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Preface

In recent years, the progress in hardware technology has made it possible
for organizations to store and record large streams of transactional data. Such
data sets which continuously and rapidly grow over time are referred to as data
streams, In addition, the development of sensor technology has resulted in
the possibility of monitoring many events in real time. While data mining has
become a fairly well established field now, the data stream problem poses a
number of unique challenges which are not easily solved by traditional data
mining methods.

The topic of data streams is a very recent one. The first research papers on
this topic appeared slightly under a decade ago, and since then this field has
grown rapidly. There is a large volume of literature which has been published
in this field over the past few years. The work is also of great interest to
practitioners in the field who have to mine actionable insights with large volumes
of continuously growing data. Because of the large volume of literature in the
field, practitioners and researchers may often find it an arduous task of isolating
the right literature for a given topic. In addition, from a practitioners point of
view, the use of research literature is even more difficult, since much of the
relevant material is buried in publications. While handling a real problem, it
may often be difficult to know where to look in order to solve the problem.

This book contains contributed chapters from a variety of well known re-
searchers in the data mining field. While the chapters will be written by dif-
ferent researchers, the topics and content will be organized in such a way so as
to present the most important models, algorithms, and applications in the data
mining field in a structured and concise way. In addition, the book is organized
in order to make it more accessible to application driven practitioners. Given
the lack of structurally organized information on the topic, the book will pro-
vide insights which are not easily accessible otherwise. In addition, the book
will be a great help to researchers and graduate students interested in the topic.
The popularity and current nature of the topic of data streams is likely to make
it an important source of information for rescarchers interested in the topic.
The data mining community has grown rapidly over the past few years, and the
topic of data streams is one of the most relevant and current areas of interest to



xviii DATA STREAMS: MODELS AND ALGORITHMS

the community. This is because of the rapid advancement of the field of data
streams in the past two to three years, While the data stream field clearly falls
in the emerging category because of its recency, it is now beginning to reach a
maturation and popularity point, where the development of an overview book
on the topic becomes both possible and necessary. While this book attempts to
provide an overview of the stream mining area, it also tries to discuss current
topics of interest so as to be useful to students and researchers. It is hoped that
this book will provide a reference to students, researchers and practitioners in
both introducing the topic of data streams and understanding the practical and
algorithmic aspects of the area.



Chapter 1

AN INTRODUCTION TO DATA STREAMS

Charu C. Aggarwal

IBM T. J. Watson Research Center
Hawthorne, NY 10532

charu@us.ibm.com

Abstract

In recent years, advances in hardware technology have facilitated new ways of
collecting data continuously. In many applications such as network monitoring,
the volume of such data is so large that it may be impossible to store the data
on disk. Furthermore, even when the data can be stored, the volume of the
incoming data may be so large that it may be impossible to process any particular
record more than once. Therefore, many data mining and database operations
such as classification, clustering, frequent pattern mining and indexing become

significantly more challenging in this context.

in many cases, the data patterns may evolve continuously, as a result of which
it is necessary to design the mining algorithms effectively in order to account for
changes inunderlying structure of the data stream, This makes the solutions of the
underlying problems even more difficult from an algorithmic and computational
pointof view. This book contains a number of chapters which are carefully chosen
in order to discuss the broad research issues in data streams. The purpose of this
chapter is to provide an overview of the organization of the stream processing

and mining technigues which are covered in this book.

1. Introduction

In recent years, advances in hardware technology have facilitated the ability
to collect data continuously. Simple transactions of everyday life such as using
a credit card, a phone or browsing the web lead to automated data storage.
Similarly, advances in information technology have lead to large flows of data
across IP networks. In many cases, these large volumes of data can be mined for
interesting and relevant information in a wide variety of applications. When the
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volume of the underlying data is very large, it leads to a number of computational
and mining challenges:

»  With increasing volume of the data, it is no longer possible to process the
data efficiently by using multiple passes. Rather, one can process a data
item at most once. This leads to constraints on the implementation of the
underlying algorithms. Therefore, stream mining algorithms typically
need to be designed so that the algorithms work with one pass of the
data.

m In most cases, there is an inherent temporal component to the stream
mining process. This is because the data may evolve over time. This
behavior of data streams is referred to as temporal locality. Therefore,
a straightforward adaptation of one-pass mining algorithms may not be
an effective solution to the task. Stream mining algorithms need to be
carefully designed with a clear focus on the evolution of the underlying
data.

Another important characteristic of data streams is that they are often mined in
a distributed fashion. Furthermore, the individual processors may have limited
processing and memory. Examples of such cases include sensor networks, in
which it may be desirable to perform in-network processing of data stream with
limited processing and memory [8, 19]. This book will also contain a number
of chapters devoted to these topics.

This chapter will provide an overview of the different stream mining algo-
rithms covered in this book. We will discuss the challenges associated with each
kind of problem, and discuss an overview of the material in the corresponding
chapter.

2. Stream Mining Algorithms

In this section, we will discuss the key stream mining problems and will
discuss the challenges associated with each problem. We will also discuss an
overview of the material covered in each chapter of this book. The broad topics
covered in this book are as follows:

Data Stream Clustering. Clustering is a widely studied problem in the
data mining literature. However, it is more difficult to adapt arbitrary clus-
tering algorithms to data streams because of one-pass constraints on the data
set. An interesting adaptation of the k-means algorithm has been discussed
in [14] which uses a partitioning based approach on the entire data set. This
approach uses an adaptation of a k-means technique in order to create clusters
over the entire data stream. In the context of data streams, it may be more
desirable to determine clusters in specific user defined horizons rather than on
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the entire data set. In chapter 2, we discuss the micro-clustering technique [3]
which determines clusters over the entire data set. We also discuss a variety
of applications of micro-clustering which can perform effective summarization
based analysis of the data set. For example, micro-clustering can be extended
to the problem of classification on data streams [5]. In many cases, it can also
be used for arbitrary data mining applications such as privacy preserving data
mining or query estimation.

Data Stream Classification.  The problem of classification is perhaps one
of the most widely studied in the context of data stream mining. The problem
of classification is made more difficult by the evolution of the underlying data
stream. Therefore, effective algorithms need to be designed in order to take
temporal locality into account. In chapter 3, we discuss a survey of classifica-
tion algorithms for data streams. A wide variety of data stream classification
algorithms are covered in this chapter. Some of these algorithms are designed to
be purely one-pass adaptations of conventional classification algorithms [12],
whereas others (such as the methods in [5, 16]) are more effective in account-
ing for the evolution of the underlying data stream. Chapter 3 discusses the
different kinds of algorithms and the relative advantages of each.

Frequent Pattern Mining. The problem of frequent pattern mining was
first introduced in [6], and was extensively analyzed for the conventional case
of disk resident data sets. In the case of data streams, one may wish to find the
frequent itemsets either over a sliding window or the entire data stream [15, 17].
In Chapter 4, we discuss an overview of the different frequent pattern mining
algorithms, and also provide a detailed discussion of some interesting recent
algorithms on the topic.

Change Detection in Data Streams. As discussed earlier, the patterns
in a data stream may evolve over time. In many cases, it is desirable to track
and analyze the nature of these changes over time. In [1, 11, 18], a number of
methods have been discussed for change detection of data streams. In addition,
data stream evolution can also affect the behavior of the underlying data mining
algorithms since the results can become stale over time. Therefore, in Chapter
5, we have discussed the different methods for change detection data streams.
We have also discussed the effect of evolution on data stream mining algorithms.

Stream Cube Analysis of Multi-dimensional Streams. Much of stream
data resides at a multi-dimensional space and at rather low level of abstraction,
whereas most analysts are interested in relatively high-level dynamic changes in
some combination of dimensions. To discover high-level dynamic and evolving
characteristics, one may need to perform multi-level, multi-dimensional on-line
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analytical processing (OLAP) of stream data. Such necessity calls for the inves-
tigation of new architectures that may facilitate on-line analytical processing of
multi-dimensional stream data [7, 10].

In Chapter 6, an interesting stream_cube architecture that effectively per-
forms on-line partial aggregation of multi-dimensional stream data, captures
the essential dynamic and evolving characteristics of data streams, and facil-
itates fast OLAP on stream data. Stream cube architecture facilitates online
analytical processing of stream data. It also forms a preliminary structure for
online stream mining. The impact of the design and implementation of stream
cube in the context of stream mining is also discussed in the chapter.

Loadshedding in Data Streams. Since data streams are genecrated by
processes which are extraneous to the stream processing application, it is not
possible to control the incoming stream rate. As a result, it is necessary for the
system to have the ability to quickly adjust to varying incoming stream pro-
cessing rates. Chapter 7 discusses one particular type of adaptivity: the ability
to gracefully degrade performance via “load shedding”™ (dropping unprocessed
tuples to reduce system load) when the demands placed on the system can-
not be met in full given available resources. Focusing on aggregation queries,
the chapter presents algorithms that determine at what points in a query plan
should load shedding be performed and what amount of load should be shed at
each point in order to minimize the degree of inaccuracy introduced into query
aAnsSwers.

Sliding Window Computations in Data Streams. Many of the synopsis
structures discussed use the entire data stream in order to construct the cor-
responding synopsis structure. The sliding-window model of computation is
motivated by the assumption that it is more important to use recent data in data
stream computation [9]. Therefore, the processing and analysis is only done on
a fixed history of the data stream. Chapter § formalizes this model of compu-
tation and answers questions about how much space and computation time is
required to solve certain problems under the sliding-window model.

Synopsis Construction in Data Streams.  The large volume of data streams
poses unique space and time constraints on the computation process. Many
query processing, database operations, and mining algorithms require efficient
execution which can be difficult to achieve with a fast data stream. In many
cases, it may be acceptable to generate approximate solutions for such prob-
lems. In recent years a number of synopsis structures have been developed,
which can be used in conjunction with a variety of mining and query process-
ing techniques [13]. Some key synopsis methods include those of sampling,
wavelets, sketches and histograms. In Chapter 9, a survey of the key synopsis
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techniques is discussed, and the mining techniques supported by such methods.
The chapter discusses the challenges and tradeoffs associated with using dif-
ferent kinds of techniques, and the important research directions for synopsis
construction.

Join Processing in Data Streams.  Stream join is a fundamental operation
for relating information from different streams. This is especially useful in
many applications such as sensor networks in which the streams arriving from
different sources may need to be related with one another. In the stream setting,
mput tuples arrive continuously, and result tuples need to be produced continu-
ously as well. We cannot assume that the input data is already stored or indexed,
or that the input rate can be controlled by the query plan. Standard join algo-
rithms that use blocking operations, e.g., sorting, no longer work. Conventional
methods for cost estimation and query optimization are also inappropriate, be-
cause they assume finite input. Moreover, the long-running nature of stream
queries calls for more adaptive processing sirategies that can react to changes
and fluctuations in data and stream characteristics. The “stateful” nature of
stream joins adds another dimension to the challenge. In general, in order to
compute the complete result of a stream join, we need to retain all past arrivals
as part of the processing state, because a new tuple may join with an arbitrarily
old tuple arrived in the past. This problem is exacerbated by unbounded input
streams, limited processing resources, and high performance requirements, as
it is impossible in the long run to keep all past history in fast memory. Chap-
ter 10 provides an overview of research problems, recent advances, and future
research directions in stream join processing.

Indexing Data Streams. The problem of indexing data streams attempts
to create a an indexed representation, so that it is possible to efficiently answer
different kinds of queries such as aggregation queries or trend based gueries.
This is especially important in the data stream case because of the huge voi-
ume of the underlying data. Chapter 11 explores the problem of indexing and
querying data streams.

Dimensionality Reduction and Forecasting in Data Streams, Because
of the inherent temporal nature of data streams, the problems of dimension-
ality reduction and forecasting and particularly important. When there are a
large number of simultaneous data stream, we can use the correlations between
different data streams in order to make effective predictions [20, 21] on the
future behavior of the data stream. In Chapter 12, an overview of dimensional-
ity reduction and forecasting methods have been discussed for the problem of
data streams. In particular, the well known MUSCLES method [21] has been
discussed, and its application to data streams have been explored. In addition,
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the chapter presents the SPIRIT algorithm, which explores the relationship be-
tween dimensionality reduction and forecasting in data streams. In particular,
the chapter explores the use of a compact number of hidden variables to com-
prehensively describe the data stream. This compact representation can also be
used for effective forecasting of the data streams.

Distributed Mining of Data Streams. In many instances, streams are
generated at multiple distributed computing nodes. Analyzing and monitoring
data in such environments requires data mining technology that requires opti-
mization of a variety of criteria such as communication costs across different
nodes, as well as computational, memory or storage requirements at each node.
A comprehensive survey of the adaptation of different conventional mining al-
gorithms to the distributed case is provided in Chapter 13. In particular, the
clustering, classification, outlier detection, frequent pattern mining, and sum-
marization problems are discussed. In Chapter 14, some recent advances in
stream mining algorithms are discussed.

Stream Mining in Sensor Networks. With recent advances in hardware
technology, it has become possible to track large amounts of data in a distributed
fashion with the use of sensor technology. The large amounts of data collected
by the sensor nodes makes the problem of monitoring a challenging one from
marny technological stand points. Sensor nodes have limited local storage,
computational power, and battery life, as a result of which it is desirable to
minimize the storage, processing and communication from these nodes. The
problem is further magnified by the fact that a given network may have millions
of sensor nodes and therefore it is very expensive to localize all the data at a given
global node for analysis both from a storage and communication point of view.
In Chapter 15, we discuss an overview of a number of stream mining issues
in the context of sensor networks. This topic is closely related to distributed
stream mining, and a number of concepts related to sensor mining have also
been discussed in Chapters 13 and 14.

3. Conclusions and Summary

Data streams are a computational challenge to data mining problems because
of the additional algorithmic constraints created by the large volume of data. In
addition, the problem of temporal locality leads to a number of unique mining
challenges in the data stream case. This chapter provides an overview to the
different mining algorithms which are covered in this book. We discussed the
different problems and the challenges which are associated with each problem.
We also provided an overview of the material in each chapter of the book.
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Abstract

In recent years, data sireams have become ubiquitous because of the large
number of applications which generate huge volumes of data in an automated
way. Many existing data mining methods cannot be applied directly on data
streams because of the fact that the data needs to be mined in one pass, Fur-
thermore, data streams show a considerable amount of temporal locality because
of which a direct application of the existing methods may lead to misleading
results. In this paper, we develop an efficient and effective approach for min-
ing fast evolving data streams, which integrates the micro-clustering technigue
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with the high-level data mining process, and discovers data evolution regularities
as well. Our analysis and experiments demonstrate two important data mining
problenis, namely stream clustering and stream classification, can be performed
effectively using this approach, with high quality mining results. We discuss
the use of micro-clustering as a general summarization technology to solve data
mining problems on streams. Our discussion illustrates the importance of our
approach for a variety of mining problems in the data stream domain.

1. Introduction

In recent years, advances in hardware technology have allowed us to auto-
matically record transactions and other pieces of information of everyday life
at a rapid rate. Such processes generate huge amounts of online data which
grow at an unlimited rate. These kinds of online data are referred to as data
streams. The issues on management and analysis of data streams have been
rescarched extensively in recent years because of its emerging, imminent, and
broad applications [11, 14, 17, 23].

Many important problems such as c¢lustering and classification have been
widely studied in the data mining community. However, a majority of such
methods may not be working effectively on data streams. Data streams pose
special challenges to a number of data mining algorithms, not only because
of the huge volume of the online data streams, but also because of the fact
that the data in the streams may show temporal correlations. Such temporal
correlations may help disclose important data evolution characteristics, and they
can also be used to develop efficient and effective mining algorithms. Moreover,
data streams require online mining, in which we wish to mine the data in a
continuous fashion. Furthermore, the system needs to have the capability to
perform an offfine analysis as well based on the user interests. This is similar
to an online analytical processing (OLAP) framework which uses the paradigm
of pre-processing once, querying many times,

Based on the above considerations, we propose a new stream mining frame-
work, which adopts a tilted time window framework, takes micro-clustering
as a preprocessing process, and integrates the preprocessing with the incre-
mental, dynamic mining process. Micro-clustering preprocessing effectively
compresses the data, preserves the general temporal locality of data, and facili-
tates both online and offline analysis, as well as the analysis of current data and
data evolution regularities.

In this study, we primarily concentrate on the application of this technique
to two problems: (1) stream clustering, and (2) stream classification. The heart
of the approach is to use an online summarization approach which is efficient
and also allows for effective processing of the data streams. We also discuss
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Figure 2.2, Some Simple Time Windows

a number of research directions, in which we show how the approach can be
adapted to a variety of other problems.

This paper is organized as follows. In the next section, we will present our
micro-clustering based stream mining framework. In section 3, we discuss the
stream clustering problem. The classification methods are developed in Section
4. In section 5, we discuss a number of other problems which can be solved
with the micro-clustering approach, and other possible research directions. In
section 6, we will discuss some empirical results for the clustering and classi-
fication problems. In Section 7 we discuss the issues related to our proposed
stream mining methodology and compare it with other related work. Section 8
concludes our study,
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2 The Micro-clustering Based Stream Mining
Framework

In order to apply our technique to a variety of data mining algorithms, we
utilize a micro-clustering based stream mining framework. This framework is
designed by capturing summary information about the nature of the data stream.
This summary information is defined by the following structures:

» Micro-clusters: We maintain statistical information about the data locality
in terms of micro-clusters. These micro-clusters are defined as a temporal
extension of the cluster feature vector [24]. The additivity property of the
micro-clusters makes them a natural choice for the data stream problem.

¢ Pyramidal Time Frame: The micro-clusters are stored at snapshots in
time which follow a pyramidal pattern. This pattern provides an effective trade-
off between the storage requirements and the ability to recall summary statistics
from different time horizons.

The summary information in the micro-clusters is used by an offline com-
ponent which is dependent upon a wide variety of user inputs such as the time
horizon or the granularity of clustering. In order to define the micro-clusters,
we will introduce a few concepts. It is assumed that the data stream consists
of a set of multi-dimensional records X1...Xy... arriving at time stamps
T)...Ty.... Each X; is a multi-dimensional record containing d dimensions
which are denoted by X; = (z} ... xz$).

We will first begin by defining the concept of micro-clusters and pyramidal
time frame more precisely.

DEFINITION 2.1 A micro-clusterfor aset of d-dimensional points X;, ... X,
with timestamps Ty, ... T;_ is the (2-d+3) tuple (CF2% , CF1*,CF2t, CF1* n),
wherein CF2% and C'F1% each corvespond to a vector of d entries. The defi-
nition of each of these entries is as follows:

e For each dimension, the sum of the squares of the data values is maintained
in CE2%, Thus, CF2% contains d values. The p-th entry of CF2% is equal to

no P2
j:1(5'3z'j) :
o For each dimension, the sum of the data values is maintained in CF'1=,
Thus, CF1% contains d values. The p-th entry of CF'1* is equal to 377, n:fj i
o The sum of the squares of the time stamps 13 ... T; is maintained in
CF2t
o The sum of the time stamps T;, .. . T, is maintained in CF1%.
® The number of data points is maintained in n.

We note that the above definition of micro-cluster maintains similar summary
information as the cluster feature vector of [24], except for the additional in-
formation about time stamps. We will refer to this temporal extension of the
cluster feature vector for a set of points C by CFT(C). Asin [24], this summary
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information can be expressed in an additive way over the different data points.
This makes it a natural choice for use in data stream algorithms.

We note that the maintenance of a large number of micro-clusters is essential
in the ability to maintain more detailed information about the micro-clustering
process. For example, Figure 2.1 forms 3 clusters, which are denoted by a, b, c.
At alater stage, evolution forms 3 different figures al, a2, be, with a split into al
and a2, whereas b and ¢ merged into be. If we keep micro-clusters {each point
represents a micro-cluster), such evolution can be easily captured. However, if
we keep only 3 cluster centers a, b, ¢, it is impossible to derive later al, a2, be
clusters since the information of more detailed points are already lost.

The data stream clustering algorithm discussed in this paper can generate
approximate clusters in any user-specified length of history from the current
instant. This is achieved by storing the micro-clusters at particular moments
in the stream which are referred to as snapshots. At the same time, the current
snapshot of micro-clusters is always maintained by the algorithm. The macro-
clustering algorithm discussed at a later stage in this paper will use these finer
level micro-clusters in order to create higher level clusters which can be more
casily understood by the user. Consider for example, the case when the current
clock time 1s ¢, and the user wishes to find clusters in the stream based on
a history of length h. Then, the macro-clustering algorithm discussed in this
paper will use some of the additive properties of the micro-clusters stored at
snapshots t. and (f, — h) in order to find the higher level clusters in a history
or time horizon of length k. Of course, since it is not possible to store the
snapshots at each and every moment in time, it is important to choose particular
instants of time at which it is possible to store the state of the micro-clusters so
that clusters in any user specified time horizon (£, — h, ¢.) can be approximated.

We note that some examples of time frames used for the clustering process
are the natural time frame (Figure 2.2(a) and (b)), and the logarithmic time
frame (Figure 2.2(c)). In the natural time frame the snapshots are stored at
regular intervals. We note that the scale of the natural time frame could be
based on the application requirements. For example, we could choose days,
months or years depending upon the level of granularity required in the analysis.
A more flexible approach is to use the logarithmic time frame in which different
variations of the time interval can be stored. As illustrated in Figure 2.2(c), we
store snapshots at times of ¢,2 - ¢,4 - t.... The danger of this is that we may
Jump too far between successive levels of granularity. We need an intermediate
solution which provides a good balance between storage requirements and the
level of approximation which a user specified horizon can be approximated.

In order to achieve this, we will introduce the concept of a pyramidal time
frame. In this technique, the snapshots are stored at differing levels of granular-
ity depending upon the recency. Snapshots are classified into different orders
which can vary from 1 to log(7"), where T is the clock time elapsed since the
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beginning of the stream. The order of a particular class of snapshots define
the level of granularity in time at which the snapshots are maintained. The
snapshots of different order are maintained as follows:

# Snapshots of the i-th order occur at time intervals of o, where a is an
integer and @ > 1. Specifically, each snapshot of the i-th order is taken at
a moment in time when the clock value! from the beginning of the stream is
exactly divisible by o.

» At any given moment in time, only the last & + 1 snapshots of order ¢ are
stored.

We note that the above definition allows for considerable redundancy in
storage of snapshots. For example, the clock time of 8 is divisible by 20, 21,
22, and 23 (where & = 2). Therefore, the state of the micro-clusters at a clock
time of 8 simultaneously corresponds to order 0, order 1, order 2 and order
3 snapshots. From an implementation point of view, a snapshot needs to be
maintained only once. We make the following observations:

# For a data stream, the maximum order of any snapshot stored at T time
units since the beginning of the stream mining process is log,, ().

o For a data stream the maximum number of snapshots maintained at T time
units since the beginning of the stream mining process is (o + 1) - log,, (7).

e For any user specified time window of £, at least one stored snapshot can
be found within 2 - A units of the current time.

While the first two resuits are quite easy to see, the last one needs to be
proven formally.

LEMMA 2.2 Let h be a user-specified time window, i, be the current time, and
tg be the time of the last stored snapshot of any order just before the time i, — h.
Thent, —t, <2-h.

Proof: Let r be the smallest integer such that o™ > h. Therefore, we know that
a” 1 < h. Since we know that there are -+ 1 snapshots of order (r — 1), at least
one snapshot of order r — 1 must a/ways exist before t.—h. Lett, bethe snapshot
of order » — 1 which occurs just before ¢, —- h. Then (¢, ~ h) — £, < oL,
Therefore, we have t, —t, < h +a' ' < 2. A,

Thus, in this case, it is possible to find a snapshot within a factor of 2 of
any user-specified time window. Furthermore, the total number of snapshots
which need to be maintained are relatively modest. For example, for a data
stream running for 100 years with a clock time granularity of 1 second, the
total number of snapshots which need to be maintained are given by (2 + 1) -
log, {100 * 365 * 24 60 * 60) ~ 95. This is quite a modest requirement given
the fact that a snapshot within a factor of 2 can always be found within any user
specified time window.

It is possible to improve the accuracy of time horizon approximation at a
modest additional cost. In order to achieve this, we save the o + 1 snapshots
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Order of || Clock Times (Last S Snapshots)
Snapshots

0 55354 535251

1 54 525048 46

2 5248 44 40 36

3 48403224 16

4 483216

5 32

Table 2.{.  An examptle of snapshots stored for &« = 2andl = 2

of order » for { > 1. In this case, the storage requirement of the technique
corresponds to (o 4 1) - log,, (T') snapshots. On the other hand, the accuracy of
time horizon approximation also increases substantially. In this case, any time
horizon can be approximated to a factor of (1 + 1/a'~!). We summarize this
result as follows:

LEMMA 2.3 Let h be a user specified time horizon, t. be the curvent time, and
15 be the time of the last stored snapshot of any order just before the timet, — h.
Thent, —ts < (1+1/a'1) - h.

Proof: Similar to previous case.

For larger values of {, the time horizon can be approximated as closely as
desired. For example, by choosing [ = 10, it is possible to approximate any
time horizon within 0.2%, while a total of only (21 + 1} - log,(100 * 365 *
24 % 60 x 60) = 32343 snapshots are required for 100 years. Since historical
snapshots can be stored on disk and only the current snapshot needs to be
maintained in main memory, this requirement is quite feasible from a practical
point of view. It is also possible to specify the pyramidal time window in
accordance with user preferences corresponding to particular moments in time
such as beginning of calendar years, months, and days. While the storage
requirements and horizon estimation possibilities of such a scheme are different,
all the algorithmic descriptions of this paper are directly applicable.

In order to clarify the way in which snapshots are stored, let us consider the
cas¢ when the stream has been running starting at a clock-time of 1, and a use
of o = 2 and I = 2. Therefore 22 + 1 = 5 snapshots of each order are stored.
Then, at a clock time of 55, snapshots at the ¢lock times illustrated in Table 2.1
are stored,

We note that a large number of snapshots are common among different orders.
From an implementation point of view, the states of the micro-clusters at times
of 16, 24, 32, 36, 40, 44, 46, 48, 50, 51, 52, 53, 54, and 55 are stored. It is easy
to see that for more recent ¢clock times, there is less distance between succes-
sive snapshots (better granularity). We also note that the storage requirements
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estimated in this section do not take this redundancy into account. Therefore,
the requirements which have been presented so far are actually worst-case re-
quirements.

These redundancies can be eliminated by using a systematic rute described
in [6], or by using a more sophisticated geometric time frame. In this technique,
snapshots are classified into different frame numbers which can vary from O to a
value no larger than log, (1), where T is the maximum length of the stream. The
frame number of a particular class of snapshots defines the level of granularity
in time at which the snapshots are maintained. Specifically, snapshots of frame
number 4 are stored at clock times which are divisible by 2%, but not by 2¢+1,
Therefore, snapshots of frame number 0 are stored only at odd clock times. It
is assumed that for each frame number, at most max_capacity snapshots are
stored.

We note that for a data stream, the maximum frame number of any snapshot
stored at T time units since the beginning of the stream mining process is
log,(T'). Since at most max_capacity snapshots of any order are stored, this
also means that the maximum number of snapshots maintained at 7' time units
since the beginning of the stream mining process is (max_capacity) - log, (T).
One interesting characteristic of the geometric time window is that for any user-
specified time window of A, at least one stored snapshot can be found within
a factor of 2 of the specified horizon. This ensures that sufficient granularity
is available for analyzing the behavior of the data stream over different time
horizons. We will formalize this result in the lemma below.

LEMMA 2.4 Let h be a user-specified time window, and t, be the current time.
Let us also assume that max_capacity > 2. Then a snapshot exists at time i,
such that h/2 <t.—t; <2-h,

Proof: Let r be the smallest integer such that & < 2"+1. Since r is the smallest
such integer, it also means that 2 > 2". This means that for any interval
(t. — h,t.) of length h, at least one integer ¢ & (¢, — h, t,) must exist which
satisfies the property that t’ mod 27! = Qand ' mod 2" # 0. Lett' be the time
stamp of the last (most current) such snapshot. This also means the following:

hi2<t.—t <h (2.1)

Then, if max_capacity is at least 2, the second last snapshot of order (r — 1)
is also stored and has a time-stamp value of ¢ — 2". Let us pick the time
ts =t — 27, By substituting the value of ¢,, we get:

te—ts=(te—t' +27) (2.2)

Since (t. —t') > 0 and 2" > h/2, it easily follows from Equation 2.2 that
to —ts > h/2.
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Frame no. || Snapshots (by clock time) |
69 67 65 1

70 66 62
68 60 52
56 40 24 ‘

48 16
6432

[V E R VLT I ) RO ]

Table 2.2, A geometric time window

Since ¢’ is the position of the latest snapshot of frame (r — 1) occurring before
the current time ¢, it follows that (¢, — t') < 2". Subsituting this inequality in
Equation 2.2, we get t, — £, < 2" 4+ 27 < h+ h = 2 - h. Thus, we have:

Rj2<t,—t,<2-h (2.3)

The above result ensures that every possible horizon can be closely approx-
imated within a modest level of accuracy. While the geometric time frame
shares a number of conceptual similarities with the pyramidal time frame [6],
it is actually quite different and also much more efficient. This is because it
eliminates the double counting of the snapshots over different frame numbers,
as is the case with the pyramidal time frame [6]. In Table 2.2, we present
an example of a frame table illustrating snapshots of different frame numbers.
The rules for insertion of a snapshot ¢ (at time t) into the snapshot frame table
are defined as follows: (1) if (f mod 2!} = 0 but (¢ mod 2¢*1) # 0, t is in-
serted into frame_number ¢ (2) each slot has a maz_capacity (which is 3 in
our example). At the insertion of ¢ into frame_number i, if the slot already
reaches its max_cupacity, the oldest snapshot in this frame is removed and
the new snapshot inserted. For example, at time 70, since (70 mod 2!} = 0
but (70 mod 22) # 0, 70 is inserted into frame_number 1 which knocks out
the oldest snapshot 58 if the slot capacity is 3. Following this rule, when slot
capacity is 3, the following snapshots are stored in the geometric time window
table: 16, 24, 32, 40, 48, 52, 56, 60, 62, 64, 65, 66, 67, 68, 69, 70, as shown in
Table 2.2. From the table, one can see that the closer to the current time, the
denser are the snapshots stored.

3. Clustering Evolving Data Streams: A Micro-clustering
Approach

The clustering problem is defined as follows: for a given set of data points,
we wish to partition them into one or more groups of similar objects. The
stmilarity of the objects with one another is typically defined with the use of
some distance measure or objective function. The clustering problem has been
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widely researched in the database, data mining and statistics communities [12,
18, 22, 20, 21, 24] because of its use in a wide range of applications. Recently,
the clustering problem has also been studied in the context of the data stream
environment [17, 23].

A previous algorithm called STREAM [23] assumes that the clusters are to be
computed over the entire data strearn. While such a task may be useful in many
applications, a clustering problem may often be defined only over a portion of
a data stream. This is because a data stream should be viewed as an infinite
process consisting of data which continuously evolves with time. As a result,
the underlying clusters may also change considerably with time. The nature of
the clusters may vary with both the moment at which they are computed as well
as the time horizon over which they are measured. For example, a data analyst
may wish to examine clusters occurring in the last month, last year, or last
decade. Such clusters may be considerably different. Therefore, we assume
that on¢ of the inputs to the clustering algorithm is a time horizon over which
the clusters are found. Next, we will discuss CluStream, the online algorithm
used for clustering data streams.

3.1 Micro-clustering Challenges

We note that since stream data naturally imposes a one-pass constraint on the
design of the algorithms, it becomes more difficult to provide such a flexibility
in computing clusters over different kinds of time horizons using conventional
algorithms. For example, a direct extension of the stream based k-means algo-
rithm in [23] to such a case would require a simultanecus maintenance of the
intermediate results of clustering algorithms over all possible time horizons.
Such a computational burden increases with progression of the data stream and
can rapidly become a bottleneck for online implementation. Furthermore, in
many cases, an analyst may wish to determine the clusters at a previous moment
in time, and compare them to the current clusters. This requires even greater
book-keeping and can rapidly become unwieldy for fast data streams.

Since a data stream cannot be revisited over the course of the computation,
the clustering algorithm needs to maintain a substantial amount of information
so that important details are not lost. For example, the algorithm in [23] is
implemented as a continuous version of k-means algorithm which continues
to maintain a number of cluster centers which change or merge as necessary
throughout the execution of the algorithm. Such an approach is especially risky
when the characteristics of the stream change over time. This is because the
amount of information maintained by a k-means type approach is too approxi-
mate in granularity, and once two cluster centers are joined, there is no way to
informatively split the clusters when required by the changes in the stream at a
later stage.
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Therefore a natural design to stream clustering would be separate out the pro-
cess into an online micro-clustering component and an offline macro-clustering
component. The online micro-clustering component requires a very efficient
process for storage of appropriate summary statistics in a fast data stream. The
offline component uses these summary statistics in conjunction with other user
input in order to provide the user with a quick understanding of the clusters
whenever required. Since the offline component requires only the summary
statistics as input, it turns out to be very efficient in practice. This leads to
several challenges:

* What is the nature of the summary information which can be stored ef-
ficiently in a continuous data stream? The summary statistics should provide
sufficient temporal and spatial information for a horizon specific offline clus-
tering process, while being prone to an efficient (online) update process.

¢ At what moments in time should the summary information be stored away
on disk? How can an effective trade-off be achieved between the storage re-
quirements of such a periodic process and the ability to cluster for a specific
time horizon to within a desired level of approximation?

o How can the periodic summary statistics be used to provide clustering and
¢volution insights over user-specified time horizons?

3.2 Online Micro-cluster Maintenance: The CluStream
Algorithm

The micro-clustering phase is the online statistical data collection portion
of the algorithm. This process is not dependent on any user input such as the
time horizon or the required granularity of the clustering process. The aim
is to maintain statistics at a sufficiently high level of (temporal and spatial)
granularity so that it can be effectively used by the offline components such
as horizon-specific macro-clustering as well as evolution analysis. The basic
concept of the micro-cluster maintenance algorithm derives ideas from the &-
means and nearest neighbor algorithms. The algorithm works in an iterative
fashion, by always maintaining a current set of micro-clusters. It is assumed that
a total of ¢ micro-clusters are stored at any motment by the algorithm. We will
denote these micro-clusters by M ... M. Associated with each micro-cluster
i, we create a unique id whenever it is first created. If two micro-clusters are
merged (as will become evident from the details of our maintenance algorithm),
a list of ids is created in order to identify the constituent micro-clusters. The
value of g is determined by the amount of main memory available in order to
store the micro-clusters. Therefore, typical values of ¢ are significantly larger
than the natural number of clusters in the data but are also significantly smaller
than the number of data points arriving in a long period of time for a massive
data streamn. These micro-clusters represent the current snapshot of clusters
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which change over the course of the stream as new points arrive. Their status is
stored away on disk whenever the clock time is divisible by o for any integer
i. At the same time any micro-clusters of order r which were stored at a time
in the past more remote than o!*™ units are deleted by the algorithm.

We first need to create the initial g micro-clusters. This is done using an
offline process at the very beginning of the data stream computation process.
At the very beginning of the data stream, we store the first Init Number points
on disk and use a standard &-means clustering algorithm in order to create the
g initial micro-clusters. The value of Init Number is chosen to be as large as
permitted by the computational complexity of a k-means algorithm creating ¢
clusters.

Once these initial micro-clusters have been established, the online process of
updating the micro-clusters is initiated. Whenever a new data point X;, arrives,
the micro-clusters are updated in order to reflect the changes. Each data point
either needs to be absorbed by a micro-cluster, or it needs to be put in a cluster of
its own. The first preference is to absorb the data point into a currently existing
micro-cluster. We first find the distance of each data point to the micro-cluster
centroids M, ... M,. Let us denote this distance value of the data point X,
to the centroid of the micro-cluster M;; by dist(M;, X, ). Since the centroid
of the micro-cluster is available in the cluster feature vector, this value can be
computed relatively easily.

We find the closest cluster A1, to the data point X, . We note that in many
cases, the point X;, does not naturally belong to the cluster AM,,. These cases
are as follows:

e The data point X;, corresponds to an outlier.

¢ The data point X;, corresponds to the beginning of a new cluster because
of evolution of the data stream.

While the two cases above cannot be distinguished until more data poinis
arrive, the data point -)-(:: needs to be assigned a (new) micro-cluster of its own
with a unique ¢d. How do we decide whether a completely new cluster shouid
be created? In order to make this decision, we use the cluster feature vector
of M,, to decide if this data point falls within the maximum boundary of the
micro-cluster M,,. If so, then the data point X;, is added to the micro-cluster
M,, using the CF additivity property. The maximum boundary of the micro-
cluster M, is defined as a factor of £ of the RMS deviation of the data points
in M, from the centroid. We define this as the maximal boundary factor. We
note that the RMS deviation can only be defined for a cluster with more than
1 point. For a cluster with only 1 previous point, the maximum boundary is
defined in a heuristic way. Specifically, we choose it to be r times that of the
next closest cluster.

If the data point does not lie within the maximum boundary of the nearest
micro-cluster, then a new micro-cluster must be created containing the data
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point A;, . This newly created micro-cluster is assigned a new id which can
identify it uniquely at any future stage of the data steam process. However,
in order to create this new micro-cluster, the number of other clusters must
be reduced by one in order to create memory space. This can be achieved by
either deleting an old cluster or joining two of the old clusters. Our maintenance
algorithm first determines if'it is safe to delete any of the current micro-clusters
as outliers. If not, then a merge of two micro-clusters is initiated.

The first step is to identify if any of the old micro-clusters are possibly out-
liers which can be safely deleted by the algorithm. While it might be tempting
to simply pick the micro-cluster with the fewest number of points as the micro-
cluster to be deleted, this may often lead to misleading results. In many cases,
a given micro-cluster might correspond to a point of considerable cluster pres-
ence in the past history of the stream, but may no longer be an active cluster
in the recent stream activity. Such a micro-cluster can be considered an out-
lier from the current point of view. An ideal goal would be to estimate the
average timestamp of the last m arrivals in each micro-cluster %, and delete
the micro-cluster with the least recent timestamp. While the above estimation
can be achieved by simply storing the last 2 points in each micro-cluster, this
increases the memory requirements of a micro-cluster by a factor of m. Such
a requirement reduces the number of micro-clusters that can be stored by the
available memory and therefore reduces the effectiveness of the algorithin.

We will find a way to approximate the average timestamp of the last m data
points of the cluster M. This will be achieved by using the data about the
timestamps stored in the micro-cluster M. We note that the timestamp data
allows us to calculate the mean and standard deviation® of the arrival times of
points in a given micro-cluster M. Let these values be denoted by uA and
a M respectively. Then, we find the time of arrival of the m /(27 )-th percentile
of the points in M assuming that the timestamps are normally distributed. This
timestamp is used as the approximate value of the recency. We shall call this
value as the relevance stamp of cluster M. When the least relevance stamp of
any micro-cluster is below a user-defined threshold 4, it can be eliminated and
a new micro-cluster can be created with a unique 7d corresponding to the newly
arrived data point X, .

In some cases, none of the micro-clusters can be readily eliminated. This
happens when all relevance stamps are sufficiently recent and lic above the
user-defined threshold 4. In such a case, two of the micro-clusters need to be
merged. We merge the two micro-clusters which are closest to one another.
The new micro-cluster no longer corresponds to one id. Instead, an idlist is
created which is a union of the the ids in the individual micro-clusters. Thus,
any micro-cluster which is result of one or more merging operations can be
identified in terms of the individual micro-clusters merged into it.
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‘While the above process of updating is executed at the arrival of each data
point, an additional process is executed at cach clock time which is divisible
by «* for any integer 4. At each such time, we store away the current set of
micro-chusters (possibly on disk) together with their id list, and indexed by their
time of storage. We also delete the least recent snapshot of order 4, if o + 1
snapshots of such order had already been stored on disk, and if the clock time for
this snapshot is not divisible by a**!. (In the latter case, the snapshot continues
to be a viable snapshot of order (i + 1).) These micro-clusters can then be used
to form higher level clusters or an evolution analysis of the data stream.

33 High Dimensional Projected Stream Clustering

The method can also be extended to the case of high dimensional projected
stream clustering . The algorithms is referred to as HPSTREAM. The high-
dimensional case presents a special challenge to clustering algorithms even in
the traditional domain of static data sets. This is because of the sparsity of
the data in the high-dimensional case. In high-dimensional space, all pairs
of points tend to be almost equidistant from one another. As a result, it is
often unrealistic to define distance-based clusters in a meaningful way. Some
recent work on high-dimensional data uses techniques for projected clustering
which can determine clusters for a specific subset of dimensions [1, 4]. In these
methods, the definitions of the clusters are such that each cluster is specific
to a particular group of dimensions. This alleviates the sparsity problem in
high-dimensional space to some extent. Even though a cluster may not be
meaningfully defined on all the dimensions because of the sparsity of the data,
some subset of the dimensions can always be found on which particular subsets
of points form high quality and meaningful clusters. Of course, these subsets
of dimensions may vary over the different clusters. Such clusters are referred
to as projected clusters [1].

In {8], we have discussed methods for high dimensional projected clustering
of data streams. The basic idea is to use an (incremental) algorithm in which
we associate a set of dimensions with each cluster. The set of dimensions is
represented as a d-dimensional bit vector B(C;) for each cluster structure in
JFCS. This bit vector contains a 1 bit for each dimension which is included
in cluster C;. In addition, the maximum number of clusters k£ and the average
cluster dimensionality [ is used as an input parameter. The average cluster
dimensionality { represents the average number of dimensions used in the cluster
projection. An iterative approach is used in which the dimensions are used to
update the clusters and vice-versa. The structure in FCS uses a decay-based
mechanism in order to adjust for evolution in the underlying data stream. Details
are discussed in [8].
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Figure 2.3, Varying Horizons for the classification process

4, Classification of Data Streams: A Micro-clustering
Approach

One important data mining problem which has been studied in the context of
data streams is that of stream classification [15]. The main thrust on data stream
mining in the context of classification has been that of one-pass mining [14, 19].
In general, the use of one-pass mining does not recognize the changes which
have occurred in the model since the beginning of the stream construction
process [5]. While the work in [19] works on time changing data streams,
the focus is on providing effective methods for incremental updating of the
classification model. We note that the accuracy of such a model cannot be
greater than the best sliding window model on a data stream. For example, in
the case illustrated in Figure 2.3, we have illustrated two classes (labeled by
’x* and ’-") whose distribution changes over time. Correspondingly, the best
horizon at times #; and t; will also be different. As our empirical results will
show, the true behavior of the data stream is captured in a temporal model which
is sensitive to the level of evolution of the data stream.

The classification process may require simultaneous model construction and
testing in an environment which constantly evolves over time. We assume that
the testing process is performed concurrently with the training process. This
is often the case in many practical applications, in which only a portion of
the data is labeled, whereas the remaining is not. Therefore, such data can
be separated out into the (labeled) training stream, and the (unlabeled) testing
stream. The main difference in the construction of the micro-clusters is that
the micro-clusters are associated with a class label; therefore an incoming data
point in the training stream can only be added to a micro-cluster belonging to
the same class. Therefore, we construct micro-clusters in almost the same way
as the unsupervised algorithm, with an additional class-label restriction.

From the testing perspective, the important point to be noted is that the most
effective classification model does not stay constant over time, but varies with
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progression of the data stream. If a static classification model were used for
an evolving test stream, the accuracy of the underlying classification process
is likely to drop suddenly when there is a sudden burst of records belonging to
a particular class. In such a case, a classification model which is constructed
using a smaller history of data is likely to provide better accuracy. In other
cases, a longer history of training provides greater robustness.

In the classification process of an evolving data stream, either the short
term or long term behavior of the stream may be more important, and it ofien
cannot be known a-priori as to which one is more important. How do we
decide the window or horizon of the training data to use so as to obtain the best
classification accuracy? While techniques such as decision trees are useful for
one-pass mining of data streams [14, 19], these cannot be easily used in the
context of an on-demand classifier in an evolving environment. This is because
such a classifier requires rapid variation in the horizon selection process due
to data stream evolution. Furthermore, it is too expensive to keep track of
the entire history of the data in its original fine granularity. Therefore, the
on-demand classification process still requires the appropriate machinery for
efficient statistical data collection in order to perform the classification process.

4.1 On-Demand Stream Classification

We use the micro-clusters to perform an On Demand Stream Classification
Process. In order to perform effective classification of the stream, it is important
to find the correct time-horizon which should be used for classification, How
do we find the most effective horizon for classification at a given moment in
time? In order to do so, a small portion of the training stream is not used
for the creation of the micro-clusters. This portion of the training stream is
referred to as the horizon fitting stream segment. The number of points in the
stream used for horizon fitting is denoted by %¢;;. The remaining portion of the
training stream is used for the creation and maintenance of the class-specific
micro-clusters as discussed in the previous section.

Since the micro-clusters are based on the entire history of the stream, they
cannet directly be used to test the effectiveness of the classification process over
different time horizons. This is essential, since we would like to find the time
horizon which provides the greatest accuracy during the classification process.
We will denote the sct of micro-clusters at time ¢, and horizon A by N (¢, h).
This set of micro-clusters is determined by subtracting out the micro-clusters
at time 7, — h from the micro-clusters at time ¢.. The subtraction operation
is naturally defined for the micro-clustering approach. The essential idea is
to match the micro-clusters at time ¢. to the micro-clusters at time t. — h,
and subtract out the corresponding statistics. The additive property of micro-
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clusters ensures that the resulting clusters correspond to the horizon {f, —k, f.).
More details can be found in [6].

Once the micro-clusters for a particular time horizon have been determined,
they are utilized to determine the classification accuracy of that particular hori-
zon. This process is executed periodically in order to adjust for the changes
which have cccurred in the stream in recent time periods. For this purpose,
we usc the horizon fitting stream segment. The last kg; points which have
arrived in the horizon fitting stream segment are utilized in order to test the
classification accuracy of that particular horizon. The value of kj;; is chosen
while taking into consideration the computational complexity of the horizon
accuracy estimation. In addition, the value of k¢ should be small enough so
that the points in it reflect the immediate locality of ¢,. Typically, the value of
ki should be chosen in such a way that the least recent point should be no
larger than a pre-specified number of time units from the current time ... Let us
denote this set of points by Q¢;;. Note that since Qp;¢ is a part of the training
stream, the class labels are known a-priori.

In order to test the classification accuracy of the process, each point X € @ Fit
is used in the following nearest neighbor clagsification procedure:

» We find the closest micro-cluster in A (t., h) to X.

» We determine the class label of this micro-cluster and compare it to the true
class label of X. The accuracy over all the points in Q 7i¢ 1 then determined.
This provides the accuracy over that particular time horizon.

The accuracy of all the time horizons which are tracked by the geometric
time frame are determined. The p time horizons which provide the greatest
dynamic classification accuracy (using the last ky;; points) are selected for the
classification of the stream. Let us denote the corresponding horizon values
by # = {f1...hy}. We note that since k;; represents only a small locality
of the points within the current time period ¢., it would seem at first sight
that the system would always pick the smallest possible horizons in order to
maximize the accuracy of classification. However, this is often not the case
for evolving data streams. Consider for example, a data stream in which the
records for a given class arrive for a period, and then subsequently start arriving
again after a time interval in which the records for another class have arrived.
In such a case, the horizon which includes previous occurrences of the same
class is likely to provide higher accuracy than shorter horizons. Thus, such a
system dynamically adapts to the most effective horizon for classification of
data streams. In addition, for a stable stream the system is also likely to pick
larger horizons because of the greater accuracy resulting from use of larger data
sizes.



26 DATA STREAMS: MODELS AND ALGORITHMS

The classification of the test stream is a separate process which is executed
continuously throughout the algorithm. For each given test instance X, the
above described nearest neighbor classification process is applied using each
h; € H. It is often possible that in the case of a rapidly evolving data stream,
different horizons may report result in the determination of different class labels.
The majority class among these p class labels is reported as the relevant class.
More details on the technique may be found in [7].

5. Other Applications of Micro-clustering and Research
Directions

While this paper discusses two applications of micro-clustering, we note that
anumber of other problems can be handled with the micro-clustering approach.
This is because the process of micro-clustering creates a summary of the data
which can be leveraged in a variety of ways for other problems in data mining.
Some examples of such problems are as follows:

m  Privacy Preserving Data Mining: In the problem of privacy preserving
data mining, we create condensed representations [3] of the data which
show k-anonymity. These condensed representations are like micro-
clusters, except that each cluster has 2 minimum cardinality threshold
on the number of data points in it. Thus, each cluster contains at least
k data-points, and we ensure that the each record in the data cannot be
distinguished from at least k& other records. For this purpose, we only
maintain the summary statistics for the data points in the clusters as
opposed to the individual data points themselves. In addition to the first
and second order moments we also maintain the covariance matrix for
the data in each cluster. We note that the covariance matrix provides
a complete overview of the distribution of in the data. This covariance
matrix can be used in order to generate the pseudo-points which match
the distribution behavior of the data in each micro-cluster. For relatively
small micro-chusters, it is possible to match the probabilistic distribution
in the data fairly closely. The pseudo-points can be used as a surrogate for
the actual data points in the clusters in order to generate the relevant data
mining results. Since the pseudo-points match the original distribution
quite closely, they can be used for the purpose of a variety of data mining
algorithms. In [3], we have illustrated the use of the privacy-preserving
technique in the context of the classification problem. Our results show
that the classification accuracy is not significantly reduced because of the
use of pseudo-points instead of the individual data points.

s Query Estimation: Since micro-clusters encode summary information
about the data, they can also be used for query estimation . A typical
example of such a technique is that of estimating the selectivity of queries,
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In such cases, the summary statistics of micro-clusters can be used in
order to estimate the number of data points which lie within a certain
interval such as a range query. Such an approach can be very efficient
in a variety of applications since voluminous data streams are difficult to
use if they need to be utilized for query estimation. However, the micro-
clustering approach can condense the data into summary statistics, so that
it is possible to efficiently use it for various kinds of queries. We note
that the technique is quite flexible as long as it can be ased for different
kinds of queries. An example of such a technique is illustrated in [9], in
which we use the micro-clustering technique (with some modifications
on the tracked statistics) for futuristic query processing in data streams.

»  Statistical Forecasting: Since micro-clusters contain temporal and con-
densed information, they can be used for methods such as statistical
forecasting of streams . While it can be computationally intensive to
use standard forecasting methods with large volumes of data points, the
micro-clustering approach provides a methodology in which the con-
densed data can be used as a surrogate for the original data points. For
example, for a standard regression problem, it is possible to use the cen-
troids of different micro-clusters over the various temporal time frames in
order to estimate the values of the data points. These values can then be
used for making aggregate statistical observations about the future. We
note that this is a useful approach in many applications since it is often
not possible to effectively make forecasts about the future using the large
volume of the data in the stream. In [9], it has been shown how to use the
technique for querying and analysis of future behavior of data streams.

In addition, we believe that the micro-clustering approach is powerful enough
to accomodate a wide variety of problems which require information about the
summary distribution of the data. In general, since many new data mining
problems require summary information about the dats, it is conceivable that the
micro-clustering approach can be used as a methodology to store condensed
statistics for general data mining and exploration applications.

6. Performance Study and Experimental Results

All of our experiments are conducted on a PC with Intel Pentium ITI processor
and 512 MB memory, which runs Windows XP professional operating system.,
For testing the accuracy and efficiency of the CluStream algorithm, we compare
CluStream with the STREAM algorithin [17, 23], the best algorithm reported
so far for clustering data streams. CluStream is implemented according to the
description in this paper, and the STREAM K-means is done strictly according
1o [23], which shows better accuracy than BIRCH [24]. To make the comparison
fair, both CluStream and STREAM K-means use the same amount of memory.
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Specifically, they use the same stream incoming speed, the same amount of
memory to store intermediate clusters (called Micro-clusters in CluStream), and
the same amount of memory to store the final clusters (called Macro-clusters
in CluStream).

Because the synthetic datasets can be generated by controlling the number

of data points, the dimensionality, and the number of clusters, with different
distribution or evolution characteristics, they are used to evaluate the scalability
in our experiments. However, since synthetic datasets are usually rather dif-
ferent from real ones, we will mainly use real datasets to test accuracy, cluster
evolution, and outlier detection.
Real datasets. First, we need to find some real datasets that evolve significantly
over time in order to test the effectiveness of CluStream. A good candidate for
such testing is the KDD-CUP*99 Network Intrusion Detection stream data set
which has been used earlier [23] to evaluate STREAM accuracy with respect
to BIRCH. This data set corresponds to the important problem of automatic
and real-time detection of cyber attacks. This is also a challenging problem
for dynamic stream clustering in its own right. The offline clustering algo-
rithms cannot detect such intrusions in real time. Even the recently proposed
stream clustering algorithms such as BIRCH and STREAM cannot be very ef-
fective because the clusters reported by these algorithms are all generated from
the entire history of data stream, whereas the current cases may have evolved
significantly.

The Network Intrusion Detection dataset consists of a series of TCP con-
nection records from two weeks of LAN network traffic managed by MIT
Lincoln Labs. Each n record can either correspond to a normal connection, or
an intrusion or attack. The attacks fall into four main categories: DOS (i.e.,
denial-of-service), R2L (i.e., unauthorized access from a remote machine), U2R
(i.e., unauthorized access to local superuser privileges), and PROBING (i.e.,
surveillance and other probing). As a result, the data contains a total of five
clusters including the class for “normal connections”. The attack-types are
further classified into one of 24 types, such as buffer-overflow, guess-passwd,
neptune, portsweep, rootkit, smurf, warezclient, spy, and so on. It is evident
that each specific attack type can be treated as a sub-cluster. Most of the con-
nections in this dataset are normal, but occasionally there could be a burst of
attacks at certain times. Also, each connection record in this dataset contains
42 attributes, such as duration of the connection, the number of data bytes trans-
mitted from source to destination (and vice versa), percentile of connections
that have “SYN™ errors, the number of “root™ accesses, etc. As in [23], all 34
continuous attributes will be used for clustering and one outlier point has been
removed.

Second, besides testing on the rapidly evolving network intrusion data stream,
we also test our method over relatively stable strecams. Since previously re-
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ported stream clustering algorithms work on the entire history of stream data,
we believe that they should perform effectively for some data sets with stable
distribution over time. An example of such a data set is the KDD-CUP*98
Charitable Donation data set. We will show that even for such datasets, the
CluStream can consistently beat the STREAM algorithm.

The KDD-CUP*98 Charitable Donation data set has also been used in eval-
uating several one-scan clustering algorithms, such as {16]. This data set con-
tains 95412 records of information about people who have made charitable
donations in response to direct mailing requests, and clustering can be used to
group donors showing similar donation behavior. As in {16], we will only use
56 fields which can be extracted from the total 481 fields of each record. This
data set is converted into a data stream by taking the data input order as the
order of streaming and assuming that they flow-in with a uniform speed.
Synthetic datasets. To test the scalability of CluStream, we generate some
synthetic datasets by varying base size from 100K to 1000K points, the number
of clusters from 4 to 64, and the dimensionality in the range of 10 to 100.
Because we know the true cluster distribution a priori, we can compare the
clusters found with the true clusters. The data points of each synthetic dataset
will follow a series of Gaussian distributions, and to reflect the evolution of the
stream data over time, we change the mean and variance of the current Gaussian
distribution every 10K points in the synthetic data generation.

The quality of clustering on the real data sets was measured using the sum
of square distance (550)), defined as follows. Assume that there are a total of
N points in the past horizon at current time 7. For each point p;, we find the
centroid Cl, of its closest macro-cluster, and compute d(p;, Cp, ), the distance
between p; and C,,. Then the S5¢) at time T, with horizon H (denoted as
88Q(T., H)) is equal to the sum of d*(p;, Cy,) for all the N points within the
previous horizon H. Unless otherwise mentioned, the algorithm parameters
were set at o = 2, { = 10, Init Number = 2000, and ¢t = 2.

We compare the clustering quality of CluStream with that of STREAM for
different horizons at different times using the Network Intrusion dataset and the
Charitable donation data set. The results are illustrated in Figures 2.4 and 2.5.
We run each algorithm 5 times and compute their average 85Qs. The results
show that CluStream is almost always better than STREAM. All experiments
for these datasets have shown that CluStream has substantially higher quality
than STREAM. However the Network Intrusion data set showed significantly
better results than the charitable donation data set because of the fact the network
intrusion data set was a highly evolving data set. For such cases, the evolution
sensitive CluStream algorithm was much more effective than the STREAM
algorithm.

We also tested the accuracy of the On-Demand Stream Classificr. The first
test was performed on the Network Intrusion Data Set. The first experiment
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Figure 2.4, Quality comparison (Network Intrusion dataset, horizon=256, stream_speed=200)
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Figure 2.5, Quality comparison (Charitable Donation dataset, horizon=4, stream_speed=200)
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Figure 2.7. Distribution of the (smallest) best horizon (Network Intrusion datasct, Time
units=2500, buffer_size=1600, k7;,=80, indt.number=400)
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Figure 2.8 Accuracy comparison (Synthetic dataset B300kCS5D20, stream_speed=100,
buffer_size=500, k p:=25, init_number=400)
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Figure 2.9, Distribution of the (smallest) best horizon (Synthetic dataset B300kC5D20, Time
units=2000, buffer_size=500, k;:;=25, init_number=400)

was conducted with a stream speed at 80 connections per time unit (i.e., there
are 40 training stream points and 40 test stream points per time unit). We
set the buffer.size at 1600 points, which means upon receiving 1600 points
(including both fraining and test stream peints) we’ll use a small set of the
training data points (In this case ky;; =80) to choose the best horizon. We
compared the accuracy of the On-Demand-Stream classifier with two simple
one-pass stream classifiers over the entire data stream and the selected sliding
window (i.e., sliding window H =R8). Figure 2.6 shows the accuracy comparison
among the three algorithms. We can see the On-Demand-Stream classifier
consistently beats the two simple one-pass classifiers. For example, at time unit
2000, the On-Demand-Stream classifier’s accuracy is about 4% higher than the
classifier with fixed sliding window, and is about 2% higher than the classifier
with the entire dataset. Because the class distribution of this dataset evolves
significantly over time, either the entire dataset or a fixed stiding window may
not always capture the underlying stream evolution nature. As a result, they
always have a worse accuracy than the On-Demand-Stream classifier which
always dynamically chooses the best horizon for classifying.

Figure 2.7 shows the distribution of the best horizons (They are the smallest
ones if there exist several best horizons at the same time). Although about 78.4%
of the (smallest) best horizons have a value 1/4, there do exist about 21.6% best
horizons ranging from 1/2 to 32 (e.g., about 6.4% of the best horizons have a
value 32). This also iflustrates that there is no fixed sliding window that can
achieve the best accuracy and the reason why the On-Demand-Stream classifier
can outperform the simple one-pass classifiers over either the entire dataset or
a fixed sliding window.

We have also generated one synthetic dataset B300kC5D20 to test the clas-
sification accuracy of these algorithms. This dataset contains 5 class labels and
300K data points with 20 dimensions. We first set the stream speed at 100 points
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Figure 2.10.  Stream Proc. Rate (Charit. Donation data, stream_speed=2000)
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Figure 2.11.  Stream Proc. Rate (Ntwk. Intrusion data, stream_speed=2000)

per time unit. Figure 2.8 shows the accuracy comparison among the three al-
gortihms: The On-Demand-Stream classifier always has much better accuracy
than the other two classifiers. Figure 2.9 shows the distribution of the (small-
est) best horizons which can explain very well why the On-Demand-Stream
classifier has better accuracy.

We also tested the efficiency of the micro-cluster maintenance algorithm
with respect to STREAM on the real data sets. We note that this maintenance
process needs to be performed both for the clustering and classificiation algo-
rithms with minor differences. Therefore, we present the resuits for the case
of clustering. By setting the number of micro-clusters to 10 times the number
of natural clusters, Figures 2.10 and 2,11 show the stream processing rate (i.e.,
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the number of points processed per second) as opposed to the running time
for two real data sets. Since CluStream requires some time to compute the
initial set of micro-clusters, its precessing rate is lower than STREAM at the
very beginning. However, once steady state is reached, CluStream becomes
faster than STREAM in spite of the fact that it needs to store the snapshots
to disk periodically. This is because STREAM takes a few iterations to make
k-means clustering converge, whereas CluStream just needs to judge whether
a set of points will be absorbed by the existing micro-clusters and insert into
them appropriately.

The key to the success of micro-cluster maintenance is high scalability. This
is because this process is exposed to a potentially large volume of incoming
data and needs to be implemented in an efficient and online fashion. The most
time-consuming and frequent operation during micro-cluster maintenance is
that of finding the closest micro-cluster for each newly arrived data point. It is
clear that the complexity of this operation increases linearly with the number of
micro-clusters. It is also evident that the number of micro-clusters maintained
should be sufficiently larger than the number of input clusters in the data in
order to obtain a high quality clustering. While the number of input clusters
cannot be kniown a priori, it is instructive to examine the scalability behavior
when the number of micro-clusters was fixed at a constant large factor of the
number of input clusters. Therefore, for all the experiments in this section, we
will fix the number of micro-clusters to 10 times the number of input clusters.
We will present the scalability behavior of the CluStream algorithm with data
dimensionality, and the number of natural clusters.

The first series of data sets were generated by varying the dimensionality
from 10 to 80, while fixing the number of points and input clusters. The first
data set series B100CS indicates that it contains 100K points and 5 clusters. The
same notational convention is used for the second data set series B200C10 and
the third one B400C20. Figure 2.12 shows the experimental results, from which
one can see that CluStream has linear scalability with data dimensionality. For
example, for dataset series B400C20, when the dimensionality increases from
10 to 80, the running time increases less than 8 times from 55 seconds to 396
seconds.

Another three series of datasets were generated to test the scalability against
the number of clusters by varying the number of input clusters from 5 to 40,
while fixing the stream size and dimensionality. For example, the first data
set series B100D10 indicates it contains 100K points and 10 dimensions. The
same convention is used for the other data sets. Figure 2.13 demonstrates that
CluStream has linear scalability with the number of input clusters.
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7. Discussion

In this paper, we have discussed effective and efficient methods for clustering
and classification of data streams. The techniques discussed in this paper utilize
a micro-clustering approach in conjunction with a pyramidal time window. The
technique can be used to cluster different kinds of data streams, as well as
create a classifier for the data. The methods have clear advantages over recent
techniques which try to cluster the whole stream at one time rather than viewing
the stream as a changing process over time. The CluStream model provides a
wide variety of functionality in characterizing data stream clusters over different
time horizons in an evolving environment.

This is achieved through a careful division of labor between the online sta-
tistical data collection component and an offline analytical component. Thus,
the process provides considerable flexibility to an analyst in a real-time and
changing environment. In order to achieve these goals, we needed to the design
the statistical storage process of the online component very carefully. The use
of a pyramidal time window assures that the essential statistics of evolving data
streams can be captured without sacrificing the underlying space- and time-
efficiency of the stream clustering process.

The essential idea behind the CluStream model is to perform effective data
summarization so that the underlying summary data can be used for a host of
tasks such as clustering and classification. Therefore, the technique provides a
framework upon which many other data mining tasks can be buiit.

Notes

1. Withoutloss of generatity, we can assume Lhat one unit of clock time is the smallest 1evel of granularity.
Thus, the 0-th order snapshots measure the time intervals at the smallest level of granularity.

2. If the micro-cluster contains fewer than 2 - m points, then we simply find the average timestamp of
all points in the cluster.

3. The mean is equal to CF'1% /n. The standard deviation is equal to /C F 2% fn — (CF1t/n)2,
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Abstract

1.

With the advance in both hardware and software technologies, automated data
generation and storage has become faster than ever. Such datais referred to as data
streams. Streaming data is ubiquitous today and it is often a challenging task to
store, analyze and visualize such rapid large volumes of data. Most conventional
data mining techniques have to be adapted to run in a streaming environment,
because of the underlying resource constraints in terms of memory and running
time. Furthermore, the data stream may often show concept drift, because of
which adaptation of conventional algorithms becomes more challenging. One
such important conventional data mining problem is that of classification. In the
classification problem, we attempt o model the class variable on the basis of onc
or more feature variables. While this problem has been extensively studied from
a conventional mining perspective, it is a much more challenging problem in the
data stream domain. In this chapter, we will re-visit the problem of classification
from the data stream perspective. The techniques for this problem need to be
thoroughly re-designed to address the issue of resource constraints and concept
drift, This chapter reviews the state-of-the-art techniques in the literature along
with their corresponding advantages and disadvantages.

Introduction

Classification problems [19, 20] have been studied thoroughly as a major cat-
egory of the data analysis tasks in machine learning, statistical inference [18]
and data mining. Classification methods represent the set of supervised learning
techniques where a set of dependent variables needs to be predicted based on
another set of input atiributes. There are two main distinctive approaches under
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the supervised learning category: classification and regression. Classification
is mainly concerned with categorical attributes as dependent variables; however
regression is concerned with numerical attributes as its output. The classifica-
tion process is divided into two phases: model building and model testing. In
model building, a learning algorithm runs over a data set to induce a model that
could be used in estimating an output. The quality of this estimation is assessed
in the model testing phase. The model building process is referred to as train-
ing as well. Classification techniques [19, 20] have attracted the attention of
rescarchers due to the significance of their applications. A variety of methods
such as decision trees, rule based methods, and neural networks are used for the
classification problem. Many of these techniques have been designed to build
classification models from static data sets where several passes over the stored
data is possible. This is not possible in the case of data streams, in which it is
necessary to process the entire data set in one pass. Furthermore, the classifi-
cation problem needs to be re-designed in the context of concept drift, a unique
problem in the case of data streams.

The applications of data stream classification can vary from critical astro-
nomical and geophysical applications [6] to real-time decision support in busi-
ness and industrial applications [24, 25]. There are several potential scenarios
for such applications. For example, classification and analysis of biosensor
measurements around a city for security reasons is an important emerging ap-
plication. The analysis of simulation results and on-board sensor readings
in scientific applications has its potential in changing the mission plan or the
experimental settings in real time. Web log and clickstream analysis is an im-
portant application in the electronic commerce domain. The classification of
data streams generated from the marketplace such as stock market streaming
information is another appealing application. Decision trees created from stock
market data in distributed streaming environment have been used in MobiMine
[24, 25].

The process of adapting classification models to many of the above appli-
cations is often non-trivial. The most important challenge with regard to clas-
sification is that of concept drifting of evolving data streams. The process of
concept drifi results from the natural tendency of the underlying data to evolve
over time. The classifier is most likely to be outdated after a time window due
to the continuous change of the streaming information on a temporal basis. We
discuss this issue along with a number of other challenges for the classification
problem. Solution approaches used in addressing these issues are summarized
in order to emphasize their advantages, and drawbacks. This summarization
also provides some insight for other stream mining techniques due to the shared
research issues across different applications. A thorough discussion of classi-
fication techniques in data streams is given as a guide to researchers as well



A Survey of Classification Methods in Data Streams 41

as practitioners, The techniques are presented in an easy way with illustrative
figures depicting each algorithm in a diagrammatic way.

The chapter is organized as follows. Research issues withregard to the stream
classification problems are discussed in section 2. Section 3 represents the ap-
proaches proposed as solutions to address the previous research issues. Section
4 provides a survey of the classification techniques in stream mining literature.
Techniques surveyed include the Ensemble-based Classification {30], Very Fast
Decision Trees (VFDT) [9] with its extensions [22], [23], On-Demand Classifi-
cation [3], On-Line Information Network (OLIN) [26], Lightweight Classifica-
tion (LWClass) [14], Scalable Classification Algorithm by Learning decisiOn
Patterns (SCALLOP) [12] and Adaptive Nearest Neighbor Classification for
Data-streams (ANNCAD) [27]. This selection of techniques is based on the
soundness of the techniques and how well the techniques addresses important
research challenges. Finally, the chapter is concluded with a summary in section
5.

2. Research Issues

In this section, we will address the primary research issues encountered in
the context of stream mining. While many of these issues are shared across
different stream mining applications, we discuss these issues with a special
emphasis on the problem of classification [4, 9, 10, 13, 14, 16, 17, 21, 28].

m High Speed Nature of Data Streams: The inherent characteristic of
data streams is its high speed. The algorithm should be able to adapt to
the high speed nature of streaming information. The rate of building a
classification model should be higher than the data rate. Furthermore, it
is not possible to scan the data more than once. This is referred to as the
ORe-pass constraint.

s Unbounded Memory Requirements: Classification techniques require
data to be resident in memory for building the model. The huge amounts
of data streams generated rapidly dictate the need for unbounded memory.
This challenge has been addressed using load shedding, sampling, aggre-
gation, and creating data synopsis. The memory issue is an important
motivation behind many of the developed techniques in the area.

a  Concept Drifting: Concept drifts change the classifier results over time.,
This is because of the change in the underlying data patterns. It is also
referred to as data stream evolution [1]. This results in the model becom-
ing stale and less relevant over time. The capture of such changes would
help in updating the classifier model effectively. The use of an outdated
model could lead to a very low classification accuracy.
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Tradeoff between Accuracy and Efficiency; The main tradeoff in data
stream mining algorithms is between the accuracy of the output with re-
gard to the application and the time and space complexity. In many cases,
approximation algorithms can guarantee error bounds, while maintaining
a high level of efficiency.

Challenges in Distributed Applications: A significant number of data
stream applications run in mobile environments with limited bandwidth
such as sensor networks and handheld devices. Thus knowledge structure
representation is an important issue. After extracting models and patterns
locally from data stream generators or receivers, it is important to transfer
the data mining output to the user. The user could be a mobile user or
a stationary one getting the results from mobile nodes. This is often a
challenge because of the bandwidth limits in transferring data. Kargupta
et al. [24] have addressed this problem by using Fourier transformations
to efficiently represent decision trees for the purpose of transmission over
limited bandwidth links.

Visualization of data stream mining results: Visualization of tradi-
tional data mining results on a desktop has been a research issue for more
than a decade. Visualization of mining resulis in small sereens of a Per-
sonal Digital Assistant (PDA) for example is a real challenge and an open
research problem. Given a scenario for a businessman on a move and
the data are being streamed and analyzed on his PDA. The results of this
analysis should be efficiently visualized in a way that allows him to take a
quick decision. The pioneering work on representation of decision trees
in a mobile device has been suggested by Kargupta et al {24].

Modelling change of mining results over time: In some cases, the user
is not interested in mining data stream results, but how these results are
changing over a temporal basis. The classification changes could help in
understanding the change in data streams over time.

Interactive Mining environment to satisfy user results: Mining data
streams is a highly application oriented field. For example, the user
should be able to change the classification parameters to serve the special
needs ofthe user under the current context. The fast nature of data streams
often makes it more difficult to incorporate user-interaction.

The integration of data stream management systems and data stream
mining approaches: The integration among storage, querying, mining
and reasoning of the incoming stream would realize robust streaming
systems that could be used in different applications [5, 7). Along this
line, current database management systems have achieved this goal over
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static stored data sets. However, this goal has not been fully realized for
the case of data streams. An important future research issue is to integrate
the stream mining algorithms with known stream management systems
in order to design complete systems for stream processing.

m Hardware and other Technological Issues: The technological issue
of mining data streams is an important one. How do we represent the
data in such an environment in a compressed way? Which platforms
are best suited such special real-time applications? Hardware issues
are of special concerns. Small devices generating data streams are not
designed for complex computations. Currently emulators are used for
such tasks and it is a real burden for data stream mining applications which
run in resource-constrained environments. Novel hardware solutions are
required to address this issue.

= Real time accuracy evaluation and formalization: In many cases,
resource constrained methods work with atrade-off between accuracy and
efficiency of the designed method. Therefore, we need a feedback of the
current achieved accuracy with relation to the available resources, This
is needed to adjust the algorithm parameters according to the available
resources. This formalization would also help in making decisions about
the reliability of the output.

Among the above-mentioned issues, the first three are of special significance.
‘Thus, we will use them as the basis for comparing different stream classification
techniques in this chapter. We also note that many of these issues are shared
among all mining techniques in streaming environment. The following section
concisely summarizes the approaches that are used as solutions addressing the
above issues.

3. Solution Approaches

Many of the afore-mentioned issues can be solved using well-established
statistical and computational approaches. While, specific methods for stream
classification will be discussed later, it is useful to understand the broad charac-
teristics of different methods which are used to adapt conventional classification
techniques to the case of data streams. We can categorize these solutions as
data-based and task-based ones. In data-based solutions, the idea is to examine
only a subset of the whole data set or to transform the data vertically or hori-
zontally to an approximate smaller size data representation. Such an approach
allows us to utilize many known data mining techniques to the case of data
streams. On the other hand, in task based solutions, some standard algorithmic
modification techniques can be used to achieve time and space efficient solu-
tions [13]. Table 3.1 shows the data-based techniques, while Table 3.2 shows
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Technique Definition Pros | Cons I
Sampling Choosing a data Error Bounds Poor for
subset for analysis Cuaranteed | anomaly detection
Load Ignoring a chunk Efficient Very poor for
Shedding of data for querics anomaly detection
Sketching Random projection Extremely May ignore
on feature set Efficient Relevant features
Synopsis Quick Analysis Task Not sufficient
Structure Transformation Independent for very
fast stream
Aggregation | Compiling summary | Analysis Task May ignore
statistics Independent { Relevant features

Table 3.1. Data Based Techniques

[ Technique |  Definition Pros Cons I
Approximation Algorithms with | Efficient | Resource adaptivity
Algorithms Error Bounds with data rates
not always possible
Sliding Analyzing most | General Ignores part
Window recent streams of stream
Algorithm Output | Highly Resource | General Cost overhead
Granularity aware technique of resourec aware
with memory and component
tluctuating
data rates

ITable 3.2, Task Based Techniqucs

the task-based techniques. Each table provides a definition, advantages and
disadvantages of each technique.

While the methods in Tables 3.1 and 3.2 provide an overview of the broad
methods which can be used to adapt conventional methods to classification, it
is more useful to study specific techniques which are expressly designed for the
purpose of classification. In the next section, we will provide a review of these
methods,

4. Classification Techniques

This section reviews the state-of-the-art of data stream classification tech-
niques. We have provided an overview of some of the key methods, how well
they address the research problems discussed earlier,
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4.1 Ensemble Based Classification

Wang et al. [30] have proposed a generic framework for mining concept
drifting data streams. The framework is based on the observation that many
data stream mining algorithms do not address the issue of concept drift in the
evolving data. The idea is based on using an ensemble of classification models
such as decision trees using C4.5, RIPPER, naive Bayesian and others to vote
for the classification output to increase the accuracy of the predicted output.

This framework was developed to address three research challenges in data
stream classification:

1. Concept Drift: The accuracy of the output of many classifiers is very
sensitive to concept drifts in the evolving streams. At the same time, one
does not want to remove excessive parts of the stream, when there is no
concept drift. Therefore, a method needs to be designed to decide which
part of the stream to be used for the classification process.

2. Efficiency: The process of building classifiers is a complex computa-
tional task and the update of the model due to concept drifis is a compli-
cated process. This is especially relevant in the case of high speed data
streams.

3. Robustness: Ensemble based classification has traditionally been used
in order to improve robustness. The key idea is to avoid the problem of
overfitting of individual classifiers. However, it is often a challenging
task to use the ensemble effectively because of the high speed nature of
the data streams.

An important motivation behind the framework is to deal with the expiration of
old data streams. The idea of using the most recent data streams to build and
use the developed classifiers may not be valid for most applications. Although
the old streams can affect the accuracy of the classification model in a negative
way, it is still important to keep track of this data in the current model. The
work in [30] shows that it is possible to use weighted ensemble classifiers in
order to achieve this goal.

The work in [30] uses weighted classifier ensembles according to the current
accuracy of each classifier used in the ensemble. The weight of any classifier
is calculated and contributed to predict the final output. The weight of each
classifier may vary as the data stream evolves, and a given classifier may be-
come more or less important on a particular sequential chunk of the data. The
framework has outperformed single classifiers experimentally. This is partly
because of the greater robustness of the ensemble, and partly because of more
effective tracking of the change in the underlying structure of the data. More
interesting variations of similar concepts may be found in [11]. Figure 3.1
depicts the proposed framework.
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4.2 Very Fast Decision Trees (VFDT)

Domingos and Hulten [9, 22] have developed a decision tree approach which
is referred to as Fery Fast Decision Trees (VFDT). 1t is a decision tree learning
system based on Hoeffding trees. It splits the tree using the current best attribute
taking into consideration that the number of examples used satisfies the Hoeffd-
ing bound. Such a technique has the property that its output is (asymptotically)
nearly identical to that of a conventional learner. VFDT is an extended version
of such a method which can address the research issues of data streams. These
research issues are:

»  Ties of attributes: Such ties occur when two or more attributes have close
values of the splitting criteria such as information gain or gini index. We
note that at such a moment of the decision tree growth phase, one must
make a decision between two or more attributes based on only the set
of records received so far. While it is undesirable to delay such split
decisions indefinitely, we would like to do so at a point when the errors
are acceptable.

»  Bounded memory: The tree can grow till the algorithm runs out of mem-
ory. This results in a number of issues related to effective maintenance
of the tree.

s Efficiency and Accuracy; This is an inherent characteristic of all data
stream algorithms.

The extension of Hoeffding trees in VFDT has been done using the following
techniques.

m  The key question during the construction of the decision tree is the choice
of attributes to be used for splits. Approximate ties on attributes are
broken using a user-specified threshold of acceptable error measure for
the output. By using this approach, a crisp criterion can be determined
on when a split (based on the inherently incomplete information from
the current data stream) provides acceptable error. In particular, the
Hoeftding inequality provides the necessary bound on the correctness of
the choice of split variable. It can be shown for any small value of 4,
that a particular choice of the split variable is the correct choice (same
as conventional learner) with probability at least 1 — 4, if a sufficient
number of stream records have been processed. This “sufficient number”
increases at the relatively modest rate of log(1/6). The bound on the
accuracy of each split can then be extrapolated to the behavior of the
entire decision tree. We note that the stream decision tree will provide
the same result as the conventional decision tree, if for every node along
the path for given test instance, the same choice of split is used. This
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can be used to show that the behavior of the stream decision tree for a
particular test instance differs from the conventional decision iree with
probability at most 1 — &/p, where p is the probability that a record is
assigned to a leaf at each level.

= Bounded memory hasbeen addressed by de-activating the least promising
leaves and ignoring the poor attributes. The calculation of these poor
attributes is done through the difference between the splitting criteria of
the highest and lowest attributes. If the difference is greater than a pre-
specified value, the attribute with the lowest splitting measure will be
freed from memory.

» The VFDT system is inherently /O bound; in other words, the time for
processing the example is lower than the time required to read it from
disk. This is because of the Hoeflding tree-based approach with a crisp
criterion for tree growth and splits. Such an approach can make clear
decisions at various points of the tree construction algorithm without
having to re-scan the data. Furthermore, the computation of the splitting
criteria is done in a batch processing mode rather than online processing.
This significantly saves the time of recalculating the criteria for all the
attributes with each incoming record of the stream. The accuracy of the
output can be further improved using multiple scans in the case of low
data rates.

All the above improvements have been tested using special synthetic data sets.
The experiments have proved efficiency of these improvements. Figure 3.2
depicts the VFDT learning system. The VFDT has been extended to address
the problem of concept drift in evolving data streams. The new framework
has been termed as CVFDT [22]. It runs VFDT over fixed sliding windows in
order to have the most updated classifier. The change occurs when the splitting
criteria changes significantly among the input attributes.

Jin and Agrawal [23] have extended the VFDT algorithm to efficiently pro-
cess numerical attributes and reduce the sample size calculated using the Ho-
effding bound. The former objective has been addressed using their Numeri-
cal Interval Pruning (NIP) technique. The pruning is done by first creating a
histogram for each interval of numbers. The least promising intervals to be
branched are pruned to reduce the memory space. The experimental results
show an average of 39% of space reduction by using NIP. The reduction of
sample size is done by using properties of information gain functions. The
derived method using multivariate delta method has a guarantee of a reduction
of sample size over the Hoeffding inequality with the same accuracy. The ex-
periments show a reduction of 37% of the sample size by using the proposed
method.
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4.3 On Demand Classification

Aggarwal et al. have adopted the idea of micro-clusters introduced in CluS-
fream [2] in On-Demand classification in [3]. The on-demand classification
method divides the classification approach into two components. One compo-
nent continuously stores summarized statistics about the data streams and the
second one continuously uses the summary statistics to perform the classifica-
tion. The summary statistics are represented in the form of class-label specific
micro-clusters. This means that each micro-cluster is associated with a specific
class label which defines the class label of the points in it. We note that both
components of the approach can be used in online fashion, and therefore the
approach is referred to as an on-demand classification method. This is because
the set of test instances could arvive in the form of a data stream and can be
classified efficiently on demand. At the same time, the summary statistics {and
therefore training model) can be efficiently updated whenever new data arrives.
The great flexibility of such an approach can be very useful in a variety of
applications.

At any given moment in time, the current set of micro-clusters can be used to
perform the classification. The main motivation behind the technique is that the
classification model should be defined over a time horizon which depends on
the nature of the concept drift and data evolution. When there is smaller concept
drift, we need a larger time horizon in order to ensure robustness. In the event
of greater concept drifi, we require smaller time horizons. One key property of
micro-clusters (referred to as the subtractive property) ensures that it is possible
to compute horizon-specific statistics. As a result it is possible to perform
the classification over a wide variety of time horizons. A hold out training
stream is used to decide the size of the horizon on which the classification is
petformed. By using a well-chosen horizon it is possible to achigeve a high
level of classification accuracy. Figure 3.3 depicts the classification on demand
framework.

4.4 Online Information Network (OLIN)

Last [26] has proposed an online classification system which can adapt to
concept drift. The system re-builds the classification model with the most recent
examples. By using the error-rate as a guide to concept drift, the frequency of
meodel building and the window size is adjusted over time.

The system uses info-fuzzy techniques for building a tree-like classification
model. It uses information theory to calculate the window size. The main idea
behind the system is to change the sliding window of the model reconstruction
according to the classification error rate. If the model is stable, the window size
increases. Thus the frequency of model building decreases. The info-fuzzy
technique for building a tree-like classification model is referred to as the Info-
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Ay A ... ] Ax | Class Weight ||

Value(A) | Value{Aa) | ... | Value(Ay,) Class X = # items
Category | Contributing

Table 3.3, Typical LWClass Training Results

Fuzzy Network (IFN). The tree is different than conventional decision trees in
that each level of the tree represents only one attribute except the root node layer.
The nodes represent different values of the attribute. The process of inducing
the class label is similar to the one of conventional decision trees. The process
of constructing this tree has been termed as Information Netwotk (IN). The IN
technique uses a similar procedure of building conventional decision trees by
determining if the split of an attribute would decrease the entropy or not. The
measure used is mutual conditional information that assesses the dependency
between the current input attribute under examination and the output attribute.
At each iteration, the algorithm chooses the attribute with the maximum mutual
information and adds a layer with each node represents a different value of this
attribute. The iterations stop once there is no increase in the mutual information
measure for any of the remaining attributes that have not been considered in the
tree. OLIN system repeatedly uses the IN algorithm for building a new classifi-
cation model. The system uses the information theory to calculate the window
size (refers to number of examples). It uses a less conservative measure than
Hoeffding bound used in VFDT [9, 22} reviewed earlier in this chapter. This
measure is derived from the mutual conditional information in the IN algorithm
by applying the likelihood ratio test to assess the statistical significance of the
mutual information. Subsequently, we change the window size of the model
reconstruction according to the classification error rate. The error rate is cal-
culated by measuring the difference between the error rate during the training
at one hand and the error rate during the model validation at the other hand. A
significance increase in the error rate indicates a high probability of a concept
drift. The window size changes according to the value of this increase. Figure
3.4 shows a simple flow chart of the OLIN system.

4.5 LWClass Algorithm

Gaber et al [14] have proposed Lightweight Classification techniques termed
as LWClass. LWClass is based on Algorithm Output Granularity. The algo-
rithm output granularity (AOG) introduces the first resource-aware data analy-
sis approach that can cope with fluctuating data rates according to the available
memory and the processing speed. The AOG performs the local data analysis
on resource constrained devices that generate or receive streams of informa-
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tion. AQG has three stages of mining, adaptation and knowledge integration as
shown in Figure 3.5 [14].

LW(Class starts with determining the number of instances that could be resi-
dent in memory according to the available space. Once a classified data record
arrives, the algorithm searches for the nearest instance already stored in the main
memory. This is done using a pre-specified distance threshold. This threshotd
represents the similarity measure acceptable by the algorithm to consider two
or more data records as an entry into a matrix. This matrix 1s a summarized
version of the original data set. If the algorithm finds a nearest neighbor, it
checks the class label. If the class label is the same, it increases the weight for
this instance by one, otherwise it decrements the weight by one. If the weight
is decremented down to zero, this entry will be released from the memory con-
serving the limited memory on streaming applications. The algorithm output
granularity is controlled by the distance threshold value and is changing over
time to cope with the high speed of the incoming data elements. The algorithm
procedure could be described as follows:

1. Each record in the data stream contains attribute values for a1, as,..., @n
attributes and the class category.

2. According to the data rate and the available memory, the algorithm output
granularity is applied as follows:

2.1 Measure the distance between the new record and the stored ones.

2.2 If the distance is less than a threshold, store the average of these
two records and increase the weight for this average as an entry by
1. (The threshold value determines the algorithm accuracy and is
chosen according to the available memory and data rate that de-
termines the algorithm rate). This is in case that both items have
the same class category. If they have different class categories, the
weight is decreased by 1 and released from memory if the weight
reaches zero.

2.3 Afier a time threshold for the training, we come up with a matrix
represented in Table 3.3.

3. Using Table 3.3, the unlabeled data records could be classified as follows.
According to the available time for the classification process, we choose
nearest K-table entries and these entries are variable according to the time
needed by the process.

4. Find the majority class category taking into account the calculated weights
from the K entries. This will be the output for this classification task.
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4.6 ANNCAD Algorithm

Law et al [27] have proposed an incremental classification algorithm termed
as Adaptive Nearest Neighbor Classification for Data-streams (ANNCAD).
The algorithm uses Haar Wavelets Transformation for multi-resolution data
representation. A grid-based representation at each level is used.

The process of classification starts with attempting to classify the data record
according to the majority nearest neighbors at finer levels. If the finer levels are
unable to differentiate between the classes with a pre-specified threshold, the
coarser levels are used in a hierarchical way. To address the concept drifi prob-
lem of the evolving data streams, an exponential fade factor is used to decrease
the weight of old data in the classification process. Ensemble classifiers arc
used to overcome the errors of initial quantization of data. Figure 3.6 depicts
the ANNCAD framework.

Experimental results over real data sets have proved the achieved accuracy
over the VFDT and CVFDT discussed earlier in this section. The drawback
of this technique represented in inability of dealing with sudden concept drifts
as the exponential fade factor takes a while to have its effect felt. In fact, the
choice of the exponential fade factor is an inherent flexibility which could lead
to over-estimation or under-estimation of the rate of concept drift. Both errors
would result in a reduction in accuracy.

4.7 SCALLOP Algorithm

Ferrer-Troyano et al. {12] have proposed a scalable classification algorithm
for numerical data streams. This is one of the few rule-based classifiers for
data streams. It is inherently difficult to construct rule based classifiers for
data streams, because of the difficulty in maintaining the underlying rule statis-
tics. The algorithm has been termed as Scalable Classification Algorithm by
Learning decisiOn Patterns (SCALLOP).

The algorithm starts by reading a number of user-specified labeled records.
A number of rules are created for each class from these records. Subsequently,
the key issue is to effectively maintain the rule set after arrival of each new
record. On the arrival of a new record, there are three cases:

a} Positive covering: This is the case of a new record that strengthens a
current discovered rule.

b} Possible expansion: This is the case of a new record that is associated
with at least one rule, but is not covered by any currently discovered rule.

¢) Negative covering: This is the case of a new record that weakens a
currently discovered rule.

For each of the above cases, a different procedure is used as follows:
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a) Positive covering: The positive support and confidence of the existing
rule is re-calculated.

b) Possible expansion: In this case, the rule is extended if it satisfies two
conditions:

— It is bounded within a user-specified growth bounds to avoid a pos-
sible wrong expansion of the rule.

— There is no intersection between the expanded rule and any already
discovered rule associated with the same ¢lass label.

c) Negative covering: In this case, the negative support and confidence is
re-calculated. If the confidence is less than a minimum user-specified
threshold, a new rule is added.

After reading a pre-defined number of records, the process of rule refining
is performed. Rules in the same class and within a user-defined acceptable
distance measure are merged. At the same time, care is taken to ensure that
these rules do not intersect with rules associated with other class labels. The
resulting hypercube of the merged rles should also be within certain growth
bounds. The algorithm also has a refinement stage. This stage releases the
uninteresting rules from the current model. In particular, the rules that have
less than the minimum positive support are released. Furthermore, the rules that
are not covered by at least one of the records of the last user-defined number
of received records are released. Figure 3.7 shows an illustration of the basic
process.

Finally a voting-based classification technigue is used to classify the unla-
beled records. If there is a rule covers the current record, the label associated
with that rule is used as the classifier output. Otherwise, a voting over the
current rules within the growth bounds is used to infer the class label.

5. Summary

Stream classification techniques have several important applications in busi-
ness, industry and science. This chapter reviews the research problems in data
stream classification. Several approaches in the literature have been summa-
rized with their advantages and drawbacks. While the selection of the tech-
niques is based on the performance and quality of addressing the research chal-
lenges, there are a number of other methods [11, 8, 15, 22, 311 which we
have not discussed in greater detail in this chapter. Many of these techniques
are developed along similar lines as one or more techniques presented in this
chapter.

The major research challenges in data stream classification are represented in
concept drifting, resource adaptivity, high data rates, and the unbounded mem-
ory requirements. While many methods have been proposed to address some of
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| Method Concept Drift | High Speed | Memory Req. ||
Ensemble-based X
Classification
YFDT X X
On-Demand X X X
Classification
Online X
Information
Network
LWClass X X
ANNCAD X
SCALLOP X

Table 3.4, Summary of Reviewed Techniques
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Figure 3.1, The ensemble based classification method

these issues, they are often unable to address these issues simultaneously. Table
3.4 summarizes the previously reviewed techniques in terms of addressing the
above challenges. The area of data stream classification is still in its infancy.
A number of open challenges still remain in stream classification algorithms;
particular in respect to concept drift and resource adaptive classification.
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Abstract Frequent pattern mining is a core data mining operation and has been exten-
sively studied over the last decade. Recently, mining frequent patterns over data
streams have attracted a lot of research interests, Compared with other streaming
queries, frequent pattern mining poses great challenges due to high memory and
computational costs, and accuracy requirement of the mining results.

In this chapter, we overview the state-of-art techniques to mine frequent pat-
terns over data streams, We also introduce a new approach for this problem,
which makes two major contributions. First, this one pass algorithm for frequent
itemset mining has deterministic bounds on the accuracy, and does not require
any out-of-core summary structure. Second, because the one pass algorithm does
not produce any false negatives, it can be easily extended to a two pass accurate
algorithm. The two pass algorithm is very memory efficient.

1. Introduction

Frequent pattern mining focuses on discovering frequently occurring patterns
from different types of datasets, including unstructured ones, such as transaction
and text datasets, semi-structured ones, such as XML datasets, and structured
ones, such as graph datasets. The patterns can be itemsets, sequences, sub-
trees, or subgraphs, etc., depending on the mining tasks and targeting datasets.
Frequent patterns can not only effectively summarize the underlying datasets,
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providing key sights into the data, but also serve as the basic tool for many other
data mining tasks, including association rule mining, classification, clustering,
and change detection among others {21, 37, 20, 24].

Many effictent frequent pattern algorithms have been developed in the last
decade [1, 17, 18, 35, 26, 33, 36]. These algorithms typically require datasets to
be stored in persistent storage and involve two or more passes over the dataset.
Recently, there has been much interest in data arriving in the form of continuous
and infinite data streams. In a streaming environment, a mining algorithm must
take only a single pass over the data [4]. Such algorithms can only guarantee
an approximate result.

Compared with other stream processing tasks, the unique challenges in dis-
covering frequent patterns are in three-fold. First, frequent pattern mining needs
to search a space with an exponential number of patterns. The cardinality of the
answering set itself which contains all frequent patterns can be very large too.
In particular, it can cost much more space to generate an approximate answer-
ing set for frequent patterns in a streaming environment. Therefore, the mining
algorithm needs to be very memory-efficient. Second, frequent pattern mining
relies on the down-closure property to prune infrequent patterns and generate
the frequent ones. This process {even without the streaming constraint) is very
compute-intensive. Consequently, keeping up the pace with high- speed data
stteams can be very hard for a frequent pattern-rnining task. Given these chal-
lenges, a more important issue is the quality of the approximate mining results.
The more accurate results usually require more memory and computations.
What should be the acceptable mining results to a data miner? To deal with this
problem, a mining algorithm needs to provide users the flexibility to control the
accuracy of the final mining results.

In the last several years, several new mining algorithms have been proposed
to find frequent patterns over data streams. In the next chapter, we will overview
these new algorithms.

2. Overview
2.1 Frequent Pattern Mining: Problem Definition

Let the dataset D) be a collection of objects, ie. D = {01,02,---, 01}
Let P be the set of all possible (interesting) patterns occurring in 1D, g be the
counting function g : P x O ~+ N, where (O is the set of objects, and NV is
the set of nonnegative integers. Given parameters p € P, and 0 € O, g(p, 0)
returns the number of times p occurs in 0. The support of a pattern p € £ in
the dataset I is defined as

J=D

supp(p) = Y I{g(p,0;))
=0
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where, [ is an indicator function: if g(p, 0;) > 0, I{g(p, 0;)) = 1; otherwise,
I{g(p,0;)) = 0. Given a support level 8, the frequent patterns of P in D is the
set of patterns in P which have support greater than or equal to the 6.

The first and arguably the most important frequent pattern-mining task is
[frequent itemsets mining, proposed by Rakesh Agrawal et.al in 1993 [2]. In
this setting, the objects in the dataset [ are transactions or sets of items. Let
Item be the set of all possible items in the dataset ). Then the dataset D) can
be represented as 1) = {I1,---,Ip}, where I; C Item,Vj,1 < j < |D|.
The set of all possible patterns P is the power-set of Irem. Note that the set of
all possible objects O is the same as P in this setting. The counting function
g is defined upon on the set containing { C) relationship. In other words, if the
itemset p is contained in I; (p C I;), the function g{(p, I;) returns 1; otherwise,
it returns 0. For instance, given a dataset D={{A,B,D,E}, {B,C,E},{A.B.E},
{A,B.C}, {A.C}, {B,C}}, and a support level 6§ = 50%, the frequent patterns
are { A}, {B}, {C}, and {B, C}.

The majority of work in mining frequent patterns over data streams focuses
on frequent itemsets mining. Many techniques developed in this setting can
be served as a basis for mining other more complicated pattern mining tasks,
such as graph mining [21]. To simplify the discussion, this chapter will focus
on mining frequent itemsets over data streams.

2.2 Data Streams

In a data stream, transactions arrive continuously and the volume of transac-
tions can be potentially infinite. Formally, a data stream D) can be defined as a
sequence of transactions, I} = (¢4, ¢y, - ,%;,- -+ ), where #; is the i-th arrived
transaction. To process and mine data streams, different window models are of-
ten used. A window is a subsequence between i-th and j-th arrived transactions,
denoted as Wi, j] = (i, 8541, ,t5),4 < j. A user can ask different types
of frequent pattern-mining questions over different type of window models.
Landmark window: In this model, we are interested in, from a starting time-
point i to the current timepoint £, what are the frequent itemsets. In other words,
we are trying to find the frequent itemsets over the window Wi, t]. A special
case of the landmark window is when 1 = 1. In this case, we are interested
in the frequent itemsets over the entire data stream. Clearly, the difficulty in
solving the spectal case is essentially the same as the more general cases, and
all of them require an efficient single-pass mining algorithm. For simplicity,
we will focus on the case where the Entire Data Stream is the target.

Note that in this model, we treat each time-point after the starting point
equally important. However, in many cases, we are more interested in the
recent time-points. The following two models focus on such cases:
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Sliding window: Given the length of the sliding window w and current time-
point ¢, we are interested in the frequent pattern time in the window W[t —w +
1,t]. As time changes, the window will keep its size and move along with the
current time point, In this model, we are not interested in the data which arrived
before the timepoint { —w + 1.

Damped window meodel: This model assigns more weights to the recently
arrived transactions. A simple way to do that is to define a decay rate [7], and
use this rate to update the previously arrived transactions (by multiplication)
as a new transaction arrives. Correspondingly, the count of an itemset is also
defined based on the weight of each transaction.

In the next subsection, we will overview the algorithms for mining frequent
itemsets on these three different window models over data streams. In addition,
we would like to point out that besides the three windows we introduced above,
Jiawei Han e2. al. proposed another model called #ifted-time window model. In
this model, we are interested in frequent itemsets over a set of windows. Each
window corresponds to different time granularity based on their recency. For
example, we are interested in every minute for the last hour, every five minutes
for the previous hour, every ten minutes for the hour before that. Moreover,
the transactions inside each window are also weighted. Such model can altow
us to pose more complicated queries over data stream. Giannella et. @l have
developed a variant of FP-tree, called FP-stream, for dynamically updating
frequent patterns on streaming data and answering the approximate frequent
itemsets for even arbitrary time intervals [15].

23 Mining Algorithms

| | All Closed
Entire Data Stream | Lossy Counting
(28]
FFDM
[34]
Siiding Window Moment
[y
Damped Window estDec
173

Closed: Closed frequent itemsets

Table 4.1, Algorithms for Frequent Itemsets Mining over Data Streams

Table 4.1 lists the algorithms which have been proposed for mining frequent
itemsets in the last several years. Note that A// suggests to find all of the frequent
itemsets given support level 8. Closed frequent itemsets are itemsets that are
frequent but have higher frequency than all of their supersets. (If an itemset p
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is a subset of itemset g, ¢ is called the superset of p.) In the following, we will
briefty introduce these algorithms and their basic ideas.

Mining Algorithms for Entire Data Stream Manku and Motwani proposed
the first one-pass algorithm, Lossy Counting, to find all frequent itemsets over
a data stream [28]. Their algorithm is false-positive oriented in the sense that it
does not allow false negatives, and has a provable bound on false positives. It
uses a user-defined error parameter ¢ to control the quality of the answering set
for a given support level 6. More precisely, its answering set is guaranteed to
have all itemsets whose frequency exceeds 0, and contains no itemsets whose
true frequency is less than # — e. In other words, the itemsets whose frequency
are between 6 — ¢ and & possibly appear in the answering set, and are the false
positives.

Recently, Yu and his colleagues proposed FPDM, which is a false-negative
oriented approach, for mining frequent itemsets over data streams [34]. Their
algorithm does not allow false positive, and has a high-probability to find item-
sets which are truly frequent. In particular, they use a user-defined parameter §
to control the probability to find the frequent itemsets at support level 8. Specif-
ically, the answering set does not include any itemsets whose frequency 1s less
than @, and include any itemsets whose frequency exceeds § with probability
of at least 1 — 4. It utilizes the Chernoff bound to achieve such quality control
for the answering set.

Both algorithms logically partitioned the data stream into equally sized seg-
ments, and find the potentially frequent itemsets for each segment. They ag-
gregate these locally frequent itemsets and further prune the infrequent ones.
However, the number of transactions in each segment as well as the method
to define potentially trequent itemsets is different for these two methods. In
Lossy Counting, the number of transactions in a segment is & x [1/¢], and an
itemset which occurs more than k times in a segment is potentially frequent.
In FDPM, the number of transactions in a segment is & x ng, where ng is the
required number of observations in order to achieve ChernofT bound with the
user-defined parameter 4. In this case, an itemset whose frequency exceeds
# — €, where ¢ is computed by Chernoff bound in terms of ¢ and the number
of observations (k x ng). Note that k is a parameter (batch size) to control the
size of ecach segment.

To theoretically estimate the space requirement for both algorithms, we con-
sider each transaction including only a single item, and the number of transac-
tions in the entire data stream is | D|. Lossy Counting will take O(1/elog(e{ D))
to find frequent items (1-itemsets), and FPDM-1 (the simple version of FPDM
on finding frequent items) will need Q((2 + 2In(2/6})/0).

Note that different approaches have different advantages and disadvantages.
For instance, for the false positive approach, if a second pass is allowed, we can
easily eliminate false positives. For the false negative approach, we can have



66 DATA STREAMS: MODELS AND ALGORITHMS

a small answering set which have almost all the frequent itemsets, but might
miss some of them (with very small probability controlled by d).

Sliding Window Chi et af. have studied the problem on mining closed frequent
itemsets over a sliding window of a data stream [12]. In particular, they assume
the width of sliding window is not very large, therefore, the transactions of each
sliding window could be held in the main memory. Clear, such assumption is
very close to the problem setting of the incremenfal association rule mining [10].
But their focus is on how to maintain the closed frequent itemsets in an efficient
way.

To deal with this problem, they proposed a new mining algorithm, called

MOMENT. It utilizes the heuristic that in most cases, the sets of frequent item-
sets are relatively stable for the consecutive sliding windows in the data stream.
Specifically, such stability can be expressed as the fact that the boundary be-
tween the frequent itemsets and infrequent itemsets, and the boundary between
closed frequent itemsets and the rest of itemsets move very siowly. Therefore,
instead of generating all closed frequent itemsets for each window, they focus
on monitoring such boundaries. As the key of this algorithm, an in-memory
data structure, the closed enumeration tree (CET), is developed to efficiently
monitor closed frequent itemsets as well as itemsets that form the boundary
between the closed frequent itemsets and the rest of the itemsets. An efficient
mechanism has been proposed to update the CET as the sliding window moves
so that the boundary maintains for each sliding window.
Damped Window Model Chang and Lee studied the problem to find recently
frequent itemsets over data streams using the damped window model. Speeif-
ically, in their model, the weight for an existing transaction in the data stream
reduces by a decay factor,d, as a new transaction arrives. For exampie, the
initial weight of a newly arrived transaction has weight 1, and after another
transaction arrives, it will be reduced as d = (1 x d).

To keep tracking down the frequent itemsets in such a setting, they propose a
new algorithm, estDec, which process the transaction one by one. It maintains
a lattice for recording the potentially frequent itemsets and their counts, and
updates the lattice for each new transaction correspondingly. Note that theoret-
ically, the count of each itemset in the lattice will change as a new transaction
arrives. But by recording an additional information for each itemset p, the
time-point of the most recent transaction contains p, the algorithm only needs
to update the counts for the itemsets which are the subsets of newly arrived
transaction. It will reduce their counts using the constant factor d, and then
increases them by one. Further, it inserts the subsets of the current transac-
tion which are potentially frequent into the lattice. It uses a method similar to
Carma [19] to estimate the frequency of these newly inserted itemsets.
Discussion Among the above three different problem settings, we can see that
the first one, finding the frequent itemsets over the entire data stream, is the
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most challenging and fundamentally important one. It can often serve as the
basis to solve the latter two. For example, the current sliding window model
studied in MOMENT is very similar to the incremental data mining. A more
difficult problem is the case when the data in a sliding window cannot be held
in the main memory. Clearly, in such case, we need single-pass algorithms for
even for a single sliding window. The main difference between the damped
window model and entire data stream is that the counts of itemsets need to be
adjusted for each new arrival transactions in the damped window model even
the itemsets do not appear in these transactions.

In the next Section, we will introduce a new mining algorithm StreamMining
we proposed recently to find frequent itemsets over the entire data stream.
It is a false-positive approach (similar to Lossy Counting). It has provable
(user-defined) deterministic bounds on accuracy and very memory efficient.
In Section 4, we will review research works closely related with the field on
frequent pattern mining over data streams. Finally, we will conclude this chapter
and discuss directions for future work (Section 5).

3. New Algorithm

This section describes our new algorithm for mining frequent itemsets in a
stream. Initially, we discuss a new approach for finding frequent items from
Karp et al. [25]. We then discuss the challenges in extending this idea to frequent
itemset mining, and finally outline our ideas for addressing these issucs.

3.1 KPS’s algorithm

Our work is derived from the recent work by Karp, Papadimitriou and
Shenker on finding frequent elements (or 1-itemset) [25]. Formally, given a
sequence of length V and a threshold ¢ (0 < & < 1), the goal of their work is
to determine the elements that occur with frequency greater than N4.

A trivial algotithm for this will involve counting the frequency of all distinct
elements, and checking if any of them has the desired frequency. If there are n
distinct elements, this will require O(n) memory.

Their approach requires only O(1/¢) memory. Their approach can be viewed
as a generalization of the following simple algorithm for finding the majority
element in a sequence. A majority element is an element that appears more than
half the time in an entire sequence. We find two distinct elements and eliminate
them from the sequence. We repeat this process until only one distinct element
remains in the sequence. If a majority element exists in the sequence, it will
be left after this elimination. At the same time, any element remaining in the
sequernce is not necessarily the majority element. We can take another pass
over the original sequence and check if the frequency of the remaining element
is greater than N/2.
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FindingFrequentItems(Sequence S, §)
global Set P; // Set of Potentially
P B // Freguent Items
foreach (s € &) // eachitemin &

fsecP
s.count + +;
else

P—{stUuP;

s.count = 1;

if{P| = [1/6]

foreach (p € P)
p.count — —;
if p.eount =0
PP - {pk
Output(PY;

Figure 4.1. Karp et al. Algorithm to Find Frequent ltems

The idea can be generalized to an arbitrary 6. We can proceed as follows. We
pick any 1/# distinct elements in the sequence and eliminate them together. This
can be repeated until no more than 1/@ distinet elements remain in the sequence.
It can be claimed that any element appearing more than V@ times will be left in
the sequence. The reason is that the elimination can only be performed at most
N/(1/8) = N# times. During each such elimination, any distinct element is
removed at most once. Hence, for each distinct element, the total number of
eliminations during the entire process is at most N#. Any element appearing
more than N times will remain in the sequence. Note, however, the elements
left in the sequence do not necessarily appear with frequency greater than V8,
Thus, this approach will provide a superset of the elements which occur more
than N6 times.

Such processing can be performed to take only a single pass on the sequence,
as we show in Figure 4.1. P isthe set of potentially frequent items. We maintain
a count for each item in the set . This set is initially empty. As we process
a new item from a sequence, we check if it is in the set P. If yes, its count
i8 incremented, otherwise, it is inserted with a count of 1. When the size of
the set P becomes larger than [1/6], we decrement the count of each item in
P, and eliminate any item whose count has now become 0. This processing
is equivalent to the eliminations we described earlier. Note that this algorithm
requires only 2(1/8) space. It computes a superset of frequent items. To find
the precise set of frequent items, another pass can be taken on the sequence,
and the frequency of all remaining elements can be counted,
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3.2 Issues In Frequent Ifemset Mining

In this paper, we build a frequent itemset mining algorithm using the above
basic idea. There are three main challenges when we apply this idea to mining
frequent itemsets, which we summarize below.

1 Dealing with Transaction Sequences: The algorithm from Karp ef al.
assumes that a sequence is comprised of elements, i.e., each transaction
in the sequence only contains one-items. In frequent itemset mining, cach
transaction has a number of items, and the length of every transaction can
also be different.

2 Dealing with k-itemsets: Karp et al.’s algorithm only finds the frequent
items, or 1-itemsets. In a frequent itemset mining algorithm, we need to
find all k-itemsets, & > 1, in a single pass.

Note that their algorithm can be directly extended to find i-itemsets in
the case where each transaction has a fixed length, {. This can be done
by eliminating a group of (1/6) x (!} different i-itemsets together. This,
however, requires 2((1/#) x (})) space, which becomes extremely high
when [ and i are large. Furthermore, in our problem, we have to find all
i-itemsets, ¢ > 1, in a single pass.

3 Providing an Accuracy Bound. Karp et al.’s algorithm can provably find a
superset of the frequent items. However, no accuracy bound is provided
for the item(set)s in the superset, which we call the potential frequent
item(set)s. For example, even if an item appears just a singte time, it can
still possibly appear in the superset reported by the algorithm. In frequent
itemset mining, we will like to improve above result, and provide a bound
on the frequency of the itemsets that are reported by the algorithm,

3.3 Key Ideas

We now outline how we can address the three challenges we listed above.
Dealing with k-itemsets in a Stream of Transactions: Compared with the
problem of finding frequent items, the challenges in finding frequent itemsets
from a transaction sequence mainly arise due to the large number of poten-
tial frequent itemsets. This also results in high memory costs. As we stated
previously, a direct application of the idea from Karp ef al.  will require
Q((1/6) x (1)) space to find potential frequent i-itemsets, where [ is the length
of each transaction. This approach is prohibitively expensive when { and 7 are
large, but can be feasible when i is small, such as 2 or 3.

Recall that most of the existing work on frequent itemset mining uses the
Apriori property [1], i.e,, an i-itemset can be frequent only if all subsets of this
itemset are frequent. One of the drawbacks of this approach has been the large
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number of 2-itemsets, especially when the number of distinct items is large,
and # is small.

Our idea is to use a hybrid approach to mine frequent itemsets from a trans-
action stream. We use the idea from Karp et al. to determine the potential
frequent 2-itemsets. Then, we use the set of potential frequent 2-itemsets and
the Apriori property to generate the potential ¢-itemsets, for ¢ > 2. This ap-
proach finds a set of potential frequent itemsets, which is guaranteed to contain
all the frue frequent itemsets, in a single pass of the stream,

Also, if a second pass of the data stream is allowed, we can eliminate all

the false frequent itemsets from our result set. The second pass is very easy to
implement, and in the rest of our discussion, we will only focus on the first pass
of our algorithm.
Bounding False Positives: In order to have a accuracy bound, we propase the
following critetia for the reported potential frequent itemsets after the first pass.
Besides reporting all items or itemsets that occur with frequency more than N8,
we want to report only the items or itemsets which appear with frequency at
least NO(1 — ¢), where 0 < ¢ < 1. This criteria is similar to the one proposed
by Manku and Motwani [28].

We can achieve this goal by modifying the algorithm as shown in Figure 4.2,
In the first step, we invoke the algorithm from Karp et al. with the frequency
level #e. This will report a superset of items occurring with frequency more
than N#e. We also record the number of eliminations, ¢, that occur in this step.
Clearly, c is bounded by N8¢. In the second step, we remove all items whose
reported frequency is less than N@ — ¢ > N6(1 — ¢).

We have two claims about the above process: 1) it reports all items that occur
with frequency more than /N0, and 2) it only reports items which appear with
frequency more than N6(1 — €). The reason for this is as follows. Consider
any element that appears with frequency N6é. After the first step, it will be
reported in the superset with a frequency greater than ¢, ¢ < N@e. Therefore,
it will remain in the set after the second step also. Similarly, consider any item
that appears with frequency less than N6(1 — ¢). If this item is present in the
superset reported after the first step, it wilt be removed during the second step
since N& — ¢ > N6(1 — ¢). This idea can be used for frequent itemset mining
also.

In the next Section, we introduce our algorithm for mining frequent itemsets
from streaming data based on the above two ideas.

34 Algorithm Overview

We now introduce our new algorithm in three steps. In Subsection 3.5, we
describe an algorithm for mining frequent itemsets from a data stream, which
assumes that each transaction has the same length. In Subsection 3.6, we extend
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FindingFrequentItemsBounded(Sequence S, f, )
global Set P;
P —
¢« 0;// Number of Elimination
foreach (s € §)
ifseP
s.count 4+ +;
else

P —{s}UP;

s.count == 1;

if [P| = [1/(fe)]

¢+ +;// Count Eliminations
foreach (p € P)
p.count — —;
if p.count = 0
P—P—{pk
foreach (p € P)
if p.count < (N8 — ¢)

P —P—{p}

Qutput(P};

Figure 4.2.  Improving Algorithm with An Acguracy Bound

71



72 DATA STREAMS: MODELS AND ALGORITHMS

this algorithm to provide an accuracy bound on the potential frequent itemsets
computed after one pass. In Subsection 3.7, we further extend the algorithm to
deal with transactions of variable length.

Before detailing each algorithm, we first introduce some terminology. We are
mining a stream of transactions 2. Each transaction ¢ in this stream comprises
a set of items, and has the length |¢]. Let the number of transactions in D be
|D|. Each algorithm takes the support level 4 as one parameter. An itemset in
T to be considered frequent should occur more than #|D| times.

To store and manipulate the candidate frequent itemsets during any stage of
every algorithm, a lattice £ is maintained.

L= LULyU... UL

where, & is largest frequent itemset, and £;,1 < i < k comprises the
potential frequent é-itemsets. Note that in mining frequent itemsets, the size
of the set £, which is bound by the number of distinct items in the dataset, is
typically not very large. Therefore, in order to simplify our discussion, we will
not consider £; in the following algorithms, and assume we can find the exact
frequent 1-itemsets in the stream D. Also, we will directly extend the idea from
Karp et al. to find the potential frequent 2-itemsets.

As we stated in the previous section, we deal with all 4-itemsets, k > 2, using
the Aprioti property. To facilitate this, we keep a buffer 7 in each algorithm
to store the recently received transactions. The buffer will be accessed several
times to find the potential frequent k-itemsets, & > 2.

35 Mining Frequent Itemsets from Fixed Length
Transactions

The algorithm we present here mines frequent itemsets from a stream, under
the assumption that each transaction has the same length |¢|. The algorithm has
two interleaved phases. The firs? phase deals with 2-itemsets, and the second
phase deals with k-itemsets, £ > 2. The main algorithm and the associated
subroutines are shown in Figures 4.3 and 4.4, respectively. Note that the two
subroutines, Update and ReducFreq, are used by all the algorithms discussed
in this section.

The first phase extends the Karp ef al.’s algorithm to deal with 2-itemsets.
As we stated previously, the algorithm maintains a buffer 7 which stores the
recently received transactions. Initially, the buffer is empty. When a new
transaction f arrives, we put it in 7. Next, we call the Update routine to
increment counts in L9, This routine simply updates the count of 2-itemsets
that are already in L. Other 2-itemsets that are in the transaction ¢ are inserted
in the sets £4.
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StreamMining-Fixed(Stream D, 6 )
global Lattice L;
local Buf fer T;
local Transaction t;
L—0; T
Fe it (1 - /2
foreach (t € D)
T—TU{th
Update(t, L, 2);
i£|Ca] > [1/0] -/
ReducFreq(L,2);
{* Deal with k — itemsets, k > 2 *}
i — 2
while £; # 0
i+ +;
foreach (t € 7)
Update(t, L,1);
ReducFreqg(L,1);
T — [
Output(L);

1

Figure 4.3, StreamMining-Fixed: Algorithm Assuming Fixed Length Transactions

Update(Transaction ¢, Lattice £, i)
for all i subsetssof t
ifs el
s.count + +;
elseif i < 2
L;.insert(s);
elseif all i — 1 subsetsofs € L; |
L;insert(s);

ReducFreq(Lattice £, i)
foreach i itemsetss € L;
s.count — —;
ifs.count =0
L;.delete(s);

Figure 4.4, Subroutines Description
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When the size of £ is beyond the threshold, [1/6] f, where f is the number
of 2-itemsets per transaction, we call the procedure ReducFreq to reduce the
count of each 2-itemsets in £y, and the itemsets whose count becomes zero are
deleted. Invoking ReducFreq on £ triggers the second phase.

The second phase of the algorithm deals with all k-itemsets, & > 2. This
process is carried out level-wise, i.¢, it proceeds from 3-itemsets to the largest
potential frequent itemsets. For each transaction int the buffer 7, we enumerate
all ¢-subsets. For any i-subset that is already in £, the process will be the same
as for a 2-itemset, i.e, we will simply increment the count. However, an i-subset
that is not in £ will be inserted in £ only if all of its ¢ — 1 subsets are in £ as
well. Thus, we use the Apriori property.

Afier updating i-itemsets in £, we will invoke the ReducFreq routine. Thus,
the itemsets whose count is only 1 will be deleted from the lattice. This pro-
cedure will continue until there are no frequent k-itemsets in L. At the end of
this, we clear the buffer, and start processing new transactions in the stream.
This will restart the first phase of our algorithm to deal with 2-itemsets.

We next discuss the correciness and the memory costs of our algorithm. Let
Ef be the set of frequent i-itemsets with support level # in D, and £; be the set
of potential frequent i-itemsets provided by this algorithm.

THEOREM 1 In using the algorithm StreamMining-Fixed on a set of transac-
tions with a fixed length, for any k > 2, Eﬁ C L.

LeMMA 4.1 In using the algorithm StreamMining-Fixed on a set of transac-
tions with a fixed length, the size of L3 is bounded by ({1/6] + l)(';l).

The proofs for the Theorem 1 and the Lemma 4.1 are available in a technical
report [23]. Theorem 1 implies that any frequent k-itemset is guaranteed to be
in the output of our algorithm. Lemma 4.1 provides an estimate of the memory
costs for L.

3.6 Providing an Accuracy Bound

We now extend the algorithm from the previous subsection to provide a
bound on the accuracy of the reported results. As described in Subsection 3.3,
the bound is described by an user-defined parameter, ¢, where 0 < ¢ < 1. Based
on this parameter, the algorithm ensures that the frequent itemsets reported do
occur more than (1 — €)#|D| times in the dataset.

The basic idea for achieving such a bound on frequent items computation was
illustrated in Figure 4.2. We can extend this idea to finding frequent itemsets.
Our new algorithm is described in Figure 4.5. Note that we still assume that
each transaction has the same length.

This algorithm provides the new bound on accuracy in two steps. In the first
step, we invoke the algorithm in Figure 4.3 with the frequency level ¢e. This
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StreamMining-Bounded(Stream D, 8, ¢ )
global Lattice C;
local Buffer T;
local T'ransaction t;
L—0;T —
Felthx (it = 1)/2;
¢ — 0;// Number of ReducFreq I'nvocations
foreach (t € D)
T —TU{t}
Update(t, L, 1);
Update(t, L, 2);
if |£a] > [1/6€] - F
ReducFreq(L, 2);
¢+ +;
i — 2
while £; #
1+ +;
foreach (¢t € T)
Update(t, L, 4);
ReducFreq(L,i);
T — 0
foreachs € £
if s.count < 8|D| —¢
L;.delete(s);
Qutput(L);

Figure 4.5, StreamMining-Bounded: Algorithm with a Bound on Accuracy
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will report a superset of itemsets occurring with frequency more than Nte. We
record the number of invocations of ReducFreq, ¢, in the first step. Clearly, ¢
is bounded by Nte. In the second step, we remove all items whose reported
frequency is less than V¢ —c > N#(1 —e¢). Thisis achieved by the last foreach
loop.

The new algorithm has the following property: 1)if an itemset has frequency
more than &, it will be reported. 2)ifan itemset is reported as a potential frequent
itemset, it must have a frequency more than #(1 —e€). Theorem 2 formally states
this property, and its proof is available in a technical report [23].

THEOREM 2 In using the algorithm StreamMining-Bounded on a set of trans-
actions with a fixed length, for any k > 2, gz C L C L-’I(Cl—e)B'

Note that the number of invocations of ReducFreg, ¢, is usually much smaller
than Vée after processing a data stream. Therefore, an interesting property of
this approach is that it produces a very small number of false frequent item-
sets, even with relatively large €. The experiments in [22] also support this
observation,

The following lemma claims that the memory cost of L» is increased by a
factor proportional to 1/e.

LEMMA 4.2 In using the algorithm StreamMining-Bounded on a set of trans-
actions with a fixed length, the size of £q is bounded by ([1/0¢] + 1) (gl)

3.7 Dealing with Variable Length Transactions

In this subsection, we present our final algorithm, which improves upon
the algorithm from the previous subsection by dealing with variable length
transactions. The algorithm is referred to as StreamMining and is illustrated in
Figure 4.6.

When each transaction has a different length, the number of 2-itemsets in each
transaction also becomes different. Therefore, we cannot simply maintain £, the
number of 2-itemsets per transaction, as a constant. Instead, we maintain f as
a weighted average of the number of 2-itemsets that each transaction processed
so far. This weighted average is computed by giving higher weightage to the
recent transactions. The details are shown in the pseudo-code for the routine
TwoltemsetPerTransaction.

To motivate the need for taking such a weighted average, consider the natural
alternative, which will be maintaining f as the average number of 2-itemsets
that each transaction seen so far has. This will not work correctly. For example,
suppose there are 3 transactions, which have the length 2, 2, and 3, respectively,
and & is 0.5. The first two transactions will have a total of two 2-itemsets, and
the third one has 6 2-itemsets. We will preform an elimination when the number
of different 2-itemsets is larger than or equal to (1/8) x f. When the first two
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StreamMining(Stream D, 8, € )
global Lattice L;
local Buffer T,
local Transaction t;
L@ T 0
[« 0;// Average 2 — itemset per transaction
c— 10
foreach (t € D)
T — T U{t};
Update(t, £, 1);
Update(t, £, 2);
[+ Twoltemset PerTransaction(t);
if |C] > [1/6¢] -f
ReducFreq(L,2);
¢+ +;
i +— 25
while £; # 0
i+ +;
foreach (t € 7)
Update(t, L, 1);
ReducFreq(L,1);
T — @
foreachs € £
if s.count < 6|D|—¢
L;.delete(s);
Output(L);

TwoltemsetPerTransaction(Transaction t)
global X; // Number of 2 Itemset
global N;// Number of Transactions

local f;
N+ 45
XX+ ( i ) ;
J = [X/N;
if1Ca| > [1/6€] - f
N « N —[1/8¢];
X — X = [1/6c] -
return f;

Figure 4.6. StreamMining: Final Algorithm
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transactions arrive, an elimination will happen (assuming that the two 2-itemsets
are different). When the third one arrives, the average number of 2-itemsets is
less than 3, so another elimination will be performed. Unfortunately, a frequent
2-itemset that appears in both transactions 1 and 3 will be deleted in this way.

In our approach, the number of invocations of ReducFreg, c, is less than
|D|(#¢), where |D| is the number of transactions processed so far in the al-
gorithm. Lemma 4.3 formalizes this, and its proof is available in a technical
report [23].

LEMMA 4.3 ¢ < |DN0¢) is an invariant in the algorithm StreamMining.

Note that by using the Lemma 4.3, we can deduce that the property of the
Theorem 2 still holds for mining a stream of transaction with variable transaction
lertgths. Formally,

THEOREM 3 Inusing the algorithm StreamMining on a stream of transactions
with variable lengths, for any k > 2, Lz C Ly C cj(cl-s}al

An interesting property of our method is that in the situation where each
transaction has the same length, our final algorithm, StreamMining will work
in the same fashion as the algorithm previously shown in Figure 4.5.

Note, however, that unlike the case with fixed length transactions, the size of
£ cannot be bound by a closed formula. Also, in all the algorithms discussed
in this section, the size of sets Ly, k& > 2 also cannot be bound in any way. Qur
algorithms use the Apriori property to reduce their sizes.

Finally, we point out that the new algorithm is very memory efficient. For
example, Lossy Counting utilizes an out-of-core (disk-resident) data structure
to maintain the potentially frequent itemsets. In comparison, we do not need any
such structure. On the T10.14.N10K dataset used in their paper, we see that with
1 million transactions and a support level of 1%, Lossy Counting requires an
out-of-core data-structures on top of even a 44 MB buffer. For datasets ranging
from 4 million to 20 million transactions, our algorithm only requires 2.5 MB
main memory based summary. In addition, we believe that there are a number
of advantages of an algorithm that does not require an out-of-core summary
structure. Mining on streaming data may often be performed in mobile, hand-
held, or sensor devices, where processors do not have attached disks. It is also
well known that additional disk activity increases the power requirements, and
battery life is an important issue in mobile, hand-held, or sensor devices. Also,
while their algorithm is shown to be currently computation-bound, the disparity
between processor speeds and disk speeds continues to grow rapidly. Thus, we
can expect a clear advantage from an algorithm that does not require frequent
disk accesses.
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4. Work on Other Related Problems

In this section, we look at the work on problems that are closely related with
the frequent pattern-mining problem defined in Section 2.
Scalable Frequent Pattern Mining Algorithms: A lot of research effort has
been dedicated to make frequent pattern mining scalable on very large disk-
resident datasets. These techniques usually focus on reducing the passes of the
datasets. They typically try to find a superset or an approximate set of frequent
itemsets in the first pass, and then find all the frequent itemsets as well as the
counts in another one or few passes [29], [31], [19]. However, the first pass
algorithms ¢ither do not have appropriate guarantees on the accuracy of frequent
itemsets [31], or produces a large number of false positives [29, 19]. Therefore,
they are not very suitable for the streaming environment.
Mining Frequent Items in Data Streams: Given a potentially infinite se-
quence of items, this work tries to identify the itemns which have higher frequen-
cies than a given support level. Clearly, this problem can be viewed a simple
version of frequent pattern mining over the entire data stream, and indeed most
of the mining algorithms discussed in this chapter are derived from these work.
Algorithms in mining frequent items in data streams use different techniques,
such as random sketches [8, 13] or sampling [31, 28], and achieve the differ-
ent space requirement. They also have either false-positive or false-negative
properties. Interested user can look at [34] for more detailed comparison.
Finding Top-k Items in Distributed Data Streams: Assuming we have sev-
eral distributed data streams and each item might carry different weights at each
of its arrival, the problem is to find the % items which has the highest global
weight. Olston and his colleagues have studied this problem, which they call
top-k monitoring queries [5, 27]. Clearly, in order to maintain the global top-
k items in a distributed streaming environment, frequent communication and
synchronization is needed. Therefore, the focus of their research is on reducing
the communication cost. They have proposed a method to achieve such goal
by constraining each individual data streams with an arithmetic condition. The
communication is only necessary when the arithmetic condition is violated.
Finding Heavy Hitters in Data Streams: Cormode ¢2. al. studied the problem
to efficiently identify heavy hitters in data streams [14]. It can be looked as
an interesting variation of frequent-items mining problem. In this problem,
there is a hierarchy among different items. Given a frequency level ¢, the
count of an item ¢ in the hierarchy include all the items which are descendants
of i, and whose counts arc less than ¢. An item whose counts exceeds ¢ is
called Hierarchy Heavy Hitter (HHH), and we want to find all HHHs in a data
stream. They have presented both deterministic and randomized algorithms to
find HHHs.
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Frequent Temporal Patterns over Data Streams: Considering a sliding win-
dow moves along a data stream, we monitor the counts for an itemset at each
time point. Clearly, this sequence of counting information for a given itemset
can be formulated as a time series. Inspired by such observation, Teng ef. al.
have developed an algorithm to find frequent patterns in sliding window model
and collect sufficient statistics for a regression-based analysis of such time se-
ries [30]. They have showed such a framework is applicable in answering
itemsets queries with flexible time-intervals, trend identification, and change
detection.

Mining Semi-Structured Data Streams: Asai et. al. developed an efficient
algorithm for mining frequent rooted ordered trees from a semi-structured data
stream [3]. In this problem setting, they model a semi-structured dataset as a
tree with infinite width but finite height. Traversing the tree with a left-most
order generates the data stream. In other words, each item in the data stream is
anode in the tree, and its arriving order is decided by the left-most traversing of
the tree. They utilize the method in Carma [19] for candidate subtree generation.

5. Conclusions and Future Directions

In this chapter, we gave an overview of the state-of-art in algorithms for
frequent pattern mining over data streams. We also introduced a new approach
for frequent itemset mining. We have developed a new one-pass algorithm
for streaming environment, which has deterministic bounds on the accuracy.
Particularly, it does not require any out-of-core memory structure and is very
memory efficient in practice.

Though the existing one-pass mining algorithms have been shown to be very
accurate and faster than traditional multi-pass algorithms, the experimental
results show that they are still computationally expensive, meaning that if the
data arrives too rapidly, the mining algorithms will not able to handle the data.
Unfortunately, this can be the case for some high-velocity streams, such as
network flow data. Therefore, new techniques are needed to increase the speed
of stream mining tasks. We conclude this chapter with a list of future research
problems to address this challenge.
mining maximal and other condensed frequent itemsets in data streams:
Maximal frequent itemsets (MFT), and other condensed frequent itemsets, such
as the & — cover proposed in [32], provide good compression of the frequent
itemsets. Mining them are very likely to reduce the mining costs in terms of
both computation and memory over data streams. However, mining such kinds
of compressed pattern set poses new challenges. The existing techniques will
logically partition the data stream into segments, and mine potentially frequent
itemsets each segment. In many compressed pattern sets, for instance, MFI,
if we just mine MFI for each segment, it will be very hard to find the global
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MFI. This is because the MFI can be different in each segment, and when we
combine them together, we need the counts for the itemsets which are frequent
but not maximal. However, estimating the counts for these itemsets can be very
difficult. The similar problem occurs for other condensed frequent itemsets
mining. Clearly, new techniques are necessary to mine condensed frequent
itemsets in data steams.
Online Sampling for Frequent Pattern Mining: The current approaches in-
volve high-computational cost for mining the data streams. One of the main
reasons is that all of them try to maintain and deliver the potentially frequent
patterns at any time. If the data stream arrives very rapidly, this could be unre-
alistic. Therefore, one possible approach is to maintain a sample set which best
represents the data stream and provide good estimation of the frequent itemsets.
Compared with existing sampling techniques [31, 9, 6] on disk-resident
datasets for frequent itemsets mining, sampling data streams brings some new
issues. For example, the underlying distribution of the data stream can change
from time to time. Therefore, sampling needs to adapt to the data stream.
However, it will be quite difficult to monitor such changes if we do not mine
the set of frequent itemsets directly. In addition, the space requirement of the
sample set can be an issue as well. As pointed by Manku and Motwani [28],
methods similar to concise sampling [16] might be helpful to reduce the space
and achieve better mining resulis.
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Abstract

An important problem in the field of data stream analysis is change detection
and monitoring. In many cases, the data stream can show changes over time
which can be used for understanding the nature of several applications. We
discuss the concept of velocity density estimation, a technique used to understand,
visualize and determine trends in the evolution of fast data streams, We show
how to use velocity density estimation in order to create both femporal velocity
profiles and spatial velocity profiles at periodic instants in time. These profiles
are then used in order to predict three kinds of data evolution. Methods arc
proposed to visualize the changing data trends in a single onlinc scan of the data
stream, and a computational requirement which is linear in the number of data
points. In addition, batch processing techniques are proposed in order to identify
combinations of dimensions which show the greatest amount of global evolution,
We also discuss the problem of change detection in the context of graph data,
and iHustrate that it may often be useful to determine communities of evolution
in graph environments.

The presence of evolution in data streams may also change the underlying data
to the extent that the underlying data mining models may need to be modified
to account for the change in data distribution. We discuss a number of mothods
for micro-clustering which are used to study the effect of cvolution on problems
such as clustering and classification.
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1. Introduction

In recent years, advances in hardware technology have resulted in automated
storage of data from a variety of processes. This results in storage which creates
millions of records on a daily basis. Often, the data may show important changes
in the trends over time because of changes in the underlying phenomena. This
process is referred to as data evolution. By understanding the nature of such
changes, a user may be able to glean valuable insights into emerging trends in
the underlying transactional or spatial activity.

The problem of data evolution is interesting from two perspectives:

m For a given data stream, we would like to find the significant changes
which have occurred in the data stream. This includes methods of vi-
sualizing the changes in the data and finding the significant regions of
data dissolution, coagulation, and shift. The aim of this approach is to
provide a direct understanding of the underlying changes in the stream.
Methods such as those discussed in [3, 11, 15, 18] fall into this category.
Such methods may be useful in a number of applications such as network
traffic monitoring [21]. In [3], the velocity density estimation method
has been proposed which can be used in order to visualize different kinds
of trends in the data stream. In [11], the difference between two distribu-
tions is characterized using the KL-distance between two distributions.
Other methods for trend and change detection in massive data sets may
be found in [15]. Methods have also been proposed recently for change
detection in graph data streams [2].

m The second class of problems relevant to data evolution is that of updating
data mining models when a change has occurred. There is a considerable
amount of work in the literature with a focus on incremental maintenance
of models in the context of evolving data [10, 12, 24]. However, in the
context of fast data streams, it is more important to use the evolution of
the data stream in order to measure the nature of the change. Recent
work [13, 14] has discussed a general framework for quantifying the
changes in evolving data characteristics in the context of several data
mining problems and algorithms. The focus of our paper is different
from and orthogonal to the work in [13, 14]. Specifically, the work in
[13, 14] is focussed on the effects of evolution on data mining models and
algorithms. Whiie these results show some interesting results in terms of
generalizing existing data mining algorithms, our view is that data streams
have special mining requirements which cannot be satisfied by using
existing data mining models and algorithms. Rather, it is necessary to
tailor the algorithms appropriately to each task. The algorithms discussed
in [5, 7] discuss methods for clustering and classification in the presence
of evolution of data streams.
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This chapter will discuss the issue of data stream change in both these con-
texts, Specifically, we will discuss the following aspects:

We discuss methods for quantifying the change at a given point of the
data stream. This is done using the concept of velocity density estimation

[3].

We show how to use the velocity density in order to construct visual spatial
and temporal profiles of the changes in the underlying data stream. This
profiles provide a visual overview to the user about the changes in the
underlying data stream.

We discuss methods for utilizing the velocity density in order to character-
ize the changes in the underlying data stream. These changes correspond
to regions of dissolution, coagulation, and sift in the data stream.

We show how to use the velocity density to determine the overall level of
change in the data stream. This overall level of change is defined in terms
of the evolution coefficient of the data stream. The evolution coefficient
can be used to find interesting combinations of dimensions with a high
level of global evolution. This can be useful in many applications in
which we wish to find subsets of dimensions which show a global level
of change.

We discuss how clustering methods can be used to analyze the change in
different kinds of data mining applications. We discuss the problem of
community evolution in interaction graphs and show how the methods
for analyzing interaction graphs can be quite similar to other kinds of
multi-dimensional data.

We discuss the issue of effective application of data mining algorithms
such as clustering and classification in the presence of change in data
streams. We discuss general desiderata for designing change sensitive
data mining algorithms for streams.

A closely related problem is that of mining spatio-temporal or mobile data
[19, 20, 22], for which it is useful to have the ability to diagnose aggregate
changes in spatial characteristics over time. The results in this paper can be
casily generalized to these cases. In such cases, the change trends may also be
useful from the perspective of providing physical interpretability to the under-
lying change patterns.

This chapter is organized as follows. In the next section, we will introduce
the velocity density method and show how it can be used to provide different
kinds of visual profiles. These visual representations may consist of spatial
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or temporal velocity profiles. The velocity density method also provides mea-
sures which are helpful in measuring evolution in the high dimensional case.
In section 3 we will discuss how the process of evolution affects data min-
ing algorithms. We will specifically consider the problems of clustering and
classification. We will provide general guidelines as to how evolution can be
leveraged in order to improve the quality of the results. In section 4, we discuss
the conclusions and summary,

2. The Velocity Density Method

The idea in velocity density is to construct a density based velocity profile of
the data. This is analogous to the concept of kernel density estimation in static
data sets. In kernel density estimation [23], we provide a continuous estimate
of the density of the data at a given point. The value of the density at a given
point is estimated as the sum of the smoothed values of kernel functions K7 (-)
associated with each point in the data set. Each kernel function is associated
with a kernel width A which determines the level of smoothing created by the
function. The kernel estimation f(z) based on n data points and kernel function
K} () is defined as follows:

Flz) = (1/n)- Z Kj(z - X3) (5.1)

Thus, each discrete point X; in the data set is replaced by a continuous func-
tion K} (-) which peaks at X; and has a variance which is determined by the
smoothing parameter k. An example of such a distribution would be a gaussian
kernel with width A.

Ki(z — X;) = (1/v2r - hy - e~ (@~ X0*/(2%) (5.2)

The estimation error is defined by the kernel width A which is chosen in a
data driven manner. It has been shown [23] that for most smooth functions
K} (), when the number of data points goes to infinity, the estimator f(x)
asymptotically converges to the true density function f(z}, provided that the
width h is chosen appropriately. For the d-dimensional case, the kernel function
is chosen to be the product of d identical kernels K;(-), each with its own
smoothing parameter ;.

In order to compute the velocity density, we use a temporal window /i,
in order to perform the calculations. Intuitively, the temporal window h; is
associated with the time horizon over which the rate of change is measured.
Thus, if h; is chosen to be large, then the velocity density estimation technique
provides long term trends, whereas if A, is chosen to be small then the trends
are relatively short term. This provides the user flexibility in analyzing the
changes in the data over different kinds of time horizons. In addition, we have
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Figure 5.!. The Forward Time Shice Density Estimate
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Figure 5.2 The Reverse Time Slice Density Estimate

a spatial smoothing vector s, whose function is quite similar to the standard
spatial smoothing vector which is used in kernel density estimation.

Let £ be the current instant and S be the set of data points which have arrived
in the time window (¢ — hy, t). We intend to estimate the rate of increase in
density at spatial location X and time ¢ by using two sets of estimates: the
Jorward time slice density estimate and the reverse time slice density estimate.
Intuitively, the forward time slice estimate measures the density function for
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all spatial locations at a given time ¢ based on the set of data points which have
arrived in the past time window (¢ - hy,t). Similarly, the reverse time slice
estimate measures the density function at a given time f based on the set of data
points which will arrive in the fiture time window (¢,¢ + h;). Let us assume
that the ith data point in S is denoted by ( X;, t;), where ¢ varies from 1 to |S].
Then, the forward time slice estimate Fiy, 5, (X, t) of the set S at the spatial
location X and time ¢ is given by:

5]
Fipop) (X 1) =Cy - Z Kipyh) (X — Xit — t;) (5.3)

i=1

Here K3, 5,)(-, ) is a spatio-temporal kemnel smoothing function, h; is the
spatial kernel vector, and h; is temporal kernel width. The kernel function
Ky, po) (X — X, t—1;) isasmooth distribution which decreases with increasing
value of £ — ;. The value of C; 1s a suitably chosen normalization constant, so
that the entire density over the spatial plane is one unit. This is done, because
our purpose of calculating the densities at the time slices is to compute the
relative variations in the density over the different spatial locations. Thus, 'y
is chosen such that we have:

F X, 16X =1 5.4
oy 5 Fruna 60 54

The reverse time slice density estimate is also calculated in a somewhat
different way to the forward time slice density estimate. We assume that the set
of points which have arrived in the time interval (¢, ¢ + h) is given by U. As
before, the value of €, is chosen as a normalization constant. Correspondingly,
we define the value of the reverse time slice density estimate Ry, 5, (X, ) as

follows:
i

Rip (X, 1) = Cr - D" Kip, iy (X — Xt — t) (5.5)
i=1

Note that in this case, we are using ¢; — ¢ in the argument instead of ¢ — #;.
Thus, the reverse time-slice density in the interval (£, ¢ 4 h;) would be exactly
the same as the forward time slice density if we assumed that time was reversed
and the data stream arrived in reverse order, starting at ¢ 4+ h,; and ending at ¢.
Examples of the forward and reverse density profiles are illustrated in Figures
5.1 and 5.2 respectively.

For a given spatial location X and time 7', let us examine the nature of the
functions Fip,, (X, T) and Ry, 5y (X, T — hy). Note that both functions
are almost exactly the same, and use the same data points from the interval
(T — hy, T, except that one has been calculated assuming time runs forward,
wheteas the other has been caleulated assuming that the time runs in reverse.
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Furthermore, the volumes under each of these curves, when measured over all
spatial locations X is equal to one unit because of the normalization. Corre-
spondingly, the density profiles at a given spatial location X would be different
between the two depending upon how the relative trends have changed in the
interval (T" — h, T'). We define the velocity density Vi, 5,) (X, T) at spatial
location X and time 7" as follows:

F(hé'sht)(X? T) - R(hs,ht)(X: T~ ht)

Vit n) (X, T) = »

(5.6)

We note that a positive value of the velocity density corresponds to a increase
in the data density of a given point. A negative value of the velocity density
corresponds to a reduction in the data density a given point. In gencral, it has
been shown in [3] that when the spatio-temporal kernel function is defined as
below, then the velocity density is directly proportional to a rate of change of
the data density at a given point.

Kipohe) (X, 8) = (1 =t/ ) - K} (X) (5.7)

This kernel function is only defined for values of ¢ in the range (0, h;). The
gaussian spatial kernel function K), {-) was used because of its well known
effectiveness [23]. Specifically, K b ( ) is the product of d identical gaussian
kernel functions, and Ay = (hl,... %), where A% is the smoothing parameter
for dimension ¢. Furthermore, for the special case of static snapshots, it is
possible to show [3] that he velocity density is proportional to the difference in
the spatial kernel densities of the two sets. Thus, the velocity density approach
retains its intuitive appeal under a variety of special circumstances.

In general, we utilize a grid partitioning of the data in order to perform the
velocity density calculation. We pick a total of & coordinates along cach dimen-
sion. For a 2-dimensional system, this corresponds to 32 spatial coordinates.
The temporal velocity profile can be calculated by a simple O(3%) additive
operations per data point. For each coordinate X, in the grid, we maintain two
sets of counters {corresponding to forward and reverse density counters) which
are updated as each point in the data stream is received. When a data point X;
is received at time t;, then we add the value Ky, 4, (Xg — Xi,t — £;) to the
forward density counter, and the value K, (X, — Xj, t; — {t — 7)) to the
reverse density counter for X;. At the end of time #, the values computed for
each coordinate at the grid need to be normalized. The process of normalization
is the same for either the forward or the reverse density profiles. In each case,
we sum up the total value in all the 32 counters, and divide each counter by this
total. Thus, for the normalized coordinates the sum of the values over all the /3
coordinates will be equal to 1. Then the reverse density counters are subtracted
from the forward counters in order to compete the computation.
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Successive sets of temporal profiles are generated at user-defined time-
intervals of of ii;. In order to ensure online computation, the smoothing param-
eter vector h, for the time-interval (T — ¢, T') must be available at time T — b,
as soon as the first data point of that interval is scheduled to arrive. Therefore,
we need a way of estimating this vector using the data from past intervals. In
order to generate the velocity density for the interval (T — hy, T), the spatial
kernel smoothing vector h, is determined using the Silverman’s approximation
rule! [23] for gaussian kernels on the set of data points which arrived in the
interval (1" — 2h¢, T — hy).

2.1 Spatial Velocity Profiles

Even better insight can be obtained by examining the nature of the spatial
velocity profiles, which provide an insight into how the data is shifting. For
each spatial point, we would like to compute the directions of movements of
the data at a given instant. The motivation in developing a spatial velocity
profile is to give a user a spafial overview of the re-organizations in relative
data density at different points. In order to do so, we define an e-perturbation
along the ith dimension by € = ¢ - ;, where &; is the unit vector along the
ith dimension. For a given spatial location X, we first compute the velocity
gradient along each of the 7 dimensions. We denote the velocity gradient along
the ith dimension by Awv;(X, t) for spatial location X and time ¢. This value is
computed by subtracting the density at spatial location X from the density at
X + € (e-perturbation along the ith dimension), and dividing the result by €.
The smaller the value of ¢, the better the approximation. Therefore, we have:

Vouhy X 8 = Vo (X01)

Avi(X, 1) = lim, -

(5.8)

The value of Av;(X,t) is negative when the velocity density decreases with
increasing value of the ith coordinate of spatial location X. The gradient
Av(X, ) is given by (Av1(X,t)... Avg(X,t)). This vector gives the spatial
gradient at a given grid point hoth in terms of direction and magnitude. The
spatial velocity profile is illustrated by creating a spatial plot which illustrates
the directions of the data shifts at different grid points by directed markers which
mirror these gradients both in terms of directions and magnitude. An example
of a spatial velocity profile is illustrated in Figure 5.4. If desired, the spatial
profile can be generated continuousty for a fast data stream. This continnous
generation of the profile creates spatio-temporal animations which provide a
continuous idea of the trend changes in the underlying data. Such animations
can also provide real time diagnosis ability for a variety of applications.

An additional useful ability is to be able to concisely diagnose specific trends
in given spatial locations. For example, a user may wish to know particular
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spatial locations in the data at which the data is being reduced, those at which
the data is increasing, and those from where the data is shifting to other locations:

DEFINITION 5.1 Adata coagulation for time slice t and user defined threshold
min-coag is defined to be a connected region R in the data space, so that for
each point X € R, we have Vi, 5,1(X,1) > min-coag > 0.

Thus, a data coagulation is a connected region in the data which has velocity
density larger than a user-defined noise threshold of min-coag. In terms of
the temporal velocity profile, these are the connected regions in the data with
clevations larger than min-coag. Note that there may be multiple such elevated
regions in the data, each of which may be disconnected from one another. Each
such region is a separate area of data coagulation, since they cannot be connected
by a continuous path above the noise threshold. For each such elevated region,
we would also have a local peak, which represents the highest density in that
locality.

DETINITION 5.2 The epicenter of a date coagulation R at time slice t is
defined to be a spatial location X* such that X* € R and for any X € R, we
have ‘/(ha,h,t)(Xv t) < ‘/(h-s,ht}(X*’ t)

Similarly regions of data dissolution and cotresponding epicenters can be de-
termined.

DeEFINITION B.3 A data dissolution for time slice t and user defined threshold
min-dissol is defined to be a connected region R in the data space, so that for
each point X € R, we have Vi, 1 (X,t) < —min-dissol < 0.

We define the epicenter of a data dissolution as follows:

DEFINITION 5.4 The epicenter of a data dissolution R at time slice t is defined
fo be a spatial location X* such that X* € R and for any X € R, we have
Vineh) (K1) Z Vipgn (X7, 1),

A region of data dissolution and its epicenter is calculated in an exactly analo-
gous way to the epicenter of a data coagulation. It now remains to discuss how
significant shifts in the data can be detected. Many of the epicenters of coagu-
lation and dissolution are connected in a way which results in a funneling of the
data from the epicenters of dissolution to the epicenters of coagulation. When
this happens, it is clear that the two phenomena of dissolution and coagulation
are connected to one another, We refer to such a phenomenon as a global data
shift. The detection of such shifts can be useful in many problems involving
mobile objects. How to find whether a pair of epicenters are connected in this
way"?

In order to detect such a phenomenon we use the intuition derived from the
use of the spatial velocity profiles, Let us consider a directed line drawn from
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an epicenter to data dissolution to an epicenter of data coagulation. In order
for this directed line to be indicative of a global data shift, the spatial velocity
profile should be such that the directions of a localized shifts along each of the
points in this directed line should be in roughly in the same direction as the
line itself. If at any point on this directed line, the direction of the localized
shift is in an opposite direction, then it is clear that the these two epicenters are
disconnected from one another. In order to facilitate further discussion, we will
refer 1o the line connecting two epicenters as a potential shift line,

Recall that the spatial velocity profiles provide an idea of the spatial move-
ments of the data over time. In order to calculate the nature of the data shift, we
would need to calculate the projection of the spatial velocity profiles along this
potential shift line. In order to do so without scanning the data again, we use
the grid points which are closest to this shift line in order to obtain an approxi-
mation of the shift velocities at various points along this line. The first step is to
find all the elementary rectangles which are intersected by the shift line. Once
these rectangles have been found we determine the grid points corresponding
to the corners of these rectangles. These are the grid points at which the spatial
velocity profiles are examined.

Let the set of n grid points thus discovered be denoted by Y7 ...Y¥,. Then
the corresponding spatial velocities at these grid points at time slice ¢ are
Av(Y1,t)... Av(Yy,, 1), Let £ be the unit vector in the direction of the shift
line. We assume that this vector is directed from the region of dissolution to
the area of coagulation, Then the projections of the spatial velocities in the
direction of the shift line are given by £ - Av(Y1,1) ... £ - Au(Y,, t). We shall
refer to these values as p; . . . p,, respectively. For a shift line to expose an actual
movement of the data, the values of p; ... p, must all be substantially positive.
In order to quantify this notion, we introduce a user-defined parameter called
min-vel. A potential shift line is said to be a valid shift when each of values
1 - . . Py is larger than min-vel,

Thus, in order to determine the all the possible data shifts, we first find all co-
agulation and dissolution epicenters for user-defined parameters min-coag and
min-dissol respectively. Then we find all the potential shift lines by connecting
each dissolution epicenter to a coagulation epicenter. For each such shift line,
we find the grid points which are closest to it using the criteria discussed above.
Finally, for each of these grid points, we determine the projection of the corre-
sponding shift velocities along this line and check whether each of them is at
least min-vel. If so, then this direction is reported as a valid shift line.

2.2 Evolution Computations in High Dimensional Case

In this section, we will discuss how to determine interesting combinations
of dimensions with a high level of global evolution. In order to do so, we need
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to have a measure for the overall level of evolution in a given combination of
dimensions. By integrating the value of the velocity density over the entire
spatial area, we can obtain the total rate of change over the entire spatial area.
In other words, if Eyp, 5,)(t) be the total evolution in the period (£ — hs, t), then
we have:

By by (1) = e fa11 5 Vinon) (X, 816X

Intuitively, the evolution coefficient measures the total volume of the evo-
lution in the time horizon (£ — he, t). It is possible to calculate the evolution
coefficients of particular projections of the data by using only the corresponding
sets of dimensions in the density calculations. In [3] it has been shown how
the computation of the evolution coeflicient can be combined with an a-priori
like rollup approach in order to find the set of minimal evolving projections. In
practice, the number of minimal evolving projections is relatively small, and
therefore large part of the search space can be pruned. This results in an effective
algorithm for finding projections of the data which show a significant amount
of evolution. In many applications, the individual attributes may not evolve
a lot, but the projections may evolve considerably because of the changes in
relationships among the underlying attributes. This can be useful in a mumber
of applications such as target marketing or multi-dimensional trend analysis.

2,3 On the use of clustering for characterizing stream
evolution

We note that methods such as clustering can be used to characterize the stream
evolution. For this purpose, we utilize the micro-clustering methodology which
is discussed? in [5]. We note that clustering is a natural choice to study broad
changes in trends, since it summarizes the behavior of the data.

In this technique, micro-clusters are utilized in order to determine sudden
changes in the data stream. Specifically, new trends in the data show up as new
micro-clusters, whereas declining trends correspond to disappearing micro-
clusters. In [5], we have illustrated the effectiveness of this kind of technique
on an intrusion detection application. In general, the micro-clustering method
is useful for change detection in a number of unsupervised applications where
training data is nof readily available, and anomalies can only be detected as
sudden changes in the underlying trends. In the same paper, we have also
shown some examples of how the method may be used for intrusion detection,

Such an approach has also been extended to the case of graph and structural
data sets. In [2], we use a clustering technique in order to determine commu-
nity evolution in graph data streams. Such a clustering technique is useful in
many cases in which we need to determine changes in interaction over different
entities, In such cases, the entities may represent nodes of a graph and the
interactions may correspond to edges. A typical example of an interaction may
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be a phone call between two entities, or the co-authorship of a paper between
two entities. In many cases, these trends of interaction may change over time.
Such trends include the gradual formation and dissolution of different com-
munities of interaction. In such cases, a user may wish to perform repeated
exploratory querying of the data for different kinds of user-defined parameters.
For example, a user may wish to determine rapidly expanding or contracting
communities of interest over different time frames. This is difficult to perform
in a fast data stream because of the one-pass constraints on the computations.,
Some examples of queries which may be performed by a user are as follows:
(1) Find the communities with substantial increase in interaction level in the
interval (¢ — A, t}. We refer to such communities as expanding communities.
(2) Find the communities with substantial decrease in interaction level in the
interval (¢ — h, t} We refer to such communities as contracting communities.
(3) Find the communities with the most stable interaction level in the interval
(t — h,t).

In order to resolve such queries, the method in [2] proposes an online an-
alytical processing framework which separates out online data summarization
from offline exploratory querying. The process of data summarization stores
portions of the graph on disk at specific periods of time. This summarized
data is then used in order to resolve different kinds of queries. The result is
a method which provides the ability to perform exploratory querying without
compromising on the guality of the results. In this context, the clustering of the
graph of interactions is a key component, The first step is to create a differential
graph which represents the significant changes in the data interactions over the
user specified horizon. This is done using the summary information stored on
the disk. Significant communities of change show up as clusters in this graph.
The clustering process is able to find sub-graphs which represent a sudden for-
mation of a cluster of interactions which correspond to the underlying change
in the data. It has been shown in [2], that this process can be performed in an
efficient and effective way, and can identify both expanding and contracting
communities,

3. On the Effect of Evolution in Data Mining Algorithms

The discussion in this chapter has so far concentrated only on the problem of
analyzing and visualizing the change in a data stream directly. In many cases,
it 1§ also desirable to analyze the evolution in a more indirect way, when such
streams are used in conjunction with data mining algorithms. In this section,
we will discuss the effects of evolution on data mining algorithms. The problem
of mining incremental data dynamically has often been studied in many data
mining scenarios {7, 10, 12, 24]. However, many of these methods are often
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not designed to work well with data strecams since the distribution of the data
evolves over time.

Somie recent results [13] discuss methods for mining data streams under block
evolution. We note that these methods are useful for incrementally updating
the model when evolution has taken place. While the method has a number of
useful characteristics, it does not attempt to determine the optimal segment of
the data to be used for modeling purposes or provide an application-specific
method to weight the relative importance of more recent or past data points. In
many cases, the user may also desire to have the flexibility to analyze the data
mining results over different time horizons. For such cases, it is desirable to
use an online analytical processing framework which can store the underlying
data in a summarized format over different time horizons. In this respect, it is
desirable to store summarized snapshots {5, 7] of the data over different periods
of time,

In order to store the data in a summarized format, we need the following two
characteristics:

» We need a method for condensing the large number of data points in
the stream into condensed summary statistics. In this respect the use of
clustering is a natural choice for data condensation.

w We need a method for storing the condensed statistics over different
periods of time, This is necessary in order to analyze the characteristics
of the data over different time horizons. We note that the storage of the
condensed data at each and every time unit can be expensive both in terms
of computational resources and storage space. Therefore, a method needs
to be used so that a small amount of data storage can retain a high level of
accuracy in horizon-recall. This technique is known as the pyramidal or
geomeitric time frame. In this technique, a constant number of snapshots
of different orders are stored. The snapshots of the éth order occur at
intervals which are divisible by «® for some o > 1. It can be shown
that this storage pattern provides constant guarantees on the accuracy of
horizon estimation.

Anaother property of the stored snapshots in [5] is that the corresponding statistics
show the additivity property. The additivity property ensures that it is possible
to obtain the statistics over a pre-defined time window by subtracting out the
statistics of the previous window from those of the current window. Thus, it
is possible to examine the evolving behavior of the data over different time
horizons.

Once the summarized snapshots are stored in this pattern, they can be lever-
aged for a variety of data mining algorithms. For example, for the case of the
classification problem [7], the underlying data may show significant change
trends which result in different optimal time horizons. For this purpose, one
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can use the statistics over different time horizons. One can use a portion of the
training stream to determine the horizon which provides the optimal classifica-
tion accuracy. This value of the horizon is used in order to perform the final
classification. The results in [7] show that there is a significant improvement in
accuracy from the use of horizon specific classification.

This technique is useful not just for the classification problem but also for a
variety of problem in the evolving scenario. For example, in many cases, one
may desire to forecast the future behavior of an evolving data stream. In such
cases, the summary statistics can be used to make broad trends about the future
behavior of the stream. In general, for the evolving scenario, it is desirable to
have the following characteristics for data stream mining algorithms:

w It isdesirable to leverage temporal locality in order to improve the mining
effectiveness. The concept of ternporal locality refers to the fact that the
data points in the stream are not randomly distributed. Rather the points at
a given period in time are closely correlated, and may show specific levels
of evolution in different regions. In many problems such as classification
and forecasting, this property can be leveraged in order to improve the
quality of the mining process.

u Itis desirable to have the flexibility of performing the mining over differ-
ent time horizons. In many cases, the optimal results can be obtained only
after applying the results of the algorithm over a variety of time horizons.
An example of this case is illustrated in [7], in which the classification
problem is solved by finding the optimal accuracy over different horizons.

= In many problems, it is possible to perform incremental maintenance
by using decay-specific algorithms. In such cases, recent points are
weighted more heavily than older points during the mining process. The
weight of the data points decay according a pre-defined function which is
application-specific. This function is typically chosen as an exponential
decay function whose decay is defined in terms of the exponential decay
parameter. Anexample of this situation is the high dimensional projected
stream clustering algorithm discussed in [6].

» In many cases, synopsis construction algorithms such as sampling may
not work very well in the context of an evolving data stream. Traditional
reservoir sampling methods [25] may end up summarizing the stale his-
tory of the entire data stream. In such cases, it may be desirable to
use a biased sampling approach which maintains the temporal stability
of the stream sample. The broad idea is to construct a stream sample
which maintain the points in proportion to their decay behavior. This
is a challenging task for a reservoir construction algorithm, and is not
necessarily possible for all decay functions. The method in [8] proposes



100 DATA STREAMS: MODELS AND ALGORITHMS

a new method for reservoir sampling in the case of certain kinds of decay
functions.

While the work in [13] proposes methods for monitoring evolving data streams,
this framework does not account for the fact that different methodologies may
provide the most effective stream analysis in different cases. For some prob-
lems, it may be desirable to use a decay based model, and for others it may be
desirable to use only a subset of the data for the mining process. In general, the
methodology used for a particular algorithm depends upon the details of that
particular problem and the data. For example, for some problems such as high
dimensional clustering [6], it may be desirable to use a decay-based approach,
whereas for other problems such as classification, it may be desirable use the
statistics over different time horizons in order to optimize the algorithmic effec-
tiveness. This is because problems such as high dimensional clustering require
a large amount of data in order to provide effective results, and historical clus-
ters do provide good insights about the future clusters in the data. Therefore,
it makes more sense to use all the data, but with an application specific decay-
based approach which provides the new data greater weight than the older data.
On the other hand, in problems such as classification, the advantages of using
more data is much less relevant to the quality of the result than using the data
which is representative of the current trends in the data. The discussion of this
section provides clues to the kind of approaches that are useful for re-designing
data mining algorithms in the presence of evolution.

4. Conclusions

In this paper, we discussed the issue of change detection in data streams.
We discussed different methods for characterizing change in data streams. For
thus purpose, we discussed the method of velocity density estimation and its
application to different kinds of visual representations of changes in the under-
lying data. We also discussed the problem of online community evolution in
fast data streams. In many of these methods, clustering is a key component
since it allows us to summarize the data effectively. We also studied the reverse
problem of how data mining models are maintained when the underlying data
changes. In this context, we studied the problems of clustering and classifica-
tion of fast evolving data streams. The key in many of these methods is to use an
online analytical processing methodology which preprocesses and summarizes
segments of the data stream. These summarized segments can be used for a
variety of data mining purposes such as clustering and classification,

Notes

1. According to Silverman’s approximation rule, the smocthing parameter for a data set with n points
and standard deviation « is given by 1.06 - ¢ - n =175, For the d-dimensional case, the smoothing parameter
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along cach dimension is determined independently using the corresponding dimension-specific standard
deviation.
2. The methodology is also discussed in an eartier chapter of this book.
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Abstract

Large volumes of dynamic stream data posc great challenges to its analysis.
Besides its dynamic and transient behavior, stream data has another important
characteristic: multi-dimensionality. Much of stream data resides at a multi-
dimensional space and at rather low level of abstraction, whereas most analysts
are interested in relatively high-level dynamic changes in some combination of
dimensions. To discover high-level dynamic and evolving characteristics, one
may need to perform multi-level, multi-dimensional on-line analytical process-
ing (OLAPY) of stream data. Such necessity calls for the investigation of new ar-
chitectures that may facilitate on-linc analytical processing of muiti-dimensional
sfream data,

In this chapter, we introduce an interesting stream_cube architecture that ef-
fectively performs on-line partial aggregation of multi-dimensional stream data,
captures the essential dynamic and evolving characteristics of data streams, and
facilitates fast OLAP on stream data, Three important techniques are proposed for
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the design and implementation of stream cubes. First, a tilted time freme model
is proposed to register time-related data in a multi-resolution model: The more
recent data are registered at finer resolution, whereas the more distant data are
registered at coarser resclution. This design reduces the overall storage require-
ments of time-related data and adapts nicely to the data analysis tasks commonly
encountered in practice. Second, instead of materializing cuboids at all Ievels,
two critical layers: observation layer and minimal interesting layer, are main-
tained to support routine as well as flexible analysis with minimal computation
cost. Third, an cflicicnt stream data cubing algorithm is developed that computes
only the layers (cuboids) along a popular path and leaves the other cuboids for
on-line, query-driven computation. Based on this design methodology, stream
data cube can be constructed and maintained incrementally with rcasonable mem-
ory space, computation cost, and quety response time. This is verified by our
substantial performance study.

Stream cube architecture facilitates online analytical processing of stream
data. [t also torms a preliminary structure for online stream mining. The impact
of the design and implementation of stream cube in the context of stream mining
is also discussed in the chapter.

Keywords:  Data streams, multidimensional analysis, OLAP, data cube, stream cube, tilted
time frame, partial materialization.

1. Introduction

A fundamental difference in the analysis of stream data from that of non-
stream one ig that the siream data is generated in huge volumes, flowing in-
and-out dynamically, and changing rapidly. Due to limited resources available
and the usual requirements of fast response, most data streams may not be fully
stored and may only be examined in a single pass. These characteristics of
stream data have been emphasized and explored in their investigations by many
researchers, such as ([6, 8, 17, 18, 16]), and efficient stream data querying,
counting, clustering and classification algorithms have been proposed, such as
([2, 3, 22, 17, 18, 16, 25]). However, there is another important characteristic
of stream data that has not drawn enough attention: Most of stream data sets
are multidimensional in nature and reside at rather low level of abstraction,
whereas an analyst is often more interested in higher levels of abstraction in
a small subset of dimension combinations. Similar to OLAP analysis of static
data, multi-level, multi-dimensional on-line analysis should be performed on
stream data as well. This can be seen from the following exampie.

EXAMPLE 6.1 One may observe infinite streams of power usage data in a
power supply system. The lowest granularity of such data can be individual
household and second. Although there are tremendous varieties at analyzing
such data, the most useful online stream data analysis could be the analysis of
the fluctuation of power usage at certain dimension combinations and at certain
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high levels, such as by region and by quarter (of an hour), making timely power
supply adjustments and handling unusual situations. o

One may easily link such muilti-dimensional analysis with the online ana-
lytical processing of multi-dimensional nonstream data sets. For analyzing the
characteristics of nonstream data, the most influential methodology is to use
data warehouse and OLAP technology ([14, 11]). With this technology, data
from different sources are integrated, and then aggregated in multi-dimensional
space, either completely or partially, gencrating data cubes. The computed
cubes can be stored in the form of relations or multi-dimensional arrays ([1, 31])
to facilitate fast on-line data analysis. In recent years, a large number of data
warehouses have been successfully constructed and deployed in applications,
and data cube has become an essential component in most data warehouse sys-
tems and in some extended relational database systems for multidimensional
data analysis and intelligent decision suppeort.

Can we extend the data cube and OLAP technology from the analysis of
static, pre-integrated data to that of dynamically changing stream data, in-
cluding time-series data, scientific and engineering dato, and data produced
in other dynamic environments, such as power supply, network traffic, stock
exchange, telecommunication data flow, Web click streams, weather or envi-
ronment monitoring? The answer to this question may not be so easy since,
as everyone knows, it takes great efforts and substantial storage space to com-
pute and maintain static data cubes. A dynamic stream cube may demand an
even greater computing power and storage space. How car we have sufficient
resources to compute and store a dynamic stream cube?

In this chapter, we examine this issue and propose an interesting architecture,
called stream cube, for on-line analytical processing of voluminous, infinite,
and dynamic stream data, with the following design considerations.

1 For analysis of stream data, it is unrealistic to store and analyze data with
an infinitely long and fine scale on time. We propose a tilted time frame
as the general model of fime dimension. In the tilted time frame, time
is registered at different levels of granularity. The most recent time is
registered at the finest granularity; the more distant time is registered at
coarser granularity; and the level of coarseness depends on the application
requirements and on how distant the time point is from the current one.
This model is sufficient for most analysis tasks, and at the same time it
also ensures that the total amount of data to retain in memory or to be
stored on disk is quite limited.

2 With limited memory space in stream data analysis, it is often still too
costly to store a precomputed cube, even with the zilted time frame. We
propose to compute and store only two critical layers (which are es-
sentially cuboids) in the cube: (1) an observation layer, called o-layer,
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which is the layer that an analyst would like to check and make deci-
sions for either signaling the exceptions or drilling on the exception cells
down to lower layers to find their corresponding lower level exceptions;
and (2) the minimal interesting layer, called m-layer, which is the mini-
mal layer that an analyst would like to examine, since it is often neither
cost-effective nor practically interesting to examine the minute detail of
stream data. For example, in Example 1, we assume that the o-layer is
user-category, region, and quarter, while the m-layer is user, citv-block,
and minute.

3 Storing a cube at only two critical layers leaves much room on what and
how to compute for the cuboids between the two layers. We propose
one method, called popular-path cubing, which rolls up the cuboids
from the m-layer to the s-layer, by following the most popular drilling
path, materializes only the layers along the path, and leaves other layers
to be computed at OLAP query time. An H-tree data structure is used
here to facilitate efficient pre- and on-line computation. Our performance
study shows that this method achieves a good trade-off between space,
computation time, and flexibility, and has both quick aggregation time
and query answering time.

The remaining of the paper is organized as follows. In Section 2, we define
the basic concepts and introduce the problem. In Section 3, we present an archi-
tectural design for on-line analysis of stream data by introducing the concepts of
tilted time frame and critical layers. In Section 4, we present the popular-path
cubing method, an efficient algorithm for stream data cube computation that
supports on-line analytical processing of stream data. Qur experiments and
performance study of the proposed methods are presented in Section 5. The
related work and possible extensions of the model are discussed in Section 6,
and our study is concluded in Section 7.

2, Problem Definition

Let DB be arelational table, called the base table, of a given cube. The set
of all attributes A in DB are partitioned into two subsets, the dimensional
attributes DIM and the measure attributes M (so DIM UM = A and
DIM N M = (). The measure attributes functionally depend on the dimen-
sional attributes in DB and are defined in the context of data cube using some
typical aggregate functions, such as COUNT, SUM, AVG, or more sophisti-
cated computational functions, such as standard deviation and regression.

A tuple with schema .4 in a multi-dimensional space (i.e., in the context of
data cube) is called a cell. Given three distinct cells ¢y, ¢2 and ¢3, ¢1 is an
ancestor of ¢y, and ¢y a descendant of ¢; iff on every dimensional attribute,
ecither ¢; and ¢¢ share the same value, or ¢(’s value is a generalized value of
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¢2’s in the dimension’s concept hierarchy. ¢ is a sibling of c3 iff ¢ and ¢
have identical values in all dimensions except one dimension A where cp[Al
and c3[A] have the same parent in the dimension’s domain hierarchy. A cell
which has k& non-* values is called a k-d cell. (We use “x™ to indicate “all”, i.¢e.,
the highest level on any dimension.)

Atuple e € Discalled a base cell. Abase cell doesnot have any descendant.
A cell ¢ is an aggregated cell iff it is an ancestor of some base cell. For each
aggregated cell ¢, its values on the measure attributes are derived from the
complete set of descendant base cells of c. An aggregated cell ¢ is an iceberg
cell iff its measure value satisfies a specified iceberg condition, such as measure
> val,. The data cube that consists of all and only the iceberg cells satisfying a
specified iceberg condition [ is called the iceberg cube of a database DB under
condition [.

Noticethat in stream data analysis, besides the popularly used SQL aggregate-
based measures, such as COUNT, SUM, MAX, MIN, and AVG, regression is
a useful measure. A stream data cell compression technique LCR (/inearly
compressed representation) is developed in ([12]) to support efficient on-line
regression analysis of stream data in data cubes. The study in ([12]) shows
that for linear and multiple linear regression analysis, only a small number of
regression measures rather than the complete stream of data need to be reg-
istered. This holds for regression on both the time dimension and the other
dimensions. Since it takes a much smaller amount of space and time to handle
regression measures in a multi-dimensional space than handling the stream data
itself, it is preferable to construct regression(-measured) cubes by computing
such regression measures.

A data stream is considered as a voluminous, infinite flow of data records,
such as power supply streams, Web click streams, and telephone calling streams.
The data is collected at the most detailed level in a multi-dimensional space,
which may represent time, location, user, and other semantic information. Due
to the huge amount of data and the transient behavior of data streams, most
of the computations will scan a data stream only once. Moreover, the direct
computation of measures at the most detailed level may generate a huge number
of results but may not be able to disclose the general characteristics and trends
of data streams. Thus data stream analysis will require to consider aggregations
and analysis at multi-dimensional and multi-level space.

Our task is to support efficient, high-level, on-line, multi-dimensional analy-
sis of such data streams in order to find unusual (exceptional) changes of trends,
according to users’ interest, based on multi-dimensional numerical measures.
This may involve construction of a data cube, if feasible, to facilitate on-line,
flexible analysis.
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3. Architecture for On-line Analysis of Data Streams

To facilitate on-line, multi-dimensional analysis of data streams, we propose
a stream_cube architecture with the fotlowing features: (1) tilted time frame,
(2) two critical layers: a minimal interesting layer and an observation layer,
and (3) partial computation of data cubes by popular-path cubing. The stream
data cubes so constructed are much smaller than those constructed from the raw
stream data but will still be effective for multi-dimensional stream data analysis
tasks.

3.1 Tilted time frame

In stream data analysis, people are usually interested in recent changes at a
fine scale, but long term changes at a coarse scale. Naturally, one can register
time at different levels of granularity. The most recent time is registered at the
finest granularity; the more distant time is registered at coarser granularity; and
the level of coarseness depends on the application requirements and on how
distant the time point is from the current one.

There are many possible ways to design a titled time frame. We adopt three
kinds of models: (1) natural tilted time frame model (Fig. 6.1), (2) logarithmic
scale tilted time frame model {Fig. 6.2), and (3) progressive logarithmic tilted
time frame model (Fig. 6.3).

‘ ! 24 hours l 4 qurs 15 minuies
lIlI[l tditil|wwe] [ [[JtPf]td]]]] swe |||

Time

Figure 6.1. A tilted time frame with natural time partition

o4t 32t 16t I
°"!|||III|||| ||||,T,-me

Now

Figure 6.2, Atilted time frame with logarithmic time partition

A natural tilted time frame model is shown in Fig. 6.1, where the time frame
is structured in multiple granularity based on natural time scale: the most recent
4 quarters (15 minutes), then the last 24 hours, 31 days, and 12 months (the
concrete scale will be determined by applications). Based on this model, one
can compute frequent itemsets in the last hour with the precision of quarter of an
hour, the last day with the precision of hour, and so on, until the whole year, with
the precision of month (we align the time axis with the natural calendar time.
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{ Frameno. || Snapshots (by clock time} |

0 69 67 63
1 70 66 62
2 68 60 52
3 56 40 24
4 43 16
5 64 32

Figure 6.3, A tilted time frame with progressive logarithmic time partition

Thus, for each granularity level of the tilt time frame, there might be a partial
interval which is less than a full unit at that level.) This model registers only
4424431412 = 71 units of time for a year instead of 366 x 24 x 4 = 35, 136
units, a saving of about 495 times, with an acceptable trade-off of the grain of
granularity at a distant time.

The second choice is logarithmic tilted time model as shown inFig. 6.2, where
the time frame is structured in multiple granularity according to a logarithmic
scale. Suppose the current frame holds the transactions in the current quarter,
Then the remaining slots are for the last quarter, the next two quatters, 4 quarters,
8 quarters, 16 quarters, etc., growinig at an exponential rate. According to this
model, with one year of data and the finest precision at quarter, we will need
log, (365 x 24 x 4) + 1 = 16.1 units of time instead of 366 x 24 x 4 =
35, 136 units. That is, we will just need 17 time frames to store the compressed
information.

The third choice is a progressive logarithmic tilted time frame, where snap-
shots are stored at different levels of granularity depending on the recency.
Snapshots are put into different frame numbers, varying from 1 to max.frame,
where logy (1) — max_capacity < maz_frame < logy(T), maz_capacity
is the maximal number of snapshots held in each frame, and T is the clock time
clapsed since the beginning of the stream.

Each snapshot is represented by its timestamp. The rules for insertion of a
snapshot £ (at time ¢) into the snapshot frame table are defined as follows: (1)
if (¢ mod 2°) = Obut (¢ mod 2t+1) #£ 0, ¢ is inserted into frame_number
i it ¢ < maz_frame; otherwise (i.e., ¢ > max_frame), t is inserted into
max- frame; and (2) each slot has a max_capacity (which is 3 in our example
of Fig. 6.3). At the insertion of ¢ into frame_number i, if the slot already
reaches its max_capacity, the oldest snapshot in this frame is removed and
the new snapshot inserted. For example, at time 70, since (70 mod 2') =0
but (70 mod 22) # 0, 70 is inserted into frame_number 1 which knocks out
the oldest snapshot 58 if the slot capacity is 3. Also, at time 64, since (64
mod 2%) = 0 but maz_frame = b, so 64 has to be inserted into frame 5.
Following this rule, when slot capacity is 3, the following snapshots are stored
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in the tilted time frame table: 16, 24, 32, 40, 48, 52, 56, 60, 62, 64, 65, 66, 67,
68, 69, 70, as shown in Fig. 6.3. From the table, one can see that the closer to
the current time, the denser are the snapshots stored.

In the logarithmic and progressive logarithmic models discussed above, we
have assumed that the base is 2. Similar rules can be applied to any base «,
where « is an integer and & > 1. The tilted time models shown above are
sufficient for usual time-related queries, and at the same time it ensures that the
total amount of data to retain in memory and/or to be computed is small.

Both the natural tilted frame model and the progressive logarithmic tilted time
trame model provide a natural and systematic way for incremental insertion of
data in new frames and gradually fading out the old ones. When fading out
the old ones, their measures are properly propagated to their corresponding
retained timeframe (e.g., from a quarter to its corresponding hour) so that these
values are retained in the aggregated form. To simplify our discussion, we will
only use the natural titled time frame model in the following discussions. The
methods derived from this time frame can be extended either directly or with
minor modifications to other time frames.

In our data cube design, we assume that each cell in the base cuboid and in
an aggregate cuboid contains a tilted time frame, for storing and propagating
measurcs in the computation. This tilted titne frame model is sufficient to handle
usual time-related queries and mining, and at the same time it ensures that the
total amount of data to retain in memory and/or to be computed is small.

3.2 Critical layers

Even with the filted time frame model, it could still be too costly to dynam-
ically compute and store a full cube since such a cube may have quite a few
dimensions, cach containing multiple levels with many distinct values, Since
stream data analysis has only limited memory space but requires fast response
time, a realistic arrangement is to compute and store only some mission-critical
cuboids in the cube.

In our design, two critical cuboids are identified due to their conceptual
and computational importance in stream data analysis. We call these cuboids
layers and suggest to compute and store them dynamically. The first layer,
called m-laver, is the minimally interesting layer that an analyst would like to
study. It s necessary to have such a layer since it is often neither cost-effective
not practically interesting to examine the minute detail of stream data. The
second layer, called o-fayer, is the observation layer at which an analyst (or an
automated system) would like to check and make decisions of either signaling
the exceptions, or drilling on the exception cells down to lower layers to find
their lower-level exceptional descendants.
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(*, city, quarter)

o-layer {observation}

m-layer (minimal interest)

(individual-user, street-address, second)

{primitive) stream data layer

Figure 6.4, Two critical layers in the sirearn cube

Example 3. Assume that “(individual_user, street_address, second)” forms the
primitive layer of the input stream data in Ex. 1. With the natural tilied time
frame shown in Figure 6.1, the two critical layers for power supply analysis are:
(1) the m-layer: (user_group, street_block, minute), and (2) the o-layer: (=,
city, quarter), as shown in Figure 6.4,

Based on this design, the cuboids lower than the m-layer will not need to be
computed since they are beyond the minimal interest ofusers. Thusthe minimal
interesting cells that our base cuboid needs to be computed and stored will be
the aggregate cells computed with grouping by user_group, street _block, and
minute) . This can be done by aggregations (1) on two dimensions, user
and location, by rolling up from individual user to user_group and from
street_address to street_block, respectively, and (2) on time dimension by
rolling up from second to minute.

Similarly, the cuboids at the o-layer should be computed dynamically ac-
cording to the tilted time frame model as well. This is the layer that an analyst
takes as an observation deck, watching the changes of the current stream data
by examining the slope of changes at this layer to make decisions. The layer
can be obtained by rolling up the cube (1) along two dimensions to * (which
means all user_category) and city, respectively, and (2) along time dimension
to guarter. If something unusual is observed, the analyst can drill down to
examine the details and the exceptional cells at low levels. o

33 Partial materialization of stream cube

Materializing a cube at only two critical layers leaves much room for how
to compute the cuboids in between. These cuboids can be precomputed fully,
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partially, not at all (i.e., leave everything computed on-the-fly). Let us first
examine the feasibility of each possible choice in the environment of stream
data. Since there may be a large number of cuboids between these two layers
and each may contain many cells, it is often too costly in both space and time to
fully materialize these cuboids, especially for stream data. On the other hand,
materializing nothing forces all the aggregate cells to be computed on-the-fly,
which may slow down the response time substantially. Thus, it is clear that
partial materialization of a stream cube is a viable choice.

Partial materialization of data cubes has been studied extensively in previous
works, such as ([21, 11]). With the concern of both space and on-line computa-
tion time, partial computation of dynamic stream cubes poses more challenging
issues than its static counterpart: One has to ensure not only the limited pre-
computation time and the limited size of a precomputed cube, but also efficient
online incremental updating upon the arrival of new stream data, as well as
fast online drilling to find interesting aggregates and patterns. Obviously, only
careful design may lead to computing a rather small partial stream cube, fast
updating such a cube, and fast online drilling, We will examine how to design
such a stream cube in the next section.

4, Stream Data Cube Computation

We first examine whether iceberg cube can be an interesting model for par-
tially materialized stream cube. In data cube computation, iceberg cube {[7])
which stores only the aggregate cells that satisfy an iceberg condition has been
used popularly as a data cube architecture since it may substantially reduce the
size of a data cube when data is sparse. For example, for a sales data cube, one
may want to only retain the (cube) cells (i.c., aggregates) containing more than 2
items. This condition is called as an iceberg condition, and the cube containing
only such cells satisfying the iceberg condition is called an iceberg cube. In
stream data analysis, people may often be interested in only the substantially
important or exceptional cube cells, and such important or exceptional condi-
tions can be formulated as typical iceberg conditions. Thus it seems that iceberg
cube could be an interesting model for stream cube architecture. Unfortunately,
iceberg cube cannot accommodate the incremental update with the constant ar-
rival of new data and thus cannot be used as the architecture of stream cube.
We have the following observation.

OBSERVATION (No iceberg cubing for stream data) The iceberg cube model
does not fit the stream cube architecture. Nor does the exceptional cube model.

Rationale. With the incremental and gradual arrival of new stream data, as
well as the incremental fading of the obsolete data from the time scope of a data
cube, it is required that incremental update be performed on such a stream data
cube. It is unrealistic to constantly recompute the data cube from scratch upon
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incremental updates due to the tremendous cost of recomputing the cube on
the fly. Unfortunately, such an incremental model does not fit the iceberg cube
computation model due to the following observation: Let a cell “(d;, ..., dg) -
" represent a k — ¢ + 1 dimension cell with d;, . . ., dy, as its corresponding
dimension values and myy, as its measure value. If SAT(myy, iceberg_cond)
ig false, i.e., my, does not satisfy the iceberg condition, the cell is dropped
from the iceberg cube. However, at a later time stot ¢, the corresponding cube
cell may get a new measure m;, related to t'. However, since my, has been
dropped at a previous instance of time due to its inability to satisfy the iceberg
condition, the new measure for this cell cannot be calculated correctly without
such information. Thus one cannot use the iceberg architecture to model a
stream cube unless recomputing the measure from the based cuboid upon each
update. Similar reasoning can be applied to the case of exceptional cell cubes
since the exceptional condition can be viewed as a special iceberg condition. <

Since iceberg cube cannot be used as a stream cube model, but materializing
the full cube is too costly both in computation time and storage space, we
propose to compute only a popular path of the cube as our partial computation
of stream data cube, as described below.

Based on the notions of the minimal interesting layer {the m-layer) and the
tilted time frame, stream data can be directly aggregated to this layer according
to the tilted time scale. Then the data can be further aggregated following
one popular drilling path to reach the observation layer. That is, the popular
path approach computes and maintains a single popular aggregation path from
m-layer to o-layer so that queries directly on those (layers) along the popular
path can be answered without further computation, whereas those deviating
from the path can be answered with minimal online computation from those
reachable from the computed layers. Such cost reduction makes possible the
OLAP-styled exploration of cubes in stream data analysis.

To facilitate efficient computation and storage of the popular path of the
stream cube, a compact data structure needs to be introduced so that the space
taken in the computation of aggregations is minimized. A data structure, called
H-tree, a hyper-linked tree structure introduced in ([207), is revised and adopted
here to ensure that a compact structure is maintained in memory for efficient
computation of multi-dimensional and multi-level aggregations.

We present these ideas using an example.

Example 4. Suppose the stream data to be analyzed contains 3 dimensions,
A, B and C, each with 3 levels of abstraction {excluding the highest level
of abstraction “+”), as (A;, As, A3), (B1, By, Ba), (C1,Ca,C3), where the
ordering of “+* > A; > A > Ajs” forms a high-to-low hierarchy, and so on.
The minimal interesting layer (the m-layer) is (Ag, Ba, Cs), and the o-layer
is (A1, %, C1). From the m-layer (the bottom cuboid) to the o-layer (the top-
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cuboid to be computed), there are in total 2 x 3 x 2 = 12 cuboids, as shown in
Figure 6.5.

Figure 6.5.  Cube structure from the m-layer to the o-layer

Suppose that the popular drilling path is given (which can usually be de-
rived based on domain expert knowledge, query history, and statistical analysis
of the sizes of intermediate cuboids). Assume that the given popular path is
((AI: *, Ol) - (Ala *, 02) - (AZ; *, 02) s (A?n Bla CE) - (A25 BE; CZB)):
shown as the dark-line path in Figure 6.5. Then each path of an H-tree from
root to leaf is ordered the same as the popular path.

This ordering generates a compact tree because the set of low level nodes that
share the same set of high level ancestors will share the same prefix path using
the tree structure. Fach tuple, which represents the currently in-flow stream
data, after being generalized to the m-laver, is inserted info the corresponding
path of the H-tree. An example H-tree is shown in Fig. 6.6. In the leaf node
of each path, we store relevant measure information of the cells of the m-layer.
The measures of the cells at the upper layers are computed using the H-tree and
its associated links.

An obvious advantage of the popular path approach is that the nonleaf nodes
represent the cells of those layers (cuboids) along the popular path. Thus these
nonleaf nodes naturally serve as the cells of the cuboids along the path. That is,
it serves as a data structure for intermediate computation as well as the storage
area for the computed measures of the layers (i.e., cuboids) along the path.

Furthermore, the H-tree structure facilitates the computation of other cuboids
or cells in those cuboids. When a query or a drill-down clicking requests to
compute cells outside the popular path, one can find the closest lower level
computed cells and use such intermediate computation results to compute the
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measures requested, because the corresponding cells can be found via a linked
list of all the corresponding nodes contributing to the cells. o

root

figure 6.6, H-tree structure for cube computation

4.1 Algorithms for cube computation

Algorithms related to stream cube in general handle the following three cases:
(1) the initial computation of (partially materialized) stream cube by popular-
path approach, (2) incremental update of stream cube, and (3) online query
answering with the popular-path-based stream cube.

First, we present an algorithm for computation of (initial) partially material-
ized stream cube by popular-path approach.

AvcorriraM 1{Popular-path-based stream cube computation) Comput-
ing initial stream cube, i.c., the cuboids along the popular-path between the
m-layer and the o-layer, based on the currently collected set of input stream
data.

Input. (1) multi-dimensional multi-level stream data (which consists of a set
of tuples, each carrying the corresponding time stamps), (2) the m- and o-layer
specifications, and (3) a given popular drilling path.

Output. Allthe aggregated cells of the cuboids along the popular path between
the m- and o-layers.

Method.

1 Eachtuple, which represents a minimal addressing unit of multi-dimensional
multi-level stream data, is scanned once and generalized to the m-layer.
The generalized tuple is then inserted into the corresponding path of the
H-tree, increasing the count and aggregating the measure values of the
corresponding leaf node in the corresponding slot of the tilted time frame,
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2 Since each branch of the H-tree is organized in the same order as the spec-
ified popular path, aggregation for each corresponding slot in the tilted
time frame is performed from the rn-layer all the way up to the o-layer by
aggregating along the popular path. The step-by-step aggregation is per-
formed while inserting the new generalized tuples in the corresponding
time slot.

3 Theaggregaied cells are stored in the nonleaf nodes in the H-tree, forming
the computed cuboids along the popular path.

Analysis. The H-tree ordering is based on the popular drilling path given by
users or experts. This ordering facilitates the computation and storage of the
cuboids along the path. The aggregations along the drilling path from the -
layer to the o-layer are performed during the generalizing of the stream data
to the m-layer, which takes only one scan of stream data. Since all the cells
to be computed are the cuboids along the popular path, and the cuboids to be
computed are the nonleaf nodes associated with the H-tree, both space and
computation overheads are minimized. ©

Second, we discuss how to perform incremental update of the stream data
cube in the popular-path cubing approach. Here we deal with the “always-
grow™ nature of time-series stream data in an on-line, continuously growing
manmer.

The process is essentially an incremental computation method illustrated
below, using the tiited time frame of Figure 6.1. Assuming that the memory
contains the previously computed m- and o-layers, plus the cuboids along the
popular path, and stream data arrives at every second. The new stream data is
accumulated in the corresponding H-tree leaf nodes. Suppose the time granu-
larity of the m-layer is minute. At the end of every minute, the accumulated
data will be propagated from the leaf to the corresponding higher level cuboids.
When reaching a cuboid whose time granularity is quarter, the rolled measure
information remains in the corresponding minute slot until it reaches the full
quarter (i.e., 15 minutes) and then it rolls up to even higher levels, and so on.

Notice in this process, the measure in the time interval of each cuboid will be
accumulated and promoted to the corresponding coarser time granularity, when
the accumulated data reaches the corresponding time boundary. For example,
the measure information of every four quarters will be aggregated to one hour
and be promoted to the hour slot, and in the mean time, the quarter slots will
still retain sufficient information for quarter-based analysis. This design ensures
that although the stream data flows in-and-out, measure always keeps up to the
most recent granularity time unit at each layer.

Third, we examine how an online query can be answered with such a partially
materialized popular-path data cube. If a query inquires on the information that
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is completely contained in the popular-path cuboids, it can be answered by
directly retricving the information stored in the popular-path cuboids. Thus our
discussion will focus on the kind of queries that involve the aggregate cells not
contained in the popular-path cuboids.

A muiti-dimensional multi-level stream query usually provides a few instan-
tiated constants and inquires information related to one or a small number of
dimensions. Thus one can consider a query involving a set of instantiated di-
mensions, { D, ..., D,.;}, and a set of inquired dimensions, {Dg, ..., Dy}
The set of relevant dimensions, £J,, is the union of the sets of instantiated di-
mensions and the inquired dimensions. For maximal use of the precomputed
information available in the popular path cuboids, one needs to find the highest-
level popular path cuboids that contains D,. If one cannot find such a cuboid
in the path, one will have to use the base cuboid at the m-layer to compute
it. In either case, the remaining computation can be performed by fetching
the relevant data set from the so-found cuboid and then computing the cuboid
consisting of the inquired dimensions.

5. Performance Study

To evaluate the effectiveness and efficiency of our proposed stream cube and
OLAP computation methods, we performed an extensive performance study
on synthetic datasets. Our result shows that the total memory and computation
time taken by the proposed algorithms are small, in comparison with several
other alternatives, and it is realistic to compute such a partially aggregated
cube, incrementally update them, and perform fast OLAP analysis of stream
data using such precomputed cube.

Besides our experiments on the synthetic datasets, the methods have also
been tested on the real datasets in the MAIDS (Mining Alarming Incidents in
Data Streams) project at NCSA ([10]). The multidimensional analysis engine
of the MAID system is constructed based on the algorithms presented in this
paper. The experiments demonstrate similar performance results as reported in
this study.

Here we report our performance studies with synthetic data streams of various
characteristics. The data stream is generated by a data generator similar in spirit
to the IBM data generator ({5]) designed for testing data mining algorithms. The
convention for the data sets is as follows: D3L3C107T400K means there are 3
dimensions, each dimension contains 3 levels (from the m-layer to the o-layer,
inclusive), the node fan-out factor (cardinality) is 10 (i.e., 10 children per node),
and there are in total 400K merged m-layer tuples.

Notice that all the experiments are conducted in a static environment as a
simulation of the online stream processing. This is because the cube compu-
tation, especially for full cube and top-% cube, may take much more time than
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Figure 6.7, Cube computation: time and memory usage vs. # tuples at the m-layer for the data
set DSL3C'10

the stream flow allows. If this is performed in the online streaming environ-
ment, substantial amount of stream data could have beer lost due to the slow
computation of such data cubes. This simulation serves our purpose since it
clear demonstrates the cost and the possible delays of stream cubing and indi-
cates what could be the realistic choice if they were put in a dynamic streaming
environment.

All experiments were conducted on a 2GHz Pentium PC with 1 GB main
memory, running Microsoft Windows-XP Server. All the methods were imple-
mented using Sun Microsystems’ Java 1.3.1.

Our design framework has some obvious performance advantages over
some alternatives in a few aspects, including (1) tilted time frame vs. fill non-
tilted time frame, (2) using minimal interesting layer vs. examining stream dato
at the raw data layer, and (3) computing the cube up to the apex layer vs.
computing it up (o the observation layer. Consequently, our feasibility study
will not compare the design that does not have such advantages since they will
be obvious losers.

Since a data analyst needs fast on-line response, and both space and time
are critical in processing, we examine both time and space consumption. In
our study, besides presenting the total time and memory taken to compute and
store such a stream cube, we compare the two measures (time and space) of the
popular path approach against two alternatives: (1) the full-cubing approach,
i.e., materializing all the cuboids between the m- and o- layers, and (2) the
top-k cubing approach, i.e., materializing only the top-%k measured cells of the
cuboids between the m- and o- layers, and we set top-k threshold to be 10%, i.c.,
only top 10% (in measure) cells will be stored at each layer (cuboid). Notice
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that top-k cubing cannot be used for incremental stream cubing, However,
since people may like to pay atiention only to top-k cubes, we still put it into
our performance study (as initial cube computation). From the performance
results, one can see that if top-£ cubing cannot compete with the popular path
approach, with its difficulty at handling incremental updating, it will not likely
be a choice for stream cubing architecture.

1024 T T 1 T 1 &
foll-cubing —+—|
top-k cubing ---%; 16
256 - popular-path --- -~
A - 4
x
i 6 - i & 025
2 ) E 0,062
= r T o
2 g6
r 000390625
025 e .L i 1 A i L " i A 1 1 L 1 L
115 2 25 3 35 4 45 5 1 15 2 15 3 15 4 45 5
Number of Dimensions Number of Dimensions
a) Time vs. # dimensions b) Space vs. # dimensions

Figure 6.8. Cube computation: time and space vs. # of dimensions for the data set
L3C10T100K

The performance results of stream data cubing (cube computation) are re-
ported from Figure 6.7 to Figure 6.9.

Figure 6.7 shows the processing time and memory usage for the three ap-
proaches, with increasing size of the data set, where the size is measured as the
number of tuples at the m-layer for the data set D5L3C10. Since fill-cubing
and top-k cubing compute all the cells from the m-layer all the way up to the
o-layer, their total processing time is much higher than popular-path. Also,
since full-cubing saves all the cube cells, its space consumption is much higher
than popular-path. The memory usage of top-k cubing falls in between of the
two approaches, and the concrete amount will depend on the £ value.

Figure 6.8 shows the processing time and memory usage for the three ap-
proaches, with an increasing number of dimensions, for the data set L3C10T100K.
Figure 6.9 shows the processing time and memory usage for the three ap-
proaches, with an increasing number of levels, for the data set D5C10T50K.
The performance results show that popular-path is more efficient than both fili-
cubing and top-k cubing in computation time and memory usage. Moreover,
one can see that increment of dimensions has much stronger impact on the
computation cost (both time and space) in comparison with the increment of
levels.
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Figure 6.9, Cube computation: time and space vs. # of levels for the data set DSC10THOK

Since incremental update of stream data cube carries the similar comparative
costs for both popular-path and fildl-cubing approaches, and moreover, top-&
cubing s inappropriate for incremental updating, we will not present this part of
performance comparison. Notice that for incrementally computing the newly
generated stream data, the computation time should be shorter than that
shown here due to less number of cells involved in computation although the
total memory usage may not reduce due to the need to store data in the layers
along the popular path between two critical layers in the main memory.

Performance study has also been conducted on online query processing,
which also shows the superior efficiency of the popular-path approach in com-
parison with other alternatives. Thus we conclude that popular-path is an effi-
cient and feasible method for computing multi-dimensiconal, multi-level stream
cubes.

6. Related Work

Our work is related to on-line analytical processing and mining in data
cubes, and management and mining of stream data. We briefly review previous
research in these areas and point out the differences from our work.

In data warchousing and OLAF, much progress has been made on the effi-
cient support of standard and advanced OLAP queries in data cubes, including
selective materialization ([21]), cube computation ([7, 20, 30, 27]), cube gra-
dient analysis ([23, 13]), exception ([26]), intelligent roll-up ([28]), and high-
dimensional OLAP analysis ([24]). However, previous studies do not consider
the support for stream data, which needs to handle huge amount of fast chang-
ing stream data and restricts that a data stream can be scanned only once. In
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contrast, our work considers complex measures in the form of stream data and
studies OLAP and mining over partially materialized stream data cubes. Our
data structure, to certain extent, extend the previous work on H-tree and H-
cubing ([20]). However, instead of computing a materialized data cube as in
- H-cubing, we only use the H-tree structure to store a small number of cuboids

along the popular path. This will save substantial amount of computation time
and storage space and leads to high performance in both cube computation
and query processing. We have also studied whether it 15 appropriate to use
other cube structures, such as star-trees in StarCubing ([30]), dense-sparse par-
titioning in MM-cubing ([27]) and shell-fragments in high-dimensional OLAP
([24]). Our conclusion is that H-tree is still the most appropriate structure since
most other structure needs to either scan data set more than once or know the
sparse or dense part beforehand, which does not fit the single-scan and dynamic
nature of data streams.

Recently, there have been intensive studies on the management and querying
of stream data ([8, 17, 18, 16]), and data mining (classification and clustering)
on stream data ([22, 19, 25, 29, 2, 15, 3, 4]). Although such studies lead to
deep insight and interesting results on stream query processing and stream data
mining, they do not address the issues of multidimensional, online analytical
processing of stream data. Multidimensional stream data analysis is an essential
step to understand the general statistics, trends and outliers as well as other data
characteristics of online stream data and will play an essential role in stream
data analysis. This study sets a framework and outlines an interesting approach
to stream cubing and stream OLAP, and distinguishes itself from the previous
works on stream query processing and stream data mining.

7. Possible Extensions

There are many potential extensions of the work towards comprehensive,
high performance analysis of data streams. Here we outline a few.

m Disk-based stream cube. Although a stream cube usually retains in
main memory for fast computation, updating, and accessing, it is im-
portant to have its important or substantial portion stored or mirrored
on disk, which may enhance data reliability and system performance.
There are several ways to do it. First, based on the design of the tilted
time frame, the distant time portion in the data cube can be stored on disk.
This may help reduce the total main memory requirement and the update
overhead. The incremental propagation of data in such distant portion
can be done by other processors using other memory space. Second, to
ensure that the data is not lost in case of system error or power failure, it
is important to keep a mirror copy of the stream data cube on disk. Such a
mirroring process can be processed in parallel by other processors. Also,
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it is possible that a stream cube may miss a period of data due to software
error, equipment malfunction, system failure, or other unexpected rea-
sons. Thus a robust stream data cube should build the functionality to run
despite the missing of a short period of data in the tilted time frame. The
data so missed can be treated by special routines, like data smoothing,
data cleaning, or other special handling so that the overall stream data
can be interpreted correctly without interruption.

s Computing complex measures in stream cubes. Although we did
not discuss the computation of complex measures in the data cube
environment, it is obvious that complex measures, such as sum, avg, min,
max, last, standard deviation, and many other measures can be handled
for the stream data cube in the same manner as discussed in this study.
Regression stream cubes can be computed efficiently as indicated in the
study of ([12]). The distributed and algebraic measures of prediction
cubes, as defined in ([9]), in principle, can be computed efficiently in
the data stream environment. However, it is not clear how to efficiently
handle holistic measures ([14]) in the stream data cubing environment.
For example, it is still not clear that how some holistic measures, such
as quantiles, rank, median, and so on, can be computed efficiently in this
framework. This issue is left for future research.

e Toward multidimensional online stream mining. This study is on
multidimensional OLAP stream data analysis. Many data mining tasks
requires deeper analysis than simple OLAP analysis, such as classifica-
tion, clustering and frequent pattern analysis. In principle, the general
framework worked out in this study, including tilted time frame, minimal
generalized layer and observation layers, as well as partial precomputa-
tion for powerful online analysis, will be useful for in-depth data mining
methods. It is an interesting research theme on how to extend this frame-
work towards online stream data mining.

8. Conclusions

In this paper, we have promoted on-line analytical processing of stream
data, and proposed a feasible framework for on-line computation of multi-
dimensional, multi-level stream cube,

We have proposed a general stream cube architecture and a stream data
cubing method for on-line analysis of stream data. Our method uses a filted
time frame, explores minimal intevesting and observation layers, and adopts a
popular path approach for efficient computation and storage of stream cube
to facilitate OL AP analysis of stream data. Our performance study shows that
the method is cost-efficient and is a realistic approach based on the current
computer technology. Recently, this stream data cubing methodology has been
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successfully implemented in the MAIDS project at NCSA (National Center
for Supercomputing Applications) at the University of Illinois, and tested its
effectiveness using online stream data sets ({10]).

Our proposed stream cube architecture shows a promising direction for real-
ization of on-line, multi-dimensional analysis of data streams. There are a lot
of issues to be explored further. In particular, it is important to further develop
data mining methods to take advantage of stream cubes for on-line mining of
multi-dimensional knowledge in stream data.
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Systems for processing continuous monitoring queries over data streams must be
adaptive because data streams arc often bursty and data characteristics may vary
over time. In this chapter, we focus on one particular type of adaptivity: the ability
to gracefully degrade performance via “load shedding™ (dropping unprocessed
tuples to reduce system load) when the demands placed on the system cannot
be met in full given available resources. Focusing on aggregation querics, we
present algorithms that determine at what points in a query plan should load
shedding be performed and what amount of load should be shed at each point in
order to minimize the degree of inaccuracy introduced into query answers. We
also discuss strategies for load shedding for other types of queties (set-valued
queries, join queries, and classification queries).

data streams, load shedding, adaptive query processing, sliding windows, auto-
nomic computing

One of the main attractions of a streaming mode of data processing — as
opposed to the more conventional approach for dealing with massive data sets,
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in which data are periodically collected and analyzed in batch mode — is the
timeliness of the insights that are provided. In many cases, the ability to
issue continuous queries and receive real-time updates to the query answers
as new data arrives can be the primary motivation for preferring data stream
processing technology to alternatives such as data warchousing. For thisreason,
it is important that data stream processing system be able to continue to provide
timely answers even under difficult conditions, such as when temporary bursts
in data arrival rates threaten to overwhelm the capabilities of the system.

Many data stream sources (for example, web site access patterns, transac-
tions in financial markets, and communication network traffic) are prone to
dramatic spikes in volume {e.g., spikes in traffic at a corporate web following
the announcement of a new product or the spikes in traffic experienced by news
web sites and telephone networks on September 11, 2001). Because peak load
during a spike can be orders of magnitude higher than typical loads, fully pro-
visioning a data stream monitoring system to handle the peak load is generally
impractical. However, in many monitoring scenarios, it is precisely during
bursts of high load that the function performed by the monitoring application
is most critical. Therefore, it is particularly important for systems processing
continuous monitoring queries over data streams to be able to automatically
adapt to unanticipated spikes in input data rates that exceed the capacity of the
system. An overloaded system will be unable to process all of its input data
and keep up with the rate of data arrival, so load shedding, i.¢., discarding some
fraction of the unprocessed data, becomes necessary in order for the system to
continue to provide up-to-date query responses. In this chapter, we consider
the question of how best to perform load shedding: How many tuples should be
dropped, and where in the query plan should they be dropped, so that the system
is able to keep up with the rate of data arrival, while minimizing the degree of
inaccuracy in the query answers introduced as a result of load shedding?

The answer to this question often differs depending on the type of queries
being answered, since different classes of queries have different loss metrics
for measuring the degradation in answer quality caused by load shedding. In
the first part of the chapter, we perform a detailed study of the load shedding
problem for one particular class of queries, sliding window aggregate queries.
Afterwards, we consider several other classes of queries (set-valued queries
with tuple-level utility functions, sliding-window join queries, and classification
queties), and we briefly discuss load shedding techniques appropriate for each
query class,

1. Load Shedding for Aggregation Queries

The continuous monitoring queries that we consider in this section are sliding
window aggregate queries, possibly including filters and foreign-key joins with
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stored relations, over continuous data streams. We restrict out attention to
this query class, omitting monitoring queries involving joins between multiple
streams, or non-foreign-key joins between streams and stored relations.

Overview of Approach Inthis section, we will describe a technique involving
the introduction of load shedding operators, or load shedders, at various points
in the query plan. Each load shedder is parameterized by a sampling rate p. The
load shedder flips a coin for each tuple that passes through it. With probability p,
the tuple is passed on to the next operator, and with probability 1 —p, the tuple is
discarded. To compensate for the lost tuples caused by the introduction of load
shedders, the aggregate values calculated by the system are scaled appropriately
to produce unbiased approximate query answers.

The decisions about where to introduce load shedders and how to set the sam-
pling rate for each load shedder are based on statistics about the data streams,
including observed stream arrival rates and operator selectivities. We use statis-
tical techniques similar to those used in approximate query processing systems
to make these decisions in such a way as to achieve the best attainable accuracy
given data input rates.

11 Problem Formulation

Preliminaries. For our purposes, a continuous data stream S will be de-
fined as a potentially unbounded sequence of tuples {3, 84, 83, ...} that arrive
over time and must be processed online as they arrive. A sliding window ag-
gregate is an aggregation function applied over a sliding window of the most
recently-arrived data stream tuples (for example, a moving average). The aggre-
gation functions that we consider are SUM and COUNT, though the techniques
described can be generalized to other functions such as AVG and MEDIAN.
Sliding windows may be either fime-based, meaning that the window consists
of all tuples that have arrived within some time interval w of the present (e.g.,
the last 4 hours), or tuple-based, meaning that the window consists of the ¥V
most recently arrived tuples (e.g., the last 10,000 tuples). A filter is a local
selection condition on tuples from a data stream.

This class of queries (sliding window aggregate queries) is important and
uscful for many data stream monitoring applications, including network traffic
engineering, which we will use as an example application domain. Network
analysts often monitor sliding window aggregates covering multiple timescales
over packet traces from routers, typically filtering based on the internet protocol
used, source and destination port numbers, and similar considerations. Foreign-
key joins or semijoins with stored relations may be used in monitoring queries
to perform filtering based on some auxiliary information that is not stored in
the data stream itself (e.g., the industry grouping for a security in a financial
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monitoring application). For our purposes, such joins have the same structure
and effects as an expensive selection predicate or a user-defined function.

Most data stream monitoring scenarios involve multiple concurrent continu-
ous queries. Sharing of common sub-expressions among queries is desirable to
improve the scalability of the monitoring system. For this reason, it is important
that a load shedding policy take into account the structure of operator sharing
among query plans rather than attempting to treat each query as an isolated unit,

The input to the load shedding problem consists of a set of queries 1, ..., gy
over data streams S, ..., Sy, a set of query operators Oy, ..., O, and some
associated statistics that are described below. The operators are arranged into
a data flow diagram (similar to [3]) consisting of a directed acyclic graph with
n source nodes representing the data streams, n sink nodes representing the
queries, and k intermal nodes representing the query operators. (Please refer to
Figure7.1.) The edges in the graph represent data flow between query operators.
For each query g;, there is a corresponding path in the data flow diagram from
some data stream 5 though a set of query operators Oy, Oy,, . .., O;, to node
g;. This path represents the processing necessary to compute the answer to
query ¢;, and it is called the query path for query ¢;. Because we do not
consider joins between data streams, the data flow diagram can be thought of
as being composed of a set of trees. The root node of each tree is a data stream
Sy, and the leaf nodes of the tree are the queries that monitor stream 5. Let
T(S;) denote the tree of operators rooted at stream source S;.
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Every operator O; in the data flow diagram is associated with two parameters:
its selectivity s; and its processing time per tuple ¢;. The selectivity of an
operator is defined as the ratio between the number of output tuples produced
by the operator and the number of input tuples consumed by the operator, The
processing time per tuple for an operator is defined as the average amount of
time required by the operator to process each input tuple. The last operator along
any query path is a windowed aggregate operator. The output of this operator is
the final answer to the query and therefore not consumed by any other operator,
so the selectivity of such an operator can be considered to be zero. Each SUM
aggregate operator (J; is associated with two additional parameters, the mean
tt; and standard deviation o; of the values in the input tuples that are being
aggregated. The final parameters to the load shedding problem are the rate
parameters 7;, one for each data stream 5;. Rate parameter ry represents the
average rate of tuple arrival on stream S, measured in tuples per unit time.

Estimation of Input Parameters. Although we have described these
input parameters {selectivity, stream rate, ctc.) as known, fixed quantities, in
reality their exact values will vary over time and cannot be known precisely
in advance. In the data stream management system STREAM [8], there is a
Statistics Manager module that estimates the values of these parameters. The
query operators in STREAM are instrumented to report statistics on the number
of tuples processed and output by the operator and the total processor time
devoted to the operator. Based on these statistics, the Statistics Manager can
estimate the selectivity and processing times of operators as well as the data
siream arrival rates. During times when statistics gathering is enabled, the
SUM aggregation operator additionally maintains statistics on the sum and
sum-of-squares of the aggregate values of tuples that it processes, allowing the
estimation of the mean and standard deviation of the values of the attribute
being summed. As stream arrival rate and data characteristics change, the
appropriate amount of load to shed and the right places to shed it may change
as well. Therefore, in the STREAM system, estimates for the load shedding
input parameters are periodically refreshed by the Statistics Manager, and load
shedding decisions are periodically revisited.

Accuracy Metric.  Let Aj, Ag, ..., A, betheanswersto queries gy, ga, ..., gy
at some point in time, and let ﬁl, Eg, caey ﬁn be the answers produced by the
data stream monitoring system. If the input rates are high enough that load
shedding becomes necessary, the data stream monitoring system may not be
able to produce the correct query answers, i.e., 2,- # A; for some or all queries
g;. The quality of a load shedding policy can be measured in terms of the devi-
ation of the estimated answers produced by the system from the actual answers.

Since the relative error in a query answer is generally more important than the
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absolute magnitude of the error, the goal of our load shedding policy will be
to minimize the relative error for each query, defined as e; = |4; — A4;|/|A:l.
Moreover, as there are multiple queries, we aim to minimize the maximum etror
across all queties, €pyq, = max; <<y €.

Load Constraint.  The purpose of load shedding is to increase the through-
put of the monitoring system so that the rate at which tuples are processed is
at least as high as the rate at which new input tuples are arriving on the data
streams. Ifthis relationship does nothold, then the system will be unable to keep
up with the arriving data streams, and input buffers and latency of responses
will grow without bound. We capture this requirement in an equation, which
we call the load equation, that acts as a constraint on load shedding decisions.

Before presenting the load equation, we will first introduce some additional
notation. As mentioned earlier, each operator O; is part of some iree of oper-
ators 7'(S;). Let U; denote the set of operators “upstream” of O;,—that is, the
operators that fall on the path from .S, to O; in the data flow diagram. If some of
the operators upstream of (J; are selective, the data input rate seen by operator
O; will be less than the data stream rate r; at the stream source since some
tuples are filtered out before reaching (3;. Furthermore, if load shedders are
introduced upstream of (;, they will also reduce the effective input rate seen by
;. Letus define p; as the sampling rate of the load shedder introduced immedi-
ately before operator (J; and let p; = 1 when no such load shedder exists. Thus
to measure the time spent in processing operator (J;, we are interested in the
effective input rate for O;, which we denote r((;) = re()0i [lo,cp, S2Pa-
(Here src(i) denotes the index of the data stream source for operator (;, i.e.
src(i) = j for Oy € T'(8;).) This leads to the load equation:

EQUATION 1.1 (LOAD EQUATION) Any load shedding policy must select
sampling rates p; to ensure:

Z il ape(1) i H S2pz | €1 (7.1)

1<i<k Opell;

The left hand side of Equation 1.1 gives the total amount of time required for
the system to process the tuples that arrive during one time unit, assuming that
the overhead introduced by load shedding is negligible. Clearly, this processing
time can be at most one time unit, or else the system will be unable to keep up
with the arriving data streams. The assumption that the cost of load shedding is
small relative to the cost of query operators, and can therefore be safely ignored,
is borne out by experimental evidence [2].

Problem Statement. The formal statement of the load shedding problem
is as follows: Given a data flow diagram, the parameters 8;, b;, 14:, 03 for each
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operator O;, and the rate parameters r; for each data stream S;, select load
shedding sampling rates p; to minimize the maximum relative ervor €mgy =
maxi<i<n €, subject to the constraint that the load equation, Equation 1.1,
must be satisfied.

1.2 Load Shedding Algorithm

In this section, we describe our algorithm for determining the locations at
which load shedding should be performed and setting the sampling rate param-
eters p;. The algorithm has two steps:

1 Determine the effective sampling rates for each query that will distribute
error evenly among all queries.

2 Determine where in the data flow diagram load shedding should be per-
formed to achieve the appropriate rates and satisfy the load equation.

These two steps are described in detail below.

Allocation of Work Among Queries. Recall that the error metric we
use to measure the accuracy of a query response is the relative error. It is
impossible to precisely predict the relative error in query answers that will arise
from a particular choice of a load shedding policy, because the data values in
the discarded tuples are unknown. However, if we assume some knowledge
about the distribution of data values, for example based on previously-seen
tuples from the data streams, then we can use probabilistic techniques to get
good estimates of what the relative error will be. There is some variability in
the relative error, even if the data distribution is known exactly, because the
approximate answers produced by the system depend on the outcomes of the
random coin flips made by the load shedders. Therefore, to compare alternative
load shedding policies, we do the following: for a fixed small constant & (we
use 0.01), we say that a load shedding policy achieves error € if, for gach query
g;, the relative error resulting from using the policy to estimate the answer to g;
exceeds e with probability at most 4.

Relating Sampling Rate and Error Suppose the query path for a SUM
query ¢; consists of the sequence of operators O;1, Oja, ...,0;.. Consider a
load shedding policy that introduces load shedders along the query path with
sampling rates p;1, pg2. . - -, Piz- Let T be a tuple that would pass through all the
query operators and contribute to the query answer in the absence of any load
shedders. When load shedders are present, » will contribute to the answer if and
only if it passes through all the 1oad shedders, which occurs with probability
B =papi ... pi. We will refer to F; as the effective sampling rate for query
qi-
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Let Q; denote the set of tuples from the current sliding window that would
pass all selection conditions and contribute to the guery answer in the absence
of load shedders. Let NN; be the number of tuples in the set £;. From the
above discussion, it is clear that in the presence of load shedders, this aggregate
query will be answered based on a sample of Q; where cach clement gets
included independently with probability P;. For the tuples in the set Q;, let
7, U2, ..., vy, denote the values of the attribute being summed, and let A; be

their sum. The approximate answer A produced by the system will be the sum
of v;"s for the tuples that get included in the sample, scaled by the inverse of
the effective sampling rate (1/F;). The folowing proposition, which follows
directly from a result due to Hoeffding (Theorem 2 in [6]), gives an upper bound
on the probability that the relative error exceeds a certain threshold ¢;.

ProPOSITION 1.1 Let X1, Xq,..., XN be N random variables, such that
each random varigble X; takes the value v;/P with probability P and the

value zero otherwise. Let A; be the sum of these random variables and let
A= Eé\f__l v;. If we denote by 55, the sum Z;Vzl 'UJ?, then

Pr{|A; — Ay > €| As|} < 2exp (—2P%2 A2/S5;)

Thus, for a query g;, to ensure that the probability that the relative error
exceeds ¢; is at most §, we must guarantee that 2 exp (—2]:;:26?14% / SS,;) < 4,

which occurs when Fe; > (U, where we define C; = 1/%35 log % Let-
4

ting the mean and variance of the values vy, v, ..., vy, be denoted by p; =
Z“‘;-\il v;/N; and o = Eﬁl(vj — )%/ Ny, respectively, the ratio S.5;/A? is
equal to (&7 +p2) /( N;p?). Thusthe right-hand side of the preceding inequality
reduces to C; = %%? log Z.

if we want a load shedding policy to achieve relative error ¢;, we must
guarantee that F; > C;/¢;. Thus, to set F; correctly, we need to estimate C;.
Recall that we are given estimates for y; and o; {provided by the Statistics
Manager) as inputs to the load shedding problem. The value of N; can be
calculated from the size of the sliding window, the estimated selectivities of
the operators in the query path for g;, and (in the case of time-based sliding
windows) the estimated data stream rate r;.

The larger the value of C, the larger the effective sampling rate F; needs
to be to achieve a fixed error €; with a fixed confidence bound 4. Clearly, C;
is larger for queries that are more selective, for queries over smaller sliding
windows, and for queries where the distribution of values for the attribute being
summed is more skewed. For a COUNT aggregate, u; = 1 and ¢; = 0, so only
the window size and predicate selectivity affect the effective sampling rate.
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On the Effects of Parameter Estimation Errors  Since the values of the pa-
rameters that affect the effective sampling rate are known only approximately,
and they are subject to change over time, using the estimated parameter val-
ues directly to calculate effective sampling rates may result in under-sampling
for a particular query, causing higher relative error. For example, if the data
characteristics change so that an attribute that previcusly had exhibited little
skew suddenly becomes highly skewed, the relative error for a query which
aggregates the attribute is likely to be higher than predicted.

The impact of a mistake in estimating parameters will be more pronounced
for a query whose P; is low than for a query with higher P;. Therefore, for
applications where rapid changes in data characteristics are of concern, a more
conservative policy for setting effective sampling rates could be implemented by
adding a constant “fudge factor” to the estimates for C; for each query. In effect,
this would result in resources being distributed among the queries somewhat
more evenly than would be optimal based on the estimated parameter values.
Such a modification would misallocate resources somewhat if the estimated
parameters turn out to be correct, but it would be more forgiving in the case of
significant errors in the estimates.

Choosing Target Errors for Queries The objective that we seek to minimize
is the maximum relative error ¢; across all queries ¢;. It is easy to see that the
optimal solution will achieve the same relative error € for all queries.

OBRSERVATION 1.2 [n the optimal solution, the relative error (€;) is equal for
all gueries for which load shedding is performed.

PRrooF: The proofis by contradiction. Suppose that ¢; < ¢; for two queries
&, ¢4. Since ¢; = C;/ P; < ¢;, we could reduce P; to P/ by introducing a load
shedder before the final aggregation operator for ¢; with effective sampling
rate P/ F; so that ; = C;/P] = ¢;. By doing so, we keep the maximum
relative error unchanged but reduce the processing time, gaining some slack in
the load equation. This slack can be distributed evenly across all queries by
increasing all load shedder sampling rates slightly, reducing the relative error
for all queries.

For an optimal solution, since the relative errors for all queries are the same,
the effective sampling rate F; for each query g; will be proportional to the C;
value for that query, since P; = C;/¢; = C;/€man. Therefore, the problem of
selecting the best load shedding policy reduces to determining the best achiev-
able €4, and inserting load shedders such that, for each query g;, the effective
sampling rate F;, is equal to C;/€men. In doing so we must guarantee that
the modified query plan, after inserting load shedders, should satisfy the load
equation (Equation 1.1).
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Placement of Load Shedders. For now, assume that we have guessed the
right value of €,,,;, s0 that we know the exact effective sampling rate F; for
each query. (In fact, this assumption is unnecessary, as we will explain below.)
Then our task is reduced to solving the following problem: Given a data flow
diagram along with a set of target effective sampling rates P; for each query g;,
modify the diagram by inserting load shedding operators and set their sampling
rates so that the effective sampling rate for each query g; is equal to F; and the
total processing time is minimized.

If there is no sharing of operators among queries, it is straightforward to
see that the optimal solution is to introduce a load shedder with sampling rate
p; = F; before the first operator in the query path for each query ¢;. Introducing
a load shedder as early in the query path as possible reduces the effective
input rate for all “downstream” operators and conforms to the general query
optimization principle of pushing selection conditions down.

Introducing load shedders and setting their sampling rates is more compli-
cated when there is sharing among query plans. Suppose that two queries g1 and
72 share the first portion of their query paths but have different effective sam-
pling rate targets /| and P». Since a load shedder placed at the shared beginning
of the query path will affect the effective sampling rates for both queries, it is
not immediately clear how to simultaneously achieve both effective sampling
rate targets in the most efficient manner, though clearly any solution will nec-
essarily involve the introduction of load shedding at intermediate points in the
query paths.

We will define a shared segment in the data flow diagram as follows: Suppose
we label each operator with the set of all queries that contain the operator in
their query paths. Then the set of all operators having the same label is a shared
segment.

OBSERVATION 1.3 In the optimal solution, load shedding is only performed
at the start of shared segments.

This observation is true for the same reason that load shedding should always
be performed at the beginning of the query plan when no sharing is present:
The effective sampling rates for all queries will be the same regardless of the
position of the load shedder on the shared segment, but the total execution time
will be smallest when the load shedding is performed as early as possible.

The preceding observation rules out some types of load shedding configura-
tions, but it is not enough to determine exactly where load shedding should be
performed. The following simple example will lead us to a further observation
about the structure of the optimal solution:

ExXAMPLE 7.1 Consider asimple data flow diagram with 3 operators as shown
in Figure 7.2. Suppose the query nodes gy and qo must have effective sampling



s
5y

P,=0.5 P,=0.8 P,=0.5 P,=0.8

Figure 7.2.  Tlustration of Example 7.1

rates equal to (.5 and 0.8 respectively. Each operator (A, B, and C) is in its
own shared segment, so load shedding could potentially be performed before
any operator. Imagine a solution that places load shedders before all three
operators A, B, and C with sampling rates p1, pa, and p3 respectively. Since
mpz = 0.5and p1p3 = 0.8, we know that the ratio p3 /p3 = 0.5/0.8 = 0.625in
any solution. Consider the following modification to the solution. eliminate the
{oad shedder before operator C and change the sampling rates for the other two
load shedders to be p} = pi1ps = 0.8 and py = pa/ps = 0.625. This change
does not affect the effective sampling rates, because pipy = pipa = 0.5 and
Py = pips = 0.8, but the resulting plan has lower processing time per tuple.
Effectively, we have pushed down the savings from load shedder p3 to before
operator A, thereby reducing the effective input rate to operator A while leaving
all other effective input rates unchanged.

Let us define a branch point in a data flow diagram as a point where one
shared segment ends by splitting into & > 1 new shared segments. We will
call the shared segment terminating at a branch point the parent segment and
the k shared segments originating at the branch point child segments. We can
generalize the preceding example as follows:

OBSERVATION 1.4 Let Gmay be the query that has the highest effective sam-
pling rate among all queries sharing the parent segment of a branch point B.
In the optimal solution, the child segment of B that lies on the query path for
Umaz Wil not contain a load shedder. All other child segments of B will contain
a load shedder with sampling rate Peopita/ Prax, Where Qenig is defined for each
child segment as the query with the highest effective sampling rate among the
queries sharing that child segment.
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Figure 7.3. lustration of Obscrvation 1.4

Observation 1.4 is illustrated in Figure 7.3. The intuition underlying this
observation is that, since all queries sharing the parent segment must shed at
least a (1 — Ppax )-fraction of tuples, that portion of the load shedding should
be performed as early as possible, no later than the beginning of the shared
segment. The same intuition leads us to a final observation that completes our
characterization of the optimal load shedding solution. Let us refer to a shared
segment that originates at a data stream as an initial segment,

OBSERVATION 1.5 Let quqe be the query that has the highest effective sam-
pling rate among all queries sharing an initial segment S. In the optimal
solution, S will contain a load shedder with sampling rate Prqz.

The combination of Observations 1.3, 1.4, and 1.5 completely specifies the
optimal load shedding policy. This policy can be implemented using a simple
top-down algorithm. If we collapse shared segments in the data flow diagram
into single edges, the result is a set of trees where the root node for each tree
is a data stream S, the internal nodes are branch points, and the leaf nodes
are queries. We will refer to the resulting set of trees as the collapsed tree
representation of the data flow diagram, For any internal node z in the collapsed
tree representaiton, let P, denote the maximum over all the effective sampling
rates P; corresponding to the leaves of the subtree rooted at this node.

The following definition will be useful in the proof of Theorem 1.7.

DEFINITION 1.6 The prefix path probability of a node x in the collapsed tree
represeniation is defined as the product of the sampling rates of all the load
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Algorithm 1 Procedure SetSampling Rate(x, Ry)
if x is a leaf node then
return
end if
Let x(, %q, . .. &) be the children of z
fori=1to %k do
if F,, < R, then
Shed load with p = Py, /R, on edge (z, ;)
end if
SetSamplingRate{z;, Py,)
end for

Figure 7.4.  Procedure SetSamplingRate(x, Hy)

shedders on the path from node x to the root of its tree. If there are no load
shedders between the root and node =, then the prefix path probability of x is 1.

The pseudocode in Algorithm 7.4 operates over the collapsed tree represen-
tation to introduce load shedders and assign sampling rates starting with the
call SetSamplingRate(S;, 1) for each data stream S;.

THEOREM 1.7 Among all possibie choices for the placement of load shedders
and their sampling rates which result in a given set of effective sampling rates
Jor the queries, the solution generated by the SetSamplingRate procedure
has the lowest processing time per tuple.

Proor: Notethatineachrecursive invocation of SetSamplingRate(x, 1, ),
the second parameter £, is equal to the prefix path probability of node x. To
prove the theorem, we first prove the claim that for each node z other than the
root, the prefix path probability of z is equal to 7.

The proof of the claim is by induction on the height of the tree. The base
case consists of the root node and its children. The claim is trivially true for the
root node. For a node n that is the child of the root, the top-level invocation of
SetSamplingRate, with R,,: = 1, places a load shedder with sampling rate
Pr/Rroor = P, atthe beginning of edge (root, n), so the prefix path probability
of n is equal to F,.

For the inductive case, consider any node b in the tree which is the child
of some non-root node a. Assume that the claim holds for node . When
SetSamplingRate is called with @ as an argument, it places a load shedder
with sampling rate P,/ P, at the beginning of edge (a, b). Thus, by the inductive
hypothesis, the product of sampling rates of load shedders from the root to node
bequals I, x 5 = P}, proving the claim.
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Thus we guarantee that the prefix path probability of any node is equal to
the highest effective sampling rate of any query which includes that node in its
query path. No solution could set a prefix path probability less than this value
since it wonld otherwise violate the effective sampling rates for that query. Thus
the effective input rate of each operator is the minimum that can be achieved
subject to the constraint that prefix path probabilities at the leaf nodes should
equal the specified effective sampling rates. This proves the optimality of the
algorithm.

Determining the Value of ¢,,,; An important point to note about the algo-
rithm is that except for the first load shedder that is introduced just after the
root node, the sampling rates for all others depend only on the ratios between
effective sampling rates (each sampling rate is equal to F;/P; = C;/C; for
some %, j) and not on the actual P; values themselves. As a consequence, it is
not actually necessary for us to know the value of €., in advance. Instead, we
can express each effective sampling rate F; as C; A, where A = 1/€,,4, is anun-
known multiplier. On each query path, there is at most one load shedder whose
sampling rate depends on A, and therefore the load equation becomes a lingar
function of A. After running Algorithm 7.4, we can easily solve Equation 1.1
for the resulting configuration to obtain the correct value of A that makes the
inequality in Equation 1.1 tight.

Another consequence of the fact that only load shedders on initial segments
depend on the actual P; values is that the load shedding structure remains stable
as the data stream arrival rates r; change. The effective sampling rate F; for
each query ¢; over a given data stream 5; depends on the rate r; in the same
way. Therefore, changing r; does not affect the ratio between the F; values for
these queries. The only impact that a small change to 7; will have is to medify
the sampling rates for the load shedders on the initial segments.

When determining €, in situations when the system load is only slightly
above system capacity, an additional consideration sometimes needs to be taken
into account: When no load shedding is performed along the query path for a
given query, the error on that query drops to zero. By contrast, for each query,
there is a minimum error threshold (C;) below which no error guarantees based
on Proposition 1.1 can be given as long as any load shedding is performed
along the query path. As the effective sampling rate F; increases, the relative
error ¢; decreases continuously while F; < 1 then makes a discontinuous jump
(frome; = Cjto ¢ = () at P; = 1. Our algorithm can be casily modified to
incorporate this discontinuity, as described in the next paragraph.

In some cases, the value of A that makes the inequality in Equation 1.1
tight may be greater than 1/Ciyq,, Where Chypp is the proportionality constant
(derived using Proposition 1.1) of the query g4, with maximum target effective
sampling rate. Such a value of A corresponds to an infeasible target effective
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sampling rate for query gmqz, $ince Prar = CmaxA > L. 1t is not meaningful
to have a load shedder with sampling rate greater than one, so the maximum
possible effective sampling rate for any query is 1, which is attained when no
load shedding is performed for that query. To handle this case, weset Py = 1
and re-compute the placement of load shedders using the SetSamplingRate
procedure (Algorithm 7.4). This re-computation may be need to be performed
several times—each time forcing an additional query’s target sampling rate
equal to 1——until eventually P; < 1 for all queries g;.

1.3 Extensions

We briefly discuss how to extend our techniques to incorporate quality of
services guarantees and a more general class of queries.

Quality of Service. By taking as our objective the minimization of the maxi-
mum relative error across all queries, we have made the implicit assumption that
all queries are equally important. In reality, in many monitoring applications
some queries can be identified as being more critical than others, Ourtechniques
can easily be adapted to incorporate varying quality of service requirements for
different queries, either through the introduction of query weights, or query
priorities, or both.

One modification would be to allow users to associate a weight or importance
w; with each query g;. With weighted queries, the goal of the system is to
minimize the maximum weighted relative error. When computing the effective
sampling rate target for the queries, instead of ensuring that /€4, is equal
for all queries ¢;, we ensure that C;/(w;€ma ) is equal. In other words, instead
of % x C; we have B oc Chw,.

An alternative way of specifying query importance is to assign a discrete
priority level to each query. Then the goal of the system is to minimize the
maximum relative error across all queries of the highest priority level. If all
these queries can be answered exactly, then the system attempts to minimize the
maximum relative error across queries with the second-highest priority level,
and so on.

More General Query Classes. We have discussed the load shedding
problem in the context of a particular class of data stream monitoring queries,
aggregation queries over sliding windows. However, the same techniques that
we have developed can be applied to other classes of queries as well. One
cxample is monitoring queries that have the same structure as the ones we have
studied, except that they have set-valued answers instead of ending with an
aggregation operator. In the case of set-valued queries, an approximate answer
consists of a random sample of the tuples in the output set. The metric of
relative error is not applicable to set-valued queries. Instead, we can measure
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error as the percentage of tuples from the query answer that are missing in the
approximate answer. The goal of the system is to minimize the maximum value
of this quantity across all queries, optionally with query weights or priorities.
Qur algorithm can be made to optimize for this objective by simply setting C;
for each query equal to 1.

Another class of queries that arises in data stream monitoring applications is
aggregation queries with “group-bys”. One can view a group-by query as multi-
ple queries, one query for each group. However, all these queries share the entire
query path and thus will have the same effective sampling rate. Consequently,
the group with maximum relative error will be the one with the maximum
value. Since our error metric is the maximum relative error among all groups
across queries, within each group-by query, the group with maximum C; value
will be the only group that counts in the design of our solution. Thus, we can
treat the group with maximum C; value as the representative group for that

query.

Incorporating Load Shedding Overhead.  The results we have presented
arc based on the assumption that the cost (in terms of processing time) to
perform load shedding is small relative to the the cost of query operators. In an
actual system implementation, even simple query operators like basic selections
generally have considerable overhead associated with them. A load shedder,
on the other hand, involves little more than a single call to a random number
generator and thus can be very efficiently implemented. In empirical tests using
the STREAM system, we found that the processing time per tuple for a load
shedding operator was only a small fraction of the total processing time per
tuple even for a very simple query.

in some applications, however, the relative cost of load shedding may be
larger, to the point where ignoring the overhead of load shedding when deciding
on the placement of load shedders leads to inefficiencies. The same basic
approach that we have described can be applied in such a context by associating
a processing cost per tuple with load shedding operators. In this case, the best
placement of load shedders can be found using dynamic programming [1].

2. Load Shedding in Aurora

Similar to STREAM [8], Aurora [3] is a prototype of a data stream manage-
ment system that has been designed to deal with a very large numbers of data
streams. The query network in Aurora is a directed acyclic graph (DAG), with
sources as data streams and sinks as query output nodes. Internal nodes repre-
sent one of seven primitive operators that process tuples, and edges represent
queues that feed into these operators. The Aurora query-specification model
differs from the one we have described earlier in two important aspects:
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s The query network allows for binary operators that take input from two
queues, e.g. (windowed) join of streams. Thus, the query network is not
neccesarily a collection of trees.

m  Aurora allows users to specify three types of quality of service (QoS)
functions that capture the utility of the output to the user: utility as a
function either of output latency, or of the percentage loss in tuples, or of
the output value of tuples.

A paper by Tatbul et al. [9] discusses load shedding techniques used in the
Aurora system. We highlight the similarities and differences between their ap-
proach and the one that we have described earlier. The query network structure
in both systems is very similar, except for the provision for binary operators
in Aurora. This leads to very similar equations for computing the load on the
system, taking into the account the rates for the input streams, selectivity of
operators and the time required to process each tuple by different operators.
Both approaches use statistics gathered in the near past to estimate these quan-
tities. In case of Aurora, the input rate into a binary operator is simply the sum
of input rates of the individual input queues. The load equation is periodically
computed to determine if the system is overloaded or not and whether we need
to shed additional load or reverse any previously-introduced load shedding.
Load shedding solutions by both approaches employ the push load shedding
upsiream mantra by virtue of which load shedders are always placed at the
beginning of a shared segment.

The technique that we have described earlier focuses on the class of sliding-
window aggregation queries, where the output at any instant is a single numeric
value. The aim was to minimize the maximum (weighted) relative error for all
queries. Incontrast, the Aurora load-shedding paper focuses on set-valued (non-
aggregate) queries. One could define different metrics when load-shedding in
the context of set-valued queries. We have already described one such simple
metric, namely the fraction of tuples lost for each query. The provision to be
able to specify QoS functions leads to an interesting metric in the context of
the Aurora system: minimize the loss in utility due to load shedding. The QoS
functions that relate output value and utility let users specify relative importance
of tuples as identified by their attribute values. This leads to a new type of load
shedding operator, one that filters and drops tuptes based on their value, as
opposed to randomly dropping a fixed fraction of tuples. These are referred to
as semantic load shedders. The load shedding algorithms in Aurora follow a
greedy approach of introducing load shedders in the query plan that maximize
the gain (amount of load reduced) and minimize the loss in utility as measured
by QoS fuctions. For every potential location for a load shedder, a loss/gain
ratio is computed which is the ratio of computing cycles that will be saved
for all downstream operators to the loss in utility of all downstream queries,
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if we drop a fixed fraction of tuples at this location. In case of semantic load
shedders, filters are introduced that first shed tuples with the least useful values.
A plan that introduces drops at different locations along with amount of tuples
dropped is called a Load Shedding Road Map (LSRM). A set of LSRMs is
precomputed based on current statistics and at run-time the system picks the
appropriate LSRM based on the current load on the system.

3. Load Shedding for Sliding Window Joins

Queries that involve joins between two or more data streams present an
interesting challenge for load shedding because of the complex interactions
between load shedding decisions on the streams being joined. Joins between
data streams are typically sliding window joins. A sliding window join with
window size 1 introduces an implicit join predicate that restricts the difference
between the timestamps of two joining tuples to be at most w. The implicit
time-based predicate is in addition to the ordinary join predicate.

Kang, Naughton, and Viglas [7] study load shedding for sliding window join
queries with the objective of maximizing the number of output tuples that are
produced. They restrict their attention to queries consisting of a single sliding-
window join operator and consider the question of how best to allocate resources
between the two streams that are involved in a join, Their conclusion is that the
maximum rate of output tuple production is achieved when the input rates of
the two data streams being joined, adjusted for the effects of load shedding, are
equal. In other words, if stream S7 arrives at rate rq and stream S5 arrives at
rate ra, and load shedders are placed on each stream upstream of the join, then
the sampling rate of the load shedder on stream S; should be proportional to
1/7;, with the constant of proportionality chosen such that the system is exactly
able to keep up with the data arrival rates,

The paper by Das, Gehrke and Riedwald [5] also addresses the same problem,
namely maximizing the join size in the context of load shedding for queries
containing a single sliding window join. Additionally, they introduce a metric
called the Archive-metric (ArM) that assumes that any tuples that are load-shed
by the system can be archived to allow for computing the exact answer at a
later time when the load on the system is less. The ArM metric measures the
amount of work that will need to be done at a later time to compute the exact
answer then. They also introduce new models, inspired by different application
scenatios such as sensor networks, where they distinguish between the cases
when the system is bounded in terms of its CPU speed versus when it is bounded
by memoty. In the latter case, the goal is to bound the size of the join state
measured in terms of the number of tuples stored for join processing.

The Das et al. paper mainly differs from the Kang et al. paper in that it allows
for semantic load shedding as opposed to just random load shedding. The ability
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to drop tuples based on their join attribute value leads to interesting problems.
The one that is the focus of the paper arises from the bounded memory model.
In this case, the problem translates to keeping M tuples at all times so as to
maximize the join size, assuming that all incoming tuples are processed and
joined with the partner tuples from other stream that are stored at that time
as part of the M tuples. In the static case, when the streams are not really
sireams but relations, they provide an optimal dynamic programming solution
for binary joins and show that for an m-relation join, they show that the static
problem is NP-hard. For the offline case of join between two streams, where
the arrival order of tuples on both streams is assumed to be known, they provide
a polynomial-time (though impractical) solution that is based on reducing the
problem to a max-flow computation. They also provide two heuristic selutions
that can be implemented in a real system.

4. Load Shedding for Classification Queries

Loadstar [4] is a system for executing classification queries over data streams.
Data elements arrive on multiple data streams, and the system examines each
data item as it arrives and attempts to assign it to one of a finite set of classes
using a data mining algorithm. An example would be monitoring images from
multiple security cameras and attempting to determine which person (if any) is
displayed in each image. If the data arrival rates on the streams are too high
for the system to keep up, then the system must discard certain data elements
unexamined, but it must nonetheless provide a predicted classification for the
discarded elements. The Loadstar system is designed to deal with cases where
only a small fraction of the data elements can actually be examined, because
examining a data element requires expensive feature extraction steps.

The designers of Loadstar introduce two main ideas that are used for load
shedding in this context:

1 A gquality of decision metric can be used to quantify the expected degra-
dation in classification accuracy from failing to examine a data item.
In general the quality of decision function will be different for different
streams. (E.g., examining an image from a security camera in a poorly-lit
or low-traffic area may not yield much improvement over always guess-
ing “no person shown”, whereas analyzing images from other cameras
may allow them to be classfied with high accuracy.)

2 The features used in classification often exhibit a high degree of temporal
correlation, Thus, if a data element from a particular stream has been
examined in the recent past, it may be a reasonable assumption that future
(unexamined) data elements have similar attribute values. Astime passes,
uncertainty about the attribute values increases.
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The load shedding strategy used in Loadstar makes use of these two ideas to
decide which data elements should be examined. Loadstar uses a quality of
decision metric based on Bayesian decision theory and learns a Markov model
for each stream to model the rate of dispersion of atiribute values over time.
By combining these two factors, the Loadstar system is able to achieve better
classification accuracy than the naive approach that sheds an equal fraction of
load from each data stream.

3. Summary

It is important for computer systems to be able to adapt to changes in their
operating environments. This is particularly true of systems for monitoring con-
tinuous data streams, which are often prone to unpredictable changes in data
arrival rates and data characteristics. We have described a framework for one
type of adaptive data stream processing, namely graceful performance degra-
dation via load shedding in response to excessive system loads. In the context
of data stream aggregation queries, we formalized load shedding as an opti-
mization problem with the objective of minimizing query inaccuracy within the
limits imposed by resource constraints. Our solution to the load shedding prob-
lem uses probabilistic bounds to determine the sensitivity of different queries
to load shedding in order to perform load shedding where it will have minimum
adverse impact on the accuracy of query answers. Different query classes have
different measurements of answer quality, and thus require different techniques
for load shedding; we described three additional query classes and summarized
load shedding approaches for each.
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Abstract The sliding-window model of computation is motivated by the assumpiion that,
in certain data-strcam processing applications, recent data is more useful and
pertinent than older data. In such cases, we would like to answer questions about
the data only over the last N most recent data elements (V is a parameter). We
formalize this model of computation and answer questions about how much space
and computation time is required to solve certain problems under the sliding-
window model.
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Sliding-Window Model: Motivation

In this chapier we present some results related to small space computation
over sliding windows in the data-stream model. Most research in the data-
stream model (e.g. , see [1, 10, 15, 11, 13, 14, 19]), including results presented
in some of the other chapters, assume that all data elements seen so far in
the stream are equally important and synopses, statistics or models that are
built should reflect the entire data set. However, for many applications this

*Material in this chapter also appears in Data Stream Management: Processing High-Speed Data
Streams, cdited by Minos Garofalakis, Johannes Gehrke and Rajeev Rasiogi, published by Springer-Verlag.
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assumption is not true, particularly those that ascribe more importance to recent
data items. One way to discount old data items and only consider recent ones
for analysis is the sliding-window model: Data elements arrive at every instant;
cach data clement expires after exactly [V time steps; and, the portion of data
that is relevant to gathering statistics or answering queries is the set of last V
elements to arrive. The sliding window refers to the window of active data
elements at a given time instant and window size refers to V.

0.1 Motivation and Road Map

Our aim s to develop algorithms for maintaining statistics and models that
use space sublinear in the window size V. The following example motivates
why we may not be ready to toleratc memory usage that is linear in the size
of the window. Consider the following network-traffic engineering scenario: a
high speed router working at 40 gigabits per second line speed. For every packet
that flows through this router we do a prefix match to check if it originates from
the stanford. edu domain, Atevery instant, we would like to know how many
packets, of the last 10 packets, belonged to the stanford.edu domain. The
above question can be rephrased as the following simple problem:

PRrOBLEM 0.1 (BASICCOUNTING) Given a stream of data elements, con-
sisting of 0's and 1’s, maintain at every time instant the count of the number of
1's in the last N elements.

A dataelement equals one if it corresponds to a packet from the stanford. edu
domain and is zero otherwise. A trivial solution! exists for this problem that
requires /V bits of space. However, in such a scenario as the high-speed router,
where on-chip memory is expensive and limited, and particularly when we
would like to ask multiple (thousands) such continuous queries, it is prohibitive
to use even N = 10'° (window size) bits of memeory for cach query. Unfortu-
nately, it is easy to see that the trivial solution is the best we can do in terms of
memory usage, unless we are ready to settle for approximate answers, i.e. an
exact solution to BASICCOUNTING requires O(V) bits of memory. We will
present a solution o the problem that uses no more than O(% log* N } bits of
memory (ie., O(% log N') words of memory) and provides an answer at each
instant that is accurate within a factor of 1 +¢. Thus, fore = 0.1 (10% accuracy}
our solution will use about 300 words of memory for a window size of 1019,

Given our concern that derives from working with limited space, it is natural
to ask “Is this the best we can do with respect with memory utilization?” We
answer this question by demonstrating a matching space lower bound, i.e. we
show that any approximation algorithm (deterministic or randomized) for Ba-

'Maintain a FIFO queue and update counter,
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s1CCOUNTING with relative error € must use § B(% log? N) bits of memory. The
lower bound proves that the above mentioned algorithm is optimal, to within
constant factors, in terms of memory usage.

Besides maintaining simple statistics like a bit count, as in BASICCOUNT-
ING, there are various applications where we would like to maintain more
complex statistics. Consider the following motivating example:

A fundamental operation in database systems is a join between two or more
relations. Analogously, one can define a join between multiple streams, which
is primarily useful for correlating cvents across multiple data sources. How-
ever, since the input streams are unbounded, producing join results requires
unbounded memory. Moreover, in most cases, we are only intercsted in those
join results where the joining tuples exhibit temporal locality. Consequently,
in most data-stream applications, a relevant notion of joins that is often em-
ployed is sliding-window joins, where tuples from each stream only join with
tuples that belong to a sliding window over the other stream. The semantics
of such a join are clear to the user and also such joins can be processed in a
non-blocking manner using limited memory. As a result, sliding-window joins
are quite popular in most stream applications.

In order to improve join processing, database systems maintain “join statis-
tics" for the relations participating in the join. Similarly, in order to efficiently
process sliding-window joins, we would like to maintain statistics over the slid-
ing windows, for streams participating in the join, Besides being useful for the
exact computation of sliding-window joins, such statistics could also be used
to approximate them. Sliding-window join approximations have been studied
by Das, Gehrke and Riedwald [6] and Kang, Naughton and Viglas [16]. This
further motivates the need to maintain various statistics over sliding windows,
using small space and update time.

This chapter presents a general technique, called the Exponential Histogram
(EH) technique, that can be used to solve a wide variety of problems in the
sliding-window model; typically problems that require us to maintain statistics.
We will showcase this technique through solutions to two problems: the Bas-
ICCOUNTING problem above and the SUM problem that we will define shortly.
However, our aim is not to solely present solutions to these problems, rather to
explain the EH technique itself, such that the reader can appropriately modify
it to solve more complex problems that may arise in various applications. Al-
ready, the technique has been applied to various other problems, of which we
will present a summary in Section 4.

The road map for this chapter is as follows: After presenting an algorithm
for the BASICCOUNTING problem and the associated space lower bound in
sections | and 2 respectively, we present a modified version of the algorithm
in Section 3 that solves the following generalization of the BASICCOUNTING
problem:
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PrOBLEM 0.2 (SUM) Given a stream of data elements that are positive in-
tegers in the range 0. .. R|, maintain at every time instant the sum of the last
N elements.

A summary of other results in the sliding-window model is given in Section 4,
before concluding in Section 8.1

1. A Solution to the BasicCoUNTING Problem

It is instructive to observe why naive schemes do not suffice for producing
approximate answers with a low memory requirement. For instance, it is natural
to consider random sampling as a solution technique for solving the problem.
However, maintaining a uniform random sample of the window elements will
result in poor accuracy in the case where the 1’s are relatively sparse.

Another approach is to maintain histograms. While the algorithm that we
present follows this approach, it is important to note why previously known
histogram techniques from databases are not effective for this problem. A
histogram technique is characterized by the policy used to maintain the bucket
boundaries. We would like to build time-based histograms in which every
bucket summarizes a contiguous time interval and stores the number of 1’s
that arrived in that interval. As with all histogram techniques, when a query is
presented we may have to interpolate in some bucket to estimate the answer,
because some of the bucket’s clements may have expired. Let us consider some
schemes of bucketizing and see why they will not work. The first scheme
that we consider is that of dividing into k& equi-width (width of time interval)
buckets. The problem is that the distribution of 17s in the buckets may be
nonuniform. We will incur large error when the interpolation takes place in
buckets with a majority of the 1’s. This observation suggests another scheme
where we use buckets of nonuniform width, so as to ensure that each bucket
has a near-uniform number of 1’s. The problem is that total number of 1’s in
the sliding window couid change dramatically with time, and current buckets
may turn out to have more or less than their fair shares of 1’s as the window
slides forward. The solution we present is a form of histogram that avoids these
problems by using a set of well-structured and nonuniform bucket sizes. It
is called the Exponential Histogram (EH) for reasons that will be clear later.
Before getting into the details of the solution we introduce some notation.

We follow the conventions illustrated in Figure 8.1. In particular, we assume
that new data elements are coming from the right and the elements at the left
are ones already seen. Note that each data element has an arrival time which
increments by one at each arrival, with the leftmost element considered to have
arrived at time 1. But, in addition, we employ the notion of a timestamp which
corresponds to the position of an active data element in the current window.
We timestamp the active data elements from right to left, with the most recent
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element being at position 1. Clearly, the timestamps change with every new
arrival and we do not wish to make explicit updates. A simple solution is to
record the arrival times in a wraparound counter of log IV bits and then the
timestamp can be extracted by comparison with counter value ot the current
arrival, As mentioned earlier, we concentrate on the 1’s in the data stream.
When we refer to the £-th 1, we mean the k-th most recent 1 encountered in the
data stream.

Increasing time

—_—
Timestanips 7 6 5 ..., 1
Amival time 41 42 43 44 45 ... .. 49 50 e
Elements ...0 1110 01010 ¢ 19 L 1.,

| -

Window of active elements ||| Data elements that will be seen in future

-
Increasing ordering of data elements, - Current time instance
histogram buckets, active 1’g

Figure 8.1, Sliding window model notation

For an illustration of this notation, consider the situation presented in Fig-
ure &.1. The current time instant is 49 and the most recent arrival is a zero. The
clement with arrival time 48 is the most recent 1 and has timestamp 2 since it is
the second most recent arrival in the current window. The element with arrival
time 44 is the second most recent 1 and has timestamp 6.

We will maintain histograms for the active 1’s in the data stream. For every
bucket in the histogram, we keep the timestamp of the most recent 1 (calfled
timestamp for the bucket), and the number of 1°s {called bucket size). For
example, in our figure, a bucket with timestamp 2 and size 2 represents a bucket
that contains the two most recent 1°s with timestamps 2 and 6. Note that
timestamp of a tucket increases as new elements arrive. When the timestamp
of a bucket expires (reaches V + 1), we are no longer interested in data elements
contained in it, so we drop that bucket and reclaim its memory. If a bucket is still
active, we are guaranteed that it contains at least a single 1 that has not expired.
Thus, at any instant there is at most one bucket (the last bucket) containing
1’s that may have expired. At any time instant we may produce an estimate
of the number of active 1’s as follows. For all but the last bucket, we add the
number of 1°s that are in them. For the last bucket, let C be the count of the
number of 1’s in that bucket. The actual number of active 1’s in this bucket
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could be anywhere between 1 and C, so we estimate it to be C'/2. We obtain
the following;

FacT 1.1 The absolute error in our estimate is at most C/2, where C is the
size of the last bucket.

Note that, for this approach, the window size does not have to be fixed a-priori
at N. Given a window size § (8 < N), we do the same thing as before except
that the last bucket is the bucket with the largest timestamp less than 5.

1.1 The Approximation Scheme

We now define the Exponential Histograms and present a technique to main-
tain them, so as to guarantee count estimates with relative error at most €, for
any € > 0. Define k = [1], and assume that & is an integer; if £ is not an
integer we can replace % by [%] without affecting the basic results.

As per Fact 1.1, the absolute error in the estimate is C/2, where C is the
size of the last bucket. Let the buckets be numbered from right to left with the
most recent bucket being numbered 1. Let m denote the number of buckets and
C; denote the size of the i-th bucket. We know that the true count is at least
1+ E;Zl C;, since the last bucket contains at least one unexpired 1 and the
remaining buckets contribute exactly their size to total count. Thus, the relative
estimation error is at most (Cy,/2)/(1 + 375, Ci). We will ensure that the
relative error is at most 1/& by maintaining the following invariant:

INVARIANT 1.2 At all times, the bucket sizes C1, .. ., Cy are such that: For
all j < m, we have C;/(2(1 + ;-:]1 C;) < %)

2

Let N/ < N be the number of 1’s that are active at any instant. Then the
bucket sizes must satisfy Y .- ; C; > N’. Our goal is to satisfy this property
and Invariant 1.2 with as few buckets as possible. In order to achieve this goal
we maintain buckets with exponentially increasing sizes so as to satisfy the
following second invariant.

INVARIANT 1.3 At all times the bucket sizes are nondecreasing, i.e., C1 <
Cy < - € Oy £ Cp. Further, bucket sizes ave constrained to the follow-
ing: {1,2,4,... ,om’ Y, for some m' < moand m' < log 3,‘;—\}- + 1. For every
bucket size other than the size of the first and last bucket, there are at most % +1

and at least % buckets of that size. For the size of the first bucket, which is equal
to one, there are at most k + 1 and at least k buckets of that size. There are at
most % buckets with size equal to the size of the last bucket.

Let C; = 2" (r > 0) be the size of the j-th bucket. If the size of the last
bucket is 1 then there is no error in estimation since there is only data element



The Sliding-Window Computation Model and Results 155

in that bucket for which we know the timestamp exactly. If Invariant 1.3 is
satisfied, then we are guaranteed that there are at least % buckets each of sizes
2.4,...,2 1 and at least k buckets of size 1, which have indexes less than
j. Consequently, C; < (1 + §;11 ;). Tt follows that if Invariant 1.3
is satisfied then Invariant 1.2 is automatically satisfied, at least with respect
to buckets that have sizes greater than 1. If we maintain Invariant 1.3, it is
easy to see that to cover all the active 1’s, we would require no more than

m < (% + 1)(log(%) + 2} buckets. Associated with each bucket is its size
and a timestamp. The bucket size takes at most log NV values, and hence we can
maintain them using log log /V bits. Since a timestamp requires log NV bits, the
total memory requirement of each bucket is log IV - log log V bits. Therefore,
the total memory requirement (in bits) for an EH is O( % 10g2 N). Itis implied
that by maintaining Invariant 1.3, we are guaranteed the desired relative error
and memory bounds.

The query time for EH can be made O(1) by maintaining two counters, one
for the size of the last bucket (LAST) and one for the sum of the sizes of all
buckets (TOTAL). The estimate itself is TOTAL minus half of LAST. Both
counters can be updated in O(1) time for every data element. See the box
below for a detailed description of the update algorithm.

Algorithm (Insert):
1 When a new data element arrives, calculate the new expiry time. [ the timestamp of the
last bucket indicates expiry, delete that bucket and update the counter LAST containing
the size of the last bucket and the counter TOTAL containing the total size of the buckets.

2 Ifthe new data element is 0 ignore it; else, create a new bucket with size 1 and the current
timestamp, and increment the counter TOTAL.

3 Traverse the list of buckets in order of increasing sizes. If there are & + 2 buckets of
the same size (k + 2 buckets if the bucket size equals 1)}, merge the oldest two of these
buckets into a single bucket of double the size. (A merger of buckets of size 2" may
cause the number of buckets of size 27! to exceed £ + 1, leading to a cascade of such
mergers.) Update the counter LAST if the last bucket is the result of a new merger.

EXAMPLE 8.1 We illustrate the execution of the algorithm for 10 steps, where
at each step the new data element is 1. The numbers indicate the bucket sizes
from left to right, and we assume that % = 1.

32, 32, 16, 8, 8, 4, 2, 1,1

32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1 (new 1 arrived)

32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1, 1 (new { arrived)

32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1 {merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1 (new 1 arrived)

32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1, 1 (new 1 arrived)

32, 32, 16, 8, 8, 4, 4, 2, 2, 2, 1, 1 (merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 4, 2, 1, 1 (merged tha older 2’'s)
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32, 32, 16, 8, 8, 8, 4, 2, 1, 1 (merged the older 4°’s)
32, 32, 16, 16, 8, 4, 2, 1, 1 (merged the older 8&'s)

Merging two buckets corresponds to creating a new bucket whose size is
equal to the sum of the sizes of the two buckets and whose timestamp is the
timestamp of the more recent of the two buckets, i.e. the timestamp of the
bucket that is to the right. A merger requires O(1) time. Moreover, while
cascading may require O(log %) mergers upon the arrival of a single new
element, a simple argument, presented in the next proof, allows us to argue
that the amortized cost of mergers is O(1) per new data element. It is easy to
see that the above algorithm maintains Invariant 1.3. We obtain the following
theorem:

THEOREM 1.4 The EH algorithm maintains a data structure that gives an
estimate for the BASICCOUNTING problem with relative error at most ¢ using
armost (5+1)(log( &Y ) +2) buckets, where k = [ 1. The memory requirement

is log N + loglog N bits per bucket. The arrival of each new element can be
processed in O(1) amortized time and O(log N') worst-case time. At each time
instant, the data structure provides a count estimate in QO(1) time.

PRrRooOT: TheEH algorithm above, by its very design, maintains Invariant 1.3,
As noted carlier, an algorithm that maintains Invariant 1.3, requires no more
than (12“- +1) (log(%) -+ 2) buckets to cover all the active 1's. Furthermors, the
invariant also guarantees that our estimation procedure has a relative error no
more than 1/k < e,

Each bucket maintains a timestamp and the size for that bucket. Since we
maintain timestamps using wraparound arrival times, they require no more than
log N bits of memory. Asper Invariant 1.3, bucket sizes can take only one of the
log %—V— + 1 unique values, and can be represented using log log V bits. Thus,
the total memory requirement of each bucket is no more than log N +loglog N
bits.

On the arrival of a new element, we may perform a cascading merge of
buckets, that takes time proportional to the number of buckets. Since there are
((log N) buckets, this gives a worst case update time of O(log V). Whenever
two buckets are merged, the size of the merged bucket is double the size of
those that are merged. The cost of the merging can be amortized among all the
1’s that fall in the merged bucket. Thus, an element that belongs to a bucket
of size 2P, pays an amortized cost 1 +1/2 4 1/4 4 ... +1/27 < 2. This is
because, whenever it gets charged, the size of the bucket it belongs to doubles
and consequently the charge it incurs halves. Thus, we get that the amortized
cost of merging buckets is O(1) per new element, in fact O(1) per new element
that has value 1.
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We maintain counters T'OTAL and LAST, which can be updated in O(1) time
for each new element, and which enable us to give a count estimate in O(1)
time whenever a query is asked.

If instead of maintaining a timestamp for every bucket, we maintain a times-
tamp for the most recent bucket and maintain the difference between the times-
tamps for the successive buckets then we can reduce the total memory require-
ment to O(k log? ).

2. Space Lower Bound for BasicCoUNTING Problem

We provide a lower bound which verifies that the algorithms is optimal
in its memory requirement. We start with a deterministic lower bound of
)k log? %) We omit proofs for lack of space, and refer the reader to [8].

THEOREM 2.1 Any deterministic algorithm that provides an estimate for the
BASICCOUNTING problem at every time instant with relative error less than

% for some integer k < 4V N requires at least -1% log? % bits of memory.

The proof argument goes as follows: Atany time instant, the space utilized by
any algorithm, is used to summarize the contents of the current active window.
For a window of size /V, we can show that there are a large number of possible
input instances, i.e. arrangements of 0’s and 1’s, such that any deterministic
algorithm which provides estimates with small relative error (i.¢. less than %)
has to differentiate between every pair of these arrangements. The number of
memory bits required by such an algorithm must therefore exceed the logarithm
of the number of arrangements. The above argument is formalized by the
following lemma.

. B\ log %
LEMMA 2.2 Fork/4 < B < N, thereexist L = (i) 7
of 0's and 1'’s of length N such that any deterministic algorithm for BASIC-
COUNTING with relative error less than % must differentiate between any two
of the arrangements.

arrangements

To prove Theorem 2.1, observe that if we choose B = v Nk in the lemma

above then logL > i% log? % While the lower bound above is for a de-
terministic algorithm, a standard technique for establishing lower bounds for
randomized algorithms, called the minimax principle [18], lets us extend this
lower bound on the space complexity to randomized algorithms.

As a reminder, a Las Vegas algorithm is a randomized algorithm that always
produces the correct answer, although the running time or space requirement
of the algorithm may vary with the different random choices that the algorithm
makes. On the other hand, a Monte Carlo algorithm is a randomized algorithm
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that sometimes produces an incorrect solution. We obtain the following lower
bounds for these two classes of algorithms.

THEOREM 2.3 Any randomized Las Vegas algorithm for BASICCOUNTING
with relative ervor less than %, for some integer k < 4/ N, requires an expected

memory of af least 1—'% log® % bits.

THEOREM 2.4 Any randomized Monte Carlo algorithm for BASICCOUNT-
ING problem with relative error less than % for some integer k < 4/ N, with

probability at least 1 — & (for § < % } requires an expected memory of at least
4 log® & + Llog(1 — 24) bits.

3. Beyond 0’s and 1’s

The BAsicCOUNTING problem, discussed in the last two sections, is one
of the basic operations that one can define over sliding windows. While the
problem in its original form has various applications, it is natural to ask “What
are the other problems, in the sliding-window model, that can be solved using
small space and small update time?”. For instance, instead of the data elements
being binary values, namely 0 and 1, what if they were positive integers in the
range [0. .. R] ? Could we efficiently maintain the sum of these numbers in the
sliding-window model? We have already defined this problem, in Section &, as
the SUM problem.

We will now present a modification of the algorithm from Section 1, that
solves the SUM problem. In doing so, we intend to highlight the characteristic
elements of the solution technigue, so that readers may find it easy to adapt
the technique to other problems. Already, the underlying technique has been
successfully applied to many problems, some of which will be listed in the
following section.

One way to solve the SUM problem would be to maintain separately a sliding
window sum for each of the log R bit positions using an EH from Section 1.1.
As before, let k = [%‘} The memory requirement for this approach would be
O(klog? N log R) bits. We will present a more direct approach that uses less
memory. In the process we demonstrate how the EH technique introduced in
Section 1 can be generalized to solving a bigger class of problems.

Typically, a problem in the sliding-window model requires us to maintain a
function f defined over the elements in the sliding window. Let f(B) denote
the function value restricted to the clements in a bucket B. For example, in
case of the SUM problem, the function f equals the sum of the positive integers
that fall inside the sliding-window. In case of Basic COUNTING the function
f is simply the number of 1°s that fall inside the sliding-window. We note the
following central ingredients of the EH technique from Section 1 and adapt
them for the SUM problem :
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1 Size of a Bucket: The size of each bucket is defined as the value of the
function f that we are estimating (over the sliding window), restricted to
that bucket B, i.e., f(B). In the earlier case size was simply the count of
1’s falling inside the bucket. For SUM, we define size analogously as the
sum of integers falling inside the bucket.

2 Procedure to Merge Buckets or Combination Rule;: Whenever the
algorithm decides to merge two adjacent buckets, a new bucket is created
with timestamp equal to that of the newer bucket or the bucket to the right.
The size of this new bucket is computed using the sizes of the individual
buckets (i.e., , using f(B)’s for the buckets that are merged) and any
additional information that may be stored with the buckets.® Clearly, for
the problem of maintaining the sum of data elements, which are either
0”s and 1°s or positive integers, no additional information is required. By
definition, the size of the new merged bucket is simply the sum of the
sizes of buckets being merged .

3 Estimation: Whenever a query is asked, we need to estimate the answer
at that moment based on the sizes of all the buckets and any additional
information that we may have kept. In order to estimate the answer, we
may be required to *interpolate” over the last bucket that is part inside
and part outside the sliding window, i.e., the “straddling” bucket.

Typically, this is done by computing the function value f over all buckets
other than the last bucket. In order to do this, we use the same procedure
as in the Merge step. To this value we may add the interpolated value of
the function f from the last bucket.

Again, for the problem of maintaining the sum of positive integers this
task is relatively straightforward. We simply add up the sizes of all the
buckets that are completely inside the sliding window. To this we add the
“interpolated” value from the last bucket, which is simply half the size
of the last bucket.

4 Deleting the Oldest Bucket: In order to reclaim memory, the algorithm
deletes the oldest bucket when its timestamp reaches NV + 1. This step is
same irrespective of the function f we are estimating.

The technique differs for different problems in the particulars of how the
steps above are executed and the rules for when to merge old buckets and

SThere are problems for which just knowing the sizes of the buckets that are merged is not sufficient to
compute the size of the new merged bucket. For example, if the function f is the variance of numbers,
in addition to knowing the vaniance of the buckets that are merged, we also need to know the number of
elements in each bucket and mean value of the clements from each bucket, in order to compute the variance
for the merged bucket. Sec [4] for details,
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create new ones, as new data elements get inserted. The goal is to maintain
as few buckets as possible, i.e., merge buckets whenever possible, while at the
same time making sure that the error due to the estimation procedure, which
interpolates for the last bucket, is bounded. Typically, this goal is achieved by
maintaining that the bucket sizes grow exponentially from right to left (new
to old) and hence the name Exponential Histograms (EH). It is shown in [8]
that the technique can be used to estimate a general class of functions f, called
weakly-additive functions, over sliding windows. In the following section, we
list different problems over sliding windows, that can be soived using the EH
technique.

{cutrent window, size N}

Figure 8.2.  An illustration of an Exponential Histogram (EH).

We need some more notation to demonstrate the EH technique for the Sum
problem. Let the buckets in the histogram be numbered B,, B4, . . ., By, start-
ing from most recent (By) to oldest (B,,); further, ¢1,%q, ..., &, denote the
bucket timestamps. See Figure 8.2 for an illustration. In addition to the buckets
maintained by the algorithm, we define another set of suffix huckets, denoted
By, ..., By, that represent suffixes of the data stream. Bucket B;+ represents
all elements in the data stream that arrived after the elements of bucket B;, that
is, By= = ;;% B;. We do not explicitly maintain the suffix buckets. Let 5;
denote the size of bucket B;. Similarly, let 5;- denote the size of the suffix
bucket B;«. Note, for the Sum problem S = };]1 S;. Let B;;_1 denote
the bucket that would be formed by merging buckets 7 and 7 — 1, and S; ;3
(8ii—1 = S; + 5;—1) denote the size of this bucket. We maintain the following
two invariants that guarantee a small relative error ¢ in estimation and small
number of buckets:

INVARIANT 3.1 For every bucket B;, 516-5',; < S~

INVARIANT 3.2 Foreach i > 1, for every bucket B;,
1
Esi,z’—l > 5 10

It follows from Invariant 3.1 that the relative error in estimation is no more

than 2—';173: < €. Invariant 3.2 guarantees that the number of buckets is no
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more than O(2(log N + log R)). It is casy to see the proof of this claim.
Since Sy = 3.2 S, i.e., the bucket sizes are additive, after every [1/¢]
buckets (rather [1/2¢] pairs of buckets) the value of 9« doubles. As a result,
after O(2(log N -+ log R)) buckets the value of S;+ exceeds N R, which is the
maximum value that can be achieved by S;.. We now present a simple insert
algorithm that maintains the two invariants above as new elements arrive.

Algorithm (Insert): x, denotes the most recent element.

1 If 2y = 0, then do nothing. Otherwise, create a new bucket for 2y. The new bucket
becomes By with 51 = a¢. Every old bucket B; becomes Biy1.

2 Ifthe oldest bucket By, has timestamp greater than N, delete the bucket. Bucket By, -1
becomes the new oldest bucket.

3 Merge step: Let & = . While there exists an index ¢ > 2 such that £S; ;-1 < Si—1v,
find the smallest such ¢ and combine buckets B; and B; 1 using the combination rule
described carlicr. Note that S;+ value can be computed incrementally by adding 5;_+
and 5;_1», as we make the sweep.

Note, Invariant 3.1 holds for buckets that have been formed as a result of the
merging of two or more buckets because the merging condition assures that it
holds for the merged bucket. Addition of new elements in the future does not
violate the invariant, since the right-hand side of the invariant can only increase
by addition of the new clements. However, the invariant may not hold for a
bucket that contains a singleton nonzero element and was never merged. The
fact that the invariant does not hold for such a bucket, does not affect the error
bound for the estimation procedure because, if such a bucket were to become
the last bucket, we know the exact timestamp for the only non zero element in
the bucket. As a result there is no interpolation error in that case.

Analogously to the variables T'OTAL and LAST in Section 1.1, we can main-
tain Sy, + Sm+ and Sy, that enable us to answer queries in (O(1) time. The
algorithm for insertion requires O(%(log N + log R)) time per new element.
Most of the time is spent in Step 3, where we make the sweep to combine buck-
ets. This time is proportional to number of buckets, (O(1(log N +log R))). A
simple trick, to skip Step 3 until we have seen (L (log V -+ log R)) data points,
ensures that the running time of the algorithm is amortized O(1). While we may
violate Invariant 3.2 temporarily, we restore it after seeing ©( % (log N +log R))
data points, by executing Step 3, which ensures that the number of buckets is
O( % (log N +log R)). The space requirement for each bucket (memory needed
{0 maintain timestamp and size) is log IV + log I2 bits. If we assume that a word
is at least log N + log R bits long, equivalently the size required to count up
to VR, which is the maximum value of the answer, we get that the total mem-
ory requirement is O(2 (log N + log R)) words or O(2 (log N + log R)?) bits.
Please refer to [8] for a more complex procedure that has similar time require-
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ments and space requirement O( log N (log N + log R)) bits. To summarize,
we get the following theorem:

THEOREM 3.3 The sum of positive integers in the range |0 .. . R) can be es-
timated over sliding windows with relative error at most € using O(zl (log N +
log R)) words of memory. The time to update the underlying EH is worst case
O(%(log N +log R)) and amortized O(1).

Similar to the space lower bound that we presented in Section 2, one can
show a space lower bound of (2 (log N + log R)(log N)) bits for the Sum
problem. See [8] for details. This is asymptotically equal to the upper bound
for the algorithm in [8] that we mentioned earlier.

Tt is natural to ask the question: What happens if we do not restrict data
elements to positive integers and are interested in estimating the sum over sliding
windows. We show that even if we restrict the set of unique data elements to
{1,0, -1}, to approximate the sum within a constant factor requires (V)
bits of memory. Moreover, it is easy to maintain the sum by storing the last
N integers which requires O(V) bits of memory. We assume that the storage
required for every mteger is a constant independent of the window size N, With
this assumption, we have that the complexity of the problem in the general case
(allowing positive and negative integers) is @(N).

We now argue the lower bound of Q(N). Consider an algorithm A that
provides a constant-factor approximation to the problem of maintaining the
general sum. Given a bit vector of size N/2 we present the algorithm A with
the pair (—1,1) for every 1 in the bit vector and the pair (1, —1) for every 0.
Consider the state (time instance) after we have presented all the N/2 pairs to
the algorithm. We claim that we can completely recover the original bit vector
by presenting a sequence of (s henceforth and querying the algorithm on every
odd time instance. If the current time instance is T' (after having presented
the N/2 pairs) then it is easy to see that the correct answer at time instance
T+ 20— 1(1 <4< N/2)is 1 iff the 7th bit was 1 and —1 iff the ith bit was
0. Since the algorithm A gives a constant factor approximation its estimate
would be positive if the correct answer is 1 and negative if the correct answer
was —1. Since the state of the algorithm after feeding the N/2 pairs enables us
to recover the bit vector exactly for any arbitrary bit vector it must be using at
least N/2 bits of memory to encode it. This proves the lower bound. We can
state the following theorem:

THEOREM 3.4 The space complexity of any algorithm that gives a constant
factor approximation, at every instant, to the problem of maintaining the sum
of last N integers (positive or negative} that appear as stream of data elements
is equal to O(N).
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4. References and Related Work

The EH technique, that we demonstrate through solutions to the Basic-
COUNTING and SuMm problem, is by Datar, Gionis, Indyk and Motwani [8].
The space lower bounds, presented above, are also from that paper. In the same
paper, the authors characterize a general class of weakly additive functions that
can be efficiently estimated over sliding windows, using the EH technique. Also
see, Datar’s PhD thesis [7] for more details.

As we have seen in other chapters from this book, it is often the case that
input data streams are best visualized as a high dimensional vector. A standard
operation is to compute the i, norm, for 0 < p < 2, of these vectors or
the I, norm of the difference between two vectors. In Chapter, we have seen
skelching techniques to estimate these [, norms using small space. It turns
out that, when each data element in the data stream represents an increment
to some dimension of the underlying high dimensional vector, the , norm of
a vector belongs to the class of weakly additive functions mentioned above.
Consequently, for the restricted case when the increments are positive, the EH
technique in conjunction with the sketching technique, can be adapted to the
estimate {, norms over the sliding windows. See [8, 7] for details.

Babcock, Datar, Motwani and O’Callaghan [4] showed that the variance of
real numbers with maximum absolute value R, can be estimated over sliding
windows with relative error at most € using O( —E-lg(log N + log R}) words of
memory. The update time for the data structure is worst case O F—_lg(log N+
log R)) and amortized O(1). In the same paper, the authors look at the problem
of maintaining k-medians clustering of points over a sliding window. They
present an algorithm that uses O(%N 7 1og? N) memory” and presents k cen-
ters, for which the objective function value is within a constant factor (2°11/7)
of optimal, where 7 < 1/2 is a parameter which captures the trade-off between
the space bound and the approximation ratio. The update time for the data
structure is worst case O( %;N 1) and amortized O(k). Both these algorithms
are an adaptation of the EH technique, presented in Section 3 above.

In this chapter, we have focussed on the sliding-window model, that assumes
that the pertinent data set is the last N data elements, i.e., we focus on sequence-
based sliding-window model. In other words, we assumed that data items arrive
at regular time intervals and arrival time increases by one with every new data
item that we have seen. Such regularity in arrival of data items is seldom true for
most real life applications, for which arrival rates of data items may be bursty.
Often, we would like to define the sliding window based on real time. It is easy

9The space required to hold a single data point, which in this case is a point from some metric space, is
assumed to be O(1) words.
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to adapt the EH technique to such a fime-based sliding-window model. See
I8, 7] for details.

One may argue that the sliding-window model is not the right model to
discount old data, in the least not the only model. If our aim is to assign a
smaller weight to older elements so that they contribute less (o any statistics or
models we maintain, we may want to consider other monotonically decreasing
functions (time decayed functions) for assigning weights to elements other than
the step function (1 for the last N elements and 0 beyond) that is implicit in the
sliding-window model. A natural decay function is the exponentially decreasing
weight function that was considered by Gilbert et al. {12} in maintaining aged
aggregates: For a data stream ..., @9y, &(..1), L(p), Where (g is the most
recently seen data element, A-aging aggregate is defined as Az + A(1 —
ANz +A1-2) 2:’.[?(__2) 4+ .... Exponentially decayed statistics as above are
easy to maintain, although one may argue that exponential decay of weights
is not suited for all applications or is too restrictive. We may desire a richer
class of decay functions, e.g. polynomizally decaying weight functions instead
of exponential decay. Cohen and Strauss [5] show how to maintain statistics
efficiently for a general class of time decaying functions. Their solutions use
the EH technique as a building block or subroutine, there by demonstrating the
applicability of the EH technique to a wider class of models that allow for time
decay, besides the sliding-window model that we have considered.

See [7] for solutions to other problems in the sliding-window model, that
do not rely on the EH technique. These problems include maintaining a uni-
form random sample(See also [3]), maintaining the min/max of real numbers,
estimating the ratio of rare'! elements to the number of distinct elements(See
also [9]), and estimating the similarity between two data streams measured
according to the Jaccard coefficient for set similarity between two sets A, B:
|[AN B|/|AlJ B|(See also [9]).

Maintaining approximate counts of high frequency elements and maintain-
ing approximate quantiles, are important problems that have been studied in
database research as maintaining end-biased histograms and maintaining equi-
depth histograms. These problems are particularly useful for sliding-window
join processing; they provide the necessary join statistics and can also be used
for approximate computation of joins. A solution to these problems, in the
sliding-window model, is presented by Arasu and Manku [2] and Lu et al. [17].

5. Conclusion

In this chapter we have studied algorithms for two simple problems, BASIC-
COUNTING and Suy, in the sliding-window model; a natural model to discount

" An element is termed rare if it occurs only once (or 2 small number of times) in the sliding window
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Problem Space requirement Space lower Amortized Worst case
requirement bound update update
(in words) time time
{(in words) (when available)
BasIC O(Llog V) Q(LlogN) o) QL log N)
COUNTING
Sum O(log N) (2 log N) o) QL(log N+
log 1))
Variance O(F(log N+ ALlog N) o(1) O 5 {log N+
log R)) log &))
Iy norm Oflog N} O(1) Oflog N)
sketches
k-median O(& N7 QL iog N) Ok) O(E; N2
(2C0/7)_
approx.} fog? V)
Min/Max O(N) QN) O(log N) Oflog N)
Similarity O{log N) Ologlog N) | O(loglog N)
(w.h.p) (w.h.p)
Rarity Olog N) loglog N) O(loglog N}
(w.h.p) (w.h.p.)
Approx. O(tlog® 1) Q(1/e) O(log(1/¢€)) O(1/e)
counts
Quantiles | O(%log 4 log N) Q1/e Oflog(i/e) | O(l/elog(l/e))
log(eN/ log(eN/
log(1/€))) log(1/€)))
Table 8.1, Summary of results for the sliding-window model.
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stale data that only considers the last N elements as being pertinent. Cur aim
was to showcase the Exponential Histogram (EH) technique that has been used
to efficiently solve various problems over sliding windows. We also presented
space lower bounds for the two problems above. See Table 8.1 for a summary
of results in the sliding-window model. Note, for this summary, we measure
memory in words, where a word is assumed large enough to hold the answer
or one unit of answer. For example, in the case of BASICCOUNTING a word is
assumed to be log N bits long, for SUM word is assumed to be log N + log R
bits long, for {;, norm sketches we assume that sketches can fit in a word, for
clustering a word is assumed large enough to be able to hold a single point from
the metric space, and so on. Similarly, we assume it is possible to do a single
word operation in one unit of time while measuring time requirements.
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Abstract

The large volume of data streams poses unique space and time constraints on
the computation process. Many query processing, database operations, and min-
ing algorithms require efficient execution which can be difficult to achieve with
a fast data stream. In many cases, it may be acceptable to generate approximate
solutions for such problems. In recent years a number of synopsis structures
have been developed, which can be used in conjunction with a varicty of mining
and guery processing techniques in data stream processing. Some key synopsis
methods include those of sampling, wavelets, sketches and histograms. In this
chapter, we will provide a survey of the key synopsis techniques, and the min-
ing techniques supported by such methods. We will discuss the challenges and
tradeofts associated with using different kinds of techniques, and the important
research directions for synopsis construction,

1. Introduction

Data streams pose a unique challenge to many database and data mining

applications

because of the computational and storage costs associated with

the large volume of the data stream. In many cases, synopsis data structures
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and statistics ¢can be constructed from streams which are useful for a variety of
applications. Some examples of such applications are as follows:

» Approximate Query Estimation: The problem of query estimation is
possibly the most widely used application of synopsis structures [11].
The probiem is particularly important from an efficiency point of view,
since queries usually have to be resolved in online time. Therefore, most
synopsis methods such as sampling, histograms, wavelets and sketches
are usually designed to be able to solve the query estimation problem.

» Approximate Join Estimation: The efficient estimatton of join size is a
particularly challenging problem in streams when the domain of the join
attributes is particularly large. Many methods [5, 26, 27] have recently
been designed for efficient join estimation over data streams.

s Computing Aggregates: In many data stream computation problems, it
may be desirable to compute aggregaie statistics [40] over data streams,
Some applications include estimation of frequency counts, quantiles, and
heavy hitters [13, 18, 72, 76]. A variety of synopsis structures such as
sketches or histograms can be useful for such cases.

s Data Mining Applications: A variety of data mining applications such
as change detection do not require to use the individual data points, but
only require a temporal synopsis which provides an overview of the be-
havior of the stream. Methods such as clustering [1] and sketches [8§]
can be used for effective change detection in data streams. Similarly,
many classification methods [2] can be used on a supervised synopsis of
the stream.

The design and choice of a particular synopsis method depends on the problem
being solved with it. Therefore, the synopsis necds to be constructed in a
way which is friendly to the needs of the particular problem being solved.
For example, a synopsis structure used for query estimation is likely to be very
different from a synopsis structure used for data mining problems such as change
detection and classification. In general, we would like to construct the synopsis
structure in such a way that it has wide applicability across broad classes of
problems. In addition, the applicability to data streams makes the efficiency
issue of space and time-construction critical. In particular, the desiderata for
effective synopsis construction are as follows:

s Broad Applicability: Since synopsis structures are used for a variety
of data mining applications, it is desirable for them to have as broad
an applicability as possible. This is because one may desire to use the
underlying data stream for as many different applications. If synopsis
construction methods have narrow applicability, then a different structure
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will need to be computed for each application. This will reduce the time
and space efficiency of synopsis construction.

x  One Pass Constraint: Since data streams typically contain a large num-
ber of points, the contents of the stream cannot be examined more than
once during the course of computation. Therefore, all synopsis construc-
tion algorithms are designed under a one-pass constraint.

= Time and Space Efficiency: In many traditional synopsis methods on
static data sets (such as histograms), the underlying dynamic program-
ming methodologies require super-linear space and time. This is not
acceptable for a data stream. For the case of space efficiency, it is not
desirable to have a complexity which is more than linear in the size of
the stream. In fact, in some methods such as sketches [44], the space
complexity is often designed to be logarithmic in the domain-size of the
stream.

»  Robustness: The error metric of a synopsis structure needs to be designed
in a robust way according to the needs of the underlying application. For
example, it has often been observed that some wavelet based methods for
approximate query processing may be optimal from a global perspective,
but may provide very large error on some of the points in the stream [65].
This is an issue which needs the design of robust metrics such as the
maximum error metric for stream based wavelet computation.

a  Evolution Sensitive: Data Streams rarely show stable distributions, but
rapidly evolve over time. Synopsis methods for static data sets are often
not designed to deal with the rapid evolution of a data stream. For this
purpose, methods such as clustering [1] are used for the purpose of syn-
opsis driven applications such as classification [2]. Carefully designed
synopsis structures can also be used for forecasting futuristic queries [3],
with the use of evolution-sensitive synopsis.

There are a variety of techniques which can be used for synopsis construction
in data streams. We summarize these methods below:

= Sampling methods: Sampling methods are among the most simple
methods for synopsis construction in data streams. It is also relatively
easy to use these synopsis with a wide variety of application since their
representation is not specialized and uses the same multi-dimensional
representation as the original data points. In particular reservoir based
sampling methods [92] are very useful for data streams.

= Histograms: Histogram based methods are widely used for static data
sets. However most traditional algorithms on static data sets require
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super-linear time and space. This is because of the use of dynamic pro-
gramming techniques for optimal histogram construction. Their exten-
sion to the data stream case is a challenging task. A number of recent
techniques [37] discuss the design of histograms for the dynamic case.

m  Wavelets: Wavelets have traditionally been used in a variety of image and
query processing applications, In this chapter, we will discuss the issues
and challenges involved in dynamic wavelet construction. In particular,
the dynamic maintenance of the dominant coefficients of the wavelet
representation requires some novel algorithmic techniques.

» Sketches: Sketch-based methods derive their inspiration from wavelet
techniques. In fact, sketch based methods can be considered a ran-
domized version of wavelet techniques, and are among the most space-
efficient of all methods. However, because of the difficulty of intuitive
interpretations of sketch based representations, they are sometimes diffi-
cult to apply to arbitrary applications, In particular, the generalization of
sketch methods to the multi-dimensional case is still an open problem.

s Micro-cluster based summarization: A recentmicro-clustering method
1] can be used be perform synopsis construction of data streams. The
advantage of micro-cluster summarization is that it is applicable to the
multi-dimensional case, and adjusts well to the evolution of the under-
lying data stream., While the empirical effectiveness of the method is
quite good, its heuristic nature makes it difficult to find good theoretical
bounds on its effectiveness. Since this method is discussed in detail in
another chapter of this book, we will not elaborate on it further.

In this chapter, we will provide an overview of the different methods for synopsis
construction, and their application to a variety of data mining and database
problems. This chapter is organized as follows. In the next section, we will
discuss the sampling method and its application to different kinds of data mining
problems. In section 3, we will discuss the technique of wavelets for data
approximatior. In section 4, we will discuss the technique of sketches for
data stream approximation. The method of histograms is discussed in section
4. Section 5 discusses the conclusions and challenges in effective data stream
summarization,

2, Sampling Methods

Sampling is a popular tool used for many applications, and has several ad-
vantages from an application perspective. One advantage is that sampling is
easy and efficient, and usually provides an unbiased estimate of the underlying
data with provable error guarantees. Another advantage of sampling methods
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is that since they use the original representation of the records, they are easy to
use with any data mining application or database operation. In most cases, the
error guarantees of sampling methods generalize to the mining behavior of the
underlying application. Many synopsis methods such as wavelets, histograms,
and sketches are not easy to use for the multi-dimensional cases. The random
sampling technique is often the only method of choice for high dimensional
applications,

Before discussing the application to data streams, let us examine some prop-
erties of the random sampling approach. Let us assume that we have a database
D containing N points which are denoted by X ... Xy. Let us assume that
the function f(D) represents an operation which we wish to perform on the
database D. For example f(D) may represent the mean or sum of one of the
attributes in database . We note that a random sample S from database D
defines a random variable f(S) which is (often) closely related to f(D) for
many commonly used functions. It is also possible to estimate the standard
deviation of f{.9) in many cases. In the case of aggregation based functions
in linear separable form (eg. sum, mean), the law of large numbers allows us
to approximate the random variable f(S) as a normal distribution, and char-
acterize the value of f(D) probabilistically. However, not all functions are
aggregation based (eg. min, max}. In such cases, it is desirable to estimate the
mean (1 and standard deviation o of f(5). These parameters allows us to design
probabilistic bounds on the value of f{5). This is often quite acceptable as an
alternative to characterizing the entire distribution of f{5). Such probabilistic
bounds can be estimated using a number of inequalities which are also often
referred to as tail bounds.

The markov inequality is a weak inequality which provides the following
bound for the random variable X:

P(X > a) < E[X]/a=ufa (9.1)

By applying the Markov inequality to the random variable (X — u)?/0?, we
obtain the Chebychev inequality:

P(|X -y > a) < */a’ ©2)

While the Markov and Chebychev inequalities are farily general inequalities,
they are quite loose in practice, and can be tightened when the distribution
of the random variable X is known. We note that the Chebychev inequality is
derived by applying the Markov inequality on a function of the random variable
X. Even tighter bounds can be obtained when the random variable X shows
a specific form, by applying the Markov inequality to parameterized functions
of X and optimizing the parameter using the particular characteristics of the
random variable X,
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The Chernoff bound [14] applies when X is the sum of several independent
and identical Bernoulli random variables, and has a lower tail bound as well as
an upper tail bound:

P(X < (1- 8)y) < e #/2 (9.3)
P(X > (1+8)y) < max{27%, e #"/4} 9.4)

Another kind of inequality often used in stream mining is the Hoeffding
inequality. In this inequality, we bound the sum of k independent bounded
random variables. For example, for a set of k& independent random variables
lying in the range [a, t], the sum of these k random variables X satisfies the
following inequality:

P(IX — p| > §) < 2~ 8%/ (b-0)? (9.5)

We note that the Hoeffding inequality is slightly more general than the Cher-
noff bound, and both bounds have similar form for overlapping cases. These
bounds have been used for a variety of problems in data stream mining such as
classification, and query estimation [28, 58]. In general, the method of random
sampling is quite powerful, and can be used for a variety of problems such as
order statistics estimation, and distinct value queries [41, 72].

In many applications, it may be desirable to pick out a sample (reservoir)
from the stream with a pre-decided size, and apply the algorithm of interest
to this sample in order to estimate the results. One key issue in the case of
data streams is that we are not sampling from a fixed data set with known size
N. Rather, the value of NV is unknown in advance, and the sampling must be
performed dynamically as data points arrive. Therefore, in order to maintain
an unbiased representation of the underlying data, the probability of including
a point in the random sample should not be fixed in advance, but should change
with progression of the data stream. For this purpose, reservoir based sampling
methods are usually quite effective in practice.

2.1 Random Sampling with a Reservoir

Reservoir based methods [92] were originally proposed in the context of
one-pass access of data from magnetic storage devices such as tapes. As in the
case of streams, the number of records IV are not known in advance and the
sampling must be performed dynamically as the records from the tape are read.

Let us assume that we wish to obtain an unbiased sample of size n from
the data stream. In this algorithm, we maintain a reservoir of size n from the
data stream. The first n points in the data streams are added to the reservoir
for initialization. Subsequently, when the (¢ + 1)th point from the data stream
is received, it is added to the reservoir with probability n/{¢t + 1). In order
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to make room for the new point, any of the current points in the reservoir are
sampled with equal probability and subsequently removed.

The proof that this sampling approach maintains the unbiased character of
the reservoir is straightforward, and uses induction on ¢. The probability of the
(¢ 4 1)th point being included in the reservoir is n/(¢ + 1). The probability
of any of the last ¢ points being included in the reservoir is defined by the sum
of the probabilities of the events corresponding to whether or not the (¢ + 1)th
point is added to the reservoir. From the inductive assumption, we know that the
first £ points have equal probability of being included in the reservoir and have
probability equal to n/¢. In addition, since the points remain in the reservoir
with equal probability of (n — 1)/n, the conditional probability of a point
(among the first ¢ points) remaining in the reservoir given that the (¢ + 1) point
is added is equal to (n/t) - (n — 1)/n = (n —1)/t. By summing the probability
over the cases where the (£+1)th point is added to the reservoir (or not), we get a
total probability of ((n/(t+1))-(n—1)}/t+(1-(n/(t+1)})-(n/t) = n/(t+1).
Therefore, the inclusion of all points in the reservoir has equal probability which
isequalton/(t +1). Asaresult, at the end of the stream sampling process, all
points in the stream have equal probability of being included in the reservoir,
which is equal to n/N.

In many cases, the stream data may evolve over time, and the corresponding
data mining or query results may also change over time. Thus, the results of
a query over a more recent window may be quite different from the results
of a query over a more distant window. Similarly, the entire history of the
data stream may not relevant for use in a repetitive data mining application
such as classification, Recently, the reservoir sampling algorithm was adapted
to sample from a moving window over data streams [8]. This is useful for
data streams, since only a small amount of recent history is more relevant that
the entire data stream. However, this can sometimes be an extreme solution,
since one may desire to sample from varying lengths of the stream history.
While recent queries may be more frequent, it is also not possible to completely
disregard queries over more distant horizons in the data stream. A method in [4]
designs methods for biased reservoir sampling, which uses a bias function to
regulate the sampling from the stream. This bias function is quite effective since
it regulates the sampling in a smooth way so that queries over recent horizons
are more accurately resolved. While the design of a reservoir for arbitrary
bias function is extremely difficult, it is shown in [4], that certain classes of
bias functions (exponential bias functions) allow the use of a straightforward
replacement algorithm. The advantage of a bias function is that it can smoothly
regulate the sampling process so that acceptable accuracy is retained for more
distant queries. The method in [4] can also be used in data mining applications
so that the quality of the results do not degrade very quickly.
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2.2 Concise Sampling

The effectiveness of the reservoir based sampling method can be improved
further with the use of concise sampling. We note that the size of the reservoir
is sometimes restricted by the available main memory. It is desirable to increase
the sample size within the available main memory restrictions. For this purpose,
the technique of concise sampling is quite effective.

The method of concise sampling exploits the fact that the number of dis-
tinct values of an attribute is often significantly smaller than the size of the data
stream. This technique is most applicable while performing univariate sampling
along a single dimension. For the case of multi-dimensional sampling, the sim-
ple reservoir based method discussed above is more appropriate. The repeated
occurrence of the same value can be exploited in order to increase the sample
size beyond the relevant space restrictions. We note that when the number of
distinct values in the stream is smaller than the main memory limitations, the
entire stream can be maintained in main memory, and therefore sampling may
not even be necessary. For current desktop systems in which the memory sizes
may be of the order of several gigabytes, very large sample sizes can be main
memory resident, as long as the number of distinct values dees not exceed the
memory constraints. On the other hand, for more challenging streams with an
unusually large number of distinct values, we can use the following approach.

The sample is maintained as a set & of <value, count>> pairs. For those pairs
i which the value of count is one, we do not maintain the count explicitly,
but we maintain the value as a singleton. The number of clements in this
representation is referred to as the footprint and is bounded above by n. We
note that the footprint size is always smaller than or equal to than the true sample
size. If the count of any distinct element is larger than 2, then the footprint size
is strictly smaller than the sample size. We use a threshold parameter T which
defines the probability of successive sampling from the stream. The value of
T is initialized to be 1. As the points in the stream arrive, we add them to the
current sample with probability 1/7. We note that if the corresponding value-
count pair is already included in the set S, then we only need to increment the
count by 1. Therefore, the footprint size does not increase. On the other hand,
if the value of the current point is distinct from all the values encountered so
far, or it exists as a singleton then the foot print increases by 1. This is because
either a singleton needs to be added, or a singleton gets converted to a value-
count pair with a count of 2. The increase in footprint size may potentially
require the removal of an element from sample .S in order to make room for the
new insertion. When this situation arises, we pick a new (higher) value of the
threshold 7, and apply this threshold to the footprint in repeated passes. In each
pass, we reduce the count of a value with probability 7/7/, until at least one
value-count pair reverts to a singleton or a singleton is removed. Subsequent
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Granularity (Order k) Averages DWT Coefficients
& values 1fr values H
k=4 (8,6,2,3,4,6,6,5) -
k=3 {7,2.5,5,5.5) (1, -0.5,-1,0.5}
k=2 (4.75,5.23) (2.25,-0.25)
k=1 (5 (-0.25)

Table 9.1, An Example of Wavelet Coefficient Computation

points from the stream are sampled with probability 1/7’. As in the previous
case, the probability of sampling reduces with stream progression, though we
have much more flexibility in picking the threshold parameters in this case.
More details on the approach may be found in [41].

One of the interesting characteristics of this approach is that the sample §
continues to remain an unbiased representative of the data stream irrespective
of the choice of 7. In practice, 7/ may be chosen to be about 10% larger than
the value of 7. The choice of different values of 7 provides different tradeoffs
between the average (true) sample size and the computational requirements of
reducing the footprint size. In general, the approach turns out to be quite robust
across wide ranges of the parameter 7.

3. Wavelets

Wavelets [66] are a well known technique which is often used in databases
for hierarchical data decomposition and summarization. A discussion of ap-
plications of wavelets may be found in [10, 66, 89]. In this chapter, we will
discuss the particular case of the Haar Wavelet. This technique is particularly
simple to implement, and is widely used in the literature for hierarchical de-
composition and swnmarization. The basic idea in the wavelet technique is to
create a decomposition of the data characteristics into a set of wavelet functions
and basis functions. The property of the wavelet method is that the higher order
cocflicients of the decomposition illustrate the broad trends in the data, whereas
the more localized trends are captured by the lower order coefficients.

We assume for ease in description that the length ¢ of the series is a power of
2. This is without loss of generality, because it is always possible to decompose
a series into segments, each of which has a length that is a power of two. The
Haar Wavelet decomposition defines 25! coefficients of order k. Each of these
26=1 coefficients corresponds to a contiguous portion of the time series of length
q/2%=1. The ith of these 2€—! coefficients corresponds to the segment in the
series starting from position (i — 1) - /251 + 1 to position i = ¢/2¥ 1, Letus
denote this coefficient by 1/;1%; and the corresponding time series segment by 5.
At the same time, let us define the average value of the first half of the S}, by
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Figure 9.1, Dustration of the Wavelet Decornposition

a}, and the second half by b.. Then, the value of 4, is given by (ai — bL)/ 2.
More formally, if <I)z denote the average value of the S, then the value of 1{)
can be defined recurswely as follows:

i = {‘I’iill ®711)/2 (9.6)

The set of Haar coefficients is defined by the lllfc coeflicients of order 1
to log,(g). In addition, the global average ®1 is required for the purpose of
perfect reconstruction. We note that the coefficients of different order provide an
understanding of the major trends in the data at a particular level of granularity.
For example, the coefficient ’(,D}c is half the quantity by which the first half of
the segment S} is larger than the second half of the same segment, Since
larger values of & correspond to geometrically reducing segment sizes, one can
obtain an understanding of the basic trends at different levels of granularity.
We note that this definition of the Haar wavelet makes it very easy to compute
by a sequence of averaging and differencing operations. In Table 9.1, we
have illustrated how the wavelet coefficients are computed for the case of the
sequence (8,6,2,3,4,6,6,5). This decomposition is illustrated in graphical
form in Figure 9.1. We also note that each value can be represented as a
sum of log,(8) = 3 linear decomposition components. In general, the entire
decomposition may be represented as a tree of depth 3, which represents the
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Figure 9.2, The Error Tree from the Wavelet Decomposition

hierarchical decomposition of the entire series. This is alse referred to as the
error tree, and was introduced in [73]. In Figure 9.2, we have illustrated the
error tree for the wavelet decomposition illustrated in Table 9.1. The nodes
in the tree contain the values of the wavelet coefficients, except for a special
super-root node which contains the series average. This super-root node is not
necessary if we are only considering the relative values in the series, or the
series values have been normalized so that the average is already zero. We
further note that the number of wavelet coefficients in this series is 8, which
is also the length of the original series. The original series has been replicated
just below the error-tree in Figure 9.2, and it can be reconstructed by adding
or subtracting the values in the nodes along the path leading to that value. We
note that each coefficient in a node should be added, if we use the left branch
below it to reach to the series values. Otherwise, it should be subtracted, This
natural decomposition means that an entire contiguous range along the series
can be reconstructed by using only the portion of the error-tree which is relevant
to it. Furthermore, we only need to retain those coeflicients whose values are
significantly large, and therefore affect the values of the underlying series. In
general, we would like to minimize the reconstruction error by retaining only
a fixed number of coefficients, as defined by the space constraints.
We further note that the coefficients represented in Figure 9.1 are un-normalized.

For a time series 7', let W; ... W, be the corresponding basis vectors of length
t. In Figure 9.1, each component of these basis vectors is 0, +1, or -1. The list
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of basis vectors in Figure 9.1 (in the same order as the corresponding wavelets
illustrated) are as follows:

(1-1000000)
(001-10000)
(00001-100)
(0000001-1)
(11-1-10000)
(000011-1-1)
(1111-1-1-1-1)

The most detailed coefficients have only one +1 and one -1, whereas the
most coarse coeflicient has £/2 +1 and -1 entries. Thus, in this case, we need
2% — 1 == 7 wavelet vectors. In addition, the vector (11111111) is needed to
represent the special coefficient which corresponds to the series average. Then,
if @1 ...as be the wavelet coefficients for the wavelet vectors W ... W, the
time series T ¢can be represented as follows:

e

—Z(az W) - |W| (9.8)

While a; is the un-normalized value from Figure 9.1, the values a; - |[W;| rep-
resent normalized coefficients. We note that the values of |W;| are different for
coefficients of different orders, and may be equal to either /2, v/4 or +/8 in this
particular example. For example, in the case of Figure 9.1, the broadest level un-
normalized coefficient is —0.25, whereas the corresponding normalized value
is —0.25 . +/8. After normalization, the basis vectors W, ... W, are orthonor-
mal, and therefore, the sum of the squares of the corresponding (normalized)
coefficients is equal to the energy in the time series 7. Since the normalized co-
efficients provide a new coordinate representation afier axis rotation, euclidian
distances between time series are preserved in this new representation,

The total number of coefficients is equal to the length of the data stream,
Therefore, for very large time series or data streams, the number of coeffi-
cients is also large. This makes it impractical to retain the entire decomposition
throughout the computation. The wavelet decomposition method provides a
natural method for dimensionality reduction, by retaining only the coefficients
with large absolute values. All other coefficients are implicitly approximated
to zero. This makes it possible to approximately represent the series with a
small number of coefficients. The idea is to retain only a pre-defined number of
coefficients from the decomposition, so that the error of the reduced representa-
tion is minimized. Wavelets are used extensively for efficient and approximate

§|

(9.7)
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query processing of different kinds of data [11, 93]. They are particularly useful
for range queries, since contiguous ranges can easily be reconstructed with a
small number of wavelet coefficients. The efficiency of the query processing
arises from the reduced representation of the data. At the same time, since only
the small coefficients are discarded the results are quite accurate.

A key issue for the accuracy of the query processing is the choice of coef-
ficients which should be retained. While it may be tempting to choose only
the coefficients with large absolute values, this is not always the best choice,
since a more judicious choice of coefficients can lead to minimizing specific
error criteria. Two such metrics are the minimization of the mean square error
or the maximum error metric. The mean square error minimizes the Lo error
in approximation of the wavelet coefficients, whereas maximum error metrics
minimize the maximum error of any coefficient. Another related metric is the
relative maximum error which normalizes the maximum error with the absolute
coefficient value.

It has been shown in [89] that the choice of largest B (normalized) coefficients
minimizes the mean square error criterion. This should also be evident from the
fact that the normalized coefficients render an orthonormal decomposition, as a
result of which the energy in the series is equal to the sum of the squares of the
coefficients. However, the use of the mean square error metric is not without
its disadvantages. A key disadvantage is that a global optimization criterion
implies that the local behavior of the approximation is ignored. Therefore, the
approximation arising from reconstruction can be arbitrarily poor for certain
regions of the series. This is especially relevant in many streaming applications
in which the queries are performed only over recent time windows. In many
cases, the maximum error metric provides much more robust guarantees. In
such cases, the errors are spread out over the different coefficients more evenly.
As aresult, the worst-case behavior of the approximation over different queries
is much more robust.

Two such methods for minimization of maximum error metrics are discussed
in[38, 39]. The method in [38] is probabilistic, but its application of probabilis-
tic expectation is questionable according to [53]. One feature of the method
in [38] is that the space is bounded only in expectation, and the variance in
space usage is large. The technique in [39] is deterministic and uses dynamic
programming in order to optimize the maximum error metric. The key idea in
[39] is to define a recursion over the nodes of the tree in top down fashion. For
a given internal node, we compute the least maximum error over the two cases
of either keeping or not keeping a wavelet coefficient of this node. In each case,
we need to recursively compute the maximum etror for its two children over
all possible space allocations among two children nodes. While the method is
quite clegant, it is computationally intensive, and it is therefore not suitable for
the data stream case. We also note that the coefficient is defined according to
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the wavelet coefficient definition i.e. half the difference between the left hand
and right hand side of the time series. While this choice of coefficient is optimal
for the L, metric, this is not the case for maximum or arbitrary L,, error metrics.

Another important topic in wavelet decomposition is that of the use of multi-
ple measures associated with the time series. The problem of multiple measures
refers to the fact that many quantities may simuitaneously be tracked in a given
time series. For example, in a sensor application, one may simultaneously track
many variables such as temperature, pressure and other parameters at each time
instant. We would like to perform the wavelet decomposition over multiple
measures simultaneously. The most natural technique [89] is to perform the
decomposition along the different measures separately and pick the largest co-
efficients for each measure of the decomposition. This can be inefficient, since
a coordinate needs to be associated with each separately stored coefficient and it
may need to be stored multiple times. It would be more efficient to amortize the
storage of a coordinate across multiple measures. The trade-off is that while a
given coordinate may be the most effective representation for a particular mea-
sure, it may not simultaneously be the most effective representation across all
measures. In [25], it has been proposed to use an extended wavelet represen-
tation which simultaneously tracks multi-measure coeflicients of the wavelet
representation. The idea in this technique is use a bitmap for each coefficient
set to determine which dimensions are retained, and store all coefficients for
this coordinate. The technique has been shown to significantly outperform the
methods discussed in [89].

31 Recent Research on Wavelet Decomposition in Data
Streams

The one-pass requirement of data strcams makes the problem of wavelet
decomposition somewhat more challenging. However, the case of optimizing
the mean square error criterion is relatively simple, since a choice of the largest
coefficients can preserve the effectiveness of the decomposition. Therefore, we
only need to dynamically construct the wavelet decomposition, and keep track
of the largest B coefficients encountered so far.

As discussed in [65], these methods can have a number of disadvantages in
many situations, since many parts of the time series may be approximated very
poorly. The method in [39] can effectively perform the wavelet decomposi-
tion with maximum error metrics. However, since the method uses dynamic
programming, it is computationally intensive, it is quadratic in the length of
the series. Therefore, it cannot be used effectively for the case of data streams,
which require a one-pass methodology in linear time. in {51], it has been shown
that all weighted L,,, measures can be solved in a space-efficient manner using
only O(n) space. In [65], methods have been proposed for one-pass wavelet
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synopses with the maximum error metric. It has been shown in [65], that by us-
ing a number of intuitive thresholding techniques, it is possible to approximate
the cffectiveness of the technique discussed in [39]. A set of independent results
obtained in [55] discuss how to minimize non-euclidean and relative error with
the use of wavelet synopses. This includes metrics such as the L, error or the
relative error. Both the works of [65] and [55] were obtained independently
and at a similar time. While the method in [65] is more deeply focussed on the
use of maximum error metrics, the work in [55] also provides some worst case
bounds on the quality of the approximation. The method of [65] depends on
experimental results to illustrate the quality of the approximation. Another in-
teresting point made in [55] is that most wavelet approximation methods solve a
restricted version of the problem in which the wavelet coeflicient for the basis is
defined to be half the difference between the left hand and right hand side of the
basis vectors, Thus, the problem is only one of picking the best B coefficients
out of these pre-defined sct of coefficients. While this is an intuitive method
for computation of the wavelet coefficient, and is optimal for the case of the
Euclidean error, it is not necessarily optimal for the case of the Ly,-metric. For
example, consider the time series vector (1,4, 5,6). In this case, the wavelet
transform is (4, —1.5, —L.5, —0.5). Thus, for B = 1, the optimal coefficient
picked is (4,0, 0, 0) for any L,,-metric. However, for the case of L -metric,
the optimal solution should be (3.5, 0,0, 0), since 3.5 represents the average
between the minimum and maximum value. Clearly, any scheme which re-
stricts itself only to wavelet coefficients defined in a particular way will not
even consider this solution {55}, Almost all methods for non-euclidean wavelet
computation tend to use this approach, possibly as a legacy from the Haar
method of wavelet decomposition. This restriction has been removed in [55]
and proposes a method for determining the optimal synopsis coefficients for the
case of the weighted Ly, metric. We distinguish between synopsis coefficients
and wavelet coefficients, since the latter are defined by the simple subtractive
methodology of the Haar decomposition. A related method was also proposed
by Matias and Urieli [75] which discusses a near linear time optimal algorithm
for the weighted Ly,-error. This method is offline, and chooses a basis vector
which depends upon the weights.

An interesting extension of the wavelet decomposition method is one in
which multiple measures are associated with the time series. A natural solu-
tion is to treat each measure separately, and store the wavelet decomposition.
However, this can be wasteful, since a coordinate needs to be stored with each
coefficient, and we can amortize this storage by storing the same coordinate
across multiple measures. A technique in [25] proposes the concept of ex-
tended wavelets in order to amortize the coordinate storage across multiple
measures. In this representation, one or more coefficients are stored with each
coordinate. Clearly, it can be fricky to determine which coordinates to store,
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since different coordinates will render larger coefficients across different mea-
sures, The technique in [25] uses a dynamic programming method to determine
the optimal extended wavelet decomposition. However, this method is not time
and space efficient. A method in [52] provides a fast algorithm whose space
requirement is linear in the size of the synopsis and logarithmic in the size of
the data stream.

Another important point to be noted is that the choice of the best wavelet
decomposition is not necessarily pre-defined, but it depends upon the particular
workload on which the wavelet decomposition is applied. Some interesting
papers in this direction [77, 75] design methods for workload aware wavelet
synopses of data streams. While this line of work has not been extensively re-
searched, we believe that it is likely to be fruitful in many data stream scenarios.

4, Sketches

The idea of sketches is essentially an extension of the random projection
technique [64] to the time series domain. The idea of using this technique for
determining representative trends in the time series domain was first observed
in [61]. In the method of random projection, we can reduce a data point of
dimensionality d to an axis system of dimensionality & by picking k& random
vectors of dimensionality d and calculating the dot product of the data point
with each of these random vectors. Each component of the & random vectors
is drawn from the normal distribution with zero mean and unit variance. In
addition, the random vector is normalized to one unit in magnitude. It has
been shown in [64] that proportional Ls distances between the data points are
approximately preserved using this transformation. The accuracy bounds of the
distance values are dependent on the value of k. The larger the chosen value of
k, the greater the accuracy and vice-versa.

This general principle can be easily extended to the time series domain,
by recognizing the fact that the length of a time series may be treated as its
dimensionality, and correspondingly we need to compute a random vector of
length equal to the time series, and use it for the purpose of sketch computation.
If desired, the same computation can be performed over a sliding window of a
given length by choosing a random vector of appropriate size. As proposed in
[61], the following approximation bounds are preserved:

LEMMA 9.1 Let L be a set of vectors of length I, for fixed e < 1/2, and k =
9-log|L|/¢?. Consider a pair of vectors T, W in L, such that the corresponding
sketches are denoted by S(T) and S(T) respectively. Then, we have:

(1—e-lm-wf <||S@ - S@) < (1+e)-j@-wmw|* (9.9

with probability 1/2. Here ||I7 — V||? is the Ly distance between two vectors
{/ and V.
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The generalization to time series is fairly straightforward, and the work in
[61] makes two primary contributions in extending the sketch methodology to
finding time series trends.

4,1 Fixed Window Sketches for Massive Time Series

In this case, we wish to determine sliding window sketches with a fixed win-
dow length /. For each window of length [, we need to perform / - & operations
for a sketch of size k. Since there are O(n — ) sliding windows, this will
require OQ(n - 1 - k) computations. When { is large, and is of the same order of
magnitude as the time series, the computation may be quadratic in the size of the
series. This can be prohibitive for very large time series, as is usually the case
with data streams. The key observation in [61], is that all such sketches can be
viewed as the problem of computing the polynomial convolution of the random
vector of appropriate length with the time series. Since the problem of poly-
nomial convolution can be computed efficiently using fast fourier transform,
this also means that the sketches may be computed efficiently. The problem of
polynomial convolution is defined as follows:

DEFINITION 9.2 Given two vectors A[l...a] and B[1...b], a > b, their
comvolution is the vector C[1 .. .a +b) where C[kl = 3°0_, A{k — 4] Bl#] for
k € 2, a + b, with any out of range references assumed to be zero.

The key point here is that the above polynomial convelution can be computed
using FFT, in O(a - log(b)) operations rather than O(a - b) operations. This
effectively means the following:

LEMMA 9.3 Sketches of all subvectors of length | can be computed in time
O(n - k - log(l)) using polynomial convolution.

4.2 Variable Window Sketches of Massive Time Series

The method in the previous subsection discussed the problem of sketch com-
putation for a fixed window length. The more general version of the problem is
one in which we wish to compute the sketch for any subvector between length
[ and u. In the worst-case this comprises O(n?) subvectors, most of which
will have length O(n). Therefore, the entire algorithm may require Q(n®)
operations, which can be prohibitive for massive time series streams.

The key idea in [61] is to store a pool of sketches. The size of this pool
is significantly smaller than the entire set of sketches needed, However, it is
carefully chosen so that the sketch of any sub-vector in the original vector can
be computed in O(1} time fairly accurately. In fact, it can be shown that the
approximate sketches computed using this approach satisfy a slightly relaxed
version of Lemma 9.1. We refer details to [61].
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4.3 Sketches and their applications in Data Streams

In the previous sections we discussed the application of sketches to the prob-
lem of massive time series. Some of the methods such as fixed window sketch
computation are inherently oftline. This does not suffice in many scenarios in
which it is desirable to continuously compute the sketch over the data stream.
Furthermore, in many cases, it is desirable to efficiently use this sketch in order
to work with a variety of applications such as query estimation. In this subsec-
tion, we will discuss the applications of sketches in the data stream scenario.
Qur carlier discussion corresponds to a sketch of the time series itself, and en-
tails the storage of the random vector required for sketch generation. While such
a technique can be used effectively for massive time series, it cannot always be
used for time series data streams.

However, in certain other applications, it may be desirable to track the fre-
guencies of the distinct values in the data stream. In this case, if (v ... uy)
be the frequencies of N distinct values in the data stream, then the sketch is
defined by the dot product of the vector (u1...uy) with a random vector of
size IN. As in the previous case, the number of distinct items N may be large,
and therefore the size of the corresponding random vector will also be large. A
natural solution is to pre-generate a set of & random vectors, and whenever the
ith item is received, we add 1:3 to the jth sketch component. Therefore, the &
random vectors may need to be pre-stored in order to perform the computation.,
However, the explicit storage of the random vector will defeat the purpose of
the sketch computation, because of the high space complexity.

The key here is to store the random vectors implicitly in the form of a seed,
which can be used to dynamically generate the vector. The key idea discussed
in [6] is that it is possible to generate the random vectors from a seed of size
O(log(N)) provided that one is willing to work with the restriction that the
values of ] € {—1,+1} are only 4-wise independent. We note that having
a seed of small size is critical in terms of the space-efficiency of the method.
Furthermore, it has been shown in [6] that the theoretical results only require
4-wise independence. In [44], it has also been shown how to use Reed-Muller
codes in order to generate 7-wise independent random numbers, These method
suffices for the purpose of wavelet decomposition of the frequency distribution
of different items.

Some key properties of the pseudo-random number generation approach and
the sketch representation are as follows:

= A given component rf can be generated in poly-logarithmic time from
the seed.

m  The dot-product of two vectors can be approximately computed using
only their sketch representations. This follows from the fact that the
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dot product of two vectors is closely related to the Euclidean distance,
a quantity easily approximated by the random projection approach [64].
Specifically, if U7 and V be two (normalized) vectors, then the euclidean
distance and dot product are related as follows:

T -VIP= 01+ |VI*-2.T -V (9.10)
(9.11)

This relationship can be used to establish bounds on the quality of the dot
product approximation of the sketch vectors. We refer to [44] for details
of the proof.

The first property ensures that the sketch components can be updated and main-
tained efficiently. Whenever the ith value is received, we only need to add 7} to

the jth component of the sketch vector. Since the quantity r! can be efficiently
computed, it follows that the update operations can be performed efficiently
as well. In the event that the data stream also incorporates frequency counts
with the arriving items (item ¢ is associated with frequency count f(2)), then
we simply need to add f(i) - r to the jth sketch component. We note that
the efficient and accurate computation of the dot product of a given time series
with the random vector is a key primitive which can be used to compute many
properties such as the wavelet decomposition. This is because each wavelet
coefficient can be computed as the dot product of the wavelet basis with the
corresponding time series data stream; an approximation may be determined
by using only their sketches. The key issue here is that we also need the sketch
representation of the wavelet basis vectors, each of which may take O(N) time
in the worst case. In general, this can be time consuming; however the work in
[44] shows how to do this in poly-logarithmic time for the special case in which
the vectors are Haar-basis vectors. Once the coefficients have been computed,
we only need to retain the B coefficients with the highest energy.

We note that one property of the results in [44] is that it uses the sketch
representation of the frequency distribution of the original stream in order to
derive the wavelet coefficients. A recent result in [16] works directly with the
sketch representation of the wavelet coefficients rather than the sketch repre-
sentation of the original data stream. Another advantage of the work in [16]
is that the query times are much more efficient, and the work extends to the
multi-dimensional domain. We note that while the wavelet representation in
[44] is space efficient, the entire synopsis structure may need to be touched for
updates and every wavelet coefficient must be touched in order to find the best
B coefficients. The technique in [16] reduces the time and space efficiency for
both updates and queries.

The method of sketches can be effectively used for second moment and join
estimation. First, we discuss the problem of second moment estimation [6] and
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illustrate how it can be used for the problem of estimating the size of self joins.
Consider a set of n quantitative values /7 = (u1...un). We would like to
estimate the second moment |U|?. Then, as before generate the random vectors
Pl r¥, (each of size N), and compute the dot product of these random vectors
with {/ to create the sketch components denoted by S ... Sy. Then, it can be
shown that the expected value of Sf is equal to the second moment. In fact, the
approximation can be bounded with high probability.

LEMMA 9.4 By selecting the median of Q(log(1/8)) averages of O{1/€?)
copies of 5'1-2, it is possible to guarantee the accuracy of the sketch based ap-
proximation to within 1 ¢ with probability at least 1 — 4.

In order to prove the above result, the first step is to show that the expected
value of Si2 is equal to the second moment, and the variance of the variable
52 is at most twice the square of the expected value. The orthogonality of
the random projection vectors can be used to show the first result and the 4-
wise independence of the values of 7] can be used to show the second. The
relationship between the expected values and variance imply that the Chebychev
inequality can be used to prove that the average of O(1/¢%) copies provides
the € bound with a constant probability which is at least 7/8. This constant
probability can be tightened to at least 1 — § (for any small value of §) with
the use of the median of O(log(1/4)) independent copies of these averages.
This is because the median would lie outside the e-bound only if more than
log(1/4)/2 copies (minimum required number of copies) lie outside the e hound.
However, the expected number of copies which lie outside the ¢-bound is only
log(1/6)/8, which is less than above-mentioned required number of copies by
3 - log(1/8)/8. The Chernoff tail bounds can then be applied on the random
variable representing the number of copies lying outside the e-bound. This can
be used to show that the probability of more than half the log(1/4) copies lying
outside the e-bound is at most 4. Details of the proof can be found in [6].

We note that the second moment immediately provides an estimation for
self-joins. If u; be the number of items corresponding to the ith value, then
the second moment estimation is exactly the size of the self-join. We further
note that the dot product function is not the only one which can be estimated
from the sketch. In general, many functions such as the dot product, the Lo
distance, or the maximum frequency items can be robustly estimated from the
sketch. This is essentially because the sketch simply projects the time series
onto a new set of (expected) orthogonal vectors. Therefore many rotational
invariant properties such as the L, distance, dot product, or second moment are
approximately preserved by the sketch.

A number of interesting techniques have been discussed in {5, 26, 27] in
order to perform the estimation more effectively over general joins and multi-
joins. Consider the multi-join problem on relations R1, R2, R3, in which we
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wish to join attribute A of R1 with atiribute B of R2, and attribute C of R2 with
attribute D of R3. Let us assume that the join attribute on R1 with R2 has N
distinet values, and the join attribute of A2 with A3 has M distinct values. Let
f(#) be the number of tuples in R1 with value i for attribute A. Let g(i, j) be the
number of tuples in 112 with values ¢ and j for attributes B and C respectively.
Let i(j) be the number of tuples in 23 with value j for join attribute C. Then,
the total estimated join size J is given by the following;:

N M
T=3 1) 9(.5) h(H) (9.12)
=1 j=1
In order to estimate the join size, we create two independently generated fam-

ilies of random vectors r' ... r* and 51 ...s*. We dynamically maintain the
following quantities, as the st:ream pomts are recetved:

N
= Z FORE: (9.13)
N M
=3 glik)-r] 5] (9.14)
i=1 k=1
= Zh(k) 8}, (9.15)
=

It can be shown [5], that the quantity Z] - Z] . Z] estimates the join size. We
can use the multiple components of the sketch (different values of j) in order to
improve the accuracy. It can be shown that the variance of this estimate is equal
to the product of the self-join sizes for the three different relations. Since the tail
bounds use the variance in order to provide quality estimates, a large value of
the variance can reduce the effectiveness of such bounds. This is particularly a
problem if the composite join has a small size, whereas the product of the self-
join sizes is very large. In such cases, the errors can be very large in relation to
the size of the result itself. Furthermore, the product of self-join sizes increases
with the number of joins. This degrades the results, We further note that the
error bound results for sketch based methods are proved with the use of the
Chebychev inequality, which depends upon a low ratio of the variance to result
size. A high ratio of variance to result size makes this inequality ineffective,
and therefore the derivation of worst-case bounds requires a greater number of
sketch components.

An interesting observation in [26] is that of skefch partitioning. In this
technique, we intelligently partition the join attribute domain-space and use
it in order to compute separate sketches of each partition. The resulting join
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estimate is computed as the sum over all partitions. The key observation here
is that intelligent domain partitioning reduces the variance of the estimate, and
is therefore more accurate for practical purposes. This method has also been
discussed in more detail for the problem of multi-query processing [27].

Another interesting trick for improving join size estimation is that of sketch
skimming [34]. The key insight is that the variance of the join estimation is
highly affected by the most frequent components, which are typically small in
number, A high variance is undesirable for accurate estimations. Therefore, we
treat the frequent items in the stream specially, and can separately track them. A
skimmed sketch can be constructed by subtracting out the sketch components
of these frequent items. Finally, the join size can be estimated as a 4-wise
addition of the join estimation across two pairs of partitions. It has been shown
that this approach provides superior results because of the reduced variance of
the estimations from the skimmed sketch.

44 Sketches with p-stable distributions

In our earlier sections, we did not discuss the effect of the distribution from
which the random vectors are drawn. While the individual components of the
random vector were drawn from the normal distribution, this is not the only
possibility for sketch generation. In this section, we will discuss a special
set of distributions for the random vectors which are referred to as p-stable
distributions. A distribution £ is said to be p-stable, if it satisfies the following

property:

DEFINITION 9.5 For any set of N i.i.d. random variables X, ... Xy drawn
froma p—stabte distribution L, and anysetof realnumbers ay . . . oy, the random
variable (30 | a; - X3}/ (o0, a2 YYP) is drawn from L.

A classic example of the p-stable distribution is the normal distribution with

= 2. In general p-stable distributions can be defined for p € (0, 2.

The use of p-stable distributions has implications in the construction of
sketches. Recall, that the ith sketch component is of the form Z : v"{ ,
where u; is the frequency of the ith distinct value in the data stream If each
r! is drawn from a p-stable distribution, then the above sum is also a (scaled)
p-stable distribution, where the scale coefficient is given by (Y, u2)(1/7),
The ability to use the exact distribution of the sketch provides much stronger
results than just the use of mean and variance of the sketch components. We
note that the use of only mean and variance of the sketch components often
restricts us to the use of generic tail bounds (such as the Chebychev inequality)
which may not always be tight in practice. However, the knowledge of the
sketch distribution can potentially provide very tight bounds on the behavior of
each sketch component.
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An immediate observation is that the scale coefficient (3_3., u?)(1/#) of
each sketch component is simply the L,-norm of the frequency distribution of
the incoming items in the data stream. By using O(log(1/6)/€?) independent
sketch components, it is possible to approximate the L, norm within € with
probability at least 1 — 4. We further note that the use of the Ly norm provides
the number of distinct values in the data stream. It has been shown in [17] that
by using p — 0 (small values of p), it is possible to closely approximate the
number of distinct values in the data stream.

Other Applications of Sketches.  The method of sketches can be used for a
variety of other applications. Some examples of such applications include the
problem of keavy hitters [13, 18, 76, 21], a problem in which we determine the
most frequent items over data streams. Other problems include those of finding
significant network differences over data streams [19] and finding quantiles
[46, 50] over data streams. Another interesting application is that of significant
differences between data streams [32, 33], which has applications in numerous
change detection scenarios. Another recent application to sketches has been to
XML and tree-structured data [82, 83, 87]. In many cases, these synopses can
be used for efficient resolution of the structured queries which are specified in
the XQuery pattern-specification language.

Recently sketch based methods have found considerable applications to ef-
ficient communication of signals in sensor networks. Since sensors are battery
constrained, it is critical to reduce the communication costs of the transmission.
The space efficiency of the sketch computation approach implies that it can also
be used in the sensor network domain in order to minimize the communication
costs over different processors. In [22, 67, 50], it has been shown how to extend
the sketch method to distributed query tracking in data streams. A particularly
interesting method is the technique in [22] which reduces the communication
costs further by using sketch skimming techniques [34], in order to reduce com-
munication costs further. The key idea is to use models to estimate the future
behavior of the sketch, and make changes to the sketch only when there are
significant changes to the underlying model.

4.5 The Count-Min Sketch

One interesting variation of the sketching method for data streams is the
count-min sketch, which uses a hash-based sketch of the stream. The broad ideas
in the count-min sketch were first proposed in [13, 29, 30]. Subsequently, the
method was enhanced with pairwise-independent hash functions, formalized,
and extensively analyzed for a variety of applications in [20].

In the count-min sketch, we use [In{1/§)] pairwise independent hash func-
tions, each of which map on to uniformly random integers in the range [0, ¢ /€],
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where ¢ is the base of the natural logarithm. Thus, we maintain a total of
[In(1/d)] hash tables, and there are a total of O(In(1/4)/e) hash cells. This
apparently provides a better space complexity than the O(In(1/8)/€%) bound
of AMS sketches in [6]. We will discuss more on this point later.

We apply each hash function to any incoming element in the data stream, and
add the count of the element to each of the corresponding [In(1/8)] positions
in the different hash tables. We note that because of collisions, the hash table
counts will not exactly correspond to the count of any element in the incoming
data stream. When incoming frequency counts are non-negative, the hash table
counts will over-estimate the true count, whereas when the incoming frequency
counts are etther positive or negative (deletions), the hash table count could be
either an over-estimation or an under-estimation. In either case, the use of the
median count of the hash position of a given element among the O(In(1/4))
counts provided by the different hash functions provides a estimate which is
within a 3 - € factor of the L1-norm of element counts with probability at least

— 81/ [20]. In other words, if the frequencies of the N different items are
f1... fn, then the estlmated frequency of the item 4 lie between f; — 3 - € -
Z,, 1| filand f; +3 €. Zt 1 |f¢| with probability at least 1 — & 1/4, The proof
of this result relies on the fact that the expected inaccuracy of a given entry j
is at most € - SN . | f;| /e, if the hash function is sufficiently uniform. This is
because we expect the count of other {incorrect) entries which map onto the
position of j to be Zie[l, Nz Ji € /e for a sufficiently uniform hash function

with [e/c] entries. This is at most equal to € - 5.7 | | f;|/e. By the Markov
inequality, the probability of this number exceeding 3 - € - Ziil | fi| is less than
1/(3-e) < 1/8. By using the earlier Chernoff bound trick (as in AMS sketches)
in conjunction with the median selection operation, we get the desired result.
In the case of non-negative counts, the minimum count of any of the In{1/4)
possibilities provides a tighter e-bound (of the Lj-norm) with probability at
least 1 — 4. In this case, the estimated frequency of item 7 lies between f; and
fi+e- Zz-—l fi with probablhty at least 1 — 4. As in the previous case, the

expected inaccuracy is € - 21—1 fi/e. This is less than the maximum bound by
a factor of e. By applying the Markov inequality, it is clear that the probability
that the bound is violated for a given entry is 1/¢. Therefore, the probability
that it is violated by all log(1/4) entries is at most (1/e)108(1/8) = 5,

For the case of non-negative vectors, the dot product can be estimated by
computing the dot product on the corresponding entries in the hash table. Each
of the [In{1/4)] such dot products is an over estimate, and the minimum of
these provides an ¢ bound with probability at least 1 — . The dot product result
immediately provides bounds for join size estimation. Details of extending the
method to other applications such as heavy hitters and quantiles may be found
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in [20]. In many of these methods, the time and space complexity is bounded
above by O(In(1/8)/¢), which is again apparently superior to the AMS sketch.

Asnoted in {20], the e-bound in the count-min sketch cannot be directly com-
pared with that of the AMS sketch. This is because the AMS sketch provides the
e-bound as a function of the Ly-norm, whereas the method in [20] provides the
e-bound only in terms of the L, -norm. The L, -norm can be guadratically larger
(than the Ly-norm) in the most challenging case of non-skewed distributions,
and the ratio between the two may be as large as v/ N. Therefore, the equivalent
value of ¢ in the count-min sketch can be smaller than that in the AMS sketch
by a factor of v/N. Since N is typically large, and is in fact the motivation of
the sketch-based approach, the worst-case time and space complexity of a truly
equivalent count-min sketch may be significantly larger for practical values of
¢. While this observation has been briefly mentioned in [20], there seems to be
some confusion on this point in the current literature. This is because of the
overloaded use of the parameter ¢, which has different meaning for the AMS
and count-min sketches. For the skewed case (which is quite common), the
ratio of the Li-norm to the Lq-norm reduces. However, since this case is less
challenging, the general methods no longer remain relevant, and a number of
other speciatized methods (eg. sketch skimming [34]) exist in ordet to improve
the experimental and worst-case effectiveness of both kinds of sketches. It
would be interesting to experimentally compare the count-min and AMS meth-
ods to find out which is superior in different kinds of skewed and non-skewed
cases. Some recent results [91] seem to suggest that the count-min sketch is
experimentally superior to the AMS sketch in terms of maintaining counts of
clements. On the other hand, the AMS skeich seems to be superior in terms
of estimating aggregate functions such as the Le-norm, Thus, the count-min
sketch does seem to have a number of practical advantages in many scenarios.

4.6 Related Counting Methods: Hash Functions for
Determining Distinct Elements

The method of sketches is a probabilistic counting method whereby a ran-
domized function is applied to the data stream in order to perform the counting
in a space-efficient way. While sketches are a good method to determine /arge
aggregate signals, they are not very useful for counting infrequently occur-
ring items in the stream. For example, problems such as the determination of
the number of distinct elements cannot be performed with sketches. For this
purpose, hash functions turn out to be a useful choice.

Consider a hash function that renders a mapping from a given word to an
integer in the range [0, 2 — 1]. Therefore, the binary representation of that
integer will have length L. The position (least significant and rightmost bit is
counted as 0} of the rightmost 1-bit of the binary representation of that integer
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is tracked, and the largest such value is retained. This value is logarithmically
related to the number of distinct elements [31] in the stream.

The intuition behind this result is quite simple. For a sufficiently uniformly
distributed hash function, the probability of the ith bit on the right taking on the
first t-value is simply equal to 27¢~1, Therefore, for NV distinct elements, the
expected number of records taking on the ith bit as the first 1-value is 27*"1. NV.
Therefore, when i is picked larger than log(/V), the expected number of such
hitstrings falls off exponentially less than 1. It has been rigorously shown [31]
that the expected position of the rightmost bit £[R] is logarithmically related
to the number of distinct elements as follows:

E[R] = logy(¢N), ¢=0.77351 (9.16)

The standard deviation o(R?) = 1.12. Therefore, the value of R provides an
estimate for the number of distinct elements N.

The hash function technique is very useful for those estimations in which
non-repetitive elements have the same level of importance as repetitive ele-
ments. Some examples of such functions are those of finding distinct values
[31, 43], mining inverse distributions [23], or determining the cardinality of set
expressions [35]. The method in [43] uses a technique similar to that discussed
in [31] in order to obtain a random sample of the distinct elements. This is then
used for estimation. In [23], the problem of inverse distributions is discussed,
in which it is desirable to determine the elements in the stream with a particular
frequency level. Clearly such an inverse query is made difficult by the fact
that a query for an element with very low frequency is equally likely to that of
an element with very high frequency. The method in [23] solves this problem
using a hash based approach similar to that discussed in [31]. Another related
problem is that of finding the number of distinct elements in a join after elim-
inating duplicates. For this purpose, a join-distinct sketch (or JD-Sketch) was
proposed in [36], which uses a 2-level adaptation of the hash function approach
in [31].

4.7 Advantages and Limitations of Sketch Based Methods

One of the key advantages of sketch based methods is that they require space
which is sublinear in the data size being considered. Another advantage of
sketch based methods that it is possible to maintain sketches in the presence
of deletions. This is ofien not possible with many synopsis methods such as
random samples. For example, when the th item with frequency f(7) is deleted,
the jth component of the sketch can be updated by subtracting f(¢) - from it.
Another advantage of using sketch based methods is that they are extraordinarily
space efficient, and require space which is logarithmic in the number of distinct
items in the stream. Since the number of distinct items is significantly smaller
than the size of the stream itself, this is an extremely low space requirement.
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We note that sketches are based on the Lipshitz embeddings, which preserve a
number of aggregate measures such as the L, norm or the dot product. However,
the entire distribution on the data (including the local temporal behaviot) are
not captured in the sketch representation, unless one is willing to work with a
much larger space requirement.

Most sketch methods are based on analysis along a single dimensional stream
of data points. Many problems in the data stream scenario are inherently multi-
dimensional, and may in fact involve hundreds or thousands of independent and
simultaneous data streams. In such cases, it is unclear whether sketch based
methods can be easily extended. While some recent work in [16] provides a few
limited methods for multi-dimensional queries, these are not easily extensible
for more general problems. This problem is not however unique to sketch based
methods. Many other summarization methods such as wavelets or histograms
can be extended in a limited way to the multi-dimensional case, and do not
work well beyond dimensionalities of 4 or 5.

While the concept of sketches is potentially powerful, one may gquestion
whether sketch based methods have been used for the right problems in the data
stream domain. Starting with the work in [6], most work on sketches focuses
on the aggregate frequency behavior of individual items rather than the tempo-
ra) characteristics of the stream. Some examples of such problems are those
of finding the frequent items, estimation of frequency moments, and join size
estimation. The underlying assumption of these methods is an extremely large
domain size of the data stream. The actual problems solved (aggregate fre-
quency counts, join size estimation, moments) are relatively simple for modest
domain sizes in many practical problems over very fast data streams. In these
cases, temporal information in terms of sequential arrival of items is aggregated
and therefore lost. Some sketch-based techniques such as those in [61] perform
temporal analysis over specific time windows. However, this method has much
larger space requirements. It scems to us that many of the existing sketch based
methods can be easily extended to the temporal representation of the stream. It
would be interesting to explore how these methods compare with other synopsis
methods for temporal stream representation.

We note that the problem of aggregate frequency counts is made difficult
only by the assumption of very large domain sizes, and not by the speed of
the stream itself, It can be argued that in most practical applications, the data
stream itself may be very fast, but the number of distinct items in the stream
may be of manageable size. For example, a motivating application in [44] uses
the domain of call frequencies of phone records, an application in which the
number of distinct items is bounded above by the number of phone numbers of
a particular phone company. With modern computers, it may even be possible
to hold the frequency counts of a few million distinct phone numbers in a main
memory array. In the event that main memory is not sufficient, many efficient
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disk based index structures may be used to index and update frequency counts.
We argue that many applications in the sketch based literature which attempts to
find specific properties of the frequency counts (eg. second moments, join size
estimation, heavy hitters) may in fact be implemented trivially by using simple
main memory data structures, and the ability to do this will only increase over
time with hardware improvements. There are however a number of applica-
tions in which hardware considerations make the applications of sketch based
methods very useful. In our view, the most fruitful applications of sketch based
methods lie in its recent application to the sensor network domain, in which
in-network computation, storage and communication are greatly constrained by
power and hardware considerations [22, 67, 68]. Many distributed applications
such as those discussed in [9, 24, 70, 80] are particularly suited to this approach.

5. Histograms

Another key method for data summarization is that of histograms. In the
method of histograms, we essentially divide the data along any attribute into a set
of ranges, and maintain the count for each bucket. Thus, the space requirement
is defined by the number of buckets in the histogram. A naive representation
of a histogram would discretize the data into partitions of equal length (equi-
width partitioning) and store the frequencies of these buckets. At this point, we
point out a simple connection between the histogram representation and Haar
wavelet coeffictents. If we construct the wavelet representation of the frequency
distribution of a data set along any dimension, then the (non-normalized) Haar
coefficients of any order provide the difference in relative frequencies in equi-
width histogram buckets. Haar coefficients of different orders correspond to
buckets of different levels of granularity.

It is relatively easy to use the histogram for answering different kinds of
queries such as range queries, since we only need to determine the set of buckets
which lie within the user specified ranges [69, 81]. A number of strategies can
be devised for improved query resolution from the histogram [69, 81, 84, 85].

The key source of inaccuracy in the use of histograms is that the distribution
of the data points within a bucket is not retained, and is therefore assumed to be
uniform. This causes inaccuracy because of extrapolation at the query bound-
aries which typically contain only a fractional part of a histogram. Thus, an
important design consideration in the construction of histograms is the determi-
nation of how the buckets in the histogram should be designed. For example, if
each range is divided into equi-width partitions, then the number of data points
would be distributed very unequally across different buckets. If such buck-
ets include the range boundary of a query, this may lead to inaccurate query
estimations.
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Therefore, a natural choice is to pick equi-depth buckets, in which each range
contains an approximately equal mumber of points. In such cases, the maximum
inaccuracy of a query is equal to twice the count in any bucket. However, in
the case of a stream, the choice of ranges which would result in equi-depth
partitions is not known a-priori. We note that the design of equi-depth buckets
is exactly the problem of guantile estimation in data streams, since the equi-
depth partitions define different quantiles in the data.

A different choice for histogram construction is that of minimizing the fre-
quency variance of the different values within a bucket, so that the uniform
distribution assumption is approximately held for queries. This minimizes the
boundary error of extrapolation in a query. Thus, if a bucket B with count
C'( B) contains the frequency of i{ B) elements, then average frequency of each
element in the bucket is C'(B)/{(B). Let fi . .. fi ) be the frequencies of the {
values within the bucket. Then, the total variance v(B) of the frequencies from
the average is given by:

{

o(B) =Y (fi — C(B)/UB)Y (9.17)

i=1

Then, the fotal variance V' across all buckets is given by the following:

V=> vB) (9.18)
FZ)

Such histograms are referred to as F~Optimal histograms. A different way of
looking at the V-optimal histogram is as a least squares fit to the frequency
distribution in the data. Algorithms for V-Optimal histogram construction have
been proposed in [60, 63]. We also note that the objective function to be op-
timized has the form of an L,-difference function between two vectors whose
cardinality is defined by the number of distinct values. In our earlier observa-
tions, we noted that sketches are particularly useful in tracking such aggregate
functions. This is particularly useful in the multi-dimensional case, where the
number of buckets can be very large as a result of the combination of a large
number of dimensions. Therefore sketch-based methods can be used for the
multi-dimensional case. We will discuss this in detail slightly later. We note
that a number of other objective functions also exist for optimizing histogram
construction [86]. For example, one can minimize the difference in the area
between the original distribution, and the corresponding histogram fit. Since
the space requirement is dictated by the number of buckets, it is also desirable to
minimize it. Therefore, the dual problem of minimizing the number of buckets,
for a given threshold on the error has been discussed in {63, 78].

One problem with the above definitions is that they use they use absolute
errors in order to define the accuracy. [t has been pointed out in [73] that the
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use of absolute error may not always be a good representation of the error.
Therefore, some methods for optimizing relative error have been proposed in
[53]. While this method is quite efficient, it is not designed to be a data stream
algorithm. Therefore, the design of relative error histogram construction for
the stream case continues to be an open problem.

5.1 One Pass Construction of Equi-depth Histograms

In this section, we will develop algorithms for one-pass construction of equi-
depth histograms. The simplest method for determination of the relevant quan-
tiles in the data is that of sampling. In sampling, we simply compute the
estimated quantile ¢(.5) € [0, 1] of the true quantile ¢ € [0, 1] on a random
sample S of the data. Then, the Hoeffding inequality can be used to show
that ¢{5) lies in the range (g — €, ¢ + €) with probability at least 1 — 4, if the
sample size S is chosen larger than O(log(8) /¢?). Note that this sample size is
a constant, and is independent of the size of the underlying data stream.

Let v be the value of the element at quantile ¢. Then the probability of includ-
ing an ¢lement in S with value less than v is a Bernoulli trial with probability g.
Then the expected number of elements less than v is ¢ - ||, and this number lies
in the interval (g--¢) with probability at least 2 . ¢=215 - (Hoeftding inequal-
ity). By picking a value of |S| = O(log(d)/€?), the corresponding results may
be easily proved. A nice analysis of the effect of sample sizes on histogram con-
struction may bhe founrd in [12]. In addition, methods for incremental histogram
maintenance may be found in [42]. The O(log(d)/€?*) space-requirements have
been tightened to O(log(d)/€) in a variety of ways. For example, the algorithms
in [71, 72] discuss probabilistic algorithms for tightening this bound, whereas
the method in [49] provides a deterministic algorithm for the same goal.

5.2 Constructing V-Optimal Histograms

An interesting offline algorithm for constructing V-Optimal histograms has
been discussed in [63]). The central idea in this approach is to set up a dynamic
programming recursion in which the partition for the last bucket is determined.
Let us consider a histogram drawn on the N ordered distinct values [1... N].
Let Opt(k, N) be the error of the V-optimal histogram for the first N values,
and & buckets.Let Var(p, ¢) be the variances of values indexed by p through ¢
in (1...N). Then, if the last bucket contains values v ... N, then the error of
the V-optimal histogram would be equal to the sum of the error of the (k — 1)-
bucket V-optimal histogram for values up to » — 1, added to the error of the last
bucket (which is simply the variance of the values indexed by r through N).
Therefore, we have the following dynamic programming recursion:

Opt(k, N} = min, {Opt(k — 1,7 — 1) + Var(r, N)} (9.19)
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We note that there are O(V - k) entries for the set Opt(k, N}, and each entry can
be computed in O{NV) time using the above dynamic programming recursion.
Therefore, the total time complexity is Q(N2 - k).

While this is a neat approach for offline computation, it does not really
apply to the data stream case because of the quadratic time complexity. In
[54], a method has been proposed to construct (1 + €)-optimal histograms
in O(N - k% - log{N)/¢) time and O(k?* - log{N')/¢) space. We note that the
number of buckets k is typically small, and therefore the above time complexity
is quite modest in practice. The central idea behind this approach is that the
dynamic programming recursion of Equation 9.19 is the sum of a monotonically
increasing and a monotonically decreasing function in r. This can be leveraged
to reduce the amount of search in the dynamic programming recursion, if one
is willing to settle for a (1 + €)-approximation. Details may be found in [54].
Other algorithms for V-optimal histogram construction may be found in [47,
56, 57].

53 Wavelet Based Histograms for Query Answering

Wavelet Based Histograms are a useful tool for selectivity estimation, and
were first proposed in [73]. In this approach, we construct the Haar wavelet
decomposition on the cumulative distribution of the data. We note that for a
dimension with NV distinct values, this requires N wavelet coefficients. As is
usually the case with wavelet decomposition, we retain the B Haar coefficients
with the largest absolute (normalized) value. The cumulative distribution §(b)
ata given value b can be constructed as the sum of O(log(V)) coefficients on the
error-tree. Then for a range query [, b}, we only need to compute 6(b) — &(a).

In the case of data streams, we would like to have the ability to maintain the
wavelet based histogram dynamically. In this case, we perform the maintenance
with frequency distributions rather than cumulative distributions. We note that
when a new data stream element x arrives, the frequency distribution along a
given dimension gets updated. This can lead to the following kinds of changes
in the maintained histogram:

= Some ofthe wavelet coefficients may change and may need to be updated.
An important observation here is that onty the O{log(V))} wavelet coef-
ficients whose ranges include x may need to be updated. We note that
many of these coefficients may be small and may not be included in the
histogram in the first place. Therefore, only those coefficients which are
already included in the histogram need to be updated. For a coefficient
including a range of length ! = 29 we update it by adding or subtract-
ing 1/1. We first update all the wavelet coefficients which are currently
included in the histogram.
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»  Some of the wavelet coefficients which are currently not included in the
histogram may become large, and may therefore need to be added to it.
Let ¢min be the minimum value of any coefficient currently included in
the histogram. For a wavelet coefficient with range I = 29, which is
not currently included in the histogram, we add it to be histogram with
probability 1/( * ¢4, )- The initial value of the coefficient is set to cmin.

» The addition of new coefficients to the histogram will increase the total
number of coefficients beyond the space constraint B. Therefore, after
each addition, we delete the minimum coefficient in the histogram.

The correctness of the above method follows from the probabilistic counting
results discussed in [31]. It has been shown in [74] that this probabilistic method
for maintenance is effective in practice.

54 Sketch Based Methods for Multi-dimensional
Histograms

Sketch based methods can also be used to construct V-optimal histograms
in the multi-dimensional case [90]. This is a particularly useful application
of sketches since the number of possible buckets in the N¢ space increases
exponentially with d. Furthermore, the objective function to be optimized has
the form of an Lo-distance function over the different buckets. This can be
approximated with the use of the Johnson-Lindenstrauss result [64].

We note that each d-dimensional vector can be sketched over N%-space
using the same method as the AMS gketch. The only difference is that we
are associating the 4-wise independent random variables with d-dimensional
items. The Johnson-Lindenstrauss Lemma implies that the La-distances in the
sketched representation (optimized over O(b - d - log{ N} /%) possibilities) are
within a factor (1 + €) of the Lg-distances in the original representation for a
b-bucket histogram.

Therefore, if we can pick the buckets so that L,-distances are optimized
in the sketched representation, this would continue to be true for the original
representation within factor (1 + ¢). It turns out that a simple greedy algorithm
is sufficient to achieve this. In this algorithm, we pick the buckets greedily,
so that the Lo distances in the sketched representation are optimized in each
step. It can be shown [90], that this simple approach provides a near optimal
histogram with high probability.

6. Discussion and Challenges

In this paper, we provided an overview of the different methods for syn-
opsis construction in data streams. We discussed random sampling, wavelets,
sketches and histograms. In addition, many techniques such as clustering can
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also be used for synopses construction. Some of these methods are discussed in
more detail in a different chapter of this book. Many methods such as wavelets
and histograms are closely related to one another. This chapter explores the
basic methodology of each technique and the connections between different
techniques. Many challenges for improving synopsis construction methods
remain:

®» While many synopses construction methods work effectively in indi-
vidual scenarios, it is as yet unknown how well the different methods
compare with one another. A thorough performance study needs to be
conducted in understanding the relative behavior of different synopsis
methods. One important point to be kept in mind is that the “trusty-old™
sampling method provides the most effective results in many practical
situations, where space is not constrained by specialized hardware con-
siderations {such as a distributed sensor network). This is especially true
for multi-dimensional data sets with inter-attribute correlations, in which
methods such as histograms and wavelets become increasingly ineffec-
tive. Sampling is however ineffective in counting measures which rely
on infrequent behavior of the underlying data set. Some examples are
distinct element counting and join size estimation. Such a study may
reveal the importance and robustness of different kinds of methods in a
wide variety of scenarios.

= Apossible area of research is in the direction of designing workload aware
synopsis construction methods [75, 78, 79]. While many methods for
synopsis construction optimize average or worst-case performance, the
real aim ig to provide optimal results for fypical workloads. This requires
metheds for modeling the workload as well as methods for leveraging
these workloads for accurate solutions.

» Most synopsis structures are designed in the context of quantitative or
categorical data sets. It would be interesting to examine how synopsis
methods can be extended to the case of different kinds of domains such as
string, text or XML data. Some recent work in this direction has designed
methods for XCluster synopsis or sketch synopsis for XML data [82, 83,
871

= Most methods for synopsis construction focus on construction of optimal
synopsis over the entire data stream. In many cases, data streams may
evolve over time, as a result of which it may be desirable to construct
optimal synopsis over specific time windows. Furthermore, this window
may not be known in advance. This problem may be quite challenging to
solve in a space-efficient manner. A number of methods for maintaining
exponential histograms and time-decaying stream aggregates [15, 48]
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try to account for evolution of the data stream. Some recent work on
biased reservoir sampling [4] tries to extend such an approach to sampling
methods.

We believe that there is considerable scope for extension of the current synopsis
methods to domains such as sensor mining in which the hardware requirements
force the use of space-optimal synopsis. However, the objective of constructing
a given synopsis needs to be carefully calibrated in order to take the specific
hardware requirements into account. While the broad theoretical foundations
of this field are now in place, it remains to carefully examine how these methods
may be leveraged for applications with different kinds of hardware, computa-
tional power, or space constraints.
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1. Introduction

Given the fundamental role played by joins in querying relational databases,
it is not surprising that stream join has also been the focus of much rescarch on
streams. Recall that relational (theta) join between two non-sireaming relations
Ry and Ry, denoted R<ig Ra, returns the set of all pairs (r1, o), wherer; € Ry,
ro € Ha, and the join condition #(ry, r2) evaluates 1o frue. A straightforward
extension of join to streams gives the following semantics (in rough terms):
At any time ¢, the set of output tuples generated thus far by the join between
two streams S and S92 should be the same as the result of the relational (non-
streaming) join between the sets of input tuples that have arrived thus far in 5,
and Ss.

Stream join is a fundamental operation for relating information from different
streams. For example, given two stream of packets seen by network monitors
placed at two routers, we can join the streams on packet ids to identify those
packets that flowed through both routers, and compute the time it took for each
such packet to reach the other router. As another example, an online auction
system may generate two event streams: One signals opening of auctions and
the other contains bids on the open auctions. A stream join is needed to retate
bids with the corresponding open-auction events. As a third example, which
involves a non-equality join, congider two data streams that arise in monitoring
a cluster machine room, where one stream contains load information collected
from different machines, and the other stream contains temperature readings
from various sensors in the room. Using a stream join, we can look for possible
correlations between loads on machines and temperatures at different locations
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in the machine room. In this case, we need to relate temperature readings and
load data with close, but necessarily identical, spatio-temporal coordinates.

‘What makes stream join so special to warrant new approaches different from
conventional join processing? In the stream setting, input tuples arrive contin-
uously, and result tuples need to be produced continuously as well. We cannot
assume that the input data is already stored or indexed, or that the input rate
can be controlled by the query plan. Standard join algorithms that use block-
ing operations, e.g., sorting, no longer work. Conventional methods for cost
estimation and query optimization are also inappropriate, because they assume
finite input. Moreover, the long-running nature of stream queries calls for more
adaptive processing strategies that can react to changes and fluctuations in data
and stream characteristics. The “stateful” nature of stream joins adds another
dimension to the challenge. In general, in order to compute the complete result
of a stream join, we need to retain all past arrivals as part of the processing state,
because a new tuple may join with an arbitrarily oid tuple arrived in the past.
This problem is exacerbated by unbounded input streams, limited processing
resources, and high performance requirements, as it is impossible in the long
run to keep all past history in fast memory.

This chapter provides an overview of research problems, recent advances, and
future research directions in stream join processing. We start by elucidating
the model and semantics for stream joins in Section 2. Section 3 focuses
on join state management~—the important problem of how to cope with large
and potentially unbounded join state given limited memory., Section 4 covers
fundamental algorithms for stream join processing. Section 5 discusses aspects
of stream join optimization, including objectives and techniques for optimizing
multi-way joins. We conclude the chapter in Section 6 by pointing out several
related research areas and proposing some directions for future research.

2. Model and Semantics

Basic Model and Semantics. A stream is an unbounded sequence of
stream tuples of the form (s, ¢) ordered by ¢, where s is a relational tuple and
t is the timestamp of the stream tuple. Following a “reductionist™ approach,
we conceptually regard the (unwindowed) stream join between streams & and
53 to be a view defined as the (bag) relational join between two append-only
bags 51 and S3. Whenever new tuples arrive in Sy or S5, the view must be
updated accordingly. Since relational join is monotonic, insertions into 5 and
Sy can result only in possible insertions into the view. The sequence of resulting
insertions into the view constitutes the output stream of the stream join between
51 and S3. The timestamp of an output tuple is the time at which the insertion
should be reflected in view, i.e., the larger of the timestamps of the two input
tuples.
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Alternatively, we can describe the same semantics operationally as follows:
To compute the stream join between S; and Sg, we maintain a join state con-
taining all tuples received so far from S; (which we call S1’s join state) and
those from Sy {which we call S5’s join state). For each new tuple s; arriving in
51, we record g in S;’s join state, probe S ’s join state for tuples joining with
31, and output the join result tuples. New tuples arriving in Sy are processed in
a symmetrical fashion.

Semantics of Sliding-Window Joins.  An obvious issue with unwindowed
stream joins is that the join state is unbounded and will eventually outgrow
memory and storage capacity of the stream processing system. One possibility
is to restrict the scope of the join to a recent window, resulting in a sliding-
window stream join. For binary joins, we call the two input streams partner
stream of each other. Operationally, a fime-based sliding window of duration
w on stream S restricts each new partner stream tuple to join only with 5 tuples
that arrived within the last w time units. A fuple-based sliding window of size k
restricts each new partner stream tuple to join only with the last & tuples arrived
in S. Both types of windows “slide” forward, as time advances or new stream
tuples arrive, respectively. The sliding-window semantics enables us to purge
from the join state any tuple that has fallen out of the current window, because
future arrivals in the partner stream cannot possibly join with them.
Continuous Query Language, or CQL for short [2], gives the semantics of
a sliding-window stream join by regarding it as a relational join view over
the sliding windows, each of which contains the bag of tuples in the current
window of the respective stream. New stream tuples are treated as insertion
into the windows, while old tuples that fall out of the windows are treated as
deletions. The resulting sequences of updates on the join view constitutes the
output stream of the stream join. Note that deletions from the windows can
result in deletions from the view. Therefore, sliding-window stream joins arc
not monotonic. The presence of deletions in the output stream does complicate
semantics considerably. Fortunately, in many situations users may not care
about these deletions at all, and CQL provides an Istream operator for remov-
ing them from the output stream. For a time-based sliding-window join, even
if we do not want to ignore deletions in the output stream, it is easy to infer
when an old output tuple needs to be deleted by examining the timestamps of
the input tuples that generated it. For this reason, time-based sliding-window
join under the CQL semantics is classified as a weak non-monotonic operator
by Golab and Ozsu [24]. However, for a tuple-based sliding-window join, how
to infer deletions in the output stream timely and efficiently without relying on
explicitly generated “negative tuples™ still remains an open question [24].
There is an alternative definition of sliding-window stream joins that does
not introduce non-monotonicity. For a time-based sliding-window join with
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duration w, we simply regard the stream join between Sy and 57 as a relational
join view over append-only bags S and S with an extra “window join con-
dition™: —w < S1.t — S2.t < w. As in the case of an unwindowed stream
join, the output stream is simply the sequence of updates on the view resulting
from the insertions into S; and S». Despite the extra window join condition,
join remains monotonic; deletions never arise in the output stream because 5
and S, are append-only. This definition of time-based sliding-window join has
been used by some, e.g., {10, 27]. Tt is also possible to define a tuple-based
sliding-window join as a monotonic view over append-only bags (with the help
of an extra attribute that records the sequence number for cach tuple in an input
stream), though the definition is more convoluted. This alternative semantics
yields the same sequence of insertions as the CQL semantics. In the remainder
of this chapter, we shall assume this semantics and ignore the issue of deletions
in the output stream.

Relaxations and Variations of the Standard Semantics.  The semantics of
stream joins above requires the output sequence to reflect the complete sequence
of states of the underlying view, in the exact same order. In some settings this
requirement is relaxed. For example, the stream join algorithms in [27] may
generate output tuples slightly out of order. The XJoin-family of algorithms
(e.g., [41, 33, 38]) relaxes the single-pass stream processing model and allows
some tuples to be spilled owt from memory and onto disk to be processed later,
which means that output tuples may be generated out of order. In any case,
the correct output order can be reconstruct from the tuple timestamps. Besides
relaxing the requirement on output ordering, there are also variations of sliding
windows that offer explicit control over what states of the view can be ignored.
For example, with the “jumping window” semantics [22], we divide the sliding
window into a number of sub-windows; when the newest sub-window fills up,
it is appended to the sliding window while the oldest sub-window in the sliding
window is removed, and then the query is re-evaluated. This semantics induces
a window that is “jumping” periodically instead of sliding gradually.

Semantics of Joins between Streams and Database Relations. Joins
between streams and time-varying database relations have also been consid-
ered [2, 24]. Golab and Ozsu [24] proposed a non-retroactive relation se-
mantics, where each stream tuple joins only with the state of the time-varying
database relation at the time of its arrival. Consequently, an update on the
database relation does not retroactively apply to previously generated output
tuples. This semantics is also supported by CQL [2], where the query can be
interpreted as a join between the database relation and a zero-duration sliding
window over the stream containing only those tuples arriving at the current
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time. We shall assume this semantics in our later discussion on joining streams
and database relations,

3. State Management for Stream Joins

In this section, we turn specifically to the problem of state management for
stream joins. As discussed earlier, join is stateful operator; without the sliding-
window semantics, computing the complete result of a stream join generally
requires keeping unbounded state to remember all past tuples [1]. The question
is: What is the most effective use of the limited memory resource? How do we
decide what part of the join state to keep and what to discard? Can we mitigate
the problem by identifying and purging “useless™ parts of the join state without
affecting the completeness of the resuit? When we run out of memory and are
no longer able to produce the complete result, how do we then measure the
“error” in an incomplete resuit, and how do we manage the join state in a way
to minimize this error?

Join state management is also relevant even for sliding-window joins, where
the join state is bounded by the size of the sliding windows. Sometimes, slid-
ing windows may be quite large, and any further reduction of the join state is
welcome because memory is often a scarce resource in stream processing sys-
tems. Moreover, if we consider a more general stream processing model where
streams are processed not just in fast main memory but instead in a memory
hierarchy involving smaller, faster caches as well as larger, slower disks, join
state management generalizes into the problem of deciding how to ferry data
up and down the memory hierarchy to maximize processing efficiency.

Ome effective approach towards join state management is to exploit “hard”
constraints in the input streams to reduce state. For example, we might know
that for a stream, the join attribute is a key, or the value of the join attribute
always increases over time. Through reasoning with these constraints and the
join condition, we can sometimes infer that certain tuples in the join state
cannot contribute to any future output tuples. Such tuples can then be purged
from the join state without compromising result completeness. In Section 3.1,
we examine two techniques that generalize constraints in the stream setting and
use them for join state reduction.

Another approach is to exploit statistical properties of the input streams,
which can be seen as “soft” constraints, to help make join state management
decisions. For example, we might know (or have observed) that the frequency
of each join attribute value is stable over time, or that the join attribute values in
a stream can be modeled by some stochastic process, e.g., random walk. Such
knowledge allows us to estimate the benefit of keeping a tuple in the join state
(for example, as measured by how many output tuples it is expected to generate
over a period of time). Because of the stochastic nature of such knowledge, we
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usually cannot guarantee result completeness. However, this approach can be
used to minimize the expected error in the incomplete result, or to optimize the
organization of the join state in a memory hierarchy to maximize performance.
We discuss this approach in Section 3.2,

3.1 Exploiting Constraints

k-Constraints, Babu et al. [7] introduced k-constraints for join state
reduction, The parameter & is an adherence parameter that specifies how
closely a stream adheres to the constraint. As an example of k-constraints,
consider first a “strict” ordered-arrival constraint on stream 5, which requires
that the join attribute values of S tuples never decrease over time. In a network
monitoring application, a stream of TCP/IP packets transmitted from a source
to a destination should arrive in the order of their source timestamps (denoted by
t5 to distinguish them from the tuple timestamps ¢). However, suppose that for
efficiency, we instead use UDP, a less reliable protocol with no guarantee on the
delivery order. Nonetheless, if we can bound the extent of packet reordering
that occur in practice, we can relax the constraint into an ordered-arrival k-
constraint: For any tuple s, a tuple &' with an carlier source timestamp (i.c.,
§'.ts < 8.ts) must arrive as or before the k-th tuple following s. A smaller &
implies a tighter constraint; a constraint with & = 0 becomes strict.

To see how k-constraints can be used for join state reduction, suppose we
join the packet stream S in the above example with another stream $’ using
the condition |S.t; — 9'.¢5] < 10. Without any constraint on S.t,, we must
remember all S’ tuples in the join state, because any future S tuple could arrive
with a joining ¢, value. With the ordered-arrival k-constraint on S.¢,, however,
we can purge a tuple s’ € S’ from the join state as soon as & tuples have arrived
in § following some S tuple with £; > s'.t; + 10. The reason is that the
k-constraint guarantees any subsequent S tuples will have source timestamps
strictly greater than .2, + 10 and therefore not join with &’. Other k-constraints
considered by [7] include generalizations of referential integrity constraints and
clustered-arrival constraints.

Although k-constraints provide some “slack” through the adherence param-
eter k, strictly speaking they are still hard constraints in that we assume the
conditions must hold strictly after & arrivals. Babu et al. also developed tech-
niques for monitoring streams for k-constraints and determining the value of &
at runtime. Interestingly, k-constraints with dynamically observed & become
necessarily soft in nature: They can assert that the constraints hold with high
probability, but cannot guarantee them with absolute certainty.

Punctuations. In contrast to k-constraints, whose forms are known a
priori, punctuations, introduced by Tucker et al. [40], are constraints that are
dynamically inserted into a stream. Specifically, a punctuation is a tuple of



A Survey of Join Processing in Data Streams 215

patterns specifying a predicate that must evaluate to fa/se for all future data tu-
ples in the stream. For example, consider an auction system with two streams:
Auction(id, info,t) generates a tuple at the opening of each auction (with a
unique auction id), and Bid(auction_id, price, t) contains bids for open auc-
tions. When an auction with id a; closes, the system inserts a punctuation
{a;, *) into the Bid stream to signal that there will be no more bids for auction
@;. Also, since auction ids are unique, following the opening of every auction
a;, the system can also insert a punctuation (a;, ) into Auction to signal that
will be no other auctions with the same id.

Ding et al. [17] developed a stream join algorithm called PJoin to exploit
punctuations. When a punctuation arrives in a stream, PJoin examines the join
state of the partner stream and purges those tuples that cannot possibly join with
future arrivals. For example, upon the arrival of a punctuation {a;, %) in Bid,
we can purge any Auction tuples in the join state with id a; (provided that they
have already been processed for join with all past Bid tuples). PJoin also prop-
agates punctuations to the output stream. For example, after receiving (a;, *)
from both input streams, we can propagate (a;, *, *) to the output, because we
are sure that no more output tuple with a; can be generated. Punctuation prop-
agation is important because propagated punctuations can be further exploited
by downstream operators that receive the join output siream as their input. Ding
and Rundensteiner [ 18] further extended their join algorithm to work with slid-
ing windows, which allow punctuations to be propagated quicker. For example,
suppose that we set the sliding window to 24 hours, and 24 hours have past af-
ter we saw punctuation {a;, *) from Awuction. Even if we might not have seen
{ai, ) yet from Bid, in this case we can still propagate (a;, *, *) to the output,
because future Bid tuples cannot join with an Auction tuple that has alrcady
fallen outside the sliding window.

While punctuations are more flexible and generally more expressive than &-
constraints, they do introduce some processing overhead. Besides the overhead
of generating, processing, and propagating punctuations, we note that some past
punctuations need to be retained as part of the join state, thereby consuming
more memory. For stream joins, past punctuations cannot be purged until we can
propagate them, so it is possible to accumulate many punctuations. Also, not all
punctuations are equally effective in join state reduction, and their effectiveness
may vary for different join conditions. We believe that further research on the
trade-off between the cost and the benefit of punctuations is needed, and that
managing the “punctuation state™ poses an interesting problem parallel to join
state management itself.
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3.2 Exploiting Statistical Properties

Strictly speaking, both k-constraints and punctuations are hard constraints.
Now, we explore how to exploit “soft” constraints, or statistical properties of
input streams, in join state management. Compared with hard constraints, these
soft constraints can convey more information relevant to join state management.
For example, consider again the UDP packet stream discussed in Section 3.1.
Depending on the characteristics of the communication network, & may need to
be very large for the ordered-arrival k-constraint to hold. However, it may turn
out that 99% of the time the extent of packet reordering is limited to a much
smaller %, and that 80% of the time reordering is limited to an even smaller &”.
Soft, statistical constraints are better at capturing these properties and enabling
optimization based on common cases rather than the worst case.

Given a limited amount of memory to hold the join state, for each incoming
stream tuple, we need to make a decision—mnot unlike a cache replacement
decision—about whether to discard the new tuple (after joining it with the
partner stream tuples in the join state) or to retain it in the join state; in the latter
case, we also need to decide which old tuple to discard from the join state to
make space for the new one. In the following, we shall use the term “cache” to
refer to the memory available for keeping the join state.

Before we proceed, we need to discuss how to evaluate a join staie manage-
ment strategy. There are two major perspectives, depending on the purpose of
join state management. The first perspective assumes the single-pass stream
processing model where output tuples can be produced only from the part of the
join state that we choose to retain in cache. In this case, our goal is to minimize
the error in (or to maximize the quality of) the output stream compared with the
complete result. A number of popular measures have been defined from this
perspective:

m  Max-subset. This measure, introduced by Das et al. [15], aims at pro-
ducing as many output tuples as possible. (Note that any reasonable
stream join algorithm would never produce any incorrect output tuples,
$o we can ignore the issue of false positives.) Because input streams are
unbounded, we cannot compare two strategies simply by comparing the
total numbers of output tuples they produce—both may be infinite. The
approach taken by Srivastava and Widom [37] is to consider the ratio
between the number of output tuples produced up to some time ¢ and the
number of tuples in the complete result up to £. Then, a reasonable goal
is to maximize this ratio as ¢ tends to infinity.

n  Sampling rate. Like max-subset, this measure aims at producing as many
output tuples as possible, but with the additional requirement that the set
of output tuples constitutes a uniform random sample of the complete join
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result. Thus, the goal is to maximize the sampling rate. This measure is
first considered in the stream join setting by [37].

n Application-defined importance. This measure is based on the notion
of importance specific to application needs. For example, Aurora [39]
allows applications to define value-based quality-of-service functions that
specify the utilities of output tuples based on their attribute values. The
goal in this case is to maximize the utility of the join result.

The second perspective targets expected performance rather than result com-
pleteness. This perspective relaxes the single-pass processing model by allow-
ing tuples to be spilled out from memory and onto disk to be processed later
in “mop-up” phases. Assuming that we still produce the complete answer,
our goal is to minimize the total processing cost of the online and the mop-
up phases. One measure defined from this perspective is the archive metric
proposed by [15]. This measure has also been used implicitly by the XJoin-
family of algorithms ([41, 33, 38], etc.). As it is usually more expensive to
process tuples that have been spilled out to disk, a reasonable approximation is
to try to leave as little work as possible to the mop-up phases; this goal roughly
compatible with max-subset’s objective of getting as much as possible done
online.

In the remainder of this section, we focus first and mostly on the max-subset
measure. Besides being a reasonable measure in its own right, techniques de-
veloped for max-subset are roughly in line with the archive metric, and can
be generalized to certain application-defined importance measures through ap-
propriate weighting. Next, we discuss the connection between classic caching
and join state management, and state management for joins between streams
and database relations. Finally, we briefly discuss the sampling-rate measure
towards the end of this section.

Max-Subset Measure.  Assuming perfect knowledge of the future arrivals
in the input streams, the problem of finding the optimal sequence (up to a given
time) of join state management decisions under max-subset can be cast as a net-
work flow problem, and can be solved offline in time polynomial to the length
of the sequence and the size of the cache [15]. In practice, however, we need
an online algorithm that does not have perfect knowledge of the future. Unfor-
tunately, without any knowledge (statistical or otherwise) of the input streams,
no online algorithm—-not even a randomized one—can be k-competitive (i.c.,
generating at least 1/k as many tuples as an optimal offline algorithm) for any &
independent of the length of the input streams [37]. This hardness result high-
lights the need to exploit statistical properties of the input streams. Next, we
review previous work in this area, starting with specific scenarios and ending
with a general approach.
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Frequency-Based Model. In the frequency-based model, the join at-
tribute value of each new tuple arriving in a stream is drawn independently
from a probability distribution that is stationary (i.e., it does not change over
time). This model is made explicit by [37] and discussed as special case by [45],
although it has been implicitly assumed in the development of many join state
management techniques. Under this model, assuming an uvnwindowed stream
equijoin, we can calculate the benefit of a tuple s as the product of the partner
stream arrival rate and the probability that a new partner stream tuple has the
same join attribute value as s. This benefit measures how many output tuples s
is expected to generate per unit time in the future. A straightforward sirategy
is to replace the tuple with the lowest benefit. This strategy, called PROB,
was proposed by [15], and can be easily shown to be optimal for unwindowed
joins. For sliding-window joins, an alternative strategy called LIFE was pro-
posed, which weighs a tuple’s benefit by its remaining lifetime in the sliding
window. Unfortunately, neither PROB nor LIFE is known to be optimal for
sliding-window joins. To illustrate, suppose that we are faced with the choice
between two tuples s; and s, where 51 has a higher probability of joining with
an incoming tuple, but s, has a longer lifetime, allowing it to generate more
output tuples than sy eventually. PROB would prefer s; while LIFE would
prefer so; however, neither choice is always better, as we will see later in this
section.

The frequency-based model is also implicitly assumed by [38] in developing
the RPJ (rate-based progressive join) algorithm. RPJ stores the in-memory
portion of each input stream’s join state as a hash table, and maintains necessary
statistics for each hash partition; statistics for individual join attribute values
within each partition are computed assuming local uniformity. When RPJ
runs out of memory, it flushes the partition with lowest benefit out to disk. This
strategy is analogous to PROB.

Kang et al. {30] assumed a simplified version of the frequency-bhased model,
where each join attribute value occurs with equal frequency in both input streams
(though stream arrival rates may differ). With this simplification, the optimal
strategy is to prefer keeping the slower stream in memory, because the tuples
from the slower streamn get more opportunities to join with an incoming partner
stream tuple. This strategy is also consistent with PROB. More generally,
random load shedding [39, 4], or HAND [15], which simply discards input
stream tuples at random, is also justifiable under the max-subset measure by
this equal-frequency assumption.

Age-Based Model. The age-based model of [37] captures a scenario
where the stationarity assumption of the frequency-based model breaks down
because of correlated tuple arrivals in the input streams. Consider the Auction
and Bid example from Section 3.1. A recent Auction tuple has a much better
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chance of joining with a new Bid than an old Auction tuple. Furthermore,
we may be able to assume that the bids for each open auction follow a similar
arrival pattern. The age-based model states that, for each tuple s in stream S
(with partner stream S7), the expected number of output tuples that s generates
at each time step during its lifetime is given by a function p(At), where At
denotes the age of the tuple (i.e., how long it has been in the join state). The
age-based model further assumes that function p(At) is the same for all tuples
from the same stream, independent of their join attribute values. At the first
glance, this assumption may appear quite strong: If we consider two tuples
with the same join attribute value arriving at two different times £; and ¢5, we
should have p(¢ — #1) = p(f — t2) for all ¢ when both tuples are in the join
state, which would severely limit the form of function p. However, this issue
will not arise, for example, if the join attribute is a key of the input stream (e.g.,
Auction). Because foreign-key joins are so common, the age-based model may
be appropriate in many settings.

An optimal state management strategy for the age-based model, called AGE,
was developed by [37]. Given the function p{At), AGE calculates an optimal
age At, such that the expected number of output tuples generated by a tuple
per unit time is maximized when it is kept until age At,. Intuitively, if every
tuple in the cache is kept for exactly At, time steps, then we are making the
most efficient use of every slot in the cache. This optimal strategy ts possible
if the arrival rate is high enough to keep every cache slot occupied. If not, we
can keep each tuple to an age beyond the optimal, which would still result in an
optimal strategy assuming that p(A¢) has no local minima. A heuristic strategy
for the case where p(At) has local minima is also provided in [37].

Towards General Stochastic Models.  There are many situations where
the input stream follows neither the frequency-based model nor the age-based
model. For example, consider a measurement stream S5 generated by anetwork
of sensors. Each stream tuple carries a timestamp ¢,,, recording the time at which
the measurement was taken by the sensor (which is different from the stream
timestamp ¢). Because of processing delays at the senors, transmission delays
in the network, and a network protocol with no in-order delivery guarantec
(e.g., UDP), the t,, values do not arrive in order, but may instead follow a
discretized bounded normal distribution centered at the current time minus
the average latency. Figure 10.1 shows the pdf (probability density function)
of this distribution, which moves right as time progresses. Suppose there is
a second stream Sy of timestamped measurements of a different type coming
from another network of sensors, which is slower and less reliable. The resulting
distribution has a higher variance and looser bounds, and lags slightly behind
that of §;. To correlate measurements from S7 and Sy by time, we use an
equiioin on £,,. Intuitively, as the pdf curve for S, moves over the join attribute
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Figure 10.1.  Drifting normal distributions. Figure 10.2.  Example ECBs.

value of a cached 5; tuple, this tuple gets a chance of joining with each incoming
S tuple, with a probability given by Sy’s pdf at that time. Clearly, these
streams do not follow the frequency-based model, because the frequency of
each ., value varies over time. They do not follow the age-based model either,
because each arriving tuple may have a different p{ At) function, which depends
on the location of the partner stream’s pdf, Blindly applying a specific join
state management strategy without verifying its underlying assumption may
lead to very poor performance. To illustrate, consider the two tuples x and
y from stream S; in Figure 10.1 currently cached at time #y as part of the
join state. Which tuple should we choose to discard when we are low on
memory? Intuitively, it is better to discard y since it has almost already “missed”
the moving pdf of Sy and is therefore unlikely to join with future 57 tuples.
Unfortunately, if we use the past to predict future, PROB might make the exact
opposite decision: y would be kept because it probably has joined more times
with 87 in the past than .

Work by Xie et al. [45] represents a first step towards developing general
techniques to exploit a broader class of statistical properties, without being tied
to particular models or assumptions. A general question posed by [45] is, given
the stochastic processes modeling the join attribute values of the input stream
tuples, what join state management strategy has the best expected performance?
In general, the stochastic processes can be non-stationary (e.g., the join attribute
value follows a random walk, or its mean drifts over time) and correlated (e.g.,
if one stream has recently produced a certain value, then it becomes more likely
for the other stream to produce the same value).

Knowing the stochastic processes governing the input streams gives us con-
siderable predictive power, but finding the optimal join state management strat-
egy is still challenging. A brute-force approach (called FlowExpect in [45])
would be the following. Conceptually, starting from the current time and the
current join state, we enumerate all possible sequences of future “state manage-
ment actions” (up to a given length}, calculate the expected number of output
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tuples for each sequence, and identify the optimal sequence. This search prob-
lem can be formulated and solved as a network flow problem. The first action
in the optimal sequence is taken at the current time. As soon as any new tuple
arrives, we solve the problem again with the new join state, and take the first
action in the new optimal sequence. The process then repeats. Interestingly,
Xie et al. [45] showed that it is not enough to consider all possible sequences
of unconditional state management actions; we must also consider strategies
that make actions cordifional upon the join attribuie values of future tuples.
An example of a conditional action at a future time ¢ might be: “If the new
tuple arriving at ¢ has value 100 as its join attribute, then discard the new tuple;
otherwise use it to replace the tuple currently occupying the fifth cache slot.”
Unfortunately, searching through the enormous space of conditional action se-
quernces is not practical. Therefore, we need to develop simpler, more practical
approaches.

It tums out that under certain conditions, the best state management action is
clear. Xie et al. [45] developed an ECB dominance ftest {or dom-test for short)
to capture these conditions. From the stochastic processes governing the input
streams, we can compute a tuple 8’s ECB (expected cumulative benefif) with
respect to the current time ¢y as a function Bg{At), which returns the number
of output tuples that 5 is expected to generate over the period (tg, g+ At]. Asa
concrete exampile, Figure 10.2 plots the ECBs of tuples x, y, and z from stream
Sy inFigure 10.1. Intuitively, we prefer removing tuples with the “lowest™ ECBs
from the cache. The dom-test states that, if the ECB of tuple s1 dominates that
of tuple 57 (i.e., By, (At) > Bg,(At) for all At > (), then keeping 3; is better
than or equally good as keeping 33. For example, from Figure 10.2, we see
that tuple y is clearly the least preferable among the three. However, because
the ECBs of = and z cross over, the dom-test is silent on the choice between
x and z, To handle “incomparable” ECBs such as these, Xie et al. proposed a
heuristic measure that combines the ECB with a heuristic “survival probability”
function L;(At) estimating the probability for tuple s to be still cached at time
to + At. Intuitively, if we estimate that z and z will be replaced before the
time when their ECBs cross, then x is more preferable; otherwise, z is more
preferable. Although the heuristic strategy cannot guarantee optimality in all
cases, it always agrees with the decision of the dom-test whenever that test is
applicable.

It is instructive to see how the general techniques above apply to specific
scenarios. To begin, consider the simple case of unwindowed stream joins under
the frequency-based model. The ECB of a tuple s is simply a linear function
B (At) = b(s)At, where b(s) is the number of output tuples that s is expected
to generate per unit time, consistent with the definition of “benefit” discussed
earlier in the context of the frequency-based model. Obviously, for two tuples s;
and a9, 81 ’s ECB dominates so’s ECB if and only if b(s1) > b{s2). Therefore,
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the dom-test basically yields PROB, and provides a proof of its optimality. The
case of sliding-window joins 1s considerably more complex, and as discussed
earlier, the optimal state management strategy is not known. As illustrated by
Figure 10.3, the ECB of a tuple s consists of two connected pieces: The first
piece has slope b(s), while the second piece is flat and begins at the time {(s)
when s will drop out of the sliding window. While the dom-test does not help
in comparing ¢; and s» in Figure 10.3, some insight can still be gained from
their ECBs. Suppose we decide to cache s1 and discard so. If at time 1(s1)
when s; exits the join state, a new tuple will be available to take its place and
produce at least B,,(1(s2)) — Bs, ({(s1)) output tuples during ({(s1), {(s2)],
then our decision is justified. Still, the exact condition that guarantees the
optimality of the decision is complex, and will be an interesting problem for
further investigation.

Finally, let us try applying the ECB-based analysis to the age-based model,
for which we know that AGE [37] is optimal. Under the age-based model,
every new tuple has the same ECB By(At) at the time of its arrival. As the
tuple ages in the cache, its ECB “shifts”: The ECB of a tuple at age ¢ is
Bi(At) = Byt + At) — By(t). For some shapes of By, it is possible to have
ECBs that are not comparable by the dom-test. Figure 10.4 illustrates one such
example; the marks on the ECB curves indicate when the respective tuples
reach their optimal ages. Between two tuples old and new in Figure 10.4,
the correct decision (by AGE) is to ignore the new tuple and keep caching the
old tuple (until it reaches its optimal age). Unfortunately, however, the dom-
test is unable to come to any conclusion, for the foliowing two reasons. First,
the dom-test actually provides a stronger optimality guarantee than AGE: The
dom-test guarantees the optimality of its decisions over any time period; in
contrast, AGE is optimal when the period tends to infinity. Second, the dom-
test examines only the two ECBs in question and does not make use of any
global information, However, in order to realize that replacing old tuple is not
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worthwhile in Figure 10.4, we need to be sure that when we do discard old when
it reaches its optimal age, there will be a new tuple available at that time with
high enough benefit to make up for the loss in discarding new earlier. Indeed,
the age-based model allows us to make this conclusion from its assumption that
every incoming tuple has the same ECB. It remains an open problem to develop
better, general techniques to overcome the limitations of the dom-test without
purposefully “special-casing” for specific scenarios.

An important practical problem is that we may not know in advance the
parameter values of the stochastic processes modeling the input streams. One
possibility is to use existing techniques to compute stream statistics onling, or
offline over the history of observations. Another approach proposed by [45] is
to monitor certain statistics of the past behavior of the cache and input streams,
and use them to estimate the expected benefit of caching. A notable feature of
the proposed methoed is that it considers the form of the stochastic process in
order to determine what statistics to monitor. This feature is crucial because, for
time-dependent processes, the past is not always indicative of the future. For
example, suppose that the join attribute values in a stream follow a distribution
whose shape is stationary but mean is drifting over time. Simply tracking the
frequency of each value is not meaningful as it changes all the time. Instead, we
can subtract the current mean from each observed value, and track the frequency
of these offset values, which will remain constant over time.

One direction for future research is to investigate how statistical properties
of the input stream propagate to the output of stream joins. This problem is
important if we want to apply the techniques in this section to more complex
stream queries where the output of a stream join may be the input to another.
While there has been some investigation of the non-streaming version of this
problem related to its application in query optimization, there are many sta-
tistical properties unique to streams (e.g., trends, orderedness, clusteredness)
whose propagation through queries is not yet fully understood.

Relationship to Classic Caching. A natural question is how the stream
join state management problem differs from the classic caching problem. Many
cache replacement policies have been proposed in the past, e.g., LFD (longest-
forward distance), LRU (least-recently used), LLFU (least-frequently used), etc.
All seem applicable to our problem. After all, our problem comes down to
deciding what to retain in a cache to serve as many “reference requests” by the
partner stream as possible. As pointed out by {45], there is a subtic but important
difference between caching stream tuples and caching regular objects. When
caching regular objects, we can recover from mistakes easily: The penalty of
not caching an object is limited to a single cache miss, after which the object
would be brought in and cached if needed. In contrast, in the case of stream
join state management, a mistake can cost a lot more: If we discard a tuple
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completely from the join state, it is irrevocably gone, along with all output
tuples that it could generate in the future. This difference explains why LFD,
the optimal replacement policy for classic caching, turns out to be suboptimal
for stream join state management, where references beyond the first one also
matter.

Even if we relax the single-pass stream processing model and allow state to
be spilled out to disk, join state management still differs from classic caching.
The reason is that stream processing systems, e.g., those running the XJoin-
family of algorithms, typically recover missing output tuples by processing
flushed tuples later offline. In other words, “cache misses™ are not processed
online as in classic caching—random disk accesses may be too slow for stream
applications, and just to be able to detect that there has indeed been a cache
miss (as opposed to a new tuple that does not join with any previous arrivals)
requires maintaining extra state.

Despite their differences, classic caching and stream join state management
can be tackled under the same general analytical framework proposed by [45].
In fact, classic caching can be reduced to stream join state management, and can
be analyzed using ECBs, in some cases yielding provably optimal results that
agree with or extend classic ones. Such consistency is evidence of the strong
link between the two problems, and a hint that some results on classic caching
could be brought to bear on the state management problem for stream joins.

Joining with Database Relation. Interestingly, unlike the case of joining
two streams, state management for joining a stream and a database relation
under the non-retroactive relation semantics (Section 2) is practically identical
to classic caching [45]. First, it is easy to see that there is no benefit at all in
caching any stream tuples, because under the non-retroactive relation semantics
they do not join with any future updates to the relation. On the other hand,
for tuples in the database relation, their current version can be cached in fast
memory to satisfy reference requests by stream tuples. Upon a cache miss,
the disk-resident relation can be probed. It would be interesting to investigate
whether it makes sense to defer handling of misses to XJoin-style “mop-up”
phases. However, care must be taken to avoid joining old stream tuples with
newer versions of the database relation.

The Sampling-Rate Measure. By design, join state management strategics
optimized for max-subset favor input tuples that are more likely to join with the
partner stream, causing such tuples to be overrepresented in the result. While
this bias is not a problem in many contexts, it can be an issue if a statistically
meaningful sample is desired, e.g., to obtain unbiased statistics of the join resuit.
In this case, we should use the sampling-rate measure,
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Getting an unbiased random sample of a join result has long been recognized
as a difficuit problem [34, 12]. The straightforward approach of sampling
each input uniformly and then joining them does not work—the result may
be arbitrarily skewed and small compared with the actual result. The hardness
result from [37] states that for arbitrary input streams, if the available memory is
insufficient to retain the entire sliding windows (or the entire history, if the join
is unwindowed), then it is impossible to guarantee a uniform random sample for
any nonzero sampling rate. The problem is that any tuple we choose to discard
may turn out to be the one that will generate all subsequent output tuples.

Srivastava and Widom [37] developed a procedure for generating unbiased
random samples of join resuits under the frequency-based and age-based mod-
els. The procedure requires knowledge of the model parameters, and uses them
to determine the maximum sampling rate under the constraint that the proba-
bility of running out of memory at runtime is sufficiently small. The procedure
keeps each stream tuple in the join state until the tuple will not contribute any
more result tuples to the sample. Note that not all join result tuples that can
be obtained from the join state will actually be output—many may need to dis-
carded in order to keep the sample unbiased. This inefficient use of resources
is unavoidable because of the stringent requirement of a truly random sample.
A statistically weaker form of sampling called cluster sampling, which uses
resources more efficiently, was also considered by [37]. Cluster sampling is
still unbiased, but is no longer independent; i.e., the inclusion of tuples is not
independent of each other. Which type of sampling is appropriate depends on
how the join result will be used.

4, Fundamental Algorithms for Stream Join Processing

Symmetric hash join (SHJ) is a simple hashing-based join algorithm, which
has been used to support highly pipelined processing in parailel database sys-
tems [44]. It assumes that the entire join state can be kept in main memory; the
join state for each input stream is stored in a hash table. For each incoming S
tuple, SHJ inserts it into the hash table for 9, and uses it to probe the hash table
for the partner stream of S to identify joining tuples. SHJ can be extended
to support the sliding-window semantics and the join statement management
strategies in Section 3, though SHJ is limited to the single-pass stream process-
ing model. Golab et al. [22] developed main-memory data structures especially
suited for storing sliding windows, with efficient support for removing tuples
that have fallen out of the stiding windows.

Both XJoin {41] and DPHJ (double pipelined hash join) of Tukwila [29]
extend SHJ by allowing parts of the hash tables to be spilled out to digk for
later processing. This extension removes the assumption that the entire join
state must be kept in memory, greatly enhancing the applicability of the algo-



226 DATA STREAMS: MODELS AND ALGORITHMS

rithm. Tukwila’s DPHJ processes disk-resident tuples only when both inputs
are exhausted; XJoin schedules joins involving disk-resident tuples whenever
the inputs are blocked, and therefore is better suited for stream joins with un-
bounded inputs. One complication is the possibility of producing duplicate
output tuples. XJoin pioneers the use of timestamp marking for detecting du-
plicates. Timestamps record the period when a tuple was in memory, and the
times when a memory-resident hash partition was used to join with the corre-
sponding disk-resident partition of the partner stream. From these timestamps,
XJoin is able to infer which pairs of tuples have been processed before.

XJoin is the basis for many stream join algorithms developed later, e.g., [33,
38). RPJ [38] is the latest in the series. One of the main contributions of RPJ,
discussed carlier in Section 3.2, is a statistics-based flushing strategy that tries
to keep in memory those tuples that are more likely to join. In contrast, XJoin
flushes the largest hash partition; MMJ (hash merge join) of [33] always tlushes
corresponding partitions together, and tries to balance memory allocation be-
tween incoming streams. Neither XJoin nor HMJ takes tuple join probabilities
into consideration. Unlike HMJ, which joins all previously flushed data when-
ever entering a disk-join phase, RPJ breaks down the work into smaller units,
which offer more scheduling possibilities. In particular, RPJ also uses statistics
to prioritize disk-join tasks in order to maximize output rate.

There are a number of interesting open issues. First, can we exploit statistics
better by allowing flushing of individual tuples instead of entire hash partitions?
This extension would allow us to apply the fine-grained join state management
techniques from Section 3.2 to the XJoin-family of algorithms. However, the
potential benefits must be weighed against the overhead in statistics collection
and bookkeeping to avoid duplicates. Second, is it ever beneficial to reintroduce
a tuple that has been previously flushed to disk back into memory? Again, what
would be the bookkeeping overhead involved? Third, can we develop better
statistics collection methods for RPJ? Currently, it maintains statistics on the
partition level, but the hash function may map tuples with very different statistics
to the same partition.

Sorting-based join algorithms, such as the sort-merge join, have been tradi-
tionally deemed inappropriate for stream joins, because sorting is a blocking
operation that requires seeing the entire input before producing any output. To
circumvent this problem, Dittrich et al. [20] developed an algorithm called PMJ
(progressive merge join) that is sorting-based but non-blocking. In fact, both
RPJ and HMJ use PMJ for joining disk-resident parts of the join state. The
idea of PMJ is as follows. During the initial sorting phase that creates the ini-
tial runs, PMJ sorts portions of both input streams in parallel, and immediately
produces join result tuples from the corresponding runs that are in memory at
the same time. During the subsequent merge phases that merge shorter runs
into longer ones, PMJ again processes both input streams in parallel, and joins



A Survey of Join Processing in Data Streams 227

them while their runs are in memory at the same times. To ensure that the output
contains no duplicates, PMJ does not join tuples from corresponding shorter
runs that have been joined in a previous phase; the duplicate avoidance logic is
considerably simpler than XJoin. Of course, PMJ pays some price for its non-
blocking feature—it does incur a moderate amount of overhead compared to
the basic sort-merge join. On the other hand, PMJ also inherits the advantages
of sorting-based algorithms over hashing-bashed algorithms, including in par-
ticular the ability to handle non-equality joins. A more thorough performance
comparison between PMJ and XJoin for equijoins would be very useful.

5. Optimizing Stream Joins

Optimizing Response Time. Viglas and Naughton [42] introduced the
notion of rate-based optimization and considered how to estimate the output
rate of stream operators. An important observation is that standard cost analysis
based on total processing cost is not applicable in the stream setting, because
infinite costs resulted from unbounded inputs cannot be compared directly.
Ewven if one can “hack” the analysis by assuming a large (yet bounded) input,
classic analysis may produce incorrect estimate of the output rate since it ignores
the rate at which inputs (or intermediate result streams) are coming, Specifically,
classic analysis assumes that input is available at all times, but in practice
operators could be blocked by the input. The optimization objectives considered
by [42] are oriented towards response time: For a stream query, how can we
produce the largest number of output tuples in a given amount of time, or
produce a given number of output tuples in the shortest amount of time?

As an example of response-time optimization, Hammad et al. [28] studied
shared processing of multiple sliding-window joins, focusing on developing
scheduling strategics aimed at reducing response times across queries. More
broadly speaking, work on non-blocking join algorithms, e.g., XJoin and PMJ
discussed earlier, also incorporate response-time considerations.

Optimizing Unit-Time Processing Cost. Kang et al. [30] were among
the first to focus specifically on optimization of stream joins, They made the
same observation as in [42] that optimizing the total processing cost is no longer
appropriate with unbounded input. However, instead of optimizing response
time, they propose to optimize the processing cost per unit time, which is
equivalent to the average processing cost per tuple weighted by the arrival rate.
Another important observation made by [30] is that the best processing strategy
may be asymmetric; i.e., different methods may be used for joining a new Sy
tuple with S5’s join state and for joining a new .5, tuple with S} ’s join state.
For example, suppose that 57 is very fast and 5, is very slow. We may index
92’s join state as a hash table while leaving S;’s join state not indexed. The
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reason for not indexing 51 is that its join state is frequently updated (because
51 is fast) but rarely queried (because Sg is slow).

Ayad and Naughton [4] provided more comprehensive discussions of opti-
mization objectives for stream queries. An important observation is that, given
enough processing resources, the steady-state output rate of a query is inde-
pendent of the execution plan and therefore should be not be the objective of
query optimization; a cost-based objective should be used in this case instead.
Another interesting point is that load shedding considerations should be incor-
porated into query optimization: If we simply shed load from a plan that was
originally optimized assuming sufficient resources, the resulting plan may be
suboptimal.

Optimizing Multi-Way Stream Joins. XJoin can be used to implement
multi-way joins in a straightforward manner. For instance, a four-way join
among Sy, S2, S3, and §4 can be implemented as a series of XJoins, e.g.,
({51 XJoin S2) XJoin S3) XJoin S4. Since XJoin needs to store both of its in-
puts in hash tables, the example plan above in effect materializes the intermedi-
ate results 51 XJoin S, and (S; XJoin Sy) XJoin S3. An obvious disadvantage
of'this plan is that these intermediate results can become quite large and costly to
maintain. Another disadvantage is that this plan is static and fixes the join order.
For example, a new S tuple must be joined with the materialized 53 XJoin 5;
first, and then with Sy; the option of joining the new Sy tuple first with Sy is
simply not available.

Viglas et al. [43] proposed MJoin to combat the above problems. MdJoin
maintains a hash table for each input involved in the multi-way join. When a
tuple arrives, it is inserted into the corresponding hash table, and then used to
probe all other hash tables in some order. This order can be different for tuples
from different input streams, and can be determined based on join selectivities.
Similar to XJoin, MJoin can flush join state out to disk when low on memory.
Flushing is random (because of the assumption of a simple statistical model),
but for the special case of star joins (where all streams join on the same attribute),
flushing is “coordinated”: When flushing one tuple, joining tuples from other
hash tables are also flushed, because no output tuples can be produced unless
joining tuples are found in all other hash tables. Note that coordinated flushing
does not bring the same benefit for binary joins, because in this case output
tuples are produced by joining an incoming tuple with the (only) partner stream
hash table, not by joining two old tuples from difference hash tables.

Finding the optimal join order in MJoin is challenging. A simple heuristic
that tracks selectivity for each hash table independently would have trouble
with the following issues: (1) Selectivities can be correlated; e.g., a tuple that
already joins with 51 will be more likely to join with 5. (2) Selectivities may
vary among individual tuples; e.g., one tuple may join with many 5 tuples but
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few Ss tuples, while another tuple may behave in the exact opposite way. The
first issue 1s tackled by [5], who provided a family of algorithms for adaptively
finding the optimal order to apply a series of filters (joining a tuple with a stream
can be regarded as subjecting the tuple to a filter) through runtime profiling. In
particular, the A-Greedy algorithm is able to capture correlations among filter
selectivities, and is guaranteed to converge to an ordering within a constant
factor of the optimal. The theoretical guarantee extends to star joins; for general
join graphs, though A-Greedy still can be used, the theoretical guarantee no
longer holds. The second issue is recently addressed by an approach called
CBR [9], or content-based routing, which makes the choice of query plan
dependent on the values of the incoming tuple’s “classifier attributes,” whose
values strongly correlate with operator selectivities. In effect, CBR is able to
process each incoming tuple with a customized query plan.

One problem with MJoin is that it may incur a significant amount of recom-
putation. Consider again the four-way join among 51,. .., 54, now processed
by a single MJoin operator. Whenever a new tuple s arrives in S5, MJoin
in effect executes the query S1 < Sa a1 {s3} pa Sy; similarly, whenever a new
tuple s4 arrives in Sy, MJoin exccutes St <1 Sa > S3 < {s4}. The common
subquery & <t Ss is processed over and over again for these S5 and 54 tuples.
In contrast, the XJoin plan ((S; XJoin S2) XJoin S3) XJoin S4 materializes al}
its intermediate results in hash tables, including 51 < S2; new tuples from 53
and S, simply have to probe this hash table, thereby avoiding recomputation.
The optimal solution may well lic between these two extremes, as pointed out
by [6]. They proposed an adaptive caching strategy, A-Caching, which starts
with MJoins and adds join subresult caches adaptively. A-Caching profiles
cache benefit and cost online, selects caches dynamically, and allocates mem-
ory to caches dynamically. With this approach, the entire spectrum of caching
options from MdJoins to XJoins can be explored.

A number of other papers also consider multi-way stream joins. Golab and
Ozsu [23] studied processing and optimization of multi-way sliding-window
joins. Traditionally, we eagerly remove (expire) tuples that are no longer part of
the sliding window, and eagerly generate output tuples whenever input arrives.
The authors proposed algorithms supporting lazy expiration and lazy evaluation
as alternatives, which achieve higher efficiency at the expense of higher memory
requirements and longer response times, respectively, Hammad et al. [27]
considered multi-way stream joins where a time-based window constraint can
be specified for each pair (or, in general, subset) of input streams. An interesting
algorithm called FEW is proposed, which computes a forward point in time
before which all arriving tuples can join, thereby avoiding repeated checking
of window constraints.

Fddies [3] are a novel approach towards stream query processing and opti-
mization that is markedly different from the standard plan-based approaches.
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Eddies eliminate query plans entirely by routing each input tuple adaptively
across the operators that need to process it. Interestingly, in eddies, the behav-
ior of SteM [36] mimics that of MJoin, while STAIRS [16] is able to emulate
XJoin. Note that while eddies provide the mechanisms for adapting the pro-
cessing strategy on an individual tuple basis, currently their policies typically
do not result in plans that change for every incoming tuple. It would be nice to
see how features of CBR can be supported in eddies.

6. Conclusion

In this chapter, we have presented an overview of research problems and
recent advances in join processing for data streams. Stream processing is a
young and exciting research area, yet it also has roots in and connections to
well-established areas in databases as well as computer science in general. In
Section 3.2, we have already discussed the relationship between stream join
state management and classic caching. Now, let us briefly re-examine parts of
this chapter in light of their relationship to materialized views [25].

The general connection between stream processing and materialized views
has long been identified [8]. This connection is reflected in the way that we
specify the semantics of stream joins—by regarding them as views and defining
their output as the view update stream resulting from base relation updates
(Section 2). Recall that the standard semantics requires the output sequence to
reflect the exact sequence of states of the underlying view, which is analogous
to the notion of complete and strong consistency of a data warehouse view
with respect to its source relations [46]. The connection does not stop at the
semantics, The prablem of determining what needs to be retained in the state to
compute a stream join is analogous to the problem of deriving auxiliary views
to make a join view self-maintainable [35]. Just as constraints can be used to
reduce stream join state (Section 3.1}, they have also been used to help expire
data from data warehouses without affecting the maintainability of warehouse
views [21]. For a stream join S 54- - - 4.8, processing an incoming tuple from
stream .5; is analogous to maintaining a join view incrementally by evaluating
a maintenance query &7 s - - b AS; g - - - b 8. Since there are n different
forms of maintenance queries (one for each ), it is naturat to optimize each
form differently, which echoes the intuition behind the asymmetric processing
strategy of [30] and MJoin [43]. In fact, we can optimize the maintenance query
for each instance of AS;, which would achieve the same goal of supporting a
customized query plan for cach tuple as CBR [9]. Finally, noticing that the
maintenance queries run frequently and share many common subqueries, we
may choose to materialize some subqueries as additional views to improve
query performance, which is also what A-Caching [6] tries to accomplish.
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Of course, despite high-level similarities, techniques from the two areas--—
data streams and materialized views—may still differ significantly in actual
details. Nonetheless, it would be nice to develop a general framework that uni-
fies both areas, or, less ambitiously, to apply ideas from one area to the other.
Many such possibilities exist. For example, methods and insights from the well-
studied problems of answering query using views [26] and view selection [14]
could be extended and applied to data streams: Given a set of stream queries
running continuously in a system, what materialized views (over join states and
database relations) and/or additional stream queries can we create to improve the
performance of the system? Another area is distributed stream processing. Dis-
tributed stream processing can be regarded as view maintenance in a distributed
setting, which has been studied extensively in the context of data warehous-
ing. Potentially applicable in this setting are techniques for making warchouse
self-maintainable [35], optimizing view maintenance queries across distributed
sources [31], ensuring consistency of multi-source warechouse views [46], etc.
Conversely, stream processing techniques can be applied to materialized views
as well. In particular, view maintenance could benefit from optimization tech-
niques that exploit update stream statistics (Section 3.2). Also, selection of
materialized views for performance can be improved by adaptive caching tech-
niques (Section 5).

Besides the future work directions mentioned above and throughout the
chapter, another important direction worth exploring is the connection between
data stream processing and distributed event-based systems [19] such as pub-
lish/subscribe systems. Such systems need to scale to thousands or even millions
of subscriptions, which are essentially continuous queries over event streams.
While efficient techniques for handling continuous selections already exist,
scalable processing of continuous joins remains a challenging problem. Ham-
mad et al. [28] considered shared processing of stream joins with identical join
conditions but different sliding-window durations. We need to consider more
general query forms, e.g., joins with different join conditions as well as addi-
tional selection conditions on input streams, NiagaraCQ [13] and CACQ [32]
are able to group-process selections and share processing of identical join oper-
ations. However, there is no group or shared processing of joins with different
join conditions, and processing selections separately from joins limits optimiza-
tion potentials. PSoup [11] treats queries as data, thereby allowing set-oriented
processing of queries with arbitrary join and selection conditions. Still, new
indexing and processing techniques must be developed for the system to be able
to process each event in time sublingar in the number of subscriptions,
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Abstract
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Online monitoring of data streams poses a challenge in many data-centric appli-
cations including network traffic management, trend analysis, web-click streams,
intrusion detection, and sensor networks, Indexing techniques used in these ap-
plications have to be time and space efficient while providing a high quality of
answers o user queries: (1) queries that monitor aggregates, such as finding sar-
prising levels (“volatility” of a data stream), and detecting bursts, and (2} queries
that monitor trends, such as detecting correlations and finding similar patterns.
Diata stream indexing becomes an even more challenging task, when we take into
account the dynamic nature of underlying raw data. For example, bursts of events
can oceur at variable temporal modalities from hours to days to weeks, We focus
on a multi-resolution indexing architecture. The architecture enables the discov-
ery of “interesting” behavior online, provides flexibility in user query definitions,
and interconnects registered queries for real-time and in-depth analysis.

stream indexing, monitoring real-time systems, mining continuous data flows,
multi-resolution index, synopsis maintenance, trend analysis, network traffic
analysis.
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1. Introduction

Raw stream data, such as faults and alarms generated by network traffic monitors
and log records generated by web servers, are almost always at low level and
too large to maintain in main memory. One can instead summarize the data
and compute synopsis structures at meaningful abstraction levels on the fly.
The synopsis is a small space data structure, and can be updated incrementally
as new stream values arrive. Later in operational cycle, it can be used to
discover interesting behavior, which prompts in-depth analysis at lower levels
of abstraction [10].

Consider the following application in astrophysics: the sky is constantly
observed for high-energy particles. When a particular astrophysicai event hap-
pens, a shower of high-energy particles arrives in addition to the background
neise. This yields an unusually high number of detectable events (high-energy
photons) over a certain time period, which indicates the existence of a Gamma
Ray Burst. 1f we know the duration of the shower, we can maintain a count
on the total number of events over sliding windows of the known window size
and raise an alarm when the moving sum is above a threshold. Unfortunately,
in many cases, we cannot predict the duration of the burst period. The burst of
high-energy photons might last for a few milliseconds, a few hours, or even a
few days [31].

Finding similar patterns in a time series database is a well studied prob-
lem [1, 13]. The features of a time series sequence are extracted using a sliding
window, and inserted into an index structure for query efficiency. However,
such an approach is not adequate for data stream applications, since it requires
a time consuming feature extraction step with each incoming data item. For this
putpose, incremental feature extraction techniques that use the previous feature
in computing the new feature have been proposed to accelerate per-item process-
ing [30]. A batch technique can further decrease the per-item processing cost by
computing a new feature periodically instead of every time unit [22]. A majority
of these techniques assume a priori knowledge on query patterns. However in
a real world situation, a user might want to know all time periods during which
the movement of a particular stock follows a certain interesting trend, which
itself can be generated automatically by a particular application [26]. In order to
address this issue, a multi-resolution indexing scheme has been proposed [16].
This work addresses off-line time series databases, and does not consider how
well the proposed scheme extends to a real-time streaming algorithm.

Continuous queries that run indefinitely, unless a query lifetime has been
specified, fit naturally into the mold of data stream applications. Examples of
these queries include monitoring a set of conditions or events to occur, detecting
a certain trend in the underlying raw data, or in general discovering relations
between various components of a large real time system. The kinds of queries
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that are of interest from an application point of view can be listed as follows:
(1} monitoring aggregates, (2) monitoring or finding patterns, and (3) detecting
correlations. Each of these queries requires data management over some history
of values, and not just over the most recently reported values [9]. For example
in case of aggregate queries, the system monitors whether the current window
aggregate deviates significantly from that aggregate in most time periods of
the same size. In case of correlation queries, the self-similar nature of sensor
measurements may be reflected as temporal correlations at some resolution over
the course of the stream [24]. Therefore, the system has to maintain historical
data along with the current data in order to be able to answer these queries.

A key vision in developing stream management systems of practical value is
to interconnect queries in a monitoring infrastructure. For example, an unusual
volatility of a stream may trigger an in-depth trend analysis. Unified system so-
lutions can lay ground for tomorrow’s information infrastructures by providing
users with a rich set of interconnected querying capabilities [8].

2. Indexing Streams

In this section, we introduce a multi-resolution indexing architecture, and then
later in Section 3, show how it can be utilized to monitor user queries efficiently.
Multi-resolution approach imposes an inherent restriction on what constitutes
a meaningful query. The core part of the scheme is the feafure extraction at
multiple resolutions. A dyramic index structure is used to index features for
query efficiency. The system architecture is shown in Figure 11.1. The key
architecture aspects are:

s The features at higher resolutions are computed using the features at
lower resolutions; therefore, all features are computed in a single pass.

» The system guarantees the accuracy provided to user queries by provable
error bounds.

s The index structure has tunable parameters to trade accuracy for speed
and space. The per-item processing cost and the space overhead can be
tuned according to the application requirements by varying the update
rate and the number of coefficients maintained in the index structure.

2.1 Preliminaries and definitions

We adapt the use of z[i] to refer to the i-th entry of stream z, and z[i1 : ig] to
refer to the subsequence of entries at positions 4y through i,

DEFINITION 2.1 4 feature is the result of applying a characteristic function
over a possibly normalized set of stream values in order to acquire a higher
level information or concept.
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Figure 11,1, The system architecture for a multi-resolution index structure consisting of 3
levels and stream-specific auto-regressive {AR) models for capturing multi-resolution trends in
the data.

The widely used characteristic functions are (1) aggregate functions, such as
summation, maximum, minimum, and average, (2) orthogonal transformations,
such as discrete wavelet transform (DW'T) and discrete fourier transform (DFT),
and (3) ptecewise linear approximations. Normalization is petformed in case
of DWT, DFT, and linear approximations. The interested reader can refer to
the Sections 3.2 and 3.3 for more details.

2.2 Feature extraction

The features at a specific resolution are obtained with a sliding window of a
fixed length w. The sliding window size doubles as we go up a resohution, i.¢.,
a level. In the rest of the paper, we will use the terms “level” and “resolution”
interchangeably. We denote a newly computed feature at resolution ¢ as F;.
Figure 11.2 shows an example where we have three resolutions with corre-
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sponding sliding window sizes of 2, 4 and 8. With each arrival of a new stream
value, features Fy, F1, and Fo, i.e., one for each resolution, can be computed.
However, this requires maintaining all the stream values within a time window
equal to the size of the largest sliding window, i.e., 8 in our running example.
The per-item processing cost and the space required is linear in the size of the
largest window [16].

| R w=8
w=4

= w=2

AL, .
.....O...O..%@%lncommg
stream

Figure {1.2. Exact feature extraction, update rate T = 1.

For a given window w of values y = z{t — w + 1],. .., z[t], an incremental
transformation £'(y) is used to compute features. The type of transformation F
depends on the monitoring query. For example, F' is SUM for burst detection,
MAX—MIN for volatility detection, and DWT for detecting correlations and
finding surprising patterns. For most real time series, the first f {f << w)
DWT coeflicients retain most of the energy of the signal. Therefore, we can
safely disregard all but the very first few coefficients to retain the salient features
(e.g., the overall trend} of the original signal.
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Figure 11.3.  Incremental feature extraction, update rate T = 1.

Using an incremental transformation leads to a more efficient way of com-
puting features at all resolutions. Level-1 features are computed using level-0
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features, and level-2 features are computed using level-1 features. In general,
we can use lower level features to compute higher level features [3]. Fig-
ure 11.3 depicts this new way of computation. This new algorithm has a lower
per-item processing cost, since we can compute 7| and F» in constant time.
The following lemma establishes this result.

LEMMA 11.1 The newfeature F; atlevel j for the subsequence x[t—w+1 : {]
can be computed “exactly” using the features F;_ and F;_1 atlevel j — 1 for
the subsequences z[t —w + 1 : ¢t — w/2] and :cft — w/2+ 1 : t] respectively.

Proof F; is max(Fj_,, Fj-1), min(F; |, Fj 1), F}_; + Fj1 for MAX,
MIN, and SUM respectively. For DWT, se¢ Lemma 11.4 in Section 2.4. [ ]

However, the space required for this scheme is also linear in the size of the
largest window. The reason is that we need to maintain half of the features
at the lower level to compute the feature at the upper level incrementally. If
we can trade accuracy for space, then we can decrease the space overhead by
computing features approximately. At each resolution level, every ¢ of the
feature vectors are combined in a box, or in other words, a minimum bounding
rectangle (MBR), Figure 11.4 depicts this scheme for ¢ = 2. Since each MBR
I contains c features, it has an extent along each dimension. In case of SUM,
B[1] corresponds to the smallest sum, and B[2] corresponds to the largest sum
among all ¢ sums. In general, B|[2¢] denotes the low coordinate and B[2i -+ 1]
denotes the high coordinate along the i-th dimension. Note that for SUM,
MAX and MIN, B has a single dimension. However, for DWT the number of
dimensions f is application dependent.

777’;;;;?'—7‘@&” Tt B W=8
, [
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Figure {11.4.  Approximate feature extraction, update rate T = 1.
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This new approach decreases the space overhead by a factor of ¢. Since the
extent information of the MBRs is used in the computation, the newly computed
feature will also be an extent. The foliowing lemma proves this result.

LEMMA 11.2 The new feature F; at level j can be computed “approximately”
using the MBRs B and Ba that contain the features F. :f-_l and F;_1 at level
4 — 1 respectively.

Proof
maz(B[1], Ba[1}) < F; < max(Bi [2), Ba[2))
min(By[1], Be{l]) £ F; < min(B1(2], B[2])
By[ij + Byl] < F; < Bi[2] + By[2]
See Lemma 11.5 in Section 2.4
for MAX, MIN, SUM and DWT respectively. [ |

Using MBRs instead of individual features exploits the fact that there is a
strong spatio-temporal correlation between the consecutive features. Therefore,
it is natural to extend the computation scheme to eliminate this redundancy.
Instead of computing a new feature at each data arrival, one can employ a batch
computation such that a new feature is computed periodically, at every T time
unit. This allows us to maintain features instead of MBRs. Figure 11.5 shows
this scheme with 7' = 2. The new scheme has a clear advantage in terms of
accuracy; however it can dismiss potentially interesting events that may occur
between the periods.

| w=8

incoming
stream

Figure I11.5. Incremental feature extraction, update rate 7' = 2.

Depending on the box capacity and the update rate T; at a given level j
(the rate at which we compute a new feature), there are two general feature
computation algorithms:
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»  Online algorithm: Update rate T} is equal to 1. The box capacity ¢ is
variable. It is used for aggregate monitoring queries.

= Batch algorithm: Update rate T} is greater than 1, i.e., T; > 1. The
box capacity is set to ¢ = 1. The setting T;=W can be used for finding
surprising patterns and detecting correlations. SWAT is a batch algorithm
with T; = 2/{7].

We establish the time and space complexity of a given algorithm in terms of
¢ and T} in the following theorem. Assume that W denotes the sliding window
size at the lowest resolution j = 0.

THEOREM 11.3 F; at level j for a stream can be computed incrementally in
constant time and in space (¥ W /cTj_1).

Proof F; at level j is computed using the features at level 7 — 1 in constant
time as shown in Lemmas 1.1 and 11.2. The number of features that need to
be maintained at level j — 1 for incremental computation at level j is 27~ 1W.,
Therefore, depending on the box capacity and update rate, the space complexity
atlevel j — 1is (2 1W/eTy_4). B

2.3 Index maintenance

As new values stream in, new features are computed and inserted into the
corresponding index structures while features that are out of history of interest
are deleted to save space. Coefficients are computed at multiple resolutions
starting from level 0 up to a configurabie level .J: at each level a sliding window
is used to extract the appropriate features. Computation of features at higher
levels is accelerated using the MBRs at lower levels. The MBRs belonging to a
specific stream are threaded together in order to provide a sequential access to
the summary information about the stream. This approach results in a constant
retrieval time of the MBRs. The complete algorithm is shown in Algorithm 1.

Features at a given level ate maintained in a high dimensional index structure.
The index combines information from all the streams, and provides a scalable
access medium for answering queries over multiple data streams. However,
each MBR inserted into the index is specific to a single stream. The R*-Tree
family of index structures are used for indexing MBRSs at cach level [5]. AnR*-
Tree, a variant of R-Tree [15], is a spatial access method, which splits feature
space in hierarchically nested, possibly overlapping MBRs. In order to support
frequent updates, the techniques for predicting MBR boundaries outlined in [20]
can be used to decrease the cost of index maintenance.,
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Algorithm 1 Compute_Coefficients(Stream S)

Require: B; S denotes the i-th MBR at level j for stream 5.
i:begin procedure
2- w = W (the window size at the lowest resolution);
3: tpow denotes the current discrete time;
4 forj =0tc Jdo

5 BJ ; -= the current MBR at level j for stream S;
6 if 7 = 0 then
7 Y = Sltnow — W + 1 : tnow|;
8 normalize y if F' = DWT;
9. Fi=F(y)h
10:  else
i find MBR BY , ; that contains the feature
12: for the subsequence Sltuow —w +1: trow — $1
13: find MBR BJ_ 1,1, that contains the feature
14: for the subsequence Sltuow — ¥ + 1 : tnowl;
15: F; _F(BJ Hl,Bf_l,iZ);
16:  end if
17. if number of features in Bf,; < ¢ (box capacity) then
18: insert F; into BS;
19:  else
20: insert B, into index at level j;
210 startanew MBR BJ i1
22; insert F; into B i1
23:  end if
24;  adjust the sliding window size to w := w * 2;
25: end for

26:end procedure
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24 Discrete Wavelet Transform

The approximation coefficients are defined through the inner product of the input
signal with ¢ 1, the shifted and dilated versions a low-pass scaling function ¢y.
In the same vein, the detail coefficients are defined through the inner product
of the input signal with ¢, », the shifted and dilated versions the wavelet basis
function . _ _

oix(t) =27 290(277t — k), j k€ Z (11.1)

Pi(t) = 2790279t — k), f k€ Z (11.2)

We show how to compute approximation coefficients. Detail coefficients at
level j are computed using approximation coefficients at level j — 1. Using
Equation 11.1, the approximation signal at level § for the signal 2 is obtained
by

AR =5, dra) bk

k
In the same manner, the approximation signal at level 7 + 1 for « is

Af,-ﬂ = Z($:¢j+1,k)¢j+1.k
k

To compute Aj(,f_)l, we need to compute coefficients {z, ;1 5). Using the
twin-scale relation for ¢, we can compute {z, ¢j41 ) from {x, ¢; ¢} [21]. This

can mathematically be expressed as

(@, 041n) = Y Pi—on (@, dsk) (11.3)
k

Cin = Zﬁnfk@,‘ﬁj,k) (11.4)
k

(&, di41n) = Ciom (11.5)

where Ay, and £ are low-pass reconstruction and decomposition filters respec-
tively. Note that the terms “approximation signal” and “approximation coeffi-
cients” are used interchangeably.

LEMMA 11.4 The approximation coefficients at level 5, 1 < j < J, for a
signal x[t —w + 1 : t] can be computed exactly using the approximation
coefficients at level j —1 for the signals x[t—w+1 : t—w/2)and z[t —w/2+1 :
t).

Proof Letx,z; and 29 denote signals z[t —w+1: ¢, 2t —w+1: ¢ —w/2],
and z{t — w/2+ 1 : t] respectively. At a particular scale 7 — 1, the shape of
the wavelet scaling function ¢;_1 g is kept the same, while it is translated to
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o= 0, 1<n<w/2
27 mn—w/2), w/2+1<n<w
(ﬂ.‘-, (bj—‘l,k) = (mfl + mgs—@j—l,k) = <:Eflsc.bj—1,k> + <:UI21 (ybj—],k)

This result is due to the linearity of the wavelet transformation. Using Equa-
tions 11.4, 11.5, and the coefficients (, ¢;_1 %), we can obtain the approxima-

tion signal Ag‘r) at level 7 for z. [ |
Qriginal space Feature space
F 3 F 3
p p2 pl p2
£ips  p4 & papa
> % ol o
'y A
AN o
e
|}
— ™, 2
P " 7/ X-Axis "

Figure 11.6. Transforming an MBR using discrete wavelet transform. Transformation corre-
sponds to rotating the axes (the rotation angle = 43° for Haar wavelets)

LEMMA 11.5 Onecancompute approximation coefficients on a hyper-rectangle
B € R with low coordinates [z, . . ., i | and high coordinates [xp,, . . ., a:hf,].

Proof The most recent approximation coefficients for a sliding window of
values x at a given resolution j can be computed on the extent information of
the MBRs B;_14, and Bj_ 1, in R/ atlevel j — 1 that contain the coefficients
of the corresponding two halves of 2. These MBRs are merged together using
Lemma 11.4 to get an MBR B in R/, where f/ is larger than f (e.g., f’is 2f
for Haar wavelets). The MBR B approximates the coefficients at level 5 — 1 for
x. First compute the coetficients for each one of the 20" corners of B, and find
the tightest MBR A(?) in R/ that encloses the resulting 27" coefficients in /.
The coefficients at level j for z, i.e., the feature Ag-x), lies inside the MBR. A{B?,
This is true for any such unitary transformation as wavelet transformation that
rotates the axes as shown in Figure 11.6. This algorithm has a processing time
of ©(2/ f), where f and f' are constant for a specific application. [ |



248 DATA STREAMS: MODELS AND ALGORITHMS

The coefficients at level j for z, i.e., the feature Agm), lies inside the MBR A,
This is true for any such unitary transformation as wavelet transformation that
rotates the axes as shown in Figure 11.6. This algorithm has a processing time
of ©(2f' f), where f and f* are constant for a specific application. |

Error bound. Wavelet transformation corresponds to the rotation of the
axes in the original space. An input MBR B in the original space is transformed
to a new shape S in the feature space (see Figure 11.6). The resulting shape S
is projected on each dimension in the feature space, and the tightest MBR A(8)
that encloses S is identified. The MBR A(®) contains the feature A, The
volume of AP is a function of the projection along each dimension. Since
the wavelet transformation is a distance preserving transformation, the length
along each dimension can be at most two times the original length.

3. Querying Streams

In this section, monitoring queries that are important from an application point
of view, such as deviant aggregates, interesting pattemns, and trend correlations,
are presented.

31 Monitoring an aggregate query

In this class of queries, aggregates of data streams are monitored over a set
of time intervals [31]: “Report all occurrences of Gamma Ray bursts from
a timescale of minutes to a timescale of days”. Formally, given a bounded
window size w, an aggregate function F, and a threshold 7 associated with the
window, the goal is to report all those time instances such that the aggregate
applied to the subsequence z[t — w + 1 : t] exceeds the corresponding window
threshold, i.e., check if

Flzt—w+1:t) =7 (11.6)

whete ¢ denotes the current time. The threshold values 7 can either be specified
as part of the input, or they can be determined using historical data.

The algorithm. Assume that the query window size is a multiple of W,
An aggregate query with window size w and threshold 7 is answered by first
partitioning the window into multiple sub-windows, wy,wa.. ..,w, such that
0 <1 < ... < j§i < Jir1 < .0 < Jp £ J,and w; = W2, Fora
given window of length bW, the partitioning corresponds to the ones in the
binary representation of b such that 37, 2 = b. The current aggregate over
a window of size w is computed using the sub-aggregates for sub-windows in
the partitioning. Assume that W = 2 and ¢ = 2. Consider a query window
w = 26. The binary representation of b = 13is 1101, and therefore the query is
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partitioned into three sub-windows wy = 2, we = 8, and wy = 16, Figure 11.7
shows the decomposition of the query and the composition of the aggregate
together. The current aggregate over a window of size w = 26 is approximated
using the extents of MBRs that contain the corresponding sub-aggregates. The
computation is approximate in the sense that the algorithm returns an interval
F such that the upper coordinate F (2] is always greater than or equal to the true
aggregate. If F|[2] is larger than the threshold 7, the most recent subsequence of
length w is retrieved, and the true aggregate is computed. If this value exceeds
the query threshold, an alarm is raised. The complete algorithm is shown in
Algorithm 2.

MBRs
in level-3
index

J w=16

\\ N L w2

" /
eedoceoe o-o.noo.ooi\.‘.oi\ioo@
- ke - - ~ -
w,=16 w,=8 i‘"ﬂ'zi

aggregate query w=26

Figure 1.7, Aggregate query decomposition and approximation composition for a query win-
dow of size w = 26.

The accuracy.  The false alarm rate of this approximation is quantified as
follows: assume that bursts of events are monitored, i.e., F is SUM. Let X
denote the sum within sliding window w = &W. If the threshold 7 is set to
tx (1 — ®(p)), the inequation

PT(X_“XET_“X)S;; (11.7)
ux px
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Algorithm 2 Aggregate_Query(Stream S, Window w, Threshold 7)
1:begin procedure
2: initialize  to f,0w, the current discrete time;
3 partition w into n parts as wq, Wa, . - ., Wy;
initialize aggregate J;
fori:= 1toi=ndo
find the resolution level j such that w; = Wi
MBR B contains the feature on S|t —w; + 1 : ¢];
merge sub-aggregate B to F := F(B, F);
adjust offset to ¢ := ¢ — w; for next sub-window;
10: end for
tt: if 7 < F[2] then
122 retrieve S[tpow — w + 1 ¢ tnow];
13 if 7 < F(S[tuow —w+1: tyow]) then

e B S AR AN

14: rais¢ an alarm;
15 end if
16: end if

17.end procedure

holds for a given sufficiently small p, where ¢ denotes the normal cumulative
distribution function. Monitor the burst based on windows with size 7w such
that 1 < T < 2, where 2/=!'W < w < 2/W, This approach corresponds 1o
monitoring the burst via one of the levels in the index structure [31]. Let 2
denote the sum within sliding window Tw. We assume that

Z—pz
Kz
Assuming pz = Tup(X), the false alarm rate is equal to Pr(Z > 1), which
implies

Z-Tp(X)  7—-TpX) 1-31(p) -
P”"( Tu(X) = Ta(X) )=‘I’(1‘T) (119

According to Equation 11.9, for a fixed value of p, the smaller T is, the smaller
is the false alarm rate. If sub-aggregates for sub-windows w,ws,. . .,w, are
used for computing the final aggregate on a given query window of size w and
threshold 7, a smaller 7° can be achieved. The sub-aggregate for sub-window w;
is stored in an MBR at level j;. An MBR at level j; corresponds to a monitoring
window of size 2%W + ¢ — 1. Then, effectively a burst is monitored using a
window of size bW + log b # (¢ — 1) such that:

, bW +loghx(c—1) +logb*(c—1)
B bW - bW

~ Norm(0, 1) (11.8)

T

(11.10)
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where T' decreases with increasing b. For example, for c = W = 64 and
b = 12, we have 7" = 1.2987 and T = 1.3333. This implies that the sub-
window sum approximation reduces the false alarm rate to a minimal amount
with the optimal being at 7° = 1. In fact, the optimal is reached with ¢ = 1.
However the space consumption in this case is much larger.

3.2 Monitoring a pattern query

In this class of queries, a pattern database is continuously monitored over dy-
narmic data streams: “Identify all temperature sensors in a weather monitoring
sensomet that currently exhibit an interesting trend”. Formally, given a query
sequence (J and a threshold value r, find the set of streams that are within
distance r to the query sequence (). The distance measure we adopt is the
Euclidean distance (L2) between the corresponding normalized sequences. We

normalize a window of values z[1], .. ., z[w] as follows:
3] = —211 i=1,...,w (11.11)
VU * Rimag '

thereby mapping it to the unit hyper-sphere. We establish the notion of similarity
between sequences as follows: a stream sequence x and a query sequence )
are considered to be r-similar if

(11.12)

The online algorithm. Given a query sequence ¢} and a threshold value
r, partition €} into multiple sub-queries, ()1, Q2,...,x such that 0 < 7 <«
e i < il € o < Jn < J, and |@;] = W27, Assume that the first
sub-query ¢} has resolution j;. A range query with radius r is performed
on the index constructed at resolution j;. The initial candidate box set 1 is
refined using the hierarchical radius optimization proposed in [16]. Briefly,
for each MBR BB € R, this technique is used to refine the original radius  to
7 = /12 — duin(@1, B)? for the next sub-query (2, where dpin (p, B) for a
point p and an MBR 2 is defined as the minimum Euclidean distance of the
query point p to the MBR B [25]. The same procedure is applied recursively
until the last sub-query @, is processed, resulting in a final set of MBRs ' to
check for true matches. The complete algorithm is shown in Algorithm 3.

The batch algorithm.  Let the update rate for each index level jbe T; = W,
The stream is divided into W -step sliding windows of size w. Let | 5| denote
the size of the stream. Then, there are | (S| —w+1)/W | many such windows.
Given a query sequence ¢}, W-many prefixes of size w are extracted as Q[0 :
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Algorithm 3 Pattern_Query_Online(Query Q)

L:begin procedure
. partition (2 into n parts as (1, (2, ..., @n; _
3: find the resolution level j; such that |1 = W27,
4 R = Range_Query(Index;,, DWT(Q1),Q.7);
5. (' = Hierarchical Radius. Refinement( R,(});
6
7

J

: post-process C' to discard false alarms;
end procedure

w—1],Q[1 :w],...,Q[W-1: w+W-1]. Eachprefix queryisused toidentify
potential candidates. In order to clarify the ensuing development, we note that
a single prefix query would suffice in case an online algorithm with 7; = 1 was
used for index construction. This approach is similar to the technique proposed
in [22], where a single resolution index is constructed using a sliding window
of maximum allowable size w that satisfies 1 < | (min{@) —W +1)/w|. Note
that min(Q) is the a priori information regarding the minimum query length.
However, in a multi-resolution index, a given query can be answered using any
index at resolution j that satisfles 1 < |(j@Q| — W + 1)/(2/W)|. The accuracy
of this multi-resolution search algorithm can be improved by extracting disjoint
windows along with each prefix in order to refine the criginal query radius using
a multi-piece search technique [13]. The number of such disjoint windows is at
most p = |{{Q}| — W +1)/w]|. We illustrate these concepts on a query window
of size | Q)| = 9 as shown in Figure 11.8, where J = 1 and W = 2. The prefixes
are shown as ¢ = 0 and 7 = 1 along with the corresponding disjoint windows.
Each and every feature extracted over ¢} is inserted into a query MBR. B. The
MBR B is extended in each dimension by a fraction of the query radius, i.e.,
r/+/P. A range query is performed on the index at level j using B, and a set R
of candidate features is retrieved. The set R is post-processed to discard false
alarms. The complete algorithm is shown in Algorithm 4.

33 Monitoring a correlation query

In this class of queries, all stream pairs that are correlated within a user spec-
ified threshold r at some level of abstraction are reported continuously. The
correlation between two sequences x and y can be reduced to the Euclidean

distance between their z-norms [30]. The z-norm of a sequence x[1], ..., z[w]
is defined as follows:
;z-[ﬂ=——m“ﬂ-_—“—“£-—— i=1,...,w (11.13)

2= 2] — )
where . is the arithmetic mean. The correlation coefficient between sequences
x and y is computed using the L, distance between & and § as 1 — LZ(2,%)/2.
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query MBR B
query T __|i=0
sequence @ @ @ © 9.0 © 0 @
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level-1 index
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Figure 11.8.  Subsequence query decomposition for a query window of size |(}| = 9.

Algorithm 4 Pattern_Query Batch(Query Q)

t:begin procedure

2
3
. let w be equal to 27T, level-7 sliding window size;
cfori:=0toi:=W —1do

R A

{tH
11:
12;
13:
14:
15:

find the largest level j such that 27W + W — 1 < |@Q};
initialize query MBR B to empty;

fork:=0tok:=[(|Q| —)/w] do
extract k*P disjoint subsequence of the query
sequence into y := Qi + kw : i + (k + Lw — 1;
msert DWT(3) into MBR. B,
end for
end for
compute radius refinement factor p := [{|Q] — W + 1)/w];
enlarge query MBR B by Q.r//p;
£ .= Range_Query(Index;, BY;
post-process E to discard false alarms;

l¢:end procedure

The algorithm.  Whenever a new feature ; of a stream S is computed at
level 7, a range query on the index at level j is performed with 7 as the query
center and the radius set to the correlation threshold . In a system with M
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synchronized streams, this involves execution of (M) range queries at every
data arrival.

4, Related Work

Shifted-Wavelet Tree (SWT) is a wavelet-based summary structure proposed
for detecting bursts of events on a stream of data [31]. For a given set of query
windows wy,wa,. . ..y, such that 2EFW < wy < wqe < ... < wm < 2VW,
SWT maintains U — L. moving aggregates using a wavelet tree for incremental
computation. A window w; is monitored by the lowestlevel 7, L < 7 < U, that
satisfies w; < 2/W. Therefore, associated with each level §, L < j < U, there
is a threshold 7; equal to the smallest of the thresholds of windows wy, , . . ., wy,
monitored by that level. Whenever the moving sum at some level j exceeds
the level threshold 75, all query windows associated with this level are checked
using a brute force approach.

MR-Index addresses variable length queries over time series data[16]. Wavelets
are used to extract features from a time series at multiple resolutions. At each
resolution, a set of feature vectors are combined into an MBR and stored se-
quentially in the order they are computed. A given query is decomposed into
multiple sub-queries such that each sub-query has resolution corresponding to
aresolution at the index. A given set of candidate MBRs are refined using each
query as a filter to prune out non-potential candidates.

Versions of piecewise constant approximation are proposed for time series
similarity matching. Specifically, adaptive piecewise constant approximation
(APCA)} represents data regions of great fluctuations with several short seg-
ments, while data regions of less fluctuations are represented with fewer, long
segments [17]. An extension of this approximation allows error specification
for each point in time [23]. The resulting approach can approximate data with
fidelity proportional to its age. GeneralMatch, a refreshingly new idea in simi-
larity matching, divides the data sequences into disjoint windows, and the query
sequence into sliding windows [22]. This approach is the dual of the conven-
tional approaches, 1.¢., dividing the data sequence inte sliding windows, and
the query sequence into disjoint windows. The overall framework is based on
answering pattern queries using a single-resolution index built on a specific
choice of window size. The allowed window size depends on the minimum
query length, which has to be provided a-priori before the index construction.

Methods based on multi-variate linear regression are considered for analyz-
ing co-evolving time sequences [28]. For a given stream 9, its current value
{dependent variable) is expressed as a linear combination of values of the same
and other streams (independent variables) under sliding window model. Given
v independent variables and a dependent variable i with N samples each, the
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model identifies the best b independent variables in order to compute the current
value of the dependent variable in O( Nbv?) time.

StatStream is a state of the art system proposed for monitoring a large num-
ber of streams in real time [30]. It subdivides the history of a stream into a
fixed number of basic windows and maintains DFT coetficients for each basic
window. This allows a batch update of DFT coefficients over the entire history.
It superimposes an orthogonal regular grid on the feature space, and partitions
the space into cells of diameter v, the correlation threshold. Each stream is
mapped to a number of cells (exactly how many depends on the “lag time™} in
the feature space based on a subset of its DFT coefficients. It uses proximity in
this feature space to report correlations [6].

5. Future Directions

We are witnessing the blurring of the traditional boundaries between Networks
and Databases, especially in the emerging areas of sensor and peer-to-peer net-
works. Data stream processing in these application domains requires networked
data management, solutions of which borrow ideas from both disciplines. We
believe that researchers from these two communities should share their ex-
pertise, results, terminologies, and contributions. This exchange can promote
ideas that will influence and foster continued research in the areas of sensor
and peer-to-peer networks. The following three research avenues are promis-
ing future directions to pursue further: (1) Distributed monitoring systems, (2)
Probabilistic modeling of sensor networks, and (3) Publish-subscribe systems.

5.1 Distributed monitoring systems

In today’s rapidly growing networks, data streams arrive at widely dispersed lo-
cations. Assume that a system administrator wants to analyze the local network
traffic and requires access to data collections that are maintained at different
locations. The rapid growth of such collections fed by data streams makes it
virtually impossible to simply store a collection at every location where it is
possibly queried. This prompts a need to design more scalable approaches for
disseminating the information of a data stream. Each peer monitoring station
characterizes its stream of data in terms of a model (signature) and transmits
this information to a central site using an adaptive communication protocol.
The abstraction levels of signatures collected at the server can be quite differ-
ent. A higher level corresponds to coarser statistics. Therefore, it contains less
representative information, and incurs smaller transmission cost. A lower level
corresponds to finer statistics. Therefore, it has more characteristics informa-
tion; however it incurs larger transmission cost. Naturally, there is an interplay
of opposing factors, i.e., accuracy vs. overhead. At the server, tasks that in-
volve information from multiple clients are executed. The question is to find
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an optimal data acquisition strategy that maximizes the conservation of limited
system resources [11].

A more specific scenario arises in a sensor-net: anomalous event detection
is a collaborative task, which involves aggregation of measurements from a
number of sensors. Only if a certain number of these sensors signify an alarm
and a consensus is reached, a drill-down analysis is performed to collect more
information and take affirmative steps. After computing a local fingerprint on its
stream of data, each sensor needs to diffuse this fingerprint into the net in order
to reach a consensus on the alarming incidents [2]. This work can introduce
“reactive monitoring” into sensor networks.

5.2 Probabilistic modeling of sensor networks

Embedded low-power sensing devices revelutionize the way we collect and
process information for building emergency response systems. Miniature sen-
sors are deployed to monitor ever-changing conditions in their surroundings.
Statistical models such as stochastic models and multivariate regression enable
capturing intra-sensor and inter-sensor dependencies in order to model sensor
network data accurately. Such models can be used in backcasting missing sen-
sor values, forecasting future data values, and guiding efficient data acquisition.
Current mathematical models allow decomposing the main research problem
into subproblems [14]. This in turn leads to a natural way of computing model
components incrementally and in a distributed manner.

Regressive models are proposed for computing inter-scale and intra-scale
correlations among wavelet coefficients [24]. The magnitude of these coef-
ficients is used for detecting interesting events such as seasonal components
and bursts of events. The wavelet coefficients at a given level j in the multi-
resolution index are expressed as a function of the & previous coefficients at
the same level plus noise € (optionally including coefficients from upper levels)
ie.,

AP = g AP 4 gAY 1, (11.14)

where the symbol z;, 0 < ¢ < k, denotes z[t — (i + 1)+ 2 W + 1 : t —ix 27 W],
and the term ¢;; denotes the noise added. Recursive Least Squares is used to
update these regressive models incrementally [29]. Further research efforts are
encouraged on exploring how to use these models for compressing and querying
stream information regarding the past, and more importantly in a feedback loop
for setting the query window parameters automatically and in a semantically
meaningful manner.

53 Content distribution networks

Publish-and-subscribe services provide the ability to create persistent queries or
subscriptions to new content. In a typical content based pub-sub system, con-



Indexing and Querying Data Streams 257

tent providers send structured content to instances of pub-sub service, which
are responsible for sending messages to the subscribers of each particular con-
tent [27]. The pub-sub system forms a semantic layer on the top of a monitoring
infrastructure by providing a query interface: events of interest are specified
using an appropriate continuous query language [19]. Furthermore, it real-
izes the reactive part of the whole infrastructure by sending notifications about
events of interest to users. Recent advances in application layer multicast for
content delivery address the scalability issues that usually arise in data stream
applications with large receiver sets [4]. However, the problem of providing
real-time guarantees for time-critical user tasks under stringent constraints still
needs exploration.

6. Chapter Summary

In this chapter, we presented a space and time efficient architecture to extract
features over streams and index these features for improving query performance.
The maintenance cost in the index structure is leveraged by computing transfor-
mation coefficients online: the coefficients at higher levels are computed over
the index that stores the coefficients at lower levels. This approach decreases
per-item processing time considerably, and minimizes the space required for
incremental computation. The index structure has an adaptive time-space com-
plexity depending on the update rate and the number of coefficients maintained,
and guarantees the approximation quality by provable error bounds.
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Abstract We congider the problem of capturing correlations and finding hidden variables
corresponding to trends on collections of time series streams. Our proposed
method, SPIRIT, can incrementally find correlations and hidden variables, which
summarise the key trends in the entire stream collection. It can do this quickly,
with nobuffering of stream values and without comparing pairs of streams. More-
over, it is any-time, single pass, and it dynamically detects changes. The dis-
covered trends can also be used to immediately spot potential anomalies, to do
efficient forecasting and, more generally, to dramatically simplify further data
processing,

Introduction

In this chapter, we consider the problem of capturing correlations and finding
hidden variables corresponding to trends on collections of semi-infinite, time
series data streams, where the data consist of tuples with » numbers, one for
each time tick .

Streams often are inherently correlated (e.g., temperatures in the same build-
ing, traffic in the same network, prices in the same market, etc.) and it is possible
to reduce hundreds of numerical streams into just a handful of hidden variables
that compactly describe the key trends and dramatically reduce the complexity
of further data processing. We propose an approach to do this incrementally.
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Figure 12.1.  Nlustration of problem. Sensors measure chlorine in drinking water and show a
daily, near sinusoidal periodicity during phases t and 3. During phase 2, some of the sensors are
“stuck” due to a major leak. The extra hidden variable introduced during phase 2 captures the
presence of anew trend. SPIRIT can also tell us which sensors participate in the new, “abnormal”
trend {e.g., close to a construction site). In phase 3, everything returns to normal.

We describe a motivating scenario, to illustrate the problem we want to
solve. Consider a large number of sensors measuring chlorine concentration in
a drinkable water distribution network (see Figure 12.1, showing 15 days worth
of data). Every five minutes, each sensor sends its measurement to a central
node, which monitors and analyses the streams in real time.

The patterns in chlorine concentration levels normally arise from water de-
mand. If water is not refreshed in the pipes, existing chlorine reacts with pipe
walls and micro-organisms and its concentration drops. However, if fresh wa-
ter flows in at a particular location due to demand, chlorine concentration rises
again, The rise depends primarily on how much chlorine is originally mixed
at the reservoirs (and also, to a small extent, on the distance to the closest
reservoir—as the distance increases, the peak concentration drops slightly, due
to reactions along the way). Thus, since demand typically follows a periodic
pattern, chlorine concentration reflects that (see Figure 12.1a, bottom): it is
high when demand is high and vice versa.

Assume that at some point in time, there is a major leak at some pipe in
the network. Since fresh water flows in constantly (possibly mixed with debris
from the leak), chlorine concentration at the nodes near the leak will be close
to peak at all times.

Figure 12,1a shows measurements collected from two nodes, one away from
the leak (bottom) and one close to the leak (top). At any time, a human operator
would like to know how many trends (or Aidden variables) are in the data and
ask queries about them. Each hidden variable essentially corresponds to a group
of correlated streams.

In this simple example, SPIRIT discovers the correct number of hidden vari-
ables. Under normal operation, only one hidden variable is needed, which
corresponds to the periodic pattern (Figure 12.1b, top). Both observed vari-
ables follow this hidden variable {multiplied by a constant factor, which is the
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participation weight of each observed variable into the particular hidden vari-
ablc). Mathematically, the hidden variables are the principal components of the
observed variables and the participation weights are the entries of the principal
direction vectors {more precisely, this is true under certain assumptions, which
will be explained later).

However, during the leak, a second trend is detected and a new hidden vari-
able is introduced (Figure 12.1b, bottom). As soon as the leak is fixed, the
number of hidden variables returns to one. If we examine the hidden variables,
the interpretation is straightforward: The first one still reflects the periodic de-
mand pattern in the sections of the network under normal operation. All nodes
in this section of the network have a participation weight of = 1 to the “periodic
trend” hidden variable and ~ {} to the new one. The second hidden variable
represents the additive effect of the catastrophic event, which is to cancel out the
normal pattern. The nodes close to the leak have participation weights = 0.5
to both hidden variables.

Summarising, SPIRIT can tell us the following (Figure 12.1): (i) Under nor-
mal operation (phases 1 and 3), there is one trend. The corresponding hidden
variable follows a periodic pattern and all nodes participate in this trend. All
is well. {ii) During the leak (phase 2), there is a second trend, trying to cancel
the normal trend. The nodes with non-zero participation to the corresponding
hidden variable can be immediately identified {(e.g., they are close to a construc-
tion site). An abnormal event may have occurred in the vicinity of those nodes,
which should be investigated.

Matiers are further complicated when there are hundreds or thousands of
nodes and more than one demand pattern. However, as we show later, SPIRIT
is still able to extract the key trends from the stream collection, follow trend
drifts and immediately detect outliers and abnormal events. Besides providing
a concise summary of key trends/correlations among streams, SPIRIT can suc-
cessfully deal with missing values and its discovered hidden variables can be
used to do very efficient, resource-economic forecasting.

There are several other applications and domains to which SPIRIT can be
applied. For example, (i) given more than 50,000 securities trading in US, on a
second-by-second basis, detect patterns and correlations [27], (ii) given traffic
measurements [24], find routers that tend to go down together.

Contributions

The problem of pattern discovery in a large number of co-evolving streams
has attracted much attention in many domains. We introduce SPIRIT (Stream-
ing Pattern discoveRy in multlple Time-series}, a comprehensive approach to
discover correlations that effectively and efficiently summarise large collections
of streams. SPIRIT satisfies the following requirements:
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(i) It is streaming, i.c., it is incremental, scalable, any-time. It requires very
memory and processing time per time tick. In fact, both are independent of the
stream length ¢.

(ii) It scales /inearly with the number of streams n, not quadratically. This
may seem counter-intuitive, because the naive method to spot correlations
across n streams examines all O(n?) pairs.

(iil) It is adapfive, and fully automatic. It dynamically detects changes (both
gradual, as well as sudden) in the input streams, and automatically determines
the number £ of hidden variables.

The correlations and hidden variables we discover have multiple uses. They
provide a succinct summary to the user, they can help to do fast forecasting
and detect outliers, and they facilitate interpolations and handling of missing
values, as we discuss later.

The rest of the chapter is organized as follows: Section 1 discusses related
work, on data streams and stream mining. Section 2 and 3 overview some of
the background. Section 5 describes our method and Section 6 shows how its
output can be interpreted and immediately utilized, both by humans, as well
as for further data analysis. Section 7 discusses experimental case studies that
demonstrate the effectiveness of our approach. In Section 8 we elaborate on
the efficiency and accuracy of SPIRIT. Finally, in Section 9 we conclude.

1. Related work

Much of the work on stream mining has focused on finding interesting pat-
terns in a single stream, but multiple streams have also attracted significant
interest. Ganti et al. [8] propose a generic framework for stream mining. 10
propose a one-pass k-median clustering algorithm. 6 construct a decision tree
online, by passing over the data only once. Recently, 12 and 22 address the prob-
lem of finding patterns over concept drifting streams. 19 proposed a method
to find patterns in a single stream, using wavelets. More recently, 18 consider
approximation of time-series with amnesic functions. They propose novel tech-
niques suitable for streaming, and applicable to a wide range of user-specified
approximating functions,

15 propose parameter-free methods for classic data mining tasks (i.e., clus-
tering, anomaly detection, classification), based on compression. 16 perform
clustering on different levels of wavelet coefficients of multiple time series.
Both approaches require having ali the data in advance. Recently, 2 propose a
framework for Phenomena Detection and Tracking (PDT) in sensor networks.
They define a phenomenon on discrete-valued streams and develop query execu-
tion techniques based on multi-way hash join with PDT-specific optimizations.

CluStream (1) is a flexible clustering framework with online and offline
components. The online component extends micro-cluster information (26)
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by incorporating exponentially-sized sliding windows while coalescing micro-
cluster summaries. Actual clusters are found by the offline component. Stat-
Stream (27) uses the DFT to summarise streams within a finite window and then
compute the highest pairwise correlations among all pairs of streams, at each
timestamp. BRAID (20) addresses the problem of discovering lag correlations
among multiple streams. The focus is on time and space efficient methods for
finding the earliest and highest peak in the cross-correlation functions between
all pairs of streams. Neither CluStream, StatStream or BRAID explicitly focus
on discovering hidden variables.

9 improve on discovering correlations, by first doing dimensionality reduc-
tion with random projections, and then periodically computing the SVD. How-
ever, the method incurs high overhead because of the SVD re-computation
and it can not easily handle missing values., Also related to these is the work
of 4, which uses a different formulation of linear correlations and focuses on
compressing historical data, mainiy for power conservation in sensor networks.
MUSCLES (24) is exactly designed to do forecasting (thus it could handle
missing values). However, it can not find hidden variables and it scales poorly
for a large number of streams n, since it requires at least quadratic space and
time, or expensive reorganisation (selective MUSCLES).

Finally, a number of the above methods usually require choosing a sliding
window size, which typically translates to buffer space requirements. Qur
approach does not require any sliding windows and does not need to buffer any
of the stream data.

In conclusion, none of the above methods simultaneously satisfy the require-
ments in the introduction: “any-time™ streaming operation, scalability on the
number of streams, adaptivity, and fuill automation.

2. Principal component analysis (PCA)

Here we give a brief overview of PCA (13) and explain the intuition behind
our approach. We use standard matrix algebra notation: vectors are lower-case
bold, matrices are upper-case bold, and scalars are in plain font. The transpose
of matrix X is denoted by X7, Inthe following, x; = [zy1 242 - - wt,n]T R
is the column-vector. of stream values at time {. We adhere to the common
convention of using column vectors and writing them out in transposed form.
The stream data can be viewed as a continuously growing ¢ x n matrix X, :=
[X] %9+ xt]T € R¥™" where one new row is added at each time tick ¢, In
the chlorine example, x; is the measurements column-vector at t over all the
sensors, where 7 is the number of chlorine sensors and ¢ is the measurement
timestamp.

Typically, in collections of n-dimensional points x, = [z . .. ,a‘:t.n]T, t=
1,2,..., there exist correlations between the n dimensions (which correspond
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Figure 2.2, Hlustration of updating w: when a new point x4 arrives,

to streams in our setting). These can be captured by principal components
analysis (PCA). Consider for example the setting in Figure 12.2. There is a
visible linear correlation. Thus, if we represent every point with its projection
on the direction of w, the error of this approximation is very small. In fact,
the first principal direction w1, is the optimal in the following sense.

DEFINITION 12.1 (FIRST PRINCIPAL COMPONENT) Given a collection of
n-dimensional vectors x, € R, 7 = 1,2,... .1, the first principal direction
w & R" is the vector minimizing the sum of squared residuals, i.e,

t

wi = argmin Y _ [[x- — (ww? x|,

fell=1 721

The projection of X on w1 is the first principal component (PC) g1 := W1 %,
T=1,...,%

Note that, since |jw1|| = 1, we have (Wiw?)x, = (WX, )W1 = ¥, W1 =
%, where X, is the projection of y,; back into the original n-D space. That
is, X is the reconstruction of the original measurements from the first PC 3. .
More generally, PCA will produce % vectors wy, wo, ..., wg such that, if we
represent each n-D data point x; = [z -+ 2 ,] with its &-D projection
yi 1= [wix, - - wix;]7, then this representation minimises the squared error
3>, |Ix¢ — %}i2. Furthermore, the principal directions are orthogonal, so the
principal components y,;, 1 < ¢ < k are by construction uncorrelated, i.e., if
y(") = [y o5 Ytis - .]T is the stream of the i-th principal component, then
(YT y® = 0ifi # 5.

OBSERVATION 2.1 (IDDIMENSIONALITY REDUCTION) If we represent each
n-dimensional point X € R™ using oll n principal components, then the ervor

lxr — X;|| = . However, in typical datasets, we can achieve a very small
error using only k principal components, where k < n.

In the context of the chlorine example, each point in Figure 12.2 would
correspond to the 2-D projection of x, (where 1 < 7 < ) onto the first two
principal directions, w1 and ws, which are the most important according to the
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Table 12,1, Description of notation.

Symbol Description

b S Column vectors (lowercase boldface).

A, ... Matrices (uppercase boldface),

X The n stream values X; := |11 - ¢ at time t.

n Number of streams.

Wi The i-th participation weight vector (i.e., principal direction).

k Number of hidden variables.

¥i Vector of hidden variables (i.e., principal components) for Xe, i.e.,
ye = [y -yl o= fwine o wix]

% Reconstruction of x; from the & hidden variable values, i.e.,
Xy i= i W+ -0 U p W

on Total energy up to time £.

B Total energy captured by the i-th hidden variable, up to time £.

fre, Fr Lower and upper bounds on the fraction of energy we wish to maintain via
SPIRIT’s approximation.

distribution of {x; | 1 < 7 < ¢}. The principal components y.,; and y, 2 are
the coordinates of these projections in the orthogonal coordinate system defined
by w and wo.

However, batch methods for estimating the principal components require
time that depends on the duration #, which grows to infinity. In fact, the principal
directions arc the eigenvectors of X7 X;, which are best computed through the
singular value decomposition (SVD) of X;. Space requirements also depend
on . Clearly, in a sircam sctting, it is impossible to perform this computation
at every step, aside from the fact that we don’t have the space to store all past
values. In short, we want a method that does not need to store any past values.

3. Auto-regressive models and recursive least squares

In this section we review some of the background on forecasting.

Auto-regressive (AR) modeling

Auto-regressive models are the most widely known and used—more infor-
mation can be found in, e.g., (3). The main idea is to express z; as a function
of its previous values, plus (filtered) noise ¢;:

T = $1Tim1 b ... + Gwr—w + €, (12.1)

where W is a the forecasting window size. Seasonal variants (SAR, SAR(I)MA)
also use window offsets that are multiples of a single, fixed period (i.e., besides
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terms of the form y;_;, the equation contains terms of the form g, g; where 5
is a constant).

If we have a collection of n time series x4, 1 < ¢ < n then multivariate AR
simply expresses x; ; as a linear combination of previous values of all streams
{(plus noise), i.e.,

Ti; = Pr11%¢—1,1 + .. + DLwE_w1 +
ot
an,lictwl,'rz, + ... + an,Wl't—IJV,n + €. (12.2)

Recursive Least Squares (RLS)

Recursive Least Squares (RLS) is a method that allows dynamic update of
a least-squares fit. The least squares solution to an overdetermined system
of equations Xb = y where X € R™** (measurements), y € R™ (output
variables) and b € R* (regression coefficients to be estimated) is given by
the solution of XTXb = XTy. Thus, all we need for the solution are the
projections
P=X"X and q=XTy

We need only space O(k? + k) = O(k?) to keep the model up to date. When
ANEW TOW X1 € R¥ and output yp, arrive, we can update

P — P+xm+1x£+1 and

q < q+ Yn+1Xm41-
In fact, it is possible to update the regression coefficient vector b without ex-
plicitly inverting P to solve Pb = P~lq. In particular (see, e.g., (25)) the
update equations are

G+ G~ 1+, 1Gxmy1) 'Gxmpxt G (12.3)
b — b — Gxpmp1(xL 1 b~ Ymir)s (12.4)

where the matrix (s can be initialized to G «— ¢l, with € a small positive number
and I the k& x k identity matrix.

RLS and AR In the context of auto-regressive modeling (Eq. 12.1), we have
one equation for each stream value x4, ..., %y, . - ., i.€., the m-th row of the
X mairix above is

Xm = [mm—l Tm—2 - $m~w]T e RY

and 2y, = Ty, fort —w =m = 1,2,... (t > w). In this case, the solution
vector b consists precisely of the auto-regression coefficients in Eq. 12.1, i.e.,

b=[¢1 62 - pul” €RY.
RLS can be similarly used for multivariate AR model estimation.
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4. MUSCLES

MUSCLES (MUlti-SequenCe LEast Sguares) (24) tries to predict the value of
one stream, z; ; based on the previous values from all streams, z;—; 4,1 > 1,1 <
J < n and current values from other streams, z; ;, J # 4. Tt uses multivariate
autoregression, thus the prediction &, ; for a given stream 4 is, similar to Eq. 12.2

i = 10001 T @110-11 + -0+ dLwT-w +
.+
Bi1,0T1 141 + Gi-11Te-14-1 + - + Pi—lwl-wi-1 +
Di1T-15 T o0+ Giewleowy +
@i+ 1,02 501 + @Gip11%T¢-1551 + -0t BiplwT-Wirl T
.+
ba 0Tt + Gnlbi-1n + .. T GnWwliwn + &

and employs RLS to continuously update the coefficients ¢; ; such that the

prediction error
t

Z(im' — i)’

=1
is minimized. Note that the above equation has one dependent variable (the
estimate £, ;) and v = W xn 4 n — 1 independent variables (the past values of
all streams plus the current values of all other streams except 7).
Exponentially forgetting MUSCLES employs a forgetting factor 0 < A < 1
and minimizes instead

¢
Z N (s — Tr4)°.
=1

For A < 1, errors for old values are downplayed by a geometric factor, and
hence it permits the estimate to adapt as sequence characteristics change,

Selective MUSCLES

In case we have too many time sequences (e.g., n = 100,000 nodes in
a network, producing information about their load every minute), even the
incremental version of MUSCLES will suffer. The solution we propose is based
on the conjecture that we do not really need information from every sequence to
make a good estimation of a missing value much of the benefit of using multiple
sequences may be captured by using only a small number of carefully selected
other sequences. Thus, we propose to do some preprocessing of a training set,
to find a promising subset of sequences, and to apply MUSCLES only to those
promising ones (hence the name Selective MUSCLES).
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Assume that sequence ¢ is the one notoriously delayed and we need to esti-
mate its “delayed” values z; ;. For a given tracking window span W, among
the v = W % n + n — 1 independent variables, we have to choose the ones
that are most useful in estimating the delayed value of x; ;. More generally, we
want to solve the following

PROBLEM 4.1 (SUBSET SELECTION) Given v independent variables
E1,%9,...,Ly and a dependent variable y with N samples each, find the best
b (< v) independent variables to minimize the mean-square error for i for the
given samples.

We need a measure of goodness to decide which subset of b variables is the
best we can choose. Ideally, we should choose the best subset that yields the
smallest estimation error in the future. Since, however, we don’t have future
samples, we can only infer the expected estimation error (EEE for short) from
the available samples as follows:

N

EEE(S) = ) _(ylt] — #s[t))’

t=1

where § is the selected subset of variables and §j[#] is the estimation based on &
for the {-th sample. Note that, thanks to Eq. 12.3, EEE(S} can be computed in
O(N -||5]|?) time. Let’s say that we are allowed to keep only b = 1 independent
variable. Which one should we choose? Intuitively, we could try the one that
has the highest (in absolute value) correlation coefficient with 3. It tums out
that this is indeed optimal: (to satisfy the unit variance assumption, we will
normalize samples by the sample variance within the window.)

LEMMA 12.2 Given adependent variable y, and v independent variables with
unit variance, the best single variable to keep to minimize EEE(S) is the one
with the highest absolute correlation coefficient with y.

Proof For a single variable, if o is the least squares solution, we can express
the error in matrix form as

EEE({z:}) = ly|* - 2a(y"xs) + o || x]|*.

Letd and pdenote ||x;||? and (xT'y ), respectively. Sincea = d~p, EEE({2;}) =
ly||? — p?d~!. To minimize the ctror, we must choose x; which maximize p?
and minimize d. Assuming unit-variance (d = 1), such x; is the one with the
biggest correlation coefficient to y. This concludes the proof.

The question is how we should handle the case when & > 1. Normally, we
should consider all the possible groups of b independent variables, and try to
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pick the best. This approach explodes combinatorially; thus we propose io
use a greedy algorithm. At each step s, we select the independent variable
s that minimizes the EEE for the dependent variable y, in light of the s — 1
independent variables that we have already chosen in the previous steps.

Bottleneck of the algorithm is clearly the computation of EEE. Since it
computes EEE approximately O(v - b) times and each computation of EEE
requires O N -b?) in average, the overall complexity mounts to O( N -v-5%). To
reduce the overhead, we observe that intermediate results produced for EEE(S)
can be re-used for EEE(S U {x}).

LEMMA 12.3 The complexity of the greedy selection algorithm is O(N -v-b%),

Proof Let ST be S U {z}. The core in computing EEE(S7) is the inverse of
Dg+ = (X%, Xg+). Thanks to block matrix inversion formula (14) (p. 656)
and the availability of D3 ! from the previous iteration step, it can be computed
in O(N - |8} + |S|?). Hence, summing it up over v — || remaining variables
for cach b iteration, we have O(N - v - &% + v - b*) complexity. Since N > b,
it reduces to O(N - v - b?).

We envision that the subset-selection will be done infrequently and off-line, say
every IV = W time-ticks. The optimal choice of the reorganization windowWw
is beyond the scope of this paper. Potential solutionsinclude (a) doing reor-
ganization during off-peak hours, (b) triggering a reorganization whenever the
estimation error for by increases above an application-dependent threshold etc.
Also, by normalizing the training set, the unit-variance assumption in Theorem
1 can be easily satisfied.

3. Tracking correlations and hidden variables: SPIRIT

In this section we present our framework for discovering patterns in multiple
streams. In the next section, we show how these can be used to perform ef-
fective, low-cost forecasting. We use auto-regression for its simplicity, but our
framework allows any forecasting algorithm to take advantage of the compact
representation of the stream collection.

Problem definition (Given acollection of n co-evolving, semi-infinite streams,
producing a value x ;, for every sircam 1 < j < n and for every time-tick
t =1,2,..., SPIRIT does the following: (i) Adapts the number k of hidden
variables necessary to explain/summarise the main trends in the collection. (ii)
Adapts the participation weights w; ; of the j-th stream on the ¢-th hidden vari-
able (1 € j <nandl <1i < k), soas to produce an accurate summary of the
stream collection. (iii) Monitors the hidden variables y;;, for 1 < ¢ < k. (iv)
Keeps updating all the above efficiently.
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More precisely, SPIRIT operates on the column-vectors of observed stream

values x; = [z4,1, .. ., :z:t,n]T and continually updates the participation weights
w; ;. The participation weight vector w; for the i-th principal direction is
w; := [wiy -+ win]T. The hidden variables y; = [ys1,...,ye]” are the

projections of x; onto each w;, over time (sce Table 12.1), i.e,
g = W& F Wik a+ o+ Winlen,

SPIRIT also adapts the number £ of hidden variables necessary to capture most
of the information. The adaptation is performed so that the approximation
achieves a desired mean-square error. In particular, let %, = [T, - - :’i:t,n]T be
the reconstruction of X, based on the weights and hidden variables, defined by

Ty = WY1 + Wo¥e2 + 0+ Wh il ks

or more succinctly, X; = Efﬂ Yi t Wi

In the chlorine example, x; is the n-dimensional column-vector of the orig-
inal sensor measurernents and y. is the hidden variable column-vector, both at
time ¢. The dimension of y; is 1 before/after the leak (f < 1500 or ¢ > 3000)
and 2 during the leak (1500 < ¢ < 3000), as shown in Figure 12.1.

DerFINITION 12.4 (SPIRIT TRACKING) SPIRIT updates the participation
weights w; ; S0 as to guarantee that the reconstruction error || %y — x;|1? over
time is predictably small.

This informal definition describes what SPIRIT does. The precise criteria re-
garding the reconstruction error will be explained later. If we assume that the
xt are drawn according to some distribution that does not change over time
(i.e., under stationarity assumptions), then the weight vectors w; converge to
the principal directions. However, even if there are non-stationarities in the
data (i.e., gradual drift), in practice we can deal with these very effectively, as
we explain later.

An additional complication is that we often have missing values, for several
reasons: either failure of the system, or delayed arrival of some measurements.
For example, the sensor network may get overloaded and fail to report some of
the chlorine measurements in time or some sensor may temporarily black-out.
At the very least, we want to continue processing the rest of the measurements.

Tracking the hidden variables

The first step is, for a given &, to incrementally update the & participation
weight vectors w;, 1 < 4 < k, s0 as to summarise the original streams with
only a few numbers (the hidden variables). In Section 5.0, we describe the
complete method, which also adapts k.



Dimensionality Reduction and Forecasting on Streams 273

For the moment, assume that the number of hidden variables & is given.
Furthermore, our goal is to minimise the average reconstruction error 3, ||%; —
x;]|2. In this case, the desired weight vectors w;, 1 < 4 < k are the principal
directions and it turns out that we can estimate them incrementally.

We use an algorithm based on adaptive filtering techniques (23, 11), which
have been tried and tested in practice, performing well in a variety of settings and
applications (¢.g., image compression and signal tracking for antenna arrays).
We experimented with several alternatives (17, 5) and found this particular
method to have the best properties for our setting: it is very efficient in terms
of computational and memory requirements, while converging quickly, with no
special parameters to tane. The main idea behind the algorithm is to read in the
new values Xeq1 = [2(p41),15- -+ B(1),0) - from the n streams at time ¢ + 1,
and perform three steps:

1 Compute the hidden variables y;,, ;,1 < @ < £, based on the current
weights w;, 1 < ¢ < k, by projecting x;,.1 onto these.

2 Estimate the reconstruction error {e; below) and the energy, based on the
!
Yt ; values,

3 Update the estimates of w;,1 < i < k and output the acrual hidden
variables y;44 ; for time £ 4 1.

To illustrate this, Figure 12.2b shows the e and y; when the new data x;, 1 enter
the system. Intuitively, the goal is to adaptively update w; so that it quickly
converges to the “truth.” In particular, we want to update w, more when e; is
large. However, the magnitude of the update should also take into account the
past data currently “captured” by w;. For this reason, the update is inversely
proportional to the current energy E;; of the i-th hidden variable, which is

By =1%" y2 ;. Figure 12.2¢ shows w after the update for x,1.

Algorithm TRACKW
0. Initialise the k hidden variables w; to unit vectors wi = [10---0]T, wy =
[010- - - 0]7, etc. Initialise d; (i = 1, ...k) to a small positive value. Then:

1. As each point %, arrives, initialise X; = x;41.

2. For 1 < ¢ < k, we perform the following assignments and updates, in order:

T

Yi = w; Xy (141, = projection onto w;)
di - My + (energy o i-th eigenval. of X7 X,)
e = X; — Wy {(error, e; 1 w;)
1
W; — W, + E’yiei {update PC estimate)
i

X1 = X —ywy (repeat with remainder of x;).
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The forgetting factor A will be discussed in Section 5.0 (fornow, assume A = 1).
For each 4, d; = tE,; and X; is the component of x,4; in the orthogonal
complement of the space spanned by the updated estimates wy, 1 <4’ < i of
the participation weights. The vectors w;, 1 < ¢ < k are in order of importance
(more precisely, in order of decreasing eigenvalue or energy). It can be shown
that, under stationarity assumptions, these w; in these equations converge to
the true principal directions.

Complexity We only need to keep the k& weight vectors w; (1 < ¢ < k), each
n-dimensional. Thus the total cost is O(nk), both in time and of space. The
update cost does not depend on ¢. This is a tremendous gain, compared to the
usual PCA computation cost of Q(tn?).

Detecting the number of hidden variables

In practice, we do not know the number & of hidden variables. We propose
to estimate & on the fly, so that we maintain a high percentage fg of the energy
E. Energy thresholding is a common method to determine how many principal
components are needed (13). Formally, the energy F; (at time ) of the sequence
of x; is defined as

— 1t _ 1 t
Eyi=32 01 “fo2 =73 D et Z?:l mfz
Similarly, the energy F; of the reconstruction X is defined as
o 1t © 12
By = g 2orm I%e]1%
LEMMA 12.5 Assuming the w;, 1 < i < k are orthonormal, we have

- { et ) =
Ey = T ET=1 ||YT||Z = %EH + %”Yt“-

Proof Ifthew;,1 < i < kare orthonormal, then it follows easily that || X, ||> =
llyr, 1wy +- '+’yr,kwk||2 = yg,l”“’lﬂz*" ' "*"yf-,k”“'k”z = yﬁ,l + '+y12—,k: =
ll¥+[|* (Pythagorean theorem and normality). The result follows by summing
over 7.

It can be shown that algorithm TRACKW maintains orthonormality without
the need for any extra steps (otherwise, a simple re-orthonormalisation step at
the end would suffice).

From the user’s perspective, we have a low-energy and a high-energy thresh-
old, fr and Fg, respectively. We keep enough hidden variables &, so the
retained energy is within the range [ fg - E+, Fr; - E;]. Whenever we get outside
these bounds, we increase or decrease k. In more detail, the steps are:
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1 Estimate the full energy £y, 1, incrementally, from the sum of squares of
L.

2 Estimate the energy E( x) of the & hidden variables.

3 Possibly, adjust k. Weintroduce anew hidden variable (update & «+ k+1)
if the currenthidden variables maintain too little energy, i.e., ) < fpE.
We drop a hidden variable (update £ «— k — 1), if the maintained energy
is too high, i.e., £y > FpE.

The energy thresholds fg and Fg are chosen according to recommendations
in the literature (13, 7). We use a lower energy threshold fg = 0.95 and an
upper threshold Fy = 0.98. Thus, the reconstruction X; retains between 95%
and 98% of the energy of x;.

Algorithm SPIRIT
0. Initialise & «— 1 and the total energy estimates of x; and X; per time tick to
£ — 0and E7 «— 0. Then,

1. As each new point arrives, update w;, for 1 < 4 < & (step 1, TRACKW).
2. Update the estimates (for 1 <i < k)

_ 2 . (t=1DE+ v
PP 1)Et+iixtlt ind F{_()fyt

3. Let the estimate of retained energy be

E(k) o= z:,‘c:] Ez'~
If E(k) < frFE, then we start estimating wy, (initialising as in step 0 of
TRACKW), initialise £y, < 0 and increase k — k + 1. If By > FuE,
then we discard wy, and E‘k and decrease k < k& — 1.

The following lemma proves that the above algorithm guarantees the relative
reconstruction error is within the specified interval [fg, Fg|.

LEMMA 12.6 The relative squared error of the reconstruction satisfies

S % — %)
=1
Zt [l ||
Proof From the orthogonality of x. and X, — x, we have ||%, — x/[|? =

%12 — [|%7]12 = |I%¢[|> — |ly~||* (by Lemma 12.5). The result follows by
summing over 7 and from the definitions of £ and E.

1—-Fg< - fE.

In Section 8.0 we demonstrate that the incremental weight estimates are ex-
tremely close to the principal directions computed with offtine PCA.
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Exponential forgetting

We can adapt to more recent behaviour by using an exponential forgetting
factor, 0 < A < 1. This allows us to follow trend drifts over time. We use the
same A for the estimation of both w; and of the AR models (see Section 6.0).
However, we also have to properly keep track of the energy, discounting it with
the same rate, i.€., the update at each step is:

M= DE+ fxe]® B o At — 1)E¢;+y?,a-'
£ 1

Typical choices are 0.96 < X < 0.98 (11). As long as the values of x; do not
vary wildly, the exact value of A is not crucial. We use A = 0.96 throughout.
A value of A = 1 makes sense when we know that the sequence is stationary
(rarely true in practice, as most sequences gradually drift). Note that the value
of A does not affect the computation cost of our method. In this sense, an
exponential forgetting factor is more appealing than a sliding window, as the
latter has explicit buffering requirements.

E e

6. Putting SPIRIT to work

We show how we can exploit the correlations and hidden variables discovered
by SPIRIT to do (a) forecasting, {b) missing value estimation, (¢} summarisation
of the large number of streams into a small, manageable number of hidden
variables, and (d) outlier detection.

Forecasting and missing values

The hidden variables y, give us a much more compact representation of the
“raw” variables x,, with guarantees of high reconstruction accuracy (in terms
of relative squared error, which is less than 1 — fg). When our streams exhibit
correlations, as we often expect to be the case, the number & of the hidden
variables is much smaller than the number n of streams. Therefore, we can
apply any forecasting algorithm to the vector of hidden variables y., instead of
the raw data vector x,. This reduces the time and space complexity by orders
of magnitude, because typical forecasting methods are quadratic or worse on
the number of variables.

In particular, we fit the forecasting model on the y, instead of x;. The model
provides an estimate ¥:1 = f{y:) and we can use this to get an estimate for

X1 = QW [t - -+ G W[t

using the weight estimates w;[¢] from the previous time tick ¢. We chose auto-
regression for its intuitiveness and simplicity, but any online method can be
used.
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Correlations  Since the principal directions are orthogonal (w; L w;,i # j),
the components of y; are by construction uncorrelated—the correlations have
already been captured by the w;, 1 < ¢ < k. We can take advantage of this
de-correlation reduce forecasting complexity. In particular for auto-regression,
we found that one AR model per hidden variable provides results comparable
to multivariate AR.

Auto-regression Spacecomplexity formultivariate AR {e.g., MUSCLES (24))
is O(n?¢?), where £ is the auto-regression window length. For AR per stream
(ignoring correlations), it is O(nf?). However, for SPIRIT, we need O(kn)
space for the w; and, with one AR model per y;, the total space complexity is
O(kn + k£2). As published, MUSCLES requires space that grows cubically
with respect to the number of streams n. We believe it can be made to work with
quadratic space, but this is still prohibitive. Both AR per stream and SPIRIT
require space that grows lingarly with respect to n, but in SPIRIT £ is typically
very small (k < n) and, in practice, SPIRIT requires less memory and time
per update than AR per stream. More importantly, a single, independent AR
model per stream cannot capture any correlations, whereas SPIRIT indirectly
¢xploits the correlations present within a time tick.

Missing values When we have a forecasting model, we can use the forecast
based on x;_; to estimate missing values in x;. We then use these estimated
missing vaiues to update the weight estimates, as well as the forecasting models.
Forecast-based estimation of missing values is the most time-efficient choice
and gives very good results.

Interpretation

At any given time ¢, SPIRIT readily provides two key pieces of information
(aside from the forecasts, etc.): (i)The number of hidden variables k. (ii)
The weights w; j, 1 < i < k, 1 < j < n. Intuitively, the magnitude |w; ;|
of each weight telis us how much the ¢-th hidden variable contributes to the
reconstruction of the j-th stream.

In the chlorine example during phase 1 (see Figure 12.1), the dataset has only
one hidden variable, because one sinusoidal-like pattern can reconstruct both
streams (albeit with different weights for each). Thus, SPIRIT correctly iden-
tifies correlated streams. When the correlation was broken, SPIRIT introduces
enough hidden variables to capture that. Finally, it also spots that, in phase 3,
normal operation is reestablished and thus disposes of the unnecessary hidden
variable. Section 7 has additional examples of how we can intuitively interpret
this information.
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Table 12.2.  Description of datasets.

Dataset i k Description

Chiorine 166 2 Chlorine concentrations from EPANET.
Critter 8 1-2 Temiperature sensor measurements.
River 3 1 River gauge data from USACE.

Motes 54 2-4 Light sensor measurements,

7. Experimental case studies

In this section we present case studies on real and realistic datasets to demon-
strate the effectiveness of our approach in discovering the underlying correla-
tions among streams. In particular, we show that: (i) We capture the appropriate
number of hidden variables. As the streams evolve, we capture these changes
in real-time (21) and adapt the number of hidden variables & and the weights
w;. (i) We capture the essential behaviour with very few hidden variables
and small reconstruction error. (iii) We successfulty deal with missing values.
(iv) We can use the discovered correlations to perform good forecasting, with
much fewer resources. (v) We can easily spot outliers. (vi} Processing time per
stream is constant. Section § elaborates on performance and accuracy.

Chlorine concentrations

Description The Chlorine dataset was generated by EPANET 2.0! that ac-
curately simulates the hydraulic and chemical phenomena within drinking water
distribution systems. Given a network as the input, EPANET tracks the flow of
water in each pipe, the pressure at each node, the height of water in each tank,
and the concentration of a chemical species throughout the network, during a
simulation period comprised of multiple timestamps. We monitor the chlorine
concentration level at all the 166 junctions of a water distribution network, for
4310 timestamps during 15 days (one time tick every five minutes). The data
was generated by using the input network with the demand patterns, pressures,
flows specified at each node.

Data characteristics The two key features are: (i) A clear global periodic
pattern (daily cycle, dominating residential demand pattern). Chlorine concen-
trations reflect this, with few exceptions. (ii} A slight time shift across different
junctions, which is due to the time it takes for fresh water to flow down the
pipes from the reservoirs. Thus, most streams exhibit the same sinusoidal-

'hetp: //www.epa. gov/ORD/NRMRL /wawrd/epanet . html
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Figure 12,3, Chlorine dataset: () actual measurements and reconstruction at four junctions,
We plot only 300 consecutive timestamps (the patterns repeat after that). (b) shows SPIRIT’s
hidden variables.

like pattern, except with gradual phase shifts as we go further away from the
reservoir.

Results of SPIRIT SPIRIT can successfully summarise the data using just
two numbers (hidden variables) per time tick, as opposed to the original 166
numbers. Figure 12.3a shows the reconstruction for four of the sensors (out of
166). Only two hidden variables give very good reconstruction.

Interpretation The two hidden variables (Figure 12.3b) refiect the two key
dataset characteristics. The first hidden variable captures the global, periodic
pattern. The second one also follows a very similar periodic pattern, but with
a slight “phase shift.” It turns out that the two hidden variables together are
sufficient to express (via a linear combination)} any other time series with an
arbitrary “phase shift.”

Light measurements

Description The Motes dataset consists of light intensity measurements col-
lected using Berkeley Mote sensors, at several different locations in a lab, over
a period of a month.

Data characteristics The main characteristics are; (i) A clear global periodic
pattern (daily cycle). (ii) Occasional big spikes from some sensors (outliers).

Results of SPIRIT  SPIRIT detects four hidden variables (see Figure 12.4b).
Two of these are intermittent and correspond to outliers, or changes in the cor-
related trends, We show the reconstructions for some of the observed variables
in Figure 12.4a.

Interpretation In summary, the first two hidden variables (see Figure 12.4b)
correspond to the global trend and the last two, which are intermittently present,
correspond to outliers. In particular, the first hidden variable captures the global
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Figure 12,4, Mote dataset; {a) shows the measurements (bold) and reconstruction (thin) on
nodes 31 and 32, (b) the thivd and fourth hidden variables are intermittent and indicatc anomalous
behaviour (axes limits are different in each plot).

periodic pattern, The interpretation of the second one is again similar to the
Chlorine dataset. The first two hidden variables together are sufficient to
express arbitrary phase shifts. The third and fourth hidden variables indicate
some of the potential outliers in the data. For example, there is a big spike in
the 4th hidden variable at time £ = 1033, as shown in Figure 12.4b. Examining
the participation weights w at that timestamp, we can find the corresponding
sensors “responsible” for this anomaly, i.e., those sensors whose participation
weights have very high magnitude. Among these, the most prominent are
sensors 31 and 32. Looking at the actual measurements from these sensors, we
see that before time ¢ = 1033 they are almost 0. Then, very large increases
occur around ¢ = 1033, which bring an additional hidden variable into the
system.

Room temperatures

Description The Critter dataset consists of 8 streams (see Figure 12.5a).
Each stream comes from a small sensor? (aka. Critter) that connects to the
joystick port and measures temperature. The sensors were placed in 5 neigh-
bouring rooms. Each time tick represents the average temperature during one
minute.

Furthermore, to demonstrate how the correlations capture information about
missing values, we repeated the experiment after blanking 1.5% of the values
(five blocks of consecutive timestamps; see Figure 12.6).

Data characteristics Owverall, the dataset does not seem to exhibit a clear
trend. Upon closer examination, all sensors fluctuate slightly around a con-
stant temperature (which ranges from 22-27°C, or 72-81°F, depending on the

2http: //www. ices. cmu. edu/sensornets/
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Figure {2.5. Critter data and SPIRIT output, for cach of the temperature sensors, in (a).
SPIRIT cuan track the overall behaviour of the entire stream collection with only two hidden
variables, shown in {c). For the comparison in (b), wall clock times are 1.3 minutes {repeated
PCA) versus 7 seconds {SPIRIT).

sensor). Approximately half of the sensors exhibit a more similar “fluctuation
pattern.”

Results of SPIRIT  SPIRIT discovers one hidden variable, which is sufficient
to capture the general behaviour. However, if we utilise prior knowledge (such
as, e.g., that the pre-set temperature was 23°C), we can ask SPIRIT to detect
trends with respect to that. In that case, SPIRIT comes up with two hidden
variables, which we explain later.

SPIRIT is also able to deal successfully with missing values in the streams.
Figure 12.6 shows the results on the blanked version (1.5% of'the total values in
five blocks of consecutive timestamps, starting at a different position for each
stream) of Critter. The correlations captured by SPIRIT’s hidden variable
often provide useful information about the missing values. In particular, on
sensor § (second row, Figure 12.6), the correlations picked by the single hidden
variable successfully capture the missing values in that region {(consisting of
270 ticks). On sensor 7, (first row, Figure 12.6; 300 blanked values), the upward
trend in the blanked region is also picked up by the correlations. Even though
the trend is slightly mis-estimated, as soon as the values are observed again,
SPIRIT very quickly gets back to near-perfect tracking.
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Figure 12.6. Detail of the forecasts on Critter with blanked values. The second row shows
that the correlations picked by the single hidden variable successfully capture the missing values
in that region (consisting of 270 consecutive ticks). In the first row (300 consecutive blanked
values), the upward trend in the blanked region is also picked up by the correlations to other
streams. Even though the trend is slightly mis-estimated, as soon as the values are observed
again SPIRIT quickly gets back to near-perfect tracking,

Interpretation If we examine the participation weights in w, the largest
correspond primarily to streams 5 and 6, and then to stream 8. If we examine
the data, sensors 5 and 6 consistently have the highest temperatures., Sensor 8
also has a similar temperature most of the time.

However, if the sensors are calibrated based on the fact that these are building
temperature measurements, where we have set the thermostat to 23°C (73°F),
then SPIRIT discovers two hidden variables (see Figure 12.5c). More specif-
ically, if we reasonably assume that we have the prior knowledge of what the
temperature should be (note that this has nothing to do with the average tem-
perature in the observed data) and want to discover what happens around that
temperature, we can subtract it from each observation and SPIRIT will discover
patterns and anomalies based on this information. Actually, this is what a hu-
marn operator would be interested in discovering: “Does the system work as I
expect it to?” (based on my knowledge of how it should behave) and “If not,
what is wrong?” and we indeed discover this kind of information.

The interpretation of the first hidden variable is similar to that of the original
signal: sensors 5 and 6 (and, to a lesser extent, 8) deviate from that temperature
the most, for most of the time. Maybe the thermostats are broken or set wrong?

For w3, the largest weights correspond to sensors 1 and 3, then to 2 and 4. If
we examine the data, we notice that these streams follow a similar, fluctuating
trend (close to the pre-set temperature), the first two varying more violently.
The second hidden variable is added at time t = 2016. If we examine the plots,
we see that, at the beginning, most streams exhibit a slow dip and then ascent
{e.g., see 2, 4 and 5 and, to a lesser extent, 3, 7 and 8). However, a number
of them start fluctuating more quickly and violently when the second hidden
variable is added.
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{a) SPIRIT reconstruction {with forecasting) (b) Hidden variable

Figure 12,7, Actual River data (river gauges, in feet) and SPIRIT output, for each of the
streams (no pun intended). The large portions with missing values across all streams are marked
with dotted lines (there are also other missing values in some of the strcams); about 26% of all
valucs are missing, but this docs not affect SPIRIT s tracking abilities.

River gauges

Description The dataset was collected from the USACE current river con-
ditions website®. Tt consists of river stage (or, water level) data from three
different measuring stations in the same river system (see Figure 12.7).

Data characteristics The data exhibit one common trend and has plenty of
missing values (26% of all values, for all three streams).

Results and interpretation Examining the three hidden variable weights
found by SPIRIT, these have ratios 1.5 : 1.1 : 1. Indeed, if we look at all
20,000 time ticks, this is what we seg; all streams are very similar (since they
are from the same river), with the “amplitude” of the fluctuations having roughly
these proportions. Hence, ong hidden variable is sufficient, the three weights
compactly describe the key information and the interpretation is intuitive.

Besides recovering missing values from underlying cotrelations captured by
the few hidden variables, SPIRIT’s tracking abilities are not affected even in
extreme cases.

8. Performance and accuracy

In this section we discuss performance issues, First, we show that SPIRIT
requires very limited space and time. Next, we elaborate on the accuracy of
SPIRIT’s incremental estimates.

Inttp: /fwaw, Lrp.usace, army . mil/current/
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Figure 12.8.  Whall-clock times (including time to update forecasting models). Times for AR
and MUSCLES are not shown, since they are off the charts from the start (13.2 seconds in (a)
and 209 in (b)). The starting values are: (a) 1000 time ticks, (b} 50 streams, and (¢) 2 hidden
variables (the other two held constant for each graph). It is clear that SPIRIT scales linearly.

Time and space requirements

Figure 12.8 shows that SPIRIT scales linearly with respect to number of
streams 7 and number of hidden variables k. AR per stream and MUSCLES
are essentially off the charts from the very beginning. Furthermore, SPIRIT
scales linearly with stream size (i.e., requires constant processing time per
tuple}).

The plots were generated using a synthetic dataset that allows us to First,
we choose the number k of trends and generate sine waves with different fre-
quencies, say y;; = sin(2wi/kt),1 < i < k. Thus, all trends are pairwise
linearly independent. WNext, wenerate each of the n streams as random linear
combinations of these % trend signals. This scheme allows us to vary &, n and
the length of the streams at will. For each experiment shown, one of these pa-
rameters is varied and the other two are held fixed. The numbers in Figure 12.8
are wall-clock times of our Matlab implementation. Both AR-per-stream as
well as MUSCLES (also in Matlab) are several orders of magnitude slower and
thus omitted.

We have also implemented the SPIRIT algorithms in a real system (21), which
can obtain measurements from sensor devices and display hidden variables and
trends in real-time.

Accuracy

In terms of accuracy, everything boils down to the quality of the summary
provided by the hidden variables. To this end, we show the reconstruction
X; of X, from the hidden variables y; in Figure 12.5(b). One line uses the
true principal directions, the other the SPIRIT estimates (i.e., weight vectors).
SPIRIT comes very close to repeated PCA.

We should note that this is an unfair comparison for SPIRIT, since repeated
PCA requires (i) storing af/ stream values, and (ii) performing a very expensive
SVD computation for each time tick. However, the tracking is still very good.
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Table 12.3.  Reconstruction accuracy (mean squared error rate).

Dataset Chlorine Critter Motes
MSE rate (SPIRIT) 0.0359 0.0827 0.0669
MSE rate (repeated PCA) 0.0401 0.0822 0.0448
Diraction convergance (w, i Diruction convargence (w,) Tirechion corvaiganca () Cirection conwergencs {u,)
1 1 1 1 T
08| o8 A 08 [ ;
:i 06 :: 08 ;__:_‘ 06 Z:‘ [12:3
02 02 o EIL. ........................ 0
260 45?‘"'!500 BDO 130 200 M;%m:l;ﬂ BDO 1000 ° 2&0 460“:“:00 al:]O 1000 0 200 @imgﬁo Bl‘]u 1000
(aar=1 by A =0.96

Figure 12.9.  Hidden variable tracking accuracy.

This is always the case, provided the corresponding eigenvalue is large enough
and fairly well-separated from the others. If the eigenvalue is small, then the
corresponding hidden variable is of no importance and we do not track it anyway.

Reconstruction error Figurc 12.3 shows the reconstruction error, 3 ||X; —
%12/ 37 |Ix¢]|?, achieved by SPIRIT. In every experiment, we set the encrgy
thresholds to [fg, Fp] = [0.95,0.98]. Also, as pointed out before, we set
A = 0.96 as a reasonable default value to deal with non-stationarities that
may be present in the data, according to recommmendations in the literature (11).
Since we want a metric of overall quality, the MSE rate weighs each observation
equally and does not take into account the forgetting factor A.

Still, the MSE rate is very close to the bounds we set. In Figure 12.3 we
also show the MSE rate achieved by repeated PCA. As pointed out before, this
is already an unfair comparison. In this case, we set the number of principal
components £ to the maximum that SPIRIT uses at any point in time. This
choice favours repeated PCA even further. Despite this, the reconstruction
errors of SPIRIT are close to the ideal, while using orders of magnitude less
time and space.

Finally, Figure 12.9 illustrates the convergence to the “true” principal com-
ponent directions on a synthetic dataset. First, we compare against the PCA of
the entire data X, with A = 1. We see convergence is almost immediate. This
is always the case, provided the corresponding eigenvalue is large enough and
fairly well-separated from the others. However, if the eigenvalue is small, then
the corresponding hidden variable is of no importance and we do not track it
anyway. When A < 1, the problem is harder, because the w; gradually shift
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over time. For A < 1, we compare against repeated PCA (using the first 7
rows of X, appropriately weighted). We see that we can still track the shifting
principal component directions well.

9, Conclusion

We focus on finding patterns, correlations and hidden variables, in a large
number of streams. SPIRIT has the following desirable characteristics:

(i) It discovers underlying correlations among multiple streams, incremen-
tally and in real-time (21) and provides a very compact representation of the
stream collection, via a few hidden variables.

(ii) It automatically estimates the number % of hidden variables to track, and
it can automatically adapt, if & changes (¢.g., an air-conditioner switching on,
in a temperature sensor scenario).

(iii) It scales up extremely well, both on database size (i.e., number of time
ticks £), and on the number n of streams. Therefore it is suitable for a large
number of sensors / data sources.

(iv) Its computation demands are low: it only needs O(nk) floating point
operations—no matrix inversions nor SVD (both infeasible in online, any-time
settings). Its space demands are similarly limited.

(v) It can naturally hook up with any forecasting method, and thus casily do
prediction, as well as handle missing values.

‘We showed that the output of SPIRIT has a natural interpretation. We eval-
uated our method on several datasets, where indeed it discovered the hidden
variables, Moreover, SPIRIT-based forecasting was several times faster than
other methods.
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Abstract With advances in data collection and generatien technologies, organizations and
researchers are faced with the cver growing problem of how to manage and
analyze large dynamic datasets. Environments that produce streaming sources of
data are becoming common place. Examples include stock market, sensor, web
click stream, and network data, In many instances, these environments are also
equipped with multiple distributed computing nodes that are often located near
the data sources. Analyzing and monitoring data in such environments requires
data mining technology that is cognizant of the mining task, the distributed nature
of the data, and the data inftux rate. In this chapter, we survey the current state
of the field and identify potential directions of future research.

1. Introduction

Advances in technology have enabled us to collect vast amounts of data from
various sources, whether they be from experimental observations, simulations,
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sensors, credit card transactions, or from networked systems. To benefit from
these enhanced data collecting capabilities, it is clear that semi-automated in-
teractive techniques such as data mining should be employed to process and
analyze the data, Tt is also desirable to have interactive response times to client
queries, as the process is often iterative in nature (with a human in the loop).
The challenges to meet these criteria are often daunting as detailed next.

Although inexpensive storage space makes it possible to maintain vast vol-
umes of data, accessing and managing the data becomes a performance issue.
Often one finds that a single node is incapable of housing such large datasets.
Efficient and adaptive techniques for data access, data storage and communi-
cation (if the data sources are distributed) are thus necessary. Moreover, data
mining becomes more complicated in the context of dynamic databases, where
there is a constant influx of data. Changes in the data can invalidate existing
patterns or introduce new ones. Re-executing the algorithms from scratch leads
to large computational and I/O overheads. These two factors have led to the
development of distributed algorithms for analyzing streaming data which is
the focus of this survey article.

Many systems use a centralized model for mining mulitiple data strearms [2].
Under this mode! the distributed data streams are directed to one central location
before they are mined. A schematic diagram of a centralized data stream mining
system is presented in Figure 13.1. Such a model of computation is limited in
several respects. First, centralized mining of data streams can result in long
response time. While distributed computing resources may be available, they
are not fully utilized. Second, central collection of data can result in heavy
traffic over critical communication links. If these communication links have
limited network bandwidth, network IO may become a performance bottleneck.
Furthermore, in power constrained domains such as sensor networks, this can
result in excessive power consumption due to excessive data communication.

To alleviate the aforementioned problems, several researchers have proposed
a model that is aware of the distributed sources of data, computational resources,
and communication links. A schematic diagram of such a distributed stream
mining system is presented in Figure 13.1 and can be contrasted with the cen-
tralized model. In the model of distributed stream mining, instead of officading
the data to one central location, the distributed computing nodes perform parts
of the computation close to the data, while communicating the local models
to a central site as and when needed. Such an architecture provides several
benefits. First, by using distributed computing nodes, it allows the derivation
of a greater degree of parallelism, thus reducing response time. Second, as
only local models need to be communicated, communication can potentially
be reduced, improving scalability, and reducing power consumption in power
constrained domains.



A Survey of Distributed Mining of Data Streams 291

FINAL MODEL

I”INAL MODEL

DATA MINING
ALGORITHM

DATA MINING
ALGORITHM

a
g LO(‘,AL MODhL| | LOCAL \JODELI | LDCAL MODEL E
i
J DATA MINING DATA MINING DATA MINING
| DATA INTEGRATION Al UORITHM AL(‘{}RITHM ALGORITHM
0 i} o] 1] a 1]
1] | 0 il a 1]
0 0 i} ] a ]
] i 0 0 0 i}
0 T n i i il
DATA DATA DATA DATA DATA DATA
SOURCE SOURCE SOURCE SOURCE SOURCE SQURCE

Figure 13.1.  Centralized Stream Processing Architecture (left) Distributed Stream Processing
Architecture (right)

This chapter presents a brief overview of distributed stream mining algo-
rithms, systems support, and applications, together with emerging rescarch di-
rections, We attempt to characterize and classify these approaches as to whether
they belong in the centralized model or the distributed model. The rest of this
chapter is organized as follows. First, we present distributed stream mining
algorithms for various mining tasks such as outlier detection, clustering, fre-
quent itemset mining, classification, and summarization. Second, we present an
overview of distributed stream mining in resource constrained domains. Third,
we summarize research efforts on building systems support for facilitating dis-
tributed stream mining. Finally, we conclude with emerging research directions
in distributed stream mining.

2. Outlier and Anomaly Detection

The goal in outlier or anomaly detection is to find data points that are most
different from the remaining points in the data set [4]. Most outlier detection
algorithms are schemes in which the distance between every pair of points
is calculated, and the points most distant from all other points are marked as
outliers [29]. This is an ((n?) algorithm that assumes a static data set. Such
approaches are difficult to extend to distributed streaming data sets. Points in
these data sets arrive at muitiple distributed end-points, which may or may not
be compute nodes, and must be processed incrementally. Such constraints lead
us away from purely distance-based approaches, and towards more heuristic
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techniques. Note that the central issue in many anomaly detection systems, is
to identify anomalies in real-time or as close to real time as possible thus making
it a natural candidate for many streaming applications. Moreover, often times
the data is produced at disparate sites making distributed stream mining a natural
fit for this domain. In this section we review the work in outlier or anomaly
detection most germane to distributed stream mining,

Various application-specific approaches to outlier/anomaly detection have
been proposed in the literature. An approach [39] has been presented for dis-
tributed deviation detection in sensor networks. This approach is tailored to
the sensor network domain and targets misbehaving sensors. The approach
maintains density estimates of values seen by a sensor, and flags a sensor to
be a mishehaving sensor if its value deviates significantly from the previously
observed values. This computation is handled close to the sensors in a dis-
tributed fashion, with only results being reported to the central server as and
when needed.

One of the most popular applications of distributed outlier detection is that
of network intrusion detection. Recent trends have demanded a distributed
approach to intrusion detection on the Internet. The first of these trends is a
move towards distributed intrusions and attacks, that is to say, intrusions and
attacks originating from a diverse set of hosts on the internet. Aunother trend
is the increasing heterogeneous nature of the Internet, where different hosts,
perhaps residing int the same subnetwork have differing security requirements.
For example, there have been proposals for distributed firewalls [20] for fulfill-
ing diverse security requirements. Also, the appearance of mobile and wireless
computing has created dynamic network topologies that are difficult, if not
impossible, to protect from a centralized location. Efficient detection and pre-
vention of these attacks requires distributed nodes to collaborate. By itself, a
node can only collect information about the state of the network immediately
surrounding it, which may be insufficient to detect distributed attacks. If the
nodes collaborate by sharing network audit data, host watch lists, and models of
knownnetwork attacks, each can construct a better global model of the network.

Otey et al [36], present a distributed outlier detection algorithm targeted at
distributed online streams, specifically to process network data collected at dis-
tributed sites. Their approach finds outliers based on the number of attribute
dependencies violated by a data point in continuous, categorical, and mixed
attribute spaces. They maintain an in-memory structure that succinctly sum-
marizes the required dependency information. In order to find exact outliers
in a distributed streaming setting, the in-memory summaries would need to be
exchanged frequently. These summaries can be large, and consequently, in a
distributed setting, each distributed computing node only exchanges local out-
liers with the other computing nodes. A point is deemed to be a global outlier
if every distributed node believes it to be an outlier based on its local model
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of normalcy. While such an approach will only find approximate outliers, the
authors show that this heuristic works well in practice. While the authors report
that to find exact outliers they need to exchange a large summary which leads
to excessive communication, it could be possible to exchange only decisive
parts of the summary, instead of the entire summary, in order to more accu-
rately detect the true outliers. Furthermore, their in-memory summarics are
large, as they summarize a large amount of dependency information. Reducing
this memory requirement could potentially allow the use of this algorithm in
resource-constrained domains.

EMERALD is an approach for collaborative intrusion detection for large net-
works within an enterprise [42]. This approach allows for distributed protection
of the network through a hierarchy of surveillance systems that analyze network
data at the service, domain, and enterprise-wide levels. However, EMERALD
does not provide mechanisms for allowing different organizations to collabo-
rate. Locasto et al [33] examine techniques that allow different organizations
to do such collaboration for enhanced network intrusion detection. If organi-
zations can collaborate, then each can build a better model of global network
activity, and more precise models of attacks (since they have more data from
which to estimate the model parameters). This allows for better characterization
and prediction of attacks. Collaboration is achieved through the exchange of
Bloom filters, each of which encodes a list of IP addresses of suspicious hosts
that a particular organization’s Intrusion Detection System (IDS) has detected,
as well as the ports which these suspicious hosts have accessed. The use of
Bloom filters helps both to keep each collaborating organization’s information
confidential and to reduce the amount of data that must be exchanged.

A major limitation of this approach is that information exchanged may not
be sufficient to identify distributed attacks. For example, it is possible that
an attack may originate from a number of hosts, none of which are suspicious
enough to be included on any organization’s watch list. However, the combined
audit data collected by each organization’s IDS may be sufficient to detect that
attack. To implement such a system, two problems must be addressed. The
first is that each organization may collect disjoint sets of features. Collaborating
organizations must agree beforehand on a set of common features to use. Some
ideas for common standards for intrusion detection have been realized with the
Common Intrusion Detection Framework (CIDF) [31]. The second problem is
that of the privacy of each organization’s data. It may not be practical to use
Bloom filters to encode a large set of features. However, techniques do exist
for privacy-preserving data mining [28, 23, 32] that will allow organizations to
collaborate without compromising the privacy of their data.

There have been other approaches for detecting distributed denial-of-service
attacks. Lee et al have proposed a technique for detecting novel and distributed
intrusions based on the aforementioned CIDF [31]. The approach not only
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allows nodes to share information with which they can detect distributed attacks,
but also allows them to distribute models of novel attacks. Yu et @/ propose a
middleware-based approach to prevent distributed denial of service attacks [45].
Their approach makes use of Virtual Private Operation Environments (VPOE)
to allow devices running the middleware to collaborate. These devices can act
as firewalls or network monitors, and their roles can change as is necessary.
Each device contains several modules, including an attack detection module,
a signaling module for cooperating with other devices, and policy processing
modules.

Some work in network intrusion detection has been done in the domain of
mobile ad hoc networks (MANETS) [47, 18], where nodes communicate over
a wireless medium. In MANETS, the topology is dynamic, and nodes must
cooperate in order to route messages to their proper destinations. Because of
the open communication medium, dynamic topology, and cooperative nature,
MANETSs are especially prone to network intrusions, and present difficulties
for distributed intrusion detection.

To protect against intrusions, Zhang a¢ af have proposed scveral intrusion
detection techniques [46, 47]. In their proposed architecture, each node in the
network participates in detection and response, and each is equipped with a
local detection engine and a cooperative detection engine. The local detection
engine is responsible for detecting intrusions from the local audit data. Ifanode
has strong evidence that an intrusion is taking place, it can initiate a response to
the intrusion. However, if the evidence is not sufficiently strong, it can initiate a
global intrusion detection procedure through the cooperative detection engine.
The nodes only cooperate by sharing their detection states, not their audit data,
and so it is difficult for each node to build an accurate global model of the
network with which to detect intrusions. In this case, intrusions detectable only
atthe global level (e.g. ip sweeps) will be missed. However, the authors do point
out that they only use local data since the remote nodes may be compromised
and their data may not be trustworthy.

In ancther paper [18)], Huang and Lec present an alternative approach to
intrusion detection in MANETS. In this work, the intrusions to be detected are
attacks against the structure of the network itself. Such intrusions are those
that corrupt routing tables and protocols, intercept packets, or launch network-
level denial-of-service attacks. Since MANETSs typically operate on battery
power, it may not be cost effective for each node to constantly run its own
intrusion detection system, especially when there is a low threat level. The
authors propose that a more effective approach would be for a cluster of nodes
in a MANET to elect one node as a monitor (the clusterhead) for the entire
cluster. Using the assumption that each node can overhear network traffic in
its transmission range, and that the other cluster members can provide (some
of) the features (since the transmission ranges of the clusterhead and the other
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cluster members may not overlap, the other cluster members may have statistics
on portions of the cluster not accessible to the clusterhead), the clusterhead is
responsible for analyzing the flow of packets in its cluster in order to detect
intrusions and initiate a response. In order for this intrusion detection approach
to be effective, the election of the clusterhead must be fair, and each clusterhead
must serve an equal amount of time. The first requirement ensures that the
election of the clusterhead is unbiased (i.e. a compromised node cannot tilt the
election in its favor), and the second requirement ensures that a compromised
node cannot force out the current clusterhead nor remain as clusterhead for an
unlimited period of time. There is a good division of labor, as the clusterhead
is the only member of the cluster that must run the intrusion detection system;
the other nodes need only collect data and send it to the clusterhead. However,
a limitation of this approach is that not all intrusions are visible at the global
level, especially given the feature set the detection system uses (statistics on the
network topology, routes, and traffic). Such local intrusions include exploits of
services mnning on a node, which may only be discernible using the content of
the traffic.

3. Clustering

The goal in clustering is to partition a set of points into groups such that
points within a group are similar in some sense and points in different groups
are dissimilar in the same sense. In the context of distributed streams, one would
want to process the data streams in a distributed fashion, while communicating
the summaries, and to arrive at global clustering of the data points. Guha
et al [17], present an approach for clustering data streams. Their approach
produces a clustering of the points scen using smali amounts of memory and
time. The summarized data consists of the cluster centers together with the
number of points assigned to that cluster. The k-median algorithm is used as
the underlying clustering mechanism. The resulting clustering is a constant
factor approximation of the true clustering. As has been shown in [16], this
algorithm can be easily extended to operate in a distributed setting. Essentially,
clusterings from each distributed site can be combined and clustered to find the
global clustering with the same approximation factor. From a qualitative stand
point, in many situations, k-median clusters are known to be less desirable than
those formed by other clustering techniques. It would be interesting to see
if other clustering algorithms that produce more desirable clusterings can be
extended with the above methodology to operate over distributed streams.

Januzaj ef gl {21], present a distributed version of the density-based cluster-
ing algorithm, DBSCAN. Essentially, each site builds a local density-based
clustering, and then communicates a summary of the clustering to a central
site. The central site performs a density-based clustering on the summaries
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obtained from all sites to find a global clustering. This clustering is relayed
back to the distributed sites that update their local clusterings based on the dis-
covered global clustering. While this approach is not capable of processing
dynamic data, in [13], the authors have shown that density based clustering can
be performed incrementally. Therefore, a distributed and incremental version
of DBSCAN can potentially be devised. However, like the distributed version
presented by Januzaj ef af, we cannot provide a guarantee on the quality of the
result.

Beringer and Hullermeir consider the problem of clustering parallel data
streams [5]. Their goal is to find correlated streams as they arrive synchronously.
The authors represent the data streams using exponentially weighted sliding
windows. The discrete Fourier transform is computed incrementally, and k-
Means clustering is performed in this transformed space at regular intervals
of time. Data streams belonging to the same cluster are considered to be cor-
related. While the processing is centralized, the approach can be tailored to
correlate distributed data streams. Furthermore, the approach is suitable for
online streams. It is possible that this approach can be extended to a distributed
computing environment. The Fourier coefficients can be exchanged incremen-
tally and aggregated locally to summarize remote information. Furthermore,
one can potentially produce approximate results by only exchanging the signif-
icant coefficients,

4, Frequent itemset mining

The goal in frequent itemset mining is to find groups of items or values that
co-occur frequently in a transactional data set. For instance, in the context
of market data analysis, a frequent two itemset could be {beer, chips}, which
means that people frequently buy beer and chips together. The goal in frequent
itemset mining is to find all itemsets in a data set that occur at least x number
of times, where x is the minimum support parameter provided by the user.

Frequent itemset mining ig both CPU and I/Q intensive, making it very costly
to completely re-mine a dynamic data set any time one or more transactions are
added or deleted. To address the problem of mining frequent itemsets from dy-
namic data sets, several researchers have proposed incremental techniques [10,
11, 14, 30, 43, 44]. Incremental algorithms essentially re-use previously mined
information and try to combine this information with the fresh data to efficiently
compute the new set of frequent itemsets, However, it can be the case that the
database may be distributed over multiple sites, and is being updated at different
rates at each site, which requires the use of distributed asynchronous frequent
itemset mining techniques.

Otey et al [38], present a distributed incremental algorithm for frequent
itemset mining. The approach is capable of incrementally finding maximal
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frequent itemsets in dynamic data. Maximal frequent itemsets are those that
do not have any frequent supersets, and the set of maximal frequent itemsets
determines the complete set of frequent itemsets. Furthermore, it is capable of
mining frequent itemsets in a distributed setting. Distributed sites can exchange
their local maximal frequent itemsets to obtain a superset of the global maximal
frequent itemsets. This superset is then exchanged between all nodes so that
their local counts may be obtained. In the final round of communication, a
reduction operation is performed to find the exact set of global maximal frequent
itemsets.

Manku and Motwani [35], present an algorithm for mining frequent itemsets
over data streams. In order to mine all frequent itemsets in constant space,
they employ a down counting approach. Essentially, they update the support
counts for the discovered itemsets as the data set is processed. Furthermore,
for all the discovered itemsets, they decrement the support count by a specific
value. As a result, itemsets that occur rarely will have their count set to zero
and will be eventually eliminated from list. If they reappear later, their count
is approximated. While this approach is tailored to data streams, it is not
distributed. The methodology proposed in [38] can potentially be applied to
this algorithm to process distributed data sireams,

Manjhi et af [34], extend Manku and Motwani’s approach to find frequent
items in the union of multiple distributed streams. The central issue is how to
best manage the degree of approximation performed as partial synopses from
multiple nodes are combined. They characterize this process for hierarchical
communication topologies in terms of a precision gradient followed by syn-
opses as they are passed from leaves 1o the root and combined incrementally.
They studied the problem of finding the optimal precision gradient under two
alternative and incompatible optimization objectives: (1) minimizing load on
the central node to which answers are delivered, and (2) minimizing worst-case
load on any communication link. While this approach targets frequent items
only, it would be interesting to see if it can be extended to find frequent itemsets.

5. Classification

Hulten and Domingos [19], present a one-pass decision tree construction
algorithm for streaming data. They build a tree incrementally by observing
data as it streams in and splitting a node in the tree when a sufficient number
of samples have been seen. Their approach uses the Hoeftding inequality to
converge to a sample size. Jin and Agrawal revisit this problem and present
solutions that speed up split point calculation as well as reduce the desired
sample size to achieve the same level of accuracy [22]. Both these approaches
are not capable of processing distributed streams.
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Kargupta and Park present an approach for aggregating decision trees con-
structed at distributed sites [26]. As each decision tree can be represented as
a numeric function, the authors propose to transmit and aggregate these trees
by using their Fourier representations. They aiso show that the Fourier-based
representation is suitable for approximating a decision tree, and thus, suitable
for transmission in bandwidth-limited mobile environments. Coupled with a
streaming decision tree construction algorithm, this approach should be capable
of processing distributed data streams.

Chen et al [8], present a collective approach to mine Bayesian networks from
distributed heterogeneous web-log data streams. In their approach, they learn
a local Bayesian network at each site using the local data. Then each site iden-
tifies the observations that are most likely to be evidence of coupling between
local and non-local variables and transmits a subset of these observations to a
central site. Another Bayesian network is learned at the central site using the
data transmitted from the local sites. The local and central Bayesian networks
are combined to obtain a collective Bayesian network, that models the entire
data. This technique is then suitably adapted to an online Bayesian learning
technique, where the network parameters are updated sequentially based on new
data from multiple streams. This approach is particularly suitable for mining
applications with distributed sources of data streams in an environment with
non-zero communication cost (e.g. wireless networks).

6. Summarization

Bulut and Singh [6], propose a novel technique to summarize a data stream
incrementally. The surmmaries over the stream are computed at multiple resolu-
tions, and together they induce a unique Wavelet-based approximation tree. The
resolution of approximations increases as we move from the root of the approx-
imation trec down to its leaf nodes. The tree has space complexity O(logV),
where IV denotes the current size of the stream. The amortized processing cost
for each new data value is O(1). These bounds are currently the best known for
the algorithms that work under a biased query model where the most recent val-
ues are of a greater interest. They also consider the scenario in which a central
source site summarizes a data stream at multiple resolutions. The clients are
distributed across the network and pose queries. The summaries computed at
the central site are cached adaptively at the clients. The access pattern, i.e. reads
and writes, over the stream results in multiple replication schemes at different
resolutions. Each replication scheme expands as the corresponding read rate
increases, and contracts as the corresponding write rate increases. This adaptive
scheme minimizes the total communication cost and the number of inter-site
messages. While the summarization process is centralized, it can potentially
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be used to summarize distributed streams at distributed sites by aggregating
wavelet coefficients.

The problem of pattern discovery in a large number of co-evolving sircams
has attracted much attention in many domains. Papadimitriou ¢# af introduce
SPIRIT (Streaming Pattern dIscoveRy in multlple Time-series) [40], a com-
prehensive approach to discover correlations that effectively and efficiently
summarize large collections of streams. The approach uses very less memory
and both its memory requirements and processing time are independent of the
stream length. It scales linearly with the number of streams and is adaptive and
fully antomatic. It dynamically detects changes (both gradual and sudden) in
the input streams, and automatically determines the number of hidden variables.
The correlations and hidden variables discovered have multiple uses. They pro-
vide a succinct summary to the user, they can help to do fast forecasting and
detect outhiers, and they facilitate interpolations and handling of missing values.
While the algorithm is centralized, it targets multiple distributed streams. The
approach can potentially be used to summarize streams arriving at distributed
sites.

Babcock and Olston [3], study a useful class of queries that continuously
report the £ largest values obtained from distributed data streams (“top-k mon-
itoring queries™), which are of particular interest because they can be used to
reduce the overhead incurred while running other types of monitoring gueries.
They show that transmitting entire data streams is unnecessary to support these
queries. They present an alternative approach that significantly reduces com-
munication. In their approach, arithmetic constraints are maintained at remote
stream sources to ensure that the most recently provided top-k answer remains
valid to within a user-specified error tolerance. Distributed communication is
only necessary on the occasion when constraints are violated.

7. Mining Distributed Data Streams in Resource
Constrained Environments

Recently, there has been a lot of interest in environments that demand dis-
tributed stream mining where resources are constrained. For instance, in the
sensor network domain, due to energy consumption constraints, excessive com-
munication is undesirable. One can potentially perform more computation and
less communication to perform the same task with reduced energy consumption.
Consequently, in such scenarios, data mining algorithms (specifically clustering
and classification) with tunable computation and communication requirements
are needed [24, 39].

A similar set of problems have recently been looked at in the network intru-
sion detection community. Here, researchers have proposed to offload compu-
tation related to monitoring and intrusion detection on to the network interface
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card (NIC) [37] with the idea of enhancing rcliability and reducing the con-
straints imposed on the host processing environment. Initial results in this
domain convey the promise of this area but there arc several limiting criteria
in current generation NICs (e.g. programming model, lack of floating point
operations) that may be alleviated in next generation NICs.

Kargupta ez al present Mobimine [27], a system for intelligent analysis of
time-critical data using a Personal Data Assistant (PDA). The system monitors
stock market data and signals interesting stock behavior to the user. Stocks are
interesting if they may positively or negatively affect the stock portfolio of the
user. Furthermore, to assist in the user’s analysis, they transmit classification
trees to the user’s PD'A using the Fourier spectrum-based approach presented
earlier. As discussed previously, this Fourier spectrum-hased representation is
well suited to environments that have limited communication bandwidth.

The Vehicle Data Stream Mining System (VEDAS) [25], is a mobile and
distributed data stream mining/monitoring application that taps into the contin-
uous stream of data generated by most modern vehicles. It allows continuous
on-board monitoring of the data streams generated by the moving vehicles,
identifying the emerging patterns, and reporting them to a remote control cen-
ter over a low-bandwidth wireless network connection. The system offers many
possibilities such as real-time on-board health monitoring, drunk-driving detec-
tion, driver characterization, and security related applications for commercial
fleet management. While there has been initial work in such constrained envi-
ronments, we believe that there is still a lot to be done in this area.

8. Systems Support

A distributed stream mining system can be complex. It typically consists
of several sub-components such as the mining algorithms, the communication
sub-system, the resource manager, the scheduler, etc. A successful stream
mining system must adapt to the dynamics of the data and best use the available
set of resources and components. In this section, we will briefly summarize
efforts that target the building of system support for resource-aware distributed
processing of sireams.

When processing continuous data streams, data arrival can be bursty, and the
data rate may fluctuate over time. Systems that seek to give rapid or real-time
query responses in such an environment must be prepared to deal gracefully
with bursts in data arrival without compromising system performance. Babcock
et al [1] show that the choice of an operator scheduling strategy can have sig-
nificant impact on the run-time system memory usage. When data streams are
bursty, the choice of an operator scheduling strategy can result in significantly
high run-time memory usage and poor performance. To minimize memory uti-
lization at peak load, they present Chain scheduling, an adaptive, load-aware
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scheduling of query operators to minimize resource consumption during times
of peak load. This operator scheduling strategy for data stream systems is
near-optimal in minimizing run-time memory usage for single-stream queries
involving selections, projections, and foreign-key joins with stored relations.
At peak load, the scheduling strategy selects an operator path (a set of consec-
utive operators) that is capable of processing and freeing the maximum amount
of memory per unit time. This in effect resulis in the scheduling of operators
that together are both selective and have a high aggregate tuple processing rate.

The aforementioned scheduling strategy is not targeted at the processing of
distributed streams. Furthermore, using the Chain operator scheduling strategy
has an adverse affect on response time and is not suitable for data mining ap-
plications that need to provide interactive performance even under peak load.
In order to mine data streams, we need a scheduling strategy that supports
both response time and memory-aware scheduling of operators. Furthermore,
when scheduling a data stream mining application with dependent operators
in a distributed setting, the scheduling scheme should not need to communi-
cate a significant amount of state information. Ghoting and Parthasarathy [16],
propose an adaptive operator scheduling technique for mining distributed data
streams with response time guarantees and bounded memory utilization. The
user can tune the application to the desired level of interactivity, thus facilitating
the data mining process. They achieve this through a step-wise degradation in
response time beginning from a schedule that is optimal in terms of response
time. This sacrifice in response time is used towards optimal memory utiliza-
tion. After an initial scheduling decision is made, changes in system state may
force a reconsideration of operator schedules. The authors show that a decision
as to whether a local state change will affect the global operator schedule can
be made locally. Consequently, each local site can proceed independently, even
under minor state changes, and a global assignment is triggered only when it is
actually needed.

Plale considers the problem of efficient temporal-join processing in a dis-
tributed setting [41]. In this work, the author’s goal is to optimize the join
processing of event streams to efficiently determine sets of events that occur
together. The size of the join window cannot be determined apriori as this may
lead to missed events. The author proposes to vary the size of the join win-
dow depending on the rate of the incoming stream. The rate of the incoming
stream gives a good indication of how many previous events on the stream can
be dropped. Reducing the window size also helps reduce memory utilization.
Furthermore, instead of forwarding events into the query processing engine on
a first-come first-serve basis, the author proposes to forward the earliest event
first to further improve performance, as this facilitates the earlier determination
of events that are a part of the join result.
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Chen et al present GATES [7], a middleware for processing distributed data
streams. This middleware targets data stream processing in a grid setting and
is built on top of the Open Grid Services Architecture. It provides a high level
interface that allows one to specify a stream processing algorithm as a set of
pipelined stages. One of the key design goals of GATES is to support self
adaption under changing conditions. To support self adaptation, the middleware
changes one or more of the sampling rate, the summary structure size, or the
algorithm used, based on changing conditions of the data stream. For instance,
if the stream rate increases, the system reduces the sampling rate accordingly
to maintain a real-time response. If we do not adapt the sampling rate, we
could potentially face increasing queue sizes, resulting in poor performance.
To support self adaptation, the programmer needs to provide the middleware
with parameters that allow it to tune the application at runtime. The middleware
builds a simple performance model that allows it to predict how parameter
changes help in performance adaptation in a distributed setting.

Chi et af [12] present a load shedding scheme for mining multiple data
streams, although the computation is not distributed. They assume that the task
of reading data from the stream and building feature values is computationally
expensive and is the bottleneck. Their sirategics decide on how to expend
limited computation for building feature values for data on multiple streams.
They decide on whether to drop a data item on the stream based on the historic
utility of the items produced by the stream. If they choose not to build feature
values for a data item, they simply predict feature values based on historical
data. They use finite memory Markov chains to make such predictions. While
the approach presented by the authors is centralized, load shedding decisions
can be trivially distributed.

Conclusions and Future Research Directions

In this chapter, we presented a summary of the current state-of-the-art in
distributed data stream mining. Specifically, algorithms for outlier detection,
clustering, frequent itemset mining, classification, and summarization were
presented. Furthermore, we briefly described related applications and systems
support for distributed stream mining.

First, the distributed sources of data that need to be mined are likely to span
multiple organizations. Each of these organizations may have heterogeneous
computing resources. Furthermore, the distributed data will be accessed by
multiple analysts, each potentially desiring the execution of a different mining
task. The various distributed stream mining systems that have been proposed
to date do not take the variability in the tasks and computing resources into
account. To facilitate execution and deployment in such settings, a plug and
play system design that is cognizant of each organization’s privacy is necessary.
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A framework in which services are built on top of each other will facilitate rapid
application development for data mining. Furthermore, these systems will need
to be integrated with existing data grid and knowledge grid infrastructures [9]
and researchers will need to design middleware to support this integration.

Second, next generation computing systems for data mining are likely to be
built using off-the-shelf CPUs connected using a high bandwidth interconnect.
In order to derive high performance on such systems, stream mining algorithms
may need to be redesigned. For instance, next generation processors are likely
to have multiple-cores on chip. Ashas been shown previously [15], data mining
algorithms are adversely affected by the memory-wall problem. This problem
will likely be exacerbated on future multi-core architectures. Therefore, stream
mining algorithms at each local site will need to be redesigned to derive high
performance on next generation architectures. Similarly, with innovations in
networking techmologies, designs that are cognizant of high performance inter-
connects (like Infiniband) will need to be investigated.

Third, as noted earlier, in many instances, environments that demand dis-
tributed stream mining are resource constrained. This in turn requires the de-
velopment of data mining technology that is tailored to the specific execution
environment. Various tradeoffs, e.g. energy vs. communication, communi-
cation vs. redundant computation etc., must be evaluated on a scenario-by-
scenario basis, Consequently, in such scenarios, data mining algorithms with
tunable computation and communication requirements will need to be devised.
While initial forays in this domain have been made, a systematic evaluation of
the various design tradeoffs even for a single application domain has not been
done. Looking further into the future, it will be interesting to evaluate if based
on specific solutions a more abstract set of interfaces can be developed for a
host of application domains.

Fourth, new applications for distributed data stream mining are on the hori-
zon. For example, RFID (radio frequency identification) technology is expected
to significantly improve the efficiency of business processes by allowing auto-
matic capture and identification. RFID chips are expected to be embedded in
a variety of devices, and the captured data will likely be ubiquitous in the near
future. New applications for these distributed streaming data sets will arise and
application specific data mining technology will need to be designed.

Finally, over the past few years, several stream mining algorithms have been
proposed in the literature. While they are capable of operating in a centralized
setting, many are not capable of operating in a distributed setting and cannot be
trivially extended to do so. In order to obtain exact or approximate (bounded)
results in a distributed setting, the amount of state information that needs to be
exchanged is usually excessive. To facilitate distributed stream mining algo-
rithm design, instead of starting from a centralized solution, one needs to start
with a distributed mind-set right from the beginning, Statistics or summaries
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that can be efficiently maintained in a distributed and incremental setting should
be designed and then specific solutions that use these statistics should be de-
vised. Such a design strategy will facilitate distributed stream mining algorithm
design.
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Abstract

The field of Disiributed Data Mining (DDM) deals with the problem of an-
alyzing data by paying careful attention to the distributed computing, storage,
communication, and human-factor related resources. Unlike the traditional cen-
tralized systems, DDM offers a fundamentally distributed solution to analyze
data without necessariiy demanding collection of the data to a single central site.
This chapter presents an introduction to distributed data mintng for continuous
streams. It focuses on the situations where the data observed at diffcrent loca-
tions change with time. The chapter provides an exposure to the literature and
illustrates the behavior of this class of algorithms by exploring tweo very different
types of techniques—one for the peer-to-peer and another for the hierarchical
distributed environment. The chapter also briefly discusses several different ap-
plications of these algorithms.

1. Introduction

A data stream is often viewed as a single source time-varying signal observed
at a single receiver [13]. A data stream can be viewed as an unbounded sequence
(x1, x3, ..., zx ) that is indexed on the basis of the time of its arrival at the receiver.
Babcock et al. [4] point out some the fundamental properties of a data stream
system such as:

s the data elements arrive continuously,
» there is no limit on the total number of points in the data stream,

m and the system has no control over the order in which the data elements
arrive

In some applications, the data also arrive at bursts. In other words, the source
occasionally generates the data at a very high rate compared to the rate used for
rest of the time. Since data arrives contimuously, fast one-pass aigorithms are
imperative for real-time query processing and data mining on streams. Many
data stream algorithms have been developed over the last decade for processing
and mining data streams that arrive at a single location or at multiple locations
whereby they are sent to one location for processing needs. We refer to this
scenario as the centralized data stream mining scenario. Examples of such algo-
rithm include query processing [24], change detection [1][14][6], classification
[3][15] and clustering [11][2]. These algorithms, however, are not applicable
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in settings where the data, computing, and other resources are distributed and
cannot or should not be centralized for a variety of reasons e.g. low bandwidth,
security, privacy issues, and load balancing [5][17][23]. In many cases the cost
of centralizing the data can be prohibitive and the owners may have privacy
constraints of its data. In order to meet the challenges imposed by these con-
straints, a new area of data mining has emerged in the last ten years known as the
Distributed Data Mining (DDM)[16]. Distributed Data Mining (DDM) deals
with the problem of analyzing data by paying careful attention to the distributed
computing, storage, communication, and human-factor related resources. Un-
like the traditional centralized systems, DDM offers a fundamentally distributed
solution to analyze data without necessarily demanding collection of the data
to a single central site. In this chapter we will primarily consider loosely-
coupled distributed environments where each site has a private memory; the
sites can operate independently and communicate by message passing over
an asynchronous network. These algorithms focus on distributed computation
with due attention to minimizing resource usage {¢.g. communication cost) and
satisfying application-level constraints (e.g. privacy protection). We focus on
a subset of problems of DDM—Distributed Data Stream Mining—where not
only the data is distributed, but also the data is non-stationary and arriving in the
form of multiple streams. These algorithms pose unique challenges themselves
- the algorithms need to be efficient in computing the task, work with a local
data, compute the data mining model incrementally, and possibly communicate
with a subset of its peer-nodes to compute the result.

This chapter offers two things: (1) provide an overview of the existing tech-
niques for addressing some of the stream mining problems in the distributed
scenatio, and (2) discuss two very different distributed data stream mining al-
gorithms in greater detail in order to illustrate how these algorithms work.

The chapter is organized as follows. In Section 2 we point out the ratio-
nale for the importance of the main topic of our discussion - Distributed Data
Stream Mining. Section 3 discusses some of the related papers in the area.
In Section 4 we present a /ocal algorithm for data mining in a dynamic and
peer-to-peer environment. Section 5 discusses a distributed Bayesian network
learning algorithm. We conclude the chapter in Section 6.

2. Motivation: Why Distributed Data Stream Mining?

This section presents a few examples for illustrating the need for distributed
data stream mining algorithms.

Example 1: Consider a distributed sensor network scenario where there are
a bunch of sensors deployed in a field. Each of these sensors measures different
entities e.g. temperature, pressure, vibration etc. Each of these sensors has
limited battery power and so developing algorithms with low communication
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overhead is a must in such a setting. If the task is to monitor a global state of the
system, one way would be to centralize all the data at each predetermined time
instance and build a model. With this approach there are two major problems:

u due to low battery power of the sensors and low bandwidth, this is pro-
hibitive in a typical sensor network setting, and

m the model represented in such a periodic update scheme can be wrong for
a large portion of time before a new model is built (for example, this can
happen if the data distribution changes immediately after each periodic
update)

Distributed algorithms can avoid these problems.

Example 2: Another example comes from the cross domain nerwork intru-
sion monitoring paradigm. In network traffic monitoring or intrusion detection
problem, the goal is to identify inappropriate, incorrect, or anomalous activi-
ties that can potentially become a threat to the network. Existing methods of
network traffic monitoring/intrusion detection often requires centralizing the
sample network packets from diverse locations and analyzing them. This is
prohibitive in many real-world situations such as in cross-domain intrusion de-
tection schemes where different parties or companies collaborate to find the
anomalous patterns. Hence, the system must be equipped with privacy preserv-
ing data mining algorithms so that the patterns can be computed and shared
across the sites without sharing the privacy-sensitive data. Also, since the data
arrives in the form of continuous streams (e.g. TCP/IP packets), transferring the
data to a single (trusted) location at each time instance and analyzing thermn is also
not feasible. This calls for the development of distributed privacy preserving
data mining algorithms capable of being deployed in streaming environments.
The Department of Homeland Security (DHS) is currently funding a number of
projects in this related area (see “http://www.agnik.com/DHSSBIR htm!" for
such a project).

In the next section we present a survey of some of the existing distributed
data stream mining algorithms.

3. Existing Distributed Data Stream Mining Algorithms

There exists a plethora of work in the area of distributed data stream mining,.
The existing literature provides an excelient starting point for our main topic
of discussion in this chapter. Not only have the distributed data mining and
databases community contributed to the literature, a bulk of the work also
comes from the wireless and sensor networks community. In this section we
discuss some of the related papers with pointers for further reading.

Computation of complex functions over the union of multiple of streams has
been studied widely in the stream mining literature. Gibbons et al. [10] presents
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the idea of doing coordinated sampling in order to compute simple functions
such as the total number of ones in the union of two binary streams. They have
developed a new sampling strategy to sample from the two streams and have
shown that their sampling strategy can reduce the space requirement for such
a computation from Q(n) to log(n), where n is the size of the stream. Their
technigue can easily be extended to the scenario where there are more than two
streams. The authors also point out that this method would work even if the
stream is non-binary {(with no change in space complexity).

Much work has been done in the area of query processing on distributed data
streams. Chen et al. [7] has developed a system ‘NiagaraCQ’ which allows
answering continuous queries in large scale systems such as the internet. In
such systems many of the queries are similar. So a lot of computation, com-
munication and I/0 resources can be saved by properly grouping the similar
queries. NiagaraCQ achieves the same goal. Their grouping scheme is incre-
mental and they use an adaptive regrouping scheme in order to find the optimal
match between a new query and the group to which the query should be placed.
If none of these match, then a new query group is formed with this query. The
paper does not talk about reassignment of the existing queries into the newly
formed groups, rather leaves it as a future work.

An different approach has been described in [23]. The disiributed model
described there has nodes sending sireaming data to a central node which is
responsible for answering the queries. The network links near the central node
becomes a bottleneck as soon as the arrival rate of data the becomes too high.
In order to avoid that, the authors propose installing filters which restrict the
data transfer rate from the individual nodes. Node ( installs a filter of width
Wo and of range [Lo, Ho]. Wo is centered around the most recent value of
the object V (Lo =V — EV§Q and Hp =V + %Q). Now the node does not send
updates if V' is inside the range Lo < V < Hp; otherwise it sends updates to
the central node and recenters the bounds L and Hy. This technique provides
the answers to queries approximately and works in the circumstances where we
do not require the exact answer to the queries. Since in many cases the user can
provide the query precision that is necessary, the filters can be made to work
after setting the bounds based on this user input.

The sensor network community provides a rich literature on the streaming
algorithms. Since the sensors are deployed in hostile terrains, one of the most
fundamental task aims at developing a general framework for monitoring the
network themselves. A similar idea has been presented in [27]. This paper
presents a general framework and shows how decomposable functions like min,
max, average, count and sum can be computed over such an architecture. The
architecture is highlighted by three tools that the authors call digests, scans and
dumps. Digests are the network parameters (e.g. count of the number of nodes)
that are computed either continuously, periodically or in the event of a trigger.
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Scans are invoked when the digests report a problem (e.g. a sudden drop in the
number of nodes) to find out the energy level throughout the network. These
two steps can guide a network administrator towards the location of the fault
which can be debugged using the dumps (dump all the data of a single or few
of the sensors). The other thing that this paper talks about is the distributed
computing of some aggregate functions (mean, max, count etc.). Since all these
functions are decomposable, the advantage is in-network aggregation of partial
results up a tree. The leaf does not need to send all its data to the root and
in this way vital savings can be done in terms of communication. The major
concern though is maintaining this tree structure in such a hostile and dynamic
environment. Also this technique would fail for numerous non-decomposable
functions e.g. median, quantile etc.

The above algorithm describes a way of monitoring the status of the sensor
network itself. There are many data mining problems that need to be addressed
in the sensor network scenario. Such an algorithm for multi-target classification
in the sensor networks has been developed by Kotecha et al. [17] Each node
makes local decisions and these decisions are forwarded to a single node which
acts as the manager node. The maximum number of targets is known in apriori,
although the exact number of targets is not known in advance. Nodes that are
sufficiently apart are expected to provide independent feature vectors for the
same target which can strengthen the global decision making. Moreover, for
an optimal classifier, the number of decisions increases exponentially with the
number of targets. Hence the authors propose the use of sub-optimal linear
classifiers. Through real life experiments they show that their suboptimal clas-
sifiers perform as well as the optimal classifier under mild assumptions. This
makes such a scheme attractive for low power, low bandwidth environments.

Frequent items mining in distributed streams is an active area of research
[22]. There are many variants of the problem that has been proposed in
the literature (refer to [22] for a description). Generally speaking there are
m streams 87, S3,.., Sy,. Each stream consists of items with time stamps
< di, b >, < dig,tip >, ete. Let S be the sequence preserving union of
all the streams. If an item ¢ € S has a count count(i) (the count may be
evaluated by an exponential decay weighting scheme). The task is to output
an estimate M(z) of count(i) whose frequency exceeds a certain thresh-
old. Each node maintains a precision threshold and outputs only those items
exceeding the precision threshold. As two extreme cases, the threshold can be
set to very low (~ () or very high (= 1). In the first case, all the intermediate
nodes will send everything without pruning resulting in a message explosion at
the root. In the second case, the intermediate nodes will send a low number of
items and hence no more pruning would be possible at the intermediate nodes.
So the precision selection problem is crucial for such an algorithm to produce
meaningful results with low communication overhead. The paper presents a



Algorithms for Distributed Data Stream Mining 315

number of ways to select the precision values (they call it precision gradients)
for different scenarios of load minimization.

In the next two sections we focus our attention on two particular distributed
data stream mining algorithms. The first algorithm that we present in Section 4
works in large scale distributed (p2p) systems. The Bayesian network learning
algorithm (Section 5) can be used to learn a Bayesian network model when the
data is distributed and arriving in the form of data streams.

4, A local algorithm for distributed data stream mining

Having presented the general paradigm for distributed data stream mining
and some existing algorithms, we now shift our attention to two specific algo-
rithms that have been designed for the distributed sireaming environment. The
algorithm presented in this section works in a large-scale and dynamic envi-
ronment e.g. a peer-to-peer environment, sensor networks and the like. While
this algorithm is truly asynchronous and guarantees eventual correct result, it is
restricted to the set of problems where we can define a threshold within which
we want our result. As an example let us assume that there are NV peers in a
network and each peer hasa bitb; (O or 1). Thetask istofind outif > ;" b; > ¢,
where € is a global parameter. There exists an algorithm [26] in the literature
that can do this in the streaming scenario whereby each peer needs to contact
only a subset of the nodes in its neighborhood. The algorithm that we discuss
in this section shares the same philosophy — although it can perform a different
set of data mining tasks. Going back to our example, if the problem is modified
a little bit and we want to find out the value of Eil b; exactly, to the best
of the authors’ knowledge there exists no algorithm that can do this without
collecting all the data. Hence the second algorithm that we have selected for
our discussion builds a model incrementally. It first fits a modet to the local
data and determines the fitness of the model. If the model is not good enough,
a sample of its data is taken and along with its neighbors’ data used to build a
more complex model (details in Section 5).

4.1 Local Algorithms : definition

Before we formally start the discussion of our algorithm let us define what
we mean by local algorithms since this is the term that will be used throughout
the rest of this section.

Local algorithms are ones whose resource consumption is sometimes inde-
pendent of system size. That is, an algorithm for a given problem is local if,
assuming a static network and data, there exists a constant ¢ such that for any
size of the system N there are instances of the problem such that the time,
CPU, memory, and communication requirements per peer are smaller than c.
Therefore, the most appealing property of local algorithms is their extreme
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scalability. Local algorithms have been presented in the context of graph algo-
rithms [21]{19], and recently for data mining in peer-to-peer networks [26][18]
[25]. Local algorithms guarantee eventual correctness — when the computation
terminates each peer computes the same result it would have computed given
the entire data. The main advantage of this definition is that there already exists
algorithms that follow this definition of locality. On the contrary, this defini-
tion is disadvantageous in the sense that we do not specify precisely how many
instances of the problem we need (that can be solved locally) in order to deem
an algorithm local.

There are certain characteristics that typify local algorithms. These include
but are not limited to the ability of each node to compute the result using infor-
mation gathered from just a few nearby neighbors, the ability to calculate the
result in-network rather than collect all of the data to a central processor (which
would quickly exhaust bandwidth), and the ability to locally prune redundant
or duplicate computations. Needless to mention that these characteristics are
extremely important in most large-scale distributed applications.

We are now in a position to present a local Distributed Data Stream Mining
algorithm.

4.2 Algorithm details

The algorithm that we are going to discuss in this section can be used for
monitoring a data model in the distributed and streaming environment. As
already menticned, this algorithm requires a threshold predicate. It also assumes
that a tree topology has been laid over the network structure. Before we present
the details of the algorithm, let us present an overview. Let X be a dataset
which is a union of several data streams. Let f{X] be a function that we want
to compute on X. Since it is not always feasible to store and process the entire
stream, we select a subset of the stream in a giyen time frame. We denote this
by X;. Our main task is to monitor whether f[X};] > ¢, where ¢ is a user defined
threshold. For example, if f is the average we can bound the average of a set
of vectors within this threshold. The details of this algorithm can be found in
[25]

In the actual algorithm description, let Py, Py, ..., B, be n peers connected
by an arbitrary communication tree such that the set of F;s neighbors N; is
known to F;. Each peer is supplied a stream of points from R?, where d is the
dimension of the problem. The local average of the points at time ¢ is denoted
by 8. Each peer maintaing the following vectors (each of these vectors is
weighted, we omit it in our discussion here for clarity and simplicity):

X : the current estimate of the global average or Xy (known as the
knowledge of F;)

m X : the last vector send by peer F; to F;
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m X : the last vector received by peer F; from P;
m X;nj: the agreement of F; and P; (calculated from X ; and X;; ;)
v Xj\;: the kept knowledge of F; and P; (calculated from X; and Xjry)

Initially X is initialized to S;;. The first time a data is exchanged between
F; and P;, it sets the vectors X and X ;. Whenever new points arrive, a
neighbor is removed or a new neighbor comes in, S; changes. This triggers
the changes in the local vectors X, X5 and/or Xjr;. The global data mining
problem is to find out if || £=1 %4 (= X )| < . We will now present different
conditions on X, Xj~; and X;,; that will allow us to decide if || Xn|{ < € or
||Xmi{| > €. There are two main lemmas that can be used in order to determine
this. The first lemmas states that if for every peer I°; and each neighbor P;
of F; it holds that both [|Xinj|| < € and [{Xjy;]! < e, then |[Xn|| < e The
second lemma states that given d unit vectors, 471 . . . tiy if for a specific one of
them i every peer F; and each of its neighbors P; have 4; - Xin; > € and cither

Ui Xpg > eor ;- Xy = 4 - Xy then || Xn|| >e

Given these two lemmas, we can now describe the algorithm that decides
whether the L2 norm of the average vector Xy is within a threshold or not. For
simplicity we will deseribe the conditions assuming R?, the extension to the
higher dimension is obvious. For a vector X; = (4, ¥2) € RZ, the L2-norm is
given by

VEARRT
Now if we want to test if the L2-norm is greater than ¢ or not, we want to check
if the following condition is true:

Vi +ys e

which is, in essence, checking if || X} lies inside or outside a circle of radius .

Consider Figure 14.1. The circle shown in the figure is a circle of radius .
The algorithm needs to check if || X;|| is inside or outside the circle. In order
to do this, it approximates the circles with a set of tangent lines as shown in
the figure. The problem of checking inside the circle is relatively simpler - if
a peer determines that its local ||X;|| < ¢ and for every neighbor {|X;;|| < €
and || Xj5| < €, then by the first lemma the peer knows that || X! < € as
well. Hence the local estimate ||X;|| of ||X || is indeed the correct one and
thus no message needs to be exchanged. If on the other hand a peer violates
this condition, it needs to send a message to each violating neighbor.

If on the other hand a peer F; determines that ||X;|| is outside the polygon,
it needs to check the conditions of the second lemma. Note that if two peers
simply say that {|X;|| > e still the average can be lesser than € (when the two
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®

Figure {4.1. (A} the area inside an ¢ ciecle. (B) Seven evenly spaced vectors - w1 ... uy.
{C) The horders of the seven halfspaces 4; - X > ¢ define a polygon in which the circle is
circumscribed. (D) The area between the circle and the union of half-spaces.

X!s are in the opposite directions). So we need to check the conditions based
on the tangent lines. P; needs to find the first tangent plane such that a neighbor
P; claims that the point is outside the polygon. More precisely, it needs to
check if there exists some u* such that 4; - X3y > €. Now if F; enters a
state whereby ||X;|| > e, it does not need to send a message to its neighbors
if they support its claim. Formally speaking F; needs to send a message to P
whenever u* - Xjnj < €oru” - Xi\j < €, else not.

The last case is when the X; lies in the region between the circle and the
polygon (the peer would find ©.* to be nil. In that case the peer has to resort to
flooding. Also note that, this area can be made arbitrarily smaller using more
munber of tangent lines - the trade-off is an increased computation for each
peer.

43 Experimental results

The above algorithm exhibits excellent accuracy and scalability. For each
experiment we introduce new data distribution at every predefined number of
simulator ticks. We start with a particular data distribution and choose € such
that the average vector is within the e-range. As shown in Figure 14.2, the lower
set of bars show the number of peers that report if the average vector is less
than e. After a fixed number of simulator ticks we change the data distribution
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Figure 14.2.  Quality of the algorithm with increasing number of nodes
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Figure 14.3.  Cost of the algorithry with increasing number of nodes

and now, the ||X;|{’s are no more inside the circle and so we have the upper set
of bars reporting the case when ||X;|| is outside the circle. As we see from the
figure, the accuracy remains almost constant. Similarly, Figure 14.3 shows the
cost of the simple L2 algorithm. In order to eliminate a message explosion, we
have used a leaky bucket mechanism and a peer is not allowed to send more than
one message peer leaky bucket duration. Our unit of measurement is messages
per peer per unit leaky bucket time (L). It can he easily seen that the number of
messages per unit time remains constant - this typifies local algorithms - they
are highly scalable.
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4.4 Modifications and extensions

We call the above operation mode of the algorithm the ‘openloop mode’. It
is useful for bounding the average vector within a threshold. If we ‘close the
loop® we can use the above simple algorithm to monitor data mining results
(e.g. ecigenstates of the data, k-means of the data etc), Generally, we need
to define our X; appropriately (we provide examples later) and the open loop
algorithm would raise a flag if ||X|| > e. We can potentially use this flag to
collect statistics of the data and build a new model. This model can then be
shipped to the peers and this process can go on. If the data stops changing, the
guarantee of the L2 algorithm is that ||Xj|| > € for every peer iff || Xn|| > e
Hence for long durations of stationary period we would expect to see local
behavior of the algorithm. Only when the data distribution changes, the alert
flag would be raised. We can then collect sample of the data from the network
and use standard aggregation techniques such as convergecast to propagate the
data up the tree to build a new model. As a simple example we show how this
algorithm is possible to monitor the eigenstates of the data. We define X; as
the following:

X.i=A><S.,gt—9><Sg;¢

where A and # are the principal eigenvector and the eigenvalue of the data. A
change in the data distribution {53} would change the X; and set up an alert
flag. This change might trigger a series of events :

m P will communicate with its neighbors and try to solve the problem using
the open loop algorithm

m If the alert flag has been there for a long time, F; sends its data to its
parent in the tree. If the alert flag is not there any more, it is considered
to be a false alarm

= If a peer receives data from all of its children, it sends the data to its
parent. The root after receiving the data from everybody computes the
new eigenstates and notifies all the peers about this new model

The above algorithm is what we call the ‘closed loop® algorithm. Since the
model is built solely on best effort, it may be the case that the model is no longer
good enough once it reaches all the peers. All that the algorithm will do is to
restart the process once again and build a more up-to-date model. A similar
algorithm for monitoring the k-means can be described by simply changing X;
to Sy — ¢, where ¢; is the current centroid of the global data.

In the next section we present an algorithm that can be used for learning a
model from the data in the streaming scenario.
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5. Bayesian Network Learning from Distributed Data
Streams

This section discusses an algorithm for Bayesian Model learning. In many
applications the goal is to build a mode] that represents the data. In the previous
section we saw how such a model can be build when the system is provided
with a threshold predicate. If, however, we want to build an exact global
model, development of local algorithms sometimes becomes very difficult, if
not impossible. In this section we draw the attention of the reader to a class of
problems which needs global information to build a data model (e.g. K-means,
Bayesian Network,etc). The crux of these types of algorithms lies in building a
local model, identifying the goodness of the model and then co-ordinating with
a central site to update the model based on global information. We describe
here a technique to learn a Bayesian network in a distributed setting.

Bayesian network is an important tool to model probabilistic or imperfect
relationship among problem variables. Tt gives useful information about the
mutual dependencies among the features in the application domain. Such in-
formation can be used for gaining better understanding about the dynamics of
the process under observation. It is thus a promising tool to model customer
usage patterns in web data mining applications, where specific user preferences
can be modeled as in terms of conditional probabilities associated with the dif-
ferent features. Since we will shortly show how this model can be built on
streaming data, it can potentially be applied to learn Bayesian classifiers in
distributed settings. But before we delve into the details of the algorithm we
present what a Bayesian Network (or Bayes’ Net or BN in short) is, and the
distributed Bayesian learning algorithm assuming a static data distribution.

A Bayesian network (BN} is a probabilistic graph model. It can be defined as
apair (G, p}, where G = (V, £) is a directed acyclic graph (DAG). Here, V is the
node set which represents variables in the problem domain and £ is the edge set
which denotes probabilistic relationships among the variables. For a variable
X € V, aparent of X is a node from which there exists a directed link to X,
Figure 14.4 is a BN called the ASIA model (adapted from [20]). The variables
are Dyspnoea, Tuberculosis, Lung cancer, Bronchitis, Asia, X-ray, Either, and
Smoking. They are all binary variables. The joint probability distribution of
the set of variables in V' can be written as a product of conditional probabilities
as follows:

Py =[] P(X ! pa(X)). (14.1)
Xev

In Equation (14.1) pa{X') denotes the set of parents of node X. The set of
conditional distributions { P(X | pe{X)), X € V} are called the parameters of
aBayesian network. If variable X hasno parents, then P(X | pa(X)) = P(X)
13 the marginal distribution of X.
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Figure 14.4.  ASIA Model

Two important issues inusing a Bayesian network are: (a) learning a Bayesian
network and (b) probabilistic inference. Learning a BN involves learning the
structure of the network (the directed graph), and obtaining the conditional prob-
abilities (parameters} associated with the network. Once a Bayesian network is
constructed, we usually need to determine various probabilities of interest from
the model. This process is referred to as probabilistic inference.

In the following, we discuss a collective approach to learning a Bayesian
network that is specifically designed for a distributed data scenario.

5.1 Distributed Bayesian Network Learning Algorithm

The primary steps in our approach are:
(a) Learn local BNs (local model) involving the variables observed at each site
based on local data set.
(b) At each site, based on the local BN, identify the observations that are most
likely to be evidence of coupling between local and non-local variables. Trans-
mit a subset of these observations to a central site.
(c)} At the central site, a limited number of observations of all the variables are
now available. Using this to learn a non-local BN consisting of links between
variables across two or more sites.
(d)} Combine the local models with the links discovered at the central site to
obtain a collective BN.

The non-local BN thus constructed would be effective in identifying asso-
ciations between variables across sites, whereas the local BNs would detect



Algorithms for Distributed Data Stream Mining 323

associations among local variables at each site. The conditional probabilities
can also be estimated in a similar manner, Those probabilities that involve
only variables from a single site can be estimated locally, whereas the ones
that involve variables from different sites can be estimated at the central site.
Same methodology could be used to update the network based on new data.
First, the new data is tested for how well it fits with the local model. If there
is an acceptable statistical fit, the observation is used to update the local condi-
tional probability estimates. Otherwise, it is also transmitted to the central site
to update the appropriate conditional probabilities (of cross terms). Finally, a
collective BN can be obtained by taking the union of nodes and edges of the
focal BNs and the nonlocal BN and using the conditional probabilities from the
appropriate BNs. Probabilistic inference can now be performed based on this
collective BN, Note that transmitting the local BNs to the central site would
involve a significantly lower communication as compared to transmitting the
local data.

It is quite evident that learning probabilistic relationships between variables
that belong to a single local site is straightforward and does not pose any ad-
ditional difficulty as compared to a centralized approach (This may not be true
for arbitrary Bayesian network structure. A detailed discussion of this issue can
be found in [9]). The important objective is to correctly identify the coupling
between variables that belong to two (or more) sites. These correspond to the
edges in the graph that connect variables between two sites and the conditional
probability(ies) at the associated node(s). In the following, we describe our
approach to selecting observations at the local sites that are most likely to be
evidence of strong coupling between variables at two different sites. The key
idea of our approach is that the samples that do not fit well with the local mod-
¢ls are likely to be evidence of coupling between local and non-local variables.
We transmit these samples to a central site and use them to learn a collective
Bayesian network.

5.2 Selection of samples for transmission to global site

For simplicity, we will assume that the data is distributed between two sites
and will illustrate the approach using the BN in Figure 14.4. The extension of
this approach to more than two sites is straightforward. Let us denote by .4
and B, the variables in the left and right groups, respectively, in Figure 14.4.
We assume that the observations for A are available at site A, whereas the
observations for B are available at a different site B. Furthermore, we assume
that there is a common feature (“key” or index) that can be used to associate a
given observation in site A to a corresponding observation in site B. Naturally,
V=AUB
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Ateach local site, a local Bayesian network can be learned using only samples
in this site. This would give a BN structure involving only the local variables
at each site and the associated conditional probabilities. Let pa(.) and pg(.)
denote the estimated probability function involving the local variables. This
ts the product of the conditional probabilities as indicated by Equation (14.1).
Since pa(x), pr(x) denote the probability or likelihood of obtaining observa-
tion x at sites A and B, we would call these probability functions the likelihood
functions {4{.) and {5(.), for the local model obtained at sites A and B, respec-
tively. The observations at each site are ranked based on how well it fits the
local model, using the local likelihood functions. The observations at site A
with large likelihood under 7 4(.) are evidence of “local relationships™ between
site A variables, whereas those with low likelihood under [ 4(.) are possible evi-
dence of “cross relationships™ between variables across sites. Let S(A) denote
the set of keys associated with the latter observations (those with low likelihood
under [4(.)). In practice, this step can be implemented in different ways. For
example, we can set a threshold ps and if [ 4{x) < pa, then x € §4. The sites
A and B transmit the set of keys S, Sg, respectively, to a central site, where
the intersection § = S4 N .Sp is computed. The observations corresponding to
the set of keys in S are then obtained from each of the local sites by the central
site.

In a sense, our approach to leamning the cross terms in the BN involves a
selective sampling of the given datazet that is most relevant to the identification
of coupling between the sites. This is a type of importance sampling, where we
select the observations that have high conditional probabilities corresponding
to the terms involving variables from both sites. Naturally, when the values
of the different variables (features) from the different sites, corresponding to
these selected observations are pooled together at the central site, we can learn
the coupling links as well as estimate the associated conditional distributions.
These selected observations will, by design, not be useful to identify the links
in the BN that are local to the individual sites.

Having discussed in detail the distributed Bayesian learning algorithm (as-
suming a static data), we can now proceed with our discussion on how this
algorithm can be modified to work with evolving data.

5.3 Online Distributed Bayesian Network Learning

The proposed collective approach to learning a BN is well suited for a sce-
nario with multiple data streams. Suppose we have an existing BN model,
which has to be constantly updated based on new data from multiple streams.
For simplicity, we will consider only the problem of updating the BN param-
cters, assuming that the network structure is known. As in the case of batch
mode learning, we shall use techniques for online updating of BN parameters
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for centralized data. In the centralized case, there exists simple techniques for
parameter updating for commonly used models like the unrestricted multino-
mial model. For example, let us denote by p;yy = Pr{z; =1 | pas, = j),
the conditional probability at node 4, given the parents of node <. We can then
obtain the estimate p;; (& + 1) of p;; at step & + 1 as follows (see [12, Section
5

agi(k) + Nii(k +1)
O,‘z'j(k) + NU(JIC —+ 1) ;

where a;;(k) = 3, cy(k) and Ny(k + 1) = 3, Nyi(k + 1), In equation
14.2, Ny (k + 1) denotes the number of observations in the dataset obtained
at time k& + 1 for which, z; = ! and pa,, = j, and we can set a;(k + 1) =
ai(k) + Niz(k + 1). Note that Ny (k) are a set of sufficient statistics for the
data observed at time k.

For online distributed case, parameters for local terms can be updated using
the same technique as in a centralized case. Next, we need to update the
parameters for the cross-links, without transmitting all the data to a central site.
Again we choose the samples with low likelihood in local sites and transmit
them to a central site. This is then used to update the cross-terms at the central
site. We can summarize our approach by the following steps:

(14.2)

pitlke +1) =

1 Learn an initial collective Bayesian network from the first dataset ob-
served (unless a prior model is already given). Thus we have a local BN
at each site and a set of cross-terms at the central site.

2 Ateach step k:

s Update the local BN parameters at each site using equation 14.2.

m Update the likelihood threshold at each local site, based on the
sample mean value of the observed likelihoods. This is the threshold
used to determine if a sample is to be transmitted to a central site
(see Section 5.2).

m  Transmit the low likelithood samples to a central site.
m  Update the parameters of the cross-terms at the central site.
m  Combine the updated local terms and cross terms to get an updated

collective Bayesian network.

3 Increment k& and repeat step (2) for the next set of data.

This section concludes our discussion on the distributed streaming Bayesian
learning algerithm. In the following, we point out some of the experimental
verifications of the proposed algorithm.
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54 Experimental Results

Wetested our approach on two different datasets. A smallreal web log dataset
was used for batch mode distributed Bayesian learning. This was used to test
both structure and parameter learning. We also tested our online distributed
learning approach on a simulated web log dataset. Extensive examples for
batch mode learning (using both real and simulated web log data), demonstrat-
ing scalability with respect to number of distributed sites have been presented
elsewhere [8, 9]. In the following, we present our results for BN parameter
learning using online data streams.

We illustrate the results of online BN parameter learning assuming the net-
work structure is known. We use the model shown in Figure 14.5. The 32 nodes
in the network are distributed among four different sites. Nodes 1, 5, 10, 15,
16,22,23, 24, 30, and 31 are in site A. Nodes 2, 6,7, 11, 17, 18, 25, 26, and 32
are in site B. Nodes 3, 8, 12, 19, 20, and 27 are in site C. Nodes 4, 9, 13, 14, 21,
28, and 29 are in site D. A dataset with 80,000 observations was generated. We
assumed that at each step k, 5,000 observations of the data are available (for a
total of 16 steps).

We denote by Bp,, the Bayesian network obtained by using all the 80,000
samples in batch mode (the data is still distributed into four sites). We denote
by Bg{k), the Bayesian network obtained at step & using our online learning
approach and by By, (%), the Bayesian network obtained using a regular batch
mode learning, but using only data observed upto time k. We choose three
typical cross terms (nodes 12, 27, and 28) and compute the KL distance between
the conditional probabilities to evaluate the performance of online distributed
method. The results are depicted in Figure 14.6.

Figure 14.6 (left) shows the KL distance between the conditional probabilities
for the networks By (k) and By, for the three nodes. We can see that the
performance of online distributed method is good, with the error (in terms
of KL distance) dropping rapidly. Figure 14.6 (right) shows the KL distance
between the conditional probabilities for the networks By, (k) and B, for the
three nodes. We can see that the performance of a network learned using our
online distributed method is comparable to that learned using a batch mode
method, with the same data.

6. Conclusion

In this chapter we have surveyed the field of distributed data stream mining,.
We have presented a brief survey of field, discussed some of the distributed
data stream algorithms, their strengths and weaknesses. Naturally, we have
elucidated one slice through this field - the main topic of our discussion in this
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Figure [4.5. Bayesian network for online distributed parameter learning

chapter was algorithms for distributed data stream mining. Many important
areas such as system development, human-computer interaction, visualization
techniques and the like in the distributed and streaming environment were left
untouched due to lack of space and limited literature in the areas.

We have also discussed in greater detail two specific distributed data stream
mining algorithms. In the process we wanted to draw the attention of the readers
to an emerging area of distributed data stream mining, namely data stream min-
ing in large-scale peer-to-peer networks. We encourage the reader to explore
distributed data stream mining in general. All the fields - algorithm develop-
ment, systems development and developing techniques for human-computer
interaction are still at a very early stage of development. On an ending note, the
area of distributed data stream mining offers plenty of room for development
both for the pragmatically and theoretically inclined.
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Abstract Sensor networks cormprise small, low-powered and low-cost sensing devices that
are distributed over a field to monitor a phenomenon of interest. The sensor nodes
are capable of communicating their readings, typically through wireless radio.
Sensor nodes produce streams of data, that have te be processed in-situ, by the
node itself, or to be transmitted through the network, and analyzed offline. In
this chapter we describe recently proposed, efficient distributed techniques for
processing streams of data collected with a network of sensors.
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Introduction

Sensor networks are systems of tiny, low-powered and low-cost devices dis-
tributed over a field to sense, process and communicate information about their
environment. The sensor nodes in the systems are capable of sensing a phe-
nomenon and communicating the readings through wireless radio. The memory
and the computational capabilities of the nodes enable in-site processing of the
observations. Since the nodes can be deployed at random, and can be used
to collect information about inaccessible remote domains, they are considered
as very valuable and attractive tools for many research and industrial applica-
tions. Motes is one example of sensor devices developed by UC Berkeley and
manufactured by Crossbow Technology Inc. [13].
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Sensor observations form streams of data that are either processed in-situ
or communicated across the network and analyzed offline. Examples of sys-
tems producing streams of data include environmental and climatological ([39])
monitoring where phenomena such as temperature, pressure and humidity are
measured periodically {at various granularities). Sensors deployed in building
and bridges relay measurements of vibrations, linear deviation etc. for moni-
toring structural integrity {[51]). Seismic measurements, habitat monitoring {
[7,38]), data from GPS enabled devices such as cars and phones and surveillance
data are further examples. Surveillance systems may include sophisticated sen-
sors equipped with cameras and UAVs but nevertheless they produce streams
of videos or streams of events. In some applications, raw data is processed in
the nodes to detect events, defined as some suitable function on the data, and
only the streams of events are communicated across the network.

The focus of this chapter is to describe recently proposed, efficient distributed
techniques for processing sireams of data that are collected from a sensor net-
work.

1. Challenges

Typically a large number of sensors nodes are distributed spanning wide
areas and each sensor produces large amount of data continuously as obser-
vations. For example, about 10, 000 traffic sensors are deployed in California
highways to report traffic status continuously. The energy source for the nodes
are either AA batteries or solar panels that are typically characterized by lim-
ited supply of power. In most applications, communication is considered as the
factor requiring the largest amount of energy, compared to sensing ([41]). The
longevity of the sensor nodes is therefore drastically reduced when they com-
municate raw measurements to a centralized server for analysis. Consequently
data aggregation, data compression, modeling and online querying techniques
need to be applied in-site or in-network to reduce communication across the
network. Furthermore, limitations of computational power and inaccuracy and
bias in the sensor readings necessitate efficient data processing algorithms for
sensor systems,

In addition, sensor nodes are prone to failures and aberrant behaviors which
could affect network connectivity and data accuracy severely. Algorithms pro-
posed for data collection, processing and querying for sensor systems are re-
quired to be robust and fault-tolerant to failures. Network delays present in
sensor systems is yet another problem to cope up with in real-time applications.

The last decade has seen significant advancement in the development of
algorithms and systems that arc energy aware and scalable with respect to
networking, sensing, communication and processing. In the following, we
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describe some of the interesting problems in data processing in sensor networks
and give brief overview of the techniques proposed.

2. The Data Collection Model

We assume a data collection model where the set of sensors deployed over a
field communicate over a wireless ad-hoc network. This scenario is typically
applicable when the sensors are small and many. The sensors are deployed
guickly, leaving no or little time for a wired installation. Nevertheless, there
are also many important applications where expensive sensors are manually
installed. A typical example is a camera based surveillance system where
wired networks can also be used for data collection.

3. Data Communication

The basic issue in handling streams from sensors is to transmit them, either as
raw measurements or in a compressed form. For example, the following query
necessitates transmission of temperature measurements from a set of sensors to
the user, over the wireless network,

"Return the temperature measurements of all the sensors in the subregion R
every 10s, for the next 60 minutes”

Typically, the data communication direction is from multiple sensor nodes
to a single sink node. Moreover, since the stream of measurements observed by
sensors are that of a common phenomena, we observe redundancy in the data
communicated, For example, consider the following task posed from the sink
node to the system:

Dug to the above characteristics, along with limited availability of power,
the end-to-end communication protocols available for mobile ad-hoc networks
are not applicable for sensor systems. The research community has therefore
proposed data aggregation as the solution wherein data from multiple sources
are combined, processed within the network to eliminate redundancy and routed
through the path that reduces the number of transmissions.

Energy-aware sensing and routing has been a topic of interest over the re-
cent years to extend the lifetime of the nodes in the network. Most of the
approaches create a hierarchical network organization, which is then used for
routing of queries and for communication between the sensors. [27] proposed
a cluster based approach known as LEACH for energy-efficient data transmis-
sion. Cluster-head nodes collect the streaming data from the other sensors in
the cluster and apply signal processing functions to compress the data into a
single signal. As illustrated in Figure 15.1, cluster heads are chosen at random
and the sensors join the nearest cluster head. Now, a sensor communicates its
stream data to the corresponding cluster head, which in turn takes the respon-
sibility of communicating them to the sink (possibly after compressing). A
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Figure 15.1.  Aninstance of dynamic cluster assignment in sensor system according to LEACH
protocol. Sensor nodes of the same clusters are shown with same symbal and the cluster heads
are marked with highlighted symbols.
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Figure 15.2. Interest Propagation, gradient sctup and path reinforcement for data propagation
in directed-diffusion paradigm. Event is described in terms of attribute value pairs. The figure
illustrates an event detected based on the location of the node and target detection,

different approach is the Directed Diffusion paradigm proposed by [28] which
follows a data centric approach for routing data from sources to the sink sensor.
Directed diffusion uses a publish-subscribe approach where the inquirer (say,
the sink sensor) expresses an interest using attribute values and the sources that
can serve the interest reply with data (Figure 15.2). As the data is propagated
toward the sink, the intermediate sensors cache the data to prevent loops and
eliminate duplicate messages.

Among the many rescarch works with the goal of energy-aware routing,
Geographic Adaptive Fidelity (GAF) approach proposed by [49] conserves
energy from the point of view of communication, by turning off the radios of
some of the sensor nodes when they are redundant. The system is divided into
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Figure 15.3.  Sensors aggregating the result for a MAX query in-network

a virtual grid using geographic location information and only one sensor per a
cell in the grid is activated to route packets. ASCENT by [8] and STEM by
[44] are examples of other available sensor topology control schemes.

Data aggregation is also an integral part of query processing. The resuits
of the posed queries are communicated across the network with in-network
aggregation. We discuss more about this in Section 4.

4. Query Processing

In the common query frameworks followed in sensor systems, data collection
is driven by declarative queries (examples of such systems include COUGAR
([54]) and TAG ([35])). Users pose declarative queries over the data generated
by the sensors. For example, the SQL-like query corresponding to the example
task discussed in Section 3 is as follows.

SELECT S.temperature
FROM Sensor 8
WHERE S.loc INR
DURATION 3600s
EVERY 10s

The simplest scheme for evaluating such queries on sensor data is to transmit
all the data to a centralized database, which can then be used for answering user
queries. To improve on this scheme, [6], [34] and [53] suggested the concept
of viewing sensor system as a distributed database and proposed incorporating
a query layer in the system. The sensors in the system were now query-aware,
which paved way for the following. Firstly, the sensors communicated the
measurements on-demand i.e., if they satisfied the predicate of the query. Sec-
ondly, in-network processing of query results was now possible in query-aware
SENSOrs,
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A direct implementation of the distributed database techniques are not viable
in sensor systems due to their communication and computation constraints,
Therefore, [6] and {34] studied the characteristics and challenges of sensor
databases and the requirements of a good query plan for such systems. The
COUGAR framework proposed by [53] aimed at reducing energy usage by
generating efficient query plans for in-network query processing. The authors
proposed a general framework for in-network query processing (in [54]) where
the query is decomposed into flow blocks and a leader node from a set of
coordinated nodes collects the query results of a block.

4.1 Aggregate Queries

The class of queries that has received interest in sensor systems is Aggregate
Queries. Recently various techniques are proposed to efficiently process aggre-
gate queries such as MIN, COUNT and AVG in sensor systems while reducing
power consumption. An example of a simple query would be;

“Return the maximum of the temperature measurements obtained from alf
sensors located within coordinates [0, 100, 100, 0].”

The properties of the aggregate functions enables distributed processing of
partial data in-network, which can be combined to produce results for the posed
queries. Such optimizations reduce energy consumption for query processing
by orders of magnitudes. For example, Figure 15.3 shows a routing paradigm
where MAX of the observations at the sensors are evaluated efliciently by
computing the MAX of different groups of sensors, and communicating only
the results to the sink sensor.

One of the first tools for processing aggregate queries in sensor systems, in
a distributed and efficient manner, is TAG, presented by [35]. In TAG, queries
posed by users are propagated from a base station into the network, piggyback-
ing the existing network protocol. Aggregate results are communicated back
to the base station up a spanning tree, with each sensor combining its result
with the results obtained from its children. Later, [25] studied the implemen-
tation of TAG framework for various sensing applications such as sensor data
summarization, vehicle tracking and topographic mapping.

Various improvements and application specific modifications have been pro-
posed recently based on the above query-tree framework suggested for data
aggregation and query processing. We give a brief overview of some of the
techniques in the following.

Extending the query-tree framework and the work by [40], [14] presented
a framework for in-network data aggregation to evaluate aggregate queries in
error-tolerant applications. According to this framework, the nodes of the query
tree apply their error filters to the partial aggregates of their subtrees, and sup-
press messages from being communicated to the sink (see Figure 15.4). In ad-
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Figure 15.4. Error filter assignments in tree topology. The nodes that are shown shaded are
the passive nodes that take part only in routing the measurements. A sensor communicates a
measurcment only if it lies outside the interval of values specified by F; i.e., maximum permitted
error at the node. A sensor that receives partial results from its children aggregates the results
and communicates them to its parent after checking against the error intcrval
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Figure 15.5.  Usage of duplicate-sensitive sketches to allow result propagation to multiple par-
ents providing fault tolerance. The system is divided into fevels during the query propagation
phase. Partial results from a higher level {level 2 in the figure) is received at more than one node
in the lower level (Level 1 in the figure)

dition, the potential gain of increasing the error threshold of nodes is estimated
statistically, to guide the allocation of error filters. In another extension, [45]
illustrate that the energy consumption of TAG and COUGAR framework can
be reduced further through group-aware network configuration, where sensors
belonging to same group are clustered along the same path, and by suppressing
transmissions of measurements with temporal coherency.
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Focusing on duplicate sensitive queries such as SUM and COUNT, [12]
proposed a scalable algorithm that is fault-tolerant to sensor failure and com-
putes approximate answers for the aggregate queries. The duplicate-insensitive
sketches used in this work allows communication of results to multiple parents,
as illustrated in Figure 15.5, to provide fault tolerance. Recently, [47] extended
the class of queries supported to include quantiles, distribution of data in the
form of histograms and most frequent items.

4.2 Join Queries

Certain application such as tracking and monitoring a moving object requires
execution of join queries over data streams produced at different sensors. For
example, consider a query of the form

“Return the objects that were detected in both regions RI and R2".

To evaluate the query, streams of observations from the sensors in regions
R1 and R2 are joined to determine if an object was spotted in both the regions.

The applications of join queries in sensor networks were first discussed in the
COUGAR framework ([54]) which suggested making an informed decision,
based on the selectivity of the join operator, to compute the join results in-
network. Studying join queries in detail, [5] proposed a method for effective
join operator placement. In this, the authors assume long running queries and
propose a technique where the sensors continuously refine the placement of
join operator so as to minimize data transmissions over the network. However,
the method is restricted to processing queries over pairs of sensors. Recently,
[37] proposed REED, an extension of tinyDB for multi-predicate join queries,
which can efficiently handie joins queries over multiple sensors and joins of
sensor data with external tables,

A non-blocking form of join processing is sliding time window join where
a time window over the timestamps of the tuples is given as a constraint, in
addition to the join conditions. This is studied as a natural way to handle joins
on infinite streams such as those from sensors. For example,

"Return the objects that were detected by both sensors S1 and 52 and where
window(S1, 52) = w”

poses an additional constraint that the timestamps of the values from S1
and S2 should be within window w of time from each other to satisfy the
query predicate. [23] studied various forms of such window join queries and
proposed backward and forward evaluation algorithms BEW-join and FEW-
join for executing them. However, the algorithms proposed can potentially
produce an unordered stream of tuples as result. The authors address this
problem (in [24]) and propose and analyze several methods to provide in-order
execution of join queries over sensor streams.
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4.3 Top-k Monitoring

Another interesting class of problem is to report the & highest ranked answers
to a given query. An example to a top-k query in sensor system would be:

"Which sensors have reported the highest average temperature readings over
the past month? .

The general problem of monitoring top-k values from streams that are pro-
duced at distributed locations is discussed by [3]. The authors propose a tech-
nique in which arithmetic consiraints are maintained at the stream sources to
ensure the validity of the most recently communicated top-k answers, The
approach provides answers within a user specified error tolerance and reduces
overall communication between the sources. A different approach to providing
solution for top-k queries in sensor systems following hierarchical topology is
TJA(Threshold Join Algorithm), proposed by [57]. The algorithm consist of
the initial phase of setting lower bound for the top-k results in the hierarchies,
followed by a join phase that collects the candidate sets in a bottom-up manner.
With a fixed number of round trips, in-network processing and fewer readings
communicated to the sink, the method conserves energy and reduces delay in
answering the query.

Recently, [48] proposed a technique to answer top-k queries approximately
by keeping samples of past sensor readings. When querying on a large sample
set, the nodes that appear frequently in the answers form a pattern that can assist
in the estimation of optimum query plan. Based on this observation, the authors
propose a general framework of devising query plans with user defined energy
budget, and applies it to answer top-k queries approximately.

4.4 Continuous Queries

Sensors deployed for monitoring interesting changes in the environment are
often required to answer querics continuously. For instance, motion or sound
sensors might be used to automatically turn lights on by ¢valuating continuous
queries,

When more than one continuous query is evaluated over the readings, we
can optimize the storage and computation by taking advantage of the fact that
the sources of the query and their partial results could overlap. Continuously
Adaptive Continuous Query (CACQ), implemented over Telegraph query pro-
cessing engine, is an adaptive eddy-based design proposed by [33] which amor-
tized query processing cost by sharing the execution of multiple fong running
queries. As a related work, we find that the approach proposed by [40] for
providing approximate answers for continuous queries is applicable in certain
sensor based applications,

In long running queries, streams from different sensors are continuously
transmitted to other sensors where the query operator is applied on the data.
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Since the rate at which the data is produced by the operator varies over time,
a dynamic assignment of operators to nodes reduces communication costs. To
achieve this, [5] have worked on optimizing in-network placement of query
operators such as aggregate, filtering, duplicate elimination and correlation,
where the nodes continuously refine the operator placement.

In many applications in sensor systems, the user is more interested in a
macroscopic description of the phenomenon being observed, rather than the
individual observations. For example, when sensors are deployed to detect
fire hazards, the state of the system is either "Safe’ or "Fire Alarm’. Specific
queries regarding the state can be posed to the individual sensors once the state
is detected. Recently, [22] have proposed an approach for state monitoring that
comprises two processes. The first process is the learning process where sensor
readings are clustered with user constraints and the clusters are used to define
rules describing the state of the system. In the state monitoring process the
nodes collaborate ic update the state of the network by applying the rules to the
sensor observations.

5. Compression and Modeling

In certain applications in sensor systems the type of the query or the charac-
teristics of interesting events is not known apriori. In such scenarios, summaries
of the sensor data are stored either in-site or in-network or at the base station,
and are used for answering the queries. For example, {18, 19] proposed storage
of wavelet based summaries of sensor data, in-network, at various resolutions
(spatial) of the system. Progressive aging of summaries and load sharing tech-
niques are used to ensure long term storage and query processing.

A relevant problem is to compress the historical data from multiple streams
in order to transmit them to the base station. Recently, [15] proposed the Self
Based Regression {SBR) algorithm that provides an efficient base-signal based
technique to compress historical data in sensors. The base-signals that capture
the prominent features of the stream are extracted from the data and are trans-
mitied to the base station, to aid in future reconstructions of the stream. ALVQ
(Adaptive Linear Vector Quantization) algorithm proposed by [31] improves
on the SBR algorithm by increasing the precision of compression and reduc-
ing the bandwidth consumption by compressing the update of the codebook.
In a different approach to compressing sensor streams, [43] assume linearity
of data over small windows and evaluate a temporal compression scheme for
summarizing micro-climactic data stream.

It is clear that all the research contributions discussed here have a common
goal: to reduce power consumption of the sensors. Modeling the distribution
of the data streams comes in handy when there is a requirement to reduce the
power consumption further. This approach is highly recommended in acqui-
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Figure 15.6. (a) Two dimensional Gaussian model of the measurements from sensors % and
Sa {b) The marginal distribution of the values of sensor S1, given S2: New observations from
one sensor i used to estimate the posterior density of the other sensors

sitional systems where considerable energy is consumed even for sensing the
phenomenon, apart from the energy consumed in transmitting the values. User
queries are answered based on the models, by prediction, and more data is
acquired from the system if the prediction is not accurate. The accuracy of
the predictions thus serve as a guidance to determine which sensors should
be queried to update and refine the models, so that the future queries can be
answered more accurately.

5.1 Data Distribution Modeling

Over the recent years, there are many research undertakings in modeling of
sensor data. [20] proposed an interesting framework for in-network modeling
of sensor data using distributed regression. The authors use linear regression
to model the data and the coefficients of kernel-based regression models are
computed in-network. This technique exploits the temporal redundancy (the
redundancy in readings from a sensor over time) and spatial redundancy (sensors
that are close to each other measure similar values) that is common in sensor
streams. In [16], a multivariate Gaussian model over the sensors is used for
answering gueries pertaining to one or more of the sensors. For example,
consider a range query that asks:

“Is the value of a sensor Sy within the range [a, b]?”

Instead of querying the sensor to obtain its reading for answering the query,
it is now possible to compute the probability I{S) € [a, b]) by marginalizing
the multivariate distribution over the density over only S;. If this is very high,
the predicate is true and the predicate is false if it is very low. Otherwise, the
sensor is required to transmit more data and the model is updated. In addition
to updating the model with the new observations transmitted, the model is also
updated over time with one or more transition models.
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Figure 15.7.  Egtimation of probability distribution of the measurements over sliding window

Measurements of low-cost attributes that are correlated to an expensive pred-
icate can be used to predict the selectivity (i.c., the set of sensors to query) of
the expensive predicate. This observation is utilized in [17] to optimize query
plans for expensive predicates.

5.2 QOutlier Detection

Sensors might record measurements that appear to deviate significantly from
the other measurements observed. When a sensor reports abnormal observa-
tions, it might be due to an inherent variation in the phenomenon being observed
or due to an erroncous data measurement procedure. In either case, such out-
liers are interesting and has to be communicated across. [42] proposed an
approach for detecting outliers in a distributed manner, through non-parametric
modeling of sensor data. Probability distribution models of the data seen over a
recent window are computed based on kernel density estimators, as iliustrated
in Figure 15.7. Since such models obtained at various sensors can be combined
efficiently, this approach makes it possible to have models at different hierar-
chical levels of communication. The models are then used to detect outliers at
vatrious levels.

Figure 15.8 graphically depicts the trade-offs between the model size, the
desired accuracy of results and the resource consumption common in sensor
systems. As seen in the figure, a sensor reporting measurements from dynamic
environment such as sounds from outdoor requires large model size and more
number of message updates, compared to a sensor reporting indoor tempera-
tures.
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Figure 158, Trade-offs in modeling sensor data

0. Application: Tracking of Objects using Sensor
Networks

As seen in the above sections, sensor systems are potentially useful in vari-
ous applications ranging from environmental data collection to defense related
monitoring. In this section, we briefly describe some of the recent research
works that study surveillance and security management in sensor systems. In
particular, we look at tracking techniques where data from sensors are processed
onling, in a real-time fashion, to locate and track moving objects. Tracking of
vehicles in battlefield and tracking of spread of wildfire in forests are some of
the examples. Typically, sensor nodes that are deployed in a field are equipped
with the technology to detect the interesting objects (or in general, events).
The sensors that detect the event collaborate with each other to determine the
event’s location and predict its trajectory. Power savings and resilience from
failures are important factors to consider while devising an efficient strategy for
tracking events.

One of the first works on tracking in sensor systems is by [60] who studied
the problem of tracking a mobile target using an information theoretic approach.
According to this method, the sensor that detects the target estimates the target
state, determines the next best sensor and hands off the state information to it.
Thus, only a single node is used to track the target at any time and the routing
decision is made based on information gain and resource cost.

Considering the problem in a different setting, [2] proposed a model for
tracking a moving object with binary sensors. According to this, each sensor
node communicates one bit of information to a base station. The bit denotes
whether an object is approaching it or moving away from it. The authors
propose a filtering style approach for tracking the object. The method involves
a ceniralized computational structure which is expensive in terms of energy
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consumption. In the method proposed by [10], the network is divided into
clusters and the cluster heads calculates the target location based on the signal
readings from the other nodes in the cluster.

The problem of tracking multiple objects has been studied by [26] where the
authors propose a method based on stochastic approaches for simultaneously
tracking and maintaining identities of multiple targets. Addressing the issue
of multiple-target identity management, [46] introduced identity belief matrix
which is a doubly stochastic matrix forming a description of the identity in-
formation of each target. The matrix is computed and updated in a distributed
fashion.

Apart from the above works which present tracking techniques per se, we
also see few methods that employ some communication framework in order to
track targets. Dynamic Convoy Tree-based Collaboration (DCTC) framework
proposed by [59] relies on convoy tree which includes the sensors around the
moving target. As the target moves, the tree dynamically evolves by adding and
pruning some nodes. The nede close to the target is the root of the tree where
all the sensing data is aggregated.

[32] discuss a group management method for track initiation and manage-
ment in target tracking application. On detecting the target, sensors send mes-
sage to each other and a leader is selected among them based on the time stamp
of the messages. All sensors that detect the target abandon detection and join
the group of the selected leader and the leader gets the responsibility to maintain
the collaborative group.

Predictive target tracking based on a cluster based approach is presented by
[52] where the target’s future location is predicted based on the current location.
In order to define the current location, the cluster head aggregates the informa-
tion from three sensors in its cluster. Then the next location is predicted based
on an assumption that it obeys two dimensional Gaussian distribution. [50]
proposed a prediction-based energy saving scheme for reducing energy con-
sumption for object tracking under acceptable conditions. The prediction mod-
els is built on the assumption that the movement of the object usually remains
constant for a certain period of time. The heuristics for wake-up mechanism
considers only the predicted destination node, or all the nodes on the route
from current node to destination node, or all the neighbors of all the nodes
along the predicted route. The errors in the estimate of the target’s movement
are corrected by filtering and probabilistic methods, thus accurately defining
the sensors to be notified.

Recently, [21] proposed a two level approach for tracking a target by predict-
ing its trajectory. In this scheme, a low-level loop is executed at the sensors to
detect the presence of target and estimate its trajectory using local information,
whereas the global high level loop is used to combine the local information
and predict the trajectory across the system. The system is divided into cells as
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cells within the next monitoring region are alerted

shown in Figure 15.9. Kalman filters are used for predicting the target location
locally and the estimations are combined by the leaders of the cells. The proba-
bility distribution function of the target’s direction and location are determined
using Kernel functions and the neighboring cell leaders are alerted based on the
probability estimation. [1, 56]

7. Summary

In this chapter we reviewed recent work on distributed stream processing
techniques for data collected by sensor networks. We have focused on the sensor
monitoring paradigm, where a large set of inexpensive sensors is deployed for
surveillance or monitoring of events of interest.

The large size of data and the distributed nature of the system necessitate
the development and use of in-network storage and analysis techniques; here
we have focused on the analysis part. However, future systems will operate
with larger more expensive and capable sensors (for example video cameras).
Consequently, future research work will have to address important and funda-
mental issues on how to efficiently stoe, index, and analyze large datasets in
sensor networks.

The development of efficient techniques for iocal (in the sensor) storage of
the data (perhaps using inexpensive and widely available flash memory), as well
as for distributed data storage, and the development and deployment of resource
management techniques to manage the resources of the sensor network will be
very important in addressing these issues.
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