the squares of the singular values of the matrix. A threshold
is therefore assumed and starting with k = 1, partial sums of squares of the
largest k singular values obtained for increasing k, until the sum exceeds the
threshold. The contribution of the remaining singular values can be considered
to correspond to the noise component of the data. Alternatively, the threshold
could be placed on the noise component and the partial sums created starting
with the smallest singular value.

Because the FAST algorithm tracks only the largest singular values, the
energy in the data, which is the sum of squares of all the singular values, can be
obtained by calculating the square of the Frobenius norm of the matrix. Given

6.3 Dimension Reduction Techniques 141

the Frobenius norm of Mold from the previous step, the norm of Mnew can be
obtained easily as:

||Mnew||2F = ||Mold ||2F − ||m1||22 + ||m(c+1)||22
Suppose Mold was represented using k approximate singular values and

vectors. If the energy calculation for Mnew indicates that the signal subspace
dimension has increased, we can keep all the (k + 1) approximate singular
values and vectors calculated using Algorithm 6.1. However, if the energy
calculation for Mnew indicates that the signal subspace dimension has reduced
or remained at k, the corresponding number of approximate singular values and
vectors can be retained at the end of the processing of Mnew.

The FAST algorithm stores the data for the previous decomposition and
thus requires a memory of at least dc to store Uold, where d (which is r in the
preceding discussion) is the dimension of the original data. Its computational
cost is O(dk2) [22].

6.3.3.1 Extensions to the FAST Algorithm
In their paper [22], Real, Tufts and Cooley describe two extensions to the FAST
algorithm. The first is an approximation to improve the speed of the algorithm,
which replaces the matrix E in Equation 6.11 by an approximation, which is
easier to compute. The second enhancement to FAST is to consider the addition
and deletion of more than a single column of data, enabling the rank of the new
matrix to increase by the number of new columns instead of just one.

Interestingly, an approach for incremental singular value decomposition,
which is very similar to the FAST algorithm was proposed independently by
Matthew Brand. He first considers a case where the original matrix is updated
with another matrix whose columns represent the newly arrived data [7]. As in
the case of the FAST algorithm, the singular value decomposition of the original
matrix is updated by decomposing the matrix of new values into components
within and orthogonal to the SVD-derived subspace of the original matrix. A
follow-on paper [8, 9] extends the algorithm to low rank updates of the original
matrix. This includes the recentering of the original matrix as well as revisions,
additions, and deletions to it. The low-time complexity of the algorithm allows it
to be used in lightweight recommender systems where users can make changes
to their recommendations of movies, books, and so on.

6.3.4 Subspace Tracking Methods

This section describes another approach to incrementally maintaining the
reduced dimension subspace, which is based on the use of a forgetting factor.

142 6 Dimension Reduction for Streaming Data

Like the FAST algorithm described earlier, the Projection Approximation Sub-
space Tracking (PAST) algorithm is motivated by applications where we need
to estimate the signal subspace recursively. This is especially true for problems
where the subspace changes over time, as in the estimation of the direction of
arrival of plane waves impinging on an antenna array.

The PAST algorithm [31] is one of the earliest representatives of fast subspace
trackers, a class of algorithms where the principal subspace (corresponding to
the signal) is tracked using O(dk) computations, where k is the dimension of the
signal subspace and d is the dimension of the original data. PAST interprets the
signal subspace as the solution of a projection-like unconstrained minimiza-
tion problem. Given a sequence of vectors xi, it attempts to find a projection
matrix

W = [
w1 w2 . . . wt

]
, (6.15)

which minimizes the exponentially weighted sum

t∑
i=1

αt−i ||xi − W(t)WT (t)xi||2. (6.16)

This is essentially the error between the original vectors and their projection
onto the subspace spanned by W(t), with the forgetting factor α included to
reduce the contributions of the older values. Note that if we do not include
the forgetting factor, then the solution to Equation 6.16 are the first k principal
directions and the projection of x, onto Wj

yij = wT
j xi , i = 1, . . . , t (6.17)

is the j-th principal component.
The sum in Equation 6.16 is a fourth-order function of the elements of W(t).

The PAST algorithm simplifies this function by using the approximation

WT (t)xi ≈ WT (i − 1)xi = yi (6.18)

resulting in a cost function

t∑
i=1

αt−i||xi − W(t)yi ||2 (6.19)

which is quadratic in the elements of W(t). This projection approximation,
which gives the algorithm its name, results in a small error for stationary or
slowly varying signals as the difference between WT(t)x, and WT(i − 1)xi in
such cases would be small for i close to t. For i far from t, the forgetting factor
would reduce the contributions of any errors to the sum resulting from the
approximation.

6.3 Dimension Reduction Techniques 143

The solution to Equation 6.19 is well studied in adaptive filtering [25] and
can be solved using various recursive least square approaches, which is the
approach used in the PAST algorithm. Yang [31] also proposed a modification
of the PAST algorithm, called PASTd, which incorporates deflation, an idea
used in eigenanalysis to sequentially estimate the eigenvalues and eigenvectors
of a matrix [23, 24]. Algorithm 6.2 describes the PASTd method. The vector
x(t) is the vector of new values at each time instant. The vector wi(t) is the
estimate of the i-th eigenvector of the damped sample correlation matrix

C(t) =
t∑

i=1

αt−ixixT
i (6.20)

and di(t) is an exponentially weighted estimate of the corresponding eigenvalue.
The algorithm assumes that we keep k of the eigencomponents. The initial wi(0)
is set to all zeros, except for a 1 in the i-th position and the di are set to a small
positive value. The forgetting factor, α, is set to a value close to, but less
than, 1.0.

Algorithm 6.2 PASTd algorithm.

Select di(0) and wi(0) appropriately for i = 1, . . . , k
for t = 1, 2, . . . do

x1(t) = x(t)
for i = 1, 2, . . . , k do

yi(t) = wi
T(t − 1)xi(t)

di(t) = αdi(t – 1) + |yi(t)|2
ei(t) = xi(t) − wi(t – 1)yi(t)
wi(t) = wi(t – 1) + {yi(t)/di(t)} ei(t)
xi + 1(t) = xi(t) − yi(t)wi(t)

end for
end for

The PASTd algorithm requires 4dk + O(k) operations per update, where d
is the original dimension and k is the reduced dimension. Because it uses a
forgetting factor, the original data do not have to be stored, though storage of
O(dk) is required for storing the wi.

6.3.4.1 Variations of the Fast Subspace Trackers
There have been several variations of the fast subspace trackers proposed to
address issues related to speed and stability [29]. All these algorithms track
the principal subspace with a computational complexity of O(dk). A good
comparison of various algorithms proposed during the last decade is given by

144 6 Dimension Reduction for Streaming Data

Strobach [28]. In particular, he observes that algorithms such as PASTd, which
are based on the matrix inversion lemma, can cause problems with fading
signals. The PASTd algorithm implicitly involves the inversion of a correlation
matrix, a task which is implemented recursively at each instant using the
matrix inversion lemma, also referred to as the Sherman-Morrison-Woodbury
formula or the Woodbury formula. This formula has known stability issues, with
the correlation matrix losing its positive-definiteness and the inverse matrix
“exploding” in case of fading signals. In contrast, low-rank adaptive filters,
such as LORAF [27], do not calculate the inverse, and so are more stable.
The LORAF techniques are similar to the FAST algorithm described earlier,
where the new incoming data are decomposed into two components, one in the
signal subspace and one orthogonal to it. However, because these techniques
can be computationally expensive relative to PASTd, Strobach suggests using
the row Householder approach [28], which is a LORAF-type of technique and
therefore, does not have stability issues.

Another issue with the PASTd algorithm is the loss of orthogonality of the w
vectors. Various ways of orthonormalizing these vectors have been proposed,
with varying levels of computational complexity [1, 4, 31].

Although many of the extensions of the PAST and PASTd algorithms have
come from the signal processing community, the algorithm has also received
attention in the data mining community, especially in the context of streaming
data analysis. The SPIRIT algorithm [21] combines PASTd with an approach to
track the varying dimension of the reduced dimensional subspace. A common
approach to determine the number of principal components to keep is to use the
eigenvalues to estimate the energy in the reduced representation and compare
it with the energy in the original data, represented by the Frobenius norm (as in
the FAST algorithm). If we set a low and a high threshold for the percentage of
energy we wish to maintain in the reduced representation, we can appropriately
increase or decrease the number of principal components to keep whenever the
percentage energy in the reduced representation is below the low threshold or
above the high threshold.

6.4 Illustrative Experiments

To illustrate the dimension reduction techniques described earlier, the follow-
ing uses a simple dataset from a practical problem. The Chlorine dataset [10]
is generated by the EPANET simulator, which models water distribution pip-
ing systems. It performs an extended period simulation of the hydraulic and
water quality behavior within pressurized pipe networks. The simulation tracks
various quantities for each pipe such as the pressure at a node, the concentration
of chemical species, and so on.

6.4 Illustrative Experiments 145

The Chlorine dataset tracks the chlorine concentration in the network shown
in Figure 6.3. The data for 166 sensors are available for fifteen days of simu-
lation. They are collected once every five minutes, for a total of 4,310 time
instants. Figure 6.4 shows the data for a few of the sensors for five days. Note
the daily periodicity, which reflects the fact that during certain times of the
day, the water usage is high, resulting in higher concentration, which gradually
drops as the usage goes down and the stationary water in the pipes loses its
dissolved chlorine. We also observe that some of the streams are very similar,
which is to be expected as the nodes close to each other on the network will
have chlorine concentrations that are likely to be correlated.

6.4.1 Identifying Correlated Variables

This section considers three ways of calculating the correlation coefficients to
identify the uncorrelated variables in the Chlorine dataset. The first is the sliding
window approach, with the correlation coefficients for the data in the window
at each instant calculated from scratch. The second is the faster incremental
version of the sliding window approach and the third is the forgetting factor
approach.

Once the correlation coefficients between the streams are obtained for each
time instant, we use a threshold-based, greedy approach to select the uncor-
related variables. Given a fixed threshold, we consider two streams to be
correlated if the correlation coefficient between them exceeds the threshold.
For each time instant, starting with the first variable, we drop all other vari-
ables that are correlated to it. Then, we consider the second variable, and
repeat the process. The variables left are uncorrelated and indicate the sensors
that should be monitored. We observe that the list of uncorrelated variables
will vary from instant to instant, especially if any of the correlation coeffi-
cients lie close to the threshold or if the statistics of the streams change over
time.

Table 6.1 lists the count of data streams that are uncorrelated using the first
4,000 instants from the Chlorine data for three window sizes and two threshold
values. We count streams, which are uncorrelated to the other streams during at
least one instant out of the 4,000. For example, for a window length of 100 and
a threshold of 0.80 using the forgetting factor approach, 62 of the data streams
are considered as uncorrelated in at least one of the 4,000 instants. Interpreted
a different way, it indicates that 104 (=166 − 62) of the streams are correlated
to one of the other streams for each of the 4,000 instants considered. These
results show that, as expected, several of the streams in the chlorine data are
correlated and increasing the threshold leads to more uncorrelated variables.
Also, increasing the window size leads to fewer uncorrelated variables as the

J-
16

9

J-
17

0

R
es

er
vo

ir

J-
1

J-
2

J-
14

3

J-
17

1

J-
17

2

J-
16

8
J-

16
6 J-

16
5 J-

16
7

J-
16

4

J-
7

J-
8

J-
27

J-
16

0
J-

15
9

J-
15

8

J-
15

3

J-
15

4

J-
28

J-
29

J-
14

4

J-
15

0

J-
15

1

J-
15

5 J-
15

2

J-
14

6
J-

14
8

J-
14

7

J-
30J-

64
J-

65
J-

66
J-

68
J-

69
J-

70
J-

71
J-

72
J-

73
J-

74
J-

36

J-
35

J-
85

J-
80

J-
84

J-
83J-

78
J-

77
J-

76
J-

75

J-
82 J-
31

J-
32

J-
33

J-
34

J-
63J-
51J-
39J-
9J-
10

J-
11

J-
12

J-
13

J-
13

6

J-
13

5 J-
13

0
J-

13
1

J-
13

9

J-
13

2

J-
13

3

J-
13

4
J-

12
8

J-
12

7
J-

12
3

J-
12

4

J-
12

5

J-
12

6

J-
12

9
J-

13
8

J-
12

2

J-
11

6

J-
10

5
J-

10
4

J-
11

5

J-
12

1

J-
11

4
J-

11
2

J-
10

2
J-

10
3

J-
98

J-
26

J-
25

J-
24

J-
23

J-
22

J-
21

J-
20

J-
19

J-
18

J-
17

J-
16

J-
15J-

86
J-

87
J-

88
J-

89J-
10

0

J-
11

1J-
12

0

J-
11

9

J-
10

8
J-

11
7

J-
11

8

J-
10

9

J-
11

0

J-
10

0

J-
10

7
J-

99

J-
40

J-
41

J-
42

J-
43

J-
44

J-
45

J-
46

J-
47

J-
48

J-
49

J-
50

J-
38

J-
13

7

J-
37

J-
62

J-
61

J-
60

J-
59

J-
58

J-
57

J-
58

J-
55

J-
54

J-
53

J-
52

J-
97

J-
10

1
J-

90
J-

91
J-

92
J-

93
J-

94
J-

95
J-

96

J-
14

T-
1

J-
14

0
J-

14
1

J-
14

2

J-
14

9J-
14

5

J-
16

3 J-
16

2

J-
16

1

J-
6

J-
5

J-
4

J-
3

Fi
gu

re
6.

3.
N

et
w

or
k

m
ap

sh
ow

in
g

th
e

lo
ca

tio
ns

of
th

e
se

ns
or

s
m

on
ito

ri
ng

ch
lo

ri
ne

co
nc

en
tr

at
io

ns
.

146

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
6.

4.
C

hl
or

in
e

co
nc

en
tr

at
io

ns
fo

r
fif

te
en

da
ys

:(
a)

se
ns

or
3,

(b
)

se
ns

or
55

,(
c)

se
ns

or
94

,a
nd

(d
)

se
ns

or
13

0.

147

148 6 Dimension Reduction for Streaming Data

Table 6.1. Number of variables identified as uncorrelated by the three
different methods for various window sizes and thresholds. The forgetting
factor is selected to have the equivalent window size

Window
Size Threshold

Sliding
Window

Incremental
Window

Forgetting
Factor

100 0.80 61 57 62
0.85 78 78 78

150 0.80 56 52 57
0.85 73 68 73

200 0.80 48 48 48
0.85 62 62 64

longer length of the window smooths out the effects of minor differences
between variables that are really correlated.

We observe that the three methods give slightly different results, both in the
number of, and the set of streams selected. This is because of two factors – the
differences among the algorithms, especially the effects of floating point error
accumulation and the use of a hard threshold. However, a closer examination of
the results indicated that if we consider only the streams selected as uncorrelated
in many (such as at least 100 out of the 4,000) instants, then the three methods
select the same set of streams.

Also, as expected, the explicit calculation using the sliding window at each
time instant is the slowest of the three methods. We considered it solely for
comparison with the other two methods to determine the effects of floating-
point errors and forgetting factor in the two incremental approaches.

6.4.2 Preserving Distances Using Random Projections

The following shows to what extent distances between instants in the Chlorine
data set can be preserved using random projections. This is done by considering
random matrices of size d × k, for different values of k and evaluating the
distortion resulting from the projection. Here d = 166, the original dimension
of the Chlorine data. The distortion is defined as:

1

k

||μ(x) − μ(y)||2
||x − y||2 (6.21)

where μ(x) is the projection of the vector x. Figure 6.5 shows the results of the
maximum, average, and minimum distortion as the value of k is increased from
10 to 166. The results are generated using the second matrix from Achlioptas

6.4 Illustrative Experiments 149

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140 160 180

di
st

or
tio

n
er

ro
r

Number of reduced dimensions

min, max, avg distortion error; averaged over 20 trials

min
max
avg

Figure 6.5. The distortion using random projection as the number of reduced
dimensions is varied. The maximum, minimum, and average distortion are the
average of these quantities over twenty tries.

(Equation 6.9). The result for each value of k is the average over twenty random
matrices. A subset of the Chlorine data, representing five days (1,440 instants),
was used in this experiment.

This plot shows that the average distortion, even when the number of reduced
dimensions is small, is close to 1.0, indicating that on an average, the distances
are preserved when the points are projected onto the lower dimensional space.
The maximum and minimum distortions, averaged over twenty tries, can be
quite far from 1.0 when the number of reduced dimensions is low, but reduce
rapidly as this number increases. Also, the maximum and minimum distortion
in an 80-dimensional space is close to the maximum and minimum distortion
using all the 166 variables. Because the random projections can be easily
obtained for streaming data, this preservation of distances implies that these
projections provide a simple and cost-effective way of reducing the number
of dimensions for problems involving analysis of data streams. The resulting
reduced dimensional data can then be used in algorithms which are based solely
on distances, such as nearest neighbor methods.

Figure 6.5 also indicates that if we consider a random projection onto a
single matrix and use the reduced dimension data in further processing, we are
likely to get very different results if we change the random matrix used in the

150 6 Dimension Reduction for Streaming Data

Table 6.2. The top ten singular values calculated using all the data (FullSVD)
and an incremental approach (IncSVD) where only k of the singular values
and vectors are retained

Full IncSVD IncSVD IncSVD IncSVD
SVD k = 5 k = 10 k = 20 k = 30

199.971 199.971 199.971 199.971 199.971
42.312 42.299 42.312 42.312 42.312
32.796 32.782 32.795 32.796 32.796
12.367 11.969 12.317 12.365 12.366
8.296 7.474 8.219 8.292 8.295
7.306 – 7.241 7.305 7.305
6.166 – 6.109 6.164 6.165

projection. Because the creation of the random matrices and the projections
are computationally inexpensive, this “instability” of random projections can
be exploited by considering several random matrices for the projection and
using ensemble approaches in the analysis, such as ensemble clustering [13].

6.4.3 Reconstructing Original Data Using Reduced Dimensions

This section considers to what extent the projection onto the reduced dimension
subspace, whether obtained through an incremental SVD approach (such as
FAST) or a subspace tracking approach (such as PASTd), can be used to
reconstruct the original data. The idea behind our experiments is to determine
the error incurred when the data are represented in the lower dimensional space.

Starting with the full Chlorine dataset with d = 166 streams at 4310 instants,
we incrementally build a reduced dimensional dataset keeping only k streams
at any instant. Table 6.2 shows the top ten singular values of the original matrix
(calculated using the LAPACK routine GESVD [19]) and the singular values
obtained using the PAST algorithm, as the value of k is varied from 5 to 30.
Figure 6.6 shows how the error in reconstructing the original data, defined as

||A − Ã||F
||A||F (6.22)

changes as the number of singular values is changed. Here A is the original
matrix and Ã is the matrix reconstructed from the singular value decomposition
using only the top k singular values and vectors. We compare the reconstruction
error using the top k singular values and vectors from the full SVD versus the

6.4 Illustrative Experiments 151

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 5 10 15 20 25 30

re
co

ns
tr

uc
tio

n
er

ro
r

Number of reduced dimensions

Comparison of reconstruction error for SVD and IncSVD

SVD
IncSVD

Figure 6.6. Comparison of the reconstruction error using k of the singular vectors
and the full SVD method versus the incremental SVD method.

incremental approach, where the processing keeps only k singular values and
vectors as the data arrive incrementally.

Table 6.2 indicates that as the number of singular values and vectors kept by
the incremental approach increases, the quality of the approximation improves,
with the largest singular values approaching the true singular values of the data
matrix. In addition, if we reconstruct the original data using only the top k
singular values and vectors, then the error between the reconstruction using the
SVD of the full matrix and the incremental SVD is quite small. This indicates
that techniques such as FAST and the incremental SVD approach of Brand are
viable techniques to generate a low dimensional representation of streaming
data.

The following considers the fast subspace trackers, in particular the PASTd
algorithm. Results for two cases are presented – one where we explicitly set the
dimension of the reduced subspace, and the other where we use the approach
proposed by Papadimitriou [21] to adaptively select the dimension. Figure 6.7
shows the reconstructed version of 1,500 instants for 4 of the 166 sensors
when we explicitly set the reduced dimension to k = 10. Figure 6.8 shows
the corresponding results when we let the algorithm select the number of
dimensions to keep. In this case, the minimum and maximum energy threshold

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
6.

7.
O

ri
gi

na
la

nd
re

co
ns

tr
uc

te
d

si
gn

al
s

us
in

g
PA

ST
d

w
ith

k
=

10
.(

a)
Se

ns
or

3;
(b

)
Se

ns
or

55
;(

c)
Se

ns
or

94
;

an
d

(d
)

Se
ns

or
13

0.

152

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
6.

8.
O

ri
gi

na
la

nd
re

co
ns

tr
uc

te
d

si
gn

al
s

us
in

g
PA

ST
d

w
ith

k
=

4.
(a

)
Se

ns
or

3;
(b

)
Se

ns
or

55
;(

c)
Se

ns
or

94
;

an
d

(d
)

Se
ns

or
13

0.

153

154 6 Dimension Reduction for Streaming Data

was set to 0.98 and 0.999, respectively, indicating that the dimension was chosen
so that the energy in the reduced dimensional data, as a percentage of the total
energy in the data, did not fall below the lower threshold or exceed the higher
threshold. The algorithm determined that this could be achieved using k = 4
vectors. The reconstruction error (as defined in Equation 6.22) was 0.00987 for
k = 10 and 0.0383958 for k = 4. These results were obtained using a forgetting
factors α = 0.96. In addition, we incorporated orthonormalization in the PASTd
algorithm using a Gram-Schmidt procedure [4] to ensure orthonormality of the
weight vectors w.

As expected, these results show that the data can be represented well in
a lower dimensional subspace using a fast subspace tracking algorithm. The
accuracy of the reconstruction improves with increasing number of vectors
(note the higher error in the curves in Figure 6.8 in comparison with Figure
6.7).

6.5 Conclusion

This chapter describes ways in which we can identify important data streams by
using extensions of traditional dimension reduction techniques. The streaming
nature of the data adds another level of complexity, which can make it difficult
to find techniques that work well over a range of problems. The state of the art in
this field is currently at the stage where finding a suitable dimension reduction
technique for a data set is somewhat of a trial and error process, dependent
on the characteristics of a problem and the requirements of the application.

There are several open questions that remain to be addressed in this emerging
field. There are trade-offs between the applicability of a technique to a dataset,
the accuracy of the results, the stability of the algorithms, and their compu-
tational complexity. These issues must be well understood before a technique
can be successfully used in practical problems. It may also make sense to use
more than one method as the different methods may exploit different aspects
of the data to reduce the dimension. The parallelization of the algorithms and
their implementation on modern architectures, such as graphical processing
units, is an area that offers great potential for real-time analysis. The set-
ting of parameters, such as the energy levels that automatically determine the
reduced dimensions, is another challenge which must be addressed. Finally,
the subsequent processing of the data, whether for clustering, classification,
or anomaly detection, must be closely coupled with the dimension reduction
so that an appropriate technique can be chosen to identify the important data
streams.

References 155

Acknowledgments

I would like to thank Matthew Neel from Bonneville Power Administration
for access to the wind energy weather data and Drs. David Humphreys and
Alan Hyatt of General Atomics for access to the DIII-D data. This work is part
of the SensorStreams effort supported by the Advanced Scientific Computing
Research program at the Office of Science, U.S. Department of Energy.

LLNL-MI-462732: This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52–07NA27344.

References

1. Abed-Meraim, K., Chkeif, A., and Hua, Y. “Fast Orthonormal PAST Algorithm.”
IEEE Signal Processing Letters 7 (2000): 60–62.

2. Achlioptas, D. “Database-Friendly Random Projections: Johnson-Lindenstrauss
with Binary Coins.” Journal of Computer and System Sciences 66 (2003): 671–
87.

3. Aggarwal, C. C., Ed. Data Streams: Models and Algorithms. New York: Springer,
2007.

4. Ali, I., Kim, D. N., and Jeong, T. T. “A New Subspace Tracking Algorithm Using
Approximation of Gram-Schmidt Procedure.” In Proceedings, IEEE International
Conference on Information and Multimedia Technology (2009).

5. Bertoni, A., and Valentini, G. “Random Projections for Assessing Gene Expression
Cluster Stability.” In IEEE International Joint Conference on Neural Networks
(2005), pp. 149–154.

6. Bingham, E., and Mannila, H. “Random Projection in Dimensionality Reduction:
Applications to Image and Text Data.” In Proceedings, ACM International Confer-
ence on Know ledge Discovery and Data Mining (2001), pp. 245–250.

7. Brand, M. “Incremental Singular Value Decomposition of Uncertain Data with
Missing Value.” In Proceedings, European Conference on Computer Vision
(ECCV), Lecture Notes in Computer Science, Volume 2350 (2002), pp. 707–720.

8. Brand, M. “Fast Online SVD Revisions for Lightweight Recommender Systems.”
In Proceedings, SIAM International Conference on Data Mining (2003), pp. 37–46.

9. Brand, M. “Fast Low-Rank Modifications of the Thin Singular Value Decomposi-
tion.” Linear Algebra and its Applications 415 (2006), 20–30.

10. Chlorine data set. http://www.cs.cmu.edu/afs/cs/project/spirit-1/www/. Accessed
June 1, 2012.

11. Dasgupta, S. “Experiments with Random Projection.” In Proceedings, Sixteenth
Conference on Uncertainty in Artificial Intelligence (2000), pp. 143–151.

12. DIII-D Website. https://fusion.gat.com/global/DIII-D. Accessed June 1, 2012.
13. Fern, X. Z., and Brodley, C. “Random Projection for High Dimensional Data

Clustering: A Cluster Ensemble Approach.” In Proceedings of 20th International
Conference on Machine Learning (2003), pp. 186–193.

156 6 Dimension Reduction for Streaming Data

14. Gama, J. Knowledge Discovery from Data Strams. Boca Raton, FL: CRC Press,
2010.

15. Gama, J., and Gaber, M. M., Eds. Learning from Data Strams. New York: Springer,
2007.

16. Hall, M. A. Correlation-Based Feature Selection for Machine Learning. PhD thesis,
Department of Computer Science, University of Waikato, New Zealand, 1998.

17. Jolliffe, I. T. Principal Components Analysis, second ed. New York: Springer, 2002.
18. Kamath, C. Scientific Data Mining: A Practical Perspective. Philadephia: SIAM,

2009.
19. LAPACK Website. http://www.netlib.org/lapack/. Accessed June 1, 2012.
20. Menon, A., Pham, G. V. A., Chawla, S., and Viglas, A. “An Incremental Data-

Stream Sketch Using Sparse Random Projections.” In Proceedings, SIAM Interna-
tional Conference on Data Mining (2007), pp. 563–568.

21. Papadimitriou, S., Sun, J., and Faloutsos, C. “Streaming Pattern Discovery in Mul-
tiple Time Series.” In Proceedings, 31st VLDB Conference (2005).

22. Real, E. C., Tufts, D. W., and Cooley, J. “Two Algorithms for Fast Approximate
Subspace Tracking.” IEEE Transactions on Signal Processing 47, 7 (July 1999),
1936–1945.

23. Saad, Y. Numerical Methods for Large Eigenvalue Problems. Manchester, UK:
Manchester University Press, 1992. Available online from http://www-users.cs.
umn.edu/∼saad/books.html.

24. Saad, Y. Numerical Methods for Large Eigenvalue Problems, second ed. Philadel-
phia: SIAM, 2011. Avaialble online from http://www-users.cs.umn.edu/∼saad/
books.html.

25. Sayed, A. Fundamentals of Adaptive Filtering. New York: John Wiley and Sons,
2003.

26. Stewart, G. W. “On the Early History of the Singular Vaue Decomposition.” SIAM
Review 35, no. 4 (1993): 551–66.

27. Strobach, P. Low Rank Adaptive Filters. IEEE Trans. on Signal Processing 44,
no. 12 (1996): 2932–47.

28. Strobach, P. The Fast Recursive Row-Householder Subspace Tracking Algorithm.
Signal Processing 89 (2009): 2514–28.

29. Teixeira, P. H. S. Data Stream Anomaly Detection Through Principal Subspace
Tracking. Master’s thesis, Pontifı́cia Universidade Católica do Rio de Janeiro,
2009.

30. Tufts, D. W., Real, E. C., and Cooley, J. “Fast Approximate Subspace Track-
ing (FAST).” In Proceedings, IEEE Int. Conf. Acoust., Speech, Signal Processing
(1997), vol. 1 .

31. Yang, B. Projection Approximation Subspace Tracking. IEEE Transactions on
Signal Processing 43, no. 1 (January 1995): 95–107.

7
Binary Classification with Support

Vector Machines

Patrick Nichols, Bobbie-Jo Webb-Robertson,
and Christopher Oehmen

7.1 Introduction

Support vector machines (SVM) are currently one of the most popular and
accurate methods for binary data classification and prediction. They have been
applied to a variety of data and situations such as cyber-security, bioinformatics,
web searches, medical risk assessment, financial analysis, and other areas [1].
This type of machine learning is shown to be accurate and is able to generalize
predictions based upon previously learned patterns. However, current imple-
mentations are limited in that they can only be trained accurately on examples
numbering to the tens of thousands and usually run only on serial computers.
There are exceptions. A prime example is the annual machine learning and
classification competitions such as the International Conference on Artificial
Neural Networks (ICANN), which present problems with more than 100,000
elements to be classified. However, in order to treat such large test cases the
formalism of the support vector machines must be modified.

SVMs were first developed by Vapnik and collaborators [2] as an extension
to neural networks. Assume that we can convert the data values associated with
an entity into numerical values that form a vector in the mathematical sense.
These vectors form a space. Also, assume that this space of vectors can be
separated by a hyperplane into the vectors that belong to one class and those
that form the opposing class. If this is the case, one can find the normal vector,
w, and the bias, b, of the hyperplane (the distance from the origin) in a process
known as training and the classification, which can be done by computing the
value of the following function,

f (�xi) = sign(�w • �x − b)

where x denotes some vector formed from data we wish to classify and the
sign function returns 1 for a result greater than zero and −1 otherwise. The

157

158 7 Binary Classification with Support Vector Machines

True Support Vector

False Support Vector

False Vector

Origin of space

Hyperplane

W

True Vector

Figure 7.1. A simple illustration of the vector space for a two dimensional SVM
problem. Each vector has 2 features.

dot product previously shown is not in general a conventional dot product,
but instead represents a metric function that we explain later in this work.
Figure 7.1 presents an example for a two-dimensional problem.

The normal vector and bias are found by solving a constrained optimization
problem with some set of “test vectors” in a process known as training. These
test vectors must represent “typical” data one would want to classify in the
sense that any vector of the data, which we wish to classify is geometrically
close to at least one of test vectors. This distance is determined by examining
the inner product of this vector and a given test vector. The metric function
used in this determination is called a kernel function. This function must satisfy
the conditions to define a metric in this space, the Reproducing Kernel Hilbert
Space (RKHS). Also, a related set of conditions known as the Mercer conditions
must hold for this function. Examples of functions used in most support vector
machines include the usual vector dot product or inner product, the polynomial
function (c1 �x • �y + c2)p where �x • �y is the usual vector dot product between
vectors x and y and p is an integer. The most widely used kernel function is the

radial basis function or Gaussian kernel e−c|⇀x−�y|2 , where once again c is real
constant. The popularity of this function comes from the fact it defines a space

7.1 Introduction 159

where vectors are the most separated and the return values are also normalized
(returns values between 0 and 1).

Once one has a proper kernel function, one can solve for the bias, b, and
normal vector, w, of the hyperplane using a set of labeled test vectors. The label
denotes the expected value for the vectors, (1 or −1 for the sign function previ-
ously given). These are found by solving the following optimization problem
with a Lagrange multiplier terms, α, to enforce the constraints.

min L = 1

2
�w • �w −

N∑
i=1

αi(yi(�w • �xi − b) − 1)

Taking the derivative with respect to each of the free variable yields the follow-
ing equations.

δL

δ �w = �w −
N∑

i=1

αiyixi = 0

δL

δb
= −

N∑
i=1

αiyi = 0

We have the condition that 0 ≤ αi . Consequently, we have the following
relations.

�w =
∑

i

yiαi �xi

∑
i

αiyi = 0

⇀
w • �z =

∑
i

αiyiK(�xi, �z)∀�z ∈ �M

yi(�w • xi − b) ≥ 1

Here y represents the label for the test vector x. This is usually solved using
the dual Lagrangian,

max L = −1

2

N∑
i=1

N∑
j=1

yiyjK(�xi, �xj)αiαj +
N∑

i=1

αi

using one of the many developed optimization techniques, which we discuss
later in this chapter. One should note that in the case, where αi = 0, the
vector xi has no influence on the solution and can be ignored. Those vectors
in which alpha are nonzero are called support vectors because they determine
the separating plane and the bias. Often one wants the margin, distance from

160 7 Binary Classification with Support Vector Machines

the hyperplane to the support vectors, to vary from one region of the feature
space to another. This is accomplished by adding a “slack” variable to Lagran-
gian, ξ .

min L = 1

2
�w • �w −

N∑
i=1

αi(yi(�w • �xi − b) − 1 + ξi) − C

N∑
1

ξi +
∑

ξiri

yi(�w • xi − b) ≥ 1 − ξi

Note that this does not change to dual Lagrangian. But the condition for the
Lagrange multiplier is changed to 0 ≤ αi ≤ C.

Generally, it is assumed that the more test vectors provided during the training
phase, the more accurate the predictions will be in the classification phase.
However, this is not always the case. It is crucial that the test vectors span
the entire space for which one wishes to make predictions, but an abundance
of vectors in only one part of the RKHS is not usually helpful and leads to
unnecessary amount of computation effort in dealing with these vectors.

7.2 Problems in Support Vector Machine Training

The first problem that arises in support vector machine training is the separa-
bility of the true and false training vectors. One can sometimes deal with this
issue using a soft margin (ξ > 0) and an appropriate kernel function (such
as the RBF kernel), though in some cases the assumption that a separating
hyperplane exists for the set of data in question is wrong. For example, the
domain of one class is not simply connected with itself or the two classes have
appreciable overlap with each other (this state of affairs precludes any attempt
at classification) [3].

The other issue is the condition number of the kernel matrix. Most formal
methods in linear algebra such as quadratic programming require well condi-
tioned matrices for numerically stability. When this is not the case, there are
only a few methods that can be employed and good results are not always
obtained. When such a catastrophe occurs, one cannot complete the optimiza-
tion needed for finding the hyperplane and the training becomes impossible.

The third problem is that a prohibitive number of test vectors are needed for
accurate predictions, but can overwhelm the computer’s memory. First, one can-
not say which vectors are crucial for training and which vectors are not. In other
words, one cannot pick out support vectors. Thus, the only reliable approach
would be to include them all. Because most current support vector machine
training algorithms do not scale well either in memory or computational oper-
ations, one is either forced to include only a fraction of the vectors, which

7.3 Implementations 161

degrades the accuracy of the solution, or resort to caching strategies, which
can degrade performance by several orders of magnitude. Previous methods of
dealing with the latter problem have focused on first approximating the solu-
tion through several iterations over the entire set (still very expensive), then
using the information gained from this to eliminate vectors that do not appear
to be support vectors. In some methods, the vectors that are eliminated can be
brought back into the set. However, the initial training set is still the entire set
and although one can reduce the time to solution in this manner, there is no
clear cut savings in memory. Another approach is to somehow eliminate test
vectors before the training begins without sacrificing accuracy, which is still a
subject undergoing intense research.

Assuming we have solved the training problem and have solved for the
parameters needed to develop the classification function, the next step is, of
course, validation in the case where we have known data to test against or
classification if we have data with no known class. This step is trivially parallel
and can be separated out to many different computers across the network. In
fact, even the latency associated with international data transfers would not
be a serious obstacle for this step, if there are plentiful amounts of data to
classify or predict. For this reason, the next section focuses on this topic. These
parts of the support vector machine methodology are trivially parallel and can
be implemented using MPI, MapReduce, and many other approaches, enabling
SVMs to scale to data-intensive applications. Thus, the remainder of the chapter
continues to focus on the training of the support vector machine classifier.

7.3 Implementations

Support vector machines are only now making inroads into the data classifica-
tion field. Platt has stated that there are two possible reasons for why researchers
have been slow to apply SVMs to classification. One is the degree of sophistica-
tion needed to use these methods effectively with currently available software.
This will change as more users adapt this method and use it. Although it is of
some concern, this obstacle is one of familiarity with the method. The other
reason is the ability of the SVM software to handle large problems in a reason-
able period of time [4]. This is an area of current concern with support vector
machines, especially how this method applies to data-intensive computing.

Although the classification function is the same for all versions of SVMs,
the method of finding the parameters that make up the classification function
is not. There are currently four major means of solving the optimization prob-
lem, which in turn yields the hyperplane normal vector and bias needed for
the classification function. The first method appeared very early after Vapnik’s

162 7 Binary Classification with Support Vector Machines

introduction of the SVM method and is an adaptation of the adaline method
used in neural networks. For example, it is implemented in GIST [5], a popu-
lar program among biologists. One chooses an initial configuration of values
(usually αi = 0 for all i). One goes through the test vectors and looks for those
misclassified using the current set of values. One then updates the parameters,
α, in the direction to correct this error and then imposes the constraints. After
many iterations, a set of variables that produces the minimal amount of errors
is found. Although not particularly fast, this method is very simple and uses
a minimum of memory. There are proofs that this procedure will converge
quadratically [6, 7]. Unfortunately, this method relies on a fixed bias, but does
not present a general solution.

The second method to appear was the application of quadratic program-
ming techniques from optimization theory to the SVM problem. In particular,
the interior point method of Karkumar, which solves the problem using con-
ventional linear algebra and convex programming techniques. One use of the
conjugate gradient technique in combination with several auxiliary Lagrange
multipliers variables is called slacks. Initially, the system is allowed to step in
the direction that most maximizes the dual Lagrangian and at the same time
violates the Karush-Kuhn-Tucker (KKT) conditions by a small amount con-
trolled by the slack variables (maximizes a larger dual Lagrangian involving
these slacks). KKT violations are reduced with each step until they are close to
zero. At this point, a solution has been found. The main drawback to this tech-
nique is that the Kernel Matrix is decomposed at each step in order to find
a quasi inverse for the update step. This implies that this method requires on
the order of N3 operations and N2 memory for N test vectors. Therefore, this
method can be very expensive. One way of reducing the computational load
is to approximate the Kernel Matrix using a lower rank) [8–10]. This reduces
the number of operations to some fraction of the previous number. The new
package PSVM uses this technique. Although the computational and memory
cost can be reduced to some fraction of the former number, the underlying
method is still proportional to the factors previously given. Therefore, for large
data sets the amount of time to solution is too large for practical application
and amount of memory needed is prohibitive. Moreover, experiments with this
approach have shown a loss of accuracy, as the fraction of the kernel matrix
retained is reduced below a certain threshold [8]. Another approach to reducing
the cost of this technique is known as “chunking” and was developed very early
in the history of SVMs by Osuna [11]. One deals with only a small subset of
the training vector set at one time (such as one-tenth of the original set). After
reaching a solution within the subset chosen, vectors that are not support vectors

7.3 Implementations 163

are replaced with new vectors and a new solution is generated. After each new
solution, some vectors that were previously eliminated can be reintroduced.
When the objective function is nearly constant for each new set, a solution is
reached. The interior point method with chunking is implemented in one of
the most popular programs known as SVMLight. One of the best reasons for
using these methods is that they are based upon more traditional linear algebra
operations. Existing linear algebra software such as LAPACK has been able to
produce a very high number of floating point operations per second for these
types of operations. Moreover, this method is fairly straightforward to adapt to
high-performance distributed computing. Nevertheless, there are clearly prob-
lems if a large subset of vectors is needed to fully describe the hyperplane and
bias. If this the case, then the active subset will grow to accommodate all of
these vectors and the overall scaling degenerates to N3.

A third approach is similar to the previous methods with the exception that
the update is projected so that it always satisfies the KKT conditions. These use
a conjugate gradient approach with Newton steps that are filtered in direction as
well as length (projection). This type of optimization was originally developed
by Dai and Fletcher [12]. A parallel version (pgpdt) and serial version (gpdt)
have been released by the Serafini, Zanghirati, and Zanni [13, 14]. The memory
and flops requirements are similar to the interior point methods. This method
is implemented within the SVMLight framework of Joachims [15] and like
the former methods uses chunking to reduce the problem size to a manageable
level.

The fourth method is the sequential minimal optimization (SMO) method.
Platt formulated this approach in 1998 [4, 16]. As previously mentioned, the
most popular methods for solving dual Lagrangian equation at the time were
conventional bound constrained quadratic programming solvers, which scale
roughly as the cube of the number of input vectors (one must solve a linear
equation at each iteration). Platt’s implementation immediately became popular
because it scales linearly. The idea comes from the related area of neural
networks. In this area, perceptron or adaline methods had become the most
popular means of solving the training problem (like the first method previously
mentioned). These maximize a functional by updating one weight at a time.
However, the constraint introduced by the derivative with respect to the bias
precludes this approach when the bias is nonzero because any weight is linearly
dependent on at least one other. This next simplest approach is updating two
weights at once by changing one and allowing the change in one other to be
dependent on this change in such a way to satisfy this constraint. Indeed, this
is possible. In other words, we can maximize the objective function as much

164 7 Binary Classification with Support Vector Machines

as possible using the two Lagrange multiplier weights subject to the conditions
0 ≤ αi ≤ C and

∑
i αiyi = 0. Let us call these two multipliers α1 and α2. The

constraint from the previous equations is written in the following form.

y1α1 + y2α2 = γ ′

Clearly, this can be rewritten as γ = α2 + sα1 where s = y1y2 and γ is a
constant. The dual Lagrangian can then be expressed in terms of the variables
α1 and α2.

max L = −1

2

(
K22α

2
2 + K11(γ − α2)2 − 2K12α2(sγ − sα2)

+ α2 + sα2 − y2(γ − α2)λ1 − y2α2λ2 + · · ·

where λ1 = ∑
k �=1 ykαkKk1 and λ2 = ∑

k �=2 ykαkKk2 are constant with respect
to changes in α1 and α2. After some algebra, the value of the update to α2 is
the following.

α2,new = (G2 − sG1)/(K11 + K22 − 2K12)

G1 is the gradient of the dual Lagrangian with respect to α1 and α2 similarly
for G2. The value of α2,new must be clipped so the constraint conditions are met.
The lowest possible value for α2 we will denote as L and highest possible is H.
These are shown as the following.

L = max

(
0, γ − 1 − s

2
C

)

H = min

(
C, γ + 1 + s

2
C

)

Note that if the difference in α2 and α2,new is small (e.g., 10−12) this means there
is very little change in the multipliers or the objective function and we have
an unsuccessful step. The only nontrivial procedure left is a way to pick which
two weights or Lagrange multipliers to update. Platt gave one procedure where
one goes through each of the weights sequentially and chooses the other weight
to be the one with the maximal difference in the gradient of the pair. If one
cannot take a successful step with these criteria, one chooses a random place in
the list of weights and tries each sequentially. Finally, if no successful steps are
made for any weight the solution has converged. After the first iteration, only
those in the set {i : 0 ≤ αi < C} are considered unless no changes are seen for
all members of this set. Then, all are examined. Keerthi has shown that there is

7.3 Implementations 165

a much more efficient way of picking these weights [17]. First, we must define
the status variable.

�i =
⎧⎨
⎩

= 1, αi = C

= 0, 0 < αi < C

= −1, αi = 0

We first find one weight, α1, such that y1G1 is maximal and y1�1 �= 1. The
second one, α2, is chosen to be one such that y2G2 is minimal and y2�2 �= −1.
If one cannot find two weights satisfying these conditions or no successful
updates have occurred based upon these conditions, it can be shown that one is
at the optimal solution and the training problem is solved.

The problem to discuss next is the case: η = K11 + K22 − 2K12 < 0. This
can happen for two reasons. One is the case where the input examples con-
tain redundant or nearly redundant vectors. In this case, the results should be
zero; however, round off error can produce a very small negative result. The
other reason is a choice of kernel function, which does not satisfy the proper
conditions for being a norm. Platt advocated enforcing the extreme values in
this case (setting α2 equal to L or H), but a more recent approach is to change
the definition of η to the value η = max(K11 + K22 − 2K12, τ) where τ is a
very small but positive number, such as 10−12 [18]. This is equivalent to reg-
ularizing the kernel matrix. In some sense, we are using a dual soft-margin
approach where the value of τ is chosen as the cost of L2, which is the norm
slack variable independent of the other soft-margin slack variable.

The initial conditions are αi = 0, �i = −1 and Gi = 1 for all vectors. Thus,
the order of the input vectors determines which ones are picked for optimization
first for an update. After each step, the gradient must be updated.

Gi = Gi − yi(�α2K2iy2 + �α1K1iy1)

The process of updating pairs of weights is repeated until no new successful
steps can be taken. One can find other criteria for terminating the calculation
such as the value of the feasibility gap. Although using these conditions can
greatly reduce the computation time without a sacrifice in accuracy, they are
outside the scope of this chapter and the interested reader is referred to an
excellent explanation of these criteria in a recent book [1].

After convergence, the hyperplane bias is found by an averaging over all α

such that 0 ≤ αi ≤ C.

b =
(

−
∑
�=0

Giyi

)
/N�=0

166 7 Binary Classification with Support Vector Machines

This outlines the procedure of solving the training problem for most of the
SMO implementations available today such as LIBSVM (be aware that many
toolboxes use the LIBSVM source code) [19]. For data-intensive computing,
clearly the SMO method is most appropriate because it scales linearly and
requires an amount of memory proportional to the number of vectors. Also, in
LIBSVM there is the option to do “chunking” to reduce the active set size to
fit in memory. In addition, it has been shown that one can cache kernel matrix
rows. Thus, one can in principle reduce the training problems to one that is
linear to the number of test vectors for computational flops and memory.

7.4 Computational Issues

The key issues for the any method in relation to data-intensive computing are
the ability of the algorithm to handle large-scale problems with the hardware
available now and in the future. The apparent trend for hardware is that the
number of cores is doubling every eighteen months while the clock speed is
only marginally improved in the same period of time. Thus, this requires the
capability to use multiple cores to speed up the amount of flops and a large
amount of memory to feed data to these cores. The author has recently shown
that this is efficient using the SMP architecture provided by a single node of a
high-end processor. The first issue is, of course, either precomputing the kernel
matrix if needed or setting up the necessary data structure to cache kernel
matrix rows. The precomputation of the kernel matrix is more scalable than
cache technique because it is embarrassingly parallel. However, in cases where
not enough is available to store that kernel matrix, one must resort to caching.
Caching requires some synchronization between the different threads on each
core. In turn, this can generate serial computation, which will negatively impact
weak scaling. Most of the SMO time is spent in determining the maximal and
minimal gradients within the condition previously set. This is a data-parallel
operation with a final reduction step (finding the global max and min from
the local values found by each core). This is, of course, quite scalable. The
actual update of the weights is purely serial and could be a potential problem
for weak scaling, however, because it is constant in the number of arithmetic
operations strong scaling is unaltered. Thus, the SMO technique remains the
method of choice for large-scale problems on SMP architectures. Even with the
recent popularity of General Purpose Graphics Processors (GP-GPUs), which
represent the extreme form of an SMP approach, this method is adaptable to
the hardware at hand.

Another type of architecture of interest today is the supercomputer or dis-
tributed computers using networks to form a single system image. Each of

7.4 Computational Issues 167

the separate nodes or computational units of these computers is an SMP type
machine exactly the same as the preceding. The difference is that many of these
are connected with a network that can pass data between the nodes. These types
of computers are in general attractive because many thousands of processors
are available versus the dozen seen on a single node on an SMP machine or
hundreds of a GP-GPU. There is also an abundance of memory with many
terabytes available for use. However, the communication needed for synchro-
nization negatively affects the performance of all four of these algorithms. At
this time, it takes several microseconds to pass data from one computer to the
next. In contrast, the SMP machines take about three orders of magnitude less
time to do the same operation. Thus, all synchronizations previously mentioned
will be a thousand times more expensive in the future. Parallel versions of the
last three methods have been developed [20–22], but an efficient method that
is extended to many processors over a local network is an area of current and
future research.

7.4.1 Tests of the Sequential Minimal Optimization

A sixteen-node dual quad core computer was utilized for these calculations.
Each node contains 8 AMD Barcelona processors (2.1 GHz) and 16 GB of
memory. The amount of memory sets an upper limit of around 45,000 training
vectors if the kernel matrix is precomputed. An important feature of this con-
figuration is that each socket of four processors is connected to the other socket
by a hypertransport link. This results in slower access times for a processor
fetching data from memory of another socket compared to its own memory. As
this chapter later shows, this situation requires that some data be replicated in
order to get the best performance. The compiler used for these results was the
gcc C++ compiler, g++ 4.2, available with most Linux distributions (exact
settings available upon request from the authors). The Native POSIX Threads
Library version 2.5 is available with the glibc provided the threads functional-
ity. Red Hat Enterprise Linux 5 was the operating system on all nodes. There
are three codes being compared for the data sets. The first two codes are object-
oriented and do not copy the training vectors and scaling factors for the kernel
matrix building step. One of these two uses a sparse vector form and the other
a dense form (these codes are known as Sparse6 and Dense6 respectively). A
third code uses a contiguous dense data format for storing the training vectors
and does replicate this data during the kernel building phase. This code uses a
dense vector format and is known as SVM7.

Two data sets are chosen to test the performance and accuracy of the code
and three different implementations of the SMO SVM algorithm. The nature

168 7 Binary Classification with Support Vector Machines

of the data sets determines which of these implementations performs the best.
The Adult data set [4, 23] was used for testing with sparse data. The Adult
data set attempts to predict if a household’s income exceeds $50,000 (U.S.
dollars) based upon census data. This data set is sparse and binary in nature (all
features are either 0 or 1). This set is further decomposed into many subsets
with varying number of training vectors. The a3a, a5a, a8a, and a9a subsets are
used. These subsets contain 3,185, 6,414, 22,696, and 32,561 training vectors
respectively. These contain 123 features with the maximum number of nonzero
element for any vector being 14. For this case, a radial basis kernel function is
used with a variance of 10 (coefficient of the exponential is 0.05) and the SVM
cost parameter set equal to 2.5. The kernel matrix is scaled so that the diagonal
values are 1. Although other parameters might be more optimal, these produced
the best accuracy and ROC scores out of the few we tested. Moreover, the
kernel parameters are the same as those chosen by Platt, which allows a direct
comparison of the present results with the previously published ones (Platt uses
a cost parameter of 1 [16]). The Adult data set is available from the LIBSVM
Web site for download [19]. The original Web site for the Adult data set is the
UCI machine learning repository [23]. This data set is also available from Platt
[16] and available in another format on his Web page. As an initial test, we
compared our results with those given in Platt’s paper [16] with almost identical
agreement. Regardless of the value of the cost parameter, the predictions are
not completely accurate. For the adult data set with a cost of 2.5, a typical
ROC score is around .90 whereas the accuracy is around 84 to 86 percent. The
second data set chosen was a bioinformatics data set from a previous paper
on the application of support vector machines to protein classification; SVM
Homology Tool (SHOT) [25]. This data set is to test the performance of these
codes for dense training vectors. All of the 2,176 features are nonzero. The large
set is divided into two training sets of 10,000 (SHOT 10k) and 20,000 (SHOT
20k) training vectors respectively. Each has 2,177 features. We refer to these
as the SHOT data sets. A previous work suggested that a polynomial kernel
function yields good results [16]. Thus, a polynomial kernel function is used, (x ·
y + 10)2 where x · y is the usual dot product of vectors x and y. The kernel matrix
is not scaled in this case. Instead, the features are all scaled to lie between 0 and
1. This is done to easily compare with LIBSVM [9], which does not allow the
kernel matrix to be scaled. As with the previous set, the cost was set equal to 2.5.
Again, these choices show to produce good results. The accuracy is shown to be
around 90 percent (a ROC score of 0.91). As the reader sees later in this chapter,
the time for creation of the kernel matrix is an order of magnitude larger than the
time for solving the optimization problem. This is most likely the result of the
quadratic scaling of this step versus the linear scaling of the SMO procedure.

7.4 Computational Issues 169

A

1
0
1
2
3
4
5
6
7
8

2 3 4 5 6 7 8

1
0
1
2
3
4
5
6
7
8

2 3 4 5 6 7 8

1
0
1
2
3
4
5
6
7
8

2 3 4 5 6 7 8

a3a
a5a
a8a
a9a
Perfect
Shot 10k
Shot 20k

1
0
1
2
3
4
5
6
7
8

2 3 4 5 6 7 8

1
0
1
2
3
4
5
6
7
8

2 3 4 5 6 7 8

B

C D

E

Figure 7.2. The speed up for the kernel matrix construction for each of the cases:
A) SVM7 for the Adult set, B) SVM7 for the SHOT data, C) Dense 6 for the Adult
Set, D) Dense6 for the SHOT data, E) Sparse6 on the Adult Data.

Two tasks are the most important for determining the speed of the present
code. First, the creation of the kernel matrix whereas the second is the solving
of the optimization problem by SMO. The results for the time to create the
kernel matrix for the Adult data set and the speedup for the process’s versus
the number of cores is shown in Figures 7.2–7.4. As previously stated, this
calculation is embarrassingly parallel in terms of computation. In Figure 7.2,
note that the speed up is very good for all three codes up to four processors.
There the dense code, Dense6, begins to have problems scaling. However,
for the sparse code, Sparse6, and the data replicated code, SVM7, acceptable
speedup is seen up to eight cores, which is maximum number of this machine.
Also, note for this step that the dense codes are slower than the sparse code
by a factor two to four, as shown for the Adult data set. For the SHOT data
set, the sparse code is an order of magnitude slower (results not shown). For
the Adult data set, this result is readily explained. Because the Adult data set
is sparse, the dense codes are performing many wasted operations. In fact, the
sparse codes are performing only about ten percent of the flops per kernel row.
Moreover, the sparse code, Sparse6, scales much better than the dense version
of the same code, Dense6. Because the data is sparse, this also makes sense

170 7 Binary Classification with Support Vector Machines

0.1

A

C

B
1

1 2 4 8

10

100

1000

0.1

1

1 2 4 8

10

100

1000

0.1

1

1 2

a3a
a5a
a8a
a9a

4 8

10

100

1000

Figure 7.3. The time on a log-log scale for building the Adult data set kernel
matrix versus number of cores for A) SVM7, B) Dense6, and C) Sparse6.

100
1 2 4 8

1000

100

SolverKernel Matrix

Total

10

1
1

2

SVM7 SHOT 10k
SVM7 SHOT 20k
Dense6 SHOT 10k
Dense6 SHOT 20k

4 8

1000

100
1 2 4 8

1000

Figure 7.4. The time on a log-log scale for constructing the kernel matrix, solving
the SMO problem, and total time with the Bioinformatics data sets.

7.4 Computational Issues 171

1
10

100

To
ta

l T
im

e
(s

)

1000

2 3 4
Threads

SVM 8

Dense 6
Sparse 6

5 6 7 8

Figure 7.5. The time on a log-log scale for building the kernel matrix for the a9a
Adult data set versus number of cores for SVM7, Dense6, and Sparse6.

for the following reasons. The sparse vectors are of different lengths and the
time to compute the kernel matrix element for each pair will vary greatly. Thus,
each thread is writing the results of the computation and loading a new vector
at different times with respect to other threads. This eliminates any memory
access conflicts. In contrast, the dense code has vectors of fixed length, which
implies that all threads will complete the kernel matrix computation and try
to load new data at nearly the same time. One will note from the previously
mentioned figures that threads on the same socket are not as affected by this
as one might imagine. If more than one socket is needed (more than four
threads), the hypertransport link is not so robust and a definite drop off is
noticed. The data replicated code, SVM7, was developed for this very reason.
SVM7 scales well because it eliminates these conflicts by allowing each thread
to have its own copy of the needed data. Although it is clear from Figure 7.2
that the hypertransport link problem still influences performance, this is less of
a problem for SVM7 (the problem of communicating kernel matrix elements
from each thread to a single memory location remains).

The performance of all three programs is contrasted for the largest sparse
data set, a9a, in Figure 7.5. As the number of threads increases, the duplication
of data allows SVM7 to perform nearly as well as Sparse6. Obviously, this

172 7 Binary Classification with Support Vector Machines

1
0
1
2
3
4
5
6 A
7
8

2 3 4 5 6 7 8 1
0
1
2
3
4
5
6 B
7
8

2 3 4 5 6 7 8

1
0
1
2
3
4
5
6 D
7
8

2 3 4 5

a3a
a5a
a8a
a9a
Perfect
SHOT 10k
SHOT 20k

6 7 81
0
1
2
3
4
5
6 C
7
8

2 3 4 5 6 7 8

1
0
1
2
3
4
5
6 E
7
8

2 3 4 5 6 7 8

Figure 7.6. The speedup for solving the SMO problem for each of the cases:
A) SVM7 on the the Adult data set, B) SVM7 on the SHOT data set, C) Dense6
on the Adult data set, D) Dense6 on the SHOT data set, E) Sparse6 on the Adult
Data set.

duplication is enabling better performance. In contrast to the results for the
Adult data set, the dense codes are up to an order of magnitude faster for the
dense SHOT data set. Also, the excellent scaling of the Sparse6 code is not
seen here, because each thread is in fact accessing data from memory at the
same time as all other threads. Only the SVM7 code performs reasonably well
here.

The second task is solving the optimization problem by the SMO procedure.
As previously mentioned, there is a crucial synchronization point followed by
a small part of serial code. The speedups and average timings are shown in
Figures 7.5–7.7. Note that this part of the algorithm is exactly the same for all
three problems. It is clear to see that though scaling is possible, this problem
prevents the almost linear scaling seen with the kernel matrix construction. For
small data, sets this leads to a complete lack of scaling when the number of
threads is greater than two. However, as the number of training vectors grows
the scaling of the code improves because the time of computation dominates
over the synchronization time. Note that in this part of the program, there is
not replication of data, which does lead to some degradation of performance

7.4 Computational Issues 173

1
0.1

1

10

100

1000

2 4 8

A B

C

1
0.1

1

10

100

1000

2

a3a
a5a
a8a
a9a

4 8

1
0.1

1

10

100

1000

2 4 8

Figure 7.7. The time on a log-log scale for solving the SMO problem with the
Adult data set kernel matrix versus number of cores for A) SVM7, B) Dense6, and
C) Sparse6.

when attempting to use threads on different sockets. We finally show the total
speed up for the adult and bioinformatics sets in Figures 7.4, 7.8, and 7.9.
These show the relative importance of having each part of the program scale
well. As mentioned before, the time for this step rapidly decreases compared
to the kernel matrix construction time. Thus, for large data sets, one should
concentrate on the kernel matrix construction for the very best performance
(even a code that is twice as fast can produce very little change in the total time
to solution).

The present code is compared to serial performance of LIBSVM and the
parallel performance of the PSVM implementations in Tables 7.1–7.4. The
serial and best parallel runtime is shown for the present code. Note that com-
paring these results is hard. Each of these codes has different convergence
criteria and the exact details of the implementation differ from one code to
the next. However, this comparison is useful for exploring the issues in each
implementation.

PSVM uses an interior point method to solve the quadratic optimization. As
previously explained, the kernel matrix is replaced by a lower rank representa-
tion [8]. The assumed rank of this matrix can greatly affect the accuracy [8].

1
0
1
2
3
4
5
6 A
7
8

2 3 4 5 6 7 8 1
0
1
2
3
4
5
6 B
7
8

2 3 4 5 6 7 8

1
0
1
2
3
4
5
6 D
7
8

2 3 4 5

a3a
a5a
a8a
a9a
Perfect
SHOT 10k
SHOT 20k

6 7 81
0
1
2
3
4
5
6 C
7
8

2 3 4 5 6 7 8

1
0
1
2
3
4
5
6 E7
8

2 3 4 5 6 7 8

Figure 7.8. The total speedup for each of the cases: A) SVM7 on the the Adult
data set, B) SVM7 on the SHOT data set, C) Dense6 on the Adult data set,
D) Dense6 on the SHOT data set, E) Sparse6 on the Adult Data set.

1
1

10

100

1000

1

10

100

1000

2 4 8

A B

C

1
1

10

100

1000

2

a3a
a5a
a8a
a9a

4 8

1 2 4 8

Figure 7.9. The total time on a log-log scale with the Adult data set versus number
of cores for: A) SVM7, B) Dense6, and C) Sparse6.

174

7.4 Computational Issues 175

Table 7.1. Results for Adult A3a set

Support
Program Time (sec) Vectors Bias Accuracy

LIBSVM-No shrink 1.89 1,270 0.05 84.34
LIBSVM-Shrink 1.30 1,273 0.05 84.34
SVM7 serial 5.5 1,270 0.05 84.34
6 threads 1.42
Dense6 serial 2.42 1,270 0.05 84.34
6 threads 1.52
Sparse6 serial 2.22 1,270 0.05 84.34
5 threads 1.33
PSVM 1 core 4216.305 1,283 0.05 84.18
16 cores 3099.93

Table 7.2. Results for Adult A9A set

Support
Program Time (sec) Vectors Bias Accuracy

LIBSVM (no shrink) 2128.98 11,533 −0.3 85.00
LIBSVM (shrink) 226.99 11,638 −0.3 85.00
SVM7 serial 642.2 11,533 −0.3 85.00
8 threads 104.22
Dense6 serial 497.82 11,533 −0.3 85.00
8 threads 152.14
Sparse6 serial 368.546 11,533 −0.3 85.00
8 threads 101.37

Table 7.3. Bioinformatics 10K set

Support
Program Time (sec) Vectors Bias Accuracy

LIBSVM-No shrink 29571 3,189 8.22 84.65
LIBSVM-Shrink 2991 3,230 8.22 84.65
SVM7 serial 716.73 3,189 8.22 84.65
8 threads 120.48
Dense6 serial 790.99 3,189 8.22 84.65
8 threads 209.45

176 7 Binary Classification with Support Vector Machines

Table 7.4. Bioinformatics 20K set

Support
Program Time (sec) Vectors Bias Accuracy

LIBSVM-No shrink 179,931.4 6,550 9.624 84.203
LIBSVM-Shrink 68,811 6,716 9.624 84.203
SVM7 serial 2,885.45 6,550 9.624 84.203
8 threads 490.33
Dense6 serial 3,179.60 6,550 9.624 84.203
8 threads 996.6

We assume a rank ratio of 0.7 for these tests. The PSVM runtimes are dominated
by a serial Cholesky factorization, which prevents any substantial speedup
with the parameters and data set chosen. Lower rank ratio would reduce the
time required for the Cholesky Factorization and thus improve the speedup.
However, in cases where the actual rank of matrix is greater than that assumed
the accuracy is degraded. Thus, this code forces a trade-off in accuracy for
speed. The runtimes for the a9a and SHOT data with PSVM were truncated at
one day are not shown. This code can be very useful in cases where the rank of
the kernel matrix is much less than the total number of vectors. This is not the
case for the present data sets.

The other code, LIBSVM, uses both caching and shrinking to speed up
the computation and reduce the amount of memory needed. From the results
shown in the table, this greatly speeds up the computation compared to using
all training vectors at once. This has not been implemented in the present code,
though this enhancement is added in the near future. The second way LIBSVM
tries to speed up the computation is to replace the kernel matrix construction
step with a cache of kernel matrix rows (when a step requires a kernel matrix
row not in cache, the vector that was used the longest ago in the past is replaced
with one that is computed). Provided enough memory is allocated for caching,
it is not necessary to recompute rows with this method. For small sparse data
sets, this can result in a dramatic speedup in the code because only a few
kernel matrix rows may be needed. In contrast, for data sets that are large, the
cost of computing a kernel matrix row can be very expensive and the amount
of memory available is limited. Not only would one need to recompute the
same kernel matrix rows more than once but for each row computation all of
the training vectors must be accessed. The advantage to using a cache is that
ideally any size training set can be treated, provided one can fit two rows of
the kernel matrix in memory at one time. As shown in Tables 7.1, 7.2, 7.3,

7.5 Conclusion 177

and 7.4, a precomputed kernel is faster for larger data sets, but the size of this
matrix is limited by the amount of available memory (for 32 GB of memory,
we are limited to a training set of approximately 50,000 vectors). LIBSVM also
assumes a sparse data format, which can be very slow when this assumption is
not true such as the SHOT data set. In all cases, the present codes perform well
with respect to this and other implementations. The accuracy of the present
codes is basically identical to LIBSVM.

Although these are clear trade-offs, the present approach compares well
across the spectrum of data set sizes and types of data. It is expected that in
the future, the number of cores available for a single computer will increase at
roughly the same rate as Moore’s Law. The amount of memory available per
computer is also expected to increase in coming years. The present code is well
poised to take advantage of these increases to tackle larger data sets and to train
much faster for the data sets of the same size as the current data sets.

7.5 Conclusion

It is clear that SVMs can be utilized to provide an accurate and scalable means
of binary classification and the sequential minimal optimization method is cur-
rently the best candidate for this task because it allows linear scaling in both
flops and memory. The key questions for the future is adapting current imple-
mentations to ever larger data sets and the methodologies to utilize current
and future data- intensive computing platforms. A critical step along this path
is to take advantage of multiple cores within a compute node by developing
efficient strategies for threading SVM training. This is motivated by the con-
tinued success of SVMs as a reliable classification methodology and the steady
increases of data volumes that are being used to drive SVM training across a
wide spectrum of applications. In many cases, such as with streaming sensor
input, training vectors are dense and of high dimensionality. For applications
where this high dimensionality is needed because of the complexity of the
underlying phenomena, a large number of training vectors must be used to ade-
quately sample the solution space. Computational limitations that force users
to sample the data sets to create smaller training data may remove critical detail
in the training space and undermine the quality of the resulting classifier. For
this reason, we are highly motivated to enable training on very large data sets.
To this end, a multithreaded version of the sequential minimal optimization has
been developed and shown to perform well for large data sets. However, for
small data sets, the computational scaling is adversely affected by the crucial
serial section of the SMO algorithm. It can be questioned if this is really an
issue since for small data sets, because one can solve the problem using the

178 7 Binary Classification with Support Vector Machines

completely serial algorithm in short time if this is the case. The need for a
parallel approach is not warranted for such small sets. On the other hand, for
large data sets the improved scaling of using POSIX threads is clearly beneficial
because a serial approach is limited to the number of flops that a single core
can produce. We demonstrate clearly that we can take advantage of the modern
multicore architectures.

References

1. Christianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines
and other Kernel Based Learning Methods. Cambridge, UK: Cambridge University
Press, 2000.

2. Boser, B. E., Guyon, I. M., and V. N. Vapnik. “A Training Algorithm for Optimal
Margin Classifiers.” In Proceedings of the 5th Annual ACM Workshop on Compu-
tational Learning Theory, edited by D. Haussler, 144–52. New York: ACM Press,
1992.

3. Jin, J. “Impossibility of Successful Classification When Useful Features are Rare
and Weak.” Proceedings of the National Academy of Sciences of the United States
of America 106, no. 22 (2009): 8859–64.

4. Platt, J. “Using Analytic QP and Sparseness to Speed Training of Support Vector
Machines.” Proc. Advances in Neural Information Processing Systems 11, 557–63.
Cambridge, MA: MIT Press, 1999.

5. Brown, M. P. S., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, Furey Jr., C.,
T. S., Ares, M., and Haussler, D. Knowledge-Based Analysis of Microarray Gene
Expression Data Using Support Vector Machines. Proceedings of the National
Academy of Science 97, no. 1 (2000): 262–67.

6. Frieß, T. T., Cristianini, N., and Campbell, C. The Kernel Adatron: a Fast and
Simple Learning Procedure for Support Vector Machines. Proceedings of the
Fifteenth International Conference on Machine Learning. Madison, Wisconsin:
Morgan Kaufmann, 1998.

7. Opper, M. “Learning Times of Neural Networks: Exact Solution for a Perceptron
Algorithm.” Physical Review A 38 (1988): 3824–26.

8. Chang, E., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., and Cui, H. 2008. “Paral-
lelizing support vector machines on distributed computers.” In Advances in Neural
Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis
Eds., MIT Press, Cambridge, MA, 257–64.

9. PSVM, accessed August 2010, http://code.google.com/p/psvm.
10. Fine, S., Scheinberg, K., Cristianini, N., Shawe-Taylor, J., and Williamson, B.

“Efficient SVMTraining Using Low-Rank Kernel Representations.” Journal of
Machine Learning Research 2 (2001): 243–64.

11. Osuna, R., Freund, R., and Girosi, F. “Training Support Vector Machines: an Appli-
cation to Face Detection.” In Proceedings of the Conference on Computer Vision
and Pattern Recognition, 130, 1997.

12. Dai, Y. H., and Fletcher, R. New Algorithms for Singly Linearly Constrained
Quadratic Programs Subject to Lower and Upper Bounds. Research Report
NA/216, Department of Mathematics, University of Dundee, 2003.

References 179

13. Zanghirati, G., and Zanni, L. “A Parallel Solver for Large Quadratic Programs in
Training Support Vector Machines.” Parallel Computing 29 (2003): 535–51.

14. Serafini, T. Zanghirati, G., and Zanni, L. “Gradient Projection Methods for Large
Quadratic Programs and Applications in Training Support Vector Machines.”
Optim. Meth. Soft. 20 (2005): 353–78.

15. Joachims, T. “Making Large-Scale SVMLearning Practical.” In Advances in Kernel
Methods – Support Vector Learning, edited by B. Schölkopf, C. Burges, and A.
Smola. Boston: MIT-Press, 1999.

16. Platt, John C. “Fast Training of Support Vector Machines Using Sequential Minimal
Optimization.” In Advances in Kernel Methods – Support Vector Learning, edited
by B. Schölkopf, C. Burges, and A. Smola. Boston: MIT-Press, 1998.

17. Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K. “Improve-
ments to Platt’s SMOAlgorithm for SVMClassifier Design.” Neural Computation
13, no. 3 (2001): 637.

18. Fan, R. E., Chen, P. H., and Lin, C. J. “Working set selection using second order
information for training SVM.” Journal of Machine Learning Research 6, (2005):
1889–1918.

19. Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for Support Vector
Machines,” accessed August 2010, http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

20. Cao, L. J., Ong, C. J., Zhang, J. Q., Periyathamby, U., Fu, X. J., and Lee,
H. P. “Parallel Sequential Minimal Optimization for the Training of Support Vector
Machines,” IEEE Transactions on Neural Networks 17, no. 4 (2006): 1039–49.

21. MILDE, accessed August 2010, http://www.nec-labs.com/research/machine/ml
website/software.php?project=milde.

22. Woodsend, K., and Gondzio, J. “Hybrid MPI/OpenMPI Parallel Support Vector
Maschine Training.” Journal of Machine Learning Research 10 (2009): 1937.

23. UCI Machine Learning Repository, University of California, School of Infor-
mation and Computer Science, accessed May 2009, http://www.ics.uci.edu/∼
mlearn/MLRepository.html.

24. SVMLink from John Platt’s web page, accessed August 2010, http://research
.microsoft.com/enus/projects/svm/default.aspx.

25. Webb-Robertson, B-J. Oehmen, C., and Shah, A. “A Feature Vector Integration
Approach for a Generalized Support Vector Machine Pairwise Homology Algo-
rithm.” Computational Biology and Chemistry 32, no. 6 (2008): 458–61.

8
Beyond MapReduce: New Requirements

for Scalable Data Processing

Bill Howe and Magdalena Balazinska

8.1 Introduction and Background

The MapReduce programming model has had a transformative impact on data-
intensive computing, enabling a single programmer to harness hundreds or
thousands of computers for a single task and get up and running in a matter
of hours. Processing with thousands of computers require a different set of
design considerations dominate: I/O scalability, fault tolerance, and flexibility
rather than absolute performance. MapReduce, and the open-source implemen-
tation Hadoop, are optimized for these considerations and have become very
successful as a result.

It is difficult to quantify the popularity of the MapReduce framework directly,
but one indication of the uptake is the frequency of the search term. Figure 8.1
illustrates the search popularity for terms “mapreduce” and “hadoop” over the
period 2006 to 2012.1 We see a spike in popularity for the term “mapreduce”
in late 2007, but more or less constant popularity since. For the term “hadoop,”
however, we see a steady increase to about twelve times that of “mapreduce.”

These data suggest that MapReduce and Hadoop are generating interest, as
seen from the number of downloads, successful startups [12, 19, 47], projects
[41, 53, 57], and interest from the research community [15, 18, 62, 63, 72, 78].
These data suggest a significant increase in interest in both MapReduce and
Hadoop.

The MapReduce framework provides a simple programming model for
expressing loosely coupled parallel programs by providing two serial functions,
Map and Reduce. The Map function processes a block of input producing a
sequence of (key, value) pairs, while the Reduce function processes a set of
values associated with a single key. The framework itself is responsible for
“shuffling” the output of the Map tasks to the appropriate Reduce task using

1 Source: Google Trends.

180

8.1 Introduction and Background 181

ds

News reference volume

0

0

2004 2005 2006 2007 2008 2009 2010

A
B

C

D

Google T E F

5.00

10.0

15.0

Search Volume index

mapreduce hadoop1.00 4.20

Figure 8.1. Search popularity for the terms “mapreduce” and “hadoop” from 2006
to 2012. (Source: Google Trends.)

a distributed sort. The model is sufficiently expressive to capture a variety of
algorithms and high-level programming models while allowing programmers
to largely ignore the challenges of distributed computing and focus instead on
the semantics of their task. Examples include machine learning [53], relational
query processing [45, 58, 63, 72], web data processing [21], and spatio-temporal
indexing [9]. Hadoop and the MapReduce model have been shown to scale to
hundreds or thousands of nodes as early as 2009 [63]. MapReduce clusters
can be constructed inexpensively from commodity computers connected in a
shared-nothing configuration (that is, neither memory nor storage are shared
across nodes).

Although the discussion of MapReduce frequently turns to performance
and scalability, it is important to realize that the original motivation was to
simplify parallel processing on large-scale clusters, calling to mind the title of
the original 2004 MapReduce paper by Dean et al. [21].

The popularity of MapReduce indicates that it filled a real gap in the IT land-
scape, but it is reasonable to ask why this gap existed. In particular, parallel
databases (such as Teradata [71]) purport to offer scalable data manipulation
capabilities, but MapReduce and its implementation in Hadoop, offers essen-
tially none of the hallmark features of databases: schemas, indexing, a query
language, a formal data model, or transactions. Are these features unnecessary
for those applications well-served by Hadoop and MapReduce?

This question was explored by database leaders Mike Ston[e]braker, David
DeWitt, and several colleagues in a 2008 blog post titled, “MapReduce: A Major
Step Backwards” [27]. The authors derided the lack of support for schemas,

182 8 Beyond MapReduce

arguing (correctly) that leaving the interpretation of type and structure of the
data up to the programmer at runtime resulted in more frequent errors – which
is why schemas were proposed in the first place. In 2009, a paper by many
of the same authors (all of whom were affiliated with Vertica, a column-
oriented parallel database company), compared Hadoop with Vertica and a
traditional row-oriented database [63]. They found that the effect of indexing
allowed databases to significantly outperform Hadoop for all queries for which
the indices applied. The authors also found, qualitatively, that coaxing good
performance out of the traditional row-oriented parallel database was onerously
difficult, whereas they could get up and running with MapReduce in a few hours.
The authors also commented that the need to load the databases was at times
a roadblock (though their own systems compression scheme and parallel load
features ultimately won out).

Given this evidence, one might conclude that the point in the design space
claimed by parallel databases was simply different than that claimed by MapRe-
duce, and that they target different applications entirely. In fact, these same
authors have clarified their position in a Communications of the ACM article
in 2010 [69], concluding that parallel databases and MapReduce are comple-
mentary, primarily because parallel databases are not designed for the extract-
transform-load tasks at which MapReduce excels.

But this resolution of the question does not explain the trend seen in the
ecosystem of technologies that extend MapReduce with new features. Many, if
not all, of these features are those found in mature database products. Yahoo’s
Pig system can superimpose schema information on datasets in HDFS, the
file system used by Hadoop. The Apache Hbase project provides indexing.
The HIVE system from Facebook, now an Apache project, can compile SQL
statements into a sequence of MapReduce jobs. HadoopDB, a research project
at Yale, integrates a database system on each node with Hadoop to control
the parallel query execution. Microsoft Dryad, DryadLINQ, and more recently
SCOPE – which are not MapReduce-based systems but provide a similar paral-
lel dataflow programming framework – use algebraic optimization of relational
algebra expressions, just like databases (as do Pig and HIVE to some extent).
So the trend observed is that MapReduce “rebooted” the database architecture,
throwing out all features except parallel processing. But over time, classical
database features are creeping back in. One might imagine that MapReduce
would not have been quite so successful if a good open-source parallel database
existed as an alternative.

Acknowledging that the pendulum is swinging back toward a database-style
feature set, what new features and new requirements are emerging that will

8.2 HaLoop: Iterative Processing on Large Clusters 183

take MapReduce and other parallel dataflow systems beyond the capabilities
of databases? This chapter explores three such features and reports on some
progress to date implementing them. Specifically, it considers how Hadoop can
be modified to support efficient recursive algorithms and to tolerate skew (or
“straggler” tasks) in the context of scientific computing. The chapter ends with
a discussion of future trends toward more interactive, cross-scale analysis as
opposed to the “brute force” batch-oriented approach of MapReduce.

8.2 HaLoop: Iterative Processing on Large Clusters

MapReduce [22] has become popular for programming commodity computer
clusters to perform large-scale data processing in a single pass, but many
data analysis techniques require iterative computations, including PageRank
[60], HITS (Hypertext-Induced Topic Search) [48], recursive relational queries
[6], clustering, neural-network analysis, social network analysis, and network
traffic analysis. These techniques have a common trait: Data are processed iter-
atively until the computation satisfies a termination condition. The MapReduce
framework does not directly support these iterative data analysis applications.
Instead, programmers typically implement iterative programs by manually issu-
ing multiple MapReduce jobs and orchestrating their execution using a driver
program [53].

There are two key problems with manually orchestrating an iterative program
in MapReduce. The first is that even though much of the data may be unchanged
from iteration to iteration, the data must be reloaded and reprocessed at each
iteration, wasting I/O, network bandwidth, and CPU resources. The second
problem is that the termination condition may involve detecting when a fixpoint
has been reached; that is, when the application’s output does not change for two
consecutive iterations. This condition may itself require an extra MapReduce
job on each iteration, again incurring overhead in terms of scheduling extra
tasks, reading extra data from disk, and moving data across the network. To
illustrate these problems, consider the following two examples.

Example 8.1 PageRank: PageRank is a link analysis algorithm that assigns
weights (ranks) to each vertex in a graph by iteratively computing the weight
of each vertex based on the weight of its inbound neighbors. In the relational
algebra, the PageRank algorithm can be expressed as a join followed by an
update with two aggregations. These steps must be repeated by a driver program
until a termination condition is satisfied (such as the rank of each page converges
or a specified number of iterations has been performed).

184 8 Beyond MapReduce

Figure 8.2. An illustration of PageRank expressed in relational algebra. The input
is an initial set of urls with default rank (a) and a set of links between urls (b).
On each iteration, the rank table from the previous iteration is joined with the link
table, and the contributions from each incoming link are aggregated to compute a
new rank. The process finishes after a fixed number of iterations, or until the ranks
do not change significantly.

Figure 8.2 shows a concrete example. R0 (Figure 8.2a) is the initial rank table,
and L (Figure 8.2b) is the linkage table. Two MapReduce jobs (MR1 and MR2

in Figure 8.2c) are required to implement the loop body of PageRank. The first
MapReduce job joins the rank and linkage tables. Mappers emit records from
the two relations with the join column as the key and the remaining columns as
the value. Reducers compute the join for each unique source URL as well as the
rank contribution for each outbound edge (new rank). The second MapReduce
job computes the aggregate rank of each unique destination URL: the map
function is the identity function and the reducers sum the rank contributions of
each incoming edge. In each iteration, Ri is updated to Ri+1. For example, one
could obtain R3 (Figure 8.2d) by iteratively computing R1, R2, R3.

In the PageRank algorithm, the linkage table L is invariant across iterations.
Because the MapReduce framework is unaware of this property, however, L is
processed and shuffled at each iteration. Worse, the invariant linkage data may
frequently be larger than the resulting rank table. Finally, determining whether
the ranks have converged requires an extra MapReduce job on each iteration.

Example 8.2 Descendant Query: Given the social network relation in Figure
8.3a, who is within two friend-hops from Eric? To answer this query, we can
first find Eric’s direct friends, and then all the friends of these friends. A related

8.2 HaLoop: Iterative Processing on Large Clusters 185

Figure 8.3. A query to compute the descdendants in a social network. (a) The
input is a binary friend relation. (b) The loop body computes the next generation
of friends, removes duplicates, and appends the new records to the result. (c) A
graphical illustration of the computation. (d) The final result of the computation
in this example.

query is to find all people who can be reached from Eric following the friend
relation F. These queries can be implemented by a driver program that executes
two MapReduce jobs (MR1 and MR2 in Figure 8.3b), either for two iterations
or until a fixpoint has been reached, respectively. The first MapReduce job
finds a new generation of friends by joining the friend table F with the friends
discovered in the previous iteration, �Si. The second MapReduce job removes
duplicate tuples from �Si that also appear in �Sj for j < i. The final result is
the union of results from each iteration.

Let �Si be the result of the join after iteration i, computed by joining
�Si−1 with F and removing duplicates. �S0 = {Eric, Eric} is the trivial friend
relationship that initiates the computation. Figure 8.3c shows how results evolve
from �S0 to �S2. Finally, �S = ⋃

0<i≤2 �Si is returned as the final result, as
in Figure 8.3d.

As in the PageRank example, a significant fraction of the data (the friend
table F) remains constant throughout the execution of the query, yet still gets
processed and shuffled at each iteration.

Many other data analysis applications have characteristics similar to the
preceding two examples: A significant fraction of the processed data remains
invariant across iterations, and the analysis should typically continue until a
fixpoint is reached. Examples include most iterative model-fitting algorithms

186 8 Beyond MapReduce

(such as k-means clustering and neural network analysis), most web/graph
ranking algorithms (such as HITS [48]), and recursive graph or network queries.

This section presents a new system called HaLoop that is designed to effi-
ciently handle the preceding types of applications. HaLoop extends MapReduce
and is based on two simple intuitions. First, a MapReduce cluster can cache the
invariant data in the first iteration and then reuse them in later iterations. Sec-
ond, a MapReduce cluster can cache reducer outputs, which makes checking
for a fixpoint more efficient, without an extra MapReduce job.

HaLoop includes the following contributions:

� New programming model and architecture for iterative programs:
HaLoop handles loop control that would otherwise have to be manually pro-
grammed. It offers a programming interface to express iterative data-analysis
applications.

� Caching for loop-invariant data: HaLoop caches and indexes data that are
invariant across iterations in cluster nodes during the first iteration of an
application. Caching the invariant data reduces the I/O cost for loading and
shuffling them in subsequent iterations.

� Caching to support fixpoint evaluation: HaLoop caches and indexes a
reducer’s local output. This avoids the need for a dedicated MapReduce step
for fixpoint or convergence checking.

� Experimental study: We evaluated our system on iterative programs that
process both synthetic and real-world datasets. HaLoop outperforms Hadoop
in all metrics; on average, HaLoop reduces query runtimes by 1.85, and
shuffles only 4 percent of the data between mappers and reducers.

8.2.1 HaLoop Overview

Figure 8.4 illustrates the architecture of HaLoop, a modified version of the
open source MapReduce implementation Hadoop [37].

HaLoop inherits the basic distributed computing model and architecture of
Hadoop. HaLoop relies on a distributed file system (HDFS [39]) that stores
each job’s input and output data. The system is divided into two parts: one
master node and many slave nodes. A client submits jobs to the master node.
For each submitted job, the master node schedules a number of parallel tasks
to run on slave nodes. Every slave node has a task tracker daemon process to
communicate with the master node and manage each task’s execution. Each
task is either a map task (which usually performs transformations on an input
data partition, and calls a user-defined map function with one 〈key, value〉 pair
each time) or a reduce task (which usually copies the corresponding partition

8.2 HaLoop: Iterative Processing on Large Clusters 187

Task Queue

.

.

.

Task21 Task22 Task23

Task31 Task32 Task33

Task11 Task12 Task13

Identical to Hadoop New in HaLoop

Local communication Remote communication

Modified from Hadoop

Figure 8.4. The HaLoop framework, a variant of Hadoop MapReduce framework.

of mapper output, groups the input keys, and invokes a user-defined reduce
function with one key and its associated values each time). For example, in
Figure 8.4, there are three jobs running in the system: Job 1, Job 2, and Job 3.
Each job has three tasks running concurrently on slave nodes.

In order to accommodate the requirements of iterative data analysis applica-
tions, several changes are made to the basic Hadoop MapReduce framework.
First, HaLoop exposes a new application programming interface to users that
simplifies the expression of iterative MapReduce programs. Second, HaLoop’s
master node contains a new loop control module that repeatedly starts new
MapReduce steps that compose the loop body, until a user-specified stopping
condition is met. Third, HaLoop caches and indexes application data on slave
nodes. As shown in Figure 8.4, HaLoop relies on the same file system and
has the same task queue structure as Hadoop, but the task scheduler and task
tracker modules are modified, and the loop control, caching, and indexing
modules are new. The task tracker not only manages task execution, but also

188 8 Beyond MapReduce

manages caches and indices on the slave node, and redirects each task’s cache
and index accesses to the local file system.

8.2.2 Programming Model

The PageRank and descendant query examples are representative of the types
of iterative programs that HaLoop supports. This section presents the general
form of the recursive programs that are supported and a detailed API.

The iterative programs that HaLoop supports can be distilled into the fol-
lowing core construct:

Ri+1 = R0 ∪ (Ri � L)

where R0 is an initial result and L is an invariant relation. A program in this
form terminates when a fixpoint is reached – when the result does not change
from one iteration to the next, i.e. Ri+1 = Ri. This formulation is sufficient to
express a broad class of recursive programs.

A fixpoint is typically defined by exact equality between iterations, but
HaLoop also supports the concept of an approximate fixpoint, where the compu-
tation terminates when either the difference between two consecutive iterations
is less than a user-specified threshold or the maximum number of iterations
has been reached. Both kinds of approximate fixpoints are useful for express-
ing convergence conditions in machine learning and complex analytics. For
example, for PageRank, it is common to either use a user-specified conver-
gence threshold ε [60] or a fixed number of iterations as the loop termination
condition.

Although the recursive formulation describes the class of iterative programs
intend to support, this work does not develop a high-level declarative language
for expressing recursive queries. Rather, the focus is on providing an efficient
foundation API for iterative MapReduce programs; a variety of high-level
languages (such as Datalog) are likely to be implementable on this foundation.

To write a HaLoop program, a programmer specifies the loop body (as one
or more mapreduce pairs) and optionally specifies a termination condition and
loop-invariant data. Now consider HaLoop’s API. Map and Reduce are similar
to standard MapReduce and are required; the rest of the API is new and is
optional.

To specify the loop body, the programmer constructs a multistep MapReduce
job, using the following functions:

� Map transforms an input 〈key, value〉 tuple into intermediate 〈in_key,
in_value〉 tuples.

8.2 HaLoop: Iterative Processing on Large Clusters 189

� Reduce processes intermediate tuples sharing the same in_key, to produce
〈out_key, out_value〉 tuples. The interface contains a new parameter for
cached invariant values associated with the in_key.

� AddMap and AddReduce express a loop body that consists of more than one
MapReduce step. AddMap (AddReduce) associates a Map (Reduce) function
with an integer indicating the order of the step.

HaLoop defaults to testing for equality from one iteration to the next to deter-
mine when to terminate the computation. To specify an approximate fixpoint
termination condition, the programmer uses the following functions.

� SetFixedPointThreshold sets a bound on the distance between one itera-
tion and the next. If the threshold is exceeded, then the approximate fixpoint
has not yet been reached, and the computation continues.

� The ResultDistance function calculates the distance between two
out_value sets sharing the same out_key. One out_value set vi is from the
reducer output of the current iteration and the other out_value set Vi–1 is from
the previous iteration’s reducer output. The distance between the reducer
outputs of the current iteration i and the last iteration i – 1 is the sum of
ResultDistance on every key. (It is straightforward to support additional
aggregations besides sum.)

� SetMaxNumOfIterations provides further control of the loop termination
condition. HaLoop terminates a job if the maximum number of iterations has
been executed, regardless of the distance between the current and previous
iteration’s outputs.SetMaxNumOfIterations can also be used to implement
a simple for−loop.

To specify and control inputs, the programmer uses:

� SetIterationInput associates an input source with a specific iteration
because the input files to different iterations may be different. For example,
in Example 8.1, at each iteration i + 1, the input is Ri ∪ L.

� AddStepInput associates an additional input source with an intermediate
mapreduce pair in the loop body. The output of preceding mapreduce pair is
always in the input of the next mapreduce pair.

� AddInvariantTable specifies an input table (an HDFS file) that is loop-
invariant. During job execution, HaLoop will cache this table on cluster
nodes.

Figure 8.5 shows the difference between HaLoop and Hadoop, from the
application’s perspective: in HaLoop, a user program specifies loop settings and

190 8 Beyond MapReduce

MapReduce

Stop?

Map Reduce Map Reduce

Application
Yes

No

Map function

Reduce function

Stop condition

Job Job

HaLoop

Stop?

Map Reduce Map Reduce

No

Application

Map function

Reduce function

Stop condition

Yes

Job

Submit

Figure 8.5. Boundary between an iterative application and the framework
(HaLoop versus Hadoop). HaLoop knows and controls the loop, while Hadoop
only knows jobs with one mapreduce pair.

the framework controls the loop execution, but in Hadoop, it is the application’s
responsibility to control the loops.

8.2.3 Caching and Indexing

Thanks to the inter-iteration locality offered by the task scheduler, access to a
particular loop-invariant data partition is usually only needed by one physical
node. To reduce I/O cost, HaLoop caches those data partitions on the phys-
ical node’s local disk for subsequent reuse. To further accelerate processing,
it indexes the cached data. If a cache becomes unavailable, it is automati-
cally reloaded, either from map task physical nodes or from HDFS. HaLoop
maintains three types of caches: reducer input cache, reducer output cache,
and mapper input cache. Each of them fits a number of application scenarios.
Application programmers can choose to enable or disable a cache type using
the HaLoop API.

8.2.4 Reducer Input Cache

If an intermediate table is specified to be loop-invariant (via the HaLoop API
AddInvariantTable) and the reducer input cache is enabled, HaLoop will
cache reducer inputs across all reducers and create a local index for the cached
data. Note that reducer inputs are cached before each reduce function invoca-
tion, so that tuples in the reducer input cache are sorted and grouped by reducer
input key.

Let us consider the social network example (Example 8.3) to see how the
reducer input cache works. Three physical nodes n1, n2, and n3 are involved
in the job, and the number of reducers is set to 2. In the join step of the
first iteration, there are three mappers: one processes F-split0, one processes

8.2 HaLoop: Iterative Processing on Large Clusters 191

Figure 8.6. Mapper input splits in example 1.3.

F-split1, and one processes �S0-split0. The three splits are shown in Figure
8.6. The two reducer input partitions are shown in Figure 8.7. The reducer on
n1 corresponds to hash value 0, whereas the reducer on n2 corresponds to hash
value 1. Then, because table F (with table ID “#1”) is set to be invariant by
the programmer using the AddInvariantTable function, every reducer will
cache the tuples with table ID “#1” in its local file system.

In later iterations, when a reducer passes a shuffled key with associated
values to the user-defined Reduce function, it also searches for the key in the
local reducer input cache to find associated values and passes them together to
the Reduce function (note that HaLoop’s modified Reduce interface accepts
this parameter). Also, if the reducer input cache is enabled, mapper outputs
in the first iteration are cached in the corresponding mapper’s local disk, for
future reducer cache reloading.

In the physical layout of the cache, keys and values are separated into
two files, and each key has an associated pointer to its corresponding values.
Sometimes the selectivity in the cached loop-invariant data is low. Thus, after
reducer input data are cached to local disk, HaLoop creates an index over the
keys and stores it in the local file system too. Because the reducer input cache
is sorted and then accessed by reducer input key in the same sorted order, the
disk seek operations are only conducted in a forward manner, and in the worst
case, in each iteration, the input cache is sequentially scanned from the local
disk only once.

The reducer input cache is suitable for PageRank, HITS, various recursive
relational queries, and any other algorithm with repeated joins against large
invariant data. The reducer input cache requires that the partition function f

Figure 8.7. Reducer input partitions in example 1.3.

192 8 Beyond MapReduce

for every mapper output tuple t satisfies that: (1) f must be deterministic, (2)
f must remain the same across iterations, and (3) f must not take any inputs
other than the tuple t. In HaLoop, the number of reduce tasks is unchanged
across iterations, therefore the default hash partitioning satisfies these
conditions.

8.2.5 Reducer Output Cache

The reducer output cache stores and indexes the most recent local output on
each reducer node. This cache is used to reduce the cost of evaluating fixpoint
termination conditions. That is, if the application must test the convergence
condition by comparing the current iteration output with the previous itera-
tion output, the reducer output cache enables the framework to perform the
comparison in a distributed fashion.

The reducer output cache is used in applications where fixpoint evaluation
should be conducted after each iteration. For example, in PageRank, a user
may set a convergence condition specifying that the total rank difference from
one iteration to the next is below a given threshold. With the reducer output
cache, the fixpoint can be evaluated in a distributed manner without requiring a
separate MapReduce step. After all Reduce function invocations are done, each
reducer evaluates the fixpoint condition within the reduce process and reports
local evaluation results to the master node, which computes the final answer.

The reducer output cache requires that in the last map-reduce pair of the loop
body, the mapper output partition function f and the reduce function satisfy the
following conditions: if (ko1, vo1)∈reduce(ki, Vi), (ko2, vo2)∈reduce(kj, Vj),
and ko1 = ko2, then f(ki) = f(kj). That is, if two Reduce function calls produce
the same output key from two different reducer input keys, both reducer input
keys must be in the same partition so that they are sent to the same reduce
task. Further, f should also meet the requirements of the reducer input cache.
Satisfying these requirements guarantees that reducer output tuples in different
iterations but with the same output key are produced on the same physical node,
which ensures the usefulness of reducer output cache and the correctness of
the local fixpoint evaluation. Our PageRank, descendant query, and k-means
clustering implementations on HaLoop all satisfy these conditions.

8.2.6 Mapper Input Cache

Hadoop [37] attempts to co-locate map tasks with their input data. On a real-
world Hadoop cluster [13], the rate of data-local mappers is around 70 percent
to 95 percent, depending on the runtime environment. HaLoop’s mapper input

8.2 HaLoop: Iterative Processing on Large Clusters 193

cache aims to avoid non-local data reads in mappers during non-initial itera-
tions. In the first iteration, if a mapper performs a non-local read on an input
split, the split will be cached in the local disk of the mapper’s physical node.
Then, with loop-aware task scheduling, in later iterations, all mappers read
data only from local disks, either from HDFS or from the local file system.
The mapper input cache can be used by model-fitting applications such as
k-means clustering, neural network analysis, and any other iterative algorithm
consuming mapper inputs that do not change across iterations.

8.2.7 Cache Reloading

There are a few cases where the cache must be reconstructed: (1) the hosting
node fails, or (2) the hosting node has a full load and a map or reduce task
must be scheduled on a different substitution node. A reducer reconstructs the
reducer input cache by copying the desired partition from all first-iteration
mapper outputs. To reload the mapper input cache or the reducer output cache,
the mapper/reducer only needs to read the corresponding chunks from the
distributed file system, where replicas of the cached data are stored. Cache
reloading is completely transparent to user programs.

8.2.8 Experimental Evaluation

Previous sections compared the performance of iterative data analysis applica-
tions on HaLoop and Hadoop. Because the use of the reducer input cache, the
reducer output cache, and the mapper input cache are all independent options,
each were evaluated separately.

8.2.9 Evaluation of Reducer Input Cache

This suite of experiments used virtual machine clusters of 50 and 90 slave nodes
in Amazon’s Elastic Compute Cloud (EC2). There is always one master node.
The applications were PageRank and descendant query. Both are implemented
in both HaLoop (using the new programming model) and Hadoop (using the
traditional driver approach).

The experiment involves both semi-synthetic and real-world datasets:
Livejournal2 (18GB, social network data), Triples3 (120GB, semantic web
data), and Freebase4 (12GB, concept linkage graph). The Reducer Input

2 http://snap.stanford.edu/data/index.html.
3 http://challenge.semanticweb.org/.
4 http://www.freebase.com/.

194 8 Beyond MapReduce

HaLoop Hadoop
0

100

200

300

400

500
 Reduce Shuffle

R
un

ni
ng

 T
im

e
(s

)

R
un

ni
ng

 T
im

e
(s

)

R
un

ni
ng

 T
im

e
(s

)

Sh
uf

fl
ed

 D
at

a
(B

yt
es

)

Iteration

IterationTotal Iteration

(a) Overall Performance (b) Join Step

(c) Cost Distribution (d) Shuffled Bytes

Configuration

Figure 8.8. PageRank performance: HaLoop versus Hadoop (Livejournal Dataset,
50 nodes).

Cache experiments were performed on Amazon AWS using the default small
instances.5

The PageRank query was executed on the Livejournal and Freebase datasets
and the descendant query on the Livejournal and Triples datasets. Figures 8.8–
8.11 show the results for Hadoop and HaLoop. The number of reduce tasks is
set to the number of slave nodes. The performance with fail-overs has not been
quantified; all experimental results are obtained without any node failures.

Overall, as the figures show, for a ten-iteration job, HaLoop lowers the
runtime by 1.85 on average when the reducer input cache is used. As discussed
later, the reducer output cache creates an additional gap between Hadoop and
HaLoop but the impact is less significant on overall runtime. The following
presents these results in more detail.

5 http://aws.amazon.com/ec2/instance-types/.

8.2 HaLoop: Iterative Processing on Large Clusters 195

HaLoop Hadoop
0

200

400

600

800

1000
 Reduce Shuffle

R
un

ni
ng

 T
im

e
(s

)

R
un

ni
ng

 T
im

e
(s

)

(a) Overall Performance (b) Join Step

(c) Cost Distribution (d) Shuffled Bytes

R
un

ni
ng

 T
im

e
(s

)

Sh
uf

fl
ed

 D
at

a
(B

yt
es

)

Total Iteration

Configuration

Iteration

Iteration

Figure 8.9. PageRank Performance: HaLoop versus Hadoop (Freebase Dataset,
90 nodes).

Overall runtime: In this experiment, SetMaxNumOfIterations, rather
than fixedPointThreshold and ResultDistance, was used to specify the
loop termination condition. The results are plotted in Figure 8.8a, Figure 8.9a,
Figure 8.10a, and Figure 8.11a.

In the PageRank algorithm, there are two steps in every iteration: join and
aggregation. The running time in Figure 8.8a and Figure 8.9a is the sum of
join time and aggregation time over all iterations. In the descendant query
algorithm, there are also two steps per iteration: join and duplicate elimination.
The running time in Figure 8.10a and Figure 8.11a is the sum of join time and
“duplicate elimination” time overall iterations.

HaLoop always performs better than Hadoop. The descendant query on
the Triples dataset has the best improvement, PageRank on Livejournal and
Freebase have intermediate gains, but the descendant query on the Livejournal
dataset has the least improvement. Livejournal is a social network dataset with

196 8 Beyond MapReduce

R
un

ni
ng

 T
im

e
(s

)

R
un

ni
ng

 T
im

e
(s

)

(a) Overall Performance (b) Join Step

(c) Cost Distribution (d) Shuffled Bytes

R
un

ni
ng

 T
im

e
(s

)

Sh
uf

fl
ed

 D
at

a
(B

yt
es

)

Total Iteration

Configuration

Iteration

Iteration

Figure 8.10. Descendant query performance: HaLoop versus Hadoop (Triples
Dataset, 90 nodes).

high fan-out and reachability. As a result, the descendant query in later iterations
(>3) produces so many duplicates that duplicate elimination dominates the
cost, and HaLoop’s caching mechanism does not significantly reduce overall
runtime. In contrast, the Triples dataset is less connected, thus the join step is
the dominant cost and the cache is crucial.

Join step runtime: HaLoop’s task scheduling and reducer input cache poten-
tially reduce join step time, but do not reduce the cost of the “duplicate elimina-
tion” step for the descendant query, nor the final aggregation step in PageRank.
Thus, to partially explain why overall job running time is shorter with HaLooop,
consider the performance of the join step across iterations. Figure 8.8b, Figure
8.9b, Figure 8.10b, and Figure 8.11b plot join time in each iteration. HaLoop
significantly outperforms Hadoop.

8.2 HaLoop: Iterative Processing on Large Clusters 197

R
un

ni
ng

 T
im

e
(s

)

R
un

ni
ng

 T
im

e
(s

)

(a) Overall Performance (b) Join Step

(c) Cost Distribution (d) Shuffled Bytes

R
un

ni
ng

 T
im

e
(s

)

Sh
uf

fl
ed

 D
at

a
(B

yt
es

)

Total Iteration

Configuration

Iteration

Iteration

Figure 8.11. Descendant query performance: HaLoop versus Hadoop (Livejournal
Dataset, 50 nodes).

In the first iteration, HaLoop is slower than Hadoop, as shown in (a) and (b)
of all four figures. The reason is that HaLoop performs additional work in the
first iteration: HaLoop caches the sorted and grouped data on each reducer’s
local disks, creates an index for the cached data, and stores the index to disk.
That is, in the first iteration, HaLoop does the exact same thing as Hadoop, but
also writes caches to local disk.

Cost distribution for the join step: To better understand HaLoop’s improve-
ments to each phase, consider the cost distribution of the join step across Map
and Reduce phases. Figure 8.8c, Figure 8.9c, Figure 8.10c, and Figure 8.11c
show the cost distribution of the join step in a certain iteration (here it is iteration
3). The measurement is time spent on each phase. In both HaLoop and Hadoop,
reducers start to copy data immediately after the first mapper completes. “Shuf-
fle time” is normally the time between reducers starting to copy map output
data and reducers starting to sort copied data; shuffling is concurrent with the

198 8 Beyond MapReduce

rest of the unfinished mappers. The first completed mapper’s running time in
the two algorithms is very short, for example, 1–5 seconds to read data from
one 64 MB HDFS block. If the first mapper’s running time were plotted as
“map phase,” the duration would be too brief to be visible compared to shuffle
phase and reduce phase. Therefore, the “shuffle time” in the plots is allowed to
be the usual shuffle time plus the first completed mapper’s running time. The
“reduce time” in the plots is the total time a reducer spends after the shuffle
phase, including sorting and grouping as well as accumulated Reduce function
call time. Note that in the plots, “shuffle time” plus “reduce time” constitutes
what is reffered to as the “join step.” Considering all four plots, the conclusion
is that HaLoop outperforms Hadoop in both phases.

The “reduce” bar is not visible in Figure 8.10c, although it is present. The
“reduce time” is not 0, but rather very short compared to “shuffle” bar. It
takes advantage of the index HaLoop creates for the cache data. Then the join
between �Si and F will use an index seek to search qualified tuples in the cache
of F. Also, in each iteration, there are few new records produced, so the join’s
selectivity on F is very low. Thus, the cost becomes negligible. By contrast, for
PageRank, the index does not help much, because the selectivity is high. For
the descendants query on Livejournal (Figure 8.11), in iteration > 3, the index
does not help either, because the selectivity becomes high.

I/O in shuffle phase of join step: To tell how much shuffling I/O is saved,
the amount of shuffled data in to the join step of each iteration was compared.
Because HaLoop caches loop-invariant data, the overhead of shuffling these
invariant data are completely avoided. These savings contribute an impor-
tant part of the overall performance improvement. Figure 8.8d, Figure 8.9d,
Figure 8.10d, and Figure 8.11d plot the sizes of shuffled data. On average,
HaLoop’s join step shuffles 4 percent as much data as Hadoop’s does.

8.2.10 Evaluation of Reducer Output Cache

This experiment shares the same hardware and dataset as the reducer input cache
experiments. To see how effective HaLoop’s reducer output cache is, the cost
of fix-point evaluation was compared across iterations. Because the descendant
query has a trivial fixpoint evaluation step that only requires testing to see if
a file is empty, evaluate PageRank on the Livejournal and Freebase datasets.
In the Hadoop implementation, the fixpoint evaluation is implemented by an
extra MapReduce job. On average, compared with Hadoop, HaLoop reduces
the cost of this step to 40 percent, by taking advantage of the reducer output
cache and a built-in distributed fixpoint evaluation. Figure 8.12a and b shows
the time spent on fixpoint evaluation in each iteration.

8.2 HaLoop: Iterative Processing on Large Clusters 199

2 4 6 8 10
0.0

20.0

40.0

60.0

Iteration

 HaLoop Hadoop

2 4 6 8 10
0.0

20.0

40.0

60.0

80.0

Iteration

 HaLoop Hadoop
R

un
ni

ng
 T

im
e

(s
)

R
un

ni
ng

 T
im

e
(s

)

(a) Livejournal, 50 nodes (b) Freebase, 90 nodes

Figure 8.12. Fixpoint evaluation overhead in pagerank: HaLoop versus Hadoop.

8.2.11 Evaluation of Mapper Input Cache

Because the mapper input cache aims to reduce data transportation between
slave nodes but we do not know the disk I/O implementations of EC2 virtual
machines, this suite of experiments uses an 8-node physical machine cluster.
PageRank and descendant query cannot utilize the mapper input cache because
their inputs change from iteration to iteration. Thus, the application used in the
evaluation is the k-means clustering algorithm. We used two real-world Astron-
omy datasets (multi-dimensional tuples): cosmo-dark (46 GB) and cosmo-gas
(54 GB). All nodes in these experiments contain a 2.60 GHz dual quad-core Intel
Xeon CPU with 16 GB of RAM. We vary the number of total iterations, and plot
the algorithm running time in Figure 8.13. The mapper locality rate is around 95
percent since there are not concurrent jobs in our lab HaLoop cluster. By avoid-
ing nonlocal data loading, HaLoop performs marginally better than Hadoop.

2 4 6 8 10 12
0

1k

2k

3k

4k

5k

6k

Total Iteration

 HaLoop Hadoop

2 4 6 8 10 12
0

1k

2k

3k

4k

5k

Total Iteration

 HaLoop Hadoop

R
un

ni
ng

 T
im

e
(s

)

R
un

ni
ng

 T
im

e
(s

)

(a) Cosmo-dark, 8 nodes (b) Cosmo-gas, 8 nodes

Figure 8.13. Performance of k– means: HaLoop versus Hadoop.

200 8 Beyond MapReduce

8.2.12 Related Work

Parallel database systems [28] partition data storage and parallelize query
workloads to achieve better performance. However, they are sensitive to failures
and have not been shown to scale to thousands of nodes. Various optimization
techniques for evaluating recursive queries have been proposed in the literature
[6, 81]. The existing work has not been shown to operate at large scale. Further,
most of these techniques are orthogonal to our research; we provide a low-level
foundation for implementing data-intensive iterative programs.

More recently, MapReduce [22] has emerged as a popular alternative for
massivescale parallel data analysis in shared-nothing clusters. Hadoop [37] is
an open-source implementation of MapReduce. MapReduce has been followed
by a series of related systems, including Dryad [46], Hive [41], Pig [57], and
HadoopDB [2]. Like Hadoop, none of these systems provides explicit support
and optimizations for iterative or recursive types of analysis.

Mahout [53] is a project whose goal is to build a set of scalable machine
learning libraries on top of Hadoop. Because most machine learning algorithms
are model fitting applications, nearly all of them involve iterative programs.
Mahout uses an outside driver program to control the loops, and new Map-
Reduce jobs are launched in each iteration. The drawback of this approach
was previously discussed. Like Mahout, we are trying to help iterative data
analysis algorithms work on scalable architectures, but we are different in that
we are modifying the fundamental system: we inject the iterative capability
into a MapReduce engine.

Twister [30] is a stream-based MapReduce framework that supports iterative
programs, in which mappers and reducers are long running with distributed
memory caches. They are established to avoid repeated mapper data loading
from disks. However, Twister’s streaming architecture between mappers and
reducers is sensitive to failures, and long-running mappers/reducers plus mem-
ory cache is not a scalable solution for commodity machine clusters, where
each node has limited memory and resources.

Finally, Pregel [54] is a distributed system for processing large-size graph
datasets, but it does not support general iterative programs.

8.3 Handling Skew in MapReduce Applications

Expressing a scientific computing algorithm directly as a MapReduce program
can produce a “brute force” scalable solution, but tuning the program to deliver
acceptable performance can require significant engineering. For example, in

8.3 Handling Skew in MapReduce Applications 201

prior work, we found that a naı̈ve implementation of a data clustering algorithm
on a real astronomy simulation dataset took twenty hours to complete on an
8-node Dryad [45] cluster. In contrast, an optimized version took only seventy
minutes, but took multiple weeks to develop and debug by a team of domain
and computer scientists [51].

A crucial problem in optimizing MapReduce programs is skew – imbalance
in runtimes of different tasks that washes out parallel performance. There
are a variety of sources of skew: imbalance in data assigned to each task,
problems at the hardware layer that cause one node to run slower than others,
algorithmic sensitivity to the input data distribution. Data load can often be
balanced automatically, and the response to hardware problems is typically just
to restart the task elsewhere. It is the third type of skew – algorithmic sensitivity
to inputs – that we consider in this work.

Specifically, we explore a class of algorithms called spatial feature extraction
algorithms that are common in scientific computing and particularly suscep-
tible to skew effects. We describe a new generalization of MapReduce called
SkewReduce that can automatically mitigate skew effects in many such cases.

We observe that these applications share a common structure that can be par-
allelized using the following strategy: (1) Partition the multidimensional space
and assign each node a contiguous region, (2) run a serial form of the analysis
locally on each region, extracting locally found features and labeling the input
data with these features if necessary, (3) efficiently merge the local results by
considering only those features that cross region boundaries, relabeling the
input data as necessary. Although this formulation is simple and sound, a naı̈ve
implementation on existing parallel data processing engines is dominated by
skew effects and other performance problems.

The standard approach to handling skew in parallel systems is to assign an
equal number of data values to each partition via hash partitioning or clever
range partitioning. These strategies effectively handle data skew, which occurs
when some nodes are assigned more data than others. Computation skew, more
generally, results when some nodes take longer to process their input than other
nodes and can occur even in the absence of data skew – the runtime of many
scientific tasks depends on the data values themselves rather than simply the
data size [43].

Existing parallel-processing engines offer little support for tolerating general
computation skew, so scientific programmers are typically forced to develop ad
hoc solutions. At realistic scales, these ad hoc solutions not only require inti-
mate familiarity with the source data, but also expertise in distributed program-
ming, scheduling, out-of-core processing, performance monitoring and tuning,

202 8 Beyond MapReduce

fault-tolerance techniques, and distributed debugging. SkewReduce efficiently
reduces computational skew and helps scientific programmers express their
solutions in popular parallel processing engines such as MapReduce.

In addition to skew, two other sources of performance problems are the
merge and data labeling steps. Because of large data volumes, it may not be
efficient or even possible to execute the merge phase on a single node. Instead,
feature reconciliation must be performed incrementally in a hierarchical fash-
ion. Similarly, intermediate results must be set aside to disk during the merge
phase, then relabeled in parallel after the merge phase is complete to obtain
the final result. Although both these strategies can be implemented in existing
systems, doing so is nontrivial. Additionally, the same type of translation is
repeated independently for each new feature extracting application.

To use SkewReduce, the programmer defines three (non-parallel) data pro-
cessing functions and two cost functions to guide optimization. Given these
functions, the framework provides a parallel evaluation plan that is demonstra-
bly efficient and – crucially – skew-tolerant. The plan is then executed in a
Hadoop cluster. We show that this framework delivers significant improvement
over the status quo. The improvement is attributable primarily to the reduc-
tion of skew effects, as well as the elimination of performance issues in the
merge and labeling steps. Further, we argue that the cognitive load for users
to provide the suite of control functions is significantly less than that required
to develop an ad hoc parallel program. In particular, the user remains focused
on their application domain: they specify their analysis algorithm and reason
about its complexity, but do not concern themselves with distributed computing
complications.

This work delivers the following contributions: a SkewReduce system for
efficiently processing spatial feature extraction scientific user-defined func-
tions. SkewReduce comprises (1) a simple API for users to express multi-
dimensional feature extraction analysis tasks and (2) a static optimization
engine designed to produce a skew-resistant plan for evaluating these tasks.
SkewReduce is implemented using Hadoop [37]. (3) Experimental results
demonstrating the efficacy of the framework on real data from two different sci-
ence domains. The results show that SkewReduce can improve query runtime
by a factor of up to eight compared with an unoptimized implementation.

8.3.1 Motivation

We begin by describing three motivating applications from different scientific
domains. We then discuss the commonalities between these applications and

8.3 Handling Skew in MapReduce Applications 203

the challenges that arise when trying to implement them on a MapReduce-type
platform.

Cosmological simulations are used to study the structural evolution of the
universe on distance scales ranging from a few million light-years to several
billion light-years. In these simulations, the universe is modeled as a set of
particles. These particles represent gas, dark matter, and stars, and interact
with each other through gravity and fluid dynamics. Every few simulation
timesteps, the simulator outputs a snapshot of the universe as a list of particles,
each tagged with its identifier, location, velocity, and other properties. The
data output by a simulation can thus be stored in a relation with the following
schema:

Particles (id, time, x, y, z, vx, vy, vz, · · ·)
State of the art simulations (such as Springel et al. 2005 [66]) use over 10

billion particles producing a data set size of over 200 GB per snapshot and are
expected to significantly grow in size in the future.

Astronomers commonly used various sophisticated clustering algorithms
[33, 49, 75] to recognize the formation of interesting structures such as galaxies.
The clustering algorithm is typically executed on one snapshot at a time [51].
Given the size of individual snapshots, however, astronomers would like to run
their clustering algorithms on a parallel data processing platform in a shared-
nothing cluster.

A flow cytometer measures scattered and fluoresced light from a stream of
particles, using data analysis to recognize specific microorganisms. Originally
devised for medical applications, it has been adapted for use in environmental
microbiology to determine the concentrations of microbial populations. Similar
microorganisms exhibit similar intensities of scattered light, as in Figure 8.14.

In an ongoing project in the Armbrust Lab at the University of Washington
[5], flow cytometers are being continuously deployed on ocean-going vessels
to understand the ocean health. All data is reported to a central database for
ad hoc analysis and takes the form of points in a six-dimensional space, where
each point represents a particle or organism in the water and the dimensions
are the measured properties.

As in the astrophysics application, scientists need to cluster the resulting 6-D
data. As their instruments increase in sophistication, so does the data volume,
calling for efficient analysis techniques that can run in a shared-nothing cluster.

As a final example, consider the problem of analyzing collections of 2-D
images. In many scientific disciplines, scientists process such images to extract
objects (or features) of interest: galaxies from telescope images, hurricanes

204 8 Beyond MapReduce

Figure 8.14. A scatter plot of flow cytometry measurements. Each point represents
an organism and clusters represent populations. The axes correspond to different
wavelengths of light.

from satellite pictures, and so on. As these images grow in size and number,
parallel processing becomes necessary.

Each of these scientific applications follow a similar pattern: data items
(events, particles, pixels) are embedded in a metric space, and the task is to
identify and extract emergent features from the low-level data (populations and
galaxies). These algorithms then typically return (a) a set of features (signi-
ficantly smaller than the input data), (b) a modified input dataset with each
element tagged with the corresponding feature (potentially as large as the
input), or (c) both. For example, the output of the astronomy clustering task
is a list of clusters with the total number of particles in each and a list of the
original particles annotated with their cluster identifier.

Parallel implementation challenges: A straightforward way to parallelize
such feature extraction applications in a compute-cluster with N nodes is the
following: (1) split the input into N equal-sized hypercubes, (2) extract features
in each partition and annotate the input with these initial features, (3) recon-
cile features that span partition boundary, relabeling the input as appropriate.
With existing parallel processing systems, there are several challenges with
expressing this seemingly simple algorithm in a manner that achieves high
performance.

First, the data distribution in many scientific applications is highly skewed.
Even worse, the processing time of many feature-extraction algorithms depends
not only on the number of data points but also on their distribution in space.

8.3 Handling Skew in MapReduce Applications 205

For example, in a simple clustering algorithm used in astrophysics called
“friends-of-friends” [20], clusters correspond to connected components of the
graph induced by the “friend” relationship – two particles are friends if they are
within a given distance threshold. To identify a cluster, the algorithm starts with
a single point, then searches a spatial index to find its immediate friends. For
each such friend, the algorithm repeats the search recursively. In a sparse region
with N particles, the algorithm completes in O(N log N) time (such as, all parti-
cles are far apart). In a dense region, however, a single particle can be a friend of
all the other particles and vice versa. Thus, the algorithm takes O(N2) time. In
the two simulation snapshots that we received from astronomers [51], we found
that the number of friends associated with a given particle varied between 2 and
387, 136. As a result, without additional optimizations, a dense region takes
much longer to process than a sparse one even when both contain the same
number of total particles [51]. The consequence is a type of computational
skew, where some data partitions require dramatically more time than others
to process. Computational skew is the reason that the naı̈ve parallel implemen-
tation of the astronomy clustering application mentioned previously required
over twenty hours, while an optimized one took only seventy minutes on the
same dataset [51]. Our key motivation is that existing platforms do nothing to
reduce computational skew. In our case, developing a skew-resistant algorithm
(by optimizing index traversal to avoid quadratic behavior in the dense region)
required significant effort from multiple experts over several weeks [51].

Second, the feature reconciliation phase (which we refer to as the “merge”
phase) can be both CPU and memory intensive. For example, to reconcile
clusters at the boundary of two data partitions requires processing all particles
within a small distance of that boundary. If the space is initially carved into N
partitions, it may not be efficient or even possible for a single node to reconcile
the data across all these partition boundaries in one step. Instead, reconciliation
should be performed in a hierarchical fashion, reconciling increasingly large
regions of the space, while keeping the amount of data to process at each step
approximately constant (that is, the memory requirement cannot increase as
we move up the hierarchy). At the same time, while the local data processing
and later merge steps proceed, the input data must be labeled and relabeled as
necessary, for example, to track feature membership. Although it is possible
to implement both functions using existing systems, expressing them using
current APIs is non-trivial.

Problem statement summary: The goal of SkewReduce is to enable sci-
entists to easily express and efficiently execute feature-extraction applications
at very large scale without consideration of resource constraints and data or
computation skew issues.

206 8 Beyond MapReduce

Table 8.1. Summary of notation

T A record in the original input data file assigned to a region (such as, a
particle in an astronomy simulation).

S A record set aside during the process phase or merge phase (such as, a
particle far away from a partition boundary tagged with a local
cluster id).

F An object representing a set of features extracted during the process phase
for a given region. May not be relational. Includes enough information
to allow reconciliation of features extracted in different partitions (such
as, the clusters identified so far and the particles near a partition
boundary).

Z A record in the final result set (such as, a particle tagged with a global
cluster id).

8.3.2 SkewReduce

SkewReduce has two components. The first component is an API for expressing
spatial feature-extraction algorithms such as the preceding. The functions in our
API are translated into a dataflow that can run in a MapReduce-type platform
[21, 37, 45]. The second component of SkewReduce is a static optimizer that
partitions the data to ensure skew-resistant processing if possible. The data
partitioning is guided by a user-defined cost function that estimates processing
times.

8.3.2.1 Basic SkewReduce API
Informed by the success of MapReduce [21], the basic SkewReduce API is
designed to be a minimal control interface allowing users to express feature
extraction algorithms in terms of serial programs over familiar data structures.
The basic SkewReduce API is the minimal interface that must be implemented
to use our framework. The basic API is:

process :: 〈Seq. of T 〉 → 〈F, Seq. of S〉
merge :: 〈F,F 〉 → 〈F, Seq. of S〉

finalize :: 〈F, S〉 → 〈Seq. of Z〉
The notation used in these types is defined in Table 8.1. At a high-level, T
refers to the input data. F is the set of features and S is an output data field that
must be tagged with the features F to form Z. The previous three functions lead
to a very natural expression of feature extracting algorithms: First, partition
the data (not shown). Second, apply process to each partition to get an initial
set of local features and an initial field. Third, merge, or reconcile, the output

8.3 Handling Skew in MapReduce Applications 207

of each local partition to identify a global set of features. Finally, adjust the
output of the original process functions given the final, global structures output
by merge. For example, in the case of the astronomy simulation clustering
task, process identifies local clusters in a partition of the 3-D space. merge

hierarchically reconciles local clusters into global clusters. Finally, the finalize

function relabels particles initially tagged by process with a local cluster ID
using the appropriate global cluster ID.

The functions of the SkewReduce API loosely correspond to the API for
distributed computation of algebraic user-defined aggregates found in OLAP
systems and distributed dataflow frameworks. For example, Yu et al. [80]
Propose a parallel aggregation framework consisting of functions initialreduce,
combine, and finalreduce. The function initialreduce generates intermediate par-
tial aggregates, combine merges partial aggregates, and the final aggregate value
can be further transformed by finalreduce.

The distinguishing characteristic of our API is that our analog of the initial-

reduce and finalreduce functions return two types of data: a representation of the
extracted features and a representation of the “tagged” field. A given algorithm
may or may not use both of these data structures, but we have found that many
do.

We now present the three functions in SkewReduce’s API in more detail.

8.3.2.2 Process: Local Computation with Set-Aside
The process function locally processes a sequence of input tuples producing
F, a representation of the extracted features, and Seq. of S, a sequence of
tuples that are set aside from the hierarchical reconciliation. In our astronomy
simulation use-case, process performs the initial clustering of particles within
each partition. Although we can forward all the clustering results to the merge

function, only particles near the boundary of the fragment are necessary to
merge clusters that span two partitions. Thus, process can optionally set aside
those particles and results that are not required by the following merges. This
optimization is not only helpful to reduce the memory pressure of merge but also
improves overall performance by reducing the amount of data transferred over
the network. In this application, our experiments showed that almost 99 percent
of all particles can thus be set aside after the Process phase.

8.3.2.3 Merge: Hierarchical Merge with Set-Aside
The merge function is a binary operator that combines two intermediate results
corresponding to two regions of space. It takes as input the features from each
region and returns a new merged feature set. The two feature set arguments are
assumed to fit together in the memory of one node. This constraint is a key

208 8 Beyond MapReduce

P1

II

C1 C2

C3

P3
I

P4

P2

I

C4

C5 C6

Figure 8.15. Illustration of the merge step of the clustering algorithm in the
SkewReduce framework. Data is partitioned into four chunks. Points with the
same shape are in the same global cluster. Point with different colors but with
identical shapes are in different local clusters (for example the circles in the
middle of the figure). Each Pi labels the cell boundary and each I labels the interior
region. Only points outside of I are needed in the subsequent merge phase. After
the hierarchical merge phase, three cluster mappings are generated: (C4,C3),
(C5,C3), and (C6,C3). Such mappings are used to relabel local cluster ids during
the finalize phase.

defining characteristic of our target applications. This assumption is shared by
most user-defined aggregate frameworks [59, 67, 80]. However, SkewReduce
provides more flexibility than systems designed with trivial aggregation func-
tions such as sum, count, and average in mind. Specifically, we acknowledge
that the union of all feature sets may not fit in memory, so we allow the merge

function to set aside results at each step. In this way, we ensure that the size of
any value of type F does not grow larger than memory. We acknowledge that
some applications may not exhibit this property, but we have not encountered
them in practice. We assume that both functions process and merge set aside
data of the same form. This assumption may not hold in general, but so far we
have found that applications either set aside data in the process phase or in the
merge phase, but not both.

In our running example, the merge function combines features from adjacent
regions of space, returning a new feature object comprising the bounding box
for the newly merged region of space, the cluster id mappings indicating which
local clusters are being merged, and the particles near the boundary of the new
region. Figure 8.15 illustrates the merge step for four partitions P1 through P4.
The outer boxes, Pi, represent the cell boundaries. The inner boxes, I, are a
fixed distance ε away from the corresponding edge of the region. The local
clustering step, process, identified a total of six clusters labeled C1 through C6.

8.3 Handling Skew in MapReduce Applications 209

Each cluster comprises points illustrated with a different shade of gray and
shape. However, there are only three clusters in this dataset. These clusters are
identified during the hierarchical merge step. Clusters C3, C4, C5, and C6 are
merged because the points near the cell boundaries are within distance ε of
each other. In Figure 8.15, C2 does not merge with any other cluster because
all points in C2 are sufficiently far from P1’s boundary. We can thus safely
discard C2 before merging: These points are not needed during the merge
phase. In general, we can discard all the points in the larger I regions before
merging, reducing the size of the input to the merging algorithm. This reduction
is necessary to enable nodes to process hierarchically larger regions of space
without exhausting memory.

8.3.2.4 Finalize: Join Features with Set-Aside Data
The finalize function can be used to implement a join between the final col-
lection of features and the input representation as output by the process and
merge functions. This function is useful for tagging the original data elements
with their assigned feature. The finalize function accepts the final feature set
from the merge phase and a single tuple set aside during processing. The Skew-
Reduce framework manages evaluation of this function over the entire dis-
tributed dataset.

Our emphasis on distinguishing “features” and “set aside” data may at first
appear to be over-specialized to our particular examples, but we find the idiom
to be quite general. To understand why, consider the analogous distinction
between vector and raster representations of features. For example, Geographic
Information Systems (GIS) may represent a geographic region as an image with
each pixel assigned a value of “road,” “waterway,” and “building,” (the raster
representation). Alternatively, these objects may be represented individually by
line segments, polygons, or some other complex object (the vector representa-
tion). Neither representation is ideal for all algorithms, so both are frequently
computed and maintained. In our running example, the tagged particles are
analogous to the raster representation – each point in the original dataset is
labeled with the feature to which it contributes.

The user specifies these three functions, and SkewReduce automatically
partitions the input data into hypercubes and schedules the execution of the
process, merge, and finalize operators in a Hadoop cluster. The partition plan is
derived by SkewReduce’s optimizer, as discussed in what follows.

In many application domains the process function satisfies the motonicity
property. The process function is monotonic if, for datasets R, S where R ⊆
S, the execution time time[process(R)] ≤ time[process(S)]. Intuitively, as data
size increases, so must the local processing cost.

210 8 Beyond MapReduce

The SkewReduce’s optimizer is designed primarily for applications where
this property holds. However, it can still handle applications that violate this
property, a case that will be considered when the optimizer is discussed.

For the applications we encounter in practice, we find that process is far more
expensive than merge, which causes aggressive partitioning to be generally
beneficial. In these cases, the limiting factor in partitioning is the scheduling
overhead. In contrast, if merge is expensive or comparable relative to process,
partitioning simply ensures that no node is allocated more data than will fit in
its memory.

Optional Pre-Processing: The process function operates on a set of records
Seq. of T. In some applications, especially those operating on arrays, individual
records are not cells but rather small neighborhoods of cells, sometimes called
stencils. This distinction is not an issue for process, which receives as input a
contiguous block of cells and can thus extract stencil neighborhoods unilater-
ally. However, because the optimizer operates on a sample of the input data,
SkewReduce must apply a preprocessing step that extracts application-defined
computational units before sampling them. For this reason, although not part
of the basic API, we allow a user to provide a custom function to transform a
sequence of “raw” records into a sequence of computational units, Seq. of T.

8.3.2.5 Cost Functions
We have presented the basic SkewReduce API, but we have not explained how
skew is handled. Both the process and merge phases of the API are crucially
dependent on the initial partitioning of data into regions. Feature extraction
applications often exhibit both data skew and computational skew, and both
are determined by how the data are partitioned. Datasets prone to significant
data and computational skew (usually as a result of extreme variations in data
density) can be processed efficiently if an appropriate partition-and-merge plan
can be found. As we will show, plan quality can be improved dramatically if
the user can estimate the runtime costs of their process and merge functions.

We allow the user to express these costs by providing two additional cost
functions Cp and Cm, corresponding to process and merge, respectively. These
cost functions operate serially on samples of the original dataset returning a
real number; that is:

Cp :: (S, α, B) → R

Cm :: (S, α, B) × (S, α, B) → R

where S is a sample of the input, α is the sampling rate, and B is a bounding
hypercube.

8.3 Handling Skew in MapReduce Applications 211

The cost functions accept both a representation of the data (the sample S)
and a representation of the region (the bounding hypercube B, represented as a
sequence of ranges, one for each dimension). The cost of the feature extraction
algorithms we target is frequently driven by the distribution of the points in the
surrounding space. One approach to estimate cost inexpensively is therefore
to build a histogram using the bounding hypercube and the sample data and
compute an aggregate function on that histogram. The sampling rate α allows
the cost function to properly scale up the estimate to the overall dataset. When
discussing cost functions in the remainder of this paper, we omit the bounding
hypercube and sampling rate parameters when they are clear from the context.

Given a representative sample, the cost functions Cp and Cm must be repre-
sentative of actual runtimes of the process and merge functions. More precisely,
the functions must satisfy the following properties.

� Fidelity: For samples R, S, if CP(R) < CP(S), then time[process(R)] <

time[process(S)] (intuition: the true cost and the estimated cost impose the
same total order on datasets). Similarly, for samples R, S, T, U, if Cm (R, S)
< Cm(T, U), then time[merge(R, S)] < time[merge(T, U)].

� Boundedness: For some constants ρp and pm and samples R and S,
time[process(R)] = ppCp(R) and time[merge(R, S)] = pmCm (R, S).

For the boundedness condition, we can estimate the constant factors ρp

and ρm in at least two ways. The first method is to run the process and merge

algorithms over a data sample and compute the constants. This type of approach
is related to curve fitting for UDF cost estimation [8]. The second method is to
derive new constants for a new cost function from past executions of the same
analysis.

Many MapReduce-style analytic systems are running on top of chunk-based
distributed file systems such as GFS, HDFS, and S3 and use the chunk as a unit
of task distribution and computation. SkewReduce takes a similar approach and
requires that the process and merge functions have the ability to process at least
one chunk-size of input data without running out of memory. Alternatively, we
could optionally allow users to specify memory usage estimation functions that
take a form analogous to the cost functions above. In both cases, the optimizer
ensures a partition plan with sufficient granularity that no operator runs out of
memory.

8.3.3 SkewReduce’s Optimizer

There are two potential optimization goals for a SkewReduce application:
minimize execution time or minimize resource usage. SkewReduce’s current

212 8 Beyond MapReduce

optimizer adopts a traditional approach and minimizes the query execution
time subject to a constraint on the number of available machines in a cluster.
This constraint can be dictated by the size of a locally available cluster or by
monetary reasons when using a pay-as-you-go platform such as Amazon EC2
[3]. SkewReduce’s optimizer could be used to try alternative cluster sizes if a
user tries to find some desired price-performance trade-off, but we leave it for
future work to automate such exploration.

SkewReduce’s optimizer is designed to operate on a small sample of the
entire data set, so that the optimizer can execute on a user’s desktop before the
user acquires or even just reserves any resources on a large cluster. In this paper,
we do not address the problem of how the user generates such a sample. Such
samples are already commonly used for debugging in these environments.

At a high level, SkewReduce’s optimizer thus works as follows: given a
sample S of the input data, process and merge functions and their corresponding
cost functions Cp and Cm, a compute cluster-size constraint of M nodes, and
a scheduling algorithm, the optimizer attempts to find the partitioning plan
that minimizes the total query execution time. The user-supplied cost functions
and the scheduling algorithm guide the optimizer’s search for the best plan.
SkewReduce works best with a task scheduler that minimizes makespan subject
to task dependencies. However, it uses the scheduler as a black box and can
therefore work with various schedulers.

Because the scheduler is modeled as a black box and the cost functions
may not be completely accurate, SkewReduce does not guarantee to generate
an optimal plan. However, our previous experiments show that it finds very
efficient plans in practice (Figure 8.16).

We begin by defining the SkewReduce partition plan, execution plan, and
the optimization problem more precisely.

Partition plan: A SkewReduce partition plan is a full binary tree where
all intermediate nodes represent merge operators and all leaf nodes represent
process operators. Each node in the tree is associated with a bounding hypercube
defining the region of space containing all data in the partition. The hypercubes
at a given height in the tree partition the space; there are no gaps or overlaps.

Valid partition plan: A partition plan is valid if no node in the plan is
expected to receive more data than will fit in memory. The memory size is
applied after scaling the sample data back to the original input data size,
assuming the sample, S, is representative. For example, if a one percent data
sample leads to a partition with 2,000 particles, and we know that a single node
cannot process more than 100,000 particles, the plan will not be valid because
2,000 * 100 > 100,000.

8.3 Handling Skew in MapReduce Applications 213

2

3

4

5

6

7

8

9

R
el

at
iv

e
sp

ee
du

p

Astro Seaflow

0

1

2

3

4

5

6

7

8

9

Coarse Fine Finer Finest Manual Opt

R
el

at
iv

e
sp

ee
du

p

Partition Plan

Astro Seaflow

Figure 8.16. Relative speed of different partitioning strategies compared with the
optimized plan (Opt). The table shows the actual completion time for each strategy
(units are hours for Astro and minutes for Seaflow). Manual plan is shown only
for the Astro dataset. Overall, SkewReduce’s optimization significantly improves
the completion time.

Execution plan: A SkewReduce execution plan comprises a partition plan
and its corresponding schedule using a job scheduling algorithm schedule. A
valid execution plan is a valid partition plan and its schedule.

Optimization problem: Given a sample S of the input data, process and merge

functions with their corresponding cost functions and constants (ρp, ρm), a
compute cluster of M nodes, a scheduling algorithm, and constant operator
scheduling delay (�), return the valid execution plan that is estimated to mini-
mize query runtime.

8.3.3.1 Optimizing the Partition Plan
The search space of the optimizer is the set of all possible partitions of the
hy-percube defined by the input data. The optimizer enumerates potentially
interesting partition plans in this search space using a greedy strategy. This
greedy strategy is motivated by the fact that all process cost functions are
assumed to be monotonic.

Starting from a single partition that corresponds to the entire hypercube
bounding the input data I, and thus also the data sample, S, the optimizer

214 8 Beyond MapReduce

greedily splits the most expensive leaf partition in the current partition plan.
The optimizer stops splitting partitions when two conditions are met: (a) All
partitions can be processed and merged without running out of memory; (b)
No further leaf-node split improves the runtime; that is further splitting a node
increases the expected runtime compared to the current plan.

8.3.3.2 Partition Splitting
When splitting a hypercube in two, the optimizer has two choices to make:
which axis to use for the split and at what point along this axis to perform the
split.

An ideal split should partition the data into two subpartitions with identical
real runtimes. In contrast, the worst split creates two subpartitions with very
different real runtimes, with the runtime for the slower subpartition similar to
the presplit runtime.

For a low-dimensional data, typically 3 to 4, the optimizer exhaustively tries
to split the data along each of the available axes because the optimization pro-
cess is low-overhead (as we show later in Figure 8.19). For a high dimensional
data, the user can supply a heuristic to filter out bad split axes to improve
optimization time. We define the best split to be the one that minimizes the
maximum cost Cp of any of the subpartitions created without violating the
merge memory requirement.

To select the point along an axis where to split the data, different algorithms
are possible. We present and compare three strategies. All three methods require
that the examined sample data be sorted along the splitting axis with tie-
breaking using values in other dimensions. Thus, we sort the sample data
before run the strategy.

Discrete: The Discrete approach considers splitting the data at each one of
n uniformly-spaced points along the splitting-axis. n is given as a parameter.
For each point, the discrete strategy computes the cost of splitting the data
at that point. The discrete approach is thus the most general strategy because
it can work even when the cost function is not monotonic. It simply tries all
possible splitting points assuming a given minimum granularity. On the other
hand, this strategy may not return the best estimated splitting point, especially
if n is small.

Binary search: This approach requires that cost functions be monotonic and
performs a binary search for the best split point. The algorithm terminates after
examining all log |S| candidate split points. Binary search always returns the
optimal split as estimated by the cost function.

Incremental update: The incremental update approach requires that the cost
function be monotonic and incrementally updatable. That is, whenever the cost

8.3 Handling Skew in MapReduce Applications 215

Table 8.2. Datasets used in the evaluation

Dataset Size # Items Description

Astro 18 GB 900 M Cosmology simulation
Seaflow 1.9 GB 59 M Flow Cytometry

function is updated with a sample through an API call, the new cost is returned.
Given these restrictions, the incremental update approach achieves the best
optimization performance. The approach searches for the best split point in
two phases. The algorithm starts with two empty subpartitions. It continuously
adds samples to these subpartitions starting at both ends of partitioning axis.
Each new data point is added to the partition currently estimated to have the
lower runtime. The algorithm terminates when all samples have been assigned
to a subpartition and the splitting point is the midpoint between the last sample
inserted into each partition.

If multiple points fall on the partition boundary, the algorithm enters a second
phase, where it computes the fraction of such points that were assigned to each
partition. At runtime, when the entire dataset is partitioned, points on the same
partition boundary are randomly distributed to subpartitions according to these
precomputed proportions.

8.3.3.3 Estimating the Cost of a Schedule
The newly split partitions are only added if the candidate plan yields a better
total runtime than the current plan. We estimate the runtime by calling a black
box scheduling function schedule. To match the units of the operator costs to
those of the scheduling overheads, we scale the process and merge costs using
the precomputed ρp, ρm constants, thus converting these costs into time units.

Converting a schedule to a cost estimate is straight forward; we invoke the
scheduling algorithm with the costs of all operators and M slots as input then
take the total runtime. While we leave the scheduling algorithm as a black box,
we found that Longest Processing Time (LPT) scheduling algorithm [35] works
well in practice and satisfies all necessary features such as job dependency and
multiple slots. Thus, we use LPT algorithm in the prototype.

8.3.4 Evaluation

In this section, we evaluate the performance of SkewReduce on the friends-
of-friends clustering task over datasets from two different domains: astronomy
and oceanography. Table 8.2 summarizes the properties of the two datasets.

216 8 Beyond MapReduce

We implemented friends-of-friends in a straightforward fashion without any
optimizations, and using a standard KD-tree for storing local data and looking
up friends.

Summary: We answer the following questions: (1) Does SkewReduce
improve task completion times compared to uniform data partitioning, and,
if so, is the difference significant? (2) How important is the fidelity of the cost
model for SkewReduce’s optimization? (3) How does the sample size affect cost
estimates and ultimately performance? (4) What is the overhead of scheduling
and optimization in SkewReduce? Our results show that SkewReduce imposes
a negligible overhead (Figure 8.19) and can decrease total runtime by a factor
of 2 or more compared to uniform data partitioning (Figure 8.16). We also find
that small sample sizes of just 1 percent suffice to guide optimization, but the
quality of the resulting plan does depend on the characteristics of the sample
(Figures 8.17 and 8.18). Finally, a cost function that better captures the analysis
algorithms helps SkewReduce find better plans, but even an approximate cost
function can improve runtime compared to not using SkewReduce at all.

Implementation: The SkewReduce prototype consists of two Java classes:
the SkewReduce optimizer and the SkewReduce execution engine. The opti-
mizer takes the cost model and sample data as input and produces an optimized
partition plan and a corresponding schedule. The execution engine converts the
plan into a graph of Hadoop jobs and submits them to Hadoop according to the
schedule from the optimizer. SkewReduce deploys a full MapReduce job for
the initial data partitioning task (if necessary) and for each finalize operator, but
deploys a map-only job for each process or merge operator. This design gives
us better control over the timing of the schedule because Hadoop only supports
user specified priorities at the job level rather than at the task level.

SkewReduce minimizes the scheduling overhead by using asynchronous job
completion notifications of the Hadoop client API. Optionally, the user can
implement the finalize operator as a Pig script [58] instead of a MapReduce
program.

Setup: We perform all experiments in an eight-node cluster running Hadoop
0.20.1 with a separate master node. Each node uses two 2 GHz quad-core
CPUs, 16 GB of RAM, and two 750 GB SATA disk drives (RAID 0). All nodes
are used as both compute and storage nodes. The HDFS block size is set to 128
MB and each node is configured to run at most four map tasks and four reduce
tasks concurrently.

We compare SkewReduce to various uniform data partitioning algorithms.
We use the LPT scheduling algorithm for the SkewReduce optimizer. Uniform
alternatives cannot use this approach because they do not have any way to
estimate how long different tasks will take to process the same amount of data.

8.3 Handling Skew in MapReduce Applications 217

Table 8.3. Cost-to-time conversion constant for cost models (ρp, ρm, scale)

Data Size Histogram 1D Histogram 3D

Astro 83 4.3 10−6 1500 2.9 10−12 3.0 40 10−7

Seaflow 4.8 1.6 10−5 9.3 130 10−12 6.0 200 10−8

Default optimization parameters: SkewReduce’s optimizer assumes a
MapReduce job scheduling overhead (�) of 10 seconds [63]. Unless indi-
cated otherwise, experiments use a sample size of one percent. The default
cost function builds a 3D equi-width histogram of the data. Each bucket cov-
ers a range equal to the friend distance threshold along each dimension. The
cost is computed as the sum of squared frequencies for all buckets. Each fre-
quency is scaled back by the sample size (such as, for a one percent sample, all
bucket frequencies are multiplied by 100) before squaring. The intuition behind
this cost model is this: To identify a cluster, the friends-of-friends algorithm
starts with a point and recursively finds friends and friends-of-friends using
the KD-tree until no new friends can be added. This process yields quadratic
runtime in dense regions, because every point is a friend of every other point.
We obtain the conversion constants ρp, ρm (shown in Table 8.3) by execut-
ing ten micro-benchmark runs of the analysis task over a one percent data
sample.

8.3.4.1 Overall SkewReduce Performance
In this section, we present experimental results that answer the following ques-
tion: Does SkewReduce improve task completion times in the presence of
computational skew compared to uniform data partitioning? Is the improve-
ment significant? To answer this question, we measure the total runtime of the
plans generated by SkewReduce for both datasets. We compare them against
the runtimes of a manually crafted plan called Manual and plans with vari-
ous uniform partitioning granularities: coarse, fine, finer, and finest. All plans
are generated from the same one percent data sample. Coarse mimics Hadoop,
which assigns a Map task to each HDFS chunk. Similarly, Coarse partitions the
data into fragments that each contains the same number of data points. It does
so by repeatedly splitting the region to bisect the data, one axis at a time in a
round robin fashion, just like a KD-tree using a Recursive Coordinate Bisection
(RCB) scheme [7]. Coarse stops splitting when the size of each partition is less
than 128 MB. Fine stops splitting only when each partition is 16 MB. Finer and
Finest partition the fine partitions further until each partition holds 4 MB and

218 8 Beyond MapReduce

2 MB, respectively. Finally, we prepared the Manual plan by tweaking the fine
plan based on the execution results: we merged partitions experiencing no skew
and split slow partitions further. We prepared a manual plan only for the Astro
dataset due to the tedious nature of this task. Figure 8.16 shows the relative
completion times of all plans compared to the optimized plan, labeled as Opt.
We also report the actual completion time of each plan in the accompanying
table.

The results from both datasets illustrate that fine-grained uniform splitting
only improves performance up to a certain point before runtimes increase
again because of overheads associated with scheduling and executing so many
partitions. The SkewReduce optimizer’s plan, however, guided by user-defined
cost functions, is more than twice as fast as the best uniform plan. For the Astro
dataset, SkewReduce improves the completion time of the clustering task by a
factor of more than 8 compared with Coarse, which is the strategy equivalent to
the default approach in MapReduce-type systems. SkewReduce’s performance
is even a bit better than the Manual plan. For the Seaflow dataset, the Opt
runtime is a factor of 3 better than Fine and a factor of 6 better than Coarse.

Overall, SkewReduce can thus significantly improve the runtime of this
analysis task.

8.3.4.2 Sample Size
In this section, we examine the effects of the sample size on SkewReduce’s
performance and answer the following question: What sample sizes are required
for SkewReduce to generate good plans?

SkewReduce’s optimization is based solely on the sample, and an unrepre-
sentative sample may affect the accuracy of the optimizer’s cost estimates. To
measure the effect on accuracy, we prepared three independent samples with
varying sampling rates, then generated and executed an optimized plan using
the best cost function, Histogram 3D.

Figures 8.17 and 8.18 show the results from the Astro and Seaflow datasets,
respectively. In both figures, the optimizer’s cost estimates improve as the sam-
ple size increases but the convergence is not smooth. Surprisingly, the estimated
runtime of the Astro dataset does not fluctuate as much as that of the Seaflow
dataset even at lower sampling rates. The reason is that the extreme density
variations in the Astro dataset that drive the performance are still captured
even in a small sample. In contrast, the Seaflow sample may or may not exhibit
significant skew. We also find that a larger sample does not always guarantee
a better plan. In Figure 8.18, the sampling rate of 10 percent does not yield a
better plan than a five percent sampling rate. The conclusion is that the quality

8.3 Handling Skew in MapReduce Applications 219

5

10

15

20

25

om
pl

et
io

n
ti

m
e

(H
ou

r) Real Expected

0

5

10

15

20

25

0.0001 0.001 0.01

C
om

pl
et

io
n

ti
m

e
(H

ou
r)

Sample Rate

Real Expected

Figure 8.17. Completion time for the Astro dataset with varying sample rates.
Error bars show the minimum and maximum values obtained for each sampling
rate.

of optimization may vary subject to the representativeness of the sample. Inter-
estingly, the runtime of this suboptimal plan is still a factor of 2 improvement
compared to the plans based on uniform partitioning as shown in Figure 8.16.

8.3.4.3 SkewReduce Overhead
We study SkewReduce’s overhead and answer the following question: How
long does SkewReduce’s optimization take compared with the time to process
the query?

Figure 8.19 shows the runtime of the prototype optimizer using the Data
Size and the Histogram 3D cost functions for each dataset. At a one percent
sampling rate, the optimization takes 18 seconds using 594 K samples from the

10

15

20

25

30

35

40

m
pl

et
io

n
ti

m
e

(M
in

ut
e) Real Expected

0

5

10

15

20

25

30

35

40

0.0001 0.001 0.01 0.1

C
om

pl
et

io
n

ti
m

e
(M

in
ut

e)

Sample Rate

Real Expected

Figure 8.18. Completion time for the Seaflow dataset with varying sample rates.
Error bars show the minimum and maximum values obtained for each sampling
rate.

220 8 Beyond MapReduce

1

10

100

1000

m
iz

at
io

n
ti

m
e

(S
ec

on
d

s)

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1

O
p

ti
m

iz
at

io
n

ti
m

e
(S

ec
on

d
s)

Sample Rate

Astro-DataSize Astro-Hist3D
Seaflow-DataSize Seaflow-Hist3D

Figure 8.19. Optimization time with varying sample rates and cost functions.
With a 0.01 sample rate, there are 590 K samples for the Seaflow dataset and 9.1M
samples for Astro.

Seaflow dataset and 15 minutes using 9.1 M samples from the Astro dataset.
Considering that the prototype is not parallelized and does not manage memory
in any sophisticated way, the runtime is still a small fraction of the actual runtime
of the algorithm for each dataset. With an efficient parallel implementation, the
SkewReduce optimizer could potentially run with a more complex cost function
or use multiple samples to produce a better plan.

8.3.5 Related Work

Effective handling of skew is an important problem in any parallel system
because improper skew handling can counter all the benefits of parallel pro-
cessing [26].

In parallel database research, four types of data skew have been identified
by Wolf et al. [73], and extensively researched by many groups, especially,
in the context of the Join operation [29, 44, 73, 74, 79, 77]. Shatdal et al.
investigated skew problems in aggregation algorithms [65]. Recent adaptive
query processing research also mostly focuses on relational operators [23].
SkewReduce approaches the same problem from a different angle. Instead of
focusing on specialized implementations of an operator, SkewReduce requests
that users provide cost models for their nonrelational algorithms and it performs
cost-based static partitioning optimization.

Scientific simulation communities have long studied load imbalance prob-
lems in parallel systems. Just as in parallel database systems, there exist many
mature infrastructures to run parallel simulations in a scalable manner [25,
55, 61]. The primary technique for attacking skew is adaptively repartitioning

8.4 Complex Data, Massive Scale, and Interactive Speeds 221

(or regridding) the data by periodically monitoring the application runtime
statistics or through explicit error measures of the parallel simulation [24].
The SkewReduce optimization resembles these programs, but uses sampling
to optimize statically. Also, the partitioning is strictly guided by the user cost
functions rather than errors in the simulation. Several cosmological simula-
tions partition the workload based on gravitational potential and construct a
tree to balance parallel spatial index lookup as well as computation [68]. Skew-
Reduce shares the same spirit with those simulations but provides a generic,
domain-independent framework to statically optimize the partition plan using
user-defined cost functions and execute it in a shared-nothing cluster.

MapReduce and similar large scale data analysis platforms handle machine
skew using speculative execution [21, 45, 37]. Speculative execution simply
relaunches slow tasks on multiple different machines and takes the result of the
first replica to complete. Speculative execution is effective in heterogeneous
computing environments or when machines fail. However, it is not effective
against data skew because rerunning the skewed data partition even on a faster
machine can still yield a very high response time. Lin analyzed such impact of
data skew of a MapReduce program [52]. Handling data skew in these systems
is, in general, at a relatively early stage. Pig supports skewed join as proposed
by DeWitt et al. [29] in its latest 0.5.0 release. To the best of our knowledge,
this is the only effort to handle data skew problems in MapReduce-based
systems. Qiu et al. implemented three applications for bioinformatics using
cloud technologies and reported their experience and measurement results [64].
Although they also found skew problems in two applications, they discussed a
potential solution rather than tackling the problem. SkewReduce is aiming to
offer a more general skew-resistant solution to applications running on these
types of platforms.

8.4 Looking Ahead: Complex Data, Massive Scale,
and Interactive Speeds

As we have shown in the previous two sections, MapReduce in particular and
parallel data processing systems in general can use significant enhancements to
support the need of today’s users. In this section, we argue that going forward
even more fundamental changes are necessary.

In both science and industry, data is being acquired aggressively from any
available source, stored indefinitely, used both in longitudinal historical stud-
ies and real-time decision support, fed through predictive statistical models,
and visualized interactively. The implied requirements for a scalable analytics
platform are significant: the infrastructure must handle any data (structured,

222 8 Beyond MapReduce

unstructured, arrays, meshes, and images), at any scale (from 100s of MB
to 100s of TB, at potentially interactive speeds), for any workload (filtering,
sampling, streaming, interactive, and batch). Today’s systems are not equipped
to cover this design space: They focus on large-scale, batch processing [21,
37, 45], structured-data processing [36, 71], or small-scale interactive analytics
and visualization (for example, MATLAB and R). There exist various efforts
to better support existing requirements for data analytics [14, 70, 82], but none
of these systems addresses the complete challenge of any scale, any data, and
any workload analytics.

We consider requirements for a new cloud-based database system called
NuageDB that is designed to support data analytics in a more comprehensive
fashion than MapReduce and its contemporaries, aiming to help users spend
less time “managing” data and more time extracting information from it.

Consider these examples: Oceanographers routinely compare observed
data from instruments with simulation output [42]. The simulation output is
large (potentially 100s of TB) and non-relational (mesh-structured [42]). The
observed data is relatively small (perhaps 10s of GB) but can be extremely
complex and therefore difficult to integrate. For example, consider the Acous-
tic Doppler Current Profiler (ADCP), which measures velocity in a vertical
column of water by emitting sound waves and measuring the reflection time
from particles in the water. To preprocess ADCP data, an analyst may extract
a subset of the timeseries (say, one day’s worth) and interactively clean and
transform the data using MATLAB, Python, or R, generating visualizations at
each step to assess the results. Once satisfied, the analyst’s goal is to apply
the same transformation to the full dataset, join the result with the simulation
output, and continue alternating between interactive data exploration and batch
data processing. The challenge is that each task requires a different tool, each
with a different data model, programming model, performance characteristics,
and tuning parameters. As a result, we routinely encounter scientists who spend
more time context-switching between tools (reading documentation, installing
software, learning languages, and debugging programs) than they spend ana-
lyzing data. This situation motivates a new, comprehensive analysis platform
satisfying three requirements:

1. Any scale: A system that can scale to terabytes or petabytes, but also offer
competitive interactive performance over small datasets. Science data comes
in all sizes from a few megabytes to hundreds of terabytes (such as, [76]).
Correspondingly, queries can run from milliseconds to hours. NuageDB’s
goal is to efficiently handle both ends of the scale spectrum within a single
data analysis system.

8.4 Complex Data, Massive Scale, and Interactive Speeds 223

Precise Sampled

Blocking

Online

Figure 8.20. Basic query execution patterns in NuageDB. These patterns are
orthogonal and can thus be combined. For example, a user can run a precise,
online, and interactive query or a sampled blocking yet interactive query.

2. Any data: A system able to process any data type. Scientists manipulate
diverse types of data from structured records to images and time-series
data. To manage this diversity, we aim to to tolerate unstructured data
but exploit structure when it exists and extract it whenever possible. In
particular, NuageDB does not mandate an up-front schema like conventinoal
relational database engines [63], but can exploit schema information when
it exists (unlike MapReduce-like systems [21, 37, 45]). Similar to some
recent parallel data processing systems [1, 10, 41], NuageDB avoids the
cost of repeatedly parsing untyped data for each query. However, NuageDB
also captures, infers, and exploits other types of structure, incrementally
evolving raw data into relations equipped with typed attributes, integrity
constraints, and descriptive metadata.

3. Any workload: A system that can optimize for both interactive and batch
queries, returning either approximate or exact results. We observe that sci-
ence analytics involves a combination of interactive, exploratory queries and
long-running batch queries (Fig. 8.20). Resource management in such con-
text is challenging. Today, companies often create multiple physical clusters
to accommodate different types of workloads [72]. Additionally, the latency
to cloud systems is still too high to efficiently run interactive visualization
applications, forcing users to manually download subsets of the data to their
desktops.

To optimize these diverse workloads, the key idea is that the scope of
NuageDB query optimization is an entire session rather than a single query: a

224 8 Beyond MapReduce

user who downloads a small subset, processes it repeatedly, then runs a large
job motivates different data placement and prefetching strategies than a user
who is scanning a single massive dataset sequentially. By reasoning about the
workload, we also seek to understand how a user will interact with query results
and optimize accordingly [17].

Current data management engines are over-specialized to specific contexts.
Some focus only on batch-style processing and ignore interactivity [21, 37, 45].
Others cannot scale to hundreds or thousands of computers in a data center,
as needed for multi-tenant petascale processing [36, 71]. Recent cloud-based
data management systems sacrifice query capabilities to achieve scalability [4].
Some systems may constrain the data types they support to documents [16].

To help satisfy these ambitious requirements, we consider novel features
to exploit both shared cloud resources for massive scalability as well as local
resources for low-latency work:

� A structural inference engine that can incrementally and semiautomatically
extract features from datasets useful for optimization and physical organiza-
tion (such as, schema, partitioning information, statistical samples, outliers,
or constraints).

� A workload pattern language to help the system infer and exploit colocation
and optimization opportunities before the jobs themselves are available.

� A storage manager that automatically creates different sizes of virtual clusters
within a single massive-scale physical one and collocates data likely to be
queried together.

� A caching and pre-fetching subsystem that can speculatively “guess” what
the user will ask for and eagerly push results toward the client to reduce
latency. Tree of operators with support for both.

� An efficient pre-emption mechanism to maximize utilization and afford fault-
tolerance.

In the rest of this section, we elaborate on these features.

8.4.1 Structural Inference

One strength of the MapReduce model is its ability to deal with “ad hoc data” –
data that must be processed without access to a schema. The price to pay is that
every Map function must parse, transform, interpret, or otherwise prepare the
data for processing on the fly.

NuageDB attempts to offer the best of both worlds by taking a “schema
later” approach: data initially requires no schema but types, constraints, and
properties can be extracted incrementally through the ordinary use of the

8.4 Complex Data, Massive Scale, and Interactive Speeds 225

system (HadoopDB [1] and LearnPADS [31, 32]). To achieve this flexibil-
ity, we adopt a data model that can operate on ad hoc files but facilitates
“incremental structuralization” to well-defined relations. The fundamental unit
of processing is the dataset, representing an (initially) uninterpreted sequence
of bytes, possibly spanning multiple files.

Incremental structure: A dataset can be recognized as a table, which is a
partitioned sequence of records where each record shares a common schema.
Attribtues constituting the table can be extracted incrementally by using one or
more user-defined parse functions. Each extracted attribute logically becomes a
new attribute of the table and is accessible by queries that reference the original
table. Parse functions can be applied as part of query processing via a special
operator, allowing new attributes to be computed on the fly from raw data as
needed.

Incremental constraints: In addition to types, NuageDB also incrementally
extracts other useful data properties including integrity constraints, (specifically
keys, or functional dependencies, and inclusion dependencies), sort orders, and
statistics. We encode these constraints as properties with special semantics and
make them accessible during query processing. The approach is for NuageDB
to mine the data and automatically infer that some properties may hold. Each
inferremake them property is presented to the user who can either confirm
or invalidate it. Properties can thus be in one of four states: (1) inferred, (2)
confirmed, (3) violated, or (4) invalidated. A violated property is one that was
asserted but was discovered to not hold. In addition to types, relational databases
teach us that integrity constraints are an important source of optimization oppor-
tunities and application correctness guarantees. Specifically, keys, functional
dependencies, inclusion dependencies, sort orders, and statistics all inform
optimization strategies. We encode these constraints as properties blessed with
special semantics by the system and accessible during query processing. Over-
all, data thus evolves incrementally from an opaque BLOB to a typed relation
equipped with integrity constraints and other properties.

Extensible optimization rules: The set of properties that can be inferred by
NuageDB and used for optimization is extensible by the user. The user provides
custom rewrite rules that may rely on certain properties holding (such as, sort
order, value constraints, or functional dependencies), as well as functions to
verify or enforce these properties. We will describe the details in the full paper.

8.4.2 A Workload Pattern Language

We observe that even before the first query is written, a user can often sketch
the access pattern of their workload and that this information can be used

226 8 Beyond MapReduce

to optimize query processing. For example, an observational oceanographer
processing ADCP data might describe their task in English: “First, I will down-
load last month’s ADCP data, then create a progressive series of visualizations.”
Even though we know nothing about the actual queries that will be executed, we
can speculate about the workload overall: We know the user will be accessing
a particular dataset (ADCP data), extracting a subset, and then running a series
of interactive queries. We can encode this high-level workload as the string
dRT · · · T, where d indicates the input dataset, R indicates a reduction of the
dataset, and T · · · T indicates a series of transformations on the reduced data.

We generalize this example to derive a pattern language for workloads. A
basic workload pattern is a word in the alphabet D ∪ {R, S, T}, where D is a set of
symbols representing dataset names, and R, S, and T are query class operators
indicating a reduction, sample, and transformation. A reduction indicates a
highly selective filter and the result is assumed to be small enough for efficient
local processing. When NuageDB encounters the reduction operator, it may
decide to build an index. The sample operator indicates that the user need not
have exact answers but can tolerate a statistical sample. A sample is assumed
to be significantly smaller than the original dataset. NuageDB can respond to
the sample operator by preparing or colocating the appropriate samples. The
transformation operator indicates an arbitrary query that produces a result of
similar size to the input.

A basic workload pattern can only express compositions of queries. To
express a series of independent queries on the same dataset, we introduce three
more symbols to the alphabet: {R̂,Ŝ,T̂ }. Consider the difference between dRT
and dR̂T . The former indicates a transformation of a reduced dataset (so T is
inexpensive), while the latter indicates a reduction query, followed by a trans-
formation of the original dataset d (so T is expensive). Nested expressions are
also allowed in order to express operations on multiple datasets. For example,
(de)R indicates that datasets d and e are both reduced together in one operation,
perhaps a join. The expression (dReR)T indicates a reduction of d, a reduction
of e, followed by a transformation of both datasets together.

Semantics: The semantics of a workload pattern is defined in terms of a stack
representing the user’s workspace. Processing the string from left to right, a
dataset symbol indicates a push of that dataset onto the stack. A query class
operator indicates to replace the top of the stack with the result of the query.
A hat operator (such as, R) reads the top of the stack, but does not consume
it or replace it. Parentheses indicate creation of a new substack that can be
manipulated by query class operators just like an individual dataset.

Laws: Internally, NuageDB applies a set of rewrite rules to simplify the
expression and afford reasoning. The rule SR → S captures the intuition that

8.4 Complex Data, Massive Scale, and Interactive Speeds 227

Table 8.4. Examples of workload patterns

Pattern Intuition

dRT̂ + Reduce a dataset and query it interactively.
dST̂ + dT Debug a query on a sample, then apply it to the whole dataset.
(dR)+ Iteratively inspect subsets of a large dataset.
dŜ+ Iteratively extract samples of a large dataset

(such as, Monte Carlo experiments).
(dRe)T Filter a dataset, join with another dataset.
(defgh)T+ Analyze a collection of related datasets.

a reduction of a sample requires no additional work from NuageDB than a
sample alone – there is no value in indexing a random sample. Other laws
include RR → R (a composition of reductions collapse into a single reduction
for planning purposes), SS → S (a composition of sample operations collapse
to a single sample operation), OR ↔ O (an online query can be filtered on the
fly), and OS ↔ SO (sampling an online query may be cheaper than creating a
sample first then streaming the results, unless the samples have already been
constructed), xSySzS → (xyz)S (sampling the three datasets parallel), dTdT →
dTT (two independent queries can share a scan).

Examples: Table 8.4 shows several example workload patterns and the
intuition for the underlying scenarios.

Sources and use cases: To facilitate workload pattern specifications, we
envision a workflow-style GUI including a drop-down menu of common pat-
terns. NuageDB can also automatically infer workflow patterns from query
logs, or predict them by monitoring a user’s actions on the fly [52]. Also, the
user need not be the only source of these expressions. Workflow patterns can be
used to describe and classify applications, they can be inferred post hoc from
logs, or they can be predicted by monitoring and classifying a user’s actions
on the fly [52]. There are many uses to workflow patterns: NuageDB uses
workflow patterns primarily for query optimization, but there are other appli-
cations. We can classify workloads by estimating the number of large-scale
operations (such as, the expression dRTTT has only one large-scale operation,
which may be amenable to indexing, whereas dTdTdT involves three inde-
pendent queries over the same large dataset). We can combine multiple users’
workload expressions to analyze opportunities for data colocation.

Previous work on workload specification relies on users providing explicit
query templates [56]; in contrast, we only ask users to specify the high-level
properties of their queries.

228 8 Beyond MapReduce

8.4.3 Virtual Clusters

NuageDB is intended to be deployed in a large, shared-nothing cluster in a
cloud. At cloud scale, the parallel database strategy of sharding each dataset
across all nodes [36, 71] is not usable as it would create overly small data
partitions. On the other hand, the HDFS [37] or GFS [34] strategy of randomly
allocating data to nodes in the cluster does not promote collocation of datasets
that need to be queried together. In contrast, our strategy is to improve data
locality by creating virtual microclusters for collocating related datasets, where
collocation and partitioning decisions are informed by the actual and expected
query workloads.

NuageDB partitions tables into blocks, which are distributed across
machines. In contrast to other systems, NuageDB collocates all blocks for
a dataset on the same rack whenever possible, then replicates the dataset to two
other racks, one in the same and one in another data center.

As queries are executed on the datasets, NuageDB monitors query perfor-
mance. When queries are CPU bound, NuageDB responds by repartitioning
into smaller blocks and spreading them across a larger number of nodes. When
contention arises on popular datasets, these datasets get replicated onto addi-
tional racks.

To increase data locality, NuageDB attempts to collocate datasets likely
to be accessed together by clustering on workload patterns, metadata, or the
query log. For example, when an astronomer uploads a new snapshot from a
cosmological simulation, she can express a workload pattern indicating that
this dataset will often be queried together with earlier snapshots. The system
then collocates the new data on the same rack as some of the other identified
datasets. If the user does not identify any other datasets, the data placement is
determined by mining the query log: NuageDB periodically mines the query
log and clusters users into groups based on the data they access. NuageDB then
preferably collocates datasets of users in the same group.

This data placement strategy must respect capacity constraints and be sen-
sitive to possibly complex collaborations among users. For example, another
astronomer in a different country may compare his analysis result with the new
snapshot for validation. Should his data be collocated with the snapshot or with
his other datasets? To address this challenge, NuageDB dynamically relocates
the data based on “what if” analysis results [11]: if past queries would have run
faster given a different data location and replication strategy, NuageDB applies
that strategy. This approach assumes that past query patterns are an indicator
of future ones. More advanced strategies for inferring future queries are also
possible. For example, if a dataset receives periodic appends, future queries

8.4 Complex Data, Massive Scale, and Interactive Speeds 229

will likely focus on the new rather than old data [40]. NuageDB also leverages
workload pattern descriptions to optimize data placement across a whole query
session.

8.4.4 Caching

As previously discussed, NuageDB supports interactive queries in part by
reserving resources for such queries on all nodes, which enables the system to
prefetch, cache in memory (at least in part), and efficiently process interactively
queried data. Latency to the cloud is still unacceptably high for some appli-
cations (for example, interactive visualization). To reduce latency, NuageDB
pushes data toward the user when interactive performance is requested. To do
so, users register their local machines with the NuageDB cloud and run a local
instance of a NuageDB node as a virtual machine.

To analyze data in an interactive session, the user can either (1) label their
queries as “interactive” or (2) produce a workload specification for the entire
query session. In the former case, NuageDB uses the local cache as in traditional
systems, using the growing query log to optimize caching decisions [50]. In
the latter case, however, NuageDB can perform more advanced optimizations
because it has information about the entire query session to come. Current
NuageDB optimizations include the following: (1) pre-fetch and push to local
cache data that is going to be queried interactively, (2) run batch queries in the
cloud but push results toward the client if the user plans interactive drill-down
analysis, and (3) relocate data within the cloud itself (such as, if a user wants
to interactively analyze a small amount of data, gather it into a single machine
to reduce the overhead of distributed processing.

8.4.5 Preemptive Scheduling

Supporting queries with low-latency requirements together with large-scale ad
hoc queries is challenging [72]: batch queries can consume all the resources
causing time-sensitive queries to experience unacceptably high latency. One
approach is to separate workloads across different physical clusters [72],
but this requires significant dataset replication to ensure availability. Alter-
natively, a sophisticated scheduler can help ensure that different workload
types get predefined fraction of resources or that some queries get priority over
others [38].

NuageDB uses a variant of Hadoop’s capacity scheduler [38] but with impor-
tant differences. First, to support interactive queries whose data can be located
on any machine, NuageDB reserves a fraction of resources on each machine for

230 8 Beyond MapReduce

short or interactive queries. Our key innovation then lies in aggressively using
these “reserved” cycles for batch queries and efficiently preempting parts of
a batch computation when cycles are reclaimed. NuageDB’s approach works
as follows: when a batch query is scheduled, a fraction of each operator’s par-
titions are allocated resources as in Hadoop or a typical parallel DBMS. The
remaining partitions are scheduled using “borrowed” resources. To efficiently
support preemptions, partitions running on borrowed resources use shared stor-
age to checkpoint their output and internal state. As a result, these partitions
run slower than the others but can easily be restarted from the latest checkpoint
on another machine. NuageDB takes this performance penalty into account and
schedules proportionally less work to these tasks.

Acknowledgments

The content of this book chapter is based in part on work done in collaboration
with Yingyi Bu, Michael D. Ernst, YongChul Kwon, and Jerome Rolia. The
research presented here was also supported in part by NSF CluE grant IIS-
0844572, NSF grant IIS-0844580, NSF CAREER Award IIS-0845397, NSF
grant CNS-0855252, NSF CRI grant CNS-0454425, Woods Hole Oceano-
graphic Institute Grant OCE-0418967, an HP Labs Innovation Research Award,
gifts from Amazon, Yahoo! and Microsoft Research, Balazinska’s Microsoft
Research New Faculty Fellowship, the University of Washington eScience
Institute, and the Yahoo! Key Scientific Challenges program.

References

1. Abouzeid A., Bajda-Pawlikowski K., Abadi D., Silberschatz A., and Rasin A.
“An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical
Workloads.” In Proc. of the 35th VLDB Conf., 2009.

2. Abouzeid A., Bajda-Pawlikowski K., Abadi D. J., Rasin A., and Silberschatz A.
“HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads.” VLDB 2, no. 1 (2009): 922–33.

3. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon. com/ec2/.
Accessed May 2012.

4. Amazon SimpleDB. http://www.amazon.com/simpledb/. Accessed May 2012.
5. Oceanic remote chemical analyzer (ORCA). http://armbrustlab. ocean.washington

.edu/.
6. Bancilhon F., and Ramakrishnan R. “An Amateur’s Introduction to Recursive Query

Processing Strategies.” In SIGMOD Conference, pages 16–52, 1986.
7. Berger M. J., and Bokhari S. H. “A Partitioning Strategy for Nonuniform Problems

on Multiprocessors.” Computers, IEEE Transactions on, C-36(5), 1987.
8. Boulos J., and Ono K. “Cost Estimation of User-Defined Methods in Object-

Relational Database Systems.” SIGMOD Record, 28, no. 3 (1999).

References 231

9. Cary A., Sun Z., Hristidis V., and Rishe N. “Experiences on processing spatial
data with mapreduce.” In Proceedings of the 21st International Conference on
Scientific and Statistical Database Management, SSDBM 2009, pages 302–19,
Berlin, Heidelberg: Springer-Verlag, 2009.

10. Chaiken R., Jenkins B., Larson P.-Å., Ramsey B., Shakib D., Weaver S., and Zhou
J. SCOPE: “Easy and Efficient Parallel Processing of Massive Data Sets. In Proc.
of the 34th VLDB Conf., pages 1265–76, 2008.

11. Chaudhuri S., and R. Narasayya V. “Self-Tuning Database Systems: A Decade of
Progress.” In Proc. of the 33rd VLDB Conf., pages 3–14, 2007.

12. Cloudera. http://www.cloudera.com/.
13. Nsf cluster exploratory program. http://www.nsf.gov/pubs/2008/nsf08560/

nsf08560.htm. Accessed July 7, 2010.
14. Cohen J., Dolan B., Dunlap M., Hellerstein J. M., and Welton C. “MAD skills: New

Analysis Practices for Big Data.” Proc. of the VLDB Endowment, 2, no. 2 (2009):
1481–92.

15. Condie T., Conway N., Alvaro P., Hellerstein J. M., Elmeleegy K., and Sears R.
“MapReduce Online.” In Symposium on Networked Systems Design and Implemen-
tation, pages 21–21, 2010.

16. CouchDB. http://couchdb.apache.org/. Accessed May 2012.
17. Dageville B., Das D., Dias K., Yagoub K., Mohamed Z., and Mohamed Z. “Auto-

matic SQL Tuning in Oracle 10g.” In Proc. of the 30th VLDB Conf., pages 1098–
1109, 2004.

18. Das S., Sismanis Y., Beyer K. S. Gemulla R., Haas P. J., and McPherson J. “Ricardo:
Integrating R and Hadoop.” In Proc. of the ACM SIGMOD International Conference
on Management of Data, pages 987–98, 2010.

19. Datameer. http://www.datameer.com./. Accessed May 2012.
20. Davis M., Efstathiou G., Frenk C. S., and White S. D. M. “The Evolution of Large-

Scale Structure in a Universe Dominated by Cold Dark Matter.” Astroph. J. 292
(May 1985): 371–94.

21. Dean J. and Ghemawat S.. MapReduce: “Simplified Data Processing on Large
Clusters.” In Proc. of the 6th OSDI Symp., 2004.

22. Dean J. and Ghemawat S. “MapReduce: Simplified Data Processing on Large
Clusters.” In OSDI, pages 137–50, 2004.

23. Deshpande A., Ives Z., and Raman V. Adaptive Query Processing. Foundations
and Trends in Databases 1, no. 1 (2007): 139.

24. Devine K., Boman E., and Karypis G. Parallel Processing for Scientific Computing,
chapter 6. Society for Industrial and Applied Mathematics, 2006.

25. Devine K., Boman E., Heapby R., Hendrickson B., and Vaughan C. Zoltan Data
Management Service for Parallel Dynamic Applications. Computing in Science and
Eng. 4, no. 2 (2002): 90–96.

26. DeWitt D., and Jim G. Parallel Database Systems: The Future of High Performance
Database Systems. CACM, 35, no. 6 (1992): 85–98.

27. Dewitt D., and Stonebraker M. MapReduce: A major step backwards.
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-
backwards/.

28. DeWitt D. J., and Gray J. Parallel Database Systems: The Future of High Perfor-
mance Database Systems. Commun. ACM 35, no. 6 (1992): 85–98.

232 8 Beyond MapReduce

29. DeWitt D. J., Naughton J. F., Schneider D. A., and Seshadri S. “Practical Skew
Handling in Parallel Joins.” In Proc. of the 18th VLDB Conf., 1992.

30. Ekanayake J., and Pallickara S. “MapReduce for Data Intensive Scientific Analysis.”
In IEEE eScience, pages 277–84, 2008.

31. Fisher K., Walker D., and Zhu K. Q. “Learnpads: Automatic Tool Generation from
Ad Hoc Data.” In SIGMOD Conference, pages 1299–1302, 2008.

32. Fisher K., Walker D., Zhu K. Q., and White P. “From Dirt to Shovels: Fully
Automatic Tool Generation from Ad Hoc Data.” In POPL, pages 421–34, 2008.

33. Gelb J. M., and Bertschinger E. Cold Dark Matter. 1: The Formation of Dark Halos.
Astroph. J. 436 (December 1994): 467–90.

34. Ghemawat S., Gobioff H., and Leung S.-T. “The Google File System.” In Proc. of
the 19th SOSP Symp., pages 29–43, 2003.

35. Graham R. L. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on
Applied Mathematics, 17, no. 2 (1969): 416–29.

36. Greenplum database. http://www.greenplum.com/. Accessed May 2012.
37. Hadoop. Accessed July 7, 2010. http://hadoop.apache.org/.
38. Hadoop – capacity scheduler guide. http://hadoop.apache.org/mapreduce/docs/

current/capacity_scheduler.html.
39. Hdfs. Accessed July 7, 2010. http://hadoop.apache.org/common/docs/current/hdfs

design.html.
40. Bingsheng H., Yang M., Guo Z., Chen R., Su B., Lin W., and Zhou L. “Comet:

Batched Stream Processing for Data Intensive Distributed Computing.” In Proc. of
the 1st ACM symposium on Cloud computing, pages 63–74, 2010.

41. Hive. http://hadoop.apache.org/hive/.
42. Howe B., and Maier D. “Algebraic Manipulation of Scientific Datasets.” In VLDB

’04: Proceedings of the 30th International Conference on Very Large Data Bases,
Toronto, Ontario, CA, 2004.

43. Howe B., Maier D., and Bright L. “Smoothing the Roi Curve for Scientific Data
Management Applications.” In Proc. of the Third CIDR Conf., 2007.

44. Hua K. A., and Lee C. “Handling Data Skew in Multiprocessor Database Computers
Using Partition Tuning. In Proc. of the 17th VLDB Conf., 1991.

45. Isard M., Budiu M., Yu Y., Birrell A., and Fetterly D. “Dryad: Distributed Data-
parallel Programs from Sequential Building Blocks.” In Proc. of the EuroSys Conf.,
pages 59–72, 2007.

46. Isard M., Budiu M., Yu Y., Birrell A., and Fetterly D. “Dryad: Distributed Data-
Parallel Programs From Sequential Building Blocks.” In EuroSys, pages 59–72,
2007.

47. Karmasphere. http://www.karmasphere.com/. Accessed May 2012.
48. Kleinberg J. M. Authoritative Sources in a Hyperlinked Environment. J. ACM, 46

no. 5 (1999): 604–32.
49. Knollmann S. R., and Knebe A. “AHF: Amiga’s Halo Finder.” Astroph. J. Suppl.

182 (June 2009): 608–24.
50. Kossmann D., Franklin M. J., Drasch G., and Ag W. Cache Investment: Integrating

Query Optimization and Distributed Data Placement. ACM TODS 25, no. 4 (2000):
517–58.

51. Kwon et al. Scalable Clustering Algorithm for N-Body Simulations in a Shared-
Nothing cluster. Technical Report UW-CSE-09-06-01, Dept. of Comp. Sci., Univ.
of Washington, 2009.

References 233

52. Lin J. “The Curse of Zipf and Limits to Parallelization: A Look at the Stragglers
Problem in MapReduce.” In 7th Workshop on Large-Scale Distributed Systems for
Information Retrieval, 2009.

53. Mahout. http://lucene.apache.org/mahout/. Accessed July 7, 2010.
54. Malewicz G., Austern M. H., Bik A. J. C., Dehnert J. C., Horn I., Leiser N., and

Czajkowski G. “Pregel: A System for Large-Scale Graph Processing.” In SIGMOD
Conference, pages 135–46, 2010.

55. Oliker L., and Biswas R. Plum: Parallel Load Balancing for Adaptive Unstructured
Meshes. J. Parallel Distrib. Comput. 52, no. 2 (1998): 150–77.

56. Olston C., Bortnikov E., Elmeleegy K., Junqueira F., and Reed B. “Interactive
Analysis of Web-Scale Data.” In Fourth CIDR Conf. – Perspectives, 2009.

57. Olston C., Reed B., Srivastava U., Kumar R., and Tomkins A. “Pig Latin: A Not-So-
Foreign Language for Data Processing.” In SIGMOD Conference, pages 1099–10,
2008.

58. Olston C., Reed B., Srivastava U., Kumar R., and Tomkins A.. “Pig Latin: A Not-
So-Foreign Language for Data Processing.” In Proc. of the SIGMOD Conf., pages
1099–10, 2008.

59. Oracle. http://www.oracle.com/database/.
60. Page L., Brin S., Motwani R., and Winograd T. The PageR-ank Citation Ranking:

Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab, 1999.
61. Parashar M., Liu H., Li Z., Matossian V., Schmidt C., Zhang G., and Hariri S.

AutoMate: Enabling Autonomic Applications on the Grid. Cluster Computing 9,
no. 2 (2006): 48–57.

62. Pavlo A., Paulson E., Rasin A., Abadi D. J., DeWitt D. J., Madden S., and Stone-
braker M. “A Comparison of Approaches to Large-Scale Data Analysis.” In SIG-
MOD Conference, pages 165–78, 2009.

63. Pavlo A., Paulson E., Rasin A., Abadi D. J., DeWitt D. J., Madden S., and Stone-
braker M. “A Comparison of Approaches to Large-Scale Data Analysis.” In Proc.
of the SIGMOD Conf., pages 165–78, 2009.

64. Qiu X., Ekanayake J., Beason S., Gunarathne T., Fox G., Barga R., and Gannon D.
“Cloud Technologies for Bioinformatics Applications.” In MTAGS ’09: Proceed-
ings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers,
pages 1–10, 2009.

65. Shatdal A. and Naughton J. “Adaptive Parallel Aggregation Algorithms.” In Proc.
of the SIGMOD Conf., 1995.

66. Springel V., White S. D. M., Jenkins A., Frenk C. S., Yoshida N., Gao L., Navarro
J., Thacker R., Croton D., Helly J., Peacock J. A., Cole S., Thomas P., Couchman
H., Evrard A., Colberg J., and Pearce F. “Simulations of the Formation, Evolution
and Clustering of Galaxies and Quasars.” NATURE 435 (June 2005): 629–36.

67. Sql server. http://www.microsoft.com/sqlserver/. Accessed May 2012.
68. Stadel J. G.. Cosmological N-body Simulations and Their Analysis. PhD thesis,

University of Washington, 2001.
69. Stonebraker M., Abadi D. J., DeWitt D. J., Madden S., Paulson E., Pavlo A.,

and Rasin A. Mapreduce and Parallel Dbmss: Friends or Foes? CACM, 53, no. 1
(January 2010).

70. Stonebraker M., Becla J., DeWitt D., Lim K.-T., Maier D., Ratzesberger O., and
Zdonik S. “Requirements for Science Data Bases and SciDB.” In Fourth CIDR
Conf. – Perspectives, 2009.

234 8 Beyond MapReduce

71. Teradata. http://www.teradata.com/.
72. Thusoo A., Shao Z., Anthony S., Borthakur D., Jain N., Sarma J. S., Murthy R.,

and Liu H. “Data Warehousing and Analytics Infrastructure at Facebook.” In Proc.
of the ACM SIGMOD International Conference on Management of Data, pages
1013–20, 2010.

73. Walton C. B., Dale A. G., and Jenevein R. M. “A Taxonomy and Performance
Model of Data Skew Effects in Parallel Joins.” In Proc. of the 17th VLDB Conf.,
1991.

74. Snodgrass R. T., Li W., and Gao D. “Skew Handling Techniques in Sort-Merge
Join.” In Proc. of the SIGMOD Conf., 2002.

75. Weinberg D. H., Hernquist L., and Katz N. “Photoionization, Numerical Resolution,
and Galaxy Formation.” Astroph. J. 477 (March 1997): 8–+.

76. Xldb workshop. http://www-conf.slac.stanford.edu/xldb/. Accessed May 2012.
77. Xu Y., and Kostamaa P. “Efficient Outer Join Data Skew Handling in Parallel

DBMS.” In VLDB, 2009.
78. Xu Y., Kostamaa P., and Gao L. “Integrating Hadoop and Parallel DBMs.” In Proc.

of the ACM SIGMOD International Conference on Management of Data, pages
969–74, 2010.

79. Xu Y., Kostamaa P., Zhou X., and Chen L. “Handling Data Skew in Parallel Joins
in Shared-Nothing Systems.” In Proc. of the SIGMOD Conf., pages 1043–52, 2008.

80. Yu Y., Gunda P. K., and Isard M. “Distributed Aggregation for Data-Parallel Com-
puting: Interfaces and Implementations.” In Proc. of the 22nd SOSP Symp., 2009.

81. Zhang W., Wang K., and Chau S.-C. “Data Partition and Parallel Evaluation of
Datalog Programs.” IEEE Trans. Knowl. Data Eng., 7, no. 1 (1995): 163–76.

82. Zhang Y., Herodotou H., and Yang J. RIOT: I/O-Efficient Numerical Computing
Without SQL. In Proc. of the Fourth CIDR Conf., 2009.

9
Let the Data Do the Talking: Hypothesis
Discovery from Large-Scale Data Sets

in Real Time

Christopher Oehmen, Scott Dowson, Wes Hatley,
Justin Almquist, Bobbie-Jo Webb-Robertson,

Jason McDermott, Ian Gorton, and Lee Ann McCue

9.1 Discovering Biological Mechanisms through Exploration

The availability of massive amounts of data in biological sciences is forcing
us to rethink the role of hypothesis-driven investigation in modern research.
Soon thousands, if not millions, of whole-genome DNA and protein sequence
data sets will be available thanks to continued improvements in high-throughput
sequencing and analysis technologies. At the same time, high-throughput exper-
imental platforms for gene expression, protein and protein fragment measure-
ments, and others are driving experimental data sets to extreme scales. As a
result, biological sciences are undergoing a paradigm shift from hypothesis-
driven to data-driven scientific exploration. In hypothesis-driven research, one
begins with observations, formulates a hypothesis, then tests that hypothesis in
controlled experiments. In a data-rich environment, however, one often begins
with only a cursory hypothesis (such as some class of molecular components is
related to a cellular process) that may require evaluating hundreds or thousands
of specific hypotheses rapidly. This large number of experiments is generally
intractable to perform in physical experiments. However, often data can be
brought to bear to rapidly evaluate and refine these candidate hypotheses into
a small number of testable ones. Also, often the amount of data required to
discover and refine a hypothesis in this way overwhelms conventional analysis
software and hardware. Ideally advanced hardware can help the situation, but
conventional batch-mode access models for high-performance computing are
not amenable to real-time analysis in larger workflows. We present a model
for real-time data-intensive hypothesis discovery process that unites parallel
software applications, high-performance hardware, and visual representation
of the output. This process uses MeDICi, a middleware integration framework,
to coordinate analytical task scheduling and data moving – making the power
of parallel computing more accessible to bench biologists who need it. This

235

236 9 Let the Data Do the Talking

chapter illustrates examples of this discovery model using real-world biological
data sets from which testable hypotheses were derived.

The first step toward discovering a hypothesis from large-scale data is to
understand the fundamental measurements that can be made on a system. For
the case of biology, we focus on understanding living systems by identifying
chemical fragments present in cells. At the molecular level, the collection of
a cell’s genes (such as its genome) is often referred to as a “blueprint,” but
it is more like a super-catalog – containing information about all the possible
parts that might be synthesized by the cell. At any given moment, two cells
with identical genomes can have very different appearance and behavior. This
is because not all the genes are used by a cell all the time. In response to a con-
stantly changing environment genes are “turned on” or “turned off,” producing
a constantly changing list of active parts. Genes that are “turned on” serve as
circulating templates for larger working molecules or proteins. The proteins
that are present in a cell at a given time give a more comprehensive picture of
what processes the cell is capable of engaging in at that time. These proteins
and genes constantly interact with each other, with the cell’s surroundings, and
with the internal environment of the cell to regulate the cell’s state, and adapt
that state to maximize survival.

Conventional molecular biology has focused on understanding genes and
proteins and how they operate in living systems. As aspects of the genetic
code have been elucidated, researchers have widened the scope of their inves-
tigation to incorporate interactions between multiple genes, protein systems,
and finally to the full complement of genes and proteins in cells or groups
of cells. In tandem with and in many ways driving this broadening of scope
high-throughput sequencing technologies have driven an exponential increase
in the rate that new gene sequences can be discovered and published. One
example of this trend is illustrated by the Joint Genome Institute’s (JGI) Inte-
grated Microbial Genomes project [1], which curates a collection of public
sequenced genomes. The 2.4 release of the IMG database grew by more than
10 percent since the 2.3 release only three months prior – a trend that is
indicative of the ever-growing volume of sequenced genomes. This flood of
sequence data provides rich opportunities for uncovering relationships between
organisms.

At the same time, high-throughput experimental platforms such as gene-
chips and mass-spectrometry-based technologies have enabled breakthrough
improvements in the rate at which genes and gene products can be detected
in cells. In principal, this should enable researchers to gain insight into the
underlying processes at work in these systems. Better understanding these rela-
tionships enables, for instance, identification of highly conserved proteins that

9.1 Discovering Biological Mechanisms through Exploration 237

are suggestive of ubiquitous and essential functions. Likewise, these patterns
can help identify unique proteins that may indicate functions specific to a par-
ticular organism. Yet the complexity of the mapping between genes, proteins,
metabolic pathways, and cell behaviors is staggering. It is not always possible
to observe these complex interaction systems and devise a hypothesis a pri-
ori. Often the best we can do is conjecture that some processes are related, or
even more generally assert that a particular environmental treatment will cause
differences that can be measured.

To unwind the complexity in these systems is a key computational task,
which is also often a bottleneck for genome studies, as is analyzing the coding
capacity of a genome in relation to other species’ genomes. The two key
tasks associated with multiple whole-genome sequence comparison are: 1)
comparing all predicted protein sequences of a genome relative to those of
other genomes and 2) representing the results of this sequence analysis in a
way that facilitates the identification of features of interest (such as highly
conserved versus unique proteins).

9.1.1 Whole-Genome Comparison

Performing multiple whole-genome comparisons requires mapping homol-
ogous relationships of the proteins in each genome. Homologs are defined
as proteins or genes sharing a common evolutionary ancestor. Orthologs are
homologous proteins in different organisms, such as proteins separated by a
speciation event, and are likely to be functionally equivalent (for a recent review,
see [2]). Paralogs are homologous proteins that arose from a gene duplication
event and perform very similar functions often with subtle and important dif-
ferences. Identifying homologs, orthologs, and paralogs provides a map for
comparing organisms’ functional capabilities, and hence is a key task used to:
transfer functional annotations from proteins of known function to proteins
of newly sequenced organisms [3], map functional relationships based on co-
conservation [4, 5], assess evolutionary relationships between species [6], and
identify putative drug targets [7].

9.1.2 Common Practices in HPC Computational Biology

The majority of biologists who want to evaluate a large-scale multiple-genome
hypothesis are faced with an unpleasant choice. Either they must prefilter the
data, favoring that which is likely to produce an answer of interest, or they
must accept heroic computational run times as a rate-limiting step in their
research. In the first case, the biologist is often prevented from finding the

238 9 Let the Data Do the Talking

unexpected (and, therefore, most valuable) results because data has been limited
to accommodate tools of choice. In the second case, run-time parameters, data
sets, and hypotheses must be so carefully chosen as to be correct on the first pass,
because rerunning or exploratory analysis are virtually impossible to complete
within a reasonable time. We view data-intensive computing as a central player
in eliminating this unpleasant choice, instead offering the compute power of
high-performance computing (HPC) platforms in a real-time exploratory model
where iteration, refinement, and repetition can be completed in a short time.
This chapter presents a collection of commonly performed analysis tasks, driven
at a multiple whole-genome scale using tools implemented on HPC platforms
and a demonstration of how analysis pipelines can be created from a laptop
that allow interaction between the user, the visual representation of analysis
output, and the underlying HPC systems. In effect, this creates an exploratory
environment that facilitates hypothesis generation.

9.2 Data-Intensive Tools and Methods

Many different areas of bioinformatics and biology utilize common analysis
tasks. Perhaps the most fundamental tasks for sequence analysis focus on find-
ing similarities between genes (and the corresponding proteins) that comprise
a species’ genome. Some of the basic computational tasks that enable this anal-
ysis are sequence alignment, homology detection, and ortholog identification.
In the following sections, we describe optimized implementations of computa-
tional tools, designed for these tasks, as well as a visual engine and middleware
components to make the power of these optimized implementations accessible
to research biologists.

9.2.1 High-Performance Sequence Analysis: ScalaBLAST

The BLAST [8] algorithm compares a query gene(s) or protein(s) sequence
with the sequences in a database by identifying an optimal local alignment
between sequences, if such an alignment exists. For each database sequence
match to a query, BLAST returns a similarity score and statistical confidence,
which form the basis of many other forms of analysis. ScalaBLAST [9] is a
high-performance implementation of BLAST, which operates by distributing
the work of the sequence analysis tasks across many processors, sharing a
single image of the target database in globally accessible memory to prevent the
need for many copies of large database files or I/O bottlenecks associated with
multiple processors reading them across a parallel file system. ScalaBLAST has
been shown to scale to thousands of processors, and has been specially modified

9.2 Data-Intensive Tools and Methods 239

for this application to accommodate ortholog identification by reorganizing the
calculations into species-specific comparisons.

9.2.2 Sensitive Remote Homolog Detection: SHOT

SHOT [10] is an algorithm for detecting related proteins that have poor sequence
similarity. This is done by transforming protein sequences into sets of fea-
tures and identifying homologous pairs using a trained support vector machine
(SVM) classifier. Though there are many SVM-based homology tools, SHOT
is one of the few that reports similarity scores between pairs of proteins (as
opposed to classifying protein sequences into pre-determined families). It is
also faster and has much higher sensitivity than alternatives that depend on
iterative BLAST-based methods [10].

The SHOT classifier is generated by a data-intensive training process that
uses a basis set of proteins whose pairwise homology is known a priori. Using
this classifier, a SHOT homology score for a new query protein is calculated
as a linear combination of inner products between support vectors reported by
the training process, and a vectorized form of new records. Because training
the classifier is done rarely (for example, only after updates to the basis set),
training is done offline of the query sequence analysis process, in effect hiding
from users the computational cost of training the classifier. The analysis phase
of SHOT can then be implemented using an embarrassingly parallel scheduling
approach to simultaneously score many independent homology calculations.

9.2.3 Identifying Orthologs: InParanoid

Several methods have been developed to predict orthologs and paralogs [11–
18]. These methods typically rely on sequence homology, clustering, evolu-
tionary distance, family tree analysis, or a combination of these techniques.
Among the bioinformatics tools available for ortholog and paralog detection,
InParanoid [13] provides a good balance of specificity and sensitivity [19, 20].
InParanoid is a Perl script that uses the output of BLAST to detect homol-
ogy between pairs of proteins to build maps of orthologs between pairs of
genomes. Comparing two small genomes (typical microbes, for example) using
InParanoid is relatively straightforward and readily accomplished within a few
hours on a single-processor computer. However, this compute time dramatically
increases when performing this analysis for a larger number of genome pairs,
and/or analyzing larger genomes (mammalian genomes, for example). Specif-
ically, for orthologs among a group of more than two genomes, the InParanoid
process must be repeated for all pairs of genomes in the group, leading to a

240 9 Let the Data Do the Talking

large investment in compute time for BLAST calculations, followed by post-
processing of pairwise ortholog records to identify orthologous groups, referred
to as “ortholog graphs.”

Source code for InParanoid 1.35 was obtained from http://inparanoid.sbc.
su.se/ and was rewritten in C++ (hereafter referred to as InParanoidC++).
Translation of InParanoid from Perl to C++ included key changes that do
not affect the numerical output of the code, but which significantly enhance
performance. New data structures were created to associate information directly
with each protein being tracked. These new structures replaced the need for
several hash tables used in the original Perl script for tracking information,
including hit scores and ortholog graph membership. There were also several
auxiliary bookkeeping matrices that were eliminated to improve performance
and scalability.

Features were also added to InParanoidC++. The original Perl code con-
tained global variables that could be changed in order to customize the behavior
of the script. These were replaced by command line options. A feature was also
added to provide flexibility in the sequence overlap requirement. For a pair of
sequences, this feature specifies the required length of the sequence alignment
(from BLAST) as the percentage of the full length of each sequence. The user
can specify this overlap cutoff as well as whether only one or both proteins of
an orthologous pair of proteins must satisfy it. By default, 50 percent of the
sequence length of one protein (of an orthologous pair) must align. We also
add the ability to output the results in XML and to include additional infor-
mation that is useful for constructing visualizations with the output. Features
in InParanoidC++ not included are the bootstrapping routine and the ability
to use outgroups, but these can be easily included in the future. Comparison
of several sample sets verified that InParanoid and InParanoidC++ produced
identical results.

InParanoid optionally launches serial BLAST jobs to create the pair-
wise alignments needed for ortholog prediction. This feature was removed
from InParanoidC++ because BLAST tends to be the rate limiting step
in the ortholog prediction process. Instead, we precompute BLAST scores
using ScalaBLAST on a multiprocessor architecture, then feed that output to
InParanoidC++ for rapid ortholog prediction. The change in run-time resulting
from the combination of ScalaBLAST and InParanoidC++ make it feasible to
include ortholog identification in real-time iterative analytical pipelines.

9.2.4 Interactive Visual Representation and Browsing: Starlight

Starlight [21], available from Future Point Systems, Inc., is an information
visualization application capable of organizing and integrating a variety of

9.2 Data-Intensive Tools and Methods 241

Sama_1209 (1203)
MR4_2509 (2495)

W3181_2622 (2592)

Sfri_2636 (2612)

NA3_2675 (2665)

NS2_1479 (1467)

MR7_2577 (2554)
SO_1779 (1515)

Sama_1210 (1204)

PV4_2522 (2514)

PV4_2524 (2516)

Figure 9.1. A complex ortholog graph.

structured and unstructured information types to generate interactive graphical
representations of relationships among the data. Starlight allows for layering
and filtering of many types of data. Here we use Starlight to create visual
representations of sequence similarity scores and ortholog identifications from
multiple genome data sets.

Two Starlight visualization types are generated in this chapter: ortholog
graphs and remote homology graphs. Ortholog graphs (Figure 9.1) illustrate
proteins that are highly similar, and therefore likely to perform the same basic
function, across multiple species. In ortholog graphs, each node is a pro-
tein and each edge is an orthologous link determined by ScalaBLAST and
InParanoidC++. Nodes can be color-coded to indicate the species of origin
for each protein. If a given protein is unique to a single species it will not
be connected to any other proteins. If a given protein is encoded by exactly
two species, one would see a pair of nodes connected by an edge. If a pro-
tein has orthologs in several species, one would find a fully connected graph
with the number of nodes indicating how many species share this function.
However, because genes in a genome can be deleted or duplicated, leading

242 9 Let the Data Do the Talking

Figure 9.2. Remote homology graph.

to loss of function or evolution of similar functions, the relationship between
homologous proteins in an arbitrary collection of species can be very complex.
Although fully connected graphs are easy to describe and find automatically,
the human eye is the only tool that can intuitively recognize some of the more
complex relationships from a visual representation of the ortholog graphs, as
shown in Figure 9.1. By coloring the edges in this figure by the strength of the
similarity between nodes, the “head” of the cluster contains both strong and
weak orthologs, evidenced by its combination of lower scores (lighter color
edges) and higher scores (darker color edges).

Remote homolog graphs (Figure 9.2) can be thought of as a projection from
a central protein of known function onto proteins of unknown function. For
these graphs, a collection of “basis proteins,” about which much is known
structurally or functionally, are used to classify proteins of interest into groups
or families. As with the ortholog graphs, nodes are proteins. However, a protein
in the center of a graph is one of the basis proteins, and protein homologs from
the genomes under study are located around the periphery of the basis protein.
In this case, edges indicate a remote homology relationship as determined by
SHOT, and the edges can be color-coded by species. These graphs look almost
like pie charts because there are no links between the peripheral proteins.

9.3 Real-Time Data-Intensive Hypothesis Discovery 243

The distribution of edge colors gives an indication of the expansion or contrac-
tion of a protein family or structural fold in a particular species relative to the
other species under study.

Starlight can also be used to integrate ancillary, unstructured data that may
be available for genomes or proteins. For example, protein functional cate-
gory information is available in the protein tables for prokaryotic genomes at.1

Functional annotations can also be obtained from Pfam [22],2 or by ad hoc
comparison of proteins to the Pfam hidden Markov models using the HMMER
software.3 Incorporating additional records such as these to the existing data
set of orthologous relationships is as simple as appending fields that con-
tain these additional functional categorizations. Once added, users can query,
search, and filter their data based on these data fields. These additional data
are often heterogeneous: for some proteins, no functional categorization is
available, whereas others may have single or multiple hierarchical functional
categorizations. Starlight accommodates all of these variants without special
handling.

9.2.5 Middleware for Data-Intensive Computing: MeDICi

The MeDICi Integration Framework (MIF) [23] is a component-based inte-
gration platform for creating complex scientific and analytical applications
from the composition of independently developed software modules. The MIF
employs abstractions and underlying supporting mechanisms to facilitate the
handling of very large data sets and high-volume data streams in a distributed
application. It also supports the integration of modules written in any language
and running on any execution platform into a single distributed application.
We present an example multiple whole-genome analysis processing pipeline
using the analysis tools previously described running on HPC platforms where
appropriate, integrated using MIF. This enables use of HPC systems, visual
applications, and sophisticated analytical tools from a laptop in real time for
biological hypothesis discovery.

9.3 Real-Time Data-Intensive Hypothesis Discovery

The following sections present a pair of case studies that utilize the various
analytic components previously described. These case studies serve to illus-
trate how data-intensive computing is utilized for genome-scale hypothesis
discovery studies in biology.

1 http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi.
2 http://pfam.janelia.org/.
3 http://hmmer.janelia.org/.

244 9 Let the Data Do the Talking

The data on which we demonstrate hypothesis discovery are collections
of openly available bacterial genomes. Species of the genus Shewanella are
gamma-proteobacteria that have remarkable anaerobic respiratory versatility,
displaying the ability to transfer electrons to various heavy metals, including
environmental contaminants such as iron, uranium, and chromium [24]. As a
result, there is great interest in exploring their potential as constitutive agents
for environmental remediation activities, such as cleaning up contaminated
ground surrounding retired nuclear and chemical production facilities. In gen-
eral, this metabolic versatility is a feature of Shewanella as a genus, however
individual species have diverse respiratory capabilities and display consid-
erable diversity with respect to physiologic characteristics such as nutrient
requirements. This is reflective of the wide variety of habitats in which these
organisms are found. Simultaneously examining the genome data available
for several of the Shewanella species provides a means to identify the genes
and proteins responsible for the unique characteristics of each species and
could lead to testable hypotheses about species physiology and bioremediation
potential.

There are several confounding aspects to understanding how Shewanella
species are related. Many species encode multiple homologous proteins, mak-
ing a one-to-one mapping of their functions nontrivial. Homologous proteins
within a species (such as paralogs) perform similar but distinct functions, and
are therefore informative when studying type versatility, but are not straight-
forward to map across genomes.

Given this complexity, it is important to look globally at the full protein
complement of these species and to examine the data in a comparative manner.
Furthermore, proteins can be described using a variety of overlapping ontolo-
gies – in terms of their biological pathways in which they participate, by the
specific biochemical reactions they catalyze, by their cellular location, or by
the physical attributes of their structure. Each of these ontologies gives some
information about what the protein does. Text information across all these
ontologies must be integrated with numerical data describing the relationship
between the proteins when evaluating biological hypotheses. Users need to
interactively project, filter, and group proteins by any one of these or other
derived categorical descriptors.

Once presented with this interactive data set, one can develop a cursory
hypothesis using a high-level visual representation of patterns within the data.
This hypothesis can be refined by iteratively selecting and analyzing sub-
sets of the data, looking for patterns that converge on a testable hypothesis.
In this way, one can allow the data to reveal its underlying structure and
patterns.

9.3 Real-Time Data-Intensive Hypothesis Discovery 245

Table 9.1. Shewanella species in genome set 1 (GS1)

Species Num Proteins Abbreviation

S. putrefaciens CN-32 4006 CN32
Shewanella sp. ANA-3 4389 ANA3
S. oneidensis MR-1 4396 SONE
S. denitrificans OS217 3778 Sden
S. loihica PV-4 3868 PV4
S. amazonensis SB2b 3654 Sama
S. putrefaciens W3–18-1 4078 W3181
Shewanella sp. MR-7 4040 MR7
Shewanella sp. MR-4 3940 MR4
S. frigidimarina NCIMB 400 4063 Sfri

9.3.1 Exploratory Look into Shewanella Functions

This discussion explores orthologous relationships between ten Shewanella
species by using ScalaBLAST and InParanoidC++ to infer all the orthologous
protein pairs and visualization of the resulting ortholog graphs using Starlight.
In the study, we imported functional information about the proteins from Pfam
[22], a public database that organized proteins into families based on shared
homology. Adding this additional functional information to the Starlight visu-
alization allowed us to query and filter the output based on text found in the
Pfam descriptions of each protein.

The genome data set used in the first case study (GS1) was a collection of
ten predicted proteomes (the predicted set of all proteins encoded in a genome)
of the genus Shewanella, which were obtained from the Joint Genome Institute
download site.4 The formal species names, protein counts, and abbreviated
names for the GS1 data set are listed in Table 9.1.

Ortholog relationships between the species in GS1 were calculated using
ScalaBLAST and InParanoidC++. The resulting ortholog graphs from the ten
species were visualized using Starlight. Pfam descriptions for each protein were
added to the Starlight records for all ten species in GS1 where such data was
available for a protein.

Prediction of orthologs among all ten Shewanella species in GS1 required
fory-five pairwise proteome comparisons. We examined the run times for com-
pleting this task using conventional BLAST with the InParanoid Perl script com-
pared to using ScalaBLAST with InParanoidC++. Table 9.2 presents these run

4 http://genome.jgi-psf.org/mic\ home.html.

246 9 Let the Data Do the Talking

Table 9.2. Ortholog prediction run times

Analysis Num Processors Time (min)

InParanoid 1 45.05
InParanoidC++ 1 0.54
BLAST + InParanoid 10 146.7
ScalaBLAST + InParanoidC++ 10 105.4
ScalaBLAST + InParanoidC++ 512 5.4

times for ortholog identification alone (InParanoid vs. InParanoidC++) and for
the total times (BLAST + InParanoid versus ScalaBLAST + InParanoidC++).

To test only the InParanoid versus InParanoidC++ run times, precom-
puted BLAST output for all forty-five pairwise comparisons was used. For
this benchmark, the option to InParanoid indicating that it should not launch
serial BLAST was selected allowing the run time to arise from ortholog pre-
diction times alone. The ortholog prediction performed by InParanoid was
significantly faster using the C++ version versus the Perl version, as shown
in Table 9.2. InParanoidC++ ran, on the average, in 2.5 percent of the time it
took for the conventional InParanoid to run, giving an average eighty-fivefold
speedup for whole genome ortholog prediction using the GS1 data set.

To measure the impact of combining ScalaBLAST and InParanoidC++,
this calculation was repeated, but InParanoid called BLAST for each genome
pair. For this test, ten processors were used on which InParanoid was manually
launched on independent subsets of the genome pairs. Wall-clock times were
recorded and compared with the run time of ScalaBLAST running on ten pro-
cessors followed by InParanoidC++ for all genome pairs. Table 9.2 presents
these run times. The difference in run time for these two tests was almost entirely
because of the improvement in the ortholog prediction phase, as the BLAST
times were nearly equal. However, because ScalaBLAST was inherently scal-
able to many processors regardless of the number of genomes under study,
total run time was greatly reduced using larger systems with the ScalaBLAST
+ InParanoidC++ combination. For example, combining ScalaBLAST and
InParanoidC++ using 512 processors completed the entire sequence analy-
sis and ortholog identification phase in 5.4 minutes, making it reasonable to
incorporate this analysis into a real-time hypothesis discovery pipeline.

We visualized the output of ortholog prediction between these ten She-
wanella species as a collection of graphs using Starlight, where the graph
nodes represented proteins and the edges represented predicted orthologous
relationships. This approach allowed visual inspection and browsing of the

9.3 Real-Time Data-Intensive Hypothesis Discovery 247

Figure 9.3. Sample of ortholog graphs for the GS1 data set.

entire ortholog record, with immediate identification of simple multiple-species
ortholog groups – proteins for which an ortholog relationship was identified
between any specific number of species. This relationship was represented in
the ortholog graph record as fully connected graphs (such as cliques) with one
protein from each species: for the set of ten species, fully connected graphs
had ten nodes and forty-five edges. For any subset of the ten species, fully
connected graphs with fewer than ten nodes were also readily identified. Figure
9.3 illustrates fully connected ortholog graphs.

A hallmark phenotypic characteristic of the Shewanella genus was the ability
to use a wide array of terminal electron acceptors during anaerobic respiration
[25]. Among the ten species in GS1, all except for Sden had the ability to use
nitrate as the terminal electron acceptor, producing nitrite. Therefore, we asked
the simplistic question, “What proteins are absent from Sden that are present
in the other 9 species in GS1?” To answer this question, we used Starlight to
identify the collection of ortholog graphs for which exactly one species was
absent, for example, those fully connected graphs with nine nodes. The left of
Figure 9.4 shows some of these graphs. We then applied a simple filter to hide
any graph in this collection that included a protein from Sden. The ortholog
graphs remaining after this filtering step were the collection of proteins that
were completely conserved in all nine of the other species in GS1, but absent
from Sden. Figure 9.4 illustrates this filtered collection on the right (nodes are
color-coded by the functional category of their proteins).

Once this set of ortholog graphs was identified, browsing their functional
categorization was done based on information from Pfam. Figure 9.5 shows
the nodes reorganized into clusters, where the groups are labeled with Pfam
functional information, and the protein nodes are color-coded by species. Empty

248 9 Let the Data Do the Talking

Figure 9.4. Ortholog graphs from GS1 having nine nodes.

circles represent a functional group that included Sden proteins, and thus all
those orthologous proteins have been hidden from view (or filtered out). In this
way, we built a list of orthologs and their functions that were common to many
Shewanella species, but absent from Sden.

Figure 9.5. Functional categorization of proteins in the nine-node graphs.

9.3 Real-Time Data-Intensive Hypothesis Discovery 249

Figure 9.6. Detail of complex ortholog graphs.

A second line of exploration using the ortholog graphs highlighted the value
of visual interface to this data set. The essential features of many of the ortholog
graphs cannot be described by any simple topological description and therefore
cannot be found easily (or at all) without a visual representation. Figure 9.6
illustrates some examples of these more complex orthologs. These groups were
not maximal cliques, and were not fully connected, but were easily detected in
Starlight by visual inspection. For example, the left panel of Figure 9.6 shows
a group consisting of two reasonably well-defined and nearly fully connected
subgroups (the right and left poles of the “barbell”). However, there was a
link between these poles, suggesting the presence of paralogs in some of the
species. In this case, six species were represented in each of the subgroups,
with an MR1 protein in one and a PV4 protein in the other forming a link
between the subgroups. Phylogenetic analysis of these proteins might reveal an
evolutionary relationship involving gene duplication, gain, or loss to explain
this complex set of links.

Another complex ortholog graph involved the cytochromes, which are
proteins involved in electron transfer during respiration. The right panel of
Figure 9.6 illustrates an ortholog graph of cytochrome. This graph has two
proteins from CN32 and two proteins from W3181, suggesting a gene duplica-
tion event. Manual curation of these proteins indicated that CN32 and W3181
proteins in the larger subgroup were likely orthologs to the MR4, MR7, ANA3,
Sfri, and SONE proteins, whereas the CN32 and W3181 proteins in the small
subgroup on the right were paralogs. Starlight captured these features by dis-
playing the two duplicated proteins as nodes joined to the group as a “tail.”

9.3.2 Interactive and Iterative Hypothesis Discovery

This section focuses on the value of connecting data-intensive analyses to a
high-performance compute infrastructure via MeDICi to drive iterative, real-
time hypothesis discovery. We used MeDICi to create a single analysis pipeline
for a two-stage iterative analysis of ten Shewanella genomes. This analysis

250 9 Let the Data Do the Talking

Table 9.3. Shewanella species in genome set 2 (GS2)

Species Num Proteins Abbreviation

S. putrefaciens CN-32 4000 CN32
Shewanella sp. ANA-3 4420 ANA3
S. oneidensis MR-1 4401 SONE
S. denitrificans OS217 3780 Sden
S. loihica PV-4 3885 PV4
S. amazonensis SB2B 3668 Sama
S. baltica OS185 4458 OS185
S. sediminis HAW-EB3 4499 Ssed
S. woodyi ATCC 51908 4930 Swoo
S. pealeana ANG-SQ1 4295 Spea

pipeline combined 1) the remote homology detection capabilities of SHOT
to give a cursory view into the possible functions and relative abundance
of functions within each species, and 2) mapping of orthologs between the
Shewanella species to explore the differences and similarities between the
species relative to the functions identified in the first step. Figure 9.7 illustrates
this pipeline.

For this case study, an updated set of ten Shewanella species’ genomes
(GS2) were used. Because these genomes were obtained at a later date than
GS1, there were slight differences in the number of proteins identified in some
of the species. Table 9.3 lists the formal species names, protein counts, and
abbreviated names for the GS2 data set.

For the first analysis phase, the SHOT classifier had already been trained on a
basis set of 4,352 proteins of known structure and function from the SCOP [26]
database. The roughly 42,000 proteins from the GS2 data set were analyzed

MeDlCi Integration Framework (MIF)
Supercomputer

Supercomputer

Genome Data

SHOT

Starlight ScalaBLAST

Species 1

Species 3
Species 2

Species 4

Figure 9.7. MeDICi Integration Framework.

9.3 Real-Time Data-Intensive Hypothesis Discovery 251

Figure 9.8. Exploring remote homolog graphs.

against this classifier using SHOT to determine the relationship between each
of these proteins and the 4,352 “basis” proteins from the SCOP database.

This was done by first calculating BLAST scores for all of the 42,000 proteins
of interest versus the 4,352 SCOP proteins. This was done using ScalaBLAST
on a multiprocessor platform. These scores were used to populate a vector
representation of each of the GS2 proteins. SHOT calculated the inner products
between these vector representations and the support vectors from the trained
classifier to determine remote homology scores. This provided an efficient
categorization of the Shewanella proteins based on remote homology to SCOP
proteins of known structure and function.

To benchmark the performance of SHOT on parallel systems, SHOT calcula-
tions were performed using a dual-dual core AMD Opteron cluster housed in the
Wiliam R. Wiley Environmental Molecular sciences Laboratory (EMSL) using
a varying number of cores. Using 128 cores this task completed in 22 minutes
and using 700 cores the classification task finished in 4.5 minutes. The accom-
panying ScalaBLAST calculations required to populate the SHOT vectors were
included in these run times. Because these applications scale efficiently in par-
allel, it should take proportionally less time on thousands of processors, if
connected to a larger dedicated machine for larger analysis tasks. This calcu-
lation would have taken days on a single workstation, making it a prohibitive
step in the overall workflow. Using multiprocessor architectures eliminated this
bottleneck and allowed us to incorporate SHOT into a real-time workflow.

Our analysis produced thousands of graphs similar to the one illustrated
in Figure 9.2. The left of Figure 9.8 shows an example of such a collection.
From this view, the user can zoom in or out, or filter based on textual attributes
of the edges or nodes. In these graphs, the possible functional role of the

252 9 Let the Data Do the Talking

Sden_34 (34)

Spea_46 (46)

Swoo_63 (63)

OS185_38 (39)
SONE_125 (125)

SPV4_55 (55) Spea_47 (47)

Swoo_64 (64)

Sden_33 (33)

DS185_40 (40)

Sama_32 (32)

Ssed_57 (57)

Figure 9.9. Refining a hypothesis with ortholog graphs.

periphery proteins was inferred from the central SCOP protein. Interrogation
of our SHOT output in this way identified more than 500 proteins in GS2 with
remote homology to the ferric enterobactin receptor (FepA), a protein known
to be involved in iron sensing and iron transport in microbes [27]. The right
panel of Figure 9.8 shows the radial graph with FepA in the center.

The second phase of our analysis addressed determining the relationship
between these ∼500 proteins among the ten species. These proteins were passed
to ScalaBLAST and InParanoidC++ to generate ortholog graphs. Exploring
these ortholog graphs revealed a complex graph (Figure 9.9) that contained
proteins involved in the biogenesis of pili. Pili are appendages required for the
formation of biofilms – structures composed of many cells held together and
protected by an extracellular polymer. Because Shewanella species have the
ability to transfer electrons to an electrode, Shewanella biofilm formation on
iron oxide surfaces formed a simple fuel cell [28]. By combining our observa-
tions of remote homology to iron sensing, and orthologous proteins related to
pili formation, we started to develop a hypothesis focused on proteins involved
in pili formation that may sense iron in the environment and trigger biofilm
formation. In this way, we developed a testable hypothesis arising directly
from the data itself, not from a predetermined line of inquiry. Furthermore, the
protein orthologs shown in the graph in Figure 9.9 reveal that this protein was
present in only eight of the species and that there has been an apparent gene
duplication event resulting in two similar copies (paralogous proteins) in four
of the species. These observations suggested additional testable hypotheses that
1) those species with two copies of this protein may have an enhanced ability
to form biofilms in response to iron, and 2) the two species that did not appear
in the ortholog graph may have lost this ability.

Note that many other cursory hypotheses were attempted from the SHOT
output visualization before we arrived at the ones previously described. Because
the second phase was interactive and very fast, we were able to test and refine

9.4 Discussion 253

many sample hypotheses in a short time. This allowed us in the space of a few
hours to converge on a testable set of hypotheses from exploratory interactions
with the data. In effect, because we did not start with a hypothesis, the patterns
in the data itself suggested interesting relationships that warranted further
investigation. This was a truly data-driven hypothesis discovery exercise.

9.4 Discussion

Data analysis in bioinformatics, and to a large extent biology in general, contin-
ues to be driven by the increasing availability of sequence data and will for a long
time to come. Efficiently processing these large data sets will remain a growing
priority for the foreseeable future. To address these needs, we implemented and
assembled an efficient set of computational tools that took advantage of multi-
processor platforms. Optimized ortholog detection software was implemented
based on the well-tested open source algorithm InParanoid. High-throughput
BLAST was realized using ScalaBLAST. Remote homology detection was
driven by a combination of ScalaBLAST and SHOT, both running on HPC
architectures. This boost in computational efficiency effectively reduced the
analytical time for multiple whole-genome analysis to the point where it was
integrated into a real-time iterative analytical process.

During our work developing high-performance algorithms for biology, it
became clear that the HPC applications themselves were not enough – solving
the throughput challenge alone only pushed the computing bottleneck down-
stream. For example, parsing hundreds of thousands (or millions) of BLAST
output records from a multiple whole-genome analysis into a typical spread-
sheet application to search for patterns was impractical and inefficient. Thus,
one goal of this research was also to demonstrate how visual representations
of the complex relationships found in such large-scale analyses could play a
significant role in alleviating this bottleneck. Visual approaches to organiz-
ing these large genomic data sets have the potential to greatly enhance the
researcher’s ability to find patterns that lead to testable hypotheses. Therefore,
this work presented an analytical process in which high-performance com-
puting and visual analytics came together to provide the user with a highly
interactive environment for evaluating patterns in large, complex genomic data
sets and HPC analysis results.

Specifically, visual representation of the orthologous relationships between
proteins encoded by several Shewanella species made it possible to identify
patterns that were readily recognized visually, but nearly impossible to describe
in topological terms. In some cases, these relationships were straightforward to
interpret biologically (as likely gene duplications/deletions), leading to insight

254 9 Let the Data Do the Talking

that could not have been easily gained from automated processes. For instance,
automated methods would have failed to identify the complex orthologous and
paralogous relationships in the cytochrome proteins described in the first case
study. Shewanella species in particular encode many cytochrome proteins with
subtly (but importantly) different function, specialized for respiration under
various environmental conditions. The variability in respiratory capability of
the species under study was manifest in complex evolutionary inheritance
of cytochromes. Although automated methods might miss much of the rich
detail displayed in the ortholog graphs, a human analyst can quickly recognize
the presence of linked subgroups of cytochrome proteins. With Starlight, it
was also possible to integrate additional data into the visual representation of
our HPC analysis output. The incorporation of protein functional information
meant that we could combine graphical and text-based filtering to explore the
presence/absence of functions relative to the species’ metabolic capabilities.
Specifically, we could use the ortholog graphs to identify completely conserved
or unique proteins among the genomes, and examine their functional role (for
instance, to explore why Sden appears to have lost the ability to reduce nitrate).
Furthermore, integrating additional data sources, such as gene expression pro-
files and global proteomics data, was straightforward, and could provide the
means to investigate differences between species based on a fusion of protein
homology data, functional annotation, gene expression, and protein expression
from a spectrum of experimental conditions.

One limitation of this approach was that scalable HPC algorithms can over-
whelm serial visual applications with the volume of output. Our analyses of
Shewanella genomes required operation of Starlight near the memory limits
of the machine on which it was running. Thus, graph layout and other pro-
cesses required to transform the HPC output to a visual form could become
a bottleneck or limiting factor for larger-scale biological analyses, so contin-
ued development in this area is needed. One potential area for development to
alleviate this problem would be a parallel engine to drive graph layout, data
ingestion, indexing, and filtering.

Starlight was only one of the possible applications that could drive the
visualization in such an analytical pipeline. The modular nature of MIF would
allow users to drive other visual platforms using a similar approach.

We used the MeDICi Integration Framework to build an iterative, auto-
mated pipeline that combined different high-performance analytical tools that
were common steps in many different types of biological analysis. This pipeline
demonstrated that high performance computing resources can be used to reduce
the run time of expensive computations on multiple whole genomes, but
the real power of this approach was that it can be changed to suit a broad

9.5 Conclusion 255

variety of other lines of investigation. Our case studies demonstrated particular
workflows of interest, but it could be changed to add or remove steps in the
analysis process as new analysis is needed.

One of the goals of these methods was to present a real-time analysis of
large-scale biology data. ScalaBLAST + inparanoid C++ presumed, how-
ever, the availability of dedicated compute resources. If parallel visualization
applications were used instead of serial ones, this need would be even greater.
For some small compute clusters, this was a reasonable requirement, but as the
scaling demand increased, finding a cluster that allows on-demand access (as
opposed to batch-mode access) became problematic. The need for on-demand
computing is a key difference between exploratory, data-driven sciences and
computational sciences that focus on first-principles and equation-driven calcu-
lations. For HPC architectures to have the greatest impact for biology and other
exploratory domains in this age of data-driven exploration, new paradigms
need to be developed for giving on-demand compute access from large-scale
machines.

9.5 Conclusion

This chapter demonstrated how data-intensive computation can be integrated
into analytical workflows for biological sciences. One strength of this approach
was that high-performance architectures significantly reduced the time for com-
putational tasks making it possible to embed them in real-time analysis. Com-
bining this with visualization allowed users to operate on very large data sets
using sophisticated analysis to discover a hypothesis from data, rather than
looking for supporting evidence of a hypothesis. Freeing the user to look at
much larger data sets meant they are much more likely to find the unex-
pected. This concept can be translated to many other data-driven science and
intelligence domains. In effect, this technique of combining high-performance
computing, scalable applications, and visualization using MIF lead to a new
way of discovering hypotheses in real-time at the multiple genome scale using
data-intensive computing.

Acknowledgments

MeDICi, the MeDICi Integration Framework, ScalaBLAST, and SHOT were
partially funded through the Laboratory Directed Research and Development
(LDRD) at Pacific Northwest National Laboratory (PNNL). ScalaBLAST and
SHOT were also partially supported by the U.S. Department of Energy (DOE)
Office of Advanced Scientific Computing Research. SHOT received additional

256 9 Let the Data Do the Talking

support from the National Science Foundation under contract 53836A. Signif-
icant portions of the work were performed in conjunction with the Computa-
tional Science Grand Challenge Program at the Wiliam R. Wiley Environmental
Molecular Science Laboratory, a U.S. DOE national scientific user facility at
PNNL in Richland, Washington. PNNL is perated for the DOE by Battelle
under contract DE-AC06–76RLO-1830.

References

1. Markowitz, V., Chen, I. M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Rat-
tner, A., Anderson, I., Lykidis, A., Mavromatis, K., Ivanova, N., and Kyrpides, N.
“The Integrated Microbial Genome System: An Expanding Comparative Analysis
Resource.” Nucl. Acid. Res. 38 (2010): D382–D390.

2. Koonin, E. “Orthologs, Paralogs, and Evolutionary Genomics.” Annu. Rev. Genet.
39, (2005). 309–338.

3. Brent, M. “Steady Progress and Recent Breakthroughs in the Accuracy of Auto-
mated Genome Annotation,” Nat. Rev. Genet. 9 (2008): 62–73.

4. Pagel, P., Mewes, H., and Frishman, D. “Conservation of Protein-Protein
Interactions- Lessons from Ascomycota.” Trends Genet. 20 (2004): 72–76.

5. van Noort, V., Snel, B., and Huynen, M. “Predicting Gene Function by Conserved
Co-Expression.” Trends Genet. 19 (2003): 238–42.

6. Thornton, J., and DeSalle, R. “Gene Family Evolution and Homology: Genomics
Meets Phylogenetics.” Annu. Rev. Genomics Hum. Genet. 1 (2000): 41–73.

7. Ekins, S., Mestres, J., and Testa, B. “In silico Pharmacology for Drug Discovery:
Methods for Virtual Ligand Screening and Profiling.” Br. J. Pharmacol. 159 (2007):
9–20.

8. Altschul, S., Gish, W., Miller, W., Meyers, E., and Lipman, D. “Basic Local Align-
ment Search Tool.” J. Mol. Biol. 215 (1990): 403–10.

9. Oehmen, C. S., and Nieplocha, J. “ScalaBLAST: A scalable Implementation of
BLAST for High-Performance Data-Intensive Bioinformatics Analysis.” IEEE
Trans. Parallel Dist. Sys. 17 (2006): 740–49.

10. Webb-Robertson, B. J., Oehmen, C. S., and Shah, A. “A Feature Integration
Approach for a Generalized Support Vector Machine Pairwise Homology Algo-
rithm.” Comput. Biol. Chem. 32 (2008): 458–61.

11. Alexeyenko, A., Tamas, I., Liu, G., and Sonnhammer, E. “Automatic Clustering
of Orthologs and In-Paralogs Shared by Multiple Proteomes.” Bioinformatics 22
(2006): e9–e15.

12. Li, L., Stoeckert, C., and Roos, D. “OrthoMCL: Identification of Ortholog Groups
for Eukaryotic Genomies.” Genome Res. 13 (2003): 2178–89.

13. Remm, M., Storm, C., and Sonnhammer, E. “Automatic Clustering of Orthologs
and In-Paralogs from Pairwise Species Comparisons.” J. Mol. Biol. 314 (2001):
1041–52.

14. Storm, C., and Sonnhammer, E. “Automated Ortholog Inference from Phylogenetic
Trees and Calculation of Orthology Reliability.” Bioinformatics 18 (2002): 92–99.

References 257

15. Tatusov, R., Koonin, E. , and Lipman, D. “A Genomic Perspective on Protein
Families.” Science 278 (1997): 631–37.

16. Wall, D., Fraser, H., and Hirsh, A. “Detecting Putative Orthologs.” Bioinformatics
19 (2003): 1710–11.

17. Zhou, Y. and Landweber, L. “BLASTO: A Tool for Searching Orthologous Groups.”
Nucl. Acid. Res. 35, (2007): W678–W682.

18. Zmasek, C. and Eddy, S. “RIO: Analyzing Proteomics by Automated Phyloge-
nomics Using Resampled Inference of Orthologs.” BMC Bioinformatics 3 (2002):
14.

19. Chen, F., Mackey, A., Vermunt, J., and Roos, D. “Assessing Performance of Orthol-
ogy Detection Strategies Applied to Eukaryotic Genomes.” PLoS ONE 2, (2007):
e383.

20. Hulsen, T., Huynen, M., dee Vlieg, J., and Groenen, P. “Benchmarking Ortholog
Identification Methods Using Functional Genomics Data.” Genome Biol. 7 (2006):
R31.

21. Risch, J., Rex, D., Dowson, S., Walters, S., May, R., and Moon, B. “The
STARLIGHT Information Visualization System.” In IEEE International Informa-
tion Visualization Conference (IV’97), London, UK, 1997, p. 42.

22. Finn, R., Tate, J., Mistry, J., Coggill, P., Sammut, J., Hotz, H., Ceric, G., Forslund,
K., Eddy, S., Sonnhammer, E., and Bateman, A. “The Pfam Protein Families
Database.” Nucl. Acid. Res. 36, (2008): D281–D288.

23. Gorton, I. Wynne, A., Liu, Y., and Yin, J. “Components in the Pipeline.” Software
IEEE 28, no. 3 (May–June 2011): 34–40.

24. Fredrickson, J. Romine, M. Beliaev, A. Auchtung, J. Driscoll, M. Gardner, T.
Nealson, K. Osterman, A. Pinchuk, G. Reed, J. Rodionov, D. Rodrigues, J. Saffarini,
D. Serres, A. M. Spormann, I., and J. Tiedje. “Towards Environmental Systems
Biology of Shewanella.” Nat. Rev. Microbiol. 6 (2008): 592–603.

25. Hau, H. and Gralnick, J. “Ecology and Biotechnology of the Genus Shewanella.”
Microbiol. 61 (2007): 237–58.

26. Andreeva, A., Howorth, D., Chandonia, J., Brenner, S., Hubbard, T., Chothia,
C., and Murzin, A. “Data Growth and Its Impact on the Scop Database: New
Developments.” Nucl. Acid. Res. 36 (2008): D419–D425.

27. Ma, L. Kaserer, W. Annamalai, R. Scott, D. Jin, B. Jiang, X. Xiao, Q. Maymani,
H. Massis, L. Ferreira, L. and Newton, S. “Evidence of ball-and-Chain Transport
of Ferric Enterobactin through Fepa.” J. Biol. Chem. 282 (2007): 397–406.

28. Biffinger, J., Pietron, J., Ray, R., Little, B., and Ringeisen, B. “A Biofilm Enhanced
Miniature Microbial Fuel Cell Using Shewanella Oneidensis DSP 10 and Oxygen
Reducing Cathodes.” Biosens. Bioelectron. 22 (2007): 1672–79.

10
Data-Intensive Visual Analysis

for Cyber-Security

William A. Pike, Daniel M. Best, Douglas V. Love,
and Shawn J. Bohn

10.1 Introduction

Protecting communications networks against attacks where the aim is to steal
information, disrupt order, or harm critical infrastructure can require the col-
lection and analysis of staggering amounts of data. The ability to detect and
respond to threats quickly is a paramount concern across sectors, and espe-
cially for critical government, utility, and financial networks. Yet detecting
emerging or incipient threats in immense volumes of network traffic requires
new computational and analytic approaches. Network security increasingly
requires cooperation between human analysts able to spot suspicious events
through means such as data visualization and automated systems that process
streaming network data in near real-time to triage events so that human analysts
are best able to focus their work.

This chapter presents a pair of network traffic analysis tools coupled to a com-
putational architecture that enables the high-throughput, real-time visual analy-
sis of network activity. The streaming data pipeline to which these tools are con-
nected is designed to be easily extensible, allowing new tools to subscribe to data
and add their own in-stream analytics. The visual analysis tools themselves –
Correlation Layers for Information Query and Exploration (CLIQUE) and
Traffic Circle – provide complementary views of network activity designed to
support the timely discovery of potential threats in volumes of network data that
exceed what is traditionally visualized. CLIQUE uses a behavioral modeling
approach that learns the expected activity of actors (such as IP addresses or
users) and collections of actors on a network, and compares current activity to
this learned model to detect behavior-based anomalies. Traffic Circle is a raw
network flow visualization tool that is architected to provide detailed views
of very large volumes of traffic (in the hundreds of millions of records per
view) in such a way that analysts can identify features that could otherwise be
obfuscated through analysis of aggregates alone.

258

10.2 Motivation 259

The tools we describe are designed to analyze network flows, a construct
that aggregates individual packets into sessions that summarize the commu-
nication between two IP addresses over a particular combination of source
and destination port. We use network flows because they are ubiquitous; most
enterprises have deployed network flow collection sensors as a way to gather
a useful, albeit imperfect, summary of network activity. In our case, the end
user organizations for our analysis applications commonly use flows generated
by sensors at an enterprise’s internet gateway as as an entry point into analysis
to find interesting patterns, features, or trends. Flows contain connection-level
information (essentially, header data summarizing a connection) and each flow
might summarize a large number of underlying packets. Although packet-level
analysis can provide insight into the contents of a communication (which flows
typically do not), as summaries over all the packets communicated during a
session between two network hosts flows provide a first-order data reduction.
In addition, as network traffic is increasingly encrypted, access to communi-
cation content is no longer guaranteed. Therefore, methods that rely solely on
connection-level variables are increasingly necessary. Network flows remain
a useful element of a cyber security analysis environment simply because a
compromised machine is only useful to an attacker if he can reliably communi-
cate with it. Thus, malicious code should leave some trace on a communication
network.

10.2 Motivation

Ensuring the security of a computing network requires the timely discovery,
and ideally prevention or deterrence, of malicious activities that can represent
threats to information or infrastructure. Although rule-based techniques (such
as signature-based intrusion detection systems) can assist in detecting instances
of known malicious activity, detecting new threats (instances of which have
never been seen, and for which a signature does not exist) poses significant
computational challenges. Detecting statistical anomalies in traffic volumes is
generally insufficient, because large numbers of false positives or false negatives
can result. In the former case, flagging anomalies in diverse and evolving hosts
can burden an analyst charged with resolving them because anomalous activity
alone is not necessarily malicious. In the second case, sophisticated threats
can be buried in seemingly normal-looking traffic. In fact, it is the goal of
the sophisticated attacker to evade detection by making the traffic his malware
generates appear normal.

Our approach to data-intensive analytics acknowledges that human analysts
are by necessity part of the discovery, resolution, and response process. Visual

260 10 Data-Intensive Visual Analysis for Cyber-Security

interfaces are therefore necessary to provide analysts with the means to assess
patterns, identify data features that may be hard to detect except through human
perception, and apply judgment to determine whether an anomaly is malicious
or benign. However, three primary challenges complicate visual analysis of
computer network traffic: data volume, time sensitivity, and the need to focus
analytic effort.

10.2.1 Data Volume

It is common for an enterprise network to generate thousands of flow records
each second, producing billions of flows (amounting to hundreds of gigabytes
of data or more) each day. Although some threats may emerge quickly, requir-
ing the analysis of just a few days of data at most, of frequent concern is the
“low and slow” exploit that may take weeks, months, or years to develop. A
patient attacker, in a deliberate attempt to avoid detection by taking advantage
of the data-intensive analysis problem, may scan a network for vulnerabilities
through just a few packets per day, week, or year – hiding the events his code
generates in massive volumes of legitimate traffic. Given the potential for long
durations over which data must be analyzed to detect such attacks, the data store
from which an analysis may draw can contain terabytes to petabytes of data.
Moreover, the number of unique actors observed on a network challenges con-
temporary approaches. For some of the end user organizations using the tools
we developed for them and discuss in this chapter, tens of millions of unique
IP addresses are seen each month. (The problem of vast numbers of discrete
actors becomes even more challenging in IPv6 addressing.) Data volume is a
leading reason that traditional cyber analytic tools operate in an offline, post
mortem mode: the volume of data simply overtakes the analytic process. Not
only must new data be examined (both automatically and manually) for poten-
tial threats, but historical data must be available for efficient retrieval when
the analyst wants to review it for earlier indicators or compare it to current
events.

Processing, visualizing, and interacting with data sets containing billions
of records per day introduces specific analysis challenges. Visualization of
discrete records is rarely an effective entry point into large data sets. Most
systems for depicting raw event logs are only effective for data sets with tens of
thousands to hundreds of thousands of records. Beyond these sizes, rendering
times and occlusion cause challenges for visual analysis. Moreover, reducing
large data sets down to subsets suitable for such tools means that very small
portions of the source data are actually explored by an analyst; filters must be
applied to either reduce the time period under study to one that is brief enough to

10.2 Motivation 261

contain just the amount of data a tool is capable of displaying, or to select flow
records on the basis of a limited set of attribute-value pairs (such as particular
port numbers). In either case, visualizing such subsets can remove the needed
temporal and logical context of the flows under study. Performing discovery on
small subsets is inefficient and, by preventing indicators only observable over
broad data sets from being detected, quite difficult. The analytic process itself
is hindered when analysts must continually “dip in” to their data repository to
retrieve new subsets but are unable to keep all of the data of interest in view at
once.

10.2.2 Time Sensitivity

Network security is inherently a time-sensitive endeavor. Analysts are faced
with the challenge of identifying potential threats or vulnerabilities as early as
possible, so that significant compromise of data or resources is prevented or
mitigated. Frequently, data collection and analysis infrastructures are designed
to support only forensic analyses of data that may be hours or days old by
the time it is reviewed by analysts. Visualization tools often reinforce this
analysis approach by operating solely in a batch mode, allowing analysts to
issue queries against a repository to retrieve historical information. Tools like
intrusion detection systems (IDSs) assist in real-time analysis by providing
alerts based on predefined conditions (useful for detecting events like SYN
flooding or null HTTP headers). The signatures on which these alerts are based
are frequently static and, although they can be useful indicators for malicious
activity, do not effectively summarize the state of a network for an analyst. The
post-mortem analysis that batch-mode visualization enables often occurs too
late for the analyst to take proactive measures; damage may have already been
done and the network is in triage mode.

The goal of most of the analysis groups with which we work is to analyze data
as soon after its collection as possible. This does not mean that every network
flow needs to be reviewed by an analyst. Rather, our analysts seek broad
awareness of the state of their enterprise sufficient to give them confidence
that current activities are within bounds of acceptability and help them identify
where potential problems might be incipient. Creating such awareness requires
that summaries of network activity be calculated in real time and that visual
displays capable of communicating changes in real time be created. When
analysts perceive patterns or trends of concern, they need to be able to drill into
the summaries to recover additional details and explore the raw data from which
these summaries are derived. Linking visualizations capable of summarizing
aggregate events in vast amounts of network traffic succinctly with those that

262 10 Data-Intensive Visual Analysis for Cyber-Security

enable detailed exploration of raw data can give analysts the power not just to
detect events quickly, but also to resolve them efficiently.

10.2.3 Focusing Analytic Effort

A third analytic challenge, and one that derives from the data volume problem,
lies in giving analysts cues about potentially fruitful paths of investigation.
Given the billions of transactions available per day for analysis, where should
the analyst who is looking for new threats begin? Given a particular indicator
detected by an IDS, where else might activities related to that potential threat
lie? Anomaly detection at the level of a gateway or router can help point analysts
toward activities of interest, but identifying statistically significant anomalies
at the gateway can require large shifts in traffic that a savvy attacker will seek
to avoid. Low and slow attacks that attempt to hide in normal-looking traffic
become extremely difficult to detect.

Our analysts frequently ask for “jump-off ” points for their work. Given a
tip or a clue, analysts can drill into the data and judge the potential impact of
a threat. Generating these tips in a manner that minimizes false positives and
maximizes return on analytic investment is critical for the successful adoption
of visualization tools. One comment we heard many times when talking with
analysts was the desire to know what is normal for their network. If they can
efficiently compare current activities to known normal (or at least acceptable)
profiles for users, hosts, or groups on their network, analysis of the devia-
tions from expected behavior can give a strong starting point for investigation.
More than just useful for anomaly identification, behavioral models also have a
predictive capability. Using models to help predict future states can help orga-
nizations move beyond the “catch and patch” security posture common today.
The result is a new ability to proactively respond to nascent threats based on
the combination of model predictions and observed activities.

10.3 Medici

10.3.1 Architecture Overview

At the Pacific Northwest National Laboratory, the applications we build are
increasingly dependent on processing and visualizing data from multiple het-
erogeneous sensors and simulations. We find that applications over multiple
scientific and analytic domains have similar needs to ingest large volumes of
data, perform complex and often computationally expensive analysis to reduce
the data to some human-readable form, and deliver the results to multiple

10.3 Medici 263

visualization displays. To ease the development and deployment of complex,
high-performance analytic and scientific applications over multiple domains,
we have created a single middleware platform, called Middleware for Data
Intensive Computing (MeDICi).

MeDICi consists of three architectural elements:

1. The MeDICi Integration Framework (MIF), which provides a Java-based
API, runtime, and associated tools for visually building and deploying com-
plex processing pipelines.

2. MeDICi Workflow, which enables a workflow designer to allow a scientist or
analyst to visually create an application from a set of components predefined
in MIF.

3. A facility for the capture and management of application metadata called
MeDICi Provenance.

These components are loosely coupled and may be used in a number of
combinations for any given application.

A typical usage scenario involving all three architectural elements is as fol-
lows: Software developers create processing logic by programming a set of
cooperating modules and encapsulating them as components. These compo-
nents are stored in a library so that they can be retrieved later. Each component,
where appropriate for the application, takes advantage of API methods to cap-
ture and store provenance information in the repository. An analyst then draws
upon this library of components using the Workflow Designer tool that allows
her to query the store and drag components onto a canvas, visually creating a
new application.

A central design principle of MeDICi is to incorporate existing open source
and commercial off-the-shelf (COTS) software products in order to provide
high-performance and enterprise-ready infrastructure. We then build simpli-
fication layers and value-add features that are specific to the domains we
support. Thus, MIF is built on top of a widely used Enterprise Service Bus
(ESB), Mule [1], which provides a multi-threaded service-oriented platform in
which services (called modules in MIF) can communicate over virtually any
communication protocol or messaging scheme. These modules can be easily
“wired together” using a simplified Java API to create robust and modular
event-driven processing pipelines. MeDICi Workflow improves usage of the
OASIS standard Business Process Execution Language (BPEL) [2] by provid-
ing a simplified graphical language that is then transformed to standard BPEL
and deployed to a BPEL engine. MeDICi Provenance uses an open source RDF

264 10 Data-Intensive Visual Analysis for Cyber-Security

repository to store metadata about workflows, allowing scientists and analysts
to review the exact conditions in which a processing result was obtained.

For the network visualization applications being discussed here, the MIF
API was used to build the analytic pipeline, without the use of the other two
architectural elements; thus, the remainder of the discussion will focus on the
usage and implementation of MIF for this network visualization application. A
more complete description of MeDICi, including details of each architectural
element, can be found in [3].

10.3.2 Application Characteristics

We maintain that multiple visualization techniques with different strengths
must be combined to create a full picture of network situational awareness.
This approach requires an underlying distributed software architecture that is
robust, scalable, and deployable in a production environment. Specifically, MIF
supports these features required by cyber visualization applications:

� A wide array of visualization tools are supported, which can be easily added
and removed from the system.

� Analytic routines that filter and aggregate data before it is visualized can be
readily created and added to a processing pipeline.

� Multiple programming languages are supported so that existing or legacy
programs can be incorporated into pipelines with new processing modules.

� Multiple communication protocols are supported so that modules and pro-
grams running external to MIF can send messages over the most convenient
channels.

� The underlying runtime environment is able to process data at a high rate
and have the ability to scale horizontally to accommodate additional sensor
streams and processing routines.

Also, MIF’s flexible service bus supports the addition of arbitrary heteroge-
neous sensor streams. Therefore, this application can be extended to include
additional sensors and processing routines. In fact, a predecessor to MIF was
used to build a Distributed Intrusion Detection System (DIDS), which was
deployed as a test application in a production environment at a large networked
conference [4]. This system had many of the same features of enterprise perfor-
mance and modularity. However, several improvements have since been made
to MIF that make it even easier to construct a pipeline. For example, we have
created a simplified Java API to aid the construction of a distributed appli-
cation. We also have created a graphical component builder that allows the

10.3 Medici 265

Figure 10.1. MeDICi pipeline.

programmer to generate most of the infrastructure code needed to construct a
pipeline while focusing on module implementation.

10.3.3 Application Construction

MIF provides a flexible framework for creating analytic workflows optimized
for high-volume data streams such as network flows. In a MIF pipeline, in-
stream analysis components consume data from upstream producers and pro-
vide derived results to downstream consumers. In a cyber analytics workflow
(Figure 10.1), a MIF ingester pushes data from flow sensors through a process-
ing pipeline that first transforms various flow record formats into the particular
internal schema used by each analysis tool (allowing multiple third-party tools
to be plumbed into the same data pipeline). Downstream consumers create sum-
mary statistics and aggregate traffic into adjustable time bins, both of which are
used in the CLIQUE models described in the following sections. The pipeline
also distributes data to the real-time visualization tools described in the sec-
tions that follow; these tools implement a MeDICi listener that receives and
processes flow records. Finally, the pipeline stores the data that passes through

266 10 Data-Intensive Visual Analysis for Cyber-Security

it in a database that is used to backfill visualization tools with historical records
when needed.

10.3.4 Application Performance

The performance of the MIF pipeline described here was measured against a
dataset in which flow records were captured at a public event over seven days.
For these tests, a day’s worth of data from a particularly busy portion of the data
was replayed against the described pipeline sped up to the maximum rate that the
application could handle. This allowed us to test the bounds of the application
and also provided a basis for a discussion on how the application could scale
out to support much larger workloads. This application communicates with
incoming data streams and visualization tools using Java Messaging Service
(JMS), which is a widely used message broker specification that provides a
publish-subscribe model of network communication. All incoming flow records
and additional summarizations are stored in a relational database management
system (RDMS). JMS, RDMS, and ESB systems are all enterprise-strength
technologies. However, each is challenging to tune for optimal performance
on its own because each is highly sensitive to network topology, latency, and
the intricacies of vendor-specific configuration options. This task is made even
more difficult when an application is built on all three and communicating with
an arbitrary number of visualization displays whose behavior may affect the
overall system. Because of these difficulties, software vendors often generate
high-performance numbers by testing their products using trivial applications
with short bursts of data. By contrast, the intention of these tests is not to produce
the highest possible throughput numbers for an idealized MIF application, but
to represent the performance of a reasonably well-tuned, real-world distributed
network analysis system.

These tests were performed with three separate server-based software pack-
ages: MIF, the ActiveMQ JMS server, and a Postgres database running on a Dell
7500. This is an upper-end desktop machine, but also has a similar hardware
configuration as compute cluster nodes in common use within our organiza-
tion’s current generation of state-of-the art commodity clusters. Therefore, it is
a good choice for a testing platform as it is also a likely deployment platform.
Specifically, the computer has a dual quad core 2.80 GHz Intel Xeon R© proces-
sor with 16 GB of memory. Although MIF does not require a large amount of
memory, it does benefit from a large number of processor cores. This is because
each module in a MIF pipeline (and the corresponding service running in Mule)
is actually deployed as its own server with a dedicated thread pool. This allows

10.3 Medici 267

each module to dynamically adapt to higher volumes of data by increasing the
number of available threads. During the tests, CPU and memory usage was
monitored to help determine where any bottlenecks occurred. In addition to the
pipeline previously described, two additional short programs were created: an
ingester, which simply reads flow records from files on disk and sends them at
an increased rate over a JMS topic to the pipeline and a “performance monitor,”
which is a standalone application that receives messages from the pipeline and
reports both an overall flow record processing rate (measured in records per
second) and a rate for the most recent 30-second interval. The ingester and
performance monitor were run on a separate machine from the MIF pipeline
in order to ensure that their CPU usage did not interfere with that of the other
components. Because each individual flow record is small (each record in this
dataset averages 236 bytes), the ingester uses nonstandard JMS configurations
to improve performance: (1) transacted mode, in which groups of JMS mes-
sages are batched and sent as a single network message and (2) asynchronous
mode in which the sender does not wait for acknowledgement of a message
from the receiver before sending subsequent messages.

The network flow data used to test MeDICi throughput in this application
is real-world data from a large enterprise. The traffic volume varies greatly
over the course of a day. Over the busiest four-hour period, the total average
rate of flow records was 83 records/second, while during the busiest hour,
the rate increased to 145 records/second. This system was first tested at this
“actual maximum” rate, at which the system performs well and an observation
of CPU usage shows that MIF, JMS, and RDMS are not taxed at all. Next,
the maximum throughput was tested by doing runs in which the ingester is
set to send data at increasing rates over several runs of the dataset. For the
best run, the system reported a maximum average throughput of 2,781 records
per second, which translates to processing more than 240 million transactions
per day on a single node. The highest throughput 30-second interval was 3,350
records per second. During this time, neither of the computers involved reached
a CPU usage above 50 percent, leading us to conclude that the network may be
the bottleneck in this case. Reasonable, although nonexhaustive, efforts were
made to tune JMS performance and, to a lesser extent, Postgres performance as
well. MIF performance was tuned by modifying the size of a module’s thread
pool and by changing the size of the JDBC connection pool that was used to
insert records in the database.

Because our tests showed that a single node could process approximately one-
tenth of the network flow data we typically see in a large multi-site enterprise,
MeDICi provides acceptable performance: a ten-node cluster is a sufficient, and

268 10 Data-Intensive Visual Analysis for Cyber-Security

25

2005.11.16 20:12

Current asset

20

20:00 21:00 22:00

Asset search

All

23:00 00:00 01:00
play 2005.11.17 00:12

24

23

22

21

20

2

CLIQUE

behavior DNS-RQ EMAIL FTP ICMP IH OOB SES SSH WEB

HelpFile Edit Arrange Screen shot ReportsFocus Groups

Figure 10.2. CLIQUE interface.

reasonable, network flow processing infrastructure. Alternatively, because such
a cluster would represent the minimum computational resources necessary to
keep up with network traffic, additional compute resources would enable more
complex automated data analysis to be moved from visualization displays to the
service bus to improve client response time and make the analysis algorithms
available to a wider array of client tools.

10.4 Clique

Achieving real-time situational awareness of network activity requires tech-
niques for summarizing large amounts of network traffic and for presenting
those summaries in an easily understood interface. Although visualization of
raw flows in large volumes can help analysts understand the current state of
their networks and detect anomalous events, visual techniques that aggregate
flows to higher-level abstractions can help analysts better cope with data scale.
We have developed a behavioral summarization tool called CLIQUE, which
bases its interface on LiveRac [5], that generates statistical models of expected
network flow patterns for individual IP addresses or collections of IP addresses
(each of which we term an “actor”), against which current activity is compared
(Figure 10.2). CLIQUE uses MeDICi’s ability to perform in-stream analyses
to present real-time views of network behaviors.

The majority of changes made to LiveRac were done to the model and
controller for the interface. Major changes include:

� Columns and rows were updated to feed off of data from the database
(columns) and lists of user configurable groups (rows).

10.4 Clique 269

� Addition of the ability to listen to MeDICi’s feed of data and update the
interface without further database calls.

� Calculation and display of behavioral plots.

The objective of CLIQUE is to help humans discover and detect potentially
malicious events in vast amounts of streaming data. Previous research in this
area has focused on two standard approaches for event identification in trans-
actional data: signature-based methods and statistical anomaly detection [6].
Signature-based approaches are successful at identifying instances of known
patterns, whereas anomaly-based approaches use general heuristics and sta-
tistical variances to identify patterns of interest. In practice, however, neither
method alone is sufficient.

Recognizing that a gap exists between signature- and anomaly-based
approaches, we implement a modeling approach that can be used in either
a supervised or an unsupervised mode. Rather than producing visual displays
that depict all of the raw data, we use a multi-level classifier and temporal
model builder to reduce and condense the data visualized to an amount more
suited to human interaction. The goal is to classify the data into patterns that
represent categories of behavior inherent in computer network traffic. These
patterns are then further classified, based on temporal sequence, to create
higher-level abstractions of the activity in a network. This multi-level classi-
fication approach, coupled to a visual front end, allows the end user to view
high-volume data in a much more condensed, information-rich fashion than
is possible with raw flow visualization; this approach also attempts to cap-
ture the structure of an actor’s traffic such that the behavioral representations
serve as complete and useful summaries of the activities in which an actor is
engaged.

Behavioral models such as those produced in CLIQUE are useful for anomaly
detection, because they can be used to compare expected behavior against actual
behavior. Rather than simply comparing expected traffic levels to observed
signatures or applying a single policy-based model to each actor, CLIQUE
behavioral models take a functional approach to anomaly identification. Such
models learn the typical behavior of each actor over multiple kinds of activity
(including port ranges and traffic types) and use these baseline representations
as a predictor (over minutes, hours, days, or more) for that actor’s traffic.
These models are also helpful because they can also help identify what is not
happening in an actor’s traffic, which can be as useful an indicator as what
is happening that shouldn’t be. Times when the model predicts a certain kind
of activity that doesn’t occur can point to behavioral changes indicative of
a potential threat (of course, adding contextual information to these models

270 10 Data-Intensive Visual Analysis for Cyber-Security

that indicates, for instance, that an actor is on vacation can help resolve such
anomalies).

10.4.1 Behavior Modeling

CLIQUE builds behavioral models for each actor on a network. Models are built
in real time in response to user interactions, rather than being predefined. This
approach allows models to be created for arbitrary collections of IP addresses on
a network. The analyst configures CLIQUE initially by specifying groupings
to use when CLIQUE launches. For instance, the analyst might configure
CLIQUE to show behavioral summaries for aggregations of IP addresses such
as buildings in an enterprise, or subnets, or organizational units. Later, we
describe how drilling down through the CLIQUE interface allows the analyst
to decompose these actor groups in subgroups and (eventually) retrieve models
for individual IP addresses.

Figure 10.3 outlines the process for creating behavioral models and cal-
culating behavioral deviations. The behavior modeling process begins with
identifying natural clusters of flow records. A streaming classifier within the
MeDICi pipeline creates categories of flow records based on shared attributes
(step 1 in Figure 10.3). We classify each flow into one of sixty-five categories
developed by cyber-security analysts using a set of rules based on port, proto-
col, and TCP flags. When each flow enters the pipeline it is assigned a class.
For a specific IP or group of IPs, we sum the number of occurrences for each
category at a user-defined temporal resolution. For the purposes of the current
work, we use an interval of 1 minute. This interval was chosen based on analyst
assessment of the smallest useful time window over which network activity
might need to be assessed. To allow for other interval selections, the pipeline
configuration could be updated or aggregation of intervals could be done.

10.4.1.1 Symbolic Aggregate ApproXimation
Although we classified each flow into one of the characteristic categories of
activity on a network, we have not yet reduced the number of flows to be ana-
lyzed. To accomplish this reduction, we use a technique called SAX – Symbolic
Aggregate approXimation that allows streaming dimensionality reduction and
generation of a representation (word) based on time series discords [9, 10].

The use of SAX begins in step 3 of Figure 10.3 where data is sent to the SAX
module from the CLIQUE data model. For each channel (the temporal activity
for a given category), the interval aggregations and the average historic interval
aggregations are sent to the module. This provides the current and historic state
for the channel at the visible time window. The output of the SAX module
is a given actor’s behavior. The actor’s overall behavior can be considered

C
C

D
D

E
F

F
E

E
F

F
E

C
C

C
C

A
A

A
A

C
B

C
C

S
A

X
S

ub
se

qu
en

ce
s

S
A

X
 S

eq
ue

nc
e

S
A

X
 to

 G
ly

ph
s

C
la

ss
 G

ly
ph

A
ct

or
 B

eh
av

io
r

an
d

S
eq

ue
nc

e
D

ev
ia

tio
ns

C
la

ss
 G

ly
ph

s
to

C
la

ss
 B

eh
av

io
rs

C
la

ss
 G

ly
ph

C
ac

he

C
la

ss
 G

ly
ph

S
ub

se
qu

en
ce

s

6

T
im

e
D

at
a

S
eq

ue
nc

e
3

S
eq

ue
nc

e
to

S
A

X

457

9

10 C
LI

Q
U

E
 U

I

C
LI

Q
U

E
M

od
el

F
lo

w
 D

at
a

C
at

eg
or

iz
at

io
n

M
eD

lC
i

F
lo

w

1

A
gg

re
ga

tio
n

2

C
D

D
D

E
C

B
C

E
D

D
C

C
A

A
A

Fi
gu

re
10

.3
.

B
eh

av
io

r
m

od
el

in
g

pr
oc

es
s

flo
w

.

271

272 10 Data-Intensive Visual Analysis for Cyber-Security

–3
ABCDC

C

D

C

B

A
–2

–1

0

1

2

3

Figure 10.4. SAX time series conversion.

the temporal activity for each category over time, akin to monitoring a multi-
channel data recorder. We convert the stream of cluster labels applied to each
actor’s flows into a SAX representation by aggregating on the cluster label and
using the values over time as input. The SAX representation generates a “word”
that symbolizes the activity for a given channel (step 4 in Figure 10.3). This
word can be generated by creating a plot of the activity level for a particular
channel over time, then segmenting the plot into sections along the y-axis based
on the normal distribution of activity. We then assign each y-axis segment a
letter from alphabet defined by SAX. The alphabet is determined by the level
of resolution desired. If only 4 characters are desired, then A, B, C, and D
comprise the alphabet. For a given time interval, the series is segmented along
the x-axis and each x-axis segment is assigned a character from the alphabet
based on where the segment lies on the normal distribution curve (characters
assigned to the y-axis segments). Combining the characters for each segment
produces a word.

At the same time as a SAX representation of current activity on a network is
generated, we create a SAX representation of historical activity. The historical
model takes into account minute-of-week traffic activity averages for the past
three weeks. The current and historical SAX strings are compared using an
Edit Distance [11] string comparison algorithm. For each actor on a network,
we compute a deviation score for each of the 65 categories of traffic CLIQUE
monitors as well as a summary score across categories. The deviations are then
sent back to the client (step 9 in Figure 10.4) where the deviation value for
a given time interval is used to plot behavioral anomalies in the “behavior”
column of the CLIQUE visualization. These deviations are also compared

10.6 Traffic Circle 273

against alert thresholds that an analyst has previously established and control
the color scheme used in the background of each cell.

10.5 Interaction

CLIQUE uses the LiveRac rubber-sheet interaction technique. To aid scala-
bility; analysts can view highly generalized summaries of traffic in a heatmap
style display. They then can zoom into a single heatmap cell to see greater detail
in a variety of statistical charts; as analysts zoom in, they first see “sparklines”
and then full data tables – the level of detail adapts to the level of zoom as
seen in Figure 10.5. CLIQUE shows flow activity levels for each actor across
a range of predefined categories (such as web, ftp, and email) as well as a
summary “behavioral” signal that reflects the deviation of that actor calculated
from the SAX module. This behavior model, which can evolve over time, gives
the analyst a sense of what is normal or expected for each actor.

Users can set thresholds in CLIQUE that alert them when an actor’s traffic
departs from expectations. For each category, a number of levels can be defined.
Each level in turn can be assigned a value and color to encode that value. The
threshold verification algorithm can be based on several factors in the data
(min, max, mean, and so on). When the selected factor is within a threshold
range, the background of the given cell is colored with the chosen encoding.
This color-coding allows quick understanding of the current state for each
category for each actor. For example in Figure 10.5, several cells are shaded
darkly, depicting issues, whereas others are shaded lightly, signifying a valid
state. Behavior can also have a threshold encoding defined to alert users when
deviations have gone past the threshold.

10.5.1 Results

A key attribute of the tool is the ability to determine the normal state of a
given network. Any departure from normal triggers an alert that can be further
investigated. If an actor is showing as normal yet channels are showing past
thresholds it may be an indication that thresholds need to be reevaluated. One
can observe the normal state of the network at a high level and drill into groups
to view finer detail when needed.

10.6 Traffic Circle

Analysis of aggregates, as is performed in CLIQUE and other tools such as
Isis, [12] is one way to create visual representations that scale effectively.

1

4 In
te

rm
ed

ia
te

D
et

ai
l

to
F

ul
l D

et
ai

l

S
pa

rk
lin

e
to

In
te

rm
ed

ia
te

D
et

ai
l

H
ea

tm
ap

to
S

pa
rk

lin
e

2

3

Fi
gu

re
10

.5
.

C
L

IQ
U

E
in

te
rf

ac
e

sh
ow

in
g

se
m

an
tic

zo
om

in
g.

274

10.6 Traffic Circle 275

Depictions of summary statistics such as counts scale indefinitely as long as
the underlying mechanism used to generate those statistics similarly scales.
However, aggregates alone can occasionally obfuscate events in large data
volumes. Sometimes, understanding the characteristics of individual transac-
tions or their temporal pattern is necessary to resolve a behavioral anomaly
discovered in CLIQUE.

To address this limitation, we have constructed a visual interface called
Traffic Circle that complements CLIQUE by presenting detailed plots of indi-
vidual flows. Our aim in developing Traffic Circle was to display as much flow
data as possible in an interactive, exploratory interface. In their effort to under-
stand “normal” traffic, our analysts want to learn as much as possible about
the state of their networks, and raw plots of flow activity can help them learn
what normal looks like and spot off-normal conditions. Typically, occlusion
and rendering issues mean that plots of raw data may not scale beyond tens
of thousands to hundreds of thousands of flows. This scaling challenge means
that, in some enterprises, analysts can see at most a few seconds of traffic at
once before the limits of the visualization tool are exceeded.

Our motivation in developing Traffic Circle is that, although summarization
techniques like CLIQUE are effective at providing overviews of very large traf-
fic volumes, there are always features in data that the human perceptual system
is able to detect more readily than an automated system would – particularly
those unexpected features that we would not even have known to train an auto-
mated system to look for. By displaying large amounts of network traffic in an
interactive plot – up to hundreds of millions of individual flows – we are able
to support the deeper exploration of features initially discovered in CLIQUE
and allow analysts to step back and see large segments of their network traffic
transit their screen in real time. Such massively scalable plots introduce their
own visualization challenges. Displaying large flow volumes on standard reso-
lution displays can create occlusion problems, resulting in an undifferentiated
mass of visual features that prevents the analyst from perceiving clear patterns.
In addition, rendering and interacting with displays depicting millions or more
flow volumes can be sluggish.

We have developed Traffic Circle to mitigate each of these challenges. To
display large flow volumes on standard resolution, Traffic Circle includes a
mechanism for assigning flows to “layers” based on common attributes; these
layers can be toggled on and off to help reduce occlusion issues. Traffic Circle
has also been successfully demonstrated on very large-resolution displays (up
to 15.5 million pixels), helping to reduce occlusion even when many layers are
visible at once. To render and interact with millions of flow records, we leverage
hyper-threading to render large data sets efficiently. Flows are partitioned across

276 10 Data-Intensive Visual Analysis for Cyber-Security

Bytes :0–1000

655350Source PortRadius :

Destination Port : 80

Bytes : 10000

Nov 13 - 13:00:00Nov 13 - 14:00:00

Nov 13 - 12:00:00Nov 13 - 15:00:00

File Edit
Nuance - Traffic Circle

View

Nov 13 - 15:00:00

Figure 10.6. Traffic Circle interface

all available threads, with each thread responsible for drawing just those flows
in its partition.

10.6.1 Interface

To the analysts with whom we worked in developing Traffic Circle, time is the
primary attribute used to understand flow data. They wanted an easy way to
perceive temporal patterns in their data, with the ability to drill down into very
short time periods or scale up to very long time periods. Traffic Circle uses a
circular “time wheel” metaphor to display flow records as arcs (Figure 10.6).
Traffic Circle’s time wheel metaphor is consistent with an analog clock. The
earliest time in the data set under examination is located at the top of the circle,
to the right of the small gap. Time flows clockwise around the circle and ends
at the top to the left of the gap.

Flows are ordered around the wheel by their start time, and their arc length
corresponds to duration. The radial position of a flow is determined by a user-
selectable attribute such as source or destination port or packet count. The
attribute to which the radius maps is selected via a drop-down list at the top
right of the user interface. Next to the drop-down list is a double-headed slider

10.6 Traffic Circle 277

that enables the analyst to use a fisheye zoom capability to reveal additional
detail where it is occluded (such as at the center of the circle). (A rectilinear
plot option is also available and is discussed in the following section.)

In addition to loading static data sets from the backfill database shown in
Figure 10.1, Traffic Circle can also operate in real time by receiving flow records
from the MeDICi pipeline. When in streaming mode, the circle slowly rotates
clockwise, adding new data to the beginning and removing data from the end.
In this mode, it serves as a live situational awareness display that gives the user
a near-real-time display of current activities. We find it particularly effective as
an ambient display in the analyst’s workspace; by observing the plot’s activity
over a period of days, the analyst can learn what typical activity looks like and
can therefore spot off-normal events readily. When occupying a secondary or
tertiary display in the workspace, the analyst can use peripheral vision to assess
whether the plot currently “looks like it should” for the flow sensors that are
feeding it. When features appear that look off-normal, the analyst can monitor
their evolution while performing other work.

10.6.2 Interaction

A key motivation for using a circular interface is the affordance it provides for
direct manipulation to zoom in and out in time. Analysts can “spin the wheel”
to adjust the time period shown (from seconds through years), without the
need to readjust mouse position. Additionally, Traffic Circle draws upon the
ability to spot periodic elements that spiral plots have been shown to provide
(albeit a lesser degree due to being a single circle) [13]. This ability helps in
identifying features such as beaconing or port scanning that could occur for
more than very short or very long periods. Traffic Circle provides a natural
method of time zooming; the user simply grabs a time label on the edge of the
circle and drags it around the circle. Time can be added or removed from both
ends of the visible data. The user grabs a time label on the right side of the
circle to interact with the start time and drags clockwise to add time and counter-
clockwise to remove time. The user grabs a label on the left side of the circle
and drags counter-clockwise to add and clockwise to remove time from the end
time.

Traffic Circle uses traditional pan/zoom functionality as well as a radius
and time zoom. By default, the value of the radius at the center of the circle
is zero and the value at the outside edge is the maximum data value for the
selected parameter. For example, if the user has selected to order the radius
by “source port” and the largest source port in the loaded data is 5,000, then
the outside edge of the radius corresponds to 5,000 and the center to 0. The

278 10 Data-Intensive Visual Analysis for Cyber-Security

user can independently adjust the inner and outer radius values to be viewed
within the current range causing the data to spread out across the radius and
producing less overplotting. Data that are located near the center of the circle
view are compressed as the circumference in the center of the circle is shorter
than on the outside of the circle. To minimize this effect, users can turn on a
fisheye mode that stretches the data to fill the circle as the radius sliders at the
top right of the interface are adjusted. Traffic Circle can also reverse the order
of the radius.

Analysts use filters based on flow parameters to color or hide certain kinds of
traffic, reducing noise and revealing features that are otherwise occluded. The
filter panel, on the right side of the interface, lists the filters that are currently
active. The filters are ordered so that the top filter in the list takes priority over
any filters below it. The data are rendered in order starting with the bottom filter,
ensuring that the topmost filters are not occluded by data that matches a filter
that is lower on the list. Each filter behaves like a layer, allowing the analyst to
toggle the filter between three states: on, off, and hidden. In the “on” mode, the
color corresponding to the filter is used to paint the flow arcs that match that
filter. In the “off” mode, the arcs corresponding to the filter are drawn in
their default white (uncolored). In the hidden mode, the arcs corresponding
to the filter are hidden from view. By selectively hiding layers, analysts can
wade through large amounts of traffic efficiently and can overcome occlusion
problems resulting from overplotting.

A radial selection device allows the analyst to retrieve additional information
on a flow collection depicted in Traffic Circle. Summary tables that aggregate
flow characteristics for a given selection can be retrieved, and through those
tables the analyst can drill down to raw flows.

Although the main display mode of Traffic Circle is circular, there is also a
rectilinear mode in which Traffic Circle displays data as a traditional scatterplot,
with time on the x-axis and an analyst-selectable attribute of the flows on the
y-axis. The usefulness and simplicity of rectilinear plots has made them a
standard plot for network flow data. For some users the rectilinear plot option
provides a more familiar interface, although it removes the “spinning” inter-
action affordance for time zooming found in the radial plot. The user must
instead repeatedly pick up and reposition the mouse to adjust the time period.
Both views of the data incorporate the layering and time selection needed for
exploratory analysis.

The circular plot, by providing an alternative to a Cartesian plot, provides a
pattern identification aid. Simply changing the way that data are portrayed for
an analyst from a Cartesian to a radial plot can present features that encourage

10.7 Case Study 279

exploration. Certain features appear more readily in either the circular or the
rectilinear mode.

10.6.3 Performance and Scalability

Traffic Circle has been operationally demonstrated at data volumes upward of
125 million flows per analysis session, and uses a multi-threaded architecture
to provide interactive exploration of large data sets. We have used a high-
performance database from Netezza to enable query responses in interactive
time as the user manipulates the interface. The scalability of Traffic Circle
means that analysis is not bound by small data extracts that may prevent the
full picture of a threat from being understood.

Issues with plotting flow data in a circular view include render time and the
length of the arcs at different radius positions. The amount of time to render
arcs is greater than the amount of time to render lines. Comparably, this means
that the circular view renders more slowly than the rectilinear view. To address
this issue, Traffic Circle uses a multi-threaded drawing engine to minimize the
render time and maintain interactivity at large data volumes.

Screen resolution and display size become relevant when visualizing one
glyph per flow. As display size and resolution decrease, overplotting increases.
Visualizing data sets containing more than 1 million records on a standard
desktop display results in overplotting, sufficient to entirely obscure any discrete
features. To address this challenge, we have begun experimenting with running
Traffic Circle and CLIQUE on large, high-resolution displays. In the powerwall
view shown in Figure 10.7 capable of rendering 15.5 million pixels, we are
interacting with upwards of 5 million flows at once. The ability to detect visually
individual features at this data volume becomes possible.

10.7 Case Study

The following scenario depicts a possible interaction with the tools described
to explore a cyber event. This scenario is informed by our interactions with
analysts in cyber security organizations and captures how Traffic Circle and
CLIQUE fit into analyst workflows. The ability of Traffic Circle and CLIQUE to
support both real-time and forensic analyses enables analysts to detect current
events and use historical data to understand them in context. In this scenario,
both Traffic Circle and CLIQUE are installed on an analyst’s workstation. The
MeDICi framework is configured to output data to the tools and a backend
database.

280 10 Data-Intensive Visual Analysis for Cyber-Security

Figure 10.7. Traffic Circle rendered on a high-resolution Powerwall.

The analysis begins with CLIQUE and Traffic Circle both operating in
streaming mode. The analyst is going through her normal daily routine: inves-
tigating items, answering emails, and performing other tasks. On one of the
displays, Traffic Circle and CLIQUE update with the current network traffic
on a time interval defined by the analyst, in this case 1 minute. As the analyst
works, she notices that the color encoding for the behavior cells in one of the
IP address aggregations she monitors – for Building A on her organization’s
campus – has changed from green to yellow. (Analysts can use any aggregation
of IP addresses they wish.) This change signals to the analyst that behavior has
started to deviate from the normal calculated by the SAX algorithm. The ana-
lyst makes a note to watch the group, but does nothing yet. As time progresses,
the encoding shifts to red, signaling that the behavior for that group is highly
deviant from its norm.

She leaves this instance of CLIQUE open on her desktop to monitor real-
time traffic and opens a second CLIQUE window to explore the new anomaly
more closely. The analyst adjusts the CLIQUE timeline to incorporate a larger
amount of time to show the progression of Building A’s behavior. She drills
down into the Building A group by double-clicking its row. CLIQUE expands
the heatmap to show one row for each room in the building. The analyst can
now see that the behavior cell for Room 10 is colored red, whereas the other
rooms are mostly gray and blue – this indicates that Room 10 is causing
the majority of the behavioral deviation for the group, starting at 7:00 AM.
Looking at the individual traffic type charts for Room 10, the analyst notes

10.7 Case Study 281

that typical behavior comprises web traffic. However, today there seems to be a
large amount of SESsion (SES) traffic on port 445. SES traffic represents valid
session traffic that could not within another category.

The analyst recalls a report that recently went out from Gartner about port
445 traffic and a vulnerability in Microsoft’s Message Block Protocol (SMB)
[14]. Because of what the tools are reporting and the recent news, she decides
to investigate further.

CLIQUE has provided the entry point to the problem: a given machine is
acting outside of its normal behavior on port 445. To explore the data comprising
this event in more detail, the analyst turns to Traffic Circle. Traffic Circle is
running in real-time mode on her desktop, and she observes the patterns to
determine whether this view of all traffic looks similar to its typical view. She
applies a filter to highlight port 445 traffic for all machines on her network and
observes that the density of flows on port 445 appears to be increasing over the
past few hours. To investigate the early stages of this event, the analyst adjusts
the time wheel to show the same time range as CLIQUE is displaying. She
pauses, the streaming updates to Traffic Circle so that she can examine data
from earlier today.

She filters the current Traffic Circle view, which had been showing all net-
work flows from across her organization, to show just traffic whose source
or destination is an IP address in the address space assigned to Building
A. She loads a summary statistics table for the flows she has highlighted –
those on port 445. Traffic Circle aggregates these statistics by remote IP
address, so she sorts the table by the number of flows to each remote IP.
She sees that the majority of port 445 traffic is going to a small handful of
remote IPs.

The analyst decides to double check her assessment by examining the rest of
the port range to determine if there is an increase in activity across the range or
just with port 445. She toggles off the port 445 filter and sees that the remaining
traffic seems as she expects it. The traffic appears to be distributed evenly across
the port range with the majority of sessions being short in duration. She creates
a new filter to contain this other traffic on its own layer, and toggles the new
layer off to show just port 445 traffic. The analyst selects a particularly busy
section of the circle and highlights the traffic.

Using the attribute space drop-down list, the analyst switches the radial axis
to show local IP addresses as the radius of the circle. The previously highlighted
flow records remain highlighted but are shown in the new attribute space. It
is immediately apparent to the analyst that the majority of the traffic is along
a single line in that attribute space, signifying that the port 445 traffic is all
coming from the same source.

282 10 Data-Intensive Visual Analysis for Cyber-Security

The analyst creates and applies a new filter for the remote IP range in
question, filtering out all other flow data. The analyst can now explore what
other traffic is going to that IP range. She also saves the collection of filters she
has made, as a record of her work and as a discovery aid she can share with her
team. She can pass this filter set on to a colleague who will explore the traffic
between the local and remote IPs she identified in more detail.

10.8 Related Work

As the number and sophistication of cyber attacks increase, the challenge for
businesses to protect their networks has become more difficult. As a result, there
have been several contributions to the domain of flow analysis and visualization
to assist with the problem. Some, like Traffic Circle and CLIQUE, make use
of flow data to create various charts depicting attributes of network traffic [15–
17]. Others look at the problem a different way and show the connectivity of
different systems, vulnerabilities, and the attack paths that can be derived from
that data [18–20]. A variety of complementary approaches should be used in
any operational activity.

Neither Traffic Circle nor CLIQUE display network connectivity graphs
showing possible connections from one IP to another. The Bundle Diagram
available in FloVis [20] is one such tool that visualizes flows between IP
addresses by bundling these edges together on a circular plot. By bundling
the edges, FloVis simplifies the visualization and minimizes overplotting. The
input to FloVis is processed SiLK flows that have been placed into a relational
database, rather than real-time data as in our approach.

Another connectivity graph, used to visualize attacks, is VisFlowConnect
[20], which does not bundle edges such as FloVis. However, this system does
have the ability to accept streaming NetFlow records from a socket. Because
of the streaming nature of VisFlowConnect, it could easily be incorporated
into the MeDICi architecture, adding another capability to the suite of tools
all operating on the same data. Although the edge bundling in FloVis can
be easier to navigate and find patterns in than a nonbundled plot, it may be
harder to incorporate such plots into our MeDICi architecture because of the
preprocessing required.

Like Traffic Circle, many existing flow visualizations are 2-D rectilinear
graphs that show some attribute along the y axis, and time along the x axis. An
example of this is the Activity Plot in FloVis, which shows IP addresses and
their activity over time [20]. The plot uses color to encode attributes to allow
the user to see issues at a glance. Another use of this type of visualization is
seen in Abdullah et al., which uses such plots to detect intrusion [15].

10.9 Future Work 283

CLIQUE uses 2D rectilinear plots exclusively. Similar to Abdullah et al., the
plots are mostly flow counts over time, with the addition of a behavior column.
Intrusion is a subset of activity that can cause deviations from normal for a
given actor. The FloVis Activity Plot uses a similar visualization as the heat
map created by CLIQUE, which uses thresholds to determine color encoding.
Changing the encoding to depict an activity metric in CLIQUE could be possible
with minor changes.

A third type of visualization can be termed “nonstandard” plots. Tools in this
category would consist of visualizations such as Flodar [17], the follow on work
on Flodar by Blake [21], NetBytes in FloVis [20], and Traffic Circle. Flodar and
Blake use a platter visualization to show network traffic and the activity of a
given IP address on that network. Blake contributes the ability to accommodate
dynamic networks. The platter uses time as a radius and plots intervals toward
the center of the platter. IP addresses are color encoded based on their role in the
network. By remaining active the column (for an IP) remains on the outermost
edge of the plot. The platter also visualizes data in three dimensions, having
the height of a given column represent the amount of activity for a given IP.

NetBytes uses 3-D space to visualize historical perspective instead of ani-
mation [20]. The purpose of using a static plot is to minimize change blindness
that can be introduced with the use of animation.

10.9 Future Work

The behavioral modeling approach implemented in CLIQUE lends itself to
other domains, and we intend to explore applications of the modeling tech-
nique in analyzing the transactional activity of Supervisory Control and Data
Acquisition (SCADA) systems and the power grid. To improve our models’
sensitivity and their ability to summarize accurately the activities of an indi-
vidual actor, we plan to incorporate other types of log files into our models.
Records such as syslogs and other host application events can provide additional
nuance to the models. The application of sequence detection techniques from
bioinformatics can also be used to identify commonly recurring subsequences
in our vocabulary (which might be benign), subsequences that are known to be
indicative of malicious activity, and very rare subsequences (which might be
suspicious new threats).

A further challenge with behavioral modeling is ensuring that behaviors that
analysts do not want included in the model are removed from the source traffic.
The risk of not doing so is that malicious activities are unwittingly learned as
normal traffic. We are exploring techniques that allow analysts to flag certain
suspicious traffic as traffic that should not to be incorporated into the model and

284 10 Data-Intensive Visual Analysis for Cyber-Security

to use the CLIQUE classifier in a semi-supervised mode that allows analysts to
remove entire clusters of traffic that do not have a ready benign explanation.

Although CLIQUE and Traffic Circle operate over the same live data streams
and backfill database, we anticipate coupling them more tightly. It should
be possible to instantiate Traffic Circle directly from within a CLIQUE cell,
launching a detailed flow chart from a CLIQUE aggregate.

10.10 Conclusion

Combining Traffic Circle and CLIQUE in a near real-time environment, pro-
vided by MeDICi, enables network support staff to visualize traffic as it occurs.
By providing this capability, potential issues can be investigated as soon as
behavior deviates from normal. We have discussed how CLIQUE can pro-
vide a jump-off point for investigation in other tools that do not abstract the
level of information such as Traffic Circle. Traffic Circle enables an investi-
gator to quickly view potential threats contained within raw flow records and
apply many different attribute spaces and color encoded filters. The three tools
together present an environment for defense-in-depth network visualization.

References

1. “Mule Enterprise Service Bus: What is Mule ESB?” Accessed July 23, 2010,
http://www.mulesoft.org/what-mule-esb.

2. “OASIS Web Services Business Process Execution Language: Specification version
2.0.” Accessed July 23, 2010, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.
html.

3. Gorton, I., Wynne, A., Almquist, J., and Chatterton, J. 2008. “The MeDICi Integra-
tion Framework: A Platform for High Performance Data Streaming Applications.”
In Proceedings of the Seventh Working IEEE/IFIP Conference on Software Archi-
tecture (February 18–21, 2008). WICSA’08. Washington, D.C: IEEE Computer
Society, 95–104.

4. Wynne, A., Gorton, I., Almquist, J., Chatterton, J., and Thurman, D. 2008. “A
Flexible, High Performance Service-Oriented Architecture for Detecting Cyber
Attacks.” In Proceedings of the 41st Annual Hawaii international Conference on
System Sciences (January 07–10, 2008). HICSS. Washington, D.C: IEEE Computer
Society, 263.

5. McLachlan, P., Munzner, T., Koutsofios, E., and North, S. 2008. “LiveRAC: Interac-
tive Visual Exploration of System Management Time-Series Data.” In Proceeding
of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Comput-
ing Systems (Florence, Italy, April 05–10, 2008). CHI ’08. New York, NY: ACM,
1483–92.

6. Cahill, M. H., Lambert, D., Pinheiro, J. C., and Sun, D. X. “Detecting Fraud in
the Real World.” In Handbook of Massive Data Sets, edited by J. Abello, P. M.

References 285

Pardalos, and M. G. Resende, 911–29. Norwell, MA: Kluwer Academic Publishers,
2002.

7. Dutta, M., Mahanta, A. K., and Pujari, A. K. “QROCK: A Quick Version of the
ROCK Algorithm for Clustering of Categorical Data.” Pattern Recogn. Lett. 26, 15
(Nov. 2005): 2364–73.

8. Domingos, P., and Hulten, G. 2000. “Mining High-Speed Data Streams.” In Pro-
ceedings of the Sixth ACM SIGKDD international Conference on Knowledge Dis-
covery and Data Mining (Boston, Massachusetts, United States, August 20–23,
2000). KDD ’00. New York: ACM, 71–80.

9. Keogh, E., Lin, J., and Fu, A. D. “HOT SAX: Efficiently Finding the Most Unusual
Time Series Subsequence.” In Proceedings of the Fifth IEEE International Con-
ference on Data Mining (November 27–30, 2005). ICDM’05. Washington, D.C.:
IEEE Computer Society, 226–33.

10. Lin, J., Keogh, E., Lonardi, S., and Chiu, B. 2003. “A Symbolic Representation of
Time Series, with Implications for Streaming Algorithms.” In Proceedings of the
8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery (San Diego, California, June 13–13, 2003). DMKD ’03., New York, NY:
ACM, 2–11.

11. Levenshtein, V. I. 1966. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady. 10 (1966): 707–10.

12. Phan, D., Gerth, J., Lee, M., Paepcke, A., and Winograd, T. “Visual Analysis of
Network Flow data with Timelines and Event Plots.” In Proceedings of Visualiza-
tion for Computer Security (Sacramento, CA, October 29, 2007). VIZSEC’07.
Berlin, Springer-Verlag: 85–99.

13. Weber, M., Alexa, M., and Müller, W. 2001. “Visualizing Time-Series on Spirals.”
In Proceedings of the IEEE Symposium on information Visualization 2001 (October
22–23, 2001). INFOVIS’01. Washington, D.C.: IEEE Computer Society, 7.

14. Pescatore, J. More Port 445 Activity Could Mean Security Trouble. Technical
Report. Stamford, CT: Gartner, 1997.

15. Abdullah, K., Lee, A., Conti, G., and Copeland, J. A. “Visualizing Network data for
Intrusion Detection.” In Proceedings of the 2005 IEEE Workshop on Information
Assurance and Security (US Military Academy, West Point, 2005). New York:
IEEE, 2–3.

16. Plonka, D. 2000. “FlowScan: A Network Traffic Flow Reporting and Visualization
Tool.” In Proceedings of the 14th USENIX Conference on System Administration
(New Orleans, Louisiana, December 03–08, 2000). System Administration Con-
ference. Berkeley, CA: USENIX Association, 305–318.

17. Swing, E. “Flodar: Flow Visualization of Network Traffic.” IEEE Comput. Graph.
18, no. 5 (Sep. 1998): 6–8.

18. Nanda, S. and Deo, N. “A Highly Scalable Model for Network Attack Identification
and Path Prediction.” In Proceedings of the IEEE SoutheastCon (Richmond, VA,
March 22–27, 2007). New York, NY: IEEE, 663–68.

19. Noel, S., Jacobs, M., Kalapa, P., and Jajodia, S. 2005. “Multiple Coordinated Views
for Network Attack Graphs.” In Proceedings of the IEEE Workshops on Visualiza-
tion For Computer Security (October 26–26, 2005). VIZSEC., Washington, D.C:
IEEE Computer Society, 12.

286 10 Data-Intensive Visual Analysis for Cyber-Security

20. Taylor, T., Paterson, D., Glanfield, J., Gates, C., Brooks, and S., McHugh, J. “FloVis:
Flow Visualization System.” In Proceedings of Cybersecurity Applications and
Technologies Conference for Homeland Security (Washington, DC, March 03–04,
2009). CATCH’09. Los Alamitos, CA: IEEE Computer Society, 186–98.

21. Blake, E. H. 2004. “An Extended Platter Metaphor for Effective Reconfigurable
Network Visualization.” In Proceedings of the information Visualisation, Eighth
international Conference (July 14–16, 2004). IV. Washington, D.C.: IEEE Com-
puter Society, 752–57.

Index

Aho-Corasick algorithm, 33
Aho-Corasick on distributed memory, 45
Aho-Corasick on GPUs, 37
Aho-Corasick on the Cray XMT, 37
Aho-Corasick parallelization, 39
Aho-Corasick string matching, 27
Amazon, 193
anomalies, 129, 130, 132, 258–259, 262

detection, 268–269
API, 188, 190, 202, 206, 207, 210, 215–216
Applications, 200, 203, 206
Architecture-aware Aho-Corasick design, 33
Architecture-aware performance optimization,

52
Astronomy, 201, 207, 215

simulation, 203, 207
Availability, 89
A Workload Pattern Language, 225

Behavioral model. See models
Belle II, 15
Big data, 1
BigTable, 3
Bioinformatics, 15
Biology, 5
BLAST, 238
BPEL, 20, 263
Business process execution language. See

BPEL

Classification algorithms, 17
Climate simulations, 5
Clustering, 17
column-oriented databases, 21
Complexity, 21

analysis, 7

Cray XMT, 18
Cache Reloading, 193
Cache, 190–191, 229
Caching, 186, 190, 229

indexing, 190
CAP theorem, 104
Challenges, 259, 275
Chunking, 162, 163, 166
CLIQUE, 247, 249, 258, 265, 268–270,

272–273, 275, 279–282
Cloud computing, 86
Clustering, 183, 186, 193, 199, 201, 203, 205,

207
Clusters, 32
Coalesced loads, 37
Correlation Layers for Information Query and

Exploration. See CLIQUE
Cray XMT, 26

performance, 43
cyber security, 259, 270, 279

Data acquisition, 21
Data centers, 14
Data management, 21
Data parallel algorithms, 17
Data reduction, 15
Data size, 7
Data warehouses, 4, 13, 21
Distributed data, 8
Distributed object cache, 4
Data management, 48
Data streams, see streaming data
Data volume, 260
Data warehouses, 66
Data-intensive, 200
Deterministic finite automaton (dfa), 33

287

288 Index

Dictionary data sets, 43
Dictionary size, 25–26
Dimension reduction

feature selection, 132
feature transform, 132
streaming data, 124

Earth Systems Grid
ESG, 5, 76

Elasticity, 90
Enterprise service bus. See esb
Esb, 263, 266
Estimating the Cost of a Schedule, 215
Evaluation of Mapper Input Cache, 192
Evaluation of Reducer Input Cache, 193
Evaluation of Reducer Output Cache,

198
Exact string matching, 27

Failure, 194, 200
Fast approximate subspace tracking,

136
Fault tolerance, 90
Fault-tolerance, 202
Feature identification, 77
FixedPointThreshold, 189, 195
Fixpoint, 183, 185–186, 188, 192, 198
Flow Cytometry, 203
Flow. See network flow
Freebase, 12–16

Genome, 236
Google search engine, 16

Hadoop, 186–187, 202, 217
HaLoop, 183, 186–187
Hardware accelerators for NIDS, 28
HDFS, 182, 186
Heterogeneous cluster performance, 33
High-level libraries, 54
High-performance computing, 238
Homogeneous cluster performance, 33
Homolog, 238
Hadoop, 3, 14
HBase, 21
Heterogeneity, 8

InSpire, 18
Internet search, 3
Incremental Structure, 225
Infrastructure as a Service (IaaS), 88

InParanoid, 239
Input data sets, 40
Intel Nehalem, 26

performance, 41
Interaction, 270, 273, 277, 278
Interactive, 222, 226
Inter-iteration, 190
Intrusion detection systems, 24
Irregular accesses, 24
Iteration, 183, 188–190
Iterative, 183, 186, 188

Johnson-Lindenstrauss lemma, 134

Keerthi, 164
Kepler, 20
Kernel matrix, 160

Kernel function, 158, 159, 160, 165,
168

KKT conditions, 162–163
violations, 162

Large Synoptic Survey Telescope
LSST, 57

Lazy I/O, 53
Leveraging Shared Storage, 230
Livejournal, 193
LiveRac, 268, 273
Loop Control, 186–187
LSST, 62
Large Hadron Collider, 4, 15
Large Synoptic Survey Telescope, 14
Lustre, 21

Map/reduce, 70
Mapper Input Cache, 190, 192
MapReduce, 106
MapReduce, 180–181
MeDICi Integration Framework. See MIF
MeDICi, 243
MeDICi, 262, 263, 265, 267, 268, 270, 277,

279, 282, 284
Memory, 181, 201–200, 205, 208
Metadata, 52

servers, 52
MIF, 263, 264, 265, 266
Modeling. See models
Models, 262, 268, 269–270, 283
Multitenancy, 89
MapReduce, 12, 22
Mathematical signatures, 16

Index 289

MeDICi Integration Framework, 20
MG-RAST, 15
Modifiability, 21
MPI, 22

Netezza, 21, 63
Network flow, 258, 259, 261, 265, 267–268,

281
Network traffic, 16, 24, 25, 126, 183, 258,

280
Niagara 2 performance, 26
Niagara 2, 29
Number of Data Sources, 8
NVIDIA CUDA-based GPUs, 37
NVIDIA GPU performance, 43

Oceanography, 215
dataset, 215–216

Online Analytical Processing
OLAP, 66

Ortholog, 238
Overhead, 198, 219

PageRank, 183, 184, 191
Parallel file system, 21

distributed file system, 51
Paralog, 239
ParaView, 18
Partition splitting, 214
Partition-and-merge, 210
Partitioning, 192, 201, 206, 210, 212, 213,

215
PCI express limited bandwidth, 46
Pearson correlation coefficient, 132
Perceptron, 163
Performance variability, 25
Pipelines, 20
Platform as a Service (PaaS), 88
Platt, 161, 163, 164, 165, 168
POSIX file interfaces, 52
Predictable performance, 27
Pre-emptive Scheduling, 229
Processing pipeline, 12, 22
Programming Model, 186, 188
Projection approximation subspace tracking,

142
Provenance, 72, 75
Public cloud, 22

Queries, 182–183, 184–185, 188, 191, 200
optimization, 223

RDMS, 266
RDMS, 267
Recursive, 183, 185–186, 188, 200
Reducer Input Cache, 190, 191, 193–194
Reducer Output Cache, 192, 198
Related Work, 200, 220
Relational database. See RDMS
Relational database management system

RDBMS, 65
Reproducing Kernel Hilbert Space, 158
ResultDistance, 189, 195

Scalability, 21
SkyServer, 13
Square Kilometer Array, 5
Support Vector Machines, 17
Swift, 20
Sample Size, 216, 218
Sampling, 210, 218, 227
SAX, 270, 272–273, 280
Scalability, 89
ScalaBLAST, 240
Scheduler, 187, 190, 212, 229
Schema, 181–182, 203, 223–224
SciDB, 70
Science, 202, 221, 223
Seaflow, 215, 218–219
Semi-infinite time series, see streaming data
Semi-structured data

XML, 67
Sequential minimal optimization, 163, 167,

177
SetFixedPointThreshold, 189
SetMaxNumOfIterations, 189
Shared-nothing architecture, 91
Shewanella, 244
SHOT, 242
Singular value decomposition incremental,

135
Situational awareness, 264, 268, 277
Skew, 183, 200, 201–202
Sloan Digital Sky Survey

SDSS, 13
Software as a Service (SaaS), 89
Spatial data mining, 59
Spatial data, 56
Spatio-temporal data, 56
SQL, 65, 182
Starlight, 243
State Transition Table(STT), 34
Statistics, 221, 225, 265

290 Index

Streaming data, 125
concept drift, 130, 132
dimension reduction, 129

correlations, 132
fast approximate subspace tracking,

136
forgetting factor, 130–131
projection approximation subspace

tracking, 142
random projections, 134–135
sliding window, 130

Storage nodes, 50
Storage system, 49
String matching, 24
Structural inference, 225
Support vector machines, 157, 158, 159, 160,

162, 239, 251
Symbolic Aggregate approXimation. See SAX

Taverna, 20

Temporal data, 67
Temporal information, 56
Teradata, 4
Termination, 183, 188–189, 192, 195
Time wheel, 276, 281
Timeliness of processing, 8
To p 500, 1
Traffic Circle, 258, 273, 276, 277, 278, 279,

280
Traffic. See network traffic

User-defined, 186–187, 191, 202, 206–208,
218, 221

VisiT, 18
Visualization, 18Vapnik, 157, 161
Virtual Clusters, 228
Visualization, 223, 223, 226, 229, 260, 261

Workload, 200, 221, 223

	Cover

	Data-Intensive Computing
	Title
	Copyright
	Contents
	List of Contributors
	1 Data-Intensive Computing: A Challenge for the 21st Century
	1.1 Introduction
	1.2 Some Examples
	1.2.1 Internet Search
	1.2.2 Internet Applications
	1.2.3 Business Applications
	1.2.4 Science

	1.3 Characterizing Data-Intensive Applications
	1.4 Summary
	References

	2 Anatomy of Data-Intensive Computing Applications
	2.1 An Architecture Blueprint
	2.2 Data Acquisition
	2.3 Data Reduction
	2.4 Data Analysis and Visualization
	2.5 Data Processing Pipeline Infrastructure
	2.6 Data Management
	2.7 Summary
	References

	3 Hardware Architectures for Data-Intensive Computing Problems: A Case Study for String Matching
	3.1 Introduction
	3.1.1 String Matching
	3.1.2 Application Study

	3.2 Background
	3.2.1 Cray XMT
	3.2.2 Niagara2
	3.2.3 Nehalem
	3.2.4 CUDA-Based GPUs
	3.2.5 Clustered Machines

	3.3 Aho-Corasick Algorithmic Design and Optimization
	3.3.1 Basic Design
	3.3.2 Cray XMT Implementation
	3.3.3 GPU Implementation
	3.3.4 Distributed Memory Implementation

	3.4 Experimental Results
	3.5 Conclusion
	References

	4 Data Management Architectures
	4.1 Data Storage and Architectures
	4.2 Spatial and Temporal Information
	4.2.1 Performance-Related Research and Challenges
	4.2.2 Spatio-Temporal Data Analytics Research and Challenges
	4.2.3 Uncertainty Quantification, Representation, Visualization, and Propagation in Spatio-Temporal Databases
	4.2.4 Crossmatching of Astronomical Objects

	4.3 Relational Databases, On-Line Analytical Processing, and Nontraditional Database Environments
	4.4 Metadata and Provenance Management
	4.4.1 Support for Data-Intensive Application Execution
	4.4.2 Support for Data Analysis and Exploitation in Data-Intensive Environments
	4.4.3 Particular Metadata Challenges in Data-Intensive Computing Environments

	References

	5 Large-Scale Data Management Techniques in Cloud Computing Platforms
	5.1 Introduction
	5.2 Cloud Data Management: Goals and Challenges
	5.2.1 Goals
	5.2.2 Challenges

	5.3 Cloud Data Management Systems: State of the Art
	5.3.1 Google: Bigtable
	5.3.1.1 Bigtable

	5.3.2 Yahoo!: PNUTS/Sherpa
	5.3.3 Amazon: Dynamo / S3 / SimpleDB / RDS
	5.3.3.1 Dynamo
	5.3.3.2 S3 / SimpleDB / RDS

	5.3.4 Microsoft SQL Azure
	5.3.5 Open Source Projects
	5.3.6 Cloud Data Management: Trade-Offs

	5.4 Cloud Applications: Programming Models
	5.4.1 MapReduce
	5.4.2 SQL-Like
	5.4.2.1 Pig Latin
	5.4.2.2 SQL/MapReduce

	5.4.3 Hybrid Systems
	5.4.3.1 Hive
	5.4.3.2 HadoopDB

	5.5 Real-World Case Studies
	5.6 Conclusion
	References

	6 Dimension Reduction for Streaming Data
	6.1 Introduction
	6.2 Background and Motivation
	6.3 Dimension Reduction Techniques
	6.3.1 Correlation-Based Techniques
	6.3.2 Random Projections
	6.3.3 Incremental Singular Value Decomposition
	6.3.3.1 Extensions to the FAST Algorithm

	6.3.4 Subspace Tracking Methods
	6.3.4.1 Variations of the Fast Subspace Trackers

	6.4 Illustrative Experiments
	6.4.1 Identifying Correlated Variables
	6.4.2 Preserving Distances Using Random Projections
	6.4.3 Reconstructing Original Data Using Reduced Dimensions

	6.5 Conclusion
	Acknowledgments
	References

	7 Binary Classification with Support Vector Machines
	7.1 Introduction
	7.2 Problems in Support Vector Machine Training
	7.3 Implementations
	7.4 Computational Issues
	7.4.1 Tests of the Sequential Minimal Optimization

	7.5 Conclusion
	References

	8 Beyond MapReduce: New Requirements for Scalable Data Processing
	8.1 Introduction and Background
	8.2 HaLoop: Iterative Processing on Large Clusters
	8.2.1 HaLoop Overview
	8.2.2 Programming Model
	8.2.3 Caching and Indexing
	8.2.4 Reducer Input Cache
	8.2.5 Reducer Output Cache
	8.2.6 Mapper Input Cache
	8.2.7 Cache Reloading
	8.2.8 Experimental Evaluation
	8.2.9 Evaluation of Reducer Input Cache
	8.2.10 Evaluation of Reducer Output Cache
	8.2.11 Evaluation of Mapper Input Cache
	8.2.12 Related Work

	8.3 Handling Skew in MapReduce Applications
	8.3.1 Motivation
	8.3.2 SkewReduce
	8.3.2.1 Basic SkewReduce API
	8.3.2.2 Process: Local Computation with Set-Aside
	8.3.2.3 Merge: Hierarchical Merge with Set-Aside
	8.3.2.4 Finalize: Join Features with Set-Aside Data
	8.3.2.5 Cost Functions

	8.3.3 SkewReduces Optimizer
	8.3.3.1 Optimizing the Partition Plan
	8.3.3.2 Partition Splitting
	8.3.3.3 Estimating the Cost of a Schedule

	8.3.4 Evaluation
	8.3.4.1 Overall SkewReduce Performance
	8.3.4.2 Sample Size
	8.3.4.3 SkewReduce Overhead

	8.3.5 Related Work

	8.4 Looking Ahead: Complex Data, Massive Scale, and Interactive Speeds
	8.4.1 Structural Inference
	8.4.2 A Workload Pattern Language
	8.4.3 Virtual Clusters
	8.4.4 Caching
	8.4.5 Preemptive Scheduling

	Acknowledgments
	References

	9 Let the Data Do the Talking: Hypothesis Discovery from Large-Scale Data Sets in Real Time
	9.1 Discovering Biological Mechanisms through Exploration
	9.1.1 Whole-Genome Comparison
	9.1.2 Common Practices in HPC Computational Biology

	9.2 Data-Intensive Tools and Methods
	9.2.1 High-Performance Sequence Analysis: ScalaBLAST
	9.2.2 Sensitive Remote Homolog Detection: SHOT
	9.2.3 Identifying Orthologs: InParanoid
	9.2.4 Interactive Visual Representation and Browsing: Starlight
	9.2.5 Middleware for Data-Intensive Computing: MeDICi

	9.3 Real-Time Data-Intensive Hypothesis Discovery
	9.3.1 Exploratory Look into Shewanella Functions
	9.3.2 Interactive and Iterative Hypothesis Discovery

	9.4 Discussion
	9.5 Conclusion
	Acknowledgments
	References

	10 Data-Intensive Visual Analysis for Cyber-Security
	10.1 Introduction
	10.2 Motivation
	10.2.1 Data Volume
	10.2.2 Time Sensitivity
	10.2.3 Focusing Analytic Effort

	10.3 Medici
	10.3.1 Architecture Overview
	10.3.2 Application Characteristics
	10.3.3 Application Construction
	10.3.4 Application Performance

	10.4 Clique
	10.4.1 Behavior Modeling
	10.4.1.1 Symbolic Aggregate ApproXimation

	10.5 Interaction
	10.5.1 Results

	10.6 Traffic Circle
	10.6.1 Interface
	10.6.2 Interaction
	10.6.3 Performance and Scalability

	10.7 Case Study
	10.8 Related Work
	10.9 Future Work
	10.10 Conclusion
	References

	Index

