

DATA STRUCTURES

AND ALGORITHMS FOR

GAME DEVELOPERS

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

THE CD-ROM THAT ACCOMPANIES THE BOOK MAY BE USED ON A SINGLE PC
ONLY. THE LICENSE DOES NOT PERMIT THE USE ON A NETWORK (OF ANY
KIND). YOU FURTHER AGREE THAT THIS LICENSE GRANTS PERMISSION TO USE
THE PRODUCTS CONTAINED HEREIN, BUT DOES NOT GIVE YOU RIGHT OF
OWNERSHIP TO ANY OF THE CONTENT OR PRODUCT CONTAINED ON THIS
CD-ROM. USE OF THIRD-PARTY SOFTWARE CONTAINED ON THIS CD-ROM
IS LIMITED TO AND SUBJECT TO LICENSING TERMS FOR THE RESPECTIVE
PRODUCTS.

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN
INVOLVED IN THE WRITING, CREATION, OR PRODUCTION OF THE ACCOMPA-
NYING CODE (“THE SOFTWARE”) OR THE THIRD-PARTY PRODUCTS CON-
TAINED ON THE CD-ROM OR TEXTUAL MATERIAL IN THE BOOK, CANNOT AND
DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED
BY USING THE SOFTWARE OR CONTENTS OF THE BOOK. THE AUTHOR AND
PUBLISHER HAVE USED THEIR BEST EFFORTS TO ENSURE THE ACCURACY AND
FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS CONTAINED
HEREIN. WE HOWEVER, MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, REGARDING THE PERFORMANCE OF THESE PROGRAMS OR CON-
TENTS. THE SOFTWARE IS SOLD “AS IS” WITHOUT WARRANTY (EXCEPT FOR
DEFECTIVE MATERIALS USED IN MANUFACTURING THE DISK OR DUE TO
FAULTY WORKMANSHIP).

THE AUTHOR, THE PUBLISHER, DEVELOPERS OF THIRD-PARTY SOFTWARE,
AND ANYONE INVOLVED IN THE PRODUCTION AND MANUFACTURING OF
THIS WORK SHALL NOT BE LIABLE FOR DAMAGES OF ANY KIND ARISING OUT
OF THE USE OF (OR THE INABILITY TO USE) THE PROGRAMS, SOURCE CODE, OR
TEXTUAL MATERIAL CONTAINED IN THIS PUBLICATION. THIS INCLUDES, BUT
IS NOT LIMITED TO, LOSS OF REVENUE OR PROFIT, OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY
LIMITED TO REPLACEMENT OF THE BOOK AND/OR CD-ROM, AND ONLY AT
THE DISCRETION OF CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARIES FROM
STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT.

DATA STRUCTURES

AND ALGORITHMS FOR

GAME DEVELOPERS

ALLEN SHERROD

CHARLES RIVER MEDIA
Boston, Massachusetts

Copyright 2007 Career & Professional Group, a division of Thomson Learning, Inc.
Published by Charles River Media, an imprint of Thomson Learning Inc.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or
transmitted by any means or media, electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from the publisher.

Cover Design: Tyler Creative

CHARLES RIVER MEDIA

25 Thomson Place
Boston, Massachusetts 02210
617-757-7900
617-757-7951 (FAX)
crm.info@thomson.com
www.charlesriver.com

This book is printed on acid-free paper.

Allen Sherrod. Data Structures and algorithms for Game Developers.

ISBN: 1-58450-495-1
ISBN-13: 978-1-58450-495-5

All brand names and product names mentioned in this book are trademarks or service marks of their
respective companies. Any omission or misuse (of any kind) of service marks or trademarks should not
be regarded as intent to infringe on the property of others. The publisher recognizes and respects all
marks used by companies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Sherrod, Allen.

Data structures and algorithms for game developers / Allen Sherrod.
p. cm.

ISBN-13: 978-1-58450-495-5 (hardback with cd-rom : alk. paper)
ISBN-10: 1-58450-495-1 (hardback with cd-rom : alk. paper) 1. Computer games--Programming.
2. Data structures (Computer science) 3. Computer algorithms. I. Title.
QA76.76.C672S535 2007
794.8'1526--dc22

2007006782

Printed in the United States of America
07 7 6 5 4 3 2 First Edition

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Special Sales Department
at 800-347-7707.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc, your
mailing address, telephone number, date of purchase and purchase price. Please state the nature of
the problem, and send the information to CHARLES RIVER MEDIA, 25 Thomson Place, Boston,
Massachusetts 02210. CRM’s sole obligation to the purchaser is to replace the disc, based on defective
materials or faulty workmanship, but not on the operation or functionality of the product.

eISBN: 1-58450-663-6

www.charlesriver.com

Acknowledgments ix

Introduction xi

About the Author xvi

1 Introduction to Data Structures 1
Data Structures and Algorithms 2
Data Structures in Games and Simulations 4
C++ versus Java and C# 6
The C++ STL 11
Template Classes and Functions 12
Big-O Notation 15
Summary 17
Chapter Review Questions 17

2 Arrays 19
The Data Structures Known as Arrays 20
Algorithms: Insertion and Deletion 25
Ordered Arrays 31
Algorithms: Basic Searches 33
STL Arrays 47
Bit Arrays 63
Summary 70
Chapter Review Questions 70
Programming Projects 71

3 Recursion 73
Recursion Defined 75
Triangular Numbers 81
Factorials 86
Summary 89
Chapter Review Questions 89
Programming Projects 90

Contents

v

4 Introduction to Sorting 91
Introduction to Sorting 92
The Bubble Sort 93
The Selection Sort 98
The Insertion Sort 101
STL Sorting 105
The Merge Sort 109
Summary 115
Chapter Review Questions 116
Programming Projects 118

5 Link Lists 119
Introduction to Link Lists 120
Singly and Double-Ended Linked Lists 124
Doubly Linked Lists 135
STL Link Lists 141
Tips and Things to Remember When Using Link Lists 151
Summary 152
Chapter Review Questions 152
Programming Projects 153

6 Stacks and Queues 155
Introduction to Stacks 156
STL Stacks 168
Introduction to Queues 172
STL Queues 194
Summary 206
Chapter Review Questions 206
Programming Projects 207

7 Hash Tables 209
Introduction to Hash Tables 210
Hash Functions 213
Working with Hash Tables 215
Implementing Hash Tables 220
Nonstandard Hash Containers 242
Summary 250
Chapter Review Questions 251
Programming Projects 252

8 Advanced Sorting 253
Advanced Sorting Topics 254

vi Contents

Shellsort 255
Partitioning 260
Quicksort 265
Radix Sort 275
Additional Types of Sorting 280
Summary 282
Chapter Review Questions 282
Programming Projects 284

9 Trees 285
Introduction to Trees 286
Tree Example 289
Binary Trees 298
k-dimensional Trees 315
Additional Types of Trees 322
Summary 324
Chapter Review Questions 324
Programming Projects 326

10 Heaps 327
Introduction to Heaps 328
Heap Sort 336
Priority Queues Using Heaps 339
STL Heap Functions 346
Summary 348
Chapter Review Questions 348
Programming Projects 350

11 Graphs 351
Introduction to Graphs 352
Searching with Graphs 357
Topological Sorting 376
Weighted Graphs 385
Artificial Intelligence 391
Summary 393
Chapter Review Questions 394
Programming Projects 396

12 Additional STL Algorithms 397
Strings 398
map and multimap 404
set and multiset 411

Contents vii

STL Algorithms 415
Summary 427
Chapter Review Questions 428
Programming Projects 429

13 Scene Management 431
Introduction to Scene Management 432
Game Math 435
Scene Graphs 449
Binary Space Partitioning Trees 460
Quad-Trees and Octrees 466
Additional Management Topics 472
Summary 477
Chapter Review Questions 478
Programming Projects 479

14 Data Compression 481
Introduction to Data Compression 482
Introduction to Texture Compression 494
Introduction to Data Encryption 514
Summary 515
Chapter Review Questions 515
Programming Projects 517

15 Conclusions 519
Quick Review 520
The Next Step 524
Summary 525

Appendix A Additional Resources 527

Appendix B Chapter Review Question Answers 531

Appendix C OpenGL 539

Appendix D NonStandard Containers and Algorithms 543

Index

viii Contents

W
ith every book I write I learn a lot about myself as a writer and as a
person. Along my journey I’ve received a lot of help and support that
went a long way to making each of my book projects possible. I would

like to thank my friends, family, and the men and women at Charles River Media
and Thomson Learning who believed in me from the beginning. I would also
like to thank the readers of each of my books and the loyal visitors of www.
UltimateGameProgramming.com.

I would like to give a special thanks to Jenifer Niles of Charles River Media for
believing in me and giving me this chance.

Acknowledgments

ix

www.UltimateGameProgramming.com
www.UltimateGameProgramming.com

This page intentionally left blank

What to Expect in the First Edition
Who this Book is For
What You Need to Know Before Reading this Book
The Software Needed for this Book
How this Book Is Organized

WHAT TO EXPECT IN THE FIRST EDITION

The creation of a video game is no easy task for anyone to undertake. When it
comes to programming, a lot of knowledge needs to be obtained to create an effi-
cient and solid product. The game industry is a very competitive business, where
games are defined heavily by the products that came before them. These products
have raised the bar in terms of what is considered cutting-edge and standard in the
industry. The more advanced games become, the more data is required to realize a
game, especially from a graphics point of view. As games continue to push the en-
velope of what can be done and as they continue to increase gamers’ expectations,
it becomes harder to create top-of-the-line quality products.

This book is the first edition of Data Structures for Game Developers. In this
book you can expect to walk away with detailed knowledge about various data
structures and the algorithms that can be performed on them. This combination is
the key to creating real-time simulations that push the envelope on what is consid-
ered cutting-edge. Along with game- and simulation-related data structures, this
book will cover common data structures and algorithms that are heavily used in
general computer programming.

THE PURPOSE OF THIS BOOK

The purpose of this book, Data Structures for Game Developers, is to cover, in
general, the huge topic of data structures that are used in game development and is

Introduction

xi

targeted to beginner, student, and hobbyist C++ game and simulation program-
mers. The information in this book can be used by any programmer outside the
field of game development, a few chapters cover information that applies more to
individuals creating graphical simulations that need to run at interactive rates,
which fits in with game development. These chapters cover scene management
techniques used to help process a 3D scene in real time for rendering as well as
physics and collisions, to name a few.

This project is my third book, with the first being Ultimate Game Programming
with DirectX and the second being Ultimate 3D Game Engine Design and Architec-
ture. Data structures and algorithms drive object-oriented software and are key
subjects to tackle for serious developers. Data structures and algorithms are the
topics programmers learn after learning a programming language and are used in
almost every kind of application, even simple ones that rely on arrays. Video games
have a lot of data that need to be managed and processed efficiently, so this book is
ideal for those getting into the topics for the first time or for those looking for a
reference.

WHO THIS BOOK IS FOR

This book is for C++ programmers who are looking for a reference and for those
learning the topics for the first time. The target experience level is beginners, but
anyone at any level can find some value in this book. It can be used in data struc-
ture and algorithm courses in either general computer programming or in game
development courses. The material in this book is easy to understand and is
straightforward, which also makes it appropriate as a supplemental text. Many
readers of different levels can benefit from having this book in their development
library.

WHAT YOU NEED TO KNOW BEFORE READING THIS BOOK

The focus of this book is the C++ programming language, but the topics and infor-
mation presented here are not exclusive to any one language. The key throughout
this book is to make use of object-oriented programming languages and features to
create a meaningful result. The information in this book can be generally applied
to Java, C#, or any other object-oriented programming language. Because C++ is a
highly successful and popular programming language in the game industry, it is
used in this book to illustrate the various topics and information. For the graphics
sections, the OpenGL® graphics API will be used for the following reasons:

xii Introduction

Introduction xiii

OpenGL is not specific to any one operating system, allowing this book to be
used by Windows®, Macintosh®, Linux®, and any other operating system and
hardware that supports it.
This book will be using the OpenGL utility toolkit and will focus on only
graphics topics that are needed to illustrate the points in question, allowing you
to focus on the information at hand.
Performing general rendering on OpenGL is easy and does not distract from
the main concepts and topics.

THE SOFTWARE NEEDED FOR THIS BOOK

For this book you will need a C++ compiler to compile any source code into an
executable and, for some of the later chapters, an OpenGL-compatible graphics
card. All chapter code for this book was compiled and tested on Windows XP, Mac
OS X, and the latest Ubuntu® distribution of Linux. Any operating system and
hardware that supports OpenGL 1.4 should be compatible with everything that
will be done in this book. To run the executable files that come packaged on the
CD-ROM, you’ll need Windows 98 or higher, Mac OS X or higher, or Linux. Users
with other operating systems can compile the chapter code using their compiler of
choice for their platform.

HOW THIS BOOK IS ORGANIZED

This book is made up of 15 chapters. Each chapter goes over the manual creation
of a set of data structures and, where applicable, the C++ Standard Template Li-
brary (STL) counterpart. The first 12 chapters deal with data structures and algo-
rithms that are used in general computer programming. Chapters 13 and 14 discuss
data structures that can be found in game and simulation applications, and Chap-
ter 15 provides a summery. The breakdown of the chapters of the book is as follows:

Chapter 1, Introduction to Data Structures, introduces the topic of data struc-
tures and algorithms in general. This chapter also gives readers some insight
into what they can expect from the remainder of the book.
Chapter 2, Arrays, covers arrays, which are the most basic data structure that
exists in programming languages that support them. In this chapter we discuss
single- and multidimensional arrays, various algorithms that can be applied to
arrays (e.g., insertion, removal, and so forth), bit arrays, ordered arrays, and the
STL implementation of dynamic arrays, the vector template class.

Chapter 3, Recursion, deals with the topic of recursive methods in program-
ming using self-referencing functions and algorithms.
Chapter 4, Introduction to Sorting, discusses sorting algorithms that can be
performed in data structures. This chapter is an introduction to sorting and
covers topics such as the merge sort, the bubble sort, the selection sort, and the
insertion sort.
Chapter 5, Link Lists, looks at the link list data structure by discussing three
variations known as the singly linked list, the doubly linked list, and the double-
ended linked list. Also discussed in this chapter are iterators, which can be used
to move through the elements of a data structure, and the C++’s implementa-
tion for linked lists in a template class called list.
Chapter 6, Stacks and Queues, discusses three types of data structures known
as stacks, queues, and priority queues. This chapter also discusses the C++ STL
implementation for each of these data structures.
Chapter 7, Hash Tables, focuses on creating hash table data structures and the
algorithms that operate on them. In this chapter we’ll also look at different
types of hash tables and algorithms such as quadric probing, separate chaining,
and linear probing.
Chapter 8, Advanced Sorting, builds off of Chapter 4, Introduction to Sorting,
by discussing more advanced sorting algorithms. These algorithms include the
radix sort, the quick sort, the shell sort, and partitioning.
Chapter 9, Trees, discusses the general and binary tree data structures and the
algorithms that are commonly performed on them. An understanding of
binary trees can go a long way toward understanding binary space partition
trees, which are discussed later in the book.
Chapter 10, Heaps, is a straightforward discussion about heap data structures
and the common algorithms that can be performed on them.
Chapter 11, Graphs, deals with the graph data structure, which is shaped by an
abstract problem. Weighted graphs and their use in artificial intelligence are
also discussed.
Chapter 12, Additional STL Algorithms, overviews the remaining C++ STL.
Because the STL is so useful to C++ programmers, the chapter covers as much
information as possible.
Chapter 13, Scene Management, discusses bounding volume hierarchies such
as quad trees and octrees and talks about creating and rendering a special type
of binary tree called the BSP tree, variations of which are used in many games
such as Half-Life® 2 and Doom® 3. Other topics are also discussed such as por-
tal rendering, potential visibility sets, and level of detail.
Chapter 14, Data Compression, deals with algorithms that can compress and
encrypt data. This chapter also discusses various texture compression tech-
niques that are very useful to game developers.

xiv Introduction

Chapter 15, Conclusions, is the final chapter in the book and concludes the
discussion of data structures and algorithms.
Appendix A, Additional Resources, is a list of resources that can be beneficial for
those wanting to learn more about general computer programming and game
development.
Appendix B, Chapter Review Question Answers, provides the answers to all
chapter questions in the book.
Appendix C, OpenGL, gives a brief review of the OpenGL graphical API and
the OpenGL utility toolkit (GLUT). These tools are used for the graphics-
related chapters of the book, and this appendix gives brief information for
those who need a refresher or for those using it for the first time.
Appendix D, Nonstandard Containers and Algorithms, is a more detailed look
at a few resources that provide STL implementations, nonstandard code, and
documentation for STL-related code.

BEYOND THIS BOOK

The topic of data structures and algorithms is huge. There is a lot to learn, especially
when game development is involved. To further complicate matters, optimizations
and efficiency is also a crucial area when dealing with this subject. Appendix A has
a list of helpful book and Web resources that might be of great value to you. Also,
www.UltimateGameProgramming.com is a community of hobbyist game program-
mers looking to learn as much as they can from one another.

Introduction xv

www.UltimateGameProgramming.com

A
llen Sherrod (Smyrna, GA) is the host of the game programming website
www.UltimateGameProgramming.com for beginner, student, and hobbyist
game programmers, where he writes regular columns and develops code for

this popular site. He has been programming in many different languages such as C,
C++, C#, Java, QBasic, Visual Basic, and Assembly for the past seven years. He
graduated from DeVry University with a bachelor’s degree in computer information
systems. Allen Sherrod is also the author of the books Ultimate Game Programming
with DirectX, Game Graphics Programming, and Ultimate 3D Game Engine Design
and Architecture as well as a contributor to Game Programming Gems 6, Game De-
velopers Magazine, and Gamastura.

About the Author

www.UltimateGameProgramming.com

1

Introduction to Data
Structures

1

In This Chapter

Data Structures and Algorithms
Data Structures in Games and Simulations
C++ versus Java and C#
The C++ STL
Template Classes and Functions
Big-O Notation

2 Data Structures and Algorithms for Game Developers

T
he purpose of this chapter is to define data structures and algorithms in
terms of what they are, why they exist, and how they are used in computer
programming. This chapter will also introduce topics such as how data

structures fit into game development, template classes and their benefits, C++’s
Standard Template Library, and the big-O notation and how it can be used to mea-
sure the performance of algorithms. This chapter is an introduction on which the
following chapters will build.

This book assumes that you have some experience with the C++ programming
language and object-oriented programming (either with C++ or another high-level
object-oriented programming language such as Java or C#). Although you do not
need an expert level of knowledge, you do need at least some understanding of
classes in C++. Experience with data structures and various algorithms is not as-
sumed beyond the basic data structure known as arrays.

DATA STRUCTURES AND ALGORITHMS

Data structures are the building blocks of software engineering. Every application
has to manage and manipulate data in some meaningful way to perform a task. In
modern video games this data is used to create a complex interactive experience in
which gamers can have many different experiences. By themselves data structures
are not very useful, but when they are combined with algorithms, some meaning-
ful output takes place. In this book we will look at many different data structures
and algorithms that are common in general computer programming as well as
games and simulations development.

DEFINITION OF DATA STRUCTURES

A data structure defines how data is arranged in memory and can be operated on
by using various algorithms. One of the most basic data structures used in general
computer programming is the array. An array is a data structure because it defines
how data is arranged in memory, in this case a heap of variables or objects of a
specific type (or types in typeless languages), which can be operated on by various
algorithms (e.g., insertion into the array, deletion, searching, sorting, and so forth).
The data structures that will be examined in this book include the following:

Arrays
Link lists
Queues

Stacks
Heaps
Graphs
Scene graphs
Octrees
Quad-trees
Binary trees
Minimax trees
kd trees
Sphere trees
Bounding volume hierarchies
Hash tables
Portals and sectors

Another way to look at a data structure is as a structure that is often user-defined
and represents some kind of physical object. Data structures are also objects that
contain objects.

DEFINITION OF ALGORITHMS

An algorithm is code that manipulates data in data structures. Most algorithms ex-
amined in this book apply to general data structures that include inserting items
into a data structure, deleting items, sorting, and iterating. Some of the algorithms
that will be looked at throughout this book include the following:

Recursion
Insertions
Deletions
Merging
Various sorting algorithms
Various searching algorithms
Transversal
Various algorithms for balancing trees
Data compression
Texture compression
Data encryption
Texture filters

Chapter 1 Introduction to Data Structures 3

4 Data Structures and Algorithms for Game Developers

DATA STRUCTURES IN GAMES AND SIMULATIONS

Data structures form the foundation of many techniques performed in modern
video games and are essential to creating the kinds of experiences gamers expect.
Alone, a data structure is an arrangement of data in memory, but when combined
with special-purpose algorithms those data can be processed and used efficiently
and effectively. Because of the nature of a data structure, by definition, the subject
alone is a general topic. Data structures and algorithms in game development are
often used to speed up the processing of a game’s data. In the following sections
we’ll take a brief look at some of their uses and why they are important to a game
application. Later in the book we will take a more detailed look at the data struc-
tures used in video games.

This book focuses on how we can manage data objects in a gaming application.
These data describe entities that need to be processed in a manner that benefits the
overall application’s performance, performs some calculations needed to create an
effect (e.g., artificial intelligence, physics, etc.), or takes data in one form and trans-
forms them into another. The main questions that will be addressed in this book
are:

How to store data efficiently in the computer’s memory
How to process data efficiently
What algorithms work best under what situations and why
How various popular algorithms compare to one another in specific situations
What data structures can help the processing of game data in certain situations

Some data structures that we’ll look at model real-world situations and objects.
For example, a queue data structure, which we’ll look at in Chapter 6, can be used
to store a queue of networking messages for an online game. Another example of
this can be seen in a graph where the nodes of the graph represent cities across the
United States, which we’ll look at in Chapter 13.

DATA STRUCTURES FOR SCENE MANAGEMENT

Complex virtual environments in modern video games are often more complex
than the hardware can handle all at once. In games thousands of polygons are ren-
dered and processed, special effects are updated and drawn, and physics need to be
processed that can quickly overwhelm any system’s hardware. Since the beginning
of 3D games, data structures and algorithms have been used to speed up the ren-
dering of complex scenes that otherwise would bring an application’s performance
down to noninteractive (unplayable) rates.

Using data structures for managing scenes often comes down to situations such
as needing a fast means of determining what geometry is visible to avoid sending
geometry down the pipeline that can’t be seen by the viewer, avoiding or minimiz-
ing bottlenecks and state changes in the system, and efficiently managing the static
and dynamic objects that exist in the game world. Scene and resource management
are two of the topics that are essential to all modern 3D games and their frame-
works, also known as the game engine.

As an example of state management, consider a situation where a game has 20
high-resolution textures that are shared among 500 surfaces. If the rendering code
sets up the texture and other effect parameters, renders the surface, and then moves
onto the next object and does the same thing for all objects, the application could
be wasting a lot of processing time with unnecessary rendering state changes.
Grouping surfaces together that use the same states (textures, shaders, and so forth)
reduces the number of state changes, which increases performance. Not only does
this mean rendering all surfaces that use texture A together before moving to all
that use texture B, but it also means not wasting processing time moving the same
data down the system if it is already there (e.g., sending the same shader uniform
values that are already there or re-applying the current shader). State changes such
as textures and shaders are very expensive, and spending time reducing them is far
more beneficial than allowing them to take place in a complex gaming environ-
ment. This kind of optimization occurs in many areas of game development, espe-
cially rendering, and can be used to push the envelope of what a system can do in
real time.

DATA STRUCTURES FOR ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) drives many gaming experiences. It can be simple or
complex. Even in simple AI systems various data structures and algorithms are
used to control the behavior of dynamic game elements. As the AI gets more com-
plex, speed becomes more of an issue because the more complex the algorithms, the
more processing time is needed to complete its operations. Combine that with
multiple objects, each needing to execute AI algorithms, and you can find yourself
trying to balance realism with performance, much like rendering and physics. For
this reason, game AI is often not as complex and extensive as AI used in robotics
and other such technologies, but game AI is a very complex and growing field. As
gamers’ demands increase, so will this and other areas of game development.

DATA STRUCTURES FOR PHYSICS DYNAMICS AND COLLISIONS

Physics is becoming a standard feature in modern 3D games. Physics in games
deals with the realistic representation of a game object as well as how it interacts
with its environment. This includes forces that act on the objects (e.g., gravity,

Chapter 1 Introduction to Data Structures 5

wind, and so forth) as well as the resulting forces that result from objects interact-
ing with each other, mainly through collisions.

Physics and collisions have their own set of data structures and algorithms
(e.g., point masses, rigid bodies, algorithms to apply external forces, resolve inter-
actions, and so forth) that are performed to allow objects to interact in real time
with each other and their environment. Because physics and collisions are so ex-
pensive, other data structures and algorithms that are used for scene management
are also used in physics to help eliminate unnecessary calculations, such as trying
to find collisions between two objects that have no way of being able to touch one
another in order to improve performance.

Data structures can be seen in many areas of application design. Being able to
efficiently define data structures and the algorithms that operate on them is the key
to creating a solid and effective product.

C++ VERSUS JAVA AND C#

Many differences distinguish C++, Java, and C# from each other. Java and C# have
very similar syntax, and anyone familiar with one will have an easier time learning
the other. One of the biggest differences that set Java and C# apart from C++ is
memory management. With Java and C# automatic memory management takes
place within the runtime environment. This frees the programmer from a great deal
of memory management responsibilities. It also means that Java and C# program-
mers do not have to worry about dangling pointers, accidental memory leaks, and,
to a degree, memory fragmentation. With C++ the management of memory is the
responsibility of the programmer working on a project. This further complicates the
development of an application. In C++ an error with the memory (e.g., dangling
pointers, buffer overflow, and so forth) can crash an application or the system, as well
as other potentially disastrous scenarios that for the most part are unpredictable.
Memory management is also tied with performance, which is always crucial in game
development.

C++ has pointers, whereas Java and C# do not. All three languages support references.

Memory management is very important for C++ game developers, and learning
about it is highly recommended.

The differences in the syntax of the languages are somewhat minor. In C++ all
memory that is allocated must be unallocated by the programmer, or else a mem-
ory leak can occur. Java and C#, on the other hand, automatically handle the reuse

6 Data Structures and Algorithms for Game Developers

and deletion of memory (memory recycling), so the programmer does not have to.
A simple example of the need to manually delete memory in C++ can be seen in
Listing 1.1, Listing 1.2, and Listing 1.3, where the bubble sort algorithm (which will
be examined later in this book) is being performed on an array in C++, Java, and
C#, respectively.

LISTING 1.1 An Example of the Bubble Sort in C++

void BubbleSort(int *array, int size)

{

if(!array || !size)

return;

for(int k = size - 1; k > 0; k—)

{

// Loop through every number.

for(int i = 0; i < k; i++)

{

if(array[i] > array[i + 1])

{

// Swap values.

int temp = array[i];

array[i] = array[i + 1];

array[i + 1] = temp;

}

}

}

}

int main(int args, char *arg[])

{

// Create array of unordered numbers.

int array[] = new int[5];

array[0] = 80;

array[1] = 64;

array[2] = 99;

array[3] = 76;

array[4] = 5;

cout << “Bubble Sort Algorithm” << endl << endl;

Chapter 1 Introduction to Data Structures 7

cout << “Unordered Array: “;

// Display unordered numbers.

for(int i = 0; i < 5; i++)

cout << array[i] << “ “;

cout << endl;

// Sort array using bubble sort algorithm.

BubbleSort(array, 5);

cout << “Ordered Array: “;

// Display ordered numbers.

for(int i = 0; i < 5; i++)

cout << array[i] << “ “;

delete[] array;

array = NULL;

cout << endl << endl;

return 1;

}

LISTING 1.2 An Example of the Bubble Sort in Java

public class BubbleSort

{

public static void main(String args[])

{

int array[] = new int[5];

array[0] = 80;

array[1] = 64;

array[2] = 99;

array[3] = 76;

array[4] = 5;

System.out.print(“\nBubble Sort Algorithm\n\n”);

8 Data Structures and Algorithms for Game Developers

System.out.print(“Unordered Array: “);

// Display unordered numbers.

for(int i = 0; i < 5; i++)

System.out.print(array[i] + “ “);

System.out.print(“\n”);

// Sort array using bubble sort algorithm.

BubbleSort(array);

System.out.print(“Ordered Array: “);

// Display ordered numbers.

for(int i = 0; i < 5; i++)

System.out.print(array[i] + “ “);

System.out.print(“\n\n”);

System.exit(0);

}

public static void BubbleSort(int[] array)

{

for(int k = array.length - 1; k > 0; k—)

{

// Loop through every number.

for(int i = 0; i < k; i++)

{

if(array[i] > array[i + 1])

{

// Swap values.

int temp = array[i];

array[i] = array[i + 1];

array[i + 1] = temp;

}

}

}

}

}

Chapter 1 Introduction to Data Structures 9

LISTING 1.3 An Example of the Bubble Sort in C#

public class BubbleSort

{

public static void Main()

{

Console.Write(“Bubble Sort Algorithm\n\n”);

int[] array = { 80, 64, 99, 76, 5 };

Console.Write(“Unordered Array: “);

// Display unordered numbers.

for(int i = 0; i < 5; i++)

Console.Write(array[i] + “ “);

Console.Write(“\n”);

// Sort array using bubble sort algorithm.

BubbleSortArray(array);

Console.Write(“Ordered Array: “);

// Display ordered numbers.

for(int i = 0; i < 5; i++)

Console.Write(array[i] + “ “);

Console.Write(“\n\n”);

}

public static void BubbleSortArray(int[] array)

{

for(int k = array.GetLength(0) - 1; k > 0; k—)

{

// Loop through every number.

for(int i = 0; i < k; i++)

{

if(array[i] > array[i + 1])

{

// Swap values.

int temp = array[i];

array[i] = array[i + 1];

10 Data Structures and Algorithms for Game Developers

array[i + 1] = temp;

}

}

}

}

}

THE C++ STL

The C++ programming language has a standard set of template classes known as
the Standard Template Library (STL). This library is used for both code reuse and
maintainability and is composed of many efficiently designed components and
algorithms that are seen often in general computer programming. The STL is com-
posed of containers, iterators, and algorithms. Containers are the template classes
that represent a data structure, while an iterator is used to transverse through a data
structure. One of the major goals of the STL is to be abstract while maintaining
efficiency. This allows the STL to be used in a variety of different applications.

Using the STL can save programmers a lot of time and effort when it comes to
generic data structures. Each STL container is implemented with speed perform-
ance efficiency in mind and uses allocators and deallcators rather than the new and
delete operators. STL containers are designed to provide similar functionality to
one another so that each container uses the same name for a function or object that
another container uses for the same thing. Some functions that are conveniently
common to STL containers are the overloaded operators:

<

>

<=

>=

==

!=

The STL containers will be examined throughout this book. Along with how to
use the containers, there will also be tips and techniques that can be useful when
working with STL containers and algorithms in commercial applications. The STL
containers we will look at are as follows:

vector

queue

priority_queue

list

Chapter 1 Introduction to Data Structures 11

deque

stack

map

multimap

set

multiset

hash_set

hash_multiset

hash_map

hash_multimap

Additional containers we will also be looking at that are part of the C++ stan-
dard include the following:

bitset

string

valarray

Avoid wasting time creating your own data structures instead of using the STL.
In this book we look at both for educational purposes, but for the most part the
STL will be sufficient in all types of applications. In some unique circumstances the
STL might not be the best option, depending on specific application needs versus
the STL implementation.

We will revisit the STL throughout this book, starting with vectors and bitset

in Chapter 2, Arrays. Because the STL is efficient and widely used, it is important
for all C++ programmers to be familiar with it on some level. Although it is possi-
ble to write and use our own data structures and algorithms in a commercial prod-
uct, it might be beneficial to use the STL for the following reasons:

The STL is standard.
The STL is widely used.
The STL is optimized and efficient.
Using the STL saves time and effort.
The STL comes with C++.

TEMPLATE CLASSES AND FUNCTIONS

C++ has a feature that allows template classes and functions to be created and used
in code. A template is a way to create code that is evaluated during compile time

12 Data Structures and Algorithms for Game Developers

rather than runtime. Templates allow for the same code to be used with different
data and user-defined types, which minimizes the need to write duplicate code for
every type that is to be supported. As long as the evaluation passes and the code
written is valid, templates can be created and used in C++.

C++ has two types of templates: one for functions and one for classes. Function
templates allow programmers to specify function parameters to the template. In
C++ overloaded functions are used to perform similar operations in different
functions based on the parameter data types. When a template function is used, the
general operations only need to be written once, and the compiler will create the
necessary overloaded function code objects at compile time. If the code cannot
pass the evaluation, the compiler produces an error message describing the prob-
lem. One of the benefits to using templates is that they are type safe, unlike macros.

Classes can be made into templates by specifying one or more template names
to be used within the class. All function and class templates begin with the keyword
template, which is followed by a list of type parameters that are enclosed in angle
brackets (< and >). For every function and class body that is to accept template
parameters, template parameters must define this keyword before every body of
code. Within the angle brackets each type must be specified using the class or
typename keyword or can define a constant. The class and typename keywords mean
that the type is user defined or is a built-in data type. The purpose of specifying a
class to be a template is to allow some member variables or the parameters of class
functions to use the template type(s). Listing 1.4 shows an example using both
template functions and classes. On the CD-ROM in the Chapter 1/Templates folder
is a C++ demo application, called Templates, for the code in Listing 1.4.

LISTING 1.4 An Example Using Template Classes and Functions

#include<iostream>

template<typename T>

T min(T lVal, T rVal)

{

if(lVal > rVal)

return rVal;

return lVal;

}

template<typename T>

T max(T lVal, T rVal)

Chapter 1 Introduction to Data Structures 13

{

if(lVal < rVal)

return rVal;

return lVal;

}

template<typename P>

class TemplateClass

{

public:

TemplateClass(P val)

{

m_val = val;

}

bool operator<(TemplateClass &rVal)

{

return m_val < rVal.GetVal();

}

bool operator>(TemplateClass &rVal)

{

return m_val > rVal.GetVal();

}

P GetVal()

{

return m_val;

}

private:

P m_val;

};

int main(int args, char **argc)

{

14 Data Structures and Algorithms for Game Developers

std::cout << “C++ Templates” << std::endl;

std::cout << “Chapter 1: Templates” << std::endl;

std::cout << std::endl;

std::cout << “Min = “ << min(32, 54) << std::endl;

std::cout << “Max = “ << max(49.3, 38.98) << std::endl;

std::cout << “Max (objects) = “ << max(TemplateClass<int>(7),

TemplateClass<int>(4)).GetVal() << std::endl;

TemplateClass<int> obj(10);

std::cout << “obj = “ << obj.GetVal() << std::endl;

std::cout << std::endl << std::endl;

return 1;

}

Templates are used heavily in this book and are a major part of the STL classes.
When working with data structures and algorithms, it is often useful to declare
them using templates so that near-duplicate code does not need to be written to
support every built-in or user-defined data type that might occur in a programming
project. This can be very useful when expanding functions to work with other data
types.

BIG-O NOTATION

Big-O notation is used to describe the theoretical performance of an algorithm.
This measurement is usually made to measure the time or memory consumption
used by an algorithm. The purpose of big-O notation is to be able to create a rep-
resentation of the performance of an algorithm to compare it to others. This gives
coders a general way to compare algorithms based on a set of inputs.

The problem with the performance of algorithms is that it can fluctuate de-
pending on the number of items that were inserted and are present in a data struc-
ture. For example, if algorithm A runs faster than algorithm B with 1,000 items but
runs slower with 100,000 items, it can be hard to get an accurate picture when
comparing the two. Big-O notation gives an idea of an algorithm’s performance
based on the number of items in the structure (its growth).

Chapter 1 Introduction to Data Structures 15

Big-O notation is used in software engineering as a way to measure a function’s
growth and was introduced in 1894 by Paul Bachmann. Big-O notation has some
properties that are helpful when estimating the general efficiency of various algo-
rithms and can be used to compare algorithms.

Discussions of algorithms later in this book mention the algorithms’ perfor-
mance in big-O notation. For example, when inserting an item into an unordered
array, the operation is not dependent on the number of items in the list. This means
that the insertion is constant. When writing big-O notation, we don’t need to worry
about any constants, which are the particulars of a CPU chip and a compiler, but
instead we can use the uppercase letter “O” and a label that represents what the al-
gorithm depends on for its operation. The insertion of an item into an unordered
array does not depend on anything other than placing the new item at the end of
the list. This gives the insertion into an unordered array of:

O(1)

The performance of a linear search on an unordered array depends on the
number of items in the list. In general a linear search is a search through half of the
list. Because the linear search algorithm depends on the number of items, its big-O
notation would look like the following (where N is the number of items):

O(N)

The big-O notation of O(N2) is considered to result in a worse performance than
O(N), O(1), or O(log N).

In a binary search the base 2 logarithm can be used by the constant to represent
the performance of the algorithm with an ordered array. This would look like the
following in big-O notation:

O(log N)

Looking at big-O notation with the operations we’ve discussed so far for arrays
shows that the insertion of an item in an array takes a fast O(1) operation, while a
linear search takes a slow O(N) operation. On the other hand, an insertion into an
ordered array takes a slow O(N) operation because the insertion is based on the
number of items in the list, while the binary search through an ordered array takes
a somewhat fast O(log N) operation. Deletion by both arrays can take a O(N) oper-

16 Data Structures and Algorithms for Game Developers

ation because the deletion is the same in both cases and the deletion would work by
creating a new array, copying over the data up to the point to be deleted and then
copying the data after the point that was to be deleted one index lower than the
original array. In other words, the performance of the deletion is dependent on the
number of items in the array.

Big-O notation is used to give a meaningful idea of the performance of an al-
gorithm. We will look at big-O notation in upcoming chapters in more detail.

SUMMARY

In this chapter we talked briefly about data structures and algorithms, object-oriented
programming languages, template classes, the C++ STL, and big-O notation. This
chapter introduced material to come and reviewed information that every C++
programmer should be familiar with before moving on to the next chapter.

In the next chapter we will look at traditional arrays, ordered arrays, bit arrays,
basic searching algorithms (linear and binary), insertion and deletion algorithms,
and the STL’s vector class. Chapter 2, Arrays, will allow beginners to start getting
deeply involved in the world of data structures and algorithms.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. A data structures define an arrangement of data in
a. Source code
b. A template class
c. Memory
d. None of the above

2. What are algorithms?
3. A type of data structure is a

a. Template class
b. Array
c. Binary tree
d. Compression
e. b and c
f. None of the above

Chapter 1 Introduction to Data Structures 17

4. STL is an acronym for
a. Structured Template Language
b. Standard Template Library
c. Structured Template Library
d. None of the above

5. Three STL data structures include
a. Array, vector, list
b. Hash table, bubble sort, list
c. List, vector, queue
d. None of the above
e. All of the above

6. Java and C# use automatic memory management.
a. True
b. False

7. C++ places memory management on the responsibility of the programmer.
a. True
b. False

8. Template classes are used to allow inheritance in object-oriented
programming.
a. True
b. False

9. Big-O notation can be used to measure performance.
a. True
b. False

10. O(log N) is generally worst than O(N2).
a. True
b. False

18 Data Structures and Algorithms for Game Developers

19

Arrays2
In This Chapter

The Data Structures Known as Arrays
Algorithms: Insertion and Deletion
Ordered Arrays
Algorithms: Basic Searches
STL Arrays
Bit Arrays

20 Data Structures and Algorithms for Game Developers

T
he most common form of data structure is the array because it is built into
many different programming languages and is easy to learn and work with in
any type of application. Every C and C++ programmer of any level should be

familiar with arrays, so they are a good place to start. In this chapter we will explore
arrays in detail beyond the language-specific implementation. Later in the chapter
we will look at the STL implementation of arrays by using a template STL class
known as the vector. Arrays are very important in application programming, and
a solid understanding of them beyond the syntax can be very beneficial to all types
of applications. Also in this chapter, we’ll look at ordered arrays, the C++ valarray,
and various bit arrays.

Chapters 3 and 4, Recursion and Introduction to Sorting, will use the code de-
veloped in this chapter to help illustrate their topics and algorithms. This chapter
will use C++ templates, which were discussed in Chapter 1, and classes. By creating
an array class, you can get an intimate look inside the data structure outside of the
STL vector as well as have the ability to add methods and operations to your own
custom data structure. Although the manual data structures and algorithms cov-
ered in this chapter are not as complex as the STL vector, they are a good starting
point for those new to the subject.

Arrays have great use in all kinds of applications, especially games and simula-
tions. Arrays can be used in any game where a list of objects with the same data type
is needed. This list can be an array of character models, an array of textures, an
array of sounds, and so forth. Arrays are simple data structures, and sometimes the
simple path is the best option.

THE DATA STRUCTURES KNOWN AS ARRAYS

The most common data storage structure is the array. Arrays are very convenient to
use because most programmers, even novices, are familiar with them because they
are built into many programming languages. Listing 2.1 shows a simple example of
arrays. The code for this example, called Arrays, can be found on the CD-ROM in
the Chapter 2/Arrays folder along with its executable. Later in the chapter we will
look at creating a template class that will be used as a container for a list of objects.
In Listing 2.1 the example program code creates two arrays, one static and one dy-
namic, fills them with data, and displays that information to the screen. Because of
the nature of arrays, it is assumed that you have some prior experience with them
in the C++ programming language.

LISTING 2.1 A Simple Example of the Use of Arrays

#include<iostream>

int main(int args, char **argc)

{

std::cout << "1D Array Example" << std::endl;

std::cout << "Chapter 2: Arrays01" << std::endl;

std::cout << std::endl;

const int size = 5;

int array[size] = { 10, 32, 53, 91, 21 };

std::cout << " Static array contents (" << size << "): ";

for(int i = 0; i < size; i++)

{

std::cout << array[i] << " ";

}

std::cout << std::endl;

int *array2 = new int[size];

array2[0] = 99;

array2[1] = 67;

array2[2] = 23;

array2[3] = 49;

array2[4] = 12;

std::cout << "Dynamic array contents (" << size << "): ";

for(int i = 0; i < size; i++)

{

std::cout << array2[i] << " ";

}

delete[] array2;

Chapter 2 Arrays 21

22 Data Structures and Algorithms for Game Developers

std::cout << std::endl << std::endl;

return 1;

}

Keep in mind that you can also use using namespace std; to avoid having to
specify the namespace before any of the standard library objects such as cout and
endl, as shown in Listing 2.1.

C++ arrays can be single or multidimensional as well as static or dynamic.
Dynamic arrays require at least basic manual memory management to avoid
unwanted side effects from errors that cause undefined behavior and so forth. This
means that to use a dynamic array we must manually create and destroy the array
within code as well as keeping track of the allocated memory through pointers.
Failing to destroy an array once a program is done with it can lead to memory
leaks, which occur when memory goes outside an application’s reach by pointers
(i.e., no pointers are pointing to that allocated memory). When enough memory
leaks occur, they can cause future allocations to fail, and will effect the overall
application and system performance.

When memory is allocated, it must be carefully tracked. Trying to access mem-
ory that has been deleted through an invalid pointer can cause a host of undesirable
and often unpredictable side effects, which happens when a behavior is undefined,
as in the case of trying to use or delete an invalid pointer. One example of such a
side effect is that the application can abruptly crash when the pointer is accessed or
some time afterwards. Errors caused by dangling pointers, as well as other types of
errors, can be unpredictable, and the side effects can be either obvious or silent
(such as corrupting memory).

Automatic memory management as well as advanced manual memory manage-
ment techniques are used in computer science. Although they are very useful in
game development and general application development, the topic of advanced
memory management is outside the scope of this book.

Memory management is handled automatically in some languages such as C# and
Java. Users learning C++ after learning one of these languages will have to adjust
to manually managing their memory consumption.

Memory must be tracked by pointers, and those pointers must be carefully
used to avoid dangling pointers, which are pointers to invalid memory in C++.
Memory also must be carefully managed to avoid out-of-bound errors, which

occur when an attempt is made to access memory outside of the array’s range. This
kind of error can cause a host of unwanted side effects such as unwanted and un-
predictable application behavior, application or system crashing, and so forth. By
keeping track of the number of items in an array and by checking to make sure the
array does not go out of bounds, we can avoid such errors, althouth such checks
add a cost of CPU time in exchange for security. This issue also applies to static
memory heaps as well as dynamic memory because C++ does not perform any
bounds checks and leaves it up to the programmer. For those new to C++ the in-
formation presented in the previous few paragraphs is important to remember
when programming.

For those unfamiliar with simple manual memory management, many factors
must be taken care of to safely use dynamic, and at times static, arrays in an applica-
tion. Depending on the application and how it is used, the performance of an array
can also be important through controlling memory fragmentation, which is a topic
related to memory management. Appendix A lists resources on this subject that can
be useful for those wanting to learn more about manual memory management.

CREATING CUSTOM ARRAYS

When working with arrays, it can be beneficial to place the array in a container
class. This class can have common operations and algorithms performed on the
array such as insertions, deletions, searches, and sorting. Encapsulating an array in
a template class can allow us to provide all of our methods in a reusable manner
while also using it with many different types. In the following section we will look
at doing this for an unordered array and an ordered array. Later in the chapter the
same will be done for bit arrays.

This chapter covers the creation, deletion, and management of various arrays
as well as a few searching algorithms. In future chapters more algorithms will be
added to the arrays built in this class to extend its functionality. The first part of
the implementation of the unordered array class includes the ability to create a dy-
namic array through the constructor, delete the array upon a call to the destructor,
store an array that is a template, and determine the size of the array, the size by
which we want to expand the array if necessary, and the total number of elements
in the array. By allowing the array to expand, we can have a dynamically growing
list that can increase its size as needed. Disallowing the growth of an array could be
as simple as setting this variable to 0. When inserting new items in the list and when
performing certain algorithms, it is important to know how many items are in the
list because (a) we only want to process valid items in the array, (b) we need to
know where the last item was inserted in the list so we can insert the next item or
to remove the last item, and (c) a number of algorithms depend on knowing how

Chapter 2 Arrays 23

big the array is in terms of items inserted (such as the binary searching algorithm).
The array itself is a template type, so we can use the code for any built-in and user-
defined class without the need to rewrite the data structure for each type it is to sup-
port. Listing 2.2 shows the parts of the unordered array class that deal with the ideas
discussed in this paragraph.

LISTING 2.2 Partial Look at the Template Array Class

template<class T>

class UnorderedArray

{

public:

UnorderedArray(int size, int growBy = 1) :

m_array(NULL), m_maxSize(0),

m_growSize(0), m_ numElements (0)

{

if(size)

{

m_maxSize = size;

m_array = new T[m_maxSize];

m_growSize = ((growBy > 0) ? growBy : 0);

}

}

~UnorderedArray()

{

if(m_array != NULL)

{

delete[] m_array;

m_array = NULL;

}

}

private:

T *m_array;

int m_maxSize;

int m_growSize;

int m_numElements;

};

24 Data Structures and Algorithms for Game Developers

ALGORITHMS: INSERTION AND DELETION

Inserting items into an array runs in the big-O notation of O(1) and is not depen-
dant on the number of items in the list. By keeping track of the total number of
items in the array, we can immediately know where to insert the next item being
placed in the array. This operation’s function can have many different names, but
in the STL a function used to insert an item into a container is often called push (or
a variation such as push_back, or push_front). Removal of items from the end of a
container in the STL is often given a function called a pop. For the unordered array
class we will be using the function name push for inserting into a container and
pop for removing. Inserting into an array is as straightforward as it is outside of the
container, which is done by using an assignment operator to make the current
array index equal to a value we want stored. The insertion into an unordered array
is shown in Listing 2.3. If the maximum size is reached in the array, its size is ex-
panded, which will be discussed later in this chapter.

LISTING 2.3 Inserting (push) into an Unordered Array

template<class T>

class UnorderedArray

{

public:

virtual void push(T val)

{

assert(m_array != NULL);

if(m_numElements >= m_maxSize)

{

Expand();

}

m_array[m_numElements] = val;

m_numElements++;

}

};

Assertions (assert()) are used for debugging purposes that, when failed, will
trigger a dialog box to appear. If you are unfamiliar with assertions, look them up
in your C/C++ documentation. Assertions are only used in debugging and are
excluded from release builds.

Chapter 2 Arrays 25

Removing an item from an array can be done in a number of different ways.
One way can require the array to resize itself and only store the data that was in the
original array minus the item to be removed. This might allow applications to
conserve memory when many items are removed from an array, but at a huge per-
formance penalty if it is done for large numbers of items and if it is done often.
When removing items in this manner, we would be required to create a new array,
copy over the data from the original array up to the point of the object being
deleted, copy the data after the object being deleted one index down, and delete the
old memory. Performing this operation once for every object that is removed is
expensive. In games performance is very important so this can be a problem. If new
items are inserted into the array after a removal, the array would need to be re-
expanded to accommodate the new item (assuming expansion was supported),
and a lot of time would be wasted deleting and reexpanding, not to mention copy-
ing data to and from different memory locations.

Another option is to simply copy the data that comes after the item to be
deleted one element down so that the item to be removed is overridden with the
indexes that come after it, leaving an empty spot on the top of the array. We will still
need to perform a copy operation on the array, but the memory allocation and
deletion will have been avoided. This operation is illustrated in Figure 2.1.

26 Data Structures and Algorithms for Game Developers

FIGURE 2.1 Removing an item from an array by copying over it.

Later in the book we will see different data structures that are better at deletion
of items than the array. One such data structure is called the link list, which will be
discussed in Chapter 5, Link Lists. For the array containers in this chapter we will
use a function called pop() to remove the last item that was inserted into the con-
tainer, which will be done by simply decrementing the counter for the total num-
ber of items that are in the list. We will use a function called remove() to remove
an index from the array by overriding the index to delete. Removing items from an
array in the manner described in this and the previous paragraphs is shown in
Listing 2.4.

LISTING 2.4 Removing Items from the Unordered Array

template<class T>

class UnorderedArray

{

public:

void pop()

{

if(m_numElements > 0)

m_numElements—;

}

void remove(int index)

{

assert(m_array != NULL);

if(index >= m_maxSize)

{

return;

}

for(int k = index; k < m_maxSize - 1; k++)

m_array[k] = m_array[k + 1];

m_maxSize—;

if(m_numElements >= m_maxSize)

m_numElements = m_maxSize - 1;

}

};

Chapter 2 Arrays 27

What if we wanted to remove all items from the array? Let’s say we want to
remove all the items so that we can repopulate it with different objects. Although
we can remove (remove()) each index one at a time, this would waste CPU time
because of the total overhead of the function. We could also keep calling pop() to
remove the last item in the list until there were no more, but this too is a waste of
CPU time because of the number of pop() calls that would be required for an array
with more than one item. A faster method would be to leave the data alone and just
reset the counter used to keep track of the total number of items that exist in the
container. This will cause all items to be overridden when new items are inserted
into the array and only requires one assignment operator. Listing 2.5 shows the
process of clearing an array. When working with user-defined classes, it might be
necessary to take care of items first, before they can be overridden. This can occur
if the array stores pointers to allocated memory or if the items in the array have
member variables that require special attention from the programmer.

LISTING 2.5 Quickly Clearing an Array

template<class T>

class UnorderedArray

{

public:

void clear()

{

m_numElements = 0;

}

};

The size of an array is finite. When the array is full, no more items can be inserted
into the list without either overriding values in existing indexes or without going out
of bounds. The two main options in this situation are to disallow additional items to
be inserted or to allocate more memory. The expansion of the array is the option that
will be explored for the arrays in this chapter because such an operation can be very
useful in an application. Expanding the array gives the container a dynamically grow-
ing heap of memory that adjusts as the need arises. To expand the array we need only
create a new array that is bigger than the current one, copy the data from the original
memory location to the new one, and delete the old memory.

The downside is that the performance hit can add up, depending on the num-
ber of items that are inserted into the list and the number of allocates and copies
that are needed. One way to minimize such a performance hit is to allocate an array
that is more than one element bigger than the original. For example, if the array size
is increased by five elements every time it needs to be expanded, that would be
faster than increasing the array one element for every expansion. The thing about

28 Data Structures and Algorithms for Game Developers

allocating more space than is needed is that sometimes elements are not used. The
number of unused items will depend on how much memory is wasted. This means
it is the programmer’s responsibility to choose a “grow-by or expansion” value
that is generally optimal for the application and use in question. The array con-
tainers in this chapter will allow programmers to specify the grow-by size in the
constructor. Using a size of 0 will tell the container that it cannot grow larger than
its initial size. A function to expand the unordered array container for this chapter
is shown in Listing 2.6. The function is private in Listing 2.6 because it is to be used
by the container only and not by any application functions outside the class and
it works by creating a new memory location, copying the original data to the new
location, and deleting the old memory.

LISTING 2.6 Expanding an Array

template<class T>

class UnorderedArray

{

private:

bool Expand()

{

if(m_growSize <= 0)

return false;

T *temp = new T[m_maxSize + m_growSize];

assert(temp != NULL);

memcpy(temp, m_array, sizeof(T) * m_maxSize);

delete[] m_array;

m_array = temp;

m_maxSize += m_growSize;

return true;

}

};

One of the most useful operators that C++ arrays support are brackets ([and]).
Using brackets allows programmers to directly access specific indexes in the array.
C++ has a feature that allows programmers to overload operators with custom
code for user-defined objects. Supporting array brackets with custom-made con-
tainers will give those classes a feel that is more like traditional arrays.

Chapter 2 Arrays 29

Accessing elements in an array using brackets brings up the issues of out-of-
bound errors, how to not access elements outside of the elements already pushed
onto the list, and performance, to name a few. When it comes to performance, the
fastest method would be to directly access the array without any safety checks. The
problem with this is that some errors might easily occur and be hard to find. For-
tunately we can use assertions to announce errors to anyone using the container.
Assertions work in the debug builds of applications. Release builds compile asser-
tions down to nothing so that they are not even included and executed. During the
debugging process it is common to give a little performance for things like this,
which are not included in the release version. Using assertions gives us an indi-
cation of where problems are occurring so that they can be fixed before the final
version is released. In many containers throughout this book assertions are used to
check for potential errors, rather than if statements and other various conditional
checks.

Overloading the [] operator to return the reference of an element allows the
container to have read and write abilities. This is important when trying to mimic
traditional arrays since array elements can have elements read and written to. The
operator for [] is shown in Listing 2.7 for the unordered array.

LISTING 2.7 Array Style Access for Elements

template<class T>

class UnorderedArray

{

public:

virtual T& operator[](int index)

{

assert(m_array != NULL && index <= m_numElements);

return m_array[index];

}

};

Later in this chapter we will revisit unordered arrays and a few algorithms that
can be performed with them.

An operation that can operate in constant time has a big-O of O(1) because the
performance is unaffected by N. Constant time means that time is unaffected by
the number of items in a list.

30 Data Structures and Algorithms for Game Developers

ORDERED ARRAYS

This section will look at ordered arrays in a C++ template class. An ordered array
is an array that has its contents in some kind of order, whether that is larger to
smaller or vice versa. With ordered arrays the order is typically determined during
the items’ insertion. Ordered arrays have benefits for items that must be inserted
in a particular order but, as we will see later, there are better options to use in some
situations. In this chapter we will create an ordered array that sorts from smaller to
larger as an example. A visual look at ordered arrays is shown in Figure 2.2.

Chapter 2 Arrays 31

FIGURE 2.2 Ordered arrays.

One way to create an ordered array is to insert the items into the array based on
the desired order. This is not always feasible, and logic errors can easily lead to
unordered arrays. Another option is to insert the items into the array and allow the
insertion code to figure out their order. For example, if there are 10 items in a list
and a new item is inserted that needs to be at index 5, the item already at index 5
and every element after it must be moved up the array to allow the new item to take

that slot. Doing this every time an item needs to be inserted can be quite expensive
in terms of CPU processing time. Inserting into an ordered array has a big-O of
O(N) because the insertion is dependant on the number of items in the array. When
inserting into the array, conditional checks must be performed until the correct
index for the item can be determined. When working with ordered arrays, one
must keep in mind that insertion into the array does not mean the item will appear
at the end of the array. To determine where inserted items appear in the list, the
push() function for the ordered array will return the element’s index. This is shown
in Listing 2.8.

LISTING 2.8 The Ordered Array Class that Differs from the Unordered Array

template <class T>

class OrderedArray

{

public:

int push(T val)

{

assert(m_array != NULL);

if(m_numElements >= m_maxSize)

{

Expand();

}

for(int i = 0; i < m_numElements; i++)

{

if(m_array[i] > val)

break;

}

for(int k = m_numElements; k > i; k—)

{

m_array[k] = m_array[k - 1];

}

m_array[i] = val;

m_numElements++;

return i;

}

};

32 Data Structures and Algorithms for Game Developers

Another option for inserting an item into an ordered array is to use a modified bi-
nary search to find the index closest to where the item would need to be inserted
and start the stepping from that point. Binary searching will be discussed later in
this chapter.

Amortized constant time refers to operations that usually run in constant time but
can be affected by N, the number of items in the list.

What do we gain by having an ordered array besides the knowledge that the
data is in order? One major advantage, which we’ll see in the next section, is that the
ordered array is faster to search, using a binary search, than an unordered array,
which would use a linear search. One major disadvantage to using an ordered array
is that the insertions are much more expensive than with the unordered version.
When insertions are rare but searches are frequent, the ordered array would prob-
ably be the better choice in most applications. If the opposite is true, the unordered
array might be the better choice. In the following section we will look at two search-
ing algorithms that can be performed on unordered or ordered template arrays.

ALGORITHMS: BASIC SEARCHES

This chapter discusses two searching algorithms: the linear search and the binary
search. Being able to find a value in an array might prove useful in a container. Be-
cause these algorithms are relatively simple, they are a great introduction to the
world of algorithms. An algorithm is a set of operations that are performed on a
data structure, with the data structure in this case being the array. Linear searches
are used on unordered arrays, while binary searches are better to use on ordered
arrays. Each will be discussed in more detail in the following sections.

LINEAR SEARCHES

When we are looking for a value in an unordered array, our main option is the
linear search. The linear search is a brute-force-style search. The algorithm works
by stepping through each element of the array, starting with the first element, and
checking to see if the value of that element matches the value of what is being
searched for. If it is found, then the algorithm can report that the item exists in
some meaningful fashion, and it can also report where in the array the item is
positioned.

During a linear search the algorithm can find the first occurrence or all occur-
rences of a value. If duplicates are allowed in the array, then more than one value

Chapter 2 Arrays 33

can exist. In this chapter we’ll discuss finding the first occurrence. If there are times
when you know you need to know how many occurrences there are, or even how
many and where they are, then the searching function of the unordered array class
can be expanded to accommodate those needs. Searching beyond the first occur-
rence can be a waste of CPU time if there is no need to look for duplicates. Figure
2.3 illustrates the linear search. The search() function used to perform a linear
search in the unordered array class is shown in Listing 2.9, where the function re-
turns the index of the value if it is found, or else it returns -1 to indicate that the
value was not found.

34 Data Structures and Algorithms for Game Developers

FIGURE 2.3 A linear search.

LISTING 2.9 The Linear Search of an Unordered Array

template<class T>

class UnorderedArray

{

public:

virtual int search(T val)

{

assert(m_array != NULL);

for(int i = 0; i < m_numElements; i++)

{

if(m_array[i] == val)

return i;

}

return -1;

}

};

A linear search can become slow for arrays with large numbers of items. On
average, the algorithm requires half the total number of items to find a value. If
there were 100 items in a list, then the average would be 50. Because the linear
search’s performance is based on the number of items in the array, it has a big-O of
O(N). The linear search is the most basic, yet slowest, search because it must check
potentially every item (half on average) before finding a value, assuming the value
even exists in the array. If the value does not exist, the search would have checked
every element in the array and come up with nothing.

BINARY SEARCHES

A binary search can be performed on an ordered array. It works by taking a value
that is being searched for and testing it by the element in the middle of the array. If
the value being searched for is lower than the item in the middle of the ordered
array, it can be determined that if the value exists, it is in the first half of the array.
If the value is larger than the element in the middle, the value might exist in the
upper half. Once the direction is known, half of that new section is tested to further
narrow down where the value can be. This is repeated until the value is found or
until there are no more elements left. The binary search gets its name from the fact
that the remaining elements are always split in half (binary equals 2). An illustration
of a binary search is shown in Figure 2.4. Because a binary search requires the ele-
ments to be in order, this algorithm cannot work for an unordered array since the
unordered array can be unpredictable in terms of item positions.

The binary search can eliminate large sections of an array in an effort to narrow
down the list to find the value, assuming it exits. When compared to the linear
search, this can result in a huge difference in performance as N grows larger. For ex-
ample, an array being searched with a linear algorithm that is made up of 1 million
elements will take on average 500,000 steps for items that exist, which can mean
that some checks can go up to the whole million depending on the item. Using a
binary search on an ordered array with that same number of elements will take
20 comparisons. To go from an average of 500,000 comparisons to just 20 is a huge
difference. To go from 1 million comparisons to 20 with items that are not found

Chapter 2 Arrays 35

in the array is tremendous. Such a difference can have a huge impact on a con-
tainer’s performance in any situation. The function for the binary search in shown
in Listing 2.10, where a while loop is used to split through the array until the ele-
ment is found or is proven to not exist in the container. The binary search has a
big-O of O(log N).

LISTING 2.10 Binary Search for an Ordered Array

template <class T>

class OrderedArray

{

public:

int search(T searchKey)

{

assert(m_array != NULL);

int lowerBound = 0;

int upperBound = m_numElements - 1;

int current = 0;

36 Data Structures and Algorithms for Game Developers

FIGURE 2.4 A binary search.

while(1)

{

current = (lowerBound + upperBound) >> 1;

if(m_array[current] == searchKey)

{

return current;

}

else if(lowerBound > upperBound)

{

return -1;

}

else

{

if(m_array[current] < searchKey)

lowerBound = current + 1;

else

upperBound = current - 1;

}

}

return -1;

}

};

The binary search in Listing 2.10 starts off by defining the bounds that make up
the search range, which is initially set to the entire array. Once the range is set, the
middle of the range is determined and the element at the position is tested. If the
item is found, the index is returned; if the lower bound’s value becomes higher than
the upper bound’s value (which will happen when the search has stepped through
the entire array), then the value is not found. If neither of these two cases are true,
the lower bound, which is the minimum search range position, is adjusted if
the item is greater than the item in the middle, or else the upper bound is adjusted.
Adjusting the range values will quickly shrink the search range until the value is
found or until there are no more elements to check. As shown in Figure 2.4, this
operation is pretty fast as N grows larger.

Operations that run in logarithmic time need more time to operate as N grows
larger. The time that is required by the operation is proportional to the logarithm
of N.

Chapter 2 Arrays 37

In general, the time required to run an operation in constant time is faster than one
in logarithm time, and an operation in logarithm time is faster than one that is lin-
ear. Sometimes, however, if N is small enough, some operations that have slower
theoretical performance can outperform ones that one would think are faster.

In upcoming chapters we’ll look at adding algorithms to the array classes dis-
cussed in this chapter. Both arrays have the ability to insert items, remove items, ex-
pand when necessary, perform searching, and allow for element access through
overloading the [] operator. Accessing elements with the unordered array class al-
lows reading and writing, but the ordered array does not allow this without risking
unintentionally unordering the array with logic errors. The entire unordered and
ordered arrays discussed in this chapter appear in Listing 2.11.

LISTING 2.11 The Entire Ordered and Unordered Array Classes

template<class T>

class UnorderedArray

{

public:

UnorderedArray(int size, int growBy = 1) :

m_array(NULL), m_maxSize(0),

m_growSize(0), m_numElements(0)

{

if(size)

{

m_maxSize = size;

m_array = new T[m_maxSize];

memset(m_array, 0, sizeof(T) * m_maxSize);

m_growSize = ((growBy > 0) ? growBy : 0);

}

}

virtual ~UnorderedArray()

{

if(m_array != NULL)

{

delete[] m_array;

m_array = NULL;

}

}

38 Data Structures and Algorithms for Game Developers

virtual void push(T val)

{

assert(m_array != NULL);

if(m_numElements >= m_maxSize)

{

Expand();

}

m_array[m_numElements] = val;

m_numElements++;

}

void pop()

{

if(m_numElements > 0)

m_numElements—;

}

void remove(int index)

{

assert(m_array != NULL);

if(index >= m_maxSize)

{

return;

}

for(int k = index; k < m_maxSize - 1; k++)

m_array[k] = m_array[k + 1];

m_maxSize—;

if(m_numElements >= m_maxSize)

m_numElements = m_maxSize - 1;

}

virtual T& operator[](int index)

{

assert(m_array != NULL && index <= m_numElements);

return m_array[index];

}

Chapter 2 Arrays 39

virtual int search(T val)

{

assert(m_array != NULL);

for(int i = 0; i < m_numElements; i++)

{

if(m_array[i] == val)

return i;

}

return -1;

}

void clear() { m_numElements = 0; }

int GetSize() { return m_numElements; }

int GetMaxSize() { return m_maxSize; }

int GetGrowSize() { return m_growSize; }

void SetGrowSize(int val)

{

assert(val >= 0);

m_growSize = val;

}

private:

bool Expand()

{

if(m_growSize <= 0)

return false;

T *temp = new T[m_maxSize + m_growSize];

assert(temp != NULL);

memcpy(temp, m_array, sizeof(T) * m_maxSize);

delete[] m_array;

m_array = temp;

m_maxSize += m_growSize;

return true;

}

40 Data Structures and Algorithms for Game Developers

private:

T *m_array;

int m_maxSize;

int m_growSize;

int m_numElements;

};

template <class T>

class OrderedArray

{

public:

OrderedArray(int size, int growBy = 1) :

m_array(NULL), m_maxSize(0),

m_growSize(0), m_numElements(0)

{

if(size)

{

m_maxSize = size;

m_array = new T[m_maxSize];

memset(m_array, 0, sizeof(T) * m_maxSize);

m_growSize = ((growBy > 0) ? growBy : 0);

}

}

virtual ~OrderedArray()

{

if(m_array != NULL)

{

delete[] m_array;

m_array = NULL;

}

}

void push(T val)

{

assert(m_array != NULL);

if(m_numElements >= m_maxSize)

{

Chapter 2 Arrays 41

Expand();

}

for(int i = 0; i < m_numElements; i++)

{

if(m_array[i] > val)

break;

}

for(int k = m_numElements; k > i; k—)

{

m_array[k] = m_array[k - 1];

}

m_array[i] = val;

m_numElements++;

}

void pop()

{

if(m_numElements > 0)

m_numElements—;

}

void remove(int index)

{

assert(m_array != NULL);

if(index >= m_maxSize)

{

return;

}

for(int k = index; k < m_maxSize - 1; k++)

m_array[k] = m_array[k + 1];

m_maxSize—;

if(m_numElements >= m_maxSize)

m_numElements = m_maxSize - 1;

}

42 Data Structures and Algorithms for Game Developers

// Making this const allows for reading but not writing.

virtual const T& operator[](int index)

{

assert(m_array != NULL && index <= m_numElements);

return m_array[index];

}

int search(T searchKey)

{

if(!m_array)

return -1;

int lowerBound = 0;

int upperBound = m_numElements - 1;

int current = 0;

while(1)

{

current = (lowerBound + upperBound) >> 1;

if(m_array[current] == searchKey)

{

return current;

}

else if(lowerBound > upperBound)

{

return -1;

}

else

{

if(m_array[current] < searchKey)

lowerBound = current + 1;

else

upperBound = current - 1;

}

}

return -1;

}

void clear() { m_numElements = 0; }

int GetSize() { return m_numElements; }

Chapter 2 Arrays 43

int GetMaxSize() { return m_maxSize; }

int GetGrowSize() { return m_growSize; }

void SetGrowSize(int val)

{

assert(val >= 0);

m_growSize = val;

}

private:

bool Expand()

{

if(m_growSize <= 0)

return false;

T *temp = new T[m_maxSize + m_growSize];

assert(temp != NULL);

memcpy(temp, m_array, sizeof(T) * m_maxSize);

delete[] m_array;

m_array = temp;

m_maxSize += m_growSize;

return true;

}

private:

T *m_array;

int m_maxSize;

int m_growSize;

int m_numElements;

};

On the CD-ROM in the Chapter 2 folder is a demo application called Array
Template that demonstrates the use of both the unordered and ordered arrays.
Each function and operator is tested in a C++ console application, whose main
source file is shown in Listing 2.12.

44 Data Structures and Algorithms for Game Developers

LISTING 2.12 The Main Source File

void UnorderedArrayTest()

{

UnorderedArray<int> array(3);

array.push(3);

array.push(53);

array.push(83);

array.push(23);

array.push(82);

array[2] = 112;

array.pop();

array.remove(2);

cout << "Unordered array contents: ";

for(int i = 0; i < array.GetSize(); i++)

{

cout << array[i] << " ";

}

cout << endl;

cout << "Search for 53 was found at index: ";

cout << array.search(53);

cout << endl << endl;

}

void OrderedArrayTest()

{

OrderedArray<int> array(3);

array.push(43);

array.push(8);

array.push(23);

array.push(94);

array.push(17);

Chapter 2 Arrays 45

array.pop();

array.remove(2);

cout << "Ordered array contents: ";

for(int i = 0; i < array.GetSize(); i++)

{

cout << array[i] << " ";

}

cout << endl;

cout << "Search for 12 was found at index: ";

cout << array.search(12);

cout << endl << endl;

}

int main(int args, char **argc)

{

UnorderedArrayTest();

OrderedArrayTest();

return 1;

}

To use user-defined classes in an ordered array, the array must specify the neces-
sary operators such as the less-than sign (<).

DEALING WITH DUPLICATES

By default, C++ arrays cannot check for duplicate data. When working with arrays
that require unique data elements, one option is to search the list before inserting
new items into it. If an item exists, the insertion can be avoided; otherwise the
operation adds the item to the list and returns. Using the code developed so far, one
could prevent duplicates by running the search() function before push(). For both
arrays this can be expensive because linear searching is costly with unordered arrays
with a large N and so is the insertion into ordered arrays. One way to deal with
keeping out duplicates with an ordered array is to slightly alter the push() function

46 Data Structures and Algorithms for Game Developers

to check for the value as it searches for the spot in which it will be placed. If the item
is found, the insertion can stop immediately. This can be controlled by using a flag
that can be passed to the constructor to inform the container it if is allowed to have
duplicates or not. For unordered arrays a linear search would have to be performed
each time. An example of using the code developed so far in this chapter to keep
duplicates out of an array is shown in Listing 2.13. The type of array used will
depend on the application and how the application interacts with the structure. If
insertions are not frequent throughout the course of the application but searchers
are (and the need for unique data is a must), then the ordered array may be the bet-
ter option. There is never a clear general winner, and the one to use is determined
by the programmer. Other options include using other data structures exclusively
or in conjunction with arrays, for example, using a hash table to store hash values
of items already inserted so that a quick test can be performed to see if an item
already exists.

LISTING 2.13 Checking for Duplicates

UnorderedArray<int> array(3);

if(array.Search(3) != -1)

array.push(3);

if(array.Search(53) != -1)

array.push(53);

if(array.Search(83) != -1)

array.push(83);

if(array.Search(23) != -1)

array.push(23);

if(array.Search(82) != -1)

array.push(82);

STL ARRAYS

The STL is a set of classes that are intended to be generic, tested, portable, and con-
venient. One STL data structure that will be discussed in this chapter is the vector
container. Other classes that will be looked at are the valarray and the bitset,

Chapter 2 Arrays 47

which is not a container but is useful and available to C++ programming in the
standard library. Applications of all sorts can benefit from having arrays that need
to expand and contract, and by using the STL vector, programmers can get just that
in an efficient and powerful template class.

The STL sequence containers include vector, string, deque, and list. The STL as-
sociative containers include set, multiset, map, and multimap. The STL nonstandard
associative containers include hash_set, hash_multiset, hash_map, and hash_
multimap. The STL nonstandard sequence containers include slist and rope.

THE STL Vector

The vector container (with container being synonymous with list and collection)
permits the construction of a generic type of data structure and is one of the STL
sequence container types that also include deque, list, set, map, multiset, and
multimap, each of which will be encountered throughout this book. This section will
present the vector class and a few of the algorithms that can be performed on it as
well as other STL data structures. Throughout the book more algorithms will be
discussed in detail, but this chapter will focus on the algorithms mentioned so far,
which include the searching algorithms.

Items are copied into containers with vectors. If the object being copied is expensive to
copy, this can cause a serious bottleneck in an application. The expense can have
many causes, the major one being lots of memory allocated in the object’s construction.

The vector class is made up of various methods and operations that allow for
the manipulation of the container, with many of these methods and operations
being common among STL data structures. Whenever possible, it is recommended
that you use container functions and algorithm functions when working with con-
tainers, as those functions are highly efficient and in most situations can outper-
form any custom code that you provide. Table 2.1 summarizes the various STL
vector class methods and operator functions.

The vector class, along with other STL data structures, uses allocators to allocate
memory used by the data structure. Earlier in this chapter we used new and delete

to handle the allocation and de-allocation of memory.

48 Data Structures and Algorithms for Game Developers

Chapter 2 Arrays 49

Method and
Operator Names Descriptions

vector<type>() Constructor that creates an empty vector container

vector<type>(n) Constructor that creates a vector of size n

vector<type>(source) Copy constructor that creates a vector that is a copy
of the source object

vector<type>(n, val) Constructor that creates a vector of size n that has its
elements initialized to val

vector<type> Constructor that creates a vector out of the elements in
(src.begin, src.end) the src vector defined by its beginning and ending

iterators

~vector<type>() Destructor that destroys the vector

assign(n, val) Assigns to the vector n elements of the value val

at(index) Returns a reference to the element specified by index

back() Returns a reference to the last element

begin() Returns a random-access iterator to the beginning of
the vector

capacity() Returns the number of elements the vector could
contain without needing to allocate more memory

clear() Erases the elements of a vector

empty() Returns true if the vector is empty, or else false

end() Returns a random-access iterator to the end of the
vector

erase(index)

erase(begin, end) Erases the element specified by index or a range of
elements specified by the iterators begin and end

front() Returns a reference to the beginning of the first
element in the vector

get_allocator() Returns the allocator used by the vector container

insert(index, val)

insert(index, n, val)

→

TABLE 2.1 Summary of the vector Class’s Methods and Operators

In addition to the methods and operators in Table 2.1 there is a list of STL
algorithms that can also be performed on STL containers. In this chapter we will
look at the binary search, search, copy, and accumulate algorithms in the code ex-
amples that follow. Commonly used STL algorithms include but are not limited to
those described in Table 2.2.

50 Data Structures and Algorithms for Game Developers

Method and
Operator Names Descriptions

insert(index, Inserts a value specified by val or a range of values
begin, end) specified by the begin and end iterators into the

position index. N is the total number of times to
insert into the container.

max_size() Returns the maximum size of the container

push_back(val) Adds a value val to the end of the container

pop_back() Removes the value at the end of the container

rbegin() Returns an iterator to the first element in a reverse
vector container

rend() Returns an iterator to the last element in a reverse
vector container

resize(n) Specifies a new size n for the container

reserve(n) Reserves the minimum size n for the container

size() Returns the number of elements in the container

swap(source) Swaps two vectors with one another

operator[index] Returns a reference to an element at index

operator== Boolean operator that returns true if two vectors are
equal, or else it returns false

operator!= Boolean operator that returns true if two vectors are
not equal, or else it returns false

operator< Boolean operator that returns true if the first vector is
less than the second

operator> Boolean operator that returns true if the first vector is
greater than the second

operator<= Boolean operator that returns true if the first vector is
less than or equal to the second

operator>= Boolean operator that returns true if the first vector is
greater than or equal to the second

To use STL algorithms you will need to include the header file <algorithm>.

Chapter 2 Arrays 51

accumulate(begin, Returns the sum of all of the elements in the
end, val) range of the begin and end iterators (and adds

val to each element)

copy(src.begin, src.end, Copies the elements in src to dst in the range
dst.begin) of the src’s begin and end iterators

copy_backward(src.begin, Same as copy() but with the elements in
src.end, dst.begin) reverse

count(begin, end, val) Counts the number of elements that match val
in the range specified by the begin and end

iterators

fill(begin, end, val) Fills a container in the range specified by begin
and end with the value val

find(begin, end, val) Returns an input iterator to the first occurrence
of val in the range specified by begin and end

min_element(begin, end) Returns the minimum element in the range
specified by begin and end

max_element(begin, end) Returns the maximum element in the range
specified by begin and end

random_shuffle(begin, end) Randomly shuffles elements in a range

remove(begin, end, val) Removes a value val from the container in a
range without changing the order of the
remaining elements

replace(begin, end, Replaces the elements that match oldVal with
oldVal, newVal) newVal in a range

reverse(begin, end) Changes the order of the elements in the
specified range

search (begin1, end1, Searches for the first occurrence of a set of
begin2, end2) values specified in begin2 and end2 with those

in begin1 and end1

sort (begin, end) Sorts the elements in the range into ascending
order

swap(vec1, vec2) Swaps the elements between two vectors

unique(begin, end) Removes duplicate elements within the range

TABLE 2.2 Commonly Used STL Algorithms

This book will cover more STL algorithms in the following chapters.

Slicing can occur when objects of a derived type are copied into a container that is
set up to store objects of the base type. Slicing occurs when objects are copied using
the base class instead of the derived class (derived-ness of the objects is removed).
One way to avoid this is to use a container of base class pointers, but this can have
its own problems, as we will see later on.

In this section we will look at a few C++ console demo applications that use the
STL vector template class. The first demo application is called stlvector and can be
found on the CD-ROM in the Chapter 2 folder. The demo is made up of one source
file called main.cpp. In the demo the code will demonstrate passing vectors by
reference to functions, calling the size() and capacity() functions of the container
class, inserting items with push_back(), removing items with pop(), accessing
elements with the [] operator, reserving space with the reserve() function, declar-
ing an integer vector container clear() for clearing the container, and calling the
empty() function to see if the container is empty. The entire main.cpp source file
from the stlvector demo application is shown in Listing 2.14.

LISTING 2.14 The Main Source File of the stlvector Demo Application

#include<iostream>

#include<vector>

using namespace std;

void PrintVector(vector<int> &array)

{

cout << "Contents (" << "Size: " << (int)array.size() <<

" Max: " << (int)array.capacity() << ") - ";

for(int i = 0; i < (int)array.size(); i++)

{

cout << array[i] << " ";

}

cout << endl;

}

52 Data Structures and Algorithms for Game Developers

int main(int args, char **argc)

{

cout << "STL Vector Example" << endl;

cout << "Data Structures for Game Developers" << endl;

cout << "Allen Sherrod" << endl << endl;

vector<int> array;

array.reserve(5);

array.push_back(10);

array.push_back(20);

array.push_back(30);

array.push_back(40);

cout << " Inserted into vector. ";

PrintVector(array);

array.pop_back();

array.pop_back();

cout << "Popped two from vector. ";

PrintVector(array);

array.clear();

cout << " Cleared vector. ";

PrintVector(array);

cout << endl;

if(array.empty() == true)

cout << "Vector is empty.";

else

cout << "Vector is NOT empty.";

cout << endl << endl;

return 1;

}

Chapter 2 Arrays 53

In Listing 2.14 the demo application creates an integer array and populates it
with data using the push_back() method (see Table 2.1 for more information). The
container is empty until items are pushed onto it. Once on the list, the array []
operators can be used to access the element by reading or writing to it. In the
example code in Listing 2.14 four items are pushed onto the list before popping
(removal) of the last two and displaying the contents of the container.

The container is cleared, displayed again, and tested to see if it is empty. Inside
the function used to print a container, the code uses size() to determine how many
valid elements are currently pushed onto the container while capacity() is used to
determine how much space the container can hold without being resized. To access
the elements, we use the array operators [] for convenience.

ITERATORS

Iterators are similar to pointers in that they point to elements in a container. Iterators
are commonly used in C++ and are very important when using the STL. In Tables 2.1
and 2.2 a number of functions dealt with iterators, and in the following section we will
take a closer look at them and how they relate to the vector template class.

Iterators can be created to point to an element in a container. In the case of a
vector class, an iterator can point to one of the elements in the array. The iterator
supports operators such as (*), which is used for dereferencing iterators so you can
use them almost as variables that hold the value for that element (just as with point-
ers), and (++) and (—) for moving to the next and previous elements in the con-
tainer. Iterators work on sequence containers, which include our vector class.

Iterators include container iterators (forward, bidirectional, and random
access), input iterators, and output iterators, and we’ll see each type throughout
this book. As a demonstration of using iterators with a vector class, there is a demo
application called stlvector 2 on the CD-ROM in the Chapter 2 folder. The main
source file of the demo application is shown in Listing 2.15.

LISTING 2.15 The Main Source File for the stlvector 2 Demo Application

#include<iostream>

#include<vector>

#include<algorithm>

#include<numeric>

using namespace std;

void PrintVector(vector<int> &array)

{

54 Data Structures and Algorithms for Game Developers

cout << "Contents (" << "Size: " << (int)array.size() <<

" Max: " << (int)array.capacity() << ") - ";

ostream_iterator<int> output(cout, " ");

copy(array.begin(), array.end(), output);

cout << endl;

}

int main(int args, char **argc)

{

cout << "STL Vector Example 2: Iterators" << endl;

cout << "Data Structures for Game Developers" << endl;

cout << "Allen Sherrod" << endl << endl;

vector<int> array;

array.reserve(5);

// Add items then print.

array.push_back(10);

array.push_back(20);

array.push_back(30);

array.push_back(40);

array.push_back(50);

// Calling the copy algorithm.

vector<int> array2;

for(int i = 0; i < 5; i++)

array2.push_back(0);

copy(array.begin(), array.end(), array2.begin());

cout << " Inserted into vector: ";

PrintVector(array);

// Run the accumulate algorithm.

cout << " Accumulate: "

<< accumulate(array.begin(), array.end(), 0)

<< endl;

Chapter 2 Arrays 55

// Pop off the container.

array.pop_back();

array.pop_back();

cout << "Popped two from vector: ";

PrintVector(array);

// Clear the container.

array.clear();

cout << " Cleared vector: ";

PrintVector(array);

cout << endl;

// Test if the container is empty.

if(array.empty() == true)

cout << "Vector is empty.";

else

cout << "Vector is NOT empty.";

cout << endl << endl;

return 1;

}

The demo application stlvector 2 in Listing 2.15 starts in the same manner as
the demo application stlvector in Listing 2.14 by creating an integer container and
filling it with elements. Once the container is filled, the STL copy algorithm is used
to copy the first container into another. Before the copying, a loop is used to create
the element space in the second container because to copy the first container into
the second, the second must have at least the number of elements required by the
range, which is specified by the iterators begin (first element or [0]) and end (last
element or [4] in this case).

After the copy algorithm is performed and the container is displayed, the
accumulate STL algorithm is performed to demonstrate that to get the sum of all
the elements, a few pop() calls are performed, the container is cleared, and it is
tested for emptiness. Inside the function used to print the container is new code
that replaces the for loop in the first vector demo application stlvector. In this
function an output iterator is created and the STL copy algorithm is called. The call

56 Data Structures and Algorithms for Game Developers

states that the range of elements from the first parameter (the beginning of the con-
tainer in this case) to the second parameter (the end of the container in this case)
should be copied to the output iterator. The output iterator for this demo applica-
tion is set up to point to the C++ STD cout object. This is an example of how to use
algorithms and iterators together to perform fast tasks in C++ code. Using a for
loop is one option, which was seen in the first stlvector demo, but it is slower than
using STL algorithms. Whenever possible use STL algorithms for traditional arrays
and containers because the performance is efficient. The output iterator that is set
up in Listing 2.15 points to the cout object and appends a " " character to every
element that is passed to it. This is what gives the output a space between each
element that is printed.

To use accumulate() we also must include the header file <numeric>.

STL vector TIPS AND TRICKS

In this section we will look at some tips to keep in mind when using vector classes.
Throughout this book, especially in the next few chapter, we will discuss more tips
and how they relate to the topics at hand.

Tip 1

Unless there is a reason not to, you should always use vector classes with user-de-
fined classes or even class pointers. This is suggested because with traditional arrays,
if you were to do the following,

SomeClass someArray[100];

100 constructors, one for each object, would be executed. If those constructors
have special needs, such as large and expensive memory allocation, this can be not
only a performance bottleneck but also a waste of time if not all elements are to be
used. The same can be said for dynamic arrays. Use the following instead:

vector<SomeClass> someVec;

someVec.reserve(100);

No constructors are executed and, assuming you know you need at least 100 ele-
ments, the container will be ready to store at least 100 objects.

Tip 2

Use reserve() to avoid unnecessary reallocations whenever possible. If you know
the minimum or even maximum number of elements your container will use, using

Chapter 2 Arrays 57

reserve() can avoid or minimize the number of reallocations the container will
need to perform. Depending on the application, the savings can add up and prove
to be beneficial.

Tip 3

Avoid using vector<bool>. Because of the nature of Booleans used with the vector
container, they cannot be used to create true containers. The container will attempt
to use bit fields instead of bools to save space, and it uses proxy classes instead of
references with the [] operator. A container of bools can’t be created because the
following won’t compile (it does not follow the Standard for C++ as specified in
Section 23.1):

vector<bool> array;

bool *ptr = &array[0];

The above won’t compile because what is returned is a proxy class and not a
reference to a Boolean. An alternative to using vector<bool> is to use an STL
bitset, which we’ll discuss later in this chapter.

For some compilers, if you do not specify a copy constructor and a copy assignment
operator for containers that need them, the compiler will attempt to create them for
you. This code creation can happen without your knowledge at compile time for
your user-defined classes whenever the compiler can step in and do so.

Tip 4

Manually delete pointers of new-ed memory that was stored in a container, because
the container will not delete that memory for you. When a container is destroyed,
so are the elements in the container. Unfortunately, although the elements are
destroyed, their destructors are not called when working with pointers because
they did not use the delete keyword. Deleting memory is the responsibility of the
programmer, not the containers. Because of this, if you don’t delete dynamically
allocated objects that were placed in a container, you will have a memory leak. This
happens because what was pushed onto the container is a copy of the pointer.
There is no way for the container to know that it has pointers to dynamically allo-
cate memory, and even if it knew that, it would have no way of knowing if it was
free to delete that memory, because other pointers can still be using it.

To demonstrate how to delete memory that was inserted in a container, a demo
application called stlvector 3 is in the Chapter 2 folder on the CD-ROM. The main
source file for the demo application is shown in Listing 2.16.

58 Data Structures and Algorithms for Game Developers

LISTING 2.16 The Main Source File for the stlvector 3 Demo Application

#include<iostream>

#include<vector>

#include<algorithm>

using namespace std;

class ExampleClass

{

public:

ExampleClass()

{

cout << "Item created!" << endl;

}

~ExampleClass()

{

cout << "Item deleted!" << endl;

}

};

struct DeleteMemObj

{

template<typename T>

void operator()(const T* ptr) const

{

delete ptr;

ptr = NULL;

}

};

int main(int args, char **argc)

{

cout << "STL Vector Example 3: Deleting New Pointers" << endl;

cout << "Data Structures for Game Developers" << endl;

cout << "Allen Sherrod" << endl << endl;

vector<ExampleClass*> array;

array.reserve(5);

Chapter 2 Arrays 59

array.push_back(new ExampleClass);

array.push_back(new ExampleClass);

array.push_back(new ExampleClass);

array.push_back(new ExampleClass);

array.push_back(new ExampleClass);

cout << endl;

for_each(array.begin(), array.end(),

DeleteMemObj());

cout << endl;

cout << "Array items deleted!";

cout << endl << endl;

return 1;

}

The demo application stlvector 3 in Listing 2.16 works by calling the
for_each() algorithm on the container class. When it is time to delete the memory,
the algorithm goes through each element, as specified by the begin() and end()

iterators, and applies the structure DeleteMemObj to it. The structure has an over-
loaded () operator and is a template type that allows us to sneak in a delete key-
word. Technically you could have written a loop to go through and delete each
pointer by performing:

for(vector<ExampleClass*>::iterator it = array.begin();

it != array.end(); it++)

{

if((*it) != NULL)

{

delete (*it);

(*it) = NULL;

}

}

Using the code above on an iterator that was de-referenced using pointer no-
tation would work, but because the for_each() STL algorithm is faster than our
hand-coded loops, it was used in the demo application in Listing 2.16.

60 Data Structures and Algorithms for Game Developers

Tip 5

Hold off from creating a container until the last possible moment. Containers such
as vector allocate memory upon construction. Because of this, there can be a
wasted construction in many cases where the container was not used. For example,

void SomeFunc(SomeClass *ptr)

{

vector<AnotherClass> exampleVec;

if(ptr == NULL)

return;

// ... INSERT CODE HERE ...

}

Because the code in the previous example has a condition that could cause the
container to never be used, it is a waste to declare the container in such situations.
A better solution would be the following:

void SomeFunc(SomeClass *ptr)

{

if(ptr == NULL)

return;

vector<AnotherClass> exampleVec;

// ... INSERT CODE HERE ...

}

C++ gives programmers the freedom to declare objects and variables anywhere
they want as long as it is in scope and is declared before it is used. Therefore, C++
programmers should take advantage of this feature, unlike C programmers.

Trick 1

The following can be used to clear a vector by swapping the contents in an empty
vector (by calling the constructor) with one you want to clear:

vector<int> vec;

vector<int>().swap(vec);

The same trick can be used to trim a vector with excess space by doing the
following:

Chapter 2 Arrays 61

vector<int> vec;

vector<int>(vec.begin(), vec.end()).swap(vec);

THE valarray

The next class that will be discussed is the valarray, which is a template class used
to hold a sequence of elements for fast mathematical operations. When fast math
operations are a must, the valarray might be a great choice over a vector. The
types used with a valarray must be able to have mathematical operations per-
formed on them or the benefit is lost. The class is made up of a one-dimensional
“smart” array that checks the subscript references (by []) at runtime to ensure that
they are in bounds. When compared to a vector, the valarray is a near-container,
in that it does not fully support the features of a sequence container. One noticeable
difference is that there are no iterators with a valarray as there are with vector
classes.

An example of using a valarray, called Valarray, can be found on the CD-
ROM in the Chapter 2 folder. The demo application creates and fills a valarray,
applies a multiplication to all of its elements, and has the ability to print the array.
Since the valarray has no iterators, we can not use the for_each() algorithm as we
did in the stlvector 2 demo application. The main source file for the Valarray demo
application is shown in Listing 2.17. Note how value_type objects are used to apply
mathematical operations on the valarray.

LISTING 2.17 An Example of Using a valarray

#include<iostream>

#include<valarray>

using namespace std;

void PrintValArray(const valarray<int> &valArray)

{

cout << "Contents of valArray: ";

for(int i = 0; i < 10; i++)

{

cout << valArray[i] << " ";

}

cout << endl << endl;

}

62 Data Structures and Algorithms for Game Developers

int main(int args, char **argc)

{

cout << "STL Val Array Example" << endl;

cout << "Data Structures for Game Developers" << endl;

cout << "Allen Sherrod" << endl << endl;

valarray<int> valArray(10);

// Placing numbers 1 through 10 on for demonstration.

for(int i = 0; i < 10; i++)

{

valArray[i] = i;

}

PrintValArray(valArray);

valarray<int>::value_type rVal = 5;

cout << "The value of rVal before multiplication: "

<< rVal << endl << endl;

valArray *= rVal;

PrintValArray(valArray);

return 1;

}

BIT ARRAYS

The next class that will be discussed is the manual bit array class. A bit is one-
eighth of a byte. Since there are no data types smaller than a char (byte) in C++, we
have to use bit-wise operators to access and manipulate individual bits of a byte.
There are many benefits to using arrays of bits. The first benefit is storage. For
every one char, we have eight bits. In situations in which boolean values are needed,
this 8:1 compaction can be very beneficial for a large number of bits. Also, bit-wise
operators are very fast, and working with them is efficient. Later we will use arrays
of bits for various algorithms, with one example being compression.

In this chapter we will create a simple bit array class. This class will be able to
allocate an array of bits with one byte for every eight bits, clear all bits to false, set

Chapter 2 Arrays 63

all bits to true, set an entire byte, and set and clear an individual bit. The class also
supports the [] operator, which takes the bit that is to be accessed (read-only), re-
turns a true or false value if it is set or not, and uses an STL vector data structure.
The reasoning behind the setting of a byte is that in future chapters we will write
code that will create bytes from a file that stores useful bit information. Since a
single byte suffers from no endian complications, this bit array code will work on
all platforms. The bit array class is shown in Listing 2.18.

LISTING 2.18 A Class for Bit Arrays

#define BYTE_BITS 8

#define BIT_TO_CHAR(bit) ((bit) / BYTE_BITS)

#define BIT_IN_CHAR(bit) (1 << (BYTE_BITS - 1 –

((bit) % BYTE_BITS)))

#define MIN_CHARS(bits) ((((bits) - 1) / CHAR_BIT) + 1)

#define MAX_UCHAR 0xff

class BitArray

{

public:

BitArray(unsigned int size)

{

assert(size > 0);

m_totalBits = size;

m_totalBytes = MIN_CHARS(m_totalBits);

m_bits.reserve(m_totalBytes);

for(unsigned int i = 0; i < m_totalBytes; i++)

m_bits.push_back(0);

}

~BitArray()

{

}

void ClearAllBits()

{

64 Data Structures and Algorithms for Game Developers

m_bits.assign(m_bits.size(), 0);

}

void SetAllBits()

{

m_bits.assign(m_bits.size(), MAX_UCHAR);

int bits = m_totalBits % BYTE_BITS;

if(bits != 0)

{

unsigned char mask = MAX_UCHAR << (BYTE_BITS - bits);

m_bits[BIT_TO_CHAR(m_totalBits - 1)] = mask;

}

}

void SetByte(unsigned int byte, unsigned char val)

{

assert(m_totalBits > byte);

m_bits[byte] = val;

}

void SetBit(unsigned int bit)

{

assert(m_totalBits > bit);

m_bits[BIT_TO_CHAR(bit)] |= BIT_IN_CHAR(bit);

}

void ClearBit(unsigned int bit)

{

assert(m_totalBits > bit);

unsigned char mask = BIT_IN_CHAR(bit);

mask = ~mask;

m_bits[BIT_TO_CHAR(bit)] &= mask;

}

Chapter 2 Arrays 65

bool operator[](unsigned int bit) const

{

assert(m_totalBits > bit);

return((m_bits[BIT_TO_CHAR(bit)] &

BIT_IN_CHAR(bit)) != 0);

}

private:

vector<unsigned char> m_bits;

unsigned int m_totalBits, m_totalBytes;

};

The bit array class in Listing 2.18 starts off with a constructor and a destructor.
The destructor isn’t needed because the vector class can clean up after itself. The
constructor, on the other hand, reserves enough space for the bits (in bytes) and
pushes enough elements onto the container. The functions ClearAllBits() and
SetAllBits() are used to set all bits in the array to false for the clear and true for
the set. During the SetAllBits() function all bits are set to true and then any excess
bits are set to false. Excess bits are bits that are left over from having to use whole
bytes instead of bits. For example, if we had 36 bits, that would be 5 bytes since the
first 4 bytes make 32 bits and the remaining 4 bits must be carried over to the fifth
byte. Although this is not necessary since the excess bits aren’t accessible, it was
done as a demonstration.

The function following SetAllBits(), SetByte(), performs an unsigned char
copy (byte copy). The next two functions clear and set individual bits using the |=
bit-wise operator and the &~ operator. The final function is the overloaded opera-
tor for the []. Using the brackets allows the class to access true or false values for
individual bits by using the bit, not the byte, as an array index. This makes reading
bits as easy as:

bool result = bitArray[16];

On the CD-ROM in the Chapter 2 folder is a demo application called Bitarray
that uses the code in Listing 2.18. The demo application tests each of the class func-
tions and operators. The main source file for the demo application, main.cpp, is
shown in Listing 2.19.

LISTING 2.19 The Main Source File for the Bitarray Demo Application

int main(int args, char **argc)

{

66 Data Structures and Algorithms for Game Developers

BitArray bitArray(16);

cout << "Bit Array Example" << endl;

cout << "Data Structures for Game Developers" << endl;

cout << "Allen Sherrod" << endl << endl;

cout << "Initial bit values for 2, 3 and 14." << endl << endl;

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray[14] << "." << endl << endl;

cout << "Set bits 2 and 14." << endl << endl;

bitArray.SetBit(2);

bitArray.SetBit(14);

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray[14] << "." << endl << endl;

cout << "Set all bits" << endl << endl;

bitArray.SetAllBits();

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray[14] << "." << endl << endl;

cout << "Clear all bits" << endl << endl;

bitArray.ClearAllBits();

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray[14] << "." << endl << endl;

return 1;

}

Chapter 2 Arrays 67

THE bitset CLASS

The last class we will look at is the C++ standard bitset class. The bitset class is
used to store a sequence of bits much like the bit array class discussed in the previ-
ous section. The application for the Bitset demo, which can be found on the CD-
ROM in the Chapter 2 folder, is the same as the Bitarray demo, with the exception
of creating a bitset<16> instead of a BitArray(16). Along with bit-wise operators,
the bitarray uses the methods seen in Table 2.3. The main.cpp source file from the
Bitset demo application is shown in Listing 2.20.

68 Data Structures and Algorithms for Game Developers

Method Name Description

any() Tests if any bit in the set is set to 1

count() Returns the number of bits there are in a sequence

flip()

flip(size_t pos) Flips all bits or a specific bit. Bits that are true
become false and bits that are false become true.

none() Tests if no bits have been set to 1

reset()

reset(size_t pos) Resets all bits in the set to 0 or resets an
individual bit in pos

set()

set(size_t pos, bool val) Set all bits to true or sets an individual bit at pos
to a specified value val

size() Returns the number of bits in a bitset object

test(size_t pos) Tests whether a bit at pos is set to 1

to_string() Converts a bitset to a string

to_ulong() Converts a bitset to an unsigned long

TABLE 2.3 The bitset Methods

LISTING 2.20 The Bitset Demo Application’s main.cpp File

#include<iostream>

#include<bitset>

using namespace std;

int main(int args, char **argc)

{

bitset<16> bitArray;

cout << "STL Bit Set Example" << endl;

cout << "Data Structures for Game Developers" << endl;

cout << "Allen Sherrod" << endl << endl;

cout << "Number of bits: " << bitArray.size() << endl;

cout << "Bits not set (T or F): " << bitArray.none() << endl;

cout << endl;

cout << "Initial bit values for 2, 3 and 14." << endl << endl;

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray.test(14) << "." << endl << endl;

cout << "Set bits 2 and 14." << endl << endl;

bitArray[2] = true;

bitArray[14] = true;

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray.test(14) << "." << endl << endl;

cout << "Set all bits" << endl << endl;

bitArray.set();

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray.test(14) << "." << endl << endl;

Chapter 2 Arrays 69

cout << "Clear all bits" << endl << endl;

bitArray.reset();

cout << "Bit 2 = " << bitArray[2] << "." << endl;

cout << "Bit 3 = " << bitArray[3] << "." << endl;

cout << "Bit 14 = " << bitArray.test(14) << "." << endl << endl;

return 1;

}

SUMMARY

This chapter covered the array data structures the STL vector, bitset, valarray and
three custom-created classes, one for unordered arrays, one for ordered arrays, and
one for bits. The algorithms covered in this chapter included the linear and binary
searches as well as various STL algorithms such as accumulate, copy, and for-each.
Arrays are very useful in applications, and the information covered in this chapter
can go a long way toward using arrays efficiently.

The next two chapters will focus on adding algorithms to the array classes built
in this chapter as well as covering their STL counterparts. As we’ve seen so far,
algorithms and their data structures are very useful tools to have in any library. The
STL makes using these tools easier than ever before.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What kind of container is the STL vector?
a. A standard STL associative container
b. A nonstandard STL associative container
c. A standard STL sequence container
d. A nonstandard STL sequence container

2. A memory leak occurs when:
a. An index attempts to access an element outside of the array’s bounds
b. An application tries to access a deleted pointer
c. No pointers are pointing to a memory location and can’t release the

resource.

70 Data Structures and Algorithms for Game Developers

3. An ordered array’s insertion runs in the big-O:
a. O(N)
b. O(1)
c. O(log N)
d. O(N2)

4. A binary search is the big-O of:
a. O(N)
b. O(1)
c. O(log N)
d. O(N2)
e. None of the above

5. What is the purpose of the vector::reserve() function?
6. What are iterators? What kind of iterators were discussed in this chapter?
7. vector<bool> should not be used because it does not implement actual

bools.
a. True
b. False

8. vector classes should be used for mathematical operations over valarray.
a. True
b. False

9. Bit arrays contain elements where each element is an individual bit.
a. True
b. False

10. The bitset is a typedef for vector<unsigned char>.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Modify the ordered array to use a binary search as a means to find the
position at which an item is to be inserted. The new search function should find the
best index position of where the item will be placed rather than an actual value.

Exercise 2: Create a function that takes as parameters a bit array and a string that
holds the file name to a text file of bytes. Allow this function to load all of the bytes
from the file into the bit array. Create an alternate function that allows bit arrays to
be saved out to a file.

Exercise 3: Add overloaded operators for each of the C++ bit-wise operators. Also
add two functions, with one used to flip all bits in the bit array and the other used
to flip a specific bit in the array.

Chapter 2 Arrays 71

This page intentionally left blank

73

Recursion3

In This Chapter

Recursion Defined
Triangular Numbers
Factorials

74 Data Structures and Algorithms for Game Developers

I
n computer programming there are definitions that have the ability to call
themselves within code. Left unchecked, such an event can lead to an infinite
cycle that can have negative, or even catastrophic, effects on the executing code.

Normally such an event is a logic error, such as a function calling itself, due to a
typo or some other human error. Once an infinite cycle, or loop, has occurred,
there is little or nothing that can be done to stop it outside of forcing the applica-
tion to quit. This can be trouble, especially in a gaming application.

Not all definitions that can call themselves are bad in the world of program-
ming. Assuming there is some uniqueness inside the code being executed, the def-
inition itself can choose when to stop the cycle. An example of this can be seen with
loops where a condition is chosen to indicate when the loop should end. Unique-
ness in this case is often a variable used as some form of counter such as in the fol-
lowing for-loop example:

for(int i = 0; i < 10; i++)

{

// Code executed within the loop.

}

Uniqueness means that there is some difference, even if minor, in the execut-
ing code during the iterations of its execution. Without such a difference, it would
be hard to tell when an algorithm should stop. Sometimes this is not bad, especially
if some user-required interaction is desired. An example of this can be seen in many
game loops where the loops are infinite but some user-controlled action can cause
a break in their executions at specific times. The bad kind of infinite cycles are the
ones that are not intentional and have no way out of their execution. When learn-
ing about loops, one has to tackle the topic of avoiding infinite loops.

Using such a cycle that can be interrupted is known as recursion. Recursion has
many useful applications in programming and can be beneficial to the design of
code. In this chapter we will look at what recursion is, how to perform it, and some
uses it has in programming and game development. Later in the book we will look
at data structures that can rely on recursion to build various trees. One popular tree
used in game development that we will be looking at is the BSP (binary space par-
titioning) tree. When it comes to performing repetitive tasks on data structures, re-
cursion can be very useful and the code can be easy to read.

Recursion will be used heavily in some of the later chapters in this book. For those
not familiar with recursion, it is important to study the concept before moving on.

In this chapter we will explore a few areas in which recursion can be used to
great effect. These areas include factorials, triangular numbers, and binary search-

ing. The binary search will be used in the ordered array since the algorithm requires
data to be in order.

RECURSION DEFINED

Recursion occurs when a method calls itself within the body of its definition. It is
a technique used in programming to help solve various problems. Recursive
functions execute their contents under some condition that, when met, causes the
recursion to cease. The purpose of a recursive function is to find the solution to a
small piece of a bigger problem, and each time the body of a recursive function is
called, another piece of that puzzle is solved. The condition with recursive functions
revolves around the completion of the original problem.

Recursion is used to simplify a problem conceptually. This simplification does not
mean that the code will always be more efficient.

THE PROS AND CONS OF RECURSION

Recursion can be very useful in computer programming, and, as we will see later,
in game development, but there are a few pros and cons that all programmers
should keep in mind when learning about recursion. These pros include the fol-
lowing things to remember:

It is conceptually easier to code.
It is easier to maintain and modify in some situations.

The cons are:

There is overhead with the calling of functions that can quickly add up with
recursion.
When enough functions and their arguments are pushed onto the stack, it can
cause a stack overflow when the recursive function gets to a point where it
exceeds the system’s capacity.
Using recursion can be less effective in performance than using loops.

In cases where the efficiency loss is great, you should avoid using recursion if it
becomes a serious source of a bottleneck in the application.

TAIL RECURSION AND NONTAIL RECURSION

A recursive method can be defined by making the method either tail recursive or
nontail recursive, where the differences are small but have large implications. Tail

Chapter 3 Recursion 75

76 Data Structures and Algorithms for Game Developers

recursion is a type of recursive definition that calls itself at the end of the function,
where no statements follow it and no recursive statements come before it. An ex-
ample of tail recursion can be seen in the following:

int recursion(int param)

{

if(param < 1)

return 0;

// Perform some task

return recursion(param - 1);

}

Nontail recursion is a method that defines statements after the recursive call
and/or if there is more than one recursive call in the same body. An example of
nontail recursion can be seen in the following:

int recursion(int param)

{

if(param < 1)

return 0;

recursion(param - 1);

// Perform some task

recursion(param - 1);

}

In both tail and nontail recursion, a condition is specified somewhere in the
function that keeps the calls from becoming infinite. By altering the parameter
each time the recursive function is called, the code can allow for some uniqueness
in each of the iterations of its execution, which allows the condition to exist to
monitor the depth of the method.

AN EXAMPLE OF RECURSION

As an example of recursion, we will consider an application that will display a se-
ries of positive numbers in reverse order. This will work by supplying the recursive
function with an integer value and displaying that number along with all numbers
before it until it reaches 0. Using the whole number 10 as an example, the output
would look like the following:

10 9 8 7 6 5 4 3 2 1

On the CD-ROM in the Chapter 3 folder is a demo application called Recur-
sion. The Recursion demo application will perform the task described above by
printing a series of numbers from a number N to 0. Look at Listing 3.1 for the main
source file from the Recursion demo application. A screenshot of the running Re-
cursion demo application is shown in Figure 3.1.

LISTING 3.1 An Example of Recursion

#include<iostream>

#include<cassert>

using namespace std;

void PrintNumReverse(int x)

{

if(x <= 0)

return;

cout << “ “ << x;

PrintNumReverse(x - 1);

}

int main(int args, char **argc)

{

cout << “Recursion Example” << endl;

cout << “Chapter 3: Recursion” << endl << endl;

cout << “Example of a recursive call:”;

Chapter 3 Recursion 77

PrintNumReverse(10);

cout << “.” << endl << endl;

return 1;

}

78 Data Structures and Algorithms for Game Developers

FIGURE 3.1 A screenshot of the Recursion demo.

In Listing 3.1 the demo application defines a recursive function called
PrintNumReverse(). This function is a tail recursive function that works by printing
out the parameter passed into it before calling itself with the parameter minus 1.
The condition that needs to be met before this function can return without calling
itself again recursively is that the parameter passed in be less than 1. Until that con-
dition is met, the series of numbers from the parameter, param, until 0 is displayed
one after the other in order.

RECURSIVE BINARY SEARCH

As another example of recursion, we will look at modifying the binary search of the
ordered array created in Chapter 2 to use recursion instead of a loop. The recursive
binary search looks exactly the same as the loop version, with the exception of the
loop itself and that the return value is based on either –1 (for not found), the index
for found, or the recursive call for cases where we must keep searching. Listing 3.2
shows the new binary search, where the search() function has been modified to call

a new private function called find(). The find() method takes as parameters the
value we are searching for and the upper and lower bounds of the search. The
bounds, which are the minimum and maximum array elements to search, are used
as the condition for which we can determine if the recursion should stop if the
value is not found. Because we don’t want the bounds to be the responsibility of
anyone using the class, we can code it so search() is used by the outside code but
binarySearch() performs the actual work.

LISTING 3.2 The Modified search() and the New find() of the Ordered Array

template <typename T>

class OrderedArray

{

public:

int search(T searchKey)

{

return binarySearch(searchKey, 0, m_numElements - 1);

}

private:

int binarySearch(T searchKey, int lowerBound, int upperBound)

{

assert(m_array != NULL);

assert(lowerBound >= 0);

assert(upperBound < m_numElements);

int current = (lowerBound + upperBound) >> 1;

if(m_array[current] == searchKey)

{

return current;

}

else if(lowerBound > upperBound)

{

return -1;

}

else

{

Chapter 3 Recursion 79

if(m_array[current] < searchKey)

return binarySearch(searchKey, current+1,

upperBound);

else

return binarySearch(searchKey, lowerBound,

current - 1);

}

return -1;

}

};

A demo application called Recursive Binary Search on the accompanying CD-
ROM in the Chapter 3 folder demonstrates that this new code works. The new code
was added to the ordered array because, as discussed in Chapter 2, the unordered
array does not use a binary search but instead uses a linear search that would have
no benefit to recursion. The code for the Recursive Binary Search demo application
is shown in Listing 3.3. Figure 3.2 shows a screenshot of the application running.

LISTING 3.3 The Main Source File of the Recursive Binary Search Demo

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Recursive Binary Search Example” << endl;

cout << “Chapter 3: Recursion” << endl << endl;

OrderedArray<int> array(3);

array.push(43);

array.push(8);

array.push(23);

array.push(94);

array.push(17);

array.push(83);

array.push(44);

array.push(28);

80 Data Structures and Algorithms for Game Developers

cout << “Ordered array contents:”;

for(int i = 0; i < array.GetSize(); i++)

{

cout << “ “ << array[i];

}

cout << “.” << endl;

cout << “Search for 43 was found at index: “;

cout << array.search(43) << “.”;

cout << endl << endl;

return 1;

}

Chapter 3 Recursion 81

FIGURE 3.2 A screenshot of the Binary Search demo.

TRIANGULAR NUMBERS

As an exercise in using recursion, we will next discuss triangular numbers that deal
with the Pythagorian theorem, in which a series of numbers are created using the

nth term. For example, given the numbers, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, the 11th
term would be 66 because adding 11 to 55 gives us 66. The nth term is added to the
value that came before it. For 3, which is the second term, we add 2 to the previous
value, 1, and get 3. For the 6, we added 3 to the previous term, which was 3; for 10
we added 4 to the previous term of 6, and so forth. The 12th term would be added
to 66 to get 78, after which 13 would be used to get 91, and so on.

The triangular numbers get their name from the fact that, when using rows and
columns, they form a triangle, as shown in Figure 3.3.

82 Data Structures and Algorithms for Game Developers

FIGURE 3.3 An example of triangular numbers.

To find the value of any term in Figure 3.3, we must add each column starting
with the column for the term we want and all columns to the right of that. For
example, when looking for the sixth term, we could use simple addition as shown
in Figure 3.4.

Looking at the problem and solving it this way is one thing, but code is another.
In the following sections we will discuss how to find the value of any term using
both a loop and recursion. Afterwards we will look at another potential use of re-
cursion by finding the factorial of a term.

FINDING THE TERM IN A LOOP

To find the term inside a loop in a function—let’s call it TriangularNumber()—we
can simply take a variable—let’s call it value—and make it equal to itself plus the
term for each iteration of the loop. At the end of each loop iteration that is exe-

cuted, the term can be decremented by one so that the condition for the loop can
be to test that the term is greater than 0. By the time the loop is done executing,
the value for whatever term was being looked for would be known and could be
returned to the caller. An example of such a function is shown in Listing 3.4.

LISTING 3.4 Finding a Term in a Loop

int TriangularNumber(int term)

{

int value = 0;

for(; term > 0; term—)

{

value += term;

}

return value;

}

Using the code in Listing 3.4 as an example, we can find the fifth term by step-
ping through each iteration of the loop. In the first iteration we add the total of
0 to the term, which is the number 5. In the next iteration we add the total of 5 to
the decremented term of 4, giving a total of 9. After that iteration we add 3 to the

Chapter 3 Recursion 83

FIGURE 3.4 Finding the sixth term’s value.

total of 9 to get a new total of 12, add 2 to get 14, and then add 1 to get the final
value of 15. As we know from Figure 3.4 the sixth term has a value of 15, which con-
firms that our code worked as intended.

FINDING THE TERM WITH RECURSION

Using recursion to find the term requires a slightly different way of thinking. One
way to find the value of a term, as shown in Figure 3.4, is to add up the columns
starting from the left, which is the column of the term, to the right. In code this can
be done by using recursion to simulate moving from the term’s column all the way
down to the first column. Once there, the function can start returning values for
each term. The first term would return 1, the second term would return its para-
meter term with what was returned from the last call (1), and so on until the orig-
inal column’s function ends and the final value is passed to the caller. An example
of this can be seen in the modified TriangularNumber() function in Listing 3.5.

LISTING 3.5 Finding a Term Using Recursion

int TriangularNumber(int term)

{

assert(term >= 1);

if(term == 1)

return 1;

return (TriangularNumber(term - 1) + term);

}

If you step through the code using 4 as the term, you will find that the recur-
sion keeps happening until the condition of the term being greater than 1 is broken.
When that happens, the last TriangularNumber() function returns 1, the next func-
tion returns 2 plus what was returned (1), the function after that returns 3 plus
what was returned (3), and the last function returns 4 plus what was returned (6),
which gives us a total of 10. Without the condition to check that the term has
reached its minimum of 1, the function will keep calling itself until, most likely, the
application crashes.

On the accompanying CD-ROM a demo application called Triangular Num-
bers in the Chapter 3 folder demonstrates using a loop and using recursion to find
the value of the nth term. The functions used in the demo’s main.cpp source file are
the same as the code in Listing 3.4 and Listing 3.5. The entire main.cpp source file
is shown in Listing 3.6. This is a simple test of the information discussed in this sec-
tion. Figure 3.5 shows a screenshot of the demo.

84 Data Structures and Algorithms for Game Developers

LISTING 3.6 Triangular Number Demo’s main.cpp Source File

#include<iostream>

#include<cassert>

using namespace std;

int TriNumLoop(int term)

{

int value = 0;

for(; term > 0; term—)

{

value += term;

}

return value;

}

int TriNumRecursion(int term)

{

assert(term >= 1);

if(term == 1)

return 1;

return(TriNumRecursion(term - 1) + term);

}

int main(int args, char **argc)

{

cout << “Triangular Numbers Example” << endl;

cout << “Chapter 3: Recursion” << endl << endl;

cout << “The value of the 18th term using a loop: “;

cout << TriNumLoop(18);

cout << “.” << endl;

Chapter 3 Recursion 85

cout << “The value of the 25th term using recursion: “;

cout << TriNumRecursion(25);

cout << “.” << endl;

cout << endl;

return 1;

}

86 Data Structures and Algorithms for Game Developers

FIGURE 3.5 Screenshot from the Triangular Numbers demo.

FACTORIALS

Next we will look at another example of using recursion to calculate factorials and
double factorials. A factorial is similar in concept to a triangular number in that to
find the value of the nth term we take the multiplication of the term and the term
–1 recursively instead of the term plus the term –1 recursively. Calculating the fac-
torial of the fourth term would look like the following, where we have 1 * 1, which
equals 1; that result * 2 equals 2; 2 * 3 is 6; and 6 * 4 (the original term) equals 24:

((((1 * 1) = 1 * 2) = 2 * 3) = 6 * 4) = 24

Finding the term of 0 when looking at factorials, by definition, returns a value of
1. This is also true for 1 itself.

Calculating a double factorial is the same as calculating a factorial, with the ex-
ception that we are subtracting 2 from the term with each call instead of 1. The code
for factorials in general looks exactly like the triangular numbers counterpart, with
the exception that we are looking for 0, which returns 1 by definition of factorials,
and we are using multiplication during each step instead of addition. Listing 3.7
shows a pair of example functions used to calculate the factorial and double facto-
rial of a number.

LISTING 3.7 Calculating Factorials

int factorial(int x)

{

assert(x >= 0);

if(x == 0)

return 1;

return(factorial(x - 1) * x);

}

int doubleFactorial(int x)

{

assert(x >= 0);

if(x == 0)

return 1;

return (doubleFactorial(x - 2) * x);

}

On the accompanying CD-ROM a demo application called Factorials in the
Chapter 3 folder shows how to use the functions in Listing 3.7. The main source file
for the Factorials demo application is in Listing 3.8, and a screenshot of the running
executable is shown in Figure 3.6.

LISTING 3.8 Factorial and Powers Demo’s main.cpp

#include<iostream>

#include<cassert>

Chapter 3 Recursion 87

using namespace std;

int factorial(int x)

{

assert(x >= 0);

if(x == 0)

return 1;

return(factorial(x - 1) * x);

}

int doubleFactorial(int x)

{

assert(x >= 0);

if(x == 0)

return 1;

return (doubleFactorial(x - 2) * x);

}

int main(int args, char **argc)

{

cout << “Factorials” << endl;

cout << “Chapter 3: Recursion” << endl << endl;

cout << “The factorial of 3: “;

cout << factorial(3);

cout << “.” << endl;

cout << “The double factorial of 4: “;

cout << doubleFactorial(4);

cout << “.” << endl;

cout << endl;

return 1;

}

88 Data Structures and Algorithms for Game Developers

SUMMARY

Recursion is a very useful operation that will be explored more throughout this
book and, as we will see later, is great for building trees. In this chapter we explored
recursion by looking at examples dealing with factorials, binary searching, triangu-
lar numbers, and more. An understanding of recursion is important, as it will help
with the examples to come later on. Care must be taken to keep recursive methods
from becoming potential problems that can bring down an entire application.

In the next chapter we will discuss various sorting algorithms, using arrays as
an example. Often in application programming the data stored in a data structure
need to be ordered. This order can be based on value, size, priority, or some other
means.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What is recursion?
2. What is the difference between tail and nontail recursion.
3. What are triangular numbers? Why are they called triangular numbers?

Chapter 3 Recursion 89

FIGURE 3.6 Screenshot from the Factorials demo.

4. What is the value of the seventh term in triangular numbers?
a. 45
b. 17
c. 28
d. 33
e. None of the above

5. What is the main difference between factorials and triangular numbers?
6. What is the value of the seventh term in factorials?

a. 5040
b. 64
c. 28
d. 1278
e. None of the above

7. Recursion is always more efficient than loops.
a. True
b. False

8. Recursion can make the conceptual design of an algorithm’s implementa-
tion easier.
a. True
b. False

9. Recursion gone wrong can lead to overflow stack errors.
a. True
b. False

10. Recursion incurs no function overhead since it is calling a function that is
already on the stack.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Suppose you needed to raise a number to a power but didn’t have any
standard math library functions to use. Write a recursive function that will perform
this task in a function called RecursivePow().

90 Data Structures and Algorithms for Game Developers

91

Introduction to Sorting4

In This Chapter

Introduction to Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
STL Sorting
The Merge Sort

92 Data Structures and Algorithms for Game Developers

O
ften in application development data need to be sorted in some particular
order or, in the case of the binary search, it is necessary for certain algo-
rithms to perform their task correctly and/or efficiently. Data can be sorted

by name, by age, by size, by serial number, by priority, by value, by type, and so
forth, as well as being in ascending or descending order. Sorting has been an area
of study that has resulted in many different algorithms, each with their own strengths
and weaknesses in various situations.

The purpose of this chapter is to look at some algorithms that can be used for
sorting. Although most of these algorithms are simple to read and not as fast as
other algorithms that we’ll consider later on, they are still useful in many situations
and they can be great for learning to sort. In this chapter we will use the unordered
array class created in Chapter 2 to demonstrate each of these algorithms.

The ability to sort objects in an application can be very important in many
situations. In a video game we may want to sort players at a status screen based on
how many points they have from greatest to least or we may want to sort items in
the player’s inventory based on their importance. Whatever the application, arrays
can be simple and effective solutions. Of course not all situations will benefit from
an array, and the need to look for other data structures will arise, which we’ll dis-
cuss throughout this book.

INTRODUCTION TO SORTING

Sorting in computer programming is conceptually different from what we human
beings do naturally. Computers can only compare two objects at a time, while
humans can look at the problem as a whole and compare items in a less strict and
mechanical way. When working with data structures, it is sometimes useful to be
able to organize data based on a relationship. To sort data that exist in memory we
have to perform an algorithm in said data structures while taking into account the
efficiency of the algorithm with a certain number of items.

Visually sorting is easy. We can quickly pick out which object is smaller than
the rest, which object is the biggest, and which objects are in between. Visually
sorted objects are shown in Figure 4.1.

In programming sorting is not as straightforward. Not only does an algorithm
have to move through the list and order each object based on how it compares to
the others, but, in many situations, the algorithm also has to be efficient in terms of
speed and memory consumption. In some applications where performance is not
an issue, it would be possible to get away with using inferior algorithms, but in
games, where performance is critical, this is something that needs to be addressed.
The same can be said for other speed-critical applications such as databases.

In this chapter we will look at the bubble sort, the selection sort, the insertion
sort, the stable sort, and the merge sort. In Chapter 8, Advanced Sorting, we will
examine more-advanced sorting algorithms. Whenever possible we will also look at
C++ STL implementations as well, using vector data structures.

The bubble sort, selection sort, and insertion sort are also known as elementary
sorting algorithms.

THE BUBBLE SORT

The bubble sort algorithm is simple to implement and understand but is very slow.
It works by comparing two values in the data structure. If the object on the left is
bigger, or satisfies some condition that makes it “larger,” than the object on the
right, then the two are swapped. If this is done on the first two objects, the next two
objects (the second and third) will be compared and swapped if necessary. This
continues until the entire array has been processed, which, at the time, would have
moved the largest object to the end of the list. A single pass using the bubble sort is
shown in Figure 4.2.

The bubble sort works in multiple passes. The first pass moves the largest object
from its position in the array to the far right. The second pass moves the second-
largest object to one element before the largest and so on until all items are in their
sorted positions. This means that in an array the bubble sort needs to loop through
the array once for each object (total elements minus 1) in the list. For example, if
there are 20 items in the list, we must perform 19 passes over the list, and during
each pass we must loop through the entire list and perform a variable number of

Chapter 4 Introduction to Sorting 93

FIGURE 4.1 A visual representation
of sorting.

94 Data Structures and Algorithms for Game Developers

comparisons and copies. By the final pass we would have gone from having the
order in Figure 4.2 to the one seen in Figure 4.3.

FIGURE 4.2 One pass over an array using the
bubble sort.

FIGURE 4.3 The array from Figure 4.2 after all bubble sort passes.

The bubble sort gets its name from the fact that the large items bubble up at the
top of the list until all items are in order. Because of the number of passes, com-
parisons, and copies and the brute-force style of the algorithm, it is slow. When
working with user-defined objects, this can be worse because the comparison and
copying of objects can be quite expensive, especially when objects have other ob-
jects inside of them that are or use dynamic memory allocation.

The bubble sorting algorithm runs in O(N2).

BUBBLE SORT EXAMPLE WITH ARRAYS

To implement the bubble sort algorithm, we can use a pair of nested loops where
the inner loop performs the comparisons and necessary copyings throughout the
entire list and the other loop ensures that this is done once for each item in the list.
By the last iteration of the loop, the entire list will be sorted. In this chapter we will
be sorting objects from smaller to larger. Listing 4.1 shows code used to perform the
bubble sort algorithm in a function called BubbleSort() that was added to the un-
ordered array class from Chapter 2.

LISTING 4.1 The Bubble Sorting Method Added to the Unordered Array Class

template<typename T>

class UnorderedArray

{

public:

void BubbleSort()

{

assert(m_array != NULL);

T temp;

for(int k = m_numElements - 1; k > 0; k—)

{

for(int i = 0; i < k; i++)

{

if(m_array[i] > m_array[i + 1])

{

temp = m_array[i];

m_array[i] = m_array[i + 1];

Chapter 4 Introduction to Sorting 95

m_array[i + 1] = temp;

}

}

}

}

};

On the accompanying CD-ROM a demo application called Bubble Sort is in
the Chapter 4 folder. Inside this folder is an updated Array.h header file with the
bubble sorting algorithm added to the unordered array class, which was shown in
Listing 4.1, and a main.cpp source file for demonstrating the code in a console
window. The main.cpp source file creates a list of integers, displays them unsorted,
sorts them, and then displays the sorted data to the console window. The main.cpp
source file for the Bubble Sort demo application is shown in Listing 4.2. Figure 4.4
shows a screenshot of the Bubble Sort demo application.

LISTING 4.2 The Bubble Sort Demo Application’s Main Source File

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Bubble Sort Algorithm” << endl;

cout << “Chapter 4: Recursion” << endl << endl;

UnorderedArray<int> array(5);

array.push(80);

array.push(64);

array.push(99);

array.push(76);

array.push(5);

cout << “Before sort:”;

96 Data Structures and Algorithms for Game Developers

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl;

array.BubbleSort();

cout << “After sort:”;

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl << endl;

return 1;

}

Chapter 4 Introduction to Sorting 97

FIGURE 4.4 A screenshot of the Bubble Sort demo application.

THE SELECTION SORT

The selection sort gives some improved performance over the bubble sort algo-
rithm. With the selection sort there are not as many swaps, on average, but there are
still many comparisons and passes over the data structure. Whereas the bubble sort
runs in O(N2), the selection sort has a swap that operates in O(N) but has compar-
isons in O(N2). Because of the larger number of swaps in the bubble sort, the selec-
tion sort is slightly faster. This speed difference in performance can add up as N
grows larger.

The selection sort works by looping through the list and keeping a record of
which item is considered the smallest in the group. Once a pass over the list is com-
plete, the smallest item in the list is swapped with the first item (at index position
0). From this you can see that there is only one swap per pass, but the number of
comparisons is the same, whereas the bubble sort constantly swaps large items until
they get to the end of the list. The number of passes depends on the number of
elements, just like with the bubble sort, and as items are sorted in the beginning of
the list, they can be ignored since they’re already in their final positions. A visual
representation of the selection sort is shown in Figure 4.5.

98 Data Structures and Algorithms for Game Developers

FIGURE 4.5 The selection sort.

The selection sort will sort items from the left to the right, while the bubble sort will
sort items from the right to the left.

SELECTION SORT EXAMPLE WITH ARRAYS

Implementing the selection sort is as straightforward as implementing the bubble
sort. The differences include keeping track of which object is the smallest and only
performing the swap once a complete iteration over the list has occurred. As with
the bubble sort, the selection sorting algorithm was added in its own function,
SelectionSort(), to the unordered array class. Listing 4.3 shows this algorithm’s
code.

LISTING 4.3 The Selection Sort Algorithm Added to the Unordered Array

template<typename T>

class UnorderedArray

{

public:

void SelectionSort()

{

assert(m_array != NULL);

T temp;

int min = 0;

for(int k = 0; k < m_numElements - 1; k++)

{

min = k;

for(int i = k + 1; i < m_numElements; i++)

{

if(m_array[i] < m_array[min])

min = i;

}

if(m_array[k] > m_array[min])

{

temp = m_array[k];

m_array[k] = m_array[min];

m_array[min] = temp;

}

Chapter 4 Introduction to Sorting 99

}

}

};

On the accompanying CD-ROM is a demo application called Selection Sort in
the Chapter 4 folder that demonstrates the selection sort algorithm in Listing 4.3.
The main.cpp source file from this demo is the same as the one for the Bubble Sort
demo, with the exception that the values being inserted into the list are different
and that the demo calls the SelectionSort() function instead of the BubbleSort()
function. The main.cpp source file from the Selection Sort demo application is
shown in Listing 4.4. Figure 4.6 shows a screenshot of the application.

LISTING 4.4 The Main Source File of the Selection Sort Demo

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Selection Sort Algorithm” << endl;

cout << “Chapter 4: Recursion” << endl << endl;

UnorderedArray<int> array(5);

array.push(136);

array.push(489);

array.push(28);

array.push(1);

array.push(393);

cout << “Before selection sort:”;

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl;

100 Data Structures and Algorithms for Game Developers

array.SelectionSort();

cout << “ After selection sort:”;

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl << endl;

return 1;

}

Chapter 4 Introduction to Sorting 101

FIGURE 4.6 A screenshot of the Selection Sort demo application.

THE INSERTION SORT

The insertion sort works by comparing two elements, let’s say element[0] and
element[1], and swapping them if necessary. After those two objects are processed,
the algorithm looks at the next object and inserts it into its proper place if it is
smaller than either of the two elements that came before it. By inserting an object
into its place, we are moving all objects up the array at the point of insertion, and

then we are moving the object in question to the newly empty slot. During the in-
sertion sort a number of shifts are done on the array, whereas the other two algo-
rithms we looked at focus only on swapping individual items. When the insertion
sort is being performed, it is only executing on a small portion of the list with each
cycle, and this portion grows larger as more cycles are executed. When the algo-
rithm reaches its last pass over the list, the entire list is looked at as a whole. The al-
gorithm has the ability to quit early with lists that are already sorted. Figure 4.7
shows a visual representation of the insertion sort.

102 Data Structures and Algorithms for Game Developers

FIGURE 4.7 The insertion sort.

The insertion sort algorithm runs in O(N2) but is slightly faster than the selec-
tion sort algorithm in most cases and is faster than the bubble sort algorithm. In the
worst case the insertion sort is as fast as the bubble sort, which can happened if the
items in the list are in the reverse order from their sorted state (e.g., in descending
order when the sorting will place them in ascending order). If the items are in re-
verse order, then the maximum comparisons, shifts, and swaps must be done,
which makes it as slow as the bubble sort.

INSERTION SORT EXAMPLE WITH ARRAYS

As with the previously discussed sorting algorithms, a function was added to the
unordered array class to perform the insertion sort. In this function two loops are

nested together. The outer loop performs a pass on the inner loop once for every
object in the list. In the inner loop the comparisons are made to the first item,
which is defined by the outer loop, and all items before it. This means the sort is
partial, because with each cycle of the outer loop, the range of the inner loop grows.
With lists that are almost in order, close to being in order, or are in order, this al-
gorithm is very fast. The only case to look out for is a list in reverse or near-reverse
order, as that will cause various “worst-case” operations to be performed. The in-
sertion sorting algorithm is shown in a function that was added to the unordered
array class, called InsertionSort()(Listing 4.5).

LISTING 4.5 The Insertion Sorting Algorithm Added to the Unordered Array

template<typename T>

class UnorderedArray

{

public:

void InsertionSort()

{

assert(m_array != NULL);

T temp;

int i = 0;

for(int k = 1; k < m_numElements; k++)

{

temp = m_array[k];

i = k;

while(i > 0 && m_array[i - 1] >= temp)

{

m_array[i] = m_array[i - 1];

i—;

}

m_array[i] = temp;

}

}

};

Chapter 4 Introduction to Sorting 103

On the accompanying CD-ROM is a demo application called Insertion Sort in
the Chapter 4 folder. In this demo the main function is similar to the Bubble Sort
and Selection Sort demos, with the exception of the values inserted into the list
and the call to InsertionSort() instead of BubbleSort() or SelectionSort(). The
main.cpp source file for the Insertion Sort demo application is in Listing 4.6. A
screenshot of the demo application running is shown in Figure 4.8.

LISTING 4.6 The main.cpp Source File of the Insertion Sort Demo

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Insertion Sort Algorithm” << endl;

cout << “Chapter 4: Recursion” << endl << endl;

UnorderedArray<int> array(5);

array.push(348);

array.push(112);

array.push(847);

array.push(999);

array.push(264);

cout << “Before insertion sort:”;

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl;

array.InsertionSort();

cout << “ After insertion sort:”;

104 Data Structures and Algorithms for Game Developers

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl << endl;

return 1;

}

Chapter 4 Introduction to Sorting 105

FIGURE 4.8 A screenshot of the Insertion Sort demo application.

STL SORTING

In this section we will look at a few algorithm functions defined in the header file
<algorithms> that can be used to perform sorting using the STL in C++. The func-
tions we will look at in this section include the STL sort(), stable_sort(), and
partial_sort(). At the end of this section we will see each of these algorithms in
action in one demo application called STL Sorting.

There is also sort_heap(), which we’ll look at later in this book when we talk
about heaps.

The function sort() is used to sort objects into ascending or descending order
based on a binary predicate. This function takes as parameters a random access
iterator to the first element in the data structure to be sorted, a random access iter-
ator to the last element in the data structure to be sorted, and the optional binary
predicate. The sort() algorithm is not stable, which means that items in the data
structure can be equivalent but not equal, so neither element is less than the other
element. Earlier versions of the sort() STL function used the quick sort algorithm,
which will be examined later in the book, while more current implementations use
the intro sort algorithm.

The function stable_sort() is the same as the sort() function, with the excep-
tion that the stable_sort() function is stable. The stable_sort() function uses the
merge sort algorithm, discussed later in this chapter, and takes the same parameters
as the sort() function. One use of stable sorting algorithms is if you have objects
that have multiple fields, where some fields are equal but others are not. This can
occur if you are trying to order a list of names in which the last names of some
people might be equal but the first names are not (or vice versa).

The partial_sort() function allows a data structure to be partially sorted based
on a binary predicate. In other words, the sorting algorithm can occur on the en-
tire data structure or only on a few of its internal elements. The partial_sort()
function takes as parameters a random access iterator to the first element in the
range to be sorted, a random access iterator to the last element in the range to be
sorted, a random access iterator to the end of the list (which might not be the end
of the sorting range), and optionally a binary predicate such as greater<>, less<>,
greater_equal<>, less_equal<>, and so forth.

To use less<>, greater<>, or other binary predicates you will need to include the
header file <functional>. To use the sorting algorithms you will need to include the
header file <algorithms>.

A demo application called STL Sorting can be found on the accompanying
CD-ROM in the Chapter 4 folder. This demo application is a simple one that
demonstrates how to use the sort(), stable_sort(), partial_sort(), and binary
predicates. In the demo application two arrays and a vector container are sorted.
Before and after each sort the data structures are displayed to show that the algo-
rithms indeed performed their jobs. The main.cpp source file for the STL Sorting
demo application is shown in Listing 4.7. Figure 4.9 shows a screenshot of the STL
Sorting demo application.

106 Data Structures and Algorithms for Game Developers

LISTING 4.7 The STL sort(), partial_sort(), and stable_sort() Functions

#include<iostream>

#include<vector>

#include<algorithm>

#include<functional>

using namespace std;

inline bool CompareNoCase(char lVal, char rVal)

{

return tolower(lVal) < tolower(rVal);

}

int main(int args, char *arg[])

{

cout << “STL Sorting Algorithm” << endl;

cout << “Chapter 4: Sorting” << endl << endl;

char str1[] = “lekiamhjdqn”;

char str2[] = “peuyxknasdb”;

vector<int> int1;

int1.push_back(58);

int1.push_back(23);

int1.push_back(1);

int1.push_back(53);

int1.push_back(33);

int1.push_back(84);

int1.push_back(12);

cout << “Original str1 data: “ << str1 << “.” << endl;

sort(str1, str1 + (sizeof(str1) - 1), CompareNoCase);

cout << “ Sorted str1 data: “ << str1 << “.” << endl;

cout << endl;

Chapter 4 Introduction to Sorting 107

cout << “Original str2 data: “ << str2 << “.” << endl;

stable_sort(str2, str2 + (sizeof(str2) - 1), CompareNoCase);

cout << “ Sorted str2 data: “ << str2 << “.” << endl;

cout << endl;

ostream_iterator<int> output(cout, “ “);

cout << “Original int1 data: “;

copy(int1.begin(), int1.end(), output);

cout << endl;

partial_sort(int1.begin(), int1.begin() + int1.size(),

int1.end(), less<int>());

cout << “ Sorted int1 data: “;

copy(int1.begin(), int1.end(), output);

cout << endl << endl;

return 1;

}

The partial_sort() function is a stable sorting algorithm.

108 Data Structures and Algorithms for Game Developers

FIGURE 4.9 A screenshot of the STL Sorting demo application.

THE MERGE SORT

The merge sort is the most efficient sorting algorithm discussed in this chapter. The
merge sort has a big-O of O(N * log N), which is better than the O(N2) the first three
sorting algorithms work in (although selection had a swap set of operations of O(N)).
This means that with a list of 25,000 elements, O(N2) would have an N of 625,000,000,
while O(N * log N) would have an N of only 109,949 (109,948.5 rounded up). The
merge sort should outperform any of the other sorting algorithms we’ve discussed so
far in most cases that arise, especially with large N. In Chapter 8 we’ll look at some
other advanced algorithms for sorting as well.

The merge sort algorithm can work recursively. The algorithm recursively splits
the list into two halves. This recursion continues until only one element remains on
each side of the original half, as shown in Figure 4.10. In other words, the algorithm
starts by splitting the list in half, then splits each half into half (a quarter of the orig-
inal size), and so on until no more splits can be done.

Chapter 4 Introduction to Sorting 109

FIGURE 4.10 Splitting through the list.

Once one element remains on both sides they are merged together and sorted.
Merging means that the elements from both sides are combined into one list. Once
those two elements are merged, the recursive function returns. On the higher level

of the recursive heap the results from the previous merge from both sides of the list
are merged together. This keeps happening until we are at the top of the list. Once
there, the entire list has been sorted and merged into one array. This is shown in
Figure 4.11. The second-to-last level will leave us with two halves of the array that
are both sorted individually.

110 Data Structures and Algorithms for Game Developers

FIGURE 4.11 Merging until we have a sorted list.

During the merge the items are sorted, so if we have four items, we sort them
before returning from the recursive function to the higher-level call. Recursion is
used to first single out two elements on each side of the list half. The sorting occurs
as we are moving back up to the top of the recursive stack. The merge sort has the
disadvantage of needing another array that is equal in size to the array that is being
sorted. In situations where memory is not a problem, creating this extra array is no
big deal. If it is a big deal, we might have to look elsewhere for another sorting
algorithm. This is especially true for lists that have large numbers of objects and/or
are made up of memory-expensive objects.

MERGE SORT EXAMPLE WITH ARRAYS

Like the previously discussed sorting algorithms, the merge sort will be added to the
unordered array class in a function called MergeSort(). As we will discuss soon, it is
beneficial to use multiple functions for this process. The MergeSort() function can

be used to create the temporary array used throughout the algorithm, delete that
array once the sorting is complete, and call the recursive function used to perform
the actual work. This recursive function can be a private overloaded MergeSort()
function for convenience.

The private MergeSort() function would be used to recursively split the elements
in half until each side is left with one element. Once there is only one element on
each side, the function will start to return without calling itself further. For each re-
turn another function is called and used to merge the data into the temporary array.
The merging function (let’s call it Merge()) will copy data into the temporary array
in ascending order while both arrays still have elements. When one array is out of
elements, which can happen when the merging arrays have different numbers of
elements, the other array’s data is simply copied to fill in the remaining slots of the
temporary array, as shown in Figure 4.12. Once complete, the data in the temp array
can be moved back to the original list. By doing this each time we will eventually
have a sorted array and we’ll be able to delete the temporary array.

Chapter 4 Introduction to Sorting 111

FIGURE 4.12 Merging arrays of different sizes.

To recap, the algorithm first splits the list into halves, which are further split in half
recursively until no more splits can be done (one element left on each side). Once at
the bottom of the recursive heap, we can start returning from the recursive calls. For
each return we merge the elements at that level into a temporary array, which is sorted

and copied back into the original array. By the time we make it to the top of the
recursive heap, the entire list has been sorted. The code for the two MergeSort()
functions and the Merge() function are shown in Listing 4.8. The first MergeSort()
function is the function called outside of the class, while the second one sets up para-
meters that shouldn’t be left up to the programmers (i.e., it shouldn’t be left up to the
programmers to create the temporary array of the correct type and supply it to the
sorting function along with the desired range). The second MergeSort() is recursive,
while Merge() will merge and sort together two ranges of data.

LISTING 4.8 The Merge Sort Algorithm Added to the Unordered Array

template<typename T>

class UnorderedArray

{

public:

void MergeSort()

{

assert(m_array != NULL);

T *tempArray = new T[m_numElements];

assert(tempArray != NULL);

MergeSort(tempArray, 0, m_numElements - 1);

delete[] tempArray;

}

private:

void MergeSort(T *tempArray, int lowerBound, int upperBound)

{

if(lowerBound == upperBound)

return;

int mid = (lowerBound + upperBound) >> 1;

MergeSort(tempArray, lowerBound, mid);

MergeSort(tempArray, mid + 1, upperBound);

112 Data Structures and Algorithms for Game Developers

Merge(tempArray, lowerBound, mid + 1, upperBound);

}

void Merge(T *tempArray, int low, int mid, int upper)

{

int tempLow = low, tempMid = mid - 1;

int index = 0;

while(low <= tempMid && mid <= upper)

{

if(m_array[low] < m_array[mid])

{

tempArray[index++] = m_array[low++];

}

else

{

tempArray[index++] = m_array[mid++];

}

}

while(low <= tempMid)

{

tempArray[index++] = m_array[low++];

}

while(mid <= upper)

{

tempArray[index++] = m_array[mid++];

}

for(int i = 0; i < upper - tempLow + 1; i++)

{

m_array[tempLow + i] = tempArray[i];

}

}

};

On the accompanying CD-ROM in the Chapter 4 folder is a demo application
called Merge Sort that demonstrates the merge sorting algorithm discussed in this
chapter. The demo’s main.cpp source file is similar to the other demo applications

Chapter 4 Introduction to Sorting 113

discussed in this chapter, with the exception that the MergeSort() function is being
called and the values differ slightly. For convenience the entire main.cpp source file
for the Merge Sort demo application is shown in Listing 4.9. Figure 4.13 shows a
screenshot of the Merge Sort demo application.

LISTING 4.9 The main.cpp Source Code for the Merge Sort Demo

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Merge Sort Algorithm” << endl;

cout << “Chapter 4: Sorting” << endl << endl;

UnorderedArray<int> array(5);

array.push(645);

array.push(294);

array.push(777);

array.push(789);

array.push(119);

array.push(100);

array.push(823);

cout << “Before merge sort:”;

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl;

array.MergeSort();

cout << “ After merge sort:”;

114 Data Structures and Algorithms for Game Developers

for(int i = 0; i < 5; i++)

{

cout << “ “ << array[i];

}

cout << endl << endl;

return 1;

}

Chapter 4 Introduction to Sorting 115

FIGURE 4.13 A screenshot of the Merge Sort demo application.

SUMMARY

In this chapter we took an introductory look at sorting algorithms that can be per-
formed on data structures. Sorting can be very useful in applications that require
data to be in a specific order. As seen with the binary searching algorithm in Chap-
ters 2 and 3, some algorithms require data to be in a specific order to accomplish its
task. In this chapter we looked at the following algorithms:

Bubble sort
Selection sort
Insertion sort
Merge sort
STL functions sort(), stable_sort(), partial_sort(), and binary predicates

Later in the book we will look at more advanced, complex sorting algorithms.
Many of the algorithms discussed in this chapter are called elementary sorting
algorithms, which include the bubble sort, the selection sort, and the insertion sort.
In later chapters we will be discussing the following algorithms:

Quick sort
Partitioning
Radix sort
Shell sort
Intro sort
Heap sort

In the next chapter we will discuss a different kind of data structure known as
the link list. Link lists have advantages that solve some of the disadvantages of
arrays, but they have a few disadvantages that are advantages for arrays. Link lists
are a very popular type of data structure, and we will learn more about them after
Chapter 5, Link Lists.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. The bubble sort runs in:
a. O(1)
b. O(N)
c. O(N2)
d. O(N * log N)
e. None of the above

2. The selection sort comparison runs in:
a. O(1)
b. O(N2)
c. O(log N)
d. O(N * log N)
e. None of the above

3. The selection sort swapping runs in:
a. O(N)
b. O(N2)
c. O(log N)
d. O(N * log N)
e. None of the above

116 Data Structures and Algorithms for Game Developers

4. The insertion sort comparison runs in:
a. O(N2)
b. O(N)
c. O(log N)
d. O (N * log N)
e. None of the above

5. The merge sort comparison runs in:
a. O(1)
b. O(N2)
c. O(log N)
d. O(N * log N)
e. None of the above

6. The earlier STL sort() function uses what algorithm internally?
a. Bubble sort
b. Quick sort
c. Radix sort
d. Intro sort
e. None of the above

7. The more recent STL sort() function uses what algorithm internally?
a. Bubble sort
b. Quick sort
c. Radix sort
d. Intro sort
e. None of the above

8. The STL stable_sort() function uses what algorithm internally?
a. Bubble sort
b. Quick sort
c. Radix sort
d. Intro sort
e. Merge sort
f. None of the above

9. A binary predicate is used for what purpose?
10. Which is faster: the bubble sort or the selection sort? Why?
11. The bubble sort got its name because the sorted objects bubble on the top

of the list throughout the algorithm.
a. True
b. False

12. The selection sort bubbles sorted objects at the beginning of the list.
a. True
b. False

Chapter 4 Introduction to Sorting 117

13. Even in the worst-case scenario, the selection sort is still slightly faster than
the bubble sort.
a. True
b. False

14. The merge sort will merge the items into a new list before sorting them.
a. True
b. False

15. The STL partial_sort() is stable.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Create an application that allows you to store a list of employee infor-
mation in an array. Allow that array to sort the information by employee ID. The
employee information to store is the employee ID, first name, last name, email, ad-
dress, and phone number. Create a class called EmployeeList that stores the data
structure, which can be an STL vector, and has member functions for sorting by ID
and for printing out the information to the console window. For the sorting create
a function that uses the bubble sort.

Exercise 2: Modify the application you created in Exercise 1 and allow the infor-
mation to be read in from a file. Also modify the application to allow the program-
mer using your employee list to sort the data by ID, first name, or last name and
create functions that use the selection and insertion sorting algorithms.

Exercise 3: Modify the application you created in Exercise 2 and add support for
the merge sort. Also modify the application so that it can save the current list of em-
ployees to the file on command, can remove employees from the list, and can insert
new employee records.

118 Data Structures and Algorithms for Game Developers

119

Link Lists5

In This Chapter

Introduction to Link Lists
Singly and Double-Ended Linked Lists
Doubly Linked Lists
STL Link Lists
Tips and Things to Remember When Using Link Lists

120 Data Structures and Algorithms for Game Developers

S
o far we’ve looked at only one general type of data structure known as the
array. The array is a common data structure and is easy to work with, but it is
not without its disadvantages; for example, deletion is slow, searching in un-

ordered arrays is slow, insertion into ordered arrays is slow, and growing and
shrinking arrays is slow. Not all situations that arise in computer programming are
suited to arrays, and some other data structures can do the job. One thing to keep
in mind is that not all data structures are suited for all needs. When one data struc-
ture does not work in application development, a different, more efficient, data
structure must be chosen. Being able to recognize the need to switch and choose a
data structure for a specific task is important.

In this chapter we will look at another data structure known as the link list.
Link lists have a number of advantages that solve the array’s disadvantages such as
the ability to quickly grow and shrink as well as fast removal (deletion). However,
link lists still have some disadvantages that can determine whether or not the data
structure is used in an application. In this chapter we’ll look at a few types of linked
lists including singly linked lists, doubly linked lists, double-ended linked lists, and
various STL implementations for the linked list data structure.

INTRODUCTION TO LINK LISTS

Link lists are a type of data structure that allows elements of the list to be linked to
one another to form a dynamic chain. In a link list each item in the list is referred
to as a node (also called a link). With a link list you start off with a root node and
add elements to that node to form the chain. Each node has a pointer to the next
item in the chain and, in some cases, pointers to the item that comes before it and
even pointers to the start and end of the list. An example of this is shown in Figure
5.1, where the link list starts off with a single node and more elements are added to
the list by “chaining” them together using pointers. Link lists have many applications
in general programming and in game development. They have very fast insertions
and expansion, which makes them ideal in real-time applications such as video
games when random access is not needed and the list can expand and shrink at a
variable rate.

One of the keys to link lists is the use of pointers. A pointer pointing to the next
node in a chain is often called the “next pointer.” The initial root node is created to
start the chain. When a new item is added to the chain, the root node’s next pointer
is created and used for that object. When a third node is added to the link, it does
so by allocating the second node’s next pointer and so forth. This was seen in Fig-
ure 5.1, where a root node exists and additional nodes are attached by linking them
together using next pointers. A way of thinking about this process is to imagine
children holding hands in a line, where the left hand is the hand that attaches to the

next person in the chain (“next pointer”) while the right hand is the hand that at-
taches to the previous person in the chain (“previous pointer”). Since a root node
is the top node, it has no previous link. In code this is done by making such a node
NULL. The same goes for the last node since it would have no next node in the list.

If the last node’s next pointer points to the root and the root’s previous node points
to the last node, that is known as a circular link list. The link forms a chain that is
completely circular.

At this point it should be clear that the elements of a link list are connected by
pointers that can be allocated at any time. This means the data do not have to exist
side by side in the computer’s memory. This also means random access is not pos-
sible because you can’t use array indexes to access any elements you want. Instead
you have to start at the root and traverse through the list. In arrays random access
is an advantage, while in link lists the loss of random access is a disadvantage. As
previously mentioned, not all data structures are perfect for all situations. When
random access is important, the link list does not work as well.

A link list is normally made up of three parts: the node, an iterator, and the link
list itself. Later we’ll look at iterators and the link list, which is itself a node. The
node’s definition can be a structure or a class that has some kind of data member
and a self-referencing pointer, which is a pointer to an object of the same data type
as itself. Such a structure for a singly linked list, which consists of nodes that go in
one direction and is specified by the next pointer, can look like the following in
pseudo-code:

class Node

{

T data;

Node *next;

}

Chapter 5 Link Lists 121

FIGURE 5.1 A link list.

122 Data Structures and Algorithms for Game Developers

The data member of the example node class can be any type. In C++ it is often
useful to make this member a template data type so that different types can be used
with the code, which has been seen throughout this book. The next pointer is only
allocated when a new link is to be added in the chain. If this wasn’t a pointer, the
constructor of the member will be called, which will recursively call constructors on
its member objects and cause trouble. In C++ this is not allowed.

In the Java and C# programming languages objects are declared using references
and are not created until the new keyword is used. In C++ when a nonpointer ob-
ject is declared, it is instantiated.

The elements of a link list have a relationship to one another instead of just a
position as with an array. In later chapters the topic of relationships and the role
they play with nodes of a data structure will be very important. With arrays each
element has a position from the start of the list, which is accessed using an index.
In an array writing code to access an element can look like the following:

someVar = array[4];

This would be the same as writing the following:

someVar = *(array + 4);

It is possible to simulate random access with linked lists using overloaded op-
erators, but the simulation would be just that, a simulation, and would not be ac-
tual random access. Luckily not all situations in computer programming require
random access, so this might at times be a disadvantage that can be ignored.

Later in this chapter we will look at the implementation of singly linked lists.
These are nodes that can go in one direction by means of a next pointer, double-
ended link list, which is a link list in which nodes can be inserted in the front of or
back of the list, and a doubly linked list, which has nodes that have a previous
pointer that allows backward movement through the link list. We’ll also be looking
at various STL link lists in C++.

ITERATORS

Chapter 2 disucssed STL vector iterators and how they are used to access elements
in the data structure. Iterators are very useful in linked lists as well, and we will
implement a structure that can be used for the custom data structures developed
throughout this chapter. By creating an iterator, we will have a way to access the
elements of the link list since using array indexes, which was done in the previously

described data structure (array), would not work. Even if we overloaded the opera-
tors so that the class can use indexes to access elements, we still need a way to traverse
through the container.

An iterator points to an element within the list. Once an iterator has been created,
it can be used to access the data of the element, which is often done by using various
dereferencing operators, and it can be used to traverse through the remaining ele-
ments of the list. An iterator in a link list would be simple when looked at from
a general point of view. An iterator could work by internally storing a pointer to a
node. Whenever an operation is applied to the iterator, it can be transferred to the
node pointer. For example, to move to the next element using an iterator, we could
set the iterator’s node pointer to its next pointer. An illustration of iterators is shown
in Figure 5.2.

Chapter 5 Link Lists 123

FIGURE 5.2 A visual representation of iterators.

One great thing about C++ is that overloaded operators can be specified for al-
most every type of operator the language supports. This means that using operators
on an iterator class can be very useful. For example, using the ++ operator on the it-
erator can cause the iterator to move one forward through the list while the opera-
tor –– could move backward. Pointer dereferencing, which is also used in STL
iterators, can also be used to access the actual data. A data structure iterator using
overloaded operators might look like the following:

Iterator it = dataStructure.GetBeginIterator();

for(; it != dataStructure.GetEndIterator(); it++)

{

Display(“Element: “ + (*it));

}

In the following section we will look at creating an iterator class for the link list
data structure. Those familiar with STL are probably already aware of the usefulness
of iterator structures.

SINGLY AND DOUBLE-ENDED LINKED LISTS

This section will focus on singly and double-ended link lists. Singly linked lists are
list with nodes that go in one direction, while double-ended linked lists allow for in-
sertions in the front or in the back of the list. Each type of link list will build off of
the previous one. First we’ll examine the singly linked list before moving onto the
double-ended and doubly linked lists.

EXAMPLE OF A SINGLY LINKED LIST

The singly linked list is the most straightforward to implement. The items that will
need to be represented are the iterator, the node, and the link list itself. The node is
never directly used and only exists in the link list, the iterator is the structure that
will be used to access and traverse through the link list data structure, and the link
list is the container class for everything. The node class in this chapter will gener-
ally only need two members: the next pointer and the data that the link will store.
The data member will be a template type so that this class can be reused for differ-
ent applications and types. The link list’s node class, LinkNode, is shown in Listing
5.1. Since the LinkNode is never used outside of the link list, its data members are
private and specify friends to the necessary classes that will use it.

LISTING 5.1 The Link List’s Node Class

template<typename T> class LinkIterator;

template<typename T> class LinkList;

template<typename T>

class LinkNode

{

friend class LinkIterator<T>;

friend class LinkList<T>;

private:

T m_data;

LinkNode *m_next;

};

124 Data Structures and Algorithms for Game Developers

The class for the iterator is mainly made up of overloaded operators, a con-
structor, and a destructor. These operators can make using the custom made iter-
ator class a bit more like using STL iterators while making them convenient for the
programmers using the class. The operators specified in this chapter (more can be
added if desired) are the = operator, the * dereferencing operator, the ++ post- and
pre-increment operators, and a few boolean comparison operators. Later we’ll see
each of these operators in action, but for now the code is shown in Listing 5.2.

LISTING 5.2 Link List Iterator Class

template<typename T>

class LinkIterator

{

public:

LinkIterator()

{

m_node = NULL;

}

~LinkIterator()

{

}

void operator=(LinkNode<T> *node)

{

m_node = node;

}

T &operator*()

{

assert(m_node != NULL);

return m_node->m_data;

}

void operator++()

{

assert(m_node != NULL);

Chapter 5 Link Lists 125

m_node = m_node->m_next;

}

void operator++(int)

{

assert(m_node != NULL);

m_node = m_node->m_next;

}

bool operator!=(LinkNode<T> *node)

{

return (m_node != node);

}

bool operator==(LinkNode<T> *node)

{

return (m_node == node);

}

private:

LinkNode<T> *m_node;

};

The link list class is very straightforward. The one thing the link list will need is
a member pointer for the root of the chain. In the link list class that will be shown
in this section, there is also a member variable for the container’s size that is incre-
mented every time a new item is inserted into the list and decremented every time
one is removed.

For member functions our implementation in this section will have a con-
structor for initializing member variables, a destructor that will make sure all the
elements have been deleted from the container, a function used to insert items into
the list, a function used to remove the last item in the list, and a function used to
get the root node and one for the end. The ability to get the root node allows the
iterator to gain access to the chain. The end of the list is used to give the class an
appearance that is somewhat closer to the STL iterator that we will see later on for
link lists. The code for the link list is shown in Listing 5.3.

126 Data Structures and Algorithms for Game Developers

LISTING 5.3 The Link List Class

template<typename T>

class LinkList

{

public:

LinkList() : m_size(0), m_root(0), m_lastNode(0)

{

}

~LinkList()

{

while(m_root != NULL)

{

Pop();

}

}

LinkNode<T> *Begin()

{

assert(m_root != NULL);

return m_root;

}

LinkNode<T> *End()

{

return NULL;

}

void Push(T newData)

{

LinkNode<T> *node = new LinkNode<T>;

assert(node != NULL);

node->m_data = newData;

node->m_next = NULL;

Chapter 5 Link Lists 127

if(m_lastNode != NULL)

{

m_lastNode->m_next = node;

m_lastNode = node;

}

else

{

m_root = node;

m_lastNode = node;

}

m_size++;

}

void Pop()

{

assert(m_root != NULL);

if(m_root->m_next == NULL)

{

delete m_root;

m_root = NULL;

}

else

{

LinkNode<T> *prevNode = m_root;

while(prevNode->m_next != NULL &&

prevNode->m_next != m_lastNode)

{

prevNode = prevNode->m_next;

}

delete m_lastNode;

prevNode->m_next = NULL;

m_lastNode = prevNode;

}

m_size = (m_size == 0 ? m_size : m_size - 1);

}

128 Data Structures and Algorithms for Game Developers

int GetSize()

{

return m_size;

}

private:

int m_size;

LinkNode<T> *m_root;

LinkNode<T> *m_lastNode;

};

In Listing 5.3 we look for the previous node because there is no way to move from
the last node backward in a singly linked list. In upcoming link list examples this
problem will be solved.

The link list class seen in Listing 5.3 starts with a constructor that clears the
class’s member variables and destructor that empties the container. The Begin()
function is used to return the root node, and the End() function returns a value to
mark when a list has ended, which here is set to NULL to make things easy. Both the
Begin() and End() functions are used by the class for the iterator.

The function for inserting items into the link list, push(), works by creating a
link node, setting its data members, and attaching the newly created node to the
end of the list. The pop() function, which is used to remove the last item inserted
into the list, works by deleting the last node that was inserted into the list. Both
operations are made possible by keeping track of which node is the last node. With-
out this marker we would have to traverse through the list until one of the elements
was found to have a NULL next pointer, which would tell us we are at the last node.
For the removal function we have to search for the previous node anyway, because
in a singly linked list there is no way to go backward.

The application that demonstrates the use of the node, link list, and iterator
code is called Link List and can be found on the companion CD-ROM in the Chap-
ter 5 folder. The demo application creates a link list, pushes five values onto it to
create the chain of nodes, and uses the iterator to traverse the data structure con-
tainer and display its values. The main.cpp source file for the Link List demo ap-
plication is shown in Listing 5.4. The code for the link list itself is in the header file
LinkList.h on the CD-ROM.

LISTING 5.4 The main.cpp Source File for the Link List Demo

#include<iostream>

#include”LinkList.h”

Chapter 5 Link Lists 129

using namespace std;

int main(int args, char **argc)

{

cout << “Link List Example” << endl;

cout << “Chapter 5: Link Lists” << endl;

cout << endl;

LinkList<int> lList;

lList.Push(101);

lList.Push(201);

lList.Push(301);

lList.Push(401);

lList.Push(501);

lList.Pop();

lList.Push(601);

LinkIterator<int> it;

cout << “Contents of the link list:”;

for(it = lList.Begin(); it != lList.End(); it++)

{

cout << “ “ << *it;

}

cout << “.” << endl << endl;

return 1;

}

In Listing 5.4 the iterator is used much like it is used with the STL version seen
with the vector class in Chapter 2. Because of the operators that were specified, the
iterator can be used directly in the for loop. By using the dereferencing operator, we
can gain direct access to the node’s data, which is definitely a feature worth having.
A screenshot of the Link List demo application is shown in Figure 5.3.

130 Data Structures and Algorithms for Game Developers

EXAMPLE OF A DOUBLE-ENDED LINK LIST

The next type of link list that will be discussed is the double-ended link list. A
double-ended link list is one that allows for insertions and removals from either
end of the container. Up until this point we’ve only inserted and removed items at
the end of the link list, but now we will look at inserting and removing items at the
start. A visual example of a double-ended link list in shown in Figure 5.4. Adding
this feature is straightforward, as we will soon see.

Chapter 5 Link Lists 131

FIGURE 5.3 A screenshot of the Link List demo.

FIGURE 5.4 A double-ended link list.

A useful feature, which can be added if desired, is the ability to insert and re-
move elements from particular locations within the link list container. Another
useful feature would be to allow for the removal of a range of elements from the
link list. This can be done using iterators and overloaded push() and pop() func-
tions and will be done as an exercise at the end of this chapter.

To add support for double-ended link lists, we will need to add two new func-
tions for inserting and removing elements from the front of the container. The link
list in this chapter will call these functions Push_Front() and Pop_Front(). The
Push_Front() function basically replaces the root node with a new node and takes
the old root node and attaches it to the newly created node. The Pop_Front() func-
tion deletes the current root node and makes the object that comes next in the list
the new root. Because both functions manipulate the root node, the last node
pointer is never altered, aside from when Push_Front() is used to insert the first
item into the container (i.e., when the root is NULL). The updated link list class that
allows for double-ended insertions and removals is shown in Listing 5.5.

LISTING 5.5 The Push_Front() and Pop_Front() Class Methods

template<typename T>

class LinkList

{

public:

void Push_Front(T newData)

{

LinkNode<T> *node = new LinkNode<T>;

assert(node != NULL);

node->m_data = newData;

node->m_next = NULL;

if(m_root != NULL)

{

node->m_next = m_root;

m_root = node;

}

else

{

m_root = node;

m_lastNode = node;

}

132 Data Structures and Algorithms for Game Developers

m_size++;

}

void Pop_Front()

{

assert(m_root != NULL);

LinkNode<T> *temp = m_root;

m_root = m_root->m_next;

delete temp;

m_size = (m_size == 0 ? m_size : m_size - 1);

}

};

On the CD-ROM there is a demo application called Double-Ended in the
Chapter 5 folder that demonstrates the features of a double-ended link list. The
main.cpp source file for this demo application combines calling Push(), Push_

Front(), Pop(), and Pop_Front()to test the calls. The main.cpp source file for the
Double-Ended demo application is shown in Listing 5.6. Figure 5.5 shows a screen-
shot of the Double-Ended executable.

LISTING 5.6 The main.cpp File of the Double-Ended Demo

#include<iostream>

#include”LinkList.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Double- Ended Link List Example” << endl;

cout << “Chapter 5: Link Lists” << endl;

cout << endl;

LinkList<int> lList;

lList.Push(101);

lList.Push_Front(201);

Chapter 5 Link Lists 133

lList.Push(301);

lList.Push_Front(401);

lList.Push(501);

lList.Pop();

lList.Push(601);

lList.Pop_Front();

LinkIterator<int> it;

cout << “Contents of the link list:”;

for(it = lList.Begin(); it != lList.End(); it++)

{

cout << “ “ << *it;

}

cout << “.” << endl << endl;

return 1;

}

134 Data Structures and Algorithms for Game Developers

FIGURE 5.5 A screenshot of the Double-Ended Link List demo.

DOUBLY LINKED LISTS

A doubly linked list is similar to a singly linked list, but the doubly linked list can
move forward by use of a next pointer and backward by use of a previous pointer.
Up until this point our link list, or more specifically the iterator for the link list, was
only able to move in one direction. With this section we’ll add the ability for the
iterator to move in both directions. An example of a doubly linked list is shown in
Figure 5.6.

Chapter 5 Link Lists 135

FIGURE 5.6 Visual representation of a doubly linked list.

The doubly linked list works by specifying a pointer in the node class called the
previous pointer. Whenever new items are inserted or removed from the container,
the next and previous pointers must be able to reflect the current state of the list. All
nodes have a previous node in the chain, with the exception of the root node be-
cause the root node is the root, which means no other node comes before it. The
same can be said for the last node, in that the node with a next pointer that is equal
to NULL must be the last node in the container.

Adding support for a doubly linked list to the link list code developed through-
out this chapter requires us to make minor changes to the insertion and removal
functions, add a few new overloaded operators to the iterator class, and add a new
node pointer type to the link list’s node class. In the following section we’ll look at
doing just that to the code developed so far.

EXAMPLE OF A DOUBLY LINKED LIST

The first class to examine is the node class LinkNode. This class has the least amount
of new code and it adds a new pointer type and initializes it to NULL in the con-
structor. Because the node class is the basis for everything in the system, this is an
important place to start. The newly updated LinkNode class is shown listed in List-
ing 5.7.

LISTING 5.7 The Updated Node Class for Adding Doubly Linked List Support

template<typename T>

class LinkNode

{

friend class LinkIterator<T>;

friend class LinkList<T>;

private:

LinkNode() : m_next(0), m_previous(0)

{

}

T m_data;

LinkNode *m_next;

LinkNode *m_previous;

};

The next class to look at is the iterator class. Since our node class now has the
ability to track the next element in the container as well as the previous one, the
iterator class can be updated with a few new overloaded operators to make use of
this newly added code. The two new operators are the — prefix and postfix opera-
tors, which are used to decrement, or move backward, through the container. These
new operators are the opposite of the ++ operators and are shown in Listing 5.8.

The difference between specifying the pre- or the postfix increment or decrement
operator is the existence of an unused (int) parameter. Specifying this parameter
tells the compiler that it is a postfix operator; otherwise, it is a prefix operator.

LISTING 5.8 The Overloaded Operators Added to the Iterator Class

template<typename T>

class LinkIterator

{

public:

void operator—()

{

assert(m_node != NULL);

136 Data Structures and Algorithms for Game Developers

m_node = m_node->m_previous;

}

void operator—(int)

{

assert(m_node != NULL);

m_node = m_node->m_previous;

}

};

The last class to look at is the link list itself. Because of the addition of a previ-
ous pointer, the link list container must be sure to link all pointers to elements
added to the list. This is important because in order to traverse in both directions,
the pointers must be valid. The methods affected by this change include Push_
Front(), Push(), Pop_Front(), and Pop().

In the Push_Front() function the old root’s previous pointer is attached to the
new root node when root is not already a node (i.e., the container is not empty).
The Push() function sets the new node’s previous pointer to the last node in the list
and then sets the last node’s next pointer to the new node.

The Pop_Front() function only has to set the previous pointer of the node next
to the root to NULL before deleting the root node and promoting the node that came
after it to the root position. The Pop() function previously used a loop to find the
node that came before the last node. This was done because we already had a way
to keep track of the last node but no way to backtrack to find the node that came
before it. Since we now have a fast way to traverse backward with the previous
pointer, we do not need this loop, and we already have access to all we need to per-
form a clean pop. The updated link list class is shown in Listing 5.9.

LISTING 5.9 The Updated Link List Class

template<typename T>

class LinkList

{

public:

void Push_Front(T newData)

{

LinkNode<T> *node = new LinkNode<T>;

assert(node != NULL);

Chapter 5 Link Lists 137

node->m_data = newData;

node->m_next = NULL;

node->m_previous = NULL;

if(m_root != NULL)

{

node->m_next = m_root;

m_root->m_previous = node;

m_root = node;

}

else

{

m_root = node;

m_lastNode = node;

}

m_size++;

}

void Pop_Front()

{

assert(m_root != NULL);

LinkNode<T> *temp = m_root;

m_root = m_root->m_next;

if(m_root != NULL)

m_root->m_previous = NULL;

delete temp;

m_size = (m_size == 0 ? m_size : m_size - 1);

}

void Push(T newData)

{

LinkNode<T> *node = new LinkNode<T>;

assert(node != NULL);

138 Data Structures and Algorithms for Game Developers

node->m_data = newData;

node->m_next = NULL;

node->m_previous = NULL;

if(m_lastNode != NULL)

{

m_lastNode->m_next = node;

node->m_previous = m_lastNode;

}

else

{

m_root = node;

}

m_lastNode = node;

m_size++;

}

void Pop()

{

assert(m_root != NULL);

if(m_root->m_next == NULL)

{

delete m_root;

m_root = NULL;

}

else

{

LinkNode<T> *prevNode = m_lastNode->m_previous;

prevNode->m_next = NULL;

delete m_lastNode;

m_lastNode = prevNode;

}

m_size = (m_size == 0 ? m_size : m_size - 1);

}

};

On the accompanying CD-ROM in the Chapter 5 folder is a demo application
called Doubly Linked List that demonstrates the use of a doubly linked list in C++.

Chapter 5 Link Lists 139

The main.cpp source file for this demo application uses the newly added operators
in the iterator class to traverse in both directions of the container. The demo appli-
cation displays the elements of the container in both forward and backward order
to show that the code works as expected. The main.cpp source file is shown in List-
ing 5.10. The code for the link list can be found in the header file LinkList.h on the
CD-ROM in the Chapter 5/Doubly Linked List folder. A screenshot of the Doubly
Linked List demo application is shown in Figure 5.7.

LISTING 5.10 The main.cpp Source File for the Doubly Linked List Demo

#include<iostream>

#include”LinkList.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Doubly Link List Example” << endl;

cout << “Chapter 5: Link Lists” << endl;

cout << endl;

LinkList<int> lList;

lList.Push(101);

lList.Push_Front(201);

lList.Push(301);

lList.Push_Front(401);

lList.Push(501);

lList.Pop();

lList.Push(601);

lList.Pop_Front();

LinkIterator<int> it;

cout << “Contents of the link list (forward):”;

for(it = lList.Begin(); it != lList.End(); it++)

{

cout << “ “ << *it;

}

140 Data Structures and Algorithms for Game Developers

cout << “.” << endl;

cout << “Contents of the link list (reverse):”;

for(it = lList.Last(); it != NULL; it—)

{

cout << “ “ << *it;

}

cout << “.” << endl << endl;

return 1;

}

Chapter 5 Link Lists 141

FIGURE 5.7 A screenshot of the Doubly Linked List demo.

STL LINK LISTS

The STL has a link list called the list container. The STL’s link list is implemented
as a doubly linked list that can push and pop elements from the front and the back
of the container (double-ended). The STL’s implementation of the link list is sim-
ilar to its array in terms of the function names, algorithms that can be performed
on them, and the operators. The underlying STL algorithms internally treat the two
data structures as needed.

The STL link list can be accessed by including the <list> header file.

The STL’s link list has many of the same functions as the array in Chapter 2.
These functions include various push and pop methods, empty(), clear(), over-
loaded operators, and much more. The list of methods and operators that are part
of the list container is shown in Table 5.1.

142 Data Structures and Algorithms for Game Developers

Method and
Operator Names Descriptions

list<type>() Constructor that creates an empty container.
list<type>(n, val) Constructor that creates a list of number of copies n that

has its elements initialized to val.

list<type>(src.begin, Constructor that creates a list out of the elements in
src.end) the src vector defined by its beginning and ending

iterators.

~list<type>() Destructor that destroys the list.

assign(src.begin, Assigns a range of values specified by the iterators
src.end) to the list.

back() Returns a reference to the last element.

begin() Returns an iterator to the beginning of the list.

rbegin() Returns a reverse iterator to the end of the list.

clear() Erases the elements of a list.

empty() Returns true if the list is empty, or else false.

end() Returns an iterator to the end of the vector.

rend() Returns a reverse iterator from the beginning of the list.

erase(index)

erase(begin, end) Erases the element specified by index or a range of
elements specified by the iterators begin and end.

front() Returns an iterator to the beginning of the first element in
the list.

get_allocator() Returns the allocator used by the list container.

insert(index, val)

insert(index, n, val)

insert(index, begin, end) Inserts a value specified by val or a range of values
specified by the begin and end iterators into the position
index. N is the total number of times to insert into the
container.

→

TABLE 5.1 Methods and Operators for the list STL Class

Chapter 5 Link Lists 143

Method and
Operator Names Descriptions

merge(list2) Merges the container with that specified by list2;
Assumes both lists are sorted.

push_back(val) Adds a value val to the end of the container.

push_front(val) Adds a value val to the front of the container.

pop_back() Removes the value at the end of the container.

pop_front() Removes the value at the front of the container.

rbegin() Returns an iterator to the first element in a reverse list
container.

rend() Returns an iterator to the last element in a reverse list
container.

resize(n) Specifies a new size N for the container. Elements outside
the new size are deleted.

remove(val) Removes all elements from the list that have the value
of val.

size() Returns the number of elements in the container.

sort() Sorts the list in ascending order.

splice(iterator, list2)

splice(iterator, list2,

list2.begin)

splice(iterator, list2, Inserts copies of list2 after the position marked by
list2.begin, list2.end) the iterator iterator. Overloaded functions can specify

where to begin the copying in the second list or where to
begin and where to end within the second list.

unique() Removes all duplicate values in the list container.
Assumes the list is sorted.

operator== Boolean operator that returns true if two lists are equal,
or else false.

operator!= Boolean operator that returns true if two lists are not
equal, or else false.

operator< Boolean operator that returns true if the first list is less
than the second.

operator> Boolean operator that returns true if the first list is greater
than the second.

operator<= Boolean operator that returns true if the first list is less
than or equal to the second.

operator>= Boolean operator that returns true if the first list is greater
than or equal to the second.

The sort() function of the list container runs in O(N * log N).

As shown in Table 5.1, many methods are shared by the list and vector con-
tainers. In the following section we will look at an example application that uses the
list container, followed by some things to remember and tips for using the con-
tainers in applications.

EXAMPLE OF AN STL LINK LIST

On the accompanying CD-ROM is a demo application called STL Link List in the
Chapter 5 folder. The application demonstrates the various methods of the list
container as well as a few STL algorithms. The main.cpp source file for the demo
application is shown in Listing 5.11. Later we’ll break down this source file and ex-
amine the different parts of it.

LISTING 5.11 The main.cpp Source File for the STL Link List Demo

#include<iostream>

#include<list>

#include<algorithm>

#include<numeric>

using namespace std;

void PrintList(list<int> &lList)

{

cout << “Contents (“ << “Size: “

<< (int)lList.size() << “) - “;

ostream_iterator<int> output(cout, “ “);

copy(lList.begin(), lList.end(), output);

cout << endl;

}

void PrintListReverse(list<int> &lList)

{

cout << “Contents (“ << “Size: “

<< (int)lList.size() << “) - “;

144 Data Structures and Algorithms for Game Developers

ostream_iterator<int> output(cout, “ “);

copy(lList.rbegin(), lList.rend(), output);

cout << endl;

}

int main(int args, char **argc)

{

cout << “STL Link List Example” << endl;

cout << “Data Structures for Game Developers” << endl;

cout << “Allen Sherrod” << endl << endl;

list<int> lList;

// Add items then print.

lList.push_back(10);

lList.push_back(20);

lList.push_back(30);

lList.push_back(40);

lList.push_back(50);

// Calling the copy algorithm.

list<int> lList2;

for(int i = 0; i < 5; i++)

lList2.push_back(0);

copy(lList.begin(), lList.end(), lList2.begin());

// Display list.

cout << “ Inserted into list: “;

PrintList(lList);

// Display list in reverse.

cout << “ Reverse contents: “;

PrintListReverse(lList);

// Sort the list.

lList.sort();

Chapter 5 Link Lists 145

cout << “ Sorting the list: “;

PrintList(lList);

// Reverse the list.

lList.reverse();

cout << “ Reverse the list: “;

PrintList(lList);

// Push and pop from the front.

lList.push_front(60);

lList.push_front(70);

lList.pop_front();

lList.push_front(80);

cout << “ Push/Pop Front: “;

PrintList(lList);

// Run the accumulate algorithm.

cout << “ Accumulate: “

<< accumulate(lList.begin(), lList.end(), 0)

<< endl;

// Pop off the container.

lList.pop_back();

lList.pop_back();

cout << “Popped two from list: “;

PrintList(lList);

// Clear the container.

lList.clear();

cout << “ Cleared list: “;

PrintList(lList);

cout << endl;

146 Data Structures and Algorithms for Game Developers

// Test if the container is empty.

if(lList.empty() == true)

cout << “List is empty.”;

else

cout << “List is NOT empty.”;

cout << endl << endl;

return 1;

}

The main.cpp source file of the STL Link List demo application has two func-
tions for printing the contents of a list container: one displays the contents in order
and the other displays the contents in reverse order and is done using the STL
copy() algorithm and the output stream class. To display elements in reverse the
rbegin() and rend() iterator functions are used, which were shown in Table 5.1.
The first section of the STL Link List demo application’s main.cpp source file can
be seen by itself in Listing 5.12.

LISTING 5.12 The Global and First Two Functions of the STL Link List Demo

#include<iostream>

#include<list>

#include<algorithm>

#include<numeric>

using namespace std;

void PrintList(list<int> &lList)

{

cout << “Contents (“ << “Size: “

<< (int)lList.size() << “) - “;

ostream_iterator<int> output(cout, “ “);

copy(lList.begin(), lList.end(), output);

cout << endl;

}

Chapter 5 Link Lists 147

void PrintListReverse(list<int> &lList)

{

cout << “Contents (“ << “Size: “

<< (int)lList.size() << “) - “;

ostream_iterator<int> output(cout, “ “);

copy(lList.rbegin(), lList.rend(), output);

cout << endl;

}

The first section of the STL Link List demo’s main() function starts by creating
the STL link list and populates the container with initial data. The function then
moves on to testing the STL copy() function to copy the elements from one link list
to the other, and it displays the contents using both printing functions, which were
shown in Listing 5.12. The sort() function is then called to sort the elements in
order, and then the reverse() function is called to reverse the order of the elements.
For every operation the contents of the list are displayed to show the state of the
containers. This is shown by itself in Listing 5.13.

LISTING 5.13 First Section of the main() Function of the STL Link List Demo

int main(int args, char **argc)

{

cout << “STL Link List Example” << endl;

cout << “Data Structures for Game Developers” << endl;

cout << “Allen Sherrod” << endl << endl;

list<int> lList;

// Add items then print.

lList.push_back(10);

lList.push_back(20);

lList.push_back(30);

lList.push_back(40);

lList.push_back(50);

// Calling the copy algorithm.

list<int> lList2;

for(int i = 0; i < 5; i++)

lList2.push_back(0);

148 Data Structures and Algorithms for Game Developers

copy(lList.begin(), lList.end(), lList2.begin());

// Display list.

cout << “ Inserted into list: “;

PrintList(lList);

// Display list in reverse.

cout << “ Reverse contents: “;

PrintListReverse(lList);

// Sort the list.

lList.sort();

cout << “ Sorting the list: “;

PrintList(lList);

// Reverse the list.

lList.reverse();

cout << “ Reverse the list: “;

PrintList(lList);

The next section of the main.cpp source file demonstrates pushing and pop-
ping to the front of the container. This is a feature of the double-ended link list
discussed earlier in this chapter. The STL algorithm accumulate() is also called to
test that method with the list container. This section of the main.cpp source file is
shown by itself in Listing 5.14.

LISTING 5.14 Push/Pop to the Front of the Container and Calling accumulate().

// Push and pop from the front.

lList.push_front(60);

lList.push_front(70);

lList.pop_front();

lList.push_front(80);

cout << “ Push/Pop Front: “;

PrintList(lList);

Chapter 5 Link Lists 149

// Run the accumulate algorithm.

cout << “ Accumulate: “

<< accumulate(lList.begin(), lList.end(), 0)

<< endl;

The remainder of the main.cpp source file tests the pop_back() method of the
link list container, clears the container with the clear() function, and uses the
empty() method to test if the container is empty. When using the link list, it is very
important to call the empty() function instead of testing if size() returns the value
of 0. Although this might sound strange, it isn’t when working with link lists. The
function empty() is a constant-time operation that is normally implemented as an
inline function, that is, very fast. The size() function operates in linear time, which
does not make it as fast as calling empty(). When you just need to test if a container
is empty, you should use empty() for this reason instead of testing if size() == 0.
The remaining section of the STL Link List demo is shown in Listing 5.15. A screen-
shot of the STL Link List demo is shown in Figure 5.8.

LISTING 5.15 The Remainder of the STL Link List Demo

// Pop off the container.

lList.pop_back();

lList.pop_back();

cout << “Popped two from list: “;

PrintList(lList);

// Clear the container.

lList.clear();

cout << “ Cleared list: “;

PrintList(lList);

cout << endl;

// Test if the container is empty.

if(lList.empty() == true)

cout << “List is empty.”;

else

cout << “List is NOT empty.”;

150 Data Structures and Algorithms for Game Developers

cout << endl << endl;

return 1;

}

Chapter 5 Link Lists 151

FIGURE 5.8 A screenshot of the STL Link List demo.

TIPS AND THINGS TO REMEMBER WHEN USING LINK LISTS

As mentioned earlier, when using STL link lists it is preferable to call empty() to test
if a container is empty instead of testing the return value of size(). Different im-
plementations might handle this differently, but you can’t go wrong with calling
empty() to test if a container is empty. This is true for all STL containers. The func-
tion empty() runs in constant time, while size() might not. Whenever speed is an
issue, the empty() function is the way to go without having to worry about what the
specific implementation might be doing.

Another tip to keep in mind is to call erase() after calling remove-like algo-
rithm functions to ensure that elements are removed. When calling a remove()
function that is not part of the container class (i.e., not a member function but a
standalone algorithm function), the function has no way of knowing what con-
tainer the iterators it takes are pointing to. If it does not know this, because there is
no way to go from an iterator back to the container that has created it, then the
number of elements can remain, although one would suspect that they wouldn’t.
This happens because there is no way to call container-specific functions to per-
manently remove elements. What remove() does internally is move elements

around and mark the last “un-removed” element as the last in the container, even
though it is technically not the last element in the container. One way to avoid this
is to prefer member functions to algorithms with the same name whenever possi-
ble. This is also something to keep in mind with other algorithm functions that
have container variations as well.

Link lists are very useful data structures to have in a library. Link lists have a
number of advantages and disadvantages, which include the following things to re-
member:

Link lists have fast insertions and deletions at the end and within the container.
Link lists can expand and shrink rapidly compared to arrays.
Link lists can be tighter in terms of memory than arrays, which can often allo-
cate more memory than is needed.
Doubly linked lists have both forward and reverse iterators for the movement
through the list.
Link lists are slow to search.
Link lists do not have random access.
Because the nodes wrap around the data, there is a very small memory gain
from using link lists over arrays since arrays are only the data, while link lists are
made up of the data plus any pointers, which can result in very large lists.

SUMMARY

In this chapter we looked at singly linked lists, double-ended link lists, doubly
linked lists, and the STL link list known as list. Link lists are very good data struc-
tures to use when insertions and deletions are frequent but random access is not
needed. Although there are many advantages to using link lists, there are also a
number of disadvantages. Knowing each of these can make the choice between
using a link list and using an array much easier.

In the next chapter we will look at a few new data structures including stacks,
queues, double-ended queues (called deque in STL), and priority queues. Each of
these data structures have their own uses that can differ from arrays and link lists.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. List three advantages link lists have over arrays.
2. What are double-ended link lists?

152 Data Structures and Algorithms for Game Developers

3. What are doubly linked lists?
4. What type of link list is the STL list container?

a. Singly linked list
b. Doubly linked list
c. Double-ended-only linked list
d. None of the above

5. What is the main purpose of an iterator object for link lists?
6. Why should you try to avoid calling algorithm functions when the con-

tainers have them implemented as member functions?
7. Link lists have random access through iterators.

a. True
b. False

8. Link lists are faster than arrays when it comes to searching but not when it
comes to insertions and deletions.
a. True
b. False

9. A double-ended link list can traverse in two directions.
a. True
b. False

10. It is better to test if empty() is true than to test if size() == 0 with STL link
lists.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Add an overloaded Push() and Pop() set of functions to the link list
class developed in this chapter to allow elements to be inserted anywhere within the
list’s container. The position where the elements are to be inserted or removed
should be specified by an iterator.

Exercise 2: Build off of Exercise 1 and add the ability to insert or remove a range
of elements from the link list. Allow this to be done using a beginning and ending
iterator pair.

Exercise 3: Add a searching algorithm to the link list container class. Allow this
function to search for a value and, when it finds it, return an iterator to that element
through a pointer parameter. Have the searching function return true if the ele-
ment was found or false if not.

Chapter 5 Link Lists 153

This page intentionally left blank

155

Stacks and Queues6

In This Chapter

Introduction to Stacks
STL Stacks
Introduction to Queues
STL Queues

156 Data Structures and Algorithms for Game Developers

I
n this chapter we’ll be looking at several data structures including the stack, the
queue, the double-ended queue, and the priority queue. Along with custom
implementations, we’ll also be looking at the STL implementations for each of

these data structures. Each of the data structures in this chapter are adapters that
are built on top of data structures we’ve previously seen such as arrays and linked
lists.

Each data structure discussed in this chapter has its own purpose and usage in
general computer programming that differs from the array and link list data structures
seen in Chapter 2 and Chapter 5. The benefits of stacks and queues can lend them-
selves to solving common problems that arise in general computer programming.

The data structures discussed in this chapter are conceptual tools used to aid
programmers in completing a task. Normally these data structures are created and
used for the sole purpose of processing a task before being discarded, which makes
their life span much shorter than the array or the link list. Stacks and queues are re-
stricted-access structures, which we’ll discuss later in this chapter, that are built on
top of the data structures we’ve already seen.

Stacks and queues are conceptual aids the programmer can use to process a specific
task. An example of this is creating a stack to parse tokens in a script to check that
the script is valid. Once the check is done, the container is discarded.

INTRODUCTION TO STACKS

A stack is a last-in, first-out (LIFO) data structure, meaning the last item inserted
into the container is the first item removed from the container. This also means
that only one item can be inserted or removed at one time. Unlike arrays, where
random-access is a normal part of the data structure, stacks restrict the access to
only one at a time. To access the elements deep within the container of a stack,
items need to be removed from the top. This is true even if the underlying data
structure upon which the stack is built is an array. An illustration of a stack data
structure is shown in Figure 6.1.

In Figure 6.1 a stack of items forms a list. To help visualize this, imagine that
this stack consists of books. Every time a new book is placed on the stack, the stack
gets larger. Assuming that it is not possible to remove any books from within the
stack other than from the top, the only way to access the books is to remove the
topmost book and work downward. You can see that the last book placed on top of
the stack is the first book taken off the stack. Restricting access to the elements in
this manner is what makes a stack a stack.

Underneath the stack the elements can be implemented as an array or as a link
list. On the higher level the stack container can use either structure with no visible
difference to the interface or to the programmers using the code. Because stacks are
restricted-access structures, as are queues, there is no access by array indexes, there
is no access by searching, and there is no sorting, since that could violate the LIFO
order of the container. When working with stacks, the main operations include
inserting items onto the stack, removing items from the stack, and taking a peek at
the top of the stack. Peeking refers to returning the topmost element without
popping it off of the stack and will be discussed in the example programs to come.
In a stack it is possible to add a searching algorithm to the container, but access to
those elements would violate the LIFO order in some situations and would contra-
dict the purpose of having a stack.

In many cases stacks have great value. Because of the nature of stacks, their uses
often differ more than arrays or link lists. For example, an array can be used to store
a list of objects that need to exist for a variable amount of time. These items can be
accessed and re-accessed many times during the operations of the application. A
stack, on the other hand, is a more useful tool to process an algorithm. An example
of this can be seen in a scripting system. Let us say there is a list of tokens in an
array, with a token being basically a block of text (i.e., a variable name, a colon, a
symbol, a function name, etc.), and let us also say that we want to check a script to
see if the brackets, parenthesizes, and curly braces match up. To do that we can cre-
ate a stack and push all open brackes, parentheses, and curly braces onto it as the
script is processed. Whenever we come across a closing symbol, we can peek and
pop the top off of the stack, which returns the last inserted, and test if that opening
symbol matches the closing symbol just encountered. If we reach the end of a file
without finding any mismatches, we know the brackets, parentheses, and curly
braces are in order. At that point we can discard the stack, but the array of original
tokens still exists. In other words, the stack in this example had a much shorter life
span than the array used to hold all of the tokens of a script and acted merely as a
convenient tool to solve a specific problem. We’ll see an example of token match-
ing later on in this chapter. A few uses of a stack data structure include but are not
limited to the following:

Chapter 6 Stacks and Queues 157

FIGURE 6.1 An example of
a stack data structure.

158 Data Structures and Algorithms for Game Developers

They can be useful in any situation where LIFO access is desired.
They can be useful when implementing a function-call stack for a virtual ma-
chine of a game (or general) scripting system.
They can be useful when writing a compiler for parsing tokens in a game script.
They are used in artificial intelligence in many different areas, which will be dis-
cussed more later in the book.

STACK DATA STRUCTURES

The stack can be implemented on top of an array or a link list. In this chapter we’ll
look at implementing a stack using both data structures before looking at the STL
implementation. A stack needs to support the insertion of items, the removal of
items, and a way to access the top of the stack. For consistency we can call the in-
sertion function for a stack container push(), the removal for the container pop(),
and the access (but not removal) of the topmost element top(). A stack class built
on top of an array data structure is shown in Listing 6.1.

LISTING 6.1 An Array-based Stack

#include<cassert>

template<typename T>

class Stack

{

public:

Stack(int size, int growBy = 1) : m_size(0),

m_top(-1), m_array(0), m_growSize(0)

{

if(size)

{

m_size = size;

m_array = new T[m_size];

assert(m_array != NULL);

memset(m_array, 0, sizeof(T) * m_size);

m_growSize = ((growBy > 0) ? growBy : 0);

}

}

~Stack()

{

if(m_array != NULL)

{

delete[] m_array;

m_array = NULL;

}

}

void push(T val)

{

assert(m_array != NULL);

if(isFull())

{

Expand();

}

m_array[++m_top] = val;

}

void pop()

{

if(!isEmpty())

{

m_top—;

}

}

const T& top()

{

assert(m_array != NULL);

assert(m_top >= 0);

return m_array[m_top];

}

int GetSize() { return m_top; }

int GetMaxSize() { return m_size; }

int isEmpty() { return (m_top == -1); }

int isFull() { return (m_top == m_size - 1); }

Chapter 6 Stacks and Queues 159

private:

bool Expand()

{

if(m_growSize <= 0)

return false;

assert(m_array != NULL);

T *temp = new T[m_size + m_growSize];

assert(temp != NULL);

memcpy(temp, m_array, sizeof(T) * m_size);

delete[] m_array;

m_array = temp;

m_size += m_growSize;

return true;

}

private:

T *m_array;

int m_top;

int m_size;

int m_growSize;

};

Instead of growing the list using a constant, it is also possible to grow the list expo-
nentially. For example, instead of growing the size linearly, the size can change
every time the resize function is called. This can start at a number such as 3, and
then move to 6, then to 12, and so forth. This will reduce the number of times a list
needs to grow but can waste memory in some cases.

In Listing 6.1 the stack is made up of relatively few functions. The constructor is
used to create the initial stack, the destructor deletes this dynamic memory, the
push() function inserts a new element onto the array, the pop() function removes an
element from the array in a similar manner as the array classes in Chapter 2, the top()
function returns the topmost element to the caller, the Expand() function allows us to
expand the stack dynamically, and the remaining functions are used to change the
size of the container and to test if it is full or empty. The stack class, Stack, in Listing
6.1 is a complete stack based on everything we’ve discussed so far in this chapter.

160 Data Structures and Algorithms for Game Developers

On the accompanying CD-ROM a demo application called Stack can be found
in the Chapter 6 folder. This application demonstrates the use of the stack con-
tainer created in Listing 6.1. In this demo application a stack is created, items are
inserted onto the stack, and items are peeked at (by calling top()) and removed
from the stack. Before the elements are removed from the stack, they are displayed
to the console window. The entire main.cpp source file from the Stack demo
application is shown in Listing 6.2. A screenshot of the Stack demo application after
its execution is shown in Figure 6.2.

LISTING 6.2 The Stack Demo Application’s main.cpp Source File

#include<iostream>

#include”Stack.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Stacks Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

Stack<int> sList(5);

sList.push(101);

sList.push(201);

sList.push(301);

sList.push(401);

sList.push(501);

sList.pop();

sList.push(601);

cout << “Contents of the stack:”;

while(sList.isEmpty() == false)

{

cout << “ “ << sList.top();

sList.pop();

}

Chapter 6 Stacks and Queues 161

cout << “.” << endl << endl;

return 1;

}

162 Data Structures and Algorithms for Game Developers

FIGURE 6.2 A screenshot of the Stack demo.

When creating our stack, we could have used the unordered array class developed
in Chapter 2 as the underlying array instead of manually recreating the same basic
functionality. Listing 6.1 shows the inner workings of a stack as far as an array is con-
cerned, but in the future, since we already have an array class, we can use that to save
time on the stack’s implementation. Listing 6.3 shows the creation of a stack class
using the unordered array class, UnorderedArray, from Chapter 2. Listing 6.4 shows an
example of creating a stack by using the linked list class, LinkList, from Chapter 5.
The link list is a more natural fit for a stack’s underlying data structure and makes the
expansion and shrinking of the stack much more efficient. This is especially true since
the advantages that arrays hold over link lists do not apply to stacks.

LISTING 6.3 The Stack Implemented with the UnorderedArray Class

#include”Arrays.h”

template<typename T>

class Stack

{

public:

Stack(int size, int growBy = 1)

{

assert(size > 0 && growBy >= 0);

m_container = new UnorderedArray<T>(size, growBy);

assert(m_container != NULL);

}

~Stack()

{

if(m_container != NULL)

{

delete m_container;

m_container = NULL;

}

}

void push(T val)

{

assert(m_container != NULL);

m_container->push(val);

}

void pop()

{

assert(m_container != NULL);

m_container->pop();

}

const T& top()

{

assert(m_container != NULL);

return (*m_container)[m_container->GetSize() - 1];

}

int GetSize()

{

assert(m_container != NULL);

return m_container->GetSize();

}

Chapter 6 Stacks and Queues 163

int GetMaxSize()

{

assert(m_container != NULL);

return m_container->GetMaxSize();

}

bool isEmpty()

{

assert(m_container != NULL);

return (m_container->GetSize() == 0);

}

bool isFull()

{

assert(m_container != NULL);

return (m_top == m_container->GetMaxSize() - 1);

}

private:

UnorderedArray<T> *m_container;

};

LISTING 6.4 The Stack Implemented Using the LinkList Class

#include”LinkList.h”

template<typename T>

class Stack

{

public:

Stack() { }

~Stack() { }

void push(T val)

{

m_container.Push(val);

}

164 Data Structures and Algorithms for Game Developers

void pop()

{

m_container.Pop();

}

const T& top()

{

LinkIterator<T> it;

it = m_container.Last();

return *it;

}

int GetSize() { return m_container.GetSize(); }

bool isEmpty() { return (m_container.GetSize() == 0); }

private:

LinkList<T> m_container;

int m_size;

};

CHARACTER MATCHING WITH STACKS

A stack container can be used to match tokens such as brackets, parentheses, and
curly braces. This can prove very useful in the implementation of a compiler, such
as the ones found in game scripting systems. In this section we will create a simple
application that can be used to check that brackets, parentheses, and curly braces
match up without error. In C++ programming an opening symbol must be even-
tually followed by a closing symbol. In a function declaration the opening paren-
thesis is followed by a parameter list, which is ended by a closing parenthesis. If the
closing symbol is anything other than a closing parenthesis, that would be an error.
Nesting can occur by encountering more opening symbols, but eventually a closing
symbol will need to be encountered.

On the accompanying CD-ROM is a demo application called Character
Matching in the Chapter 6 folder. This is a short application that demonstrates how
a stack can be used to match characters that are common in programming. As an
example, the characters used are opening and closing brackets, parentheses, and
curly braces.

The demo is made up of one source file called main.cpp and uses the linked
list version of the stack implementation seen earlier in this chapter. In the main
source file are three functions called PrintError(), ParseString(), and main(). The

Chapter 6 Stacks and Queues 165

PrintError() function will display an error message if there is a mismatch found in
the string that is being parsed and takes as parameters the character that has caused
the error and its index in the string. The second function, ParseString(), takes a
string of characters that are to be parsed and checked for errors as well as the size
of the string. The ParseString() function creates a stack and pushes the opening
symbols we are looking for onto the container. When a closing symbol is encoun-
tered, the top of the stack is checked to see if the characters match. If they do not,
an error is displayed using the PrintError() function. The PrintError() and
ParseString() functions are shown in Listing 6.5.

LISTING 6.5 The First Part of the Character Matching Demo

void PrintError(char ch, int index)

{

cout << “ Error “ << ch << “ at “ << index << “.” << endl;

}

void ParseString(char *str, int size)

{

if(str == NULL || size <= 0)

{

cout << “ Error with parameters!” << endl << endl;

return;

}

Stack<char> sList(size);

char ch = 0;

int errors = 0;

for(int i = 0; i < size; i++)

{

switch(str[i])

{

case ‘{‘:

case ‘(‘:

case ‘[‘:

sList.push(str[i]);

break;

case ‘}’:

case ‘)’:

166 Data Structures and Algorithms for Game Developers

case ‘]’:

if(sList.isEmpty() == false)

{

ch = sList.pop();

if((ch != ‘{‘ && str[i] == ‘}’) ||

(ch != ‘(‘ && str[i] == ‘)’) ||

(ch != ‘[‘ && str[i] == ‘]’))

{

PrintError(ch, i + 1);

errors++;

}

}

break;

}

}

if(sList.isEmpty() && errors == 0)

{

cout << “ No Parsing Errors.” << endl << endl;

}

else if(sList.isEmpty() == false)

{

cout << “ Unclosed Characters: “ << sList.GetSize()

<< “.” << endl << endl;

}

}

The main() function in the Character Matching demo application is the driver
function that calls ParseString() to test if the code works. The function ParseString()
is called twice, the first time for a string of valid characters and the second time for
a string of invalid characters. For the invalid character string the second character
is purposely wrong to see that the code will catch it. The main() function of the
Character Matching demo is shown in Listing 6.6. Figure 6.3 shows a screenshot of
the Character Matching demo.

LISTING 6.6 The Remainder of the Character Matching Demo

int main(int args, char **argc)

{

cout << “Character Matching with Stacks Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

Chapter 6 Stacks and Queues 167

char str[] = { ‘{‘, ‘(‘, ‘a’, ‘[‘, ‘5’, ‘]’, ‘)’, ‘}’ };

int size = strlen(str);

cout << “Parsing str.” << endl;

ParseString(str, size);

char str2[] = { ‘{‘, ‘)’, ‘b’, ‘[‘, ‘10’, ‘]’, ‘)’, ‘}’ };

size = strlen(str2);

cout << “Parsing str2.” << endl;

ParseString(str2, size);

cout << endl;

return 1;

}

168 Data Structures and Algorithms for Game Developers

FIGURE 6.3 A screenshot of the Character Matching demo.

STL STACKS

The STL library implements stacks using the template class stack, which is found
in the <stack> header file. The STL implementation of a stack is done using a
double-ended queue, which in the STL is the template deque class. The STL stack
class includes many of the member functions we’ve already implemented in our
custom implementation of the container. These functions are describe in Table 6.1.

The STL stack can be implemented using a sequence container. Sequence contain-
ers include the STL vector, an STL list, and an STL deque. By default, a stack is
implemented with a deque.

When a stack container it created, its functions map to one of the sequence
containers that can be used with it. When an object is inserted into the stack,
the underlying container’s push_back() function is called, and when an object is
removed from the stack, the underlying container’s pop_back() function is called.
To get the top of the stack, the container calls the underlying container’s back()
function, which returns a reference to the top element. The empty() and size()

functions map directly to the underlying container. Each function is implemented
as an inline function for performance by avoiding the overhead of the second func-
tion call.

On the accompanying CD-ROM is a demo application called STL Stack in the
Chapter 6 folder. This application demonstrates the STL stack class and each of its
member functions (see Table 6.1). The demo creates three different stacks: a vector
stack, a list stack, and a deque stack. The demo populates each of these containers
with data, displays them by getting a reference to the top element by calling top(),
and removes the objects in the container by calling pop(). The main.cpp source file
for the STL Stack demo application is shown in Listing 6.7. Figure 6.4 shows a
screenshot of the demo application.

Chapter 6 Stacks and Queues 169

Function Description

stack()

stack(container) Constructors that will create a stack container; an
optional second constructor that takes a container from
which the stack is to be copied

empty() Returns true if the container is empty or false if it is not

pop() Removes the last item inserted into the list

push(T val) Inserts the object val into the container

top() Returns a reference to the element on the top of the stack

size() Returns the number of elements in the container

TABLE 6.1 The Member Functions of the STL stack Class

LISTING 6.7 The Main Source File for the STL Stack Demo

#include<iostream>

#include<stack>

#include<vector>

#include<list>

using namespace std;

template<typename T>

void DisplayStack(T &stack)

{

cout << “(Size - “ << stack.size() << “) :”;

while(stack.empty() == false)

{

cout << “ “ << stack.top();

stack.pop();

}

cout << “.” << endl;

}

int main(int args, char **argc)

{

cout << “STL Stacks Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

stack<int> intStack;

stack<int, vector<int> > vecStack;

stack<int, list<int> > listStack;

for(int i = 0; i < 5; i++)

{

intStack.push(11 + i);

vecStack.push(22 + i);

170 Data Structures and Algorithms for Game Developers

listStack.push(33 + i);

}

// Display normal (deque) integer stack.

cout << “ Contents of the int stack “;

DisplayStack(intStack);

// Display vector integer stack.

cout << “Contents of the int vector stack “;

DisplayStack(vecStack);

// Display link list integer stack.

cout << “ Contents of the int list stack “;

DisplayStack(listStack);

cout << endl;

// Calling empty() to test if container is empty.

if(intStack.empty() == true)

cout << “The int stack is empty.” << endl;

else

cout << “The int stack is NOT empty.” << endl;

// Calling empty() to test if container is empty.

if(vecStack.empty() == true)

cout << “The vec int stack is empty.” << endl;

else

cout << “The vec int stack is NOT empty.” << endl;

// Calling empty() to test if container is empty.

if(listStack.empty() == true)

cout << “The list int stack is empty.” << endl;

else

cout << “The list int stack is NOT empty.” << endl;

cout << endl;

return 1;

}

Chapter 6 Stacks and Queues 171

INTRODUCTION TO QUEUES

In this section we will discuss various types of queue data structures that can be
used in general computer programming. A queue data structure has a first-in, first-
out order, which is different from the stack data structure discussed earlier in the
chapter. A queue has restricted access similar to stacks, where only one element is
accessible at a time. There are many similarities between the stack and the queue
that we’ll see in more detail in this section.

Although stacks and queues seem like the exact same data structure, some dif-
ferences make them appropriate for different situations. This has a lot to do with
the order in which objects are inserted and removed from the container. A visual
representation of this is shown in Figure 6.5.

172 Data Structures and Algorithms for Game Developers

FIGURE 6.4 A screenshot of the STL Stack demo.

FIGURE 6.5 A visual look at the queue data structure.

Queues have many uses in programming and in game development. One
example is a message queue that is used to take incoming messages, place them in
a queue, and process them as appropriate. The first message received would need to
be processed first, which by definition cannot be done with a stack since it has a
LIFO order. A priority queue can go one step further by ordering the elements
based on importance so that the critical messages are taken care of before the less
important ones. An online game’s networking system could work like this within a
game’s framework, which would allow the most critical game information to be
handled as early as possible.

We will look at three types of queues in this chapter. The first type is a tradi-
tional queue that allows objects to be inserted into the container and be removed
from the back (bottom object) of the container. The second type is a double-ended
queue that allows items to be inserted and removed from the front and the back of
the container. The third type of queue we’ll look at is the priority queue, which can
order objects based on priority.

Another type of queue is the circular queue. This type of queue allows for the
wrapping of elements. This means that when the data structure is full, the elements
inserted to it are wrapped by overriding elements already inside the container.

QUEUE DATA STRUCTURES

The queue data structure is made up of methods that insert objects into the con-
tainer, remove objects from the container, and peek at the first objects. In this sec-
tion we will implement a container class called Queue to do just that. The class will
also have a function for returning the number of objects in the container and a
boolean function for determining if the container is empty. For consistency the
insertion function will be called push(), the removal function will be called pop(),
and the peeking function will be called front(). In the next section, when we look
at double-ended queues, we will also add a back() function so that both ends can be
peeked at. Listing 6.8 shows the Queue class as described in this paragraph.

The queue uses a big-O of O(1) for its operations.

LISTING 6.8 The Queue Class

template<typename T>

class Queue

{

public:

Chapter 6 Stacks and Queues 173

Queue(int size)

{

assert(size > 0);

m_size = size;

}

~Queue()

{

}

void push(T val)

{

if(m_elements.GetSize() < m_size)

m_elements.Push(val);

}

void pop()

{

m_elements.Pop_Front();

}

const T& front()

{

LinkIterator<T> it;

it = m_elements.Begin();

return *it;

}

int GetSize() { return m_elements.GetSize(); }

int GetMaxSize() { return m_size; }

bool isEmpty() { return (m_elements.GetSize() == 0); }

void Resize(int size) { assert(size > 0); m_size = size; }

private:

LinkList<T> m_elements;

int m_size;

};

174 Data Structures and Algorithms for Game Developers

The Queue class in Listing 6.8 uses a doubly linked list (created in Chapter 5) as
its underlying data structure. A link list is a better fit for the queue than an array
since all we need is fast insertion, removal, and expansion. The insertion function
of the Queue class uses push() to insert objects in the back of the link list so that the
first object is always in the front. The pop() function of the Queue class uses
pop_front() of the underlying data structure to remove the first object from the
container (first-in, first-out). The function front() is used to peek at the first ob-
ject in the container, while the remaining functions are used to determine the size
of the container and the maximum size, check if it is empty, and adjust the maxi-
mum allowable size. The resizing function adjusts the maximum size so that the
container can grow if necessary. For shrinking, the programmers using the class will
have to manually call pop()because certain objects that are pushed onto the queue
might have special needs that can’t be or can’t easily be generalized. One example
of this is a queue of dynamically allocated objects where the delete or delete[]

keywords will need to be used to avoid memory leaks. In this case front() can be
used to peek at the front-most pointer for deletion, a keyword can be applied to the
element, and pop() can remove the element from the underlying link list.

On the accompanying CD-ROM, in the Chapter 6 folder, is a demo application
called Queue that demonstrates the use of the queue container. The main source
file for this demo creates a static integer queue, populates it with elements, and
displays its contents. In the demo application all functions of the Queue class are
demonstrated within the main() function. The main.cpp source file for the Queue
demo application is shown in Listing 6.9. Figure 6.6 shows a screenshot of it.

LISTING 6.9 The Queue Demo’s main.cpp Source File

#include<iostream>

#include”Queue.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Queue Data Structures Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

// Create and populate queue.

const int size = 5;

Queue<int> intQueue(size);

Chapter 6 Stacks and Queues 175

for(int i = 0; i < size; i++)

intQueue.push(10 + i);

// Display integer queue.

cout << “Queue Contents (Size - “

<< intQueue.GetSize() << “) :”;

while(intQueue.isEmpty() == false)

{

cout << “ “ << intQueue.front();

intQueue.pop();

}

cout << “.” << endl << endl;

// Calling isEmpty() to test if container is empty.

if(intQueue.isEmpty() == true)

cout << “The int queue is empty.” << endl << endl;

else

cout << “The int queue is NOT empty.” << endl << endl;

return 1;

}

176 Data Structures and Algorithms for Game Developers

FIGURE 6.6 A screenshot of the Queue demo.

DOUBLE-ENDED QUEUE DATA STRUCTURES

The double-ended queue allows for the insertion, removal, and peeking of objects
from both ends of the container. Using the doubly linked list from Chapter 5 makes
this process very simple, much like the first queue container created earlier in this
chapter.

The double-ended queue uses a big-O of O(1) for its operations, as does the first
type of queue seen in this chapter.

For the double-ended queue class we can modify the Queue class from the pre-
vious section to support this feature. In the new Queue class the insertion functions
are called push_front() and push_back(), which maps directly to the underlying
data structure. When using the push_front() function, the new objects are inserted
into the front of the underlying link list data structure. Because of this, calling
pop_front() of the link list in the pop_front() function of the Queue class will
remove the item at the front of the list, which is the last item inserted, instead of
the first item. When using the Queue class on a high level, this mismatch might be
confusing to those who do not understand the inner workings of the containers. To
avoid such potential logic errors, and since it makes sense to match functions such
as push_front() with pop_front(), the pop_front() function of the Queue class will
call the pop() function of the underlying link list. Since the first object inserted in
the list will always be at the end, calling pop() on the link list will remove the first
item that was inserted, which is what we want. The front() and back() peeking
functions work in the same manner, so that at the higher level the front functions
can be matched with other front functions and vice versa. The modified Queue class,
updated to be a double-ended queue, is shown in Listing 6.10.

LISTING 6.10 The Queue class Updated To Be a Double-Ended Queue

template<typename T>

class Queue

{

public:

Queue(int size)

{

assert(size > 0);

m_size = size;

}

~Queue()

{

Chapter 6 Stacks and Queues 177

}

void push_front(T val)

{

if(m_elements.GetSize() < m_size)

m_elements.Push_Front(val);

}

void push_back(T val)

{

if(m_elements.GetSize() < m_size)

m_elements.Push(val);

}

void pop_front()

{

m_elements.Pop();

}

void pop_back()

{

m_elements.Pop_Front();

}

const T& front()

{

LinkIterator<T> it;

it = m_elements.Last();

return *it;

}

const T& back()

{

LinkIterator<T> it;

it = m_elements.Begin();

return *it;

}

178 Data Structures and Algorithms for Game Developers

int GetSize() { return m_elements.GetSize(); }

int GetMaxSize() { return m_size; }

bool isEmpty() { return (m_elements.GetSize() == 0); }

void Resize(int size) { assert(size > 0); m_size = size; }

private:

LinkList<T> m_elements;

int m_size;

};

On the accompanying CD-ROM a demo application called Deque in the Chap-
ter 6 folder demonstrates the newly modified double-ended Queue class. In the main
source file of this demo the code creates an integer queue, populates it with data,
and displays that data to the console window. During the display it displays both
sides of the queue before popping from the front, which matches the push_front()
function of the insertion of the elements. The main source file from the Deque
demo application is shown in Listing 6.11. Figure 6.7 shows a screenshot of the
Deque demo application.

LISTING 6.11 The Deque Demo’s Main Source File

#include<iostream>

#include”Queue.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Deque (Double-Ended Queue) Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

// Create and populate queue.

const int size = 5;

Queue<int> intQueue(size);

for(int i = 0; i < size; i++)

intQueue.push_front(20 + i);

Chapter 6 Stacks and Queues 179

// Display integer queue.

cout << “Queue Contents (Size - “

<< intQueue.GetSize() << “) :” << endl;

while(intQueue.isEmpty() == false)

{

cout << “ Front: “ << intQueue.front();

cout << “ Back: “ << intQueue.back();

cout << endl;

intQueue.pop_front();

}

cout << endl << endl;

// Calling isEmpty() to test if container is empty.

if(intQueue.isEmpty() == true)

cout << “The int queue is empty.” << endl << endl;

else

cout << “The int queue is NOT empty.” << endl << endl;

return 1;

}

180 Data Structures and Algorithms for Game Developers

FIGURE 6.7 A screenshot of the Deque demo.

PRIORITY QUEUES

The priority queue differs from the traditional queue in that the objects inserted
into the data structure are ordered by importance rather than their insertion order.
This has all kinds of uses, including a priority-based online networking system
for an online game. Because the objects inserted into the data structure must be
ordered, the insertion is slower than the other queues we’ve seen so far. A visual
representation of a priority queue is shown in Figure 6.8.

Chapter 6 Stacks and Queues 181

FIGURE 6.8 A priority queue.

Priority queues have an insertion big-O of O(N) for the custom implementation be-
cause it depends on the number of elements already inserted into the containers.
The insertion for the previously discussed types of queues is big-O of O(1) because
the insertions do not depend on the number of elements already in the container.
All other queue operations have a big-O of O(1). In the STL the big-O for insertions
is faster because the STL uses a tree for the internal implementation.

The priority queue implemented in this chapter will use the link list for speed
purposes. Because the priority queue will need to insert elements anywhere within
the list, we will need to update the link list class to allow for such insertions. In
Chapter 5 this was left as an exercise at the end of the chapter. The solution to that
exercise will be given in the upcoming sections.

To be able to insert nodes anywhere within the link list container, the iterator
class was first updated to support a new function called isValid(), which is a sim-
ple test to see if the iterator’s node is not NULL. This can be used to avoid trying to
access NULL iterators, which can also prevent bugs and assertions. We’ll see why this
is needed later on in this section.

Another addition to the link list code can be seen in the link list itself. The link
list needs to add functions to allow a new element to be inserted at a particular

position. This position can be marked by an iterator to an already existing position
within the list. For this two new functions are added called Insert_Before() and
Insert_After(). The Insert_Before() function inserts the new element before the
node that the iterator points to, while Insert_After()inserts it after that node. Both
functions take as parameters a link list iterator and an object to insert. Inside each
function they both create a new node for the new element and, depending on which
function is called, position that new node to either side of the node stored in the
iterator. Doing this requires us to manipulate the next and previous pointers of
the newly created node, the node in the iterator, and the nodes to either side of the
iterator. This must be done to make sure all pointers are correct and the link list is
a valid chain. Since we are using the doubly-linked list from Chapter 5, we must
be sure to take care of the next and previous pointers of all nodes involved. The
updated link list iterator and container code that allow the insertion of elements
anywhere inside the containers are shown in Listing 6.12.

LISTING 6.12 Updated Doubly Linked List To Allow Insertions Anywhere Within
the Container

template<typename T>

class LinkIterator

{

friend class LinkList<T>;

public:

bool isValid()

{

return (m_node != NULL);

}

};

template<typename T>

class LinkList

{

public:

void Insert_Before(LinkIterator<T> &it, T newData)

{

assert(it.m_node != NULL);

LinkNode<T> *node = new LinkNode<T>;

assert(node != NULL);

182 Data Structures and Algorithms for Game Developers

node->m_data = newData;

node->m_next = it.m_node;

node->m_previous = it.m_node->m_previous;

if(node->m_previous != NULL)

node->m_previous->m_next = node;

it.m_node->m_previous = node;

if(it.m_node == m_root)

m_root = node;

m_size++;

}

void Insert_After(LinkIterator<T> &it, T newData)

{

assert(it.m_node != NULL);

LinkNode<T> *node = new LinkNode<T>;

assert(node != NULL);

node->m_data = newData;

node->m_next = it.m_node->m_next;

node->m_previous = it.m_node;

if(node->m_next != NULL)

node->m_next->m_previous = node;

it.m_node->m_next = node;

if(it.m_node == m_lastNode)

m_lastNode = node;

m_size++;

}

};

Chapter 6 Stacks and Queues 183

Next is the priority queue container. The priority queue is implemented in its
own class called PriorityQueue. This class has a push() function for inserting
elements into the queue, a pop() function for removing the element in the front of
the queue, functions to peek at both sides of the queue container, and functions
to return the size of the container, check if the container is empty, and resize the
container. The major difference between the priority queue and the first queue
seen in this chapter is that the priority queue class has a more detailed insertion and
an additional template parameter. Listing 6.13 shows the PriorityQueue class.

LISTING 6.13 The PriorityQueue Class

template<typename T, typename CMP>

class PriorityQueue

{

public:

PriorityQueue(int size)

{

assert(size > 0);

m_size = size;

}

~PriorityQueue()

{

}

void push(T val)

{

assert(m_elements.GetSize() < m_size);

if(m_elements.GetSize() == 0)

{

m_elements.Push(val);

}

else

{

LinkIterator<T> it;

it = m_elements.Begin();

CMP cmp;

184 Data Structures and Algorithms for Game Developers

while(it.isValid())

{

if(cmp(val, *it))

break;

it++;

}

if(it.isValid())

m_elements.Insert_Before(it, val);

else

m_elements.Push(val);

}

}

void pop()

{

m_elements.Pop_Front();

}

const T& front()

{

LinkIterator<T> it;

it = m_elements.Begin();

return *it;

}

const T& back()

{

LinkIterator<T> it;

it = m_elements.Last();

return *it;

}

int GetSize() { return m_elements.GetSize(); }

int GetMaxSize() { return m_size; }

bool isEmpty() { return (m_elements.GetSize() == 0); }

void Resize(int size) { assert(size > 0); m_size = size; }

Chapter 6 Stacks and Queues 185

private:

LinkList<T> m_elements;

int m_size;

};

The first thing to notice about the PriorityQueue class is that two items are de-
fined in the template. The first item is the data type that the queue will use, and the
second item specifies a comparison operator that the queue will use. For example,
if the queue is an integer queue and we want the items to be inserted from greater-
than to less-than order, we can create a custom comparison to do so. If we wanted
that same queue to sort the elements in the reverse order, we could just change the
comparison operator with which the queue is defined. This keeps hardcoded
operators out of the class since how the elements are ordered is based on what the
programmer wants, which we can’t hardcode and predict. Also, and more impor-
tantly, user-defined classes can be used with the priority queue as long as the class
implements an overloaded operator for the comparison type chosen by the pro-
grammer. The purpose of this is to make the class flexible in many different situa-
tions by hardcoding as little as possible.

The only difference left to discuss lies within the class’s push() method, which
first checks to see if the container is empty. If it is, the element is simply passed
down to the push() method of the underlying link list. If the list is not empty, a loop
is used to linearly step through the link list and find the position that is right for the
new element. To accomplish this, the comparison operator defined by the template
parameter is created and used to test the objects. As long as the test fails, it will keep
stepping through the link list until the it returns true or reaches the end. By using
the ++ operator of the link list, it is possible to move past the last node, which would
make the iterator’s node NULL. The purpose of the isValid() function that was
added to the iterator class is to allow us to determine if the iterator is valid. If it is
not valid, we can say that whatever element we are trying to insert must be inserted
to the back of the queue since its priority (order) dictates it. If the iterator is valid,
we can call Insert_Before() since the node that comes before the iterator’s location
will always be the spot to insert the item because the iterator is always one past
where we want to insert.

On the accompanying CD-ROM in the Chapter 6 folder is a demo application
called Priority Queue. The Priority Queue demo application creates a queue of a
user-defined class, populates it with elements, and displays each element’s member
variables to the console windows. Listing 6.14 shows the entire main.cpp source file
for the Priority Queue demo application. In the next section we will break up this
demo’s source code and examine each part for more detailed information.

186 Data Structures and Algorithms for Game Developers

LISTING 6.14 The Main Source File for the Priority Queue Demo

#include<iostream>

#include”PriorityQueue.h”

using namespace std;

template<typename T>

class less_cmp

{

public:

inline bool operator()(T lVal, T rVal)

{

return (lVal < rVal);

}

};

template<typename T>

class less_cmp_ptr

{

public:

inline bool operator()(T lVal, T rVal)

{

return ((*lVal) < (*rVal));

}

};

template<typename T>

class greater_cmp

{

public:

inline bool operator()(T lVal, T rVal)

{

return !(lVal < rVal);

}

};

template<typename T>

class greater_cmp_ptr

{

Chapter 6 Stacks and Queues 187

public:

inline bool operator()(T lVal, T rVal)

{

return !((*lVal) < (*rVal));

}

};

class NetworkMessage

{

public:

NetworkMessage() : m_priority(0), m_id(0) { }

NetworkMessage(int p, int id) : m_priority(p), m_id(id) { }

~NetworkMessage() { }

int GetPriority() { return m_priority; }

int GetID() { return m_id; }

bool operator<(NetworkMessage &m)

{

if(m_priority < m.GetPriority())

return true;

else if(m_id < m.GetID())

return true;

return false;

}

bool operator>(NetworkMessage &m)

{

return !(*this < m);

}

private:

int m_priority, m_id;

};

int main(int args, char **argc)

{

cout << “Priority Queue Data Structures Example” << endl;

188 Data Structures and Algorithms for Game Developers

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

// Create and populate queue.

const int size = 4;

PriorityQueue<NetworkMessage,

less_cmp<NetworkMessage> > que(size);

que.push(NetworkMessage(3, 100));

que.push(NetworkMessage(2, 286));

que.push(NetworkMessage(1, 362));

que.push(NetworkMessage(3, 435));

// Display integer queue.

cout << “Priority Queue Contents (Size - “

<< que.GetSize() << “) :” << endl;

while(que.isEmpty() == false)

{

cout << “ Priority: “ << que.front().GetPriority();

cout << “ - ID: “ << que.front().GetID();

cout << endl;

que.pop();

}

cout << endl;

// Calling isEmpty() to test if container is empty.

if(que.isEmpty() == true)

cout << “The container is empty.” << endl << endl;

else

cout << “The container is NOT empty.” << endl << endl;

return 1;

}

The main source file for the Priority Queue demo application starts by defin-
ing a few comparison template classes that can be used for the PriorityQueue class’s
template parameter. Although this demo only uses the less-than comparison in the

Chapter 6 Stacks and Queues 189

demonstration, others are created as an examples. The first question many readers
will have is why there are two versions of each comparison. The answer lies with
pointers. If we used the first less-than comparison template class on a pointer, the
elements will be ordered based on the pointer’s memory address value rather than
the priority of the object it points to. This is an easy mistake to make. Since the
same template comparison cannot be used on both pointers and nonpointers, dif-
ferent versions are created. To sort based on the object instead of the memory
location will require us to deference the pointer with the * operator so that the ob-
ject’s comparison can occur instead of a comparison of the pointer addresses. The
example comparison template classes are shown by themselves in Listing 6.15.

LISTING 6.15 The Example Comparison Template Classes of the Priority Queue Demo

#include<iostream>

#include”PriorityQueue.h”

using namespace std;

template<typename T>

class less_cmp

{

public:

inline bool operator()(T lVal, T rVal)

{

return (lVal < rVal);

}

};

template<typename T>

class less_cmp_ptr

{

public:

inline bool operator()(T lVal, T rVal)

{

return ((*lVal) < (*rVal));

}

};

template<typename T>

class greater_cmp

{

public:

inline bool operator()(T lVal, T rVal)

190 Data Structures and Algorithms for Game Developers

{

return !(lVal < rVal);

}

};

template<typename T>

class greater_cmp_ptr

{

public:

inline bool operator()(T lVal, T rVal)

{

return !((*lVal) < (*rVal));

}

};

The next section of the Priority Queue demo application’s main source file is
a user-defined class that will be used with the priority queue. This class is called
NetworkMessage and is a simple example of using a user-defined class with the pri-
ority queue. The class defines both the greater-than and less-than operators as well
as two member variables. The member variables are for the priority of the network
message and its id, both of which are used in the comparisons. This is an example
of ordering not only by priority but also by other factors. These additional factors
can include the size of the object, the time in which the object was created, the
object’s id, and anything else that is necessary for the application being developed.
In the comparisons the priority is tested first. If the priority of one object is the
same as the other, the ids are tested. If those match as well, then the objects are
equal. In a real networking system the time in which the messages are sent can also
play a role in the ordering. The user-defined class NetworkMessage is shown by itself
in Listing 6.16.

LISTING 6.16 An Example User-Defined Class Called NetworkMessage

class NetworkMessage

{

public:

NetworkMessage() : m_priority(0), m_id(0) { }

NetworkMessage(int p, int id) : m_priority(p), m_id(id) { }

~NetworkMessage() { }

int GetPriority() { return m_priority; }

int GetID() { return m_id; }

Chapter 6 Stacks and Queues 191

bool operator<(NetworkMessage &m)

{

if(m_priority < m.GetPriority())

return true;

else if(m_id < m.GetID())

return true;

return false;

}

bool operator>(NetworkMessage &m)

{

return !(*this < m);

}

private:

int m_priority, m_id;

};

The remaining code to examine is the main() function of the Priority Queue
demo. This function creates a priority queue of NetworkMessage objects, populates
it with elements, and loops through the container and displays each object’s mem-
ber variables. The objects are ordered based on priority first and then by id, which
was specified in the second template parameter of the priority queue. The remain-
ing code in the Priority Queue demo application’s main.cpp source file is shown by
itself in Listing 6.17. Figure 6.9 shows a screenshot of the demo application.

192 Data Structures and Algorithms for Game Developers

FIGURE 6.9 A screenshot of the Priority Queue demo.

LISTING 6.17 The Remainder of the Priority Queue Demo’s Code

int main(int args, char **argc)

{

cout << “Priority Queue Data Structures Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

// Create and populate queue.

const int size = 4;

PriorityQueue<NetworkMessage,

less_cmp<NetworkMessage> > que(size);

que.push(NetworkMessage(3, 100));

que.push(NetworkMessage(2, 286));

que.push(NetworkMessage(1, 362));

que.push(NetworkMessage(3, 435));

// Display integer queue.

cout << “Priority Queue Contents (Size - “

<< que.GetSize() << “) :” << endl;

while(que.isEmpty() == false)

{

cout << “ Priority: “ << que.front().GetPriority();

cout << “ - ID: “ << que.front().GetID();

cout << endl;

que.pop();

}

cout << endl;

// Calling isEmpty() to test if container is empty.

if(que.isEmpty() == true)

cout << “The container is empty.” << endl << endl;

else

cout << “The container is NOT empty.” << endl << endl;

return 1;

}

Chapter 6 Stacks and Queues 193

STL QUEUES

In this section we will look at three STL queues: the template classes queue, deque,
and priority_queue. Each of these types of data structures were already seen in cus-
tom implementations earlier in this chapter. In this section we will briefly discuss
the STL implementations of each of these classes, which are very similar to the cus-
tom implementations for this chapter.

STL queue TEMPLATE CLASS

The STL queue class enables insertions and removals of elements to occur at the
front of the container. By default, the queue class is implemented with a deque,
which will be discussed in the next section, but it can also be implemented using a
list, which is an STL link list. For performance reasons the operations of the STL
queue are implemented as inline functions because they map to the underlying data
structure. The members of the STL queue are shown in Table 6.2.

To get the best performance form a queue it is recommended that the underlying
data structure be the default deque instead of the list.

194 Data Structures and Algorithms for Game Developers

Function Description

push(val) Inserts an element to the back of the container

pop() Removes an element from the front of the container

front() Returns a reference to the front of the container

back() Returns a reference to the back of the container

empty() Boolean check to test if the container is empty

size() Returns the number of elements in the container

TABLE 6.2 The Members of the STL queue Template Class

On the accompanying CD-ROM a demo application called STL Queue is in the
Chapter 6 folder. This demo application will create two queues, one using a deque
and the other using a list, populate them with elements, and display those
elements to the console window. Because the queue does not have random-access
iterators, it cannot be used with STL algorithms. The main source file for the STL
Queue demo application is shown in Listing 6.18. Figure 6.10 shows a screenshot of
the running executable.

LISTING 6.18 The STL Queue Demo Application’s Main Source File

#include<iostream>

#include<queue>

#include<list>

using namespace std;

template<typename T>

void DisplayQueue(T &que)

{

cout << “(Size - “ << que.size() << “) :”;

while(que.empty() == false)

{

cout << “ “ << que.front();

que.pop();

}

cout << “.” << endl;

}

int main(int args, char **argc)

{

cout << “STL Queue Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

queue<int> intQueue;

queue<int, list<int> > listQueue;

for(int i = 0; i < 5; i++)

{

intQueue.push(44 + i);

listQueue.push(55 + i);

}

// Display normal (deque) integer queue.

cout << “ Contents of the int queue “;

DisplayQueue(intQueue);

Chapter 6 Stacks and Queues 195

// Display link list integer queue.

cout << “ Contents of the int list queue “;

DisplayQueue(listQueue);

cout << endl;

// Calling empty() to test if container is empty.

if(intQueue.empty() == true)

cout << “The int queue is empty.” << endl;

else

cout << “The int queue is NOT empty.” << endl;

// Calling empty() to test if container is empty.

if(listQueue.empty() == true)

cout << “The list int queue is empty.” << endl;

else

cout << “The list int queue is NOT empty.” << endl;

cout << endl;

return 1;

}

196 Data Structures and Algorithms for Game Developers

FIGURE 6.10 A screenshot of the STL Queue demo.

STL deque TEMPLATE CLASS

The deque template class is a double-ended queue container. The deque class pro-
vides indexed access using subscripting for reading and writing elements and has

support of random-access iterators similar to the STL vector class. Supporting
random-access iterators allows the deque class to be used with all STL algorithms.
Internally the deque manages all of its data by allocating memory in blocks when
needed at the end or beginning of the container. These blocks of memory are typi-
cally maintained as an array of pointers. The members of the deque class can be seen
in Table 6.3.

The deque does not deallocate blocks of memory until it is destroyed in some im-
plementations. This is done to avoid many allocations and deallocations or reallo-
cations within the container. Although this can provide a performance boost in the
container’s speed, it comes at the cost of more inefficient memory consumption
than that of the vector, for example.

The STL deque is a sequence container. The deque can be used by including the
<deque> header.

Chapter 6 Stacks and Queues 197

Function Description

push_front(val) Inserts val into the front of the container
pop_front() Removes an element from the front of the container

TABLE 6.3 Members of the deque Template Class that Differ from the vector Class

On the accompanying CD-ROM is a demo application called STL Deque in the
Chapter 6 folder. This application demonstrates creating a deque, performing
various STL algorithms on it, and displaying its contents. The deque supports
random access iterators, which makes it possible to use STL algorithms with it. The
main source file for the STL Deque demo application is shown listed in Listing 6.19.
Figure 6.11 shows a screenshot of the demo application.

LISTING 6.19 The Main Source File for the STL Deque Demo

#include<iostream>

#include<deque>

#include<algorithm>

#include<numeric>

using namespace std;

void PrintDeque(deque<int> &deq)

{

cout << “Contents (“ << “Size: “ << (int)deq.size() << “) - “;

ostream_iterator<int> output(cout, “ “);

copy(deq.begin(), deq.end(), output);

cout << endl;

}

void PrintDequeReverse(deque<int> &deq)

{

cout << “Contents (“ << “Size: “ << (int)deq.size() << “) - “;

ostream_iterator<int> output(cout, “ “);

copy(deq.rbegin(), deq.rend(), output);

cout << endl;

}

int main(int args, char **argc)

{

cout << “STL Deque Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

deque<int> intDeque;

for(int i = 0; i < 5; i++)

intDeque.push_back(66 + i);

// Display deque.

cout << “ Inserted into deque: “;

PrintDeque(intDeque);

cout << “ Reversed deque: “;

PrintDequeReverse(intDeque);

// Display item at the front of deque.

cout << “ Deque Front(): “

<< intDeque.front() << “.” << endl;

// Display item at the front of deque.

cout << “ Deque Back(): “

<< intDeque.back() << “.” << endl;

198 Data Structures and Algorithms for Game Developers

// Pop off the container.

intDeque.pop_back();

intDeque.pop_back();

cout << “Popped two from deque: “;

PrintDeque(intDeque);

// Clear the container.

intDeque.clear();

cout << “ Cleared deque: “;

PrintDeque(intDeque);

cout << endl;

// Test if the container is empty.

if(intDeque.empty() == true)

cout << “Deque is empty.”;

else

cout << “Deque is NOT empty.”;

cout << endl << endl;

return 1;

}

Chapter 6 Stacks and Queues 199

FIGURE 6.11 A screenshot of the STL Deque demo.

STL priority_queue TEMPLATE CLASS

The priority_queue template class sorts elements, usually using a heap-sort, which
we’ll talk about later on in the book, and allows for the removal of elements from
the front of the container. By default, the priority_queue uses a vector as its
underlying data structure, but it can also use a deque. Also by default, the
priority_queue sorts elements in less-than to greater-than order. This order can be
specified by using a comparison template class in the same manner as we did for
the custom priority queue implementation earlier in the chapter. The methods of
the priority_queue class are shown in Table 6.4.

200 Data Structures and Algorithms for Game Developers

Method Description

push(val) Inserts an element into the front of the container

pop() Removes an element from the front of the container

top() Returns a reference to the front of the container

empty() Returns true if the container is empty, or else false

size() Returns the number of elements in the container

TABLE 6.4 The Methods of the priority_queue Class

On the accompanying CD-ROM, in the Chapter 6 folder, is a demo application
called STL Priority Queue. This application demonstrates using the priority queue
with integers that are ordered from less-than to greater-than, which is the default
order. Like the STL queue, the priority_queue does not have random-access itera-
tors. The main source file for the STL Priority Queue demo application is shown in
Listing 6.20. Figure 6.12 shows a screenshot from the STL Priority Queue demo.

LISTING 6.20 The STL Priority Queue Demo’s Main Source File

#include<iostream>

#include<queue>

using namespace std;

int main(int args, char **argc)

{

cout << “STL Priority Queue Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

priority_queue<int> priQueue;

for(int i = 0; i < 5; i++)

priQueue.push(88 + i);

// Display priority queue.

cout << “Priority Queue (int) Contents (“ << “Size: “

<< (int)priQueue.size() << “) -”;

int size = (int)priQueue.size();

for(int i = 0; i < size; i++)

{

cout << “ “ << priQueue.top();

priQueue.pop();

}

cout << “.” << endl;

// Empty test.

if(priQueue.empty() == true)

cout << “Priority Queue (int) is empty.”;

else

cout << “Priority Queue (int) is NOT empty.”;

cout << endl << endl;

return 1;

}

Chapter 6 Stacks and Queues 201

FIGURE 6.12 A screenshot of the STL Priority Queue demo.

The priority_queue class can also be used on user-defined classes and can have
comparison classes defined for it in the same way that we saw with the custom im-
plementation of the priority queue, PriorityQueue, earlier in the chapter. The two
are so similar that the same template comparison classes used earlier in the chapter
can be used, as is, in the STL priority_queue.

On the companion CD-ROM another demo application that uses STL priority
queues is STL Priority Queue 2, which can be found in the Chapter 6 folder. This
demo application creates two priority queues, one for nonpointer objects and the
other for pointer objects. It takes the STL Priority Queue demo created earlier and
replaces the custom-created PriorityQueue class with the STL priority_queue. The
demo application also shows how to delete dynamically allocated memory from the
STL priority_queue as the elements are being popped off of the container. For the
nonpointer container the objects are sorted in less-than to greater-than order, while
the pointer container specifies the objects in greater-than to less-than order. The
entire main source file for the STL Priority Queue 2 demo application is shown in
Listing 6.21. Figure 6.13 shows a screenshot of the running demo executable.

LISTING 6.21 The STL Priority Queue 2 Demo’s Main Source File

#include<iostream>

#include<queue>

#include<vector>

using namespace std;

template<typename T>

class less_cmp

{

public:

inline bool operator()(T lVal, T rVal)

{

return (lVal < rVal);

}

};

template<typename T>

class less_cmp_ptr

{

public:

inline bool operator()(T lVal, T rVal)

202 Data Structures and Algorithms for Game Developers

{

return ((*lVal) < (*rVal));

}

};

template<typename T>

class greater_cmp

{

public:

inline bool operator()(T lVal, T rVal)

{

return !(lVal < rVal);

}

};

template<typename T>

class greater_cmp_ptr

{

public:

inline bool operator()(T lVal, T rVal)

{

return !((*lVal) < (*rVal));

}

};

class NetworkMessage

{

public:

NetworkMessage(int data) : m_data(data) { }

~NetworkMessage() { }

bool operator<(NetworkMessage &obj)

{

return (m_data < obj.GetData());

}

bool operator>(NetworkMessage &obj)

{

return !(m_data < obj.GetData());

}

Chapter 6 Stacks and Queues 203

int GetData()

{

return m_data;

}

private:

int m_data;

};

int main(int args, char **argc)

{

cout << “STL Priority Queue 2 Example” << endl;

cout << “Chapter 6: Stacks and Queues” << endl;

cout << endl;

// Create two test priority queues.

priority_queue<NetworkMessage, vector<NetworkMessage>,

less_cmp<NetworkMessage> > priQueue;

priority_queue<NetworkMessage*, vector<NetworkMessage*>,

greater_cmp_ptr<NetworkMessage*> > priQueuePtr;

priQueue.push(NetworkMessage(5));

priQueue.push(NetworkMessage(35));

priQueue.push(NetworkMessage(2));

priQueue.push(NetworkMessage(53));

priQueuePtr.push(new NetworkMessage(14));

priQueuePtr.push(new NetworkMessage(67));

priQueuePtr.push(new NetworkMessage(13));

priQueuePtr.push(new NetworkMessage(12));

// Display priority queue.

cout << “Priority Queue Contents:” << endl;

int size = (int)priQueue.size();

for(int i = 0; i < size; i++)

{

cout << “ “ << priQueue.top().GetData() << endl;

priQueue.pop();

}

204 Data Structures and Algorithms for Game Developers

cout << endl;

// Display priority queue ptr.

cout << “Priority Queue PTR Contents:” << endl;

size = (int)priQueuePtr.size();

for(int i = 0; i < size; i++)

{

NetworkMessage *ptr = priQueuePtr.top();

if(ptr != NULL)

{

cout << “ “ << ptr->GetData();

delete ptr;

cout << “ (deleted)” << endl;

}

priQueuePtr.pop();

}

cout << endl << endl;

return 1;

}

Chapter 6 Stacks and Queues 205

FIGURE 6.13 A screenshot of the STL Priority Queue 2 demo.

SUMMARY

This chapter covered information on stacks and queues in general computer pro-
gramming. These data structures are restricted-access containers that have a num-
ber of useful benefits in application programming. The order in which elements are
inserted into these containers can be in first-in, last-out or in first-in, first-out.
Often these containers have shorter life spans than other STL containers and are
used as tools to aid in some task.

In the next chapter we will look at two more data structures called the hash
table and the data port. These data structures are very useful and powerful, and
knowledge of them will be a great benefit to general and game programmers. As
you can see, data structures and algorithms are very powerful and very important
to programmers.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. Stacks and queues are known as:
a. Random-access containers
b. Sequence containers
c. Restricted-access adapters
d. None of the above
e. All of the above

2. Stacks have what access type?
a. First-in, first-out
b. First-in, last-out
c. None of the above

3. Queues have what access type?
a. First-in, first-out
b. Last-in, first-out
c. None of the above

4. With stacks and queues, how many items can be accessed at once?
a. It is user-defined.
b. Only one item.
c. Multiple-items.
d. Both a and c

5. What is the main purpose of a priority queue?
6. What is the main difference between queues and stacks?

206 Data Structures and Algorithms for Game Developers

7. What was the main purpose of using a link list instead of an array with the
custom implementations of the queue classes in this chapter?

8. The priority queue has an insertion big-O of O(N2).
a. True
b. False

9. A circular queue is also a type of queue container.
a. True
b. False

10. STL queues include the queue, circular_queue, deque, and priority_queue.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Modify the Priority Queue demo application to also be able to sort ob-
jects from less-than or equal-to to greater-than range and vice versa. Modify the
NetworkMessage class to also sort based on the time in milliseconds (time when the
message was sent).

Exercise 2: Modify the Queue and Priority Queue demo applications so that the
data structures offer a searching function that returns a boolean value based on if
the object was found.

Exercise 3: Modify the Priority Queue demo’s data structure to use an array in-
stead of a link list as the underlying data structure.

Exercise 4: Implement a circular queue. Circular queues are queues that, when
full, wrap by overriding elements already inside of the front of the container.

Chapter 6 Stacks and Queues 207

This page intentionally left blank

209

Hash Tables7

In This Chapter

Introduction to Hash Tables
Hash Functions
Working with Hash Tables
Implementing Hash Tables
Nonstandard Hash Containers

210 Data Structures and Algorithms for Game Developers

I
n this chapter we will discuss hash table data structures in detail in terms of
what they are, how they are created, and why they exist in general computer
programming. A hash table is a fast data structure used to hold a database of

information in memory. The speed at which objects can be searched for and
retrieved is not only incredibly fast, but is not dependant on the number of objects
already inside a container. This means that a hash table with 1,000,000 elements
should be as fast, assuming no or minimal internal collisions (more on this later on
in the chapter), than a hash table with 1,000 elements.

We will look at implementing different types of hash tables as well as a set of
nonstandard C++ template container classes. These classes include the hash_set,
the hash_multiset, the hash_map, and the hash_multimap. A number of techniques
are used for handling hash tables and the data that is inserted into them, which we
will examine closely in the following sections of this chapter.

INTRODUCTION TO HASH TABLES

A hash table is a data structure that offers very fast insertions and searching for ob-
jects that are inserted into the container. The performance of hash tables is often
close to having the big-O O(1) in most of its operations, which depends on a num-
ber of factors such as the overall collisions, which we’ll discuss later in this chapter
in more detail. Hash tables are very efficient and useful in all types of applications
and a good understanding of them can be very useful. In games a hash table can be
used, for example, in a massively multiplayer online role playing game for storing a
database of players and their stats, items, weapons and equipment, character infor-
mation, and so forth. A visual representation of a hash table is shown in Figure 7.1.

FIGURE 7.1 A hash table.

Hash tables are fast data structures. Even with a large number of items, a search
for an object can be almost instant in some situations. This speed comes from the
fact that hash tables are based on the array data structure. When the array index of
an object is known, the position is nothing more than a table lookup using an array
subscript. The trick is calculating an object’s array index position, which we’ll dis-
cuss throughout this chapter, so that it can be placed within the hash table and
quickly retrieved at a moment’s notice.

Because hash tables are based on arrays, they inherit their weaknesses as well as
their strengths. When the size of the hash table can be predicted, some weaknesses
might not pose too much of a problem. The following is true about the data struc-
tures and the various algorithms that can be performed on hash tables:

Hash tables are expensive and hard to expand, which is further complicated
because the positions of the objects within a hash table depend on the size of
the data structure; a change in size invalidates all objects already inside of the
container.
When using open addressing, the performance of hash tables can decrease as
the container becomes full.
Objects cannot be ordered easily within a hash table.
Looking up objects in a hash table is fast and uses array subscripts.
Copying hash tables can be expensive and requires that both tables be of the
same size to avoid having to rehash all existing elements.
Insertions into a hash table are fast.

In general, hash tables work by taking an object and hashing it to an integer.
This integer is used as the array position for that object in the hash table. Hashing
a value refers to executing an algorithm on the object to create an integer that lies
within the array bounds of the hash table. Every object that is inserted into the hash
table has its own key. This key is an identifier that is hashed into an array index and
used for the object. The key can be anything, even the object itself. The code used
to hash an object into an array index is called a hash function. A visual representa-
tion of hashing is shown in Figure 7.2.

Chapter 7 Hash Tables 211

FIGURE 7.2 A visual of hashing.

212 Data Structures and Algorithms for Game Developers

EXAMPLE OF HASH TABLES

Hash tables have many uses in general computer programming and in game devel-
opment. When it comes to very large data sets, the speed at which hash tables op-
erate can make them very impressive data structures to use. Some general uses for
hash tables include but are not limited to the following:

Spell checkers
Database systems
Dictionaries
Phone directories
Implementation of a symbol table for a compiler in a general and game script-
ing system
Implementation of a caching system
Implementation of a transposition table in a chess game
List of players in a massively multiplayer online role-playing game

Taking a dictionary as an example, the question is how do we create a list of
words and definitions that we can quickly search? Using a traditional array wouldn’t
work because that would require string comparisons to take place on the words we
are searching for and, on average, half of the list. In the English language there are
tens of thousands of words, and the performance of doing this would be terrible. If
we didn’t perform string comparisons, the next option would be to look up the
words using array indexes, but how do we give a meaningful index to a word? What
index would, for example, the word conscious have? The answer to these questions
would be to perform a fast algorithm on the word to transform it into an array
index and use that value to insert and look up the information we want. This is
known as hashing, and we’ll look at it more later in this chapter. Because hash tables
are built from arrays, they can benefit from their look-up speeds as well.

Hash tables are not perfect data structures. There are a few things to keep in
mind when deciding to use them:

Hash tables have poor locality of reference due to objects being accessed in ran-
dom locations in memory, which can also lead to cache misses in the CPU that
can cause delays.
Writing efficient hash tables and algorithms is error prone and can be difficult
with advanced techniques.
A good hash function is needed, or else the performance and general efficiency
of a hash table can degrade in some situations.
Many factors can affect the performance of a hash table, including the number
of collisions as well as how full the container is when open addressing is being
considered (more on this later).

EFFICIENCY OF HASHING

The efficiency of the hashing function is very important. Using a poor hash function
can lead to collisions in the data structure. A collision occurs when more than one
object hashes to the same index. When this happens, there are four things you can
do. You can not insert the object, you can replace the old object with the new one,
you can find a new position for the object using what is known as open addressing,
or you can use separate chaining to allow more than one object to exist at an index.
In this chapter we will look closely at open addressing techniques and separate
chaining.

The collisions that occur in a hash table can have an adverse affect on overall
performance, so the hash function that is used needs to be efficient. No hash func-
tion can guarantee that there will be no collisions, but when collisions do occur,
they need to be resolved one way or another. The way the collision is resolved can
depend on the application itself.

HASH FUNCTIONS

A hash function is an algorithm that takes a value and compresses it into the range
of the hash table’s array. This value is known as the key, and it can be anything from
a string, to a number, and so fourth. The hash value of the key depends on the size
of the hash table’s array. A change in the array size will invalidate all hashed keys in
the table, which will require them to be rehashed and the existing objects reposi-
tioned to new elements.

When a hash table is created, its size can be a prime number that is roughly
twice the number of elements that will be inserted into the table. As we will see later
on, using a prime number is necessary for some algorithms such as double hashing.
Using a size that is twice the predicted number of inserted elements will likely
decrease the number of collisions in the set.

HASHING VALUES

When hashing a key that is a number, we will use a simple equation to demonstrate
how to create a hash function. This hash function will be based on the modulus
operator (%) and will be used in conjunction with the array size to return a value that
is within the array bounds. An example of this can look like the following line of code:

key % m_size;

By using this single line, we can hash a number to an index within the table’s
array, regardless of the number. The larger the size of the hash table’s array, the

Chapter 7 Hash Tables 213

better are the chances that there will not be a collision when a key is being hashed.
A visual example of using this hash function on a key is shown in Figure 7.3.

Using a poor hash function can quickly lead to clustering, which means there is a
greater probability that a hash function will hash values to the same index (causing
collisions) than using a random function.

214 Data Structures and Algorithms for Game Developers

FIGURE 7.3 Hashing a number.

HASHING STRINGS

Another common type of key that we would like to hash is a string. To hash a string
we would use a simple algorithm that loops through each letter of the key and use
the modulus operator to build the hash value. When looping through the key, we
can use both the current hash value, the total number of letters that can be used, and
the value of the letter itself along with the modulus operator to create the hash value.
Small strings can be quickly hashed in this manner, and the ability to hash strings is
definitely something worth having. A visual example of hashing a string is shown in
Figure 7.4. The code to hash a string could look like the following:

int HashFunction(string &str)

{

int hash = 0;

for(int i = 0; i < (int)str.size(); i++)

{

int val = (int)str[i];

hash = (hash * 256 + val) % m_size;

}

return hash;

}

A good hash function needs to be computationally fast. Hash tables have the ben-
efit of being fast, so a slow hash function will decrease this advantage.

WORKING WITH HASH TABLES

When working with hash tables, we first must find a position in the hash table that
corresponds to an item. If we are inserting into the hash table and if an item is already
at the position that we’ve just hashed another item to, then a collision will occur and
a new position must be found for the item we are trying to insert. Even if we are not
inserting, but are searching, if the item we are looking for is not the one at the initial
hashed index, we must find it elsewhere, assuming it is even in the table. This is
known as resolving collision, and we will talk briefly about it in this section.

Resolving collision when working with hash tables includes the major techniques
called open addressing and separate chaining. We will discuss a few other types, such
as hybrids, in the following section but these are the main two types. With open ad-
dressing there are three types: linear probing, quadric probing, and double hashing.

OPEN ADDRESSING: LINEAR PROBING

In linear probing if a collision occurs during an operation within the hash table, a new
position must be sought. This is done by sequentially stepping through the hash table
and looking for the next empty position. When a position is found, the item is in-
serted there. During a search we first hash the key to an array index. If the key at that
index does not match the key we are searching for, then we must linearly step through
the table until we find the value, find an empty slot, or have processed all elements.

Linear probing suffers from clustering, which occurs when a cluster of objects
exist next to one another in the table. This slows down searching and will cause ob-
jects that actually hash to one of those positions to be inserted elsewhere, which
again hurts searching. This is known as primary clustering. Imaging if you hashed
item A to index 52. If item B also hashed to 52, it would need to be placed in a dif-
ferent position to resolve the collision. Let’s say B is repositioned at 66, so if item C
hashed to 66, it would need to be placed elsewhere because B is already there. When
searching for B, time is spent looking for it because it is not where it would have
normally hashed, and the same can be said for item C. In a large hash table items
can be placed quite far from where they would have hashed, causing the linear
search to move slowly when trying to find that item. If the item does not exist, a

Chapter 7 Hash Tables 215

FIGURE 7.4 Hashing a string.

linear search until we have searched all elements or until we find an empty slot can
be time consuming. As discussed in Chapter 2, a linear search is very slow. An
illustration of linear probing is shown in Figure 7.5.

216 Data Structures and Algorithms for Game Developers

FIGURE 7.5 Linear probing.

The more full a hash table is, the worse the clustering can get.

OPEN ADDRESSING: QUADRIC PROBING

When a cluster forms, it continues to grow as items that would hash somewhere
within it are pushed to the end of the cluster, which is the next available spot in the
array. In linear probing, this cluster can form easily because the stepping through the
table is done one at a time. Quadric probing uses the principles of the linear probing,
but instead of moving one element at a time, it moves in multiple steps. When the
ratio to the number of items to the hash table’s size is low, clustering becomes more
of a problem. A visual representation of quadric probing is shown in Figure 7.6.

FIGURE 7.6 Quadric probing.

In quadric probing, when stepping through the array, the operation first checks
the first element after the initial hash position. If that position is taken, it tries four
steps away from the position. If that position is also taken, it tries nine steps and so
fourth until it finds a position or until it determines a position can’t be found.

Quadric probing helps eliminate the primary clustering that linear probing suffers
from, but it introduces a new problem known as secondary clustering. Although in
most situations the secondary clustering might not be as much of a problem as the
linear probe’s primary clustering, it is still a problem. The secondary clustering
occurs because the change in the step sizes is constant. If the changes were random
or pseudo-random, the problem would decrease.

OPEN ADDRESSING: DOUBLE HASHING

Double hashing works by using a different hash function to hash the key to a new po-
sition when a collision has occurred. Because the new position is based on the key, it
will be different for each item. Since the primary reason for clustering is the use of
constant steps, double hashing can work quite well to reduce clustering in a hash table.
In double hashing the key requirements of the second hash function include that the
function can’t be the same as the first and can’t return an index of 0 to the caller. In this
chapter we will use the following equation when looking at double hashing:

double hash = constant – (key % constant)

where the new step (double hash) is equal to a constant, which is a number that is
not 0 and is within the range of the array’s size, minus the result of the key % con-
stant. When using this formula, it is important that the array size be prime in order
to avoid situations where only a few elements are searched infinitely. An example
of this can be seen with an array size of 20 and an initial hash index of 0. If the
double hash returns 5, the stepping would go from 0, 5, 10, 15, 20, 5, 10, 15, 20, and
so forth. A visual representation of double hashing is shown in Figure 7.7.

Chapter 7 Hash Tables 217

FIGURE 7.7 Double hashing.

MORE ON OPEN ADDRESSING

When looking at opening addressing as a whole compared to separate chaining,
which will be discussed in detail in the next section, we find that the following is
often true:

Open addressing does not need to allocate additional memory upon collisions.
Open addressing with linear and quadric probing suffers from various cluster-
ing side effects.
Open addressing in hash tables is easier to serialize than separate chaining be-
cause it is based on arrays.
Open addressing has a better locality of reference with small tables, which can
lead to better performance.
Open addressing is generally better for smaller tables.
When using double hashing, it is important to have a prime table size.

The ratio of the total number of items to the hash table’s size is known as the load
factor.

SEPARATE CHAINING

Separate chaining is another technique that can be used to resolve collisions in a
hash table. In open addressing the next open position is searched for upon a colli-
sion. Instead of looking for another position, separate chaining uses a link list for
every element in the hash table’s array. This means that if there is a collision, the item
is inserted into that index’s link list. When searching for an item, we can perform a
normal search on the link list at that index. Using a fast searching algorithm can be
very useful in the link list when using separate chaining. Separate chaining is illus-
trated in Figure 7.8. In separate chaining, unlike double hashing and quadric prob-
ing, it is not important to have prime table sizes.

218 Data Structures and Algorithms for Game Developers

FIGURE 7.8 Separate chaining.

Things to keep in mind when working with separate chaining in hash tables are:

It is simple to implement with link lists.
Separate chaining can use less memory than open addressing since the links are
only created when necessary.

Less space is wasted with separate chaining than with large tables using open
addressing.
Using a table with open addressing that stores pointers to external storage can
cause them to lose their speed advantage.
Separate chaining is better for large tables.
In separate chaining the array size is important to help minimize collisions, but
when one occurs, the link list can grow as needed, which is different from re-
sizing the table’s array since that would invalidate all hashed keys.

ADDITIONAL TYPES OF HASHING

Additional types of hash tables are used for resolving collisions in the hash table
data structure. In this section we will briefly discuss coalesced hashing, robin-hood
hashing, perfect hashing, and probabilistic hashing.

Coalesced hashing is a hybrid of open addressing and separate chaining that
links together chains of nodes within the table itself. By using coalesced hashing we
can achieve the space usage of open addressing while eliminating the clustering
effect, which separate chaining is known for solving.

Robin-hood hashing is a variation of double hashing. This is where a key is
displaced by an already existing key if the probe count is larger than the key at a
position. Robin-hood hashing tries to minimize the performance penalty of search-
ing for items in the data structure when compared to the open addressing tech-
niques that were discussed in this chapter.

In probabilistic hashing when a collision is encountered, it will either drop the
new value trying to be inserted or it will simply replace the new value with the one
that is already there. This type of hashing system can be used to implement a
caching system and to implement a bloom filter with the help of a bit array. When
using probabilistic hashing, there are no collisions because values are dropped
when collisions might occur. This means there is no need for separate chaining or
open addressing since the item is either at the original hash position or it is not.

In perfect hashing a hash table with no collisions can be created if all the keys
are known ahead of time and the array size is already known. A slight variation of
this is called minimal perfect hashing, in which all elements of the data structure
can be occupied by an object, but there are no collisions within the structure.

With perfect hashing there are no collisions; thus there is no need to have collision
solvers such as the open addressing methods and separate chaining discussed earlier.

TABLE RESIZING

It is difficult to resize a hash table data structure, because once the table is resized,
all keys will need to be rehashed and all items reinserted. For small hash tables and

Chapter 7 Hash Tables 219

with table resizing being rare, this is not too serious of a problem if resizing the table
is the best option at that moment. For larger hash tables the resizing operation can
cause a serious delay. Also, when resizing the hash table, incrementing the size by
1 every time a resize needs to happen will result in horrible performance.

If the need to resize a hash table arises, the best option would be to increase the
size by a load factor. This factor can be a percentage that tells the data structure how
much to increase the size of the array. If the load factor is 1 (100%), the size of the
array can double each time a resize is needed. For 10 elements this will create a new
size of 20, which if further expanded would create a new size of 40, then 80, and so
on. By choosing to not increase the size by 1 you can dramatically reduce the num-
ber of resize operations that need to occur, although it would be better to not need
to resize at all (if possible) when dealing with very large data sets.

In separate chaining the link list objects would also need to be rehashed. Because
the hash table size is different, the objects that collided before will not necessarily
collide again. Usually the collisions will change, so there are no short cuts when
working with separate chaining.

IMPLEMENTING HASH TABLES

In this section we will implement hash tables using linear probing, double hashing,
separate chaining, and various nonstandard C++ template hash table containers.
The STL, at this time, does not have hash tables, so we will be using freely available
nonstandard hash tables in addition to creating custom implementations. When
implementing each type of hash table, we will use prime table sizes because prime
numbers can decrease clustering. This is because if many keys share a divisor with
the array size, then many keys can end up hashing to the same index. This can
happen regardless of the hashing type, so prime numbers will be used for each of
the implementations.

HASH KEYS

The keys are the first things that need to be implemented, as this is an important
start to creating a hash table. The hash items that will be implemented in this chap-
ter have two member variables: the key and a template object that is to be inserted,
along with the key, in the hash table. The key is an integer that is hashed by the hash
table, while the object can be anything. The member functions of the class include
functions for getting and setting the key, getting and setting the object, making one
hash item equal to another, and a boolean comparison function (==) for compar-
ing two hash items. The hash item template class, called HashItem, is shown in List-

220 Data Structures and Algorithms for Game Developers

ing 7.1. This class will be used for each of the custom-implemented hash table data
structures in this chapter.

LISTING 7.1 The Hash Item Structure that is Inserted into the Table

template<typename T>

class HashItem

{

public:

HashItem() : m_key(0) {}

~HashItem() {}

int GetKey() { return m_key; }

void SetKey(int k) { m_key = k; }

T GetObject() { return m_obj; }

void SetObj(T obj) { m_obj = obj; }

bool operator==(HashItem &item)

{

if(m_key == item.GetKey())

return true;

return false;

}

void operator=(HashItem item)

{

m_key = item.GetKey();

m_obj = item.GetObject();

}

private:

int m_key;

T m_obj;

};

HASH TABLE WITH LINEAR PROBING

The first hash table that will be implemented is the linear probing hash table. In this
hash table, when a collision occurs, the hash table will linearly step through the data
structure until it finds a new location for the item. The first functions we will look

Chapter 7 Hash Tables 221

at are the class’s constructor, destructor, and two helper functions for calculating a
prime number if one is not supplied. The constructor is responsible for creating the
table’s array, the destructor will delete the array, and the constructor uses the helper
functions for calculating the next prime number after the number that was passed
to the constructor, assuming the number is not already prime. This is shown in
Listing 7.2.

LISTING 7.2 The First Few Functions of the Hash Table for Linear Probing

template<typename T>

class HashTable

{

public:

HashTable(int size) : m_size(0), m_totalItems(0)

{

if(size > 0)

{

m_size = GetNextPrimeNum(size);

m_table = new HashItem<T>[m_size];

}

}

~HashTable()

{

if(m_table != NULL)

{

delete[] m_table;

m_table = NULL;

}

}

private:

bool isNumPrime(int val)

{

for(int i = 2; (i * i) <= val; i++)

{

if((val % i) == 0)

return false;

}

return true;

}

222 Data Structures and Algorithms for Game Developers

int GetNextPrimeNum(int val)

{

for(int i = val + 1; ; i++)

{

if(isNumPrime(i))

break;

}

return i;

}

};

The next three functions we’ll look at for the linear probing hash table are the
insertion function called Insert(), the deletion function called Delete(), and the
searching function called Find(). The insertion function takes a key and an object
to place in the hash table. As long as there are some empty slots in the hash table,
the function can insert the item, or else it returns false. The function starts by
hashing the key and testing if the index is empty. If it is, the item is directly inserted,
or else the code will step through until it finds an empty slot. The modulus opera-
tor is used to wrap around the array until that empty slot is found.

The deletion function works in the same manner as the insertion function,
with the exception that it nullifies the key of the item to be deleted, which marks it
as free in the hash table, instead of adding it. The searching function works using
almost the same code as the insertion and deletion functions, with the exception
that when the item is found (by comparing the keys), the object is returned to a
pointer parameter and either true is returned or false is returned if the item is not
found. In the deletion and searching functions a temporary variable is used to test
if the original hash value matches the hash value after being stepped. Since the
stepping can wrap around the array, to avoid an infinite loop with full arrays this
condition is added to allow the code to know that every item was searched and the
item was not found. Each of these three functions are shown in Listing 7.3.

LISTING 7.3 The Insertion, Deletion, and Searching Functions of the Hash Table

template<typename T>

class HashTable

{

public:

bool Insert(int key, T &obj)

{

if(m_totalItems == m_size)

return false;

Chapter 7 Hash Tables 223

int hash = HashFunction(key);

while(m_table[hash].GetKey() != -1)

{

hash++;

hash %= m_size;

}

m_table[hash].SetKey(key);

m_table[hash].SetObj(obj);

m_totalItems++;

return true;

}

void Delete(int key)

{

int hash = HashFunction(key);

int originalHash = hash;

while(m_table[hash].GetKey() != -1)

{

if(m_table[hash].GetKey() == key)

{

m_table[hash].SetKey(-1);

m_totalItems—;

return;

}

hash++;

hash %= m_size;

if(originalHash == hash)

return;

}

}

bool Find(int key, T *obj)

{

int hash = HashFunction(key);

224 Data Structures and Algorithms for Game Developers

int originalHash = hash;

while(m_table[hash].GetKey() != -1)

{

if(m_table[hash].GetKey() == key)

{

if(obj != NULL)

*obj = m_table[hash].GetObject();

return true;

}

hash++;

hash %= m_size;

if(originalHash == hash)

return false;

}

return false;

}

The remainder of the linear probing hash table includes two hash functions
(one for hashing integers and one for strings), a function for returning the total size
of the hash table, a function for returning the total number of items in the hash
table, and member variables for the table’s array, total size, and total number of
items already inserted. The hash functions use the same code that was seen earlier
in this chapter, while the remainder of the class is straightforward. For strings
the class uses the STL class string. We’ll cover strings in more detail later on in
the book. For now, know that STL strings can be used like an array of characters.
The class offers various overloaded operators that make it very similar to working
with strings using an array of char variables. The remainder of the linear probing
hash table, called HashTable, is shown in Listing 7.4. The entire class is shown in
Listing 7.5.

LISTING 7.4 The Remainder of the Linear Probing Hash Table

template<typename T>

class HashTable

{

public:

int HashFunction(int key)

{

Chapter 7 Hash Tables 225

return key % m_size;

}

int HashFunction(string &str)

{

int hash = 0;

for(int i = 0; i < (int)str.size(); i++)

{

int val = (int)str[i];

hash = (hash * 256 + val) % m_size;

}

return hash;

}

int GetSize()

{

return m_size;

}

int GetTotalItems()

{

return m_totalItems;

}

private:

HashItem<T> *m_table;

int m_size, m_totalItems;

};

LISTING 7.5 The Entire HashTable Class for Linear Probing

template<typename T>

class HashTable

{

public:

HashTable(int size) : m_size(0), m_totalItems(0)

{

if(size > 0)

226 Data Structures and Algorithms for Game Developers

{

m_size = GetNextPrimeNum(size);

m_table = new HashItem<T>[m_size];

}

}

~HashTable()

{

if(m_table != NULL)

{

delete[] m_table;

m_table = NULL;

}

}

private:

bool isNumPrime(int val)

{

for(int i = 2; (i * i) <= val; i++)

{

if((val % i) == 0)

return false;

}

return true;

}

int GetNextPrimeNum(int val)

{

for(int i = val + 1; ; i++)

{

if(isNumPrime(i))

break;

}

return i;

}

public:

bool Insert(int key, T &obj)

Chapter 7 Hash Tables 227

{

if(m_totalItems == m_size)

return false;

int hash = HashFunction(key);

while(m_table[hash].GetKey() != -1)

{

hash++;

hash %= m_size;

}

m_table[hash].SetKey(key);

m_table[hash].SetObj(obj);

m_totalItems++;

return true;

}

void Delete(int key)

{

int hash = HashFunction(key);

int originalHash = hash;

while(m_table[hash].GetKey() != -1)

{

if(m_table[hash].GetKey() == key)

{

m_table[hash].SetKey(-1);

m_totalItems—;

return;

}

hash++;

hash %= m_size;

if(originalHash == hash)

return;

}

}

228 Data Structures and Algorithms for Game Developers

bool Find(int key, T *obj)

{

int hash = HashFunction(key);

int originalHash = hash;

while(m_table[hash].GetKey() != -1)

{

if(m_table[hash].GetKey() == key)

{

if(obj != NULL)

*obj = m_table[hash].GetObject();

return true;

}

hash++;

hash %= m_size;

if(originalHash == hash)

return false;

}

return false;

}

int HashFunction(int key)

{

return key % m_size;

}

int HashFunction(string &str)

{

int hash = 0;

for(int i = 0; i < (int)str.size(); i++)

{

int val = (int)str[i];

hash = (hash * 256 + val) % m_size;

}

return hash;

}

Chapter 7 Hash Tables 229

int GetSize()

{

return m_size;

}

private:

HashItem<T> *m_table;

int m_size, m_totalItems;

};

On the accompanying CD-ROM a demo application called Linear Probing in
the Chapter 7 folder demonstrates the hash table class created in Listing 7.5. In this
demo application an integer hash table is created, populated with a few items, and
is searched for various keys. When a key is found, a message is displayed with the
key and the object it references. When a key is not found, an Item not Found mes-
sage is displayed. Additionally, the demo application tests that a string is able to be
hashed into an index by hashing the word cats and displaying its hashed value to the
console window. The main.cpp source file of this demo application is shown in
Listing 7.6. Figure 7.9 shows a screenshot of the executing application.

LISTING 7.6 The Linear Probing Demo Application

#include<iostream>

#include”HashTable.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Hash Tables - Linear Probing Example” << endl;

cout << “Chapter 7: Hash Tables” << endl;

cout << endl;

// Create table and fill it in.

HashTable<int> hashTable(20);

int item = 0;

item = 348; hashTable.Insert(112, item);

item = 841; hashTable.Insert(87, item);

item = 654; hashTable.Insert(24, item);

230 Data Structures and Algorithms for Game Developers

item = 11; hashTable.Insert(66, item);

item = 156; hashTable.Insert(222, item);

// Search for inserted items.

if(hashTable.Find(87, &item))

cout << “Item: 87 has a value of “ << item << “.” << endl;

else

cout << “Item: 87 not found.” << endl;

if(hashTable.Find(112, &item))

cout << “Item: 112 has a value of “ << item << “.” << endl;

else

cout << “Item: 112 not found.” << endl;

if(hashTable.Find(66, &item))

cout << “Item: 66 has a value of “ << item << “.” << endl;

else

cout << “Item: 66 not found.” << endl;

if(hashTable.Find(100, &item))

cout << “Item: 100 has a value of “ << item << “.” << endl;

else

cout << “Item: 100 not found.” << endl;

cout << “\n”;

// Test hashing a string.

string str(“cats”);

int stringHash = hashTable.HashFunction(str);

cout << “The string cats hash to “ << stringHash

<< “.” << endl << endl;

return 1;

}

This demo application can be expanded to perform quadric probing. This can be
done by modifying the linear step in the insertion, deletion, and searching functions
to use a varying step value instead of doing so by 1, which can be seen in the lines that
contain hash++. Since such a modification is trivial, expanding this demo application
to perform quadric probing is left as an exercise at the end of the chapter.

Chapter 7 Hash Tables 231

HASH TABLE WITH DOUBLE HASHING

The next type of hashing we will implement in code is the double hashing tech-
nique. In this type of hashing a second hash function is used for the hashing of keys
that collide with other keys. Double hashing is done in the insertion, deletion, and
searching functions of the hash table. Because those are the only functions that dif-
fer, we will use the code for the linear probing hash table and modify it for double
hashing. The double hashing code, as in what was modified from the linear prob-
ing code in Listing 7.5, is shown in listing 7.7.

LISTING 7.7 The Double Hashing Code

template<typename T>

class HashTable

{

public:

bool Insert(int key, T &obj)

{

if(m_totalItems == m_size)

return false;

int hash = HashFunction(key);

int step = HashFunction2(key);

while(m_table[hash].GetKey() != -1)

{

hash += step;

232 Data Structures and Algorithms for Game Developers

FIGURE 7.9 A screenshot of the Linear Probing demo.

hash %= m_size;

}

m_table[hash].SetKey(key);

m_table[hash].SetObj(obj);

m_totalItems++;

return true;

}

void Delete(int key)

{

int hash = HashFunction(key);

int step = HashFunction2(key);

int originalHash = hash;

while(m_table[hash].GetKey() != -1)

{

if(m_table[hash].GetKey() == key)

{

m_table[hash].SetKey(-1);

m_totalItems—;

return;

}

hash += step;

hash %= m_size;

if(originalHash == hash)

return;

}

}

bool Find(int key, T *obj)

{

int hash = HashFunction(key);

int step = HashFunction2(key);

int originalHash = hash;

Chapter 7 Hash Tables 233

while(m_table[hash].GetKey() != -1)

{

if(m_table[hash].GetKey() == key)

{

if(obj != NULL)

*obj = m_table[hash].GetObject();

return true;

}

hash += step;

hash %= m_size;

if(originalHash == hash)

return false;

}

return false;

}

int HashFunction(int key)

{

return key % m_size;

}

int HashFunction2(int key)

{

return 3 - key % 3;

}

};

The difference between the code for the double hashing hash table and the
linear probe is that the linear probe has a constant step size of 1, while the double
hashing step size is determined by the new hash function, HashFunction2(). In List-
ing 7.7 the second hash function is different from the first. This is a requirement
that prevents us from ending up with the same number, which would report a
collision (if one existed) and leave us where we started. Also, prime numbers are
required with the quadric probing and double hashing to ensure that every element
in the hash table’s array is visited.

On the accompanying CD-ROM a demo application in the Chapter 7 folder
called Double Hashing demonstrates the double hashing hash table discussed

234 Data Structures and Algorithms for Game Developers

in this section. The main source file for this demo application is the same as the
Linear Probing demo, with the exception that different keys and values are used to
distinguish between them. The main.cpp source files are, for all intents and purposes,
the same because the only real difference occurs inside the data structure and its
algorithms. The main.cpp source file for the Double Hashing demo application is
shown in Listing 7.8. Figure 7.10 shows a screenshot of the running demo application.

LISTING 7.8 The Double Hashing Demo’s main.cpp Source File

#include<iostream>

#include”HashTable.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Hash Tables - Double Hashing Example” << endl;

cout << “Chapter 7: Hash Tables” << endl;

cout << endl;

// Create table and fill it in.

HashTable<int> hashTable(20);

int item = 0;

item = 835; hashTable.Insert(57, item);

item = 247; hashTable.Insert(68, item);

item = 456; hashTable.Insert(37, item);

item = 235; hashTable.Insert(82, item);

item = 644; hashTable.Insert(11, item);

// Search for inserted items.

if(hashTable.Find(87, &item))

cout << “Item: 87 has a value of “ << item << “.” << endl;

else

cout << “Item: 87 not found.” << endl;

if(hashTable.Find(112, &item))

cout << “Item: 112 has a value of “ << item << “.” << endl;

else

cout << “Item: 112 not found.” << endl;

Chapter 7 Hash Tables 235

if(hashTable.Find(82, &item))

cout << “Item: 82 has a value of “ << item << “.” << endl;

else

cout << “Item: 82 not found.” << endl;

if(hashTable.Find(37, &item))

cout << “Item: 37 has a value of “ << item << “.” << endl;

else

cout << “Item: 37 not found.” << endl;

cout << endl;

return 1;

}

236 Data Structures and Algorithms for Game Developers

FIGURE 7.10 A screenshot of the Double Hashing demo.

HASH TABLE WITH SEPARATE CHAINING

The last type of custom hash table that will be implemented in this chapter uses sep-
arate chaining. For this we will have an array of STL list link list data structures.
Since items that collide are added to that index’s link list, we do not need to have
checks to make sure every element is checked like we did for the first two types of
hash tables (which were used to prevent infinite loops). When an element is in-
serted into the hash table, the key is hashed and that element’s push_back() function
is called to insert the item into that index’s link list. For the deletion and searching
functions those work by hashing the key and using STL list iterators to move
through that index’s link list to find the item we are looking for. Otherwise, the

remainder of the separate chaining hash table is the same as the other two types.
Since the link list can grow without affecting our hash table at each element, we
don’t need to keep track of how many items are inserted into the hash table. We
had to keep track of that before to avoid trying to insert an item into an array that
was full. Since there are no free slots, it would be a waste of CPU time to search the
array to come to that conclusion. With arrays that are in the hundreds of thousands
or millions, this can add up. In separate chaining we don’t have to worry about run-
ning out of room, unless we want to limit the number of items.

The hash table code for separate chaining is shown in Listing 7.9. Because we
are using STL link lists, the code for some functions is easier to grasp and examine
than that for the double hashing and linear probing code.

LISTING 7.9 The Entire Hash Table that Uses Separate Chaining

template<typename T>

class HashTable

{

public:

HashTable(int size) : m_size(0)

{

if(size > 0)

{

m_size = GetNextPrimeNum(size);

m_table = new list<HashItem<T> >[m_size];

}

}

~HashTable()

{

if(m_table != NULL)

{

delete[] m_table;

m_table = NULL;

}

}

bool isNumPrime(int val)

{

for(int i = 2; (i * i) <= val; i++)

{

if((val % i) == 0)

Chapter 7 Hash Tables 237

return false;

}

return true;

}

int GetNextPrimeNum(int val)

{

for(int i = val + 1; ; i++)

{

if(isNumPrime(i))

break;

}

return i;

}

void Insert(int key, T &obj)

{

HashItem<T> item;

item.SetKey(key);

item.SetObj(obj);

int hash = HashFunction(key);

m_table[hash].push_back(item);

}

void Delete(int key)

{

int hash = HashFunction(key);

list<HashItem<T> > *ptr = &m_table[hash];

typename list<HashItem<T> >::iterator it;

for(it = ptr->begin(); it != ptr->end(); it++)

{

if((*it).GetKey() == key)

{

ptr->erase(it);

break;

}

238 Data Structures and Algorithms for Game Developers

}

}

bool Find(int key, T *obj)

{

int hash = HashFunction(key);

list<HashItem<T> > *ptr = &m_table[hash];

typename list<HashItem<T> >::iterator it;

for(it = ptr->begin(); it != ptr->end(); it++)

{

if((*it).GetKey() == key)

{

if(obj != NULL)

*obj = (*it).GetObject();

return true;

}

}

return false;

}

int HashFunction(int key)

{

return key % m_size;

}

int HashFunction(string &str)

{

int hash = 0;

int i = 0;

for(i = 0; i < (int)str.size(); i++)

{

int val = (int)str[i];

hash = (hash * 256 + val) % m_size;

}

return hash;

}

Chapter 7 Hash Tables 239

int GetSize()

{

return m_size;

}

private:

list<HashItem<T> > *m_table;

int m_size;

};

On the accompanying CD-ROM is a demo application called Separate Chain-
ing in the Chapter 7 folder that demonstrates the separate chaining hash table. In
the demo application, like the Double Hashing demo, all of the real work occurs
inside the data structure, so the main source file is straightforward and is no differ-
ent than what was already seen (with the exception of different keys and values).
The main source file for the Separate Chaining demo application is shown in List-
ing 7.10. Figure 7.11 shows a screenshot of the running demo application.

240 Data Structures and Algorithms for Game Developers

FIGURE 7.11 A screenshot of the Separate Chaining demo.

LISTING 7.10 The Main Source File for the Separate Chaining Demo Application

#include<iostream>

#include”HashTable.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Hash Tables - Separate Chaining Example” << endl;

cout << “Chapter 7: Hash Tables” << endl;

cout << endl;

HashTable<int> hashTable(21);

int item = 0;

item = 142; hashTable.Insert(31, item);

item = 756; hashTable.Insert(42, item);

item = 432; hashTable.Insert(24, item);

item = 124; hashTable.Insert(51, item);

item = 786; hashTable.Insert(12, item);

// Search for inserted items.

if(hashTable.Find(31, &item))

cout << “Item: 31 has a value of “ << item << “.” << endl;

else

cout << “Item: 31 not found.” << endl;

if(hashTable.Find(84, &item))

cout << “Item: 84 has a value of “ << item << “.” << endl;

else

cout << “Item: 84 not found.” << endl;

if(hashTable.Find(99, &item))

cout << “Item: 99has a value of “ << item << “.” << endl;

else

cout << “Item: 99 not found.” << endl;

if(hashTable.Find(51, &item))

cout << “Item: 51 has a value of “ << item << “.” << endl;

else

cout << “Item: 51 not found.” << endl;

if(hashTable.Find(12, &item))

cout << “Item: 12 has a value of “ << item << “.” << endl;

else

cout << “Item: 12 not found.” << endl;

cout << “\n”;

return 1;

}

Chapter 7 Hash Tables 241

In some situations it might be better to resize the hash table than to keep allowing
link lists to get too large. This depends on many factors, especially the size of the
table, but if too many keys are hashing to the same indexes, the issues with colli-
sions might be alleviated by resizing the hash table.

NONSTANDARD HASH CONTAINERS

Hash tables are very useful data structures to have available to programmers. In the
STL there are no hash tables to use at this time. This isn’t the end of hash tables, as
many STL-compatible containers can be used that are created by different sources.
In this chapter we will look at the hash_set, hash_multiset, hash_map, and hash_
mutlimap containers that are part of the STLport. Different sources code their hash
implementations differently, so when using other hash containers not from STL-
port, which are based on the containers from Silicon Graphics, Inc. (SGI), you’ll
have to read the documentation. Appendix E provides information for download-
ing and setting up STLport in an application.

Hashed containers are associate containers. This means, among other things,
that we must specify the data type of the objects being stored, a hashing function, a
comparison function, and, optionally, the allocator.

hash_set AND hash_multiset CONTAINERS

The hash_set container allows an object being inserted into the hash table container
to be hashed (i.e., both the key and the object) and inserted. When creating a
hash_set container, we can specify the object’s data type, the hash function, a
comparison function, and an allocator (which is always optional). The hash_set
offers iterators for moving through the hash table data structure.

On the accompanying CD-ROM is a demo application called Hash Set in the
Chapter 7 folder. The main source file for the demo application is shown in Listing
7.11 and a screenshot of the demo is shown in Figure 7.12. The demo application
is a simple example of how to set up and use the container.

LISTING 7.11 The Hash Set Demo Application

#include<iostream>

#include<hash_set>

using namespace _STL;

using namespace std;

242 Data Structures and Algorithms for Game Developers

struct cmp

{

bool operator()(const char *str1, const char *str2) const

{

return strcmp(str1, str2) == 0;

}

};

void Find(const hash_set<const char*, hash<const char*>, cmp> &c,

const char *str)

{

hash_set<const char*, hash<const char*>,

cmp>::const_iterator it = c.find(str);

if(it == c.end())

cout << str << “ - was not found!” << endl;

else

cout << str << “ - was found in the hash table!” << endl;

}

int main(int args, char **argc)

{

cout << “Hash Tables - Hash Set Example” << endl;

cout << “Chapter 7: Hash Tables” << endl;

cout << endl;

hash_set<const char*, hash<const char*>, cmp> hashTable;

hashTable.insert(“Hello”);

hashTable.insert(“Goodbye”);

hashTable.insert(“So Long”);

hashTable.insert(“Take Care”);

Find(hashTable, “Test”);

Find(hashTable, “Example”);

Find(hashTable, “Hello”);

Find(hashTable, “Take Care”);

Find(hashTable, “Good Night”);

cout << endl;

return 1;

}

Chapter 7 Hash Tables 243

hash_multiset containers are useful for objects that need to be searched for
quickly. The hash_multiset is very similar to the hash_set. They both specify objects
that are also keys, and they both implement the same methods and parameters.

On the CD-ROM another demo application demonstrates using the hash_
multiset in code, which is the same as using a hash_set. This application is in the
Chapter 7 folder and is called Hash Multiset. The main source file for the Hash
Multiset demo application is shown in Listing 7.12 and a screenshot of the demo is
shown in Figure 7.13.

LISTING 7.12 The Main Source File for the Hash Multiset Demo

#include<iostream>

#include<hash_set>

using namespace _STL;

using namespace std;

struct cmp

{

bool operator()(const char *str1, const char *str2) const

{

return strcmp(str1, str2) == 0;

}

};

244 Data Structures and Algorithms for Game Developers

FIGURE 7.12 A screenshot of the Hash Set demo.

void Find(const hash_multiset<const char*,

hash<const char*>, cmp> &c, const char *str)

{

hash_multiset<const char*, hash<const char*>,

cmp>::const_iterator it = c.find(str);

if(it == c.end())

cout << str << “ - was not found!” << endl;

else

cout << str << “ - was found in the hash table!” << endl;

}

int main(int args, char **argc)

{

cout << “Hash Tables - Hash Multi-Set Example” << endl;

cout << “Chapter 7: Hash Tables” << endl;

cout << endl;

hash_multiset<const char*, hash<const char*>, cmp> hashTable;

if(hashTable.empty() == true)

cout << “The hash table is now empty.” << endl;

hashTable.insert(“Data Structures”);

hashTable.insert(“And”);

hashTable.insert(“Algorithms”);

hashTable.insert(“For Game Developers”);

cout << “The hash table has “ << hashTable.size()

<< “ items after insertions.” << endl << endl;

Find(hashTable, “Wow”);

Find(hashTable, “And”);

Find(hashTable, “Data Structures”);

cout << endl;

return 1;

}

Chapter 7 Hash Tables 245

When working with Visual Studio® .NET 2003 and higher be sure to turn off Use
Managed Extensions in the properties of the Integrated Development Environ-
ment (IDE) when compiling STLport code.

Hash_Map AND Hash_Multimap CONTAINERS

The hash_map and the hash_multimap are hashed associate containers. With the
hash_map container you can specify keys by using array subscripts and words instead
of having to call functions to insert items as was seen with the hash_set and
hash_multiset containers. For example, inserting a value val into the hash table
using the key “example” would look like the following:

Table[“example”] = val

The hash table, when using the hash_map, will create the hash item that stores
val and has the key “example” simply by using the overloaded array subscript op-
erators. This can be very useful for many things, such as a dictionary, and can make
working with the data structures very easy.

On the accompanying CD-ROM in the Chapter 7 folder is a demo application
called Hash Map. This demo application will create a hash map, of type hash_map,
and use the overloaded array subscripts to read and write elements to the data
structure. All of the hard work is done internally, and on the outside the data struc-
ture looks almost like a normal array. The main source file for the Hash Map demo
application is shown in Listing 7.13. Figure 7.14 shows a screenshot of it.

246 Data Structures and Algorithms for Game Developers

FIGURE 7.13 A screenshot of the Hash Multiset demo.

LISTING 7.13 The Demo Application for the Hash Map Demo Application.

#include<iostream>

#include<hash_map>

using namespace _STL;

using namespace std;

struct cmp

{

bool operator()(const char *str1, const char *str2) const

{

return strcmp(str1, str2) == 0;

}

};

int main(int args, char **argc)

{

cout << “Hash Tables - Hash Map Example” << endl;

cout << “Chapter 7: Hash Tables” << endl;

cout << endl;

hash_map<const char*, int, hash<const char*>, cmp> hashTable;

if(hashTable.empty() == true)

cout << “The hash table is now empty.” << endl;

hashTable[“DVD”] = 30;

hashTable[“Apple”] = 1;

hashTable[“Video Game”] = 59;

cout << “The hash table has “ << hashTable.size()

<< “ items after insertions.” << endl << endl;

cout << “DVD - “ << hashTable[“DVD”] << endl;

cout << “Apple - “ << hashTable[“Apple”] << endl;

cout << “Video Game - “ << hashTable[“Video Game”] << endl;

cout << “PS3 - “ << hashTable[“PS3”] << endl;

Chapter 7 Hash Tables 247

cout << endl;

return 1;

}

248 Data Structures and Algorithms for Game Developers

FIGURE 7.14 A screenshot of the Hash Map demo.

The hash_multimap does not use array subscripts like the hash_map container. A
hash_multimap is a container that manages an ordered key/value pair, and more
than one value can be associated with a key. A hash_multimap is similar to a multimap
in its interface. Items are inserted into the container using the value_type of the
hash_mutltimap container to pair the key and the object together when calling the
insert() function. As with the hash_multiset, the objects in the container can be
searched using iterators.

On the CD-ROM is a demo application called Hash Multimap that demon-
strates the basics of setting up and using the hash_multimap container. The demo’s
main source file is shown in Listing 7.14, and a screenshot of the demo is shown in
Figure 7.15.

LISTING 7.14 The Hash Multimap Demo’s Main Source File.

#include<iostream>

#include<hash_map>

using namespace _STL;

using namespace std;

struct cmp

{

bool operator()(const char *str1, const char *str2) const

{

return strcmp(str1, str2) == 0;

}

};

typedef hash_multimap<const char*, int, hash<const char*>,

cmp> hashType;

void Find(const hashType &hTable, const char *str)

{

cout << str << “ - “;

pair<hashType::const_iterator,

hashType::const_iterator> range = hTable.equal_range(str);

hashType::const_iterator it;

for(it = range.first; it != range.second; it++)

cout << (*it).second << “ “;

cout << endl;

}

int main(int args, char **argc)

{

cout << “Hash Tables - Hash Multi-hTable Example” << endl;

cout << “Chapter 7: Hash Tables” << endl;

cout << endl;

hashType hashTable;

if(hashTable.empty() == true)

cout << “The hash table is now empty.” << endl;

hashTable.insert(hashType::value_type(“DVD”, 30));

hashTable.insert(hashType::value_type(“Apple”, 1));

hashTable.insert(hashType::value_type(“Video Game”, 59));

Chapter 7 Hash Tables 249

cout << “The hash table has “ << hashTable.size()

<< “ items after insertions.” << endl << endl;

Find(hashTable, “DVD”);

Find(hashTable, “Apple”);

Find(hashTable, “Video Game”);

Find(hashTable, “PS3”);

cout << endl;

return 1;

}

250 Data Structures and Algorithms for Game Developers

FIGURE 7.15 A screenshot of the Hash Multimap demo.

SUMMARY

In this chapter we’ve discussed many types of hash tables and collision solvers and
implemented hash tables using linear probing, double hashing, and separate chain-
ing. We also discussed and worked with nonstandard hash table containers that are
available through the STLport. When working with hash tables the following is
important to keep in mind:

Hash tables are based on arrays, which makes item lookups fast (although col-
lisions can affect that).

It is possible to serialize hash tables that use open addressing techniques.
The load factor is the ratio of the number of items to the size of the array.
Collisions can have a negative effect on hash table performance.
Clustering is a problem in open addressing techniques.
The two types of clustering discussed in this chapter were primary clustering
and secondary clustering.
Cache misses can affect hash table performance.
A hash function needs to be fast, which fits with the overall benefit of the hash
table data structure.

In the next chapter we will revisit sorting by looking at some advanced tech-
niques. The algorithms that will be discussed each have their own strengths and
weaknesses that we will discuss in great detail.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What is the load factor?
2. What is open addressing? What are the three types that were discussed in

this chapter?
3. What is separate chaining?
4. What is linear probing?
5. What is quadric probing?
6. What is double hashing?
7. What is the primary problem that can be encountered with linear probing?

a. Primary clustering
b. Secondary clustering
c. None of the above

8. What is the primary problem that can be encountered with quadric probing?
a. Primary clustering
b. Secondary clustering
c. None of the above

9. Why is it recommended that you use a prime number as the array size
when working with double hashing and quadric probing?

10. Describe robin-hood hashing. Describe perfect hashing.
11. Double hashing suffers from primary clustering more than the other open

addressing techniques.
a. True
b. False

Chapter 7 Hash Tables 251

12. The more complex the hashing functions, the better it is.
a. True
b. False

13. Double hashing requires using the same hash function to rehash the same
key.
a. True
b. False

14. Perfect hashing is when the hash keys are known ahead of time and there
are no collisions within the table.
a. True
b. False

15. Coalesced hashing is a hybrid of open addressing and separate chaining.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Modify the Linear Probing demo application to perform quadric
probing.

Exercise 2: Implement a caching system using perfect hashing as described in this
chapter.

Exercise 3: Implement robin-hood hashing as describe in this chapter. Build off of
the Double Hashing demo application to create it.

252 Data Structures and Algorithms for Game Developers

253

Advanced Sorting8

In This Chapter

Advanced Sorting Topics
Shellsort
Partitioning
Quicksort
Radix Sort
Additional Types of Sorting

254 Data Structures and Algorithms for Game Developers

C
hapter 4 provided an introduction to sorting by examining a few straight-
forward and simple techniques. These techniques included the bubble sort,
the selection sort, and the insertion sort, as well as the merge sort, which is

a much faster sort than the other simple sorts shown in that chapter, but at the cost
of twice as much memory.

The problem with the simple sorting algorithms such as the bubble, selection,
and insertion sorts is that they are slow, mostly because of the number of compar-
isons, copies, and loop passes over the container. For small sets of data this might
not be that big a problem, but the larger N grows, the worse the performance is.
Data sets in the tens of thousands, hundreds of thousands, or millions would re-
quire different algorithms with a much more suitable speed for such high numbers.

The purpose of this chapter is to examine a number of very fast sorting algo-
rithms as well as how to implement them in code. These algorithms include the
Shellsort, the quicksort, and the radix sort. Additional algorithms discussed in this
chapter are partitioning data sets, which are used for the quicksort and will be dis-
cussed separately; a brief look at the heap sort, which will be discussed in more de-
tail in Chapter 9, Trees; the bucket sort; and the intro sort.

ADVANCED SORTING TOPICS

Sorting as quickly and efficiently as possible is very important to all types of applica-
tions, be they video games or others. For large sets of data the general amount of time
the algorithm can be expected to perform is related to the number of items already
inside of the container and, at times, how close the container is to being partially
sorted or if it is sorted in the inverted direction, which can lead to worst-case per-
formance for many algorithms such as the insertion and selection types.

The algorithms that are implemented in this chapter do not require extra mem-
ory like the merge sort does and their performance is much faster than the simple
sorts. The Shellsort operates in about the big-O of O(N * (log N)2), the quicksort
in about O(N * log N), and the radix sort generally around O(N * log N). When
compared to the simple sorts in Chapter 4, these are much faster, as those simple
sorting algorithms operated at around O(N2).

The first sorting algorithm that will be discussed and implemented is the Shell-
sort. This will be followed by a discussion of partitioning, followed by the quicksort
algorithm and then the radix sort algorithm.

SHELLSORT

The Shellsort algorithm was created by a computer scientist named Donald Shell in
the 1950s. The Shellsort algorithm is a great algorithm to use for medium-sized
data sets, but for larger sets the quicksort algorithm can outperform it. The algo-
rithm itself is based on the insertion sort but has features and modifications that
allow it to outperform the insertion sort algorithm, even though it is based on it.

The size of a data set that is considered small, medium, or large depends a lot on
the speed and memory of the machine that is running the code. What is considered
large this year might not be considered large a few years from now.

In general you can start out with the Shellsort algorithm, and if the performance is
not what you need, you can use the quicksort algorithm.

THE SHELLSORT ALGORITHM

The insertion sort requires many copies and comparisons. During the insertion sort
items are shifted (copied) linearly one element as the position for an item is being
looked for. During worst-case scenarios where the data set is in the reverse of its
sorted order, all items must be copied, moved one element at a time, and compared
for a set of N elements. As mentioned in Chapter 4, the insertion sort algorithm
works fast for data sets that are partially sorted because the number of copies is kept
low, which translates into an increase in performance.

The key idea behind the Shellsort is to minimize the number of copies to
increase performance as much as possible. The Shellsort works by performing the
insertion sort not on the entire data set but on a few widely spread elements. Dur-
ing each pass the range (gap) is reduced until all elements are in their correct posi-
tion. Figure 8.1 shows a visual representation of this process with the first three
steps of the Shellsort being operated on an array of objects.

Chapter 8 Advanced Sorting 255

FIGURE 8.1 The Shellsort.

256 Data Structures and Algorithms for Game Developers

In Figure 8.1 the elements 0, 4, and 8 are sorted using the insertion sort. Next the
elements 1, 5, and 9 are sorted and so forth. Once an entire pass has been completed
on the data set, the range is decreased and another pass is performed. This happens
until the step range is 1. The idea behind the Shellsort is to not only reduce the many
copies that are performed during the traditional insertion sort but to also get the array
close to being partially sorted, which will cause later passes to execute faster. With the
insertion sort, if, for example, the smallest element is far to the right and must be on
the far left, then the number of copies required just to move that one item is equal to
the number of elements in the entire list. If the list has 1,000 elements, then to move
that one element would require 1,000 copies. Using the Shellsort that element will be
moved over large gaps, which eliminates many of those in-between copies that are
common with the insertion sort. In Figure 8.1 notice that the items that were moved
are close to where their final position would be in a sorted container. This means that
the Shellsort partially sorts the container very quickly and continues until the container
is sorted. By performing a variable N-sort using some value, which is 4 in Figure 8.1,
we can execute the algorithm over the entire container for one pass and then decrease
the range recursively for each additional pass until the range is 1. When the range is 1,
the algorithm will translate to a traditional insertion sort that will very quickly sort all
elements into their final positions. This process is far faster than using the traditional
insertion sort alone because the Shellsort places the elements in a best-case scenario so
that during the final pass the insertion sort can quickly process it. When the range of
the algorithm reaches 1, the elements in the container are either in their final positions
or close to it, in which case the final insertion sort is extremely fast.

You can think of the Shellsort as a multipass insertion sort that works only on a
specific range of elements at a time instead of on the entire container.

The question now is how we can determine an initial range value for the Shell-
sort. In Figure 8.1 the value of 4 was used. In an actual application the range would
not be constant and would depend on the size of the array. For an array of 500
elements the range might start off at 364 and then be decreased to 121, 40, 13, 4, and
finally 1 for each additional pass. This example sequence, called the gap sequence
(also known as the interval sequence), is made up of six values, which means six
passes over the container in order to sort the elements. In this example sequence
the algorithms first look at every 3 elements that are 364 elements apart, then every
element that is 121 elements apart, and so forth until it is at 1.

There are a few ways to generate the gap sequence. In this chapter we’ll use the
Knuth method, which uses the recursive algorithm of the following to find the gap
sequence:

h = 3 * h + 1

where h starts out as 1 and keeps going until it is larger than the array. Once h is larger
than the array, the previous value is the one that starts the gap sequence. For example,
when looking at the gap sequence discussed earlier for an array size of 500, the
algorithm will start off with 1, then 4, 13, 40, 121, 364, and 1,093. Since the array has
500 elements, it can’t use 1,093, so 364 is the first choice. Once the initial gap sequence
value is known, the previous ones can be calculated on the fly, so they do not need to
be stored, which can also save memory by using the inverse algorithms of:

h = (h – 1) / 3

When it come to picking an algorithm for generating the gap sequence, the algo-
rithm either must be able to end with 1 or, when the sequence gets small enough, it
must be able to jump to 1 for the final step. The gap sequence is very important
because it will contribute to the overall performance of the Shellsort algorithm. If the
initial gap sizes are too small, more copies and comparisons might be performed
than are necessary. As the gap size approaches 1, the final pass might require more
work than it should. Using prime numbers will also improve performance, as it will
keep items sorted in a step within a pass from being sorted in another step in the same
pass (loop iteration). In general the Shellsort is faster than the simple sorts (i.e., bub-
ble, selection, and insertion) but is not generally faster than the quicksort for very
large numbers of elements. It is slightly faster than the quicksort for small sets of data.

IMPLEMENTING THE SHELLSORT

The Shellsort algorithm in this chapter will be implemented using the unordered
array class from Chapter 2. The implementation will use loops to create the gap
sequence as well as to execute the algorithm. The code will be implemented in
a function called Shellsort() (shown in Listing 8.1) that is added to the
UnorderedArray class created in Chapter 2.

LISTING 8.1 The Shellsort() Function of the Modified Unordered Array

void Shellsort()

{

assert(m_array != NULL);

T temp;

int i = 0, k = 0;

// Sequence...

int seq = 1;

Chapter 8 Advanced Sorting 257

while(seq <= m_numElements / 3)

seq = seq * 3 + 1;

while(seq > 0)

{

for(k = seq; k < m_numElements; k++)

{

temp = m_array[k];

i = k;

while(i > seq - 1 && m_array[i - seq] >= temp)

{

m_array[i] = m_array[i - seq];

i -= seq;

}

m_array[i] = temp;

}

seq = (seq - 1) / 3;

}

}

The assert() used in Listing 8.1 is for debugging purposes.

The Shellsort() function in Listing 8.1 starts off by finding the largest value in
the gap sequence that will be used as a step size in the first pass of the Shellsort
algorithm. The function moves onto the first loop, which is used to keep execution
going as long as the sequence step size is valid. Within the first loop is a nested for
and while loop pair used to partially sort a range of elements that are separated by
the step size. The while loop in this pair is used to sort the elements throughout the
step range, and the for loop is used to perform the while loop partial sorting for
all elements in the container. Once these loops finish executing, the step size is
adjusted and the entire process repeats itself until it is done.

On the CD-ROM is a demo application called Shellsort in the Chapter 8 folder.
This demo application will test that the algorithm works by creating an array of 10
random integer values. In the main source file of this demo the code sets up the
array, displays its unordered contents, sorts the array, and then displays its ordered
contents to the console window. The source code to the Shellsort demo application
is straightforward and is shown in Listing 8.2. Figure 8.2 shows a screenshot of the
demo application.

258 Data Structures and Algorithms for Game Developers

LISTING 8.2 The main() Function for the Shellsort Demo

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Shellsort Algorithm” << endl;

cout << “Chapter 8: Advance Sorting” << endl << endl;

const int size = 10;

int i = 0;

UnorderedArray<int> array(size);

for(i = 0; i < size; i++)

array.push(rand() % 100);

cout << “Before shellsort sort:”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl;

array.Shellsort();

cout << “ After shellsort sort:”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

return 1;

}

Chapter 8 Advanced Sorting 259

PARTITIONING

Partitioning is the process of splitting something into two sections. In one group
will be all items that are related based on a specific condition, and on the other side
are the remaining items. The partitioning algorithm is used as the basis for the
quicksort algorithm, and understanding the partitioning algorithm will make
learning the quicksort algorithm much easier. The sole purpose of a partition is to
split data into two sections. When a hard drive is partitioned, the memory is nor-
mally split into two sections, where one section is the new partition, which is a size
within the original memory’s size, and the second section is the modified old par-
tition whose new size is the original size minus the size of the new partition.

Outside of the quicksort algorithm there might be other times when it is useful
to partition data into two sections. Maybe a game application needs to partition
players in a game into two sections, where all players above a specific ranking level
are on one side and all players under a specific level are on the other. Or maybe
there is a game application where a partition can be used to separate online players
from offline players on a friend list so that the online players are displayed above
the offline players, which can be further partitioned to have players that are playing
the same game as the user of the application from those that are not. There are end-
less uses for partitioning, so the discussion of the algorithm here is useful for more
than just learning the quicksort algorithm.

THE PARTITIONING ALGORITHM

The partitioning algorithm starts by taking a data set that needs to be partitioned
and a condition by which it is to be split. In an array of integers, for example, the

260 Data Structures and Algorithms for Game Developers

FIGURE 8.2 A screenshot of the Shellsort demo application.

data can be partitioned into two sections, where one section is lower than the num-
ber 100 and the other section is greater than or equal to it. This number is called the
pivot value and is the condition that is used to partition the data. In the partition
algorithm the elements on both ends of the container are checked, starting with the
left end before moving to the right end. If the element on the left side is under 100,
it stays where it is. The left side loop keeps moving until it finds a value that does
not meet the condition. Once it finds it, the algorithm moves to the right end and
keeps checking values until it finds one that doesn’t meet the requirement of the
value being greater than or equal to 100. Once it finds a value on the left and one
on the right that do not meet the conditions, those two values are swapped. The
algorithm continues where it left off by moving from the left end and searching
elements until it finds another value that does not belong, and then it does the same
for the right end. Once a pair on the left and right is found, they are swapped.

This continues until the left-end index and right-end index pass one another.
At that point it can be determined that the algorithm is complete and that the point
of crossing, the point where left index equals right index, is what is known as the
pivot index. A pivot index is an index that marks the position in the array that spec-
ifies where one section ends and the other begins. When a partition occurs, the two
sections are not necessarily equal in size. A visual example of partitioning is shown
in Figure 8.3.

Chapter 8 Advanced Sorting 261

FIGURE 8.3 A visual example of partitioning.

Partitioning is not a sorting algorithm. It simply loops through both ends of a
container and swaps when necessary until all elements have been processed. The
partition is not stable, which means that the order of each group is not necessarily
the original order of the elements before the partition. Although the partitioned
data is not sorted, it is one step closer to being sorted, which we’ll look at in the
quicksort algorithm later in this chapter.

The pivot value is the value used as a condition in the partition, while the pivot
index marks the position in the container where the first section ends and the sec-
ond section begins. Remember the difference between the two.

The partition algorithm runs in big-O O(N) on average.

IMPLEMENTING PARTITIONING

Implementing the partitioning algorithm requires creating a function that can loop
through both ends of a container and swap elements when necessary. The swapping
of elements can be placed in its own function, which we’ll call SwapElements(), and
will only switch two valid elements specified by two indexes. During partitioning
the first step is to move from the left end to the right until an element is found that
needs to be swapped. Once such an element is found, a loop from the right end
does the same thing with the right side moving toward the left. When an element is
found on the right side that needs to be swapped, the two elements are swapped.
This action continues until both indexes point to the same element, which would
mean that the algorithm has processed the entire container. The element that both
the left and right are equal to is the pivot index, and this value can be returned when
the function is finished for applications that need to know where the index is. The
code added to the UnorderedArray class that allows for the container to be parti-
tioned is shown in Listing 8.3.

LISTING 8.3 The SwapElements() and Partition() Functions of the UnorderedArray
Class

template<typename T>

class UnorderedArray

{

public:

void SwapElements(int index1, int index2)

{

assert(index1 >= 0 && index1 < m_numElements);

assert(index2 >= 0 && index2 < m_numElements);

assert(m_array != NULL);

T temp = m_array[index1];

m_array[index1] = m_array[index2];

m_array[index2] = temp;

}

int Partition(T pivot)

{

return Partition(0, m_numElements – 1, pivot);

}

262 Data Structures and Algorithms for Game Developers

int Partition(int lIndex, int rIndex, T pivot)

{

int currentLeft = lIndex;

int currentRight = rIndex;

while(1)

{

while(currentLeft < rIndex &&

m_array[currentLeft] < pivot)

{

// Searching left for val bigger than pivot.

// This will break when it finds it or moves

// to the end.

currentLeft++;

}

while(currentRight > lIndex &&

m_array[currentRight] > pivot)

{

// Same as left side.

currentRight++;

}

if(currentLeft >= currentRight)

{

// Done with partition (no more to search).

break;

}

// Swap elements if we get here.

SwapElements(currentLeft, currentRight);

}

// Returns position of the pivot.

return currentLeft;

}

};

Chapter 8 Advanced Sorting 263

On the accompanying CD-ROM a demo application called Partitioning is in
the Chapter 8 folder. The purpose of this demo application is to test the code in
Listing 8.3 by creating an array of 10 random integers and partitioning them based
on the pivot value of 60. In the demo application the contents of the array are dis-
played twice: before the partition and after the algorithm’s execution. The main
source file for the Partitioning demo application is shown in Listing 8.4. Figure 8.4
shows a screenshot of the running demo application.

LISTING 8.4 The Partitioning Demo’s Main Source File

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Partitioning Algorithm” << endl;

cout << “Chapter 8: Advance Sorting” << endl << endl;

const int size = 10;

int i = 0;

int pivotValue = 60;

UnorderedArray<int> array(size);

// Insert elements and print basic stats.

for(i = 0; i < size; i++)

array.push(rand() % 100);

cout << “Array size - “ << size << “ pivot value - “

<< pivotValue << “.” << endl << endl;

// Display elements.

cout << “Before partitioning:”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

264 Data Structures and Algorithms for Game Developers

// Partition then display results.

int pivot = array.Partition(0, size - 1, pivotValue);

cout << “After partitioning (pivot index - “ << pivot << “):”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

return 1;

}

Chapter 8 Advanced Sorting 265

FIGURE 8.4 A screenshot from the Partitioning demo.

QUICKSORT

The quicksort algorithm is very popular for large data sets. It is based on the parti-
tioning algorithm and has a big-O of O(N * log N). The quicksort was developed in
1962 by C.A.R. Hoare and is among the algorithms of choice to use for very large sets
of data. In this section we will look at a straightforward implementation of the quick-
sort algorithm and an implementation that uses what is called the median-of-three.

THE QUICKSORT ALGORITHM

The quicksort algorithm works by using recursion and the partitioning algorithm
to partition data sections until the lowest level is reached. At that point the entire
data set is sorted. Recall that after a partition the data is not sorted but is partially

sorted. Continuing to partition each half, then each quarter, and so on until there
is only one element left (which means the algorithm is done) will sort the entire
data set. A visual example of the quicksort is shown in Figure 8.5.

266 Data Structures and Algorithms for Game Developers

FIGURE 8.5 The quicksort.

The quicksort algorithm can be described in a few steps. First, pick a pivot
value and partition the array into two sections. The pivot value can simply be the
center element in this example. The next step is to recursively partition the two
sections further and further until there is only one element left, which means the
algorithm is complete. As shown in Figure 8.5, this will eventually lead to a sorted
container. The key to the quicksort algorithm is choosing a good pivot value. Sim-
ply choosing the center value, as shown in the example in Figure 8.5, will not always
lead to the most balanced partitions. In the next section we will discuss the imple-
mentations of the quicksort algorithm in two demo applications.

IMPLEMENTING THE QUICKSORT

To implement the quicksort algorithm we will use recursion and the partition func-
tion. The quicksort recursive function will be simple in that it will always use the
right-most element (the last element) as the pivot value in the partition. Once the
pivot index from this partition is returned, the quicksort recursive function is called
twice, once to partition the left section and once for the right. Since the right-most
element is always being used, we must add a function to swap indexes in the parti-
tioning function. For an example, take a look at Figure 8.6. After a partition, since
the right-most element is used as the pivot value, it will always need to be swapped
with the element at the pivot index to ensure that the partition has created two valid
sections. The quicksort algorithm code is shown in Listing 8.5, in which the source
code is added to the UnorderedArray class from Chapter 2.

FIGURE 8.6 The need to swap the end element
with the element at the pivot index after a partition.

LISTING 8.5 The Quicksort Algorithm Added to the UnorderedArray class

template<typename T>

class UnorderedArray

{

public:

void SwapElements(int index1, int index2)

{

assert(index1 >= 0 && index1 < m_numElements);

assert(index2 >= 0 && index2 < m_numElements);

assert(m_array != NULL);

T temp = m_array[index1];

m_array[index1] = m_array[index2];

m_array[index2] = temp;

}

void Quicksort()

{

QuickSort(0, m_numElements - 1);

}

private:

void QuickSort(int lVal, int rVal)

{

if((rVal - lVal) <= 0)

return;

int pivotIndex = Partition(lVal, rVal,

m_array[rVal]);

QuickSort(lVal, pivotIndex - 1);

QuickSort(pivotIndex + 1, rVal);

}

int Partition(int lIndex, int rIndex, T pivot)

{

int currentLeft = lIndex;

int currentRight = rIndex - 1;

Chapter 8 Advanced Sorting 267

while(1)

{

while(m_array[currentLeft] < pivot)

{

// Searching left for val bigger than pivot.

// This will end when it finds it.

currentLeft++;

}

while(currentRight > 0 &&

m_array[currentRight] > pivot)

{

// Same as left side.

currentRight—;

}

if(currentLeft >= currentRight)

{

// Done with partition (no more to search).

break;

}

// Swap elements if we get here.

SwapElements(currentLeft, currentRight);

}

SwapElements(currentLeft, rIndex);

// Returns position of the pivot.

return currentLeft;

}

};

In Listing 8.5 there is a function used to swap elements, a public Quicksort()
function to sort an entire array, a recursive private Quicksort() function that does
the work, and a partitioning function. The partitioning function is private since it
is only used by the recursive Quicksort() function. It has been modified to have an
extra swap for the right-most element and the one at the pivot index to ensure two
value sections. Understanding the quicksort algorithm requires an understanding
of the partitioning algorithm. The quicksort is basically a recursive set of partition-
ing algorithms that are performed until the entire container is sorted.

268 Data Structures and Algorithms for Game Developers

Recursion is one option for implementing these functions, but you could also use an
iterative approach using loops. Loops are harder to implement and are often much
less intuitive.

On the accompanying CD-ROM is an example demo application called Quick-
sort that will demonstrate the use of the code in Listing 8.5. The demo application will
create an integer array, populate it with random integers, display the contents of the
container before the sort, sort the container using the quicksort algorithm, and dis-
play the contents of the container after the sorting algorithm has been processed. The
main source file for the Quicksort demo application is shown in Listing 8.6. Figure 8.7
shows a screenshot of the demo application.

LISTING 8.6 The Main Source File for the Quicksort Demo

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Quicksort Algorithm” << endl;

cout << “Chapter 8: Advance Sorting” << endl << endl;

const int size = 10;

int i = 0;

UnorderedArray<int> array(size);

// Insert elements and print basic stats.

for(i = 0; i < size; i++)

array.push(10 + rand() % 90);

// Display elements.

cout << “Before Quicksort:”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

Chapter 8 Advanced Sorting 269

// Sort then display results.

array.Quicksort();

cout << “ After Quicksort:”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

return 1;

}

270 Data Structures and Algorithms for Game Developers

FIGURE 8.7 A screenshot from the Quicksort demo.

QUICKSORT: MEDIAN-OF-THREE

It is important to pick a good pivot value for the partitioning algorithm. In the
Quicksort demo the right-most element was chosen as the pivot value each time.
This was good in the sense that it was a fast and simple process of picking a pivot
value, but since the data in the element is random, this can lead to some bad pivot
value choices. The key to coming up with a pivot value is to make the process as
quick as possible to allow the overall performance of the quicksort algorithm to be
as fast as possible. Examining all of the elements in a container just to choose the
best pivot value is not practical and could not only hurt performance but could
even take longer than the quicksort algorithm itself.

In this section we will look at what is known as the median-of-three. This
method is used to pick pivot values that have the chance of being better than always
going with the right-most element. In the median-of-three the first, middle, and

last elements in the container are examined and the median of the three (the value
that is in the middle) is used as the pivot value. As an example, Figure 8.8 shows a
visual representation of picking the median-of-three numbers. Using this method
will not guarantee that the best or even a good pivot value is chosen, but it can be a
better option than always using the element at the end of the container regardless
of its value. When checking for the median-of-three values, those elements can
also be sorted among themselves. This will ensure that the left-most and right-
most elements are already on their proper sides.

Chapter 8 Advanced Sorting 271

FIGURE 8.8 Median-of-three.

The problem with the median-of-three is that you can’t use it on sections with
less than three items, and the quicksort algorithm wouldn’t be efficient enough to
use it on small sections, whose number depends on the computer’s CPU power,
memory, and so on. In such a case another sort can be used as a fallback to the
quicksort, such as the selection or insertion sort. For the implementation we are
about to look at, we will fall back to the insertion sort for data sections that are too
small to further partition using the median-of-three.

Implementing the median-of-three in the quicksort algorithm will require us to
update the Quicksort() recursive function. This function will calculate the median
as well as swap the elements as necessary to at least partially sort those three
elements. The partitioning function and the functions for the insertion sort are the
same as those we’ve seen before. In the recursive Quicksort() function if the
elements that are trying to be sorted are smaller than the macro QUICKSORT_CUTOFF,
it will fall back to the insertion sort. The cutoff value is 4 in the upcoming demo
(Listing 8.7) because the array is only 10 elements in size. In practice a value of
9 would probably be good to use. The median-of-three modified code for the
quicksort algorithm is shown in Listing 8.7.

LISTING 8.7 Implementing the Quicksort Using the Median-of-Three

#define QUICKSORT_CUTOFF 4

template<typename T>

class UnorderedArray

{

public:

void InsertionSort()

{

InsertionSort(0, m_numElements - 1);

}

void SwapElements(int index1, int index2)

{

assert(index1 >= 0 && index1 < m_numElements);

assert(index2 >= 0 && index2 < m_numElements);

assert(m_array != NULL);

T temp = m_array[index1];

m_array[index1] = m_array[index2];

m_array[index2] = temp;

}

void Quicksort()

{

QuickSort(0, m_numElements - 1);

}

private:

void QuickSort(int lVal, int rVal)

{

if((rVal - lVal + 1) < QUICKSORT_CUTOFF)

{

InsertionSort(lVal, rVal);

return;

}

int center = (lVal + rVal) / 2;

if(m_array[lVal] > m_array[center])

SwapElements(lVal, center);

272 Data Structures and Algorithms for Game Developers

if(m_array[lVal] > m_array[rVal])

SwapElements(lVal, rVal);

if(m_array[center] > m_array[rVal])

SwapElements(center, rVal);

int pivotIndex = Partition(lVal, rVal, center);

QuickSort(lVal, pivotIndex - 1);

QuickSort(pivotIndex, rVal);

}

int Partition(int lIndex, int rIndex, int pivot)

{

while(1)

{

while(m_array[++lIndex] < m_array[pivot]);

while(m_array[—rIndex] > m_array[pivot]);

if(lIndex >= rIndex)

break;

SwapElements(lIndex, rIndex);

}

// Returns position of the pivot.

return lIndex;

}

void InsertionSort(int lVal, int rVal)

{

assert(m_array != NULL);

T temp;

int i = 0;

Chapter 8 Advanced Sorting 273

for(int k = lVal + 1; k <= rVal; k++)

{

temp = m_array[k];

i = k;

while(i > lVal && m_array[i - 1] >= temp)

{

m_array[i] = m_array[i - 1];

i—;

}

m_array[i] = temp;

}

}

};

On the accompanying CD-ROM is a demo application called Quicksort 2 that
demonstrates the median-of-three code created in Listing 8.7. The main source file
for the demo application is shown in Listing 8.8, and a screenshot of the demo is
shown in Figure 8.9.

LISTING 8.8 The Main Source File for the Quicksort 2 Demo

#include<iostream>

#include”Arrays.h”

using namespace std;

int main(int args, char *arg[])

{

cout << “Median-Of-Three Quicksort Algorithm” << endl;

cout << “Chapter 8: Advance Sorting” << endl << endl;

const int size = 10;

int i = 0;

UnorderedArray<int> array(size);

// Insert elements and print basic stats.

for(i = 0; i < size; i++)

array.push(10 + rand() % 90);

274 Data Structures and Algorithms for Game Developers

// Display elements.

cout << “Before Quicksort:”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

// Sort then display results.

array.Quicksort();

cout << “ After Quicksort:”;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

return 1;

}

Chapter 8 Advanced Sorting 275

FIGURE 8.9 A screenshot from the Quicksort 2 demo.

RADIX SORT

The sorting algorithms we’ve seen in this book up to this point work by comparing
elements in the sorting process. Along with comparisons, the algorithms discussed up
to this point also have a number of copying operations that take place throughout the

algorithm. When it comes to sorting, not all algorithms need to do comparisons. In
this section we will look at a sorting algorithm that can quickly sort the elements in a
container without performing comparisons of internal elements.

THE RADIX SORT ALGORITHM

The radix sort creates a number of internal containers that it uses to perform its job.
Let’s start with an example. Say we want to sort numbers that use the decimal
system. In the decimal system we have the ones position, the tens position, the
hundreds position, and so forth. Each of these positions can have a value that is a
0, 9, or some number in between. If we have 10 containers, with the first container
being 0, the second being 1, and so on, we can use those 10 containers for the sort-
ing process.

The algorithm in this example would first take the ones position of every
element and use that value as an array index into the list of containers we have
standing by for the algorithm. Once all elements have been inserted into one of
the containers, we have effectively ordered the ones position of all elements in the
container. The containers in question can be something like a link list, queue, and
so on (see Figure 8.10). So far there are no comparisons. A modulus operator can
allow us to extract the ones position from a number that is used directly as an array
index (index into an array of secondary containers).

276 Data Structures and Algorithms for Game Developers

FIGURE 8.10 Sorting the ones position.

Once the elements have been placed in the ones position container they belong
to, we can remove all elements from each of the containers, starting with the con-
tainer for 0 and moving toward the container for 9, and place those values back into
the original array, which will give us an array with all elements sorted by the ones
position. The next pass would do the same thing for the tens position, then the
hundreds position, and so on until all necessary decimal positions have been

processed. If the biggest number in the array is 100, the most times we’ll have to do
this is three since the algorithm would have to be performed for the ones, tens, and
hundreds positions. This is shown in Figure 8.11.

Chapter 8 Advanced Sorting 277

FIGURE 8.11 Sorting using the radix sort
for six elements.

When all positions have been processed, we will end up with a completely
sorted array of numbers. There are no comparisons, and the only copying that oc-
curs is when the values from the secondary containers are being transferred back to
the original array. In practice this can lead to a very fast sort.

The radix sort can be used for other things such as numbers in the binary
system, hexadecimal system, letters in the alphabet, and so forth. Although there is
copying going on, it is pretty minimal when compared to some of the sorts we saw
earlier in the book. Also, the algorithm requires temporary, secondary containers to
be created to hold the values for each pass. Using a link list allows the elements to
grow and shrink as needed, but additional memory is needed, as well as various
memory allocations and de-allocations.

IMPLEMENTING THE RADIX SORT

On the accompanying CD-ROM in the Chapter 8 folder a demo application called
Radix Sort implements the radix sort. The demo application is a simple one to help
make it easier to understand what is going on. First we will look at the function used
to perform the radix sort algorithm, called RadixSort().

The RadixSort() function creates the secondary containers that it will need. For
the demo application we will be sorting numbers in the decimal system, so 10 con-
tainers will be needed for numbers 0 through 9. The next part of the function loops
through each decimal position and performs two internal loops that do the hard work

of the algorithm. The first inner loop adds each element to a container based on the
value of the current decimal position. The second loop removes each of the elements
of each container and places the values back onto the original array. That’s it. Once this
function has executed, the array is completely sorted. The RadixSort() function is
show in Listing 8.9. The macro MAX_POSITIONS is the number of decimal positions the
demo uses, is this case two, because the numbers being sorted range from 10 to 99,
which means we will only be looking at the ones position and the tens position.

LISTING 8.9 A Function to Perform the Radix Sort on Integers

#define BASE 10

#define MAX_POSITIONS 2

void RadixSort(int *array, int size)

{

// Base index, radix index, counter.

int b = 0, r = 0, i = 0;

// Container conter, base factor.

int index = 0, factor = 0;

// List of containers for the sort.

deque<int> qList[BASE];

// Place in containers then take them off for every base.

for(b = 1, factor = 1; b <= MAX_POSITIONS; factor *= BASE, b++)

{

for(r = 0; r < size; r++)

{

index = (array[r] / factor) % BASE;

qList[index].push_back(array[r]);

}

for(r = 0, i = 0; r < BASE; r++)

{

while(qList[r].empty() != true)

{

array[i++] = qList[r].front();

qList[r].pop_front();

}

}

}

}

278 Data Structures and Algorithms for Game Developers

The main source file for the Radix Sort demo application creates an array of
integers, fills it in with random data that range between 10 and 99, displays the
array’s contents before the sort, sorts the array, and then displays the contents of the
array after the sort. The main source file for the Radix Sort is straightforward and
uses the code in Listing 8.9. The main() function of the Radix Sort demo application
is shown in Listing 8.10. Figure 8.12 shows a screenshot of the demo application.

LISTING 8.10 The Main Source File for the Radix Sort Demo

int main(int args, char **argc)

{

cout << “Radix Sort Example” << endl;

cout << “Chapter 8: Advanced Sorting” << endl;

cout << endl;

const int size = 10;

int array[size];

int i = 0;

// Populate array.

for(i = 0; i < size; i++)

array[i] = 10 + rand() % 89;

// Display array contents.

cout << “Array contents before sort: “;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl;

// Radix sorting.

RadixSort(array, size);

// Display array contents.

cout << “ Array contents after sort: “;

for(i = 0; i < size; i++)

cout << “ “ << array[i];

cout << endl << endl;

return 1;

}

Chapter 8 Advanced Sorting 279

280 Data Structures and Algorithms for Game Developers

FIGURE 8.12 A screenshot from the Radix Sort demo.

THE BIT RADIX SORT

The bit radix sort can be used to sort bits in an array instead of a series of bytes as was
done with the integers in the Radix Sort demo application. The bit radix sort only
requires two containers since binary values are either a 0 or a 1. When extracting the
values, instead of using the modulus operator, we use the bit-wise operator &.

The main thing to consider is the number of elements that would be created in
the secondary containers. A 32-bit value such as an integer is made up of 32 bits.
Even with a small array of 100 elements, that would be 32 * 100 elements for each
container, which is 3,200. For link lists that expand and shrink a lot, this can lead
to many memory allocations and de-allocations. Using memory heaps and manual
memory management can improve this, but the topic of memory management is
a complex subject. If larger bits are used, such as 64, the amount of overhead can
increase considerably and can degrade performance, especially with large arrays in
the thousands, hundreds of thousands, and so forth.

ADDITIONAL TYPES OF SORTING

Many more types of sorting algorithms exist in the world of computer program-
ming. Each algorithm has strengths and weaknesses that depend highly on the sit-
uations in which they are used. In this section we will talk a little about the heap sort
algorithm, the introspective sort algorithm, and the bucket sort algorithm. Other
sorting algorithms are the bead sort, the bidirectional bubble sort, the comb sort,
and a host of others.

HEAP SORT

The heap sort algorithm is a general-purpose sorting algorithm that uses a heap
data structure to sort elements in a container. The heap is a data structure that we
will look at in the next chapter. When items are inserted into the heap data struc-
ture, the minimum values (or maximum values, depending on the implementa-
tion) can be quickly retrieved. If the values can be extracted from the heap in order,
then a sort can occur quickly. For example, if we take the elements in an array and
add them to a heap, we can extract the values from the heap and place them back
into the array sorted. An illustration of the heap sort is shown in Figure 8.13. Using
a heap data structure requires additional memory for the algorithm, but it is fast
and can compete with the quicksort seen earlier in this chapter with a big-O of O(N
log N). The heap sort and the heap data structure will be examined in more detail
in Chapter 9, Trees.

Chapter 8 Advanced Sorting 281

FIGURE 8.13 The heap sort.

INTROSPECTIVE SORT

The introspective sort (intro sort for short) is another general-purpose sorting
algorithm. The intro sort starts with a quicksort algorithm and then it switches to
a heap sort once the recursion depth reaches a certain value. The worst case for the
intro sort is big-O O(N log N). The combination of the quicksort and the heap sort
can allow for a very fast combination much like how the Shellsort modified the tra-
ditional insertion sort and improved its speed drastically.

BUCKET SORT

The bucket sort, also known as the bin sort, is a sorting algorithm that is based on
partitioning, much like the quicksort. The bucket sort works by partitioning an
array into a finite number of sections (buckets). Elements of the container are
added to the buckets they belong to, and each bucket is sorted separately. For ex-
ample, a container with 100 elements can have 10 buckets, with the first bucket
being for numbers 0 through 9, the second bucket being for numbers 10 through
19, and so forth. By sorting each of these smaller buckets separately, an entire con-
tainer can be sorted. Buckets used in this manner are similar to the containers we
used for the radix sort.

SUMMARY

This chapter covered a few advanced sorting algorithms that can be very useful in
general applications and game development. The algorithms discussed included the
Shellsort, the quicksort, the radix sort, the heap sort, the intro sort, and partitioning.

In the next chapter we’ll look at the heap sort in more detail. Also in the next
chapter we’ll be looking at trees in general, and specifically binary trees, before
moving onto more tree data structures and algorithms. Trees are used a lot in ap-
plication development and in various techniques in game development, which
makes them very important topics to cover in this book.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. Who invented the Shellsort?
2. What sorting algorithm is the Shellsort based upon?

a. Bubble sort
b. Selection sort
c. Insertion sort
d. Quicksort
e. None of the above

3. What is the range of values used as step sizes called?
a. Step sequence
b. Gap sequence
c. Size sequence
d. None of the above

282 Data Structures and Algorithms for Game Developers

4. Why is the Shellsort faster than the insertion sort?
5. The Shellsort has a big-O of:

a. O(N)
b. O(N2)
c. O(log N)
d. O(N * log N)
e. O(N * (log N)2)
f. None of the above

6. Using an array size of 1,000, what would be the first step size in the gap se-
quence using the Shellsort (using the Knuth method)?
a. 364
b. 512
c. 121
d. 789
e. None of the above

7. What is the partition algorithm?
8. What is the big-O for partitioning?

a. O(1)
b. O(N)
c. O(N2)
d. O(log N)
e. O(N * log N)
f. None of the above

9. What is the pivot value?
10. What is the pivot index?
11. Partitioning is an algorithm that what other algorithm is based on?

a. Shellsort
b. Heap sort
c. Intro sort
d. Quicksort
e. Radix sort
f. None of the above

12. The quicksort has a big-O of:
a. O(N)
b. O(N2)
c. O(N * log N)
d. O(N * (log N)2)
e. None of the above

13. What is the median-of-three when talking about the quicksort?

Chapter 8 Advanced Sorting 283

14. The quicksort should be used for medium-sized data sets, while the Shell-
sort should be used for large data sets.
a. True
b. False

15. The quicksort is based on the insertion sort.
a. True
b. False

16. What is the radix sort?
17. The radix sort has a big-O of:

a. O(N)
b. O(N2)
c. O(N * log N)
d. O(N * (log N)2)
e. None of the above

18. How many containers does a bit radix sort use?
19. The radix sort is based on the quicksort.

a. True
b. False

20. The radix sort performs on average half the number of swaps (copying two
elements) as there are elements in the container.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Create an application that takes an array of players and sorts them
based on whether they are online or offline. Create a gamer (player) class that stores
the player’s gamer name and a boolean flag for whether or not they are online.

Exercise 2: Implement the bit radix sort algorithm based on the information dis-
cussed in this chapter.

Exercise 3: Implement the intro sort algorithm based on the information discussed
in this chapter.

Exercise 4: Implement the bucket sort using the information learned from the
partitioning algorithm and from the radix sort.

284 Data Structures and Algorithms for Game Developers

285

Trees9

In This Chapter

Introduction to Trees
Tree Example
Binary Trees
k-dimensional Trees
Additional Types of Trees

286 Data Structures and Algorithms for Game Developers

T
hroughout this book we’ve looked at data structures that create lists of ele-
ments using an array or using a chain of pointers. Each of these data structures
has their strengths and weaknesses depending on how they are used. Data

structures based on arrays often allow for random-access, fast searching with ordered
data and fast insertions in unordered containers but it is expensive to increase and
decrease the container’s size, insert data in order, and so forth. Data structures based
on link chains such as the link list allow for fast insertions, deletions, and expansion
and shrinkage of the container but do not offer random access to the elements and are
also slow to search.

In this chapter we will talk about data structures that are trees. Trees can be
used for maintaining a hierarchy of data, and some types of trees also offer fast
searches, fast insertions, fast deletions, and fast resizing and can store ordered data
easily. In this chapter we’ll be looking at the following types of tree:

General trees
Binary trees
kd-trees

We’ll also discuss other tree data structures in this and the next chapter, including:

B-trees
2-3 trees
2-3-4 trees
AVL trees
Red-black trees
Heaps

In the following chapters we’ll discuss heaps (Chapter 10, Heaps), graphs and
weighted graphs (Chapter 11, Graphs). We’ll also use trees in various ways in
Chapter 13, Scene Management, and Chapter 14, Data Compression, so an under-
standing of them is very important. Trees are used throughout game and general
application development in many different ways, a few of which will be discussed
throughout the remainder of this book.

The STL does not have general-purpose trees.

INTRODUCTION TO TREES

A tree in computer science is a data structure that forms some kind of meaningful
hierarchy. Trees start off with what is called the root. The root can be thought of as

the first node in a link list in the sense that it is the starting point of the data struc-
ture’s container. A tree is made up of a hierarchy of nodes that are connected by
what are called edges. The edges, as far as C++ is concerned, are abstract and are
represented by pointers that connect to other nodes, similar to a link list data struc-
ture. A visual example of a tree data structure is shown in Figure 9.1.

Instead of using pointers to connect nodes, indexes can be used. This is done in trees
that are implemented using arrays instead of using connecting pointers in C++.

The nodes of a singly linked list are connected by a one-directional edge that is rep-
resented by the next pointer.

Chapter 9 Trees 287

FIGURE 9.1 A visual representation of a tree.

A tree is a type of graph, and we’ll discuss graphs in more detail in Chapter 11,
Graphs. In link lists nodes are associated with one another using the next and pre-
vious pointers. These pointers have no special meaning other than acting as links
that keep the chain intact. In trees the relationships between nodes often take on
more meaning. We’ll discuss more on the different parts of a tree in the following
section.

PARTS OF TREES

Which type of tree we are talking about depends on its parts. In general a tree is made
up of nodes and edges. The edges in a tree can be any means of connecting one node
to another. Connecting nodes can be indexes or pointers. The nodes are subcontain-
ers that hold the data and edges. The relationship between nodes is a parent-child
relationship. An easy way to think of a tree data structure is to imagine a family tree
in which the nodes are the members of the family, the edges are the branches that
connect family members, and the tree is organized by parents, children, and siblings.
See Figure 9.2 for an example.

288 Data Structures and Algorithms for Game Developers

In the family tree in Figure 9.2 each generation is a different level. For example,
the root of the tree is the first level, which we’ll call person A. The nodes that make
up the root’s children are level 1, with the mother on the left and the father on the
right. The nodes that make up the root’s level 2 nodes can be the grandparents on
both sides of the family, and so forth. The only major difference between general
trees and a family tree is that a node’s subnodes are the children, while in the ex-
ample in Figure 9.2 they are the parents.

Other terms used to describe the parts of a tree include the following:

Leaf nodes
Keys
Traversing
Parent nodes

A leaf node is a type of node that has no children nodes attached to it, while a
leafless node is a node with one or more children attached.

A key is used to determine how nodes are to be inserted into a tree. Not all trees
use keys, but some do, which we’ll see first with binary trees. A key can be a sepa-
rate object or it can be the object itself. For example, in the STL set the key was used
as the object.

Traversing is the process of moving through the nodes of the tree, which is nor-
mally done to perform some set of algorithms on the tree. The order of traversal is
either in-order, pre-order, or post-order.

A parent node is like the previous node pointer in a link list in the sense that it
is the node that the current node is attached to. The only node that does not have
a parent is the root node. Keeping track of a parent node is not necessary but could
be helpful for some algorithms.

Sibling nodes are nodes that share the same parent node.

FIGURE 9.2 A family tree.

TYPES OF TREES

The topic of trees is a broad one in computer science. There are many different
kinds of tree, each of which serves a different general purpose. Among the trees that
will be discussed and implemented throughout the remainder of this book are the
following:

General hierarchical trees
Binary trees
kd-trees
Heaps
Scene graphs (graphs used to store scene information in a game)
Binary space partitioning (BSP) trees
Quad trees
Octrees (three-dimensional versions of the quad tree)

We’ll also discuss the following types of tree data structures later in this chapter
and throughout the remainder of this book:

Red-black trees
AVL trees
2-3 trees
2-3-4 trees
B-trees
Potential visibility sets
Portals and sectors

TREE EXAMPLE

In this section we are going to implement a simple tree data structure using the
information discussed so far. This data structure will allow for any number of
children per node. To accomplish this we can create a node class that has both a
child pointer and a sibling pointer. The child pointer is used to point to the first
child node, while any additional children of a node can be accessed through the
sibling pointer of the first child and so on, thus creating a link list. A visual repre-
sentation of this is shown in Figure 9.3.

In this example we will use a node for the entire tree and we will link nodes of
subtrees to it. We could have also created a tree class along with a node class, but that
would complicate things, as you’ll see soon. The first section of the node class is
shown in Listing 9.1, where there is a constructor and a destructor. The constructor

Chapter 9 Trees 289

sets the default values for each of the members, while the destructor deletes any
allocated memory. In this example we will assume the nodes store a single object,
which will be an integer as a way to have something to print out during the exam-
ple’s demo application later on.

The integer object in the node class for the example tree data structure will serve as
a simple key that has no other use other than being displayed to the console win-
dow and to be used during the searching algorithm we will look at. This is just a
simple example.

LISTING 9.1 The Constructor and Destructor of the Node Class

class Node

{

public:

Node(int obj) : m_object(obj), m_next(NULL),

m_prev(NULL), m_child(NULL)

{

cout << “Node created!” << endl;

}

~Node()

{

m_prev = NULL;

if(m_child != NULL)

delete m_child;

290 Data Structures and Algorithms for Game Developers

FIGURE 9.3 The node
class we will create for the
first tree example.

if(m_next != NULL)

delete m_next;

m_child = NULL;

m_next = NULL;

cout << “Node deleted!” << endl;

}

private:

int m_object;

Node *m_next, *m_prev, *m_child;

};

A node needs to be able to add a child and a sibling. When adding a child node,
there are two cases that can exist using the setup we have so far. There is either no
children, in which case we would allocate the child pointer to the node that is being
attached, or there is a child already, in which case we will call a function to add a
sibling to that already-existing child node. Adding a sibling is similar in that there
are either no siblings, which would mean we would allocate the sibling pointer to
the node that is being added, or there is already a sibling, so we would call the func-
tion to add a sibling to that node, which will keep being called until we reach the
end of the sibling list. This process for adding a sibling is the same as adding a node
to the end of a link list. The functions we’ll create for both of these operations are
called AddChild() and AddSibling(), both of which are shown in Listing 9.2.

LISTING 9.2 The AddChild() and AddSibling() Functions

class Node

{

public:

void AddChild(Node *node)

{

if(m_child == NULL)

m_child = node;

else

m_child->AddSibling(node);

}

void AddSibling(Node *node)

{

Node *ptr = m_next;

Chapter 9 Trees 291

if(m_next == NULL)

{

m_next = node;

node->m_prev = this;

}

else

{

while(ptr->m_next != NULL)

ptr = ptr->m_next;

ptr->m_next = node;

node->m_prev = ptr;

}

}

};

The last two functions we’ll add to the example node class for the example
general tree data structure are a function to display from the current node down-
ward and a function to search for a value. The displaying function, called
DisplayTree(), is for output purposes only for the upcoming demo application.
The function will work by displaying the value of the integer member using
std::cout and then calling the DisplayTree() function on all siblings and children
that are attached to the node. This will keep occurring until all attached nodes have
been displayed.

The searching function is a simple function used to search from the current
node downward by checking all children and across the node by checking all sib-
lings until the entire tree has been searched, which would mean the object was not
found, or until it finds what it is looking for. The searching function works like the
DisplayTree() function, with the exception that we start off by testing if the key we
are searching for matches the key of the current node. If it does, the function will
return true, or else it will check all children and siblings until it either reaches the
end of the tree or finds the value. The DisplayTree() and Search() functions are
shown in Listing 9.3.

LISTING 9.3 The DisplayTree() and Search() Functions

class Node

{

public:

void DisplayTree()

{

cout << m_object;

292 Data Structures and Algorithms for Game Developers

if(m_next != NULL)

{

cout << “ “;

m_next->DisplayTree();

}

if(m_child != NULL)

{

cout << endl;

m_child->DisplayTree();

}

}

bool Search(int value)

{

if(m_object == value)

return true;

if(m_child != NULL)

{

if(m_child->Search(value) == true)

return true;

}

if(m_next != NULL)

{

if(m_next->Search(value) == true)

return true;

}

return false;

}

};

One thing to note about the searching function from Listing 9.3 is that the
search is slow. This example of a general tree is not a search tree built for speed. For
a fast searching algorithm we could use other types of trees such as the kd-tree or
the binary tree, which we’ll look at in the upcoming sections of this chapter. Be-
cause there is no way to organize the data to the point where a searching algorithm
can quickly traverse through the data structure, we are left with a linear approach.
As mentioned earlier, not all trees are search trees. In Chapter 13 we’ll look at data
structures such as the scene graph, which is not a search tree and can be built using
the approach that is implemented by this general example tree.

Chapter 9 Trees 293

A scene graph is a graph that describes the hierarchy relationship of a virtual scene.

On the accompanying CD-ROM a demo application called Simple Tree in the
Chapter 9 folder demonstrates the creation of a simple tree data structure using the
code discussed so far. The demo application will create a subtree, create a root
node that will act as the starting point for the main tree, add the subtree as a child
to the root node, and add a few additional children to the root node. The node cre-
ation will look like the illustration in Figure 9.4.

294 Data Structures and Algorithms for Game Developers

FIGURE 9.4 The nodes of the Simple Tree demo application.

In Figure 9.4 the subtree holds what will be the grandchildren to the root node,
and the subtree itself is a child node. The root node also has additional children,
which makes the root’s children nodes 2, 3, and 4 (with 1 being the root node).
Nodes 5 and 6 are the root node’s grandchildren, the children of node 3. Because
of the nature of the tree that is being created, we create subtrees and bind them to-
gether to create the one larger tree. The entire Node class for the Simple Tree demo
application is shown in Listing 9.4.

LISTING 9.4 The Node Class for the Simple Tree Demo Application

class Node

{

public:

Node(int obj) : m_object(obj), m_next(NULL),

m_prev(NULL), m_child(NULL)

{

cout << “Node created!” << endl;

}

~Node()

{

m_prev = NULL;

if(m_child != NULL)

delete m_child;

if(m_next != NULL)

delete m_next;

m_child = NULL;

m_next = NULL;

cout << “Node deleted!” << endl;

}

void AddChild(Node *node)

{

if(m_child == NULL)

m_child = node;

else

m_child->AddSibling(node);

}

void AddSibling(Node *node)

{

Node *ptr = m_next;

if(m_next == NULL)

{

m_next = node;

node->m_prev = this;

}

else

{

while(ptr->m_next != NULL)

ptr = ptr->m_next;

ptr->m_next = node;

node->m_prev = ptr;

}

}

Chapter 9 Trees 295

void DisplayTree()

{

cout << m_object;

if(m_next != NULL)

{

cout << “ “;

m_next->DisplayTree();

}

if(m_child != NULL)

{

cout << endl;

m_child->DisplayTree();

}

}

bool Search(int value)

{

if(m_object == value)

return true;

if(m_child != NULL)

{

if(m_child->Search(value) == true)

return true;

}

if(m_next != NULL)

{

if(m_next->Search(value) == true)

return true;

}

return false;

}

private:

int m_object;

Node *m_next, *m_prev, *m_child;

};

296 Data Structures and Algorithms for Game Developers

In the main() function of the Simple Tree demo application, once the nodes
have been created and combined into one tree, the demo application displays all
levels of the tree starting with the root node by calling DisplayTree(). This function
will list, line by line, each generation of the tree. The first generation is the root
node; the second generation is nodes 2, 3, and 4; and the third generation is nodes
5 and 6. Once complete, the demo application tests the Search() function to see if
it can find a node with the key 5 and one with the key 9. The main source file for
the Simple Tree demo application is shown in Listing 9.5, and a screenshot of the
running demo application is shown in Figure 9.5.

LISTING 9.5 The main() Function of the Simple Tree Demo

int main(int args, char *arg[])

{

cout << “Simple Tree Data Structure” << endl;

cout << “Chapter 9: Trees” << endl << endl;

// Manually create the tree...

Node *root = new Node(1);

Node *subTree1 = new Node(3);

root->AddChild(new Node(2));

subTree1->AddChild(new Node(5));

subTree1->AddChild(new Node(6));

root->AddChild(subTree1);

root->AddChild(new Node(4));

cout << endl;

// Display the tree...

cout << “Tree contents by level:” << endl;

root->DisplayTree();

cout << endl << endl;

// Test seaching...

cout << “Searching for node 5: “;

Chapter 9 Trees 297

if(root->Search(5) == true)

cout << “Node Found!” << endl;

else

cout << “Node NOT Found!” << endl;

cout << “Searching for node 9: “;

if(root->Search(9) == true)

cout << “Node Found!” << endl;

else

cout << “Node NOT Found!” << endl;

cout << endl;

// Will delete entire tree...

delete root;

cout << endl << endl;

return 1;

}

298 Data Structures and Algorithms for Game Developers

FIGURE 9.5 A screenshot from the Simple Tree demo.

BINARY TREES

A binary tree has a maximum of two child nodes per node. This differs from the
tree created in the Simple Tree demo, where each node can have any number of
children it wants. These two nodes of a binary tree are often referred to as the left

and right child nodes. In this section we’ll look at a binary search tree, which is
a binary tree used for fast searches. In Chapter 13 we will look at a binary space
partitioning tree, which is used in game development and related areas to speed up
the processing of algorithms being performed on a virtual scene.

The left and right child nodes of a binary search tree are called left and right
because when most people draw binary trees, one node is always to the lower left of
its parent and the other is to the lower right. This is shown in Figure 9.6.

Chapter 9 Trees 299

FIGURE 9.6 A binary tree.

The binary tree offers very fast insertions, deletions, and searching compared to
the general tree discussed earlier in this chapter because the keys in a binary tree
play an important role, as we will discuss in the following sections.

INSERTING INTO THE TREE

When a node is being inserted into a binary tree, its placement depends on its key.
If the key is lower than the root node, the new node is allocated at the left node;
otherwise, it is allocated at the right. If child nodes already exist, the child node is
evaluated and the new node would either be allocated to the left or right node of the
child. An example of this is shown in Figure 9.7.

As Figure 9.7 shows, the placement of a node depends on its key value instead
of where it is manually placed by the programmer as seen in the Simple Tree demo
earlier in this chapter. Also, as you can see from Figure 9.7, it does not take many
checks to correctly place a node in a binary tree data structure. The larger the tree
is, the more efficient it can be for processing various algorithms. For example, when
inserting a new node in an ordered array of 1,000,000 elements, it will take on
average 500,000 comparisons before it finds the position where the item is to be
inserted (which is followed by copying operations, if necessary, to place the object
there). In a binary tree of 1,000,000 elements it would take at most 20 comparisons
to find the position of the node, and the node would be directly placed (allocated)

there. There is a huge difference in comparisons when working with arrays versus
working with a binary tree. To calculate how many maximum comparisons would
be needed for a binary tree you would use this equation:

C = log2(N – 1).

The value you come up with for the maximum number of comparisons depends
on if the tree is balanced or not. A balanced tree means that on average there are as
many left nodes as there are right nodes. An unbalanced tree is a tree with uneven
sides. Unbalanced trees take longer to process. The worst-case scenario for unbal-
anced trees is when nodes are inserted in ascending or descending order, which would
put all nodes on one side of the tree. An unbalanced tree can be created based on the
order in which nodes are created. An example of this is shown in Figure 9.8.

300 Data Structures and Algorithms for Game Developers

FIGURE 9.7 Inserting a node into a binary tree.

FIGURE 9.8 Balance versus unbalanced trees.

Balancing a tree can be difficult. Later in this chapter we will discuss a few
balanced trees. A binary search tree is not automatically going to be balanced, un-
less the nodes are inserted in a way that ensures that it is. As shown in Figure 9.8,
the order in which nodes are created has an impact on whether or not the tree is
balanced and how unbalanced it gets. Later we’ll discuss different types of balanced
binary trees such as the red-black tree.

SEARCHING THROUGH THE TREE

Searching through a binary tree is much faster than it is for the example tree we saw
earlier in this chapter. As trees grow, the difference in searching efficiency becomes
extremely large. To search for a node in a tree with 1 million elements will take up
to 20 comparisons using a binary tree, and that is the worst-case scenario. Like an
ordered array, the binary tree uses what is known as the binary search, but in the
binary tree the direction of the traversal depends on the value of the current node
and the value of the key that is being searched. If the key is lower than the key of the
current node, then the object, if it exists in the tree, would be on the left branch or
on the right. Recursively moving, or using a loop, through a tree using that premise
will quickly allow the algorithm to find an object or at least know that it is not in the
tree once it reaches the bottom. The algorithm used to search a tree is similar to
inserting a node in the tree, with the exception that when the algorithm has moved
to the end of the tree without finding the key it was looking for, it will exit know-
ing the item was not found instead of allocating a spot for it.

Moving through a tree, called traversal, can be done in three different orders. It can
be done in-order, pre-order, and post-order. Each of these types will be seen later
in this chapter.

FINDING THE MINIMUM OR MAXIMUM KEY

Finding the node with the minimum or maximum key is easy in a binary tree. To
find the minimum key you start at the root node and continue moving through left
pointers until you reach a node with no left node. Once there, you know that you
have arrived at the minimum key value in the tree. The same goes for the maximum
key value, but instead you are moving to the right of the root node until you get to
a node that has no right child. An illustration of this is shown in Figure 9.9.

REMOVAL FROM THE TREE

The most involved and slightly difficult part of implementing a binary search tree
deals with deleting nodes. When you are deleting nodes from a tree, three general
cases will come up in the implementation. The first case deals with deleting a node

Chapter 9 Trees 301

that has no children. In this case the node can be deleted because there is nothing
attached to it and no special treatments need to take place. If the node has only one
child, that child node will replace the node that will be deleted. Both of these cases
are shown in Figure 9.10.

302 Data Structures and Algorithms for Game Developers

FIGURE 9.9 Finding the minimum and maximum keys.

FIGURE 9.10 Deleting a node without children
and one with children.

When there are two children, the work that must be done is a bit more involved.
It is not possible to simply delete the node because the tree will become invalid. An
example of this is shown in Figure 9.11.

Instead we have to find the smallest key under the node we will be deleting.
This is called the in-order successor. This node will replace the one to be deleted.
This allows us to delete the node while maintaining a valid tree and is shown in Fig-
ure 9.12.

An additional case is if the in-order successor has a right child node (it wouldn’t
have a left child because the left child would be the successor or the smallest key). In
that case the right child node replaces the in-order successor, and the in-order suc-
cessor replaces the node that is to be deleted, as shown in Figure 9.12.

If deleting nodes is not a feature that is desired in the tree, it can be avoided al-
together. In this chapter we will implement a binary search tree with the ability to
delete nodes.

Chapter 9 Trees 303

FIGURE 9.11 Simply deleting a node will lead to an invalid tree.

FIGURE 9.12 Replacing the node with its in-order successor leaves the tree valid.

IMPLEMENTING A BINARY TREE

On the accompanying CD-ROM a demo application called Binary Tree is in the
Chapter 9 folder. This demo application will create a binary search tree that allows for
insertions, deletions, and searching throughout the tree structure. For the imple-
mentation a class will be created to represent a node. Inside this node is a template ob-
ject for the key and left and right child nodes. The class’s constructor, destructor, and
member objects are shown in Listing 9.6. For this tree’s implementation we will use
both a node class and a tree class. For many trees the details of how they are imple-
mented is more a matter of preference than anything else. For example, in the first
tree implementation of the Simple Tree demo we used a node. Either way is fine, but
the direction taken will determine how the code is implemented. Using a tree class al-
lows more general information about the entire tree to be stored. Although this can
be done using just the node class, it would require static member variables and would
not look as straightforward since the nodes would have members that do not partic-
ularly pertain to it.

LISTING 9.6 The Node Class’s Constructor, Destructor, and Members

template<typename T>

class BinaryTree;

template<typename T>

class Node

{

friend BinaryTree<T>;

public:

Node(T key) : m_key(key), m_left(NULL), m_right(NULL)

{

}

~Node()

{

if(m_left != NULL)

{

delete m_left;

m_left = NULL;

}

304 Data Structures and Algorithms for Game Developers

if(m_right != NULL)

{

delete m_right;

m_right = NULL;

}

}

T GetKey()

{

return m_key;

}

private:

T m_key;

Node *m_left, *m_right;

};

The binary tree itself only has one member object, which is a root node pointer.
The tree’s constructor marks the root node as NULL, and the destructor deletes the
root node’s memory if necessary. This will cause the entire tree to be deleted be-
cause the destructor of the node deletes the two child nodes.

Nodes are added to the binary tree using a function called push() (to be con-
sistent with previous data structures). The push() function will need to handle two
different cases. The first case is if there is no root node, so the node that is being
added to the tree will become the root. The second case is if there is already a root
node, then the left node would be used if the key is smaller than the root node, or
the right node if it is not. If the appropriate child node already exists, the child node
and both its children are examined until a free spot is found. The tree’s construc-
tor, destructor, and push() functions are shown in Listing 9.7.

LISTING 9.7 The BinaryTree Class’s Constructor, Destructor, and push() Functions

template<typename T>

class BinaryTree

{

public:

BinaryTree() : m_root(NULL)

{

}

Chapter 9 Trees 305

~BinaryTree()

{

if(m_root != NULL)

{

delete m_root;

m_root = NULL;

}

}

bool push(T key)

{

Node<T> *newNode = new Node<T>(key);

if(m_root == NULL)

{

m_root = newNode;

}

else

{

Node<T> *parentNode = NULL;

Node<T> *currentNode = m_root;

while(1)

{

parentNode = currentNode;

if(key == currentNode->m_key)

{

delete newNode;

return false;

}

if(key < currentNode->m_key)

{

currentNode = currentNode->m_left;

if(currentNode == NULL)

{

parentNode->m_left = newNode;

return true;

}

}

else

306 Data Structures and Algorithms for Game Developers

{

currentNode = currentNode->m_right;

if(currentNode == NULL)

{

parentNode->m_right = newNode;

return true;

}

}

}

}

return true;

}

};

Handling duplicates can be quite tricky and is not needed in most cases. The
first thing the push() function does is to check to make sure the key does not match
the current node. If a match is found, the function returns false. If a match is not
found, the keys are examined and traversal through the tree continues until an
empty spot is found.

The next function is used to perform a binary searching algorithm on the tree
data structure. This function is straightforward. It examines the current node’s key
with the key that is being searched. If there is a match, then true is returned;
otherwise, the appropriate child node is examined, which would be the left node if
the key is smaller than the current node, or the right node is examined. This
continues until there are no more nodes to check or until a match is found. The
searching algorithm is shown in Listing 9.8 in a function called search() that, for
this demo, simply tests if a key is found in the tree.

LISTING 9.8 The search() Function for the BinaryTree

template<typename T>

class BinaryTree

{

public:

bool search(T key)

{

if(m_root == NULL)

return false;

Node<T> *currentNode = m_root;

Chapter 9 Trees 307

while(currentNode->m_key != key)

{

if(key < currentNode->m_key)

currentNode = currentNode->m_left;

else

currentNode = currentNode->m_right;

if(currentNode == NULL)

return false;

}

return true;

}

};

The next set of functions is the DisplayPreOrder(), DisplayPostOrder(), and
DisplayInOrder() member functions of the BinaryTree class. These functions dis-
play the keys of each node in the tree. For the pre-order traversal a node is operated
on before moving to its left child and then to its right. This operation is recursive
and will visit all nodes in the entire tree if starting at the root node. The post-order
traversal visits the left child and then visits the right child before operating on the
node itself. The in-order traversal visits the left child node first, operates on the cur-
rent node, and then visits the right child node. Each of these traversal-displaying
functions are shown in Listing 9.9.

LISTING 9.9 Traversal Displaying Functions

template<typename T>

class BinaryTree

{

public:

void DisplayPreOrder()

{

DisplayPreOrder(m_root);

}

void DisplayPostOrder()

{

DisplayPostOrder(m_root);

}

308 Data Structures and Algorithms for Game Developers

void DisplayInOrder()

{

DisplayInOrder(m_root);

}

private:

void DisplayPreOrder(Node<T> *node)

{

if(node != NULL)

{

cout << node->m_key << “ “;

DisplayPreOrder(node->m_left);

DisplayPreOrder(node->m_right);

}

}

void DisplayPostOrder(Node<T> *node)

{

if(node != NULL)

{

DisplayPostOrder(node->m_left);

DisplayPostOrder(node->m_right);

cout << node->m_key << “ “;

}

}

void DisplayInOrder(Node<T> *node)

{

if(node != NULL)

{

DisplayInOrder(node->m_left);

cout << node->m_key << “ “;

DisplayInOrder(node->m_right);

}

}

};

Chapter 9 Trees 309

The last function in the BinaryTree class is the remove() function and it takes as
a parameter the key of the node to delete. This function starts off by looking for the
node that is to be deleted. If it does not find it, the function returns because the key
does not exist in the tree. If it does find it, it must handle one of three main cases.
If the node has no children, it is simply deleted from the tree. Since there is a
pointer pointing to the node to be deleted, the code will first test if the root node is
the one being deleted. If so, it sets the root to NULL or else it sets the corresponding
node of the parent to NULL. This ensures that these nodes have nullified pointers. If
the code tries to access a pointer to memory that has been deleted, the application
can crash. Making them NULL now will ensure we have a way to test if a pointer has
already been deleted. After that we can delete the temporary pointer that was point-
ing to the node that was to be deleted so that memory can be freed.

The second case is if the node to be deleted has one child. When this happens,
the parent of the node that will be deleted replaces the deleted node with the node’s
child. Once that is done, the temporary pointer that was pointing to the node to be
deleted is freed from memory.

The third case is if the node to be deleted has two children. In this case the in-
order successor to the node that is going to be deleted is found by finding the left-
most node of the right child of the node that will be deleted. This in-order successor
is used to replace the deleted node. If the in-order successor has a right child, then
the parent node of the node that will be deleted replaces the soon-to-be-deleted
node with that child. Once done, the temporary pointer pointing to the node to be
deleted can be freed, and the removal from the tree is complete. The remove() func-
tion of the BinaryTree class is shown in Listing 9.10.

LISTING 9.10 The remove() function of the BinaryTree

template<typename T>

class BinaryTree

{

public:

void remove(T key)

{

if(m_root == NULL)

return;

Node<T> *parent = m_root;

Node<T> *node = m_root;

bool isLeftNode = false;

while(node->m_key != key)

{

parent = node;

310 Data Structures and Algorithms for Game Developers

if(key < node->m_key)

{

node = node->m_left;

isLeftNode = true;

}

else

{

node = node->m_right;

isLeftNode = false;

}

if(node == NULL)

return;

}

if(node->m_left == NULL && node->m_right == NULL)

{

if(node == m_root)

m_root = NULL;

else if(isLeftNode == true)

parent->m_left = NULL;

else

parent->m_right = NULL;

}

else if(node->m_left == NULL)

{

if(node == m_root)

m_root = node->m_right;

else if(isLeftNode == true)

parent->m_left = node->m_right;

else

parent->m_right = node->m_right;

}

else if(node->m_right == NULL)

{

if(node == m_root)

m_root = node->m_left;

else if(isLeftNode == true)

parent->m_left = node->m_left;

else

parent->m_right = node->m_left;

}

else

{

Chapter 9 Trees 311

Node<T> *tempNode = node->m_right;

Node<T> *successor = node;

Node<T> *successorParent = node;

while(tempNode != NULL)

{

successorParent = successor;

successor = tempNode;

tempNode = tempNode->m_left;

}

if(successor != node->m_right)

{

successorParent->m_left = successor->m_right;

successor->m_right = node->m_right;

}

if(node == m_root)

{

m_root = successor;

}

else if(isLeftNode)

{

node = parent->m_left;

parent->m_left = successor;

}

else

{

node = parent->m_right;

parent->m_right = successor;

}

successor->m_left = node->m_left;

}

// Nullify so the destructor does not delete any nodes

// they might point to.

node->m_left = NULL;

node->m_right = NULL;

delete node;

}

};

312 Data Structures and Algorithms for Game Developers

The last code to discuss is the main source file for the Binary Tree demo applica-
tion. In this demo application an integer binary tree is created and is populated with
eight nodes. The node with the key 27 is then removed from the tree to test the
remove() function. Once this is completed, the search() function is called to test if it
can find a key of 20, 14, and 27. Since 27 was deleted, it should not be able to find that
node. The main() function wraps up by calling DisplayInOrder(), DisplayPreOrder(),
and DisplayPostOrder() to display the keys of each of the tree’s nodes using the
various types of traversals. The main source file for the Binary Tree demo application
is shown in Listing 9.11. A screenshot of the demo application executing is shown in
Figure 9.13.

LISTING 9.11 The Main Source File for the Binary Tree Demo

#include<iostream>

#include”BinaryTree.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Binary Trees” << endl;

cout << “Chapter 9: Trees” << endl;

cout << endl;

BinaryTree<int> binaryTree;

binaryTree.push(20);

binaryTree.push(10);

binaryTree.push(12);

binaryTree.push(27);

binaryTree.push(9);

binaryTree.push(50);

binaryTree.push(33);

binaryTree.push(6);

binaryTree.remove(27);

if(binaryTree.search(20) == true)

cout << “The key 20 found!” << endl;

else

cout << “The key 20 NOT found!” << endl;

Chapter 9 Trees 313

if(binaryTree.search(14) == true)

cout << “The key 14 found!” << endl;

else

cout << “The key 14 NOT found!” << endl;

if(binaryTree.search(27) == true)

cout << “The key 27 found!” << endl;

else

cout << “The key 27 NOT found!” << endl;

cout << endl;

cout << “ Pre-order: “;

binaryTree.DisplayPreOrder();

cout << endl;

cout << “Post-order: “;

binaryTree.DisplayPostOrder();

cout << endl;

cout << “ In-order: “;

binaryTree.DisplayInOrder();

cout << endl << endl;

return 1;

}

314 Data Structures and Algorithms for Game Developers

FIGURE 9.13 A screenshot from the Binary Tree demo.

K-DIMENSIONAL TREES

The data structure known as a k-dimensional tree, kd-tree for short, is a type of
binary tree that uses keys that have multiple dimensions. This multidimensional
key can vary—hence the k in kd-tree. In this section we will look at kd-trees more
closely and we will create a straightforward implementation.

kd-trees are spelled with a lowercase italicized k and lowercase d. Some people use
different variations such as KD-tree or Kd-tree, but this is the most common
spelling.

A kd-tree can be used for range searches, nearest neighbor searches, space par-
titioning, and so forth. By sending in a range of key values, a kd-tree can find all
nodes that fall within that range or that match it. In this chapter we will create a
demo application that will allow us to create a three-dimensional kd-tree and per-
form a range search algorithm on it.

When inserting nodes into a kd-tree, the current depth of the tree is used to
determine which dimension of the key is used when determining the direction of
traversal. For example, the root node is level 1 and would use the first dimension of
the key. The next level is level 2 and would use the second dimension of the key and
so on. If there are three dimensions to the key, which can be represented as an array
that is the size of 3, then the following level will start back at the first dimension. An
example of this is shown in Figure 9.14. A kd-tree with one dimension is no differ-
ent than a traditional binary tree.

Chapter 9 Trees 315

FIGURE 9.14 Nodes of a kd-tree.

A kd-tree can also be used for space partitioning like a BSP tree. This is done by
finding the median point of all the vertices for a node and defining a plane based on
the current depth of the tree. For example, a three-dimensional kd-tree can be used
where level 1 would create a plane along the x-axis, level 2 the y-axis, and level 3 the
z-axis. We’ll discuss this more in Chapter 13, Scene Management.

IMPLEMENTING A KD-TREE

The implementation of a kd-tree starts with the node. The node is similar to the
node of a binary tree, with the exception that the key is not one-dimensional but
can vary. For this implementation we will use a std::vector array as well as having
a left and right child node. There is no limit to the number of dimensions the tree
can have, but it has to be more than one. The constructor, destructor, and member
variables for the kd-tree’s node class are shown in Listing 9.12.

LISTING 9.12 The Node of a kd-Tree

template<class TYPE>

class KdTree;

template<class TYPE>

struct KdNode

{

friend KdTree<TYPE>;

public:

KdNode(vector<TYPE> &key) : m_key(key), m_left(NULL),

m_right(NULL)

{

}

~KdNode()

{

if(m_left != NULL)

{

delete m_left;

m_left = NULL;

}

if(m_right != NULL)

{

316 Data Structures and Algorithms for Game Developers

delete m_right;

m_right = NULL;

}

}

private:

vector<TYPE> m_key;

KdNode *m_left;

KdNode *m_right;

};

The class for the kd-tree has a root node and a dimensional depth as member
variables. The depth is used to keep track of how many dimensions this kd-tree is.
When a node is being inserted into the tree, a loop is used to traverse through the
container until the spot for the node is found. Every time the code goes to a deeper
level by moving to one of the child nodes, that will determine which key dimension
is used. In the upcoming demo application that will use this code we will specify
three dimensions for the key. This means the root uses the first index of the key, the
child of the root uses the second index, the child of the root’s children use the last
index of the key, the children a level deeper than that use the first index of the key,
and so on. The tree class is called KdTree, and its member objects, constructor, de-
structor, and insertion (push()) functions are shown in Listing 9.13.

LISTING 9.13 The KdTree Class

template<typename TYPE>

class KdTree

{

public:

KdTree(int depth) : m_root(0), m_depth(depth)

{

assert(depth > 0);

}

~KdTree()

{

if(m_root != NULL)

{

delete m_root;

m_root = NULL;

Chapter 9 Trees 317

}

}

void push(vector<TYPE> &key)

{

KdNode<TYPE> *newNode = new KdNode<TYPE>(key);

if(m_root == NULL)

{

m_root = newNode;

return;

}

KdNode<TYPE> *currentNode = m_root;

KdNode<TYPE> *parentNode = m_root;

int level = 0;

while(1)

{

parentNode = currentNode;

if(key[level] < currentNode->m_key[level])

{

currentNode = currentNode->m_left;

if(currentNode == NULL)

{

parentNode->m_left = newNode;

return;

}

}

else

{

currentNode = currentNode->m_right;

if(currentNode == NULL)

{

parentNode->m_right = newNode;

return;

}

}

level++;

318 Data Structures and Algorithms for Game Developers

if(level >= m_depth)

level = 0;

}

}

private:

KdNode<TYPE> *m_root;

int m_depth;

};

The last functions in the class are the functions used to display all keys that
match a range of values. This function tests to see if all the dimensions of a key fall
within a range that is passed in as parameters. If so, the key is displayed to the con-
sole window. The traversal continues through all nodes until the entire tree has
been processed. The functions (shown in Listing 9.14) are called displayRange().

LISTING 9.14 The displayRange() Functions

template<typename TYPE>

class KdTree

{

public:

void displayRange(const vector<TYPE> &low,

const vector<TYPE> &high)

{

displayRange(0, low, high, m_root);

}

private:

void displayRange(int level, const vector<TYPE> &low,

const vector<TYPE> &high,

KdNode<TYPE> *node)

{

if(node != NULL)

{

for(int i = 0; i < m_depth; i++)

{

if(low[i] > node->m_key[i] ||

high[i] < node->m_key[i])

break;

}

Chapter 9 Trees 319

if(i == m_depth)

{

cout << “(“;

for(int j = 0; j < m_depth; j++)

{

cout << node->m_key[j];

if(j != m_depth - 1)

cout << “, “;

}

cout << “)” << endl;

}

level++;

if(level >= m_depth)

level = 0;

if(low[level] <= node->m_key[level])

displayRange(level, low, high, node->m_left);

if(high[level] >= node->m_key[level])

displayRange(level, low, high, node->m_right);

}

}

};

On the accompanying CD-ROM is a demo application called KD Tree in the
Chapter 9 folder. This demo application will create a kd-tree and populate it with
random three-dimensional keys. Once created, the displayRange() function is
called to test that the code can find a range of values within a high and low range
and display them. The display is for output purposes only. The code for the main()
function for the KD Tree demo is shown in Listing 9.15. Figure 9.15 shows a screen-
shot from the application.

LISTING 9.15 The Main Source File for the KD Tree Demo

#include<iostream>

#include”KDTree.h”

using namespace std;

320 Data Structures and Algorithms for Game Developers

int main(int args, char **argc)

{

cout << “KD Trees” << endl;

cout << “Chapter 9: Trees” << endl;

cout << endl;

// Create KD tree and populate it.

KdTree<int> kdTree(3);

for(int i = 0; i < 100; i++)

{

vector<int> key(3);

key[0] = rand() % 100;

key[1] = rand() % 100;

key[2] = rand() % 100;

kdTree.push(key);

}

// Display range of values that falls within the range.

vector<int> low(3), high(3);

low[0] = 20;

low[1] = 30;

low[2] = 25;

high[0] = 90;

high[1] = 70;

high[2] = 80;

cout << “Range (20, 30, 25) (90, 70, 80) Match:” << endl;

kdTree.displayRange(low, high);

cout << endl << endl;

return 1;

}

Another popular algorithm to use for kd-trees is the n-nearest neighbor search,
which can get a number of elements that is closest to a key.

Chapter 9 Trees 321

ADDITIONAL TYPES OF TREES

There are many different types of tree data structures in computer science. In this
chapter we will briefly discuss general b-trees, AVL trees, red-black trees, heaps,
2-3 trees, and 2-3-4 trees.

B-TREES

A b-tree is a balanced tree data structure with multiple child nodes that can be at-
tached to one node. B-trees keep the number of child nodes within a certain range,
which can be predefined, so when a node violates this range, the tree is altered so
that it follows the rules of a b-tree. This is done by joining nodes together or split-
ting them. The range of nodes determines what type of b-tree it is. Types of b-trees
are 2-3 trees and 2-3-4 trees, which we’ll discuss later in this section.

B-trees can waste more space with nodes that are not full than other balanced
trees but often don’t need to be rebalanced as much. B-trees are kept balanced by
keeping all leaf nodes on the same depth. They are more complicated to implement
than other trees, but they can be powerful data structures. They can also be used in
applications such as database systems.

AVL TREES

An AVL tree is a self-balancing binary search tree, which means there are two child
nodes for every node. The heights of the child nodes in an AVL tree differ at most by
one, which makes them height-balanced trees. When items are inserted or deleted
from the tree, they alter the structure of the tree as needed to keep it balanced. This
is done with tree rotations, which red-black trees use to balance nodes as well.

322 Data Structures and Algorithms for Game Developers

FIGURE 9.15 A screenshot from the KD-Tree demo.

A height value, also known as the balance factor, is the value you get from adding
up all child node keys on both sides (left and right). In an AVL tree the difference
between these totals should be 1, 0, or –1, or else the tree is not balanced.

In an AVL tree there is something known as the balance factor. The balance
factor of a node is the height of the right child minus the height of the left child of
any given node. As long as the balance factor is in the range of –1 to 1, the node is
balanced. If a node has any other value for its balance factor, an algorithm must be
performed to rebalance the tree.

RED-BLACK TREES

Red-black trees are balanced binary trees. In a red-black tree the algorithms for
searching are the same but the algorithms for insertions and deletions are very dif-
ferent. When nodes are inserted into a red-black tree, they alter the structure of the
tree as needed to keep it balanced. Insertions can be either top-down or bottom-up,
where top-down insertions insert nodes that descend down the tree while bottom-
up insertions work from the bottom to the top of the tree when looking for a place
to insert a node. The insertions and deletions of a red-black tree are not as fast as a
traditional binary tree, but it is worth the cost in most applications and algorithms
to have a fast, balanced tree. The red-black tree is more complicated to implement
than a binary tree but is considered easier than most b-trees.

2-3 AND 2-3-4 TREES

2-3 trees are b-trees of order 3, which means they can have up to three child nodes
for each node. This tree is another self-balancing tree like the other balanced trees.
In a 2-3 tree a node with a data item cam have two children, and a node with two
data items can have three children. The elements in 2-3 trees, as well as other
b-trees, are ordered.

2-3 trees are also called multiway trees of the order of 2, while 2-3-4 trees have an
order of 4.

2-3-4 trees are similar to 2-3 trees, but 2-3-4 trees can have up to four child nodes.
They are another type of multiway tree. 2-3-4 trees are harder to implement than red-
black trees, but they are considered equivalent. A 2-3-4 tree can be converted easily
into a red-black tree and vise versa. 2-3-4 trees are isomorphic to red-black trees.

HEAPS

A heap is a weakly ordered binary tree that keeps the node with the largest key (root
node) on the top of the tree. All nodes within the heap are not necessarily in order,

Chapter 9 Trees 323

unlike in a binary tree. The only thing that is certain in a heap is that the child nodes
of any given node have a key that is less than their parent.

The STL priority queue uses a heap as its underlying data structure.

Heaps will be discussed in more detail in Chapter 10, Heaps. The heap data
structure is very useful, but because it is weakly ordered, it cannot be used for
searching using the binary algorithm. The phrase weakly ordered in this case means
that the child nodes of any given node are smaller than their parents but are not in
any particular order other than that. Because of this, it would be hard to determine
which child nodes to visit to get to the node that is being searched for the fastest.

Heaps are often implemented as arrays. Although arrays do not offer fast in-
sertions, this can be handled by making sure the expansion size is not linear. The
STL vector array increases its size by nonlinear means and is recommended when
speed is critical but the possibility for wasted memory is not a huge disadvantage.

SUMMARY

There is a lot of information on tree data structures in computer science. Trees have
may uses that can aid in the processing of a set of data. In game development trees
are used in great numbers for all kinds of applications such as speeding up render-
ing time, speeding up real-time physics and collision detection and response, rep-
resenting scene information, speeding up advance lighting contributions, and so
forth.

Trees will be discussed throughout the remainder of this book. In the next
chapter, Heaps, we’ll look at the heap data structure, which uses a weakly ordered
binary tree. In Chapter 11, Graphs, we’ll look at graphs. A tree is an instance of a
graph, which can be used for numerous applications such as artificial intelligence.
In Chapter 13 we’ll take another look at trees and how they fit in with game and
simulation development.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What is a tree in computer science?
2. What is a root node?

324 Data Structures and Algorithms for Game Developers

3. A node with no children is known as a:
a. Child node
b. Successor node
c. Leaf node
d. None of the above

4. What is the name for a node that shares a parent with another node?
a. Sibling node
b. Left and right children
c. In-order successor
d. None of the above

5. What is an edge?
6. How many nodes can a binary tree have attached to a node?

a. 1
b. 2
c. 3
d. None of the above

7. How many siblings can a binary tree node have?
a. 1
b. 2
c. 3
d. None of the above

8. On average, what is the maximum number of comparisons needed to find
a key in a balanced binary tree with 1 million nodes?
a. 10
b. 15
c. 20
d. 30
e. None of the above

9. What are the types of traversals talked about in this chapter?
a. In-order, pre-order, post-order
b. Front-to-back, back-to-front
c. In-order, pre-order, post-order, successor
d. None of the above

10. To delete a node in a binary tree that has two children requires the algo-
rithm to find what node?
a. The node with the maximum key underneath the deleted node’s subtree
b. The parent node
c. The smallest sibling node
d. The in-order successor
e. None of the above

Chapter 9 Trees 325

11. How do kd-trees differ from binary trees?
12. A kd-tree inserts nodes based on:

a. Key value
b. Depth level, key dimension, and key value
c. The best way to make the tree balanced
d. None of the above

13. What are b-trees?
14. How many edges does a 2-3 tree’s node have? How many edges does a 2-3-

4 tree’s node have?
15. What are AVL trees?
16. All binary trees are balanced.

a. True
b. False

17. A heap is a data structure based on link lists.
a. True
b. False

18. A kd-tree is a type of binary tree.
a. True
b. False

19. An edge is a connection from one node to another.
a. True
b. False

20. A red-black tree has three edges for each node.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Based on the information in this chapter, implement a binary tree
using an array instead of pointers to nodes.

Exercise 2: Build off Exercise 1 and allow the array-based binary tree to be saved
and loaded from a file.

Exercise 3: Implement a binary tree that allows you to change the key of a node.
When a key is changed, it will need to be removed from the tree and reinserted.

326 Data Structures and Algorithms for Game Developers

327

Heaps10

In This Chapter

Introduction to Heaps
Heap Sort
Priority Queues Using Heaps
STL Heap Functions

328 Data Structures and Algorithms for Game Developers

A
bstract data types are data structures that can be implemented using a variety
of underlying data structures. One such abstract data type seen in this book
is the priority queue in Chapter 5. A priority queue is an abstract data type

because it can be implemented using an array, link list, or another data structure
such as a tree. An array is an example of a basic data structure, and those types of
data structures are normally used internally by other, more abstract data structure
containers.

In this chapter we will look at the heap abstract data type (ADT) data structure.
We’ll also look at the heap sort algorithm, which uses heaps to perform a fast sort-
ing operation, and we’ll look at how heaps are a natural fit to create a priority
queue by implementing a new container that uses the heap. Most standard STL im-
plementations of the priority_queue data structure use a heap for its underlying
implementation.

INTRODUCTION TO HEAPS

A heap container is a binary tree data structure that is not used for searching, un-
like the binary search tree in Chapter 9, which is used specifically for searching for
specified key values. In a heap data structure the node keys are always larger than
their children nodes, but their children nodes are not in any particular order. This
differs from the binary tree, in which the left child is always the smaller node, while
the right node is always the larger value when compared to their parents. In a heap
this is not the case because both children are smaller than the parent. A visual rep-
resentation of this is shown in Figure 10.1.

The binary search tree specifies its condition that the left child be smaller than its
parent while the right child be greater than or equal to its parent. This data struc-
ture condition is not one for a traditional binary tree that is not used for searching.

FIGURE 10.1 A heap.

Three major characteristics make a heap data structure what it is: (a) A heap is
a binary tree. (b) A heap is a complete data structure, meaning the rows of nodes
are completely filled in from left to right without any gaps, as shown in the left-
hand illustration in Figure 10.1. (c) Every node in a heap is larger than or equal to
its child nodes. The root node of every heap is either the largest or smallest value in
the container, depending on the sorting condition, unlike in a binary tree where the
largest value in the container is the right-most node from the root and the smallest
value is the left-most node from the root.

A CLOSER LOOK AT HEAPS

A heap is a weakly ordered binary tree. This means that the child nodes of any given
node are smaller than their parent but are not necessarily in any particular order in
relation to one another. This was seen in Figure 10.1, where some nodes are not in
any order except for being smaller than or equal to their parents. In a binary search
tree the order is strict, which allows for the possibility of performing a binary
search. When traversing a heap, the direction of traversal cannot be assumed. If
a search was to be performed on a heap, every node would potentially need to be
visited. When searching, you can exit from some paths early if the keys of the cur-
rent nodes become less than the search key, but other than that the traversal is
much slower than that of a binary search tree. The big-O of a searching algorithm
performed on a heap would run at O(N).

HEAP INSERTIONS

Although a heap is weakly ordered, the purpose of the data structure is to allow for
fast removal from the top of the heap. When an item is inserted into the data struc-
ture, it is initially placed on the bottom of the list. The element cannot stay at this
position because its value might violate the heap condition that states that every
child must be smaller than its parent. Thus, when an element is inserted into the
container, it is moved up through the list until it finds an index where the element
is smaller than its parent but larger than its children. This is shown in Figure 10.2.

HEAP REMOVAL

Removing is done from the top of the heap. When a heap is implemented as an
array, this means removing element 0 since the element at index 0 is always the root
node. Once the root has been removed, the heap is no longer complete because of
the newly made hole, and it must be replaced with the next elements in line. One
method is simply to move all elements in the array down one. Another method,
which will be used in this chapter, is to take the last element in the array, place it at
index 0, and move that element down until it is below an element that is larger than

Chapter 10 Heaps 329

330 Data Structures and Algorithms for Game Developers

it but is above an element that is smaller. Using a simple algorithm, which we’ll dis-
cuss in the implementation, can allow us to quickly perform this operation without
having to move N – 1 elements by using the first method. A visual representation
of the removal process is shown in Figure 10.3.

FIGURE 10.2 Inserting into a heap.

FIGURE 10.3 Removing from a heap.

Moving elements up or down a container is called bubbling up or down (also
known as percolating and trickling). During the bubbling process a value is checked
to see whether it is in a position that satisfies the data structure’s conditions. If so,
it can be left where it is; otherwise, the process continues until the correct position
is found. This process not only satisfies the heap condition but also keeps the heap
complete when elements are removed, each of which is illustrated in Figure 10.3.

When elements are bubbled up or down, they traverse parent to parent.

HEAP RESIZING

In this chapter the heap will be implemented using an array. As you’ll see later in
this chapter, using an array is easy and straightforward when compared to other
basic data structures such as the link list. A binary tree that uses pointers and refer-
ences could also be used, but the insertion and removal algorithms can perform
slower and can be harder to implement than when using only an array. This will be
demonstrated in the next section during the implementation of a heap. Although
arrays are not as easy to expand as basic data structures that use pointers, expand-
ing the array using nonlinear means can be very beneficial and it does not affect the
elements already inside the container.

STL vector arrays expand nonlinearly.

Using a tree implementation for the heap would make it very difficult to access
the last item inserted into the data structure. With an array this element would be
N – 1, but in a tree how would one know where the last element was inserted? Also,
by initially inserting a new item onto the list, you’ll have to locate that end position
for the element, which can take quite a while with a large tree. Since a heap is not a
search tree, this can be very difficult using an algorithm. Regardless of the tree size,
the initial insertion for an array is constant O(1). Whether using a tree or an array,
the last item would have to be bubbled up through the container, so a tree imple-
mentation does not offer any benefit.

IMPLEMENTING HEAPS

The heap implementation will use an array. Because the STL is such a useful tool
for programmers, the implementation for the heap data structure will use the
std::vector. The heap in this section will be implemented as a template class. This
class has only one member object, which is the vector array, and several functions.
The first constructor of the heap implementation will be a default empty function,
and the second constructor will allow a minimal size to be specified. This can be use-
ful to prevent the vector array from having to resize if the minimal size or the total
size of the heap is already known.

The heap data structure has two functions called push() and pop(). The push()
function will insert a new element into the end of the array. Once the element is
there, the function will move the element up until it finds the best position for it.
The parent of any element is found using the following equation:

pIndex = (index – 1) / 2

Chapter 10 Heaps 331

where pIndex is the parent index and index is the current node’s index. A loop
inside the push() function executes until it finds the best position for the element
or until it reaches the top, at which point it can be determined that the element
belongs at the top of the heap.

The pop() function works by first taking the last element of the std::vector
array and putting it in the top position at index 0. The array size is decremented,
and the code enters a loop. Inside this loop the code finds the right position to
insert the element that has been moved to the top. Once it finds this, the code will
set that index to the element and exit.

The last two functions are used to peek at the top of the container and to return
the size. The size of the container is the size of the vector array. The peeking func-
tion is used to look at the topmost element so that our code has a way of accessing
that data. The Heap class is shown in Listing 10.1.

LISTING 10.1 The Heap Class

#include<vector>

using namespace std;

template<typename KEY>

class Heap

{

public:

Heap()

{

}

Heap(int minSize)

{

m_heap.reserve(minSize);

}

void push(KEY key)

{

m_heap.push_back(key);

int index = (int)m_heap.size() - 1;

KEY temp = m_heap[index];

int parentIndex = (index - 1) / 2;

332 Data Structures and Algorithms for Game Developers

while(index > 0 && temp >= m_heap[parentIndex])

{

m_heap[index] = m_heap[parentIndex];

index = parentIndex;

parentIndex = (parentIndex - 1) / 2;

}

m_heap[index] = temp;

}

void pop()

{

int index = 0;

m_heap[index] = m_heap[(int)m_heap.size() - 1];

m_heap.pop_back();

KEY temp = m_heap[index];

int currentIndex = 0, leftIndex = 0, rightIndex = 0;

while(index < (int)m_heap.size() / 2)

{

leftIndex = 2 * index + 1;

rightIndex = leftIndex + 1;

if(rightIndex < (int)m_heap.size() &&

m_heap[leftIndex] < m_heap[rightIndex])

{

currentIndex = rightIndex;

}

else

{

currentIndex = leftIndex;

}

if(temp >= m_heap[currentIndex])

break;

Chapter 10 Heaps 333

m_heap[index] = m_heap[currentIndex];

index = currentIndex;

}

m_heap[index] = temp;

}

KEY peek()

{

return m_heap[0];

}

int size()

{

return (int)m_heap.size();

}

private:

vector<KEY> m_heap;

};

On the accompanying CD-ROM a demo application called Heap can be found
in the Chapter 10 folder. The Heap demo application creates a heap using the Heap
class from Listing 10.1 and populates it with 10 elements. The contents of the heap
are displayed to the console window, which by default will display the contents
from greatest to smallest. The main source file for the Heap demo application is
shown in Listing 10.2. Figure 10.4 shows a screenshot of the application.

LISTING 10.2 The Heap Demo’s Main Source File

#include<iostream>

#include”Heap.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Heap” << endl;

cout << “Chapter 10: Heaps” << endl;

cout << endl;

334 Data Structures and Algorithms for Game Developers

Heap<int> heap(10);

heap.push(30);

heap.push(33);

heap.push(43);

heap.push(23);

heap.push(20);

heap.push(10);

heap.push(22);

heap.push(90);

heap.push(95);

heap.push(86);

cout << “Heap Contents:”;

while(heap.size() != 0)

{

cout << “ “ << heap.peek();

heap.remove();

}

cout << “.” << endl << endl;

return 1;

}

Chapter 10 Heaps 335

FIGURE 10.4 A screenshot of the Heap demo.

HEAP SORT

A heap data structure can be used to perform what is called a heap sort, an algorithm
that uses a heap to sort the elements of another data structure. This is done by in-
serting all the elements of an unordered data structure into a heap and then moving
the elements from the heap one by one back into the original data structure. Because
a heap stores the largest or smallest value on the top of the container, simply re-
moving elements from it will remove the elements in order. This was shown in the
Heap demo application when the contents of the container were displayed to the
console window in descending order. The insertion and removal operations by
themselves for the heap data structure run in O(logN), and the heap sort runs in
O(N * log N) because to complete the sort a heap sort must eventually call each of
these functions for every element in the unordered data structure. An illustration of
the heap sort algorithm is shown in Figure 10.5.

336 Data Structures and Algorithms for Game Developers

FIGURE 10.5 The heap sort.

IMPLEMENTING THE HEAP SORT

Implementing the heap sort is straightforward. In this demo application the heap
code will be the code used in Listing 10.1 and will keep the largest element on the
top of the tree. To perform the heap sort a loop is used to place all elements from
one container into a heap, and then another loop is used to move the elements from
the heap back into the original container.

On the CD-ROM a demo application called Heap Sort in the Chapter 10 folder
demonstrates the heap sort algorithm. The Heap Sort demo application sorts an
array in ascending and descending order. The main() function of the Heap Sort
demo application creates an array, displays the unordered contents to the console

window, sorts the array in ascending order, displays the contents again, and then it
does the same in descending order. The main source file for the Heap Sort demo
application is shown in Listing 10.3. Figure 10.6 shows a screenshot.

Performing the heap sort on the unordered container instead of copying to a second
container (heap) can reduce the memory footprint of the algorithm.

LISTING 10.3 The Heap Sort Algorithm

#include<iostream>

#include<vector>

#include”Heap.h”

using namespace std;

void HeapSortAscending(vector<int> &array)

{

Heap<int> heap;

int i;

for(i = 0; i < (int)array.size(); i++)

heap.push(array[i]);

for(i = (int)array.size() - 1; i >= 0; i—)

{

array[i] = heap.peek();

heap.pop();

}

}

void HeapSortDescending(vector<int> &array)

{

Heap<int> heap;

int i;

for(i = 0; i < (int)array.size(); i++)

heap.push(array[i]);

Chapter 10 Heaps 337

for(i = 0; i < (int)array.size(); i++)

{

array[i] = heap.peek();

heap.pop();

}

}

void DisplayVector(vector<int> &array)

{

for(int i = 0; i < (int)array.size(); i++)

{

cout << “ “ << array[i];

}

cout << “.”;

}

int main(int args, char **argc)

{

cout << “Heap Sort” << endl;

cout << “Chapter 10: Heaps” << endl;

cout << endl;

// Create container and populate it.

vector<int> array;

array.push_back(33);

array.push_back(43);

array.push_back(23);

array.push_back(20);

array.push_back(10);

array.push_back(22);

array.push_back(90);

array.push_back(95);

array.push_back(86);

// Display before sort.

cout << “Array contents before sort:”;

DisplayVector(array);

cout << endl;

338 Data Structures and Algorithms for Game Developers

// Display after sort (ascending).

HeapSortAscending(array);

cout << “Array contents after sort (ascending):”;

DisplayVector(array);

cout << endl;

// Display after sort (descending).

HeapSortDescending(array);

cout << “Array contents after sort (descending):”;

DisplayVector(array);

cout << endl << endl;

return 1;

}

Chapter 10 Heaps 339

FIGURE 10.6 A screenshot of the Heap Sort demo.

PRIORITY QUEUES USING HEAPS

A priority queue is an ADT data structure that internally sorts its elements based on
their priority level. When elements are removed from the container, the largest or
smallest (depending on the specified sorting condition) element is removed. In a
priority queue only one element is accessible at a time, like a queue and a stack, and
when elements are pushed onto the container, an element will only be available
when it has the highest priority.

A heap is a natural fit for a priority queue. In a priority queue only the highest-
priority element is removed or accessible. This can also be seen with the heap data
structure in that only one element is accessible at a time. Using a heap data struc-
ture that allows for the sorting condition to be specified will allow us to create a
priority queue by using the heap as an underlying data structure. The heap is a fast
data structure, so this speed is beneficial to the priority queue, especially with large
sets of data.

IMPLEMENTING PRIORITY QUEUE USING HEAPS

The implementation for the priority queue in this chapter starts by modifying the
Heap class so that the order of the elements can be determined by the programmer.
Earlier the heap kept the highest value on the top of the container, but now it will
be altered to allow for either the highest or the lowest. The changes made to this
class involve specifying another template parameter, which will be used for the
comparison operator. Altering the push() and pop() functions to make use of the
comparison operator instead of assuming that the largest value element will be on
top. The modified Heap data structure class is shown in Listing 10.4.

LISTING 10.4 The Altered Heap Class

#include<vector>

using namespace std;

template<typename KEY, typename CMP>

class Heap

{

public:

Heap()

{

}

Heap(int minSize)

{

m_heap.reserve(minSize);

}

340 Data Structures and Algorithms for Game Developers

void push(KEY key)

{

m_heap.push_back(key);

int index = (int)m_heap.size() - 1;

KEY temp = m_heap[index];

int parentIndex = (index - 1) / 2;

CMP cmp;

while(index > 0 && (cmp(temp, m_heap[parentIndex]) ||

temp == m_heap[parentIndex]))

{

m_heap[index] = m_heap[parentIndex];

index = parentIndex;

parentIndex = (parentIndex - 1) / 2;

}

m_heap[index] = temp;

}

void pop()

{

int index = 0;

m_heap[index] = m_heap[(int)m_heap.size() - 1];

m_heap.pop_back();

KEY temp = m_heap[index];

int currentIndex = 0, leftIndex = 0, rightIndex = 0;

while(index < (int)m_heap.size() / 2)

{

leftIndex = 2 * index + 1;

rightIndex = leftIndex + 1;

CMP cmp;

if(rightIndex < (int)m_heap.size() &&

(cmp(m_heap[rightIndex], m_heap[leftIndex]) ||

m_heap[rightIndex] == m_heap[leftIndex]))

Chapter 10 Heaps 341

{

currentIndex = rightIndex;

}

else

{

currentIndex = leftIndex;

}

if(cmp(temp, m_heap[currentIndex]) ||

temp == m_heap[currentIndex])

break;

m_heap[index] = m_heap[currentIndex];

index = currentIndex;

}

m_heap[index] = temp;

}

KEY peek()

{

return m_heap[0];

}

int size()

{

return (int)m_heap.size();

}

private:

vector<KEY> m_heap;

};

The priority queue data structure will implement a function to insert items,
peek at the top of the container, remove items from the container, test if the con-
tainer is empty, and return the number of elements. Each of these operations can
wrap around the heap data structure. The function used to test if the container is
empty, called empty(), can be a boolean test to see if the size is equal to 0. Because
the priority queue of this chapter uses a heap, the code is much shorter than it was
in Chapter 5. The priority queue class, PriorityQueue, is shown in Listing 10.5.

342 Data Structures and Algorithms for Game Developers

LISTING 10.5 The Priority Queue

#include”Heap.h”

template<typename T, typename CMP>

class PriorityQueue

{

public:

PriorityQueue()

{

}

void push(T val)

{

m_elements.push(val);

}

void pop()

{

m_elements.remove();

}

T peek()

{

return m_elements.peek();

}

int size()

{

return m_elements.size();

}

bool empty()

{

return (m_elements.size() == 0);

}

Chapter 10 Heaps 343

private:

Heap<T, CMP> m_elements;

};

The main source file for the priority queue creates a priority queue using the
code in Listing 10.5 and populates it with elements. Once filled, it displays the
contents of the container to the console window. The code for the Priority Queue
demo application of this chapter (located on the accompanying CD-ROM) is
similar to the Priority Queue demo application of Chapter 5. In this demo the
comparison operators can be specified in the same way as in Chapter 5. The main
source file for the Priority Queue demo application is shown in Listing 10.6. Figure
10.7 shows a screenshot of the running application.

LISTING 10.6 The Priority Queue Demo’s Main Source File

#include<iostream>

#include”PriorityQueue.h”

using namespace std;

template<typename T>

class less_cmp

{

public:

344 Data Structures and Algorithms for Game Developers

FIGURE 10.7 A screenshot of the Heap Priority Queue demo.

inline bool operator()(T lVal, T rVal)

{

return (lVal < rVal);

}

};

template<typename T>

class greater_cmp

{

public:

inline bool operator()(T lVal, T rVal)

{

return !(lVal < rVal);

}

};

int main(int args, char **argc)

{

cout << “Heap used in a Priority Queue” << endl;

cout << “Chapter 10: Heaps” << endl;

cout << endl;

// Create the container and populate it.

PriorityQueue<int, less_cmp<int> > pq;

pq.push(33);

pq.push(43);

pq.push(23);

pq.push(20);

pq.push(10);

pq.push(22);

pq.push(90);

pq.push(95);

pq.push(86);

// Display queue.

cout << “Contents of the priority queue:”;

while(pq.empty() != true)

{

Chapter 10 Heaps 345

cout << “ “ << pq.peek();

pq.pop();

}

cout << “.” << endl << endl;

return 1;

}

STL HEAP FUNCTIONS

Although there is no heap data structure in the STL, a few heap-related functions
are part of the STL. Using these functions on a data structure, for example, a
vector array, can create a heap out of the elements, which places the largest value
at the front of the container. Using the STL heap functions to push, pop, and cre-
ate the elements can create a heap without a heap container. These heap functions
include the following:

make_heap()

push_heap()

pop_heap()

sort_heap()

The make_heap() function is used to take a range of elements and create a heap
out of them. The first element after the function is called is the largest element. Op-
tionally the function allows for a binary predicate to be specified for the element
comparisons. The function prototypes for the make_heap() function are:

template<class RandomAccessIterator>

void make_heap(RandomAccessIterator _First,

RandomAccessIterator _Last);

template<class RandomAccessIterator, class BinaryPredicate>

void make_heap(RandomAccessIterator _First,

RandomAccessIterator _Last,

BinaryPredicate _Comp);

The push_heap() function adds a range of elements to a heap, which could have
been created by calling make_heap(). The function takes a range of elements as well
as an optional binary predicate if you choose to specify that. The function proto-
types for the push_heap() functions are:

346 Data Structures and Algorithms for Game Developers

template<class RandomAccessIterator>

void push_heap(RandomAccessIterator _First,

RandomAccessIterator _Last);

template<class RandomAccessIterator, class BinaryPredicate>

void push_heap(RandomAccessIterator _First,

RandomAccessIterator _Last,

BinaryPredicate _Comp);

The pop_heap() function removes the largest element from the container. This
function is the inverse of the push_heap() function and takes as parameters a
range that specifies the elements of the heap, which is the first element to the next-
to-last element, and an optional binary predicate. The function prototypes of the
pop_heap() function are:

template<class RandomAccessIterator>

void pop_heap(RandomAccessIterator _First,

RandomAccessIterator _Last);

template<class RandomAccessIterator, class BinaryPredicate>

void pop_heap(RandomAccessIterator _First,

RandomAccessIterator _Last,

BinaryPredicate _Comp);

The last function is the sort_heap(). This function takes as parameters the
range of elements that make up the heap and an optional binary predicate. Calling
this function on a heap will sort the elements in the range. After this function is
called, the heap is no longer a heap. For example, if a heap was created out of a
vector array and this function was called, the heap would have been changed into
an ordered array. The function prototypes for the sort_heap() are:

template<class RandomAccessIterator>

void sort_heap(RandomAccessIterator _First,

RandomAccessIterator _Last);

template<class RandomAccessIterator, class BinaryPredicate>

void sort_heap(RandomAccessIterator _First,

RandomAccessIterator _Last,

BinaryPredicate _Comp);

Chapter 10 Heaps 347

The sort_heap() function is not a heap sort algorithm. It is used to sort a range of
elements in a specified order, which makes that range no longer a heap.

SUMMARY

The heap data structure is a very useful ADT container that is based on a binary
tree. In this chapter an array-based binary tree was used as the underlying data
structure for the heap. We saw along with the heap’s implementation a sorting
technique called the heap sort and how to implement a priority queue using a heap
data structure.

In the next chapter we’ll introduce the graph data structure. Trees are a type of
graph, and understanding of them will aid in understanding and implementing the
various graphs that will be discussed. Graphs are widely used in game development,
especially for various path-finding algorithms used by a game’s artificial intelligence.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What does ADT stand for?
2. A heap:

a. Is weakly ordered
b. Uses a priority queue as its underlying data structure
c. Is a binary search tree
d. None of the above

3. A priority queue is a:
a. Type of heap
b. Abstract data type
c. Sequence container
d. Both A and C
e. None of the above

4. The big-O of an insertion algorithm running on a heap would be:
a. O(1)
b. O(log N)
c. O(N * log N)
d. O(N)
e. O(N2)
f. None of the above

348 Data Structures and Algorithms for Game Developers

5. The big-O of a searching algorithm running on a heap would be:
a. O(1)
b. O(log N)
c. O(N * log N)
d. O(N)
e. O(N2)
f. None of the above

6. The big-O of a removal algorithm running on a heap would be:
a. O(1)
b. O(log N)
c. O(N * log N)
d. O(N)
e. O(N2)
f. None of the above

7. The big-O of a heap sort would be:
a. O(1)
b. O(log N)
c. O(N * log N)
d. O(N)
e. O(N2)
f. None of the above

8. Another term for percolate is:
a. Sort
b. Allocate
c. Trickle
d. Bubble
e. Both C and D
f. None of the above

9. Which is not a heap condition?
a. Balanced
b. Complete
c. Nodes that are larger than or equal to their children
d. None of the above

10. A heap is a basic data structure.
a. True
b. False

11. The heap sort uses a binary search tree.
a. True
b. False

Chapter 10 Heaps 349

12. Expanding the size of the heap array will invalidate all elements.
a. True
b. False

13. A heap is a balanced binary tree.
a. True
b. False

14. A binary search tree is weakly ordered compared to a heap data structure.
a. True
b. False

15. Heaps are complete like binary search trees.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Implement a searching algorithm to test if a key is already inside the
container.

Exercise 2: Modify the Heap Sort demo application to perform the sort within the
original array instead of making a copy.

Exercise 3: Implement a heap using a tree data structure.

350 Data Structures and Algorithms for Game Developers

351

Graphs11

In This Chapter

Introduction to Graphs
Searching with Graphs
Topological Sorting
Weighted Graphs
Artificial Intelligence

352 Data Structures and Algorithms for Game Developers

W
hen it comes to data structures, a tree is a type of graph, but although
graphs and tree have their similarities, they also have their differences. In
a graph the nodes of the data structure represent much more abstract

objects used for solving different types of problems. Also, the graph is shaped by the
data, and not the algorithms, that operate on it. In Chapter 9 the binary search tree
took its shape from its searching algorithm, which made it possible to do a fast
search on the data structure. Another example is a heap where the removal algo-
rithm has to return the top element in the structure, in which a binary tree was
used. In a graph the nodes are shaped to represent a physical or abstract set of ob-
jects, such as the major cities in the United States or the stations in a subway system.

The purpose of this chapter is to examine the data structure known as a graph.
Graphs are very powerful data structures and can be used to solve many real-world
problems. One such real-world representation is train station stops in a railroad
system where each station is connected to one or more other stations. In such a
situation a station is not connected directly to every other station in the country
but can be connected indirectly by going from one station to another until the
end destination is reached. Another real-world situation that comes up often when
talking about graphs is a scheduling system for a college campus where some classes
have prerequisites that must be completed before they can be taken. In that
example all classes that make up a degree program are connected to form the re-
quirements of getting the degree.

Later in this chapter we’ll also discuss how graphs are used in game development.
One popular and famous use of a graph in game development is for the path-finding
algorithm A* (pronounced a-star) in artificial intelligence, using what is known as
a weighted graph.

INTRODUCTION TO GRAPHS

There are many similarities between graphs and trees. If you have a strong under-
standing of one, it will make it easier to learn the other. Graphs and trees use the
same type of objects, some of which have different terminology. The things that
make a tree and a graph similar include:

They both have nodes that encapsulate objects.
They both have edges.
They both have nodes that can have multiple other nodes related to them.
They both allow node traversal, which is often used by algorithms.

Although graphs and trees might seem like the same data structure, they are
not. By the end of this chapter why they are separate data structures should be
clear. A few of the differences between trees and graphs include:

The relationship of each node is more abstract in a graph than in a tree.
In graphs nodes are called vertices (plural of vertex).
Vertices that are connected are called adjacent vertices.
Graphs have no keys, which binary trees use as a way of structuring the tree.
The edges of a graph’s node can go one way (directed) or both ways (nondirected).
The edges of a graph are often represented by something known as an adja-
cency matrix or an adjacency list, whereas the tree uses references to objects or
array indexes.
The nodes of a graph can be unweighted or weighted, which we’ll talk about
later in this chapter. This can have huge affects on the traversals and algorithms
that execute on the graph.
Different vertices can have different numbers of children without limit, unlike
the binary tree, which has a limit of two children per node (e.g., in a graph one
vertex can have 10 attached vertices while other vertices can have 0, 1, 4, 15, etc.).
The relationship between vertices is not a parent-child relationship; the rela-
tionship is much more abstract and often takes on a completely different form.

Do not confuse the vertices of a geometric model in computer graphics with those
of a graph. There is no relation.

A graph is considered a connected graph if there is a path from all vertices to all
other vertices, either directly or indirectly. A path is a sequence of edges that can be
taken to get to a destination vertex from a starting vertex. If a vertex cannot directly
connect to another, the graph is not considered connected. An example of this is
shown in Figure 11.1, where vertex B cannot get to D, but node D can get to B,
which is dictated by the directions of the arrows.

Chapter 11 Graphs 353

FIGURE 11.1 Connected and nonconnected graphs.

354 Data Structures and Algorithms for Game Developers

DIRECTED AND NONDIRECTED GRAPHS

There are generally two types of graphs: directed and nondirected. A directed graph
is a graph where the edges have a direction. For example, in a singly linked list the
edges that connect the nodes go in one direction. This means that to get from node
A to node B you can follow node A’s edge next pointer, but once at B you can’t get
back to node A. In a directed graph the idea is similar, where an edge might go from
one vertex to another but not in reverse.

A nondirected graph is a graph where the edges do not have a specific direction.
In other words, you can travel back and forth from connected vertices. An example
of something similar to this is a doubly linked list where the nodes have both next
and previous pointers that keep them connected bidirectionally. An illustration of
a directed compared to a nondirected graph is shown in Figure 11.2. Using the
example of a class scheduling system for a college campus, a directed graph’s ver-
tex can be seen in having to take a class called Computer Programming I before
being able to take Computer Programming II, but not being able to take the second
course before the first.

FIGURE 11.2 Directed and nondirected graphs.

VERTICES OF A GRAPH

The vertices of a graph are its nodes. A vertex in a graph is an object that encapsu-
lates what is being represented abstractly. In a graph various properties can be as-
sociated with a vertex, like a weight, which we’ll discuss later in this chapter. Our
first demo application deals with implementing the depth-first search algorithm,
which will be discussed in the next section. The template vertex class from that
demo application is shown in Listing 11.1, where the class is used to simply encap-
sulate any type of object that can be represented by a graph’s vertex.

LISTING 11.1 A Vertex Class from the Upcoming Depth First Search Demo

template<typename T>

class GraphVertex

{

public:

GraphVertex(T node) : m_node(node)

{

}

T GetNode()

{

return m_node;

}

private:

T m_node;

};

ADJACENCY MATRIX

In Listing 11.1 there are no pointers or indexes to other vertices. In a graph edges
from one vertex to others are specified by an adjacency matrix, a two-dimensional
array that is the size of N × N, where N is the number of vertices in the graph. An
example of an adjacency matrix is shown in Table 11.1, with the vertices called A,
B, C, D, E, and F.

Chapter 11 Graphs 355

A B C D E F

A 0 0 1 0 1 0

B 1 0 0 1 1 0

C 0 1 1 1 1 1

D 0 1 0 0 1 1

E 1 0 1 0 0 0

F 0 1 0 1 0 1

TABLE 11.1 An Adjacency Matrix

By using an array of boolean values, for example, an edge would be defined if
the index (row) of a vertex is connected to another (column) by marking true in
that matrix entry. In Table 11.1 the vertex A is connected to C and E, and E is con-
nected to A and C, but C is not connected to A and is connected to all other vertices,
which would occur in a directed graph where not all edges go in both directions.

The adjacency information can also be represented as an adjacency list. The dif-
ference between an adjacency matrix and an adjacency list is that the matrix is a
two-dimensional array, while the list is an array of link lists. The array has faster
lookups, but the list can save memory by only including elements that are con-
nected. How the graph is used will probably dictate which is more efficient, but that
is an application-specific topic.

CREATING A GRAPH

A simple graph data structure can be created by coding a class that holds a list of
vertices and an adjacency matrix. The adjacency matrix can be a two-dimensional
array of characters where the matrix’s data represent true or false states. Using a
char instead of other data types can save memory on the array if that is the only
thing the elements represent. Using C++ as an example, the vertices can be an
std::vector array of GraphVertex objects (see Listing 11.1).

Vertices can be inserted into the graph by adding a new object to the vertex array,
which if using the std::vector from the STL would require calling push_back() on the
container. The edges can also be added to the adjacency matrix by taking the array
index of the first vertex, which will be used for the row, and taking the index for
the second vertex, which will be used for the column, and marking that matrix index
as true. In a nondirected graph both vertices must be marked, as shown in the
addEdge() function in Listing 11.2; adding a directed edge can be seen in the function
addDirectedEdge(). Listing 11.2 shows an example graph class that will create and
populate a graph object, which is also used in the Depth First Search demo applica-
tion that we will look at in the following section.

LISTING 11.2 An Example Graph Data Structure

template<typename T>

class Graph

{

public:

Graph(int numVerts) : m_maxVerts(numVerts), m_adjMatrix(NULL)

{

// ALLOCATE NECESSARY MEMORY

}

356 Data Structures and Algorithms for Game Developers

~Graph()

{

// DELETE ALLOCATED MEMORY

}

bool push(T node)

{

if((int)m_vertices.size() >= m_maxVerts)

return false;

m_vertices.push_back(GraphVertex<T>(node));

return true;

}

void attachEdge(int index1, int index2)

{

assert(m_adjMatrix != NULL);

m_adjMatrix[index1][index2] = 1;

m_adjMatrix[index2][index1] = 1;

}

void attachDirectedEdge(int index1, int index2)

{

assert(m_adjMatrix != NULL);

m_adjMatrix[index1][index2] = 1;

}

private:

vector<GraphVertex<T> > m_vertices;

int m_maxVerts;

char **m_adjMatrix;

};

SEARCHING WITH GRAPHS

Searching in graphs is done to find which vertices can be reached from a starting ver-
tex by following a path along the edges. Taking the railroad example from earlier in

Chapter 11 Graphs 357

this chapter, a search could be used to find all the stops between city A and city B.
Los Angeles does not have a railroad that connects directly (nonstop) to New York
City, but it could connect to a station in the next state, which is connected to a sta-
tion in the state next to that, and so on until one connected to New York is reached.
An example of this is shown in Figure 11.3, where each city is a vertex in a graph and
the railroad tracks are the edges that connect them.

358 Data Structures and Algorithms for Game Developers

FIGURE 11.3 Finding a path from the vertex Los Angeles to New York.

The two searching algorithms that operate on graphs that will be discussed in
this chapter are the depth-first search and the breadth-first search. Both of these
functions start at a vertex and visit every vertex between it and a destination vertex.
The algorithms find any paths that exist between two vertices. If a path exists, the
path data, which is the order of the edges needed to get from start to finish, is built
and stored for some meaningful purpose. Using the railroad as an example, a path
from one city to another can be found by a travel agency when planning a trip for
a client or in a travel directions application where a path from the starting address
to a destination address is needed.

DEPTH-FIRST SEARCH

The depth-first search is an algorithm that uses a stack data structure to start at a
starting vertex and move until it reaches the destination, assuming it can be reached
from that vertex. The steps of the algorithm are:

1. Choose a starting vertex and make it the current vertex.
2. Push the current vertex onto the stack and mark it with a flag that tells us

it was checked.
3. If the current vertex is the destination, then the code is done; otherwise,

continue.

4. Visit the first adjacent vertex after the current one that was not marked as
visited and make it the current vertex.

5. Repeat steps 2 through 4 until the algorithm can’t go any further along one
path.

6. If the destination vertex was not found, pop the current vertex off the stack
and visit the next adjacent vertex that is not marked as visited.

7. Continue steps 2 through 6 until all vertices have been marked visited, which
means a path was not found, or until the destination vertex is reached.

The algorithm starts at the starting vertex and recursively checks all vertices
that connect to it until the destination is reached or until there are no more vertices
to check, which means a path cannot be found. Upon success, the elements in the
stack at the end of the algorithm are the path from the start to the destination. See
Figure 11.4 for an example with a few simple vertices.

Chapter 11 Graphs 359

FIGURE 11.4 The depth-first search.

IMPLEMENTING THE DEPTH-FIRST SEARCH

Implementing the depth-first searching algorithm requires us to take the steps out-
lined for the algorithm and translate that into code. On accompanying CD-ROM
is a demo application called Depth First Search in the Chapter 11 folder. This demo
application will create a graph and search for a path between vertices. The graph
used in this demo application, as well as those in the upcoming demos, uses char-
acter labels as the names of the vertices to make visualization easier.

The Depth First Search demo application is made up of two files: one for the
graph (Graph.h) and one for the main source file. In the header file for the graph is
the template vertex class, first seen in Listing 11.1, and the template graph class. The

graph class is a template so that the data type of the vertices can be specified. The ver-
tex of a graph is abstract and can be used to represent anything. In this demo appli-
cation it is used to represent letters that can be connected to one another. The
graph’s vertex and data structure classes are shown in Listing 11.3.

LISTING 11.3 The Graph.h Header File from the Depth First Search Demo

template<typename T>

class GraphVertex

{

public:

GraphVertex(T node) : m_node(node) { }

T GetNode() { return m_node; }

private:

T m_node;

};

template<typename T>

class Graph

{

public:

Graph(int numVerts) : m_maxVerts(numVerts), m_adjMatrix(NULL)

{

assert(numVerts > 0);

m_vertices.reserve(m_maxVerts);

m_adjMatrix = new char*[m_maxVerts];

assert(m_adjMatrix != NULL);

m_vertVisits = new char[m_maxVerts];

assert(m_vertVisits != NULL);

memset(m_vertVisits, 0, m_maxVerts);

for(int i = 0; i < m_maxVerts; i++)

{

360 Data Structures and Algorithms for Game Developers

m_adjMatrix[i] = new char[m_maxVerts];

assert(m_adjMatrix[i] != NULL);

memset(m_adjMatrix[i], 0, m_maxVerts);

}

}

~Graph()

{

if(m_adjMatrix != NULL)

{

for(int i = 0; i < m_maxVerts; i++)

{

if(m_adjMatrix[i] != NULL)

{

delete[] m_adjMatrix[i];

m_adjMatrix[i] = NULL;

}

}

delete[] m_adjMatrix;

m_adjMatrix = NULL;

}

if(m_vertVisits != NULL)

{

delete[] m_vertVisits;

m_vertVisits = NULL;

}

}

bool push(T node)

{

if((int)m_vertices.size() >= m_maxVerts)

return false;

m_vertices.push_back(GraphVertex<T>(node));

return true;

}

Chapter 11 Graphs 361

void attachEdge(int index1, int index2)

{

assert(m_adjMatrix != NULL);

m_adjMatrix[index1][index2] = 1;

m_adjMatrix[index2][index1] = 1;

}

void attachDirectedEdge(int index1, int index2)

{

assert(m_adjMatrix != NULL);

m_adjMatrix[index1][index2] = 1;

}

int getNextUnvisitedVertex(int index)

{

assert(m_adjMatrix != NULL);

assert(m_vertVisits != NULL);

for(int i = 0; i < (int)m_vertices.size(); i++)

{

if(m_adjMatrix[index][i] == 1 &&

m_vertVisits[i] == 0)

{

return i;

}

}

return -1;

}

bool DepthFirstSearch(int startIndex, int endIndex)

{

assert(m_adjMatrix != NULL);

assert(m_vertVisits != NULL);

m_vertVisits[startIndex] = 1;

362 Data Structures and Algorithms for Game Developers

// FOR OUTPUT PURPOSES OF THE DEMOS.

cout << m_vertices[startIndex].GetNode();

stack<int> searchStack;

int vert = 0;

searchStack.push(startIndex);

while(searchStack.empty() != true)

{

vert = getNextUnvisitedVertex(searchStack.top());

if(vert == -1)

{

searchStack.pop();

}

else

{

m_vertVisits[vert] = 1;

// FOR OUTPUT PURPOSES OF THE DEMOS.

cout << m_vertices[vert].GetNode();

searchStack.push(vert);

}

if(vert == endIndex)

{

memset(m_vertVisits, 0, m_maxVerts);

return true;

}

}

memset(m_vertVisits, 0, m_maxVerts);

return false;

}

private:

vector<GraphVertex<T> > m_vertices;

int m_maxVerts;

Chapter 11 Graphs 363

char **m_adjMatrix;

char *m_vertVisits;

};

In Listing 11.3 the graph’s class is made up of seven functions. The first func-
tion is the constructor, which is used to allocate the necessary dynamic memory
based on the total number of vertices that will be needed. The second function, the
destructor, is used to free that allocated memory upon the object’s destruction.

The next three functions are push(), addEdge(), and addDirectedEdge(). The
push() function adds a new vertex to the graph until the maximum number of
vertices has been reached. The addEdge() function adds a nondirectional edge,
which is an edge that goes back and forth between two vertices. The function
addDirectedEdge() adds only one directional edge.

The next function is used by the depth-first search algorithm to find the next
adjacent vertex not marked as checked from the vertex specified from its parame-
ter called index. The flags used to keep track of which vertices were checked are
called m_vertVisits in the graph’s class. This array holds true or false values, so it is
an array of characters that is the size of the total number of vertices that can be in
the graph. Every time a vertex is checked, an entry into this array is set to 1 to indi-
cate that. Marking a vertex as checked will keep the code from becoming an infinite
cycle since we have a way of knowing which vertices were already checked and do
not need checking again.

The last function is the depth-first searching algorithm itself. This function,
called DepthFirstSearch(), takes starting and ending vertices as parameters and
pushes the current vertex onto the stack, which is initially the starting vertex, and
marks it as checked. It then loops until the stack is empty, which would mean there
are no vertices left to check and there is no path from the start to the destination.
During the loop the function gets the next adjacent vertex that was not checked. If
there is not such a vertex, an element is popped off of the stack. If this happens on
the first vertex, the algorithm will stop, and no path off of the staring vertex exists.
If an adjacent vertex that was not checked is found, that vertex is marked as checked
and pushed onto the stack. The loop then checks to make sure the destination was
not reached. This process continues until the current vertex equals the destination
or until the stack is empty. If there are no more items on the stack, then no path was
found. If the path is found, the function returns true. Throughout the function
there are a few cout calls to display output to the console window. These are used
to show the search that the algorithm performed.

In the main source file a graph with six vertices is created. To keep things sim-
ple the vertices are characters A through F. An edge from A to C and C to A is cre-
ated, followed by edges between A and D, B and E, and C and F. Once the graph is
created, the code performs a depth-first search to see if a path between vertex A and

364 Data Structures and Algorithms for Game Developers

vertex D can be found. During the search the path is displayed to the window. An
indication of whether a path was or was not found is displayed to the window to
show the results of the algorithm. The main source file’s code for the Depth First
Search demo application is straightforward and can be seen in Listing 11.4. A
screenshot of the demo application is shown in Figure 11.5.

LISTING 11.4 The Main Source File for the Depth First Search Demo

#include<iostream>

#include”Graphs.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Graphs - Depth First Search” << endl;

cout << “Chapter 11: Graphs” << endl;

cout << endl;

Graph<char> demoGraph(6);

demoGraph.push(‘A’);

demoGraph.push(‘B’);

demoGraph.push(‘C’);

demoGraph.push(‘D’);

demoGraph.push(‘E’);

demoGraph.push(‘F’);

// Attach A to C and C to A.

demoGraph.attachEdge(0, 2);

// Attach A to D and D to A.

demoGraph.attachEdge(0, 3);

// Attach B to E and E to B.

demoGraph.attachEdge(1, 4);

// Attach C to F and F to C.

demoGraph.attachEdge(2, 5);

Chapter 11 Graphs 365

// Perform depth first search for a path from A to D.

cout << “DepthFirstSearch Nodes Visited: “;

int result = demoGraph.DepthFirstSearch(0, 3);

cout << endl << endl;

if(result == 1)

cout << “Path from A to D found!”;

else

cout << “Path from A to D NOT found!”;

cout << endl << endl;

return 1;

}

366 Data Structures and Algorithms for Game Developers

FIGURE 11.5 A screenshot from the Depth First Search demo.

BREADTH-FIRST SEARCH

The depth-first search algorithm started at the starting vertex and eventually made
its way down toward the destination, if it existed. This worked by moving away
from the starting vertex along the edges of unchecked vertices until one of the al-
gorithm’s terminating conditions occurred.

The breadth-first search algorithm acts a little differently. The depth-first
search algorithm started at the starting vertex, moved to the first unchecked adja-
cent vertex, and then moved forward for that vertex’s adjacency, and so on. In the
breath-first search all adjacent vertices to the current vertex are checked before the

algorithm moves forward, and it uses a queue instead of a stack. In the depth-first
search the other adjacent vertices were not checked until a chosen path had already
been disproved. In the breath-first searching algorithm the steps are:

1. Push the starting vertex into a queue and then start a loop that will execute
while the queue is not empty.

2. Once inside the loop, pop a vertex from the queue and make it the current
vertex.

3. Place all unchecked vertices adjacent to the current vertex onto the queue
and mark them as checked.

4. If there are no more vertices adjacent to the current vertex, check if the cur-
rent vertex is the destination.

5. If the destination is found, the algorithm is done.
6. If the algorithm did not find the destination, repeat steps 2 through 5.

The breadth-first search is useful if we are looking for the shortest path between
two vertices. Use of the vertices in the example in Figure 11.4 for the breath-first
search is shown in Figure 11.6.

Chapter 11 Graphs 367

FIGURE 11.6 Breath-first searching algorithm.

IMPLEMENTING BREADTH-FIRST SEARCH

On the accompanying CD-ROM a demo application called Breadth First Search
can be found in the Chapter 11 folder. This demo application builds off of the
first demo, Depth First Search, and adds a function to the graph class called
BreadthFirstSearch() for performing the breath-first searching algorithm.

In the Graph.h header file for the Breadth First Search demo application the
only new code is the BreathFirstSearch() function. This function starts with a
starting vertex and searches for a path to the destination vertex. The algorithm
pushes the starting vertex onto the queue. It then enters a loop that executes while
the queue is not empty. Inside the loop the front of the queue is popped off, and
that vertex is made the current vertex. After that a check is made to see if we are at
the destination. If not, then all adjacent vertices are added to the queue; otherwise,
the destination is found and the function can quit. Once all vertices adjacent to the
current vertex have been added to the queue, the loop starts over again and con-
tinues the process. The updated graph code is shown in Listing 11.5.

LISTING 11.5 Updated Graph Code to Include Breadth-First Search

template<typename T>

class GraphVertex

{

public:

GraphVertex(T node) : m_node(node) { }

T GetNode() { return m_node; }

private:

T m_node;

};

template<typename T>

class Graph

{

public:

int getNextUnvisitedVertex(int index)

{

assert(m_adjMatrix != NULL);

assert(m_vertVisits != NULL);

for(int i = 0; i < (int)m_vertices.size(); i++)

{

if(m_adjMatrix[index][i] == 1 &&

m_vertVisits[i] == 0)

{

return i;

}

}

368 Data Structures and Algorithms for Game Developers

return -1;

}

bool BreadthFirstSearch(int startIndex, int endIndex)

{

assert(m_adjMatrix != NULL);

assert(m_vertVisits != NULL);

m_vertVisits[startIndex] = 1;

// FOR OUTPUT PURPOSES OF THE DEMOS.

cout << m_vertices[startIndex].GetNode();

queue<int> searchQueue;

int vert1 = 0, vert2 = 0;

searchQueue.push(startIndex);

while(searchQueue.empty() != true)

{

vert1 = searchQueue.front();

searchQueue.pop();

if(vert1 == endIndex)

{

memset(m_vertVisits, 0, m_maxVerts);

return true;

}

while((vert2 = getNextUnvisitedVertex(vert1)) != -1)

{

m_vertVisits[vert2] = 1;

// FOR OUTPUT PURPOSES OF THE DEMOS.

cout << m_vertices[vert2].GetNode();

Chapter 11 Graphs 369

searchQueue.push(vert2);

}

}

memset(m_vertVisits, 0, m_maxVerts);

return false;

}

};

The main source file for the Breadth First Search demo application is similar to
the Depth First Search demo application, with the addition of a call to the Breadth-
FirstSearch() function from Listing 11.5. A screenshot for the Breadth First Search
demo application is shown in Figure 11.7. If you compare the output from the
Depth First Search demo and the Breadth First Search demo you should notice that
both algorithms were able to find the path from vertex A to vertex D, but the actual
output path taken is slightly different. The main source file for the Breadth First
Search demo application is shown in Listing 11.6.

LISTING 11.6 The Main Source File for the Breadth First Search Demo

#include<iostream>

#include”Graphs.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Graphs - Breadth First Search” << endl;

cout << “Chapter 11: Graphs” << endl;

cout << endl;

Graph<char> demoGraph(6);

demoGraph.push(‘A’);

demoGraph.push(‘B’);

demoGraph.push(‘C’);

demoGraph.push(‘D’);

demoGraph.push(‘E’);

demoGraph.push(‘F’);

370 Data Structures and Algorithms for Game Developers

// Attach A to C and C to A.

demoGraph.attachEdge(0, 2);

// Attach A to D and D to A.

demoGraph.attachEdge(0, 3);

// Attach B to E and E to B.

demoGraph.attachEdge(1, 4);

// Attach C to F and F to C.

demoGraph.attachEdge(2, 5);

// Perform breadth first search for a path from A to D.

cout << “BreadthFirstSearch Nodes Visited: “;

int result = demoGraph.BreadthFirstSearch(0, 3);

cout << endl << endl;

if(result == 1)

cout << “Path from A to D found!”;

else

cout << “Path from A to D NOT found!”;

cout << endl << endl;

return 1;

}

Chapter 11 Graphs 371

FIGURE 11.7 A screenshot from the Breadth First Search demo.

MINIMAL SPANNING TREE

A minimal spanning tree is an algorithm that can be performed on a graph and will
find the minimum number of connected edges needed to visit every vertex in the
graph. There are many different paths that will create a valid minimal spanning tree.
An example of this is shown in Figure 11.8.

372 Data Structures and Algorithms for Game Developers

FIGURE 11.8 A minimum spanning tree.

The minimal spanning tree of an unweighted graph represents only the mini-
mal connected edges. This is different from a weighted graph, which we’ll discuss
later in this chapter.

IMPLEMENTING MINIMAL SPANNING TREE

On the accompanying CD-ROM is a demo application called Minimal Spanning
Tree in the Chapter 11 folder. This demo application will implement and demon-
strate the minimal spanning tree algorithm.

After the depth-first and breadth-first searching algorithms, the minimal spanning
tree is easy and can be based on the code for either search. The minimal spanning tree
algorithm for this demo application is based on the depth-first searching algorithm. In
the minimal spanning tree the starting vertex is the first one and the destination is the
last vertex. Along the search, the minimal spanning tree is displayed to the console
window as a visual output of what it looks like. This is shown in Listing 11.7.

The minimal spanning tree in an unweighted graph finds the first minimal span-
ning tree out of many different possibilities.

LISTING 11.7 The Minimal Spanning Tree Added to the Graph Class

template<typename T>

class Graph

{

public:

void DisplayMST()

{

assert(m_adjMatrix != NULL);

assert(m_vertVisits != NULL);

int startIndex = 0;

m_vertVisits[startIndex] = 1;

stack<int> searchStack;

int vert = 0, currentVert = 0;

searchStack.push(startIndex);

while(searchStack.empty() != true)

{

currentVert = searchStack.top();

vert = getNextUnvisitedVertex(currentVert);

if(vert == -1)

{

searchStack.pop();

}

else

{

m_vertVisits[vert] = 1;

searchStack.push(vert);

// FOR OUTPUT PURPOSES OF THE DEMOS.

cout << m_vertices[currentVert].GetNode()

<< “:” << m_vertices[vert].GetNode()

<< “ “;

}

}

memset(m_vertVisits, 0, m_maxVerts);

}

};

The function DislayMST() in Listing 11.7 starts by making the first vertex the cur-
rent vertex and pushing it onto the stack. A loop then executes until the stack is
empty. Inside the loop the next unchecked adjacent vertex from the current vertex is
found. If one was not found, one element would be popped off the stack; otherwise,

Chapter 11 Graphs 373

that vertex, along with the current vertex, is displayed to the console window because
it marks one edge in the minimal spanning tree. This process continues until there are
no more elements in the stack, which means the entire minimal spanning tree has
been displayed.

The code in Listing 11.7 assumes the graph is a connected graph.

The main source file for the Minimal Spanning Tree demo application builds
off the code in the Breadth First Search demo, with the addition of calling the
DisplayMST() function of the Graph class. This function displays the minimal span-
ning tree based on the edge connections between the nodes. Altering these nodes
can generate a different minimal spanning tree. The code for the main source file
of the Minimal Spanning Tree demo is shown in Listing 11.8. Figure 11.9 shows a
screenshot of the running demo application.

LISTING 11.8 The Minimal Spanning Tree Demo’s Main Source File

#include<iostream>

#include”Graphs.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Graphs - Minimum Spanning Trees” << endl;

374 Data Structures and Algorithms for Game Developers

FIGURE 11.9 A screenshot of the Minimal Spanning Tree demo.

cout << “Chapter 11: Graphs” << endl;

cout << endl;

// Create the data structure and fill it in.

Graph<char> demoGraph(6);

demoGraph.push(‘A’);

demoGraph.push(‘B’);

demoGraph.push(‘C’);

demoGraph.push(‘D’);

demoGraph.push(‘E’);

demoGraph.push(‘F’);

// Attach A to C and C to A.

demoGraph.attachEdge(0, 2);

// Attach A to D and D to A.

demoGraph.attachEdge(0, 3);

// Attach B to E and E to B.

demoGraph.attachEdge(1, 4);

// Attach C to F and F to C.

demoGraph.attachEdge(2, 5);

// Perform breadth first search for a path from A to D.

cout << “BreadthFirstSearch Nodes Visited: “;

int result = demoGraph.BreadthFirstSearch(0, 3);

cout << endl << endl;

if(result == 1)

cout << “Path from A to D found!”;

else

cout << “Path from A to D NOT found!”;

cout << endl << endl;

// Display the minimum spanning tree.

cout << “Minimum Spanning Tree: “;

demoGraph.DisplayMST();

Chapter 11 Graphs 375

cout << endl << endl;

return 1;

}

TOPOLOGICAL SORTING

Topological sorting in a graph is an algorithm that can be used with directed graphs
where the vertices must be arranged in a specific order dictated by the directed edges.
An example of a topological sort can be seen with the college course scheduling
where certain courses are prerequisites for other classes. Performing a topological
sort on this will give us the order in which the classes must be taken to complete the
degree program. If a student is halfway through the degree program, for example, a
topological sort can be used to find out which classes remain to be taken and their
order. Figure 11.10 shows all the courses needed to get a degree, Figure 11.11 shows
what courses the student has already taken, and Figure 11.12 shows the topological
order that is needed to complete the degree program.

376 Data Structures and Algorithms for Game Developers

FIGURE 11.10 Courses in a degree program.

The figures show that the student has three courses that still need to be taken
before he or she can graduate. The order of these courses is specified because, as
seen in the case of the senior project, some courses can only be taken after others.

Topological sorting works on directed graphs, which are graphs with edges that
go in only one direction from one vertex to another. In Figure 11.12 there is no way
to take the Senior Project class before Computer Programming II, but Computer
Programming II is taken before the Senior Project class (i.e., is a prerequisite to the

Senior Project class). A directed edge in the graph is specified by the adjacency ma-
trix, where only one entry for a pair of vertices is specified instead of both.

As with the minimal spanning tree, the topological sorting algorithm can have
more than one valid outcome. As seen in the college course example there are other
combinations that would work. The algorithm finds the first valid answer.

For a graph to be a valid candidate for the topological sorting algorithm, it must
not have a cycle of connected vertices. For example, if vertex A is connected to B, B

Chapter 11 Graphs 377

FIGURE 11.11 Courses already taken.

FIGURE 11.12 Topological sort of
courses needed for degree program.

is connected to C, and C is connected to A, then there will be a cycle. As we’ll discuss
in the following section, a topological sort needs at least one vertex to have no ver-
tices it connects to. This doesn’t mean that no vertex can connect to, it but it can’t
connect to any other vertices. To determine if a graph has cycles, just look at the
number of edges. If the number of edges is greater than or equal to the number of
vertices in the graph, then there is a cycle. If you try this on a piece of paper with
three nodes, you’ll see that it is not possible to have more than three edges without
there being a cycle in a directed graph. A graph without any cycles is called a directed
acyclic graph.

A graph without a cycle is a tree, but a graph with a cycle is not a tree. All the types
of trees discussed in Chapter 9, had no cycles.

IMPLEMENTING A TOPOLOGICAL SORT

On the accompanying CD-ROM is a demo application called Topological Sort in
the Chapter 11 folder. In this section we’ll discuss what the topological sort is and
how it is implemented.

To implement the topological sort we start with a directed graph. The first step
is to find a vertex with no successor. A successor is a vertex that does not connect
to another vertex. In other words, if there are two vertices in a graph and vertex A
is connected to vertex B, then vertex B is the successor to vertex A since vertex B has
no vertices it is connected to (although there are some connected to it).

The next step is to delete the successor vertex from the graph and to add it to a
list like a stack. Steps 1 and 2 are repeated until the graph is completely empty, at
which time the list stores the topological order. If you are using a stack data struc-
ture, the last item in is the first item that needs to be done, followed by the next, and
so on until the last item is reached. To handle the deleting of vertices a temporary
list of vertices is used so that the original stays intact since this algorithm is to run
once to find the information we need but not totally destroy the graph.

Topological sorting works on both connected and nonconnected directed graphs.

Determining if a vertex has no successors is easy using the adjacency matrix. The
process is to move from row to row in a loop, looking for one that has all 0s in its
columns. The row index of a row with all columns equal to 0 is the index for a ver-
tex with no successor. In the Topological Sort demo application this is done in a
function called GetVertNoSucessor(), which is called by another function that does
the actual topological sort. This function is shown in Listing 11.9. In the GetVert
NoSuccessor() function if a vertex cannot be found, a value of –1 is returned.

378 Data Structures and Algorithms for Game Developers

LISTING 11.9 Finding the Next Vertex Without a Successor

template<typename T>

class Graph

{

private:

int GetVertNoSuccessor(char **adjMat, int size)

{

bool edgeFound = false;

for(int row = 0; row < size; row++)

{

edgeFound = false;

for(int col = 0; col < size; col++)

{

if(adjMat[row][col] != 0)

{

edgeFound = true;

break;

}

}

if(edgeFound == false)

return row;

}

return -1;

}

};

If an adjacency list is used instead of an adjacency matrix, then the function
used to get the next successor would be as fast as testing if the index of the vertex’s
link list has any elements. The topological sorting algorithm works as follows:

1. Loop while there are still vertices in the graph.
2. Within the loop get the next vertex that does not have a successor by call-

ing the GetVertNoSucessor() function.
3. If a successor cannot be found, there must be a cycle somewhere within the

graph; otherwise, delete the successor from the graph.
4. Add the deleted successor to another list that is used to store the topologi-

cal order of the vertices.
5. Repeat steps 2 through 4 until complete.

Chapter 11 Graphs 379

The topological sorting algorithm is implemented in a function called
topologicalSort(), which takes a link list as a parameter that will store the topo-
logical sorted vertices. This function starts off by making copies of the vertex list
and adjacency matrix so that the information can be operated on instead of the
original data, which we will want intact once the function is complete. It then loops
while there are still vertices inside the temporary list. Within that loop it gets the
next vertex without a successor. If such a vertex does not exist, then the loop breaks,
the temporary memory is deleted, and the function exits. If a vertex is found, that
vertex is added to the output link list and is deleted from the temporary vertex list
and matrix before the function moves on to the next iteration of the loop.

The topological sort in the topologicalSort() function is straightforward. The
code might look long because the beginning of the function creates the temporary
memory that must allocate and copy data and near the end of the function an entry
in the temporary lists is deleted. Removing from the vector array can be done by
calling the erase() function of the container. To remove from the adjacency matrix
the rows underneath the vertex to be deleted and the columns to the right of it are
simply moved over. The entries in the temporary adjacency matrix are not deleted but
are shifted, which eliminates the need for numerous allocations and de-allocations.
Other than creating the temporary memory and removing vertices from those lists,
the code for the topological sort is short. The topologicalSort() function is shown in
Listing 11.10.

LISTING 11.10 The Updated Graph Class that Adds the Topological Sorting Algorithm

template<typename T>

class Graph

{

public:

bool topologicalSort(list<T> &output)

{

bool hasCycles = false;

// CREATE COPIES OF DATA

vector<GraphVertex<T> > tempVerts(m_vertices);

int tempSize = (int)tempVerts.size();

char **tempAdjMat = new char*[m_maxVerts];

assert(tempAdjMat != NULL);

380 Data Structures and Algorithms for Game Developers

for(int i = 0; i < m_maxVerts; i++)

{

tempAdjMat[i] = new char[m_maxVerts];

assert(tempAdjMat[i] != NULL);

memcpy(tempAdjMat[i], m_adjMatrix[i],

m_maxVerts);

}

// PERFORM TOPOLOGICAL SORT

while(tempSize > 0)

{

int v = GetVertNoSuccessor(tempAdjMat,

tempSize);

if(v == -1)

{

hasCycles = true;

break;

}

output.push_front(tempVerts[v].GetNode());

// DELETE VERTEX FROM THE LIST AND MATRIX

if(v != (tempSize - 1))

{

vector<GraphVertex<T> >::iterator it;

it = tempVerts.begin() + v;

tempVerts.erase(it);

for(int row = v; row < tempSize - 1; row++)

{

for(int c = 0; c < tempSize; c++)

{

tempAdjMat[row][c] =

tempAdjMat[row + 1][c];

}

}

Chapter 11 Graphs 381

for(int col = v; col < tempSize - 1; col++)

{

for(int r = 0; r < tempSize; r++)

{

tempAdjMat[r][col] =

tempAdjMat[r][col + 1];

}

}

}

tempSize—;

}

// DELETE TEMP MEMORY

if(tempAdjMat != NULL)

{

for(int i = 0; i < m_maxVerts; i++)

{

if(tempAdjMat[i] != NULL)

{

delete[] tempAdjMat[i];

tempAdjMat[i] = NULL;

}

}

delete[] tempAdjMat;

tempAdjMat = NULL;

}

return !hasCycles;

}

};

The main source file for the topological sorting demo application builds off of
the Minimal Spanning Tree demo with a few differences. First, the Topological
Sort demo creates a directed graph of six vertices with no cycles. The edges from the
demo go from A to B, A to C, B to D, C to E, D to E, and E to F.

Once the graph is created, the code performs a breadth-first search to demon-
strate that a path from A to D can be found in the directed graph. It then performs
a minimal spanning tree algorithm to find the minimal edges that allow the first
vertex to visit every node in the graph. The end of the function performs the topo-
logical sort and stores the result in a std::list container. This container is then dis-
played to the console window for output. The entire main source file from the

382 Data Structures and Algorithms for Game Developers

Toplogical Sort demo application is shown in Listing 11.11. Figure 11.13 shows a
screenshot of the running demo application.

LISTING 11.11 The Topological Sort Demo’s Main Source File

#include<iostream>

#include”Graphs.h”

using namespace std;

int main(int args, char **argc)

{

cout << “Graphs - Topological Sorting” << endl;

cout << “Chapter 11: Graphs” << endl;

cout << endl;

// Create the data structure and fill it in.

Graph<char> demoGraph(6);

demoGraph.push(‘A’); // 0

demoGraph.push(‘B’); // 1

demoGraph.push(‘C’); // 2

demoGraph.push(‘D’); // 3

demoGraph.push(‘E’); // 4

demoGraph.push(‘F’); // 5

// Attach A:B A:C B:D C:E D:E E:F.

demoGraph.attachDirectedEdge(0, 1);

demoGraph.attachDirectedEdge(0, 2);

demoGraph.attachDirectedEdge(1, 3);

demoGraph.attachDirectedEdge(2, 4);

demoGraph.attachDirectedEdge(3, 4);

demoGraph.attachDirectedEdge(4, 5);

// Perform breadth first search for a path from A to D.

cout << “BreadthFirstSearch Nodes Visited: “;

bool result = demoGraph.BreadthFirstSearch(0, 3);

cout << endl << endl;

if(result == 1)

cout << “Path from A to D found!”;

Chapter 11 Graphs 383

else

cout << “Path from A to D NOT found!”;

cout << endl << endl;

// Display the minimum spanning tree.

cout << “Minimum Spanning Tree: “;

demoGraph.DisplayMST();

cout << endl << endl;

list<char> tsResult;

if(demoGraph.topologicalSort(tsResult) == true)

{

cout << “Topological Sort: “;

ostream_iterator<char> output(cout, “ “);

copy(tsResult.begin(), tsResult.end(), output);

}

else

{

cout << “There are cycles in the graph!”;

}

cout << endl << endl;

return 1;

}

384 Data Structures and Algorithms for Game Developers

FIGURE 11.13 A screenshot of the Topological Sorting demo.

WEIGHTED GRAPHS

A weighted graph is a graph that adds a weight to each of its vertices. The weight can
be anything and it is used to give a much better description of the vertices. For exam-
ple, using the railroad system from earlier in this chapter, the weight of the vertices can
be their distance or longitude and latitude coordinates. If the weight was a distance, the
minimal distance from one city to another could be found, which would give us the
shortest travel time. Another example from the real world could be the cost of plane
travel between cities. Some flights are not nonstop, so not only is a path from one city
to another found, but the total monetary cost can also be found. This can be seen in
many online airline booking systems where a user can find flights from a staring air-
port to a destination airport based on the cheapest route.

Another example of using weights in a graph can be seen in artificial intelligence
in a video game. If the game world can be broken up into vertices, a path from any
starting area to a destination area can be found. In addition, the best route can be
found between the two areas, which could include the safest path, the shortest path,
and so on that an artificially controlled character or object can take.

Earlier in this chapter we said that the weighted graphs assumed the same
weight for all vertices. When the weights of vertices are not the same, the complex-
ity of some algorithms can increase.

Weighted graphs can be directed or nondirected graphs.

MINIMAL SPANNING TREES AND WEIGHTED GRAPHS

Finding the minimal spanning tree of a weighted graph requires finding not only
the minimal spanning tree but also the cheapest minimal spanning tree that exists
for a given set of edges. This can be done by using a priority queue where the
priority queue can keep a list of the costs of all edges found by the algorithm. At
the end the edges that make up the top elements of the priority queue make up the
shortest (or longest, depending on the comparison you are looking for) path from
the first vertex to the last vertex in the graph. The algorithm for the minimal span-
ning tree of a weighted graph can be broken down into the following steps:

1. Mark the first vertex as the current vertex and set its checked flag to true.
2. Loop while the number of checked vertices does not equal the total num-

ber of vertices.
3. Loop through and add all unchecked adjacent vertices and their weights to

the priority queue.
4. If the priority queue is empty after the last step, then the graph has a cycle.

Chapter 11 Graphs 385

5. Remove the edge with the lowest weight and add it to a list that makes up
the minimal spanning tree.

6. Repeat steps 2 through 5 until the loop in step 2 breaks.

Performing these steps will display the shortest minimal spanning tree of a
weighted graph. In the next section we will implement such an algorithm on
a weighted graph data structure.

IMPLEMENTING THE MINIMAL SPANNING TREE ON A WEIGHTED GRAPH

On the accompanying CD-ROM is a demo application called Weighted MST in the
Chapter 11 folder. This demo application builds off the previous demo, Minimal
Spanning Tree, but uses a weighted graph.

In the Graph.h header file for the Weighted Graph demo application a new
class was added to the top. This class is used by the minimal spanning tree algo-
rithm called EdgeInfo to store a temporary list of edges that were already checked
by the algorithm.

The function for the minimal spanning tree, DisplayMST(), starts off by making
the first vertex the current vertex and then loops until all vertices have been checked.
Within the loop it marks the current vertex as checked and increments the number
that holds the total number of checked vertices. Next, the body of the loop loops
through each vertex in the graph and looks for an edge between it and the current
vertex. Whenever it finds one, it adds the edge to a temporary edge list only if the
destination vertex does not already exist somewhere in the temporary edge list. This
is done using the find algorithm and the overloaded operator == in the EdgeInfo
class. If the edge is found, the weights are compared. If the edge we are trying to add
has a lower weight than the edge with a matching destination, then we replace that
edge; otherwise, we do nothing since the smallest weight is already in the list.

At the end of the inner loop within the DisplayMST() function, if there are no
vertices in the edge list, the graph must not be a connected graph, which is neces-
sary for the algorithm. If there are elements in the temporary edge list, the edge with
the minimum distance is added to the output and is removed from the edge list.
Normally a priority queue would be used, but the STL vector can make the code
easier to look at, so that is used. To find the minimum edge the vector array is
sorted from greatest to least so that the minimum edge is at the end of the list. Since
the elements must be sorted anyhow, sorting by greatest to least will allow for a fast
pop_back() to be called on the container to remove the minimum edge. The sort-
ing algorithm uses the overloaded operator < to sort the elements by weight from
the EdgeInfo class.

A priority queue based on a heap will lead to better performance than an array.

386 Data Structures and Algorithms for Game Developers

When the function is complete, you’ll have a minimum spanning tree based on
the weighted graph. If not, you’ll have a message that says the graph is not connected.
The code for the EdgeInfo class and the new DisplayMST() is shown in Listing 11.12.

LISTING 11.12 The Weighted Graph that Includes a New Minimal Spanning Tree

class EdgeInfo

{

public:

EdgeInfo() : m_v1Index(0), m_v2Index(0), m_weight(0) {}

bool operator<(const EdgeInfo &e2)

{

return (m_weight < e2.m_weight);

}

bool operator==(const EdgeInfo &e2)

{

return (m_v2Index == e2.m_v2Index);

}

int m_v1Index, m_v2Index;

int m_weight;

};

template<typename T>

class Graph

{

public:

void DisplayMST(string &output)

{

assert(m_adjMatrix != NULL);

assert(m_vertVisits != NULL);

int currentVert = 0, totalChecked = 0;

int size = (int)m_vertices.size();

vector<EdgeInfo> vList;

Chapter 11 Graphs 387

while(totalChecked < size - 1)

{

m_vertVisits[currentVert] = 1;

totalChecked++;

for(int i = 0; i < size; i++)

{

if(i == currentVert || m_vertVisits[i] == 1 ||

m_adjMatrix[currentVert][i] == 0)

continue;

EdgeInfo edge;

edge.m_v1Index = currentVert;

edge.m_v2Index = i;

edge.m_weight = m_adjMatrix[currentVert][i];

vector<EdgeInfo>::iterator it = find(vList.begin(),

vList.end(),

edge);

if(it == vList.end())

{

vList.push_back(edge);

}

else

{

if(edge.m_weight <= (*it).m_weight)

{

(*it).m_v1Index = edge.m_v1Index;

(*it).m_v2Index = edge.m_v2Index;

(*it).m_weight = edge.m_weight;

}

}

}

if(vList.empty() == true)

{

output = “Error: Graph is not connected.”;

return;

}

388 Data Structures and Algorithms for Game Developers

// Orders from greatest to least.

// Since we have to sort anyhow lets put the

// min at the end so pop_back() is fast.

sort(vList.rbegin(), vList.rend());

int endIndex = (int)vList.size() - 1;

int v1 = vList[endIndex].m_v1Index;

currentVert = vList[endIndex].m_v2Index;

// For demo output.

output += m_vertices[v1].GetNode();

output += “:”;

output += m_vertices[currentVert].GetNode();

output += “ “;

// Remove minimum, which was placed at the back.

vList.pop_back();

}

memset(m_vertVisits, 0, m_maxVerts);

}

};

The main source file is the same as the Minimal Spanning Tree demo application
from earlier in this chapter, with the exception that the weights of the edges are spec-
ified. Also, the demo only does a minimal spanning tree. The weights were purposely
set so that the minimal spanning tree that is generated is (A, B), (B, C), (C, D), (D, E),
so that the visualization is easier. The main source file of the Weighted MST demo ap-
plication is shown in Listing 11.13. Figure 11.14 shows a screenshot from the running
demo application.

LISTING 11.13 Weighted MST Main Source File

#include<iostream>

#include”Graphs.h”

using namespace std;

int main(int args, char **argc)

{

Chapter 11 Graphs 389

cout << “Graphs - Weighted MST” << endl;

cout << “Chapter 11: Graphs” << endl;

cout << endl;

// Create the data structure and fill it in.

Graph<char> demoGraph(5);

string output;

demoGraph.push(‘A’);

demoGraph.push(‘B’);

demoGraph.push(‘C’);

demoGraph.push(‘D’);

demoGraph.push(‘E’);

// Attach A to each other vertices.

demoGraph.attachEdge(0, 1, 1);

demoGraph.attachEdge(0, 2, 2);

demoGraph.attachEdge(0, 3, 4);

demoGraph.attachEdge(0, 4, 4);

// Attach B to each other vertices.

demoGraph.attachEdge(1, 2, 1);

demoGraph.attachEdge(1, 3, 3);

demoGraph.attachEdge(1, 4, 4);

// Attach C to each other vertices.

demoGraph.attachEdge(2, 3, 1);

demoGraph.attachEdge(2, 4, 4);

// Attach D to each other vertices.

demoGraph.attachEdge(3, 4, 1);

// Vertex E is already attached to all vertices.

// Display the minimum spanning tree.

demoGraph.DisplayMST(output);

cout << “Minimum Spanning Tree: “ << output;

cout << endl << endl;

return 1;

}

390 Data Structures and Algorithms for Game Developers

ARTIFICIAL INTELLIGENCE

Artificial intelligence has been used in games practically since the beginning. One of
the most important things to do in any game, whether that game is two-dimensional
or three-dimensional, is to find a path from one location to another. In some games
the illusion of path-finding can be accomplished by moving enemies along prede-
fined paths, but in complex and dynamic scenes the game might need to figure out
how to get from one place to another. To complicate matters the path-finding algo-
rithm often must be performed on multiple game objects and perform at interactive
rates. In this section we will briefly talk about a very popular path-finding algorithm
called the A* algorithm.

A* ALGORITHM

The A* algorithm is performed on a weighted graph. In a game environment the
areas of the game world that an artificially controlled character can access are de-
fined by vertices. These vertices are connected to one another by edges that define
a path that tells the game how to get from one area (vertex) to another. An exam-
ple of this is shown in Figure 11.15.

The vertices in a graph data structure that are used in path-finding are known
as the search area. This search area does not contain vertices for every microscopic
position that an object can possibly be at in a game world because that would be
excessive. Instead, the search area is often a simplified representation of where the
artificially controlled objects can travel. In Figure 11.15 the vertices of the search
area were simplified, which is what most games do to keep the performance of the
algorithm acceptable between many game objects. In the A* path-finding algorithm

Chapter 11 Graphs 391

FIGURE 11.14 A screenshot of the Weighted MST demo.

the number of vertices can affect the performance. These vertices are normally
specified using some kind of environment or level editor and by finding a balance
between the desired realism and performance.

The weights of the vertices can take on many different meanings, each of which
would be application specific. The weights might be the distance from the origin of
the game world. They could also be values that reflect the cost of moving to such
a location. For example, in a game where the artificially intelligent characters can
drive around the game world, the vertices can have varying weights based on the
different types of terrains. That way, for example, the roads can have a lower cost
than a patch of grass, which can have a lower cost than mud, which can have a
lower cost than quicksand.

As mentioned previously, the weights in the A* algorithm are game specific. If
the game uses weights to represent the distances of the vertices, then the shortest
path from one location to another can be found. If a game uses varying weights to
specify the cost of moving to various vertices, as in the example of trying to avoid
muddy dirt if a patch of grass or the road is nearby, can also be used to increase the
appearance of realism. It is all up to the game-specific requirements.

An understanding of weighted graphs will make the implementation of such a
path-finding algorithm much easier. In a game performance is an issue, so modifi-
cations would have to be made to the graph data structure to allow it to solve a
piece of the path-finding problem instead of calling one function and having it map
out the entire route at once. The graphs created in this chapter solved the entire
problem when they were asked to do something, but in the A* path-finding algo-
rithm it is more efficient to solve a little bit of the path-finding problem during each

392 Data Structures and Algorithms for Game Developers

FIGURE 11.15 An overhead view of
a game world where vertices define
how to get from one area to another.

frame instead of all at once. With many objects needing to dynamically navigate a
game world, this will lead to a huge performance boost. Also, if the destination is
dynamic, the end destination can be changed on the fly. For example, in an open
world game such as Saint’s Row (by Volition®) or Grand Theft Auto™ (by Rock-
star®), the artificially controlled police officers will need to not only chase the player
but to also try to stay on the road and avoid as many obstacles as possible. In Saint’s
Row for the Xbox® 360 the police artificial intelligence must be able to locate the
players when they spawn. This can be seen if you get in enough trouble during the
game and try to flee the scene. In that game, as well as in current and previous
Grand Theft Auto titles, losing the line-of-sight between you and the police does not
make you safe.

Obstacle avoidance brings up another issue associated with artificial intelli-
gence and path finding. Not only does an object need to avoid static geometry in
the game world, but they also must avoid dynamic objects. In an open world game
this means other cars, pedestrians, and so on. The data structures and algorithms
that perform these tasks can work together to create realistic and stunning game
play experiences.

SUMMARY

The graph data structure is an impressive set of code that has a lot of uses in general
application programming and in game and simulation development. The problems
graphs solve are very different from the trees discussed in Chapter 9. In this chapter
we discussed nonweighted and weighted graphs, where weighted graphs added a
variable to the vertices of a graph that can be used to alter the algorithms seen in this
chapter. The shortest path in a weighted graph can also be applied from any vertex
to any other vertex using algorithms such as the Dijkstra’s algorithm, developed by
Edsger Dijkstra in the late 1950s, or Robert Floyd’s algorithm, which was developed
in the 1960s. These algorithms require modifying the adjacency matrix to show not
only the cost of going from one vertex edge to another but the cost of going from all
edges.

One very popular algorithm that uses a weighted graph is the A* path-finding
algorithm. A* is a very common and popular algorithm that has been used for a long
while in video games. Not only can the A* algorithm find a destination every time, as-
suming it exists, but it can do it at a rate that is beneficial for interactive performance.

In the next chapter we will look at additional C++ STL data structures and
algorithms. The STL can make programming easier, and a strong understanding of
all aspects of it will make all C++ programmers stronger when it comes to being
able to solve problems in code.

Chapter 11 Graphs 393

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What is a graph?
2. What is the different between a graph and a tree?
3. What is the difference between a connected graph and a nonconnected graph?
4. What is the difference between a directed edge and a nondirected edge?
5. What is the difference between a weighted and an unweighted graph?
6. The depth-first search algorithm:

a. Searches for the minimal edges needed to visit each vertex in the graph
b. Travels all possible paths from a vertex to see if it can find the destina-

tion before it moves on to the adjacent vertices
c. Checks all adjacent vertices before moving down the paths to find the

destination
d. None of the above

7. The breadth-first search algorithm:
a. Searches for the minimal edges needed to visit each vertex in the graph
b. Travels all possible paths from a vertex to see if it can find the destina-

tion before it moves on to the adjacent vertices
c. Checks all adjacent vertices before moving down the paths to find the

destination
d. None of the above

8. The minimal spanning tree algorithm:
a. Searches for the minimal edges needed to visit each vertex in the graph
b. Travels all possible paths from a vertex to see if it can find the destina-

tion before it moves on to the adjacent vertices
c. Checks all adjacent vertices before moving down the paths to find the

destination
d. None of the above

9. The topological sort algorithm:
a. Searches for the minimal edges needed to visit each vertex in the graph
b. Travels all possible paths from a vertex to see if it can find the destina-

tion before it moves on to the adjacent vertices
c. Checks all adjacent vertices before moving down the paths to find the

destination
d. Displays the order of the vertices from a starting vertex to the last vertex
e. None of the above

10. What difference was there in the minimal spanning algorithm from the
weighted graph and the nonweighted one?

394 Data Structures and Algorithms for Game Developers

11. What is the A*?
a. A sorting algorithm
b. A path-finding algorithm
c. A data structure
d. None of the above

12. The A* is based on:
a. A hash table
b. A stack
c. A binary tree
d. A directed graph
e. A weighted graph
f. None of the above

13. The minimal spanning tree in an unweighted graph is always the same as
in a weighted graph.
a. True
b. False

14. A* can only be applied to graphs with cycles.
a. True
b. False

15. Performance with the A* is unaffected by the number of vertices.
a. True
b. False

16. A topological sorting algorithm can only work on nondirected graphs.
a. True
b. False

17. The minimal spanning tree is a list of vertices that specify the order of
vertices that can be visited from the start to the end.
a. True
b. False

18. A tree is a graph without cycles.
a. True
b. False

19. A directed edge is an edge that goes from one vertex to another and vice versa.
a. True
b. False

20. The breadth-first search can be used to find the shortest path from a start-
ing vertex to the destination vertex.
a. True
b. False

Chapter 11 Graphs 395

PROGRAMMING PROJECTS

Exercise 1: Modify the Depth First Search demo application to store the output in
another container instead of displaying it directly to the console window. Do the
same for the Breadth First Search demo.

Exercise 2: Build off of the Depth First Search demo to create a graph that uses an
adjacency list instead of an adjacency matrix.

Exercise 3: Add the ability for the graph class to save its data out to a file and to
load data in from a file. This will allow the data structure to save its graph or to load
one.

396 Data Structures and Algorithms for Game Developers

397

Additional STL Algorithms12

In This Chapter

Strings
map and multimap

set and multiset

STL Algorithms

398 Data Structures and Algorithms for Game Developers

T
he C++ STL is a very useful set of template classes that are available to ap-
plication programmers. So far in this book we’ve looked at the vector,
bit_array, list, queue, priority_queue, deque, and the stack STL template

classes. We’ve also looked at a few nonstandard hash containers using STLport in-
cluding the hash_set, hash_multiset, hash_map, and the hash_multimap.

In this chapter we will look at the remaining STL algorithms. We’ll also be
looking at the string container, which isn’t a template data structure, as well as the
STL map, multimap, set, and multiset template classes. This chapter will wrap up the
introduction to the C++ STL containers and algorithms, and the chapters that fol-
low will discuss and implement a few data structures and algorithms that are very
useful in the field of game and simulation development.

STRINGS

The standard string container is useful for creating and manipulating strings in C++.
The string class is based on the template class called basic_string and is part of the
C++ standard. Like other STL containers, the string class has the ability to allocate
and manage its own memory and expand as necessary. The string class is also a se-
quence container, so STL algorithms can be used with it just like with other contain-
ers such as the vector. Also, like other STL containers, the string container offers
methods and operators that make working with strings easier and more convenient.

Using string classes is recommended over using traditional arrays and vectors,
because it offers the following benefits:

They delete themselves.
They perform allocations and reallocations as necessary.
They are convenient to work with because they supply various operators and
string-related methods.
You can pass their contents to functions expecting the C-styled arrays so that
legacy code can still work.
For our convenience, the container offers many useful operations that are per-
formed on strings.
The string is a sequence container, so the STL algorithms will work on it (although
normal arrays can also be used with some algorithms).
The container is standard.

Whenever possible, be sure to use reserve() to avoid unnecessary reallocations.

The string class is made up of many different methods and operators. We have
seen most of these methods and operators in other containers such as the vector, the

list, and so forth. What sets the string apart from the others is that it offers string-re-
lated methods as well as the common push_back(), erase(), reserve(), and
so forth. Understanding and knowing what functions the string container supplies is
important for using the class efficiently. Table 12.1 displays all of the methods and
operators of the string class as well as a description of what they do.

Chapter 12 Additional STL Algorithms 399

Function/Operator Description

string() The class’s constructor.
append(value_type)

append(value_type*, count)

append(str, offset, count)

append(str)

append(count, value_type)

append(inputIteratorBegin, Appends characters to the end of the string.
inputIteratorEnd)

assign(chars)

assign(value_type, count)

assign(str, offset, count)

assign(str)

assign(count, value_type)

assign(inputIteratorBegin, Assigns new character values to the contents
inputIteratorEnd) of the string container.

at(offset) Returns a reference to the character
specified by an offset.

begin() Returns an iterator to the first element in the
string.

capacity() Returns the maximum size the string can
hold without reallocations.

clear() Erases all elements of a string container.
compare(str)

compare(pos, length, str)

compare(pos, length, str,

offset, count)

compare(value_type*)

compare(pos, length,

value_type*)

→

TABLE 12.1 Member Functions and Operators of the String Container

400 Data Structures and Algorithms for Game Developers

Function/Operator Description

compare(pos, length1, Compares two strings to see if they are
value_type*, length2) equal or if one is lexicographically less than

the other.

copy(value_type*, count, Copies a set of characters from a source to
offset) the string.

c_str() Returns an array of the string’s contents.

data() Converts the contents of a string container
into an array of characters

empty() Tests whether there are characters in the
container.

end() Returns an iterator to the last element in
size() the string.

length() The size() and the length() functions
return the number of characters in the string.

erase(start, end) Deletes a substring from the container.

replace(start, end, str) Replaces a substring with another string.
find(str, index)

rfind(str, index) Finds the first occurrence of a substring in
find_first_not_of(char, the container starting at the index. The
offset) rfind() function finds the last occurrence.

find_first_of(value_type*,

offset)

find_first_of(value_type*,

offset, count)

find_first_of(str, offset) Searches a string for the first character that is
not an element of a specified string.

get_allocator() Returns a copy of the container’s allocator.

insert(index, str) Inserts a string into the container at a
specified position.

max_size() Returns the maximum number of characters
the string can contain without being resized.

push_back(char) Adds a character to the end of the string.

rbegin() Returns an iterator to the first element in the
reversed string.

→

Another function that can be used with a string is the getline() method, which
reads a stream of data from an input stream. This stream can be an open file, come
from the keyboard using std::cin, and so forth. The function takes as parameters
the stream object, the string container that is being read to, and a delimiter that
specifies when reading should stop. A delimiter in this case is a character that marks
when reading should stop and can be anything from a new-line character, a tab
character, a letter, a white space, and so forth. The function prototype for the
getline() function is:

istream& getline (istream& is, string& str, char delim = ‘\n’);

Use the swap trick to trim excess memory in the container. For a string that could
look like string(str.begin(), str.end()).swap(str) for a string str.

Chapter 12 Additional STL Algorithms 401

Function/Operator Description

rend() Returns an iterator to the last element in the
reversed string.

reserve(size) Reserves the minimum size for the string.

substr(index, length) Returns a substring in the container starting
at index for a specified length.

swap(str) Swaps two strings’ contents.

operator= Operator to make one string equal to
another.

operator+ Concatenates strings.

operator+= Concatenates and assigns strings.
operator==

operator!=

operator<

operator<=

operator>

operator>= Boolean comparison operators.

operator[] Allows the string’s contents to be accessed
using array subscripts.

IMPLEMENTING STL STRINGS

On the accompanying CD-ROM a demo application called Strings can be found in
the Chapter 12 folder. This simple demo application will demonstrate the creation
of an STL string and perform a few different algorithms on the container. In this
section we will look at the demo’s main source file in detail.

The demo’s main source file starts by creating a string object and using its
constructor to pass a set of characters into it. The demo then tests calling the
container’s clear() function to clear the contents of the container, tests the
operator= to assign a new set of text to the container, and tests the push_back()
function to add a character to the end of the current string. Once those initial tests
are done, the demo uses an output stream iterator along with the string iterators
to call the copy() algorithm to display the contents of the string to the console
window in both its forward and reverse order. Last, the demo demonstrates using
the getline() function to read text from the keyboard and into the container. The
getline() function will continue to read characters until the Enter key is pressed.
Once Enter is pressed, the text that was entered is displayed and the application
quits. The Strings demo’s main source file is shown in Listing 12.1. Figure 12.1
shows a screenshot of the demo application.

LISTING 12.1 The Strings Demo’s Main Source File

#include<iostream>

#include<string>

#include<algorithm>

using namespace std;

int main(int args, char **argc)

{

cout << “Strings Example” << endl;

cout << “Chapter 12: Additional STL” << endl;

cout << endl;

string str(“Hello World”);

cout << “ String contents: “ << str << endl;

str.clear();

cout << “ String contents after clear: “ << str << endl;

402 Data Structures and Algorithms for Game Developers

str = “Goodbye World”;

cout << “ Assigning string contents: “ << str << endl;

str.push_back(‘!’);

cout << “String contents with iterators: “;

ostream_iterator<char> output(cout, “”);

copy(str.begin(), str.end(), output);

cout << endl;

cout << “ Reverse contents: “;

copy(str.rbegin(), str.rend(), output);

cout << endl << endl;

cout << “Enter in a string and press enter: “;

getline(cin, str);

cout << endl;

cout << “You’ve entered: “ << str << endl << endl;

return 1;

}

Chapter 12 Additional STL Algorithms 403

FIGURE 12.1 A screenshot of the Strings demo application.

MAP AND MULTIMAP

In the STL there are also map and multimap containers. These containers contain a
data value and a sorting key pair. The map and multimap classes are used to retrieve
data from a collection using the key value of the pair that is inserted into the
container. When declaring one of these containers, the key’s data type is a tem-
plate parameter, the data value’s data type is a template parameter, the binary
predicate comparison is a template parameter (these were discussed in Chapter 5),
and the allocator can be defined, which is optional along with the binary predicate.
By default both the map and multimap classes use the less<Key> binary predicate.
Using the map class as an example, the template declarations would look like the
following:

template <

class Key,

class Type,

class Traits = less<Key>,

class Allocator=allocator<pair <const Key, Type> >

>

class map

Things to remember about the STL map and multimap are:

The STL map and multimap are pair-associative containers.
Element values are retrieved by using a key.
They have support for bidirectional iterators.
They are template classes.
Each element has a unique key in a map, but in a mutlimap they do not have to
be unique.
Elements are sorted based on the key.

The map and the multimap classes share a lot of the same methods but also have
a few that are unique to one or the other. The class methods and operators that the
STL map and multimap have in common are listed in Table 12.2. The methods and
operators unique to map are listed in Table 12.3, and the multimap operators are in
Table 12.4.

404 Data Structures and Algorithms for Game Developers

Chapter 12 Additional STL Algorithms 405

Method/Operator Description

begin() Returns an iterator to the first element in the container
clear() Clears the container’s elements

count(key) Returns the number of elements in the container
that matches the key

empty() Boolean test to check if the container is empty

end() Returns an iterator to the last element in the container

equal_range(key) Returns a pair of iterators to the first element that is
greater than or equal to the key to the last element
that is greater than the key

erase(it) Erases an element from the container based on
erase(itFirst, itLast) the iterator position, the range of iterators, or the
erase(key) key value

find(key) Returns an iterator to the element based on the key

get_allocator() Returns the allocator used by the container
insert(value_type&)

insert(it, value_type&)

insert(itFirst, itLast) Inserts an element or a range of elements into the
container

key_comp() Returns the comparison used for the keys

lower_bound(key) Returns an iterator to the first element that is equal
to or greater than the key

max_size() Returns the maximum size of the container without
needing a reallocation

rbegin() Returns an iterator to the first reverse element

rend() Returns an iterator to the last reverse element

size() Returns the number of elements in the container

swap(right) Swaps the elements of two containers

upper_bound(key) Returns an iterator to the first element that is less
than the key

value_comp() Returns a function object that determines the order
of elements in a container by comparing their keys

TABLE 12.2 Methods and Operators Shared by map and multimap

IMPLEMENTING STL map AND multimap

On the accompanying CD-ROM in the Chapter 12 folder is a demo application
called STL Map that demonstrates using the map class. In that same folder is another
demo application called STL Multi-map that demonstrates how to use a multimap
class. These demo applications are very similar but have their differences. The STL
Map demo application demonstrates inserting objects into the container using the

406 Data Structures and Algorithms for Game Developers

Method/Operator Description

map()

map(comparison)

map(comparison, allocator)

map(map&)

map(itFirst, itLast)

map(itFirst, itLast, comparison)

map(itFirst, itLast, comparison, Constructors
allocator)

operator[key] Inserts an element into the container
using key if the key is not found and
returns a reference to the data value
that exists for that key, which allows
for reading and writing (i.e., insertion)

TABLE 12.3 map Methods and Operators

Method Description

multimap()

multimap(comparison)

multimap(comparison, allocator)

map(map&)

map(itFirst, itLast)

map(itFirst, itLast, comparison)

map(itFirst, itLast, comparison, allocator) Constructors

TABLE 12.4 multimap Methods

insert() function and the operator[] overloaded operator. The STL Map demo
moves on to demonstrate displaying the contents inside the container using the
operator[] and iterators. The STL Map demo finishes by demonstrating how to
find a key and its associated data object from the container. The main source file for
the STL Map demo application is shown in Listing 12.2. Figure 12.2 shows a screen-
shot of the running demo application.

LISTING 12.2 The STL Map Demo’s Main Source File

#include<iostream>

#include<map>

#include<string>

#include<algorithm>

using namespace std;

int main(int args, char **argc)

{

cout << “STL Maps Example” << endl;

cout << “Chapter 12: Additional STL” << endl;

cout << endl;

// Create and insert into the container.

map<int, string> mapPair;

mapPair.insert(map<int, string>::value_type(300, “Test 1”));

mapPair.insert(map<int, string>::value_type(150, “Test 2”));

mapPair.insert(map<int, string>::value_type(400, “Test 3”));

mapPair.insert(map<int, string>::value_type(600, “Test 4”));

mapPair[100] = “One hundred”;

cout << “Diplaying 400: “ << mapPair[400].c_str() <<

endl << endl;

// Test displaying contents.

cout << “Displaying all items:” << endl;

for(map<int, string>::iterator it = mapPair.begin();

it != mapPair.end(); it++)

{

Chapter 12 Additional STL Algorithms 407

cout << “ Key: “ << (*it).first << “ Value: “ <<

(*it).second << “.” << endl;

}

cout << endl;

// Test removing from the container.

map<int, string>::iterator itPos = mapPair.find(150);

if(itPos != mapPair.end())

cout << “Found Key 150!” << endl;

cout << endl;

return 1;

}

408 Data Structures and Algorithms for Game Developers

FIGURE 12.2 A Screenshot of the STL Map Demo.

The STL Multi-map demo application starts off by using the insert() function
to insert items into the container. Since there is no operator[] for the multimap, it
only uses insert(). The demo moves on to show how to display its contents using
iterators, how to use the equal_range() function to search for all objects that match
a specific key, and how to find an element that matches a key. When the range is
displayed, all elements that have that specific key are displayed to the console
window. Since multimap objects can have shared keys within the container, during
the insertion a few keys are purposely made to share the same key. The main source

file for the STL Multi-map demo application is shown in Listing 12.3. Figure 12.3
shows a screenshot of the demo application.

LISTING 12.3 The STL Multi-map Demo’s Main Source File

#include<iostream>

#include<map>

#include<string>

#include<algorithm>

using namespace std;

int main(int args, char **argc)

{

cout << “STL Multi-Maps Example” << endl;

cout << “Chapter 12: Additional STL” << endl;

cout << endl;

// Create and insert into the container.

multimap<int, string> mapPair;

mapPair.insert(map<int, string>::value_type(300, “Test 1”));

mapPair.insert(map<int, string>::value_type(150, “Test 2”));

mapPair.insert(map<int, string>::value_type(100, “Test 3”));

mapPair.insert(map<int, string>::value_type(275, “Test 4”));

mapPair.insert(map<int, string>::value_type(150, “Test 5”));

// Test displaying contents.

cout << “Displaying all items:” << endl;

for(multimap<int, string>::iterator it = mapPair.begin();

it != mapPair.end(); it++)

{

cout << “ Key: “ << (*it).first << “ Value: “ <<

(*it).second << “.” << endl;

}

cout << endl;

Chapter 12 Additional STL Algorithms 409

// Searching for and displaying all values that share a key.

pair<multimap<int, string>::iterator,

multimap<int, string>::iterator> range;

range = mapPair.equal_range(150);

cout << “Displaying all items in a range:” << endl;

for(it = range.first; it != range.second; it++)

{

cout << “ Key: “ << (*it).first << “ Value: “ <<

(*it).second << “.” << endl;

}

cout << endl;

// Test removing from the container.

multimap<int, string>::iterator itPos = mapPair.find(150);

if(itPos != mapPair.end())

cout << “Found Key 100!” << endl;

cout << endl;

return 1;

}

410 Data Structures and Algorithms for Game Developers

FIGURE 12.3 The STL Multi-map Demo’s Screenshot.

SET AND MULTISET

The last STL data structures that will be looked at in this chapter are the set and
multiset. The set class is a template class where all elements inserted in the list are
to be unique. In a set, as well as a multiset, the elements are sorted by the key,
which also serves as the data object. The multiset is the same as the set class, with
the exception that the multiset class can have keys that are not unique. Neither set
nor multiset can have their elements changed, which mean old keys must be
deleted and new keys inserted. Using the set class as an example, the declaration of
its template parameters are:

template <

class Key,

class Traits=less<Key>,

class Allocator=allocator<Key>

>

class set

A few things to keep in mind when working with these containers are:

set and multiset are simple associative containers in which the key values are
their element values.
The elements are sorted.
They support bidirectional iterators.
The set class requires keys that are unique, while the multiset does not.
Sets, being associative containers, are optimized for insertions, lookups, and
removals with a big-O of O(log N).
Inserting elements do not invalidate iterators, but removing elements do in-
validate iterators that point to a place before the element that was removed.

The difference that separates sets from maps is that maps are key-object pair struc-
tures, while sets use the object as their keys.

The member functions and operators that the set and multiset class offer are
the same as the map and multimap classes with the exception that the set does not
have an operator[] like the map does.

IMPLEMENTING STL set AND multiset

On the accompanying CD-ROM in the Chapter 12 folder is a set of demo applications
called STL Set and STL Multiset. The STL Set demo creates a set container, populates
it with elements, copies the container to another, displays the contents of the copy

Chapter 12 Additional STL Algorithms 411

using iterators, and searches for a value within the container. The main source file for
the STL Set demo application is shown in Listing 12.4, and its screenshot is shown in
Figure 12.4.

LISTING 12.4 The Main Source File for the STL Set Demo

#include<iostream>

#include<set>

using namespace std;

int main(int args, char **argc)

{

cout << “STL Set Example” << endl;

cout << “Chapter 12: Additional STL” << endl;

cout << endl;

// Create and insert into the container.

set<int> setContainer;

setContainer.insert(300);

setContainer.insert(150);

setContainer.insert(400);

setContainer.insert(375);

set<int> setCopy(setContainer);

// Test displaying contents.

cout << “Displaying all items:” << endl;

for(set<int>::iterator it = setCopy.begin();

it != setCopy.end(); it++)

{

cout << “ Key/Value: “ << (*it) << “.” << endl;

}

cout << endl;

// Test removing from the container.

set<int>::iterator itPos = setContainer.find(150);

412 Data Structures and Algorithms for Game Developers

if(itPos != setContainer.end())

cout << “Found Key 150!” << endl << endl;

return 1;

}

Chapter 12 Additional STL Algorithms 413

FIGURE 12.4 The STL Set demo’s screenshot.

The STL Multiset demo application starts by creating a container and populat-
ing it with elements. It then moves on to display the container’s contents using
iterators, searches for an element based on its key and erases it, and displays the
updated container before the application quits to show that the key was actually
erased. The biggest difference between the set classes and the map classes is that the
set classes use one object for the key and the object while the map classes use two to
form a pair (one key and one object). The main source file for the STL Multiset
demo is shown in Listing 12.5, and its screenshot is shown in Figure 12.5.

LISTING 12.5 The STL Multiset Demo’s Main Source File

#include<iostream>

#include<set>

using namespace std;

int main(int args, char **argc)

{

cout << “STL Multi-Set Example” << endl;

cout << “Chapter 12: Additional STL” << endl;

cout << endl;

// Create and insert into the container.

multiset<int> setContainer;

multiset<int>::iterator it;

setContainer.insert(423);

setContainer.insert(634);

setContainer.insert(124);

setContainer.insert(756);

// Test displaying contents.

cout << “Displaying all items:” << endl;

for(it = setContainer.begin(); it != setContainer.end(); it++)

{

cout << “ Key/Value: “ << (*it) << “.” << endl;

}

cout << endl;

// Test removing from the container.

multiset<int>::iterator itPos = setContainer.find(124);

if(itPos != setContainer.end())

{

setContainer.erase(124);

cout << “Found and erased Key 124!” << endl << endl;

}

// Test displaying contents.

cout << “Displaying all items:” << endl;

for(it = setContainer.begin(); it != setContainer.end(); it++)

{

cout << “ Key/Value: “ << (*it) << “.” << endl;

}

414 Data Structures and Algorithms for Game Developers

cout << endl;

return 1;

}

Chapter 12 Additional STL Algorithms 415

FIGURE 12.5 The STL Multiset demo’s screenshot.

STL ALGORITHMS

STL algorithms are sets of algorithms that can be performed efficiently on various
STL data structures. When it comes to STL, the algorithms are separated from
the containers. Not only does this make it easy for new algorithms to be added to
the STL standard, but it means the algorithms do not to have to depend on the
individual container’s implementation. STL algorithms use the container’s itera-
tors. Classes that do not have iterators cannot be used with STL algorithms. Classes
that do have iterators, as long as they satisfy the STL requirements, can be used with
the STL algorithms.

STL algorithms can work not only on STL data structures that have support for
iterators, but also with C-style traditional arrays.

In this section we will discuss various STL algorithms. These algorithms include
searching algorithms, copying algorithms, counting algorithms, comparison algo-
rithms, filling algorithms, sorting algorithms, removal algorithms, and so forth.

SEARCHING ALGORITHMS

The first set of STL algorithms that will be discussed deal with searching for values
within a container. These algorithms include adjacent_find(), binary_search(),
lower_bound(), upper_bound(), search(), and the search_n() functions. The
adjacent_find() algorithm searches for two adjacent elements that are either equal
or satisfy some condition and return an iterator to the result. The function proto-
type for adjacent_find()is as follows:

template<class ForwardIterator>

ForwardIterator adjacent_find(ForwardIterator _First,

ForwardIterator _Last);

template<class ForwardIterator , class BinaryPredicate>

ForwardIterator adjacent_find(ForwardIterator _First,

ForwardIterator _Last,

BinaryPredicate _Comp);

The binary_search() algorithm performs a binary search on an order container
to see if a value exists. If the function returns true, the value was found; otherwise,
it was not found within the container. Binary searches were first discussed in Chap-
ter 2, and STL has an algorithm function for them. The function prototype for the
binary_search() function is:

template<class ForwardIterator, class Type>

bool binary_search(ForwardIterator _First, ForwardIterator _Last,

const Type& _Val);

template<class ForwardIterator, class Type, class BinaryPredicate>

bool binary_search(ForwardIterator _First, ForwardIterator _Last,

const Type& _Val, BinaryPredicate _Comp);

The lower_bound() and upper_bound() algorithm functions search for an element
that is less than or equivalent (lower_bound()) to the value that is being searched or
that is greater than the value being searched (upper_bound()). The return value is an
iterator to the element if found or to the element one past the last if not. The function
prototypes for the lower and upper bound algorithms are:

template<class ForwardIterator, class Type>

ForwardIterator lower_bound(ForwardIterator _First,

ForwardIterator _Last,

const Type& _Val);

416 Data Structures and Algorithms for Game Developers

template<class ForwardIterator, class Type, class BinaryPredicate>

ForwardIterator lower_bound(ForwardIterator _First,

ForwardIterator _Last,

const Type& _Val,

BinaryPredicate _Comp);

template<class ForwardIterator, class Type>

ForwardIterator upper_bound(ForwardIterator _First,

ForwardIterator _Last,

const Type& _Val);

template<class ForwardIterator, class Type, class BinaryPredicate>

ForwardIterator upper_bound(ForwardIterator _First,

ForwardIterator _Last,

const Type& _Val,

BinaryPredicate _Comp);

The search() and search_n() algorithm functions search a container for the
first occurrence of a range of values in two sequences. The search_n() function is
the same as the search(), with the exception that the search() function takes two
pair of beginning and ending iterators, while the search_n() function takes one set
of iterators and a count that represents how many elements to search. The function
prototypes for the search() and search_n() functions are:

template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator1 search(ForwardIterator1 _First1,

ForwardIterator1 _Last1,

ForwardIterator2 _First2,

ForwardIterator2 _Last2);

template<class ForwardIterator1, class ForwardIterator2, class Pr>

ForwardIterator1 search(ForwardIterator1 _First1,

ForwardIterator1 _Last1,

ForwardIterator2 _First2,

ForwardIterator2 _Last2,

BinaryPredicate _Comp);

template<class ForwardIterator1, class Diff2, class Type>

ForwardIterator1 search_n(ForwardIterator1 _First1,

ForwardIterator1 _Last1,

Size2 _Count,

const Type& _Val);

Chapter 12 Additional STL Algorithms 417

template<class ForwardIterator1, class Size2, class Type,

class BinaryPredicate>

ForwardIterator1 search_n(ForwardIterator1 _First1,

ForwardIterator1 _Last1,

Size2 _Count,

const Type& _Val,

BinaryPredicate _Comp);

COPYING AND COUNTING ALGORITHMS

The copying algorithms include copy() and copy_backward(). Both algorithm func-
tions copy elements from a source to a destination, while copy_backward()copies
the elements from the source in reverse order into the destination. In this book the
copying algorithms were first discussed and used in Chapter 2. The copying func-
tion prototypes are:

template<class InputIterator, class OutputIterator>

OutputIterator copy(InputIterator _First, InputIterator _Last,

OutputIterator _DestBeg);

template<class BidirectionalIterator1, class BidirectionalIterator2>

BidirectionalIterator2 copy_backward(BidirectionalIterator1 _First,

BidirectionalIterator1 _Last,

BidirectionalIterator2 _DestEnd);

The counting algorithms return a number of elements in a range that matches
the value that is being supplied. In other words, they count how many elements
match a value. The counting algorithms consist of count() and count_if(), where
count_if() also takes a condition in which the element should be counted or not.
The function prototypes for the count() and count_if() are:

template<class InputIterator, class Type>

typename iterator_traits<InputIterator>::difference_type count(

InputIterator _First, InputIterator _Last, const Type& _Val);

template<class InputIterator, class Predicate>

typename iterator_traits<InputIterator>::difference_type count_if(

InputIterator _First, InputIterator _Last, Predicate _Pred);

418 Data Structures and Algorithms for Game Developers

COMPARISON ALGORITHMS

The next set of STL algorithms that will be discussed are various comparison
operators. These operators include the equal(), equal_range(), min(), max(),
min_element(), max_element(), mismatch(), and lexicographical_compare().The
min() and max() algorithms take two parameters and return whichever is either
smaller (min()) or larger (max()). The min_element() and max_element() algorithms
take iterators that specify a range of values and return either the minimum or max-
imum value. The prototypes for these four functions are as follows:

template<class Type>

const Type& min(const Type& _Left, const Type& _Right);

template<class Type, class Pr>

const Type& min(const Type& _Left, const Type& _Right,

BinaryPredicate _Comp);

template<class ForwardIterator>

ForwardIterator min_element(ForwardIterator _First,

ForwardIterator _Last);

template<class ForwardIterator, class BinaryPredicate>

ForwardIterator min_element(ForwardIterator _First,

ForwardIterator _Last,

BinaryPredicate _Comp);

template<class Type>

const Type& max(const Type& _Left, const Type& _Right);

template<class Type, class Pr>

const Type& max(const Type& _Left, const Type& _Right,

BinaryPredicate _Comp);

template<class ForwardIterator>

ForwardIterator max_element(ForwardIterator _First,

ForwardIterator _Last);

template<class ForwardIterator, class BinaryPredicate>

ForwardIterator max_element(ForwardIterator _First,

ForwardIterator _Last,

BinaryPredicate _Comp);

Chapter 12 Additional STL Algorithms 419

The equal() and equal_range() algorithms check to see if elements are equal or
have equivalence. Both functions take iterators, but the equal_range()returns a pair
within the container, with the first being less than the value and the second being
equivalent. Both functions allow for the binary predicate to be specified, which is
optional. The function prototypes for the equal() and equal_range() functions are:

template<class InputIterator1, class InputIterator2>

bool equal(InputIterator1 _First1, InputIterator1 _Last1,

InputIterator2 _First2);

template<class InputIterator1, class InputIterator2,

class BinaryPredicate>

bool equal(InputIterator1 _First1, InputIterator1 _Last1,

InputIterator2 _First2, BinaryPredicate _Comp);

template<class ForwardIterator, class Type>

pair<ForwardIterator, ForwardIterator> equal_range(

ForwardIterator _First, ForwardIterator _Last,

const Type& _Val);

template<class ForwardIterator, class Type, class Pr>

pair<ForwardIterator, ForwardIterator> equal_range(

ForwardIterator _First, ForwardIterator _Last,

const Type& _Val,BinaryPredicate _Comp);

The next algorithm, mismatch(), tests a range of elements for equality or equiv-
alence. The return value of the mismatch algorithm is a pair of iterators that repre-
sent the position in the container where there is a mismatch. If there is no mismatch
in the ranges that are being tested, the function will return a pair of iterators that
are one past the final element in the container. The function prototype for the
mismatch() algorithm is as follows:

template<class InputIt1, class InputIt2>

pair<InputIt1, InputIt2> mismatch(InputIt1 _First1,

InputIt1 _Last1,

InputIt2 _First2);

template<class InputIt1, class InputIt2, class BinaryPredicate>

pair<InputIt1, InputIt2> mismatch(InputIt1 _First1,

InputIt1 _Last1,

InputIt2 _First2,

BinaryPredicate _Comp);

420 Data Structures and Algorithms for Game Developers

The last STL algorithm that we’ll look at in this section is called the lexicograph-
ical_compare() algorithm. This algorithm compares element by element between
two containers to determine which one is the lesser of the two. For function parame-
ters it takes the beginning and ending iterators of both containers, and its return type
is Boolean. The function prototype for the lexicographical_compare() algorithm is as
follows:

template<class InputIterator1, class InputIterator2>

bool lexicographical_compare(InputIterator1 _First1,

InputIterator1 _Last1,

InputIterator2 _First2,

InputIterator2 _Last2);

template<class InputIterator1, class InputIterator2,

class BinaryPredicate>

bool lexicographical_compare(InputIterator1 _First1,

InputIterator1 _Last1,

InputIterator2 _First2,

InputIterator2 _Last2,

BinaryPredicate _Comp);

FILLING ALGORITHMS

The STL includes algorithms for filling a container with elements of a specific value
in a range. These algorithms are called fill() and fill_n(). fill()sets the values in
a range specified by iterators, and fill_n() sets a range specified by a beginning
iterator and a count. The function prototypes for the fill() and fill_n() algorithms
are:

template<class ForwardIterator, class Type>

void fill(ForwardIterator _First, ForwardIterator _Last,

const Type& _Val);

template<class OutputIterator, class Size, class Type>

void fill_n(OutputIterator _First, Size _Count,

const Type& _Val);

The filling algorithms can be useful for quickly setting the elements of a newly
created container to a specific value, overriding a range of values in an already cre-
ated container, and so forth. As long as the container has support for iterators it will
work with these algorithm functions. An example of their use is:

Chapter 12 Additional STL Algorithms 421

vector<int> array(10);

fill(array.begin(), array.end(), 0);

fill_n(array.begin(), 5, 2);

In this code the vector container has its elements set to 0 before setting the first
half of the container to the number 2. STL algorithms are fast, so using this can be
beneficial when a range of values needs to be set.

GENERATING ALGORITHMS

A generating algorithm uses a generator function to create values in a container
within a specified range. The generator function used with a generating algorithm
can take no parameters and must return a value. The generating algorithms that are
part of the STL include the generate() and generate_n() algorithms. The purpose
of these algorithms is to fill a container with a range of values that are generated
instead of constant, as seen with the filling algorithms earlier in this chapter. The
function prototypes for the generate() and generate_n() algorithms are:

template<class ForwardIterator, class Generator>

void generate(ForwardIterator _First, ForwardIterator _Last,

Generator _Gen);

template<class OutputIterator, class Size, class Generator>

void generate_n(OutputIterator _First, Size _Count,

Generator _Gen);

In this code the generate() function takes a range specified by a beginning and
ending iterator, and the generate_n() function takes a beginning iterator and a
count, along with the generator function. A simple example of using the generating
functions is:

int NextNumber()

{

static int number = 0;

return number++;

}

void main()

{

vector<int> array(10);

422 Data Structures and Algorithms for Game Developers

generate(array.begin(), array.end(), NextNumber);

generate_n(array.begin(), 5, NextNumber);

}

The generator that is used is entirely up to the programmer. In the previous
example a function used to return an incremented number every time it is called
was used. If the values that need to be inserted into a container must be generated
by some means, then the generating algorithms might prove to be of great value.

SORTING ALGORITHMS

The next set of algorithms is the ones that are used for sorting elements within a con-
tainer. These include the partial_sort(), partial_sort_copy(), prev_permutation(),
sort(), sort_heap(), and stable_sort(). The partial_sort()sorts a small set within
a container into either descending or user-defined order. The partial_sort_
copy()copied the sorted elements into a destination container. The function proto-
types for the partial_sort() and partial_sort_copy() are:

template<class RandomAccessIterator>

void partial_sort(RandomAccessIterator _First,

RandomAccessIterator _SortEnd,

RandomAccessIterator _Last);

template<class RandomAccessIterator, class BinaryPredicate>

void partial_sort(RandomAccessIterator _First,

RandomAccessIterator _SortEnd,

RandomAccessIterator _Last

BinaryPredicate _Comp);

template<class InputIterator, class RandomAccessIterator>

RandomAccessIterator partial_sort_copy(InputIterator _First1,

InputIterator _Last1,

RandomAccessIterator _First2,

RandomAccessIterator _Last2);

template<class InputIterator, class RandomAccessIterator, class

BinaryPredicate>

RandomAccessIterator partial_sort_copy(InputIterator _First1,

InputIterator _Last1,

RandomAccessIterator _First2,

RandomAccessIterator _Last2,

BinaryPredicate _Comp);

Chapter 12 Additional STL Algorithms 423

The prev_permutation() algorithm reorders a container’s contents into the lex-
icographical next-greater permutation if it exists. The function takes as parameters
the beginning and ending iterators of the container that is using the algorithm. The
function prototypes for the prev_permutation() algorithm are:

template<class BidirectionalIterator>

bool prev_permutation(BidirectionalIterator _First,

BidirectionalIterator _Last);

template<class BidirectionalIterator, class BinaryPredicate>

bool prev_permutation(BidirectionalIterator _First,

BidirectionalIterator _Last,

BinaryPredicate _Comp);

The last three algorithms that will be looked at in this section are the sort(),
sort_heap(), and stable_sort() algorithms. The sort() algorithm arranges the
elements of a container based on a condition or in nondescending order (default).
The sort_heap() algorithm converts a heap into a sorted range. If the elements do
not meet the requirements of a heap, the sort_heap() algorithms will not be a sta-
ble sort. The stable_sort() algorithm sorts elements into nondescending order
or a user-defined order and preserves the relative ordering of equivalence of the
elements. The function prototypes of the sort(), sort_heap(), and stable_sort()
algorithms are:

template<class RandomAccessIterator>

void sort(RandomAccessIterator _First,

RandomAccessIterator _Last);

template<class RandomAccessIterator, class Pr>

void sort(RandomAccessIterator _First,

RandomAccessIterator _Last,

BinaryPredicate _Comp);

template<class RandomAccessIterator>

void sort_heap(RandomAccessIterator _First,

RandomAccessIterator _Last);

template<class RandomAccessIterator, class Pr>

void sort_heap(RandomAccessIterator _First,

RandomAccessIterator _Last,

BinaryPredicate _Comp);

424 Data Structures and Algorithms for Game Developers

template<class BidirectionalIterator>

void stable_sort(BidirectionalIterator _First,

BidirectionalIterator _Last);

template<class BidirectionalIterator, class BinaryPredicate>

void stable_sort(BidirectionalIterator _First,

BidirectionalIterator _Last,

BinaryPredicate _Comp);

REMOVING ALGORITHMS

The removing algorithms allow programmers to remove elements from an STL
container. The remove() algorithm takes a range of iterators and a value that is to be
removed from the container. The remove_if() algorithm takes a value to be re-
moved and a range of iterators and will only remove the value if a specified con-
dition is met. The remove_copy() algorithm copies a source container to the
destination, with the exception of the value that is to be removed. remove_copy_if()
does the same as remove_if()but only removes a value if a certain condition is met.
The function prototypes for the remove(), remove_if(), remove_copy(), and
remove_copy_if() algorithms are:

template<class ForwardIterator, class Type>

ForwardIterator remove(ForwardIterator _First,

ForwardIterator _Last, const Type& _Val);

template<class ForwardIterator, class Predicate>

ForwardIterator remove_if(ForwardIterator _First,

ForwardIterator _Last, Predicate _Pred);

template<class InputIterator, class OutputIterator, class Type>

OutputIterator remove_copy(InputIterator _First,

InputIterator _Last,

OutputIterator _Result,

const Type& _Val);

template<class InputIterator, class OutputIterator,

class Predicate>

OutputIterator remove_copy_if(InputIterator _First,

InputIterator _Last,

OutputIterator _Result,

Predicate _Pred);

Chapter 12 Additional STL Algorithms 425

REPLACING ALGORITHMS

The STL algorithms that are used to replace elements in a container are called
replace(), replace_if(), replace_copy(), and replace_copy_if(). These functions
are similar to the removing functions except that they replace one value with
another instead of removing it. The parameters for these algorithms are also simi-
lar to the removing functions, but there is one additional parameter when dealing
with replacing, and that is for the value that will replace the old one. The function
prototypes for the replacing algorithms are:

template<class ForwardIterator, class Type>

ForwardIterator replace(ForwardIterator _First,

ForwardIterator _Last,

const Type& _OldVal,

const Type& _NewVal);

template<class ForwardIterator, class Predicate>

ForwardIterator replace_if(ForwardIterator _First,

ForwardIterator _Last,

Predicate _Pred,

const Type& _Val);

template<class InputIterator, class OutputIterator, class Type>

OutputIterator replace_copy(InputIterator _First,

InputIterator _Last,

OutputIterator _Result,

const Type& _OldVal,

const Type& _NewVal);

template<class InputIterator, class OutputIterator,

class Predicate>

OutputIterator replace_copy_if(InputIterator _First,

InputIterator _Last,

OutputIterator _Result,

Predicate _Pred,

const Type& _Val);

REVERSING AND ROTATING ALGORITHMS

The next set of STL algorithms that we will look at deal with reversing elements and
rotating them. The reversing algorithms include reverse() and reverse_copy(),

426 Data Structures and Algorithms for Game Developers

and both algorithms reverse the order of a container’s elements. reverse_copy()copies
the reverse contents from one container to another (destination). The function pro-
totypes for the reverse() and reverse_copy() are:

template<class BidirectionalIterator>

void reverse(BidirectionalIterator _First,

BidirectionalIterator _Last);

template<class BidirectionalIterator, class OutputIterator>

OutputIterator reverse_copy(BidirectionalIterator _First,

BidirectionalIterator _Last,

OutputIterator _Result);

The rotating algorithms in the STL are swapping algorithms. The rotate() and
rotate_copy() algorithms swap the elements in two adjacent containers. rotate_
copy()copies the results to another container as well as performing the rotation
algorithm. The function prototypes for the rotate() and rotate_copy() algorithms
are:

template<class ForwardIterator>

void rotate(ForwardIterator _First, ForwardIterator _Middle,

ForwardIterator _Last);

template<class ForwardIterator, class OutputIterator>

OutputIterator rotate_copy(ForwardIterator _First,

ForwardIterator _Middle,

ForwardIterator _Last,

OutputIterator _Result);

SUMMARY

In this chapter we discussed a few STL data structures and several STL algorithms
that C++ programmers can use. These data structures included the set, multiset,
map, and multimap template classes as well as the STL string container. Whenever
possible in an application, unless there are special circumstances, STL algorithms
should always be preferred to custom implementations or even to doing things the
long way (e.g., using a loop instead of using for_each()).

In the next chapter we will look at game- and simulation-related data structures
and algorithms. We will discuss and implement many different techniques that go
a long way to making modern video games and other such applications possible.

Chapter 12 Additional STL Algorithms 427

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What kind of a container is the STL string?
a. Associate container
b. Template associate container
c. Sequence container
d. Template sequence container
e. None of the above

2. What class is the STL string based on?
a. vector<char>
b. basic_string
c. list<char>
d. None of the above

3. What are set STL containers?
4. What are multiset STL containers?
5. What is the difference between set and multiset?
6. What are map containers?
7. What are multimap containers?
8. What is the difference between a map and a multimap?
9. Generally, what is the main difference between a set and a map?

10. The STL string is a template class.
a. True
b. False

11. The STL string can be used with legacy code that requires C-like arrays.
a. True
b. False

12. The string class is used with STL algorithms.
a. True
b. False

13. STL algorithms can be used with C-styled arrays.
a. True
b. False

14. STL algorithms depend on the container’s implementation.
a. True
b. False

15. Because of the nature of STL algorithms, it is hard to add new algorithms
to the standard.
a. True
b. False

428 Data Structures and Algorithms for Game Developers

PROGRAMMING PROJECTS

Exercise 1: Write an application that allows the user to enter text, from the key-
board, into a link list of strings where each string is added to the link list. Save the
link list to a text file.

Exercise 2: Write an application for game player characters (which include charac-
ter name, character race, character level, and player ID) and insert it into a map.
Use the employee ID as the hash key and use the STL map along with a custom hash
function so that only the player ID (integer) is hashed.

Exercise 3: Build off of Exercise 2 and use a multimap to allow the same players to
have more than one character.

Chapter 12 Additional STL Algorithms 429

This page intentionally left blank

431

Scene Management13

In This Chapter

Introduction to Scene Management
Game Math
Scene Graphs
Binary Space Partitioning Trees
Quad-Trees and Octrees
Additional Management Topics

432 Data Structures and Algorithms for Game Developers

G
ame developers are faced with a challenge when it comes to creating complex
and realistic scenes in modern games. The expectations of gamers are rising
every generation, and the cost of keeping up with this trend is also rising. Not

only is this increase in cost monetary, but it also comes in the form of increased
hardware requirements. Since the beginning of video games there have been tech-
niques to help manage the data used in an application.

In this chapter we will discuss scene management. Scene management is very
important in trying to achieve real-time performance in interactive applications
such as video games because developers must be able to manage all the data that can
be part of an environment. The topic of scene management is huge, so this chapter
will take a general look at it and implement some of the different topics that will be
discussed.

INTRODUCTION TO SCENE MANAGEMENT

Scene management is a general term used to describe the management of a game’s
data as the game is being played. Many kinds of resources can be placed into a game
world, and this data is becoming larger in size and more complex in its commercial
quality. The resources that can be found in the average game include but are not
limited to:

Scripts
Static objects
Dynamic objects
Animations
Environments
Particles
Sounds
Textures
Graphical user interface elements
Fonts
Cinematic videos

Each of the resources in a video game needs to be managed by the application.
On top of that the hardware can also play a part in how the data is managed. For ex-
ample, on video game consoles resources often need to be read off a CD-ROM or
DVD-ROM disk, which takes time. Video game consoles also have limited amounts
of memory, which can have a huge impact on the amount of data that can be read
and stored. This falls under the scope of resources management, and various tech-
niques can be used to allow for gameplay experiences that are more complex than

what the hardware can handle. An example of this can be seen in the Grand Theft
Auto series, where the massive open-world environments are dynamically managed
and loaded as the player explores the game world. Without complex resource man-
agement data structures and algorithms, the game world would be much too large
and complex for consoles such as Sony’s PlayStation® 2 to render using a brute force
approach.

The purpose of this chapter is to look at general scene management, particu-
larly that used to speed up the rendering efficiency of complex environments. Some
of the topics discussed in this chapter are the management of environment geom-
etry to allow for fast processing of what needs to be rendered, the general manage-
ment of game objects, and state management. The topics that will be discussed in
this chapter deal with organizing and processing complex scenes so that they can be
rendered as quickly as possible on the hardware.

One major difference between resource management and scene management is
that resource management aims are managing the data of the resources in terms of
loading, unloading, and so on, while scene management generally organizes the
data of a scene so that it can be efficiently processed once loaded.

STATE MANAGEMENT

In games there are often a lot of rendering state changes in a scene. These state
changes can include changing textures, shaders, material information, and so forth.
If a new object needs to be rendered, its states must be applied so that the render-
ing system can display the geometry as intended.

The problem with changing states is that some of them can be expensive.
Changing textures and changing shaders are among the most expensive state
changes that occur. The cost of changing states can add up and have an impact on
a game’s performance. The more objects that are in the scene, the worse is the
potential for the state changes to have a negative impact on performance.

The idea behind state management is to try to minimize the state changes as
much as possible to improve performance. One way to do this can be seen with tex-
tures. If five objects use texture A, and five objects use texture B, it makes sense to
render all the objects that use texture A first and then render all the objects that use
texture B. It also makes sense to not reapply the texture data for every object, by
only sending the data once and using it for all objects that share it. An example of
this is shown in Figure 13.1, where the number of state changes goes from 10 to 2
when objects are grouped based on their material.

We’ll revisit the topic of state management later when we discuss scene graphs.
In modern games state management is a topic that should be taken seriously be-
cause poor state management can have an impact on performance. This falls under

Chapter 13 Scene Management 433

434 Data Structures and Algorithms for Game Developers

the topic of general scene management because the objects in the scene that need to
be rendered are managed in a way that allows them to be displayed in a manner that
can be beneficial to performance. If you are developing your own game, you might
want to keep state management in mind.

State management deals not only with shaders and textures but with any state that
can be changed. This includes alpha blending, culling, and so forth. Normally the
most expensive state changes that add up quickly are shaders and textures in
OpenGL and Direct3D.

TEXTURE ATLASES

Another way to reduce state changes, as far as textures are concerned, is to group
textures together into larger ones so that objects that don’t share the same decal can
still use the same larger texture data. A texture atlas is a large texture made up of
multiple smaller textures. By grouping those textures, the need to apply different
textures before the rendering of an object or objects can be reduced. The downside
is that the larger textures can be very large, which increases the size of the data that
is being sent to the hardware when a texture is applied for rendering. Also, since
graphics hardware supports a maximum resolution for textures, the smaller tex-
tures in the atlas have a limited resolution because more than one of them must fit
in the larger texture. An example of a texture atlas is shown in Figure 13.2, where
four textures are placed in one atlas.

The objects using any of those subtextures access the same larger texture, which
means they can be grouped together in a state management system. There is slight
added complexity when working with texture coordinates of a geometric model
and textures in an atlas that must also be taken into account since adjustments to
those coordinates must be made.

FIGURE 13.1 Grouping by states.

GAME MATH

Mathematics is used throughout many aspects of a video game, and having an un-
derstanding of the different kinds of math is important to being able to create the
kinds of applications that gamers expect. In this section we will briefly discuss a few
math objects that will be used later in this chapter. These math objects include vec-
tors, bounding volumes, planes, frustums, and cameras.

This section is not an introduction to or review of game math, and it assumes that
you already have a fair amount of knowledge on the subject. Instead, this section is a
quick summary of the math code that will be used in a few of the demo applications
in this chapter. Appendix A, Additional Resources, lists a number of resources that
can be used to brush up on various game mathematics.

The math code used for the demos in this chapter is straightforward and does not
take into consideration possible optimizations or implement every possible operation
a math object can perform. The code is kept clear to make it easier to understand the
topic at hand, which isn’t how to create a powerful and robust math engine.

VECTORS

Vectors are used heavily in three-dimensional games and are the foundation for
many calculations that take place. A vector is a direction, and when talking about

Chapter 13 Scene Management 435

FIGURE 13.2 A texture atlas.

two-dimensional vectors, those are directions specified in terms of an x- and y-axis,
while three-dimensional vectors have an x-, y-, and z-axis.

A vertex is a point in a virtual space. Most often the term vector is used to de-
scribe either a vertex point or a direction vector. A vector with a magnitude of 1 is
known as a unit-length normal, often just called a normal. The demos later in this
chapter will use vectors to great length.

A class was created to represent a three-dimensional vector and includes over-
loaded operators for basic arithmetic (e.g., +, –, *, /, etc.) as well as operations such
as normalizing a vector (creating a normal), finding the magnitude of a vector, and
calculating the cross product of a vector as well as the dot product. These are few
common operations that are found when working with vectors and will all be used
in the demos later in this chapter. The three-dimensional vector class is shown in
Listing 13.1.

Don’t mistake the vertex of a point in a geometric primitive for that of a vertex in
a graph, which is what a graph’s node is called.

LISTING 13.1 The Three-Dimensional Vector Class

class Vector3D

{

public:

Vector3D() : x(0), y(0), z(0) { }

Vector3D(float X, float Y, float Z) : x(X), y(Y), z(Z) { }

Vector3D(const Vector3D &v) { x = v.x; y = v.y; z = v.z; }

void operator=(const Vector3D &v)

{

x = v.x; y = v.y; z = v.z;

}

Vector3D operator+(const Vector3D &v2)

{

return Vector3D(x + v2.x, y + v2.y, z + v2.z);

}

Vector3D operator-(const Vector3D &v2)

{

return Vector3D(x - v2.x, y - v2.y, z - v2.z);

}

436 Data Structures and Algorithms for Game Developers

Vector3D operator/(const Vector3D &v2)

{

return Vector3D(x / v2.x, y / v2.y, z / v2.z);

}

Vector3D operator*(const Vector3D &v2)

{

return Vector3D(x * v2.x, y * v2.y, z * v2.z);

}

Vector3D operator+(float f)

{

return Vector3D(x + f, y + f, z + f);

}

Vector3D operator-(float f)

{

return Vector3D(x - f, y - f, z - f);

}

Vector3D operator/(float f)

{

return Vector3D(x / f, y / f, z / f);

}

Vector3D operator*(float f)

{

return Vector3D(x * f, y * f, z * f);

}

float Dot3(const Vector3D &v)

{

return x * x + y * y + z * z;

}

float Magnitude()

{

Chapter 13 Scene Management 437

return (float)sqrt(x * x + y * y + z * z);

}

void Normalize()

{

float len = Magnitude();

if(len <= 0.00001) len = 1;

len = 1 / len;

x *= len; y *= len; z *= len;

}

Vector3D CrossProduct(const Vector3D &v)

{

return Vector3D(y * v.z - z * v.y,

z * v.x - x * v.z,

x * v.y - y * v.x);

}

float x, y, z;

};

PLANES

A plane is an infinitely flat surface that extends in two axes. Planes are used for
many things such as collision detection. In this chapter the binary space partition-
ing data structure and various algorithms use planes to perform their duties. A
plane object is made up of a normal, which is normally expressed as A, B, and C,
and it is made up of a distance. This distance specifies how far the plane is from the
point of origin, which has an x, y, and z location of (0, 0, 0).

The plane class in this chapter will have a function used to calculate a plane
from a triangle; test if a box, sphere, or point intersects a plane; and test which side
of a plane a point is on. A vertex point can be either on the front side of the plane,
on back side, or on the plane. Geometric primitives such as triangles, can also span
both sides of a plane, with a piece being on the front side and the rest crossing over
to the back side. The side of the plane is determined by the plane’s normal. The
plane class used in this chapter is shown in Listing 13.2.

438 Data Structures and Algorithms for Game Developers

LISTING 13.2 The Plane Class

class Plane

{

public:

Plane() : a(0), b(0), c(0), d(0) { }

Plane(float A, float B, float C, float D) :

a(A), b(B), c(C), d(D) { }

void Create(Vector3D &t1, Vector3D &t2, Vector3D &t3)

{

Vector3D e1, e2, n;

e1 = t2 - t1;

e2 = t3 - t1;

n = e1.CrossProduct(e2);

n.Normalize();

a = n.x; b = n.y; c = n.z;

d = - (a * t1.x + b * t1.y + c * t1.z);

}

bool Intersect(const Vector3D &bbMin, const Vector3D &bbMax)

{

Vector3D min, max;

Vector3D normal(a, b, c);

if(normal.x >= 0.0f)

{

min.x = bbMin.x; max.x = bbMax.x;

}

else

{

min.x = bbMax.x; max.x = bbMin.x;

}

if(normal.y >= 0.0f)

{

min.y = bbMin.y; max.y = bbMax.y;

}

else

Chapter 13 Scene Management 439

{

min.y = bbMax.y; max.y = bbMin.y;

}

if(normal.z >= 0.0f)

{

min.z = bbMin.z; max.z = bbMax.z;

}

else

{

min.z = bbMax.z; max.z = bbMin.z;

}

if((normal.Dot3(min) + d) > 0.0f)

return false;

if((normal.Dot3(max) + d) >= 0.0f)

return true;

return false;

}

bool Intersect(const Vector3D &position, float radius)

{

float dp = fabs(GetDistance(position));

if(dp <= radius)

return true;

return false;

}

PLANE_STATUS ClassifyPoint(float x, float y,

float z, float *dist)

{

float distance = a * x + b * y + c * z + d;

if(dist != 0)

*dist = distance;

if(distance > 0.001)

return PLANE_FRONT;

440 Data Structures and Algorithms for Game Developers

if(distance < -0.001)

return PLANE_BACK;

return PLANE_ON_PLANE;

}

float Plane::GetDistance(float x, float y, float z)

{

return a * x + b * y + c * z + d;

}

float a, b, c, d;

};

BOUNDING VOLUMES

Bounding volumes are shapes used to surround a geometric object. There are many
different types of bounding volumes, but the most popular are the axis-aligned
bounding box and bounding sphere. Bounding volumes are used to enclose (tightly
surround) a geometric object so that they can be used as very simplified and general
representations of those objects. For example, if a bounding box is surrounding a
three-dimensional character model, early tests can be done on the bounding box
instead of the more complex three-dimensional character model. An example of one
test is visibility determination, which can be used to quickly determine if the geo-
metric model is visible to the viewer. Since the bounding volume tightly surrounds
the object, it can act as a simple stand-in for many tests that would otherwise be ex-
pensive to do on a polygonal object with hundreds if not thousands of polygons.

In this chapter we will create an axis-aligned bounding box class since that is
used by the octree demo later on. To create a bounding box, or any bounding vol-
ume, we have to loop through the geometric object and determine its extents so that
the simplified bounding shape can be calculated around the object. For a box the
minimum and maximum x, y, and z axes must be determined, which can be used to
specify the corners of the bounding box. For a bounding sphere the same operation
can be used, but the center of the object must be calculated, which is the maximum
and minimum axes added together and divided by two, as well as the sphere’s radius,
which is the square root of the maximum axis’s distance from the sphere’s center. A
screenshot of a bounding volume surrounding an object is shown in Figure 13.3.
The bounding box class is shown in Listing 13.3.

Chapter 13 Scene Management 441

LISTING 13.3 Bounding Box Class

class BoundingBox

{

public:

BoundingBox()

{

}

BoundingBox(const BoundingBox &aabb)

{

m_min = aabb.m_min;

m_max = aabb.m_max;

m_center = aabb.m_center;

}

void Calculate(Vector3D *v, int numPoints)

{

if(v == NULL)

return;

442 Data Structures and Algorithms for Game Developers

FIGURE 13.3 Bounding volumes.

for(int i = 0; i < numPoints; i++)

{

if(v[i].x < m_min.x) m_min.x = v[i].x;

if(v[i].x > m_max.x) m_max.x = v[i].x;

if(v[i].y < m_min.y) m_min.y = v[i].y;

if(v[i].y > m_max.y) m_max.y = v[i].y;

if(v[i].z < m_min.z) m_min.z = v[i].z;

if(v[i].z > m_max.z) m_max.z = v[i].z;

}

m_center.x = (m_min.x + m_max.x) * 0.5f;

m_center.y = (m_min.y + m_max.y) * 0.5f;

m_center.z = (m_min.z + m_max.z) * 0.5f;

}

Vector3D m_min, m_max, m_center;

};

Algorithms on bounding spheres are faster to process on the CPU than a bounding
box. The downside is that the spheres waste more virtual space than the boxes, as
shown in Figure 13.3.

FRUSTUM CULLING

Frustum culling is the process of determining what objects are visible within a view
frustum so that those objects are the only ones sent to the rendering system. To
create a view frustum six planes are needed. These planes represent the left, right,
top, bottom, far, and near planes that, when working together, completely enclose
a volume around the virtual camera.

A frustum is calculated by creating six planes based on the camera’s informa-
tion. This information includes the near and far distances, which are basically how
far and how close the camera can see, the aspect ratio, the field of view, and the
camera’s state, such as its position, looking direction, and so forth. Once a frustum
has been created, geometric objects can be tested against it for visibility determina-
tion. If an object is on the front side of all planes that make up the frustum, it is
visible. If an object is behind at least one of these planes, the object is not visible. An
example of this is shown in Figure 13.4.

Chapter 13 Scene Management 443

When testing against a frustum, it is common to test the bounding volume of
an object instead of the object itself. This can lead to a very fast visibility test, which
is important in trying to keep the frame rate of an application acceptable. By test-
ing the object itself, all polygons of the model would have to be tested, which would
cause a major slowdown in the performance with a few high polygonal models
compared to using the bounding volume. Testing simple bounding volumes dras-
tically reduces this workload. The frustum class is shown in Listing 13.4 and can be
used to test if a point, box, or sphere is visible.

LISTING 13.4 A View Frustum Class

class Frustum

{

public:

Frustum()

{

}

void CalculateFrustum(float angle, float ratio,

float near, float far,

Vector3D &camPos, Vector3D &lookAt,

Vector3D &up)

{

Vector3D xVec, yVec, zVec, vecN, vecF;

Vector3D nearTopLeft, nearTopRight,

nearBottomLeft, nearBottomRight;

Vector3D farTopLeft, farTopRight,

farBottomLeft, farBottomRight;

444 Data Structures and Algorithms for Game Developers

FIGURE 13.4 A frustum where some objects
are outside, some inside, and others spanning.

float radians = (float)tan((DEG_TO_RAD(angle)) * 0.5);

float nearH = near * radians;

float nearW = nearH * ratio;

float farH = far * radians;

float farW = farH * ratio;

zVec = camPos - lookAt;

zVec.Normalize();

xVec = up.CrossProduct(zVec);

xVec.Normalize();

yVec = zVec.CrossProduct(xVec);

vecN = camPos - zVec * near;

vecF = camPos - zVec * far;

nearTopLeft = vecN + yVec * nearH - xVec * nearW;

nearTopRight = vecN + yVec * nearH + xVec * nearW;

nearBottomLeft = vecN - yVec * nearH - xVec * nearW;

nearBottomRight = vecN - yVec * nearH + xVec * nearW;

farTopLeft = vecF + yVec * farH - xVec * farW;

farTopRight = vecF + yVec * farH + xVec * farW;

farBottomLeft = vecF - yVec * farH - xVec * farW;

farBottomRight = vecF - yVec * farH + xVec * farW;

m_frustum.clear();

Plane plane;

plane.CreatePlaneFromTri(nearTopRight, nearTopLeft,

farTopLeft);

AddPlane(plane);

plane.CreatePlaneFromTri(nearBottomLeft, nearBottomRight,

farBottomRight);

AddPlane(plane);

plane.CreatePlaneFromTri(nearTopLeft, nearBottomLeft,

farBottomLeft);

AddPlane(plane);

plane.CreatePlaneFromTri(nearBottomRight, nearTopRight,

farBottomRight);

AddPlane(plane);

Chapter 13 Scene Management 445

plane.CreatePlaneFromTri(nearTopLeft, nearTopRight,

nearBottomRight);

AddPlane(plane);

plane.CreatePlaneFromTri(farTopRight, farTopLeft,

farBottomLeft);

AddPlane(plane);

}

void AddPlane(Plane &pl)

{

m_frustum.push_back(pl);

}

bool isPointVisible(float x, float y, float z)

{

for(int i = 0; i < (int)m_frustum.size(); i++)

{

if(m_frustum[i].GetDistance(x, y, z) < 0)

return false;

}

return true;

}

bool isSphereVisible(float x, float y, float z, float radius)

{

float distance = 0;

for(int i = 0; i < (int)m_frustum.size(); i++)

{

distance = m_frustum[i].GetDistance(x, y, z);

if(distance < -radius)

return false;

}

return true;

}

446 Data Structures and Algorithms for Game Developers

bool isBoxVisible(Vector3D min, Vector3D max)

{

if(isPointVisible(min.x, min.y, min.z)) return true;

if(isPointVisible(max.x, min.y, min.z)) return true;

if(isPointVisible(min.x, max.y, min.z)) return true;

if(isPointVisible(max.x, max.y, min.z)) return true;

if(isPointVisible(min.x, min.y, max.z)) return true;

if(isPointVisible(max.x, min.y, max.z)) return true;

if(isPointVisible(min.x, max.y, max.z)) return true;

if(isPointVisible(max.x, max.y, max.z)) return true;

return false;

}

int GetTotalPlanes()

{

return (int)m_frustum.size();

}

private:

vector<Plane> m_frustum;

};

VIEWS AND CAMERAS

The upcoming demo applications can benefit from allowing the user to roam
around the virtual environment. Since a full-blown, complex camera system is not
needed, a simple one is made available in this chapter. This simple camera class will
keep track of the camera’s position and a view direction. The camera is always
moved along its viewing direction. If the direction is rotated, which it is in the
function RotateView(), then the direction the camera is moving can be altered. The
members of the camera class can be fed directly to OpenGL, which we’ll see later in
this chapter. The simple camera class is shown in Listing 13.5.

LISTING 13.5 A Simple Camera Class

class Camera

{

public:

Camera(Vector3D &pos, Vector3D &lookAt)

{

Chapter 13 Scene Management 447

m_pos = pos;

m_lookAt = lookAt;

}

void MoveCamera(Vector3D &direction, float speed)

{

m_pos += direction * speed;

m_lookAt += direction * speed;

}

void RotateView(float angle);

void SetPosition(Vector3D &pos) { m_pos = pos; }

void SetLookDirection(Vector3D &at) { m_lookAt = at; }

Vector3D GetPosition() { return m_pos; }

Vector3D GetLookDirection() { return m_lookAt; }

private:

Vector3D m_pos, m_lookAt;

};

ADDITIONAL GAME MATH

In this chapter only the math objects used in this chapter’s demos were created, and
the functionality needed by these demos was also all that was coded. Creating a
full-blown math engine is no easy task, and there are many optimizations that can
be made to speed up the math code. Other types of math objects include:

Rays
Matrices
Quaternion rotations
Additional bounding volumes
Occlusion fields

Appendix A, Additional Resources, lists resources that could be helpful to any-
one looking to expand their game math and physics knowledge.

448 Data Structures and Algorithms for Game Developers

SCENE GRAPHS

A scene graph is a data structure that is used to specify the relationships between
objects in a virtual environment. The relationships between objects form a hierarchy
in which nodes are connected to one another by edges and can be objects’ spatial
relationships, materials, physical relationships (e.g., a character picking up a weapon
or a character riding in a vehicle), and so forth. An example of a scene graph is
shown in Figure 13.5.

Chapter 13 Scene Management 449

FIGURE 13.5 A scene graph.

A scene graph is a very general data structure. In video games this data struc-
ture is often highly application specific and is generally not made up of a concrete
set of rules or definitions. Because scene graphs are so general, there is no right or
wrong way to create them. In Figure 13.5 the illustration defines a scene graph that
specifies spatial and material relationships. During the creation of a scene graph,
the implementation depends highly on the game specifics. If a game has static ob-
jects in specific areas like in Figure 13.5, then grouping objects by location might be
a feature of that game’s scene graph. If objects can be grouped by material, all ob-
jects that share the same texture, shader, and so forth can be conveniently grouped
in a subtree. Another situation in which scene graphs can be used is to define phys-
ical relationships, such as when a character model hops in a vehicle and drives it
around the environment, which causes a relationship between the two objects to
allow one model’s movements and orientations to affect the other. Implementing
a scene graph requires taking the basic ideas and principles of a scene graph and
building on them for the needs of a specific game.

NODES OF A SCENE GRAPH

In a scene graph the data structure can be implemented using a graph or a tree. In
some cases scene graphs can be implemented using basic data structures such as an
array or a link list as well. In a scene graph built from a tree or graph a node can
have multiple children but only one parent. Depending on the game specifics, the
parent node affects the children and so forth down the hierarchy. In Figure 13.5 a
transformation node was used to position all objects in a subgroup to one general
location. Each of these objects had their own transformations that were added and
applied further to that main transformation.

In this chapter the scene graph will be simple and will implement transforma-
tion nodes and sphere nodes. The transformation nodes will be used to apply trans-
formation information to the OpenGL API, while the sphere nodes will be used to
draw a sphere shape. The nodes will use inheritance, and both types (transforma-
tion and sphere) will derive from one node.

A game’s scene graph can have additional types of nodes that are specific to the
game. Nodes can be used to group objects by material, physical relationship, which
was discussed in the example of a character model getting into a vehicle, and what-
ever else the game needs to group by.

IMPLEMENTING A SCENE GRAPH

The implementation for this chapter’s scene graph is straightforward and simple.
The scene graph will be implemented using a general tree data structure similar to
the first tree discussed in Chapter 9. The scene graph will have a class for the nodes
which will act as a base class from which the other two classes, one for transforma-
tions and one for the spheres, will be derived. In the base class for the nodes, the
nodes will store their child pointers and their sibling pointers. The sibling pointers
form a doubly linked list and are used to chain the nodes together. The base class
for the nodes is shown in Listing 13.6. The entire scene graph is processed by call-
ing the Process() function on the root node, which will recursively handle all nodes
in the graph. This is used in this demo to display and apply the information in each
node so that we can see it on the screen.

LISTING 13.6 The node Class

class Node

{

public:

Node()

{

m_next = NULL;

m_prev = NULL;

450 Data Structures and Algorithms for Game Developers

m_child = NULL;

}

virtual ~Node()

{

m_prev = NULL;

if(m_child != NULL)

{

delete m_child;

m_child = NULL;

}

if(m_next != NULL)

{

delete m_next;

m_next = NULL;

}

}

void AddChild(Node *node)

{

if(m_child == NULL)

{

m_child = node;

}

else

{

m_child->AddSibling(node);

}

}

void AddSibling(Node *node)

{

Node *ptr = m_next;

if(m_next == NULL)

{

m_next = node;

node->m_prev = this;

Chapter 13 Scene Management 451

}

else

{

while(ptr->m_next != NULL)

{

ptr = ptr->m_next;

}

ptr->m_next = node;

node->m_prev = ptr;

}

}

virtual void Process()

{

if(m_child != NULL)

m_child->Process();

if(m_next != NULL)

m_next->Process();

}

protected:

Node *m_next;

Node *m_prev;

Node *m_child;

};

The first node that will be looked at is the transformation node called
TransformationNode. This class takes a three-dimensional position, using the
Vector3D class from earlier in this chapter, and is used to apply the translation.
Other attributes such as the orientation can be added to this class, but that can be
left as an exercise at the end of the chapter. Since the code for this scene graph is
supposed to be simple and straightforward, the necessary OpenGL calls are made
directly in the Process() function. Transformations of any kind are only applied to
child nodes, so sibling nodes will have to be processed without that information
applied in order to get the correct results. The TransformationNode is shown in
Listing 13.7.

452 Data Structures and Algorithms for Game Developers

LISTING 13.7 The Node for Transformations

class TransformationNode : public Node

{

public:

TransformationNode(Vector3D &pos) : m_pos(pos)

{

}

~TransformationNode()

{

}

void Process()

{

glPushMatrix();

glTranslatef(m_pos.x, m_pos.y, m_pos.z);

if(m_child != NULL)

m_child->Process();

glPopMatrix();

if(m_next != NULL)

m_next->Process();

}

protected:

Vector3D m_pos;

};

The last node is for the sphere meshes. Again, since this demo is straightforward,
this class will allow us to specify the dimensions and color of a sphere and display it
to the screen using the OpenGL class. The radius of the sphere specifies its size, the
slices specify the number of subdivisions along the longitude, and the stacks specify
the number of subdivisions along the latitude. The SphereNode class is shown in
Listing 13.8.

Chapter 13 Scene Management 453

LISTING 13.8 The Node for the Spheres

class SphereNode : public Node

{

public:

SphereNode(double rd, int slices, int stacks,

float r, float g, float b) :

m_radius(rd), m_slices(slices), m_stacks(stacks),

m_red(r), m_green(g), m_blue(b)

{

}

~SphereNode()

{

}

void Process()

{

glColor3f(m_red, m_green, m_blue);

glutSolidSphere(m_radius, m_slices, m_stacks);

if(m_child != NULL)

m_child->Process();

if(m_next != NULL)

m_next->Process();

}

protected:

double m_radius;

int m_slices, m_stacks;

float m_red, m_green, m_blue;

};

The last class is the class for the scene graph. This class will need to add nodes
(which is done using a function called AddNode()) to delete the hierarchy (which is
done using Release()) and to recursively process the scene graph (which is done
with a function called Process()). Each of these functions operates on the root
node of the scene graph. To build the scene graph we must first create all of the sub-

454 Data Structures and Algorithms for Game Developers

trees for the scene, which we’ll see in the main application of the Scene Graph
demo later on, and add those subtrees to the scene graph. Another method would
be to allow the scene graph to add nodes to subtrees internally, but that would
require having to identify nodes (possibly by name, integer id, etc.) and having
to look up those nodes in the scene graph to find where a new node should be
attached. This is not necessary for this demo but can be useful. The scene graph
class is shown in Listing 13.9.

LISTING 13.9 The Scene Graph

#include”node.h”

class SceneGraph

{

public:

SceneGraph()

{

m_root = NULL;

}

~SceneGraph()

{

Release();

}

void Release()

{

if(m_root != NULL)

{

delete m_root;

m_root = NULL;

}

}

void AddNode(Node *node)

{

if(m_root == NULL)

m_root = new Node;

m_root->AddChild(node);

}

Chapter 13 Scene Management 455

void Process()

{

if(m_root != NULL)

m_root->Process();

}

private:

Node *m_root;

};

On the accompanying CD-ROM is a demo application called Scene Graph that
demonstrates the code discussed in this chapter. The demo application creates two
groups of spheres, each with its own local position and color, and renders them to
the screen. Each group adds as its child the positions of each of the spheres, which
in turns add each of their children (the sphere positions are parents to the sphere
meshes), to the sphere objects themselves. Each of these subtrees (groups) is added
as children to the scene graph’s root node. The processing of the scene graph takes
place in the RenderScene() function by calling the scene graph’s Process() function.
The scene graph is deleted by calling the Release() function in ShutdownApp(), and
it is built in the InitializeApp() function. The entire main source file for the Scene
Graph demo application is shown in Listing 13.10. Figure 13.6 shows a screenshot
of the running application.

LISTING 13.10 The Main Source File

#include<gl/glut.h>

#include<stdio.h>

#include”SceneGraph.h”

#include”TransformationNode.h”

#include”SphereNode.h”

void RenderScene();

void KeyDown(unsigned char key, int x, int y);

void Resize(int width, int height);

bool InitializeApp();

void ShutdownApp();

// Scene graph.

SceneGraph g_sceneGraph;

456 Data Structures and Algorithms for Game Developers

int main(int arg, char **argc)

{

glutInitWindowSize(800, 600);

glutInitWindowPosition(100, 100);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

glutInit(&arg, argc);

glutCreateWindow(“Scene Graph”);

glutDisplayFunc(RenderScene);

glutReshapeFunc(Resize);

glutKeyboardFunc(KeyDown);

if(InitializeApp() == true)

glutMainLoop();

else

printf(“Error in InitializeApp()!\n\n”);

ShutdownApp();

return 1;

}

void Resize(int width, int height)

{

glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION);

gluPerspective(45, width/height, 0.1, 200.0);

glMatrixMode(GL_MODELVIEW);

}

void KeyDown(unsigned char key, int x, int y)

{

switch(key)

{

case 27:

exit(0);

break;

}

}

Chapter 13 Scene Management 457

bool InitializeApp()

{

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

glShadeModel(GL_SMOOTH);

glEnable(GL_DEPTH_TEST);

glEnable(GL_LIGHTING);

float diffuseLight[] = {0.8f, 0.8f, 0.8f, 1.0f};

float specularLight[] = {1.0f, 1.0f, 1.0f, 1.0f};

float LightPosition[] = {1.0f, 0.0f, 8.0f, 1.0f};

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);

glLightfv(GL_LIGHT0, GL_SPECULAR, specularLight);

glLightfv(GL_LIGHT0, GL_POSITION, LightPosition);

glEnable(GL_LIGHT0);

glEnable(GL_COLOR_MATERIAL);

glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

glMaterialfv(GL_FRONT, GL_SPECULAR, specularLight);

glMateriali(GL_FRONT, GL_SHININESS, 128);

TransformationNode *group1 = NULL, *group2 = NULL,

*spherePos1 = NULL, *spherePos2 = NULL,

*spherePos3 = NULL, *spherePos4 = NULL,

*spherePos5 = NULL, *spherePos6 = NULL;

SphereNode *sphere1 = NULL, *sphere2 = NULL, *sphere3 = NULL,

*sphere4 = NULL, *sphere5 = NULL, *sphere6 = NULL;

group1 = new TransformationNode(Vector3D(5, 0, 0));

spherePos1 = new TransformationNode(Vector3D(-1, 0, 0));

spherePos2 = new TransformationNode(Vector3D(1, 0, 0));

spherePos3 = new TransformationNode(Vector3D(0, 0, -1));

sphere1 = new SphereNode(1, 20, 20, 1, 0, 0);

sphere2 = new SphereNode(1, 20, 20, 0, 1, 0);

sphere3 = new SphereNode(1, 20, 20, 0, 0, 1);

spherePos1->AddChild(sphere1);

spherePos2->AddChild(sphere2);

spherePos3->AddChild(sphere3);

458 Data Structures and Algorithms for Game Developers

group1->AddChild(spherePos1);

group1->AddChild(spherePos2);

group1->AddChild(spherePos3);

group2 = new TransformationNode(Vector3D(-5, 0, 0));

spherePos4 = new TransformationNode(Vector3D(-1, 0, 0));

spherePos5 = new TransformationNode(Vector3D(1, 0, 0));

spherePos6 = new TransformationNode(Vector3D(0, 0, -1));

sphere4 = new SphereNode(1, 20, 20, 1, 1, 0);

sphere5 = new SphereNode(1, 20, 20, 0, 1, 1);

sphere6 = new SphereNode(1, 20, 20, 1, 0, 1);

spherePos4->AddChild(sphere4);

spherePos5->AddChild(sphere5);

spherePos6->AddChild(sphere6);

group2->AddChild(spherePos4);

group2->AddChild(spherePos5);

group2->AddChild(spherePos6);

g_sceneGraph.AddNode(group1);

g_sceneGraph.AddNode(group2);

return true;

}

void ShutdownApp()

{

g_sceneGraph.Release();

}

void RenderScene()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

gluLookAt(0, 5, -20, 0, 0, 0, 0, 1, 0);

Chapter 13 Scene Management 459

g_sceneGraph.Process();

glutSwapBuffers();

glutPostRedisplay();

}

460 Data Structures and Algorithms for Game Developers

FIGURE 13.6 A screenshot of the Scene Graph demo.

BINARY SPACE PARTITIONING TREES

The binary space partitioning (BSP) data structure has been used for a long time in
the game industry for processing three-dimensional virtual scenes. With a BSP tree
a tool is used to take the polygons of a level and create a hierarchy out of them. This
hierarchy can quickly be processed by the application at run time to increase over-
all performance. In a BSP tree it is possible to traverse through the data structure’s
contents in front-to-back or back-to-front order. The BSP tree can be used for ren-
dering, collision detection, or large-scale culling of the scene’s geometry through
the use of other structures such as potential visibility sets, which we’ll discuss later
in this chapter.

In a BSP tree the child nodes are often called the front and back nodes instead
of left and right. The BSP recursively partitions a scene into two sections. First, a
plane is chosen as the splitter plane. This plane is tested against all polygons, and the
ones on the front are placed in the front node for further processing, the ones on
the back of the plane are placed in the back node, and all polygons that span both

sides of the plane are broken into two pieces so that one can be placed on the front
and the other on the back. Figure 13.7 shows a simple environment split into halves
using a plane. The idea behind the BSP tree is that a plane is chosen, the scene is
partitioned into halves, and this recursively happens until some condition is met.
This condition can be that a certain number of polygons (minimum) has been
reached in one node or a certain depth level has been reached.

Chapter 13 Scene Management 461

FIGURE 13.7 A simple scene divided using a plane.

Many games use the BSP tree. Among the most popular are the early Doom and
Quake™ games from Id Software. Modern games that use BSP trees include Half-Life
2, Quake 4, Doom 3, and many others. Although games today use BSP trees that are
slightly different than in the past, they are still a part of game development. When it
comes to rendering, BSP trees are often used with other structures such as potential
visibility sets. In the early days this was first done with the first Quake, where the per-
formance of the traditional BSP tree suffered in some areas of game levels.

Before there were Z-buffers in the graphics hardware there was a need to be able
to correctly render polygons in the right order (from back to front). If polygons were
not rendered is a specific order, polygons that are supposed to appear behind others
might be rendered on top. The BSP tree was a way to partition the scene so this order
can be quickly determined and the polygons of a level rendered correctly.

In today’s games we have fast Z-buffers in the graphics hardware, so using BSP
trees to render the faces in the correct order is not necessary. However, when com-
bined with frustum culling and potential visibility sets, new BSP trees can be created
and rendered that benefit speed. BSP trees can also be used for very fast collision de-
tection, which is important in three-dimensional games.

The planes used to split the nodes of a BSP tree are often axis-aligned, arbitrary,
or coplanar with the polygons. Axis-aligned means that the planes align to an axis
(x, y, or z), arbitrary planes are used to divide the scene into near two equal or equal
parts, and planes that are coplanar with the polygons are planes that are created out
of chosen polygons from the scene. An example of each type is shown in Figure 13.8.

462 Data Structures and Algorithms for Game Developers

FIGURE 13.8 Splitting plane types.

BSP TREE NODES

The nodes of a BSP tree can have a list of polygons and two child nodes. Leaf nodes
have no children and have a list of polygons. The BSP tree is a binary search tree for
polygons. By understanding the binary search tree in Chapter 9, you already have
some of the knowledge necessary to understand BSP trees. The creation of a BSP
tree is a generally simple process (in theory) and is made up of the following steps:

1. Take a list of polygons and send it to the node (root node if this is the first
node).

2. Calculate a plane that will be used as the splitter plane.
3. Loop through all polygons and determine which side the polygons lie on.

If any span the plane, split them into two new planes.
4. Repeat steps 1 through 3 for the left (front) and right (back) nodes recur-

sively until a certain number of polygons are in a node, until a certain
depth is reached, or until some other condition (whatever condition you
see fit to stop the recursion) is met.

5. The pseudo-code for the creation of a BSP tree can look like the following:

// Get a list of polygons (possibly load from a file).

// Build BSP tree recursivly by returning the root node.

listOfPolygons = new PolygonList(...);

bspTree = CreateBSPNode(listOfPolygons);

CreateBSPNode(listOfPolygons)

{

node = new BSPNode();

// If threshold is met then stop recursion.

if(listOfPolygon.count <= MIN_NODE_POLY_COUNT)

{

node.polygonList = listOfPolygons;

return node;

}

// Else continue.

splitPlane = GetBestSplitter(listOfPolygons);

for each(element i in listOfPolygons)

{

if(splitPlane.Classify(listOfPolygons[i]) == FRONT)

{

subPolyList1.push(listOfPolygons[i]);

}

else if(splitPlane.Classify(listOfPolygons[i]) == BACK)

{

subPolyList2.push(listOfPolygons[i]);

}

else

{

// Return two split polygons in p1, p2.

splitPlane.ClipPolygon(listOfPolygons[i], &p1, &p2);

subPolyList1.push(p1);

subPolyList2.push(p2);

}

}

node.frontNode = CreateBSPNode(subPolyList1);

node.backNode = CreateBSPNode(subPolyList2);

return node;

}

Chapter 13 Scene Management 463

The first thing to note is that BSP trees by themselves are better for indoor
scenes than outdoor scenes. This is because the splitting planes on the terrain of an
outdoor scene will not be as efficient as an indoor one. One of the challenges of
making a BSP tree is to pick a good splitter plane. If the tree is severely unbalanced,
performance traversing the tree can suffer. On the accompanying CD-ROM is a
demo application called BSP Tree that creates a BSP tree out of a simple list of poly-
gons. This BSP tree is rendered to the screen in back-to-front order. The splitting
plane is chosen using a scoring algorithm that performs these steps:

1. Loop through all polygons and create a plane for each one.
2. For each plane add up the number of polygons that are on the front side

and on the back side.
3. Whichever plane has the lowest absolute difference (abs[front total – back

total]) is the best polygon to use for the splitting plane (also known as the
score).

Such a simple algorithm should create a fairly balanced tree since it chooses
planes that have equal or close to equal numbers of polygons on each side. To im-
plement such an algorithm a loop can be used to create and score each polygon
while keeping track of the current best. Once the algorithm is done, the one marked
as the current best is the one to use. Pseudo-code for finding the best splitter using
this algorithm can look like the following:

GetBestSplitter(listOfPolygons)

{

plane = Plane();

minPlane = Plane();

minCount = 9999999999, currentCount = 0;

for each(element i in listOfPolygons)

{

// Create plane out of this polygon.

plane.Create(listOfPolygons[i]);

// Determine how many polys are on the front and back.

for each(element j in listOfPolygons)

{

frontCount = 0, backCount = 0;

// Wouldn’t test current (plane) polygon.

464 Data Structures and Algorithms for Game Developers

if(i != j)

{

if(plane.Classify(listOfPolygons[j]) == FRONT)

{

frontCount++;

}

else if(plane.Classify(listOfPolygons[j]) == BACK)

{

backCount++;

}

else

{

// The split polygon would create one on each.

frontCount++;

backCount++;

}

}

}

// Score the current polygon.

currentCount = abs(frontCount - backCount);

// If current polygon proves to be the smallest so far...

if(currentCount < minCount)

{

minPlane = plane;

minCount = currentCount;

}

}

return minPlane;

}

Building a BSP tree is often a preprocessing step because of the time it will take
to create the data structure. Adding potential visibility sets can drastically increase
this build time. This is not a problem, since a level is loaded during runtime, but it
does require the geometry of the environment itself be static. The objects do not
need to be static and would not be part of the BSP tree anyway. A screenshot from
the BSP TREE demo is shown in Figure 13.9.

Chapter 13 Scene Management 465

QUAD-TREES AND OCTREES

Bounding volume hierarchies are used for fast culling of a scene’s geometry. In a
bounding volume hierarchy a bounding volume is created to enclose the entire
scene. The main bounding volume is then recursively divided into smaller sections.
When a bounding volume is divided, all polygons that fall within that volume are
added to that node. This recursion continues until a certain depth level is reached
or until a minimum number of polygons have been reached. In this section we will
talk about two popular bounding volume hierarchies known as the quad-tree and
the octree.

QUAD-TREES

A quad-tree starts with one large axis-aligned bounding box around the environment.
It then recursively splits this box into four equal subboxes. These four subboxes are
the four child nodes, just like the front and back were child nodes of a BSP tree node.
All polygons are then placed into the node within which it falls. This process contin-
ues for the child nodes downward until some condition is met to stop the recursion,
which is often until a minimum number of polygons are reached. A quad-tree is
shown in Figure 13.10.

Building a bounding volume hierarchy like the quad-tree is easier than build-
ing a BSP tree. In a quad-tree there are four nodes that each represent an equal area
of the parent. The polygons are separated based on if they fall within one of these

466 Data Structures and Algorithms for Game Developers

FIGURE 13.9 A screenshot from the BSP Tree demo.

boxes, and the process continues until the recursion-ending condition is met. Using
frustum culling on such a data structure would require starting at the root node and
testing if it is visible. If so, each of the child nodes are tested to see if they are visi-
ble. The children of every child node that is visible are tested until the entire tree has
been processed. If some nodes are not visible, they and their children are rejected.
Thus, if a view is facing away from a section of the level, those nodes would have
been quickly rejected because some of the nodes higher up in the hierarchy closest
to the root would have been rejected, and thus those children that eventually did
hold geometry would have also been rejected automatically. The process of build-
ing a quad-tree is shown in Figure 13.11, and using a quad-tree with frustum
culling is shown in Figure 13.12.

Chapter 13 Scene Management 467

FIGURE 13.10 A quad tree.

FIGURE 13.11 Building a quad
tree out of a few objects.

FIGURE 13.12 Culling objects in
a quad tree.

The pseudo-code for creating a quad-tree can look like the following:

// Get list of polygons (maybe from a file).

listOfPolygons = new PolygonList(...);

// Create quad tree by returning root node.

quadTree = CreateQuadNode(listOfPolygons);

CreateQuadNode(listOfPolygons)

{

node = new QuadNode();

aabb = CalculateBoundingBox(listOfPolygons);

node.aabb = aabb;

// Stop recursion once list becomes small.

if(listOfPolygons.count <= MIN_NODE_POLY_COUNT)

{

node.polygons = listOfPolygons;

return node;

}

// Else continue.

// Divide large bounding box into four areas (quad).

// In other words SPLIT ALONG X and Y axis.

frontLeftBox = CalculateSubBox(aabb, FRONT_LEFT);

backLeftBox = CalculateSubBox(aabb, BACK_LEFT);

frontRightBox = CalculateSubBox(aabb, FRONT_RIGHT);

backRightBox = CalculateSubBox(aabb, BACK_RIGHT);

// Divide main polygon list into sublists.

frontLeftList = new PolygonList();

backLeftList = new PolygonList();

frontRightList = new PolygonList();

backRightList = new PolygonList();

468 Data Structures and Algorithms for Game Developers

for each(element i in listOfPolygons)

{

if(frontLeftBox.IsPolyIn(listOfPolygons[i]) == true)

{

frontLeftList.push(listOfPolygons[i]);

}

else if(backLeftBox.IsPolyIn(listOfPolygons[i]) == true)

{

backLeftList.push(listOfPolygons[i]);

}

else if(frontRightBox.IsPolyIn(listOfPolygons[i]) == true)

{

frontRightList.push(listOfPolygons[i]);

}

else if(backRightBox.IsPolyIn(listOfPolygons[i]) == true)

{

backRightList.push(listOfPolygons[i]);

}

}

node.frontLeftNode = CreateQuadNode(frontLeftList);

node.backLeftNode = CreateQuadNode(backLeftList);

node.frontRightNode = CreateQuadNode(frontRightList);

node.backRightNode = CreateQuadNode(backRightList);

return node;

}

Note that the pseudo-code for creating a quad-tree does not take into account
polygons that span multiple boxes. In this case you would have to split the polygons
similarly to what was discussed for the BSP tree. The pseudo-code adds the poly-
gon to whatever box it touches.

The pseudo-code for culling with a quad-tree can look like the following:

// Create quad-tree out of polygon list and a frustum.

listOfPolygons = new PolygonList(...);

quadTree = CreateQuadNode(listOfPolygons);

frustum = Frustum(camera)

// Render by calling this recursively on root node.

Chapter 13 Scene Management 469

RenderQuadTree(frustum, quadTree);

// Recursive rendering function.

RenderQuadTree(frustum, node)

{

if(node == NULL)

return;

// Cull (return) if camera cannot see this node.

if(frustum.isVisible(node.aabb) == FALSE)

return;

// Either rendering a leaf node or must traverse.

if(node.polygons != NULL)

{

for each(element i in node.polygons)

{

// Render poly using API like OpenGL, Direct3D, etc.

}

}

else

{

RenderQuadTree(frustum, node.frontLeftNode);

RenderQuadTree(frustum, node.backLeftNode);

RenderQuadTree(frustum, node.frontRightNode);

RenderQuadTree(frustum, node.backRightNode);

}

}

Quad-trees can also be used to create terrains with nodes that have varying
levels of detail. As nodes are determined to be farther and farther away from the
viewer (camera), low-detail versions of that node’s geometry can be used to de-
crease the rendering load on the graphics hardware. As geometry moves further
away from the camera, the detail that it holds is not as visible. Using lower levels of
detail as geometry is farther away can lead to renders that show no real noticeable
difference. We’ll discuss level of detail more later on this chapter.

470 Data Structures and Algorithms for Game Developers

OCTREES

Octrees are essentially the same as quad-trees, but a node is split into eight boxes
instead of four. Octrees can be useful for environments where a large number of
polygons can appear above a camera’s frustum and can be culled out of the
rendering process. In a quad-tree the polygons of a node are rendered if the node
is visible or partially visible. It would be more expensive to cull individual polygons
than groups of them, and because of this, if there are large numbers of polygons
that can appear above a camera, they will be rendered even if not visible in a quad-
tree. By using an octree, these polygons can be possibly culled out. This situation is
shown in Figure 13.13.

Chapter 13 Scene Management 471

FIGURE 13.13 An octree.

IMPLEMENTING AN OCTREE

On the accompanying CD-ROM a demo application called Octree is in the Chap-
ter 13 folder. The Octree demo will take a simple wire-frame terrain and build an
octree out of it. It will also use frustum culling on the octree’s nodes to render only
what geometry is visible. The octree is implemented using the information for the
quad-tree, with the exception of eight child nodes instead of four. A screenshot of
the demo application is shown in Figure 13.14.

ADDITIONAL MANAGEMENT TOPICS

The management of a scene can be very complex, with all the pieces of data that are
brought together to make a virtual experience. In this chapter the main focus has
been on introducing space partitioning, but other topics are also important for
game developers. These topics include the following:

Texture compression
Level of detail
Occlusion culling
Potential visibility sets
Portal rendering

In this section we will briefly discuss a few of these topics that can be used to
increase the rendering performance of a scene.

TEXTURE COMPRESSION

Textures are becoming larger in resolution and larger in numbers. With more tex-
tures and with more textures that are made up of high resolutions, more memory
is needed to store them. There are many kinds of textures outside of color maps
(also known as decal textures). The other kinds of textures that can be applied to a
surface include:

Specular maps (gloss maps)
Alpha maps
Height and displacement maps

472 Data Structures and Algorithms for Game Developers

FIGURE 13.14 A screenshot from the Octree demo.

Bump and normal maps
Detail maps
Ambient occlusion maps
Light maps
Environment maps (i.e., cube maps, sphere maps, etc.)
High-dynamic-range light probes

Compression is a technique used to reduce the size of data in memory. Com-
pressing textures used by a game reduces the total amount of memory used. This
can allow for more textures and/or higher-resolution images. In the next chapter,
Data Compression, we’ll briefly discuss and implement texture compression as well
as other topics.

LEVEL OF DETAIL

Many geometric objects and sections of the game world are often visible at one time
in a complex game. Earlier in this chapter we discussed a few ways to quickly de-
termine what polygons are visible so the rendering system can draw only that in-
formation. This allows applications to spend less time on what is not visible and
more time on what is.

What about the objects that are visible to the viewer? If you take a high polyg-
onal object and render it close to the viewer, the full detail of the character will
be visible. As the object moves farther away from the viewer, the detail becomes
less visible because the object is not as close but that amount of data is still being
rendered. Level of detail is used to create different versions of a virtual object, where
each level is made up of less detail than the previous one. A screenshot of this is
shown in Figure 13.15.

Chapter 13 Scene Management 473

FIGURE 13.15 Level of detail on a sphere.

The idea is that when an object is farther from the viewer, less information can
be used to render that object without a noticeable difference. Since the object is far-
ther away, it would be hard for a user to realize that the objects are different meshes.

Drawing lower and lower polygonal versions of an object as it gets farther away
from the viewer gives the graphics hardware less work, which increases perfor-
mance. If this is done on all objects and sections of the environment (e.g., using
level of detail on octree nodes), a complex scene can be rendered quickly that would
have otherwise have had the potential for low performance.

OCCLUSION CULLING

In frustum culling, discussed earlier in the chapter, everything outside of the frustum
is culled, or, in other words, not rendered. For geometry that falls within the frus-
tum, another technique, called occlusion culling, is used to cull geometry further.

Within a frustum some visible objects can block others. For example, a wall
might block the view of objects behind it. If objects are not visible because other ob-
jects block them, they should not be rendered if this can be quickly determined.
That is what occlusion culling is. It is a technique used to eliminate nonvisible
geometry that passes the frustum culling test.

Occlusion culling has advantages and disadvantages. On the one hand, a test can
be used to determine if objects completely block the view of other objects. On the
other hand, if too many tests are being performed, in some cases the test can result
in the same or worse performance than not doing anything and simply rendering the
object. As with many things in video games, a balance must be found to achieve the
best results. An illustration of occlusion culling is shown in Figure 13.16.

474 Data Structures and Algorithms for Game Developers

FIGURE 13.16 Occlusion culling.

POTENTIAL VISIBILITY SETS

Earlier in this chapter we looked at various data structures there are used to partition
a virtual world into manageable blocks of bounding volumes. Quad-trees and octrees
are used to quickly determine what parts of a scene are visible and to draw only those.
In a BSP tree things are a little different, and rendering and the tree’s algorithms nor-
mally allow for front-to-back rendering. In the early days of three-dimensional games
this was fine, but, as seen with Quake 1, it was determined that the BSP tree can result
in bad performance depending on the design of a level.

Using potential visibility sets was the answer John Carmack of id Software used
to solve the rendering performance issues in Quake, and they have been used ever
since in many games such as Doom 3, Quake 4, and Half-Life 2. Potential visibility
sets are straightforward. Using the BSP tree as an example, although any tree would
work, every node stores a list of other nodes that it can possibly see. Potential in the
name potential visibility set means there is at least one position where the player
can be within that node that can see another node. By having each node store what
other nodes it can see, the BSP tree can be used to render only what is visible. In the
demo application seen earlier in this chapter the BSP tree was used to render the
entire scene. Since most of the scene was not visible, this was a waste of processing
cycles. If potential visibility sets were used, the algorithm would change to deter-
mine what node the player was in, render that node, and then render all nodes in
the potential visibility set for the node the player is in. Since octrees and quad-trees
are designed to quickly reject large portions of a scene, they might not benefit too
much from potential visibility sets in some situations.

Originally BSP trees were designed to be able to render the polygons of an en-
vironment in the proper order. Since BSP trees are used mostly for indoor areas,
there is also a lot of occluded geometry. By creating a potential visibility sets list
during the build of a level in a level editor, the in-game engine can quickly use that
precomputed data to know what nodes to draw and what nodes to reject. The
process of building a potential visibility set out of the quad-tree in Figure 13.7 is
shown in Figure 13.17, where each node knows which other nodes it can potentially
see. Use of potential visibility sets is shown in Figure 13.18, where the current node
the viewer is in is rendered, followed by all of the potentially visible nodes.

Chapter 13 Scene Management 475

FIGURE 13.17 A BSP tree where each node knows which other nodes it can see.

Using a bit array is one way to save memory space when using potential visibility
sets if the potential visibility set data represent true or false boolean values for
whether or not the other nodes can be seen from that node.

PORTAL RENDERING

Another rendering technique used from the early days of games to the present is the
portal rendering technique. In portal rendering the game world is separated into
sectors. Using a house as an example, a sector can be a room such as a bedroom or
kitchen. Each sector is connected by a portal that is often a plane used to specify
which portals are connected. For example, a bedroom door can be a portal that is
used to connect the bedroom sector with the hallway sector. An example is shown
in Figure 13.19.

A number of tricks can be used for portal rendering. The system can be set up
so that the geometries of two connecting sectors are not physically next to one an-
other. This creates a wormhole-like situation where you can cross into a portal and
end up in a part of the game world that is nowhere near the area you just left. In the
Xbox® 360 game Prey this was used to create some very unique gameplay elements
where portals existed throughout the game world and the players could not only
move through them but could also look through them, sometimes even being able to
look at themselves, almost as if they were looking into another universe.

The possibilities are remarkable with portal rendering. If a player can start in a
completely closed room where there is a box in the middle of the area, a portal can
be attached to one of the faces on the box so that the player can walk through and

476 Data Structures and Algorithms for Game Developers

FIGURE 13.18 Using potential visibility sets.

end up in a completely new area. Maybe a player can hit a switch to open the por-
tal, or the portal can already be there waiting. Either way, the trick can be used for
some very weird things, such as a portal that acts like a window on one side but
looks into a completely different area or a solid surface from the other side or, as in
Value’s upcoming game Portal, in which sectors can have a portal that connects the
sector to itself, creating a loop.

SUMMARY

The purpose of this chapter was to introduce the topic of using data structures and
algorithms to perform scene management. This chapter covered a lot of informa-
tion dealing with the general management of a virtual scene in a video game. As
seen so far, the subject of scene management can be very complex. So much data
makes up a game world that efficiently processing it all calls for data structures and
algorithms that manage and feed the information to the systems that require it.
Some of these data structures were mentioned in this chapter, but there are many
others:

CLOD for terrains
ROAM
kd-trees
Sphere trees
Loose trees

Chapter 13 Scene Management 477

FIGURE 13.19 A scene divided by portals and sectors.

In the next chapter we’ll discuss topics such as data encryption and compres-
sion. Compression can be used to compress textures to increase the performance of
a rendered scene, so this topic is very important for game developers.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What is state management?
2. What is a texture atlas?
3. What is the difference between managing resources and managing states?
4. A vector with a magnitude of 1 is:

a. The cross product of two vectors
b. The dot product of a vector
c. A unit-length vector
d. None of the above

5. What is frustum culling?
6. What is a scene graph?
7. The scene graph discussed in this chapter is a type of:

a. Graph
b. Weighted graph
c. Multiway tree
d. Binary tree
e. None of the above

8. What is occlusion culling and how can it be used to increase rendering
times?

9. What is the difference between an octree and a quad-tree?
10. What bounding volume do quad-trees and octrees use?

a. Spheres
b. Ellipsoids
c. Axis-aligned boxes
d. None of the above

11. What kind of trees are quad-trees and octrees?
a. Multiway
b. Binary
c. Graph
d. None of the above

12. What is a binary space partitioning tree?

478 Data Structures and Algorithms for Game Developers

13. In a BSP tree the left and right nodes of the binary tree are also known as
the:
a. Sibling/child
b. Splitting planes
c. Front/back
d. None of the above

14. What are potential visibility sets and how do they aid in the rendering of a
scene?

15. Bounding boxes are generally faster than bounding spheres.
a. True
b. False

16. A scene graph is a binary tree.
a. True
b. False

17. A quad-tree splits on the y-axis, while an octree splits on the x and y axes.
a. True
b. False

18. Binary space partitioning trees are obsolete in today’s games.
a. True
b. False

19. BSP trees are not better suited to open spaces such as the outdoors.
a. True
b. False

20. Octrees are not better suited to open spaces such as the outdoors.
a. True
b. False

PROGRAMMING PROJECTS

Exercise 1: Implement a bounding sphere and modify the Scene Graph demo ap-
plication to use the spheres instead of the bounding boxes.

Exercise 2: Do Exercise 1 and add the ability to specify the orientation of the trans-
formation. Also change the spheres to teapots using the glutSolidTeapot() func-
tion in the GLUT library.

Exercise 3: Build off of Exercise 2 and allow nodes to have identifiers, such as names,
and allow the scene graph to attach nodes to specific other nodes in the hierarchy.

Exercise 4: Modify the Octree demo application to use a quad-tree. This can be
done by performing splits along the x and y axes but not the z-axis.

Chapter 13 Scene Management 479

This page intentionally left blank

481

Data Compression14

In This Chapter

Introduction to Data Compression
Introduction to Texture Compression
Introduction to Data Encryption

482 Data Structures and Algorithms for Game Developers

T
he transfer of data is very important for machines connected to one another
and for data stored on different mediums. The Internet is one type of con-
nection where millions of individuals are able to share all types of informa-

tion on virtually any subject. Since the early days of computers there has always
been a need to (a) protect sensitive data and (b) increase the transfer speed of
information from a source to a destination. Today these goals are just as important,
if not more important, than ever before.

Data can be protected using something known as encryption. Encryption es-
sentially takes data that is in its original form and converts it into another form that
makes it hard to read and process. This conversion is done using an algorithm, and
there are many different types of these algorithms. Encrypted data is considered
more secure than unencrypted data. Some types of encryption can be cracked more
easily than others, and the goal of encryption is to make that process as difficult as
possible.

The transfer speed of data can increased by increasing the transfer rate of a de-
vice such as a modem or by taking the information that needs to be transmitted and
reducing its size in memory. The second option is known as compression, which
attempts to take data and reduce its size while keeping the data acceptably intact.
Two major kinds of compression will be discussed later in this chapter: lossless and
lossy compression. All compression algorithms fall in one of these two categories.

This chapter will discuss data encryption and compression in general com-
puter programming and in game development. The purpose of this chapter is to in-
troduce both topics as well as discuss their implications in game and simulation
development. Although each of these topics can fill their own books, this chapter
will give some insight into each one.

INTRODUCTION TO DATA COMPRESSION

Many different types of files have information in them that has some kind of re-
dundancy and/or can be represented using less information than the original data.
For example, in a database it might be acceptable to represent a person’s birth
month using a number between 1 and 12 instead of a string for the month’s text.
Another example is an image file that might have large numbers of consecutive pix-
els that use the same color value throughout the picture. Compression is all about
taking advantage of short cuts that a piece of data can allow so that the information
is the same or is close to the same.

There are many ways to compress information in a file. In this chapter we will
discuss a few methods that are well known in computer science. The main two
types of compression are lossless compression and lossy compression.

LOSSLESS VERSUS LOSSY COMPRESSION

Lossless compression refers to a compression algorithm that can take information
and compress it without sacrificing the original data’s quality. With a lossless com-
pression scheme it is possible to compress data and then decompress that data
back into its original form and in its original condition and quality. The kind of
file being compressed determines whether lossless compression is desired or is
essential.

Lossy compression is the opposite of lossless compression. Lossy compression is
a compression algorithm that takes information and compress it as small as possible
by sacrificing the quality or accuracy of the data for file size. Many algorithms use
lossy compression. One famous file type that uses lossy compression is the JPEG
image file format. In a JPEG the original quality of the image is lost so that the image
can be small. If you try to save a JPEG to a lossless file format or try to compare a
JPEG to the original, depending on the color variations between the pixels in the
original file, you’ll see a clear difference in the image quality in most cases. Usually
this loss of quality is more than acceptable. In the case of transmitting JPEG images
across the Internet, most files are small enough in resolution that a loss in quality
can’t even be recognized by everyday Web surfers, especially if the compression ratio
is not very high to begin with. Once data has been compressed using a lossy com-
pression algorithm, if there is a drop in quality then there is little to nothing that can
be done to restore that data to the original form unless you keep a copy of the orig-
inal. Also, recompressing data that has been compressed using a lossy algorithm will
cause a further reduction in quality. In some cases this is okay, but in others it is
important not to compress already compressed data but to instead keep a copy of the
original and perform compressions only on that.

The choice to use either lossless compression or lossy compression comes
down to what is being compressed. Lossy compression is often used on images be-
cause the loss in quality can go unnoticed in some cases, but when data quality and
accuracy are essential, lossless compression is often the preferred solution.

RUN-LENGTH ENCODING

Traditional run-length encoding is a very well-known and popular lossless compres-
sion algorithm. In run-length encoding a run is a number that defines how many
times a piece of information repeats itself consecutively. For example, take this string:

AAAAAbbCCCCCCd

In this string the letter “A” is repeated five times, “b” is repeated twice, “C” is re-
peated six times, and “d” only appears once. If run-length encoding was performed
on this string, the compressed result could look like the following encoded data:

Chapter 14 Data Compression 483

484 Data Structures and Algorithms for Game Developers

5A2b6C1d

In run-length encoding the run tells the algorithm how many times the data that
follows it is repeated. If the runs are large enough, this can lead to a significant
reduction in data size by replacing the original data with a shorter form that can be
translated back later. The compressed data in a run-length encoded piece of infor-
mation are abbreviated to shorten their representation. Generally every piece of data
is in the form of a (n, val) pair, where n is a number and val is the value that was en-
coded. A visual representation of run-length encoding is shown in Figure 14.1.

FIGURE 14.1 Run-length encoding.

A situation to consider when using run-length encoding is the number of runs
for each piece of information. If many runs are not greater than 1, then the data
used to represent the encoded value will be twice as long as the original value itself.
For example, take the following piece of information:

ABCCDEEEFFGH

The encoded form of the string would look like the following:

1A1B2C1D3E2F1G1H

The run-length encoded version of this example string leads to four more char-
acters in the string than in the original version. One way around this is to use a
marker character in the pair so that the encoded data consist of a (m, n, val), where
m is a marker character, n is the run number, and val is the encoded data. If the
marker character is a unique character, meaning it does not show up in the original
data, then when the algorithm reads a byte from the data, it can perform this general
test:

read from the data: m

if(m == marker)

{

read the run number: n

read the encoded value: val

do something with it:

}

else

{

// The value in m is not a marker but is the data.

do something with it:

}

Looking for a marker first can allow the algorithm to know if the data is encoded
or not. Because encoded data are composed of three values (m, n, val), it makes sense
to encode runs that are four or larger. Since it takes at least three values to represent
an encoded piece of data, if the original set of data has three or fewer runs, it might
as well not be encoded. If it is, the encoded version will be bigger than the original
set of data and would defeat the purpose of encoding it.

If the marker used by the algorithm must exist in the data being encoded, one
solution to allowing this is to place the marker twice. When the algorithm first
reads the marker it will then read the next value. If the next value is another marker,
the algorithm will know there is no run here and will work with the character used
as the marker. This is similar to escape characters in C, C++, and other languages
(e.g, “\n”). An example can look like the following:

Original: AAAAABBBBBB~C

Encoded: ~5A~6B~~C

In games a common use for run-length encoding is for texture images. Although
run-length encoding-compressed data cannot be used directly on the graphics hard-
ware like some texture compression algorithms that will be discussed later, it can be
used to save disk space with images that can make good use of the technique. In the
case of compressing an image with run-length encoding, the value of each encoded
piece of data is an image pixel. Because of the nature of images, this brings up an-
other point. What if the following RGB color values were found: Five pixels of (255,
128, 74), five pixels of (255, 125, 70), and so on. If there is a run of five pixels that use
(255, 128, 74) and a run of five pixels that use (255, 125, 70), then, since the two col-
ors are very close without any major noticeable difference, they can both be repre-
sented as (255, 128, 74), which would give us 10 (255, 128, 74).

Adjusting close-by pixels to match one another to improve the run-length
encoding efficiency in this manner will turn the algorithm from lossless to lossy

Chapter 14 Data Compression 485

because the original data’s quality or accuracy has been altered. If this was done and the
image was decompressed and saved, the areas where there was once a slight change in
color would now be one solid color. Recompressing the compressed data might even
cause pixels that were originally not close to one another but were close after the first
compression to be further optimized into a longer run of the same value. This is one
reason it is not always desirable to recompress compressed information when using a
lossy algorithm and to instead just compress the original data again.

If the data being encoded have little or no redundancy, the run-length encoding al-
gorithm can prove ineffective. Using the character marker technique will allow the
data to keep its original size or a size close to the original in a situation like that.

IMPLEMENTING RUN-LENGTH ENCODING

This section includes a simple implementation of run-length encoding being per-
formed on strings. On the accompanying CD-ROM a demo application called run
length Encoding is in the Chapter 14 folder. In this demo application there are three
functions, Encode(), Decode(), and main(), in the application’s main source file.

The Encode() function takes a source string and a destination string as para-
meters. The source string is the original information, while the destination string is
where the encoded information will be saved. The Encode() function starts by loop-
ing through the entire source data byte by byte. For each byte it keeps track of how
many runs are in the sequence. If the total runs are four or more, the character
marker, run total, and value are saved to the destination. If there are fewer than four
runs, the value is simply copied to the destination. A loop is used to save the values
that have fewer than four runs for run values of 1, 2, or 3. The function is straight-
forward and is shown in Listing 14.1. To save bytes on the value stored for the run,
a character is used instead of an integer. In this demo a run longer than 255 is highly
unlikely. Even so, a short (two-bytes) would probably be enough for most applica-
tions if a char was not. In general it is not important to group runs in blocks of 255,
but this could be application specific.

Adding the ability of the marker to exist in the original data will be an exercise for
the end of the chapter.

LISTING 14.1 Encoding Data Using Run-Length Encoding

void Encode(string &src, string &dst)

{

int index = 0;

char runTotal = 0, currentChar = 0;

486 Data Structures and Algorithms for Game Developers

while(index < (int)src.length())

{

runTotal = 0;

currentChar = src[index];

while(currentChar == src[index] && runTotal < 255)

{

runTotal++;

index++;

}

if(runTotal > 3)

{

dst += ‘~’;

dst += runTotal;

dst += currentChar;

}

else

{

for(int i = 0; i < runTotal; i++)

{

dst += currentChar;

}

}

}

}

The decoding algorithm for run-length encoding is simpler than the encoding
algorithm in Listing 14.1. The Decode() function takes a source and a destination
string as parameters. Inside the function a loop is used to loop through each byte
of the source. If the current character matches the character marker, the next
byte is the number of runs followed by the value itself. If the current byte is not a
character marker, the byte is simply copied to the destination. The Decode() func-
tion for the decoding algorithm is shown in Listing 14.2.

LISTING 14.2 Decoding data using Run-Length Encoding

void Decode(string &src, string &dst)

{

int index = 0, runTotal = 0;

char currentChar = 0;

Chapter 14 Data Compression 487

while(index < (int)src.length())

{

if(src[index++] == ‘~’)

{

runTotal = (int)src[index++];

currentChar = src[index++];

for(int i = 0; i < runTotal; i++)

{

dst += currentChar;

}

}

else

{

dst += src[index - 1];

}

}

}

The main() function of the demo application is straightforward. The main
source file takes a simple string of characters, displays it to the console window
along with its size, encodes it using run-length encoding, displays the encoded data
to the console window along with its compressed size, decodes the encoded data,
and displays the decoded data to the console window to prove everything worked
as planned. The main() function from the Run Length Encoding demo application
is shown in Listing 14.3. Figure 14.2 shows a screenshot of the application.

LISTING 14.3 The main() Function of the Run Length Encoding Demo

int main(int args, char **argc)

{

cout << “Run Length Encoding” << endl;

cout << “Chapter 14: Data Compression and Encryption” << endl;

cout << endl;

string str = “AAAAaaBBBBBBCCCCCCddddddEEEEEeeeeFFFFGGGG”;

string encodedStr, decodedStr;

cout << “Original Data Size: “ << str.length() << endl;

cout << “Original Data:” << endl;

cout << str << endl << endl;

488 Data Structures and Algorithms for Game Developers

Encode(str, encodedStr);

cout << “Compressed Size: “ << encodedStr.length() << endl;

cout << “Compressed Data:” << endl;

cout << encodedStr << endl << endl;

Decode(encodedStr, decodedStr);

cout << “Decompressed Size: “ << decodedStr.length() << endl;

cout << “Decompressed Data:” << endl;

cout << decodedStr << endl << endl;

return 1;

}

Chapter 14 Data Compression 489

FIGURE 14.2 A screenshot of the Run Length Encoding demo.

HUFFMAN CODING

The Huffman coding algorithm is a lossless data compression algorithm created
by David A. Huffman in the 1950s. The Huffman coding algorithm uses various data
structures such as the binary tree and priority queue to compress data efficiently.
The Huffman code uses binary digits to traverse a binary tree. For example, if
0 means to go left and 1 means to go right, a binary tree of letters in the alphabet
could look like Figure 14.3

In Figure 14.3 only 3 bits are used to represent the letter “A” instead of the
normal 8 bits that a byte normally uses. Doing this with all bytes in a source of data

can allow the data to be compressed very tightly while remaining lossless in its
compression scheme.

The Huffman algorithm is generally quite simple to implement for those with
knowledge of priority queues and binary trees. In this section, to make the visual-
ization easier, we will use the letters of the alphabet as an example of data that are
being compressed. For example, take the following string:

Susie sells sea shells at the sea shore

The first step of the algorithm is to figure the frequency of every letter in the
string. For the letter “S” this frequency is the number of times it shows up in the
data, which is eight times. Every letter in the message has a frequency that is deter-
mined by the algorithm.

The next step is to create a node for each letter in the message and to store each
of these nodes in a priority queue. A node in a Huffman tree has pointers to the left
and right child nodes and a frequency number. The priority queue will sort the
nodes by frequency from least to greatest.

The third step is to use a loop to remove the top two nodes from the priority
queue. Since the priority queue stores its elements from least to greatest, these two
nodes are the nodes with the smallest frequencies. The two removed nodes are
made child nodes of a new node, and the new node has a frequency that equals the
first node’s plus the second node’s frequency. This new node is then inserted into
the priority queue, which is shown in Figure 14.4.

Performing this until there is only one large node left in the priority queue will
create the Huffman tree. The Huffman tree is a binary tree of all the pieces of
information that make up the data. If the value 0 means to go left and 1 means to
go right, then every letter in the example string can be mapped to a few binary dig-
its. The higher the frequency (i.e., the most times a letter is used in the data), the
lower the number of bits that are used to store it. An example of this Huffman tree
is shown in Figure 14.5.

490 Data Structures and Algorithms for Game Developers

FIGURE 14.3 A binary tree with letters.

The next step to the Huffman coding algorithm is to create a Huffman table.
This table is an array that holds the bits necessary to traverse through the binary tree
to find a letter. An example of this is shown in Figure 14.6.

Chapter 14 Data Compression 491

FIGURE 14.4 Removing two nodes, combining
them, and placing them back on the queue.

FIGURE 14.5 A binary tree for “Susie sells sea shells at the sea shore.”

FIGURE 14.6 A Huffman table.

Encoding data using the Huffman coding algorithm would require a loop to go
through the original data and replace each (using strings as an example) letter with
the binary digits necessary to look it up in the binary tree. This encoded data along
with the Huffman table can be saved and decoded later. To decode the information
the Huffman tree can be generated out of the Huffman table, and the binary digits

of the encoded message can be processed and decompressed. An example of this is
shown in Figure 14.7.

492 Data Structures and Algorithms for Game Developers

FIGURE 14.7 Compressing and
decompressing using the Huffman code.

The Huffman coding algorithm for encoding can be summarized as the following:

1. Get the frequency for every piece of data.
2. Create a node for each of these pieces and place them into a priority queue

based on their frequencies from least to greatest.
3. Remove two nodes at a time from the priority queue. Make those nodes

child nodes of a new node, where the new node’s frequency is equal to the
frequencies of its children added together, and place the new node into
the priority queue. Continue until there is only one node left, which is the
Huffman tree.

4. Go through all the leaf nodes of the Huffman tree to determine what path
is necessary to get to each piece of data. Store this path data of 0s and 1s in
an array known as a Huffman table.

5. Encode the data using the Huffman table.

The Huffman coding algorithm for decoding can be summarized as the following:

1. When decoding the data, use the Huffman table to generate the Huffman
tree.

2. When processing the data to be decoded, use each bit as a direction for tra-
versing the Huffman tree.

3. When a leaf node is reached, that piece of data at the node is the decoded
value.

4. Continue until all compressed data have been processed.

To decode data the algorithm you will need is either the Huffman table, so that
the Huffman tree can be generated, or the Huffman tree itself. The Huffman table
can easily be saved to a file with the compressed data or transferred across a con-

nection much more easily and efficiently than a tree that uses pointers to nodes. The
tree itself is used for decoding a message and for creating the Huffman table. The
Huffman table, along with being used for generating the tree if needed, serves as a
look-up table for encoding the original data. For example, the piece of information
being encoded is looked up in the Huffman table and that series of bits is what is
saved to the compressed file. Because the Huffman table stores the traversing infor-
mation for the binary tree, the binary tree can be generated using this table if needed.
The same can be said for the Huffman tree being used to generate the Huffman
table. The Huffman tree can also be generated using the priority queue and fre-
quencies, which are necessary for the first step of the algorithm. Pseudo-code for the
encoding algorithm can look like the following:

// Determine frequencies.

for each(element i in array of data)

{

if(element i does not have frequency)

{

frequency = GetFreqency(i, data);

node = CreateNode(freqencyList);

AddNode(node, priorityQueue);

}

}

// Build huffman tree.

while(priorityQueue.count > 1)

{

node1 = RemoveTopNode(priorityQueue);

node2 = RemoveTopNode(priorityQueue);

newSubNode = CreateNode(node1, node2);

AddNode(newSubNode, priorityQueue);

}

// Last node left in queue is huffman tree.

// Create huffman table from it.

huffmanTree = RemoveTopNode(priorityQueue);

huffmanTable = CreateHuffmanTable(huffmanTree);

Chapter 14 Data Compression 493

// Compress data using huffman table.

for each(element i in array of data)

{

// Look up this element’s compressed representation.

compressedData[i] = huffmanTable[data[i]];

}

Assuming you have the Huffman table and tree, the decoding pseudo-code can
look like the following:

// Decoding.

index = 0;

for each(bit i in array of compressedData)

{

// 0 means move left, 1 means move right.

huffmanTree.MoveToNextTreeBranch(compressedData[i]);

if(huffmanTree.AtLeafNode())

{

data[index++] = huffmanTree.GetCurrentNodeValue();

}

}

You can think of the Huffman table as a tool used to encode a message and the
Huffman tree as a tool used to decode the message. The Huffman tree is also used
to generate the Huffman table and vice versa.

INTRODUCTION TO TEXTURE COMPRESSION

The amount of data used to represent virtual worlds in a video game is growing
with every generation. A lot of this increase in data comes from increased numbers
of textures and an increase in their resolutions. Texture data takes up a lot of space.
Of course, there are other resources that take up a lot of space such as video, audio,
geometry, and so on, but textures have become a major focus for compression.

Compressing textures have quite a few benefits in game development. The first
benefit is that the textures take up less space on the storage device. With the num-
ber of textures a game uses increasing, the extra space can come in handy. Using a
compression algorithm that gives a 4:1 compression ratio on a 32-bit 1024 × 1024
texture would give you the following comparison:

494 Data Structures and Algorithms for Game Developers

Original data size: 4 bytes per pixel × (1024 × 1024) = 4,194,304 bytes or 4.2 MB

Compressed size: Original size/4 = 1 MB (give or take a few kilobytes)

If the compression ratio was 6:1, like one of the techniques that will be discussed
shortly, the compressed size for a 32-bit 1024 × 1024 texture would be 700 kilobytes.
Such a savings is huge for a large texture.

The great thing about texture compression is that the benefits do not end there.
Modern graphics hardware is designed to internally work with data that was com-
pressed with certain algorithms. This means that not only does the compressed data
take up less storage space on a disk, but it also takes up less bandwidth and memory
inside the game. The faster a texture can be moved through the pipeline, the better
the performance. When it comes to rendering, one of the most expensive operations
is switching textures. This cost can be minimized by using state-management tech-
niques, which were first discussed in Chapter 13. Because graphics hardware is able
to load and work with compressed data, there are many opportunities to use
high-definition content in video games. Using the best compression method for the
type of texture you are dealing with can go a long way toward create stunning, high-
definition and high-resolution virtual scenes.

In this section we will look at some popular compression methods used in the
game industry for compressing color maps and normal maps. Each method has its
strengths and weaknesses, which will be examined in the following subsections.
The first types of image compression algorithms that will be discussed for textures
are S3 texture compression algorithm formats (the OpenGL version of DirectX
DXTC), which include DXT1 through DXT5. Before moving on let’s briefly discuss
normal maps.

Bump mapping is an extension to per-pixel lighting. In per-pixel lighting the
lighting algorithms are performed on each fragment of a rendered object. In tradi-
tional per-pixel lighting this leads to smooth lighting contributions across an entire
surface. With per-vertex lighting, the lighting quality mostly depended on the num-
ber of vertices in the mesh, while in per-pixel lighting it mostly depends on the
screen resolution of the rendered scene.

Bump mapping extends per-pixel lighting by varying the normals at the frag-
ment level to create patterns that have different lighting contributions. These pat-
terns can give the illusion of detail on an object. Bump maps are images that store
the normal X, Y, Z in the color components R, G, B. Texture mapping can apply a
bump map onto a surface that allows the pixel shader to access that information.
The main difference between bump mapping and per-pixel lighting is the normal
it uses for the lighting. For bump mapping this is a normal it fetches from the
bump map, while for per-pixel lighting it is the normal at the surface normal.
Bump maps are height maps that specify a pattern.

Chapter 14 Data Compression 495

Normal mapping is essentially bump mapping, but instead of using a height
map with a pattern, which is normally created by an artist, normal maps use height
maps that are calculated from a low-polygon mesh and a high-polygon mesh. Cal-
culating the difference between a low- and high-polygon model, the resulting nor-
mal map can be used to perform bump mapping on the low-polygon model so that
it looks like the high-polygon version. This technique is used in many of today’s
games to give models and environments the appearance of detail and complexity
while keeping the polygon count low enough for real-time rendering.

DXTC COMPRESSION

The DXTC image compression methods are texture compression formats that are
good for getting a compression ratio of 6:1 on color images using DXT1 and a 4:1
compression ratio using the other DXT formats. The DXTC compression formats
use a lossy type of compression, so the quality of color maps can be less than the
original, and they are not the best choice for compressing normal map images. The
reason they are not good to use with normal maps lies with the normal values
themselves. To provide accurate lighting across a surface, the normals will need to
be relatively intact. A screenshot of a normal map using lossy compression is shown
in Figure 14.8. Later we’ll see another compression format that is efficient for com-
pressing normal maps. By using a lossy compression like the DXTC formats on
normal maps you will be giving up lighting accuracy and quality, and this can hurt
the look of a scene.

496 Data Structures and Algorithms for Game Developers

FIGURE 14.8 Compressing a normal map image.

The DXTC formats are great for decal images, but the format version used
depends on the quality given from the compression. The DXT1 gives the lowest
overall quality but also gives the most compression. Each version above the DXT1
has better quality than the one that came before it but at the cost of compression size.
The DXT5 often gives the best quality but does not get the most compression. A
comparison of a texture image compressed with DXT1 and DXT5 is shown in Fig-
ure 14.9. A comparison of these formats on a normal map is shown in Figure 14.10.

Chapter 14 Data Compression 497

FIGURE 14.9 DXT1 compared to DXT5 on decals.

FIGURE 14.10 DXT1 compared to DXT5 on normal maps.

NORMAL MAPS AND DXTC FORMATS

Normal maps are not good candidates for DXTC compression because the DXTC
formats assume that the image data are smooth across its pixels. In a normal map
there are often sharp changes that are used to give detail and variations for the light-
ing algorithms. Because normal maps are often not smooth, the normals can be
compressed and altered to a point where the detail is lost and the lighting does not
look as intended. Using only 16 bits for each color component is not enough pre-
cision for normals in a normal map. Also, specular lighting and normal maps com-
pressed with a DXTC format can further amplify the rendering artifacts that exist
on the rendered surface.

There are a few tricks to getting normal maps to compress with DXTC formats
while retaining an acceptable level of quality. These options are not as useful as the
3Dc compression format, which will be examined later, but they can work if DXTC
must be used. The tricks that can be used to increase the quality of a normal map
using a DXTC format include:

Renormalizing normals as they are fetched from a texture.
Placing the x-axis of a normal in the alpha channel of a DXT5 compression
since the alpha channel is compressed separately.
Taking the previous trick, fetching the y-axis from the normal, and generating
the z-axis instead of using the one from the normal map.

Generating the z-axis is a clever and easy means of working with compressed
normals. By generating the z-axis, the normal can always be unit-length without
needing to renormalize the vector. A unit normal is a vector whose length (magni-
tude) equals 1, like so:

1 = square_root(X * X + Y * Y + Z * Z).

If we know the x-axis and the y-axis, the z-axis can be calculated using the sim-
ple formula

Z = square_root(1 – (X * X – Y * Y)).

Generating the z-axis and using DXT5 with the x-axis stored in the alpha chan-
nel can give you the best results when compressing normal maps using the DXTC
formats. A screenshot is shown in Figure 14.11.

The DXT1 format gives the most compression at a ratio of 8:1 but does not use
an alpha channel. The DXT1 format uses 16-bit color values at 5-6-5 (red 5, green
5, blue 5). The algorithm for the DXT1 format splits the image up into 4 x 4 pixel
blocks. Each block stores only two unique colors and uses a 16-bit palette. The pix-
els in each block reference an entry in the block’s palette, allowing the colors to be

498 Data Structures and Algorithms for Game Developers

represented using less data. Because the format uses 4 × 4 blocks, gradient infor-
mation often becomes clearly blocky, with many unwanted visual artifacts. These
artifacts can be seen on the three-dimensional object that is textured with a DXT1
compressed image in Figure 14.12.

Chapter 14 Data Compression 499

FIGURE 14.11 DXT5 and normal maps using various tricks.

FIGURE 14.12 Artifacts caused by DXT1 compression.

Extensions to the DXT1 format allow it to use a 1-bit alpha channel.

The DXT1 format can give a compression ratio of 8:1. The extension to the DXT1
that allows for an alpha channel can give a compression ratio of 6:1.

The DXT2 format is similar to the DXT1 format, with the exception that the
DXT2 format uses a 4-bit alpha that is multiplied before the compression so that
more transparent pixels appear darker than opaque ones. The DXT3 format is
similar to the DXT2 format, with the exception that the DXT2 format premultiplies
the data by the alpha channel and the DXT3 does not. The DXT4 and DXT5 com-
pression formats are similar to the DXT3 format, but the DXT4 alpha channel is
premultiplied as it is with the DXT2 format, and the DXT5 format interpolates the
alpha channel when compressing the original image data.

CREATING DXTC TEXTURES

Many tools can save textures that use DXTC-compressed formats. One tool, which
was used for this book, is the NVIDIA DDS Photoshop® plug-in tool for Adobe®

Photoshop CS2. A screenshot of the tool running in Photoshop is shown in Figure
14.13. This tool allows a normal map to be generated and saved.

500 Data Structures and Algorithms for Game Developers

FIGURE 14.13 The NVIDIA DDS and Normal Map plug-ins.

Other tools include the texture tool that comes with the DirectX® SDK as well
as numerous freeware and software applications that can be found on the Internet
or as plug-ins to existing popular tools such as Photoshop.

3DC COMPRESSION

The 3Dc texture compression, created by ATI, is a lossy compression format used
for normal map images. The 3Dc texture compression offers a compression ratio of

4:1. With the 3Dc format a texture is broken up into 4 x 4 blocks of pixels of 16 val-
ues each. Each of these values has two components that are compressed separately.
When compressing normal maps, this is good because the z-axis can be calculated
and the x and y axes can be compressed and stored. A comparison of the 3Dc and
DXT5 formats and an uncompressed normal map is shown in Figure 14.14.

Chapter 14 Data Compression 501

FIGURE 14.14 Comparison of 3Dc and DXT5.

Because the 3Dc works on two components, it can be used on normal maps but not
on color maps. This is because there is no way to generate a blue component,
whereas in the normal map a z-axis can be computed.

3Dc is the compression format of choice for normal map images, while DXT5
can be a good general choice for color maps (depending on the texture and the vi-
sual requirements). A free tool to create 3Dc texture images can be found on ATI’s
Web site and is called the ATI Compressonator.

A8L8 FORMAT

The format that will be discussed next is not a compression format as much as it is
a format used for normal maps. A normal map can calculate the z-axis (or any axis
for that matter, as long as two are already known). With the A8L8 format the
texture data are represented just as they are for a normal texture, but minus the blue
component (z-axis). The Direct3D and OpenGL graphics API allows for two com-
ponent texture images to be created and used. Because of this, a file that uses only

two components in this manner can be used directly in the API, and the missing
component can be calculated in a pixel shader. Note that because the data in an
A8L8 texture are not lossy compressed, the quality of the data remains unaffected.

IMPLEMENTING TEXTURE COMPRESSION

In this section an implementation of DXTC texture compression will be discussed.
This implementation will use OpenGL as the rendering API and will also use the
DDS (Direct-Draw Surface) image format. The DDS file format is a DirectX file
format used for storing image information. Although the file format was first used
in DirectX, it can be easily loaded and used outside of the Windows graphics API.
When loading a DXTC-compressed image in OpenGL, the compressed contents
can be loaded directly into the rending API so that the compressed information is
used internally.

To load compressed textures in Direct3D, the 3D graphics API of DirectX, no spe-
cial steps need to be taken. They can be loaded just like noncompressed textures
when using the D3DX library because the file format is supported.

On the accompanying CD-ROM is a demo application called GL Texture
Compression in the Chapter 14 folder that demonstrates using DXTC-compressed
textures in OpenGL. The demo application uses GLUT so that there is no operat-
ing-specific code inside it, and it uses GLEE for the OpenGL extensions that will be
used. If you are unfamiliar with OpenGL, GLUT, and GLEE, see Appendix C,
OpenGL, for a quick review.

The GL Texture Compression demo’s source code is split up into three files. The
first file is the main source file, which has the application code. The other two files are
a header and source file used for loading DDS images into memory. The information
that will be read out of a DDS image is the image’s width, height, compression type,
number of color components (e.g., RGB, RGBA, etc.), number of mipmaps, and the
compressed image data itself. A simple structure that will hold most of this informa-
tion is called ImageInfoDDS in the demo’s code. A function called to fill in this struc-
ture and return the compressed image data in the demo is called LoadDDS(). The
LoadDDS() function returns the loaded image data upon success or NULL if it has failed.
The function also takes as parameters the file that is to be loaded and the address
to an ImageInfoDDS structure that will be filled in by this function. The entire
DDSLoader.h header file from the GL Texture Compression demo application is
shown in Listing 14.4.

502 Data Structures and Algorithms for Game Developers

LISTING 14.4 The DDSLoader.h Header File

enum DDS_COMPRESSION {DDS_NULL = 0, DDS_DXT1, DDS_DXT3, DDS_DXT5};

struct ImageInfoDDS

{

ImageInfoDDS() : m_width(0), m_height(0), m_type(DDS_NULL),

m_components(0), m_numMipMaps(0)

{

}

int m_width;

int m_height;

DDS_COMPRESSION m_type;

int m_components;

int m_numMipMaps;

};

unsigned char *LoadDDS(char *file, ImageInfoDDS &info);

The next file is the DDSLoader.cpp source file. DDS images store multibyte
values. Saving a multibyte value such as an integer when using a little-endian
processor (e.g., Pentium® processors) will store the information in a different byte
order than that of a big-endian processor (e.g., PowerPC® processors). Because of
this, there are portability issues when writing files that are going to be accessed in a
cross-platform manner. This is related to endianess and affects not only data being
saved to a disk but also data being transmitted across a network from a machine
that uses one byte-order to a machine that uses a different byte-order. For example,
a Windows XP desktop running a Pentium 4 processor has a different byte-order
than a Mac PowerBook®. This is illustrated in Figure 14.15.

Chapter 14 Data Compression 503

FIGURE 14.15 Byte ordering.

Byte ordering can be in little-endian order, big-endian order, or middle-endian order.

This book is meant to be used by different platforms regardless of byte order-
ing. Luckily, handling the byte ordering of a value is straightforward. A simple test
can be done to check the order of a multibyte variable by comparing it with what it
would be if the application was running on a little-endian machine compared to a
big-endian machine. This simple if/else statement is executed in a function called
GetEndian(), which returns one of the enumeration values shown in Listing 14.4,
which is located at the top of the DDSLoader.cpp source file. The DDS files are
written in little-endian order. If the machine running the demo’s code uses big-
endian order, as the bytes are read from the file they are swapped around so that the
machine can obtain the intended value. This swapping is done in a function called
SwapBytes() that follows the GetEndian() function in the DDSLoader.cpp source
file . The SwapBytes() function is another simple function that casts a variable to a
character pointer and loops through the bytes, switching their order. The code used
to handle the byte ordering is shown in Listing 14.5 along with a few macros that
are used to determine what type of compression the DDS image uses. The MAKE4CC
macro creates an unsigned long variable that can be tested with one read from the
DDS image to see which one of the DXTC format types it uses.

There is no way to automatically determine a file’s byte order. When creating a file
format that stores multibyte values, it is important to pick a byte order and make
it part of the file’s structure standard. Anyone reading that file should know what
byte order it uses so that it can be read correctly. Many popular file formats have
their byte order in their documentation.

LISTING 14.5 First Section of the DDSLoader.cpp Source File

#include<stdio.h>

#include<string.h>

#include<assert.h>

#include”DDSLoader.h”

#ifndef MAKE4CC

#define MAKE4CC(ch0, ch1, ch2, ch3) \

((unsigned long)(unsigned char)(ch0) | \

((unsigned long)(unsigned char)(ch1) << 8) | \

((unsigned long)(unsigned char)(ch2) << 16) | \

((unsigned long)(unsigned char)(ch3) << 24))

#endif

504 Data Structures and Algorithms for Game Developers

#define DS_FOURCC_DXT1 (MAKE4CC(‘D’,’X’,’T’,’1’))

#define DS_FOURCC_DXT2 (MAKE4CC(‘D’,’X’,’T’,’2’))

#define DS_FOURCC_DXT3 (MAKE4CC(‘D’,’X’,’T’,’3’))

#define DS_FOURCC_DXT4 (MAKE4CC(‘D’,’X’,’T’,’4’))

#define DS_FOURCC_DXT5 (MAKE4CC(‘D’,’X’,’T’,’5’))

enum ENDIAN { ENDIAN_UNKNOWN = 0, ENDIAN_LITTLE, ENDIAN_BIG };

ENDIAN GetEndian()

{

unsigned long data = 0x12345678;

unsigned char *ptr = (unsigned char*)&data;

if(*ptr == 0x12 && *(ptr+1) == 0x34 &&

*(ptr+2) == 0x56 && *(ptr+3) == 0x78)

{

return ENDIAN_BIG;

}

else if(*ptr == 0x78 && *(ptr + 1) == 0x56 &&

*(ptr + 2) == 0x34 && *(ptr + 3) == 0x12)

{

return ENDIAN_LITTLE;

}

return ENDIAN_UNKNOWN;

}

void SwapBytes(char *data, int size)

{

assert((size & 1) == 0);

char *ptr = data;

char temp = 0;

for(int i = 0, j = size - 1; i < size / 2; i++, j—)

{

temp = ptr[i];

ptr[i] = ptr[j];

Chapter 14 Data Compression 505

ptr[j] = temp;

}

}

The next part of the DDSLoader.cpp source file is the LoadDDS() function,
which is designed to load DDS images that use DXTC compression formats 1, 3,
and 5. The steps to reading the file are as follows:

1. Read the file ID (first four bytes) and see if the character data is “DDS.”
2. Move the file pointer to the image resolution and read the height and

width.
3. Read the size of the data followed by the number of mipmaps.
4. Read the compression type.
5. Read the compressed image data.

The LoadDDS() function starts by determining the byte order of the machine
running the application code. If the byte order is not little, the following code will
swap the bytes of any multibyte variable it reads. After the endian order has been
determined, the function opens the file, reads the first four bytes, and tests to see if
it equals “DDS,” which is the file ID for a DDS file.

The next step in the function is to read the width and height resolutions, which
are the dimensions of the image. Then the function will read the size of the data, the
number of mipmaps, and the type of compression the image uses. This type is
tested against the macros in Listing 14.5. The last bit of information read from the
DDS image file is the compressed image data itself. These image data are returned
to the caller and use dynamic memory allocation. When calling this function, it is
important to delete the allocated memory. The entire code for the LoadDDS() func-
tion is shown in Listing 14.16.

LISTING 14.6 The LoadDDS() Function

unsigned char *LoadDDS(char *file, ImageInfoDDS &info)

{

const int ddsHeightOffset = 12;

const int ddsWidthOffset = 16;

const int ddsLinearSizeOffset = 20;

const int ddsMipMapNumOffset = 28;

const int ddsFourCCOffset = 84;

const int ddsImageDataOffset = 128;

ENDIAN e = GetEndian();

bool byteSwap = false;

506 Data Structures and Algorithms for Game Developers

if(e == ENDIAN_BIG)

byteSwap = true;

FILE *fp = fopen(file, “rb”);

if(fp == NULL)

return NULL;

char imageID[4];

fread(imageID, 1, 4, fp);

if(strncmp(imageID, “DDS “, 4) != 0)

{

fclose(fp);

return false;

}

unsigned int dwHeight = 0, dwWidth = 0,

dwLinearSize, dwMipMaps = 0,

dwFourCC = 0;

fseek(fp, ddsHeightOffset, SEEK_SET);

fread(&dwHeight, sizeof(unsigned int), 1, fp);

if(byteSwap == true)

SwapBytes((char*)&dwHeight, sizeof(unsigned int));

fseek(fp, ddsWidthOffset, SEEK_SET);

fread(&dwWidth, sizeof(unsigned int), 1, fp);

if(byteSwap == true)

SwapBytes((char*)&dwWidth, sizeof(unsigned int));

fseek(fp, ddsLinearSizeOffset, SEEK_SET);

fread(&dwLinearSize, sizeof(unsigned int), 1, fp);

if(byteSwap == true)

SwapBytes((char*)&dwLinearSize, sizeof(unsigned int));

fseek(fp, ddsMipMapNumOffset, SEEK_SET);

fread(&dwMipMaps, sizeof(unsigned int), 1, fp);

if(byteSwap == true)

SwapBytes((char*)&dwMipMaps, sizeof(unsigned int));

Chapter 14 Data Compression 507

fseek(fp, ddsFourCCOffset, SEEK_SET);

fread(&dwFourCC, sizeof(unsigned int), 1, fp);

if(byteSwap == true)

SwapBytes((char*)&dwFourCC, sizeof(unsigned int));

if(dwLinearSize == 0)

dwLinearSize = dwHeight * dwWidth;

if(dwLinearSize <= 0)

{

fclose(fp);

return NULL;

}

info.m_numMipMaps = dwMipMaps;

info.m_width = dwWidth;

info.m_height = dwHeight;

int mipFactor = 0;

switch(dwFourCC)

{

case DS_FOURCC_DXT1:

mipFactor = 2;

info.m_components = 3;

info.m_type = DDS_DXT1;

break;

case DS_FOURCC_DXT3:

mipFactor = 4;

info.m_components = 4;

info.m_type = DDS_DXT3;

break;

case DS_FOURCC_DXT5:

mipFactor = 4;

info.m_components = 4;

info.m_type = DDS_DXT5;

break;

default:

fclose(fp);

return NULL;

508 Data Structures and Algorithms for Game Developers

break;

}

int totalSize = 0;

// Take into account multiple mip maps.

if(dwMipMaps > 1)

totalSize = dwLinearSize * mipFactor;

else

totalSize = dwLinearSize;

unsigned char *image = NULL;

image = new unsigned char[totalSize * sizeof(unsigned char)];

if(image != NULL)

{

fseek(fp, ddsImageDataOffset, SEEK_SET);

fread(image, 1, totalSize, fp);

}

fclose(fp);

return image;

}

The last file in the demo application is the main source file main.cpp. The demo
application uses the GLUT utility for OpenGL. Appendix C, OpenGL, has more in-
formation on both and this chapter assumes at least some knowledge of the OpenGL
rendering API. Listing 14.7 lists the beginning section of the GL Texture Compres-
sion demo application starting with the main() function. The texture object is a
global called g_texture.

LISTING 14.7 The Headers, Function Prototypes, and main() Function

#include<gl/glee.h>

#include<gl/glut.h>

#include<stdio.h>

#include”DDSLoader.h”

void RenderScene();

void KeyDown(unsigned char key, int x, int y);

void Resize(int width, int height);

Chapter 14 Data Compression 509

bool InitializeApp();

void ShutdownApp();

// DDS Texture.

GLuint g_texture;

int main(int arg, char **argc)

{

glutInitWindowSize(640, 480);

glutInitWindowPosition(100, 100);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

glutInit(&arg, argc);

glutCreateWindow(“Texture Compression”);

glutDisplayFunc(RenderScene);

glutReshapeFunc(Resize);

glutKeyboardFunc(KeyDown);

if(InitializeApp() == true)

glutMainLoop();

else

printf(“Error in InitializeApp()!\n\n”);

ShutdownApp();

return 1;

}

The next three functions in the main source file are Resize(), KeyDown(), and
ShutdownApp(). The Resize() function is used to set up perspective projection and is
called whenever the window is resized. The KeyDown() function is called whenever a
key is pressed. This function only tests to see if the escape key is pressed, which has
the code of 27. The ShutdownApp() function is used to delete the OpenGL texture
object by calling glDeleteTextures(). In OpenGL textures are automatically deleted,
so this is not really necessary for the end of the application, but it is a good habit. The
Resize(), KeyDown(), and Shutdown() functions are shown listed in Listing 14.8.

510 Data Structures and Algorithms for Game Developers

LISTING 14.8 The Function Used to Resize the Window, Detect Input, and Shut Down
the Application

void Resize(int width, int height)

{

glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION);

gluPerspective(45, width/height, 0.1, 200.0);

glMatrixMode(GL_MODELVIEW);

}

void KeyDown(unsigned char key, int x, int y)

{

switch(key)

{

case 27:

exit(0);

break;

}

}

void ShutdownApp()

{

glDeleteTextures(1, &g_texture);

}

The next function is InitializeApp(). This function starts off by setting up the
OpenGL rendering states. It then loads the DDS texture image by calling LoadDDS().
As long as the returned memory is not NULL, the texture was loaded. The next step is
to set the data up in OpenGL. When sending compressed texture data to OpenGL,
we use the function glCompressTexImage2DARB(), which is part of the ARB_texture_
comperssion extension. When loading compressed texture data, each mipmap of the
image is loaded, which is done by the for-loop. Once this is done, the memory that
was allocated for the compressed texture data is freed and the function returns. The
InitializeApp() function is shown in Listing 14.9.

LISTING 14.9 The Initialization Function

bool InitializeApp()

{

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Chapter 14 Data Compression 511

glShadeModel(GL_SMOOTH);

glEnable(GL_DEPTH_TEST);

glEnable(GL_TEXTURE_2D);

// Load DDS image.

ImageInfoDDS info;

unsigned char *image = LoadDDS(“../image.dds”, info);

if(image == NULL)

return false;

glGenTextures(1, &g_texture);

glBindTexture(GL_TEXTURE_2D, g_texture);

int w = info.m_width;

int h = info.m_height;

int mipFactor = 0;

if(info.m_type == DDS_DXT1)

mipFactor = 8;

else

mipFactor = 16;

int mipSize;

int mipOffset = 0;

int type = 0;

switch(info.m_type)

{

case DDS_DXT1:

type = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;

break;

case DDS_DXT3:

type = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;

break;

case DDS_DXT5:

type = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;

break;

}

512 Data Structures and Algorithms for Game Developers

for(int i = 0; i < info.m_numMipMaps; i++)

{

mipSize = ((w + 3) / 4) * ((h + 3) / 4) * mipFactor;

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);

glCompressedTexImage2DARB(GL_TEXTURE_2D, i, type, w, h,

0, mipSize, image + mipOffset);

// Half the image size for the next mip-map level...

w >>= 1;

h >>= 1;

// Move the offset to the next mip map.

mipOffset += mipSize;

}

delete[] image;

return true;

}

The last function in the GL Texture Compression demo application is the ren-
dering function, a straightforward function that renders a textured square to the
screen. Using texture objects that represent compressed textures is no different
than using noncompressed ones. The rendering function from the GL Texture
Compression demo application is shown in Listing 14.10. Figure 14.16 shows a
screenshot of the running application.

LISTING 14.10 The Rendering Function of the GL Texture Compression Demo

void RenderScene()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glTranslatef(0.0f, 0.0f, -3.0f);

glBindTexture(GL_TEXTURE_2D, g_texture);

Chapter 14 Data Compression 513

glBegin(GL_QUADS);

glTexCoord2f(0, 0); glVertex3f(-1, -1, 0);

glTexCoord2f(1, 0); glVertex3f(1, -1, 0);

glTexCoord2f(1, 1); glVertex3f(1, 1, 0);

glTexCoord2f(0, 1); glVertex3f(-1, 1, 0);

glEnd();

glutSwapBuffers();

glutPostRedisplay();

}

514 Data Structures and Algorithms for Game Developers

FIGURE 14.16 A screenshot of the Texture Compression demo.

INTRODUCTION TO DATA ENCRYPTION

Another topic that is important to software development is encryption. Informa-
tion has become an important part of the age we live in. Information on everything
and anything can be shared by billions through media like the Internet, and the
need to protect this information is very important. Not only is this needed to pro-
tect sensitive data such as credit card numbers, but in video games data sometimes
needs protecting from malicious users who intend to cheat or disrupt a network.

Cryptography is the process of scrambling data into a form that is unreadable
without some special way to translate the information. In cryptography a cipher is
used to perform encryption and decryption. A cipher is an algorithm that is per-
formed on the data. These algorithms often depend on a key that the algorithm uses
to transform the data. This key is like a password, and without it the encrypted mes-
sage can not be decrypted, or at least it would be very difficult. The different kinds
of ciphers include stream ciphers and block ciphers. The different kinds of keys
include asymmetric and symmetric keys. A symmetric key is a key that is used for
both the encryption and the decryption, while an asymmetric key is used in con-
junction with other keys to encrypt or decrypt.

The data that are encrypted are known as ciphertext.

Cryptography is a huge and complex field of study that grows more complex as
time moves on. For those interested in encryption, various resources in Appendix
A, Additional Resources, might prove helpful.

SUMMARY

The compression and encryption of data can be very useful for many different types
of applications. Compression can be used to reduce the size of a file on a storage
device. In video games compression can also be used on texture images, which can
allow for an increased number of textures and an increase in texture resolution and
can benefit a game’s performance. Knowing what compression algorithm to use for
the different types of texture data is important for retaining a certain level of qual-
ity in the rendered scenes.

Encryption is necessary in the information age in which we live. The purpose of
encryption is to make it as hard as possible for individuals to gain access to informa-
tion that they do not have permission to access. Although encryption is a complex
topic that can span an entire book on its own, it is a subject that is definitely worth
researching if an application must work with or transmit sensitive information.

CHAPTER REVIEW QUESTIONS

Answers to the following chapter review questions can be found in Appendix B.

1. What is the purpose of compression?
2. What is the purpose of encryption?
3. What is lossy compression?

Chapter 14 Data Compression 515

4. What is lossless compression?
5. The JPEG image format uses what kind of compression?

a. Lossless
b. Lossy
c. DXTC
d. None of the above

6. What is run-length encoding?
7. What kind of compression do the DXTC formats use?
8. What kind of compression does the 3Dc format use?
9. Which of the following is a type of DXTC format?

a. DXT1
b. 3Dc
c. DXT6
d. DXT3
e. Both A and D
f. None of the above

10. Why is 3Dc preferable to DXTC formats even though they both are lossy
compression formats?

11. What is encryption?
12. What is cryptography?
13. What is a symmetric key used for in encryption?

a. Encryption
b. Opening a password protected file
c. Decryption
d. Both A and C
e. None of the above

14. What is another name for an encryption-decryption algorithm?
a. Cryptography
b. Cryptanalysis
c. Cipher
d. None of the above

15. What is another name for encrypted data?
a. Encryption
b. Ciphertext
c. Key
d. None of the above

516 Data Structures and Algorithms for Game Developers

PROGRAMMING PROJECTS

Exercise 1: Modify the Run Length Encoding demo application to allow the char-
acter used as the marker to exist in the original data.

Exercise 2: Modify the Run Length Encoding demo application to be a template
class that allows a programmer to specify the character marker and the data type of
each value being encoded. This should allow someone to encode an array of inte-
gers, pixels, and so forth.

Exercise 3: Implement the Huffman compression algorithm as described in this
chapter.

Chapter 14 Data Compression 517

This page intentionally left blank

519

Conclusions15

In This Chapter

Quick Review
The Next Step

520 Data Structures and Algorithms for Game Developers

M
any data structures and algorithms exist in computer science and game de-
velopment. The foundation of all application programming lies in the use
of these structures and the efficiency of the algorithms that operate on

them. All meaningful applications have some kind of data structure and algorithm
within their code, and a general understanding of them and of specific topics can go
a long way toward creating professional applications. Data structures and their algo-
rithms come up often in programming, and this is a topic that every serious pro-
grammer should tackle to some degree. Also, common data structures and algorithms
can solve complex programming problems.

The purpose of this book was to introduce the topic of data structures and al-
gorithms to readers as well as to serve as a reference for the many topics discussed
within this book. In this chapter we will take a brief look at what was covered in this
book and what steps those looking to expand their knowledge should take.

QUICK REVIEW

Throughout this book we looked at various data structures and algorithms that are
used in general computer programming and in game and simulation development.
These data structures include arrays, link lists, queues, hash tables, stacks, trees,
graphs, scene graphs, space partitioning trees, and various standard and nonstan-
dard data structures. The algorithms discussed include various sorting and search-
ing methods, insertions and removals, recursion, space partitioning, compression,
encryption, and culling. Although this book covered a lot of information, much re-
mains to learn about data structures, algorithms, and optimizations and their uses
in application development, especially game and simulation development.

STANDARD DATA STRUCTURES

The data structures and algorithms discussed in this book include the data struc-
tures and algorithms from the C++ STL. Using a standard set of code frees pro-
grammers from having to develop their own implementations. This not only saves
developers time but also saves them from having to test, debug, and correct bugs
that might result from a custom implementation. Among the several advantages
and disadvantages to using a standard library for both data structures and algo-
rithms include:

They provide proven and tested code.
They are portable.
They allow programmers to use a standard set of code instead of having to
develop and test their own implementations.

They are maintained by professionals.
They are coded with performance in mind.
They are documented in great detail.
They save development time.
They do not offer all data structures and algorithms that commonly arise in
application development (e.g., hash tables).
Some optimizations might not be beneficial or acceptable in all types of appli-
cations (e.g., some string implementations use reference counting, which can
cause problems when passing strings around).

NONSTANDARD DATA STRUCTURES

The standard library is a very useful tool for developers, but it does not offer every
type of data structure and algorithm that has common use in application develop-
ment. Many nonstandard data structures, algorithms, and extensions to the standard
library can prove just as useful. This code, although useful and written in C++, is
not always going to be as portable as standard implementations. A few things to
note about the advantages and disadvantages of nonstandard data structures and
algorithms include:

They have efficient code.
They are tested and maintained by professionals.
Some libraries, such as the ones provided by Boost, are peer reviewed.
They give programmers the ability to use containers and algorithms that are
not available through the C++ standard library.
Programmers can avoid having to develop and test their own implementations.
They offer many data structures and algorithms outside of the standard.
They are not standardized.
Different providers can have slightly different implementations with some class
containers.

Many resources offer STL-related code, documentation, and nonstandard
libraries. Three highly recommended websites include the SGI STL site (http://
www.sgi.com/tech/stl), the STLport site (http://www.stlport.org), and the Boost site
(http://www.boost.org). Each of these websites offers nonstandard libraries that are
filled with free data structures, function objects, adapters, and algorithms. The SGI
STL websites also offers comprehensive STL-related documentation, which is always
a valuable resource for developers. In this book we looked at implementing non-
standard hash containers using STLport in Chapter 7, Hash Tables.

Chapter 15 Conclusions 521

http://www.sgi.com/tech/stl
http://www.sgi.com/tech/stl
http://www.stlport.org
http://www.boost.org

522 Data Structures and Algorithms for Game Developers

DATA STRUCTURES FOR SCENE MANAGEMENT

In Chapter 13, Scene Management, we discussed many game- and simulation-related
uses for data structures. Data structures have always played a vital role in video games.
When 3D games started to become popular, the complexity and creative use of data
structures and algorithms allowed some advanced and legendary games to be created.
The scenes in the average three-dimensional video game are far too complex to
process without using advanced data structures and algorithms to feed scene data to
the hardware. As hardware becomes more advanced, so does the scene complexity in
cutting-edge video games.

Many data structures and algorithms can be used for managing scene data. Some
of those discussed in this book are scene graphs, quad-trees, binary space partition-
ing trees, octrees, kd-trees, potential visibility sets, portals, and sections. Other data
structures and algorithms that are used for processing scene information include:

Resource managers
Sphere trees
ROAM algorithm for terrains
CLOD (continuous level of detail)
Skeleton hierarchy for animations
Global illumination algorithms for lights and shadows

DATA STRUCTURES FOR GAME PHYSICS

Game physics is becoming more and more popular and offers game developers the
ability to simulate interactions between virtual objects and their environments in a
more realistic manner. Many games on the market make heavy use of physics, and
the feature is starting to become a standard for many three-dimensional games that
thrive on realism. In game physics the three main types of objects are the following:

Point masses
Rigid bodies
Soft bodies

Point masses are the simplest of the three major types and normally consist of
particles. Particles and particle systems can add many effects to a three-dimen-
sional scene including sparks, smoke, fire, snow, rain, dust, smoke trails, and debris.
Particles in games are normally rendered as small textured squares that face the
camera and are alpha-blended. The data structure in the case of a point mass stores
physical properties such as velocity, position, and size and are normally kept in an
array. The particle system is usually an object that applies various algorithms on the
point mass objects such as applying forces such gravity and so forth. In a full-blown

physics system the physics system itself applies the physics while the particle system
and its particles supply properties that control the simulation.

Rigid bodies are used to represent the translation and rotation of objects in a
virtual world. Rigid bodies are more complex to implement than point masses
since point masses take into account only the translation and not the angular
velocity. Rigid bodies can be used for character models, crates, boxes, weapons,
destructible environments, and so forth. They are often represented similarly to
point masses but with many more properties. These properties include orientation,
bounding volumes, inertia, and tensors.

Soft bodies are becoming more popular. Soft bodies are bodies that can have
their shapes changed, while rigid bodies remain unchanged. A soft body could be a
piece of cloth or a cape in a game. In the Splinter Cell™ series from Ubisoft™ cloth
is used in many game levels as curtains that the players can hide behind and move
through realistically. Soft bodies are represented by point masses and springs.
Springs are used to connect and deform the point masses, which affects the vertices
attached to those masses, to create the soft body effect. Although point masses by
themselves do not have an orientation, soft bodies do, because the springs that
connect point masses create a three-dimensional grid. Moving one point mass
affects the ones attached to it and changes the physical appearance of the mesh.

DATA STRUCTURES FOR ARTIFICIAL INTELLIGENCE

Artificial intelligence is an important area of study because it brings the games to
life. When it comes to artificial intelligence, it doesn’t take much to make a virtual
character appear intelligent when there is no user interaction, but if you add inter-
action from the player and from other characters, the artificial intelligence in a
game can make or break the experience.

In Chapter 11, Graphs, we discussed how a weighted graph can be used for path
finding. Many popular and well-known algorithms for path finding use graphs.
One such algorithm, which is among the most popular, is the A* algorithm. The
speed at which these algorithms execute is very important in games because the
many areas of a game are already demanding on their own (e.g., the physics system,
the rendering system, etc.).

DATA STRUCTURE GAME SCRIPTING

Scripting in games is not new to the industry, and it has many different uses in
video games. These uses include:

Altering game properties without recompiling and redistributing any executables
Defining game objects and items like those used in a massively multiplayer on-
line roleplaying game.

Chapter 15 Conclusions 523

Driving artificial intelligence
Allowing gamers to modify or extend their games
Defining entire environments

Game scripting that uses compiled binaries requires a compiler and a virtual
machine. The compiler is used to parse a text file containing the code and trans-
form it into a form that is faster and easier for applications to read, which isn’t nec-
essarily simple but sounds more complicated than it generally is. A virtual machine
is a data structure that resides in an application and is responsible for reading and
executing a compiled script. Java is a famous language that uses a virtual machine.
By creating a virtual machine for every supported platform, the same code can be
executed on all of them, thus achieving platform independence. Breaking a source
file down into a simpler form will allow the virtual machine to quickly open the
data and work on it without the slow string parsing and so on that would otherwise
be needed.

THE IMPORTANCE OF OPTIMIZATIONS

In video games speed is everything, and it is commonplace to sacrifice realism for
the sake of speed. Real-time applications that are media intensive often require
quite a bit of speed to keep the experience interactive. All data structures and algo-
rithms can benefit from optimizations under these general conditions:

The code being optimized is a serious source of a bottleneck (i.e., is among the
biggest causes of slow performance); optimizing code that is a minor source
first can waste time and resources.
Optimizations can be based on the hardware’s architecture.
Optimizations should be done in the later cycles of development rather than
at the start to avoid spending unnecessary time on code that does not need
optimization.
Some optimizations might require sacrificing memory for speed, speed for
memory, or realism for both, and the choice should be appropriate for the
application in question.
If an application has bad performance, several things can be done to make
major improvements without having to rewrite or reengineer code modules.

THE NEXT STEP

This book mentioned many advanced data structures and algorithms that can prove
beneficial to implement in an application. After reading this book, readers should

524 Data Structures and Algorithms for Game Developers

have the knowledge necessary to tackle more advanced topics as well as optimiza-
tions. Game development is a huge field, so the learning does not stop here at the
end of this book.

Game engines also make heavy use of data structures and algorithms in their
frameworks. The uses an engine can have include:

Automatic and manual memory management
Resource management
Scheduling services
Journaling services
Scene management utilities
Physics systems
Networking systems
Scripting systems
Sound processing
Data streaming utilities

ADDITIONAL RESOURCES

Appendix A, Additional Resources, lists several resources that might prove useful
for learning more advanced data structures and algorithms and applying them to
games and game engines. These resources include books and Internet resources,
one of which is www.UltimateGameProgramming.com, where there is a large and
detailed list of resources that span all areas of game development as well as data
structures and algorithms.

SUMMARY

This book served as an introduction to a very important, complex, and large field
of study. Video games thrive off of data structures, algorithms, and the speed at
which they can perform their duties. Developing solid data structures and algo-
rithms that can be reused and flexible for many types of projects can prove very
beneficial in the long run. As seen with the C++ STL, having solid, reusable, and
proven code can make application development a faster process. Although standard
and nonstandard libraries make the need to develop custom implementations less
important for some data structures and algorithms, there are still many cases when
code must be created to solve a problem. As seen throughout this book, many data
structures are application specific.

Chapter 15 Conclusions 525

www.UltimateGameProgramming.com

This page intentionally left blank

527

In This Appendix:

Recommended books
Recommended websites

T
his appendix lists recommended books and websites that you can explore for
more advanced information dealing with various subjects. Additional re-
sources that might be of some use beyond those listed here can be found at

www.UltimateGameProgramming.com.

RECOMMENDED BOOKS

Ultimate Game Engine Design and Architecture (Charles River Media) is my
second book published by Charles River Media. This book deals with designing
and building a platform-independent game engine and is targeted at more ad-
vanced audiences. The information gained from this book can be combined
with the engine book to take you to the next level.

Ultimate Game Programming with DirectX (Charles River Media) is my first
book that dealt with learning DirectX using C++ for beginner hobbyist and
student programmers. At the end of this book a very simple first-person
shooter game was put together. The majority of the book’s content focused on
learning DirectX and the tools that make up Microsoft’s suite.

Memory Management: Algorithms and Implementation in C++ (Wordare Pub-
lishing) discusses the ins and outs of writing a memory management system in
C++. This book includes information on performance, garbage collection, and
so forth. This book can be useful for anyone wanted to go deeper into the sub-
ject or implement their own system.

Additional Resources

Appendix

A

www.UltimateGameProgramming.com

The Game Programming Gems (Charles River Media) series is a long-running
series of books written by game developers for game developers. These books
are targeted to an advanced audience and are not suited for beginners, but they
are valuable for anyone looking to get into game development and can be a
great asset. This series can be a valuable resource for many years to come.

AI for Game Developers (O’Reilly Media) is an artificial intelligence book aimed
at the game development community. This inexpensive and lightweight book is
a great resource for anyone who wants to get into artificial intelligence pro-
gramming in video games.

Physics for Game Developers (O’Reilly Media) is another lightweight book aimed
at game developers. This book deals with physics, mathematics, and program-
ming and is a great resource for getting into the topic. Physics is not an easy sub-
ject, and a book aimed at game developers is very useful.

Game Scripting Mastery (Course Technology) deals with scripting in video games.
The author takes readers from the basics to advanced topics dealing with creat-
ing a scripting language from scratch. The book shows how to implement an
assembler, virtual machine, high-level compiler, and custom high and low pro-
gramming languages.

Head First Design Patterns (O’Reilly Media) is one of my favorite books on de-
sign patterns. The book is easy to read and fun. Design patterns are very im-
portant in professional software development and are something that everyone
can find some value in.

RECOMMENDED WEBSITES

http://www.UltimateGameProgramming.com: This is a general game program-
ming site that focuses on areas such as graphics with OpenGL, Direct3D, ray
tracing, input, sound, and much more. There is a community at the website that
anyone can access for game development help, news, and other such information.

http://www.sgi.com/tech/stl: The SGI STL website has documentation on the
C++ STL as well as downloads of all STL containers, function objects, algo-
rithms, and so forth.

http://www.stlport.org: The STLport has C++ containers, algorithms, and other
objects that expand upon SGI’s STL implementations including many non-
standard objects.

http://www.boost.org: The Boost website has peer-reviewed C++ data struc-
tures and algorithms available for download.

528 Data Structures and Algorithms for Game Developers

http://www.UltimateGameProgramming.com
http://www.sgi.com/tech/stl
http://www.stlport.org
http://www.boost.org

http://www.OpenGL.org: OpenGL is the rendering system used in this book for
the graphics aspects of the some of the later demos. The OpenGL website has a
lot of information on the API and can be a valuable resource for anyone using
it for graphics. The website also has a community that can be used to gain ad-
ditional information on the various aspects of OpenGL.

http://www.opengl.org/resources/libraries/glut/glut_downloads.php: The GLUT
(OpenGL Utility Toolkit) is a useful tool for creating cross-platform OpenGL
windows.

http://elf-stone.com/glee.php: The GLee (GL Easy Extension Library) is a cross-
platform extension loading library that can be used for OpenGL applications.
This library makes loading and using extensions effortless, which is a plus for
Windows and Linux users.

http://MSDN.Microsoft.com: The Microsoft Developer Network (MSDN) is a
great place to visit if you need documentation on a well-known API, language.
Not only can you get DirectX documentation here, but you can also get
OpenGL, C/C++, Visual Basic, and many others.

Appendix A Additional Resources 529

http://www.OpenGL.org
http://www.opengl.org/resources/libraries/glut/glut_downloads.php
http://elf-stone.com/glee.php
http://MSDN.Microsoft.com

This page intentionally left blank

531

CHAPTER 1

1. c. Memory
2. An algorithm is code that is executed on a data structure to produce some

meaningful result.
3. e. Both B and C
4. b. Standard Template Library
5. c. List, vector, queue
6. a. True
7. a. True
8. b. False
9. a. True

10. b. False

CHAPTER 2

1. c. Standard STL sequence container
2. c. When no pointers are pointing to a memory location and can’t release

the resource
3. a. O(N)
4. c. O(log N)
5. To specify the size of the container’s total number of elements.
6. An iterator is used to point to an element in a container. They can also be

used to move throughout the container’s other elements. There are input,
container, and output iterators.

7. a. True
8. b. False
9. a. True, but it is simulated using bit operators.

10. b. False

Chapter Review Question
Answers

Appendix

B

CHAPTER 3

1. Recursion is a self-referencing function that is often executed in a con-
trolled manner.

2. With tail recursion that is a type of recursive definition that calls itself at the
end of the function where no statements follow it and no recursive state-
ments come before it. Nontail recursion is a method that defines state-
ments after the recursive call and/or if there is more than one recursive call
in the same body.

3. A triangular number is a number defined by taking the nth term and
adding it to the previous result. They are called triangular numbers based
on their visual representation, which often looks triangular.

4. c. 28
5. Factorials multiply terms, while triangular numbers use addition.
6. a. 5040
7. b. False
8. a. True
9. a. True

10. b. False

CHAPTER 4

1. c. O(N2)
2. b. O(N2)
3. a. O(N)
4. a. O(N2)
5. d. O(N * log N)
6. b. Quicksort
7. d. Intro-sort
8. e. Merge-sort
9. To set how the container does its comparisons for its internal sorting.

10. The selection-sort, mainly because not as many swaps are being performed.
11. a. True
12. a. True
13. b. False
14. a. True
15. a. True

532 Data Structures and Algorithms for Game Developers

CHAPTER 5

1. (1) Fast deletions, (2) fast growth, (3) fast to sort
2. Link lists where elements can be inserted and removed from both ends of

the container.
3. Link lists with nodes that can traverse in both directions.
4. b. Doubly linked-list
5. To access other elements in the container.
6. Because the algorithm functions that exist outside of the class do not know

the container implementation details, unlike the class’s algorithm member
functions.

7. b. False
8. b. False
9. b. False

10. a. True

CHAPTER 6

1. c. Restricted-access adapters
2. b. First-in, last-out
3. a. First-in, first-out
4. b. Only one item
5. To sort elements based on their priority.
6. One uses first-in, first-out, while the other uses first-in, last-out.
7. Because link lists can grow and shrink more efficiently.
8. b. False
9. b. False

10. b. False

CHAPTER 7

1. The ratio of the number of objects in the hash table and the table’s maxi-
mum size.

2. In open addressing when a collision occurs, a new array position is sought
out. The three types are linear and quadric probing and double hashing.

3. Separate chaining stores more than one object at a hashed index by using
an array of containers for the hash table.

4. Upon collision, linear probing will look for a new index position linearly
(one at a time) until it finds a valid index.

Appendix B Chapter Review Question Answers 533

5. Upon collision, quadric probing will look for a new index position using a
varying step size until it finds a valid index.

6. Upon collision, double hashing will rehash the key using a different hash
function.

7. a. Primary clustering
8. b. Secondary clustering
9. It will ensure that all elements are eventually checked when working with

open addressing.
10. Robin-hood hashing is a variation of double hashing and is where a key is

displaced by an already existing key if the probe count is larger than the key
at a position. In perfect hashing a hash table with no collisions can be cre-
ated if all the keys are known ahead of time and the array size is already
known.

11. b. False
12. b. False
13. b. False
14. a. True
15. a. True

CHAPTER 8

1. Donald Shell
2. c. Insertion sort
3. b. Gap sequence
4. The insertion sort requires many more copies and comparisons than the

Shellsort.
5. e. O(N * (log N)2)
6. a. 364
7. It is an algorithm that splits a container into two halves based on a condi-

tion.
8. c. O(N2)
9. The pivot value is the value used to specify how the two sections should be

partitioned. Usually the first section is less than the pivot value, while the
second section is greater than or equal to it.

10. The pivot index is the index in the partitioned array that marks where the
first section ends and the second section begins.

11. d. Quicksort
12. c. O(N * log N)
13. The median-of-three is when the median of the values in three indexes is

used as the pivot value.

534 Data Structures and Algorithms for Game Developers

14. b. False
15. b. False
16. The radix-sort is a sorting algorithm that uses containers and simple oper-

ators to perform the sorting without any comparisons taking place.
17. c. O(N * log N)
18. The bit radix uses two containers because a binary bit is either a 0 or a 1.
19. b. False
20. b. False

CHAPTER 9

1. A tree is a data structure that is made up of a root node that has a series of
connected nodes attached to it.

2. A root node is the first node that starts a tree and has no parent.
3. c. Leaf node
4. a. Sibling node
5. An edge is a connection between two nodes. An example of this in C++ is

using pointers.
6. b. 2
7. a. 1
8. c. 20
9. a. In-order, pre-order, post-order

10. d. In-order successor
11. kd-trees have keys that have multiple dimensions. The algorithms (for ex-

ample, insertion) depend on the keys and their dimensions.
12. b. Depth level, key dimension, and key value
13. b. Trees are multiway trees. Examples of b-trees are the 2-3 and 2-3-4 trees.
14. The 2-3 tree has up to three nodes, and a 2-3-4 tree has up to four.
15. AVL trees are self-balancing binary trees.
16. b. False
17. b. False
18. a. True
19. a. True
20. b. False

CHAPTER 10

1. ADT stands for abstract data type.
2. a. Weakly ordered

Appendix B Chapter Review Question Answers 535

3. b. Abstract data type
4. b. O(log N)
5. d. O(N)
6. b. O(log N)
7. c. O(N * log N)
8. e. Both C and D
9. a. Balanced

10. b. False
11. b. False
12. b. False
13. b. False
14. b. False
15. b. False (binary trees are not required to be complete)

CHAPTER 11

1. A graph is a data structure made up of nodes, called vertices, which are
connected by edges.

2. A tree is a regular graph with no cycles.
3. A connected graph is one in which all vertices can reach all other vertices

either directly or indirectly. In a nonconnected graph there is one or more
vertices that can’t be reached by other vertices.

4. A directed edge goes in one direction, while a nondirected edge goes in
both directions.

5. In weighted graphs the edges have a property called a weight, which affects
the algorithms performed on the data structure.

6. b. Travels all possible paths from a vertex to see if it can find the destina-
tion before it moves on to the adjacent vertices

7. c. Checks all adjacent vertices before moving down the paths to find the
destination

8. a. Searches for the minimal edges needed to visit each vertex in the graph
9. d. Displays the order of the vertices from a starting vertex to the last vertex

10. The MST of a weighted graph takes into consideration the weights of the
vertices.

11. b. A path-finding algorithm
12. e. Weighted graph
13. b. False
14. b. False
15. b. False
16. b. False

536 Data Structures and Algorithms for Game Developers

17. a. True
18. a. True
19. b. False
20. a. True

CHAPTER 12

1. c. Sequence container
2. b. basic_string
3. The set container contains a data value that is also used as a unique sort-

ing key in its elements.
4. The multiset container contains a data value that is also used as a sorting

key (does not need to be unique) in its elements.
5. The set requires unique keys, and the mutliset does not require unique keys.
6. The map container contains a data value and a unique sorting key pair in its

elements.
7. The multimap container contains a data value and a sorting key (does not

need to be unique) pair in its elements.
8. A map uses unique keys, while a multimap can use keys multiple times.
9. A set uses a key as the object, while the map uses a key-object pair.

10. b. False
11. a. True
12. a. True
13. a. True
14. b. False
15. b. False

CHAPTER 13

1. Managing the rendering states in a game or simulation in an effort to
increase performance.

2. A texture atlas is a texture with smaller subtextures within it.
3. Managing states deals with managing the changes in rendering states, while

resource management manages the physical data that is loaded and saved
to and from storage.

4. c. A unit-length vector
5. Culling (rejecting) geometric objects that are outside of the camera’s view.
6. A graph that represents the relationship between objects in a virtual

environment.

Appendix B Chapter Review Question Answers 537

7. a. Graph
8. It is used to cull out (reject) geometry that is occluded by other pieces of

geometry.
9. An octree splits along the x, y, and z axes, while the quad-tree splits against

the x and y axes.
10. c. Axis-aligned boxes
11. a. Multiway
12. It is a binary tree that is used to partition a geometric entity into sections.
13. c. Front/back
14. They are a node’s list of other nodes that are potentially visible from it.
15. b. False
16. b. False
17. b. False (the octree splits on all three axes and the quad-tree on two)
18. b. False
19. a. True
20. a. True

CHAPTER 14

1. To reduce the size of data so that it is smaller than its original.
2. To add a layer of protection to data to keep unauthorized individuals from

accessing its contents.
3. Lossy compression is compression that sacrifices quality for data size.
4. Lossless compression is compression that suffers from no quality loss from

the original.
5. b. Lossy
6. Run-length encoding is encoding the runs in a data sequence in an effort to

save space on redundant information.
7. DXTC formats use lossy compression.
8. 3Dc uses lossy compression.
9. d. Both A and D

10. 3Dc is designed for compressing normal maps. The quality loss from
DXTC formats can make using them with normal maps visually unaccept-
able.

11. Encryption is converting data from one from to another form that is often
much harder to read and to process without special knowledge.

12. A field of study dealing with encryption and decryption.
13. d. Both A and C
14. c. Cipher
15. b. Ciphertext

538 Data Structures and Algorithms for Game Developers

539

In This Appendix:

Latest version of OpenGL
GLUT
GLEE

I
n this appendix we will discuss OpenGL and some of the tools used throughout
this book. Two of the tools are the OpenGL Utility Toolkit (GLUT) and the
OpenGL Easy Extension (GLEE). In this book it is assumed that you already

have some previous experience with and knowledge of the OpenGL graphics API.

LATEST VERSION OF OPENGL

The latest version of OpenGL can be obtained by installing the latest drivers for
your video graphics hardware. These drivers can be downloaded from the manu-
facturer’s Web site for the operating system and platform you are using.

New functionality of OpenGL is exposed through extensions. Extensions in
Windows and Linux must be loaded during runtime, which is platform specific. In
the following section we will discuss a way to easily load and work with extensions
in a portable manner.

OPENGL EASY EXTENSION

GLEE is used to make loading extensions easy across multiple platforms. New
features of OpenGL are exposed through extensions. To use these features the
hardware must support the extensions that you want to use. In addition, when
dealing with Windows and Linux operating systems, the application must obtain
function pointers to the OpenGL extension functions it wants to use. Although
OpenGL is cross platform, the way to load functions from dynamic libraries is
platform specific.

OpenGL

Appendix

C

The good thing about GLEE is that it hides the querying of extension functions.
Trying to use one of the OpenGL extension functions in an application that is using
GLEE will cause that function to be automatically queried and obtained. GLEE has
no setup and no special requirements other than including the GLEE header and
source file.

GLEE definitely makes working with OpenGL extensions much easier and
much more convenient. GLEE can be downloaded from the Web site http://
elf-stone.com/glee.php. Although Mac users do not have to obtain function pointers
to OpenGL extension functions like Linux and Windows users, the code can still
compile on that platform to allow your code to be compatible.

Other extension libraries like this are available across the Internet that you can
use for free. GLEE is one that is very popular and simple to use.

GLUT

The OpenGL samples in Chapters 13 and 14 use the OpenGL Utility Toolkit for
cross-platform window creation in the code. In this section we will briefly discuss
the GLUT functions used in those samples in more detail, starting with glutInit().
The glutInit() function initializes the GLUT library and takes as parameters the
main function’s argc parameter and argv parameter. The function can be passed
with NULL values. The function prototype for the glutInit() is:

void glutInit(int *argcp, char **argv);

The next functions we’ll look at are the glutInitWindowSize() and glutInit

WindowPosition() functions. The glutInitWindowSize() function takes as parame-
ters the desired width and height of the window’s resolution and sets it. The
glutInitWindowPosition() takes an x and y location for where the window will
appear on the screen. The function prototypes for both functions are as follows:

void glutInitWindowSize(int width, int height);

void glutInitWindowPosition(int x, int y);

The next function is the glutInitDisplayMode(). This function takes a flag for
the display mode and will set it. The flags for the function can be one or more of the
following values:

GLUT_RGBA

GLUT_RGB

GLUT_INDEX

540 Data Structures and Algorithms for Game Developers

http://elf-stone.com/glee.php
http://elf-stone.com/glee.php

GLUT_SINGLE

GLUT_DOUBLE

GLUT_ACCUM

GLUT_ALPHA

GLUT_DEPTH

GLUT_STENCIL

GLUT_MULTISAMPLE

GLUT_STEREO

GLUT_LUMINANCE

The function prototype for the glutInitDisplayMode() GLUT function is as
follows:

void glutInitDisplayMode(unsigned int mode);

The next function is the glutCreateWindow(),which is used to create the actual
window. The only parameter it takes is the desired name of the window, which is
sent into a character pointer. The return value of the glutCreateWindow() function
is a unique identifier for the newly created window, which starts at 1 for the first
window. The function prototype is:

int glutCreateWindow(char *name);

The next three functions are glutDisplayFunc(), glutReshapeFunc(), and
glutKeyboardFunc(), which are callback functions. As a parameter, each of these
functions takes a function prototype to a function that will be called upon when
some condition occurs. The glutDisplayFunc() function is used to set the function
that will be called each time the scene needs to be rendered. The glutReshape-
Func()function is called when the window is being resized, and it takes a function
prototype to a function that specifies two integer parameters. glutKeyboardFunc()
is the callback function that is called when a key-press occurs. It takes a function
prototype that takes an unsigned char and two integers, which is used for the mouse
x and y position. The function prototypes for these three functions are:

void glutDisplayFunc(void (*func)(void));

void glutReshapeFunc(void (*func)(int width, int height));

void glutKeyboardFunc(void (*func)(unsigned char key, int x,

int y));

Appendix C OpenGL 541

The last function that is called to complete setting up GLUT is glutMainLoop(),
which is used to enter the application loop of the program. Once in the main loop,
the code will render the scene by calling the display callback function and all other
callback functions that were set when appropriate. The function prototype for
glutMainLoop() is:

void glutMainLoop(void);

Additional GLUT-related functions in this book include using GLUT to render
spheres. This is done using the function glutSolidSphere(), which also has a wire-
frame version called glutWireSphere(). In addition, one of the exercises asked
to render a teapot to the window using GLUT, which is done using the
glutSolidTeapot() function. The sphere functions take as parameters the radius,
detail level along the longitude (slices), and detail level along the latitude (stacks).
The teapot function takes the size of the teapot mesh in units. The function proto-
types for these functions are:

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

void glutSolidTeapot(GLdouble size);

void glutWireTeapot(GLdouble size);

Documentation on the GLUT library can be found at http://www.opengl.org/
documentation/specs/glut/spec3/spec3.html. GLUT itself can be downloaded, if
necessary, from OpenGL’s Web site, http://www.opengl.org/resources/libraries/glut/
glut_downloads.php, for various operating systems.

542 Data Structures and Algorithms for Game Developers

http://www.opengl.org/documentation/specs/glut/spec3/spec3.html
http://www.opengl.org/documentation/specs/glut/spec3/spec3.html
http://www.opengl.org/resources/libraries/glut/glut_downloads.php
http://www.opengl.org/resources/libraries/glut/glut_downloads.php

543

In This Appendix:

SGI STL
STLport
Boost

T
his appendix offers a more detailed discussion of the STL-related websites
that can prove useful to C++ developers. Each of the resources in this chap-
ter was briefly discussed in this book.

SGI STL

The SGI STL website (http://www.sgi.com/tech/stl/) has a lot of information on the
C++ STL. This information can prove valuable to all professional programmers and
is definitely worth exploring. The information on the SGI STL website includes:

An introduction to STL
Detailed documentation on all of the STL data structures, algorithms, function
objects, iterators, memory management, and utilities
A list of STL website resources
An experimental I/O library
A download of the entire STL in its current and previous versions
Release information on changes in the STL

This website is definitely recommended as a documentation reference and will
give you all the information you’ll need that is related to the STL. The STL code at
this website is implemented in header files, so there is no need to compile or link
source objects. Also, all compilers with good template class support should work
with the STL if you need to download them for your tool of choice.

NonStandard Containers
and Algorithms

Appendix

D

http://www.sgi.com/tech/stl/

STLPORT

STLport Consulting (http://www.stlport.org/) is a company that was started in 1997
by a small group of developers. The STLport is free and offers many data structures,
algorithms, and other objects for download. The STLport builds off of the STL and
adds a lot of code that is not part of the C++ standard. Unlike STL, the STLport
does require compiling of source files.

When you download the STLport, it must be set up for your compiler. The
download has makefile files for each of the supported compilers that can be exe-
cuted to set up the STLport for your tool of choice. The STLport website also has
the following:

Community
Forums
Online documentation
STLport download, which includes the latest version, past versions, and beta
snapshots
A list of STL-related resources

BOOST

The Boost website (www.Boost.org) provides free-of-charge peer-reviewed portable
C++ libraries for C++ application programmers. Some of the libraries available on
Boost are included in the C++ Standards Committee’s Library Technical Report,
which means they are being considered as a future part of the C++ Standard Li-
brary. The Boost website is similar to the others in that it includes:

Downloads for the Boost libraries
Documentation for the Boost libraries
Community and developer groups
Newsgroups and mailing lists

The Boost website encourages participation in contributing to the development
of Boost and to discussions and formal reviews of libraries. The Boost libraries are
huge and have many types of data structures and algorithms. For example, Boost has
containers for graphs, hash tables, and much more.

544 Data Structures and Algorithms for Game Developers

http://www.stlport.org/
www.Boost.org

545

T
he companion CD-ROM for Data Structures and Algorithms for Game De-
velopers contains all of the projects files for your use as you work through the
book.

FOLDERS

The files on this disc are organized into folders as follows:

Figures: All of the figures from the book, organized in folders by chapter.

Chapter 1: Contains all of the source code samples from Chapter 1.

Chapter 2: Contains all of the source code samples from Chapter 2.

Chapter 3: Contains all of the source code samples from Chapter 3.

Chapter 4: Contains all of the source code samples from Chapter 4.

Chapter 5: Contains all of the source code samples from Chapter 5.

Chapter 6: Contains all of the source code samples from Chapter 6.

Chapter 7: Contains all of the source code samples from Chapter 7.

Chapter 8: Contains all of the source code samples from Chapter 8.

Chapter 9: Contains all of the source code samples from Chapter 9.

Chapter 10: Contains all of the source code samples from Chapter 10.

Chapter 11: Contains all of the source code samples from Chapter 11.

Chapter 12: Contains all of the source code samples from Chapter 12.

Chapter 13: Contains all of the source code samples from Chapter 13.

Chapter 14: Contains all of the source code samples from Chapter 14.

About the CD-ROM

Appendix

E

GENERAL SYSTEM REQUIREMENTS

The system requirements for this CD-ROM are:

Windows 2000/XP Operating System or better
Mac OS X
Linux
Pentium 2 GHz
256 MB RAM
300 MB Hard-Drive Space
CD-ROM Drive
OpenGL Compatible 3D Graphics Accelerator

546 Data Structures and Algorithms for Game Developers

547

Index

Numbers
2-3 and 2-3-4 trees, features of, 323
3Dc texture compression, using, 500–501
4:1 compression ratio, achieving for textures, 494–495
6:1 compression ratio, achieving for textures, 495

Symbols
() (parentheses), matching with stacks, 165–168
[] (brackets)

matching with stacks, 165–168
using with arrays, 29

using with bit arrays, 66
{} (curly braces), matching with stacks, 165–168
++ operator of link list, using with PriorityQueue class, 186
<> (angle brackets), use with templates, 13

A
A* algorithm, performing on weighted graphs, 391–393
A8L8 texture compression, using, 501–502
accumulate() STL algorithm

calling for STL link list, 149–150
description of, 51
using, 56–57

AddChild() function, using with trees, 291–292
addDirectedEdge() function, using in graph class, 364
addEdge() function, using in graph class, 364
AddSibling() function, using with trees, 291–292
adjacency matrix

determining vertex successors with, 378
relationship to graphs, 355–356

adjacent_find() searching algorithm, explanation of, 416
ADT (abstract data type) data structure, priority queue as, 339
AI (artificial intelligence)

data structures for, 5, 523
using A* algorithm in, 391–393

AI for Game Developers, description of, 528
algorithms

definition of, 3
describing theoretical performance of, 15–17
examples of, 3
relationship to data structures, 4
use in STL (Standard Template Library), 11
using standard libraries with, 520–521
using with iterators, 57
See also STL algorithms

amortized constant time, relationship to ordered arrays, 33
angle brackets (<>), use with templates, 13

any() method of bitset class, description of, 68
Array Template demo, accessing, 44
array-based stack code sample, 158–160
arrays

accessing elements in, 30
basis on hash tables on, 211
benefits of, 20
versus binary trees, 300
of bits, 63–67
in C++, 22
clearing, 28
code sample, 20–22
common use of, 20
considering as data structures, 2
customizing, 23–24
dealing with duplicates related to, 46–47
errors associated with, 23
expanding, 28–29
implementation of heaps as, 324
implementing heaps with, 331–335
inserting items into, 25
removing items from, 26–28
removing items from unordered arrays, 27
resizing, 26
versus string classes, 398
using big-O notation with, 16
using brackets ([]) with, 29
using bubble sort algorithm with, 95–97
using insertion sort with, 102–105
using merge sort with, 110–115
using selection sort with, 99–101
using vector classes with, 57
See also ordered arrays; searching algorithms; unordered

arrays
artificial intelligence (AI)

data structures for, 5, 523
using A* algorithm in, 391–393

assert() function, using with Shellsort algorithm, 258
assertions, debugging with, 25
assign() method of vector class, description of, 49
at(index) method of vector class, description of, 49
AVL trees, features of, 322–323

B
back() function

for double-ended queues, 177
for queues, 173

for STL queue template class, 194
for STL stacks, 169
for vector class, 49

balance factor, relationship to AVL trees, 323
balanced trees, types of, 322–323
base 2 logarithm, using in binary searches, 16
Begin() function, using with singly linked list, 129
begin iterator, using, 56
begin() method of vector class, description of, 49
big-O notation

for inserting into ordered arrays, 32
for introspective sort, 281
for partition algorithm, 261
for priority queues, 181
relationship to constant time, 30
for Shellsort, 254
using, 15–17
using with double-ended queues, 177
using with queues, 173

bin sort algorithm, features of, 282
binary predicates, using with STL sorting, 106
binary search trees

BSP tree as, 462
creating, 304–305
specifying condition for, 328

binary searches
versus linear searches, 35
for ordered arrays, 36–37
performing, 35–46
using base 2 logarithm with, 16

binary space partitioning (BSP) trees
building, 465
creating, 462–463
features of, 460–462

Binary Tree demo main source file, 313–314
binary trees

versus arrays, 300
AVL trees, 322–323
balancing, 300–301
features of, 298–299
finding minimum and maximum keys in, 301
heaps, 323–324
heaps as, 329
inserting into, 299–301
red-black trees, 323
removal from, 301–303
searching through, 301
traversal displaying functions for, 308–309
traversal of, 301
See also trees

binary_search() searching algorithm, explanation of, 416
BinaryTree class

constructor, destructor, and push() functions for, 305–307
remove() function for, 310–312

bit array class, using, 63–67
bit radix sort, features of, 280. See also sorting
bits, storing sequences of, 68–69
bitset class, using, 68–69

book resources, recommendations for, 527–528
boolean comparison functions, using with hash keys, 220–221
Booleans, avoiding use with vector containers, 58
Boost Web site

address for, 521, 528
description of, 544

bounding spheres, algorithms on, 443
bounding volumes

building hierarchy of, 466–467
using in game math, 441–444

brackets ([])
matching with stacks, 165–168
using with arrays, 29
using with bit arrays, 66

Breadth First Search code sample, 368–371
breadth-first searches

features of, 366–367
implementing in graphs, 367–371
for topological sorting, 382
See also graphs; searching algorithms

BSP (binary space partitioning) trees
building, 465
creating, 462–463
features of, 460–462
See also trees

BSP tree nodes, features of, 462–466
b-trees. See binary trees
bubble sort algorithm

in C++, 7–8, 10–11
in Java, 8–9
passes of, 93–94
versus selection sort, 98
using with arrays, 95–97

bubbling containers, 330
bucket sort algorithm, features of, 282
bump mapping, relationship to texture compression, 495
byte order, considering in texture compression, 504

C
C#

bubble sort in, 10–11
comparing to Java, 6

C++
arrays in, 22
bubble sort in, 7–8
comparing to Java and C#, 6
creating template classes and functions in, 12–15
doubly linked list example in, 139–140
specifying overloaded operators in, 123
STL (Standard Template Library) in, 11–12
using brackets ([]) with arrays in, 29
See also STL (Standard Template Library)

cameras and views, using in game math, 447–448
capacity() method of vector class, description of, 49
chains, forming for link lists, 120
character matching, performing with stacks, 165–168
child nodes adding to trees, 291
circular queue, explanation of, 173

548 Index

classes in C++, making into templates, 13
clear() function

using with STL link lists, 150
using with STL strings, 402
of vector class, 49

clustering
eliminating with quadric probing, 217
relationship to hash functions, 214
relationship to linear probing, 215

coalesced hashing, explanation of, 219
collisions

data structures for, 5–6
resolving for hash tables, 215

color maps, compressing, 495
comparison algorithms, using, 419–421
comparison operator, using with heaps, 340
comparison template classes, using in Priority Queue demo,

190–191
compression. See data compression methods; texture compres-

sion methods
constant time

relationship to big-O notation, 30
running operations in, 38

constructor, using in graph class, 364
containers

allowing insertions in, 182–183
bubbling, 330
creating, 61
deleting memory inserted in, 58
enabling read and write abilities of, 30
use in STL (Standard Template Library), 11–12
using iterators with, 54
using push function with, 25
See also hash containers

copies, minimizing with Shellsort algorithm, 255
copy() function, using with STL link list, 148
copy() STL algorithm

description of, 51
using, 56

copy_backward() STL algorithm, description of, 51
copying algorithms, using, 418
count() method of bitset class, description of, 68
count() STL algorithm, description of, 51
counting algorithms, using, 418
cryptography, explanation of, 515
culling with quad-trees, 469–470
curly braces ({}), matching with stacks, 165–168

D
data, arrangement in memory, 2–3
data compression methods

Huffman coding algorithm, 489–494
lossless versus lossy compression, 483
run-length encoding, 483–486

data encryption, importance of, 514–515
data structures

arrays as, 2
for artificial intelligence, 5, 523

avoiding creation of, 12
conceptualizing, 3
definition of, 2–3
for game physics, 522–523
and game scripting, 523–524
nonstandard data structures, 521
for physics dynamics and collisions, 5–6
relationship to algorithms, 4
for scene management, 4–5, 522
types of, 2–3
using standard libraries with, 520–521

DDSLoader.cpp source file, using with GL Texture Compres-
sion demo, 503

debugging, using assertions in, 25
decal images, using DXTC compression formats with, 497
Decode() function, using in run-length encoding, 487–488
decoding with Huffman coding algorithm, 492, 494
Delete() function, using with hash table for linear probing, 223
delete keyword, using with Queue class, 175
Depth First Search demo

Graph.h header file from, 360–364
main source file for, 365–366

depth-first searches, implementing in graphs, 358–366. See also
graphs; searching algorithms

DepthFirstSearch() function, using in graph class, 364
Deque demo, accessing, 179–180. See also queues
deque stacks, using with STL stacks, 169
deque template class, explanation of, 196–197
destructor, using in graph class, 364
directed graphs, using topological sorting on, 376, 378. See also

graphs
display functions, using with binary trees, 308–309
DisplayMST() function, using with minimal spanning tree,

373–374, 386–389
displayRange() functions for kd-tree code sample, 319–320
DisplayTree() function, using, 292–293
double hashing

hash table with Insert(), Delete(), and Find() functions,
232–236

versus linear probing, 234
relationship to open addressing, 217

double-ended link lists, using, 131–134
double-ended queue data structures, using, 177–180
doubly linked lists

using, 135–141
using with Queue class, 175

duplicates, dealing with, 46–47, 307
DXTC formats, using with normal maps, 498–500
DXTC texture compression, using, 496–497, 500. See also GL

Texture Compression demo
dynamic arrays, using in C++, 22

E
EdgeInfo class, using with minimal spanning trees and

weighted graphs, 387–389
edges, relationship to trees, 287
empty() function

description of, 169

Index 549

550 Index

using with STL link list, 150–151
using with STL priority_queue template class, 200
using with STL queue template class, 194
of vector class, description of, 49

Encode() function, using in run-length encoding, 486
encoding with Huffman coding algorithm, 492
encryption, importance of, 514–515
End() function, using with singly linked list, 129
end iterator, using, 56
end() method of vector class, description of, 49
equal() algorithm, using, 420
equal_range() algorithm, using, 420
erase() function

calling for link lists, 151
of vector class, 49

Expand() function, using with stacks, 160

F
factorials, calculating with recursion, 86–88
family tree, example of, 288
FIFO (first-in, first-out) order of queues, explanation of, 172
Figures

array with item removed, 26
arrays of different sizes merged, 111
binary search, 36
Binary Search demo, 81
binary tree, 299
Binary Tree demo, 314
binary tree with letters for Huffman coding, 490
binary tree with node inserted, 300
binary trees with minimum and maximum keys, 302
bounding volumes, 442
Breadth First Search demo, 371
BSP Tree demo, 466
BSP tree with nodes, 475
Bubble Sort demo, 97
bubble sort passes, 94
Character Matching demo, 168
compressing normal map image, 496
Depth First Search demo, 366
depth-first search of graph, 359
Deque demo, 180
double hashing, 217
Double Hashing demo, 236
Double Hashing main.cpp source file, 235–236
double-ended link list, 131
Double-Ended Link List demo, 134
doubly linked list, 135
Doubly Linked List demo, 141
DXT1 compression artifacts, 499
DXT5 format used with normal map, 499
DXTC texture compression, 497
Factorials demo, 89
family tree, 288
frustum culling, 444
game world with vertices defining paths, 392
graphs (connected and nonconnected), 353
graphs (directed and nondirected), 354
Hash Map demo, 248

Hash Multimap demo, 250
Hash Multiset demo, 246
Hash Set demo, 244
hash table, 210
hashing, 211
heap, 328
Heap demo, 335
heap insertion, 330
heap Priority Queue demo, 344
heap removal process, 330
heap sort, 281, 336
Heap Sort demo, 339
Huffman coding algorithm, 492
Huffman table, 491
insertion sort, 102
Insertion Sort demo, 105
iterators relative to link lists, 123
KD Tree demo, 322
kd-tree nodes, 315
level of detail on sphere, 473
linear probing, 216
Linear Probing demo, 232
linear search, 34
link list, 121
Link List demo, 131
median-of-three method, 271
merge sort algorithm and recursion, 109–110
Merge Sort demo, 115
Minimal Spanning Tree demo, 374
minimum spanning tree, 372
node class for tree, 290
node deletion in binary tree, 302–303
number hashing, 214
NVIDIA DDS and Normal Map plug-ins, 500
occlusion culling, 474
octree, 471
Octree demo, 472
ordered arrays, 31
partitioning, 261
Partitioning demo, 265
pivot index for quicksort, 266
plane types split, 462
portal rendering, 477
potential visibility sets, 476
priority queue, 181
Priority Queue demo’s main source file, 344–346
quadric probing, 216
quad-tree, 467
Queue classes updated to double-ended queue, 177–179
queue data structure, 172
Queue demo, 176
Quicksort 2 demo, 275
quicksort algorithm, 266
Quicksort demo, 270
radix sort algorithm, 276–277
Radix Sort demo, 280
Recursion demo, 78
replacing node in binary tree, 303
Run Length Encoding demo, 489

scene divided using plane, 461
scene graph, 449
Scene Graph demo, 460
selection sort, 98
Selection Sort demo, 101
separate chaining., 218
Shellsort algorithm, 255
Shellsort demo, 260
Simple Tree demo, 298
Simple Tree demo nodes, 294
sorting, 93
stack data structure, 157
Stack demo, 162
states grouped in scene management, 434
STL Deque demo, 199
STL Link List demo, 151
STL Map demo, 408
STL Multi-map demo, 410
STL Multiset demo, 415
STL Priority Queue demo, 201
STL Priority Queue 2 demo, 205
STL Queue demo, 196
STL Set demo, 413
STL Sorting demo, 108
STL Stack demo, 172
string hashing, 215
Strings demo, 403
texture compression comparisons, 501
Texture Compression demo, 514
topological sorting, 376–377
Topological Sorting demo, 384
tree, 287
trees balanced and unbalanced, 300
Triangular Number demo main.cpp source file, 85–86
triangular numbers, 82
Triangular Numbers demo, 86
value of term for triangular number, 83
Weighted MST demo, 391

fill() STL algorithm, description of, 51
filling algorithms, using, 421–422
find() function

description of, 51
using in recursive binary search, 79–80
using with hash table for linear probing, 223

first-in, first-out (FIFO) order of queues, explanation of, 172
flip() methods of bitset class, descriptions of, 68
for loop, using with iterator, 56
for_each() algorithm, using with STL vector, 60
front() function

using with double-ended queues, 177
using with queues, 173–174
using with STL queue template class, 194
of vector class, 49

frustum culling
using in game math, 443–447
using with quad-trees, 467

functions classes in C++, creating, 12–15

G
game engines, use of data structures and algorithms in, 525
game math

bounding volumes in, 441–444
frustum culling in, 443–447
planes in, 438–441
vectors used in, 435–438
views and cameras in, 447–448

game physics, data structures for, 522–523
Game Programming Gems, description of, 528
game programming Web site, address for, 528
Game Scripting Mastery, description of, 528
game scripting, using compiled binaries in, 524
games

finding paths in, 391–393
resources in, 432

gap sequence, generating for Shellsort algorithm, 256–257
generating algorithms, using, 422–423
get_allocator() method of vector class, description of, 49
GetEndian() function, using with texture compression, 504
getline() method, using with strings, 401–402
GetVertexNoSuccessor() function, using in topological sort,

378
GL Easy Extension Library (GLEE)

explanation of, 539–540
Web site for, 529

GL Texture Compression demo
DDSLoader.cpp source file for, 504–506
DDSLoader.h header file for, 503
description of, 502
functions used in, 511
headers, function prototypes, and main() function for,

509–510
LoadDDS() function for, 503
See also DXTC texture compression

GLEE (GL Easy Extension Library)
explanation of, 539–540
Web site for, 529

GLUT (OpenGL Utility Toolkit)
explanation of, 540–542
Web site for, 529

Graph class
adding minimal spanning tree to, 372–373
functions in, 364
updating for topological sorting, 380–382

graphs
adjacency matrix for, 355–356
code sample, 356–357
as connected graphs, 353
creating, 356–357
depth-first search in, 358–366
directed and nondirected graphs, 354
performing minimal spanning tree algorithm on, 372
requirements for topological sorting of, 377–378
searching in, 357–358
versus trees, 352–353
updating for Breadth-First Search code sample, 368–370

Index 551

vertices of, 354–355
See also breadth-first searches; depth-first searches; directed

graphs; topological sorting; weighted graphs

H
hash containers

hash_map and hash_multimap, 246–250
hash_set and hash_multiset, 242–246
See also containers

hash functions
hashing strings, 214
hashing values, 213–214

hash keys, using, 220–221
Hash Map demo, 247–248
Hash Multiset demo main source file, 244–245
hash tables

basis on arrays, 211
and double hashing, 217
with double hashing, 232–236
example of, 212
features of, 210–211
guidelines for use of, 212
and linear probing, 215–216
with linear probing, 221–231
and quadric probing, 216–217
resizing, 219–220
and separate chaining, 218–219
with separate chaining, 236–241
uses of, 212

hashing
efficiency of, 213
types of, 219

HashItem template class, relationship to hash keys, 220–221
Head First Design Patterns, description of, 528
Heap class

altering for use with priority queues, 340–342
code sample, 332–334

heap container, explanation of, 328
Heap demo’s main source file, 334–335
heap functions, features of, 346–348
heap sort algorithm

explanation of, 336
features of, 281
implementing, 336–339

Heap Sort demo, main source file for, 337–339
heaps

basing priority queues on, 386
as binary trees, 329
characteristics of, 329
features of, 323–324
implementing, 331–335
implementing priority queues with, 340–346
inserting items into, 329–330
purpose of, 329
relationship to priority queues, 340
removing, 329–330
resizing, 331
using comparison operator with, 340

height value, relationship to AVL trees, 323
Huffman coding algorithm

compressing data with, 489–494
pseudo-code for, 493–494

I
if/else statement, using with texture compression, 504
indexes, using with trees, 287
InitializeApp() function, using in GL Texture Compression

demo, 511–513
in-order successors, replacing nodes with, 303
insert() function

using with hash table for linear probing, 223
of vector class, description of, 49–50

Insert_After() function, using with priority queues, 182
Insert_Before() function, using with priority queues, 182, 186
insertion sort

explanation of, 101–102
using with arrays, 102–105

interval sequence, generating for Shellsort algorithm, 256–257
introspective sort algorithm, features of, 281
isValid() function, using with priority queues, 181
iterators

versus pointers, 54
support for random-access iterators, 197
use in STL (Standard Template Library), 11
using, 54–57
using with algorithms, 57
using with doubly linked lists, 136
using with link lists, 122–124
using with singly linked lists, 125

J
Java

bubble sort in, 8–9
comparing to C#, 6

JPEG compression, using, 483

K
KD Tree demo, main source file for, 320–321
k-dimensional trees. See kd-trees
KdTree class code sample, 317–319
kd-trees

features of, 315–316
implementing, 316–321
See also trees

key in tree, explanation of, 288
KeyDown() function, using in GL Texture Compression demo,

510
Knuth method, using with Shellsort algorithm, 256–257

L
languages, syntax of, 6–7
last-in, first-out (LIFO) structures, stacks as, 156–158
leaf node in tree, explanation of, 288
level of detail, role in scene management, 473–474
lexicographical_compare() algorithm, using, 421
LIFO (last-in, first-out) structures, stacks as, 156–158

552 Index

linear probing
adding quadric probing to, 231
code sample, 230–231
versus double hashing, 234
implementing hash table with, 221–231
versus quadric probing, 216
relationship to open addressing, 215–216

linear searches
versus binary searches, 35
performing, 33–35

link lists
advantages and disadvantages of, 152
double-ended link list, 131–134
doubly linked lists, 135–141
elements of, 122
features of, 120–122
parts of, 121
simulating random access with, 122
singly linked lists, 124–131
tips and tricks for use of, 151–152
using iterators with, 122–124
using with priority queues, 181–182
using with Queue class, 175
See also STL link lists

LinkList class, using with stacks, 164–165
LinkNode class, using with doubly linked lists, 135–136
list container STL link list, features of, 141–144
list stacks, using with STL stacks, 169
Listings

AddChild() and AddSibling() functions for tree example,
291–292

array cleared, 28
array expanded, 29
array style access for elements, 30
array-based stack, 158–160
arrays, 21–22
binary search for ordered array, 36–37
Binary Tree demo main source file, 313–314
binary tree traversal displaying functions, 308–309
BinaryTree class remove() function, 310–312
BinaryTree class’s constructor, destructor, and push()

functions, 305–307
BinaryTree search() function, 307–308
bit array class, 64–66
bitarray demo application main source file, 66–67
BITSET demo main.cpp file, 68–70
bounding box class, 442–443
Breadth First Search demo main source file, 370–371
Breadth-First Search demo, 368–370
Bubble Sort demo main source file, 96–97
bubble sort in C#, 10–11
bubble sort in C++, 7–8
bubble sort in Java, 8–9
bubble sorting method added to unordered array, 95–96
camera class for game math, 447–448
Character Matching demo, 166–168
DDSLoader.cpp source file for GL Texture Compression

demo, 504–506
decoding data using run-length encoding, 487–488

Depth First Search demo main source file, 365–366
Deque demo’s main source file, 179–180
displayRange() functions for kd-tree, 319–320
DisplayTree() and Search() functions for tree example,

292–293
Double Hashing, 232–234
Double-Ended demo main.cpp file, 133–134
Doubly Linked List demo main.cpp source file, 140–141
doubly linked list for priority queue, 182–183
doubly linked list overloaded operators for iterator class,

136–137
doubly linked list update, 137–139
duplicate checked, 47
encoding data using run-length encoding, 486–487
Factorial and Powers demo main.cpp file, 87–88
factorial calculation, 87
frustum class, 444–447
GL Texture Compression DDSLoader.h header file, 503
GL Texture Compression initialization function, 513–514
Graph class updated for topological sorting, 380–382
graph data structure, 356–357
Graph.h header file from Depth First Search demo,

360–364
hash item structure for hash table, 221
Hash Multimap demo’s main source file, 248–250
Hash Multiset demo main source file, 244–245
Hash Set demo, 242–243
hash table for linear probing, 222–223, 225–226
hash table using separate chaining, 237–240
hash table with Insert(), Delete(), and Find() functions,

223–225
HashTable class for linear probing, 226–230
Heap class, 332–334, 340–342
Heap demo’s main source file, 334–335
Heap Sort demo main source file, 337–339
Insertion Sort demo main.cpp source file, 104–105
insertion sorting algorithm added to unordered array, 103
KD Tree demo main source file, 320–321
KdTree class, 317–319
kd-tree node, 316–317
Linear Probing demo, 230–231
linear search of unordered array, 34–35
link list class for singly linked list, 127–129
Link List demo main.cpp source file, 129–130
link list’s iterator class, 125–126
link list’s node class, 124
LinkList class used with stack, 164–165
LinkNode class for doubly linked list, 136
LoadDDS() function for GL Texture Compression demo,

506–509
main source file for unordered and ordered arrays, 45–46
merge sort algorithm added to unordered array, 112–113
Merge Sort demo main.cpp source code, 114–115
minimal spanning tree added to Graph class, 372–373
Minimal Spanning Tree demo’s main source file, 374–376
node class constructor and destructor, 290–291
Node class’s constructor, destructor, and methods for

binary tree, 304–305
ordered and unordered array classes, 38–44

Index 553

ordered array class versus unordered array, 32
Partition() and SwapElements() functions of UnorderedAr-

ray class, 262–263
Partitioning demo’s main source file, 264–265
plane class, 439–441
priority queue, 343–344
Priority Queue demo, 193
Priority Queue demo comparison template classes, 190–191
Priority Queue demo main source file, 187–189
Priority Queue demo NetworkMessage class, 191–192
PriorityQueue class, 184–186
push used with unordered array, 25
Push_Front() and Pop_Front() methods for double-ended

link list, 132–133
Queue class, 173–174
Queue demo’s main.cpp source file, 175–176
Quicksort 2 demo main source file, 274–275
quicksort algorithm added to UnorderedArray, 267–268
Quicksort demo main source file, 269–270
quicksort implemented using median-of-three, 271–274
Radix Sort demo main source file, 279
radix sort on integers, 278
recursion, 77–78
Recursive Binary Search demo main source file, 80–81
Run Length Encoding demo main() function, 488–489
scene graph, 455–456
Scene Graph demo main source file, 456–460
Search() and DisplayTree() functions for tree example,

292–293
search() and find() or ordered array, 79–80
Selection Sort algorithm added to unordered array, 99–100
Selection Sort demo main source file, 100–101
Separate Chaining main source file, 240–241
Shellsort demo main() function, 259
Shellsort() function of unordered array, 257–258
Simple Tree demo’s main() function, 297–298
Simple Tree demo’s Node class, 294–296
SphereNode class for scene graph, 454
Stack demo main.cpp source file, 161–162
STL Deque demo main source file, 197–199
STL link list calling accumulate(), 149–150
STL link list demo, 150–151
STL Link List demo global and first two functions, 147–148
STL Link List demo main() function, 148–149
STL Link List demo main.cpp source file, 144–147
STL link list push/pop, 149–150
STL Map demo’s main source file, 407–408
STL Multi-map demo’s main source file, 409–410
STL Multiset demo’s main source file, 413–414
STL Priority Queue 2 demo, 202–205
STL Priority Queue demo main source file, 200–201
STL Queue demo main source file, 195–196
STL Set demo main source file, 412–413
STL sorting functions, 107–108
STL Stack demo main source file, 170–171
stlvector 2 demo main source file, 54–56
stlvector 3 demo application main source file, 59–60
stlvector demo main source file, 52–53
Strings demo’s main source file, 402–403

SwapElements() and Partition() functions of UnorderedAr-
ray class, 262–263

template array class, 24
template classes and functions in C++, 13–15
term found using recursion, 84
term in loop for triangular number, 83
Topological Sort demo’s main source file, 383–384
TransformationNode for scene graph, 453
unordered array with item removed, 27
UnorderedArray class used with stack, 162–164
valarray template class, 62–63
vector class in three dimensions, 436–438
Vertex class for graph, 355
vertex without successor, 379
weighted MST main source file, 389–390

lists, growing for stacks, 160
LoadDDS() function, using with GL Texture Compression

demo, 506
logarithmic time, operations running in, 37
loops

finding term in, 82–84
using recursive binary search instead of, 78
using with bubble sort algorithm, 95–96
using with iterator, 56

lossless versus lossy compression, 483
lower_bound() searching algorithm, explanation of, 416–417

M
main() function

for character matching with stacks, 167
for GL Texture Compression demo, 509–510
for heap sort, 336
for Priority Queue demo, 192
for Run Length Encoding demo, 488–489
for Shellsort demo, 259
for Simple Tree demo, 297
for STL link list, 148

make_heap() function, explanation of, 346
map container

implementing, 406–410
methods and operators of, 406
methods and operators shared with multimap, 404
methods shared with multimap, 405

markers, using in run-length encoding, 485
math. See game math
math objects, examples of, 448
max() algorithm, using, 419
max_element() algorithm

description of, 51
using, 419

max_size() method of vector class, description of, 50
median-of-three method, and quicksort algorithm, 270–275
memory

deleting from containers, 58
tracking by pointers, 22–23

memory allocation, relationship to arrays, 22
memory leaks, avoiding, 58
memory management

handling in languages, 6

554 Index

handling of, 22
Memory Management: Algorithms and Implementation in C++,

description of, 527
merge sort

explanation of, 109–110
using with arrays, 110–115

Microsoft Developer Network (MSDN) Web site, address for,
529

min() algorithm, using, 419
min_element() algorithm

description of, 51
using, 419

minimal spanning tree algorithm, implementing in graphs,
372–376

Minimal Spanning Tree demo
main source file for, 374–376
relationship to topological sorting, 382

minimum spanning trees
adding to Graph class, 372–373
implementing on weighted graphs, 386–390
and weighted graphs, 385–386

mismatch() algorithm, using, 420
MSDN (Microsoft Developer Network) Web site, address for,

529
multibyte variables, checking order of, 504
multimap container

implementing, 406–410
methods and operators shared with map, 404
methods of, 406
methods shared with map, 405

multiset class
features of, 411
implementing, 411–415

N
NetworkMessage class, using in Priority Queue demo, 191
n-nearest neighbor algorithm, using with kd-trees, 321
node class

integer object in, 290
using with scene graphs, 450–452
using in tree example, 290

nodes
of BSP trees, 462–466
deleting from binary trees, 302
in heaps, 323–324
inserting into binary trees, 299–301
relationship to link lists, 121
relationship to singly linked lists, 124
relationship to trees, 287
replacing with in-order successors, 303
of scene graphs, 450
for sphere meshes, 453–454

none() method of bitset class, description of, 68
nonstandard data structures, advantages and disadvantages of,

521
nontail recursion, explanation of, 76
normal maps

compressing, 495–496
and DXTC formats, 498–500

O
O(1) operations, examples of, 16
occlusion culling, role in scene management, 474
octrees

features of, 471
implementing, 471–472
versus quad–trees
See also trees

open addressing
characteristics of, 218
an double hashing, 217
and linear probing, 215–216
and quadric probing, 216–217

OpenGL
latest version of, 539
using with scene graphs, 452–453
using with texture compression, 502
Web site for, 528

OpenGL Utility Toolkit (GLUT)
explanation of, 540–542
Web site for, 529

operator[index] method of vector class, description of, 50
optimizations, importance of, 524
ordered arrays

benefits of, 33
binary search for, 36–37
code sample, 38–44
dealing with duplicates related to, 46–47
inserting items into, 33
using, 31–33
using user-defined classes in, 46
See also arrays

overloaded operators
for doubly linked list iterator class, 136–137
specifying in C++, 123
use in STL (Standard Template Library), 11
using with minimal spanning trees and weighted graphs,

386

P
parent node in tree, explanation of, 288
parentheses (()), matching with stacks, 165–168
ParseString() function, using in character matching with stacks,

166
partial_sort() algorithms, using, 106–108, 423
particles, relationship to point masses, 522
partitioning algorithm

features of, 260–261
implementing, 262–265
picking pivot value for, 270

Partitioning demo, main source file for, 264–265
path-finding algorithm, A* algorithm as, 391–393
percolating containers, 330
perfect hashing, explanation of, 219
physics dynamics, data structures for, 5–6
Physics for Game Developers, description of, 528
pIndex, using in heap implementation, 332
pivot value

picking for partitioning algorithm, 270

Index 555

relationship to partitioning, 261
using with quicksort algorithm, 266

planes
dividing scenes with, 461
splitting for BSP trees, 464
using in game math, 438–441

point masses, relationship to particles, 522
pointers

versus iterators, 54
manual deletion of, 58, 60
tracking memory by, 22–23
in trees, 287
using with doubly linked lists, 135
using with link lists, 120

pop calls, using with iterators, 56
pop() function

description of, 169
using with arrays, 27–28
using with containers, 25
using with doubly linked lists, 137
using with heaps, 331–332
using with queues, 173–174
using with singly linked list, 129
using with stacks, 160
using with STL priority_queue template class, 200
using with STL queue template class, 194

pop_back() method
testing for STL link list, 150
using with STL stacks, 169
of vector class, 50

pop_front() function
using with double-ended link lists, 132
using with double-ended queues, 177
using with doubly linked lists, 137
using with STL deque template class, 197

pop_heap() function, explanation of, 347
portal rendering, role in scene management, 476–477. See also

rendering function
postfix operator, using with doubly linked lists, 136
potential visibility sets, role in scene management, 474–476
prefix operator, using with doubly linked lists, 136
prev_permutation() algorithm, using, 424
PrintError() function, using in character matching with stacks,

166
PrintNumReverse() recursive function, explanation of, 78
Priority Queue demo

accessing, 186
code for, 191–192
comparisons used in, 189–191
main source file for, 187–189, 344–346
NetworkMessage class in, 191–192

priority queues
as ADT data structures, 339
basing on heaps, 386
code sample, 343–344
features of, 181
implementing using heaps, 340–346
relationship to heaps, 340

relationship to minimal spanning trees and weighted
graphs, 386

using doubly linked list with, 182–183
using link lists with, 181–182
See also queues

priority_queue template class
explanation of, 200
using, 202

PriorityQueue class
implementing, 184–186
template items in, 186

probabalistic hashing, explanation of, 219
Process() function, using with scene graph, 450
programming languages, syntax of, 6–7
push() function

for BinaryTree class, 305–307
for duplicates related to arrays, 46–47
for KdTree class, 317–319
for PriorityQueue class, 186
for queues, 173
for stacks, 160
for STL queue template class, 194
using in graph class, 364
using with containers, 25
using with heaps, 331–332

push_back() function
using with double-ended queues, 177
using with hash table and separate chaining, 236
using with STL stacks, 169
using with STL strings, 402
of vector class, 50

push_front() function
using with double-ended link lists, 132
using with double-ended queues, 177
using with doubly linked lists, 137
using with STL deque template class, 197

push_heap() function, explanation of, 346–347
push(T val) function of STL stack class, description of, 169
push(val) function, using with STL priority_queue template

class, 200
Pythagorian theorem, relationship to triangular numbers,

81–82

Q
quadric probing

adding to linear probing, 231
versus linear probing, 216
relationship to open addressing, 216–217

quad-trees
building, 467
culling with, 469–470
features of, 466–470
versus octrees, 471
pseudo-code for, 468–469
using to create terrains with nodes, 470
See also trees

Queue class, using doubly linked list with, 175
queues

556 Index

circular queues, 173
double-ended queue data structures, 177–180
FIFO (first-in, first-out) order of, 172
getting best performance from, 194
methods of, 173
versus stacks, 172
types of, 173
uses of, 173
See also Deque demo; priority queues; STL queues

Quicksort 2 demo, code for, 274–275
quicksort algorithm

adding to UnorderedArray, 267–268
features of, 265–266
implementing, 266–270
and median-of-three method, 270–275
relationship to partitioning, 260
See also sorting

Quicksort demo, main source file for, 269–270

R
radix sort algorithm

features of, 276–277
implementing, 277–280
See also sorting

random_shuffle() STL algorithm, description of, 51
random-access iterators, support for, 197
rbegin()function

using with STL link list, 147
of vector class, 50

recursion
calculating factorials with, 86
example of, 77–78
explanation of, 74
finding term for triangular number with, 84–86
occurrence of, 75
pros and cons of, 75
tail and nontail recursion, 75–76
and triangular numbers, 81–86
using with merge sort algorithm, 109
using with quicksort algorithm, 266–270

recursive binary search, performing, 78–81
red-black trees, features of, 323
remove() function

for BinaryTree class, 310–312
calling for link lists, 151–152
description of, 51
using with arrays, 27

removing algorithms, using, 425
rend()function

description of, 50
using with STL link list, 147

rendering function, using in GL Texture Compression demo,
513–514. See also portal rendering

replace() STL algorithm, description of, 51
replacing algorithms, using, 426
reserve() method

using with string classes, 398
of vector class, 50, 57–58

reset() methods of bitset class, descriptions of, 68

resize() function
using in GL Texture Compression demo, 510
of vector class, 50

resource management
explanation of, 432–433
versus scene management, 433

resources
books, 527–528
Web sites, 528–529

reversing algorithms, using, 426–427
rigid bodies, use of, 523
Robin-hood hashing, explanation of, 219
root nodes

relationship to link lists, 120
relationship to trees, 286–287

rotating algorithms, using, 426–427
run-length encoding

compressing data with, 486–489
explanation of, 483–486

S
Scene Graph demo, main source file for, 456–460
scene graphs

class for, 454–456
node class for, 450–452
nodes of, 450
relationship to trees, 293–294
using, 449

scene management
data structures for, 4–5, 522
explanation of, 432–433
level of detail aspect of, 473–474
occlusion culling aspect of, 474
portal rendering aspect of, 476–477
potential visibility sets aspect of, 474–476
versus resource management, 433
state management aspect of, 433–434
texture atlases used in, 434–435
texture compression aspect of, 472–473

scenes, dividing with planes, 461
scoring algorithm, using with split planes and BSP trees, 464
search() and search_n() algorithms, explanations of, 417–418
search() function

performing on BinaryTree class, 307–308
performing linear searches with, 34
using in recursive binary search, 78–80
using with tree example, 292–293

searching algorithms
binary searches, 35–46
descriptions of, 51
linear searches, 33–35
using, 416–418
using with graphs, 358
See also arrays; breadth-first searches; depth-first searches

selection sort
versus bubble sort, 98
explanation of, 98
using with arrays, 99–101

separate chaining

Index 557

hash table with, 236–241
relationship to hash tables, 218–219

Separate Chaining demo, code for, 240–241
sequence containers

implementing STL stacks with, 169
STL deque template class as, 197

set class
features of, 411
implementing, 411–415

set() methods of bitset class, descriptions of, 68
SGI STL Web site

address for, 521, 528
description of, 543

shapes, bounding volumes as, 441–444
Shellsort algorithm

big-O for, 254
conceptualizing, 256
features of, 255–257
generating gap sequence for, 256–257
implementing, 257–259

Shellsort demo, main() function for, 259
Sherrod, Allen (bio), xvi
ShutdownApp() function, using in GL Texture Compression

demo, 510
sibling nodes in trees, explanation of, 288
Simple Tree demo, code for, 294–296
singly linked lists

implementing, 124–131
using dereferencing operators with, 130

size() for STL linked list, alternative to testing for, 150–151
size() function

of bitset class, description of, 68
of STL priority_queue template class, 200
of STL queue template class, 194
of STL stack class, 169
of vector class, 50

slicing, occurrence of, 52
soft bodies, popularity of, 523
software requirements for book, xiii
sort() function

description of, 51
using, 424–425
using with list container STL link list, 144
using with (Standard Template Library), 106–108
using with STL link list, 148

sort_heap() function
explanation of, 347–348
using, 424–425

sorting
bubble sort, 93–97
conceptualizing, 92–93
insertion sort, 101–105
merge sort, 109–115
selection sort, 98–101
with Shellsort algorithm, 255–260
in STL (Standard Template Library), 105–108
types of, 280–282
See also bit radix sort; quicksort algorithm; radix sort

algorithm; topological sorting

sorting algorithms, using, 423–425
sphere, level of detail on, 473
sphere meshes, node for, 453–454
SphereNode class code sample, 453–454
splitter for planes, using with BSP trees, 464–465
stable_sort() algorithm

using, 424–425
using with STL (Standard Template Library), 106–108

Stack demo, accessing, 161–162
stack() function of STL stack class, description of, 169
stacks

array-based stack, 158–160
character matching with, 165–168
implementing, 158–160
implementing with LinkList class, 164–165
implementing with UnorderedArray class, 162–164
as LIFO data structures, 156–158
versus queues, 172
STL stacks, 168–172
uses of, 157–158
visualizing, 156–157

standard libraries, advantages and disadvantages of, 520–521
Standard Template Library (STL), using in C++, 11–12
state changes, reducing with texture atlases, 434–435
state management, example of, 5
state management, role in scene management, 433–434
STL (Standard Template Library), using in C++, 11–12. See also

C++; template classes in C++
STL algorithms

comparison algorithms, 419–421
copying and counting algorithms, 418
descriptions of, 51
features of, 415
filling algorithms, 421–422
generating algorithms, 422–423
removing algorithms, 425
replacing algorithms, 426
reversing algorithms, 426–427
rotating algorithms, 426–427
searching algorithms, 416–418
sorting algorithms, 423–425
See also algorithms

STL arrays
iterators, 54–57
vector container, 48–54

STL Deque demo
accessing, 197
main source file for, 197–199

STL deque template class, using, 196–199
STL heap functions, features of, 346–348
STL link lists

example of, 144–151
features of, 141–144
See also link lists

STL list iterators, using with hash table and separate chaining,
236

STL map container. See map container
STL Map demo, main source file for, 407–408
STL multimap container. See multimap container

558 Index

STL Multi-map demo
functions of, 408
main source file for, 409–410

STL Multiset demo, main source file for, 413–414
STL Priority Queue 2 code sample, 202–205
STL Priority Queue demo main source file, 200–201
STL priority_queue template class, using, 200–205
STL Queue demo

accessing, 194
main source file for, 195–196

STL queue template class, using, 194–196
STL queues, STL queue template class, 194–196. See also queues
STL resources, Web sites for, 521
STL sequence containers, examples of, 48
STL Set demo, main source file for, 412–413
STL sorting, performing, 105–108
STL stacks, implementing, 168–172
STL strings, implementing, 402–403
STL vectors. See vector classes; vectors
STLport Web site

address for, 521, 528
description of, 544

stlvector 2 demo, accessing, 54
stlvector 3 demo application code sample, 59–60
stlvector demo, accessing, 52
string class

versus arrays and vectors, 398
benefits of, 398
methods and operators of, 398–399

string containers
member functions operators of, 399–401
using, 398–401

strings
hashing, 213–214
implementing STL strings, 402–403
using getline() method with, 401
using swap trick with, 401

Strings demo, main source file for, 402–403
swap() STL algorithm, description of, 51
SwapBytes() function, using with texture compression, 504
SwapElements() function, using in partitioning, 262
swap(source) method of vector class, description of, 50

T
tail recursion, explanation of, 76
template array class code sample, 24
template classes in C++, creating, 12–15. See also STL (Standard

Template Library)
test() method of bitset class, description of, 68
texture atlases, using in scene management, 434–435
Texture Compression demo. See GL Texture Compression

demo
texture compression methods

3Dc compression, 500–501
A8L8 format, 501–502
DXTC compression, 496–497
explanation of, 494–496

role in scene management, 472–473
texture images, using run-length encoding with, 485
to_string() method of bitset class, description of, 68
to_ulong() method of bitset class, description of, 68
tokens, matching with stack containers, 165
top() function

description of, 169
using with stacks, 160
using with STL priority_queue template class, 200

Topological Sort demo, main source file for, 383–384
topological sorting

explanation of, 376–378, 379
implementing in graphs, 378–384
requirements for graphs, 377–378
updating Graph class for, 380–382
See also graphs; sorting

TransformationNode, using with scene graph, 452–453
traversing trees, explanation of, 288
tree data structure, performing binary searching algorithm on,

307–308
trees

adding child nodes to, 291
balancing, 300–301
features of, 286–287
versus graphs, 352–353
moving through, 301
node class for, 290
parts of, 287–288
traversal of, 301
types of, 289, 322–324
See also binary trees; BSP (binary space partitioning) trees;

kdtrees; kd-trees; octrees; quad-trees
triangular numbers

recursion example related to, 82–86
relationship to Pythagorian theorem, 81–82

trickling containers, 330

U
Ultimate Game Engine Design and Architecture, description of,

527
Ultimate Game Programming with DirectX, description of, 527
unique() STL algorithm, description of, 51
unordered arrays

adding insertion sorting algorithm to, 103
adding merge sort algorithm to, 112–113
adding selection sort algorithm to, 99–100
binary searches on, 35–46
code sample, 38–44
linear search of, 34–35
Shellsort() function of, 257–258
using bubble sorting method with, 95–96
See also arrays

unordered container, performing heap sort on, 337
UnorderedArray class

adding quicksort algorithm to, 267–268
using with partitioning, 262
using with stacks, 162–164

Index 559

upper_bound() searching algorithm, explanation of, 416–417
user-defined classes, using in ordered arrays, 46
using namespace std;, using with arrays, 22

V
valarray template class, using, 62–63
values, hashing, 213–214
vector classes

components of, 48
methods and operators of, 49–50
use of, 57
using reserve() with, 57–58

vector container, capabilities of, 48
vector stacks, using with STL stacks, 169
vector<bool>, avoiding use of, 58
vectors

clearing and trimming, 61–62
versus string classes, 398
using in three-dimensional games, 435–438

vertex points, relationship to planes, 438
vertex successors, determining with adjacency matrix, 378–379
vertices

adding weights to, 385
creating in main source file, 364–365
inserting, 356
relationship to vectors, 436

relationship to graphs, 353–355
weights in finding game paths, 392

views and cameras, using in game math, 447–448
virtual scenes, processing with BSP data structures, 460
Visual Studio .NET 2003, advisory related to hashes, 246

W
Web sites

Boost, 521, 528, 544
GLEE (GL Easy Extension Library), 529, 540
GLUT, 529
MSDN (Microsoft Developer Network), 529
OpenGL, 528–529
resources available on, 528–529
SGI STL, 521, 528, 543
STLport, 521, 528, 544
STL resources, 521

weighted graphs
implementing minimal spanning trees on, 386–390
and minimal spanning trees, 385–386
performing A* algorithm on, 391–393
See also graphs

Weighted MST code sample, 389–390

Z
Z-buffers, relationship to BSP trees, 461

560 Index

