


Data Clustering  

SA20_GanMaWu fm 1.qxp  4/9/2007  9:57 AM  Page i



ASA-SIAM Series on 
Statistics and Applied Probability 
The ASA-SIAM Series on Statistics and Applied Probability is published 
jointly by the American Statistical Association and the Society for Industrial and Applied Mathematics.
The series consists of a broad spectrum of books on topics in statistics and applied probability.  The
purpose of the series is to provide inexpensive, quality publications of interest to the intersecting
membership of the two societies.

Editorial Board

Martin T. Wells
Cornell University, Editor-in-Chief

H. T. Banks
North Carolina State University

Douglas M. Hawkins
University of Minnesota

Susan Holmes
Stanford University

Gan, G., Ma, C., and Wu, J., Data Clustering: Theory, Algorithms, and Applications 

Hubert, L., Arabie, P., and Meulman, J., The Structural Representation of Proximity Matrices with MATLAB

Nelson, P. R., Wludyka, P. S., and Copeland, K. A. F., The Analysis of Means: A Graphical Method for 

Comparing Means, Rates, and Proportions

Burdick, R. K., Borror, C. M., and Montgomery, D. C., Design and Analysis of Gauge R&R Studies: Making 

Decisions with Confidence Intervals in Random and Mixed ANOVA Models

Albert, J., Bennett, J., and Cochran, J. J., eds., Anthology of Statistics in Sports

Smith, W. F., Experimental Design for Formulation

Baglivo, J. A., Mathematica Laboratories for Mathematical Statistics: Emphasizing Simulation and 

Computer Intensive Methods

Lee, H. K. H., Bayesian Nonparametrics via Neural Networks

O’Gorman, T. W., Applied Adaptive Statistical Methods: Tests of Significance and Confidence Intervals

Ross, T. J., Booker, J. M., and Parkinson, W. J., eds., Fuzzy Logic and Probability Applications: Bridging the Gap

Nelson, W. B., Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and Other 

Applications

Mason, R. L. and Young, J. C., Multivariate Statistical Process Control with Industrial Applications

Smith, P. L., A Primer for Sampling Solids, Liquids, and Gases: Based on the Seven Sampling Errors of 

Pierre Gy

Meyer, M. A. and Booker, J. M., Eliciting and Analyzing Expert Judgment: A Practical Guide

Latouche, G. and Ramaswami, V., Introduction to Matrix Analytic Methods in Stochastic Modeling

Peck, R., Haugh, L., and Goodman, A., Statistical Case Studies: A Collaboration Between Academe and 

Industry, Student Edition

Peck, R., Haugh, L., and Goodman, A., Statistical Case Studies: A Collaboration Between Academe and 

Industry

Barlow, R., Engineering Reliability

Czitrom, V. and Spagon, P. D.,  Statistical Case Studies for Industrial Process Improvement

Lisa LaVange
University of North Carolina

David Madigan
Rutgers University

Mark van der Laan
University of California, Berkeley

SA20_GanMaWu fm 1.qxp  4/9/2007  9:57 AM  Page ii



Society for Industrial and Applied Mathematics
Philadelphia, Pennsylvania

American Statistical Association
Alexandria, Virginia

Data Clustering
Theory, Algorithms,
and Applications

Guojun Gan
York University

Toronto, Ontario, Canada

Chaoqun Ma
Hunan University

Changsha, Hunan, People’s Republic of China

Jianhong Wu
York University

Toronto, Ontario, Canada

SA20_GanMaWu fm 1.qxp  4/9/2007  9:57 AM  Page iii



The correct bibliographic citation for this book is as follows: Gan, Guojun, Chaoqun Ma, and Jianhong
Wu, Data Clustering: Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied
Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2007. 

Copyright © 2007 by the American Statistical Association and the Society for Industrial and Applied
Mathematics.

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For information,
write to the Society for Industrial and Applied Mathematics, 3600 University City Science Center,
Philadelphia, PA 19104-2688.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are intended in an editorial context only; no infringement of trademark is intended.

Library of Congress Cataloging-in-Publication Data

Gan, Guojun, 1979-
Data clustering : theory, algorithms, and applications / Guojun Gan, Chaoqun Ma,

Jianhong Wu.
p. cm. – (ASA-SIAM series on statistics and applied probability ; 20)

Includes bibliographical references and index.
ISBN: 978-0-898716-23-8 (alk. paper)

1. Cluster analysis. 2. Cluster analysis—Data processing. I. Ma, Chaoqun, Ph.D. II.
Wu, Jianhong. III. Title.

QA278.G355 2007
519.5’3—dc22

2007061713

is a registered trademark.

SA20_GanMaWu fm 1.qxp  4/9/2007  9:57 AM  Page iv



Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Preface xix

I Clustering, Data, and Similarity Measures 1

1 Data Clustering 3
1.1 Definition of Data Clustering . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Vocabulary of Clustering . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Records and Attributes . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Distances and Similarities . . . . . . . . . . . . . . . . . . 5
1.2.3 Clusters, Centers, and Modes . . . . . . . . . . . . . . . . . 6
1.2.4 Hard Clustering and Fuzzy Clustering . . . . . . . . . . . . 7
1.2.5 Validity Indices . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Clustering Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Dealing with Missing Values . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Resources for Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Surveys and Reviews on Clustering . . . . . . . . . . . . . 12
1.5.2 Books on Clustering . . . . . . . . . . . . . . . . . . . . . 12
1.5.3 Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.4 Conference Proceedings . . . . . . . . . . . . . . . . . . . 15
1.5.5 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Data Types 19
2.1 Categorical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Transaction Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Symbolic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



vi Contents

3 Scale Conversion 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Interval to Ordinal . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Interval to Nominal . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Ordinal to Nominal . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 Nominal to Ordinal . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Ordinal to Interval . . . . . . . . . . . . . . . . . . . . . . 29
3.1.6 Other Conversions . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Categorization of Numerical Data . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Direct Categorization . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Cluster-based Categorization . . . . . . . . . . . . . . . . . 31
3.2.3 Automatic Categorization . . . . . . . . . . . . . . . . . . 37

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Data Standardization and Transformation 43
4.1 Data Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Principal Component Analysis . . . . . . . . . . . . . . . . 46
4.2.2 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 The Karhunen-Loève Transformation . . . . . . . . . . . . 49

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Data Visualization 53
5.1 Sammon’s Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 MDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Class-preserving Projections . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Tree Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.7 Categorical Data Visualization . . . . . . . . . . . . . . . . . . . . . 62
5.8 Other Visualization Techniques . . . . . . . . . . . . . . . . . . . . . 65
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Similarity and Dissimilarity Measures 67
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Proximity Matrix . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Proximity Graph . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.3 Scatter Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.4 Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Measures for Numerical Data . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Manhattan Distance . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Maximum Distance . . . . . . . . . . . . . . . . . . . . . . 72
6.2.4 Minkowski Distance . . . . . . . . . . . . . . . . . . . . . 72
6.2.5 Mahalanobis Distance . . . . . . . . . . . . . . . . . . . . 72



Contents vii

6.2.6 Average Distance . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.7 Other Distances . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Measures for Categorical Data . . . . . . . . . . . . . . . . . . . . . 74
6.3.1 The Simple Matching Distance . . . . . . . . . . . . . . . . 76
6.3.2 Other Matching Coefficients . . . . . . . . . . . . . . . . . 76

6.4 Measures for Binary Data . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Measures for Mixed-type Data . . . . . . . . . . . . . . . . . . . . . 79

6.5.1 A General Similarity Coefficient . . . . . . . . . . . . . . . 79
6.5.2 A General Distance Coefficient . . . . . . . . . . . . . . . . 80
6.5.3 A Generalized Minkowski Distance . . . . . . . . . . . . . 81

6.6 Measures for Time Series Data . . . . . . . . . . . . . . . . . . . . . 83
6.6.1 The Minkowski Distance . . . . . . . . . . . . . . . . . . . 84
6.6.2 Time Series Preprocessing . . . . . . . . . . . . . . . . . . 85
6.6.3 Dynamic Time Warping . . . . . . . . . . . . . . . . . . . 87
6.6.4 Measures Based on Longest Common Subsequences . . . . 88
6.6.5 Measures Based on Probabilistic Models . . . . . . . . . . 90
6.6.6 Measures Based on Landmark Models . . . . . . . . . . . . 91
6.6.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Other Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.7.1 The Cosine Similarity Measure . . . . . . . . . . . . . . . 93
6.7.2 A Link-based Similarity Measure . . . . . . . . . . . . . . 93
6.7.3 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.8 Similarity and Dissimilarity Measures between Clusters . . . . . . . . 94
6.8.1 The Mean-based Distance . . . . . . . . . . . . . . . . . . 94
6.8.2 The Nearest Neighbor Distance . . . . . . . . . . . . . . . 95
6.8.3 The Farthest Neighbor Distance . . . . . . . . . . . . . . . 95
6.8.4 The Average Neighbor Distance . . . . . . . . . . . . . . . 96
6.8.5 Lance-Williams Formula . . . . . . . . . . . . . . . . . . . 96

6.9 Similarity and Dissimilarity between Variables . . . . . . . . . . . . . 98
6.9.1 Pearson’s Correlation Coefficients . . . . . . . . . . . . . . 98
6.9.2 Measures Based on the Chi-square Statistic . . . . . . . . . 101
6.9.3 Measures Based on Optimal Class Prediction . . . . . . . . 103
6.9.4 Group-based Distance . . . . . . . . . . . . . . . . . . . . 105

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

II Clustering Algorithms 107

7 Hierarchical Clustering Techniques 109
7.1 Representations of Hierarchical Clusterings . . . . . . . . . . . . . . 109

7.1.1 n-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1.2 Dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1.3 Banner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.1.4 Pointer Representation . . . . . . . . . . . . . . . . . . . . 112
7.1.5 Packed Representation . . . . . . . . . . . . . . . . . . . . 114
7.1.6 Icicle Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.7 Other Representations . . . . . . . . . . . . . . . . . . . . 115



viii Contents

7.2 Agglomerative Hierarchical Methods . . . . . . . . . . . . . . . . . . 116
7.2.1 The Single-link Method . . . . . . . . . . . . . . . . . . . 118
7.2.2 The Complete Link Method . . . . . . . . . . . . . . . . . 120
7.2.3 The Group Average Method . . . . . . . . . . . . . . . . . 122
7.2.4 The Weighted Group Average Method . . . . . . . . . . . . 125
7.2.5 The Centroid Method . . . . . . . . . . . . . . . . . . . . . 126
7.2.6 The Median Method . . . . . . . . . . . . . . . . . . . . . 130
7.2.7 Ward’s Method . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.8 Other Agglomerative Methods . . . . . . . . . . . . . . . . 137

7.3 Divisive Hierarchical Methods . . . . . . . . . . . . . . . . . . . . . 137
7.4 Several Hierarchical Algorithms . . . . . . . . . . . . . . . . . . . . . 138

7.4.1 SLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4.2 Single-link Algorithms Based on Minimum Spanning Trees 140
7.4.3 CLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4.4 BIRCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.5 CURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.6 DIANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.7 DISMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.8 Edwards and Cavalli-Sforza Method . . . . . . . . . . . . . 147

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Fuzzy Clustering Algorithms 151
8.1 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Fuzzy Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.3 Fuzzy k-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.4 Fuzzy k-modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.5 The c-means Method . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9 Center-based Clustering Algorithms 161
9.1 The k-means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2 Variations of the k-means Algorithm . . . . . . . . . . . . . . . . . . 164

9.2.1 The Continuous k-means Algorithm . . . . . . . . . . . . . 165
9.2.2 The Compare-means Algorithm . . . . . . . . . . . . . . . 165
9.2.3 The Sort-means Algorithm . . . . . . . . . . . . . . . . . . 166
9.2.4 Acceleration of the k-means Algorithm with the

kd-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.2.5 Other Acceleration Methods . . . . . . . . . . . . . . . . . 168

9.3 The Trimmed k-means Algorithm . . . . . . . . . . . . . . . . . . . . 169
9.4 The x-means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.5 The k-harmonic Means Algorithm . . . . . . . . . . . . . . . . . . . . 171
9.6 The Mean Shift Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 173
9.7 MEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.8 The k-modes Algorithm (Huang) . . . . . . . . . . . . . . . . . . . . 176

9.8.1 Initial Modes Selection . . . . . . . . . . . . . . . . . . . . 178
9.9 The k-modes Algorithm (Chaturvedi et al.) . . . . . . . . . . . . . . . 178



Contents ix

9.10 The k-probabilities Algorithm . . . . . . . . . . . . . . . . . . . . . . 179
9.11 The k-prototypes Algorithm . . . . . . . . . . . . . . . . . . . . . . . 181
9.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10 Search-based Clustering Algorithms 183
10.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.2 The Tabu Search Method . . . . . . . . . . . . . . . . . . . . . . . . 185
10.3 Variable Neighborhood Search for Clustering . . . . . . . . . . . . . . 186
10.4 Al-Sultan’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.5 Tabu Search–based Categorical Clustering Algorithm . . . . . . . . . 189
10.6 J-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.7 GKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.8 The Global k-means Algorithm . . . . . . . . . . . . . . . . . . . . . 195
10.9 The Genetic k-modes Algorithm . . . . . . . . . . . . . . . . . . . . . 195

10.9.1 The Selection Operator . . . . . . . . . . . . . . . . . . . . 196
10.9.2 The Mutation Operator . . . . . . . . . . . . . . . . . . . . 196
10.9.3 The k-modes Operator . . . . . . . . . . . . . . . . . . . . 197

10.10 The Genetic Fuzzy k-modes Algorithm . . . . . . . . . . . . . . . . . 197
10.10.1 String Representation . . . . . . . . . . . . . . . . . . . . . 198
10.10.2 Initialization Process . . . . . . . . . . . . . . . . . . . . . 198
10.10.3 Selection Process . . . . . . . . . . . . . . . . . . . . . . . 199
10.10.4 Crossover Process . . . . . . . . . . . . . . . . . . . . . . 199
10.10.5 Mutation Process . . . . . . . . . . . . . . . . . . . . . . . 200
10.10.6 Termination Criterion . . . . . . . . . . . . . . . . . . . . . 200

10.11 SARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11 Graph-based Clustering Algorithms 203
11.1 Chameleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
11.2 CACTUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.3 A Dynamic System–based Approach . . . . . . . . . . . . . . . . . . 205
11.4 ROCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

12 Grid-based Clustering Algorithms 209
12.1 STING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
12.2 OptiGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.3 GRIDCLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
12.4 GDILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
12.5 WaveCluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
12.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

13 Density-based Clustering Algorithms 219
13.1 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
13.2 BRIDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
13.3 DBCLASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222



x Contents

13.4 DENCLUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.5 CUBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

14 Model-based Clustering Algorithms 227
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
14.2 Gaussian Clustering Models . . . . . . . . . . . . . . . . . . . . . . . 230
14.3 Model-based Agglomerative Hierarchical Clustering . . . . . . . . . . 232
14.4 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.5 Model-based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 237
14.6 COOLCAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
14.7 STUCCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
14.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

15 Subspace Clustering 243
15.1 CLIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
15.2 PROCLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
15.3 ORCLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
15.4 ENCLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
15.5 FINDIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
15.6 MAFIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
15.7 DOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
15.8 CLTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
15.9 PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
15.10 SUBCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
15.11 Fuzzy Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . 270
15.12 Mean Shift for Subspace Clustering . . . . . . . . . . . . . . . . . . . 275
15.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

16 Miscellaneous Algorithms 287
16.1 Time Series Clustering Algorithms . . . . . . . . . . . . . . . . . . . 287
16.2 Streaming Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 289

16.2.1 LSEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . 290
16.2.2 Other Streaming Algorithms . . . . . . . . . . . . . . . . . 293

16.3 Transaction Data Clustering Algorithms . . . . . . . . . . . . . . . . 293
16.3.1 LargeItem . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
16.3.2 CLOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
16.3.3 OAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

16.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

17 Evaluation of Clustering Algorithms 299
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

17.1.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . 301
17.1.2 External Criteria . . . . . . . . . . . . . . . . . . . . . . . 302
17.1.3 Internal Criteria . . . . . . . . . . . . . . . . . . . . . . . . 303
17.1.4 Relative Criteria . . . . . . . . . . . . . . . . . . . . . . . 304



Contents xi

17.2 Evaluation of Partitional Clustering . . . . . . . . . . . . . . . . . . . 305
17.2.1 Modified Hubert’s � Statistic . . . . . . . . . . . . . . . . . 305
17.2.2 The Davies-Bouldin Index . . . . . . . . . . . . . . . . . . 305
17.2.3 Dunn’s Index . . . . . . . . . . . . . . . . . . . . . . . . . 307
17.2.4 The SD Validity Index . . . . . . . . . . . . . . . . . . . . 307
17.2.5 The S_Dbw Validity Index . . . . . . . . . . . . . . . . . . 308
17.2.6 The RMSSTD Index . . . . . . . . . . . . . . . . . . . . . 309
17.2.7 The RS Index . . . . . . . . . . . . . . . . . . . . . . . . . 310
17.2.8 The Calinski-Harabasz Index . . . . . . . . . . . . . . . . . 310
17.2.9 Rand’s Index . . . . . . . . . . . . . . . . . . . . . . . . . 311
17.2.10 Average of Compactness . . . . . . . . . . . . . . . . . . . 312
17.2.11 Distances between Partitions . . . . . . . . . . . . . . . . . 312

17.3 Evaluation of Hierarchical Clustering . . . . . . . . . . . . . . . . . . 314
17.3.1 Testing Absence of Structure . . . . . . . . . . . . . . . . . 314
17.3.2 Testing Hierarchical Structures . . . . . . . . . . . . . . . . 315

17.4 Validity Indices for Fuzzy Clustering . . . . . . . . . . . . . . . . . . 315
17.4.1 The Partition Coefficient Index . . . . . . . . . . . . . . . . 315
17.4.2 The Partition Entropy Index . . . . . . . . . . . . . . . . . 316
17.4.3 The Fukuyama-Sugeno Index . . . . . . . . . . . . . . . . 316
17.4.4 Validity Based on Fuzzy Similarity . . . . . . . . . . . . . 317
17.4.5 A Compact and Separate Fuzzy Validity Criterion . . . . . . 318
17.4.6 A Partition Separation Index . . . . . . . . . . . . . . . . . 319
17.4.7 An Index Based on the Mini-max Filter Concept and Fuzzy

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
17.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

III Applications of Clustering 321

18 Clustering Gene Expression Data 323
18.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
18.2 Applications of Gene Expression Data Clustering . . . . . . . . . . . 324
18.3 Types of Gene Expression Data Clustering . . . . . . . . . . . . . . . 325
18.4 Some Guidelines for Gene Expression Clustering . . . . . . . . . . . 325
18.5 Similarity Measures for Gene Expression Data . . . . . . . . . . . . . 326

18.5.1 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . 326
18.5.2 Pearson’s Correlation Coefficient . . . . . . . . . . . . . . 326

18.6 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
18.6.1 C++ Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
18.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

IV MATLAB and C++ for Clustering 341

19 Data Clustering in MATLAB 343
19.1 Read and Write Data Files . . . . . . . . . . . . . . . . . . . . . . . . 343
19.2 Handle Categorical Data . . . . . . . . . . . . . . . . . . . . . . . . . 347



xii Contents

19.3 M-files, MEX-files, and MAT-files . . . . . . . . . . . . . . . . . . . 349
19.3.1 M-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
19.3.2 MEX-files . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
19.3.3 MAT-files . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

19.4 Speed up MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
19.5 Some Clustering Functions . . . . . . . . . . . . . . . . . . . . . . . 355

19.5.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . 355
19.5.2 k-means Clustering . . . . . . . . . . . . . . . . . . . . . . 359

19.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

20 Clustering in C/C++ 363
20.1 The STL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

20.1.1 The vector Class . . . . . . . . . . . . . . . . . . . . . . . 363
20.1.2 The list Class . . . . . . . . . . . . . . . . . . . . . . . . . 364

20.2 C/C++ Program Compilation . . . . . . . . . . . . . . . . . . . . . . 366
20.3 Data Structure and Implementation . . . . . . . . . . . . . . . . . . . 367

20.3.1 Data Matrices and Centers . . . . . . . . . . . . . . . . . . 367
20.3.2 Clustering Results . . . . . . . . . . . . . . . . . . . . . . 368
20.3.3 The Quick Sort Algorithm . . . . . . . . . . . . . . . . . . 369

20.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

A Some Clustering Algorithms 371

B The kd-tree Data Structure 375

C MATLAB Codes 377
C.1 The MATLAB Code for Generating Subspace Clusters . . . . . . . . . 377
C.2 The MATLAB Code for the k-modes Algorithm . . . . . . . . . . . . 379
C.3 The MATLAB Code for the MSSC Algorithm . . . . . . . . . . . . . 381

D C++ Codes 385
D.1 The C++ Code for Converting Categorical Values to Integers . . . . . 385
D.2 The C++ Code for the FSC Algorithm . . . . . . . . . . . . . . . . . 388

Bibliography 397

Subject Index 443

Author Index 455



List of Figures

1.1 Data-mining tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Three well-separated center-based clusters in a two-dimensional space. . . . . 7
1.3 Two chained clusters in a two-dimensional space. . . . . . . . . . . . . . . . 7
1.4 Processes of data clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Diagram of clustering algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Diagram of data types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Diagram of data scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 An example two-dimensional data set with 60 points. . . . . . . . . . . . . . 31
3.2 Examples of direct categorization when N = 5 . . . . . . . . . . . . . . . . . 32
3.3 Examples of direct categorization when N = 2 . . . . . . . . . . . . . . . . . 32
3.4 Examples of k-means–based categorization when N = 5 . . . . . . . . . . . 33
3.5 Examples of k-means–based categorization when N = 2 . . . . . . . . . . . 34
3.6 Examples of cluster-based categorization based on the least squares partition

when N = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Examples of cluster-based categorization based on the least squares partition

when N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Examples of automatic categorization using the k-means algorithm and the

compactness-separation criterion . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Examples of automatic categorization using the k-means algorithm and the

compactness-separation criterion . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Examples of automatic categorization based on the least squares partition and

the SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11 Examples of automatic categorization based on the least squares partition and

the SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 The architecture of the SOM. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 The axes of the parallel coordinates system. . . . . . . . . . . . . . . . . . . 60
5.3 A two-dimensional data set containing five points. . . . . . . . . . . . . . . . 60
5.4 The parallel coordinates plot of the five points in Figure 5.3. . . . . . . . . . . 61
5.5 The dendrogram of the single-linkage hierarchical clustering of the five points

in Figure 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 The tree maps of the dendrogram in Figure 5.5. . . . . . . . . . . . . . . . . . 62

xiii



xiv List of Figures

5.7 Plot of the two clusters in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Nearest neighbor distance between two clusters. . . . . . . . . . . . . . . . . 95
6.2 Farthest neighbor distance between two clusters. . . . . . . . . . . . . . . . 95

7.1 Agglomerative hierarchical clustering and divisive hierarchical clustering. . . 110
7.2 A 5-tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3 A dendrogram of five data points. . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 A banner constructed from the dendrogram given in Figure 7.3. . . . . . . . . 113
7.5 The dendrogram determined by the packed representation given in Table 7.3. . 115
7.6 An icicle plot corresponding to the dendrogram given in

Figure 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.7 A loop plot corresponding to the dendrogram given in Figure 7.3. . . . . . . . 116
7.8 Some commonly used hierarchical methods. . . . . . . . . . . . . . . . . . . 116
7.9 A two-dimensional data set with five data points. . . . . . . . . . . . . . . . . 119
7.10 The dendrogram produced by applying the single-link method to the data set

given in Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.11 The dendrogram produced by applying the complete link method to the data

set given in Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.12 The dendrogram produced by applying the group average method to the data

set given in Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.13 The dendrogram produced by applying the weighted group average method to

the data set given in Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.14 The dendrogram produced by applying the centroid method to the data set

given in Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.15 The dendrogram produced by applying the median method to the data set given

in Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.16 The dendrogram produced by applying Ward’s method to the data set given in

Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

14.1 The flowchart of the model-based clustering procedure. . . . . . . . . . . . . 229

15.1 The relationship between the mean shift algorithm and its derivatives. . . . . . 276

17.1 Diagram of the cluster validity indices. . . . . . . . . . . . . . . . . . . . . . 300

18.1 Cluster 1 and cluster 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
18.2 Cluster 3 and cluster 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
18.3 Cluster 5 and cluster 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
18.4 Cluster 7 and cluster 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
18.5 Cluster 9 and cluster 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

19.1 A dendrogram created by the function dendrogram. . . . . . . . . . . . . . 359



List of Tables

1.1 A list of methods for dealing with missing values. . . . . . . . . . . . . . . . 11

2.1 A sample categorical data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 One of the symbol tables of the data set in Table 2.1. . . . . . . . . . . . . . . 21
2.3 Another symbol table of the data set in Table 2.1. . . . . . . . . . . . . . . . . 21
2.4 The frequency table computed from the symbol table in Table 2.2. . . . . . . . 22
2.5 The frequency table computed from the symbol table in Table 2.3. . . . . . . . 22

4.1 Some data standardization methods, where x̄∗j , R∗
j , and σ ∗j are defined in

equation (4.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 The coordinate system for the two clusters of the data set in Table 2.1. . . . . 63
5.2 Coordinates of the attribute values of the two clusters in Table 5.1. . . . . . . 64

6.1 Some other dissimilarity measures for numerical data. . . . . . . . . . . . . . 75
6.2 Some matching coefficients for nominal data. . . . . . . . . . . . . . . . . . 77
6.3 Similarity measures for binary vectors. . . . . . . . . . . . . . . . . . . . . . 78
6.4 Some symmetrical coefficients for binary feature vectors. . . . . . . . . . . . 78
6.5 Some asymmetrical coefficients for binary feature vectors. . . . . . . . . . . . 79
6.6 Some commonly used values for the parameters in the Lance-Williams’s for-

mula, where ni = |Ci | is the number of data points inCi , and�ijk = ni+nj+nk . 97
6.7 Some common parameters for the general recurrence formula proposed by

Jambu (1978). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.8 The contingency table of variables u and v. . . . . . . . . . . . . . . . . . . . 101
6.9 Measures of association based on the chi-square statistic. . . . . . . . . . . . 102

7.1 The pointer representation corresponding to the dendrogram given in Figure 7.3.113
7.2 The packed representation corresponding to the pointer representation given

in Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3 A packed representation of six objects. . . . . . . . . . . . . . . . . . . . . . 114
7.4 The cluster centers agglomerated from two clusters and the dissimilarities

between two cluster centers for geometric hierarchical methods, where µ(C)

denotes the center of cluster C. . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5 The dissimilarity matrix of the data set given in Figure 7.9. The entry (i, j) in

the matrix is the Euclidean distance between xi and xj . . . . . . . . . . . . . 119

xv



xvi List of Tables

7.6 The dissimilarity matrix of the data set given in Figure 7.9. . . . . . . . . . . 135

11.1 Description of the chameleon algorithm, where n is the number of data in the
database and m is the number of initial subclusters. . . . . . . . . . . . . . . 204

11.2 The properties of the ROCK algorithm, where n is the number of data points
in the data set, mm is the maximum number of neighbors for a point, and ma

is the average number of neighbors. . . . . . . . . . . . . . . . . . . . . . . . 208

14.1 Description of Gaussian mixture models in the general family. . . . . . . . . . 231
14.2 Description of Gaussian mixture models in the diagonal family. B is a diagonal

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
14.3 Description of Gaussian mixture models in the diagonal family. I is an identity

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
14.4 Four parameterizations of the covariance matrix in the Gaussian model and

their corresponding criteria to be minimized. . . . . . . . . . . . . . . . . . 234

15.1 List of some subspace clustering algorithms. . . . . . . . . . . . . . . . . . . 244
15.2 Description of the MAFIA algorithm. . . . . . . . . . . . . . . . . . . . . . . 259

17.1 Some indices that measure the degree of similarity between C and P based
on the external criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

19.1 Some MATLAB commands related to reading and writing files. . . . . . . . . 344
19.2 Permission codes for opening a file in MATLAB. . . . . . . . . . . . . . . . 345
19.3 Some values of precision for the fwrite function in MATLAB. . . . . . . . 346
19.4 MEX-file extensions for various platforms. . . . . . . . . . . . . . . . . . . . 352
19.5 Some MATLAB clustering functions. . . . . . . . . . . . . . . . . . . . . . . 355
19.6 Options of the function pdist. . . . . . . . . . . . . . . . . . . . . . . . . . 357
19.7 Options of the function linkage. . . . . . . . . . . . . . . . . . . . . . . . 358
19.8 Values of the parameter distance in the function kmeans. . . . . . . . . . 360
19.9 Values of the parameter start in the function kmeans. . . . . . . . . . . . 360
19.10 Values of the parameter emptyaction in the function kmeans. . . . . . . 361
19.11 Values of the parameter display in the function kmeans. . . . . . . . . . . 361

20.1 Some members of the vector class. . . . . . . . . . . . . . . . . . . . . . . . 365
20.2 Some members of the list class. . . . . . . . . . . . . . . . . . . . . . . . . . 366



List of Algorithms

Algorithm 5.1 Nonmetric MDS . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Algorithm 5.2 The pseudocode of the SOM algorithm . . . . . . . . . . . . . . 58
Algorithm 7.1 The SLINK algorithm . . . . . . . . . . . . . . . . . . . . . . . 139
Algorithm 7.2 The pseudocode of the CLINK algorithm . . . . . . . . . . . . . 142
Algorithm 8.1 The fuzzy k-means algorithm . . . . . . . . . . . . . . . . . . . 154
Algorithm 8.2 Fuzzy k-modes algorithm . . . . . . . . . . . . . . . . . . . . . 157
Algorithm 9.1 The conventional k-means algorithm . . . . . . . . . . . . . . . 162
Algorithm 9.2 The k-means algorithm treated as an optimization problem . . . . 163
Algorithm 9.3 The compare-means algorithm . . . . . . . . . . . . . . . . . . . 165
Algorithm 9.4 An iteration of the sort-means algorithm . . . . . . . . . . . . . . 166
Algorithm 9.5 The k-modes algorithm . . . . . . . . . . . . . . . . . . . . . . . 177
Algorithm 9.6 The k-probabilities algorithm . . . . . . . . . . . . . . . . . . . 180
Algorithm 9.7 The k-prototypes algorithm . . . . . . . . . . . . . . . . . . . . 182
Algorithm 10.1 The VNS heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 187
Algorithm 10.2 Al-Sultan’s tabu search–based clustering algorithm . . . . . . . . 188
Algorithm 10.3 The J -means algorithm . . . . . . . . . . . . . . . . . . . . . . 191
Algorithm 10.4 Mutation (sW) . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Algorithm 10.5 The pseudocode of GKA . . . . . . . . . . . . . . . . . . . . . . 194
Algorithm 10.6 Mutation (sW) in GKMODE . . . . . . . . . . . . . . . . . . . . 197
Algorithm 10.7 The SARS algorithm . . . . . . . . . . . . . . . . . . . . . . . . 201
Algorithm 11.1 The procedure of the chameleon algorithm . . . . . . . . . . . . 204
Algorithm 11.2 The CACTUS algorithm . . . . . . . . . . . . . . . . . . . . . . 205
Algorithm 11.3 The dynamic system–based clustering algorithm . . . . . . . . . 206
Algorithm 11.4 The ROCK algorithm . . . . . . . . . . . . . . . . . . . . . . . 207
Algorithm 12.1 The STING algorithm . . . . . . . . . . . . . . . . . . . . . . . 210
Algorithm 12.2 The OptiGrid algorithm . . . . . . . . . . . . . . . . . . . . . . 211
Algorithm 12.3 The GRIDCLUS algorithm . . . . . . . . . . . . . . . . . . . . 213
Algorithm 12.4 Procedure NEIGHBOR_SEARCH(B,C) . . . . . . . . . . . . . . 213
Algorithm 12.5 The GDILC algorithm . . . . . . . . . . . . . . . . . . . . . . . 215
Algorithm 13.1 The BRIDGE algorithm . . . . . . . . . . . . . . . . . . . . . . 221
Algorithm 14.1 Model-based clustering procedure . . . . . . . . . . . . . . . . . 238
Algorithm 14.2 The COOLCAT clustering algorithm . . . . . . . . . . . . . . . 240
Algorithm 14.3 The STUCCO clustering algorithm procedure . . . . . . . . . . . 241
Algorithm 15.1 The PROCLUS algorithm . . . . . . . . . . . . . . . . . . . . . 247

xvii



xviii List of Algorithms

Algorithm 15.2 The pseudocode of the ORCLUS algorithm . . . . . . . . . . . . 249
Algorithm 15.3 Assign(s1, . . . , skc , P1, . . . , Pkc ) . . . . . . . . . . . . . . . . . . 250
Algorithm 15.4 Merge(C1, . . . , Ckc , Knew, lnew) . . . . . . . . . . . . . . . . . . 251
Algorithm 15.5 FindVectors(C, q) . . . . . . . . . . . . . . . . . . . . . . . . . 252
Algorithm 15.6 ENCLUS procedure for mining significant subspaces . . . . . . . 254
Algorithm 15.7 ENCLUS procedure for mining interesting subspaces . . . . . . 255
Algorithm 15.8 The FINDIT algorithm . . . . . . . . . . . . . . . . . . . . . . . 256
Algorithm 15.9 Procedure of adaptive grids computation in the MAFIA

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Algorithm 15.10 The DOC algorithm for approximating an optimal projective

cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Algorithm 15.11 The SUBCAD algorithm . . . . . . . . . . . . . . . . . . . . . . 266
Algorithm 15.12 The pseudocode of the FSC algorithm . . . . . . . . . . . . . . . 274
Algorithm 15.13 The pseudocode of the MSSC algorithm . . . . . . . . . . . . . 282
Algorithm 15.14 The postprocessing procedure to get the final subspace clusters . 282
Algorithm 16.1 The InitialSolution algorithm . . . . . . . . . . . . . . . . . . . 291
Algorithm 16.2 The LSEARCH algorithm . . . . . . . . . . . . . . . . . . . . . 291
Algorithm 16.3 The FL(D, d(·, ·), z, ε, (I, a)) function . . . . . . . . . . . . . . . 292
Algorithm 16.4 The CLOPE algorithm . . . . . . . . . . . . . . . . . . . . . . . 296
Algorithm 16.5 A sketch of the OAK algorithm . . . . . . . . . . . . . . . . . . 297
Algorithm 17.1 The Monte Carlo technique for computing the probability density

function of the indices . . . . . . . . . . . . . . . . . . . . . . . 301



Preface

Cluster analysis is an unsupervised process that divides a set of objects into homoge-
neous groups. There have been many clustering algorithms scattered in publications in very
diversified areas such as pattern recognition, artificial intelligence, information technology,
image processing, biology, psychology, and marketing. As such, readers and users often
find it very difficult to identify an appropriate algorithm for their applications and/or to
compare novel ideas with existing results.

In this monograph, we shall focus on a small number of popular clustering algorithms
and group them according to some specific baseline methodologies, such as hierarchical,
center-based, and search-based methods. We shall, of course, start with the common ground
and knowledge for cluster analysis, including the classification of data and the correspond-
ing similarity measures, and we shall also provide examples of clustering applications to
illustrate the advantages and shortcomings of different clustering architectures and algo-
rithms.

This monograph is intended not only for statistics, applied mathematics, and computer
science senior undergraduates and graduates, but also for research scientists who need cluster
analysis to deal with data. It may be used as a textbook for introductory courses in cluster
analysis or as source material for an introductory course in data mining at the graduate level.
We assume that the reader is familiar with elementary linear algebra, calculus, and basic
statistical concepts and methods.

The book is divided into four parts: basic concepts (clustering, data, and similarity
measures), algorithms, applications, and programming languages. We now briefly describe
the content of each chapter.

Chapter 1. Data clustering. In this chapter, we introduce the basic concepts of
clustering. Cluster analysis is defined as a way to create groups of objects, or clusters,
in such a way that objects in one cluster are very similar and objects in different clusters
are quite distinct. Some working definitions of clusters are discussed, and several popular
books relevant to cluster analysis are introduced.

Chapter 2. Data types. The type of data is directly associated with data clustering,
and it is a major factor to consider in choosing an appropriate clustering algorithm. Five
data types are discussed in this chapter: categorical, binary, transaction, symbolic, and time
series. They share a common feature that nonnumerical similarity measures must be used.
There are many other data types, such as image data, that are not discussed here, though we
believe that once readers get familiar with these basic types of data, they should be able to
adjust the algorithms accordingly.

xix
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Chapter 3. Scale conversion. Scale conversion is concerned with the transformation
between different types of variables. For example, one may convert a continuous measured
variable to an interval variable. In this chapter, we first review several scale conversion
techniques and then discuss several approaches for categorizing numerical data.

Chapter 4. Data standardization and transformation. In many situations, raw data
should be normalized and/or transformed before a cluster analysis. One reason to do this is
that objects in raw data may be described by variables measured with different scales; another
reason is to reduce the size of the data to improve the effectiveness of clustering algorithms.
Therefore, we present several data standardization and transformation techniques in this
chapter.

Chapter 5. Data visualization. Data visualization is vital in the final step of data-
mining applications. This chapter introduces various techniques of visualization with an
emphasis on visualization of clustered data. Some dimension reduction techniques, such as
multidimensional scaling (MDS) and self-organizing maps (SDMs), are discussed.

Chapter 6. Similarity and dissimilarity measures. In the literature of data clus-
tering, a similarity measure or distance (dissimilarity measure) is used to quantitatively
describe the similarity or dissimilarity of two data points or two clusters. Similarity and dis-
tance measures are basic elements of a clustering algorithm, without which no meaningful
cluster analysis is possible. Due to the important role of similarity and distance measures in
cluster analysis, we present a comprehensive discussion of different measures for various
types of data in this chapter. We also introduce measures between points and measures
between clusters.

Chapter 7. Hierarchical clustering techniques. Hierarchical clustering algorithms
and partitioning algorithms are two major clustering algorithms. Unlike partitioning algo-
rithms, which divide a data set into a single partition, hierarchical algorithms divide a data
set into a sequence of nested partitions. There are two major hierarchical algorithms: ag-
glomerative algorithms and divisive algorithms. Agglomerative algorithms start with every
single object in a single cluster, while divisive ones start with all objects in one cluster and
repeat splitting large clusters into small pieces. In this chapter, we present representations
of hierarchical clustering and several popular hierarchical clustering algorithms.

Chapter 8. Fuzzy clustering algorithms. Clustering algorithms can be classified
into two categories: hard clustering algorithms and fuzzy clustering algorithms. Unlike
hard clustering algorithms, which require that each data point of the data set belong to one
and only one cluster, fuzzy clustering algorithms allow a data point to belong to two or
more clusters with different probabilities. There is also a huge number of published works
related to fuzzy clustering. In this chapter, we review some basic concepts of fuzzy logic
and present three well-known fuzzy clustering algorithms: fuzzy k-means, fuzzy k-modes,
and c-means.

Chapter 9. Center-based clustering algorithms. Compared to other types of clus-
tering algorithms, center-based clustering algorithms are more suitable for clustering large
data sets and high-dimensional data sets. Several well-known center-based clustering algo-
rithms (e.g., k-means, k-modes) are presented and discussed in this chapter.

Chapter 10. Search-based clustering algorithms. A well-known problem associ-
ated with most of the clustering algorithms is that they may not be able to find the globally
optimal clustering that fits the data set, since these algorithms will stop if they find a local
optimal partition of the data set. This problem led to the invention of search-based clus-
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tering algorithms to search the solution space and find a globally optimal clustering that
fits the data set. In this chapter, we present several clustering algorithms based on genetic
algorithms, tabu search algorithms, and simulated annealing algorithms.

Chapter 11. Graph-based clustering algorithms. Graph-based clustering algo-
rithms cluster a data set by clustering the graph or hypergraph constructed from the data set.
The construction of a graph or hypergraph is usually based on the dissimilarity matrix of
the data set under consideration. In this chapter, we present several graph-based clustering
algorithms that do not use the spectral graph partition techniques, although we also list a
few references related to spectral graph partition techniques.

Chapter 12. Grid-based clustering algorithms. In general, a grid-based clustering
algorithm consists of the following five basic steps: partitioning the data space into a
finite number of cells (or creating grid structure), estimating the cell density for each cell,
sorting the cells according to their densities, identifying cluster centers, and traversal of
neighbor cells. A major advantage of grid-based clustering is that it significantly reduces
the computational complexity. Some recent works on grid-based clustering are presented
in this chapter.

Chapter 13. Density-based clustering algorithms. The density-based clustering ap-
proach is capable of finding arbitrarily shaped clusters, where clusters are defined as dense
regions separated by low-density regions. Usually, density-based clustering algorithms are
not suitable for high-dimensional data sets, since data points are sparse in high-dimensional
spaces. Five density-based clustering algorithms (DBSCAN, BRIDGE, DBCLASD, DEN-
CLUE, and CUBN) are presented in this chapter.

Chapter 14. Model-based clustering algorithms. In the framework of model-
based clustering algorithms, the data are assumed to come from a mixture of probability
distributions, each of which represents a different cluster. There is a huge number of
published works related to model-based clustering algorithms. In particular, there are more
than 400 articles devoted to the development and discussion of the expectation-maximization
(EM) algorithm. In this chapter, we introduce model-based clustering and present two
model-based clustering algorithms: COOLCAT and STUCCO.

Chapter 15. Subspace clustering. Subspace clustering is a relatively new con-
cept. After the first subspace clustering algorithm, CLIQUE, was published by the IBM
group, many subspace clustering algorithms were developed and studied. One feature of
the subspace clustering algorithms is that they are capable of identifying different clusters
embedded in different subspaces of the high-dimensional data. Several subspace clustering
algorithms are presented in this chapter, including the neural network–inspired algorithm
PART.

Chapter 16. Miscellaneous algorithms. This chapter introduces some clustering
algorithms for clustering time series, data streams, and transaction data. Proximity measures
for these data and several related clustering algorithms are presented.

Chapter 17. Evaluation of clustering algorithms. Clustering is an unsupervised
process and there are no predefined classes and no examples to show that the clusters found
by the clustering algorithms are valid. Usually one or more validity criteria, presented in
this chapter, are required to verify the clustering result of one algorithm or to compare the
clustering results of different algorithms.

Chapter 18. Clustering gene expression data. As an application of cluster analysis,
gene expression data clustering is introduced in this chapter. The background and similarity
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measures for gene expression data are introduced. Clustering a real set of gene expression
data with the fuzzy subspace clustering (FSC) algorithm is presented.

Chapter 19. Data clustering in MATLAB. In this chapter, we show how to perform
clustering in MATLAB in the following three aspects. Firstly, we introduce some MATLAB
commands related to file operations, since the first thing to do about clustering is to load data
into MATLAB, and data are usually stored in a text file. Secondly, we introduce MATLAB
M-files, MEX-files, and MAT-files in order to demonstrate how to code algorithms and save
current work. Finally, we present several MATLAB codes, which can be found in Appendix
C.

Chapter 20. Clustering in C/C++. C++ is an object-oriented programming lan-
guage built on the C language. In this last chapter of the book, we introduce the Standard
Template Library (STL) in C++ and C/C++ program compilation. C++ data structure for
data clustering is introduced. This chapter assumes that readers have basic knowledge of
the C/C++ language.

This monograph has grown and evolved from a few collaborative projects for indus-
trial applications undertaken by the Laboratory for Industrial and Applied Mathematics at
York University, some of which are in collaboration with Generation 5 Mathematical Tech-
nologies, Inc. We would like to thank the Canada Research Chairs Program, the Natural
Sciences and Engineering Research Council of Canada’s Discovery Grant Program and Col-
laborative Research Development Program, and Mathematics for Information Technology
and Complex Systems for their support.
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Chapter 1

Data Clustering

This chapter introduces some basic concepts. First, we describe what data clustering is and
give several examples from biology, health care, market research, image processing, and
data mining. Then we introduce the notions of records, attributes, distances, similarities,
centers, clusters, and validity indices. Finally, we discuss how cluster analysis is done and
summarize the major phases involved in clustering a data set.

1.1 Definition of Data Clustering
Data clustering (or just clustering), also called cluster analysis, segmentation analysis, tax-
onomy analysis, or unsupervised classification, is a method of creating groups of objects,
or clusters, in such a way that objects in one cluster are very similar and objects in different
clusters are quite distinct. Data clustering is often confused with classification, in which
objects are assigned to predefined classes. In data clustering, the classes are also to be
defined. To elaborate the concept a little bit, we consider several examples.

Example 1.1 (Cluster analysis for gene expression data). Clustering is one of the most
frequently performed analyses on gene expression data (Yeung et al., 2003; Eisen et al.,
1998). Gene expression data are a set of measurements collected via the cDNA microarray
or the oligo-nucleotide chip experiment (Jiang et al., 2004). A gene expression data set can
be represented by a real-valued expression matrix

D =




x11 x12 · · · x1d

x21 x22 · · · x2d
...

...
. . .

...

xn1 xn2 · · · xnd


 ,

where n is the number of genes, d is the number of experimental conditions or samples,
and xij is the measured expression level of gene i in sample j . Since the original gene
expression matrix contains noise, missing values, and systematic variations, preprocessing
is normally required before cluster analysis can be performed.

3
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Classification
Estimation
Prediction

Description and visualization

Clustering
Association rules

Indirect data mining
Direct data mining

Data mining

Figure 1.1. Data-mining tasks.

Gene expression data can be clustered in two ways. One way is to group genes with
similar expression patterns, i.e., clustering the rows of the expression matrix D. Another
way is to group different samples on the basis of corresponding expression profiles, i.e.,
clustering the columns of the expression matrix D.

Example 1.2 (Clustering in health psychology). Cluster analysis has been applied to
many areas of health psychology, including the promotion and maintenance of health, im-
provement to the health care system, and prevention of illness and disability (Clatworthy
et al., 2005). In health care development systems, cluster analysis is used to identify groups
of people that may benefit from specific services (Hodges and Wotring, 2000). In health
promotion, cluster analysis is used to select target groups that will most likely benefit from
specific health promotion campaigns and to facilitate the development of promotional ma-
terial. In addition, cluster analysis is used to identify groups of people at risk of developing
medical conditions and those at risk of poor outcomes.

Example 1.3 (Clustering in market research). In market research, cluster analysis has
been used to segment the market and determine target markets (Christopher, 1969; Saunders,
1980; Frank and Green, 1968). In market segmentation, cluster analysis is used to break
down markets into meaningful segments, such as men aged 21–30 and men over 51 who
tend not to buy new products.

Example 1.4 (Image segmentation). Image segmentation is the decomposition of a gray-
level or color image into homogeneous tiles (Comaniciu and Meer, 2002). In image seg-
mentation, cluster analysis is used to detect borders of objects in an image.

Clustering constitutes an essential component of so-called data mining, a process
of exploring and analyzing large amounts of data in order to discover useful information
(Berry and Linoff, 2000). Clustering is also a fundamental problem in the literature of
pattern recognition. Figure 1.1 gives a schematic list of various data-mining tasks and
indicates the role of clustering in data mining.

In general, useful information can be discovered from a large amount of data through
automatic or semiautomatic means (Berry and Linoff, 2000). In indirected data mining, no
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variable is singled out as a target, and the goal is to discover some relationships among all
the variables, while in directed data mining, some variables are singled out as targets. Data
clustering is indirect data mining, since in data clustering, we are not exactly sure what
clusters we are looking for, what plays a role in forming these clusters, and how it does that.

The clustering problem has been addressed extensively, although there is no uniform
definition for data clustering and there may never be one (Estivill-Castro, 2002; Dubes,
1987; Fraley and Raftery, 1998). Roughly speaking, by data clustering, we mean that for a
given set of data points and a similarity measure, we regroup the data such that data points in
the same group are similar and data points in different groups are dissimilar. Obviously, this
type of problem is encountered in many applications, such as text mining, gene expressions,
customer segmentations, and image processing, to name just a few.

1.2 The Vocabulary of Clustering
Now we introduce some concepts that will be encountered frequently in cluster analysis.

1.2.1 Records and Attributes

In the literature of data clustering, different words may be used to express the same thing.
For instance, given a database that contains many records, the terms data point, pattern
case, observation, object, individual, item, and tuple are all used to denote a single data
item. In this book, we will use record, object, or data point to denote a single record. Also,
for a data point in a high-dimensional space, we shall use variable, attribute, or feature to
denote an individual scalar component (Jain et al., 1999). In this book, we almost always use
the standard data structure in statistics, i.e., the cases-by-variables data structure (Hartigan,
1975).

Mathematically, a data set with n objects, each of which is described by d attributes,
is denoted by D = {x1, x2, . . . , xn}, where xi = (xi1, xi2, . . . , xid)

T is a vector denoting
the ith object and xij is a scalar denoting the j th component or attribute of xi . The number
of attributes d is also called the dimensionality of the data set.

1.2.2 Distances and Similarities

Distances and similarities play an important role in cluster analysis (Jain and Dubes, 1988;
Anderberg, 1973). In the literature of data clustering, similarity measures, similarity coeffi-
cients, dissimilarity measures, or distances are used to describe quantitatively the similarity
or dissimilarity of two data points or two clusters.

In general, distance and similarity are reciprocal concepts. Often, similarity measures
and similarity coefficients are used to describe quantitatively how similar two data points are
or how similar two clusters are: the greater the similarity coefficient, the more similar are the
two data points. Dissimilarity measure and distance are the other way around: the greater
the dissimilarity measure or distance, the more dissimilar are the two data points or the two
clusters. Consider the two data points x = (x1, x2, . . . , xd)

T and y = (y1, y2, . . . , yd)
T , for
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example. The Euclidean distance between x and y is calculated as

d(x, y) =

 d∑

j=1

(xj − yj )
2




1
2

.

Every clustering algorithm is based on the index of similarity or dissimilarity between
data points (Jain and Dubes, 1988). If there is no measure of similarity or dissimilarity
between pairs of data points, then no meaningful cluster analysis is possible. Various
similarity and dissimilarity measures have been discussed by Sokal and Sneath (1973),
Legendre and Legendre (1983), Anderberg (1973), Gordon (1999), and Everitt et al. (2001).
In this book, various distances and similarities are presented in Chapter 6.

1.2.3 Clusters, Centers, and Modes

In cluster analysis, the terms cluster, group, and class have been used in an essentially
intuitive manner without a uniform definition (Everitt, 1993). Everitt (1993) suggested that
if using a term such as cluster produces an answer of value to the investigators, then it is all
that is required. Generally, the common sense of a cluster will combine various plausible
criteria and require (Bock, 1989), for example, all objects in a cluster to

1. share the same or closely related properties;

2. show small mutual distances or dissimilarities;

3. have “contacts” or “relations” with at least one other object in the group; or

4. be clearly distinguishable from the complement, i.e., the rest of the objects in the data
set.

Carmichael et al. (1968) also suggested that the set contain clusters of points if the distri-
bution of the points meets the following conditions:

1. There are continuous and relative densely populated regions of the space.

2. These are surrounded by continuous and relatively empty regions of the space.

For numerical data, Lorr (1983) suggested that there appear to be two kinds of clusters:
compact clusters and chained clusters. A compact cluster is a set of data points in which
members have high mutual similarity. Usually, a compact cluster can be represented by
a representative point or center. Figure 1.2, for example, gives three compact clusters in
a two-dimensional space. The clusters shown in Figure 1.2 are well separated and each
can be represented by its center. Further discussions can be found in Michaud (1997). For
categorical data, a mode is used to represent a cluster (Huang, 1998).

A chained cluster is a set of data points in which every member is more like other
members in the cluster than other data points not in the cluster. More intuitively, any two
data points in a chained cluster are reachable through a path, i.e., there is a path that connects
the two data points in the cluster. For example, Figure 1.3 gives two chained clusters—one
looks like a rotated “T,” while the other looks like an “O.”
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Figure 1.2. Three well-separated center-based clusters in a two-dimensional space.

Figure 1.3. Two chained clusters in a two-dimensional space.

1.2.4 Hard Clustering and Fuzzy Clustering

In hard clustering, algorithms assign a class label li ∈ {1, 2, . . . , k} to each object xi to
identify its cluster class, where k is the number of clusters. In other words, in hard clustering,
each object is assumed to belong to one and only one cluster.

Mathematically, the result of hard clustering algorithms can be represented by a k×n

matrix

U =




u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...

uk1 un2 · · · ukn


 , (1.1)

where n denotes the number of records in the data set, k denotes the number of clusters, and
uji satisfies

uji ∈ {0, 1}, 1 ≤ j ≤ k, 1 ≤ i ≤ n, (1.2a)

k∑
j=1

uji = 1, 1 ≤ i ≤ n, (1.2b)

n∑
i=1

uji > 0, 1 ≤ j ≤ k. (1.2c)
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Constraint (1.2a) implies that each object either belongs to a cluster or not. Constraint (1.2b)
implies that each object belongs to only one cluster. Constraint (1.2c) implies that each
cluster contains at least one object, i.e., no empty clusters are allowed. We call U = (uji)

defined in equation (1.2) a hard k-partition of the data set D.
In fuzzy clustering, the assumption is relaxed so that an object can belong to one

or more clusters with probabilities. The result of fuzzy clustering algorithms can also
be represented by a k × n matrix U defined in equation (1.2) with the following relaxed
constraints:

uji ∈ [0, 1], 1 ≤ j ≤ k, 1 ≤ i ≤ n, (1.3a)

k∑
j=1

uji = 1, 1 ≤ i ≤ n, (1.3b)

n∑
i=1

uji > 0, 1 ≤ j ≤ k. (1.3c)

Similarly, we call U = (uji) defined in equation (1.3) a fuzzy k-partition.

1.2.5 Validity Indices

Since clustering is an unsupervised process and most of the clustering algorithms are very
sensitive to their initial assumptions, some sort of evaluation is required to assess the clus-
tering results in most of the applications. Validity indices are measures that are used to
evaluate and assess the results of a clustering algorithm. In Chapter 17, we shall introduce
some validity indices for cluster analysis.

1.3 Clustering Processes
As a fundamental pattern recognition problem, a well-designed clustering algorithm usually
involves the following four design phases: data representation, modeling, optimization, and
validation (Buhmann, 2003) (see Figure 1.4). The data representation phase predetermines
what kind of cluster structures can be discovered in the data. On the basis of data repre-
sentation, the modeling phase defines the notion of clusters and the criteria that separate
desired group structures from unfavorable ones. For numerical data, for example, there
are at least two aspects to the choice of a cluster structural model: compact (spherical or
ellipsoidal) clusters and extended (serpentine) clusters (Lorr, 1983). In the modeling phase,
a quality measure that can be either optimized or approximated during the search for hidden
structures in the data is produced.

The goal of clustering is to assign data points with similar properties to the same
groups and dissimilar data points to different groups. Generally, clustering problems can
be divided into two categories (see Figure 1.5): hard clustering (or crisp clustering) and
fuzzy clustering (or soft clustering). In hard clustering, a data point belongs to one and only
one cluster, while in fuzzy clustering, a data point may belong to two or more clusters with
some probabilities. Mathematically, a clustering of a given data set D can be represented
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Data representaion

Modeling

Optimization

Validation

Figure 1.4. Processes of data clustering.

by an assignment function f : D → [0, 1]k , x → f (x), defined as follows:

f (x) =




f1(x)
f2(x)
...

fk(x)


 , (1.4)

where fi(x) ∈ [0, 1] for i = 1, 2, . . . , k and x ∈ D, and

k∑
i=1

fi(x) = 1 ∀x ∈ D.

If for every x ∈ D, fi(x) ∈ {0, 1}, then the clustering represented by f is a hard clustering;
otherwise, it is a fuzzy clustering.

In general, conventional clustering algorithms can be classified into two categories:
hierarchical algorithms and partitional algorithms. There are two types of hierarchical al-
gorithms: divisive hierarchical algorithms and agglomerative hierarchical algorithms. In
a divisive hierarchical algorithm, the algorithm proceeds from the top to the bottom, i.e.,
the algorithm starts with one large cluster containing all the data points in the data set and
continues splitting clusters; in an agglomerative hierarchical algorithm, the algorithm pro-
ceeds from the bottom to the top, i.e., the algorithm starts with clusters each containing one
data point and continues merging the clusters. Unlike hierarchical algorithms, partitioning
algorithms create a one-level nonoverlapping partitioning of the data points.

For large data sets, hierarchical methods become impractical unless other techniques
are incorporated, because usually hierarchical methods are O(n2) for memory space and
O(n3) for CPU time (Zait and Messatfa, 1997; Hartigan, 1975; Murtagh, 1983), where n is
the number of data points in the data set.
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Figure 1.5. Diagram of clustering algorithms.

Although some theoretical investigations have been made for general clustering prob-
lems (Fisher, 1958; Friedman and Rubin, 1967; Jardine and Sibson, 1968), most clustering
methods have been developed and studied for specific situations (Rand, 1971). Examples
illustrating various aspects of cluster analysis can be found in Morgan (1981).

1.4 Dealing with Missing Values
In real-world data sets, we often encounter two problems: some important data are missing
in the data sets, and there might be errors in the data sets. In this section, we discuss and
present some existing methods for dealing with missing values.

In general, there are three cases according to how missing values can occur in data
sets (Fujikawa and Ho, 2002):

1. Missing values occur in several variables.

2. Missing values occur in a number of records.

3. Missing values occur randomly in variables and records.

If there exists a record or a variable in the data set for which all measurements are
missing, then there is really no information on this record or variable, so the record or
variable has to be removed from the data set (Kaufman and Rousseeuw, 1990). If there are
not many missing values on records or variables, the methods to deal with missing values
can be classified into two groups (Fujikawa and Ho, 2002):

(a) prereplacing methods, which replace missing values before the data-mining process;

(b) embedded methods, which deal with missing values during the data-mining process.

A number of methods for dealing with missing values have been presented in (Fu-
jikawa and Ho, 2002). Also, three cluster-based algorithms to deal with missing values
have been proposed based on the mean-and-mode method in (Fujikawa and Ho, 2002):
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Table 1.1. A list of methods for dealing with missing values.

Method Group Attribute Case Cost

Mean-and-mode method (a) Num & Cat (2) Low

Linear regression (a) Num (2) Low

Standard deviation method (a) Num (2) Low

Nearest neighbor estimator (a) Num & Cat (1) High

Decision tree imputation (a) Cat (1) Middle

Autoassociative neural network (a) Num & Cat (1) High

Casewise deletion (b) Num & Cat (2) Low

Lazy decision tree (b) Num & Cat (1) High

Dynamic path generation (b) Num & Cat (1) High

C4.5 (b) Num & Cat (1) Middle

Surrogate split (b) Num & Cat (1) Middle

NCBMM (Natural Cluster Based Mean-and-Mode algorithm), RCBMM (attribute Rank
Cluster Based Mean-and-Mode algorithm) and KMCMM (k-Means Cluster-Based Mean-
and-Mode algorithm). NCBMM is a method of filling in missing values in case of supervised
data. NCBMM uses the class attribute to divide objects into natural clusters and uses the
mean or mode of each cluster to fill in the missing values of objects in that cluster depending
on the type of attribute. Since most clustering applications are unsupervised, the NCBMM
method cannot be applied directly. The last two methods, RCBMM and KMCMM, can be
applied to both supervised and unsupervised data clustering.

RCBMM is a method of filling in missing values for categorical attributes and is
independent of the class attribute. This method consists of three steps. Given a missing
attribute a, at the first step, this method ranks all categorical attributes by their distance from
the missing value attribute a. The attribute with the smallest distance is used for clustering.
At the second step, all records are divided into clusters, each of which contains records with
the same value of the selected attribute. Finally, the mode of each cluster is used to fill in the
missing values. This process is applied to each missing attribute. The distance between two
attributes can be computed using the method proposed in (Mántaras, 1991) (see Section 6.9).

KMCMM is a method of filling in missing values for numerical attributes and is
independent of the class attribute. It also consists of three steps. Given a missing attribute
a, firstly, the algorithm ranks all the numerical attributes in increasing order of absolute
correlation coefficients between them and the missing attribute a. Secondly, the objects
are divided into k clusters by the k-means algorithm based on the values of a. Thirdly, the
missing value on attribute a is replaced by the mean of each cluster. This process is applied
to each missing attribute.

Cluster-based methods to deal with missing values and errors in data have also been
discussed in (Lee et al., 1976). Other discussions about missing values and errors have been
presented in (Wu and Barbará, 2002) and (Wishart, 1978).
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1.5 Resources for Clustering
In the past 50 years, there has been an explosion in the development and publication of
cluster-analytic techniques published in a wide range of technical journals. Here we list
some survey papers, books, journals, and conference proceedings on which our book is
based.

1.5.1 Surveys and Reviews on Clustering

Several surveys and reviews related to cluster analysis have been published. The following
list of survey papers may be interesting to readers.

1. A review of hierarchical classification by Gordon (1987)

2. A review of classification by Cormack (1971)

3. A survey of fuzzy clustering by Yang (1993)

4. A survey of fuzzy clustering algorithms for pattern recognition. I by Baraldi and
Blonda (1999a)

5. A survey of fuzzy clustering algorithms for pattern recognition. II by Baraldi and
Blonda (1999b)

6. A survey of recent advances in hierarchical clustering algorithms by Murtagh (1983)

7. Cluster analysis for gene expression data: A survey by Jiang et al. (2004)

8. Counting dendrograms: A survey by Murtagh (1984b)

9. Data clustering: A review by Jain et al. (1999)

10. Mining data streams: A review by Gaber et al. (2005)

11. Statistical pattern recognition: A review by Jain et al. (2000)

12. Subspace clustering for high dimensional data: A review by Parsons et al. (2004b)

13. Survey of clustering algorithms by Xu and Wunsch II (2005)

1.5.2 Books on Clustering

Several books on cluster analysis have been published. The following list of books may be
helpful to readers.

1. Principles of Numerical Taxonomy, published by Sokal and Sneath (1963), reviews
most of the applications of numerical taxonomy in the field of biology at that time.
Numerical Taxonomy: The Principles and Practice of Numerical Classification by
Sokal and Sneath (1973) is a new edition of Principles of Numerical Taxonomy.
Although directed toward researchers in the field of biology, the two books review
much of the literature of cluster analysis and present many clustering techniques
available at that time.

2. Cluster Analysis: Survey and Evaluation of Techniques by Bijnen (1973) selected a
number of clustering techniques related to sociological and psychological research.
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3. Cluster Analysis: A Survey by Duran and Odell (1974) supplies an exposition of
various works in the literature of cluster analysis at that time. Many references that
played a role in developing the theory of cluster analysis are contained in the book.

4. Cluster Analysis for Applications by Anderberg (1973) collects many clustering tech-
niques and provides many FORTRAN procedures for readers to perform analysis of
real data.

5. Clustering Algorithms by Hartigan (1975) is a book presented from the statistician’s
point of view. A wide range of procedures, methods, and examples is presented. Also,
some FORTRAN programs are provided.

6. Cluster Analysis for Social Scientists by Lorr (1983) is a book on cluster analysis
written at an elementary level for researchers and graduate students in the social and
behavioral sciences.

7. Algorithms for Clustering Data by Jain and Dubes (1988) is a book written for the
scientific community that emphasizes informal algorithms for clustering data and
interpreting results.

8. Introduction to Statistical Pattern Recognition by Fukunaga (1990) introduces fun-
damental mathematical tools for the supervised clustering classification. Although
written for classification, this book presents clustering (unsupervised classification)
based on statistics.

9. Cluster Analysis by Everitt (1993) introduces cluster analysis for works in a variety of
areas. Many examples of clustering are provided in the book. Also, several software
programs for clustering are described in the book.

10. Clustering for Data Mining: A Data Recovery Approach by Mirkin (2005) introduces
data recovery models based on the k-means algorithm and hierarchical algorithms.
Some clustering algorithms are reviewed in this book.

1.5.3 Journals

Articles on cluster analysis are published in a wide range of technical journals. The following
is a list of journals in which articles on cluster analysis are usually published.

1. ACM Computing Surveys

2. ACM SIGKDD Explorations Newsletter

3. The American Statistician

4. The Annals of Probability

5. The Annals of Statistics

6. Applied Statistics

7. Bioinformatics

8. Biometrics

9. Biometrika

10. BMC Bioinformatics

11. British Journal of Health Psychology

12. British Journal of Marketing
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13. Computer

14. Computers & Mathematics with Applications

15. Computational Statistics and Data Analysis

16. Discrete and Computational Geometry

17. The Computer Journal

18. Data Mining and Knowledge Discovery

19. Engineering Applications of Artificial Intelligence

20. European Journal of Operational Research

21. Future Generation Computer Systems

22. Fuzzy Sets and Systems

23. Genome Biology

24. Knowledge and Information Systems

25. The Indian Journal of Statistics

26. IEEE Transactions on Evolutionary Computation

27. IEEE Transactions on Information Theory

28. IEEE Transactions on Image Processing

29. IEEE Transactions on Knowledge and Data Engineering

30. IEEE Transactions on Neural Networks

31. IEEE Transactions on Pattern Analysis and Machine Intelligence

32. IEEE Transactions on Systems, Man, and Cybernetics

33. IEEE Transactions on Systems, Man, and Cybernetics, Part B

34. IEEE Transactions on Systems, Man, and Cybernetics, Part C

35. Information Sciences

36. Journal of the ACM

37. Journal of the American Society for Information Science

38. Journal of the American Statistical Association

39. Journal of the Association for Computing Machinery

40. Journal of Behavioral Health Services and Research

41. Journal of Chemical Information and Computer Sciences

42. Journal of Classification

43. Journal of Complexity

44. Journal of Computational and Applied Mathematics

45. Journal of Computational and Graphical Statistics

46. Journal of Ecology

47. Journal of Global Optimization

48. Journal of Marketing Research

49. Journal of the Operational Research Society

50. Journal of the Royal Statistical Society. Series A (General)

51. Journal of the Royal Statistical Society. Series B (Methodological)
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52. Journal of Software

53. Journal of Statistical Planning and Inference

54. Journal of Statistical Software

55. Lecture Notes in Computer Science

56. Los Alamos Science

57. Machine Learning

58. Management Science

59. Management Science (Series B, Managerial)

60. Mathematical and Computer Modelling

61. Mathematical Biosciences

62. Medical Science Monitor

63. NECTEC Technical Journal

64. Neural Networks

65. Operations Research

66. Pattern Recognition

67. Pattern Recognition Letters

68. Physical Review Letters

69. SIAM Journal on Scientific Computing

70. SIGKDD, Newsletter of the ACM Special Interest Group on Knowledge Discovery
and Data Mining

71. SIGMOD Record

72. The Statistician

73. Statistics and Computing

74. Systematic Zoology

75. The VLDB Journal

76. World Archaeology

1.5.4 Conference Proceedings

The following is a list of conferences related to data clustering. Many technical papers are
published in their conference proceedings.

1. ACM Conference on Information and Knowledge Management

2. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS)

3. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

4. ACM SIGMOD International Conference on Management of Data

5. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Dis-
covery

6. ACM Symposium on Applied Computing

7. Advances in Neural Information Processing Systems
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8. Annual ACM Symposium on Theory of Computing

9. Annual ACM-SIAM Symposium on Discrete Algorithms

10. Annual European Symposium on Algorithms

11. Annual Symposium on Computational Geometry

12. Congress on Evolutionary Computation

13. IEEE Annual Northeast Bioengineering Conference

14. IEEE Computer Society Conference on Computer Vision and Pattern Recognition

15. IEEE International Conference on Acoustics, Speech, and Signal Processing

16. IEEE International Conference on Computer Vision

17. IEEE International Conference on Data Engineering

18. IEEE International Conference on Data Mining

19. IEEE International Conference on Fuzzy Systems

20. IEEE International Conference on Systems, Man, and Cybernetics

21. IEEE International Conference on Tools with Artificial Intelligence

22. IEEE International Symposium on Information Theory

23. IEEE Symposium on Bioinformatics and Bioengineering

24. International Conference on Advanced Data Mining and Applications

25. International Conference on Extending Database Technology

26. International Conference on Data Warehousing and Knowledge Discovery

27. International Conference on Database Systems for Advanced Applications

28. International Conference on Image Processing

29. International Conferences on Info-tech and Info-net

30. International Conference on Information and Knowledge Management

31. International Conference on Machine Learning

32. International Conference on Machine Learning and Cybernetics

33. International Conference on Neural Networks

34. International Conference on Parallel Computing in Electrical Engineering

35. International Conference on Pattern Recognition

36. International Conference on Signal Processing

37. International Conference on Software Engineering

38. International Conference on Very Large Data Bases

39. International Geoscience and Remote Sensing Symposium

40. International Joint Conference on Neural Networks

41. International Workshop on Algorithm Engineering and Experimentation

42. IPPS/SPDP Workshop on High Performance Data Mining

43. Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining

44. SIAM International Conference on Data Mining

45. World Congress on Intelligent Control and Automation
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1.5.5 Data Sets

Once a clustering algorithm is developed, how it works should be tested by various data
sets. In this sense, testing data sets plays an important role in the process of algorithm
development. Here we give a list of websites on which real data sets can be found.

1. http://kdd.ics.uci.edu/The UCI Knowledge Discovery in DatabasesArchive
(Hettich and Bay, 1999) is an online repository of large data sets that encompasses a
wide variety of data types, analysis tasks, and application areas.

2. http://lib.stat.cmu.edu/DASL/The Data and Story Library (DASL) is an
online library of data files and stories that illustrate the use of basic statistical methods.
Several data sets are analyzed by cluster analysis methods.

3. http://www.datasetgenerator.com/ This site hosts a computer program
that produces data for the testing of data-mining classification programs.

4. http://www.kdnuggets.com/datasets/index.htmlThis site maintains
a list of data sets for data mining.

1.6 Summary
This chapter introduced some basic concepts of data clustering and the clustering process.
In addition, this chapter presented some resources for cluster analysis, including some
existing books, technical journals, conferences related to clustering, and data sets for testing
clustering algorithms. Readers should now be familiar with the basic concepts of clustering.
For more discussion of cluster analysis, readers are referred to Jain et al. (1999), Murtagh
(1983), Cormack (1971), and Gordon (1987).
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Chapter 2

Data Types

Data-clustering algorithms are very much associated with data types. Therefore, under-
standing scale, normalization, and proximity is very important in interpreting the results of
clustering algorithms. Data type refers to the degree of quantization in the data (Jain and
Dubes, 1988; Anderberg, 1973)—a single attribute can be typed as binary, discrete, or con-
tinuous. A binary attribute has exactly two values, such as true or false. A discrete attribute
has a finite number of possible values, thus binary types are a special case of discrete types
(see Figure 2.1).

Data scales, which indicate the relative significance of numbers, are also an important
issue in clustering. Data scales can be divided into qualitative scales and quantitative scales.
Qualitative scales include nominal scales and ordinal scales; quantitative scales include
interval scales and ratio scales (see Figure 2.2). Details of data types will be considered in
this chapter.

2.1 Categorical Data
Categorical attributes are also referred to as nominal attributes, which are simply used as
names, such as the brands of cars and names of bank branches. Since we consider data sets

Data types

Discrete Continuous

Nominal Binary

Symmetrical Asymmetrical

Figure 2.1. Diagram of data types.
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Data scales

Quantitative Qualitative

Ratio Interval Ordinal Nominal

Figure 2.2. Diagram of data scales.

Table 2.1. A sample categorical data set.

Records Values

x1 (A,A,A,A,B,B)

x2 (A,A,A,A,C,D)

x3 (A,A,A,A,D,C)

x4 (B, B,C,C,D,C)

x5 (B, B,D,D,C,D)

with a finite number of data points, a nominal attribute of the data points in the data set
can have only a finite number of values; thus the nominal type is also a special case of the
discrete type.

In this section, we shall introduce symbol tables and frequency tables and some
notation for categorical data sets, which will be used throughout this book.

Let D = {x1, x2, . . . , xn} be a categorical data set with n instances, each of which
is described by d categorical attributes v1, v2, . . . , vd . Let DOM(vj ) denote the domain of
the attribute vj . In the categorical data set given in Table 2.1, for example, the domains of
v1 and v4 are DOM(v1) = {A,B} and DOM(v4) = {A,C,D}, respectively.

For a given categorical data setD, we suppose that DOM(vj ) = {Aj1, Aj2, . . . , Ajnj }
for j = 1, 2, . . . , d. We call Ajl (1 ≤ l ≤ nj ) a state of the categorical attribute vj , and nj
is the number of states of vj in the given data set D. Then a symbol table Ts of the data set
is defined as

Ts = (s1, s2, . . . , sd), (2.1)

where sj (1 ≤ j ≤ d) is a vector defined as sj = (Aj1, Aj2, . . . , Ajnj )
T .

Since there are possibly multiple states (or values) for a variable, a symbol table of a
data set is usually not unique. For example, for the data set in Table 2.1, both Table 2.2 and
Table 2.3 are its symbol tables.

The frequency table is computed according to a symbol table and it has exactly the
same dimension as the symbol table. Let C be a cluster. Then the frequency table Tf (C)

of cluster C is defined as

Tf (C) = (f1(C), f2(C), . . . , fd(C)), (2.2)

where fj (C) is a vector defined as

fj (C) = (fj1(C), fj2(C), . . . , fjnj (C))T , (2.3)
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Table 2.2. One of the symbol tables of the data set in Table 2.1.


 A A A A B B

B B C C C C

D D D D




Table 2.3. Another symbol table of the data set in Table 2.1.


 A B D A B C

B A C C C B

A D D D




where fjr(C) (1 ≤ j ≤ d, 1 ≤ r ≤ nj ) is the number of data points in cluster C that take
value Ajr at the j th dimension, i.e.,

fjr(C) = |{x ∈ C : xj = Ajr}|, (2.4)

where xj is the j -component value of x.
For a given symbol table of the data set, the frequency table of each cluster is unique

up to that symbol table. For example, for the data set in Table 2.1, let C be a cluster, where
C = {x1, x2, x3}. Then if we use the symbol table presented in Table 2.2, the corresponding
frequency table for the cluster C is given in Table 2.4. But if we use the symbol table
presented in Table 2.3, then the frequency table for the cluster C is given in Table 2.5.

For a given categorical data set D, we see that Tf (D) is a frequency table computed
based on the whole data set. Suppose D is partitioned into k nonoverlapping clusters
C1, C2, . . . , Ck . Then we have

fjr(D) =
k∑

i=1

fjr(Ci) (2.5)

for all r = 1, 2, . . . , nj and j = 1, 2, . . . , d.

2.2 Binary Data
A binary attribute is an attribute that has exactly two possible values, such as “true” or
“false.” Note that binary variables can be further divided into two types: symmetric binary
variables and asymmetric binary variables. In a symmetric binary variable, the two values
are equally important. An example is “male-female.” Symmetric binary variables are
nominal variables. In an asymmetric variable, one of its values carries more importance
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Table 2.4. The frequency table computed from the symbol table in Table 2.2.


 3 3 3 3 1 1

0 0 0 0 1 1
0 0 1 1




Table 2.5. The frequency table computed from the symbol table in Table 2.3.


 3 0 0 3 1 1

0 3 0 0 1 1
3 0 1 1




than the other. For example, “yes” stands for the presence of a certain attribute and “no”
stands for the absence of a certain attribute.

A binary vector x with d dimensions is defined as (x1, x2, . . . , xd) (Zhang and Srihari,
2003), where xi ∈ {0, 1} (1 ≤ i ≤ d) is the j -component value of x. The unit binary
vector I of d dimensions is a binary vector with every entry equal to 1. The complement of
a binary vector x is defined to be x̄ = I − x, where I is the unit binary vector of the same
dimensions as x.

Consider two binary vectors x and y in a d-dimensional space, and let Sij (x, y)
(i, j ∈ {0, 1}) denote the number of occurrences of matches i in x and j in y at the
corresponding entries, i.e.,

Sij (x, y) = |{k : xk = i and yk = j, k = 1, 2, . . . , d}|. (2.6)

Then, obviously, we have the following equalities:

S11(x, y) = x · y =
d∑

i=1

xiyi, (2.7a)

S00(x, y) = x̄ · ȳ =
d∑

i=1

(1− xi)(1− yi), (2.7b)

S01(x, y) = x̄ · y =
d∑

i=1

(1− xi)yi, (2.7c)

S10(x, y) = x · ȳ =
d∑

i=1

xi(1− yi). (2.7d)

Also, we have

d = S00(x, y)+ S01(x, y)+ S10(x, y)+ S11(x, y). (2.8)
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2.3 Transaction Data
Given a set of items I = {I1, I2, . . . , Im}, a transaction is a subset of I (Yang et al., 2002b;
Wang et al., 1999a; Xiao and Dunham, 2001). Atransaction data setD is a set of transactions,
i.e., D = {ti : ti ⊆ I, i = 1, 2, . . . , n}.

Transactions can be represented by binary vectors, in which each entry denotes the
presence or absence of the corresponding item. For example, we can represent a transaction
ti by the binary vector (bi1, bi2, . . . , bim), where bij = 1 if Ij ∈ ti and bij = 0 if Ij �∈ ti .
From this point of view, transaction data are a special case of binary data.

The most common example of transaction data is market basket data. In a market
basket data set, a transaction contains a subset of the total set of items that could be purchased.
For example, the following are two transactions: {apple, cake}, {apple, dish, egg, fish}.

Generally, many transactions are made of sparsely distributed items. For example, a
customer may only buy several items from a store with thousands of items. As pointed out
by Wang et al. (1999a), for transactions that are made of sparsely distributed items, pairwise
similarity is neither necessary nor sufficient for judging whether a cluster of transactions
are similar.

2.4 Symbolic Data
Categorical data and binary data are classical data types, and symbolic data is an extension
of the classical data type. In conventional data sets, the objects are treated as individuals
(first-order objects) (Malerba et al., 2001), whereas in symbolic data sets, the objects are
more “unified” by means of relationships. As such, the symbolic data are more or less
homogeneous or groups of individuals (second-order objects) (Malerba et al., 2001).

Malerba et al. (2001) defined a symbolic data set to be a class or group of individuals
described by a number of set-valued or modal variables. A variable is called set valued if
it takes its values in the power set of its domain. A modal variable is a set-valued variable
with a measure or a distribution (frequency, probability, or weight) associated with each
object.

Gowda and Diday (1992) summarized the difference between symbolic data and
conventional data as follows:

• All objects in a symbolic data set may not be defined on the same variables.

• Each variable may take more than one value or even an interval of values.

• The variables in a complex symbolic data set may take values including one or more
elementary objects.

• The description of a symbolic object may depend on the relations existing between
other objects.

• The values the variables take may indicate frequency of occurrence, relative likeli-
hood, level of importance of the values, and so on.

Symbolic data may be aggregated from other conventional data due to reasons such
as privacy. In census data, for example, the data are made available in aggregate form in
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order to guarantee that the data analysts cannot identify an individual or a single business
establishment. Symbolic clustering will not be discussed in this book. Readers who are
interested in this subject are referred to (Dinesh et al., 1997), (Malerba et al., 2001), (Gowda
and Diday, 1992), and the references therein.

2.5 Time Series
Time series are the simplest form of temporal data. Precisely, a time series is a sequence
of real numbers that represent the measurements of a real variable at equal time intervals
(Gunopulos and Das, 2000). For example, stock price movements, the temperature at a
given place, and volume of sales over time are all time series. Some other examples of time
series can be found in (Kendall and Ord, 1990).

A time series is discrete if the variable is defined on a finite set of time points. Most
of the time series encountered in cluster analysis are discrete time series. When a variable
is defined at all points in time, then the time series is continuous.

In general, a time series can be considered as a mixture of the following four compo-
nents (Kendall and Ord, 1990):

1. a trend, i.e., the long-term movement;

2. fluctuations about the trend of greater or less regularity;

3. a seasonal component;

4. a residual or random effect.

Classical time series analysis has been presented and discussed in (Tsay, 2002) and
(Kendall and Ord, 1990). Neural network–based analysis of financial time series has been
discussed in (Shadbolt and Taylor, 2002) and (Azoff, 1994). To cluster a time series data set,
the similarity measures between time series become important. Gunopulos and Das (2000)
present a tutorial for time series similarity measures. Time series similarity problems have
also been discussed in (Bollobás et al., 1997) and (Das et al., 1997).

2.6 Summary
Some basic types of data encountered in cluster analysis have been discussed in this chapter.
In the real world, however, there exist various other data types, such as image data and
spatial data. Also, a data set may consist of several types of data, such as a data set
containing categorical data and numerical data. To conduct cluster analysis on data sets that
contain unusual types of data, the similarity or dissimilarity measures should be defined in
a meaningful way. The types of data are highly area specific, for example, DNA data in
biology (Yeung et al., 2001), and financial time series in marketing research.



0 2 4 6 8 10 12 14 16 18
0

5000

10000

15000
Cluster ID: 2; Number of genes: 56

Chapter 3

Scale Conversion

In many applications, the variables describing the objects to be clustered will not be measured
in the same scales. They may often be variables of completely different types, some interval,
others categorical. There are three approaches to cluster objects described by variables of
different types. One is to use a similarity coefficient, which can incorporate information
from different types of variable, such as the general coefficients described in Section 6.5. The
second is to carry out separate analyses of the same set of objects, each analysis involving
variables of a single type only, and then to synthesize the results from different analyses.
The third is to convert the variables of different types to variables of the same type, such as
converting all variables describing the objects to be clustered into categorical variables.

3.1 Introduction
In Chapter 2, we saw that there are four types of scales: nominal scales, ordinal scales,
interval scales, and ratio scales (see Figure 2.2). We shall see that any scale can be converted
to any other scale. Several cases of scale conversion are described by Anderberg (1973),
including interval to ordinal, interval to nominal, ordinal to nominal, nominal to ordinal,
ordinal to interval, nominal to interval, and dichotomization (binarization). These scale
conversions are reviewed briefly in this section.

3.1.1 Interval to Ordinal

The scale conversion from interval to ordinal creates contiguous categories over the interval
scale such that objects within a category are equally ranked while the ordinal order relation
among objects in different categories is maintained. During the conversion, the following
two forms of information are lost: distinctions between objects within the same category
and the magnitudes of the distinctions between objects in different categories.

Anderberg (1973) suggested 11 methods to convert a variable from interval to ordinal.

(a) No substantive change necessary. For example, age and education are ratio variables
when measured in terms of years; they naturally form ordered categories.

25
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(b) Substitution. The method of substitution is to delete a variable and replace it by
another that is closely related but measured on the desired kind of scale. Consider
again the education variable. For example, instead of being measured in terms of
years of education or highest grade completed, education could be measured by the
following ordered categories: no grammar school, some grammar school, eighth grade
completed, high school graduate, bachelor’s degree, etc.

(c) Equal length categories. The problem of deciding the appropriate number of cate-
gories arises when there is no satisfactory substitute variable available. The method
of equal length categories chooses some number of categories and then divides the
range of the interval variable into equal length intervals. The method can also be ex-
tended to deal with the situation when the relevant number of categories is not obvious
by considering two, three, four, etc., categories and choosing the most satisfactory
grouping.

(d) Equal membership categories. The method of equal length categories can result
in a gross imbalance of membership among the categories. The method of equal
membership categories is another simple alternative that partitions the data into classes
with equal membership or membership as near to equal as possible.

(e) Assumed distribution for proportion in each class. This is a more statistically so-
phisticated method. LetX be a random variable with cumulative distribution function
(CDF) F(X). Assume X is defined over the interval [a, b] such that F(a) = 0 and
F(b) = 1. Then the separation points that divide the interval [a, b] into n equal
intervals are

y0 = a,

yi = yi−1 + b − a

n
, i = 1, 2, . . . , n− 1,

yn = b.

The proportion of the population falling in the ith interval (yi−1, yi] isF(yi)−F(yi−1).
The method of equal length categories and the method of equal membership categories
are special cases of this method if F(X) is taken as the empirical distribution and the
uniform distribution of the sample, respectively.

(f) Assumed distribution for cut points between classes. The method of assumed
distribution for cut points between classes uses a distributional assumption to divide
the distribution into equal probability classes, that is,

F(yi)− F(yi−1) = 1

n
, i = 1, 2, . . . , n.

This method is the same as the method of equal membership categories in that they
both assign the first m

n
observations to the first class, the second m

n
to the second class,

and so on, where m is the number of observations in the sample that approximate the
population closely.

(g) One-dimensional hierarchical linkage methods. One-dimensional hierarchical
linkage methods convert a variable from interval to ordinal scale by employing certain
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cluster analysis techniques to organize observations into groups. Single-linkage and
complete linkage methods are used here. These clustering methods are discussed in
Chapter 7 in detail.

(h) Ward’s hierarchical clustering method. Ward’s method is presented in Section
7.2.7. Here Ward’s method is used to cluster a one-dimensional data set.

(i) Iterative improvement of a partition. The method of iterative improvement of a
partition tries to find the partition of a one-dimensional data set that minimizes the
sum of squares. Details of this approach can be found in Section 3.2.

(j) The linear discriminant function. For one-dimensional data, the multiple group
discriminant analysis can be described as follows. Suppose there are g normal popu-
lations present in the grand ensemble in proportions p1, p2, . . . , pg . If an observation
from population j is classified wrongly as being from population i, then a lossL(i : j)
is incurred. The optimal Bayes classification rule is to assign a new observation x to
that class i such that

x(x̄i − x̄j )− 1
2 (x̄i + x̄j )(x̄i − x̄j )

s2
x

≥ ln

(
pjL(i : j)
piL(j : i)

)
,

where x̄i and x̄j are the mean of the ith population and the j th population, respectively,
and s2

x is the common variance of the g normal populations. In the one-dimensional
case, comparing two populations i and j can be accomplished by calculating the cut
point between classes as follows. Assume x̄i > x̄j . Then x is assigned to population
i instead of population j if

x ≥ Cij = s2
x

x̄i − x̄j
ln

(
pjL(i : j)
piL(j : i)

)
+ x̄i + x̄j

2
.

(k) Cochran and Hopkins method. Cochran and Hopkins (1961) suggested another
method based on discriminant analysis. Assume an interval variable is normally
distributed in each of two classes with means x̄1 and x̄2 and common variance s2

x . Then
they consider how to categorize the interval variable into n groups to retain maximum
discriminability under the assumption that costs and probabilities of misclassification
are equal.

3.1.2 Interval to Nominal

Converting a variable from interval to nominal scales is very similar to converting a variable
from interval to ordinal scales, and all the methods described in the previous subsection
may be used to do this job. However, the resulting categories obtained by the methods of
interval to ordinal conversion are constrained to satisfy some order restriction. To avoid this
problem, one may use the central-extreme principle, which gives noncontiguous categories.
Under the central-extreme principle, some observations are treated as central while others
are extreme.
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3.1.3 Ordinal to Nominal

A natural way to convert a set of ordered categories to nominal categories is to ignore the
order properties and keep the same categories. One may also use the degree of extremes.
If category C is the central category in the sequence A > B > C > D > E, for example,
one might adopt the following revised classifications: C for normal, B ∪D for moderately
deviant, and A ∪ E for extreme.

3.1.4 Nominal to Ordinal

The essential problem of converting a variable from nominal to ordinal is to impose an
ordering on nominal categories. Anderberg (1973) suggested two approaches.

1. Correlation with an interval variable. Let X be a nominal variable with g classes
and Y be an interval variable. One well-known way to use X to predict Y most
effectively is to find the b coefficients that maximize R2 for the regression equation

Y =
g∑

i=1

biXi,

where Xi = 1 if an observation falls into the ith class and Xi = 0 if otherwise.
It can be shown that R2 is maximized by choosing bi as the mean Y value for all
observations in the ith class, i.e.,

bi =
ni∑
j=1

yij

ni
,

where ni is the number of observations in the ith class and yij is the j th observation
in the ith class.

Then the class means of Y can be assigned to nominal classes of X such that items
within the same class receive the same score. This technique provides order infor-
mation.

2. Rank correlation and mean ranks. Let X be a nominal variable of g groups, with
ni observations in the ith group, and let Y be an ordinal reference variable. Denote
as xi the common rank of all elements in the ith group of X and as yij the Y rank of
the j th element in the ith class. Then the Spearman rank correlation between X and
Y can be formulated as

r = 1− 6

g∑
i=1

ni∑
j=1

(xi − yij )
2

N(N2 − 1)
,

where N is the number of data units measured on X and Y . The problem of ordering
the nominal classes is to find class ranks such that the rank correlation is maximized.
Obviously, maximizing the rank correlation r is equivalent to minimizing

g∑
i=1

ni∑
j=1

(xi − yij )
2



3.1. Introduction 29

or
g∑

i=1


nix2

i − 2nixi ȳi +
ni∑
j=1

y2
ij


 ,

where ȳij is the mean Y rank in the ith nominal class. Therefore, the problem is
transformed to the problem of assigning the integers 1, 2, . . . , g to x1, x2, . . . , xg
such that

C =
g∑

i=1

nixi(xi − 2ȳij )

is minimized.

3.1.5 Ordinal to Interval

The problem here is to assign a score to each class that preserves the rank order and exhibits
magnitude differences among classes. Anderberg (1973) suggested four approaches to
solving this problem.

1. Class ranks. This is a simple and intuitive approach to assigning scores to ordered
classes. It simply uses class ranks and assumes that the classes are spaced equally
along the interval scale.

2. Expected order statistics. Here expected order statistics are used to assign scores
to ordinal data. Suppose x1, x2, . . . , xn is a random sample from a population with
continuous cumulative distribution function F(x). Then the ith largest of the n

observations is the ith-order statistic for the sample.

3. Assuming underlying distribution for the data units. To convert a variable from
ordinal to interval, it is natural to associate very large classes with long segments of
the derived interval scale and to associate small classes with short segments. This can
be done by assuming that the data units were drawn from an underlying distribution
and that the observed categories are sections from the distribution. Class scores can
be obtained by sectioning the assumed distribution using the proportions observed
in the sample and calculating a summary statistic (e.g., mean or median) for each
section.

4. Correlation with a reference variable. This approach chooses class scores by select-
ing values that maximize the correlation of the ordinal variable with some reference
variable.

3.1.6 Other Conversions

Anderberg (1973) also discussed methods to convert a variable from nominal to interval,
from ordinal to binary, and from nominal to binary. In the case of converting from nominal
to interval, the classes are unordered, so any method adopted should induce an ordering
and a spacing of the classes as well. One way to do this is to first convert from nominal to
ordinal and then convert from ordinal to interval; another way is to use a reference variable.
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In the case of converting from ordinal with g ordered classes to binary, the problem is
to choose among the g − 1 possible splits that preserve order. In this problem, a reference
variable can be used. In the case of converting from nominal to binary, the problem is to
cluster the nominal classes into two groups.

3.2 Categorization of Numerical Data
By a numerical variable, we generally mean a variable measured by interval scales or ratio
scales. By a categorical variable, we generally mean a nominal variable, i.e., a variable
measured by nominal scales. In this section, we shall present some examples and methods
of categorization, i.e., converting numerical data to categorical data.

Given a numerical data set D = {x1, x2, . . . , xn} with n objects, each of which is
described by d variables, to convert D into a categorical data set, we can convert variable by
variable, i.e., each conversion involves one dimension only. That is, for each j , we convert
x1j , x2j , . . . , xnj into categorical values y1j , y2j , . . . , ynj ; then we obtain a categorical data
set D′ = {y1, y2, . . . , yn}. Hence, we only need to consider one- dimensional cases.

3.2.1 Direct Categorization

Direct categorization is the simplest way to convert numerical data into categorical data.
Let x be a numerical variable that takes values X = {x1, x2, . . . , xn} in a data set of n

records. To convert the numerical values xi to categorical values yi by the method of direct
categorization, we first need to find the range of x in the data set. Let xmin and xmax be
defined as

xmin = min
1≤i≤n

xi,

xmax = max
1≤i≤n

xi .

Then the range of x in the data set is [xmin, xmax]. Without loss of generality, we can
assume that xmin �= xmax . Let N (N ≥ 2) be the number of categories we want to make.
Then we divide the interval [xmin, xmax] into N (N ≥ 2) small intervals and let the j th
(j = 1, 2, . . . , N) small interval Ij be

Ij =
{ [

xmin + j−1
N

L, xmin + j

N
L
)

for j = 1, 2, . . . , N − 1,[
xmin + N−1

N
L, xmax

]
for j = N ,

where L is defined as
L = xmax − xmin.

Now we can define the categorical value yi of xi as

yi = j0 if xi ∈ Ij0 . (3.1)

To determine a j0 for xi (1 ≤ i ≤ n), we assume that xi ∈ Ij0 with j0 ≤ N − 1. Then
we have

xmin + j − 1

N
L ≤ j0 < xmin + j

N
L,
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Figure 3.1. An example two-dimensional data set with 60 points.

which is equivalent to

j0 − 1 ≤ N(xi − xmin)

L
< j0.

Therefore, we can compute j0 as

j0 =
[
N(xi − xmin)

L

]
+ 1, (3.2)

where [x] denotes the largest integer less than or equal to x.
Thus, if xi < xmax , then the corresponding categorical value yi is in {1, 2, . . . , N};

hence we can use equation (3.2) to compute the categorical value for xi . Obviously, if
xi = xmax , from equation (3.2), we get j0 = N + 1, and we should set yi = N .

Example 3.1 (Direct categorization). Consider the data set depicted in Figure 3.1. If we
convert the values in the x dimension into categorical values using the method of direct
categorization with N = 5, we obtain the result given in Figure 3.2(a). Similarly, if we
convert the values in the y dimension into categorical values with N = 5, we get the result
given in Figure 3.2(b). Figure 3.3(a) and Figure 3.3(b) give further examples.

3.2.2 Cluster-based Categorization

Cluster-based categorization is more complicated than direct categorization, but it is very
effective for converting numerical data into a categorical data. In this section, we will
discuss how to convert one-dimensional data into categorical data using the method of
cluster-based categorization.

Most of the numerical clustering algorithms can be used to convert numerical data
into categorical data, such as k-means (Macqueen, 1967; Hartigan and Wong, 1979; Faber,
1994), CURE (Guha et al., 1998), CLARANS (Ng and Han, 1994), BIRCH (Zhang et al.,
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Figure 3.2. Examples of direct categorization when N = 5. In (a), the values in
the x dimension are categorized. In (b), the values in the y dimension are categorized. The
label of each data point is plotted at that point.
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Figure 3.3. Examples of direct categorization when N = 2. In (a), the values in
the x dimension are categorized. In (b), the values in the y dimension are categorized. The
label of each data point is plotted at that point.

1996), and DENCLUE (Hinneburg and Keim, 1998). In this section, we shall illustrate how
to use the k-means algorithm, and least squares (Fisher, 1958) to convert one-dimensional
numerical data into categorical data.

Example 3.2 (k-means–based categorization). Let the one-dimensional data set be X =
{x1, x2, . . . , xn}. If X is not a large data set, the Quick Sort algorithm (Hoare, 1961;
Sedgewick, 1978) can be used to sort x1, x2, . . . , xn such that

xi1 ≤ xi2 ≤ · · · ≤ xin , (3.3)

where i1, i2, . . . , in is a combination of 1, 2, . . . , n.
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Figure 3.4. Examples of k-means–based categorization when N = 5. In (a),
the values in the x dimension are categorized. In (b), the values in the y dimension are
categorized. The label of each data point is plotted at that point.

Let N (N > 1) be the number of initial centers. Then we can choose xit (t ∈ S) as
the initial centers, where S is the set of subscripts defined as

S =
{
t : t = 1+

[
(n− 1)(j − 1)

N − 1

]
, j = 1, 2, . . . , N

}
, (3.4)

where [x] denotes the largest integer less than or equal to x.
With this method of choosing initial centers, the N most dissimilar variable values

are chosen as initial centers. After choosing initial centers, we can get an initial partition
by assigning the rest of the data to the nearest center. Then we can use the conventional
k-means algorithm (see Section 9.1) to cluster the data. Finally, we use the cluster index of
each data point as its categorical value. Figures 3.4 and 3.5 provide illustrative examples
for the data set given in Figure 3.1.

Example 3.3 (Least squares–based categorization). Given a set of points in a straight
line, how can we group the points into N groups so that the sum of squared distances (SSD)
of the individual points to their group centers (or means) is minimized? Fisher (1958)
describes a procedure to find such a partition. In this subsection, we will briefly introduce
Fisher’s method and use it for categorization.

Let D = {x1, x2, . . . , xn} be a group of data points in a straight line, i.e., D is a
one-dimensional data set, and let cj (j = 1, 2, . . . , N) be the center of the j th group Cj .
Then the SSD W for the whole data set is defined as (Fisher, 1958)

W =
N∑
j=1

Wj, (3.5)
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Figure 3.5. Examples of k-means–based categorization when N = 2. In (a),
the values in the x dimension are categorized. In (b), the values in the y dimension are
categorized. The label of each data point is plotted at that point.

where Wj is defined as

Wj =
∑
x∈Cj

(x − cj )
2, j = 1, 2, . . . , N. (3.6)

A least squares partition is a partition that minimizes the SSD W defined in equation (3.5).
Fisher also proved that a least squares partition is contiguous, where a contiguous partition
is defined for a set of completely ordered points as a partition such that each group satisfies
the following condition (Fisher, 1958): if a, b, c have the order a < b < c and if a and c

are assigned to the same group, then b must also be assigned to that same group.
For least squares partitions, Fisher (1958) has proved a suboptimization lemma.

Lemma 3.4 (Fisher’s suboptimization lemma). Let A1 : A2 denote a partition of set A
into two disjoint subsets A1 and A2 and let P ∗

i (i = 1, 2) denote a least squares partition
of Ai into Gi subsets. Then, of the class of subpartitions of A1 : A2 employing G1 subsets
over A1 and G2 subsets over A2, a least squares subpartition is P ∗

1 : P ∗
2 .

To implement the clustering algorithm based on Fisher’s suboptimization lemma, we
can use dynamic programming (Fitzgibbon et al., 2000). Before applying the algorithm to
the data set D, we need to sort x1, x2, . . . , xn such that x1 ≤ x2 ≤ · · · ≤ xn. In the following
discussion, we assume that x1 ≤ x2 ≤ · · · ≤ xn and let Di (i = 1, 2, . . . , n) be the set
consisting of the first i data points, i.e.,

Di = {x1, x2, . . . , xi}, i = 1, 2, . . . , n. (3.7)
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Let the sum S(i, j) and squared sum S2(i, j) (1 ≤ i, j ≤ n) be defined as

S(i, j) =
j∑
l=i

xl, (3.8)

S2(i, j) =
j∑
l=i

x2
l , (3.9)

D(i, j) = S2(i, j)− S(i, j)2

j − i + 1
. (3.10)

Let D[g, i] be the minimum SSD over all the partitions that partition Di into g groups.
Then from Fisher’s lemma, we can define D[g, i] and j (g, i) (1 ≤ g ≤ N, g ≤ i ≤ n) as

D[g, i] =
{

S2(1, i), if g = 1,
min
g≤j≤i(D[g − 1, j − 1] +D(j, i)) if g ≥ 2. (3.11)

j (g, i) =
{

i if g = 1,
arg min

g≤j≤i(D[g − 1, j − 1] +D(j, i))− 1 if g ≥ 2. (3.12)

The j (g, i) defined in equation (3.12) is a cutting index of the partition that partitions Di

into g groups, where a cutting index of a group is the largest subscript of elements in that
group. A partition of g groups has g − 1 cutting indices, because the cutting index is fixed
for the last group. For example, let {x1, x2, . . . , xi1}, {xi1+1, . . . , xi2}, and {xi2+1, . . . , xi} be
a partition of Di . Then the cutting indices are i1 and i2. We can use cutting indices for least
squares partitions, because least squares partitions are contiguous partitions (Fisher, 1958).

To use Fisher’s suboptimization lemma to find a least squares partition of N groups,
we first find the cutting index j (2, i) (2 ≤ i ≤ n) that partitions Di into two groups and
find the corresponding SSD for the partition. After we find the cutting indices of a least
squares partition that partitions Di (i ≥ g) into g groups and the corresponding SSD, we
can use this information to find the cutting indices of a least squares partition that partitions
Di (i ≥ g + 1) into g + 1 groups. According to this procedure, the cutting indices
P(1, i), P (2, i), . . . , P (g−1, i) of a least squares partition that partitions Di into g groups
are given by

P(g − 1, i) = j (g, i),

P (g − 2, i) = j (g − 1, P (g − 1, i)),
...

P (1, i) = j (2, P (2, i)).

In particular, the N − 1 cutting indices P1, P2, . . . , PN−1 of a least squares partition that
partitions D into N groups are given by

PN−1 = j (N, n),

PN−2 = j (N − 1, PN−1),

...

P1 = j (2, P2).
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Using Fisher’s suboptimization lemma to find least squares partitions can save a lot
of time. Fitzgibbon et al. (2000) introduce a dynamic programming algorithm based on
Fisher’s suboptimization lemma. Figures 3.6 and 3.7 provide the illustrations for the data
set given in Figure 3.1.

1
1

1
1 11

1

1
1
1

1

1

1
111

1
1

1

1

1
1

11 1

11

11
1

2 2
2

2
2 2

2 2
2

2 3 433
3 3

43
3

4
44

54
54 5

4 54

2 4 6 8 10

2

4

6

8

10

x

y

(a)

5
5

5
5 55

5

4
5
4

4

3

4
444

4
4

4

4

3
3

22 2

33

22
2

1 1
1

1
1 1

1 1
1

1 1 111
1 1

11
1

1
11

11
11 1

1 11

2 4 6 8 10

2

4

6

8

10

x

y

(b)

Figure 3.6. Examples of cluster-based categorization based on the least squares
partition when N = 5. In (a), the values in the x dimension are categorized. In (b), the
values in the y dimension are categorized. The label of each data point is plotted at that
point.
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Figure 3.7. Examples of cluster-based categorization based on the least squares
partition when N = 2. In (a), the values in the x dimension are categorized. In (b), the
values in the y dimension are categorized. The label of each data point is plotted at that
point.
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Besides the least squares criterion, there are also other criteria to partition a one-
dimensional data set into two groups, such as the mean-variance criterion (Engelman and
Hartigan, 1969).

3.2.3 Automatic Categorization

In Subsection 3.2.1 and Subsection 3.2.2, we introduced direct categorization and cluster-
based categorization. All these categorization methods need an important parameter, the
number of categories. In most application problems, however, we have no information
about the number of categories for each numerical variable, so we need to find a method to
categorize numerical variable values automatically so that the optimal number of categories
is discovered.

In the present subsection, we will introduce automatic categorization methods that can
find the optimal number of categories for a given one-dimensional numerical data set. To
achieve this goal, we need an index that indicates the quality of the resulting categorization.
We can use clustering for this purpose.

Many validity criteria have been proposed to measure the quality of clustering results
(Halkidi et al., 2002a,b; Davies and Bouldin, 1979; Halkidi et al., 2000; Dunn, 1974b)
(see Chapter 17). The basic idea of automatic categorization is to apply a categorization
method to a data set from N = 1 to Nmax , where N is the number of categories used in
the categorization method and Nmax is the maximum number of categories, and then to
calculate the validity index Vi for each categorization i, and finally to choose an optimal
one to minimize or maximize Vi .

One of the disadvantages of the k-means algorithm is that the number of clusters must
be supplied as a parameter. Ray and Turi (1999) introduced a compactness-separation–
based validity measure to determine the number of clusters in k-means clustering. In the
following example, we shall introduce this validity measure and apply it to the automatic
categorization of numerical data.

Example 3.5 (Compactness-separation criterion). Let D be a one-dimensional data set.
Suppose we have clustered the data setD into k clustersC1, C2, . . . , Ck . Let zi be the cluster
center for cluster Ci . Then the intracluster distance measure Mintra is defined as (Ray and
Turi, 1999)

Mintra = 1

n

k∑
i=1

∑
x∈Ci

‖x − zi‖2, (3.13)

where n is the number of data points in D. The intercluster distance measure Minter is
defined as (Ray and Turi, 1999)

Minter = min
1≤i<j≤k

‖zi − zj‖2. (3.14)

Obviously, a good clustering result should have a small Mintra and a large Minter ; thus Ray
and Turi (1999) defined the validity measure V as

V = Mintra

Minter

. (3.15)
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Figure 3.8. Examples of automatic categorization using the k-means algorithm
and the compactness-separation criterion. In (a), the values in the x dimension are catego-
rized. In (b), the values in the y dimension are categorized. The label of each data point is
plotted at that point.

To determine an optimal number of clusters in the data set, we shall cluster the data
set from k = 2 up to kmax , where kmax is the upper limit on the number of clusters, and then
we calculate the validity measure Vk and choose the optimal number of clusters k0 as the
smallest k such that Vk has the minimum value, i.e.,

k0 = min{j : Vj = min
1≤i≤k

Vi, 1 ≤ j ≤ k}. (3.16)

To implement the algorithm is straightforward. The upper limit of the number of
clusters kmax is an input parameter. Applying this criterion to the results of the k-means
algorithm on the sample data set in Figure 3.1, we get the results in Figure 3.8. For
each dimension of the sample data set, we also plot the validity measure V defined in
equation (3.15) against the number of clusters k for each dimension, in Figure 3.9(a) and
Figure 3.9(b), respectively.

Many clustering algorithms use the sum of squares objective function
(Krzanowski and Lai, 1988; Friedman and Rubin, 1967; Scott and Symons, 1971b; Marriott,
1971). For these clustering algorithms, Krzanowski and Lai (1988) introduced a criterion
to determine the optimal number of clusters. Since we only consider one-dimensional nu-
merical data, we can use this criterion and other clustering algorithms (such as least squares
partitions) together. In the following, we briefly introduce this criterion and apply it to
automatic categorization.

Example 3.6 (Sum of squares criterion). Suppose D is a one-dimensional data set with k

clusters C1, C2, . . . , Ck . Let S̃k be the optimum value of the sum of squares objective func-
tion. Then the sum of squares criterion (SSC) validity measure is defined as (Krzanowski
and Lai, 1988)

Vk = |DIFF(k)|
|DIFF(k + 1)| , (3.17)



3.2. Categorization of Numerical Data 39

2 4 6 8 10

10

20

30

40

Number of Clusters k

Validity
Measure V

(a)

2 4 6 8 10

10

15

20

25

30

Number of Clusters k

Validity
Measure V

(b)

Figure 3.9. In (a), the values in the x dimension are categorized using the k-
means algorithm from k = 2 to k = 10. For each k, the validity measure V defined in
equation (3.15) is computed and plotted. In (b), the values in the y dimension are categorized
using the k-means algorithm from k = 2 to k = 10. For each k, the validity measure V

defined in equation (3.15) is computed and plotted.

where DIFF(k) is defined as

DIFF(k) = (k − 1)2S̃k−1 − k2S̃k. (3.18)

The optimum number of clusters k0 is the number k that maximizes Vk . The results of
applying the SSC to the results of the least squares partition of the sample data set are given in
Figure 3.10(a) and Figure 3.10(b), while the validity measure Vk defined in equation (3.17)
against the number of clusters k is plotted in Figure 3.11(a) and Figure 3.11(b).

The above-introduced two methods to determine the optimum number of clusters can
only be applied to certain data sets or clustering algorithms (and are not well defined when
k = 1). In what follows, we introduce a general method (called the gap statistic (Tibshirani
et al., 2001; SAS Institute Inc., 1983)) for estimating the number of clusters. This method
is so general that it can be used with the output of any clustering algorithms.

Example 3.7 (Gap statistic). Suppose that D is a one-dimensional data set with k clusters
C1, C2, . . . , Ck . Let W be defined as in equation (3.5). Then W is the pooled within-cluster
sum of squares around the cluster means. The general idea of the gap statistic proposed
by Tibshirani et al. (2001) is to standardize the graph of log (Wi) by comparing it to its
expectation under an appropriate reference distribution of the data set, where Wi is W when
k = i. For a given k, the gap statistic Gap(k) is defined as (Tibshirani et al., 2001)

Gap(k) = E∗(log(Wk))− log(Wk), (3.19)

where E∗(log(Wk)) is estimated by an average of B copies of log(W ∗
k ), each of which is

computed from a Monte Carlo sample X∗
1, X

∗
2, . . . , X

∗
B drawn from the reference distribu-

tion, i.e.,

E∗(log(Wk)) = 1

B

B∑
b=1

log(W ∗
kb). (3.20)
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Figure 3.10. Examples of automatic categorization based on the least squares
partition and the SSC. In (a), the values in the x dimension are categorized using the least
squares partition algorithm. In (b), the values in the y dimension are categorized using the
least squares partition algorithm. The label of each data point is plotted at that point.
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Figure 3.11. In (a), the values in the x dimension are categorized using the least
squares partition algorithm from k = 2 to k = 10. For each k, the validity measure Vk

defined in equation (3.17) is computed and plotted. In (b), the values in the y dimension are
categorized using the least squares partition algorithm from k = 2 to k = 10. For each k,
the validity measure Vk defined in equation (3.17) is computed and plotted.

Then the optimum number of clusters k0 is defined to be the smallest k such that

k0 = min{k : Gap(k) ≥ Gap(k + 1)− sk+1}, (3.21)

where sk is defined as

sk =
√

1+ 1

B
·
√√√√ 1

B

B∑
b=1

(log(W ∗
kb)− l̄)2, (3.22)
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where l̄ is the mean of log(W ∗
kb) defined as

l̄ = 1

B

B∑
b=1

log(W ∗
kb). (3.23)

3.3 Summary
Some scale conversion techniques are briefly reviewed in this chapter. These scale conver-
sions include interval to ordinal, interval to nominal, ordinal to nominal, nominal to ordinal,
ordinal to interval, nominal to interval, and binarization. Readers are referred to (Anderberg,
1973) for detailed discussions of these conversions. In addition to these briefly described
techniques, we also present categorization of numerical data, where several methods are
discussed in detail.
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Chapter 4

Data Standardization
and Transformation

In many applications of cluster analysis, the raw data, or actual measurements, are not used
directly unless a probabilistic model for pattern generation is available (Jain and Dubes,
1988). Preparing data for cluster analysis requires some sort of transformation, such as
standardization or normalization.

Some commonly used data transformation methods for cluster analysis shall be dis-
cussed in this chapter. Some methods of data standardization are reviewed in Section 4.1.

For convenience, let D∗ = {x∗1, x∗2, . . . , x∗n} denote the d-dimensional raw data set.
Then the data matrix is an n× d matrix given by

(x∗1, x∗2, . . . , x∗n)
T =




x∗11 x∗12 · · · x∗1d
x∗21 x∗22 · · · x∗2d
...

...
. . .

...

x∗n1 x∗n2 · · · x∗nd


 . (4.1)

4.1 Data Standardization
Data standardization makes data dimensionless. It is useful for defining standard indices.
After standardization, all knowledge of the location and scale of the original data may be
lost. It is necessary to standardize variables in cases where the dissimilarity measure, such
as the Euclidean distance, is sensitive to the differences in the magnitudes or scales of the
input variables (Milligan and Cooper, 1988). The approaches of standardization of variables
are essentially of two types: global standardization and within-cluster standardization.

Global standardization standardizes the variables across all elements in the data set.
Within-cluster standardization refers to the standardization that occurs within clusters on
each variable. Some forms of standardization can be used in global standardization and
within-cluster standardization as well, but some forms of standardization can be used in
global standardization only.

It is impossible to directly standardize variables within clusters in cluster analysis,
since the clusters are not known before standardization. To overcome this difficulty, other
approaches must be taken. Overall and Klett (1972) proposed an iterative approach that first

43
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obtains clusters based on overall estimates and then uses these clusters to help determine
the within-group variances for standardization in a second cluster analysis.

Milligan and Cooper (1988) present an in- depth examination of standardization of
variables when using Euclidean distance as the dissimilarity measure. Before reviewing
various methods for data standardization, we first remark that the choice of an appropriate
standardization method depends on the original data set and the convention of the particular
field of study.

To standardize the raw data given in equation (4.1), we can subtract a location measure
and divide a scale measure for each variable. That is,

xij =
x∗ij − Lj

Mj

, (4.2)

where xij denotes the standardized value, Lj is the location measure, and Mj is the scale
measure.

We can obtain various standardization methods by choosing different Lj and Mj

in equation (4.2). Some well-known standardization methods are mean, median, standard
deviation, range, Huber’s estimate, Tukey’s biweight estimate, andAndrew’s wave estimate.
Table 4.1 gives some forms of standardization, where x̄∗j , R∗

j , and σ ∗j , are the mean, range,
and standard deviation of the j th variable, respectively, i.e.,

x̄∗j =
1

n

n∑
i=1

x∗ij , (4.3a)

R∗
j = max

1≤i≤n
x∗ij − min

1≤i≤n
x∗ij , (4.3b)

σ ∗j =
[

1

n− 1

n∑
i=1

(x∗ij − x̄∗j )
2

] 1
2

. (4.3c)

We now discuss in detail several common forms of standardization and their properties.
The z-score is a form of standardization used for transforming normal variants to

standard score form. Given a set of raw data D∗, the z-score standardization formula is
defined as

xij = Z1(x
∗
ij ) =

x∗ij − x̄∗j
σ ∗j

, (4.4)

where x̄∗j andσ ∗j are the sample mean and standard deviation of the j th attribute, respectively.
The transformed variable will have a mean of 0 and a variance of 1. The location

and scale information of the original variable has been lost. This transformation is also
presented in (Jain and Dubes, 1988, p. 24).

One important restriction of the z-score standardization Z1 is that it must be applied
in global standardization and not in within-cluster standardization (Milligan and Cooper,
1988). In fact, consider the case where two well-separated clusters exist in the data. If a
sample is located at each of the two centroids, then the within-cluster standardization would
standardize the samples located at the centroids to zero vectors. Any clustering algorithm
will group the two zero vectors together, which means that the two original samples will be
grouped to a cluster. This gives a very misleading clustering result.



4.1. Data Standardization 45

Table 4.1. Some data standardization methods, where x̄∗j , R∗
j , and σ ∗j are defined

in equation (4.3).

Name Lj Mj

z-score x̄∗j σ ∗j
USTD 0 σ ∗j
Maximum 0 max

1≤i≤n
x∗ij

Mean x̄∗j 1

Median
x∗n+1

2 j
if n is odd

1
2 (x

∗
n
2 j
+ x∗n+2

2 j
) if n is even

1

Sum 0
n∑

i=1
x∗ij

Range min
1≤i≤n

x∗ij R∗
j

The USTD (the weighted uncorrected standard deviation) standardization is similar
to the z-score standardization and is defined as

xij = Z2(x
∗
ij ) =

x∗ij
σ ∗j

, (4.5)

where σ ∗j is defined in equation (4.3c).
The variable transformed by Z2 will have a variance of 1. Since the scores have not

been centered by subtracting the mean, the location information between scores remains.
Thus, the standardization Z2 will not suffer the problem of the loss of information about the
cluster centroids.

The third standardization method presented in Milligan and Cooper (1988) is to use
the maximum score on the variable:

xij = Z3(x
∗
ij ) =

x∗ij
max
1≤i≤n

x∗ij
. (4.6)

A variable X transformed by Z3 will have a mean X̄
max(X)

and standard deviation
σX

max(X)
, where X̄ and σX are the mean and standard deviation of the original variable. Z3

is susceptible to the presence of outliers (Milligan and Cooper, 1988). If a large single
observation on a variable is presented, Z3 will standardize the remaining values to near 0.
Z3 seems to be meaningful only when the variable is a measure in a ratio scale (Milligan
and Cooper, 1988).

Two standardizations that involve using the range of the variable have been presented
in (Milligan and Cooper, 1988):

xij = Z4(x
∗
ij ) =

x∗ij
R∗

j

, (4.7a)
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xij = Z5(x
∗
ij ) =

x∗ij − min
1≤i≤n

x∗ij

R∗
j

, (4.7b)

where R∗
j is the range of the j th attribute defined in equation (4.3b).

A variable X transformed by Z4 and Z5 will have means of X̄
max(X)−min(X)

and
X̄−min(X)

max(X)−min(X)
, respectively, and have the same standard deviation σX

max(X)−min(X)
. Both Z4

and Z5 are susceptible to the presence of outliers.
A standardization based on normalizing to the sum of the observations presented in

(Milligan and Cooper, 1988) is defined as

xij = Z6(x
∗
ij ) =

x∗ij
n∑

i=1
x∗ij

. (4.8)

The transformation Z6 will normalize the sum of transformed values to unity and the
transformed mean will be 1

n
. Thus, the mean will be constant across all the variables.

A very different approach of standardization that involves converting the scores to
ranks is presented in (Milligan and Cooper, 1988) and is defined as

xij = Z7(x
∗
ij ) = Rank(x∗ij ), (4.9)

where Rank(X) is the rank assigned to X.
A variable transformed by Z7 will have a mean of n+1

2 and a variance of (n +
1)
(

2n+1
6 − n+1

4

)
. The rank transformation reduces the impact of outliers in the data.

Conover and Iman (1981) suggested four types of rank transformation. The first rank
transformation presented is ranked from smallest to largest, with the smallest score having
rank one, the second smallest score having rank two, and so on. Average ranks are assigned
in case of ties.

4.2 Data Transformation
Data transformation has something to do with data standardization, but it is more compli-
cated than data standardization. Data standardization concentrates on variables, but data
transformation concentrates on the whole data set. As such, data standardization can be
viewed as a special case of data transformation. In this section, we present some data
transformation techniques that can be used in cluster analysis.

4.2.1 Principal Component Analysis

The main purpose of principal component analysis (PCA) (Ding and He, 2004; Jolliffe,
2002) is to reduce the dimensionality of a high-dimensional data set consisting of a large
number of interrelated variables and at the same time to retain as much as possible of the
variation present in the data set. The principal components (PCs) are new variables that are
uncorrelated and ordered such that the first few retain most of the variation present in all of
the original variables.
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The PCs are defined as follows. Let v = (v1, v2, . . . , vd)
′ be a vector of d random

variables, where ′ is the transpose operation. The first step is to find a linear function
a′1v of the elements of v that maximizes the variance, where a1 is a d-dimensional vector
(a11, a12, . . . , a1d)

′, so

a′1v =
d∑

i=1

a1ivi .

After finding a′1v, a′2v, . . . , a′j−1v, we look for a linear function a′jv that is uncorrelated with
a′1v, a′2v, . . . , a′j−1v and has maximum variance. Then we will find d such linear functions
after d steps. The j th derived variable a′jv is the j th PC. In general, most of the variation
in v will be accounted for by the first few PCs.

To find the form of the PCs, we need to know the covariance matrix � of v. In most
realistic cases, the covariance matrix � is unknown, and it will be replaced by a sample
covariance matrix (cf. Chapter 6). For j = 1, 2, . . . , d, it can be shown that the j th PC
is given by zj = a′jv, where aj is an eigenvector of � corresponding to the j th largest
eigenvalue λj .

In fact, in the first step, z1 = a′1v can be found by solving the following optimization
problem:

maximize var(a′1v) subject to a′1a = 1,

where var(a′1v) is computed as

var(a′1v) = a′1�a1.

To solve the above optimization problem, the technique of Lagrange multipliers can
be used. Let λ be a Lagrange multiplier. We want to maximize

a′1�a1 − λ(a′1a − 1). (4.10)

Differentiating equation (4.10) with respect to a1, we have

�a1 − λa1 = 0,

or
(� − λId)a1 = 0,

where Id is the d × d identity matrix.
Thus λ is an eigenvalue of � and a1 is the corresponding eigenvector. Since

a′1�a1 = a′1λa1 = λ,

a1 is the eigenvector corresponding to the largest eigenvalue of �. In fact, it can be shown
that the j th PC is a′jv, where aj is an eigenvector of � corresponding to its j th largest
eigenvalue λj (Jolliffe, 2002).

In (Ding and He, 2004), PCA is employed to reduce the dimensionality of the data
set and then the k-means algorithm is applied in the PCA subspaces. Other examples of
applying PCA in cluster analysis can be found in (Yeung and Ruzzo, 2001). Performing
PCA is equivalent to performing singular value decomposition (SVD) on the covariance
matrix of the data. ORCLUS uses the SVD (Kanth et al., 1998) technique to find out
arbitrarily oriented subspaces with good clustering.
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4.2.2 SVD

SVD is a powerful technique in matrix computation and analysis, such as solving systems
of linear equations and matrix approximation. SVD is also a well-known linear projection
technique and has been widely used in data compression and visualization (Andrews and
Patterson, 1976a,b). In this subsection, the SVD method is briefly reviewed.

Let D = {x1, x2, . . . , xn} be a numerical data set in a d-dimensional space. Then D

can be represented by an n× d matrix X as

X = (xij )n×d ,

where xij is the j -component value of xi .
Let µ̄ = (µ̄1, µ̄2, . . . , µ̄d) be the column mean of X,

µ̄j = 1

n

n∑
i=1

xij , j = 1, 2, . . . , d,

and let en be a column vector of length nwith all elements equal to one. Then SVD expresses
X − enµ̄ as

X − enµ̄ = USV T , (4.11)

where U is an n× n column orthonormal matrix, i.e., UTU = I is an identity matrix, S is
an n × d diagonal matrix containing the singular values, and V is a d × d unitary matrix,
i.e., V HV = I , where V H is the conjugate transpose of V .

The columns of the matrix V are the eigenvectors of the covariance matrix C of X;
precisely,

C = 1

n
XTX − µ̄T µ̄ = V=V T . (4.12)

Since C is a d × d positive semidefinite matrix, it has d nonnegative eigenvalues
and d orthonormal eigenvectors. Without loss of generality, let the eigenvalues of C be
ordered in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λd . Let σj (j = 1, 2, . . . , d) be the standard
deviation of the j th column of X, i.e.,

σj =
(

1

n

n∑
i=1

(xij − µ̄j )
2

) 1
2

.

The trace � of C is invariant under rotation, i.e.,

� =
d∑

j=1

σ 2
j =

d∑
j=1

λj .

Noting that eTn X = nµ̄ and eTn en = n from equations (4.11) and (4.12), we have

V ST SV T = V ST UT USV T

= (X − enµ̄)T (X − enµ̄)

= XTX − µ̄T eTn X −XT enµ̄+ µ̄T eTn enµ̄

= XTX − nµ̄T µ̄

= nV=V T . (4.13)
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SinceV is an orthonormal matrix, from equation (4.13), the singular values are related
to the eigenvalues by

s2
j = nλj , j = 1, 2, . . . , d.

The eigenvectors constitute the PCs of X, and uncorrelated features will be obtained by the
transformation Y = (X − enµ̄)V . PCA selects the features with the highest eigenvalues.

Examples of applying SVD in clustering can be found in (Drineas et al., 2004),
(Drineas et al., 1999), and (Thomasian et al., 1998). In particular, Drineas et al. (2004)
proposed a fast SVD algorithm.

4.2.3 The Karhunen-Loève Transformation

The Karhunen-Loève (K-L) transformation is concerned with explaining the data structure
through a few linear combinations of variables. Like PCA, the K-L transformation is also
the optimal way to project d-dimensional points to lower dimensional points such that the
error of projections (i.e., the sum of squared distances (SSD)) is minimal (Fukunaga, 1990).

Let D = {x1, x2, . . . , xn} be a data set in a d-dimensional space, and let X be the
corresponding n× d matrix, i.e., X = (xij )n×d with xij the j -component value of xi .

xi (i = 1, 2, . . . , n) are d-dimensional vectors. They can be represented without error
by the summation of d linearly independent vectors as

xi =
d∑

j=1

yijφ
T
j = yi?T

or
X = Y?T , (4.14)

where yi = (yi1, yi2, . . . , yid), and

Y =




y1

y2
...

yd


 , ? = (φ1, φ2, . . . , φd).

The d × d matrix ? is the basis matrix and we may further assume that the rows of
? form an orthonormal set, i.e.,

φiφ
T
j =

{
1 for i = j ,
0 for i �= j ,

or
??T = Id×d ,

where Id×d is the d × d identity matrix.
Then, from equation (4.14), the components of yj can be calculated by

yi = xi?, i = 1, 2, . . . , n,
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or
Y = X?.

Thus Y is simply an orthonormal transformation of X. φj is called the j th feature
vector and yij is the j th component of the sample xi in the feature space.

In order to reduce dimensionality, we choose only m(m < d) feature vectors that can
approximate X well. The approximation can be obtained by replacing those components of
yj with preselected constants (Fukunaga, 1990, p. 402):

x̂i (m) =
m∑

j=1

yijφ
T
j +

d∑
j=m+1

bijφ
T
j ,

or

X̂(m) = Y (1,m)




φT
1
...

φT
m


+ B




φT
m+1
...

φT
d


 ,

where Y (1,m) is the n × m matrix formed by the first m columns of Y , i.e., Y (1,m) =
(yij )n×m, and B is an n× (m− d) matrix with its (i, j)th entry bi,m+j .

Without loss of generality, we assume that only the first m components of each yj are
calculated. Then the error of the resulting approximation is

@xi (m) = xi − x̂i (m) =
d∑

j=m+1

(yij − bij )φ
T
j ,

or

@X(m) = (Y (m+ 1, d)− B)




φT
m+1
...

φT
d


 ,

where Y (m+ 1, d) is the n× (m− d) matrix formed by the last m− d columns of Y .
Note that X̂ and @X are random matrices, so the square error of the approximation is

ε̄2(m) = E{‖@X(m)‖2}
= E

{
Tr(@X(m)@XT (m))

}
= E{Tr((Y (m+ 1, d)− B)(Y (m+ 1, d)− B)T )}

=
n∑

i=1

d∑
j=m+1

E{(yij − bij )
2}. (4.15)

For every choice of constant terms bij , we obtain a value for ε̄2(m). The optimal
choice for bij is the one that minimizes ε̄2(m). From equation (4.15), the optimal choice
for bij is

∂

∂bij
ε̄2(m) = −2[E{yij } − bij ] = 0,

which gives
bij = E{yij } = E{xi}φj ,
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or
B = E{Y (m+ 1, d)} = E(X)(φm+1, . . . , φd).

Let �X be the covariance matrix of X. Then we have

�X = (X − E{X})T (X − E{X})

= [(xT
1 , . . . , xT

n )− (E{x1}T , . . . , E{xn}T )]





x1
...

xn


−




E{x1}
...

E{xn}






=
n∑

i=1

(xi − E{xi})T (xi − E{xi}).

Thus the square error ε̄2(m) can rewritten as

ε̄2(m) =
n∑

i=1

d∑
j=m+1

E{(yij − bij )
2}

=
n∑

i=1

d∑
j=m+1

φT
j (xi − E{xi})T (xi − E{xi})φj

=
d∑

j=m+1

φT
j

(
n∑

i=1

(xi − E{xi})T (xi − E{xi})
)
φj

=
d∑

j=m+1

φT
j �Xφj . (4.16)

It can be shown that the optimum choice for the φj ’s satisfies (Fukunaga, 1990)

�Xφj = λjφj .

That is, the φj ’s should be the eigenvectors of �X. Then equation (4.16) becomes

ε̄2(m) =
d∑

j=M+1

λj .

Since the covariance matrix of X, �X, is positive semidefinite, it has d nonnegative
eigenvalues. If we choose the m eigenvectors that correspond to the largest m eigenvalues,
then the square error will be minimized.

4.3 Summary
In this chapter, we have discussed some scale conversion, data standardization, and data
transformation techniques. Usually, scale conversion and data standardization consider one
variable, while data transformation focuses on the whole data set. Many ideas for scale
conversions have also been presented and discussed by Anderberg (1973).
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When a data set involves different types of variables, transformation is usually used to
convert various variables into a certain variable. Another objective of data transformation
is to ensure that each variable in the data set is given an appropriate weight in the analysis.
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Chapter 5

Data Visualization

Data visualization techniques are extremely important in cluster analysis. In the final step
of data-mining applications, visualization is both vital and a possible cause of misunder-
standing.

This chapter introduces some visualization techniques. First, we introduce some
nonlinear mappings, such as Sammon’s mapping, multidimensional scaling (MDS), and
self-organizing maps (SOMs). Then we introduce some methods for visualizing clustered
data, including class-preserving maps, parallel coordinates, and tree maps. Finally, we
introduce a technique for visualizing categorical data.

5.1 Sammon’s Mapping
Sammon Jr. (1969) introduced a method for nonlinear mapping of multidimensional data
into a two- or three-dimensional space. This nonlinear mapping preserves approximately
the inherent structure of the data and thus is widely used in pattern recognition.

Let D = {x1, x2, . . . , xn} be a set of vectors in a d-space and {y1, y2, . . . , yn} be the
corresponding set of vectors in a d∗-space, where d∗ = 2 or 3. Let dis be the distance
between xi and xs and d∗is be the distance between yi and ys . Let y(0)

1 , y(0)
2 , . . . , y(0)

n be a
random initial configuration:

y(0)
i = (y

(0)
i1 , y

(0)
i2 , . . . , y

(0)
id∗)

T , i = 1, 2, . . . , n.

Now the error ESAM , which represents how well the present configuration of n points
in the d∗-space fits the n points in the d-space, is defined as (Sammon Jr., 1969)

ESAM = 1∑
1≤i<s≤n

dis

∑
1≤i<s≤n

(dis − d∗is)2

dis
= 1

c

∑
1≤i<s≤n

(dis − d∗is)2

dis
, (5.1)

where c =∑
1≤i<s≤n dis . The mapping error ESAM is a function of nd∗ variables yij (i =

1, 2, . . . , n, j = 1, 2, . . . , d∗). The next step of Sammon’s method is to adjust the config-
uration y1, y2, . . . , yn such that the error ESAM is minimized. Sammon Jr. (1969) proposed
a steepest descent procedure to find the configuration that minimizes the error.

53
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Let E(t)
SAM be the mapping error after the t th iteration, i.e.,

E
(t)
SAM = 1

c

∑
1≤i<s≤n

(dis − (d∗is)(t))2

dis
,

where

(d∗is)
(t) =


 d∗∑

j=1

(
y
(t)
ij − y

(t)
sj

)2




1
2

.

The new configuration at the (t + 1)th iteration is calculated as

y
(t+1)
ij = y

(t)
ij − α ·@(t)

ij ,

where α is a constant that was empirically determined to be 0.3 or 0.4 and

@
(t)
ij =

1∣∣∣∣∣ ∂2E
(t)
SAM

∂
[
y
(t)
ij

]2

∣∣∣∣∣
· ∂E

(t)
SAM

∂y
(t)
ij

.

In particular, the partial derivatives are given by (Sammon Jr., 1969)

∂E
(t)
SAM

∂y
(t)
ij

= −2

c

n∑
s=1,s �=i

(
dis − d∗is
disd

∗
is

)
(yij − ysj )

and

∂2E
(t)
SAM

∂
[
y
(t)
ij

]2 =
−2

c

n∑
s=1,s �=i

1

disd
∗
is

·
[
(dis − d∗is)−

(yij − ysj )
2

d∗is

(
1+ dis − d∗is

d∗is

)]
.

The procedure to minimize the mapping error is sensitive to the factor or learning rate
α and is only practically useful for problems with low values of n (De Backer et al., 1998).
De Backer et al. (1998) introduced a better algorithm to minimize the error function (see
Section 5.2). Kruskal (1971) pointed out that the minimization of the error function ESAM

is strongly related to the metric MDS procedure.

5.2 MDS
MDS (Carroll and Arabie, 1980; De Backer et al., 1998; Borg and Groenen, 1997; Cox
and Cox, 1994) refers to a class of algorithms that visualize proximity relations of objects
by distances between points in a low-dimensional Euclidean space. MDS algorithms are
commonly used to visualize proximity data (i.e., pairwise dissimilarity values instead of
feature vectors) by a set of representation points in a suitable embedding space. This
section gives a brief introduction to the concept of MDS. For detailed discussions on this
subject, readers are referred to monographs by Cox and Cox (1994) and Borg and Groenen
(1997).
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To introduce MDS, we first introduce some notation. Let D = {x1, x2, . . . , xn} be a
set of n objects in a d-dimensional feature space, and let dis denote the Euclidean distance
between xi and xs . Let d∗ be the number of dimensions of the output space, x∗i be a d∗-
dimensional point representing xi in the output space, and d∗is denote the Euclidean distance
between x∗i and x∗j in the output space. Let X be an n× d-dimensional vector denoting the
coordinates xij (1 ≤ i ≤ n, 1 ≤ j ≤ d) as follows:

X = (X1, X2, . . . , Xnd)
T ,

where X(i−1)d+j = xij for i = 1, 2, . . . , n and j = 1, 2, . . . , d. Let ∇f denote the gradient
vector of function f (X) evaluated at X, i.e.,

∇f = (Y1, Y2, . . . , Ynd)
T ,

where

Y(i−1)d+j = ∂f (X)

X(i−1)d+j
= ∂f (X)

xij
, i = 1, 2, . . . , n, j = 1, 2, . . . , d.

Let Hf be the Hessian matrix of the function f (X) evaluated as X, i.e., Hf = (hlm), where

hlm = ∂2f (x)
∂Xl∂Xm

= ∂2f (x)
∂xij ∂xst

for l = (i − 1)d + j and m = (s − 1)d + t, 1 ≤ i, s ≤ n, 1 ≤ j, t ≤ d.

MDS can be either metric or nonmetric. If the dissimilarities are proportional to the
distances, then it is metric. If the dissimilarities are assumed to be just ordinal, then it is
nonmetric (Shepard, 1962; Kruskal, 1964). MDS is conducted such that the distances d∗ij
between the representative points match as much as possible some given dissimilarities
between the points in the original space or input space.

In nonmetric MDS, where distances dij serve as dissimilarities in the input space, a
loss function is defined and minimized through a gradient descent procedure (De Backer
et al., 1998). For example, a loss function can be defined as (De Backer et al., 1998)

EMDS =
∑

1≤i<s≤n

(
d∗is − d̂is

)2

∑
1≤i<s≤n

d̂2
is

, (5.2)

where d̂is are pseudodistances or target distances derived from the d∗is with Kruskal’s mono-
tone regression procedure (Kruskal, 1964) and are calculated in such a way that their rank
order matches as well as possible the rank order of dij and they are as close as possible to
the d∗is .

Algorithm 5.1. Nonmetric MDS.

Require: D: input data set; dis : dissimilarities;
1: Define an initial configuration X(0);
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2: while EMDS has not converged do
3: Compute the distances d∗is for the current configuration X(t);
4: Compute the target distances d̂is ;
5: Compute the gradient ∇E(t)

MDS ;
6: Compute the learning rate α(t);
7: X(t+1) ⇐ X(t) − α(t)∇E(t)

MDS ;
8: end while
9: Output the X.

The nonmetric MDS algorithm is described in Algorithm 5.1. In this algorithm, the
learning rate α(t) is calculated as

α(t) = ‖∇E(t)
MDS‖2(

∇E(t)
MDS

)T · ∇H(t)
EMDS

· ∇E(t)
MDS

.

In MDS, the minimization problem is nonconvex and sensitive to local minima. Klock
and Buhmann (2000) developed a deterministic annealing approach to solving such mini-
mization problems.

5.3 SOM
The SOM, introduced by Kohonen (1990, 1989), is a type of artificial neural network.
SOMs reduce dimensions by producing a map of usually one or two dimensions that plots
the similarities of the data by grouping similar objects together. SOMs are particularly useful
for visualization and cluster analysis in that they can be used to explore the groupings and
relations within high-dimensional data by projecting the data onto a two-dimensional image
that clearly indicates regions of similarity.

The SOM architecture consists of two fully connected layers: an input layer and a
Kohonen layer. The neurons in the Kohonen layer are arranged in a one- or two-dimensional
lattice. Figure 5.1 displays the layout of a one-dimensional map where the output neurons
are arranged in a one-dimensional lattice. The number of neurons in the input layer matches
the number of attributes of the objects. Each neuron in the input layer has a feed-forward
connection to each neuron in the Kohonen layer. The inputs are assumed to be normalized,
i.e., ‖x‖ = 1. Inputs to the Kohonen layer can be calculated as

yj =
d∑

i=1

wjixi, (5.3)

where wji is the weight from the input neuron i to the output neuron j . Under a winner-
takes-all paradigm, the neuron in the Kohonen layer with the biggest yj will become the
winning neuron or winner-takes-all neuron.

The algorithm responsible for the formation of the SOM first initializes the weights in
the network by assigning them small random values. Then the algorithm proceeds to three
essential processes: competition, cooperation, and adaptation (Haykin, 1999).
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Input layer

Kohonen layer

Figure 5.1. The architecture of the SOM.

Competitive process. Let x = (x1, x2, . . . , xd)
T be an object selected at random from the

input space, where d is the dimension of the input space. Let the weight vector of
neuron j in the Kohonen layer be denoted by

wj = (wj1, wj2, . . . , wjd∗)
T , j = 1, 2, . . . , d∗,

where d∗ is the total number of neurons in the Kohonen layer. The best match of
the input object x with the weight vectors w1,w2, . . . ,wd∗ can be found by com-
paring the inner products wT

1 x,wT
2 x, . . . ,wT

d∗x and selecting the largest. In fact, the
best matching criterion based on maximizing the inner products wT

j x is mathemati-
cally equivalent to minimizing the Euclidean distance between the vectors wj and x
(Haykin, 1999). Therefore, the index i(x) of the winning neuron for the input object
x may determined by

i(x) = arg min
1≤j≤d∗

‖x − wj‖.

Cooperative process. In the cooperative process, a topological neighborhood is defined
so that the winning neuron locates the center of a topological neighborhood of coop-
erating neurons. Let hj,t denote the topological neighborhood centered on winning
neuron t and dt,j denote the lateral distance between winning neuron t and excited
neuron j . The topological neighborhood hj,t can be a unimodal function of the lateral
distance dt,j satisfying the following two conditions (Haykin, 1999):

(a) hj,t is symmetric about the maximum point defined by dt,j = 0.

(b) The amplitude of hj,t decreases monotonically with increasing lateral distance
dt,j and decays to zero as dt,j →∞.

For example, hj,t can be the Gaussian function

hj,t = exp

(
− d2

t,j

2σ 2

)
,

where σ is a parameter that measures the degree to which excited neurons in the
neighborhood of the winning neuron participate in the learning process.

In the case of a one-dimensional lattice, the lateral distance dt,j can be defined as

dt,j = |t − j |.
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In the case of a two-dimensional lattice, the lateral distance dt,j can be defined as

dt,j = ‖rt − rj‖,
where rt and rj are discrete vectors defining the position of excited neuron j and the
position of winning neuron t , respectively.

Adaptive process. In the adaptive process, the weight vector wj of neuron j changes
according to the input object x. Given the weight vector w(s)

j of neuron j at time or

iteration s, the new weight vector w(s+1)
j at time s + 1 is defined by (Haykin, 1999)

w(s+1)
j = w(s)

j + η(s)hj,i(x)(s)(x − w(s)
j ), (5.4)

where η(s) is the learning-rate parameter defined as

η(s) = η0 exp

(
− s

τ2

)
, s = 0, 1, 2, . . . ,

and hj,i(x)(s) is the neighborhood function defined as

hj,i(x)(s) = exp

(
− d2

i(x),j

2σ 2(s)

)
, s = 0, 1, 2,

with σ(s) specified by

σ(s) = σ0

(
− s

τ1

)
.

The constants η0, σ0, τ1, and τ2 can be configured as follows (Haykin, 1999):

η0 = 0.1,

σ0 = the radius of the lattice,

τ1 = 1000

log σ0
,

τ2 = 1000.

Algorithm 5.2. The pseudocode of the SOM algorithm.

Require: D: the data set; d∗: the dimension of the feature map; η0, σ0, τ1, τ2: parameters;
1: Initialize weight vectors w(0)

j for j = 1, 2, . . . , d∗ by selecting at random objects from
D;

2: repeat
3: Draw an object x from D with a certain probability;
4: Find the winning neuron i(x) at time step s by using the minimum-distance Euclidean

criterion:
i(x) = arg min

1≤j≤d∗
‖x − w(s)

j ‖;
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5: Update the weight vectors of all neurons by the formula in equation (5.4);
6: until No noticeable changes in the feature map
7: Output the feature map.

The SOM algorithm is summarized inAlgorithm 5.2. The SOM is one type of unsuper-
vised competitive learning. Unlike supervised training algorithms such as backpropagation
(Hertz et al., 1991), unsupervised learning algorithms have no expected outputs. One ad-
vantage of the SOM is that it constantly learns and changes with changing conditions and
inputs. The SOM was implemented as a toolbox in MATLAB (Vesanto, 2000; Vesanto
et al., 1999a,b). Eklund et al. (2003) illustrated how to use the SOM technique in financial
performance analysis and benchmarking.

Kohonen’s SOM and Sammon’s nonlinear mapping (see Section 5.1) are topology- and
distance-preserving mapping techniques commonly used for multivariate data projections.
However, the computations for both techniques are high. To solve this problem, Konig
(2000) proposed a two-stage neural projection approach for hierarchical mappings. This
new approach is based on SOM and Sammon’s nonlinear mapping and avoids recomputation
of the mapping when additional data points or data sets are included.

5.4 Class-preserving Projections
The class-preserving projections introduced by Dhillon et al. (1998) map multi dimensional
data onto two-dimensional planes and maintain the high-dimensional class structures. The
main idea behind these class-preserving projections is to preserve interclass distances.

Let x1, x2, . . . , xn be a d-dimensional data set, z1, z2, . . . , zk denote the class means,
and n1, n2, . . . , nk denote the class sizes. Let w1 and w2 be an orthonormal basis for the
candidate two-dimensional plane of projection. Then the point xi and the mean zj are
projected to the pairs (wT

1 xi ,wT
2 xi ) and (wT

1 mj ,wT
2 mj ), respectively. One way to obtain

good separation of the projected classes is to maximize the difference between the projected
means. In other words, the two vectors w1 and w2 are selected such that the objective
function

C(w1,w2) = Tr(WT SW) (5.5)

is maximized, where Tr(M) denotes the trace of the matrix M ,

W = [w1,w2], wT
1 w2 = 0, wT

i wi = 1, i = 1, 2,

and

S =
k∑

i=2

i−1∑
j=1

ninj (zi − zj )(zi − zj )T .

The vectors w1 and w2 that maximize the objective function in equation (5.5) are the eigen-
vectors corresponding to the two largest eigenvalues of S (Dhillon et al., 1998).

The matrix S in equation (5.5) is positive semidefinite and can be interpreted as an
interclass scatter matrix (see Subsection 6.1.3). Within-class scatter is ignored in these
class-preserving projections.
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Figure 5.2. The axes of the parallel coordinates system.
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Figure 5.3. A two-dimensional data set containing five points.

5.5 Parallel Coordinates
Inselberg and Dimsdale (1990) proposed a visualization methodology called parallel coor-
dinates for visualizing analytic and synthetic geometry in Rd . This methodology induces a
nonprojective mapping between sets in Rd and sets in R2 and yields a graphical represen-
tation of multidimensional relations rather than just finite point sets.

The axes of the parallel coordinates system for Euclidean space Rd are d copies of the
real lines that are labeled v1, v2, . . . , vd and placed on the xy-Cartesian coordinate plane
equidistant and perpendicular to the x-axis. The real line labeled v1 is coincident with the
y-axis. Figure 5.2 depicts the d axes of the parallel coordinates system for Euclidean space
Rd on a Cartesian plane. A point x = (x1, x2, . . . , xd)

T ∈ Rd is represented by a polygonal
line whose d vertices are at (j − 1, xj ) on the vj -axis for j = 1, 2, . . . , d. The mapping
between points in Rd and polygonal lines with vertices on v1, v2, . . . , vd is one-to-one.

Points in a two-dimensional space are represented by line segments between the v1-
axis and the v2-axis. For example, the parallel coordinates plot of the five points in Figure
5.3 is given in Figure 5.4.

The parallel coordinates system can be used to plot time series and gene
expression data (see Section 18.6). This methodology works well when the number
of dimensions d is small. However, this methodology is rendered ineffective if the number
of dimensions or the number of objects gets too high. Inselberg and Dimsdale (1990) also
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Figure 5.4. The parallel coordinates plot of the five points in Figure 5.3.

discussed multidimensional lines and hyperplanes for the purpose of visualization. The
parallel coordinates methodology was implemented in the interactive hierarchical displays
(IHDs) (Yang et al., 2003b).

Fua et al. (1999) proposed several extensions to the parallel coordinates display tech-
nique for large data sets. Other discussions of parallel coordinates can be found in (Wegman,
1990), (Miller and Wegman, 1991), (Andrienko andAndrienko, 2004), and (Johansson et al.,
2006). Like the parallel coordinates, the star coordinates were proposed by Kandogan (2001)
to visualize multidimensional clusters, trends, and outliers.

5.6 Tree Maps
Commonly, a tree or dendrogram is used to visualize the results of a hierarchical clustering
algorithm. But this common visualization method suffers from the following problems
(Wills, 1998):

(a) It is hard to see the tree even for a moderately sized tree of 50 to 100 leaves.

(b) The sizes of clusters are not obvious.

(c) If the cut level is changed, the tree displayed often changes dramatically.

(d) It offers no hint for future events if the number of clusters is increased.

As a solution to the above problem, a tree map (Shneiderman, 1992; Wills, 1998)
is developed to visualize the tree structure of a hierarchical clustering by taking a speci-
fied rectangular area and recursively subdividing it up based on the tree structure. More
specifically, this methodology looks at the first level of the tree and splits up the viewing
area horizontally into m rectangles if the first node has m children. The area allocated to a
rectangle is proportional to the size of the subtree underneath the corresponding child node.
This methodology then looks at the next level of the tree and performs the same procedure
for each node there, except it subdivides the area vertically.
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x1x2 x3 x4 x5

0.71
1.12 0.92

2.06

Figure 5.5. The dendrogram of the single-linkage hierarchical clustering of the
five points in Figure 5.3.

x1,x2,x3 x4,x5

x1

x2,x3

x4,x5

Figure 5.6. The tree maps of the dendrogram in Figure 5.5. The left tree map
corresponds to cut levels between 1.12 and 2.06; the right tree map corresponds to cut
levels between 0.92 and 1.12.

Taking the data set in Figure 5.3 as an example, we apply a single-linkage hierarchical
algorithm to the data set and obtain the dendrogram shown in Figure 5.5. The numbers
along the vertical line on the left are the heights of the dendrogram tree and its subtrees.
Figure 5.6 gives two tree maps corresponding to different cut levels of the dendrogram
shown in Figure 5.5.

The major advantage of the tree map methodology is its capability of visualizing large
data sets. Wills (1998) used this methodology to cluster and visualize a large telecommu-
nications data set summarizing call traffic. Pseudocode for the algorithm for drawing such
a tree map is also presented by Wills (1998).

5.7 Categorical Data Visualization
Chang and Ding (2005) proposed a method for visualizing clustered categorical data so
that users can adjust the clustering parameters based on the visualization. In this method,
a special three-dimensional coordinate system is used to represent the clustered categorical
data.

The main idea behind this visualization technique is that each attribute vj of a cluster
Cm has an attribute value Ajl (see Section 2.1 for categorical data notation) such that the
probability of this attribute value in the cluster, P(vj = Ajl|Cm), is maximum and close to
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Table 5.1. The coordinate system for the two clusters of the data set in Table 2.1.

v1 v2 v3 v4 v5 v6

A 1 A 1 A 1 A 1 B 1
3 B 1

3

C 1
3 D 1

3

D 1
3 C 1

3

v1 v2 v3 v4 v5 v6

B 1 B 1 C 1
2 C 1

2 D 1
2 C 1

2

D 1
2 D 1

2 C 1
2 D 1

2

one. A cluster is represented by these attribute values. The three-dimensional coordinate
system to plot an attribute value is constructed such that the x- axis represents the attribute
indices (i.e., j denotes vj ), the y-axis represents the attribute value (or state) indices (i.e., l
denotesAjl), and the z-axis represents the probability that the attribute value is in the cluster.
In other words, the clusterCm is represented by d three-dimensional points (j, l, P (Ajl|Cm))

for j = 1, 2, . . . , d, where d is the number of attributes.
To display a set of clusters, the technique constructs a coordinate system such that

interference among different clusters can be minimized in order to observe closeness. To
obtain this effect, the technique first examines the attribute value with the highest proportion
for each cluster, then summarizes the number of distinct attribute values for each attribute,
and then sorts them in increasing order. Attributes with the same number of distinct attribute
values are further ordered by the lowest value of their proportions. Attributes with the least
number of distinct attribute values are put in the middle of the x- axis and the others are put at
the two ends according to their orders. After this arrangement, the cluster Cm is represented
by d three-dimensional points (Lx(vj ), Ly(Ajl), P (Ajl|Cm)) for j = 1, 2, . . . , d, where
the function Lx(vj ) returns the x-coordinate for the attribute vj and the function Ly(Ajl)

returns the y-coordinate for the attribute value Ajl .
Consider the categorical data set in Table 2.1, for example. We see that there are

two clusters: cluster C1 contains x1, x2, . . . , x3 and cluster C2 contains x4, x5. To represent
these two clusters, we can construct the coordinate system as follows:

1. For each cluster, summarize the attribute values and their proportions in the cluster in
a table (see Table 5.1).

2. Examine the attribute value with the highest proportion for each cluster and sort them:
v1 and v2 both have two distinct attribute values (i.e., A and B) of proportion 1; v3

and v4 both have two distinct attribute values (i.e., A and C) of proportions 1 and 1
2 ,

respectively; v5 and v6 both have two distinct attribute values (i.e., B and C). Thus,
the order for the six attributes can be v1, v2, v3, v4, v5, v6.
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Table 5.2. Coordinates of the attribute values of the two clusters in Table 5.1.

v1 v2 v1 v2 v5 v6

(1,1,1) (2,1,1) (3,1,1) (4,1,1) (5,1,0.33) (6,1,0.33)

v1 v2 v1 v2 v5 v6

(1,2,1) (2,2,1) (3,2,0.5) (4,2,0.5) (5,2,0.5) (6,2,0.5)

0

2

4

6

11.21.41.61.82
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0.8

1
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y

z

Figure 5.7. Plot of the two clusters in Table 5.1.

3. Determine coordinates for the attribute values (see Table 5.2).

4. Plot the coordinates in a three-dimensional space.

The visualization of the two categorical clusters in Table 5.1 is shown in Figure 5.7,
from which we see that the points are scattered in two groups. It is easy to see that the data
set in Table 2.1 contains two clusters. Additional examples of this visualization technique
can be found in (Chang and Ding, 2004) and (Chang and Ding, 2005).

Hsu (2006) proposed a method to visualize categorical data and mixed-type data
using the SOM. Beygelzimer et al. (2001) considered how to order categorical values to
yield better visualization.
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5.8 Other Visualization Techniques
Several other methods have been proposed for visualizing high-dimensional data. Andrews
(1972) introduced a method to plot high-dimensional data with curves, one curve for each
data item, obtained by using the components of the data vectors as coefficients of orthogonal
sinusoids, which are then added together pointwise. Chernoff (1973) introduced a method
to visualize multivariate data with faces. Each point in a d-dimensional space (d ≤ 18) is
represented by a facial caricature whose features such as length of nose are determined by
components of the point. The major common drawback of these two methods is that they
are not effective for visualization of large data sets. If a data set is large, all the objects are
portrayed separately in a display, making it difficult to see the inherent structure of the data
set.

Hofmann and Buhmann (1995) proposed three strategies derived in the maximum
entropy framework for visualizing data structures. Pölzlbauer et al. (2006) proposed two
methods for depicting SOM based on vector fields. Vesanto (1999) presented a categoriza-
tion of many visualization methods for the SOM. MDS and minimum spanning tree (MST)
for visualizing hierarchical clustering are discussed by Kim et al. (2000b). Klock and Buh-
mann (2000) proposed a deterministic annealing approach to solving the MDS minimization
problem.

Somorjai et al. (2004) proposed a distance-based mapping for visualization of high-
dimensional patterns and their relative relationships. The original distances between points
are preserved exactly with respect to any two reference patterns in the relative distance plane
(RDP), a special two-dimensional coordinate system. Faloutsos and Lin (1995) proposed
an algorithm, called FastMap, to map objects into points in some m-dimensional space with
the distances being preserved, where m is a user-specified parameter.

To visualize large-scale hierarchical data, Itoh et al. (2004) proposed a rectangle-
packing algorithm that can provide good overviews of complete structures and the content
of the data in one display space. Sprenger et al. (2000) proposed an algorithm called H-
BLOB that can group and visualize cluster hierarchies at multiple levels of detail. H-BLOB
is suited for the visualization of very large data sets. Koren and Harel (2003) proposed an
embedded algorithm that can preserve the structure of a predefined partitional or hierarchical
clustering to visualize clustered data.

Egan et al. (1998) introduced a tool called FCLUST (Fuzzing CLUstering Simulation
Tool) to visualize the results of fuzzy clusterings. This tool can also be used to demonstrate
the computational method of the algorithm and thus can be used as a teaching tool in
classrooms.

5.9 Summary
This chapter introduced some dimension reduction and visualization techniques. Visual-
ization is an area that has attracted many researchers’ attention recently. Many papers on
visualization have been published. In this chapter, we focused on techniques for visual-
ization of clustered data. For other visualization methods, readers are referred to (Keim
and Kriegel, 1996), in which a general survey of visualization methods for data mining is
presented.
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Chapter 6

Similarity and Dissimilarity
Measures

This chapter introduces some widely used similarity and dissimilarity measures for different
attribute types. We start by introducing notions of proximity matrices, proximity graphs,
scatter matrices, and covariance matrices. Then we introduce measures for several types
of data, including numerical data, categorical data, binary data, and mixed-typed data,
and some other measures. Finally, we introduce various similarity and distance measures
between clusters and variables.

6.1 Preliminaries
A similarity coefficient indicates the strength of the relationship between two data points
(Everitt, 1993). The more the two data points resemble one another, the larger the similarity
coefficient is. Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be two d-dimensional
data points. Then the similarity coefficient between x and y will be some function of their
attribute values, i.e.,

s(x, y) = s(x1, x2, . . . , xd, y1, y2, . . . , yd). (6.1)

Similarity is usually symmetric, i.e., s(x, y) = s(y, x). Asymmetric similarity mea-
sures have also been discussed in (Constantine and Gower, 1978). A metric is a distance
function f defined in a set E that satisfies the following four properties (Anderberg, 1973;
Zhang and Srihari, 2003):

1. nonnegativity: f (x, y) ≥ 0;

2. reflexivity: f (x, y) = 0 ⇐⇒ x = y;

3. commutativity: f (x, y) = f (y, x);

4. triangle inequality: f (x, y) ≤ f (x, z)+ f (y, z),

where x, y, and z are arbitrary data points.

67
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A dissimilarity function is a metric defined in a set. But by a similarity function,
we mean a function s(·, ·) measured on any two data points in a data set that satisfies the
following properties (Kaufman and Rousseeuw, 1990):

1. 0 ≤ s(x, y) ≤ 1,

2. s(x, x) = 1,

3. s(x, y) = s(y, x),

where x and y are two arbitrary data points in the set.
Generally, there are many other similarity and dissimilarity structures. Let D be a

data set. Hartigan (1967) lists 12 similarity structures for a similarity measure S defined on
D:

1. S defined on D ×D is a Euclidean distance.

2. S defined on D ×D is a metric.

3. S defined on D ×D is symmetric and real valued.

4. S defined on D ×D is real valued.

5. S is a complete “similarity” order≤S on D×D (each pair of objects can be ordered).

6. S is a partial similarity order ≤S on D ×D (each comparable pair of objects can be
ordered, but not all pairs of objects need to be comparable).

7. S is a tree on D (Hartigan, 1967).

8. S is a complete “relative similarity” order ≤i on D for each i in D (j ≤i k means
that j is no more similar to i than k is to i).

9. S is a partial relative similarity order ≤i on D.

10. S is a similarity dichotomy on D×D in which D×D is divided into a set of similar
pairs and a set of dissimilar pairs.

11. S is a similarity trichotomy on D × D in which D × D consists of similar pairs,
dissimilar pairs, and the remaining pairs.

12. S is a partition of D into sets of similar objects.

6.1.1 Proximity Matrix

A proximity matrix (Jain and Dubes, 1988) is a matrix that contains the pairwise indices of
proximity of a data set. Usually, proximity matrices are symmetrical. In what follows, a
proximity index refers to either a similarity index or a dissimilarity index.
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Given a data set D = {x1, x2, . . . , xn}, each object of which is described by a d-
dimensional feature vector, the distance matrix for D is defined as

Mdist (D) =




0 d12 · · · d1n

d21 0 · · · d2n
...

...
. . .

...

dn1 dn2 · · · 0


 , (6.2)

where dij = d(xi , xj ) with respect to some distance function d(·, ·).
The similarity matrix for D is defined as

Msim(D) =




1 s12 · · · s1n

s21 1 · · · s2n
...

...
. . .

...

sn1 sn2 · · · 1


 , (6.3)

where sij = s(xi , xj ) with respect to some similarity measure s(·, ·).
The distance matrix Mdist (D) and similarity matrix Msim(D) of a data set D defined

in (6.2) and (6.3) are two examples of a proximity matrix. If the distance function and
similarity function are symmetrical, then the two proximity matrices are symmetrical.

6.1.2 Proximity Graph

A proximity graph is a weighted graph, where the nodes are the data points being clustered,
and the weighted edges represent the proximity indices between points, i.e., the entries of
the proximity matrix. A directed graph corresponds to an asymmetrical proximity matrix,
while an undirected graph corresponds to a symmetrical proximity matrix.

6.1.3 Scatter Matrix

Given a data set D = {x1, x2, . . . , xn}, each object of which is described by a d-dimensional
feature vector, i.e., xi = (xi1, xi2, . . . , xid), the scatter matrix for D is defined as (Wilks,
1962)

Mt(D) =
n∑

i=1

(xi − x̄)T (xi − x̄), (6.4)

where x̄ is the arithmetic average, i.e.,

x̄ = 1

n

n∑
i=1

xi .

The scatter matrix Mt(D) is also referred to as the matrix sum of squares. The trace of
the scatter matrix Mt(D) is said to be the statistical scatter of the data set D and is denoted
by

Tr(Mt(D)) =
n∑

i=1

(xi − x̄)(xi − x̄)T . (6.5)
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For a given cluster C of D, Mt(C) is also called the within-scatter matrix of C. Let
C = {C1, C2, . . . , Ck} be a partition of data set D. Then the within-cluster scatter matrix
for this partition is defined as

Mw(C) =
k∑

i=1

∑
x∈Ci

(x − zi )T (x − zi ), (6.6)

where zi is the mean of cluster Ci , i.e.,

zi = 1

|Ci |
∑
x∈Ci

x.

Similarly, the between-cluster scatter matrix for this partition is defined as

Mb(C) = Mt(D)−Mw(C), (6.7)

where Mt(D) is defined in (6.4).

6.1.4 Covariance Matrix

Covariance is a well-known concept in statistics. Let D be a data set with n objects, each
of which is described by d attributes v1, v2, . . . , vd . The attributes v1, v2, . . . , vd are also
referred to as variables. The covariance between two variables vr and vs is defined to be the
ratio of the sum of the products of their deviation from the mean to the number of objects
(Rummel, 1970), i.e.,

crs = 1

n

n∑
i=1

(xir − x̄r )(xis − x̄s),

where xij is the j th component of data point xi and x̄j is the mean of all data points in the
j th variable, i.e.,

x̄j = 1

n

n∑
i=1

xij , j = 1, 2, . . . , d.

The covariance matrix is a d×d matrix in which the entry (r, s) contains the covariance
between variable vr and vs , i.e.,

� =




c11 c12 · · · c1d

c21 c22 · · · c2d
...

...
...

cd1 cd2 · · · cdd


 . (6.8)

From the definition of the covariance, the covariance matrix defined in equation (6.8)
can be written as

� = 1

n
XT X,
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where XT denotes the transpose of X, and X is an n × d matrix with the (i, j)th element
xij − x̄j , i.e.,

X = (xij − x̄j
)
n×d =




x1 − x̄1ed
x2 − x̄2ed

...

xd − x̄ded


 , (6.9)

where ed is the d-dimensional identity vector, i.e., ed = (1, 1, . . . , 1).
Sample covariance matrices are often used in multivariate analysis. These matrices are

different from covariance matrices. For the given data set D above, the sample covariance
matrix of D is defined to be a d × d matrix as (Jolliffe, 2002)

S = n

n− 1
� = 1

n− 1
XT X. (6.10)

6.2 Measures for Numerical Data
The choice of distances is important for applications, and the best choice is often achieved
via a combination of experience, skill, knowledge, and luck. Here we list some commonly
used distances.

6.2.1 Euclidean Distance

Euclidean distance is probably the most common distance we have ever used for numerical
data. For two data points x and y in d-dimensional space, the Euclidean distance between
them is defined to be

deuc(x, y) =

 d∑

j=1

(xj − yj )
2




1
2

= [(x − y)(x − y)T
] 1

2 , (6.11)

where xj and yj are the values of the j th attribute of x and y, respectively.
The squared Euclidean distance is defined to be

dseuc(x, y) = deuc(x, y)2 =
d∑

j=1

(xj − yj )
2 = (x − y)(x − y)T . (6.12)

Note that the squared distance is in fact not a distance.

6.2.2 Manhattan Distance

Manhattan distance is also called “city block distance” and is defined to be the sum of the
distances of all attributes. That is, for two data points x and y in d-dimensional space, the
Manhattan distance between them is

dman(x, y) =
d∑

k=1

|xj − yj |. (6.13)
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If the data point x or y has missing values at some attributes, then the Manhattan
distance can be defined as (Wishart, 2002)

dmanw(x, y) =
d∑

k=1

wj |xj − yj |∑d
k=1 wj

, (6.14)

wherewj = 1 if both x and y have observations of the j th attribute andwj = 0 if otherwise.
The Manhattan segmental distance is a variant of the Manhattan distance. In the

Manhattan segmental distance, only a part of the whole dimension is used to calculate the
distance. It is defined as (Aggarwal et al., 1999)

dP (x, y) =
∑
j∈P

|xj − yj |
|P | , (6.15)

where P is a nonempty subset of {1, 2, . . . , d}.

6.2.3 Maximum Distance

The maximum distance is also called the “sup” distance. It is defined to be the maximum
value of the distances of the attributes; that is, for two data points x and y in d-dimensional
space, the maximum distance between them is

dmax(x, y) = max
1≤k≤d

|xj − yj |. (6.16)

6.2.4 Minkowski Distance

The Euclidean distance, Manhattan distance, and maximum distance are three particular
cases of the Minkowski distance defined by

dmin(x, y) =

 d∑

j=1

|xj − yj |r



1
r

, r ≥ 1. (6.17)

r is called the order of the above Minkowski distance. Note that if we take r = 2, 1, and
∞, we get the Euclidean distance, Manhattan distance, and maximum distance, respectively.

If the data set has compact or isolated clusters, the Minkowski distance works well (Mao
and Jain, 1996); otherwise the largest-scale attribute tends to dominate the others. To avoid
this, we should normalize the attributes or use weighting schemes (Jain et al., 1999).

6.2.5 Mahalanobis Distance

Mahalanobis distance (Jain and Dubes, 1988; Mao and Jain, 1996) can alleviate the distance
distortion caused by linear combinations of attributes. It is defined by

dmah(x, y) =
√
(x − y)�−1(x − y)T , (6.18)
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where � is the covariance matrix of the data set defined in equation (6.8). Therefore, this
distance applies a weight scheme to the data.

Another important property of the Mahalanobis distance is that it is invariant under all
nonsingular transformations. For example, let C be any nonsingular d × d matrix applied
to the original data set D = {x1, x2, . . . , xn} by

yi = Cxi , i = 1, 2, . . . , n.

Then the new covariance matrix becomes

1

n
YT Y = 1

n
(XCT )T (XCT ),

where X is defined in equation (6.9) and Y is defined similarly for the transformed data set.
Then the Mahalanobis distance between yi and yj is

dmah(yi , yj )

=
√
(yi − yj )

(
1

n
YT Y

)−1

(yi − yj )T

=
√
(xi − xj )CT

(
1

n
(XCT )T (XCT )

)−1

C(xi − xj )T

=
√
(xi − xj )

(
1

n
XT X

)−1

(xi − xj )T

= dmah(xi , xj ),

which shows that the Mahalanobis distance is invariant under nonsingular transformations.
Morrison (1967) proposed a generalized Mahalanobis distance by including the weights

of variables. Let λj (j = 1, 2, . . . , d) be the weight assigned to the j th variable, and let =
be the d × d diagonal matrix containing the d weights, i.e.,

= =




λ1

λ2

. . .

λd


 .

Then the generalized Mahalanobis distance is defined as (Morrison, 1967)

dgmah(x, y) =
√
(x − y)=�−1=(x − y)T .

The Mahalanobis distance suffers from some disadvantages. For example, it involves
high computation, since the covariance matrix is computed based on all data points in the
data set.

6.2.6 Average Distance

As pointed out in (Legendre and Legendre, 1983), the Euclidean distance has the following
drawback: two data points with no attribute values in common may have a smaller distance
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than another pair of data points containing the same attribute values. In this case, the average
distance was adopted (Legendre and Legendre, 1983).

The average distance is modified from the Euclidean distance. Given two data points
x and y in d-dimensional space, the average distance is defined by

dave(x, y) =

 1

d

d∑
j=1

(xj − yj )
2




1
2

. (6.19)

6.2.7 Other Distances

Chord distance (Orlóci, 1967), a modification of Euclidean distance, is defined as the length
of the chord joining the two normalized points within a hypersphere of radius one. It can
also be computed directly from nonnormalized data. The chord distance between two data
points x and y is defined by

dchord(x, y) =


2− 2

d∑
k=1

xjyj

‖x‖2‖y‖2




1
2

, (6.20)

where ‖ · ‖2 is the L2-norm, i.e.,

‖x‖2 =
√√√√ d∑

k=1

x2
j .

The chord distance measure can solve the problem caused by the scale of measure-
ments, and it is used to deal with the above-mentioned drawbacks of the Euclidean distance
measure as well.

Geodesic distance (Legendre and Legendre, 1983) is a transformation of the chord
distance and is defined to be the length of the shorter arc connecting the two normalized
data points at the surface of the hypersphere of unit radius. It is defined as

dgeo(x, y) = arccos

(
1− dchord(x, y)

2

)
. (6.21)

Several other distance measures for numerical data are given in Table 6.1.

6.3 Measures for Categorical Data
Categorical data are data measured on normal scales. Unlike numerical data, the computa-
tion of association measures between records described by nominal variables has received
little attention. In this section, we review some similarity and dissimilarity measures for
categorical data.
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6.3.1 The Simple Matching Distance

The simple matching dissimilarity measure (Kaufman and Rousseeuw, 1990; Huang, 1997b,
1998) is a simple, well-known measure used to measure categorical data.

Let x and y be two categorical values. Then the simple matching distance (Kaufman
and Rousseeuw, 1990) between x and y is given by

δ(x, y) =
{

0 if x = y,
1 if x �= y.

(6.22)

Let x and y be two categorical objects described by d categorical attributes. Then the
dissimilarity between x and y measured by the simple matching distance is defined by

dsim(x, y) =
d∑

j=1

δ(xj , yj ). (6.23)

Taking into account the frequencies of categories in the data set, we can define the
dissimilarity measure as

dsimf (x, y) =
d∑

j=1

(nxj + nyj )

nxj nyj
δ(xj , yj ), (6.24)

where nxj and nyj are the numbers of objects in the data set that have categories xj and yj
for attribute j , respectively.

6.3.2 Other Matching Coefficients

Besides the simple matching coefficient, other matching coefficients for nominal data are
possible. Some matching coefficients extended from binary measures to nominal data have
been presented in (Anderberg, 1973). These matching coefficients are also presented here.

Let x and y be two records, each of which is described by d nominal attributes, and
let Na+d be the number of attributes on which the two records match, Nd be the number of
attributes on which the two records match in a “not applicable” category, and Nb+c be the
number of attributes on which the two records do not match. Then

Na+d =
d∑

j=1

[1− δ(xj , yj )],

where δ(·, ·) is defined in (6.22). Similarly, we have

Nd =
d∑

j=1

[δ(xj , ?)+ δ(?, yj )− δ(xj , ?)δ(?, yj )],

Nb+c =
d∑

j=1

δ(xj , yj ),

where “?” is a symbol for missing values, i.e., if xj =?, then x has a missing value in the
j th attribute.

The matching coefficients given in Table 6.2 are extended from binary measures.
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Table 6.2. Some matching coefficients for nominal data.

Measure s(x, y) Weighting of matches, mismatches

Russell and Rao Na+d−Nd

Na+d+Nb+c Equal weights

Simple matching Na+d
Na+d+Nb+c Equal weights

Jaccard Na+d−Nd

Na+d−Nd+Nb+c Equal weights

Unnamed 2Na+d
2Na+d+Nb+c Double weight for matched pairs

Dice 2Na+d−2Nd

2Na+d−2Nd+Nb+c Double weight for matched pairs

Rogers-Tanimoto Na+d
Na+d+2Nb+c Double weight for unmatched pairs

Unnamed Na+d−Nd

Na+d−Nd+2Nb+c Double weight for unmatched pairs

Kulczynski Na+d−Nd

Nb+c Matched pairs excluded from
denominator

Unnamed Na+d
Nb+c Matched pairs excluded from

denominator

6.4 Measures for Binary Data
In this section, we shall provide a short survey of various similarity measures for binary
feature vectors. Some similarity and dissimilarity measures for binary data have been
discussed in (Hubálek, 1982; Rogers and Tanimoto, 1960; Baulieu, 1989, 1997), and (Gower
and Legendre, 1986).

Let x and y be two binary vectors in a d-dimensional space, and let A,B,C,D, and
σ be defined as follows:

A = S11(x, y), (6.25a)

B = S01(x, y), (6.25b)

C = S10(x, y), (6.25c)

D = S00(x, y), (6.25d)

σ = √(A+ B)(A+ C)(B +D)(C +D), (6.25e)

where Sij (x, y) (i, j ∈ {0, 1}) are defined in equations (2.7a)–(2.7d).
Let s(x, y) and d(x, y) be the similarity measure and dissimilarity measure between

x and y, respectively. Table 6.3 gives eight similarity measures for binary feature vectors
summarized by Tubbs (1989).

The ranges of various similarity measures are described in the third column of Ta-
ble 6.3; however, there are some assumptions underlying these ranges. For example,
s(Ī, Ī) = 1 in the Jaccard-Needham similarity measure, s(Ī, Ī) = 1

2 in the Dice simi-
larity measure, s(I, I) = s(Ī, Ī) = 1 and s(Ī, I) = s(I, Ī) = −1 in the correlation and
Yule similarity measures, and s(Ī, Ī) = ∞ in the Kulzinsky similarity measure (Zhang and
Srihari, 2003). The dissimilarity measures given in Table 6.3 have been normalized to [0, 1].
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Table 6.3. Similarity measures for binary vectors. d(x, y) is the corresponding
dissimilarity measure.

Measure s(x, y) Range of s(x, y) d(x, y)

Jaccard A
A+B+C [0, 1] B+C

A+B+C
Dice A

2A+B+C [0, 1
2 ] B+C

2A+B+C
Pearson AD−BC

σ
[−1, 1] 1

2 − AD−BC
2σ

Yule AD−BC
AD+BC [−1, 1] BC

AD+BC
Russell-Rao A

d
[0, 1] 1− A

d

Sokal-Michener A+D
d

[0, 1] 2(B+C)
A+2(B+C)+D

Rogers-Tanimoto A+D
A+2(B+C)+D [0, 1] 2(B+C)

A+2(B+C)+D
Rogers-Tanimoto-a A+D

A+2(B+C)+D [0, 1] 2(d−A−D)

2d−A−D
Kulzinsky A

B+C [0,∞] B+C−A+d
B+C+d

There are two types of binary similarity coefficients: symmetrical coefficients and
asymmetrical coefficients. The difference between the two types of coefficients is that
symmetrical coefficients take double zeros into account while asymmetrical coefficients
exclude double zeros (Legendre and Legendre, 1983). Table 6.4 gives four binary similarity
measures proposed by Sokal and Sneath (1963) and other binary similarity measures that
take double zeros into account.

For some cases, a comparison of two binary feature vectors must exclude double
zeros. For example, given two asymmetric binary feature vectors in which zero means lack
of information, a similarity measure should exclude double zeros. These similarity mea-

Table 6.4. Some symmetrical coefficients for binary feature vectors.

Measure s(x, y) Range of s(x, y)

Simple matching A+D
d

[0, 1]
Rogers-Tanimoto A+D

A+2(B+C)+D [0, 1]
Sokal-Sneath-a 2(A+D)

2A+B+C+2D [0, 1]
Sokal-Sneath-b A+D

B+C [0,∞]
Sokal-Sneath-c 1

4

(
A

A+B + A
A+C + D

B+D + D
C+D

) [0, 1]
Sokal-Sneath-d A√

(A+B)(A+C)
D√

(B+D)(C+D)
[0, 1]

Hamann A+D−B−C
d

[−1, 1]
Yule AD−BC

AD+BC [−1, 1]
Pearson AD−BC

σ
[−1, 1]
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Table 6.5. Some asymmetrical coefficients for binary feature vectors.

Measure s(x, y) Range of s(x, y)

Jaccard A
A+B+C [0, 1]

Sørensen 2A
2A+B+C [0, 1]

Russell-Rao A
d

[0, 1]
Kulzinsky A

B+C [0,∞]
Sokal-Sneath-e 1

2

(
A

A+B + A
A+C

) [0, 1]
Ochiai A√

(A+B)(A+C) [0, 1]

sures are asymmetrical coefficients. The best-known asymmetrical coefficient is Jaccard’s
coefficient. Table 6.5 gives some asymmetrical coefficients for binary feature vectors.

6.5 Measures for Mixed-type Data
In many applications, each instance in a data set is described by more than one type of
attribute. In this case, the similarity and dissimilarity measures discussed before cannot
be applied to this kind of data directly. Gower (1971) and Estabrook and Rogers (1966)
propose some general measures, which will be discussed in this section.

6.5.1 A General Similarity Coefficient

The general similarity coefficient (Gower, 1971; Wishart, 2002), proposed by Gower (1971),
has been widely implemented and used to measure the similarity for two mixed-type data
points. This general similarity coefficient can also be applied to data points with missing
values.

Let x and y denote two d-dimensional data points. Then the general similarity coef-
ficient sgower (x, y) is defined as

sgower (x, y) = 1
d∑

k=1
w(xk, yk)

d∑
k=1

w(xk, yk)s(xk, yk), (6.26)

where s(xk, yk) is a similarity component for the kth attribute and w(xk, yk) is either one or
zero depending on whether or not a comparison is valid for the kth attribute of the two data
points. They are defined respectively for different attribute types. Let xk and yk denote the
kth attributes of x and y, respectively. Then s(xk, yk) and w(xk, yk) are defined as follows.

• For quantitative attributes xk and yk , s(xk, yk) is defined as

s(xk, yk) = 1− |xk − yk|
Rk

,
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where Rk is the range of the kth attribute; w(xk, yk) = 0 if data point x or y has
missing value at the kth attribute; otherwise w(xk, yk) = 1.

• For binary attributes xk and yk , s(xk, yk) = 1 if both data points x and y have the kth
attribute “present”; otherwise s(xk, yk) = 0; w(xk, yk) = 0 if both data points x and
y have the kth attribute “absent”; otherwise w(xk, yk) = 1.

• For nominal or categorical attributes xk and yk , s(xk, yk) = 1 if xk = yk; otherwise
s(xk, yk) = 0; w(xk, yk) = 0 if data point x or y has missing value at the kth attribute;
otherwise w(xk, yk) = 1.

From the definition of the general similarity coefficient, we see that sgower (x, y)
achieves minimum value zero if the two data points are identical and has maximum value
one if the two data points are extremely different. Other general coefficients of similarity
have been presented in (Estabrook and Rogers, 1966).

6.5.2 A General Distance Coefficient

To measure the distance of two data points or the means of two clusters, the general dis-
tance coefficient (Gower, 1971) is introduced. As in equation (6.26), the general distance
coefficient between two data points x and y is defined as

dgower (x, y) =


 1

d∑
k=1

w(xk, yk)

d∑
k=1

w(xk, yk)d
2(xk, yk)




1
2

, (6.27)

where d2(xk, yk) is a squared distance component for the kth attribute and w(xk, yk) is the
same as in the general similarity coefficient, i.e., depending on whether or not a comparison
is valid for the kth attribute, if both data points x and y have observations at the kth attribute,
then w(xk, yk) = 1; otherwise w(xk, yk) = 0. For different types of attributes, d2(xk, yk)

is defined differently, as described below.

• For ordinal and continuous attributes, d(xk, yk) is defined as

d(xk, yk) = |xk − yk|
Rk

,

where Rk is the range of the kth attribute.

• For quantitative attributes, d(xk, yk) can be defined simply as

d(xk, yk) = |xk − yk|.
It can also be normalized (Wishart, 2002) to be

d(xk, yk) = |x2
k − y2

k |
σk
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if we standardize xk as

x∗k =
xk − µk

σk
,

where µk and σk are the mean and standard variation of the kth attribute, respectively.

• For binary attributes, d(xk, yk) = 0 if both i and j have the kth attributes “present”
or “absent”; otherwise d(xk, yk) = 1.

• For nominal or categorical attributes, d(xk, yk) = 0 if xk = yk; otherwise d(xk, yk) =
1.

6.5.3 A Generalized Minkowski Distance

The generalized Minkowski distance (Ichino and Yaguchi, 1994; Ichino, 1988) is a dis-
tance measure designed for mixed-type data based on the Minkowski distance discussed
in previous sections. This distance can deal with several feature types, including quan-
titative features (continuous and discrete), qualitative features (ordinal and nominal), and
tree-structured features.

Let a record described byd featuresXj (j = 1, 2, . . . , d)be represented by a Cartesian
product set

E = E1 × E2 × · · · × Ed,

where Ej is a feature value taken by a feature Xj , which can be an interval or a finite set
depending on the feature type of Xj .

Let the feature space be denoted by

U(d) = U1 × U2 × · · · × Ud,

where Uj is the domain of feature Xj . For different types of features, the domain Uj is
specified as follows.

Quantitative feature. The height and blood pressure of a person and number of cities in a
state are examples of this feature. Ej can be a single numerical value or an interval
of values. Let the domain Uj be a finite interval Uj = [aj , bj ], where aj and bj are
the minimum and the maximum possible values for the feature Xj .

Ordinal qualitative feature. Military rank is an example of this feature.
Assume that the possible feature values are coded numerically. For example, the
lowest rank value is coded by 1, the second lowest rank value is coded by 2, and
so on. Ej can be a single value or an interval value, such as Ej = 1 ∈ Uj or
Ej = [2, 4] ∈ Uj . In this case, the domain Uj is a finite interval of the form [aj , bj ].

Nominal qualitative feature. Values taken by a nominal qualitative feature have no orders.
For example, sex “male, female” and blood type “A, B, AB, O” are nominal values.
Ej can be a finite set, such as Ej = A,B. The domain Uj is a finite set of possible
values {aj1, aj2, . . . , ajm}.
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Tree-structured feature. This feature type is a special case of the nominal qualitative
feature, when all terminal values are nominal values. Ej is a set of terminal val-
ues of the given tree. The domain Uj is a finite set of possible terminal values
{aj1, aj2, . . . , ajm}.
Let A = A1 × A2 × · · · × Ad and B = B1 × B2 × · · · × Bd be two records in U(d),

and let the Cartesian join of A and B be defined as

A � B = (A1 � B1)× (A2 � B2)× · · · × (Ad � Bd), (6.28)

where Aj �Bj is the Cartesian join of the j th feature values Aj and Bj , as specified below.

• If Xj is a quantitative or ordinal qualitative feature, then Aj �Bj is a closed interval:

Aj � Bj = [min{AjL, BjL},max{AjU , BjU }],
where AjL and AjU are the lower bound and the upper bound of the interval Aj ,
respectively.

• If Xj is a nominal qualitative feature, then Aj � Bj is the union of Aj and Bj , i.e.,

Aj � Bj = Aj ∪ Bj .

• IfXj is a tree-structured feature, letN(Aj ) denote the nearest parent node common to
all terminal values inAj . IfN(Aj ) = N(Bj ),Aj�Bj = Aj∪Bj ; ifN(Aj ) �= N(Bj ),
Aj �Bj is the set of all terminal values branched from the node N(Aj ∪Bj). Aj �Aj

is assumed to be Aj .

The Cartesian meet between A and B is defined as

A � B = (A1 � B1)× (A2 � B2)× · · · × (Ad � Bd), (6.29)

where Aj � Bj is the Cartesian meet of the j th feature values Aj and Bj , which is defined
as the intersection of Aj and Bj , i.e.,

Aj � Bj = Aj ∩ Bj .

If at least one of Aj � Bj is empty, then A � B is an empty set. The mathematical
model (U(d),�,�) is called the Cartesian space model.

Let φ(Aj , Bj ) (j = 1, 2, . . . , d) be defined as

φ(Aj , Bj ) = |Aj � Bj | − |Aj � Bj | + γ (2|Aj � Bj | − |Aj | − |Bj |), (6.30)

where 0 ≤ γ ≤ 1
2 , and Aj denotes the length of the interval Aj if Xj is a continuous

quantitative feature and the number of possible values in Aj if Xj is a discrete quantitative,
qualitative, or tree-structured feature.

It can be shown that φ(Aj , Bj ) defined in equation (6.30) is a metric distance (Ichino
and Yaguchi, 1994). The generalized Minkowski distance of order p (≥ 1) between A and
B is defined as

dp(A,B) =

 d∑

j=1

φ(Aj , Bj )
p




1
p

. (6.31)
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To remove the artifact of the measurement unit, φ(Aj , Bj ) can be normalized to

ψ(Aj , Bj ) = φ(Aj , bj )

|Uj | , j = 1, 2, . . . , d,

where |Uj | is the length of the domain Uj . Then ψ(Aj , Bj ) ∈ [0, 1] for all j = 1, 2, . . . , d.
Ifψ(Aj , Bj ) instead ofφ(Aj , Bj ) is used in equation (6.31), then the generalized Minkowski
distance becoomes

dp(A,B) =

 d∑

j=1

ψ(Aj , Bj )
p




1
p

. (6.32)

Weighting the variables further modifies the generalized Minkowski distance. Let
cj (> 0) be the weight the j th feature such that c1+c2+· · ·+cd = 1. Then the generalized
Minkowski distance becomes

dp(A,B) =

 d∑

j=1

(cjψ(Aj , Bj ))
p




1
p

. (6.33)

The distance dp(A,B) defined in equation (6.33) lies in [0, 1]. Examples of applica-
tions of the generalized Minkowski distance have been presented in (Ichino and Yaguchi,
1994) and (Ichino, 1988).

6.6 Measures for Time Series Data
A time series is a sequence of real numbers that represent the measurements of a real
variable at equal time intervals (Gunopulos and Das, 2000). Classical time series analysis
includes identifying patterns (e.g., trend analysis, seasonality analysis, autocorrelation, and
autoregressive models (StatSoft, Inc., 2005)) and forecasting. From a databases perspective,
Gunopulos and Das (2000) list a few important problems related to time series.

Similarity problem. This problem with time series data requires determining whether dif-
ferent time series have similar behaviors. Precisely, given two time series x =
x1, x2, . . . , xm and y = y1, y2, . . . , ym, how can we define and compute the distance
d(x, y) or the similarity s(x, y)? Readers are referred to (Yang and Shahabi, 2004),
(Gunopulos and Das, 2000), (Gunopulos and Das, 2001), (Bollobás et al., 1997),
(Keogh, 2001), and (Das et al., 1997) for more detailed discussions of this topic.

Indexing problem. This problem requires finding the best match to a query in a large
database. An obvious solution is to retrieve and examine every sequence in the
database. However, this method does not scale to large databases. This leads to
the problem of indexing time series. For the indexing problem, interested readers
are referred to (Hetland, 2004), (Chakrabarti et al., 2002), (Keogh et al., 2001), and
(Rafiei and Mendelzon, 1997).
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Subsequence similarity problem. This problem can be described as follows: given a tem-
plate or a query Q, a reference database C, and a distance measure, find the location
that best matches Q. For example, find out other days when a stock had similar
movements as today. See (Keogh, 2001) for some discussions.

Clustering problem. Clustering time series is finding natural groupings of time series in a
database under some similarity or dissimilarity measure. Due to the unique structure
of time series, most classic clustering algorithms do not work well for time series
data. Ramoni et al. (2002) introduce a Bayesian method for grouping time series
into clusters so that the elements of each cluster have similar dynamics. Keogh and
Kasetty (2003) present a survey for current research in this field. Readers are referred
to the survey and references therein.

Rule discovery problem. The rule discovery problem is the problem of finding rules re-
lating patterns in a time series to other patterns in the time series or patterns in one
time series to patterns in another time series. For example, find rules such as “if
stock X goes up and Y falls, then Z will go up next day.” Das et al. (1998), Tsumoto
(1999), Caraça-Valente and López-Chavarrías (2000), and Chiu et al. (2003) address
this problem.

Let x and y be two time series, and denote by d(x, y) a distance between x and y that
will be defined. Like distance measures for other data types, the distance measure for time
series should have the following properties (Keogh, 2001):

• d(x, y) = d(y, x) (symmetry),

• d(x, x) = 0 (constancy or self-similarity),

• d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y (positivity),

• d(x, y) ≤ d(x, z)+ d(z, y) (triangle inequality).

Most of the distances presented in this chapter so far can be applied to time series.
In this section, we present some distance measures and briefly discuss their advantages and
disadvantages.

6.6.1 The Minkowski Distance

Let x and y be two time series of length d, and let xj and yj be the values of x and y at time
j (1 ≤ j ≤ d), respectively. Then the Minkowski distance between x and y is given by

dp(x, y) =

 d∑

j=1

(xj − yj )
p




1
p

, (6.34)

wherep is a positive real number. Whenp = 1, 2, and∞, we get the Manhattan, Euclidean,
and maximum distances, respectively. The Minkowski distance is also referred to as the Lp

norm.
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Instead of using the Euclidean distance, one can use the squared Euclidean distance
to optimize the distance calculations. The advantages of the Minkowski distance are that
it is easy to compute and allows scalable solutions of other problems such as indexing and
clustering (Gunopulos and Das, 2000). The disadvantage is that it cannot be applied to raw
time series, since it does not allow for different baselines (e.g., a stock fluctuates around $100
and another stock fluctuates around $10), different scales, noise or short-term fluctuations,
phase shifts in time, acceleration-deceleration along the time dimension, etc. (Gunopulos
and Das, 2000). Applications of the Minkowski distance can be found in (Agrawal et al.,
1993), (Yi and Faloutsos, 2000), and (Lee et al., 2000).

For some queries, different parts of the time series are more important. This leads to
weighted distance measures. The weighted Euclidean distance, for example, is defined as

d2(x, y,W) =
√√√√ d∑

j=1

wj(xj − yj )2,

where wj is the weight given to the j th component. The weights can be set by relevance
feedback, which is defined as the reformulation of a search query in response to feedbacks
provided by the user for the results of previous versions of the query (Wu et al., 2000a;
Keogh, 2001). The basic idea of relevance feedback is that the weights and the shape of
the query are updated by the user through ranking the displayed search results, and then the
new query is executed. After several executions, the optimal query may be found.

6.6.2 Time Series Preprocessing

For most applications, the distortions of data should be removed. In this subsection, we
present several commonly used transformations to remove distortions in time series data.
In what follows, x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) shall denote two raw time
series and x∗ and y∗ the transformed time series.

The Offset Transformation

The offset transformation removes the baseline of a time series. Precisely, the transformed
time series x∗ = (x∗1 , x

∗
2 , . . . , x

∗
d ) is given by

x∗j = xj − µx, j = 1, 2, . . . , d,

or
x∗ = x − µx,

where µx = 1
d

∑d
j=1 xj .

The Amplitude Transformation

The offset transformation can remove the baseline, but it cannot remove the amplitude of
the time series. To remove amplitude, we can use the amplitude transformation, which is
given by

x∗j =
xj − µx

σx
, j = 1, 2, . . . , d,
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or
x∗ = x − µx

σx
,

where µx = 1
d

∑d
j=1 xj and σx = ( 1

d

∑d
j=1(xj − µx)

2)
1
2 .

Examples of the application of this transformation to time series can be found in
(Goldin and Kanellakis, 1995).

Remove Linear Trend

Intuitively, to remove the linear trend, one can find the best-fitting straight line to the time
series and then subtract that line from the time series. For example, one can use the least
square method to fit the time series. Let x = kt + b be the best-fitting straight line of a
time series x = (x1, x2, . . . , xd) with coefficients k and b to be determined. Suppose xj is
observed at time tj . Then the best-fitting straight line has the least square error, i.e.,

E =
d∑

j=1

(xj − ktj − b)2.

To obtain the least square error, the unknown coefficients k and b must yield zero first
derivatives, i.e.,

∂E

∂k
= 2

d∑
j=1

(xj − ktj − b)(−tj ) = 0,

∂E

∂b
= 2

d∑
j=1

(xj − ktj − b)(−1) = 0,

which gives

k =

d∑
j=1

xj
d∑

j=1
tj − d

d∑
j=1

xj tj

(
d∑

j=1
tj

)2

− d
d∑

j=1
t2
j

,

b =

d∑
j=1

xj tj
d∑

j=1
tj −

d∑
j=1

xj
d∑

j=1
t2
j(

d∑
j=1

tj

)2

− d
d∑

j=1
t2
j

.

Remove Noise

The noise in a time series can be removed by smoothing the time series. These methods
include the moving average (Rafiei and Mendelzon, 1997) and collapsing the adjacent
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segments into one segment (Gunopulos and Das, 2000). The moving average is a well-
known technique for smoothing time series. For example, a 3-day moving average is given
by

x∗j =
xj−1 + xj + xj+1

3
, j = 2, . . . , d − 1.

Several transformations of time series are presented above. Although these trans-
formations reduce the error rate in distance calculations, they have other drawbacks. For
instance, subsequent computations become more complicated. In particular, in the indexing
problem, feature extraction becomes more difficult, especially if the transformations depend
on the particular time series in question (Gunopulos and Das, 2001).

6.6.3 Dynamic Time Warping

Dynamic time warping is extensively used in speech recognition and allows acceleration-
deceleration of signals along the time dimension (Berndt and Clifford, 1994). The basic
idea behind dynamic time warping is that the sequences are extended by repeating elements
and the distance is calculated between the extended sequences. Therefore, dynamic time
warping can handle input sequences with different lengths. Dynamic time warping can
reduce the error rate by an order of magnitude in the distance calculation, but it is slow
(Keogh, 2001).

Mathematically, suppose we have two time series, x = (x1, x2, . . . , xr) and y =
(y1, y2, . . . , ys), where the lengths r and s are not necessarily equal. Dynamic time warping
is described as follows (Keogh and Pazzani, 2000). LetM be an r×s matrix with the (i, j)th
element containing the squared Euclidean distance d(xi, yj ) (i.e., d(xi, yj ) = (xi − yj )

2)
between two points xi and yj . Each element (i, j) in M corresponds to the alignment
between points xi and yj . Then each possible mapping from x to y can be represented as a
warping path in the matrix M , where a warping path is a contiguous set of matrix elements.

Let W = w1, w2, . . . , wK be a warping path, where the kth element wk = (ik, jk).
Then max{r, s} ≤ K < r + s − 1. Warping paths have some restrictions: monotonicity,
continuity, and boundary conditions.

Monotonicity. Given wk = (i, j), then wk−1 = (i ′, j ′), where i ≥ i ′ and j ≥ j ′. This
ensures that the warping path W does not go down or to the left.

Continuity. Given wk = (i, j), then wk−1 = (i ′, j ′), where i ≤ i ′ + 1 and j ≤ j ′ + 1.
This restricts the warping path to adjacent cells and ensures that no elements may be
skipped in a sequence.

Boundary conditions. The first and the last elements in W are fixed, i.e., w1 = (1, 1) and
wK = (r, s). If a warping window is specified for warping paths, then only matrix
elements (i, j) with |i − j | ≤ w are considered, where w is the size of the warping
window.

There are exponentially many warping paths that satisfy the above conditions. An
optimal warping path among them is the one that minimizes the warping cost, which is
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defined as (Keogh and Pazzani, 2000)

DTW(x, y) =

√
K∑
l=1

wl

K
=

√
K∑
l=1

d(xil , yjl )

K
,

where (il, jl) = wl for l = 1, 2, . . . , K .
The optimal path can be found by efficient dynamic programming. Let γ (i, j) re-

fer to the dynamic time warping distance between the subsequences x1, x2, . . . , xi and
y1, y2, . . . , yj . Then the optimal path can be found using dynamic programming to evalu-
ate the recurrence

γ (i, j) = d(xi, yj )+min{γ (i − 1, j), γ (i − 1, j − 1), γ (i, j − 1)}.

The time complexity for the basic implementation is O(rs). The dynamic time warping
distance can be approximated by calculating the distance between the compressed or down-
sampled representation of the time series. Keogh and Pazzani (2000) proposed piecewise
dynamic time warping (PDTW), which reduces the time complexity to O(c2), where c is
the compression rate. Further examples of applying dynamic time warping to time series
can be found in (Yi et al., 1998) and (Keogh and Ratanamahatana, 2005).

6.6.4 Measures Based on Longest Common Subsequences

Longest common subsequence (LCS) measures allow gaps in sequences. These measures
are often used in speech recognition and text pattern matching (Gunopulos and Das, 2001).
Based on the types of scaling and baselines, Gunopulos and Das (2001) classify LCS-like
measures into three categories: LCS without scaling (Yazdani and Ozsoyoglu, 1996), LCS
with local scaling and baselines (Agrawal et al., 1995), and LCS with global scaling and
baselines (Das et al., 1997; Chu and Wong, 1999). The LCS problem is also discussed in
(Vlachos et al., 2003). In this subsection, we shall present some LCS-like measures.

LCS without Scaling

In order to match two image sequences, Yazdani and Ozsoyoglu (1996) proposed a modified
version of the LCS method for matching the two sequences. This method does not require
the sequences to be of the same length. This method is described as follows.

Let x = (x1, x2, . . . , xM) and y = (y1, y2, . . . , yN) be two time series of lengths M
and N , respectively. An element xi from the first sequence x is said to match an element yj
from the second sequence y if

|xi − yj | < δ,

where δ is the matching distance, i.e., a threshold value. To determine the LCSs of the two
given sequences, a correspondence function that maps matching elements of the two given
sequences should be found. This can be done by a dynamic programming algorithm with
time complexity O(MN) (Cormen et al., 2001).
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Let C(i, j) be the length of the LCS of xi and yj , where xi = (x1, x2, . . . , xi) and
yj = (y1, y2, . . . , yj ). Then C(i, j) can be defined recursively as (Yazdani and Ozsoyoglu,
1996)

C(i, j) =



0 if i = 0 or j = 0,
C(i − 1, j − 1)+ 1 if i, j > 0 and xi matches yj ,
max{C(i − 1, j), C(i, j − 1)} otherwise.

Based on the recursive definition, the LCS can be found by a dynamic programming al-
gorithm with time complexity O(M + N), where M and N are the lengths of the two
original sequences. Bozkaya et al. (1997) proposed a modified version of the edit distance
for matching and retrieving sequences of different lengths.

LCS with Local Scaling

Agrawal et al. (1995) proposed a similarity model for time series with local scaling. In
this model, two time series are said to be similar if they have enough nonoverlapping and
time-ordered pairs of subsequences that are similar. A pair of subsequences are considered
similar if one can be scaled and translated appropriately to approximately resemble the
other.

Let x and y be two time sequences and xi and yj be the ith and j th elements of x
and y, respectively. A total order on elements of x is defined by the relationship < with
xi < xj if and only if i < j . Two subsequences S and T of x overlap if and only if
first(S) ≤ first(T ) ≤ last (S) or first(T ) ≤ first(S) ≤ last (T ), where first(S) refers to the
first element of S and last (S) refers to the last element of S, and first(T ) and last (T ) are
defined similarly.

The algorithm for determining the LCSs with local scaling consists of the following
steps (Agrawal et al., 1995):

1. Find all pairs of atomic subsequences (i.e., subsequences of a certain minimum length)
in x and y that are similar (atomic matching).

2. Stitch similar windows to form pairs of large similar subsequences (window stitch-
ing).

3. Find a nonoverlapping ordering of subsequence matches having the longest match
length (subsequence ordering).

The first step, finding all atomic similar subsequence pairs, can be done by a spatial
self-join (such as an R-tree) over the set of all atomic windows. The second step and the
third step, i.e., window stitching and subsequence ordering, can be reduced to finding the
longest paths in a directed acyclic graph (Agrawal et al., 1995).

LCS with Global Scaling

Das et al. (1997) proposed a model for measuring the similarity between two time series
that takes into account outliers, different scaling functions, and variable sampling rates. It
can be implemented in polynomial time using methods from computational geometry.
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The similarity model is described as follows. Assume a time series is a finite sequence
of integers. Let F be a set of transformation functions for mapping integers to integers. For
example, F could consist of all linear functions x → ax+ b, all scaling functions x → ax,
all quadratic functions, etc. Two time series x and y are said to be F-similar if there is a
function f ∈ F such that a long subsequence x′ of x can be approximately mapped to a
long subsequence y′ of y using f . Note that the subsequences x′ and y′ do not consist of
consecutive points of x and y, respectively.

The linear transformation function f is derived from the subsequences, and not from
the original sequences, by a polynomial algorithm based on the use of methods from com-
putational geometry. Precisely, given a pair of time series x and y, the algorithm finds the
linear transformation f that maximizes the length of the LCS of f (x), y. Once the function
f ∈ F is found, determining the similarity between x and y is easy: form the sequence
f (x) by applying f to each element of x and then locate the LCS of f (x) and y.

6.6.5 Measures Based on Probabilistic Models

Keogh and Smyth (1997) proposed a probabilistic model for measuring the similarity of
time series data. The model integrates local and global shape information, can handle noise
and uncertainty, and incorporates prior knowledge. For example, in a probabilistic model
between time series x and y, an ideal prototype template x can be “deformed” according to
a prior probability distribution to generate the observed data y. The model consists of local
features, which are incorporated into a global shape sequence, and the degree of deformation
of the local features and the degree of the elasticity of the global shape are governed by
prior probability distributions.

Mathematically, let Q = (q1, q2, . . . , qk) be a query sequence of k local features
such as peaks and plateaus. Let li = (xi, yi) (1 ≤ i ≤ k − 1) be the observed distances
between the centroids of feature i and feature i + 1, where xi and yi are temporal and
amplitude distances, respectively. Then the candidate hypothesis is defined to be a set of
observed deformations and distances corresponding to a set of candidate features as Dh =
{d1, d2, . . . , dk, l1, l2, . . . , lk−1}, where di (1 ≤ i ≤ k) is the observed deformation between
local feature qi and the observed data at location i in the sequence (Keogh and Smyth,
1997). The candidate hypotheses are ranked by evaluating the likelihood p(Dh|Q), where
the generative probability model p(Dh|Q) can be defined to varying levels of complexity in
terms of the independence structure of the model and the functional forms of the component
probability distributions.

For example, a simple generative probability model can be defined as

p(Dh|Q) =
k∏

i=1

p(di |qi)
k−1∏
i=1

p(li |qi),

where the model p(di |qi) is chosen based on prior knowledge of how features are deformed,
such as an exponential model

p(di |Q) = λie
−λidi .

The interfeature distance model p(li |qi) is a joint density on temporal and amplitude elastic-
ity between features, such as yi obeying a uniform distribution and yi obeying a lognormal
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distribution. Given these particular models, the loglikelihood is

ln p(Dh|Q) ∝
k∑

i=1

λidi + 1

2

k−1∑
i=1

(
ln xi − µi

σi

)2

,

modulo a few extra conditions where this density is zero.
The probabilistic model naturally defines a distance metric that integrates both local

and global evidence weighted appropriately according to prior knowledge. Ge and Smyth
(2000) proposed another probabilistic generative modeling method based on segmental
semi-Markov models to leverage both prior knowledge and training data.

6.6.6 Measures Based on Landmark Models

The landmark concept arises from psychology and cognitive science, on which humans and
animals depend to organize their spatial memory. Perng et al. (2000) proposed a landmark
model for time series, which leads to a landmark similarity that is consistent with human
intuition and episodic memory. In the landmark model, landmarks in time series are defined
to be those points (e.g., times, events) of greatest importance.

A point is called an nth-order landmark of a curve if the nth-order derivative is zero
at the point. Given a sequence of landmarks, the curve can be reconstructed by segments
of real-valued functions (Perng et al., 2000). The landmark model preserves all the peaks
(i.e., local maxima) and valley (i.e., local minima) that are typically filtered out by both
the discrete fourier transformation (DFT) (Faloutsos et al., 1994; Kahveci et al., 2002;
Faloutsos et al., 1997; Rafiei and Mendelzon, 1998; Wu et al., 2000b) and the discrete
wavelet transformation (DWT) (Chan and Fu, 1999; Popivanov and Miller, 2002).

Real-world data usually contain noise. In order to smooth the data, a process called
the minimum distance/percentage principle (MDPP), which can be implemented in linear
time, is introduced. Specifically, given a sequence of landmarks (x1, y1), . . . , (xn, yn),
a minimum distance D, and a minimum percentage P , remove landmarks (xi, yi) and
(xi+1, yi+1) if

xi+1 − xi < D and
2|yi+1 − yi |
|yi | + |yi+1| < P.

The MDPP defined above preserves the offsets of each landmark. The landmark simi-
larity in the landmark model is defined as follows: Let L = (L1, L2, . . . , Ln) and L′ =
(L′1, L

′
2, . . . , L

′
n) be two sequences of landmarks, where Li = (xi, yi) and L′i = (x ′i , y

′
i ).

The distance between the kth landmarks is defined as

@k(L,L
′) =

(
δ
(t)
k (L,L′), δ(a)k (L,L′)

)
,

where

δ
(t)
k (L,L′) =

{
2|(xk−xk−1)−(x ′k−x ′k−1)|
|xk−xk−1|+|x ′k−x ′k−1| if 1 < k ≤ n,

0 otherwise,

δ
(a)
k (L,L′) =

{
0 if yk = y ′k ,
2|yk−y ′k |
|yk |+|y ′k | otherwise.
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The distance between the two sequences L and L′ is defined as

@(L,L′) = (‖δ(t)(L, L′)‖, ‖δ(a)(L,L′)‖) ,
where δ(t)(L, L′) = (δ

(t)
1 (L,L′), δ(t)2 (L,L′), . . . , δ(t)n (L,L′)), δ(a)(L,L′) is defined simi-

larly, and ‖ · ‖ is a vector norm such as the l∞-norm.
The landmark similarity satisfies the triangle inequality, and it is invariant under a

family of transformations. Several transformations are defined and discussed in (Perng
et al., 2000).

6.6.7 Evaluation

Similarity and dissimilarity measures are key to clustering algorithms. Due to the unique
structure of time series data, most classic clustering algorithms do not work well for time
series. Thus, most of the contributions for time series clustering focus on providing a new
similarity or dissimilarity measure as a subroutine to an existing clustering algorithm (Keogh
and Kasetty, 2003). Many similarity and dissimilarity measures have been developed in
the literature of sequence mining (Wang and Wang, 2000; Park and Chu, 1999; Park et al.,
2001; Lee et al., 2000; Pratt and Fink, 2002; Park et al., 2000; Qu et al., 1998; Gavrilov
et al., 2000; Jin et al., 2002; Indyk et al., 2000; Li et al., 1998; Kim et al., 2000a), so users
often find it challenging to choose an appropriate measure.

In general, there are two approaches to evaluating a similarity measure: subjective
evaluation and objective evaluation (Keogh and Kasetty, 2003). Subjective evaluation cre-
ates dendrograms of several time series from the domain of interest using different measures
and then plots these dendrograms side by side (Keogh and Pazzani, 1998). A dendrogram is
an attractive way to visualize a similarity measure. Another way of visualizing the quality
of a similarity measure is to project the time series into two-dimensional space via meth-
ods like multidimensional scaling (MDS) or self-organizing map (SOM) (Debregeas and
Hebrail, 1998).

Unlike the subjective evaluation, the objective evaluation of a similarity measure
uses a database of labeled time series. The objective measurements of the quality of a
proposed similarity measure can be obtained by running simple classification experiments.
The synthetic data sets Cylinder-Bell-Funnel (Geurts, 2001) and Control-Chart (Blake and
Merz, 1998), for example, can be used to run the experiments. Keogh and Kasetty (2003)
conducted several experimental comparisons of 11 similarity measures using the 2 synthetic
data sets.

6.7 Other Measures
Although the similarity and dissimilarity measures discussed above can be applied to data
types such as transaction data, gene expression data, and documents, other types of similarity
and dissimilarity measures have also been developed for specific types of data.
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6.7.1 The Cosine Similarity Measure

The cosine similarity measure (Salton and McGill, 1983) is adopted to measure the similarity
between transaction data. Let ti and tj be two transactions represented by a d-dimensional
bit vector. Then the cosine similarity between ti and tj is given by

Cos(ti, tj ) = 〈ti , tj 〉
‖ti‖ · ‖tj‖ , (6.35)

where 〈·, ·〉 denotes the inner product and ‖ · ‖ denotes a vector norm. The cosine similarity
measure is also presented in (Xiao and Dunham, 2001).

6.7.2 A Link-based Similarity Measure

A link-based similarity measure between two data points is defined based on the relation of
the two data points with other data points in the data set. It can be defined in such a way
that it does not depend on the distance. Below, we present the link-based similarity measure
used in ROCK (Guha et al., 2000b).

Let sim(pi, pj ) be a normalized similarity function; it can be one of the known Lp-
metrics or even nonmetric. Assume that sim takes a value in [0, 1]. Given a threshold
θ between zero and one, pi and pj are said to be neighbors if the following condition is
satisfied:

sim(pi, pj ) ≥ θ.

Apart from the closeness or similarity between pointspi andpj , the quantity link(pi, pj )

is defined to distinguish two clusters:

link(pi, pj ) = |{p : sim(p, pi) ≥ θ and sim(p, pj ) ≥ θ ∀p in the database}|. (6.36)

Hence, the larger the link(pi, pj ), the more probable it is that pi and pj belong to the same
cluster.

In particular, for market basket data, the similarity function can be defined as

sim(T1, T2) = |T1 ∩ T2|
|T1 ∪ T2| , (6.37)

where T1 and T2 are two transactions and |Ti | is the number of items in Ti .
The link-based similarity measure between two clusters Ci and Cj can be defined as

g(Ci, Cj ) = link[Ci, Cj ]
(ni + nj )1+2f (θ) − n

1+2f (θ)
i − n

1+2f (θ)
j

,

where link[Ci, Cj ] is the number of cross links between clusters Ci and Cj , i.e.,

link[Ci, Cj ] =
∑

pq∈Ci,pr∈Cj

link(pq, pr).

Here f (θ) is a positive function such as

f (θ) = 1− θ

1+ θ
.
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6.7.3 Support

Support (Ganti et al., 1999) is a similarity measure defined for categorical attributes.
Let A1, . . . , Ad be a set of categorical attributes with domains D1 = DOM(A1),

D2 = DOM(A2), . . . , Dd = DOM(Ad), respectively. Let D be a set of tuples with each
tuple t ∈ D1 ×D2 × · · · ×Dd . Let ai ∈ Di and aj ∈ Dj , i �= j . The support σD(ai, aj )
of ai and aj with respect to D is defined by

σD(ai, aj ) = |{t ∈ D : t.Ai = ai and t.Aj = aj }|
|D| . (6.38)

The attribute values ai and aj are said to be strongly connected with respect to D if

σD(ai, aj ) > α · |D|
|Di | · |Dj | ,

where α > 0 is a parameter.
Support can also be defined in another way: the support of ai in D is the number of

objects in D whose ith attribute is ai , i.e.,

σD(ai) = |{t ∈ D : t.Ai = ai}|.

6.8 Similarity and Dissimilarity Measures between
Clusters

Many clustering algorithms are hierarchical, i.e., is a sequence of nested partitions. In
an agglomerative hierarchical algorithm, the two most similar groups are merged to form
a large cluster at each step, and this processing is continued until the desired number of
clusters is obtained. In a divisive hierarchical algorithm, the process is reversed by starting
with all data points in one cluster and subdividing into smaller clusters. In either case, we
need to compute the distance between an object and a cluster and the distance between two
clusters.

In what follows, we always letC1 = {y1, y2, . . . , yr} andC2 = {z1, z2, . . . , zs} denote
two clusters of size r and s from a partition, respectively.

6.8.1 The Mean-based Distance

A popular way to measure the dissimilarity between two clusters for numerical data is to
measure the distance between the means of the two clusters. Suppose C1 and C2 are two
clusters of a numerical data set. Then the mean-based distance between C1 and C2 with
respect to d(·, ·) is defined as

Dmean(C1, C2) = d(µ(C1), µ(C2)), (6.39)

where µ(C1) and µ(C2), are the means of clusters C1 and C2, respectively, i.e.,

µ(Cj ) = 1

|Cj |
∑
x∈Cj

x, j = 1, 2.
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Dnn(C1, C2)

C1

C2

Figure 6.1. Nearest neighbor distance between two clusters.

Dfn(C1, C2)

C1

C2

Figure 6.2. Farthest neighbor distance between two clusters.

6.8.2 The Nearest Neighbor Distance

Given a distance function d(·, ·), the nearest neighbor distance (Williams and Lambert,
1966) between C1 and C2 with respect to d(·, ·) is defined as

Dnn(C1, C2) = min
1≤i≤r,1≤j≤s

d(yi , zj ). (6.40)

Figure 6.1 gives an example of the nearest neighbor distance in the two-dimensional
case.

6.8.3 The Farthest Neighbor Distance

The farthest distance neighbor (Duran and Odell, 1974) between C1 and C2 with respect to
d(·, ·) is defined as

Dfn(C1, C2) = max
1≤i≤r,1≤j≤s

d(yi , zj ). (6.41)

Figure 6.2 gives an example of the farthest neighbor distance in the two-dimensional
case.
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6.8.4 The Average Neighbor Distance

The average neighbor distance (Duran and Odell, 1974) between C1 and C2 with respect to
d(·, ·) is defined as

Dave(C1, C2) = 1

rs

r∑
i=1

s∑
j=1

d(yi , zj ). (6.42)

The statistical distance (Duran and Odell, 1974) between C1 and C2 is defined as

Dstat (C1, C2) = rs

r + s
(ȳ − z̄)(ȳ − z̄)T , (6.43)

where ȳ and z̄ are defined as

ȳ = 1

r

r∑
i=1

yi , (6.44)

z̄ = 1

s

s∑
j=1

zj . (6.45)

Let C be the cluster formed by merging C1 and C2, i.e., C = C1 ∪ C2, and let
Msca(C), Msca(C1), and Msca(C2) be the within-scatter matrices, of clusters C,C1, and C2,
respectively. Then it can be shown that (Duran and Odell, 1974)

Msca(C) = Msca(C1)+Msca(C2)+ rs

r + s
(ȳ − z̄)T (ȳ − z̄), (6.46)

where ȳ and z̄ are defined in (6.44) and (6.45) respectively.
The matrix rs

r+s (ȳ− z̄)T (ȳ− z̄) in (6.46) is called the between-scatter matrix, and the
trace of this matrix is exactly the statistical distance between clusters C1 and C2.

6.8.5 Lance-Williams Formula

In an agglomerative hierarchical algorithm, we need to compute the distances between old
clusters and a new cluster formed by two clusters. Lance and Williams (1967a) propose a
recurrence formula that gives the distance between a cluster Ck and a cluster C formed by
the fusion of clusters Ci and Cj , i.e., C = Ci ∪ Cj . The formula is given by

D(Ck, Ci ∪ Cj)

= αiD(Ck, Ci)+ αjD(Ck, Cj )

+βD(Ci, Cj )+ γ |D(Ck, Ci)−D(Ck, Cj )|, (6.47)

where D(·, ·) is a distance between two clusters.
By a suitable choice of the parameters αi, αj , β, and γ in (6.47), we can obtain

various intercluster distances used by hierarchical clustering algorithms. Table 6.6 gives
some commonly used values for the parameters in the Lance-Williams formula. Some
properties of equation (6.47) were investigated in DuBien and Warde (1979).

Jambu (1978) proposed a more general recurrence formula that contains more param-
eters than the Lance-Williams formula. The general recurrence formula is defined as
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Table 6.6. Some commonly used values for the parameters in the Lance-Williams’s
formula, where ni = |Ci | is the number of data points in Ci , and �ijk = ni + nj + nk .

Algorithm αi αj β γ

Single-link 1
2

1
2 0 −1

2

Complete link 1
2

1
2 0 1

2

Ward’s method ni+nj
�ijk

nj+nk
�ijk

−nk
�ijk

0

Group average ni
ni+nj

nj
ni+nj 0 0

Weighted group average 1
2

1
2 0 0

Centroid ni
ni+nj

nj
ni+nj

−ninj
(ni+nj )2 0

Median (weighted centroid) 1
2

1
2

−1
4 0

D(Ck, Ci ∪ Cj)

= αiD(Ck, Ci)+ αjD(Ck, Cj )

+βD(Ci, Cj )+ γ |D(Ck, Ci)−D(Ck, Cj )|
+δih(Ci)+ δjh(Cj )+ εh(Ck), (6.48)

where D(·, ·) is a distance between two clusters and h(Ci) denotes the height in the den-
drogram of Ci .

In Table 6.7, we let ni, nj , and nk be the number of data points in Ci , Cj , and Ck ,
respectively, let Zij , Zik , Zjk , and Zijk be

Zij =

(
ni + nj

2

)
(

�ijk

2

) ,

Zik =

(
ni + nk

2

)
(

�ijk

2

) ,

Zjk =

(
nj + nk

2

)
(

�ijk

2

) ,

Zijk =

(
ni + nj + nk

2

)
(

�ijk

2

) ,
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where �ijk = ni + nj + nk , and finally let Zi, Zj , and Zk be

Zi =

(
ni
2

)
(

�ijk

2

) , Zj =

(
nj
2

)
(

�ijk

2

) , Zk =

(
nk
2

)
(

�ijk

2

) .

Different choices of parameters (αi, αj , β, γ, δi, δj , ε) give different clustering
schemes. Table 6.7 summarizes some common parameters for the general recurrence for-
mula. This table is also presented in (Gordon, 1996). Other values of β in the recurrence
formula that might be more successful in recovering the underlying cluster structure have
also been suggested by Milligan (1989) and Scheibler and Schneider (1985).

6.9 Similarity and Dissimilarity between Variables
Instead of performing cluster analysis on a set of records, one can perform cluster analysis
on a set of variables that have been observed in some population. Situations exist in which
several variables describe the same property; in these situations, one may first perform
cluster analysis on the variables to reduce the number of variables.

6.9.1 Pearson’s Correlation Coefficients

Cattell (1949) suggested three senses of pattern matching: matching for shape, matching
for absolute agreement, and matching for effect. The correlation coefficient can be used to
measure the agreement of shapes between two patterns. Correlation coefficients provide a
measure of similarity between variables (Kaufman and Rousseeuw, 1990) if one wants to
perform a cluster analysis on a set of variables that have been observed in some population.

LetD = {x1, x2, . . . , xn} be a data set in which each object is described by d attributes
v1, v2, . . . , vd . Then the Pearson product-moment correlation coefficient between vs and vt
is defined as

R(vs, vt ) =

n∑
i=1

(xis −ms)(xit −mt)√
n∑

i=1
(xis −ms)2

√
n∑

i=1
(xit −mt)2

(6.49)

for s, t = 1, 2, . . . , d, where xis and xit are the sth and t th components of xi , respectively,
and ms is the mean in the sth attribute, i.e.,

ms = 1

n

n∑
i=1

xis .

The coefficients defined in equation (6.49) lie in [−1, 1]. They can be converted to
dissimilarities d(vs, vt ) as follows (Kaufman and Rousseeuw, 1990):

d(vs, vt ) = 1− R(vs, vt )

2
,
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Table 6.8. The contingency table of variables u and v.

B1 B2 · · · Bq Totals
A1 n11 n12 · · · n1q r1

A2 n21 n22 · · · n2q r2
...

...
... · · · ...

...

Ap np1 np2 · · · npq rp

Totals c1 c2 · · · cq n

or
d(vs, vt ) = 1− |R(vs, vt )|.

Pearson’s correlation coefficient is the standard measure of the linear relationship
between two variables. The absolute value of this coefficient gives the degree of relationship.
When the variables have no linear relationship, the value is 0; when each variable is perfectly
predicted by the other, the absolute value is 1. More specifically, a positive Pearson’s
correlation coefficient indicates a tendency for high values of one variable to be associated
with high values of the other and low values to be associated with low values of the other.
A negative sign indicates a tendency for high values of one variable to be associated with
low values of the other and low values to be associated with high values of the other.

Pearson’s correlation coefficient is very simple. Farris (1969) introduced the Cophe-
netic correlation coefficient, which is also applicable for the purpose of clustering.

6.9.2 Measures Based on the Chi-square Statistic

The chi-square statistic is a common quantity in the analysis of the contingency table. It
represents the joint distribution of two categorical variables (Anderberg, 1973). Measures
of association can be defined based on the chi-square statistic.

Let D be a data set with n objects, each of which is described by d categorical
attributes. Let u and v be two of the d categorical variables with domains {A1, A2, . . . , Ap}
and {B1, B2, . . . , Bq}. Then the contingency table that represents the joint distribution of
variables u and v with respect to the data set is shown in Table 6.8. The nij entry in the
table is the number of objects in D that fall in both the ith state of variable u and the j th
state of variable v. cj is the number of objects in D that fall in the j th state of variable v,
and ri is the number of objects in D that fall in the ith state of variable u.

The nominal measures of association are invariant to any permutation of rows and
columns in the contingency table, but the ordinal measures of association are dependent on
the prior ordering of rows and columns.

Based on the contingency table, the sample chi-square statistic is defined as

χ2 =
p∑

i=1

q∑
j=1

(oij − eij )
2

eij
,

where oij is the observed count in cell ij and eij is the corresponding expected count under
the hypothesis of independence.
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Table 6.9. Measures of association based on the chi-square statistic.

Measure Definition

Mean-square contingency φ2 = χ2

n

Tschuprow T =
[

χ2

n
√
(p−1)(q−1)

] 1
2

Cramér C =
[

χ2

nmin{(p−1),(q−1)}
] 1

2

Maung C =
[∑k

i=1
g2
i

k

] 1
2

Pearson’s coefficient of contingency P =
(

χ2

n+χ2

) 1
2

Let fij be the frequency of entry ij , i.e., fij = nij
n

. Then under the hypothesis of
independence the expected count in cell ij is

eij = fi·f·j n = ricj

n
,

where

fi· =
q∑

j=1

fij , f·j =
p∑

i=1

fij .

The observed count oij is fijn = nij . We have several forms of the chi-square statistic
(Anderberg, 1973):

χ2 =
p∑

i=1

q∑
j=1

(
nij − rj cj

n

)2 n

ricj
, (6.50a)

χ2 = n

p∑
i=1

q∑
j=1

(fij − ricj )
2

fi·f·j
, (6.50b)

χ2 = n

p∑
i=1

q∑
j=1

f 2
ij

fi·f·j
− n = n

p∑
i=1

q∑
j=1

n2
ij

ricj
− n. (6.50c)

Since the value of χ2 increases without bound as n increases, it is not a suitable
measure of association. Several extensions of the chi-square statistics are presented in
Table 6.9 (Anderberg, 1973), where gi is the ith of k nonzero canonical correlations.

The mean-square contingency is simple, but it depends on the size of the contingency
table (Anderberg, 1973). Other measures in the table normalize φ2 to the range of 0 and 1.
Even though the chi-square statistic and the measures derived from it are useful as tests of
hypotheses, they may not be so useful as measures of association (Goodman and Kruskal,
1954). The chi-square–based measures are not preferred for the purpose of cluster analysis
as they lack operational interpretation (Anderberg, 1973). These traditional measures have
also been presented in (Goodman and Kruskal, 1954).
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6.9.3 Measures Based on Optimal Class Prediction

Association between variables can be defined through measuring the power of one as a
predictor for the other. Generally, there are two types of optimal predictions: asymmet-
rical optimal prediction and symmetrical optimal prediction. In this subsection, we shall
introduce measures of association based on these two types of optimal predictions.

Measures Based on Asymmetrical Prediction

Letu and v be two variables as in subsection 6.9.2. The model of activity is as follows (Good-
man and Kruskal, 1954): an object is chosen at random from the population and we are
asked to guess its v class (or state) as much as we can, either

1. given no further information or

2. given its u class (or state).

In case 1, the best we can do is to choose the v class Bm with the largest marginal
total, i.e., the value of m satisfying

f·m = max
1≤j≤q

f·j .

In this case, the probability of error is

P1 = 1− f·m.

In case 2, suppose the u class for an object is known to be Aa for some 1 ≤ a ≤ p.
Then only row a of the contingency table (see Table 6.8) is of interest and we are best off
guessing Bma

for which
fama

= max
1≤j≤q

faj .

Given that a is known, the probability of error is P1 = 1 − fama

fa· . Thus in case 2, the
probability of error is

P2 =
p∑

i=1

fi·
(

1− fimi

fi·

)
= 1−

p∑
i=1

fimi
.

Goodman and Kruskal (1954) proposed a measure of association as

λv = P1 − P2

P1
=

p∑
i=1

fimi
− f·m

1− f·m
. (6.51)

The λv defined in equation (6.51) is the relative decrease in probability of error in guess Bb

as between Aa unknown and Aa known. The measure λv has some important properties:

• λv is indeterminate if and only if the population lies in one v class; for example, the
objects in a data set have the same state for variable v.
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• Otherwise, λv ∈ [0, 1].
Other properties of λv are discussed in (Goodman and Kruskal, 1954). Similarly, a measure
of the predictive power of v for u can be defined as

λu =

q∑
j=1

fmj j − fm·

1− fm·
,

where
fm· = max

1≤i≤p
fi·, fmj j = max

1≤i≤p
fij .

Measures Based on Symmetrical Prediction

For symmetrical prediction, the model of activity is as follows: an object is chosen at
random from the population and we are asked to guess its u class half the time and its v

class half the time, either

1. given no further information, or

2. given the object’s u class when we guess its v class and vice versa.

In case 1, the probability of error is

P1 = 1− 1

2
(f·m + fm·),

and in case 2, the probability of error is

P2 = 1− 1

2


 p∑

i=1

fimi
+

q∑
j=1

fmj j


 .

Considering the relative decrease in the probability of error, the measure is defined as

λ = P1 − P2

P1
=

1
2

(
p∑

i=1
fimi

+
q∑

j=1
fmj j − f·m − fm·

)

1− 1
2 (f·m + fm·)

,

or

λ = P1 − P2

P1
=

p∑
i=1

fimi
+

q∑
j=1

fmj j − f·m − fm·

2− f·m − fm·
.

The measure λ has some similar properties as λu and λv:

• λ is determinant except when an entire object lies in a single cell of the contingency
table.

• Otherwise, λ ∈ [0, 1].
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Anderberg (1973) introduced a measure that is closely related to λ as

D = P1 − P2 = 1

2


 p∑

i=1

fimi
+

q∑
j=1

fmj j − f·m − fm·


 ,

which is the actual reduction in the probability of error. The measureD is always determinant
and lies between 0 and 1 inclusive, i.e., D ∈ [0, 1].

The measures presented in this subsection can be used to measure association between
binary variables (Anderberg, 1973).

6.9.4 Group-based Distance

Mántaras (1991) proposed a distance between partitions that can be used directly to calculate
the distance between two categorical variables in a data set. This distance is defined based
on information theory.

Let X and Y be two categorical variables in a data set with n records, and let the ith
record take values xi and yi on the X and Y variables, respectively. Suppose that X has
k1 (k1 ≤ n) states X1, X2, . . . , Xk1 , i.e., for each i (1 ≤ i ≤ n), xi = Xj for some j , and
for each j (1 ≤ j ≤ k1), there exists at least one i such that xi = Xj , and Y has k2 states
Y1, Y2, . . . , Yk2 . Let the probabilities Ps, Pt , Pst , Pt |s , and Ps|t be defined as

Ps = |{i : xi = Xs, 1 ≤ i ≤ n}|
n

,

Pt = |{i : yi = Yt , 1 ≤ i ≤ n}|
n

,

Pst = |{i : xi = Xs ∧ yi = Xt, 1 ≤ i ≤ n}|
n

,

Pt |s = Pst

Ps

,

Ps|t = Pst

Pt

for s = 1, 2, . . . , k1 and t = 1, 2, . . . , k2, where |S| denotes the number of elements in the
set S.

Let d(X, Y ) be defined as

d(X, Y ) = 2I (PX ∩ PY )− I (PX)− I (PY ), (6.52)

where I (PX), I (PY ), and I (PX ∩ PY ) are defined as

I (PX) = −
k1∑
s=1

Ps log2 Ps,

I (PY ) = −
k2∑
t=1

Pt log2 Pt ,

I (PX ∩ PY ) = −
k1∑
s=1

k2∑
t=1

Pst log2 Pst .
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It can be shown that d(X, Y ) defined in equation (6.52) is a metric distance measure
(Mántaras, 1991). The normalization of the distance d(X, Y ) is given by (Mántaras, 1991)

dN(X, Y ) = d(X, Y )

I (PX ∩ PY )
∈ [0, 1]. (6.53)

6.10 Summary
Some commonly used similarity and dissimilarity measures have been presented briefly
in this chapter. In practice, the selection of similarity or dissimilarity measures depends
on the type of variables as well as the measurement level of variables. For a comprehen-
sive discussion of similarity or dissimilarity measures, readers are referred to (Sokal and
Sneath, 1963) and (Sokal and Sneath, 1973). Additional discussions can be found in (Gower
and Legendre, 1986), (Hubálek, 1982), (Hartigan, 1967), (Cattell, 1949), (Goodall, 1966),
(Green and Rao, 1969), and (Baulieu, 1989).
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Chapter 7

Hierarchical Clustering
Techniques

Hard clustering algorithms are subdivided into hierarchical algorithms and partitional algo-
rithms. A partitional algorithm divides a data set into a single partition, whereas a hierar-
chical algorithm divides a data set into a sequence of nested partitions. As we mentioned
in Chapter 1, hierarchical algorithms are subdivided into agglomerative hierarchical algo-
rithms and divisive hierarchical algorithms (see Figure 1.5).

Agglomerative hierarchical clustering starts with every single object in a single cluster.
Then it repeats merging the closest pair of clusters according to some similarity criteria until
all of the data are in one cluster. There are some disadvantages for agglomerative hierarchical
clustering, such as (a) data points that have been incorrectly grouped at an early stage cannot
be reallocated and (b) different similarity measures for measuring the similarity between
clusters may lead to different results.

If we treat agglomerative hierarchical clustering as a bottom-up clustering method,
then divisive hierarchical clustering can be viewed as a top-down clustering method. Divi-
sive hierarchical clustering starts with all objects in one cluster and repeats splitting large
clusters into smaller pieces. Divisive hierarchical clustering has the same drawbacks as ag-
glomerative hierarchical clustering. Figure 7.1 gives an intuitive example of agglomerative
hierarchical clustering and divisive hierarchical clustering.

Hierarchical algorithms can be expressed in terms of either graph theory or matrix
algebra (Jain and Dubes, 1988). A dendrogram, a special type of tree structure, is often used
to visualize a hierarchical clustering. Figure 7.1 is an example of a dendrogram.

7.1 Representations of Hierarchical Clusterings
A hierarchical clustering can be represented by either a picture or a list of abstract symbols.
A picture of a hierarchical clustering is much easier for humans to interpret. A list of abstract
symbols of a hierarchical clustering may be used internally to improve the performance of
the algorithm. In this section, some common representations of hierarchical clusterings are
summarized.

109
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Figure 7.1. Agglomerative hierarchical clustering and divisive hierarchical clustering.

7.1.1 n-tree

A hierarchical clustering is generally represented by a tree diagram. An n-tree is a simple
hierarchically nested tree diagram that can be used to represent a hierarchical clustering.
Let D = {x1, x2, . . . , xn} be a set of objects. Then an n-tree on D is defined to be a set T
of subsets of D satisfying the following conditions (Bobisud and Bobisud, 1972; McMorris
et al., 1983; Gordon, 1996):

1. D ∈ T ;

2. empty set ? ∈ T ;

3. {xi} ∈ T for all i = 1, 2, . . . , n;

4. if A,B ∈ T , then A ∩ B ∈ {?,A,B}.
A 5-tree is illustrated in Figure 7.2. The terminal nodes or leaves depicted by an open

circle represent a single data point. The internal nodes depicted by a filled circle represent
a group or cluster. n-trees are also referred to as nonranked trees (Murtagh, 1984b). If an
n-tree has precisely n−1 internal nodes, then the tree is called a binary tree or a dichotomous
tree.

Tree diagrams, such as n-trees and dendrograms (discussed later), contain many in-
determinacies. For example, the order of the internal nodes and the order of leaves can be
interchanged. Also, tree diagrams have many variations. For example, rotating the tree 90◦
gives a horizontal tree. Alternative properties of trees have been presented in (Hartigan,
1967) and (Constantinescu, 1966).

7.1.2 Dendrogram

A dendrogram is also called a valued tree (Gordon, 1996). A dendrogram is an n-tree in
which each internal node is associated with a height satisfying the condition

h(A) ≤ h(B)⇔ A ⊆ B



7.1. Representations of Hierarchical Clusterings 111

x1 x2 x3 x4 x5

A
B
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Figure 7.2. A 5-tree.

for all subsets of data points A and B if A ∩ B �= ?, where h(A) and h(B) denote the
heights of A and B, respectively.

As an illustration, Figure 7.3 shows a dendrogram with five data points. The dotted
lines indicate the heights of the internal nodes. For each pair of data points (xi , xj ), let
hij be the height of the internal node specifying the smallest cluster to which both xi and
xj belong. Then a small value of hij indicates a high similarity between xi and xj . In
the dendrogram given in Figure 7.3, for example, we have h12 = 1, h23 = h13 = 3, and
h14 = 4.

The heights in the dendrogram satisfy the following ultrametric conditions (Johnson,
1967):

hij ≤ max{hik, hjk} ∀i, j, k ∈ {1, 2, . . . , n}. (7.1)

In fact, the ultrametric condition (7.1) is also a necessary and sufficient condition for a
dendrogram (Gordon, 1987).

Mathematically, a dendrogram can be represented by a function c : [0,∞)→ E(D)

that satisfies (Sibson, 1973)

c(h) ⊆ c(h′) if h ≤ h′,
c(h) is eventually in D ×D,

c(h+ δ) = c(h) for some small δ > 0,

where D is a given data set and E(D) is the set of equivalence relations on D. As an
example, the function c given below contains the information of the dendrogram given in
Figure 7.3:

c(h) =




{(i, i) : i = 1, 2, 3, 4, 5} if 0 ≤ h < 1,

{(i, i) : i = 3, 4, 5}∪
{(i, j) : i, j = 1, 2} if 1 ≤ h < 2,

{(3, 3)}∪
{(i, j) : i, j = 1, 2}∪
{(i, j) : i, j = 4, 5} if 2 ≤ h < 3,

{(i, j) : i, j = 4, 5}∪
{(i, j) : i, j = 1, 2, 3} if 3 ≤ h < 4,

{(i, j) : i, j = 1, 2, 3, 4, 5} if 4 ≤ h.

(7.2)

Other characterizations of a dendrogram have been presented in (Johnson, 1967),
(Jardine et al., 1967), and (Banfield, 1976). van Rijsbergen (1970) suggested an algorithm
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Figure 7.3. A dendrogram of five data points.

for finding the single-link dendrogram from the input dissimilarity matrix. Algorithms for
plotting dendrograms have been discussed in (Rohlf, 1974), (Gower and Ross, 1969), and
(Ross, 1969). Comparison of dendrograms has been discussed in (Sokal and Rohlf, 1962).

7.1.3 Banner

A banner (Rousseeuw, 1986) is a list of symbols and codes that represent a hierarchical
structure. Banners can be constructed from dendrograms. In a banner, the heights in the
dendrogram are represented on a horizontal axis. Each data point in the banner is assigned
a line and a code that is repeated with a separator (such as “+”) along the line until truncated
at the right-hand margin. The presence of a symbol (such as “∗”) between two data points
indicates that the two points are in the same group for this value of the height.

Figure 7.4 illustrates a banner that contains the information in the dendrogram given
in Figure 7.3. In this banner, each data point is labeled by a two-number code. Alterna-
tive examples of banner representations are presented in (Kaufman and Rousseeuw, 1990,
Chapter 6) and Gordon (1996).

7.1.4 Pointer Representation

A pointer representation (Sibson, 1973) is a pair of functions which contain information on
a dendrogram. It is defined to be a pair of functions π : {1, 2, . . . , n} → {1, 2, . . . , n} and
λ : π({1, 2, . . . , n})→ [0,∞] that have the following properties:

π(n) = n, π(i) > i for i < n, (7.3a)

λ(n) = ∞, λ(π(i)) > λ(i) for i < n, (7.3b)

where n is the number of data points in D.
Given a dendrogram, the corresponding λ(i) is the lowest level at which the ith object

is no longer the last object in its cluster and π(i) is the last object in the cluster that it joins.
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Figure 7.4. A banner constructed from the dendrogram given in Figure 7.3.

Mathematically, let c be the function that denotes a dendrogram. Then the corresponding
pointer representation is defined by

λ(i) = inf {h : ∃j > i such that (i, j) ∈ c(h)},
π(i) = max{j : (i, j) ∈ c(λ(i))}

for i < n.
The pair of functions λ and π illustrated in Table 7.1 is the pointer representation of

the dendrogram given in Figure 7.3.
It can be shown that there is a one-to-one correspondence between dendrograms and

pointer representations (Sibson, 1973). The pointer representation of a dendrogram allows
a new object to be inserted in an efficient way. Usually, pointer representations are used
internally in hierarchical algorithms in order to improve the performance. The pointer
representation of a dendrogram is not helpful from a user’s point of view; therefore, a
so-called packed representation, which will be presented in the next section, is used for
output.

Table 7.1. The pointer representation corresponding to the dendrogram given in
Figure 7.3.

i π(i) λ(i)

1 2 1
2 3 3
3 5 4
4 5 2
5 5 ∞
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Table 7.2. The packed representation corresponding to the pointer representation
given in Table 7.1.

i τ (i) ν(i)

1 1 1
2 2 3
3 3 4
4 4 2
5 5 ∞

Table 7.3. A packed representation of six objects.

i 1 2 3 4 5 6
τ(i) 4 1 3 5 2 6
ν(i) 2 1.5 1 2.5 0.5 ∞
λ(i) 1.5 0.5 1 2 2.5 ∞
π(i) 5 6 5 5 6 6
λ(τ(i)) 2 1.5 1 2.5 0.5 ∞
π(τ(i)) 5 5 5 6 6 6
τ−1(π(τ(i))) 4 4 4 6 6 6

7.1.5 Packed Representation

Packed representations (Sibson, 1973) are developed in order to facilitate the output of
dendrograms. A packed representation consists of two functions. Let λ, π be a pointer rep-
resentation. Then the corresponding packed representation is defined as a pair of functions
τ, ν (Sibson, 1973),

τ : {1, 2, . . . , n} → {1, 2, . . . , n}, ν : {1, 2, . . . , n} → [0,+∞)

which satisfy the following conditions:

τ is one-to-one and onto,

τ−1(π(τ(i))) > i if i < n,

ν(i) = λ(τ(i)),

ν(j) ≤ ν(i) if i ≤ j < τ−1(π(τ(i))).

The packed representation defined above determines a dendrogram uniquely. In fact,
the order of the objects in the dendrogram is specified by the function τ , i.e., the index of
the object in position i is τ(i). Table 7.2 gives the packed representation corresponding to
the pointer representation given in Table 7.1.

Another example of a packed representation is illustrated in Table 7.3. The dendro-
gram determined by this packed representation is shown in Figure 7.5.
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Figure 7.5. The dendrogram determined by the packed representation given in Table 7.3.
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Figure 7.6. An icicle plot corresponding to the dendrogram given in Figure 7.3.

7.1.6 Icicle Plot

An icicle plot, proposed by Kruskal and Landwehr (1983), is another method for presenting
a hierarchical clustering. It can be constructed from a dendrogram. The major advantage of
an icicle plot is that it is easy to read off which objects are in a cluster during a live process
of data analysis.

In an icicle plot, the height and the hierarchical level are represented along the vertical
axis; each object is assigned a vertical line and labeled by a code that is repeated with
separators (such as “&”) along the line from top to bottom until truncated at the level where
it first joins a cluster, and objects in the same cluster are joined by the symbol “=” between
two objects.

The list of symbols in Figure 7.6 is an icicle plot corresponding to the dendrogram
given in Figure 7.3. Each object in this icicle plot is labeled by its name.

7.1.7 Other Representations

Other representations of hierarchical structures have been presented in (Sokal and Sneath,
1973), (Friedman and Rafsky, 1981), (Everitt and Nicholls, 1975), (Wirth et al., 1966),
and (Hartigan and Wong, 1979), such as skyline plots (Wirth et al., 1966), silhouette plots
(Rousseeuw, 1987), loop plots (see Figure 7.7) (Kruskal and Landwehr, 1983), and three-
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Figure 7.7. A loop plot corresponding to the dendrogram given in Figure 7.3.

dimensional plots (Kruskal and Landwehr, 1983). It seems, however, that these represen-
tations are only suitable for representing small data sets.

7.2 Agglomerative Hierarchical Methods
According to different distance measures between groups, agglomerative hierarchical meth-
ods can be subdivided into single-link methods, complete link methods, etc. Some com-
monly used hierarchical methods are given in Figure 7.8. The single, complete, average,
and weighted average linkage methods are also referred to as graph methods, while Ward’s
method, the centroid method, and the median method are referred to as geometric meth-
ods (Murtagh, 1983), since in graph methods a cluster can be represented by a subgraph
or interconnected points and in geometric methods a cluster can be represented by a center
point.

Murtagh (1983) gives a survey for hierarchical clustering algorithms, especially for
agglomerative hierarchical clustering algorithms. The performance of hierarchical clus-
tering algorithms can be improved by incorporating efficient nearest neighbor searching
algorithms into the clustering algorithms. For hierarchical methods, the storage require-
ments are reduced if each cluster is represented by a center point or a set of points, since

Weighted group average method

Single-link method
Complete link method
Group average method

Centroid method
Ward’s method

Median method

Geometric methods
Graph methods

Agglomerative hierarchical methods

Figure 7.8. Some commonly used hierarchical methods.
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Table 7.4. The cluster centers agglomerated from two clusters and the dissimilar-
ities between two cluster centers for geometric hierarchical methods, where µ(C) denotes
the center of cluster C.

Hierarchical Method µ(Ci ∪ Cj) Dissimilarity between Ci and Cj

Median µ(Ci)+µ(Cj )

2 ‖µ(Ci)− µ(Cj )‖2

Centroid |Ci |µ(Ci)+|Cj |µ(Cj )

|Ci |+|Cj | ‖µ(Ci)− µ(Cj )‖2

Ward’s |Ci |µ(Ci)+|Cj |µ(Cj )

|Ci |+|Cj |
|Ci ||Cj |
|Ci |+|Cj | ‖µ(Ci)− µ(Cj )‖2

O(n2) storage is required for a dissimilarity matrix, where n is the number of data points.
Also for geometric hierarchical methods, the representative point of a cluster can be derived
directly from that of the two clusters that form the cluster (see Table 7.4).

In agglomerative hierarchical clustering algorithms, the Lance-Williams formula (cf.
Section 6.8) is used to calculate the dissimilarity between a cluster and a cluster formed
by merging two other clusters. The single-link and complete link hierarchical clustering
algorithms induce a metric on the data known as the ultrametric (Johnson, 1967). But the
hierarchical structures produced by other clustering algorithms that use the Lance-Williams
recurrence formula may violate the ultrametric inequality (Milligan, 1979).

The distances D(Ck, Ci ∪Cj) are said to increase monotonically if D(Ck, Ci ∪Cj) ≥
D(Ci, Cj ) at each level in the hierarchy. If an algorithm produces a monotonic hierarchy,
then the algorithm induces a type of distance metric known as the ultrametric (Milligan,
1979). The centroid method and median method are examples of hierarchical algorithms
that do not produce monotonic hierarchies.

Milligan (1979) has shown that the hierarchical clustering strategy (α1, α2, β, γ )based
on the Lance-Williams recurrence formula (Lance and Williams, 1967b) is monotonic, i.e.,

D(Ck, Ci ∪ Cj) ≥ D(Ci, Cj ) ∀i, j, k,

if the following conditions are satisfied:

1. γ ≥ 0 ∨ (γ < 0 ∧ |γ | ≤ α1, α2),

2. min{α1, α2} ≥ 0,

3. α1 + α2 + β ≥ 1.

Also, Batagelj (1981) gives a necessary and sufficient condition for the hierarchical
clustering strategy (α1, α2, β, γ ) to be monotonic:

1. γ ≥ −min{α1, α2},
2. α1 + α2 ≥ 0,

3. α1 + α2 + β ≥ 1.
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7.2.1 The Single-link Method

The single-link method is one of the simplest hierarchical clustering methods. It was
first introduced by Florek et al. (1951) and then independently by McQuitty (1957) and
Sneath (1957). The single-link method is also known by other names, such as the nearest
neighbor method, the minimum method, and the connectedness method (Rohlf, 1982). The
single-link method is invariant under monotone transformations (such as the logarithmic
transformation) of the original data (Johnson, 1967).

It employs the nearest neighbor distance (cf. Section 6.8) to measure the dissimilarity
between two groups. Let Ci , Cj , and Ck be three groups of data points. Then the distance
between Ck and Ci ∪ Cj can be obtained from the Lance-Williams formula as follows:

D(Ck, Ci ∪ Cj)

= 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj )− 1

2
|D(Ck, Ci)−D(Ck, Cj )|

= min{D(Ck, Ci),D(Ck, Cj )}, (7.4)

where D(·, ·) is a distance between two clusters.
From equation (7.4), it is not difficult to verify that

D(C,C ′) = min
x∈C,y∈C ′ d(x, y),

where C and C ′ are two nonempty, nonoverlapping clusters and d(·, ·) is the distance
function by which the dissimilarity matrix is computed.

Rohlf (1982) has classified single-link algorithms into five different types:

1. connectedness algorithms,

2. algorithms based on an ultrametric transformation,

3. probability density estimation algorithms,

4. agglomerative algorithms,

5. algorithms based on the minimum spanning tree.

The connectedness algorithms are based on graph theory. In a connectedness algo-
rithm, the data points are represented as vertices in a graph: a pair (i, j) of vertices are
connected with an edge if and only if the distance between data points i and j dij ≤ @.
The single-link clusters at level @ correspond to the connected subgraphs of the graph.
The connectedness algorithms require a considerable amount of computational effort. van
Groenewoud and Ihm (1974) presented such an algorithm, whose total time complexity is
O(n5), where n is the size of the data set.

More single-link algorithms will be presented in later sections of this chapter. What
follows is a simple example that illustrates the idea of the single-link algorithm.

For the data set given in Figure 7.9, for example, the dissimilarity matrix computed
using the Euclidean distance is described in Table 7.5. If a single-link hierarchical clustering
algorithm is applied to this data set, then x1 and x2 will be agglomerated to form a big cluster
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x1 = (1, 2)
x2 = (1, 2.5)
x3 = (3, 1)
x4 = (4, 0.5)
x5 = (4, 2)

Figure 7.9. A two-dimensional data set with five data points.

Table 7.5. The dissimilarity matrix of the data set given in Figure 7.9. The entry
(i, j) in the matrix is the Euclidean distance between xi and xj .

x1 x2 x3 x4 x5

x1 0 0.5 2.24 3.35 3

x2 0.5 0 2.5 3.61 3.04

x3 2.24 2.5 0 1.12 1.41

x4 3.35 3.61 1.12 0 1.5

x5 3 3.04 1.41 1.5 0

at the first stage of the algorithm, since they have the least distance in the dissimilarity matrix.
The distance between {x1, x2} and x3, x4, and x5 now becomes

D({x1, x2}, x3) = min{d(x1, x3), d(x2, x3)} = 2.24,

D({x1, x2}, x4) = min{d(x1, x4), d(x2, x4)} = 3.35,

D({x1, x2}, x5) = min{d(x1, x5), d(x2, x5)} = 3,

which can also be obtained from the formula given in (7.4). After x1 and x2 are merged, the
dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.24 3.35 3

x3 2.24 0 1.12 1.41

x4 3.35 1.12 0 1.5

x5 3 1.41 1.5 0

At the second stage of the algorithm, x3 and x4 will be merged, since they have the
least distance. Then the distances between the group {x3, x4} and the remaining groups



120 Chapter 7. Hierarchical Clustering Techniques

become

D({x3, x4}, {x1, x2})
= min{d(x1, x3), d(x2, x3), d(x1, x4), d(x2, x4)}
= min{D({x1, x2}, x3),D({x1, x2}, x4)} = 2.24

and
D({x3, x4}, x5) = min{d(x3, x5), d(x4, x5)} = 1.41.

After x3 and x4 are merged, the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.24 3

{x3, x4} 2.24 0 1.41

x5 3 1.41 0

At the third stage of the algorithm, {x3, x4} and x5 will be merged. The dissimilarity
matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.24

{x3, x4, x5} 2.24 0

At the fourth stage, all the data points are merged into a single cluster. The dendrogram
of this clustering is shown in Figure 7.10.

7.2.2 The Complete Link Method

Unlike the single-link method, the complete link method uses the farthest neighbor distance
(cf. Section 6.8) to measure the dissimilarity between two groups. The complete link

x1 x2 x3 x4 x5
0

0.5

1.12
1.41

2.24

Figure 7.10. The dendrogram produced by applying the single-link method to the
data set given in Figure 7.9.
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method is also invariant under monotone transformations (Johnson, 1967). Let Ci , Cj , and
Ck be three groups of data points. Then the distance betweenCk andCi∪Cj can be obtained
from the Lance-Williams formula as follows:

D(Ck, Ci ∪ Cj)

= 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj )+ 1

2
|D(Ck, Ci)−D(Ck, Cj )|

= max{D(Ck, Ci),D(Ck, Cj )}, (7.5)

where D(·, ·) is a distance between two clusters.
The distance defined in equation (7.5) has the following property:

D(C,C ′) = max
x∈C,y∈C ′ d(x, y),

where C and C ′ are two nonempty, nonoverlapping clusters and d(·, ·) is the distance
function by which the dissimilarity matrix is computed.

Applying the complete link method to the dissimilarity matrix given in Table 7.5,
at the first stage we merge x1 and x2. The distances between the group {x1, x2} and the
remaining three points are updated as

D({x1, x2}, x3) = max{d(x1, x3), d(x2, x3)} = 2.5,

D({x1, x2}, x4) = max{d(x1, x4), d(x2, x4)} = 3.61,

D({x1, x2}, x5) = max{d(x1, x5), d(x2, x5)} = 3.04,

which can also be obtained from the formula given in equation (7.5). After x1 and x2 are
merged at the first stage of the algorithm, the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.5 3.61 3.04

x3 2.5 0 1.12 1.41

x4 3.61 1.12 0 1.5

x5 3.04 1.41 1.5 0

Again, at the second stage of the algorithm, x3 and x4 will be merged, since they have
the least distance between them. After x3 and x4 are merged, the distances between the
group {x3, x4} and the remaining groups are updated as

D({x3, x4}, {x1, x2})
= max{d(x1, x3), d(x2, x3), d(x1, x4), d(x2, x4)}
= max{D({x1, x2}, x3),D({x1, x2}, x4)} = 3.61

and
D({x3, x4}, x5) = max{d(x3, x5), d(x4, x5)} = 1.5.

After x3 and x4 are merged, the dissimilarity matrix becomes
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x1 x2 x3 x4 x5
0

0.5

1.12
1.5

3.61

Figure 7.11. The dendrogram produced by applying the complete link method to
the data set given in Figure 7.9.

{x1, x2} {x3, x4} x5

{x1, x2} 0 3.61 3.04

{x3, x4} 3.61 0 1.5

x5 3.04 1.5 0

At the third stage of the algorithm, {x3, x4} and x5 must be merged, since they have
the least distance. After x4 and x5 are merged, the distance between the two groups is

D({x1, x2}, {x3, x4, x5})
= max{d13, d14, d15, d23, d24, d25}
= max{D({x1, x2}, {x3, x4}),D({x1, x2}, x5)}
= 3.61,

where dij = d(xi , xj ) for i = 1, 2 and j = 3, 4, 5, and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 3.61

{x3, x4, x5} 3.61 0

The dendrogram produced by the complete link method is shown in Figure 7.11, which
is the same as the dendrogram produced by the single-link method except for the heights.

7.2.3 The Group Average Method

The group average method is also referred as UPGMA, which stands for “unweighted pair
group method using arithmetic averages” (Jain and Dubes, 1988). In the group average
method, the distance between two groups is defined as the average of the distances between
all possible pairs of data points that are made up of one data point from each group. Let Ci ,
Cj , and Ck be three groups of data points. Then the distance between Ck and Ci ∪ Cj can
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be obtained from the Lance-Williams formula as follows:

D(Ck, Ci ∪ Cj)

= |Ci |
|Ci | + |Cj |D(Ck, Ci)+ |Cj |

|Ci | + |Cj |D(Ck, Cj ), (7.6)

where D(·, ·) is a distance between two clusters.
Let C and C ′ be two nonempty, nonoverlapping clusters. Then in the group average

method, we have

D(C,C ′) = 1

|C||C ′|
∑

x∈C,y∈C ′
d(x, y), (7.7)

where d(·, ·) is the distance function by which the dissimilarity matrix is computed.
In fact, let C1, C2, and C3 be three nonempty, mutually nonoverlapping clusters, and

assume

D(Ci, Cj ) = 1

ninj
�(Ci, Cj ), 1 ≤ i < j ≤ 3, (7.8)

where ni = |Ci |, nj = |Cj |, and �(Ci, Cj ) is the total between-clusters distance of Ci and
Cj , that is,

�(Ci, Cj ) =
∑

x∈Ci,y∈Cj

d(x, y).

Now from equations (7.6) and (7.8), we have

D(C1, C2 ∪ C3)

= n2

n2 + n3
D(C1, C2)+ n3

n2 + n3
D(C1, C3)

= n2

n2 + n3
· 1

n1n2
�(C1, C2)+ n3

n2 + n3
· 1

n1n3
�(C1, C3)

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3),

since �(C1, C2)+�(C1, C3) = �(C1, C2 ∪ C3). This verifies equation (7.7).
Applying the group average method to the data set given in Figure 7.9, we note that

again the first stage is to merge x1 and x2. After x1 and x2 are merged, the distances between
{x1, x2} and the remaining three data points become

D({x1, x2}, x3) = 1

2
d(x1, x3)+ 1

2
d(x2, x3) = 2.37,

D({x1, x2}, x4) = 1

2
d(x1, x4)+ 1

2
d(x2, x4) = 3.48,

D({x1, x2}, x5) = 1

2
d(x1, x5)+ 1

2
d(x2, x5) = 3.02,

and the dissimilarity matrix becomes
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{x1, x2} x3 x4 x5

{x1, x2} 0 2.37 3.48 3.02

x3 2.37 0 1.12 1.41

x4 3.48 1.12 0 1.5

x5 3.02 1.41 1.5 0

Again, at the second stage of the algorithm, x4 and x3 will be merged. The distances
between {x3, x4} and the other clusters become

D({x1, x2}, {x3, x4}) = 1

2
D({x1, x2}, x4)+ 1

2
D({x1, x2}, x3) = 2.93,

D({x3, x4}, x5) = 1

2
d(x3, x5)+ 1

2
d(x4, x5) = 1.46.

After x3 and x4 are merged into one cluster, the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.93 3.02

{x3, x4} 2.93 0 1.46

x5 3.02 1.46 0

At the third stage of the algorithm, {x3, x4} and x5 must be merged, since they have
the least distance. Then the distance between {x1, x2} and {x3, x4, x5} becomes

D({x1, x2}, {x3, x4, x5})
= 2

3
D({x1, x2}, {x3, x4})+ 1

3
D({x1, x2}, x5)

= 2.96.

Hence, the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.96

{x3, x4, x5} 2.96 0

The distances can also be calculated by equation (7.7). In the last stage, for example,
the distance between {x1, x2} and {x3, x4, x5} can be computed as

D({x1, x2}, {x3, x4, x5})
= 1

6
(d13 + d14 + d15 + d23 + d24 + d25) = 2.96,

where dij = d(xi , xj ), i.e., the (i, j)th entry of the dissimilarity matrix.
The dendrogram of this clustering is shown in Figure 7.12.
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1.12
1.46

2.96

Figure 7.12. The dendrogram produced by applying the group average method to
the data set given in Figure 7.9.

7.2.4 The Weighted Group Average Method

The weighted group average method is also referred to as the “weighted pair group method
using arithmetic average” (Jain and Dubes, 1988). Using the Lance-Williams formula, the
distance between clusters is

D(Ck, Ci ∪ Cj) = 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj ),

where Ck, Ci , and Cj are three clusters in one level of clustering.
Applying the weighted group average method to the five-point data set given in Fig-

ure 7.9, the first stage is the same as in the other methods, i.e., we merge x1 and x2. After
x1 and x2 are merged, the distances between clusters are updated as

D({x1, x2}, x3) = 1

2
(d(x1, x3)+ d(x2, x3)) = 2.37,

D({x1, x2}, x4) = 1

2
(d(x1, x4)+ d(x2, x4)) = 3.48,

D({x1, x2}, x5) = 1

2
(d(x1, x5)+ d(x2, x5)) = 3.02,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.37 3.48 3.02
x3 2.37 0 1.12 1.41
x4 3.48 1.12 0 1.5
x5 3.02 1.41 1.5 0
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1.12
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Figure 7.13. The dendrogram produced by applying the weighted group average
method to the data set given in Figure 7.9.

At the second stage of this method, x3 and x4 will be merged. After x3 and x4 are
merged, the distances between clusters are updated as

D({x3, x4}, {x1, x2}) = 1

2
(2.37+ 3.48) = 2.93,

D({x3, x4}, x5) = 1

2
(1.41+ 1.5) = 1.46,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.93 3.02
{x3, x4} 2.93 0 1.46

x5 3.02 1.46 0

Clusters {x3, x4} and x5 will be merged at the third stage of this method. The distance
is updated as

D({x1, x2}, {x3, x4, x5}) = 1

2
(2.93+ 3.02) = 2.98,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.98

{x3, x4, x5} 2.98 0

The whole process of this clustering can be represented by the dendrogram shown in
Figure 7.13.

7.2.5 The Centroid Method

The centroid method is also referred to as the “unweighted pair group method using cen-
troids” (Jain and Dubes, 1988). With the centroid method, the new distances between
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clusters can be calculated by the following Lance-Williams formula:

D(Ck, Ci ∪ Cj)

= |Ci |
|Ci | + |Cj |D(Ck, Ci)+ |Cj |

|Ci | + |Cj |D(Ck, Cj )

− |Ci ||Cj |
(|Ci | + |Cj |)2

D(Ci, Cj ), (7.9)

where Ck, Ci , and Cj are three clusters in one level of clustering.
Let C and C ′ be any two nonoverlapping clusters, i.e., C ∩ C ′ = φ. Then it follows

from equation (7.9) that

D(C,C ′)

= 1

|C||C ′|
∑

x∈C,y∈C ′
d(x, y)− 1

2|C|2
∑

x,y∈C
d(x, y)

− 1

2|C ′|2
∑

x,y∈C ′
d(x, y), (7.10)

where d(·, ·) is the distance function by which the dissimilarity matrix is calculated.
In fact, let C1, C2, and C3 be three nonempty, mutually nonoverlapping clusters, and

assume

D(Ci, Cj ) = 1

ninj
�(Ci, Cj )− 1

2n2
i

�(Ci)− 1

2n2
j

�(Cj ) (7.11)

for 1 ≤ i < j ≤ 3, where ni = |Ci |, nj = |Cj |, �(Ci, Cj ) is the total between-clusters
distance of Ci and Cj , that is,

�(Ci, Cj ) =
∑

x∈Ci,y∈Cj

d(x, y),

�(Ci) is the total within-cluster distance of Ci , that is,

�(Ci) =
∑

x,y∈Ci

d(x, y),

and �(Cj ) is defined similarly.
We should prove that

D(C1, C2 ∪ C3)

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3)− 1

2n2
1

�(C1)

− 1

2(n2 + n3)2
�(C2 ∪ C3). (7.12)
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From equation (7.9), we have

D(C1, C2 ∪ C3)

= n2

n2 + n3
D(C1, C2)+ n3

n2 + n3
D(C1, C3)

− n2n3

(n2 + n3)2
D(C2, C3),

Substituting equation (7.11) into the above equation and performing some simple manipu-
lations, we have

D(C1, C2 ∪ C3)

= n2

n2 + n3

(
1

n1n2
�(C1, C2)− 1

2n2
1

�(C1)− 1

2n2
2

�(C2)

)

+ n3

n2 + n3

(
1

n1n3
�(C1, C3)− 1

2n2
1

�(C1)− 1

2n2
3

�(C3)

)

− n2n3

(n2 + n3)2

(
1

n2n3
�(C2, C3)− 1

2n2
2

�(C2)− 1

2n2
3

�(C3)

)

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3)− 1

2n2
1

�(C1)

− 1

2(n2 + n3)2
[�(C2)+�(C3)+ 2�(C2, C3)]

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3)− 1

2n2
1

�(C1)− 1

2(n2 + n3)2
�(C2 ∪ C3).

In the above, we used

�(C1, C2)+�(C1, C3) = �(C1, C2 ∪ C3)

and
�(C2)+�(C3)+ 2�(C2, C3) = �(C2 ∪ C3).

In particular, if we take d(·, ·) in equation (7.10) as the squared Euclidean distance,
then the distance D(C,C ′) is exactly the squared Euclidean distance between the centroids
of C and C ′.

Actually, if d(·, ·) in equation (7.10) is the squared Euclidean distance, then we have

D(C,C ′)

= 1

|C||C ′|
∑

x∈C,y∈C ′
(x − y)(x − y)T − 1

2|C|2
∑

x,y∈C
(x − y)(x − y)T

− 1

2|C ′|2
∑

x,y∈C ′
(x − y)(x − y)T
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= 1

|C|
∑
x∈C

xxT − 2

|C||C ′|
∑

x∈C,y∈C ′
xyT + 1

|C ′|
∑
x∈C ′

xxT

− 1

|C|
∑
x∈C

xxT + 1

|C|2
∑

x,y∈C
xyT − 1

|C ′|
∑
y∈C ′

yyT

+ 1

|C ′|2
∑

x,y∈C ′
xyT

= 1

|C|2
∑

x,y∈C
xyT + 1

|C ′|2
∑

x,y∈C ′
xyT − 2

|C||C ′|
∑

x∈C,y∈C ′
xyT

=
(

1

|C|
∑
x∈C

x − 1

|C ′|
∑
x∈C ′

x

) 1

|C|
∑
y∈C

y − 1

|C ′|
∑
y∈C ′

y




T

,

since (x − y)(x − y)T = xxT − 2xyT + yyT and xyT = yxT .
Equation (7.10) provides another way to compute the distances between new clusters

and old ones. Applying the centroid method to the data set given in Figure 7.9, the first
stage is still the same as in other methods, i.e., x1 and x2 will be merged. After x1 and x2

are merged, the distances are updated as

D({x1, x2}, x3) = 1

2
(d(x1, x3)+ d(x2, x3))− 1

4
d(x1, x2) = 2.245,

D({x1, x2}, x4) = 1

2
(d(x1, x4)+ d(x2, x4))− 1

4
d(x1, x2) = 3.355,

D({x1, x2}, x5) = 1

2
(d(x1, x5)+ d(x2, x5))− 1

4
d(x1, x2) = 2.895,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.245 3.355 2.895
x3 2.245 0 1.12 1.41
x4 3.355 1.12 0 1.5
x5 2.895 1.41 1.5 0

At the second stage, x3 and x4 will be merged, and the distances are updated as

D({x3, x4}, {x1, x2}) = 1

2
(2.245+ 3.355)− 1

4
(1.12) = 2.52,

D({x3, x4}, x5) = 1

2
(1.41+ 1.5)− 1

4
(1.12) = 1.175,
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and the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.52 2.895
{x3, x4} 2.52 0 1.175

x5 2.895 1.175 0

At the third stage, x5 will be merged with {x3, x4}, and the distance is updated as

D({x1, x2}, {x3, x4, x5}) = 2

3
(2.52)+ 1

3
(2.895)− 2

9
(1.175) = 2.384,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.39

{x3, x4, x5} 2.39 0

The distances can also be updated by equation (7.10). For example, the distance
between {x1, x2} and {x3, x4, x5} in the last stage can be computed as

D({x1, x2}, {x3, x4, x5})
= 1

6
(d13 + d14 + d15 + d23 + d24 + d25)− 1

8
(2d12)

− 1

18
(2d34 + 2d35 + 2d45)

= 1

6
(2.24+ 3.35+ 3+ 2.5+ 3.61+ 3.04)− 1

4
(0.5)

−1

9
(1.12+ 1.41+ 1.5)

= 2.957− 0.125− 0.448

= 2.384,

where dij = d(xi , xj ).
The whole process of this clustering can be represented by the dendrogram shown in

Figure 7.14.

7.2.6 The Median Method

The median method is also referred to as the “weighted pair group method using centroids”
(Jain and Dubes, 1988) or the “weighted centroid” method. It was first proposed by Gower
(1967) in order to alleviate some disadvantages of the centroid method. In the centroid
method, if the sizes of the two groups to be merged are quite different, then the centroid
of the new group will be very close to that of the larger group and may remain within that
group (Everitt, 1993). In the median method, the centroid of a new group is independent of
the size of the groups that form the new group.

A disadvantage of the median method is that it is not suitable for measures such as
correlation coefficients, since interpretation in a geometrical sense is no longer possible
(Lance and Williams, 1967a).
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x1 x2 x3 x4 x5
0

0.5

1.121.175

2.39

Figure 7.14. The dendrogram produced by applying the centroid method to the
data set given in Figure 7.9.

In the median method, the distances between newly formed groups and other groups
are computed as

D(Ck, Ci ∪ Cj) = 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj )− 1

4
D(Ci, Cj ), (7.13)

where Ck, Ci , and Cj are three clusters in one level of clustering.
We now take the data set given in Figure 7.9 as an example to illustrate the median

method. The first stage of the median method is still the same as in other methods. After
x1 and x2 are merged, the distances are updated as

D({x1, x2}, x3) = 1

2
(d(x1, x3)+ d(x2, x3))− 1

4
d(x1, x2) = 2.245,

D({x1, x2}, x4) = 1

2
(d(x1, x4)+ d(x2, x4))− 1

4
d(x1, x2) = 3.355,

D({x1, x2}, x5) = 1

2
(d(x1, x5)+ d(x2, x5))− 1

4
d(x1, x2) = 2.895,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.245 3.355 2.895
x3 2.245 0 1.12 1.41
x4 3.355 1.12 0 1.5
x5 2.895 1.41 1.5 0

At the second stage of this method, x3 and x4 will be merged. After x3 and x4 are
merged, the distances between clusters are updated as

D({x3, x4}, {x1, x2}) = 1

2
(2.245+ 3.355)− 1

4
(1.12) = 2.52,

D({x3, x4}, x5) = 1

2
(1.41+ 1.5)− 1

4
(1.12) = 1.175,

and the dissimilarity matrix becomes
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x1 x2 x3 x4 x5
0

0.5

1.121.175

2.414

Figure 7.15. The dendrogram produced by applying the median method to the
data set given in Figure 7.9.

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.52 2.895
{x3, x4} 2.52 0 1.175

x5 2.895 1.175 0

Clusters {x3, x4} and x5 will be merged at the third stage of this method. The distance
is updated as

D({x1, x2}, {x3, x4, x5}) = 1

2
(2.52+ 2.895)− 1

4
(1.175) = 2.414,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.414

{x3, x4, x5} 2.414 0

The whole process of this clustering can be represented by the dendrogram shown in
Figure 7.15.

7.2.7 Ward’s Method

Ward Jr. (1963) and Ward Jr. and Hook (1963) proposed a hierarchical clustering procedure
seeking to form the partitions Pn, Pn−1, . . . , P1 in a manner that minimizes the loss of
information associated with each merging. Usually, the information loss is quantified in
terms of an error sum of squares (ESS) criterion, so Ward’s method is often referred to as
the “minimum variance” method.

Given a group of data points C, the ESS associated with C is given by

ESS(C) =
∑
x∈C

(x − µ(C))(x − µ(C))T ,
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or

ESS(C) =
∑
x∈C

xxT − 1

|C|

(∑
x∈C

x

)(∑
x∈C

x

)T

=
∑
x∈C

xxT − |C|µ(C)µ(C)T , (7.14)

where µ(C) is the mean of C, that is,

µ(C) = 1

|C|
∑
x∈C

x.

Suppose there are k groups C1, C2, . . . , Ck in one level of the clustering. Then the
information loss is represented by the sum of ESSs given by

ESS =
k∑

i=1

ESS(Ci),

which is the total within-group ESS.
At each step of Ward’s method, the union of every possible pair of groups is considered

and two groups whose fusion results in the minimum increase in loss of information are
merged.

If the squared Euclidean distance is used to compute the dissimilarity matrix, then the
dissimilarity matrix can be updated by the Lance-Williams formula during the process of
clustering as follows (Wishart, 1969):

D(Ck, Ci ∪ Cj)

= |Ck| + |Ci |
�ijk

D(Ck, Ci)+ |Ck| + |Cj |
�ijk

D(Ck, Cj )

−|Ck|
�ijk

D(Ci, Cj ), (7.15)

where �ijk = |Ck| + |Ci | + |Cj |.
To justify this, we supposeCi andCj are chosen to be merged and the resulting cluster

is denoted by Ct , i.e., Ct = Ci ∪ Cj . Then the increase in ESS is

@ESSij = ESS(Ct )− ESS(Ci)− ESS(Cj )

=

∑

x∈Ct

xxT − |Ct |µtµ
T
t


−


∑

x∈Ci

xxT − |Ci |µiµ
T
i




−

∑

x∈Ct

xxT − |Cj |µjµ
T
j




= |Ci |µiµ
T
i + |Cj |µjµ

T
j − |Ct |µtµ

T
t , (7.16)

where µt, µi , and µj are the means of clusters Ct, Ci , and Cj , respectively.
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Noting that |Ct |µt = |Ci |µi + |Cj |µj , squaring both sides of this equation gives

|Ct |2µtµ
T
t = |Ci |2µiµ

T
i + |Cj |2µjµ

T
j + 2|Ci ||Cj |µiµ

T
j ,

or

|Ct |2µtµ
T
t = |Ci |2µiµ

T
i + |Cj |2µjµ

T
j + |Ci ||Cj |(µiµ

T
i + µjµ

T
j )

−|Ci ||Cj |(µi − µj)(µi − µj)
T

= |Ci |(|Ci | + |Cj |)µiµ
T
i + |Cj |(|Ci | + |Cj |)µjµ

T
j

−|Ci ||Cj |(µi − µj)(µi − µj)
T , (7.17)

since
2µiµ

T
j = µiµ

T
i + µjµ

T
j − (µi − µj)(µi − µj)

T .

Dividing both sides of equation (7.17) by |Ct | and substituting |Ct |µtµ
T
t into equa-

tion (7.16) give

@ESSij = |Ci ||Cj |
|Ci | + |Cj | (µi − µj)(µi − µj)

T . (7.18)

Now considering the increase in ESS that would result from the potential fusion of
groups Ck and Ct , from equation (7.18) we have

@ESSkt = |Ck||Ct |
|Ck| + |Cj | (µk − µt)(µk − µt)

T , (7.19)

where µk = µ(Ck) is the mean of group Ck .
Noting that µt = 1

|Ct | (|Ci |µi+|Cj |µj) and |Ct | = |Ci |+ |Cj |, using equation (7.17),
we have

(µk − µt)(µk − µt)
T

= |Ci |
|Ct | (µk − µi)(µk − µi)

T + |Cj |
|Ct | (µk − µj)(µk − µj)

T

−|Ci ||Cj |
|Ct |2 (µi − µj)(µi − µj)

T .

Substituting the above equation into equation (7.19), and after simple manipulations, we
get

@ESSkt = |Ck||Ci |
|Ck| + |Ct | (µk − µi)(µk − µi)

T

+ |Ck||Cj |
|Ck| + |Ct | (µk − µj)(µk − µj)

T

−|Ck||Ci ||Cj |
|Ck| + |Ct | (µi − µj)(µi − µj)

T ,

and, using equation (7.18), we have

@ESSkt = |Ck| + |Ci |
|Ck| + |Ct |@ESSki + |Ck| + |Cj |

|Ck| + |Ct |@ESSkj

− |Ck|
|Ck| + |Ct |@ESSij . (7.20)
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Table 7.6. The dissimilarity matrix of the data set given in Figure 7.9, where the
entry (i, j) in the matrix is the squared Euclidean distance between xi and xj .

x1 x2 x3 x4 x5

x1 0 0.25 5 11.25 9

x2 0.25 0 6.25 13 9.25
x3 5 6.25 0 1.25 2
x4 11.25 13 1.25 0 2.25
x5 9 9.25 2 2.25 0

This proves equation (7.15). If we compute the dissimilarity matrix for a data set D =
{x1, x2, . . . , xn} using the squared Euclidean distance, then the entry (i, j) of the dissimi-
larity matrix is

d2
ij = d(xi , xj ) = (xi − xj )(xi − xj )

T =
d∑

l=1

(xil − xjl)
2,

where d is the dimensionality of the data set D.
If Ci = {xi} and Cj = {xj } in equation (7.18), then the increase in ESS that results

from the fusion of xi and xj is

@ESSij = 1

2
d2
ij .

Since the objective of Ward’s method is to find at each stage those two groups whose
fusion gives the minimum increase in the total within-group ESS, the two points with
minimum squared Euclidean distance will be merged at the first stage. Suppose xi and xj
have minimum squared Euclidean distance. Then Ci = {xi} and Cj = {xj }will be merged.
AfterCi andCj are merged, the distances betweenCi∪Cj and other points must be updated.

Now let Ck = {xk} be any other group. Then the increase in ESS that would result
from the potential fusion of Ck and Ci ∪ Cj can be calculated from equation (7.20) as

@ESSk(ij) = 2

3

d2
ki

2
+ 2

3

d2
kj

2
− 1

3

d2
ij

2
.

If we update the dissimilarity matrix using equation (7.15), then we have from the
above equation that

@ESSk(ij) = 1

2
D(Ck, Ci ∪ Cj).

Thus if we update the dissimilarity matrix using equation (7.15) during the process
of clustering, then the two groups with minimum distance will be merged.

Taking the data set given in Figure 7.9 as an example, the dissimilarity matrix com-
puted by the squared Euclidean distance is given in Table 7.6.

Initially, each single point forms a cluster and the total ESS is ESS0 = 0. According
to the above discussion, x1 and x2 will be merged at the first stage of Ward’s method, and
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the increase in ESS that results from the fusion of x1 and x2 is @ESS12 = 1
2 (0.25) = 0.125;

hence, the ESS becomes

ESS1 = ESS0 +@ESS12 = 0.125.

Using equation (7.15), the distances are updated as

D({x1, x2}, x3) = 2

3
(d(x1, x3)+ d(x2, x3))− 1

3
d(x1, x2) = 7.42,

D({x1, x2}, x4) = 2

3
(d(x1, x4)+ d(x2, x4))− 1

3
d(x1, x2) = 16.08,

D({x1, x2}, x5) = 2

3
(d(x1, x5)+ d(x2, x5))− 1

3
d(x1, x2) = 12.08,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 7.42 16.08 12.08
x3 7.42 0 1.25 2
x4 16.08 1.25 0 2.25
x5 12.08 2 2.25 0

At the second stage of this method, x3 and x4 will be merged and the resulting increase
in ESS is @ESS34 = 1

2 (1.25) = 0.625. The total ESS becomes

ESS2 = ESS1 +@ESS34 = 0.125+ 0.625 = 0.75.

After x3 and x4 are merged, the distances are updated as

D({x3, x4}, {x1, x2}) = 3

4
(7.42+ 16.08)− 2

4
(1.25) = 17,

D({x3, x4}, x5) = 2

3
(2+ 2.25)− 1

3
(1.25) = 2.42,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 17 12.08
{x3, x4} 17 0 2.42

x5 12.08 2.42 0

At the third stage, {x3, x4} and x5 will be merged. The resulting increase in ESS is
@ESS(34)5 = 1

2 (2.42) = 1.21. Then the total ESS becomes

ESS3 = ESS2 +@ESS(34)5 = 0.75+ 1.21 = 1.96.

The distances are updated as

D({x1, x2}, {x3, x4, x5}) = 4

5
(17)+ 3

5
(12.08)− 2

5
(2.42) = 19.88,

and the dissimilarity matrix becomes
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x1 x2 x3 x4 x5
0

0.25

1.25

2.42

19.88

Figure 7.16. The dendrogram produced by applying Ward’s method to the data set
given in Figure 7.9.

{x1, x2} {x3, x4, x5}
{x1, x2} 0 19.88

{x3, x4, x5} 19.88 0

When all the data points are merged to form a single cluster, the increase in ESS will
be @ESS(12)(345) = 1

2 (19.88) = 9.94 and the total ESS will be

ESS4 = ESS3 +@ESS(12)(345) = 1.96+ 9.94 = 11.9.

The whole process of this clustering can be represented by the dendrogram shown in
Figure 7.16.

As pointed out by Anderberg (1973), a set of k clusters produced by Ward’s method
may or may not give the minimum possible ESS over all possible sets of k clusters formed
from the n objects. However, the results of Ward’s method are usually very good approx-
imations of the optimal one. Kuiper and Fisher (1975) presented a comparison of Ward’s
method with the other five hierarchical clustering algorithms using the Monte Carlo method.

7.2.8 Other Agglomerative Methods

The seven agglomerative methods discussed in the previous subsections are most widely
used in practice. In the Lance-Williams framework, there are some other agglomerative
methods, such as the flexible method (Lance and Williams, 1967a), the sum of squares
method (Jambu, 1978), and the mean dissimilarity method (Podani, 1989). Relevant dis-
cussions can be found in (Holman, 1992) and (Gordon, 1996).

There also exist agglomerative methods that cannot fit into the Lance-Williams frame-
work. An example of such agglomerative methods is the bicriterion analysis proposed by
Delattre and Hansen (1980).

7.3 Divisive Hierarchical Methods
The divisive hierarchical method proceeds the opposite way of the agglomerative hierarchi-
cal method. Initially, all the data points belong to a single cluster. The number of clusters
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is increased by one at each stage of the algorithm by dividing an existing cluster into two
clusters according to some criteria. A divisive hierarchical method may be adopted in which
a single cluster is subdivided into smaller and smaller clusters. Divisive hierarchical cluster-
ing methods are essentially of two types: monothetic and polythetic (Everitt, 1993; Willett,
1988). A monothetic method divides the data on the basis of the possession or otherwise of
a single specified attribute, while a polythetic method divides the data based on the values
taken by all attributes.

It is not feasible to enumerate all possible divisions of a large (even moderate) cluster
C to find the optimal partition, since there are 2|C|−1 − 1 nontrivial different ways of
dividing the cluster C into two clusters (Edwards and Cavalli-Sforza, 1965). Scott and
Symons (1971a) have proposed an improved algorithm that requires examination of 2d − 2
partitions by assigning points in the hyperplane to the two clusters being considered, where d
is the dimensionality of the data. Except for low-dimensional data, the algorithm proposed
by Scott and Symons (1971a) is also very time-consuming. In fact, it turns out that the
problem of finding an optimal bipartition for some clustering criteria is NP-hard (Gordon,
1996).

Another problem with divisive hierarchical algorithms is monotonicity, to be specified
below. In a divisive hierarchy, one cluster is divided at a time, so what is the next cluster
to be divided? This depends on the definition of a level. Such a level must be meaningful
and monotone, which means that no subcluster may have a larger level than the level of its
parent cluster.

However, it is possible to construct divisive hierarchical algorithms that do not need to
consider all divisions and are monothetic. An algorithm called DIANA(DIvisiveANAlysis)
presented in (Kaufman and Rousseeuw, 1990) is a divisive hierarchical clustering algorithm.
It was based on the idea of Macnaughton-Smith et al. (1964). Other divisive hierarchical
techniques are presented in (Edwards and Cavalli-Sforza, 1965) and (Späth, 1980).

7.4 Several Hierarchical Algorithms
Although the computational complexity of hierarchical algorithms is generally higher than
that of partitional algorithms, many hierarchical algorithms have been designed and studied
in (Kaufman and Rousseeuw, 1990), (Murtagh, 1983), and (Willett, 1988). In this section,
we shall introduce some hierarchical algorithms, but we defer the introduction of hierarchical
algorithms described in terms of graph theory (i.e., graph-based algorithms) to later chapters.

7.4.1 SLINK

The SLINK algorithm (Sibson, 1973) is a single-link hierarchical algorithm that can be car-
ried out using arbitrary dissimilarity coefficients. In this algorithm, a compact representation
of a dendrogram called a pointer representation, which offers economy in computation, is
introduced.
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Recall that a dendrogram is a nested sequence of partitions with associated numerical
levels that can be defined as a function c : [0,∞)→ E(D) that satisfies

c(h) ⊆ c(h′) if h ≤ h′,
c(h) is eventually in D ×D,

c(h+ δ) = c(h) for some small δ > 0,

where D is a given data set and E(D) is the set of equivalence relations on D.
Recall also that a pointer representation is the pair of functions π : {1, 2, . . . , n} →

{1, 2, . . . , n} and λ : π({1, 2, . . . , n})→ [0,∞] that have the following properties:

π(n) = n, π(i) > i for i < n, (7.21a)

λ(n) = ∞, λ(π(i)) > λ(i) for i < n, (7.21b)

where n is the number of data points in D.
As discussed before, there is a one-to-one correspondence between dendrograms and

pointer representations (Sibson, 1973). In particular, if c is a dendrogram, then the corre-
sponding pointer representation is defined by

λ(i) = inf {h : ∃j > i such that (i, j) ∈ c(h)},
π(i) = max{j : (i, j) ∈ c(λ(i))}

for i < n. Intuitively, λ(i) is the lowest level at which the ith object is no longer the
last object in its cluster, and π(i) is the last object in the cluster that it joins. The pointer
representation of a dendrogram ensures that a new object can be inserted in an efficient way.

Algorithm 7.1. The SLINK algorithm.

Require: n: number of objects; d(i, j): dissimilarity coefficients;
1: Q[1] ⇐ 1,=[1] ⇐ ∞;
2: for t = 1 to n− 1 do
3: Q[t + 1] ⇐ t + 1,=[t + 1] ⇐ ∞;
4: M[i] ⇐ d(i, t + 1) for i = 1, 2, . . . , t ;
5: for i = 1 to t do
6: if =[i] ≥ M[i] then
7: M[Q[i]] ⇐ min{M[Q[i]],=[i]};
8: Q[i] ⇐ M[i], Q[i] ⇐ t + 1;
9: else

10: M[Q[i]] ⇐ min{M[Q[i]],M[i]};
11: end if
12: end for
13: for i = 1 to t do
14: if =[i] ≥ =[Q[i]] then
15: Q[i] ≤ t + 1;
16: end if
17: end for
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18: end for

Let the dendrogram for the first t objects in the data set be ct and its pointer represen-
tation be πt , λt . Let µt(i) be defined recursively on i as

µt(i) = min{d(i, t + 1), min
j,πt (j)=i

max{µt(j), λt (j)}},

which is defined for all i = 1, 2, . . . , t . It can be shown that the pointer representation for
ct+1 is defined as (Sibson, 1973)

πt+1(i) =



t + 1 if i = t + 1,
t + 1 if µt(i) or µt(πt (i)) ≤ λt (i) for i < t + 1,
πt(i) otherwise,

(7.22a)

λt+1(i) =
{

min{µt(i), λt (i)} if i < t + 1,
∞ if i = t + 1.

(7.22b)

If we start with t = 1 by π1(1) = 1, λ1(1) = ∞, then after n−1 steps of the recursive
process defined in (7.22), we shall obtain πn, λn, which is the pointer representation of the
dendrogram on the whole data set. Let Q,=, and M be three n-dimensional vectors such
that Q,= contain πt , λt in their first t entries in the t th step. Then the SLINK algorithm
can be described as in Algorithm 7.1. The number of operations to find πn, λn is O(n2).

7.4.2 Single-link Algorithms Based on Minimum Spanning Trees

A single-link cluster analysis can be carried out by using only the information contained in
the minimum spanning tree (MST) (Gower and Ross, 1969). The performance of single-link
cluster analysis can be improved by incorporating the MST algorithms into the clustering. To
present the details, we start with a brief introduction of MSTs and some efficient algorithms
for finding an MST.

The tree is a concept in graph theory. A tree is a connected graph with no cycles (Jain
and Dubes, 1988). A spanning tree is a tree containing all vertices of the graph. When
each edge in a graph is weighted by the dissimilarity between the two vertices that the edge
connects, the weight of a tree is the sum of the edge weights in the tree. An MST of a graph
G is a tree that has minimal weight among all other spanning trees of G.

Anumber of algorithms have been developed to find an MST. Most popular algorithms
to find the MST proceed iteratively. Two popular algorithms for finding an MST have been
discussed in (Gower and Ross, 1969). These algorithms are also presented in (Kruskal,
1956) and (Prim, 1957). In these algorithms, the edges belong to one of two sets A and B

at any stage, where A is the set containing the edges assigned to the MST and B is the set of
edges not assigned. Prim (1957) suggested an iterative algorithm that starts with any one of
the given vertices and initially assigns to A the shortest segment starting from this vertex.
Then the algorithm continues to assign to A the shortest segment from B that connects at
least one segment from A without forming a closed loop among the segments already in A.
The algorithm will stop when there are n− 1 segments in A. The MST produced by these
algorithms may not be unique if there exist equal segments of minimum length.
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Single-link cluster analysis can be performed by using a dissimilarity matrix that
contains n(n−1)

2 distances, but it is impractical to record all n(n−1)
2 distances when n is

large, where n is the number of data points. As such, the MST constructed from this data
set provides a useful ancillary technique. To employ this technique in single-link cluster
analysis, an MST should be constructed from the data set first.

Gower and Ross (1969) presented an approach to computing the MST from a data set.
Let D = {x1, . . . , xn} be a data set, and let L1, L2, and L3 be three n-dimensional vectors
defined as follows:

L1(i) = j if xi is the j th point to join A,

L2(i) = j if xi was linked to xj ∈ A when it joined A,

L3(i) = d(xi , xL2(i))

for i = 1, 2, . . . , n, where d(·, ·) is a distance function.
The three vectors can be computed as follows. Initially, L1(1) = 1, L1(i) = 0 for

i = 2, 3, . . . , n, and L2 and L3 are set to the zero vector, i.e., A = {x1}. At the first stage,
let i1 be defined as

i1 = arg max
1≤i≤n

L1(i)

and let j1 be defined as
j1 = arg min

1≤j≤n,L1(j)=0
d(xi1 , xj ).

Then xj1 will be assigned to A; i.e., L1(2) = 0 will be changed to L1(j1) = 2, and L2 and
L3 will be updated as L2(j1) = i1, and L3(j1) = d(xj1 , xi1).

At the rth stage, let ir and jr be computed as

ir = arg max
1≤i≤n

L1(i),

jr = arg min
1≤j≤n,L1(j)=0

d(xir , xj ).

Hence, ir is the point added to A at the previous stage. At this stage, xjr will be added to A,
and the vectors will be updated as L1(jr) = r + 1, L2(jr) = ir , and L3(jr) = d(xjr , xir ).

After n − 1 stages, all the points will be added to A; then the MST is found. Once
the MST of the data set is found, the single-link cluster analysis can be performed from the
MST. The algorithm does not need the full distance matrix at every level of clustering.

To find clusters at the first level, let δ be a distance threshold and L0 be the largest
multiple of δ that is less than the minimum distance, and letH be a set of links whose lengths
lie between L0 and L0 + δ. Let G be a list that contains the group members contiguously,
marking the final member of each group with an indicator. For each link in H , find the
endpoints in G, agglomerate the two groups in which the points are found, and shift down
the intervening groups when necessary. Using the same procedure, a hierarchical system of
agglomerative clusters can be easily constructed. This algorithm is also presented in (Rohlf,
1973), along with the FORTRAN code.

7.4.3 CLINK

Like the SLINK algorithm (Sibson, 1973), the CLINK algorithm (Defays, 1977) is also
a hierarchical clustering algorithm based on a compact representation of a dendrogram.



142 Chapter 7. Hierarchical Clustering Techniques

But the CLINK algorithm is designed for the complete link method. The input of the
CLINK algorithm is a fuzzy relation R, and the output is the pointer representation of the
dendrogram.

A fuzzy relation R used in CLINK is defined as a collection of ordered pairs. For
example, given a data set D = {xi : i = 1, 2, . . . , n}, the fuzzy relation R on D can
be characterized as a membership function R(·, ·) that associates with each pair (i, j) the
dissimilarity measure from xi to xj . The fuzzy relations R used in CLINK are reflexive and
symmetric, i.e.,

R(i, i) = 0, 1 ≤ i ≤ n (reflexivity),

R(i, j) = R(j, i), 1 ≤ i, j ≤ n (symmetry).

Let R and Q be two fuzzy relations defined on D. Then the min-max composition of
R and Q is defined by

R ◦Q(i, j) = min{max{Q(i, k), R(k, j)} : k = 1, 2, . . . , n}
for i = 1, 2, . . . , n and j = 1, 2, . . . , n.

The r-fold composition R ◦ R ◦ · · · ◦ R is denoted by Rr . R is said to be transitive
if R2 ⊃ R. An ultrametric relation is a fuzzy relation that is reflexive, symmetric, and
transitive. If a fuzzy relation R is reflexive and symmetric, then its transitive closure
R̄ = Rn−1 may be obtained by a single-linkage clustering. A complete linkage clustering
gives one or more minimal ultrametric relations (MURs) superior to R.

The goal of the CLINK algorithm is to find one of the MURs L superior to a reflexive
symmetric fuzzy relation R. L and R̄ can be viewed as two extreme clusterings of D. In
order to find such an L efficiently, the pointer representation (Sibson, 1973) is used in the
CLINK algorithm. The pointer representation is a pair of functions (π, λ) defined as in
equation (7.21). There is a one-to-one correspondence between pointer representations and
ultrametric relations.

Algorithm 7.2. The pseudocode of the CLINK algorithm.

Require: n: number of objects; R(i, j): dissimilarity coefficients;
1: Q[1] ⇐ 1,=[1] ⇐ ∞;
2: for t = 1 to n− 1 do
3: Q[t + 1] ⇐ t + 1,=[t + 1] ⇐ ∞;
4: M[i] ⇐ R(i, t + 1) for i = 1, 2, . . . , t ;
5: for i = 1 to t do
6: if =[i] < M[i] then
7: M[Q[i]] ⇐ max{M[Q[i]],M[i]};
8: M[i] ⇐ ∞;
9: end if

10: end for
11: Set a ⇐ t ;
12: for i = 1 to t do
13: if =[t − i + 1] ≥ =[Q[t − i + 1]] then
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14: if M[t − i + 1] < M[a] then
15: a ⇐ t − i + 1;
16: end if
17: else
18: M[t − i + 1] ⇐ ∞;
19: end if
20: end for
21: Set b ⇐ Q[a], c ⇐ =[a], Q[a] ⇐ t + 1 and =[a] ⇐ M[a];
22: if a < t then
23: while b < t do
24: Set d ⇐ Q[b], e ⇐ =[b], Q[b] ⇐ t + 1 and =[b] ⇐ c;
25: Set b ⇐ d and c ⇐ e;
26: end while
27: if b = t then
28: Set Q[b] ⇐ t + 1 and =[b] ⇐ c;
29: end if
30: end if
31: for i = 1 to t do
32: if Q[Q[i]] = t + 1 and =[i] = =[Q[i]] then
33: Set Q[i] ⇐ t + 1;
34: end if
35: end for
36: end for

Suppose that L is an ultrametric relation on D. Then the corresponding pointer
representation (π, λ) is defined as

π(i) =
{

max{j : L(i, j) = λ(i)} if i < n,
n if i = n,

λ(i) =
{

min{L(i, j) : j > i} if i < n,
∞ if i = n.

Conversely, if (π, λ) is a pointer representation, then the corresponding ultrametric
relation R is defined as

R(i, j) =




λ(i) if j = π(i) > i,
λ(j) if i = π(j) > j ,
0 if i = j ,
∞ otherwise.

Let Rt be the restriction of R to the first t data points of D. If Lt is a MUR superior
to Rt , then a MUR superior to Rt+1 can be easily obtained from Lt . To do this, let (πt , λt )

be the pointer representation of a MUR Lt superior to Rt . The pseudocode of the CLINK
algorithm is described in Algorithm 7.2. It is modified from the SLINK algorithm. These
two algorithms cannot be further improved, because they require all pairwise dissimilarities
to be considered (Murtagh, 1983).
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7.4.4 BIRCH

Zhang et al. (1996) proposed an agglomerative hierarchical algorithm, called BIRCH (Bal-
anced Iterative Reducing and Clustering using Hierarchies), for clustering very large nu-
merical data sets in Euclidean spaces. It is also the first clustering algorithm in the database
area that takes account of noise.

In the algorithm of BIRCH, a clustering feature (CF) vector is used to summarize the
information of each cluster. Given a cluster C of a d-dimensional data set, the CF vector
for C is a triple defined as

CF(C) = (|C|, S1, S2),

where |C| is the number of instances in C, and S1 and S2 are d-dimensional vectors defined
as

S1 =
∑
x∈C

x =
(∑

x∈C
x1,
∑
x∈C

x2, . . . ,
∑
x∈C

xd

)
,

S2 =
∑
x∈C

x2 =
(∑

x∈C
x2

1 ,
∑
x∈C

x2
2 , . . . ,

∑
x∈C

x2
d

)
,

where xj (1 ≤ j ≤ d) is the value of the j th attribute of x.
At the beginning, a CF tree is built dynamically as new data objects are inserted. A

CF tree has three parameters: the branching factor B, the leaf factor L, and the threshold T .
Each nonleaf node contains at most B subnodes of the form [CFi , childi], each leaf node
contains at most L entries of the form [CFi], and the diameter of each entry in a leaf node
has to be less than T .

Outliers or noise are determined by considering the density of each entry in leaf nodes;
i.e., low-density entries of leaf nodes are treated as outliers. Potential outliers are written
out to disk in order to reduce the size of the tree. At certain points in the process, outliers
are scanned to see if they can be reabsorbed into the current tree without causing the tree to
grow in size.

After the CF tree is built, an agglomerative hierarchical clustering algorithm is applied
directly to the nodes represented by their CF vectors. Then for each cluster, a centroid is
obtained. Finally, a set of new clusters is formed by redistributing each data point to its
nearest centroid.

BIRCH works well when clusters are of convex or spherical shape and uniform size.
However, it is unsuitable when clusters have different sizes or nonspherical shapes (Guha
et al., 1998).

7.4.5 CURE

Guha et al. (1998) proposed an agglomerative hierarchical clustering algorithm called CURE
(Clustering Using REpresentatives) that can identify nonspherical shapes in large databases
and wide variance in size. In this algorithm, each cluster is represented by a certain fixed
number of points that are well scattered in the cluster. A combination of random sampling
and partitioning is used in CURE in order to handle large databases.
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CURE consists of six main steps: draw a random sample, partition the sample, par-
tially cluster the partitions, eliminate the outliers, cluster the partial clusters, and label the
data on the disk. Since CURE was developed for large databases, it begins by drawing a
random sample from the database. Then the sample is partitioned and data points in each
partition are partially clustered. After the outliers are eliminated, the preclustered data in
each partition are clustered in a final pass to generate the final clusters.

In the first step, a random sample is drawn in order to handle large databases. In this
step, the Chernoff bounds (Motwani and Raghavan, 1995) are used to analytically derive
values for sample sizes such that the probability of missing clusters is low. The following
theorem is proved.

Theorem 7.1. For a cluster C, if the sample size s satisfies

s ≥ f n+ n

|C| log

(
1

δ

)
+ n

|C|

√(
log

1

δ

)2

+ 2f |C| log
1

δ
,

then the probability that the sample contains fewer than f |C| (0 ≤ f ≤ 1) points belonging
to C is less than δ, 0 ≤ δ ≤ 1.

In the second step, a simple partitioning scheme is proposed for speeding up CURE
when input sizes become large, since samples of larger sizes are required in some situations,
such as when separation between clusters decreases and clusters become less densely packed.
This is done by partitioning the sample space into p partitions, each of size s

p
, where s is

the sample size.
In the third step, each partition is clustered until the final number of clusters in each

partition reduces to s
pq

for some constant q > 1. Since data sets almost always contain
outliers, the fourth step of CURE is to eliminate outliers. The idea of this step is based on
the fact that outliers tend, due to their large distances from other points, to merge with other
points less and typically grow at a much slower rate than actual clusters in an agglomerative
hierarchical clustering.

s
pq

clusters are generated for each partition in the third step. In the fifth step, a
second clustering pass is run on the s

q
partial clusters for all the partitions. The hierarchical

clustering algorithm is used only on points in a partition.
Since the input to CURE’s clustering algorithm is a set of randomly sampled points

from the original data set, the last step is to assign the appropriate cluster labels to the
remaining data points such that each data point is assigned to the cluster containing the
representative point closest to it.

The space complexity of CURE is linear in the input size n. The worst-case time
complexity is O(n2 log n), which can be further reduced to O(n2) in lower-dimensional
spaces (e.g. two-dimensional space).

7.4.6 DIANA

DIANA (DIvisive ANAlysis) presented in (Kaufman and Rousseeuw, 1990, Chapter 6)
is a divisive hierarchical algorithm based on the proposal of Macnaughton-Smith et al.
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(1964). It can be applied to all data sets that can be clustered by means of the agglomerative
hierarchical algorithms.

The algorithm DIANA proceeds by a series of successive splits. At each step, the
biggest cluster (i.e., the cluster with the largest diameter, which is defined to be the largest
dissimilarity between two objects in it) is divided until at step n−1 each object is in a single
cluster.

Let C be a cluster. Then the diameter of C is defined to be

Diam(C) = max
x,y∈C d(x, y). (7.23)

The values of the diameter are also used as heights to represent the clustering structure in
the dendrograms or banners.

At each step, let C (|C| ≥ 2) be the cluster to be divided, and let A and B be the
clusters divided from C, i.e., A ∩ B = ? and A ∪ B = C. Initially, A = C and B = ?,
and the algorithm DIANA finds A and B by moving points from A to B iteratively. At the
first stage, a point y1 will be moved from A to B if it maximizes the function

D(x, A\{x}) = 1

|A| − 1

∑
y∈A,y �=x

d(x, y), (7.24)

where d(·, ·) can be any distance measure appropriate for the data.
Then A and B are updated as

Anew = Aold\{y1},
Bnew = Bold ∪ {y1}.

In the next stage, the algorithm looks for other points in A that should be moved to
B. Let x ∈ A, and let the test function be defined as

D(x, A\{x})−D(x, B)

= 1

|A| − 1

∑
y∈A,y �=x

d(x, y)− 1

|B|
∑
z∈B

d(x, z). (7.25)

If a point y2 maximizes the function in equation (7.25) and the maximal value is strictly
positive, then y2 will be moved from A to B. If the maximal value is negative or 0, the
process is stopped and the division from C to A and B is completed.

Some variants of the process of dividing one cluster into two have been discussed
in (Kaufman and Rousseeuw, 1990, Chapter 6). For example, the test function defined in
equation (7.25) can be switched to

D(A\{x}, B ∪ {x}).
When a data point maximizes the above function, then it may be moved from A to B. A
possible stopping rule is that D(Anew, Bnew) no longer increases.

Since the algorithm DIANA uses the largest dissimilarity between two objects in a
cluster as the diameter of the cluster, it is sensitive to outliers. Other techniques for splitting
a cluster and examples of the algorithm have been presented in (Kaufman and Rousseeuw,
1990).
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7.4.7 DISMEA

DISMEA, presented by Späth (1980) based on a divisive method proposed in Macqueen
(1967), is a divisive hierarchical clustering algorithm that uses the k-means algorithm to
subdivide a cluster into two. The divisive method produces a hierarchy that consists of n
levels, where n is the size of the given data set. Starting with the whole data set, at each
successive step, the cluster with the largest sum of squared distances (SSD) is divided into
two clusters. This process is continued until every cluster contains a single data point.

More specifically, for a given data set D with n objects, the first step of the divisive
method is to find a bipartition C1, C2 of D (i.e., C1 �= ?,C2 �= ?, C1 ∩ C2 = ?, and
C1 ∪ C2 = D) such that the objective function

F(C1, C2;D) =
2∑

i=1

∑
x∈Ci

‖x − µ(Ci)‖2 (7.26)

is minimized, where µ(Ci) is the centroid of cluster Ci , i.e.,

µ(Ci) = 1

|Ci |
∑
x∈Ci

x.

At the succeeding steps, the cluster with the largest SSD is selected to be divided,
where the SSD for a given cluster C is defined as

E(C) =
∑
x∈C

‖x − µ(C)‖2,

where µ(C) is the centroid of cluster C.
For example, let C1, C2, . . . , Cj (j < n) be the clusters at a step. Then the next step

is to divide Cj0 if
E(Cj0) = max

1≤s≤j
E(Cj ).

One possible way to find the optimal bipartition is to examine all the 2|C|−1 − 1 possible
bipartitions and find an optimal one. However, this is impractical when the size of the cluster
to be subdivided is large. Another approach is necessary to find an optimal bipartition.

Instead of examining all possible divisions, the algorithm DISMEA uses the k- means
algorithm to subdivide a cluster into two. In practice, the maximum number of clusters
kmax (≤ n) is specified in the algorithm DISMEA. The FORTRAN code for the algorithm
DISMEA and some examples have been presented in (Späth, 1980).

7.4.8 Edwards and Cavalli-Sforza Method

Edwards and Cavalli-Sforza (1965) have suggested a divisive hierarchical algorithm by
successfully splitting the objects into two groups to maximize the between-groups sum of
squares. In this algorithm, the cluster density is measured by the variance, i.e., the within-
cluster sum of squares divided by the number of points. At the beginning of the algorithm,
the whole data set is divided into two groups according to the criterion mentioned above.
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Then each of the two groups will be split into two groups according to the same criterion.
One then continues splitting until each cluster contains only one point.

The technique adopted by Edwards and Cavalli-Sforza (1965) to split a group of data
points into two subgroups is to enumerate all possible bipartitions and choose the one that
minimizes the within-group sum of squares. Let D be a set of n data points. Then there
are 2n−1 − 1 different ways to divide D into two clusters. More specifically, let Ai, Bi

be a partition of D for i = 1, 2, . . . , 2n−1 − 1, i.e., Ai ∪ Bi = D, Ai ∩ Bi = ?, and
Ai �= ?,Bi �= ?. Then the within-cluster sum of squares of the partition (Ai, Bi) is

WSSi = 1

|Ai |
∑

x,y∈Ai

‖x − y‖2 + 1

|Bi |
∑

x,y∈Bi

‖x − y‖2 (7.27)

for i = 1, 2, . . . , 2n−1 − 1.
The best partition is (Ai0 , Bi0) such that

WSSi0 = min
1≤i≤2n−1−1

WSSi.

Edwards and Cavalli-Sforza (1965) also pointed out that the best partition may not
be unique in some cases. For example, if the distance between any two data points is the
same, say, d , then splitting n points into two clusters A,B such that |A| = r, |B| = n − r

will give a within-cluster sum of squares of

1

r
· 1

2
r(r − 1)d2 + 1

n− r
· 1

2
(n− r)(n− r − 1)d2 = 1

2
(n− 2)d2,

which is independent of r .
For the Edwards and Cavalli-Sforza method, a major difficulty is that the initial

division requires an examination of all 2n−1 − 1 bipartitions, where n is the size of the
original data set. This will take an enormous amount of computer time (Gower, 1967).
Scott and Symons (1971a) suggested a refined algorithm that limits the consideration to
(2d − 2)

(
n

d

)
partitions, where n is the size of the data set and d is the dimensionality of

the data set. The improved algorithm is based on the results by Fisher (1958). Regarding
the minimum variance partition for the univariate case, i.e., d = 1, Fisher (1958) defines a
contiguous partition to be such that if xi and xj (xi ≤ xj ) belong to the same group, then
every object xk with xi ≤ xk ≤ xj also belongs to the group, and he proved that the optimal
partition is contiguous.

For d ≥ 2, Scott and Symons (1971a) generalized the definition of a contiguous
partition into k groups to be such that if each member of a set of data points belongs to the
same group, then every data point in the convex hull (Barber et al., 1996) of the set also
belongs to the group. They also generalized Fisher’s result as follows:

1. The minimum variance partition is contiguous.

2. For d ≥ 2, the two groups of the minimum variance partition are separated by a
(d − 1)-dimensional hyperplane containing d of the data points.

Thus for each of the
(
n

d

)
choices of d data points, there are 2d − 2 (d ≥ 2) possible

assignments of the d points in the hyperplane into two groups. Since it is simple to decide
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on which side of the hyperplane each of the remaining n− d points will lie, there are a total
of (2d − 2)

(
n

d

)
partitions that should be considered.

Note that, if d ≥ 2, then the same partition will be considered many times. For
example, when d = 2, the same partition will be considered twice. In fact, it has been
shown that the number of distinct contiguous partitions is given by (Harding, 1967)

νd(n) =
d∑

i=1

(
n

i

)
.

7.5 Summary
Comprehensive discussions of hierarchical clustering methods can be found in (Gordon,
1987) and (Gordon, 1996). Techniques for improving hierarchical methods are discussed
in (Murtagh, 1983), and (Murtagh, 1984a) discussed the complexities of some major ag-
glomerative hierarchical clustering algorithms. A review of applying hierarchical clustering
methods to document clustering is given in (Willett, 1988). Other discussions are provided
in (Hodson, 1970), (Lance and Williams, 1967a), and (Lance and Williams, 1967c).

Posse (2001) proposed a hierarchical clustering method for large datasets using the
MST algorithm to initialize the partition instead of the usual set of singleton clusters. Other
hierarchical clustering algorithms can be found in (Rohlf, 1970) and (Day and Edelsbrunner,
1984).
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Chapter 8

Fuzzy Clustering
Algorithms

Hard (or crisp) clustering algorithms require that each data point of the data set belong to
one and only one cluster. Fuzzy clustering extends this notion to associate each data point
in the data set with every cluster using a membership function. Since the concept of fuzzy
sets (Zadeh, 1965) was introduced, fuzzy clustering has been widely discussed, studied, and
applied in various areas. Early work on applying fuzzy set theory in cluster analysis was
proposed by Bellman et al. (1966) and Ruspini (1969).

Let D be a data set with n objects, each of which is described by d attributes, and let
c be an integer between one and n. Then a fuzzy c-partition is defined by a c × n matrix
U = (uli) that satisfies

uli ∈ [0, 1], 1 ≤ l ≤ c, 1 ≤ i ≤ n, (8.1a)

c∑
l=1

uli = 1, 1 ≤ i ≤ n, (8.1b)

n∑
i=1

uli > 0, 1 ≤ l ≤ c, (8.1c)

where uli denotes the degree of membership of the object i in the lth cluster.
For each fuzzy c-partition, there is a corresponding hard c-partition. Let uli (l =

1, 2, . . . , c, i = 1, 2, . . . , n) be the membership of any fuzzy c-partition. Then the corre-
sponding hard c-partition of uli can be defined as ωli as follows (Xie and Beni, 1991):

ωli =
{

1 if l = arg max
1≤j≤c

uji,

0 otherwise.

8.1 Fuzzy Sets
The concept of the fuzzy set was first introduced by Zadeh (1965). A fuzzy set is defined
to be a class of objects with a continuum of grades of membership. Each fuzzy set is
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characterized by a membership function that assigns to each object a grade of membership
ranging from 0 to 1. In this section, we will review some basic properties of the fuzzy set.
Readers are referred to the original paper Zadeh (1965) or the reprinted paper Zadeh (1992).

Let X = {x} be a space of points, where x denotes a generic element of X. A fuzzy
set A in X is characterized by a membership (characteristic) function fA(x) that associates
with each point in X a real number in the interval [0, 1]. Thus, when A is a set in the
ordinary sense of the term, fA(x) can take on only two values, 0 and 1, with fA(x) = 1 or
0 according as x does or does not belong to A. A larger value of fA(x) indicates a higher
grade of membership of x in A.

Several definitions involving fuzzy sets are obvious extensions of the corresponding
definitions for ordinary sets. Below we will introduce these definitions for fuzzy sets.

Emptiness. Afuzzy setA is empty if and only if its membership functionfA(x) is identically
zero on X, i.e., fA(x) ≡ 0.

Equal. Two fuzzy setsA andB are equal, written asA = B, if and only if their membership
functions are identical, i.e., fA(x) = fB(x) ∀x ∈ X.

Complementation. The complement of a fuzzy set A, denoted by A′, is defined by

fA′(x) = 1− fA(x) ∀x ∈ X.

Containment. A fuzzy set A is said to be contained in a fuzzy set B (or, equivalently, A is a
subset of B, or A is smaller than or equal to B) if and only if fA(x) ≤ fB(x)∀x ∈ X.
In symbols,

A ⊂ B ⇔ fA ≤ fB.

Union. The union of two fuzzy sets A and B is again a fuzzy set C, written as C = A∪B,
whose membership function is defined by

fC(x) = max{fA(x), fB(x)}, x ∈ X,

where fA(x) and fB(x) are membership functions of A and B, respectively. Let ∨
stand for maximum. Then the union can be represented in abbreviated form as

fC = fA ∨ fB.

Like the union of ordinary sets, the union ∪ of fuzzy sets has the associative property,
i.e., A∪ (B ∪C) = (A∪B)∪C. It can be shown that the union of fuzzy sets A and
B is the smallest fuzzy set containing both A and B.

Intersection. The intersection of two fuzzy sets A and B is again a fuzzy set C, written as
C = A ∩ B, whose membership function is defined by

fC(x) = min{fA(x), fB(x)} ∀x ∈ X,

where fA(x) and fB(x) are membership functions of A and B, respectively. In
abbreviated form,

fC = fA ∧ fB,
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where∧means minimum. It can also be shown that the intersection of two fuzzy sets
A and B is the largest fuzzy set contained in both A and B. Like union∪, intersection
∩ has the associative property.

Based on the operations of union, intersection, and complementation, it is easy to
extend many of the basic identities that hold for ordinary sets to fuzzy sets, such as the De
Morgan laws:

(A ∪ B)′ = A′ ∩ B ′,
(A ∩ B)′ = A′ ∪ B ′,

and the distributive laws:

C ∩ (A ∪ B) = (C ∩ A) ∪ (C ∩ B),

C ∪ (A ∩ B) = (C ∪ A) ∩ (C ∪ B),

where A,B, and C are fuzzy sets.

8.2 Fuzzy Relations
Let D be a subset of a d-dimensional Euclidean space Rd and c be a positive integer
bigger than 1. A partition of D into c clusters can be represented by the indicator function
µ1, µ2, . . . , µc such that for all x ∈ D

µi(x) =
{

1 if x is in the ith cluster,
0 otherwise,

i = 1, 2, . . . , c.

A hard relation r in D is defined to be a function r : D×D → {0, 1}, where x and y in
D are said to have a relation if r(x, y) = 1. A hard relation r in D is called an equivalence
relation if and only if it satisfies reflexivity, symmetry, and transitivity, i.e., for all x, y ∈ D,
the following conditions are satisfied (Yang, 1993):

1. Reflexivity: r(x, x) = 1.

2. Symmetry: r(x, y) = r(y, x).

3. Transitivity: If r(x, z) = r(y, z) for some z ∈ D, then r(x, y) = 1.

Consider a data set D = {x1, x2, . . . , xn} containing n objects in Rd . For con-
venience, denote µi(xj ) by µij , i = 1, 2, . . . , c, j = 1, 2, . . . , n, and r(xj , xl) by rjl ,
j, l = 1, 2, . . . , n. Let Vcn be the usual vector space of real c×n matrices and let µij be the
(i, j)th element of U ∈ Vcn. Then the hard c-partitions space for the data set D is defined
as (Bezdek, 1981)

Mc =

U ∈ Vcn : µij ∈ {0, 1} ∀i, j ;

c∑
i=1

µij = 1 ∀j ; 0 <

n∑
j=1

µij ∀i

 .



154 Chapter 8. Fuzzy Clustering Algorithms

For any U = (µij ) ∈ Mc, there is a corresponding relation matrix R = (rjl) ∈ Vnn

defined by

rjl =
{

1 if µij = µil = 1 for some i,

0 otherwise.

Let A = (aij ) and B = (bij ) in Vnn, and define A ≤ B if and only if aij ≤ bij for
all i, j = 1, 2, . . . , n. Define composition R ◦ R = (r ′ij ) by r ′ij = max1≤l≤n min{ril, rlj }.
Then the set of all equivalence relations on D can be represented by

Rn =
{
R ∈ Vnn : rij ∈ {0, 1} ∀i, j ; I ≤ R; R = R ◦ R} .

Thus, for any U ∈ Mc, there is a relation matrix R ∈ Rn such that R is an equivalence
relation corresponding to U .

The fuzzy set, first proposed by Zadeh (1965), is an extension to allow µi(·) to be a
membership function assuming values in the interval [0, 1]. By relaxing the conditions of
Mc and Rn, we can obtain the fuzzy extension of Mc and Rn as

Mfc =

U ∈ Vcn : µij ∈ [0, 1] ∀i, j ;

c∑
i=1

µij = 1 ∀j ; 0 <

n∑
j=1

µij ∀i



and

Rfn =
{
R ∈ Vnn : rij ∈ [0, 1] ∀i, j ; I ≤ R; R = RT and R ≥ R ◦ R} .

Then Mfc is a fuzzy c-partitions space for D, and Rfn is the set of all similarity relations
in D.

Fuzzy clustering based on fuzzy relations was first proposed by Tamura et al. (1971).

8.3 Fuzzy k-means
The fuzzy k-means algorithm (Bezdek, 1974b) is an extension of the k-means algorithm
for fuzzy clustering. Give a data set D = {x1, x2, . . . , xn}, the algorithm is based on
minimization of the objective function

Jq(U, V ) =
n∑

j=1

k∑
i=1

u
q

ij d
2(xj , Vi) (8.2)

with respect to U (a fuzzy k-partition of the data set) and to V (a set of k prototypes),
where q is a real number greater than 1, Vi is the centroid of cluster i, uij is the degree of
membership of object xj belonging to cluster i, d2(·, ·) is an inner product metric, and k is
the number of clusters. The parameter q controls the “fuzziness” of the resulting clusters
(Bezdek, 1981).

Algorithm 8.1. The fuzzy k-means algorithm.

S1 Choose initial centroids Vi(i = 1, 2, . . . , k);
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S2 Compute the membership matrix as follows:

uij =
[
d2(xj , Vi)

]− 1
q−1

k∑
l=1

[
d2(xj , Vl)

]− 1
q−1

, i = 1, 2, . . . , k, j = 1, 2, . . . , n; (8.3)

S3 Compute new centroids V̂i (i = 1, 2, . . . , k) as

V̂i =

n∑
j=1

u
q

ijxj

n∑
j=1

u
q

ij

,

and update the membership matrix (uij ) to (ûij ) according to equation (8.3);

S4 If maxij |uij − ûij | < ε, then stop; otherwise go to step S3, where ε is a termination
criterion between 0 and 1.

The fuzzy clustering is carried out via an iterative optimization of equation (8.2)
(Bezdek, 1974b). The procedure of the optimization is shown in Algorithm 8.1. The fuzzy
k-means algorithm and its derivatives are also presented in (Gath and Geva, 1989).

For hyperellipsoidal clusters and clusters with variable densities and unequal sizes,
Gath and Geva (1989) presented an “exponential” distance measure based on maximum
likelihood estimation, i.e.,

d2
e (xj , Vi) =

√
det(Fi)

Pi

exp

[
(xj − Vi)

T F−1
i (xj − Vi)

2

]
,

where Fi is the fuzzy covariance matrix of the ith cluster and Pi is the a priori probability
of selecting the ith cluster.

The above distance is used in the calculation of h(i|xj ), the probability of selecting
the ith cluster given the j th object:

h(i|xj ) =
1

d2
e (xj ,Vi )

k∑
l=1

d2
e (xj , Vl)

. (8.4)

If we let q = 2 in equation (8.3), h(i|xj ) defined in equation (8.4) is similar to uij .
Thus, if we substitute equation (8.4) instead of equation (8.3) in step S2 of Algorithm 8.1,
the fuzzy k-means algorithm becomes the FMLE (Fuzzy modification of the Maximum
Likelihood Estimation) algorithm. In addition to computing the new centroids, Step S3 of
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Algorithm 8.1 needs to calculate Pi and Fi :

Pi = 1

n

n∑
j=1

h(i|xj ),

Fi =

n∑
j=1

h(i|xj )(xj − Vi)(xj − Vi)
T

n∑
j=1

h(i|xj )

.

Gath and Geva (1989) also pointed out that the FMLE algorithm does not perform
well, as it seeks an optimum in a narrow local region due to the “exponential” distance
incorporated in the algorithm.

Other generalizations of the fuzzy k-means algorithm are presented and discussed in
(Yang, 1993).

8.4 Fuzzy k-modes
To describe the fuzzy k-modes algorithm (Huang and Ng, 1999), let us begin with some
notation. Let D = {x1, x2, . . . , xn} be a categorical data set with n objects, each of which
is described by d categorical attributes A1, A2, . . . , Ad . Attribute Aj (1 ≤ j ≤ d) has nj
categories, i.e., DOM(Aj) = {aj1, aj2, . . . , ajnj }. Let the cluster centers be represented
by zl = (zl1, zl2, . . . , zld) for 1 ≤ l ≤ k, where k is the number of clusters. The simple
matching distance measure between x and y in D is defined as

dc(x, y) =
d∑

j=1

δ(xj , yj ), (8.5)

where xj and yj are the j th components of x and y, respectively, and δ(·, ·) is the simple
matching distance (see Subsection 6.3.1).

Then the objective of the fuzzy k-modes clustering is to find W and Z that minimize

Fc(W,Z) =
k∑

l=1

n∑
i=1

wα
lidc(xi , zl), (8.6)

subject to (8.1a), (8.1b), and (8.1c), where α > 1 is the weighting component, dc(·, ·) is
defined in equation (8.5), W = (wli) is the k × n fuzzy membership matrix, and Z =
{z1, z2, . . . , zk} is the set of cluster centers. Note that α = 1 gives the hard k-modes
clustering, i.e., the k-modes algorithm.

To update the cluster centers given the estimate of W , Huang and Ng (1999) proved
the following theorem.

Theorem 8.1. The quantity Fc(W,Z) defined in equation (8.6) is minimized if and only if
zlj = ajr ∈ DOM(Aj), where

r = arg max
1≤t≤nj

∑
i,xij=ajt

wα
li ,
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i.e., ∑
i,xij=ajr

wα
li ≥

∑
i,xij=ajt

wα
li , 1 ≤ t ≤ nj ,

for 1 ≤ j ≤ d and 1 ≤ l ≤ k.

To update the fuzzy membership matrix W given the estimate of Z, Huang and Ng
(1999) also presented the following theorem.

Theorem 8.2. Let Z = {z1, z2, . . . , zk} be fixed. Then the fuzzy membership matrix W

that minimizes the quantity Fc(W,Z) defined in equation (8.6) subject to (8.1a), (8.1b), and
(8.1c) is given by

wli =




1 if xi = zl ,
0 if xi = zh, h �= l,

1
k∑

h=1

[
d(xi ,zl )
d(xi ,zh)

] 1
α−1

otherwise, 1 ≤ l ≤ k, 1 ≤ i ≤ n.

Based on the two theorems described above, the fuzzy k-modes algorithm can be
implemented recursively (see Algorithm 8.2).

Algorithm 8.2. Fuzzy k-modes algorithm, where r is the maximum number of iter-
ations.

1: Choose initial point Z0 ∈ Rmk;
2: Determine the W0 such that the cost function F(W0, Z0) is minimized;
3: for t = 1 to r do
4: Determine the Z1 such that the cost function F(W0, Z1) is minimized;
5: if F(W0, Z1) = F(W0, Z0) then
6: stop;
7: else
8: Determine the W1 such that the cost function F(W1, Z1) is minimized;
9: if F(W1, Z1) = F(W0, Z1) then

10: stop;
11: else
12: W0 ⇐ W1;
13: end if
14: end if
15: end for

The fuzzy k-modes algorithm is described in Algorithm 8.2. The difficult part of the
fuzzy k-modes algorithm is to minimize the cost function and to reduce the computational
complexity. This issue is also addressed in (Huang and Ng, 1999).



158 Chapter 8. Fuzzy Clustering Algorithms

8.5 The c-means Method
The c-means clustering algorithm (Bezdek, 1981; Bobrowski and Bezdek, 1991) is a clus-
tering method that allows one piece of data to belong to two or more clusters. Let X =
{x1, x2, . . . , xM} be a set of numerical data in RN . Let c be an integer, 1 < c < M . Given
X, we say that c fuzzy subsets {uk : X → [0, 1]} are a c-partition of X if the following
conditions are satisfied:

0 ≤ ukj ≤ 1 ∀k, j, (8.7a)

c∑
k=1

ukj = 1 ∀j, (8.7b)

0 <

M∑
j=1

ukj < n ∀k, (8.7c)

where ukj = uk(xj ), 1 ≤ k ≤ c and 1 ≤ j ≤ M . Let the cM values ukj satisfying the
above conditions be arrayed as a c×M matrix U = [ukj ]. Then the set of all such matrices
are the nondegenerate fuzzy c-partitions of X:

MfcM = {U ∈ RN : ukj satisfies conditions (8.7) ∀k and j}.
If all the ukj ’s are either 0 or 1, we have the subset of hard c-partitions of X:

McM = {U ∈ MfcM : ukj = 0 or 1 ∀k and j}.
The ukj ’s can be treated as the membership of xj in the kth cluster of X. Here c

is assumed to be known. The well-known objective function for clustering in X is the
classical within-group sum of squared errors (WGSS) function (Bobrowski and Bezdek,
1991), which is referred to as J1:

J1(U, v;X) =
c∑

k=1

M∑
j=1

ukj (‖xj − vk‖I )2,

where v = (v1, v2, . . . , vc) is a vector of cluster centers, vk ∈ RN for 1 ≤ k ≤ c and
U ∈ McM .

The goal is to find an optimal partition U ∗ of X such that the pairs (U ∗, v∗) are local
minimizers of J1.

There is also a generalized form of the objective function, the fuzzy c-prototypes
form:

Jm(U, P ;X) =
c∑

k=1

M∑
j=1

(ukj )
mDkj ,

wherem ∈ [1,∞) is a weighting exponent on each fuzzy membership,U ∈ MfcM is a fuzzy
c-partition of X, P = (P1, P2, . . . , Pc) are cluster prototypes, and Dkj is some measure of
similarity (error, etc.) between Pk and xj .
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The measure of similarity Dkj can be defined in many ways, such as the inner product
norms, ‖xj − vk‖2

A = (xj − vk)
T A(xj − vk), where A is a positive definite N ×N matrix,

and the Minkowski norms,

Dkj = ‖xj − vk‖p =
[

N∑
s=1

|xjs − vks |P
] 1

p

, p ≥ 1.

If we restrict ukj ∈ {0, 1} in (8.7), then we obtain a hard c-means algorithm (Pal and
Biswas, 1997). The convergence properties of the fuzzy c-means algorithm are presented
in (Hathaway and Bezdek, 1984) and Bezdek et al. (1992).

8.6 Summary
We introduced fuzzy sets and some fuzzy clustering algorithms in this chapter. Conventional
clustering approaches assume that an object can belong to one and only one cluster. In
practice, however, the separation of clusters is a fuzzy notion. Therefore, fuzzy clustering
algorithms that combine fuzzy logic and cluster analysis techniques have special advantages
over conventional clustering algorithms by allowing each object to be assigned to one or
more clusters with some probabilities. Because of the important applications of fuzzy
clustering analysis, Höppner et al. (1999) devoted a whole book to addressing the fuzzy
clustering problem.
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Chapter 9

Center-based Clustering
Algorithms

Compared to other types of clustering algorithms, center-based algorithms are very effi-
cient for clustering large databases and high-dimensional databases. Usually, center-based
algorithms have their own objective functions, which define how good a clustering solution
is. The goal of a center-based algorithm is to minimize its objective function. Clusters
found by center-based algorithms have convex shapes and each cluster is represented by
a center. Therefore, center-based algorithms are not good choices for finding clusters of
arbitrary shapes. In this chapter, we shall present and discuss some center-based clustering
algorithms and their advantages and disadvantages. We should mention that the expectation-
maximization (EM) algorithm can be treated as a center-based algorithm, but we will defer
the introduction of the EM algorithm to the chapter on model-based algorithms (Chapter 14).

9.1 The k-means Algorithm
The conventional k-means algorithm described in Algorithm 9.1, one of the most used
clustering algorithms, was first described by Macqueen (1967). It was designed to cluster
numerical data in which each cluster has a center called the mean. The k-means algorithm
is classified as a partitional or nonhierarchical clustering method (Jain and Dubes, 1988). In
this algorithm, the number of clusters k is assumed to be fixed. There is an error function in
this algorithm. It proceeds, for a given initial k clusters, by allocating the remaining data to
the nearest clusters and then repeatedly changing the membership of the clusters according
to the error function until the error function does not change significantly or the membership
of the clusters no longer changes. The conventional k-means algorithm (Hartigan, 1975;
Hartigan and Wong, 1979) is briefly described below.

Let D be a data set with n instances, and let C1, C2, . . . , Ck be the k disjoint clusters
of D. Then the error function is defined as

E =
k∑

i=1

∑
x∈Ci

d(x, µ(Ci)), (9.1)

161
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where µ(Ci) is the centroid of cluster Ci . d(x, µ(Ci)) denotes the distance between x and
µ(Ci), and it can be one of the many distance measures discussed before, a typical choice
of which is the Euclidean distance deuc(·, ·) defined in (6.11).

Algorithm 9.1. The conventional k-means algorithm.

Require: Data set D, Number of Clusters k, Dimensions d:
{Ci is the ith cluster}
{1. Initialization Phase}

1: (C1, C2,…,Ck) = Initial partition of D.
{2. Iteration Phase}

2: repeat
3: dij = distance between case i and cluster j ;
4: ni = arg min1≤j≤k dij ;
5: Assign case i to cluster ni ;
6: Recompute the cluster means of any changed clusters above;
7: until no further changes of cluster membership occur in a complete iteration
8: Output results.

The k-means algorithm can be divided into two phases: the initialization phase and
the iteration phase. In the initialization phase, the algorithm randomly assigns the cases into
k clusters. In the iteration phase, the algorithm computes the distance between each case
and each cluster and assigns the case to the nearest cluster.

We can treat the k-means algorithm as an optimization problem. In this sense, the
goal of the algorithm is to minimize a given objective function under certain conditions.
Let D = {xi , i = 1, 2, . . . , n} be a data set with n instances and k be a given integer. The
objective function can be defined as

P(W,Q) =
k∑

l=1

n∑
i=1

wildeuc(xi ,ql), (9.2)

where Q = {ql , l = 1, 2, . . . , k} is a set of objects, deuc(·, ·) is the Euclidean distance
defined in (6.11), and W is an n× k matrix that satisfies the following conditions:

1. wil ∈ {0, 1} for i = 1, 2, . . . , n, l = 1, 2, . . . , k,

2.
∑k

l=1 wil = 1 for i = 1, 2, . . . , n.

The k-means algorithm can be formatted as the following optimization problem P (Selim
and Ismail, 1984; Bobrowski and Bezdek, 1991): Minimize P(W,Q) in (9.2) subject to
conditions (1) and (2).

The optimization problem P can be solved by iteratively solving the following two
subproblems (Huang, 1998):

• Subproblem P1: Fix Q = Q̂ and solve the reduced problem P(W, Q̂).

• Subproblem P2: Fix W = Ŵ and solve the reduced problem P(Ŵ ,Q).
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As to how to solve the subproblems P1 and P2, we have the following theorems
(Huang, 1998).

Theorem 9.1. In subproblem P1, let Q̂ = {1̂l , l = 1, 2 . . . , k} be fixed. Then the function
P(W, Q̂) is minimized if and only if

wil =
{

1 if deuc(xi , q̂l) = min
1≤t≤k

deuc(xi , q̂t ),

0 otherwise
(9.3)

for i = 1, 2, . . . , n and l = 1, 2, . . . , k.

Theorem 9.2. In subproblem P2, let Ŵ = (ŵil) be fixed. Then the function P(Ŵ ,Q) is
minimized if and only if

qlj =
∑n

i=1 ŵilxij∑n
i=1 ŵil

(9.4)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d.

Algorithm 9.2. The k-means algorithm treated as an optimization problem.

Require: Data set D, Number of Clusters k, Dimensions d:
1: Choose an initial Q0 and solve P(W,Q0) to obtain W 0;
2: Let T be the number of iterations;
3: for t = 0 to T do
4: Let Ŵ ⇐ Wt and solve P(Ŵ ,Q) to obtain Qt+1;
5: if P(Ŵ ,Qt) = P(Ŵ ,Qt+1) then
6: Output Ŵ ,Qt ;
7: Break;
8: end if
9: Let Q̂⇐ Qt+1 and solve P(Wt, Q̂) to obtain Wt+1;

10: if P(Wt, Q̂) = P(Wt+1, Q̂) then
11: Output Wt, Q̂;
12: Break;
13: end if
14: end for
15: Output WT+1,QT+1.

The pseudocode of the optimization algorithm is described in Algorithm 9.2. The
computational complexity of the algorithm is O(nkd) per iteration (Phillips, 2002), where
d is the dimension, k is the number of clusters, and n is the number of data points in the
data set.

Since the sequence P(·, ·) generated by the algorithm is strictly decreasing, the al-
gorithm will converge to a local minimum point after a finite number of iterations (Selim
and Ismail, 1984). Convergence and some probability properties regarding the k-means
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algorithm are also discussed in (Pollard, 1981), (Pollard, 1982), and (Serinko and Babu,
1992). García-Escudero and Gordaliza (1999) discussed the robustness properties of the
k-means algorithm.

As one of the most often used clustering algorithms, the k-means algorithm has some
important properties:

• It is efficient in clustering large data sets, since its computational complexity is linearly
proportional to the size of the data sets.

• It often terminates at a local optimum (Anderberg, 1973; Selim and Ismail, 1984).

• The clusters have convex shapes, such as a ball in three-dimensional space (Anderberg,
1973).

• It works on numerical data.

• The performance is dependent on the initialization of the centers.

The k-means algorithm has some drawbacks (Peńa et al., 1999). In particular, the
performance is dependent on the initialization of the centers, as mentioned above. As
a result, some methods for selecting good initial centers are proposed, for example, in
(Babu and Murty, 1993) and (Bradley and Fayyad, 1998). Peńa et al. (1999) provide a
comparison of four initialization methods: a random method, Forgy’s approach (Anderberg,
1973), Macqueen’s approach (Macqueen, 1967), and Kaufman’s approach (Kaufman and
Rousseeuw, 1990). Other initialization methods are presented in (Khan and Ahmad, 2004).

In the iteration phase of the algorithm, the objects will be moved from one cluster to
another in order to minimize the objective function. Tarsitano (2003) presents a computa-
tional study of the shortcomings and relative merits of 17 reallocation methods for the k-
means algorithm.

Another drawback of the k-means algorithm is that it does not work effectively on
high-dimensional data (Keim and Hinneburg, 1999). Also, working only on numerical data
restricts some applications of the k-means algorithm.

The algorithm presented above is usually called the standard k-means algorithm. The
standard k-means algorithm has several variations, such as the k-harmonic algorithm, the
fuzzy k-means algorithm, and the Gaussian EM algorithm. Hamerly and Elkan (2002)
investigated the properties of the standard k-means algorithm and its variations and alter-
natives.

9.2 Variations of the k-means Algorithm
Many clustering algorithms originating from the k-means algorithm are presented in (Faber,
1994), (Bradley and Fayyad, 1998), (Alsabti et al., 1998), and (Bottou and Bengio, 1995).
These clustering algorithms were developed to improve the performance of the standard
k-means algorithm. We will address some of these algorithms in subsequent sections.
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9.2.1 The Continuous k-means Algorithm

The continuous k-means algorithm, proposed by Faber (1994), is faster than the standard
k-means algorithm. It is different from the standard k-means algorithm in the following
aspects. Firstly, in the continuous k-means algorithm, the prototypes (or reference points)
are chosen as a random sample from the whole database, while in the standard k-means
algorithm the initial points are chosen arbitrarily. Secondly, the data points are treated
differently. During each complete iteration, the continuous k-means algorithm examines
only a sample of the data points, while the standard k-means algorithm examines all the
data points in sequence.

Theoretically, random sampling represents a return to Macqueen’s original concept
of the algorithm as a method of clustering data over a continuous space. In Macqueen’s
formulation, the error measure Ei for each region Ri is given by

Ei =
∫
Ri

ρ(x)‖x − zi‖2dx,

where ρ(·) is the probability distribution function, which is a continuous function defined
over the space, and zi is the centroid of the region Ri . The sum of all the Ei’s is the total
error measure.

A random sample of the data set can be a good estimate of the probability distribution
function ρ(x). Such a sample yields a representative set of centroids and a good estimate
of the error measure without using all the data points in the original data set. Since both
the reference points and the data points for updates are chosen by random sampling, the
continuous k-means algorithm is generally faster than the standard k-means algorithm,
and ten times faster than Lloyd’s algorithm (Lloyd, 1982). Ways of further reducing the
computer time are discussed in (Faber, 1994).

9.2.2 The Compare-means Algorithm

In order to accelerate the k-means algorithm, the algorithm compare-means (Phillips, 2002)
uses a simple approach to avoid many unnecessary comparisons.

Let x be a point in D and µi and µj be two means. By the triangle inequality, we
have d(x, µi)+ d(x, µj ) ≥ d(µi, µj ), so d(x, µj ) ≥ d(µi, µj )− d(x, µi). Therefore, we
have d(x, µj ) ≥ d(x, µi) if d(µi, µj ) ≥ 2d(x, µi). In this case, computing d(x, µj ) is
unnecessary.

Since the number of clusters k is usually small, distances of all pairs of means are
precomputed before each iteration. Then, before comparing a point x to a mean µj , the
above test is performed using the closest known mean to x. The compare-means algorithm
is described in Algorithm 9.3.

Algorithm 9.3. The compare-means algorithm.

Require: Data set D, Number of Clusters k, Dimensions d:
{Ci is the ith cluster}
{1. Initialization Phase}
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1: (C1, C2, . . . , Ck) = Initial partition of D.
{2. Iteration Phase}

2: repeat
3: Calculate Dij = d(µi, µj ) for all i, j = 1, 2, . . . , k {µi is the mean of the ith cluster

in the previous iteration};
4: Let ni be the subscript such that xi ∈ Cni ;
5: Dmin ⇐ d(xi , µni );
6: for j = 1 to k do
7: if Djni < 2 ∗Dmin and j �= ni then
8: dist = d(xi , µj );
9: if dist < Dmin then

10: Dmin ⇐ dist ;
11: ni ⇐ j ;
12: end if
13: end if
14: end for
15: Assign case i to cluster ni ;
16: Recompute the cluster means of any changed clusters above;
17: until no further changes in cluster membership occur in a complete iteration
18: Output results;

The number of comparisons made by compare-means is harder to determine, but the
overhead of compare-means is T(k2d + nkd) (Phillips, 2002), where n is the number of
records, k is the number of clusters, and d is the dimension.

9.2.3 The Sort-means Algorithm

The algorithm sort-means (Phillips, 2002) is an extension of compare-means. In this al-
gorithm, the means are sorted in order of increasing distance from each mean in order to
obtain a further speedup.

Let Dij = d(µi, µj ) for i, j = 1, 2, . . . , k, where µi is the mean of the ith cluster.
Let M be a k × k array in which row i (mi1,mi1, . . . , mik) is a permutation of 1, 2, . . . , k
such that d(µi, µmi1) ≤ d(µi, µmi2) ≤ · · · ≤ d(µi, µmik

). An iteration of sort-means is
described in Algorithm 9.4.

Algorithm 9.4. An iteration of the sort-means algorithm.

1: Calculate Dij = d(µi, µj ) for all i, j = 1, 2, . . . , k {µi is the mean of the ith cluster
in the previous iteration};

2: Construct the array M;
3: Let ni be the subscript such that xi ∈ Cni ;
4: Dinmin ⇐ d(xi , µni );
5: Dmin ⇐ Dinmin;
6: for j = 2 to k do
7: l ⇐ Mnij ;
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8: if Dnil >= 2 ∗Dinmin then
9: break;

10: end if
11: dist = d(x, µl);
12: if dist < Dinmin then
13: Dmin ⇐ dist ;
14: ni ⇐ l;
15: end if
16: end for
17: Assign case i to cluster ni ;
18: Recompute the cluster means of any changed clusters above;

For the sort-means algorithm, the running time of an iteration is O(ndγ + k2d +
k2 log k) (Phillips, 2002), where n is the number of records, k is the number of clusters, d
is the dimension, and γ is the average over all points x of the number of means that are no
more than twice as far as x is from the mean x was assigned to in the previous iteration.

9.2.4 Acceleration of the k-means Algorithm with the kd-tree

Pelleg and Moore (1999) proposed an algorithm for the k-means clustering problem using
the kd-tree data structure. The kd-tree data structure, described in Appendix B, can be used
to reduce the large number of nearest-neighbor queries issued by the traditional k-means
algorithm. Hence, an analysis of the geometry of the current cluster centers can lead to
a great reduction in the work needed to update the cluster centers. In addition, the initial
centers of the k-means algorithm can be chosen by the kd-tree efficiently.

One way to use the kd-tree in the inner loop of the k-means algorithm is to store the
centers in the tree; another way is to store the whole data set in the tree. The latter method is
used in (Pelleg and Moore, 1999). To describe the application of the kd-tree in the k-means
algorithm, let us start with an iteration of the k-means algorithm.

Let C(i) denote the set of centroids after the ith iteration. Before the first iteration,
C(0) is initialized to a set of random values. The stop criterion of the algorithm is that C(i)

and C(i−1) are identical. In each iteration of the algorithm, the following two steps are
performed:

1. For each data point x, find the center in C(i) that is closest to x and associate x with
this center.

2. Update C(i) to C(i+1) by taking, for each center, the center of mass of all the data
points associated with this center.

Pelleg’s algorithm involves modifying the second step in the iteration. The procedure
to update the centroids in C(i) is recursive and has a parameter, a hyperrectangle h. The
procedure starts with the initial value of h being the hyperrectangle containing all the input
points. If the procedure can find ownerC(i) (h), it updates its counters using the center of
mass and number of points that are stored in the kd-tree node corresponding to h; otherwise,
it splits h by recursively calling itself with the children of h. Hence, given a set of centroids
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C and a hyperrectangle h, ownerC(h) is defined to be a center z in C such that any point in
h is closer to z than to any other center in C, if such a center exists.

Performance comparison with BIRCH (Zhang et al., 1996) was presented in (Pelleg
and Moore, 1999). Pelleg’s method performs badly for high-dimensional (e.g.,> 8) data but
scales very well with the number of centers. Interested readers are referred to (Alsabti et al.,
1998) and (Kanungo et al., 2002) for other examples of applying kd-tree in the k-means
algorithm.

9.2.5 Other Acceleration Methods

We presented some methods previously for improving the performance of the k-means
algorithm. Besides the above-mentioned methods, several other extensions of the standard
k-means are proposed in order to improve the speed and quality of the k-means algorithm.

In order to improve the performance of the k-means algorithm in terms of solution
quality and robustness, Chen et al. (2004) proposed a clustering algorithm that integrates
the concepts of hierarchical approaches and the k-means algorithm. The initialization phase
of this algorithm is similar to that of the k-means algorithm except that the number of initial
centers m is larger than the number of clusters k. The iteration phase is the same as that of
the k-means algorithm. The last phase is to merge clusters until k clusters are formed. The
pair of clusters with the smallest score values will be merged into one cluster. The score
between clusters Ci and Cj is defined as

Score(Ci, Cj ) = |Ci ||Cj |
|Ci | + |Cj |d

2
euc(µ(Ci), µ(Cj )),

where µ(Ci) and µ(Cj ) are the centers of clusters Ci and Cj , respectively, and deuc(·, ·) is
the Euclidean distance.

Matoušek (2000) proposed a (1 + ε)-approximate (i.e., the objective function value
of the approximation is no worse than (1 + ε) times the minimum value of the objective
function) k-clustering algorithm whose complexity is

O(n logk nε−2k2d)

for k ≥ 3, where ε > 0.
Har-Peled and Mazumdar (2004) proposed a similar approximation algorithm for the

k-means by applying the k-means algorithm to, instead of the original data set D, a small
weighted set S ⊂ D, of size O(kε−d log n), where ε is a positive number, n is the number
of objects in D, d is the dimensionality, and k is the number of clusters. It has been shown
that the complexity of the approximation algorithm is

O

(
n+ kk+2ε−(2d+1)k logk+1 n logk 1

ε

)
,

which is linear to n for fixed k and ε. Details of this algorithm are omitted, but interested
readers are referred to (Har-Peled and Mazumdar, 2004) for how the core set is computed.

Su and Chou (2001) proposed a modified version of the k-means algorithm that adopts
a nonmetric distance measure based on the idea of “point symmetry.” Precisely, for a given
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data set D = {x1, x2, . . . , xn} and a center z, the point symmetry distance between an object
xi and the center z is defined as

d(xi , z) = min
1≤j≤n, j �=i

‖(xi − z)+ (xj − z)‖
‖xi − z‖ + ‖xj − z‖ .

An application of this algorithm for human face detection is presented in Su and Chou
(2001).

In order to handle high-dimensional data, Stute and Zhu (1995) proposed a modi-
fied version of the k-means algorithm based on the projection pursuit, and Agarwal and
Mustafa (2004) proposed an extension of the k-means algorithm for projective clustering
in arbitrary subspaces with techniques to avoid local minima. Kantabutra and Couch (2000)
implemented a parallel k-means algorithm to handle large databases.

9.3 The Trimmed k-means Algorithm
The trimmed k-means algorithm (Cuesta-Albertos et al., 1997), based on “impartial trim-
ming,” is a procedure that is more robust than the standard k-means algorithm. The main
idea of the trimmed k-means algorithm is presented in this section.

The k-means algorithm can be viewed as a procedure based on the minimization of
the expected value of a “penalty function” ? of the distance to k-sets (sets of k points)
through the following problem: Given an Rd -valued random vector X, find the k-set M =
{m1,m2, . . . ,mk} in Rd such that

V?(M) =
∫

?

(
inf

i=1,2,...,k
‖X −mi‖

)
dP

is minimized.
The trimmed k-means procedure based on the methodology of “impartial trimming,”

which is a way to obtain a trimmed set with the lowest possible variation at some given
level α, is formulated as follows (Cuesta-Albertos et al., 1997).

Let α ∈ (0, 1), the number of clusters k, and the penalty function ? be given. For
every set A such that P(A) ≥ 1 − α and every k-set M = {m1,m2, . . . ,mk} in Rd , the
variation of M given A is defined as

V A
? (M) = 1

P(A)

∫
A

?

(
inf

i=1,2,...,k
‖X −mi‖

)
dP.

V A
? (M) measures how well the set M represents the probability mass of P living on A.

To find the best representation of the “more adequate” set containing a given amount of
probability mass, we can minimize V A

? (M) on A and M in the following way:

1. Obtain the k-variation given A, V A
k,?, by minimizing with respect to M:

V A
k,? = inf

M⊂Rd ,|M|=k
V A
? (M).
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2. Obtain the trimmed k-variation Vk,?,α by minimizing with respect to A:

Vk,?,α = Vk,?,α(X) = Vk,?,α(PX) = inf
A∈βd ,P (A)≥1−α

V A
k,?.

The goal of the algorithm is to obtain a trimmed set A0 and a k-set M0, if both of them exist,
through the condition

V
A0
? (M0) = Vk,?,α.

The trimmed k-means algorithm described above can be generalized as follows. Let
D = {x1, x2, . . . , xn} be a sample of independently identically distributed random variables
in Rd with common distribution F . Let ? : R+ → R be a suitable nondecreasing penalty
function and 1− γ ∈ (0, 1) be a trimming level. Then the generalized trimmed k-means of
D is a k-set {m∗

1,m∗
2, . . . ,m∗

k} ⊂ Rd solving the double optimization problem

min
Y

min
{m1,m2,...,mk}⊂Rd

1

-nγ .
∑
x∈Y

?

(
inf

1≤j≤k
‖x −mj‖

)
,

where Y ranges in the class of the subsets of D with -nγ . data points, and -x. denotes the
smallest integer greater than or equal to x.

The properties of existence and consistency of the trimmed k-means are shown to
hold under certain conditions. Details of the theorems are omitted here; interested readers
are referred to (Cuesta-Albertos et al., 1997). A central limit theory for the generalized
trimmed k-means algorithm is given in (García-Escudero et al., 1999b). García-Escudero
and Gordaliza (1999) investigated the performance of the generalized k-means algorithm
and the generalized trimmed k-means algorithm from the viewpoint of Hampel’s robustness
criteria (Hampel, 1971). Further discussions of the trimmed k-means algorithm are given
in (García-Escudero et al., 1999a).

9.4 The x-means Algorithm
In the k-means algorithm, the number of clusters k is an input parameter specified by the user.
In order to reveal the true number of clusters underlying the distribution, Pelleg and Moore
(2000) proposed an algorithm, called x-means, by optimizing the Bayesian information
criterion (BIC) or the Akaike information criterion (AIC) measure (Bozdogan, 1987).

In the x-means algorithm, the BIC or Schwarz criterion (Kass and Raftery, 1995;
Schwarz, 1978) is used globally and locally in order to find the best number of clusters k.
Given a data set D = {x1, x2, . . . , xn} containing n objects in a d-dimensional space and a
family of alternative models Mj = {C1, C2, . . . , Ck}, (e.g., different models correspond to
solutions with different values of k), the posterior probabilities P(Mj |D) are used to score
the models. The Schwarz criterion can be used to approximate the posteriors.

The Schwarz criterion is defined as

BIC(Mj) = l̂j (D)− pj

2
log n,
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where l̂j (D) is the loglikelihood of D according to the j th model and taken at the maximum
likelihood point, and pj is the number of parameters in Mj . The model with the largest
score is selected.

Under the identical spherical Gaussian distribution, the maximum likelihood estimate
for variance is

σ̂ 2 = 1

n− k

n∑
i=1

(xi − µ(i))
2,

where µ(i) is the centroid associated with the object xi , i.e., (i) denotes the index of the
centroid that is closest to xi . The point probabilities are

P̂ (xi ) = |C(i)|
n

· 1√
2πσ̂ d

exp

(
− 1

2σ̂ 2
‖xi − µ(i)‖2

)
.

Thus, the loglikelihood of the data is

l(D) = log
n∏

i=1

P(xi ) =
n∑

i=1

(
log

1√
2πσ̂ d

− 1

2σ̂ 2
‖xi − µ(i)‖2 + log

|C(i)|
n

)
.

The number of free parameters pj is k − 1+ dk + 1 = (d + 1)k.
The Schwarz criterion is used in x-means globally to choose the best model it en-

counters and locally to guide all centroid splits. The algorithm can be briefly described as
follows.

Given a range for k, [kmin, kmax], the x-means algorithm starts with k = kmin and
continues to add centroids when they are needed until the upper bound is reached. New
centroids are added by splitting some centroids into two according to the Schwarz criterion.
During the process, the centroid set with the best score is recorded as the one that is the final
output. The algorithm can be implemented efficiently using ideas of “blacklisting”(Pelleg
and Moore, 1999) and kd-trees.

9.5 The k-harmonic Means Algorithm
k-harmonic means (Zhang et al., 2000a, 1999) is developed from the k-means algorithm
and it is essentially insensitive to the initialization of centers.

We know that the error function (or performance function) of the k-means algorithm
can be written as

E =
n∑

i=1

min{d(xi , µj ), j = 1, 2, . . . , k}, (9.5)

where µj is the mean of the j th cluster.
Then the error function of the k-harmonic means algorithm is obtained by replacing

the minimum function min(·) by the harmonic average (or harmonic mean) function HA(·)
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and using the squared Euclidean distance, i.e.,

E =
n∑

i=1

HA({dseuc(xi , µj ), j = 1, 2, . . . , k})

=
n∑

i=1

k

k∑
j=1

1
(xi−µj )T (xi−µj )

, (9.6)

where µj is the mean of the j th cluster, dseuc(·, ·) is the squared Euclidean distance, and
HA(·) is the harmonic average defined as

HA({ai : i = 1, 2, . . . , m}) = m
m∑
i=1

a−1
i

. (9.7)

The recursive formula for the k-harmonic means algorithm can be obtained by taking
partial derivatives of the error function (9.6) with respect to the means µl, l = 1, 2, . . . , k,
and setting them to zero. That is,

∂E

∂µl

= −k
n∑

i=1

2(xi − µl)

d4
il

(
k∑

j=1
d−2
ij

)2 = 0, (9.8)

where dij = deuc(xi , µj ) =
[
(xi − µj)

T (xi − µj)
] 1

2 .
By solving equation (9.8), we obtain new centers µ∗l , l = 1, 2, . . . , k as follows:

µ∗l =

n∑
i=1

d−4
il

(
k∑

j=1
d−2
ij

)−2

xi

n∑
i=1

d−4
il

(
k∑

j=1
d−2
ij

)−2 . (9.9)

Then given a set of initial centers, we can obtain new centers by (9.9). This recursion
is continued until the centers stabilize.

In order to reduce the sensitivity of the convergence quality to the initial centers,
Zhang et al. (2000) proposed a generalized k-harmonic means algorithm as follows:

µ∗l =

n∑
i=1

d−sil

(
k∑

j=1
d−2
ij

)−2

xi

n∑
i=1

d−sil

(
k∑

j=1
d−2
ij

)−2 (9.10)

for l = 1, 2, . . . , k, where s is a parameter. Unfortunately, no method has been developed
to choose the parameter s.
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9.6 The Mean Shift Algorithm
The mean shift algorithm (Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and
Meer, 2002, 1999) is a simple iterative procedure that shifts each data point to the average
of data points in its neighborhood. To introduce the mean shift algorithm, let us start with
some definitions and notation.

Definition 9.3 (Profile). A profile k is a function k : [0,∞] → [0,∞] satisfying the
following conditions:

1. k is nonincreasing,

2. k is piecewise continuous, and

3.
∫∞

0 k(r)dr <∞.

Definition 9.4 (Kernel). A function K : Rd → R is said to be a kernel if there exists a
profile k such that

K(x) = k
(‖x‖2

)
,

where ‖ · ‖ denotes the Euclidean norm.

Let α > 0. If K is a kernel, then

(αK)(x) = αK(x),

Kα(x) = K
( x
α

)
,

(Kα)(x) = (K(x))α

are all kernels.

Definition 9.5 (The mean shift algorithm). Let D ⊂ Rd be a finite data set, K a kernel,
and w : D → (0,∞) a weight function. The sample mean with kernel K at x ∈ Rd is
defined as

m(x) =

∑
y∈D

K(y − x)w(y)y

∑
y∈D

K(y − x)w(y)
.

Let T ⊂ Rd be a finite set of cluster centers. The evolution of T in the form of iterations
T ← m(T ) with m(T ) = {m(y) : y ∈ T } is called the mean shift algorithm.

The mean shift algorithm is a very general iterative procedure to the extent that some
well-known clustering algorithms are its special cases. The maximum-entropy clustering
(MEC) algorithm (Rose et al., 1990), for example, is a mean shift algorithm when T and D

are separate sets, Gβ(x) = e−β‖x‖2
is the kernel, and

w(y) = 1∑
t∈T

Gβ(y − t)
, y ∈ D.
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In addition, the well-known k-means algorithm is a limiting case of the mean shift algorithm
(Cheng, 1995).

We now introduce some definitions in order to describe the convergence properties
of the mean shift algorithm.

Definition 9.6 (Direction). A direction in Rd is a point on the unit sphere, i.e., a is a
direction if and only if |a| = 1.

Definition 9.7 (Projection). The projection in the direction a is defined as the mapping
πa : Rd → R with πa(x) = 〈x, a〉, where 〈· · · , · · · 〉 denotes the inner product.

Definition 9.8 (Convex hull). The convex hull h(Y ) of a set Y ⊂ Rd is defined as⋂
‖a‖=1

{x ∈ Rd : min πa(Y ) ≤ πa(x) ≤ max πa(Y )}.

Definition 9.9 (Translation). h(D) ⊇ h(m(D)) ⊇ h(m(m(D))) ⊇ · · · , i.e., a translation
is a transformation of the data so that the origin is in all the convex hulls of data.

Definition 9.10 (Radius). Suppose after a translation, the origin is in all the convex hulls
of data. Then the radius of data is

ρ(D) = max{‖x‖ : x ∈ D}.

Definition 9.11 (Diameter). The diameter of data is defined as

d(D) = sup
‖a‖

(max πa(D)−min πa(D)).

Regarding the convergence of the mean shift algorithm, Cheng (1995) proved the
following two theorems.

Theorem 9.12 (Convergence with broad kernels). Let k be the profile of the kernel used
in a blurring process and S0 be the initial data. If k(d2(S0)) ≥ κ for some κ > 0, then the
diameter of the data approaches zero. The convergence rate is at least as fast as

d(m(D))

d(D)
≤ 1− κ

4k(0)
.

Theorem 9.13 (Convergence with truncated kernels). If data points cannot move arbi-
trarily close to each other and K(x) is either zero or larger than a fixed positive constant,
then the blurring process reaches a fixed point in finitely many iterations.

The mean shift algorithm is not only an intuitive and basic procedure but also a
deterministic process. It is more efficient than gradient descent or ascent methods in terms
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of adapting to the right step size (Cheng, 1995). There are also some factors that make the
mean shift algorithm not popular. For example, the computational cost of an iteration of the
mean shift algorithm is O(n2) (Cheng, 1995), where n is the number of data points in the
data set. The mean shift algorithm is also not suitable for high-dimensional data sets and
large data sets. Other discussions of the mean shift algorithm can be found in Fashing and
Tomasi (2005), Yang et al. (2003a), Chen and Meer (2005), and Georgescu et al. (2003).

9.7 MEC
The MEC algorithm, based on statistical physics, was introduced by Rose et al. (1990).
The MEC algorithm is a fuzzy clustering algorithm and the fuzzy membership is obtained
by maximizing the entropy at a given average variance. A deterministic annealing process
is derived from the relationship between the corresponding Lagrange multiplier and the
“temperature” so that the free energy is minimized at each temperature.

The energy or cost contributed to the cluster Cj by a data point x is denoted by Ej(x).
In MEC, the energy Ej(x) is defined as

Ej(x) = ‖x − zj‖2,

where ‖ · ‖ is the Euclidean norm and zj is the centroid of Cj . The average total energy for
a given partition is defined as

E =
∑
x∈D

k∑
j=1

P(x ∈ Cj)Ej (x), (9.11)

where D = {x1, x2, . . . , xn} is the data set under consideration, k is the number of clusters,
and P(x ∈ Cj), j = 1, 2, . . . , k, are the association probabilities or fuzzy memberships.
The association probabilities that maximize the entropy under the constraint (9.11) are Gibbs
distributions defined as

P(x ∈ Cj) = e−βEj (x)

Zx
, (9.12)

where Zx is the partition function defined as

Zx =
k∑

j=1

e−βEj (x).

The parameter β is the Lagrange multiplier determined by the given value of E in
equation (9.11). The total partition function is defined as

Z =
∏
x∈D

Zx.

Based on the partition function, the free energy is defined as

F = − 1

β
ln Z = − 1

β

∑
x∈D

ln


 k∑

j=1

e−β‖x−zj ‖2


 . (9.13)
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The set of centroids zj that optimizes the free energy satisfies

∂F

∂zj
= 0 ∀j

or ∑
x∈D

(x − zj )e−β‖x−zj ‖2

k∑
l=1

e−β‖x−zl‖2

= 0 ∀j,

which leads to

zj =
∑
x∈D

xP(x ∈ Cj)∑
x∈D

P (x ∈ Cj)
.

The MEC algorithm is an iterative process z(r) → z(r+1), r = 1, 2, . . . . Note that the
MEC algorithm is a special case of the mean shift algorithm (Cheng, 1995) and the k-means
algorithm is the limiting case of the MEC algorithm when β approaches infinity (Cheng,
1995).

9.8 The k-modes Algorithm (Huang)
The k-modes algorithm (Huang, 1997b, 1998) comes from the k-means algorithm (see
Section 9.1), and it was designed to cluster categorical data sets. The main idea of the
k-modes algorithm is to specify the number of clusters (say, k) and then to select k initial
modes, followed by allocating every object to the nearest mode.

The k-modes algorithm uses the simple match dissimilarity measure (see Section 6.3.1)
to measure the distance of categorical objects. The mode of a cluster is defined as follows.

LetD be a set of categorical objects described by d categorical attributes, A1, A2, . . . ,

Ad . Let X ⊆ D. Then the mode of X is defined to be a vector q = (q1, q2, . . . , qd) such
that the function

D(X,q) =
∑
x∈X

dsim(x,q) (9.14)

is minimized, where dsim(·, ·) is defined in (6.23).
Hence, according to this definition, the mode is not necessarily an element of that

data set. The following theorem (Huang, 1998) shows how to minimize the function given
in (9.14).

Theorem 9.14. Let the domain of Aj be DOM(Aj ) = {Aj1, Aj2, . . . , Ajnj } for j =
1, 2, . . . , d, and let X ⊆ D. Let fjr(X)(1 ≤ j ≤ d, 1 ≤ r ≤ nj ) be the number of objects
in X that take value Ajr at the j th attribute, i.e.,

fjr(X) = |{x ∈ X : xj = Ajr}|. (9.15)

Then the function given in (9.14) is minimized if and only if qj ∈ DOM(Aj ) for j =
1, 2, . . . , d, and

fjrj (X) ≥ fjl(X)∀l �= rj , j = 1, 2, . . . , d,

where rj is the subscript defined as qj = Ajrj for j = 1, 2, . . . , d.
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Theorem 9.14 provides us with a way to find q for a given data set X. This theorem
also implies that the mode of a data set is not necessarily unique.

Since the k-modes algorithm comes from the k-means algorithm, it can also be treated
as an optimization problem. The objective function for the k-modes algorithm can be defined
as in (9.2) by changing the Euclidean distance to the simple matching distance, i.e.,

P(W,Q) =
k∑

l=1

n∑
i=1

wildsim(xi ,ql), (9.16)

where Q = {ql , l = 1, 2, . . . , k} is a set of objects, dsim(·, ·) is the simple matching distance
defined in (6.23), and W is an n× k matrix that satisfies the following conditions:

1. wil ∈ {0, 1} for i = 1, 2, . . . , n, l = 1, 2, . . . , k,

2.
∑k

l=1 wil = 1 for i = 1, 2, . . . , n.

Thus, Algorithm 9.5 can be used for the k-modes algorithm by using the objective
function defined in (9.16). But this algorithm is not efficient, since we need to calculate
the total cost P of the whole data set each time a new Q or W is obtained. To make the
computation more efficient, we use the algorithm described inAlgorithm 9.5 (Huang, 1998).

Algorithm 9.5. The k-modes algorithm.

Require: Data set D, Number of Clusters k, Dimensions d:
1: Select k initial modes Q = {q1,q2, . . . ,qk}, and ql for cluster l;
2: for i = 1 to n do
3: Find an l such that dsim(xi ,ql) = min1≤t≤k dsim(xi ,qt );
4: Allocate xi to cluster l;
5: Update the mode ql for cluster l;
6: end for
7: repeat
8: for i = 1 to n do
9: Let l0 be the index of the cluster to which xi belongs;

10: Find an l1 such that dsim(xi ,ql1) = min1≤t≤k,t �=l0 dsim(xi ,qt );
11: if dsim(xi ,ql1) < dsim(xi ,ql0) then
12: Reallocate xi to cluster l1;
13: Update ql0 and ql1 ;
14: end if
15: end for
16: until No changes in cluster membership
17: Output results.

The proof of convergence for this algorithm is not available (Anderberg, 1973), but
its practical use has shown that it always converges (Huang, 1998).
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The k-modes algorithm is very popular for clustering categorical data. It has some
important properties:

• It is efficient for clustering large data sets.

• It also produces locally optimal solutions that are dependent on initial modes and the
order of objects in the data set (Huang, 1998).

• It works only on categorical data.

9.8.1 Initial Modes Selection

Since the clustering results and convergence speed of the k-modes algorithm are dependent
on the initial modes, the selection of initial modes is an important issue in the k-modes
algorithm. Good initial modes lead to fast convergence and good results, while bad initial
modes lead to slow convergence. Many initial modes selection methods have been discussed
in the literature. Acommonly used approach, called the direct method, is to choose the first k
distinct objects as initial modes. For example, for a given data setD = {xi , i = 1, 2, . . . , n},
we choose ql = xl for l = 1, 2, . . . , k as modes if xl �= xt for all 1 ≤ l < t ≤ k. Another
approach, called the diverse modes method, is to spread the initial modes over the whole data
set by assigning the most frequent categories equally to the initial modes (Huang, 1998).
Given a data set D, we first sort each column of its symbol table Ts such that each column
of its corresponding frequency table of D is in decreasing order. In other words for each j ,
we sort Aj1, Aj2, . . . , Ajnj such that fj1(D) ≥ fj2 ≥ · · · ≥ fjnj (D). Secondly, the most
frequent categories are equally assigned to the initial modes q1,q2, . . . ,qk . For example,
A11, A21, . . . , Ad1 are in different initial modes. Finally, we start with q1, select the record
most similar to q1, and replace q1 as the first initial mode. After qi (i = 1, 2, . . . , l) are
replaced, we select the record in D most similar to ql+1 and replace ql+1 with that record
as the (l + 1)th initial mode. We keep doing this until qk is replaced.

The last step is taken to avoid the occurrence of an empty cluster. The initial modes
found by this method are diverse in the data set. These initial modes can lead to better
clustering results, but this costs time.

9.9 The k-modes Algorithm (Chaturvedi et al.)
Chaturvedi et al. (2001) proposed a nonparametric bilinear model to derive clusters from
categorical data. The clustering procedure is analogous to the traditional k-means algorithm
(Macqueen, 1967). To describe the algorithm, let us begin with the bilinear clustering model.

Let D = {x1, x2, . . . , xn} be a data set with n objects, each of which is described by d

categorical attributes. Let k be the number of clusters. Then the bilinear clustering model
is (Chaturvedi et al., 2001)

C = SW + error, (9.17)

where C is an n× d data matrix; S is an n× k binary indicator matrix for membership of
the n objects in k mutually exclusive, nonoverlapping clusters (i.e., the (i, j)th entry of S
is 1 if xi belongs to the j th clusters, and 0 otherwise); and W is the matrix of centroids.
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The data matrix C in equation (9.17) is known, whereas both S and W are unknown
and must be estimated. The algorithm iterates as follows: estimate S given estimates of
W , and then revise the estimates of W given the new estimates of S. This process will be
repeated until the quality of clustering is not improved. In this algorithm, the quality of
clustering is indicated by an L0 loss function.

Let Ĉ = SW . Then the Lp-norm–based loss function is defined as

Lp =
n∑

i=1

d∑
j=1

|cij − ĉij |p

for positive values of p → 0, where cij and ĉij are the (i, j)th entries of C and Ĉ, respec-
tively. L0 is the limiting case as p → 0 and simply counts the number of mismatches in
the matrices C and Ĉ, i.e.,

L0 =
n∑

i=1

d∑
j=1

δ(cij , ĉij ),

where δ(·, ·) is defined in equation (6.22).
The goal of the algorithm is to minimize L0. The matrices S and W are estimated

iteratively until the value of the L0 loss function is not improved. The detailed estimation
procedure is described as follows.

To estimate S = (sil) given the estimates of W = (wlj ), we consider the functions

fi =
d∑

j=1

(
cij −

k∑
l=1

silwlj

)0

=
k∑

l=1

sil


 d∑

j=1

δ(cij , wlj )




for i = 1, 2, . . . , n. Then L0 =∑n
i=1 fi . To minimize L0, we can separately minimize fi .

To minimize fi , we try all the d patterns sil = 1 for l = 1, 2, . . . , d and choose ŝil0 = 1 if

d∑
j=1

δ(cij , wl0j ) = min
1≤l≤k

d∑
j=1

δ(cij , wlj ).

To estimate W = (wlj ) given the estimates of S = (sil), we can estimate wlj sepa-
rately. Precisely, let Cl be the lth cluster, i.e., Cl = {xi : sil = 1, 1 ≤ i ≤ n}, and consider
the mode of {xj : x ∈ Cl}, where xj is the j th attribute value of x. Let ŵlj be the mode of
{xj : x ∈ Cl}.

Although the above k-modes algorithm is faster than other procedures in some cases,
such as the latent class procedure (Goodman, 1974), it has some disadvantages. Firstly, it
can only guarantee a locally optimal solution. Secondly, the number of clusters k is required.
In order to achieve a globally optimal solution, Gan et al. (2005) proposed a genetic k-modes
algorithm based on the k-modes algorithm and the genetic algorithm.

9.10 The k-probabilities Algorithm
The k-probabilities algorithm (Wishart, 2002) is an extension of the k-modes algorithm. It
was designed for clustering mixed-type data sets. The k-probabilities algorithm uses the
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general distance coefficient (Gower, 1971) measure between two records, and it uses the
squared distance to compute the distance between a case and a cluster; for instance, the
distance dip between any case i and a cluster p is defined as

d2
ip =

∑
k

wipk(xik − µpk)
2∑

k wipk

, (9.18)

where xik is the value of the kth variable for case i, µpk is the mean of the kth variable
for cluster p, and wipk is a weight of 1 or 0 depending on whether or not the comparison
between case i and cluster p is valid for the kth variable, i.e., wipk = 1 if we can compare
the kth variable between case i and cluster p; otherwise wipk = 0. Notice that for nominal
variables, the mean µpk is a vector ϕpks of probabilities for each state s of the kth variable
within cluster p.

The object function of this algorithm is

E =
∑
p

Ep, (9.19)

where Ep is the Euclidean sum of squares defined as

Ep =
∑
i∈p

ni
∑
k

wk(xik − µpk)
2∑

k wk

, (9.20)

where xik and µpk are the same as in equation (9.18), ni is a differential weight for case i

(normally 1), and wk is a differential weight for the kth variable, where wk = 0 if xik or
µpk has a missing value at the kth variable.

The object of the k-probabilities algorithm is to minimize the total Euclidean sum of
squares E in equation (9.19). The algorithm starts with an initial partition of the data set
into k clusters, and then reassigns the cases to another cluster such that the total Euclidean
sum of squares E is minimized. To minimize E, a case i should only be reassigned from
cluster p to cluster q if (Wishart, 1978)

Ep + Eq > Ep−i + Eq+i ,

which is equivalent to
Ip−i,i > Iq,i .

Algorithm 9.6. The k-probabilities algorithm.

Require: Data set D, No. of Clusters:k, Dimensions: d:
{Ci is the ith cluster}
{1. Initialization Phase}

1: (C1, C2, . . . , Ck) = Initial partition of D.
{2. Reallocation Phase}

2: repeat
3: for i = 1 to |D| do
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4: Compute Ip−i,i {p is the current cluster number of case i};
5: for q = 1 to k, q �= p do
6: compute Iq+i,i ;
7: if Ip−i,i > Iq+i,i then
8: Assign case i to cluster ni ;
9: break;

10: end if
11: end for
12: end for
13: Recompute the cluster means of any changed clusters above;
14: until no further changes in cluster membership occur in a complete iteration

The pseudocode of the k-probabilities algorithm is given inAlgorithm 9.6. Gupta et al.
(1999) also proposed an algorithm that extends the k-means algorithm to cluster categorical
data through defining the objective function based on the new Condorcet criterion (Michaud,
1997).

9.11 The k-prototypes Algorithm
The k-prototypes algorithm (Huang, 1998) comes from the k-means and k-modes algorithm;
it was designed to cluster mixed-type data sets. A related work is (Huang, 1997a). In the
k-prototypes algorithm, the prototype is the center of a cluster, just as the mean and mode
are the centers of a cluster in the k-means and k-modes algorithms, respectively.

Let two mixed-type objects be described by attributesAr
1, A

r
2, . . . , A

r
p, A

c
p+1, . . . , A

c
m,

where the firstp attributes are numerical while the remainingm−p attributes are categorical.
Let X = [x1, x2, . . . , xm], and Y = [y1, y2, . . . , ym], where xi, and yi (1 ≤ i ≤ p) take
numerical values while the rest take categorical values. Then the dissimilarity measure
between X and Y can be

d(X, Y ) =
p∑

j=1

(xj − yj )
2 + γ

m∑
j=p+1

δ(xj , yj ),

where γ is a balance weight used to avoid favoring either type of attribute. In the definition
of the dissimilarity measure, the squared Euclidean distance is used to measure the numerical
attributes and the simple matching dissimilarity (Kaufman and Rousseeuw, 1990) measure
is used to measure the categorical attributes.

The goal of the k-prototypes algorithm is to minimize the cost function

P(W,Q) =
k∑

l=1

(P r
l + γP c

l ),
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where

P r
l =

n∑
i=1

wi,l

p∑
j=1

(xi,j − ql,j )
2,

P c
l =

n∑
i=1

wi,l

m∑
j=p+1

δ(xi,j , ql,j ).

Algorithm 9.7. The k-prototypes algorithm.

Require: k: the number of clusters;
1: Select k initial prototypes from the database, one for each cluster;
2: Allocate each object in the database to a cluster whose prototype is the nearest to it

according to the dissimilarity measure, and update the prototype of the cluster after
each allocation;

3: repeat
4: Retest the similarity between each object and the prototype; if an object is found that

is nearest to another prototype rather than the current one, reallocate the object to the
nearest cluster;

5: Update the prototypes of both clusters;
6: until no further changes in the cluster membership

The k-prototypes algorithm (Algorithm 9.7) is the same as the k-probabilities al-
gorithm (see Algorithm 9.6) except for the reallocation phase. The complexity of the
k-prototypes algorithm is O((t+1)kn), where n is the number of data points in the data set,
k is the number of clusters, and t is the number of iterations of the reallocation process.

9.12 Summary
A popular center-based clustering algorithm, the k-means algorithm, and its variations,
has been presented in this chapter. To handle categorical data, two versions of the k-
modes algorithm are also presented. Center-based algorithms are easy to implement and the
results are easy to interpret. In addition, center-based algorithms are faster than hierarchical
algorithms in general. Therefore, they are popular for clustering large databases. Zhang
and Hsu (2000) discussed accelerating center-based clustering algorithms by parallelism.

In center-based clustering algorithms, each cluster has one center. Instead of gen-
erating a cluster center as a point, Bradley and Mangasarian (2000) proposed a clustering
algorithm, called the k-plane algorithm, in which the entity of the center is changed from a
point to a plane. In some cases, the k-plane algorithm outperforms the k-means algorithm
(Bradley and Mangasarian, 2000).
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Search-based Clustering
Algorithms

Hard clustering is a special case of fuzzy clustering. A fuzzy clustering problem can be
considered as an optimization problem (Dunn, 1974a; Ng and Wong, 2002)

min
W,Z

F (W,Z) =
k∑

l=1

n∑
i=1

wα
lid(µl, xi)

such that

0 ≤ wli ≤ 1 for any 1 ≤ l ≤ k, 1 ≤ i ≤ n, (10.1a)

k∑
l=1

wli = 1 for i = 1, 2, . . . , n, (10.1b)

0 <

n∑
i=1

wli < n, 1 ≤ l ≤ k, (10.1c)

where α ≥ 1 is a parameter, n is the number of data points in the data set, k is the number
of clusters, xi is the ith data point in the data set, µl is the cluster center of the lth cluster,
W = [wli] is a k × n fuzzy matrix, Z = [µl] is a matrix containing the cluster center, and
d(µl, xi) is a dissimilarity measure between centers zl and xi .

Most of the clustering algorithms may not be able to find the global optimal cluster
that fits the data set; these algorithms will stop if they find a local optimal partition of the data
set. For example, the fuzzy k-means (Selim and Ismail, 1984), fuzzy ISODATA (Bezdek,
1980), and fuzzy c-means (Hathaway and Bezdek, 1984; Selim and Ismail, 1986) algorithms
are convergent, but they may stop at a local minimum of the optimization problem. The
algorithms in the family of search-based clustering algorithms can explore the solution space
beyond the local optimality in order to find a globally optimal clustering that fits the data
set. In this chapter, we present some search-based clustering algorithms, including those
based on simulated annealing and tabu search.

183
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10.1 Genetic Algorithms
Genetic algorithms (GAs) were first proposed by Holland (1975) as a family of compu-
tational models inspired by the analogy of evolution and population genetics. GAs are
inherently parallel and particularly suitable for solving complex optimization problems.
Filho et al. (1994) presented a survey of GAs along with a simple GA written in the C
language.

Usually, there are only two main components of GAs that are problem dependent: the
problem encoding and the evaluation function (e.g., objective function). Even for the same
problem, one can use different encodings. For example, in the genetic k-means algorithm,
Krishna and Narasimha (1999) employed string-of-group-numbers encoding, while Maulik
and Bandyopadhyay (2000) encoded the strings such that each string is a sequence of real
numbers representing the cluster centers.

In GAs, the parameters of the search space are encoded in the form of strings called
chromosomes. A GA maintains a population (set) of N coded strings for some fixed popula-
tion size N and evolves over generations. During each generation, three genetic operators,
i.e., natural selection, crossover, and mutation, are applied to the current population to
produce a new population. Each string in the population is associated with a fitness value
depending on the value of the objective function. Based on the principle of survival of the
fittest, a few strings in the current population are selected and each is assigned a number of
copies, and then a new generation of strings are yielded by applying crossover and mutation
to the selected strings.

In general, a typical GA has the following five basic components: encoding, initial-
ization, selection, crossover, and mutation. Encoding is dependent on the problem under
consideration. In the initialization phase, a population (set) of strings will be randomly
generated. After the initialization phase, there is an iteration of generations. The number
of generations is specified by the user. In GAs, the best string obtained so far is stored in
a separate location outside the population and the final output is the best string among all
possible strings inspected during the whole process.

GAs have been successfully applied to clustering (Jiang and Ma, 1996; Cheng et al.,
2002; Maulik and Bandyopadhyay, 2000; Greene, 2003) and classification (Goldberg, 1989;
Bandyopadhyay et al., 1995). Some clustering algorithms related to GAs are briefly pre-
sented below.

Murthy and Chowdhury (1996) proposed a GA in an attempt to reach the optimal
solution for the clustering problem. In this algorithm, the evaluation function is defined
as the sum of squared Euclidean distances of the data points from their respective cluster
centers. In addition, single-point crossover (Michalewicz, 1992), i.e., the crossover operator
between two strings, is performed at one position, and elitist strategies, i.e., the best string
is carried from the previous population to the next, are used.

Tseng and Yang (2001) proposed a genetic approach called CLUSTERING to the
automatic clustering problem. CLUSTERING is suitable for clustering data with compact
spherical clusters, and the number of clusters can be controlled indirectly by a parameter
w. The algorithm will produce a larger number of compact clusters with a small value
of w and it will produce a smaller number of looser clusters with a large value of w. A
genetic-based clustering algorithm aimed at finding nonspherical clusters was proposed by
Tseng and Yang (2000).
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Garai and Chaudhuri (2004) proposed a genetically guided hierarchical clustering
algorithm that can find arbitrarily shaped clusters. The algorithm consists of two phases.
At first, the original data set is decomposed into a number of fragmented groups in order to
spread the GA search process at the latter phase over the entire space. Then the hierarchical
cluster merging algorithm (HCMA) is used. During the merging process, a technique
called the adjacent cluster checking algorithm (ACCA) is used to test the adjacency of two
segmented clusters so that they can be merged into one cluster.

Krishna and Narasimha (1999) and Bandyopadhyay and Maulik (2002) proposed two
different clustering algorithms based on GAs and the popular k-means algorithm. In the
genetic k-means algorithm (GKA), Krishna and Narasimha (1999) used the k-means operator
instead of the crossover operator to accelerate the convergence, while in KGA-clustering,
Bandyopadhyay and Maulik (2002) used the single-point crossover operator.

Cowgill et al. (1999) proposed a genetic-based clustering algorithm called COW-
CLUS. In COWCLUS, the evaluation function is the variance ratio (VR) defined in terms
of external cluster isolation and internal cluster homogeneity. The goal of the algorithm is
to find the partition with maximum VR.

Further examples of applying GAs to clustering can be found in (Krishna and Narasimha,
1999), (Lu et al., 2004a), (Lu et al., 2004b), (Gan et al., 2005), (Babu and Murty, 1993),
(Chiou and Lan, 2001), (Liu et al., 2004), (Hall et al., 1999), and (Zhao et al., 1996).

10.2 The Tabu Search Method
Tabu search (Glover, 1989, 1990; Glover et al., 1993) is a heuristic algorithm that can be
used to solve combinatorial optimization problems. A memory-based strategy is introduced
in tabu search in order to prevent the solution search from becoming trapped at a local
optimal solution. Thus, tabu search can find global optimization, while other methods, such
as hill climbing, may be trapped in local optimal solutions.

The basic elements of the tabu search method are configuration, move, neighborhood,
candidate subset, tabu restrictions, and aspiration criteria. Tabu is a subset of moves that are
classified as forbidden. This is a chief mechanism for exploiting memory in tabu search.

Configuration. Configuration is an assignment of values to variables. It is an initial solution
to the optimization problem.

Move. Move is a procedure by which a new trial solution is generated from the current
one. It characterizes the process of generating a feasible solution to the combinatorial
problem that is related to the current configuration. In a clustering problem, for
example, a move indicates that an element changes its cluster to another one to which
it is newly assigned.

Neighborhood. Neighborhood is the set of all neighbors that are “adjacent solutions” that
can be reached from any current solution. Neighbors that do not satisfy the given
customary feasible conditions may also be included in the set.

Candidate subset. Candidate subset is a subset of the neighborhood. If the set of all
neighbors is too large, one could operate with a subset of the neighborhood instead
of the entire neighborhood.
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Tabu restrictions. Tabu restrictions are certain conditions imposed on moves that make
some of them forbidden. These forbidden moves are known as tabu. The tabu list is
a list in which tabu moves are stored. For example, the tabu list may contain each
element index and its cluster index (Sung and Jin, 2000).

Aspiration criteria. Aspiration criteria are rules that override tabu restrictions. If a certain
move is forbidden by some tabu restrictions, but it satisfies the aspiration criteria,
then this move is allowable.

Given the above basic elements, the tabu search method can be summarized as follows:
start with an initial configuration, evaluate its corresponding criterion function, and then
follow a certain set of candidate moves. If the best move is not tabu, or if the best move
is tabu but satisfies the aspiration criterion, then pick that move and consider it to be the
next current configuration. Otherwise, pick the first non-tabu move and consider it to be
the next current configuration. The tabu list has a certain size, which frees the first move on
the tabu from being tabu when the length of the tabu reaches the size and a new move enters
the tabu list.

The tabu search method has also been applied to solve the problem of clustering.
Sung and Jin (2000) proposed a heuristic clustering algorithm that combines the tabu search
heuristic with two complementary functional procedures, called packing and releasing pro-
cedures. The packing procedure binds a subset of objects together as a single “object”, and
the releasing procedure separates packed objects from each other. Xu et al. (2002) devel-
oped a fuzzy tabu search (FTS) technique for solving the clustering problem. In the FTS
technique, a fuzzy method is used to determine the tabu period and select neighborhoods.

Delgado et al. (1997) also proposed a tabu search algorithm for the fuzzy clustering
problem by applying a tabu search technique to the well-known fuzzy c-means algorithm.

10.3 Variable Neighborhood Search for Clustering
Variable neighborhood search (VNS) (Hansen and Mladenović, 2001b) is a metaheuristic
proposed for solving combinatorial problems. This metaheuristic is obtained by proceeding
to a systematic change of neighborhood within a local search algorithm.

Let D be a set of objects and PD be the solution space (the set of all partitions of
D). For any two solutions P ′

D, P
′′
D ∈ PD , let ρ(P ′

D, P
′′
D) be a distance between them. The

metric is defined in order to induce the set of neighborhoods. To do this, each solution
PD is equivalently represented as a k-star graph GD , where vertices correspond to objects
and centroids and objects from the same cluster are connected to the same vertex. Each
such graph has n edges including loops (if some centroids coincide with objects). Then
the distance between P ′

D and P ′′
D can be defined as ρ(P ′

D, P
′′
D) = l if and only if their

corresponding graphs G′
D and G′′

D differ in l of their edges. Then the set of neighborhoods
can be induced from the distance as follows:

P ′′
D ∈ Nl(P

′
D)⇔ ρ(P ′

D, P
′′
D) = l.

Usually, the set of neighborhoods in VNS is induced from one metric function intro-
duced into the solution space, e.g., ρ(P ′

D, P
′′
D). In the VNS algorithm, the search is centered
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around the same solution until another solution better than the incumbent is found. This is
not a trajectory method like simulated annealing or tabu search.

Algorithm 10.1. The VNS heuristic.

S1 (Initialization) Let PD be an initial partition and fopt be the corresponding objective
function value. Set a value for a parameter lmax ;

S2 (Termination) If the stopping condition is met (e.g., maximum CPU time allowed,
maximum number of iterations), stop;

S3 (First neighborhood ) Set l = 1;

S4 (Inner loop) If l > lmax , return to step S2;

S5 (Perturbation) Draw a point P ′
D randomly from Nl(PD), i.e., reassign any l objects

from D to other clusters than their own;

S6 (Local search) Apply a local search (such as J -means) with P ′
D as initial solution,

denoting the resulting solution and objective function value by P ′′
D and f ′′, respec-

tively;

S7 (Move or not) If f ′′ < fopt , then recenter the search around the better solution found
(fopt = f ′′ and PD = P ′′

D) and go to step S3; otherwise, set l = l + 1 and go to step
S4.

The basic steps of the VNS heuristic for clustering are shown in Algorithm 10.1. VNS
is also presented in (Mladenović and Hansen, 1997) and (Hansen and Mladenović, 2001a).

10.4 Al-Sultan’s Method
In the problem of clustering n objects into k clusters such that the distance between points
within a cluster and its center is minimized, many local optimal solutions exist. In order to
find the global optimum, Al-Sultan (1995) proposed a clustering algorithm based on a tabu
search technique.

Given a set of objects D = {xi |i = 1, 2, . . . , n}, the clustering problem discussed by
Al-Sultan (1995) is mathematically summarized as follows:

Minimize

J (W,Z) =
n∑

i=1

k∑
j=1

wij‖xi − zj‖2, (10.2)

subject to

k∑
j=1

wij = 1, i = 1, 2, . . . , n,

wij = 0 or 1, i = 1, 2, . . . , n, j = 1, 2, . . . , k,
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where n is the number of objects, k is the number of clusters, zj ∈ Rd is the center of the
j th cluster, and wij is the weight associated with cluster j , i.e.,

wij =
{

1 if xi is allocated to cluster j ,
0 otherwise.

To describe the algorithm, let A be an n-dimensional array whose ith element Ai is a
number representing the cluster to which the ith object is assigned. Given A, the matrix W

can be determined as follows: wij = 1 if Ai = j ; wij = 0 otherwise. In this algorithm, the
center of each cluster zj is computed as the centroid of the objects allocated to that cluster,
i.e.,

zj =

n∑
i=1

wijxi

n∑
i=1

wij

.

Thus, as long as such an array A (configuration) is given, the objective function (10.2)
can be evaluated. Let At,Ac, and Ab denote the trial, current, and best configuration and
Jt , Jc, and Jb denote the corresponding objective function values.

Algorithm 10.2. Al-Sultan’s tabu search–based clustering algorithm.

S1 Let Ac be an arbitrary configuration and Jc be the corresponding objective function
value. Let Ab = Ac and Jb = Jc; set values for parameters MTLS (tabu list size), P
(probability threshold), NT S (number of trial solutions), and ITMAX (maximum
number of iterations); and let N = 1 and T LL (tabu list length) = 0;

S2 Generate NT S trial solutions A1
t , . . . , A

NT S
t from Ac and evaluate the corresponding

objective function values J 1
t , . . . , J

NT S
t ;

S3 Sort J 1
t , J

2
t , . . . , J

NT S
t such that J [1]t ≤ J

[2]
t ≤ · · · ≤ J

[NT S]
t ; if J [1]t is not tabu or

if it is tabu but J [1]t < Jb, then let Ac = A
[1]
t and Jc = J

[1]
t , and go to step S4;

otherwise let Ac = A
[L]
t and J [L]c , where J

[L]
t is the best objective function value of

J
[2]
t , . . . , J

[NT S]
t that is not tabu, and go to step S4; if all J [1]t , . . . , J

[NT S]
t are tabu,

then go to step S2;

S4 InsertAc at the bottom of the tabu list; if T LL = MTLS, then delete the first element
in the tabu list; otherwise, let T LL = T LL+1; if Jc < Jb, let Ab = Ac and Jb = Jc;
if N = ITMAX, then stop; otherwise, let N = N + 1 and go to step S2.

The tabu search–based algorithm for clustering n objects into k clusters is summarized
in Algorithm 10.2. In step S2 of Algorithm 10.2, a number of trial configurations are
generated from the current configuration Ac. The generation method adopted by Al-Sultan
(1995) is described as follows: Given Ac and a probability threshold P , for each i =
1, 2, . . . , n, draw a random number R ∼ u(0, 1). If R < P , then let At(i) = Ac(i);
otherwise, draw an integer l̂ randomly from the set {l|1 ≤ l ≤ k, l �= Ac(i)} and let
Ac(i) = l̂.
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In this algorithm, three parameters need to be assigned values before the execution of
the algorithm. In order to obtain better results, the algorithm is performed in two phases. In
the first phase, the algorithm is performed to find the best parameter settings by considering
test problems. In the second phase, the best values are then used for testing the performance
of the algorithm.

10.5 Tabu Search–based Categorical Clustering Algorithm
Ng and Wong (2002) proposed a tabu search–based fuzzy k-means type algorithm, i.e., the
tabu search–based fuzzy k-prototypes algorithm, in order to find a global solution of the
fuzzy clustering problem.

The fuzzy k-prototypes algorithm integrates the fuzzy k-means algorithm and the
fuzzy k-modes algorithm. It is designed to deal with mixed numeric and categorical data.
The fuzzy k-prototypes algorithm can be summarized as follows.

Let D = {x1, x2, . . . , xn} be a set of n objects, each of which is described by d mixed
numeric and categorical attributes, i.e., xi = (x(n)

i , x(c)
i ), where x(n)

i represents the numeric
attributes and x(c)

i represents the categorical attributes. Let Z = {z1, z2, . . . , zk} denote k

cluster centers; similarly, zj = (z(n)j , z(c)j ), in which z(n)j represents the numeric attributes

and z(c)j represents the categorical attributes.
In the fuzzy k-prototypes algorithm, the combined dissimilarity measure is used to

measure the dissimilarity between two objects, i.e.,

d(xl , xi ) = dn(x
(n)
l , x(n)

i )+ βdc(x
(c)
l , x(c)

i ), (10.3)

where dn(·, ·) is the Euclidean distance and dc(·, ·) is the simple matching distance, and β

is a weight used to balance the numeric and categorical parts.
Then the goal of the fuzzy k-prototypes algorithm is to minimize the objective function

F(W,Z) =
k∑

l=1

n∑
i=1

wα
li

[
dn(z

(n)
l , x(n)

i )+ βdc(z
(c)
l , x(c)

i )
]
, (10.4)

subject to the same conditions (10.1).
In the fuzzy k-prototypes algorithm, the matrices W and Z are updated iteratively as

follows. Let Z be fixed, i.e., zl (l = 1, 2, . . . , k) are given. Then W can be formulated as
follows:

wli =




1 if xi = zl ,
0 if xi = zh but h �= l,[

k∑
h=1

(
d(zl ,xi )
d(zh,xi )

) 1
α−1

]−1

if xi �= zl and xi �= zh, 1 ≤ h ≤ k,
(10.5)

where d(·, ·) is defined in (10.3).
If W is fixed, then the matrix Z can be updated in the following way. Let m be

the number of numeric attributes. Then there are d − m categorical attributes, i.e., xi =
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(x(n)
i , x(c)

i ) = (x
(n)
i1 , . . . , x

(n)
im , x

(c)
i,m+1, . . . , x

(c)
id ). The numeric part of Z is computed as

zlj =

n∑
i=1

wlix
(n)
ij

n∑
i=1

wli

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. The categorical part of Z is updated as follows. Suppose
the j th attribute has nj categories: Aj1, Aj2, . . . , Ajnj for j = m+ 1,m+ 2, . . . , d. Then
F(W,Z) is minimized if and only if

zlj = Ajr, m+ 1 ≤ j ≤ d,

where r is determined as
r = arg max

1≤t≤nj

∑
i,x

(c)
ij =Ajt

wα
li .

In the tabu search–based fuzzy k-prototypes algorithm proposed by Ng and Wong
(2002), the cluster center Z is generated by a method used by Al-Sultan and Fedjki (1997).
The fuzzy partition matrix W is updated by equation (10.5).

In this algorithm, one uses Zt, Zu, and Zb to denote the trial, current, and best cluster
centers and F t , F u, and Fb to denote the corresponding objective function values. The trial
cluster centers Zt are generated through moves from the current cluster centers Zu. The
best cluster centers found so far are saved in Zb.

Generation of neighborhoods is one of the most distinctive features of the tabu search
method. In this algorithm, the numeric part and the categorical part with ordinal attributes
of the neighborhood of the center zu are defined as

N(n)(zu) = {y(n) = (y1, y2, . . . , yl)|yi = zui + φθ,

i = 1, 2, . . . , l and θ = −1, 0, or 1},
where φ is a small step size. The categorical part with nominal attribute cannot use the
method described above. In this algorithm, the nominal part of the neighborhood of zu is
defined as

N(c)(zu) = {y(c) = (y1, y2, . . . , yl)|dc(y, zu) < θ},
where 0 ≤ θ ≤ l. The greater the value of θ , the larger the solution space to be examined.
The neighbors of zu can be generated by picking randomly from N(n)(zu) and N(c)(zu).

Several parameters have been used in this algorithm, e.g., NTLM (tabu list size),
P (probability threshold), NH (number of trial solutions), IMAX (maximum number of
nonimproving moves for each center), and γ (reduction factor for IMAX). Different sets
of these parameters have been tested by Ng and Wong (2002).

10.6 J-means
J -means (Hansen and Mladenović, 2001a) is a local search heuristic that is proposed for
solving the minimum sum of squares clustering problem, i.e., the clustering problem de-
scribed in equation (10.2).
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Let D = {x1, x2, . . . , xn} be a set of objects and PD denote the set of all partitions
of D. The problem in equation (10.2) can also be presented as

min
PD∈PD

k∑
i=1

∑
x∈Ci

‖x − zi‖2, (10.6)

where k is the number of clusters, ‖ · ‖ denotes the Euclidean norm, and zi is the centroid
of cluster Ci defined as

zi = 1

|Ci |
∑
x∈Ci

x

for i = 1, 2, . . . , k.
To describe the J -means heuristic, let us introduce some terms first. Occupied points

are referred to as the existing points (i.e., points in D) that coincide with a cluster centroid
within a small tolerance. In this algorithm, a neighboring solution of the current one is
obtained by relocating the centroid zi of a cluster Ci (and not an existing point) to some
unoccupied point location and relocating all points in Ci to their closest centroid. The jump
neighborhood of the current solution consists of all possible such moves.

Algorithm 10.3. The J-means algorithm.

S1 (Initialization) Let PD = {C1, C2, . . . , Ck} be an initial partition of D, zi be the
centroid of cluster Ci , and fopt be the current objective function value;

S2 (Occupied points) Find unoccupied points, i.e., points in D that do not coincide with
a cluster centroid within a small tolerance;

S3 (Jump neighborhood ) Find the best partition P ′
D and the corresponding objective

function value f ′ in the jump neighborhood of the current solution PD:

S31 (Exploring the neighborhood ) For each j (j = 1, 2, . . . , n), repeat the following
steps: (a) Relocation. Add a new cluster centroid zk+1 at some unoccupied point
location xj and find the index i of the best centroid to be deleted; let vij denote
the change in the objective function value; (b) Keep the best. Keep the pair of
indices i ′ and j ′ where vij is minimum;

S32 (Move) Replace the centroid zi ′ by xj ′ and update cluster membership accord-
ingly to get the new partition P ′

D; set f ′ := fopt + vi ′j ′ ;

S4 (Termination or move) If f ′ > fopt , stop; otherwise, move to the best neighboring
solution P ′

D; set P ′
D as current solution and return to step S2.

The main procedure of the J -means algorithm is summarized in Algorithm 10.3. The
relocation step S31(a) can be implemented in O(n) time (Hansen and Mladenović, 2001a),
and the efficiency of the algorithm is largely dependent on this fact. After step S3, each
jump neighborhood solution can be improved by using the k-means algorithm, theH -means
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algorithm (Howard, 1966), or some other heuristic. The resulting hybrid heuristic is called
J -means+.

A comparison of six local search methods (k-means, H -means (Howard, 1966),
modification of H -means (Hansen and Mladenović, 2001a), Hk-means, J -means, and J -
Means+) has been presented by Hansen and Mladenović (2001a). The results show that the
well-known k-means and H -means heuristics for minimum sum of squares clustering can
give very poor clustering results when the number of clusters is large.

Fuzzy J -means (Belacel et al., 2002) is an extension of the J -means heuristic for
fuzzy clustering.

10.7 GKA
Krishna and Narasimha (1999) proposed a hybrid algorithm called GKA, modified from the
GA, which can find a globally optimal partition of a given data set into a specified number
of clusters. Using the finite Markov chain theory, GKA is proved to converge to the global
optimum. In practice, GKA also searches faster than some evolutionary algorithms used
for clustering.

Let D = {x1, x2, . . . , xn} be a set of n objects in a d-dimensional space, and let
C1, C2, . . . , Ck be k clusters of D. Let wij be defined as

wij =
{

1 if xi ∈ Cj ,
0 otherwise

for i = 1, 2, . . . , n and j = 1, 2, . . . , k. Then the matrix W = (wij ) has the following
properties:

wij ∈ {0, 1} and
k∑

j=1

wij = 1. (10.7)

Let the within-cluster variation of Cj be defined as

S(j)(W) =
n∑

i=1

wij

d∑
l=1

(xil − zjl),

and the total within-cluster variation, also called the squared Euclidean (SE) measure, be
defined as

S(W) =
k∑

j=1

S(j)(W) =
k∑

j=1

n∑
i=1

wij

d∑
l=1

(xil − zjl), (10.8)

where xil is the lth-dimensional value of object xi and zjl is the lth-dimensional value of
zj , the center of Cj , defined as

zjl =

n∑
i=1

wijxil

n∑
i=1

wij

(10.9)

for l = 1, 2, . . . , d.
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The objective is to find W ∗ = (w∗
ij ) such that

S(W ∗) = min
W

S(W).

There are three genetic operators used in GKA: the selection operator, the distance-
based mutation operator, and the k-means operator. The evolution takes place until a termi-
nation condition is reached. To describe GKA, we start with the coding and initialization
schemes and introduce the genetic operators.

All matrices satisfying equation (10.7) constitute the search space. A natural way to
code such a W into a string sW is to consider a chromosome of length n and allow each allele
to take values from {1, 2, . . . , k}. What GKA maintains is a population of such strings. The
initial population P(0) is selected by initializing each allele in the population to a cluster
number randomly selected from the uniform distribution over the set {1, 2, . . . , k}. Illegal
strings (i.e., strings representing a partition in which some clusters are empty) should be
avoided.

In GKA, the selection operator randomly selects a chromosome from the previous
population according to the distribution given by

P(si) = F(si)

N∑
i=1

F(si)

,

where N is the population size, and F(si) represents the fitness value of the string si in the
population and is defined by

F(sW ) =
{

f (sW )− (f̄ − cσ ) if f (sW )− (f̄ − cσ ) ≥ 0,
0 otherwise,

where f (sW ) = −S(W), f̄ and σ denote the average value and standard deviation of f (sW )

in the current population, respectively, and c is a constant between 1 and 3.
The mutation operator changes an allele value depending on the distance between the

cluster center and the corresponding data point. To apply the mutation operator to the allele
sW (i) corresponding to object xi , let dj = deuc(xi , zj ). Then sW (i) is replaced with a value
chosen randomly from the distribution

pj = P(sW (i) = j) = cmdmax − dj

kcmdmax −
k∑

l=1
dl

, (10.10)

where cm > 1 and dmax = max1≤j≤k dj . To avoid empty clusters, an allele is mutated only
when dsW (i) > 0. The pseudocode is given in Algorithm 10.4.

Algorithm 10.4. Mutation (sW).

Require: Pm: mutation probability; n; k;
1: for i = 1 to n do
2: if drand() < Pm then
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3: {drand() returns a uniformly distributed random number in [0, 1]}
4: Calculate dj = deuc(xi , zj ) for j = 1, 2, . . . , k;
5: if dsW (i) > 0 then
6: dmax = max{d1, d2, . . . , dk};
7: Calculate pj using Equation (10.10) for j = 1, 2, . . . , k;
8: sW (i) = a number randomly chosen from {1, 2, . . . , k} according to the distri-

bution {p1, p2, . . . , pk}.
9: end if

10: end if
11: end for

Since the algorithm with the selection and mutation operators may take more time to
converge, a one-step k-means algorithm (named k-means operator (KMO)) is introduced.
Let sW be a string; applying KMO to sW yields sŴ . KMO calculates the centers using
equation (10.9) for the given matrix W and then forms Ŵ by reassigning each data point to
the cluster with the nearest center. KMO may result in illegal strings, i.e., partitions with
empty clusters; this can be avoided by techniques such as placing in each empty cluster an
object from the cluster with maximum within-cluster variation (Klein and Dubes, 1989).

Algorithm 10.5. The pseudocode of GKA.

Require: Mutation probabilityPm, population size, N and maximum number of generation
MAX_GEN ;

1: Initialize population P;
2: geno = MAX_GEN ;
3: s∗ = P1{Pi is the ith string in P};
4: while geno > 0 do
5: P̂ = selection(P);
6: Pi = Mutation(P̂i ) for i = 1, 2, . . . , N ;
7: k-Means(Pi) for i = 1, 2, . . . , N ;
8: Select s such that the corresponding matrix Ws has minimum SE measure;
9: if S(Ws∗) > S(Ws) then

10: s∗ = s;
11: geno = geno− 1;
12: end if
13: end while
14: Output s∗.

Combining the three operators, the GKA can be described in Algorithm 10.5. In
GKA, the complexity of evaluating the SE measure of a given solution string is O(nd), the
complexity of the mutation operator is O(n2d), and the complexity of the KMO is O(nkd).

In order to make GKA faster, Lu et al. (2004b) proposed FGKA (fast GKA) by
modifying the operators in GKA. In addition, Lu et al. (2004a) proposed another algorithm
called IGKA (incremental GKA) and applied it in gene expression data analysis. The main
idea of IGKA is to calculate the SE measure and to cluster the centroids incrementally
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whenever the mutation probability is small. The details of the two algorithms are omitted
here; interested readers are referred to (Lu et al., 2004b) and (Lu et al., 2004a), respectively.

10.8 The Global k-means Algorithm
Likas and Verbeek (2003) proposed a deterministic global clustering algorithm, called the
global k-means algorithm, to minimize the clustering error, which employs the k-means
algorithm as a local search procedure. The global k-means algorithm proceeds in an in-
cremental way: to solve a clustering problem with k clusters, all intermediate clustering
problems with 1, 2, . . . , k − 1 clusters are sequentially solved.

The main idea behind the global k-means algorithm is that an optimal solution of a
clustering problem with k clusters can be obtained by carrying out a series of local searches
using the k-means algorithm. At each local search, the k − 1 cluster centers are always
initialized at their optimal positions, i.e., the cluster centers of the clustering problem with
k−1 clusters. The kth cluster center is initialized to several positions within the data space.
The optimal solution of the clustering problem with 1 cluster is trivial and thus known.

More specifically, the global k-means algorithm is described as follows. Let D =
{x1, x2, . . . , xn} be a given data set in a d-dimensional space. The aim of the clustering prob-
lem with k clusters is to partition D into k clusters C1, C2, . . . , Ck such that the clustering
criterion

E(m1,m2, . . . ,mk) =
k∑

j=1

∑
x∈Cj

d2
euc(x,mj )

is optimized, where mj is the centroid of cluster Cj and deuc(·, ·) is the Euclidean distance.
Suppose {m∗

1(j),m∗
2(j), . . . ,m∗

j (j)} is the optimal solution of the clustering problem
with j cluster. Then the optimal solution of the clustering problem with j + 1 clusters is
obtained as follows: Perform n runs of the k-means algorithm, where the ith run starts with
the initial state {m∗

1(j),m∗
2(j), . . . ,m∗

j (j), xi}. The best solution obtained from the n runs
is considered as the solution of the clustering problem with j + 1 clusters.

In order to speed up the global k-means algorithm, some techniques, such as initial-
ization with kd-trees, are used. Hussein (2003) proposed another global k-means algorithm
based on a greedy approach, called the greedy k-means algorithm, in order to avoid some
drawbacks of the global k-means algorithm presented in this section.

10.9 The Genetic k-modes Algorithm
The genetic k-modes algorithm (Gan et al., 2005), GKMODE, is similar to GKA except
that a k-modes operator is used instead of KMO and, most important, illegal strings are
permitted. As in GKA, GKMODE has five basic elements: coding, initialization, selection,
mutation, and k-modes operator. The search space is the space of all binary membership
matrices W that satisfy (10.7). Coding in GKMODE is exactly the same as in GKA. The
initial population P(0) is randomly generated as in FGKA (Lu et al., 2004b). We now
describe the genetic operators used in GKMODE in detail.



196 Chapter 10. Search-based Clustering Algorithms

10.9.1 The Selection Operator

To describe the selection operator, let us start with the definition of the fitness value of a
string. The fitness value of a string sW depends on the value of the loss function L0(W),
the limiting case of Lp(W) as p → 0. Since the objective is to minimize the loss function
L0(W), a string with a relatively small loss must have a relatively high fitness value. In
addition, illegal strings are less desirable and should be assigned low fitness values. As in
(Lu et al., 2004b), we define the fitness value F(sW ) of a string sW as

F(sW ) =
{

cLmax − L0(sW ) if sW is legal,
e(sW )Fmin otherwise,

(10.11)

where c is a constant in the interval (0, 3); Lmax is the maximum loss of strings in the current
population; Fmin is the smallest fitness value of the legal strings in the current population if
it exists, otherwise it is defined as one; and e(sW ) is the legality ratio defined as the ratio of
the number of nonempty clusters in sW over k (so that e(sW ) = 1 if sW is legal).

The selection operator randomly selects a string from the current population according
to the distribution given by

P(si) = F(si)/

N∑
j=1

F(si),

where N is the population size. The population of the next generation is determined by N

independent random experiments, i.e., the selection operator is applied N times.

10.9.2 The Mutation Operator

In GKMODE, mutation changes a string value based on the distance of the cluster mode
from the corresponding data point. It performs the function of moving the algorithm out
of a local minimum. The closer a data point is to a cluster mode, the higher the chance of
changing the data point to that cluster.

Precisely, let sW be a solution string and let z1, z2, . . . , zk be the cluster modes cor-
responding to sW . During mutation, the mutation operator replaces sW (i) with a cluster
number randomly selected from {1, 2, . . . , k} according to the distribution

pj = [cmdmax(xi )− d(xi , zj )]/
k∑

l=1

[cmdmax(xi )− d(xi , zl)] , (10.12)

where cm > 1 is a constant, d(xi , zj ) is the simple matching distance between xi and zj ,
and dmax(xi ) = max1≤j≤k d(xi , zj ). As in FGKA, (Lu et al., 2004b), d(xi , zj ) is defined as
0 if the j th cluster is empty. In general, mutation occurs with some mutation probability Pm

specified by the user. The pseudocode of the mutation operator is given in Algorithm 10.6,
where Pm is the mutation probability specified by the user. By applying the mutation
operator, we may convert an illegal string to a legal one and a data point will move toward
a closer cluster with a higher probability.
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Algorithm 10.6. Mutation (sW) in GKMODE.

for i = 1 to n do
if drand()< Pm then

{drand() returns a uniformly distributed random number in the range [0, 1]}
Calculate modes z1, z2, . . . , zk corresponding to sW ;
Calculate dj = d(xi , zj ) for j = 1, 2, . . . , k;
Calculate p1, p2, . . . , pk using equation (10.12);
sW (i) = a number randomly selected from {1, 2, . . . , k} according to the distribution
{p1, p2, . . . , pk}.

end if
end for

10.9.3 The k-modes Operator

In GKA, KMO is used in place of the crossover operator in order to speed up the convergence
process. In GKMODE, the k-modes operator, one step of the k-modes algorithm (Chaturvedi
et al., 2001), is introduced for the same reason. Let sW be a solution string. Then the k-modes
operator on sW yields sŴ in the following two steps:

1. Estimate Z. Given estimates of W , the mode matrix Z is determined as follows. The
(j, l) entry zjl of Z should be the mode of (xl : x ∈ Cj), where xl is the l-component
of x and Cj = {xi : sW (i) = j, 1 ≤ i ≤ n}. The mode matrix Z formed above
optimizes the L0 loss function (Chaturvedi et al. (2001)).

2. Estimate W . Given estimates of Z, the binary membership matrix W is determined
as follows. The loss function L0(W) can be written as L0(W) = ∑n

i=1 fi , where
fi (1 ≤ i ≤ n) is defined as fi = ∑d

j=1 δ(xij , zsW (i)j ) (δ(x, y) = 0 if x = y, 1
otherwise). Note that fi is a function only of sW (i). Thus, to minimize L0, one can
separately minimize fi with respect to the parameter sW (i) for i = 1, 2, . . . , n. Since
sW (i) has only k possible values, i.e., {1, 2, . . . , k}, we can try all these k values and
select the value that minimizes fi , i.e., sW (i) = arg min1≤l≤k

∑d
j=1 δ(xij , zlj ). To

account for illegal strings, we define δ(xij , zlj ) = +∞ if the lth cluster is empty (Lu
et al., 2004b). This new definition is introduced in order to avoid reassigning all data
points to empty clusters. Thus, illegal strings remain illegal after the application of
the k-modes operator.

10.10 The Genetic Fuzzy k-modes Algorithm
The genetic fuzzy k-modes algorithm is the fuzzy version of the genetic k-modes algorithm.
In order to speed up the convergence process, a one-step fuzzy k-modes algorithm is used
in place of the crossover process. In this section, we will introduce these five elements of
the GA for fuzzy k-modes clustering.
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Recall that a fuzzy clustering problem can be represented as an optimization problem
(Dunn, 1974a)

min
W,Z

F (W,Z) =
k∑

l=1

n∑
i=1

wα
lid(zl , xi )

such that
0 ≤ wli ≤ 1, 1 ≤ l ≤ k, 1 ≤ i ≤ n, (10.13a)

k∑
l=1

wli = 1, 1 ≤ i ≤ n, (10.13b)

0 <

n∑
i=1

wli < n, 1 ≤ l ≤ k, (10.13c)

where n is the number of objects in the data set under consideration; k is the number of
clusters; D = {x1, x2, . . . , xn} is a set ofn objects, each of which is described by d attributes;
Z = {z1, z2, . . . , zk} is a set of k cluster centers; W = (wli) is a k × n fuzzy membership
matrix; α ∈ [1,∞] is a weighting exponent; and d(zl , xi ) is a certain distance measure
between the cluster center zl and the object xi .

10.10.1 String Representation

A natural coding approach is to represent the n × k fuzzy membership matrix W in a
chromosome, where n is the number of objects in the data set and k is the number of
clusters. That is, the length of a chromosome is n× k, where the first k positions (or genes)
represent the k fuzzy memberships of the first data point, the next k positions represent those
of the second data point, and so on. For example, if n = 4 and k = 3, then the chromosome
(a1, a2, . . . , a12) represents the 3× 4 fuzzy membership matrix

W =

 a1 a4 a7 a10

a2 a5 a8 a11

a3 a6 a9 a12


 ,

where W satisfies conditions (10.13a), (10.13b), and (10.13c). We call a chromosome
representing a fuzzy membership matrix that satisfies conditions (10.13a), (10.13b), and
(10.13c) a legal chromosome.

10.10.2 Initialization Process

In the initialization phase, a population ofN legal chromosomes is generated, whereN is the
size of the population. To generate a chromosome (a1, a2, . . . , an·k), we employ the method
introduced by Zhao et al. (1996), which is described as follows:

for i = 1 to n do
Generate k random numbers vi1, vi2, . . . , vik from [0, 1] for the ith point of the chro-
mosome;
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Calculate a(j−1)∗n+i = vij /
k∑

l=1
vil for j = 1, 2, . . . , k;

end for
If the produced chromosome satisfies conditions (10.13a), (10.13b), and (10.13c), then
generate the next chromosome; otherwise repeat the above process.

The process described above is repeated N times to generate an initial population.

10.10.3 Selection Process

To describe the selection process, let us first introduce how to calculate the fitness of a
chromosome. In our algorithm, we use the well-known rank-based evaluation function

F(si) = β(1− β)ri−1, (10.14)

where si (1 ≤ i ≤ N) is the ith chromosome in the population, ri is the rank of si , and
β ∈ [0, 1] is a parameter indicating the selective pressure of the algorithm. Note that the
chromosome with rank 1 is the best one and the chromosome with rank N is the worst one.

In our algorithm, the selection process is based on spinning the roulette wheel (Zhao
et al., 1996) N times, where each time a chromosome is selected for the next population.
Let Pj (0 ≤ j ≤ N) be the cumulative probabilities defined as

Pj =




0 for j = 0,
j∑

i=1
F(si )

N∑
i=1

F(si )

for j = 1, 2, . . . , N .

Then the new population is generated as follows.

for i = 1 to N do
Generate a random real number v from [0, 1];
if Pj−1 < v < Pj then

Select sj ;
end if

end for

10.10.4 Crossover Process

After the selection process, the population will go through a crossover process. As in GKA
(Krishna and Narasimha, 1999), in our algorithm we employ a one-step fuzzy k-modes
algorithm as the crossover operator. We update each chromosome in the population as
follows.

for t = 1 to N do
Let Wt be the fuzzy membership matrix represented by st ;
Obtain the new set of cluster centers Ẑt given Wt according to Theorem 8.1;
Obtain the fuzzy membership matrix Ŵt given Ẑt according to Theorem 8.2;
Replace st with the chromosome representing Ŵt .

end for
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10.10.5 Mutation Process

In the mutation process, each gene has a small probabilityPm (say, 0.01) of mutating, decided
by generating a random number (the gene will mutate if the random number is less than 0.01;
otherwise it won’t). In our algorithm, a change of one gene of a chromosome will trigger a
series of changes of genes in order to satisfy (10.13b). Thus, in the mutation process, the
fuzzy memberships of a point in a chromosome will be selected to mutate together with
probability Pm. The mutation process is described as follows.

for t = 1 to N do
Let (a1, a2, . . . , an·k) denote the chromosome st ;
for i = 1 to n do

Generate a random real number v ∈ [0, 1];
if v ≤ Pm then

Generate k random numbers vi1, vi2, . . . , vik from [0, 1] for the ith point of the
chromosome;

Replace a(j−1)∗n+i with vij /
k∑

l=1
vil for j = 1, 2, . . . , k;

end if
end for

end for

10.10.6 Termination Criterion

In our algorithm, the processes of selection, one-step fuzzy k-modes, and mutation are exe-
cuted for Gmax , the maximum number of iterations (or generations). The best chromosome
up to the last generation provides the solution to the clustering problem. We have also
implemented the elitist strategy (Cowgill et al., 1999) at each generation by creating N − 1
children and retaining the best parent of the current generation for the next generation.

10.11 SARS
SARS (SimulatedAnnealing using Random Sampling) (Hua et al., 1994) is a decomposition-
based simulated annealing (SA) approach for data clustering that addresses the issue of
excessive disk accesses during annealing. In this algorithm, the clustering problem is
formulated as a graph partition problem (GPP). In order to reduce the costly disk I/O
activities while obtaining optimal results, the statistical sampling technique is employed to
select subgraphs of the GPP into memory for annealing.

Given a data set D with n records, the data set D can be represented as a graph
G = (N,A) in which

• N denotes the set of nodes representing the records;

• A denotes the set of edges that connect related records;

• a weight wj ≥ 1 is assigned to each arc aj ∈ A;
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• a partitioning divides N approximately evenly into k disjoint subgraphs N1,

N2, . . . , Nv , where v is a given parameter;

• a cost function C is defined as
∑

wj , where the summation ranges over those arcs
aj ∈ A that connect nodes in two different subgraphs Ni and Ni ′ (1 ≤ i, i ′ ≤ v,

and i �= i ′).

The goal of the algorithm is to find a partitioning of the graph G such that the cost
functionC =∑wj is minimized. Since finding an optimal partitioning for GPP is NP-hard,
heuristics (e.g., SA) have been proposed to find suboptimal solutions.

Since almost all SA schemes are memory-based algorithms, they are not suited for
solving large problems. One possible solution is to use various buffer replacement strategies,
but this phenomenon will incur excessive disk accesses and force the machine to run at the
speed of the I/O subsystem. SARS, a decomposition-based approach to solving the GPP, is
proposed to address the excessive disk access problem.

The conventional SA algorithm begins with an initial partitioning of the graph. The
partitioned graph is perturbed by swapping two randomly selected nodes from two different
subgraphs. The cost function C is reevaluated and the difference, @C, between the costs
of the new and the current states, is computed. If @C < 0 (downhill), the proposed
perturbation is accepted and the new state is used as the starting point for the next move
evaluation. If @C ≥ 0 (uphill), the perturbation is accepted with a probability of e−@C

T ,
where T is the current temperature. This will prevent the searches from becoming trapped
in a local minimum by accepting a new state with a higher cost. This process of propose-
evaluate-decide (P-E-D) is repeated until an equilibrium condition is reached. Then the
temperature is decreased by some factor α and the P-E-D process is resumed with the new
temperature. The whole SA process is terminated when a prescribed frozen temperature is
met.

There are four parameters in the SA algorithm: the initial temperature T0, the equi-
librium criterion, the temperature decrement factor α, and the frozen condition. The initial
temperature T0 should be high enough such that virtually all uphill moves are accepted.
In SARS, the initial temperature T0 is determined by running a procedure that works as
follows. Initially, T0 is set to zero, and then a sequence of moves are generated. After each
move, a new value of T0 is computed according to

T0 = @C
(+)

ln
(

m2
m2χ0−m1(1−χ0)

) ,
where χ0 is an initial acceptance ratio defined as the ratio of the number of accepted moves
over the number of attempted moves at the initial temperature; m1 and m2 denote the

number of downhill and uphill moves, respectively, obtained so far; and @C
(+)

is the
average difference in cost over m2 uphill moves. The final value of T0 is used as the initial
temperature for the SA algorithm. In SARS, χ0 is set to 0.95. Typically, α is chosen in
[0.8, 0.99]. In SARS, α is set to 0.9. The equilibrium criterion determines the number M
of iterations of the inner loop, which is called the length of the Markov chains. In SARS,
M = βn, where β ranges from 5 to 8 and n is the number of records in the data set. The
frozen criterion is T decreased below 0.001 and the cost values of the last states of two
consecutive Markov chains are identical.
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Algorithm 10.7. The SARS algorithm.

1: Start with an initial state, S, by randomly partitioning the graph G into v subgraphs;
2: T ⇐ T0 {T0 is determined by a separate procedure};
3: while not frozen do
4: while not equilibrium do
5: if a nodes-perturbing move then
6: Perturb S by swapping nodes to get a new state S ′;
7: @C ⇐ C(S ′)− C(S);
8: if @C < 0 then
9: S ⇐ S ′;

10: else
11: S ⇐ S ′ with probability of e−@C

T ;
12: end if
13: else
14: Perform a buffer-perturbing move;
15: end if
16: end while
17: T ⇐ αT ;
18: end while

The SARS algorithm is described in Algorithm 10.7. In this algorithm, a decompo-
sition approach is used to perform SA. Initially, the graph is arbitrarily partitioned into v

subgraphs of approximately equal size, and then k subgraphs are randomly selected and
brought into memory. Thus there are two operations, one, called the nodes-perturbing
move, swaps two nodes of the k subgraphs in the memory, while the other called the buffer-
perturbing move, randomly selects k subgraphs. To make a choice between the two moves, a
random number is generated at each trial. If the number is less than a constant c (0 < c < 1),
a buffer-perturbing move is performed; otherwise, a nodes-perturbing move is performed.
It has been shown that the decomposition-based approach for SA preserves the convergence
property of the SA process (Hua et al., 1994).

10.12 Summary
Some search-based clustering techniques have been presented and discussed in this chapter.
To conduct a clustering based on search-based techniques, one first needs to define an
evaluation function (or objective function) for the partitions of the data, and then a search-
based technique is employed to find the globally optimal partition of the data. Although
search-based clustering algorithms cannot guarantee a globally optimal solution, they do
work toward the globally optimal solution.

The SA algorithm (McErlean et al., 1990; Bell et al., 1990; Klein and Dubes, 1989;
Selim and Al-Sultan, 1991; Hua et al., 1994) is also used for the purpose of clustering.
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Chapter 11

Graph-based Clustering
Algorithms

Agraph-based clustering algorithm will first construct a graph or hypergraph and then apply a
clustering algorithm to partition the graph or hypergraph. A link-based clustering algorithm
can also be considered as a graph-based one, because we can think of the links between data
points as links between the graph nodes.

11.1 Chameleon
The chameleon (Karypis et al., 1999) algorithm is a graph-based clustering algorithm. Given
a similarity matrix of the database, construct a sparse graph representation of the data
items based on the commonly used k-nearest neighbor graph approach. Finally, use the
agglomerative hierarchical clustering algorithm to merge the most similar subclusters by
taking into account the relative interconnectivity and closeness of the clusters.

The relative interconnectivity between any pair of clusters Ci and Cj is given by

RI (Ci, Cj ) = |EC{Ci,Cj }|
|ECCi

|+|ECCj
|

2

,

where ECCi
is the min-cut bisector of the cluster Ci , which characterizes the interconnec-

tivity of the cluster Ci . EC{Ci,Cj } is the absolute interconnectivity between a pair of clusters
Ci and Cj that can be defined to be the sum of the weights of the edges that connect vertices
in Ci to vertices in Cj .

The relative closeness between a pair of clustersCi andCj is defined to be the absolute
closeness between Ci and Cj normalized with respect to the internal closeness of the two
clusters Ci and Cj , i.e.,

RC(Ci, Cj ) =
S̄EC{Ci ,Cj }

|Ci |
|Ci |+|Cj | S̄ECCi

+ |Cj |
|Ci |+|Cj | S̄ECCj

,

203
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Table 11.1. Description of the chameleon algorithm, where n is the number of
data in the database and m is the number of initial subclusters.

Clustering Data Type Categorical data
Time Complexity O(nm+ n log n+m2 logm)

Algorithm Type hierarchical

where S̄ECCi
is the average weight of the edges that belong in the min-cut bisector of the

cluster Ci , and S̄EC{Ci ,Cj } is the average weight of the edges that connect vertices in Ci to
vertices in Cj .

Algorithm 11.1. The procedure of the chameleon algorithm.

Require: the similarity matrix of the data set;
1: Find initial subclusters;
2: Use a graph-partitioning algorithm to partition the k-nearest neighbor graph of the

database into a large number of subclusters such that the edge-cut is minimized;
3: Merge the subclusters generated in step 2 using a dynamic framework.

The general procedure of the chameleon algorithm is listed in Algorithm 11.1. The
general properties of the chameleon algorithm are shown in Table 11.1.

11.2 CACTUS
In the algorithm CACTUS (Categorical Clustering Using Summaries) developed by Ganti
et al. (1999), the interattribute and intra-attribute summaries of the database are constructed,
and then a graph called the similarity graph is defined according to those summaries. Finally,
the clusters are found with respect to those graphs.

CACTUS uses support (cf. Section 6.7.3) to measure the similarity between two
categorical attributes. Let A1, . . . , An be a set of categorical attributes with domains
D1, . . . , Dn, respectively. Let D be a set of tuples with each tuple t ∈ D1 × · · · × D2.
Let ai ∈ Di and aj ∈ Dj , i �= j . Now let Ci ⊆ Di for i = 1, 2, . . . , n and |Ci | > 1,
α > 1. C = {C1, C2, . . . , Cn} is said to be a cluster over {A1, A2, . . . , An} if the following
conditions are satisfied:

1. ∀i, j ∈ {1, 2, . . . , n}, i �= j , Ci and Cj are strongly connected.

2. ∀i, j ∈ {1, 2, . . . , n}, i �= j , there is no C ′
i ⊃ Ci such that ∀j �= i, C ′

i and Cj are
strongly connected.

3. The support satisfies σD(C) ≥ α · ES(C), where ES(C) is the expected support of
C under the assumption that the attributes are independent.

Let a1, a2 ∈ Di and x ∈ Dj . If (a1, x) and (a2, x) are strongly connected, then
(a1, a2) are similar to each other with respect to Aj at some level of similarity (Ganti et al.,
1999).
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In this algorithm, the interattribute summary �IJ is defined by

�IJ = {�ij : i, j ∈ {1, 2, . . . , n}, i �= j},
where

�ij = {(ai, aj , σ X
D(ai, aj )) : ai ∈ Di, aj ∈ Dj, and σ X

D(ai, aj ) > 0},
and σ X

D(ai, aj ) is defined as

σ X
D(ai, aj ) =

{
σD(ai, aj ) if ai and aj are strongly connected,
0 otherwise.

The intra-attribute summary �II is defined by

�II = {�j

ii : i, j ∈ {1, 2, . . . , n} and i �= j},
where

�
j

ii = {(ai1, ai2, γ j (ai1, ai2)) : ai1, ai2 ∈ Di, and γ j (ai1, ai2) > 0},
and γ j (ai1, ai2) is defined as

γ j (ai1, ai2) = |{x ∈ Dj : σ X(ai1, x) > 0 and σ X(ai2, x) > 0}|.
The CACTUS algorithm is described in Algorithm 11.2.

Algorithm 11.2. The CACTUS algorithm.

1: Compute the interattribute summaries and intra-attribute summaries from the database
{summarization phase};

2: Analyze each attribute to compute all cluster projections on it, and then synthesize can-
didate clusters on sets of attributes from the cluster projections on individual attributes
{clustering phase};

3: Compute the actual clusters from the candidate clusters {validation phase}.

11.3 A Dynamic System–based Approach
The clustering algorithm for a categorical data set proposed by Gibson et al. (2000) first
constructs a hypergraph according to the database and then clusters the hypergraph using
a discrete dynamic system. To construct the hypergraph, the algorithm links up attributes
or columns via their common values in rows (horizontal co-occurrence) and links up the
rows via their common values for the same attribute (vertical co-occurrence). A weight is
assigned to each node of the hypergraph and is normalized so that the sum of the squares
of the weights of the nodes associated with each attribute is 1. Then, it repeats updating the
weights until a fixed point is obtained.
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The algorithm developed by Gibson et al. (2000) may not converge. Zhang et al.
(2000b) proposed a revised dynamical system to guarantee the convergence. The normal-
ization functions in (Gibson et al., 2000) and (Zhang et al., 2000b) are different: in the
former, the normalization function is associated with each field, while in the latter, the
normalization normalizes the weights of all attribute values.

The algorithm proceeds as follows. Firstly, select an item of interest, A, and assign a
small weight to A. Then propagate this weight to items with which A co-occurs frequently.
Those items that have acquired the weight propagate further. Then, items highly related
to A acquire the weight, even without direct co-occurrence. The nodes of large weights
in the basin of attraction of this iteration tend to represent natural groups of data, and the
positive and negative weights in the nonprincipal basins tend to represent good partitions
of the data.

If we view the database as a table of relational data and let the table consist of a
set of k fields (columns), then each field denotes an attribute. Each field can take one of
many values. Each possible value in each possible field is represented by a node. Then
the database is a set of tuples with each tuple consisting of one node from each field. The
concept configuration was defined as an assignment of a weight wv to each node v. A
normalization function N(w) (w is the entire configuration) is used to rescale the weights
of the nodes associated with each field so that their squares add up to 1. The algorithm is
described simply in Algorithm 11.3.

Algorithm 11.3. The dynamic system–based clustering algorithm.

1: Construct the hypergraph according to the database;
2: Choose an initial configuration (there are many methods of doing this; see (Gibson

et al., 2000) for details);
3: Define a function f and repeat applying f to the configuration until a fixed point of the

dynamical system is obtained. The function f can be defined as follows (Gibson et al.,
2000):
To update the weight wv: for each tuple τ = {v, u1, u2, . . . , uk−1} containing v do

xτ ←− ⊕(u1, u2, . . . , uk−1),

wv ←− �τxτ ,

where ⊕ is a combiner function that can be chosen from among many operators, such
as product and addition operators.
In Zhang et al. (2000b), the function f is defined as follows:
To update the configuration w: create a temporary configuration w′ with weights
w′

1, w
′
2, . . . , w

′
m for each weightwui ∈ w as follows: for each tuple τ = {u1, u2, . . . , uk}

containing ui do
xτ ←− wu1 + · · · + cwui + · · · + wuk ,

w′
ui
←− �τxτ .

Then update w ←− w′ and normalize the configuration w.
4: Group the data whose attribute values have the greatest weights and let the remaining

data do the same process in steps 1 to 4 until more clusters are obtained if necessary.
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11.4 ROCK
ROCK (RObust Clustering using linKs) (Guha et al., 2000b) is an agglomerative hierarchi-
cal clustering algorithm that employs links to merge clusters. ROCK uses the link-based
similarity measure (cf. Section 6.7.2) to measure the similarity between two data points and
between two clusters.

In order to characterize the best clusters, a criterion function is defined to be

El =
k∑

i=1

ni ·
∑

pq,pr∈Ci

link(pq, pr)

n
1+2f (θ)
i

,

where k is the number of clusters, ni is the size of cluster i, Ci denotes the cluster i, and
f (θ) is a function of the parameter θ . To determine the function f (θ) is a difficult problem.

Also, in order to decide whether or not to merge clusters Ci and Cj , the goodness
measure (i.e., the similarity measure between two clusters) g(Ci, Cj ) for merging clusters
Ci and Cj is defined as

g(Ci, Cj ) = link[Ci, Cj ]
(ni + nj )1+2f (θ) − n

1+2f (θ)
i − n

1+2f (θ)
j

,

where link[Ci, Cj ] is the number of cross-links between clusters Ci and Cj , i.e.,

link[Ci, Cj ] =
∑

pq∈Ci,pr∈Cj

link(pq, pr).

The clustering algorithm for ROCK is described in Algorithm 11.4. The properties of
the ROCK algorithm are listed in Table 11.2.

Algorithm 11.4. The ROCK algorithm.

Require: n: number of data points; D: data set;
1: for i = 1 to n− 1 do
2: for j = i + 1 to n do
3: Compute link(pi, pj );
4: end for
5: end for
6: for i = 1 to n do
7: Build a local heap q[i] that contains every cluster Cj such that link[Ci, Cj ] is non-

zero
{at first, each data point forms a cluster};

8: end for
9: Build a global heap Q that is ordered in decreasing order of the best goodness measure

and contains all the clusters;
10: repeat
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Table 11.2. The properties of the ROCK algorithm, where n is the number of data
points in the data set, mm is the maximum number of neighbors for a point, and ma is the
average number of neighbors.

Clustering Data Type Categorical data

Time Complexity O(n2 + nmmma + n2 log n)
Space Complexity O(min{n2, nmmma})
Algorithm Type agglomerative hierarchical

11: Merge the max cluster Cj ∈ Q and the max cluster in q[j ] into a new cluster W ,
delete the two clusters from Q, and update link;

12: until the number of links between every pair of the remaining clusters becomes zero or
size(Q) = k.

11.5 Summary
Hubert (1974) reviewed the relationship between graph theory and the clustering of a set of
objects. Other discussions are provided in Jardine and Sibson (1968), Jardine (1971), Wirth
et al. (1966), Gotlieb and Kumar (1968), Zahn (1971), Gower and Ross (1969), Augustson
and Minker (1970), Wu and Leahy (1993), Estabrook (1966), Baker and Hubert (1976), and
Legendre and Rogers (1972).

A branch of graph-based clustering that is not discussed in this chapter is spectral
clustering. Spectral methods have recently emerged as effective methods for data clustering,
image segmentation, Web-ranking analysis, and dimension reduction. Interested readers are
referred to (Alpert and Yao, 1995), (Fowlkes et al., 2004), (Kannan et al., 2004), (Ng et al.,
2002), (Spielmat and Teng, 1996), (Zien et al., 1997), (Zien et al., 1999), and (Chan et al.,
1994).
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Density-based and/or grid-based approaches are popular for mining clusters in a large mul-
tidimensional space wherein clusters are regarded as denser regions than their surroundings.
In this chapter, we present some grid-based clustering algorithms.

The computational complexity of most clustering algorithms is at least linearly pro-
portional to the size of the data set. The great advantage of grid-based clustering is its
significant reduction of the computational complexity, especially for clustering very large
data sets.

The grid-based clustering approach differs from the conventional clustering algo-
rithms in that it is concerned not with the data points but with the value space that surrounds
the data points. In general, a typical grid-based clustering algorithm consists of the following
five basic steps (Grabusts and Borisov, 2002):

1. Creating the grid structure, i.e., partitioning the data space into a finite number of cells.

2. Calculating the cell density for each cell.

3. Sorting of the cells according to their densities.

4. Identifying cluster centers.

5. Traversal of neighbor cells.

12.1 STING
Wang et al. (1997) proposed a STatistical INformation Grid-based clustering method
(STING) to cluster spatial databases. The algorithm can be used to facilitate several kinds
of spatial queries. The spatial area is divided into rectangle cells, which are represented by
a hierarchical structure. Let the root of the hierarchy be at level 1, its children at level 2,
etc. The number of layers could be obtained by changing the number of cells that form a
higher-level cell. A cell in level i corresponds to the union of the areas of its children in
level i + 1. In the algorithm STING, each cell has 4 children and each child corresponds
to one quadrant of the parent cell. Only two-dimensional spatial space is considered in this
algorithm. Some related work can be found in (Wang et al., 1999b).

209
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For each cell, the attribute-dependent and attribute-independent parameters are de-
fined as follows:

n − number of objects (points) in the cell;
m − mean of all values in this cell;
s − standard deviation of all values of the attribute in this cell;
min − the minimum value of the attribute in this cell;
max − the maximum value of the attribute in this cell;
dist − the type of distribution that the attribute value in this cell follows.

Given the hierarchical structure of grid cells, we can start with the root to calculate the
likelihood that this cell is relevant to the query at some confidence level using the parameters
of this cell. The algorithm is summarized in Algorithm 12.1.

Algorithm 12.1. The STING algorithm.

1: Construct the grid hierarchical structure according to the database and generate the
parameters of each cell;

2: Determine a layer to begin with;
3: For each cell in this layer, compute the confidence interval of the probability that this

cell is relevant to the query;
4: if this layer is not the bottom layer then
5: Go to the next level in the hierarchy structure and go to step 3 for the relevant cells

of the higher-level layer;
6: else if the specification of the query is met then
7: Find the regions of relevant cells and return those regions that meet the requirements

of the query;
8: else
9: Reprocess the data in the relevant cells and return the results that meet the require-

ments of the query;
10: end if

The algorithm cannot be scaled to high-dimensional databases because the compu-
tational complexity is O(K), where K is the number of cells in the bottom layer. In
high-dimensional data, if each cell has four children, then the number of cells in the second
layer will be 2d , where d is the number of dimensions of the database.

STING+ (Wang et al., 1999b) is an active spatial data-mining algorithm that based on
active database systems and the algorithm STING. This algorithm enables users to specify
complicated conditions. STING and STING+ have only been designed for low-dimensional
data, and there is no straightforward extension to the high-dimensional case (Keim and
Hinneburg, 1999).

12.2 OptiGrid
We introduce the OptiGrid clustering algorithm (Keim and Hinneburg, 1999), a very efficient
algorithm for clustering high-dimensional databases with noise, in this section.



12.2. OptiGrid 211

Acutting plane is a (d−1)-dimensional hyperplane consisting of all points y satisfying
the equation

∑d
i=1 wiyi = 1. The cutting plane partitions the d-dimensional space Rd into

two half-spaces. The decision function H(x), which determines where a point x is located,
is defined to be

H(x) =
{

1
∑d

i=1 wixi ≥ 1,
0 otherwise.

According to the cutting plane, a multidimensional grid G for the data space S is
defined to be a set H = {H1, H2, . . . , Hk} of (d − 1)-dimensional cutting planes. The
coding function cG : S → N is defined as

x ∈ S, c(x) =
k∑

i=1

2i ·Hi(x).

The algorithm uses cutting planes to determine the grids. First, the algorithm OptiGrid
chooses a set of contracting projections and then uses the projections of the data space to
determine the cutting planes efficiently. The algorithm then finds the clusters using the
density function f̂ D given by

f̂ D = 1

nh

n∑
i=1

K

(
x − xi

h

)
,

where D is a set of N d-dimensional points, h is the smoothness level, and K is the kernel
density estimator.

A center-based cluster for a maximum x∗ of the density function f̂ D is the subset
C ⊆ D, with x ∈ C being density-attracted by x∗ and f̂ D(x∗) ≥ ξ . Points x ∈ D are
called outliers if they are density-attracted by a local maximum x∗0 with f̂ D(x∗0 ) < ξ . The
notion of density-attraction is defined by the gradient of the density function.

According to the definition of a center-based cluster, the algorithm OptiGrid is de-
scribed in Algorithm 12.2.

Algorithm 12.2. The OptiGrid algorithm.

Require: data set D, q, min_cut_score
1: Determine a set of contracting projections P = {P0, P1, . . . , Pk} and calculate all the

projections of the data set D: Pi(D), i = 1, 2, . . . , k;
2: Initialize a list of cutting planes BEST _CUT ⇐ ?, CUT ⇐ ?;
3: for i = 0 to k do
4: CUT ⇐ best local cuts Pi(D);
5: CUT _SCORE ⇐ Score best local cuts Pi(D);
6: Insert all the cutting planes with a score ≥ min_cut_score into BEST _CUT ;
7: if BEST _CUT = ? then
8: Return D as a cluster;
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9: else
10: Select the q cutting planes of the highest score from BEST _CUT and construct

a multidimensional grid G using the q cutting planes;
11: Insert all data points in D into G and determine the highly populated grid cells in

G; add these cells to the set of clusters C;
12: Refine C;
13: for all clusters Ci in C do
14: Do the same process with data set Ci ;
15: end for
16: end if
17: end for

OptiGrid is efficient for clustering large databases. However, it may be very slow
if the clusters are embedded in a low-dimensional subspace of a very high-dimensional
database, because it uses a recursive method to reduce the dimension by one at every step.
The clusters produced by OptiGrid are multicentered, i.e., a cluster may have more than
one center. The algorithm is hierarchical, but the time complexity is between O(N · d) and
O(d ·N · logN).

12.3 GRIDCLUS
Schikuta (1996) proposed a hierarchical algorithm named GRIDCLUS for clustering very
large data sets. The main idea of this algorithm is to use a multidimensional grid data
structure to organize the value space surrounding the pattern values rather than to organize
the patterns themselves. The patterns are grouped into blocks, which are clustered by a
topological neighbor search algorithm.

The algorithm first establishes a grid structure that partitions the value space and
administers the points by a set of surrounding rectangular blocks. Given a data set D =
{x1, x2, . . . , xn} in a d-dimensional space, a block is defined to be a d-dimensional hyper-
rectangle containing up to a maximum of bs points, where bs denotes the block size. Let
B1, B2, . . . , Bm be blocks of the data set D. They have the following properties:

1. ∀xi ∈ D, xi ∈ Bj for some j ;

2. Bj ∩ Bk = ? if j �= k;

3. Bj �= ?;

4.
m⋃

j=1
Bj = D.

The grid structure consists of three parts: d scales (one for each dimension), the grid
directory (a d-dimensional array), and b data blocks. For a detailed description of the grid
structure, we refer to Nievergelt et al. (1984).

Then the GRIDCLUS algorithm clusters the blocks Bi (i = 1, 2, . . . , m) into a nested
sequence of nonempty and disjoint clusterings. To do this, a density index of each block is
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defined via the number of points and the spatial volume of the block. Precisely, the density
index of a block B is defined as

DB = pB

VB

,

where pB is the number of data points contained in the block B and VB is the spatial volume
of the block B, i.e.,

VB =
d∏

j=1

eBj
,

with d being the dimensionality of the data space and eBj
the extent of the block Bj in the

j th dimension.
Blocks with the highest density index become clustering centers. The remaining

blocks are then clustered iteratively in order of their density indices. Through this process,
new cluster centers are built and existing clusters are merged. The algorithm only allows
blocks adjacent to a cluster to be merged. This is done by a neighbor search procedure
starting at the cluster center and inspecting adjacent blocks. If a neighbor block is found,
the search proceeds recursively with the block.

Algorithm 12.3. The GRIDCLUS algorithm.

1: Set u := 0,W [] := {}, C[] := {} {initialization};
2: Create the grid structure and calculate the block density indices;
3: Generate a sorted block sequence B1′ , B2′ , . . . , Bb′ and mark all blocks “not active” and

“not clustered”;
4: while a “not active” block exists do
5: u⇐ u+ 1;
6: mark first B1′ , B2′ , . . . , Bj ′ with equal density index “active”;
7: for each “not clustered” block Bl′ := B1′ , B2′ , . . . , Bj ′ do
8: Create a new cluster set C[u];
9: W [u] ⇐ W [u] + 1, C[u,W [u]] ← Bl′ ;

10: Mark block Bl′ clustered;
11: NEIGHBOR_SEARCH(Bl′ , C[u,W [u]]);
12: end for
13: for each “not active” block B do
14: W [u] ⇐ W [u] + 1, C[u,W [u]] ← B;
15: end for
16: Mark all blocks “not clustered”;
17: end while

The GRIDCLUS algorithm consists of five main parts: (a) insertion of points into
the grid structure, (b) calculation of density indices, (c) sorting of the blocks with respect
to their density indices, (d) identification of cluster centers, and (e) traversal of neigh-
bor blocks. The GRIDCLUS algorithm is described in Algorithm 12.3. The function
NEIGHBOR_SEARCH is the recursive procedure described in Algorithm 12.4.
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Algorithm 12.4. Procedure NEIGHBOR_SEARCH(B,C).

1: for each “active” and “not clustered” neighbor B ′ of B do
2: C ← B ′;
3: Mark block B ′ “clustered”;
4: NEIGHBOR_SEARCH(B ′, C);
5: end for

The BANG-clustering algorithm (Schikuta and Erhart, 1997) is a hierarchical clus-
tering algorithm based on GRIDCLUS. It is an extension of the grid clustering algorithm
presented in (Schikuta, 1996). In the BANG-clustering system, the value space is parti-
tioned binarily into a hierarchical set of grid regions and each grid region is assigned a unique
identity (r, l), where r is the region number and l is the level number. The blocks are sorted
according to their density indices. Blocks with the highest density index become clustering
centers and the remaining blocks are clustered iteratively in order of their density indices;
the remaining blocks either build new cluster centers or merge with existing clusters. The
main procedures of the BANG-clustering algorithm are described as follows:

1. Partition the value space binarily into rectangular grids such that each grid contains
up to a maximum of pmax data points.

2. Construct a binary tree that contains the populated grids according to the level.

3. Calculate the dendrogram in which the density indices of all regions are sorted in
decreasing order.

4. Starting with the highest-density region (i.e., the first region), determine all the neigh-
bors and classify them in decreasing order; place the found regions to the right of the
original regions in the dendrogram.

5. Repeat step 4 for the remaining regions of the dendrogram.

12.4 GDILC
GDILC is a Grid-based Density-IsoLine Clustering algorithm proposed by Zhao and Song
(2001). The algorithm is capable of eliminating outliers and finding clusters of various
shapes. The main idea behind this algorithm is that the distribution of data samples can be
depicted very well by the so-called density-isoline figure. A grid-based method is employed
to calculate the density of each data sample and find relatively dense regions. Before this
algorithm is used, all data samples are assumed to be normalized, i.e., all attribute values
are in the range of [0, 1].

First, a density-isoline figure (i.e., the contour figure of density) is formed from the
distribution densities of data samples. Then clusters are discovered from the density-isoline
figure. By varying isolines, clusters of different densities can be obtained. Calculating
density and getting a proper density-isoline figure are key steps in the algorithm GDILC.
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In GDILC, the density of a data sample is computed as the count of samples in its
neighbor region. Let x be a data sample. Then the density of x is calculated by the formula

Density(x) = |{y : f (y, x) ≤ T }|,
where T is a given threshold and f (y, x) is a function used to measure the dissimilarity
between samples y and x; for example, f (·, ·) can be the Minkowsky distance.

The density-isoline figure is obtained from the density vectors. The density vectors
are computed by counting the elements of each row of the distance matrix that are less than
RT , the radius of the neighbor region. The density-isoline figure is not explicitly drawn in
the clustering procedure.

Since the distances between each pair of data samples have to be computed in order
to compute the density vector, a grid-based method has been employed. Before computing
distances, GDILC partitions each dimension into several intervals such that the data space
is partitioned into many hyperrectangular cells. Let D be a d-dimensional data set and
suppose each dimension is divided into mi intervals that are numbered from 0 to mi − 1.
Then each cell can be labeled with the sequence numbers of intervals. For example, Ci1i2...id

is the cell that is in interval il of dimension l for l = 1, 2, . . . , d.
In GDILC, computing the density of a sample x involves only distances between

those samples in Cx and its neighbor cells, where Cx is the cell that contains the sample
x. In GDILC, two cells Ci1i2...id and Cj1j2...jd are said to be neighbor cells if the following
condition is satisfied:

|il − jl| ≤ 1 for l = 1, 2, . . . , d.

Algorithm 12.5. The GDILC algorithm.

S1 (Initializing cells) Divide each dimension into m intervals;

S2 (Computing distance threshold RT ) For each point x, compute the distances between
x and every point in the neighbor cells of Cx. Then compute the distance threshold
RT by calculating the average distance from those distances;

S3 (Computing density vector and density threshold DT ) For each point x, compute the
density of x by counting the number of points within RT of x. Then compute the
density threshold DT by calculating the average density from the density vector;

S4 (Clustering)At first, take each point whose density is more thanDT as a cluster. Then,
for each point x, check whether the distance from x of each point whose density is
more than DT in the neighbor cells of Cx is less than RT . If so, then merge the two
clusters containing those two points. Continue the above merging process until all
point pairs have been checked;

S5 (Removing outliers) Remove those clusters whose sizes are less than a certain number.

The algorithm GDILC consists of five steps and the procedure is described in Algo-
rithm 12.5 in detail. In GDILC, there are two important parameters: the distance threshold
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RT and the density threshold DT . In order to obtain an optimal density-isoline figure,
the values of RT and DT are calculated dynamically according to the number and the
distribution of data samples. Precisely, the distance threshold RT is computed as

RT = mean(Dist)

d × coefRT
,

where Dist is the array of all interesting distances, mean(Dist) is the average of Dist , d
is the number of dimensions, and coefRT is an adjustable coefficient that can be adjusted to
get good clustering results.

In GDILC, the density threshold DT is computed from the formula

DT =
{

2, n < 1000,
mean(Density)

log10(n)
× coef DT, n ≥ 2000,

where mean(Density) is the average of the densities of all data samples, and coefDT is an
adjustable coefficient in the range [0.7, 1].

In this algorithm, the number of intervals m is computed by the formula:

m = m

√
n

coefM
,

where coefM is an adjustable coefficient that can be treated as the average number of data
samples in a cell.

Since a grid-based method is employed to reduce lots of unnecessary computation,
the time complexity of GDILC is nearly O(n).

12.5 WaveCluster
WaveCluster (Sheikholeslami et al., 2000) is an algorithm for clustering spatial data
based on wavelet transforms. WaveCluster is insensitive to noise, capable of detecting
clusters of arbitrary shape at different degrees of detail, and efficient for large databases.
The key idea of WaveCluster is to apply wavelet transforms on the feature space, instead of
the objects themselves, to find the dense regions in the feature space.

The algorithm first partitions the original data space into nonoverlapping hyperrect-
angles, i.e., cells. The j th dimension is segmented into mj of intervals. Each cell ci is the
intersection of one interval from each dimension and has the form (ci1, ci2, . . . , cid), where
cij = [lij , hij ) is the right open interval in the partitioning of the j th dimension and d is the
number of dimensions.

A point x = (x1, x2, . . . , xd) is said to be contained in a cell xi if lij ≤ xj < hij for
j = 1, 2, . . . , d. Let ci · count denote the number of points contained in the cell ci . Then
the algorithm applies a wavelet transform to ci · count values. Then the transformed space
is defined as the set of cells after the wavelet transformation on the count values of the cells
in the quantized space.

WaveCluster is capable of identifying clusters of arbitrary shapes. In this algorithm,
a cluster is defined to be a set of significant cells {c1, c2, . . . , cm} that are k-connected in
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the transformed space. A cell is called a significant cell if its count in the transformed
space is above a certain threshold τ . A cell c1 is an ε-neighbor of a cell c2 if both are
either significant cells (in transformed space) or nonempty cells (in quantized space) and
D(c1, c2) ≤ ε, where D(·, ·) is an appropriate distance metric and ε > 0. A cell c1 is a
k− ε-neighbor of a cell c2 if both are significant cells or both are nonempty cells and if c1 is
one of the k prespecified ε-neighbors of c2. Two cells c1 and c2 are said to be k-connected
if there is a sequence of cells c1 = p1,p2, . . . ,pj = c2 such that pi+1 is a k − ε-neighbor
of pi for i = 1, 2, . . . , j .

WaveCluster is very efficient, especially for very large databases. The computational
complexity of WaveCluster is O(n), where n is the number of objects in the data set. The
clustering results produced by WaveCluster are not affected by noise and, in addition, not
sensitive to the order of input objects to be processed. WaveCluster is capable of finding
arbitrarily shaped clusters and the number of clusters is not required in advance.

12.6 Summary
The main ideas behind the grid-based clustering algorithms are to use multiresolution grid
data structures and to use dense grid cells to form clusters. In other words, the algorithms
first quantize the original data space into a finite number of cells and then do all operations
on the quantized space. The main characteristic of these grid-based clustering algorithms
is their fast processing time, since similar data points will fall into the same cell and will
be treated as a single point. This makes the algorithms independent of the number of data
points in the original data set.

Most grid-based algorithms require users to specify a grid size or density thresholds.
One difficulty of grid-based clustering algorithms is how to choose the grid size or density
thresholds. Fine grid sizes lead to a huge amount of computation, while coarse grid sizes
result in low quality of clusters. To alleviate this problem, Nagesh et al. (2001) proposed
a technique of adaptive grids that automatically determines the size of grids based on the
data distribution and does not require the user to specify any parameters like the grid size
or the density thresholds.

Some grid-based clustering algorithms, such as STING (Wang et al., 1997) and
WaveCluster (Sheikholeslami et al., 2000), are efficient only for low-dimensional data sets.
Consider a data set in a 100-dimensional space, for example. If one splits each dimension
only once at the center, then the resulting space is cut into 2100 ≈ 1030 cells. Among the
huge number of cells, most are empty and some may be filled with only one data point. It
is impossible to determine a data distribution with such a coarse grid structure (Keim and
Hinneburg, 1999). The algorithm OptiGrid due to Keim and Hinneburg (1999) is designed
for the purpose of clustering high-dimensional data.

Unlike center-based clustering algorithms, grid-based clustering algorithms have re-
ceived little attention. Further examples of grid-based clustering can be found in (Park and
Lee, 2004), (Chang and Jin, 2002), (Chen et al., 2002), and (Ma and Chow, 2004).
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Chapter 13

Density-based Clustering
Algorithms

The density-based clustering approach is a methodology that is capable of finding arbitrar-
ily shaped clusters, where clusters are defined as dense regions separated by low-density
regions. A density-based algorithm needs only one scan of the original data set and can han-
dle noise. The number of clusters is not required, since density-based clustering algorithms
can automatically detect the clusters, along with the natural number of clusters (El-Sonbaty
et al., 2004).

13.1 DBSCAN
Ester et al. (1996) proposed a density-based clustering algorithm called DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) to discover arbitrarily shaped clusters.
Only one input parameter is required, and the algorithm also supports the user in determining
an appropriate value for this input parameter.

To describe the algorithm, we start with some definitions and notation. An important
concept in density-based algorithms is the ε-neighborhood of a point. Let x be a point.
Then the ε-neighborhood of x is denoted by Nε(x) and is defined as follows.

Definition 13.1 (ε-neighborhood of a point). The ε-neighborhood of a point x is defined
as

Nε(x) = {y ∈ D : d(x, y) ≤ ε},
where D is the data set and d(·, ·) is a certain distance function.

Definition 13.2 (Directly density-reachable). A point x is said to be directly density-
reachable from a point y (with respect to ε and Nmin) if

1. x ∈ Nε(y);

2. |Nε(y)| ≥ Nmin, where |Nε(y)| denotes the number of points in Nε(y).

219
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Directly density-reachable is symmetric for pairs of core points (points inside a clus-
ter), but it is in general not symmetric in case one core point and one border point (a point
on the border of a cluster) are involved. As an extension of directly density-reachable,
density-reachable, defined below, is also not symmetric in general. But density-connected
is a symmetric relation.

Definition 13.3 (Density-reachable). A point x is said to be density-reachable from a
point y if there is a sequence of points x = x1, x2, . . . , xi = y such that xl is directly
density-reachable from xl+1 for l = 1, 2, . . . , i − 1.

Definition 13.4 (Density-connected). Two points x and y are said to density-connected with
respect to ε and Nmin if there exists a point z such that both x and y are density-reachable
from z with respect to ε and Nmin.

A cluster is then very intuitively defined as a set of density-connected points that
is maximal with respect to density-reachability. Mathematically, we have the following
definition.

Definition 13.5 (Cluster). Let D be a data set. A cluster C with respect to ε and Nmin is a
nonempty subset of D satisfying the following conditions:

1. ∀x, y ∈ D, if x ∈ C and y is density-reachable from x with respect to ε and Nmin,
then y ∈ C(maximality).

2. ∀x, y ∈ C, x and y are density-connected with respect to ε and Nmin (connectivity).

The noise is a set of points in the data set that do not belong to any cluster. We see
from Definition 13.5 that a cluster contains at least Nmin points. DBSCAN starts with an
arbitrary point x and finds all points that are density-reachable from x with respect to ε

and Nmin. If x is a core point, then a cluster with respect to ε and Nmin is formed. If
x is a border point, then no points are density-reachable from x and DBSCAN visits the
next unclassified point. DBSCAN may merge two clusters if the two clusters are close
to each other. In DBSCAN, the distance between two clusters C1 and C2 is defined as
d(C1, C2) = minx∈C1,y∈C2 d(x, y). As pointed out by Su et al. (2002), DBSCAN tends to
merge many slightly connected clusters together.

DBSCAN requires two parameters, ε and Nmin. These two parameters are used
globally in the algorithm, i.e., the two parameters are the same for all clusters, so to choose
the two parameters in advance is not easy. However, a heuristic is developed in DBSCAN to
determine the parameters ε and Nmin of the “thinnest” cluster in the database. This heuristic
is called the sorted k-dist graph. Let Fk : D → R be a function defined as

Fk(x) = distance between x and its kth nearest neighbor.

Then Fk(D) is sorted in descending order and plotted in a two-dimensional graph. ε is set
to F4(z0), where z0 is the first point in the first “valley” of the graph of the sorted 4-dist
graph, since the k-dist graph for k > 4 does not significantly differ from the 4-dist graph
(Ester et al., 1996). Hence Nmin is set to 4 for all two-dimensional data.
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DBSCAN has several variations and extensions. Sander et al. (1998) generalized
DBSCAN to GDBSCAN, which can cluster point objects as well as spatially extended
objects with spatial and nonspatial attributes. GDBSCAN generalizes DBSCAN in two
ways: the notion of a neighborhood and the measure in a neighborhood. For details, readers
are referred to (Sander et al., 1998) and (Ester et al., 1997). PDBSCAN is a parallel version
of DBSCAN proposed by Xu et al. (1999). DBSCAN is also extended by Ester et al. (1998)
to incremental clustering. Zaiane and Lee (2002) proposed an algorithm called DBCluC
(Density-Based Clustering with Constraints) based on DBSCAN to cluster spatial data in
the presence of obstacles.

13.2 BRIDGE
Dash et al. (2001) proposed a hybrid clustering algorithm, called BRIDGE, which integrates
the popular k-means algorithm and the density-based algorithm DBSCAN. BRIDGE enables
DBSCAN to handle very large databases and at the same time improves the quality of k-
means clusters by removing noise.

In BRIDGE, the k-means algorithm is first performed to partition the data set into k

clusters, and then DBSCAN is applied to each partition to find dense clusters. The result
of DBSCAN is then finally used to improve the k-means clusters, i.e., the k-means clusters
are refined by removing the noise found by the density-based clustering.

To describe the algorithm, we first introduce some definitions. The core distance with
respect to a cluster C is defined as half the distance between its center and its closest cluster
center. Apoint is called a core point if it is not farther from its center thanCoreDistance−ε.
The core region of a cluster is one inside which each data point is a core point. A point is
called a (+ε)-core point if its distance from its cluster center is between CoreDistance

and CoreDistance+ ε, whereas a point is called a (−ε)-core point if its distance from its
cluster center is between CoreDistance and CoreDistance − ε. A point is noncore if it
is neither a core nor an ε-core ((+ε)-core or (−ε)-core) point. The noncore region is one
inside which each point is noncore.

Algorithm 13.1. The BRIDGE algorithm.

Require: k: number of clusters;
1: Run the k-means algorithm and label each data point with the k-means cluster ID and

core/ε-core/noncore;
2: Determine ε and Nmin for DBSCAN;
3: Run DBSCAN for core and ε-core points of each k-means cluster;
4: Run DBSCAN for all core and noncore points;
5: Resolve multiple cluster IDs;
6: Run the k-means algorithm without the noise found in DBSCAN, taking earlier centers

as initial points.

The parameter ε is dependent on the specific data and is set by experiments. The
parameter Nmin is set according to the formula

Nmin = min
1≤l≤k

Nl,
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where Nl is defined as

Nl = Vε(l)

Vτ (l)
· |Cl|

with Vε(l) for cluster Cl calculated as 2ε for one dimension, πε2 for two dimensions,
and 4

3πε
3 for three dimensions and Vτ (l) the volume of the smallest hyperrectangle that

circumscribes all points inside the cluster.
The integration of the k-means algorithm and DBSCAN overcomes some disadvan-

tages of the two algorithms. In addition, Dash et al. (2001) also exploited the integration of
BIRCH and DBSCAN.

13.3 DBCLASD
Xu et al. (1998) proposed an incremental clustering algorithm called DBCLASD (Distribution-
Based Clustering of LArge Spatial Databases) based on the assumption that points inside
a cluster are uniformly distributed. Like DBSCAN, DBCLASD is capable of finding ar-
bitrarily shaped clusters, but DBCLASD does not require input parameters. DBCLASD
dynamically determines the appropriate number and shape of clusters for a database, and
the algorithm is efficient for larger databases.

The cluster produced by DBCLASD is defined in terms of the distribution of the
nearest neighbor distances. Let S be a data set. Then the nearest neighbor of x ∈ S, denoted
byNNS(x), is the point in S−{x} that has the minimum distance to x. This distance is called
the nearest neighbor distance of x, denoted by NNdistS(x). The multiset of all values of
NNdistS(x) for x ∈ S is called the nearest neighbor distance set of S or distance set of
S and is denoted by NNdistSet (S). Based on the notion of nearest neighbor distances, a
cluster can be defined as follows.

Definition 13.6 (Cluster). Let D be a data set. Then a cluster C is a nonempty subset of
D that satisfies the following conditions:

1. NNdistSet (C) has the expected distribution with a required confidence level.

2. Each extension of C by neighboring points will fail the first condition (maximality).

3. Each pair of points in the cluster is connected by a path of occupied grid cells
(connectivity).

The probability distribution of the nearest neighbor distances is determined based on
the assumption that the points inside a cluster are uniformly distributed. Let R be a data
space with volume Vol(R). Then the probability that the nearest neighbor distance Xd from
any point y to its nearest neighbor in R is greater than x > 0 is

P(Xd > x) =
(

1− Vol(SP (y, x))
Vol(R)

)N

,
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where N is the number of points inside R and SP (y, x) is a hypersphere around y with
radius x. Hence, in the two-dimensional case, the distribution function is given by

F(x) = 1− P(Xd > x) =
(

1− πx2

Vol(R)

)N

.

The parameter N can be determined straightforwardly, while Vol(R) is approximated by
the volume of the grid cells occupied by the points in R.

DBCLASD starts with an initial cluster and then adds neighboring points to the cluster
incrementally as long as the nearest neighbor distance set of the resulting cluster still fits
the expected distance distribution. For each new member x of the current cluster C, new
candidates are retrieved using a circle query with a suitable radius m, where m satisfies the
condition

P(NNdistC(x) > m) <
1

N
,

or

m >

(
A

π · (1−N− 1
N )

) 1
2

,

where N is the number of elements in C and A is the area of C.
A χ2-test is used to derive that the observed distance distribution fits the expected

distance distribution. The new candidates are tested using the χ2-test. Since the order of
testing is crucial, unsuccessful candidates are not discarded but tried again later and points
may switch from one cluster to another.

13.4 DENCLUE
DENCLUE (DENsity based CLUstEring) (Hinneburg and Keim, 1998) is a density-based
algorithm for clustering large multimedia data. It can find arbitrarily shaped clusters and deal
with data sets with large amounts of noise. Before describing this algorithm, we introduce
some concepts.

The density function of a data set D is defined as

f D
B (x) =

∑
y∈D

fB(x, y),

where fB : Fd × Fd → R+
0 is a basic influence function. The square wave influence

function (13.1a) and the Gaussian influence function (13.1b) are examples of basic influence
functions:

fSquare(x, y) =
{

0 if d(x, y) > σ ,
1 otherwise,

(13.1a)

fGauss(x, y) = e
− d(x,y)2

2σ2 . (13.1b)

A density-attractor for a given influence function is a data point x∗ ∈ Fd that is a
local maximum of the density function f D

B . A data point x ∈ Fd is density-attracted to a
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density-attractor x∗ if and only if there exists t ∈ N such that d(xt , x∗) ≤ ε with x0 = x and

xi = xi−1 + δ
∇f D

B (xi−1)

‖∇f D
B (xi−1)‖ , i = 1, 2, . . . , t, (13.2)

where ∇f D
B (·) is the gradient of a function f D

B (·), which is given by

∇f D
B (x) =

∑
y∈D

(y − x)fB(x, y).

The local density function f̂ D(x), used to approximate the overall density function,
is defined as

f̂ D(x) =
∑

y∈near(x)
fB(x, y),

where near(x) = {y : d(y, x) ≤ σnear}.
Suppose σnear = sσ . Then the upper bound of the error by using the local density

function instead of the overall density function is∑
y∈D,d(y,x)>sσ

e
− d(y,x)2

2σ2 ≤ |{y ∈ D : d(y, x) > sσ }| · e− s2

2 .

Given two parameters σ and ξ , a subset C ⊆ D is called a center-defined cluster
for a density-attractor x∗ if x is density-attracted by x∗ with f D

B (x∗) ≥ ξ for all x ∈ C.
Points x ∈ D are called outliers if they are density-attracted by a density-attractor x∗ with
f D
B (x∗) < ξ . A arbitrarily shaped cluster for a set of density-attractors X is a subset C ⊆ D

satisfying (a) ∀x ∈ C, ∃x∗ ∈ X such that x is density-attracted to x∗ and f D
B (x∗) ≥ ξ , and

(b) ∀x∗1, x∗2 ∈ X, there exists a path P ∈ Fd from x∗1 to x∗2 with f D
B (y) ≥ ξ for all y ∈ P .

Now we can describe the DENCLUE algorithm, which consists of two main steps.
The first step is the preclustering step, in which a map of the relevant portion of the data
space is constructed. In this step, the data space is divided into hypercubes with an edge
length of 2σ , and only populated hypercubes are determined and labeled. Also, the linear
sum

∑
x∈H x is stored for each populated hypercube H . A hypercube H is said to be a

highly populated hypercube if |H | ≥ ξc, where ξc is a outlier bound. Two hypercubes H1

and H2 are said to be connected if d(mean(Hc),mean(H2)) ≤ 4σ .
The second step is the actual clustering step, in which the density-attractors and the

corresponding density-attracted points are identified by considering only the hypercubes in
Cr , which is the set of the highly populated hypercubes and hypercubes that are connected
to a highly populated hypercube. Let H ∈ Cr and x ∈ H . Then the resulting local density
function is

f̂ D
Gauss(x) =

∑
y∈near(x)

e
− d(x,y)2

2σ2 ,

where near(x) = {y ∈ H1 : d(mean(H1), x) ≤ sσ,H1 ∈ Cr , and H1 is connected to H }.
Then the density-attractor for a data point x is computed as in (13.2) by using f̂ D

Gauss(·)
instead of f D

B (·). The calculation stops at t ∈ N if f̂ D(xt+1) < f̂ D(xt ) and takes x∗ = xt

as a new density-attractor. If f̂ D
Gauss(x

∗) ≥ ξ , then x is assigned to the cluster belonging to
x∗.

In this algorithm, there are two important parameters: σ and ξ . Hinneburg and Keim
(1998) suggest a way to choose good σ and ξ .
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13.5 CUBN
Wang and Wang (2003) proposed the clustering algorithm CUBN, which integrates density-
based and distance-based clustering. CUBN first finds border points using the erosion
operation and then clusters border points and inner points according to the nearest distance.
The algorithm is capable of finding nonspherical shapes and wide variances in size, and its
complexity is O(n) with n being the size of the data set.

To describe this algorithm, we need to introduce the erosion operation–one of the seven
basic operations in mathematical morphology. The erosion operation has visual meaning
for geometry. In the two-dimensional case, for example, applying the erosion operation to
an area will eliminate the roughness of the border and retain the basic shape of the area.

Mathematically, let A be a set of objects and B be a single vector. Then the erosion
operation is defined as

ATB = {a : a ∈ A, |{w : w ∈ O(a + B, r) ∩ A}| > t},
where t is a threshold and O(a + B, r) is a supersphere with center a + B and radius r .
When B is a set of vectors with elements B1, B2, . . . , Bg , the erosion operation is defined
as

ATB =
g⋂

i=1

(ATBi).

The border points of a cluster A are a set S defined as

S = A− ATB = ATB =
g⋃

i=1

ATBi,

where ATBi = {a : a ∈ A, |{w : w ∈ O(a + Bi, r) ∩ A}| ≤ t}.
In CUBN, the set of vectors B is the set of row vectors of the matrix



p 0 · · · 0
−p 0 · · · 0
0 p · · · 0
0 −p · · · 0
...

...
. . .

...

0 0 · · · p

0 0 · · · −p




2d×d

,

where d is the dimension of the data set and p satisfies the condition

max d(x, y) < p + r < min d(Ci, Cj ), (13.3)

where d(x, y) is the distance between two points in the same cluster and d(Ci, Cj ) is the
distance between two clusters, e.g., the nearest neighbor distance.

To detect different cluster borders, the radius r of the supersphere is set to be p√
2

in
CUBN. p is an input parameter specified by users and it must satisfy the condition given in
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inequality (13.3). If p+ r > min d(Ci, Cj ), then CUBN cannot detect all border points; if
p + r < max d(x, y), then CUBN may regard an inner point as a border point.

The CUBN algorithm consists of three phases. At the first phase, the erosion operation
is used to find border points. Then the nearest neighbor method is used to cluster the border
points. Finally, the nearest neighbor method is employed to cluster the inner points.

13.6 Summary
In density-based clustering algorithms, clusters are regarded as regions in the data space
where the data points are dense that are separated by regions of low density. Therefore,
a cluster may have an arbitrary shape and the points inside a cluster may be arbitrarily
distributed. An attractive feature of density-based approaches is that they can identify
clusters of arbitrary shapes. In addition, density-based approaches can handle noise (or
outliers) very efficiently.

One difficulty of most density-based approaches is that it is hard to choose the pa-
rameter values, such as the density threshold. Also, most density-based approaches were
developed for clustering spatial databases.
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Chapter 14

Model-based Clustering
Algorithms

Model-based clustering is a major approach to clustering analysis. This chapter introduces
model-based clustering algorithms. First, we present an overview of model-based cluster-
ing. Then, we introduce Gaussian mixture models, model-based agglomerative hierarchical
clustering, and the expectation-maximization (EM) algorithm. Finally, we introduce model-
based clustering and two model-based clustering algorithms.

14.1 Introduction
Clustering algorithms can also be developed based on probability models, such as the
finite mixture model for probability densities. The word model is usually used to represent
the type of constraints and geometric properties of the covariance matrices (Martinez and
Martinez, 2005). In the family of model-based clustering algorithms, one uses certain
models for clusters and tries to optimize the fit between the data and the models. In the model-
based clustering approach, the data are viewed as coming from a mixture of probability
distributions, each of which represents a different cluster. In other words, in model-based
clustering, it is assumed that the data are generated by a mixture of probability distributions
in which each component represents a different cluster. Thus a particular clustering method
can be expected to work well when the data conform to the model.

Model-based clustering has a long history. A survey of cluster analysis in a probabilis-
tic and inferential framework was presented by Bock (1996). Early work on model-based
clustering can be found in (Edwards and Cavalli-Sforza, 1965), (Day, 1969), (Wolfe, 1970),
(Scott and Symons, 1971b), and (Binder, 1978). Some issues in cluster analysis, such as the
number of clusters, are discussed in (McLachlan and Basford, 1988), (Banfield and Raftery,
1993), (McLachlan and Peel, 2000), (Everitt et al., 2001), and (Fraley and Raftery, 2002).

Usually, there are two approaches to formulating the model for the composite of the
clusters, the classification likelihood approach and the mixture likelihood approach (Fraley
and Raftery, 1998). Let D = {x1, x2, . . . , xn} be a set of observations; let fj (xi |Tj) be
the density of an observation xi from the j th component, where Tj are the corresponding
parameters; and let k be the number of components in the mixture. For example, if we
assume that the data come from a mixture of Gaussian distributions, then the parameters

227
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Tj consist of a mean vector µj and a covariance matrix �j , and the density has the form

fj (xi |µj ,�j ) =
exp

[
− 1

2 (xi − µj)
T �−1

j (xi − µj)
]

(2π)
d
2 |�j | 1

2

,

where d is the dimension of the data.
More precisely, the classification likelihood approach and the mixture likelihood ap-

proach can be described as follows.

Classification likelihood approach. This approach maximizes

LC(T1,T2, . . . , Tk; γ1, γ2, . . . , γn|D) =
n∏

i=1

fγi (xi |Tγi ), (14.1)

where γi are integers labeling the classification, i.e., γi = j if xi belongs to the j th
component.

Mixture likelihood approach. This approach assumes that the probability function can be
the sum of weighted component densities. If we use mixture likelihood for clustering,
the clustering problem becomes the estimation of the parameters of the assumed
mixture model. Mathematically, this approach maximizes

LM(T1,T2, . . . , Tk; τ1, τ2, . . . , τk|D) =
n∏

i=1

k∑
j=1

τjfj (xi |Tj), (14.2)

where τj ≥ 0 is the probability that an observation belongs to the j th component and

k∑
j=1

τj = 1.

In the mixture likelihood approach, the EM algorithm is the most widely used method
for estimating the parameters of a finite mixture probability density. The model-based clus-
tering framework provides a principal way to deal with several problems in this approach,
such as the number of component densities (or clusters), initial values of the parameters
(the EM algorithm needs initial parameter values to get started), and distributions of the
component densities (e.g., Gaussian) (Martinez and Martinez, 2005).

The number of clusters and the distribution of the component densities can be consid-
ered as producing different statistical models for the data. The final model can be determined
by the Bayesian information criterion (BIC) (Schwarz, 1978; Kass and Raftery, 1995). The
model with the highest BIC value is chosen as the best model.

The procedure of a model-based clustering algorithm is illustrated in Figure 14.1.
In model-based clustering, model-based agglomerative clustering(Murtagh and Raftery,
1984; Banfield and Raftery, 1993) is first used to initialize the EM algorithm (Dasgupta
and Raftery, 1998). Model-based agglomerative clustering, which uses the same general
ideas as agglomerative hierarchical clustering (see Section 7.2), merges two clusters when
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Data set Chosen model

Agglomerative model-based clustering

Initialization for EM
1. Number of components
2. Initial values for parameters

EM algorithm

BIC

The highest BIC

Final estimated model:
1. Number of components
2. Best form for components
3. Parameter estimates

Dendrogram

Yes

No

Figure 14.1. The flowchart of the model-based clustering procedure.

the classification likelihood (see Section 14.3) is maximized. Hierarchical clustering pro-
vides a complete nested partition from which initial estimates of component parameters
can be obtained. Then a probability distribution is chosen for each component. A general
framework for multivariate normal mixtures is proposed by Banfield and Raftery (1993). In
this general framework, different constraints on the component covariance matrices yield
different models.

In particular, some of the well-known clustering algorithms are approximate estima-
tion methods for certain probability models (Fraley and Raftery, 2002). The conventional
k-means algorithm (Macqueen, 1967) and Ward’s method (Ward Jr., 1963), for example, are
equivalent to the known procedures for approximately maximizing the multivariate normal
classification likelihood under certain conditions (the covariance matrix is the same for each
component and proportional to the identity matrix) (Fraley and Raftery, 2002).
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Many clustering algorithms can be categorized into the family of model-based clus-
tering methods, such as neural network approaches like self-organizing feature map (SOM),
probability density–based approaches, and Gaussian mixture model, approaches based on
the Bayesian clustering procedure. Some model-based clustering algorithms will be pre-
sented and discussed in later chapters.

14.2 Gaussian Clustering Models
Gaussian mixture models provide a classical and powerful approach to clustering analysis
(Banfield and Raftery, 1993), and they are also useful for understanding and suggesting
powerful clustering criteria. In Gaussian mixture models, the data D = {x1, x2, . . . , xn} in
a d-dimensional space are assumed to arise from a random vector with density (Celeux and
Govaert, 1995)

f (x) =
k∑

j=1

pj?(x|µj ,�j ),

where pj are the mixing proportions, i.e., 0 < pj < 1 and
∑k

j=1 pj = 1, and ?(x|µ,�)

denotes the density of Gaussian distribution with mean vector µ and covariance matrix �,
i.e.,

?(x|µ,�) = exp
[− 1

2 (x − µ)T �−1(x − µ)
]

√
(2π)d |�| . (14.3)

Celeux and Govaert (1995) present four commonly used assumptions on the compo-
nent variance matrices:

1. �1 = �2 = · · · = �k = σ 2I , where σ 2 is unknown.

2. �1 = �2 = · · · = �k = Diag(σ 2
1 , σ

2
2 , . . . , σ

2
d ), where (σ 2

1 , σ
2
2 , . . . , σ

2
d ) is un-

known and Diag(a1, a2, . . . , ad) denotes a diagonal matrix with diagonal vector
a1, a2, . . . , ad .

3. �1 = �2 = · · · = �k = �, where � is an unknown symmetric matrix.

4. No restriction is imposed on the variance matrices �1, �2, . . . , �k .

In order to embed the above-mentioned four assumptions in a framework that can
lead to some clustering criteria, the variance matrix �k is decomposed as

�k = λkDkAkD
T
k ,

where λk = |�k| 1
d , Dk is the matrix of eigenvectors of �k , and Ak is a diagonal matrix

such that |Ak| = 1, with the normalized eigenvalues of �k on the diagonal in decreasing
order. λk , Dk , andAk determine the volume, the orientation, and the shape of the kth cluster,
respectively. Note that the volume of a cluster is different from the size of the cluster.

Two maximum likelihood approaches, the mixture approach and the classification
approach, are proposed to estimate the parameters in a mixture. The mixture approach
is aimed at maximizing the likelihood over the mixture parameters. In this approach, the



14.2. Gaussian Clustering Models 231

Table 14.1. Description of Gaussian mixture models in the general family.

Model Distribution

Volume: Fixed
�j = λDADT Shape: Fixed

Orientation: Fixed

Volume: Variable
�j = λDADT Shape: Fixed

Orientation: Fixed

Volume: Fixed
�j = λDAjD

T Shape: Variable
Orientation: Fixed

Volume: Variable
�j = λjDAjD

T Shape: Variable
Orientation: Variable

Volume: Fixed
�j = λDjAD

T
j Shape: Fixed

Orientation: Variable

Volume: Variable
�j = λjDjAD

T
j Shape: Fixed

Orientation: Variable

Volume: Fixed
�j = λDjAjD

T
j Shape: Variable

Orientation: Variable

Volume: Variable
�j = λjDjAjD

T
j Shape: Variable

Orientation: Variable

parameters θ = p1, p2, . . . , pk−1, µ1, µ2, . . . , µk,�1, �2, . . . , �k are chosen to maximize
the loglikelihood

L(θ |x1, x2, . . . , xn) =
n∑

i=1

ln


 k∑

j=1

pj?(xi |µj ,�j )


 . (14.4)

The EM algorithm is used to find the parameters θ that maximize equation (14.4).
The classification approach is aimed at maximizing the likelihood over the mixture

parameters and over the identifying labels of the mixture component origin for each point.
In this approach, the indicator vectors zi = (zi1, zi2, . . . , zik), with zik = 1 or 0 according
to whether xi has been drawn from the kth component or from another one, are treated
as unknown parameters. Two different types of classification maximum likelihood (CML)
criteria have been proposed according to the sampling scheme.
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Table 14.2. Description of Gaussian mixture models in the diagonal family. B is
a diagonal matrix.

Model Distribution

Volume: Fixed
�j = λB Shape: Fixed

Orientation: Axes

Volume: Variable
�j = λjB Shape: Fixed

Orientation: Axes

Volume: Fixed
�j = λBj Shape: Variable

Orientation: Axes

Volume: Variable
�j = λjBj Shape: Variable

Orientation: Axes

Table 14.3. Description of Gaussian mixture models in the diagonal family. I is
an identity matrix.

Model Distribution

Volume: Fixed
�j = λI Shape: Fixed

Orientation: NA

Volume: Variable
�j = λj I Shape: Fixed

Orientation: NA

Variations on assumptions on the parameters λk,Dk , andAk lead to eight general clus-
tering models. Fourteen models are discussed in Celeux and Govaert (1995). These models
are classified into three categories: the general family (see Table 14.1), the diagonal family
(see Table 14.2), and the spherical family (see Table 14.3). Some numerical experiments
are presented in Celeux and Govaert (1995).

14.3 Model-based Agglomerative Hierarchical Clustering
Model-based agglomerative hierarchical clustering is used to find initial values of parameters
for any given number of clusters in model-based clustering. As a major component of the
model-based clustering process, model-based agglomerative hierarchical clustering works
in a similar manner to the agglomerative hierarchical clustering described in Section 7.2.
However, no distances are defined in model-based agglomerative hierarchical clustering.



14.3. Model-based Agglomerative Hierarchical Clustering 233

Instead, the classification likelihood is defined as the objective function in model-based
agglomerative hierarchical clustering.

The classification likelihood is defined as (Martinez and Martinez, 2005; Fraley, 1998)

LCL(Tj , γi |xi ) =
nγi∏
i=1

fγi (xi |Tγi ), (14.5)

where γi is the index of the cluster to which xi belongs, and nγi denotes the number of
objects in the γi th component, i.e., the component to which xi belongs.

The goal of a model-based agglomerative hierarchical clustering algorithm is to maxi-
mize the classification likelihood. Such an algorithm starts with singleton clusters consisting
of only one point, and then merges at each step two clusters producing the largest increase
in the classification likelihood, i.e., a maximum likelihood pair of clusters. This process
continues until all objects are in one cluster.

Fraley (1998) changed the notion of singleton clusters such that a model-based ag-
glomerative hierarchical clustering algorithm can start with a given partition and proceed
to form larger clusters. Fraley (1998) also proposed four methods for agglomerative hierar-
chical clustering based on Gaussian models (see Table 14.4). In these methods, the form of
the objective function is adjusted as follows. When fj (xi |Tj) is multivariate normal, the
likelihood in equation (14.5) becomes

LCL(µ1, µ2, . . . , µk;�1, �2, . . . , �k, γ |x)

=
k∏

j=1

∏
i∈Ij

(2π)−
d
2 |�j |− 1

2 exp

{
−1

2
(xi − µj)

T �−1
j (xi − µj)

}
, (14.6)

where Ij = {i : γi = j} is the set of indices corresponding to objects in the j th cluster.
The maximum likelihood estimator of µj in equation (14.6) is the group average x̄j = sj

nj
,

where sj is the sum of objects in the j th group and nj is the number of objects in the j th
group. The concentrated loglikelihood is obtained by replacing µj by µ̂j = x̄j as follows
(Fraley, 1998):

LCL(�1, �2, . . . , �k, γ |x; µ̂1, µ̂2, . . . , µ̂k)

= −pn log(2π)

2
− 1

2

k∑
j=1

{
Tr(Wj�

−1
j )+ nj log |�j |

}
, (14.7)

where the covariance matrices �j and γ remain to be determined, and the matrix Wj is
defined as

Wj =
∑
x∈Cj

(x − x̄j )(x − x̄j )
T ,

with Cj being the j th cluster. To maximize the likelihood, one can minimize the corre-
sponding criteria shown in Table 14.4.

Instead of maximizing the classification likelihood in equation (14.5), Fraley (1998)
proposed the following objective functions to merge two clusters.
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Table 14.4. Four parameterizations of the covariance matrix in the Gaussian
model and their corresponding criteria to be minimized.

�j Criterion

σ 2I Tr(
k∑

j=1
Wj)

σ 2
j I

k∑
j=1

nj log
[
Tr(Wj

nj
)
]

�

∣∣∣∣∣
k∑

j=1
Wj

∣∣∣∣∣
�j

k∑
j=1

nj log
∣∣∣Wj

nj

∣∣∣

Model �j = σ 2I. In this model, the covariance matrix is constrained to be diagonal and
uniform for all clusters. The criterion to be minimized at each stage is

Tr


 k∑

j=1

Wj


 =

k∑
j=1

Tr(Wj ),

and the cost @(i, j) to merge the clusters i and j is

@(i, j) = Tr(W〈i,j〉)− Tr(Wi)− Tr(Wj )

= Tr(W〈i,j〉 −Wi −Wj)

= wT
ijwij ,

where

wij = ηjisi − ηij sj , ηij =
√

ni

nj (ni + nj )
.

Two clusters producing the minimum cost will be merged.

Model �j = σ 2
j I. In this model, the covariance matrix of each cluster is constrained to be

diagonal but is allowed to vary between clusters. The criterion to be minimized at
each stage is

k∑
j=1

nj log

[
Tr

(
Wj

nj

)]
,

and the cost @(i, j) is defined as

@(i, j) = (ni + nj ) log

(
Tr(Wi)+ Tr(Wj )+ wT

ijwij

ni + nj

)

−ni log

(
Tr(Wi)

ni

)
− nj log

(
Tr(Wj )

nj

)
,
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which is complicated. To avoid Tr(Wj ) = 0 arising from singleton clusters, Fraley
(1998) introduced a modified criterion defined as

k∑
j=1

nj log

(
Tr(Wj )+ α · Tr(W)

nd

nj

)
,

where W is the sample cross-product matrix for the data set.

Model
∑

j = ∑
. In this model, the covariance matrix is uniform across all clusters but

has no structural constraints. The criterion to be minimized at each stage is∣∣∣∣∣∣
k∑

j=1

Wj

∣∣∣∣∣∣ .
The cost @(i, j) is not needed.

Unconstrained model. In this model, the covariance matrix is allowed to vary arbitrarily
across clusters. The criterion to be minimized at each stage is

k∑
j=1

nj log

∣∣∣∣Wj

nj

∣∣∣∣ .
In order to handle singleton clusters, the criterion to be minimized is adjusted to

k∑
j=1

nj log

(∣∣∣∣Wj

nj

∣∣∣∣+ β · Tr(Wj )+ α · W
nd

nj

)
.

14.4 The EM Algorithm
The EM algorithm is a general statistical method of maximum likelihood estimation in the
presence of incomplete data that can be used for the purpose of clustering. According to
(Meng and van Dyk, 1997), more than 400 articles were devoted to the development and
improvement of the EM algorithm within the 20 years since EM was first formulated by
Dempster et al. (1977). The EM algorithm has many good features: simplicity, stability,
and robustness to noise. In this section, we will introduce the basic EM algorithm.

Let X and Y be two sample spaces and assume that there is a many-one mapping
from X to Y . The observed data y are a realization from Y and the corresponding x in X
is not observed directly, but only indirectly through y. x is referred to as the complete data
and y is referred to as the incomplete data. Let f (x|?) be a family of sampling densities
for complete data, depending on parameters ?, and g(y|?) be its corresponding derived
family of sampling densities. Then f (· · · | · · · ) is related to g(· · · | · · · ) by

g(y|?) =
∫

X (y)
f (x|?)dx, (14.8)
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where X (y) is the subset of X determined by the equation y = y(x), x → y(x), which is
a many-one mapping from X to Y .

The goal of the EM algorithm is to find the value of? that maximizes g(y|?) given an
observed y. The EM algorithm proceeds iteratively. Each iteration involves two steps: the
expectation step (E-step) and the maximization step (M-step). Dempster et al. (1977) first
defined the EM algorithm in special cases and then extended it gradually to more general
cases.

Let Q be a function defined as

Q(?′|?) = E(log f (x|?′)|y,?), (14.9)

which is assumed to exist for all pairs (?′,?), and f (x,?) is assumed to be positive almost
everywhere in X for all ? ∈ Z, where Z is an r-dimensional convex region. Then the EM
iteration ?(p) to ?(p+1) is defined as follows:

• E-step: Compute Q(?|?(p)).

• M-step: Choose ?(p+1) to be a value of ? ∈ Z that maximizes Q(?|?(p)).

In particular, if f (x|?) is of the regular exponential family form, i.e.,

f (x|?) = b(x) exp(?t(x)T )/a(?), (14.10)

where? is an r-dimensional parameter, t(x) is an r-dimensional vector of complete data suf-
ficient statistics, and t(x)T denotes the transpose of t(x), then the corresponding Q(?|?(p))

is given by

Q(?|?(p)) = − log a(?)+ E(log b(x)|y,?(p))+?t(p)T ,

which implies that maximizing Q(?|?(p)) in the M-step is equivalent to maximizing
− log a(?)+?t(p)T .

The algorithm defined above is a generalized EM algorithm (a GEM algorithm).
The EM algorithm is a special case of GEM. The convergence of the GEM algorithm is
theoretically guaranteed. Proofs can be found in (Wu, 1983), (Boyles, 1983), and (Dempster
et al., 1977). Several techniques have been developed to accelerate the EM algorithm,
including conjugate gradient acceleration (Jamshidian and Jennrich, 1993), quasi-Newton
methods (Jamshidian and Jennrich, 1997), and proximal point iterations (Chrétien and Hero
III, 1998).

When the EM algorithm is used for the purpose of clustering, the “complete” data are
considered to be (Fraley and Raftery, 1998)

{(xi , zi ), i = 1, 2, . . . , n},

where D = {xi , i = 1, 2, . . . , n} is the original data set, and zi = (zi1, zi2, . . . , zik) are
defined as

zij =
{

1 if xi belongs to the j th cluster,
0 otherwise.
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The zi constitute the “missing” data. The relevant assumptions are that each zi is indepen-
dent and identically distributed according to a multinomial distribution of one draw on k

categories with probabilities τ1, τ2, . . . , τk and that the density of xi given zi is given by

k∏
j=1

fj (xi |Tj)
zij .

Then the complete-data loglikelihood has the form

l(Tj , τj , zij |D) =
n∑

i=1

k∑
j=1

zij log[τjfj (xi |Tj)], (14.11)

and the conditional expectation of zij given the observation xi and the parameter values is
given by

ẑij = E[zij |xi , T1,T2, . . . , Tk].
The value z∗ij of ẑij at a maximum of (14.2) is the conditional probability that xi

belongs to cluster j . In a hard partition, an observation xi is assigned to the cluster with the
highest membership, i.e., the classification of xi is taken to be

{j0 : z∗ij0
= max

1≤j≤k
z∗ij }.

The EM algorithm iterates between an E-step and an M-step. In an E-step, the values
of ẑij are computed from the data with current parameter estimates, while in an M-step, the
complete-data loglikelihood (14.11), with each zij replaced by its current conditional ex-
pectation ẑij , is maximized with respect to the parameters. For a comprehensive discussion
of the EM algorithm, readers are referred to (McLachlan and Krishnan, 1997). The EM
algorithm for clustering is also presented in (McLachlan and Basford, 1988).

14.5 Model-based Clustering
We have introduced Gaussian mixture models, model-based agglomerative hierarchical
clustering, and the EM algorithm in previous sections. This section proceeds to model-
based clustering. The model-based clustering framework consists of three major steps
(Martinez and Martinez, 2005):

(a) Initialize the EM algorithm using the partitions from model-based agglomerative
hierarchical clustering.

(b) Estimate the parameters using the EM algorithm;

(c) Choose the model and the number of clusters according to the BIC.

The Bayesian approach to model selection originated from the work by
Jeffreys (1935, 1961) in which a framework for calculating the evidence in favor of a
null hypothesis using a quantity called the Bayes factor was developed. Kass and Raftery
(1995) presented the use of Bayes factors in the context of several scientific applications.



238 Chapter 14. Model-based Clustering Algorithms

In the case of two models, the data D are assumed to have arisen according to either
model M1 or model M2. Given the prior probabilities p(M1) and p(M2), according to
Bayes’s theorem, the posterior probability of hypothesis Mg given data D is calculated as
(Martinez and Martinez, 2005)

p(Mg|D) = p(Mg)p(D|Mg)

p(M1)p(D|M1)+ p(M2)p(D|M2)
, g = 1, 2. (14.12)

Since the two probabilities have the same denominator, the ratio of the two posterior prob-
abilities is

p(M1|D)

p(M2|D)
= p(D|M1)

p(D|M2)
· p(M1)

p(M2)
. (14.13)

The first factor in the above equation is the well-known Bayes factor

B12 = p(D|M1)

p(D|M2)
.

If the model Mg contains unknown parameters, the posterior probability p(D|Mg)

can be obtained by

p(D|Mg) =
∫

p(X|Tg,Mg)p(Tg|Mg)dTg.

The resulting p(D|Mg) is called the integrated likelihood of model Mg . The model that is
most likely given the data is selected. If the prior probabilities p(M1) and p(M2) are equal,
from equation (14.13) we have

p(M1|D)

p(M2|D)
= p(D|M1)

p(D|M2)
.

In this case, the most likely model is the model with the highest integrated likelihood. In the
case of more than two models, a Bayesian solution is also possible (Dasgupta and Raftery,
1998; Fraley and Raftery, 1998, 2002).

Since the integrated likelihood depends on the prior probabilities, the BIC is used
to approximate the logarithm of the integrated likelihood for models satisfying certain
regularity conditions. That is,

p(D|Mg) = BICg = 2 logp(D|T̂g,Mg)−mg log(n), (14.14)

where mg is the number of independent parameters that must be estimated in the model.
However, the number of clusters is not considered an independent parameter (Fraley and
Raftery, 1998). Although the above approximation is not valid for the finite-mixture model,
the use of the BIC produces reasonable results (Dasgupta and Raftery, 1998; Fraley and
Raftery, 1998).

Algorithm 14.1. Model-based clustering procedure.

Require: D - the data set;
1: Apply the model-based agglomerative hierarchical clustering to D {the unconstrained

model is used here};
2: repeat
3: Find a partition with c clusters using the results of the model-based agglomerative

hierarchical clustering;



14.5. Model-based Clustering 239

4: Choose a model M from Table 14.1, Table 14.2, and Table 14.3;
5: Use the partition found in the previous step to calculate the mixing coefficients,

means, and covariances for each cluster {the covariances are constrained according
to the model selected};

6: Initialize the parameters of the EM algorithm using the values calculated in the
previous step and apply EM to obtain the final estimates;

7: Calculate the BIC value for this c and M according to equation (14.14);
8: until the highest BIC is obtained
9: Output the best configuration corresponding to the highest BIC.

The procedure described inAlgorithm 14.1 illustrates how to use model-based cluster-
ing based on mixture models. Once the best model (the number of clusters and form of the
covariance matrix) is obtained, the objects are grouped according to their posterior probabil-
ity. More precisely, letD = {x1, x2, . . . , x3} be a data set and the parameters to be estimated
be T = p1, p2, . . . , pc−1, µ1, µ2, . . . , µc,�1, �2, . . . , �c. Then the loglikelihood to be
maximized is defined as

L(T|D) =
n∑

i=1

ln


 c∑

j=1

pjφ(xi |µj ,�j )


 ,

where φ(x|µ,�) is defined in equation (14.3). The posterior probability that an object xi

belongs to the j th cluster is given by

ûj i = p̂jφ(xi |µ̂j , �̂j )
c∑

s=1
p̂sφ(xs |µ̂s, �̂s)

, j = 1, 2, . . . , c, i = 1, 2, . . . , n.

The posterior probabilities defined above are unknown. The EM algorithm is used to obtain
these posterior probabilities. The clustering based on posterior probabilities is given by

Cj =
{

xj : ûj i = max
1≤s≤c

ûsi

}
, j = 1, 2, . . . , c.

For the unconstrained model �j = λjDjAjD
T
j , one can use the following equations

in the EM algorithm (Everitt and Hand, 1981; Martinez and Martinez, 2005):

p̂j = 1

n

n∑
i=1

ûj i ,

µ̂j = 1

n

n∑
i=1

ûj ixi

p̂j

,

�̂j = 1

n

n∑
i=1

ûj i(xi − µ̂j )(xi − µ̂j )
T

p̂j

.
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14.6 COOLCAT
An algorithm called COOLCAT (Barbará et al., 2002) is proposed to cluster categorical
attributes using entropy. Given a data set D of N data points p̂1, p̂2, . . . , p̂N , where each
point is a multidimensional vector of d categorical attributes, i.e., p̂j = {p1

j , p
2
j , . . . , p

d
j },

the goal of this algorithm is to minimize the entropy of the whole arrangement.
For a given integer k, suppose we want to separate the data set into k clusters

C1, C2, . . . , Ck . The expected entropy is given by

Ē(C̆) =
∑
k

( |P(Ck)|
|D| (E(P (Ck)))

)
,

where E(P (C1)), . . . , E(P (Ck)) represent the entropies of the clusters and P(Ci) denotes
the points assigned to cluster Ci , with the property that P(Ci) ∩ P(Cj ) = φ for all i, j =
1, 2, . . . , k, i �= j .

Assume that the attributes of the record are independent. Then the joint probability
of the combined attribute values becomes the product of the probability of each attribute,
and hence the entropy can be computed as the sum of the entropies of the attributes:

E(x̂) = −
∑

x1∈S(X1)

· · ·
∑

xn∈S(Xn)

(p(x1) · · ·p(xn)) log(p(x1) · · ·p(xn))

= E(X1)+ E(X2)+ · · · + E(Xn).

The COOLCAT clustering algorithm consists of two steps: the first step is initializa-
tion, which finds a suitable set of clusters from a small sample of the entire data set, and
the second step is an incremental step, which assigns the remaining records to a suitable
cluster. The algorithm is described in Algorithm 14.2.

Algorithm 14.2. The COOLCAT clustering algorithm.

1: Draw a sample data set S (|S| << N ) from the entire data set, where N is the size of
the entire data set;
{1. Initialization phase}

2: Find the k most “dissimilar” records from the sample data set by maximizing the min-
imum pairwise entropy of the chosen data points;
{To do this, it first finds the two data points ps1 , ps2 such that the entropy E(ps1 , ps2)

is maximized, i.e., E(ps1 , ps2) ≥ E(p1, p2) ∀p1, p2 ∈ S, and then puts them in two
separate clusters C1, C2 and marks the two data points; after it selects j − 1 points, it
will find the j th point such that

min
i=1,2,...,j−1

(E(psi , psj ))

is maximized and then put this point in the j th cluster Cj and mark this point.}
{2. Incremental phase}

3: Process the unmarked |S| − k data points in the sample data set S and the remaining
data points (i.e., data points outside the sample). Given the k initial sets of clusters
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found in the first step, C̆ = C1, C2, . . . , Ck , bring a batch of data points to the memory
from disk and, for each data point p in this batch of data points, place p in cluster Ci

and compute Ē(C̆i), where C̆i denotes the cluster obtained by placing p in Ci , and then
find the index j such that

Ē(C̆j ) ≤ Ē(C̆i) ∀i = 1, 2, . . . , k

and place p in cluster Cj . The above procedure is kept executing until all points have
been assigned to some cluster.

One of the disadvantages of this algorithm is that the order of the processing data
points has a definite impact on the clustering quality; a fraction m of the data points in the
batch are reprocessed in order to reduce this effect.

14.7 STUCCO
In the algorithm STUCCO (Bay and Pazzani, 1999), a new concept of contrast-sets is defined
in order to find the contrast-sets whose supports differ meaningfully among different groups.
To do that, a method of tree searching is used to calculate all possible combinations of
attribute values. One then retains the significant contrast-sets, postprocesses those contrast-
sets, and then selects a subset.

The preprocessing phase is as follows:

∃ij P (cset = True|Gi) �= P(cset = True|Gj),

max
ij
|support(cset,Gi)− support(cset,Gj )| ≥ mindev,

where mindev is a user-defined threshold.
The postprocessing phase is as follows:

χ2 =
r∑

i=1

c∑
j=1

(Oij − Eij )
2

Eij

,

where Oij is the observed frequency count in cell ij and Eij is the expected frequency
count in cell ij calculated as Eij = ∑

j Oij

∑
i Oij /N under the condition that the row

and column variables are independent. To determine if the differences in proportions are
significant, pick a test α level. The procedure of this algorithm is described in Algorithm
14.3.

Algorithm 14.3. The STUCCO clustering algorithm procedure.

1: Using canonical ordering of attributes to construct a search tree, scan the database,
count the support for each group, and retain the significant contrast-sets;

2: Test the null hypothesis that contrast-set support is equal across all groups or contrast-
set support is independent of group membership to check whether a contrast-set is
significant;
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3: Prune the nodes that can never be significant contrast-sets;
4: Find surprising contrast-sets.

14.8 Summary
Many clustering algorithms presented in other chapters are heuristic clustering algorithms,
different from the model-based clustering algorithms introduced here. Model-based clus-
tering algorithms offer a principal alternative to heuristic algorithms. In particular, model-
based approaches assume that the data are generated by a finite mixture of underlying
probability distributions, such as multivariate normal distribution. To cluster a data set by
heuristic algorithms, we encounter the problem of selecting a “good” clustering method
and determining the “correct” number of clusters. Clustering a data set by model-based
algorithms is reduced to the model selection problem in the probability framework.

Other model-based clustering algorithms are not presented in this chapter. For exam-
ple, model-based algorithms for clustering gene expression data are studied by Yeung et al.
(2001) and McLachlan et al. (2002). Fraley (1998) proposed an agglomerative hierarchical
clustering algorithm based on the Gaussian probability model, where a maximum likeli-
hood pair of clusters is chosen to merge at each stage. Bensmail et al. (1997) suggested
a fully Bayesian analysis of the model-based method proposed by Banfield and Raftery
(1993). Two variations of model-based clustering, balanced model-based clustering and
hybrid model-based clustering, are proposed by Zhong and Ghosh (2003b).
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Chapter 15

Subspace Clustering

Recently, subspace clustering has aroused great interest in researchers in the database com-
munity due to the new challenges associated with the high dimensionality of data sets in
modern science and technology.

Many clustering algorithms have been developed to identify clusters in the whole
data space; we refer to these clustering algorithms as conventional clustering algorithms.
Unfortunately, most of these conventional clustering algorithms do not scale well to cluster
high-dimensional data sets in terms of effectiveness and efficiency because of their inherent
sparsity. In high-dimensional data sets, we encounter several problems. First, the distance
between any two data points becomes almost the same (Beyer et al., 1999), so it is difficult to
differentiate similar data points from dissimilar ones. Secondly, clusters are embedded in the
subspaces of the high-dimensional data space, and different clusters may exist in different
subspaces (Agrawal et al., 1998). Because of these problems, almost all conventional
clustering algorithms fail to work well for high-dimensional data sets.

One possible solution is to use dimension reduction techniques such as principal com-
ponent analysis (PCA) and the Karhunen-Loève transformation (Agrawal et al., 1998) or
feature selection techniques. In dimension reduction approaches, one first reduces the di-
mensionality of the original data set by removing less important variables or by transforming
the original data set into a low-dimensional space and then applies conventional clustering
algorithms to the new data set. In feature selection approaches, one finds the dimensions
on which data points are correlated. In both dimension reduction and feature selection
approaches, it is necessary to prune off some variables, which may lead to significant loss
of information. This can be illustrated by considering a three-dimensional data set that has
three clusters: one embedded in the (x, y)-plane, another embedded in the (y, z)-plane,
and the third embedded in the (z, x)-plane. For such a data set, application of a dimension
reduction or a feature selection method is unable to recover all the clustering structures, be-
cause the three clusters are formed in different subspaces. In general, clustering algorithms
based on dimension reduction or feature selection techniques generate clusters that may not
fully reflect the original structure of a given data set.

This difficulty that conventional clustering algorithms encounter in dealing with high-
dimensional data sets motivates the concept of subspace clustering or projected clustering

243
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Table 15.1. List of some subspace clustering algorithms. Num refers to numerical
and Mix refers to mixed-type.

Algorithms Data Type H/P

CLIQUE (Agrawal et al., 1998) Num Other
ENCLUS (Cheng et al., 1999) Num Other
MAFIA (Goil et al., 1999) Num Other

PROCLUS (Aggarwal et al., 1999) Num Partitioning
ORCLUS (Aggarwal and Yu, 2000) Num Partitioning
FINDIT (Woo and Lee, 2002) Num Partitioning
FLOC (Yang et al., 2002a) Num Partitioning
DOC (Procopiuc et al., 2002) Num Partitioning

PART (Cao and Wu, 2002) Num Hierarchical

CLTree (Liu et al., 2000) Num Other
COSA Mix Other

(Agrawal et al., 1998), whose goal is to find clusters embedded in subspaces of the original
data space with their own associated dimensions. In other words, subspace clustering finds
clusters and their relevant attributes from a data set. Table 15.1 lists a few popular subspace
clustering algorithms that will be introduced in this chapter.

15.1 CLIQUE
CLIQUE (Agrawal et al., 1998) is a clustering algorithm that is able to identify dense
clusters in subspaces of maximum dimensionality. It is also the first subspace clustering
algorithm. This algorithm takes two parameters: ξ , which specifies the number of intervals
in each dimension, and τ , which is the density threshold. The output is clusters, each of
which is represented by a minimal description in the form of a disjunct normal form (DNF)
expression. One disadvantage of this algorithm is that it can only find clusters embedded
in the same subspace. The clustering model can be described as follows.

Let A = {A1, A2, . . . , Ad} be a set of bounded, totally ordered numerical domains
(for categorical data, each Ai should be a finite set of categorical values). Let S = A1 ×
A2×· · ·×Ad be a d-dimensional numerical space. Let D = {x1, x2, . . . , xn} be a database,
where xi = (xi1, xi2, . . . , xid ), and the j th component of xi is drawn from Aj .

The data space S is partitioned into nonoverlapping rectangular units that are ob-
tained by partitioning each dimension into ξ (an input parameter) intervals of equal length.
Each unit u is the intersection of one interval from each dimension, and it has the form
{u1, u2, . . . , ud}, where ui = [li , hi) is a right open interval in the partitioning of dimension
Ai . A data point x = (x1, x2, . . . , xd) is said to be contained in a unit u = {u1, u2, . . . , ud}
if the following condition is satisfied:

li ≤ xi < hi for all ui.
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A unit u is said to be dense if selectivity(u) > τ , where selectivity(u) is the
selectivity of unit u, which is defined to be the fraction of total data points contained in the
unit u; the density threshold τ is another input parameter. The units in all subspaces of the
original d-dimensional space can be defined similarly. Let S ′ = {At1 , At2 , . . . , Atr } be any
subspace of S, where l < d and ti < tj if i < j . The units in S ′ are the intersection of an
interval from each of the r dimensions of the subspace S ′.

In the CLIQUE algorithm, a cluster is defined to be a maximal set of connected dense
units in r dimensions. Two r-dimensional units are said to be connected if they have a
common face or if there exists another r-dimensional unit such that the unit connects the
two units. Two units u1 = {rt1 , rt2 , . . . , rtr } and u2 = {r ′t1 , r ′t2 , . . . , r ′tr } are said to have
a common face if there are l − 1 dimensions, assumed to be At1 , At2 , . . . , Atr , such that
rtj = r ′tj (1 ≤ j ≤ l − 1) and either htr = l′tr or h′tr = ltr .

A region in r dimensions is an axis-parallel rectangular r-dimensional set that can be
expressed as unions of units. A region R is said to be contained in a cluster C if R∩C = R.
A region R contained in a cluster C is said to be maximal if no proper superset of R is
contained in C. A minimal description of a cluster C is a set R of maximal regions such
that their union equals C but the union of any proper subset of R does not equal C.

The CLIQUE algorithm consists of three steps. In the first step, the subspaces that
contain clusters are identified. In the second step, the clusters embedded in the subspaces
identified in step 1 are found. Finally, a minimal description of each cluster is generated.

In the first step, a bottom-up algorithm is employed to find the dense units. The
essential observation is that if a set of points S is a cluster in an r-dimensional space, then
S is also part of a cluster in any (r − 1)-dimensional projections of this space. Based
on this fact, the algorithm proceeds level by level. It first determines one-dimensional
dense units, and then continues iteratively: when the (r − 1)-dimensional dense units are
determined, the r-dimensional dense units are determined as follows. Let Dr−1 be the
set of all (r − 1)-dimensional dense units, and let Cr be the set of r-dimensional units
generated from Dr−1 as follows. For two units u1, and u2 in Dr−1, if u1.aj = u2.aj ,
u1.lj = u2.lj , and u1.hj = u2.hj for j = 1, 2, . . . , r − 2, and u1.ar−1 < u2.ar−1, then
insert u = u1.[l1, h1)× u1.[l2, h2)× · · · × u1.[lr−1, hr−1)× u2.[lr−1, hr−1) into Cl , where
u.ai is the ith dimension of unit u and u.[li , hj ) is the interval in the ith dimension of u,
and the relation < represents lexicographic ordering on attributes. Then Dr is obtained by
discarding those dense units from Cr that have a projection in (r − 1) dimensions that is
not included in Cr−1.

In order to make the first step faster, the minimal description length (MDL) prin-
ciple is applied to decide which subspaces and corresponding dense units are interesting.
Assume there are S1, S2, . . . , Sm subspaces found in the rth level (then S1, S2, . . . , Sm are
r-dimensional subspaces). Let c(Sj ) be the coverage of subspace Sj defined as

c(Sj ) =
∑
u∈Sj

|u|,

where |u| is the number of points that fall inside u. Subspaces with large coverage are
selected to form candidate units in the next level of the dense unit generation algorithm, and
the rest are pruned. Let the subspaces be sorted in decreasing order of their coverage. The
sorted list is divided into the selected set I and the pruned set P . Assume c(S1) > c(S2) >
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· · · > c(Sm). Then I = {S1, S2, . . . , Si0} and P = {Si0+1, Si0+2, . . . , Sm} for some i. In
CLIQUE, i0 is selected such that the total length of encoding CL(i) is minimized, where
CL(i) is defined as

CL(i) = log2(µI (i))+
i∑

j=1

log2(|c(Sj )− µI (i)|)

+ log2(µP (i))+
m∑

j=i+1

log2(|c(Sj )− µP (i)|),

where µI (i) and µP (i) are defined as

µI (i) =



i∑
j=1

c(Sj )

i


 ,

µP (i) =



m∑
j=i+1

(Sj )

n− i


 ,

where 5·6 is the ceiling function, i.e., 5x6 is the least integer not less than x.
The second step of the CLIQUE algorithm is to find the clusters based on a set of

dense units C found in the first step. All units in C are in the same r-dimensional space S. In
this step, C will be partitioned intoC1, C2, . . . , Ck such that all units inCi are connected and
units in different groups are not connected. This process is converted to finding connected
components in a graph defined as follows: graph vertices correspond to dense units, and
two vertices have an edge between them if and only if the corresponding dense units have
a common face. The depth-first search algorithm (Hopcroft and Tarjan, 1973; Aho et al.,
1974) is used to find the connected components of the graph.

The third step is to generate minimal cluster descriptions for each cluster. The input
to this step is disjoint sets of connected r-dimensional units in the same subspace. Given a
cluster C in an r-dimensional subspace S, a set R of regions in the same subspace S is said
to be a cover of C if every region in R is contained in C and each unit in C is contained in
at least one of the regions in R. In this step, a minimal cover is found for each cluster by
first greedily covering the cluster by a number of maximal regions and then discarding the
redundant regions.

The time complexity in step 1 isO(ck+mk) for a constant c. In step 2 and subsequent
steps, the dense units are assumed to be stored in memory. The total number of data structure
accesses is 2kn in step 2.

15.2 PROCLUS
PROCLUS (PROjected CLUSting) (Aggarwal et al., 1999) is a variation of the k-medoid
algorithm (Kaufman and Rousseeuw, 1990) in subspace clustering. The input parameters
of the algorithm are the number of clusters k and the average number of dimensions l;
the output is a partition {C1, C2, . . . , Ck,O} together with a possibly different subset of
dimensions Pi for each cluster Ci , with O denoting the outlier cluster.
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The algorithm consists of three phases: the initialization phase, the iteration phase,
and the refinement phase. In the initialization phase, a random set of k medoids is chosen
by applying the greedy technique (Gonzalez, 1985; Ibaraki and Katoh, 1988) to samples
of the original data set. In the iteration phase, the algorithm progressively improves the
quality of medoids by iteratively replacing the bad medoids with new ones. The last phase
computes new dimensions associated with each medoid and reassigns the points to the
medoids relative to the new sets of dimensions. The PROCLUS algorithm finds out the
subspace dimensions of each cluster via a process of evaluating the locality of the space
near it.

Algorithm 15.1. The PROCLUS algorithm.

Require: D-Data set, k-Number of clusters, l-Average dimensions of cluster;
1: Let A,B be constant integers;
2: Draw a sample S of size A · k randomly;
3: Let medoids set M ⇐ Greedy(S, B · k);
4: LetBestObjective ⇐∞ andMcurrent ⇐ random set of medoids {m1,m2, . . . , mk} ⊂

M;
5: repeat
6: Let δi be the distance to the nearest medoid from mi for i = 1, 2 . . . , k;
7: LetLi be the set of points in a sphere centered atmi with radius δi for i = 1, 2, . . . , k;
8: (P1, P2, . . . , Pk)⇐ FindDimensions(k, l, L1, L2, . . . , Lk);
9: (C1, C2, . . . , Ck)⇐ AssignPoints(P1, P2, . . . , Pk);

10: Objective ⇐ EvaluateClusters(C1, . . . , Ck, P1, . . . , Pk);
11: if Objective < BestObjective then
12: Let BestObjective ⇐ Objective, Mbest ⇐ Mcurrent ;
13: Compute the bad medoids in Mbest ;
14: end if
15: Compute Mcurrent by replacing the bad medoids in Mbest with random points from

M;
16: until Stop criterion
17: (P1, P2, . . . , Pk)⇐ FindDimensions(k, l, L1, L2, . . . , Lk);
18: (C1, C2, . . . , Ck)⇐ AssignPoints(P1, P2, . . . , Pk);
19: Return Mbest , P1, P2, . . . , Pk;

The pseudocode of the algorithm is described in Algorithm 15.1. In the initialization
phase, a medoid candidate set M is selected using the greedy technique. In order to reduce
the running time of the initialization phase, a sample S is drawn randomly from the original
data set. The procedure of Greedy(S, t) can be described as follows:

1: M ⇐ {m1} {m1 is a random point of S};
2: Let dist (x)⇐ d(x,m1) for each x ∈ S\M;
3: for i = 2 to t do
4: Let mi ∈ S\M be such that dist (mi) = max{dist (x) : x ∈ S\M};
5: M ⇐ M ∪ {mi};
6: Let dist (x)⇐ min{dist (x), d(x,mi)};
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7: end for
8: Return M .

In the iteration phase, the quality of medoids is improved progressively by iteratively
replacing the bad medoids.This phase consists of three major procedures: FindDimensions,

AssignPoints, and EvaluateClusters. In order to find the subspace dimensions, PRO-
CLUS evaluates the locality of the space near the medoids. Let Li be the set of points in a
sphere centered at mi with radius δi , where δi = min1≤j≤k,j �=i d(mi,mj ). Let Xij , Yi , and
σi be defined as

Xij = 1

|Li |
∑
x∈Li

d(xj , mij ),

Yi =
d∑

j=1

Xij

d
,

σi =

 1

d − 1

d∑
j=1

(Xij − Yi)
2




1
2

for i = 1, 2, . . . , k and j = 1, 2, . . . , d, where xj andmij are the values of the j th dimension
of x and mi , respectively, and d(·, ·) is the Manhattan segmental distance.

Let Zij = Xij−Yi
σi

for i = 1, 2, . . . , k and j = 1, 2, . . . , d. The goal of the procedure
FindDimensions is to pick up the k · l numbers with the least values of Zij subject to the
constraint that there are at least two dimensions for each cluster and to put dimension j to
Pi if Zij is picked. This can be achieved by the greedy technique.

TheAssignPoints procedure assigns each point x in the data set to the clusterCi such
that dPi

(x,mi) has the lowest values among dP1(x,m1), . . . , dPk
(x,mk), where dPi

(x,mi)

is the Manhattan segmental distance from x to the medoid mi relative to dimensions Pi , i.e.,

dPi
(x,mi) = 1

|Pi |
∑
j∈Pi

|xj −mij |.

The EvaluateClusters procedure evaluates the quality of a set of medoids as the
average Manhattan segmental distance from the points to the centroids of the clusters to
which they belong. The quantity that indicates the goodness of a clustering is defined as

1

n

k∑
i=1

|Ci | · wi, (15.1)

where n is the number of points in the data set and wi (i = 1, 2, . . . , k) are weights defined
as

wi = 1

|Pi | · |Ci |
∑
j∈Pi

∑
x∈Ci

|xj − zij |,

where Pi is the dimension associated with Ci , and zi is the centroid of Ci , i.e.,

zi = 1

|Ci |
∑
x∈Ci

x.
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The optimal clustering should have a minimum quantity, which is defined in (15.1).
The goal of the iteration phase is to find an approximation of such an optimal clustering.
Also in the iteration phase, bad medoids are determined. The medoid of any cluster that has
less than n

k
· σmin points is bad, where σmin is a constant smaller than 1. In PROCLUS, σmin

is set to be 0.1. Bad medoids may be outliers.
After the iteration phase, the best set of medoids is found. The refinement phase

does one more pass over the data to improve the quality of the clustering. Outliers are also
handled in the refinement phase. The running time for computing the segmental distances
is O(nkl) for each iteration.

15.3 ORCLUS
ORCLUS (arbitrarily ORiented projected CLUSter generation) (Aggarwal and Yu, 2000) is
an extension of PROCLUS. It diagonalizes the covariance matrix of each cluster and finds
information about projection subspaces from the diagonalization of the covariance matrix.
In order to make the algorithm scale to large databases, ORCLUS also uses extended cluster
feature (ECF) vectors (Zhang et al., 1996) and a progressive random sampling approach in
the algorithm.

In the algorithm, a generalized projected cluster is defined for a pair (C, P ), where
C is a set of data points and P is a set of vectors, such that the data points in C are closely
clustered in the subspace defined by the vectors inP . Unlike CLIQUE (Agrawal et al., 1998),
the subspaces for different clusters found by the ORCLUS algorithm may be different.

The ORCLUS algorithm takes two input parameters: the number of clusters k and
the dimensionality l of the subspace in which each cluster is reported. The output of the
algorithm consists of two parts: a (k + 1)-way partition {C1, C2, . . . , Ck,O} of the data
set and a possibly different orthogonal set Pi of vectors for each cluster Ci (1 ≤ i ≤ k),
where O is the outlier cluster, which can be assumed to be empty. For each cluster Ci , the
cardinality of the corresponding set Pi is l, which is the user-specified parameter.

Algorithm 15.2. The pseudocode of the ORCLUS algorithm.

Require: D-Data set, k-Number of clusters, and l-Number of dimensions;
1: Pick k0 > k initial data points from D and denote them by S = {s1, s2, . . . , sk0};
2: Set kc ⇐ k0 and lc ⇐ d;
3: For each i, set Pi to be the original axis system;
4: Set α ⇐ 0.5 and compute β according to equation (15.3);
5: while kc > k do
6: (s1, . . . , skc , C1, . . . , Ckc ) = Assign(s1, . . . , skc , P1, . . . , Pkc ) {find the partitioning

induced by the seeds};
7: Set knew ⇐ max{k, kc · α} and lnew ⇐ max{l, lc · β};
8: (s1, . . . , sknew , C1, . . . , Cknew , P1, . . . , Pknew ) = Merge(C1, . . . , Ckc , knew, lnew);
9: Set kc ⇐ knew and lc ⇐ lnew;

10: end while
11: for i = 1 to k do
12: Pi = FindV ectors(Ci, l);
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13: end for
14: (s1, . . . , sk, C1, . . . , Ck) = Assign(s1, . . . , sk, P1, . . . , Pk);
15: Output (C1, . . . , Ck);

The ORCLUS algorithm consists of a number of iterations, in each of which a variant
of the hierarchical merging method is applied in order to reduce the number of current
clusters by the factor α < 1. Initially, the dimensionality of each cluster is equal to the full
dimensionality d . In each iteration, the dimensionality of the current clusters is reduced by
the factor β < 1. Finally, the dimensionality of the clusters will be reduced gradually to the
user-specified dimensionality l. In order to make the algorithm fast, a small number k0 of
initial points are picked as seeds. At each stage of the algorithm, there is a projected cluster
(Ci, Pi) associated with each seed si . At each stage of the algorithm, kc and lc denote the
number of current clusters and the dimensionality of the current clusters, respectively.

In order to make the reduction from k0 to k clusters occur in the same number of
iterations as the reduction from l0 = d to l dimensions, the values of α and β must satisfy
the relationship

k0α
N = k and l0β

N = l,

where N is the number of iterations, which is equivalent to

log 1
α

(
k0

k

)
= log 1

β

(
d

l

)
. (15.2)

In the ORCLUS algorithm, the value of α is set to 0.5 and the value of β is calculated
according to equation (15.2), i.e.,

β = − exp

(
(ln d

l
) · (ln 1

α
)

ln k0
k

)
. (15.3)

The ORCLUS algorithm is briefly described inAlgorithm 15.2. In the algorithm, there
are three subprocedures: Assign(s1, . . . , skc , P1, . . . , Pkc ), Merge(s1, . . . , skc , knew, lnew),
and FindV ectors(Ci, q). Like most partitional clustering algorithms, the Assign proce-
dure assigns each data point to its nearest seed according to the projected distance. Let x and
y be two data points in the original d-dimensional space, and let P = {e1, e2, . . . , ep} be
a set of orthonormal vectors. Then the projected distance between x and y in the subspace
defined by the vectors in P is defined to be the Euclidean distance between their projections
in the p-dimensional space represented by P , i.e.,

dP (x, y, P ) =
(

p∑
i=1

(x · ei − y · ei )2

) 1
2

, (15.4)

where x · ei and y · ei denote the dot-products of x and ei and y and ei , respectively.

Algorithm 15.3. Assign(s1, . . . , skc
, P1, . . . , Pkc

).

Require: D-Data set;
1: Set Ci ⇐ ? for i = 1, 2, . . . , kc;
2: for all data points x ∈ D do
3: Let dmin ⇐ dP (x, s1, P1) and imin ⇐ 1;
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4: for i = 2 to kc do
5: if dmin > dP (x, si, Pi) then
6: dmin ⇐ dP (x, si, Pi);
7: imin ⇐ i;
8: end if
9: end for

10: Assign x to Cimin
;

11: end for
12: Set si ⇐ X̄(Ci) for i = 1, 2, . . . , kc {X̄(Ci) is the centroid of cluster Ci};
13: Return (s1, . . . , skc , C1, . . . , Ckc );

The Assign procedure is described in Algorithm 15.3. In this procedure, the vector
sets Pi (i = 1, 2, . . . , kc) are fixed, and each data point is assigned to the nearest cluster
according to the projected distance defined in (15.4). Inside the Assign procedure, X̄(C)

denotes the centroid of C, which is defined as

X̄(C) =
∑
x∈C

x
|C| . (15.5)

Algorithm 15.4. Merge(C1, . . . , Ckc
, Knew, lnew).

1: if knew ≤ k then
2: Exit;
3: end if
4: for i = 1 to kc do
5: for j = i + 1 to kc do
6: Pij = FindV ectors(Ci ∪ Cj , lnew);
7: sij = X̄(Ci ∪ Cj) {centroid of Ci ∪ Cj};
8: rij = R(Ci ∪ Cj , Pij );
9: end for

10: end for
11: while kc > knew do
12: Find i ′, j ′ such that ri ′j ′ = min

1≤i<j≤kc
rij ;

13: Set si ′ ⇐ si ′j ′ , Ci ′ ⇐ Ci ′ ∪ Cj ′ , Pi ′ ⇐ Pi ′j ′{merge Ci ′ and Cj ′};
14: Discard seed sj ′ and Cj ′ , renumber the seeds and clusters indexed larger than j ′ by

subtracting 1, and renumber sij , Pij , rij correspondingly for any i, j ≥ j ′;
15: for j = 1, j �= i ′ to kc − 1 do
16: Update Pi ′j , si ′j and ri ′j if i ′ < j ; otherwise update Pji ′ , sji ′ , and rji ′ ;
17: end for
18: kc ⇐ kc − 1;
19: end while
20: Return (s1, . . . , sknew , C1, . . . , Cknew , P1, . . . , Pknew );

The Merge procedure is used to reduce the number of clusters from kc to knew =
α · kc during a given iteration. The pseudocode of the Merge procedure is described in
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Algorithm 15.4. In this procedure, the two closest pairs of current clusters are merged
successively. The closeness between two clusters is measured by projected energy. Let
(C, P ) be a projected cluster. Then the projected energy of cluster C in subspace P is
defined as

R(C, P ) =
∑
x∈C

1

|C|d
2
P (x, X̄(C), P ), (15.6)

where dP (·, ·, ·) is the projected distance defined in (15.4), and X̄(C) is the centroid of C,
which is defined in (15.5).

Algorithm 15.5. FindVectors(C, q).

1: Compute the d × d covariance matrix M for C;
2: Find the eigenvectors and eigenvalues of matrix M;
3: Let P be the set of eigenvectors corresponding to the smallest q eigenvalues;
4: Return P ;

The FindV ectors procedure (Algorithm 15.5) is used to determine the optimal sub-
space associated with each cluster given the dimensionality. This is achieved by finding the
eigenvalues and eigenvectors of the covariance matrix for the cluster. For a given cluster
C, the subspace associated with C is defined by the orthonormal eigenvectors with the least
spread (eigenvalues).

The ORCLUS algorithm can also handle outliers by measuring the projected distance
between each data point and the seed of the cluster to which it belongs. More specifically,
for each i ∈ {1, . . . , kc}, let δi be the projected distance between the seed si and its nearest
other seed in subspace Pi , let x be any data point, and let sr be the seed to which x is
assigned. If the projected distance between x and sr in subspace Pr is larger than δr , then x
is treated as an outlier.

In order to make the algorithm scalable to very large databases, the concept of ECF-
vectors is used, as in BIRCH (Zhang et al., 1996). For each cluster, there is an ECF-vector
associated with it. The ECF-vector for each cluster in the ORCLUS algorithm consists of
d2 + d + 1 entries. Let C be a cluster. Then the ECF-vector v(C) = (v1, v2, . . . , vd2+d+1)

for C is defined as

v(i−1)d+j =
∑
x∈C

xi · xj , i, j = 1, 2, . . . , d,

vd2+i =
∑
x∈C

xi , i = 1, 2, . . . , d,

vd2+d+1 = |C|,
where xi and xj denote the ith and j th components of the data point x, respectively.

From the definition of the ECF-vectors, one can see that an ECF-vector can be divided
into three parts. The ECF-vectors defined above have some good properties. For example,
the ECF-vector satisfies the additive property, i.e., the ECF-vector for the union of two
clusters is equal to the sum of the corresponding ECF-vectors. Also, the covariance matrix
for a cluster can be derived directly from the ECF-vector of the cluster. Namely, let C be a
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cluster and v = v(C). Then the covariance matrix M = (mij )d×d for C is

mij = v(i−1)d+j
xd2+d+1

− vd2+i · vd2+j
v2
d2+d+1

.

The running time for the Merge procedure is O(k3
0 + k2

0d), and the running time for
the Assign procedure is O( d

1−α k0n). Since the running time for subspace determinations
is strictly dominated by the subspace determinations during the Merge phase, this running
time can be ignored. The total running time of the ORCLUS algorithm is therefore O(k3

0 +
k0nd + k2

0d).

15.4 ENCLUS
ENCLUS (ENtropy-based CLUStering) (Cheng et al., 1999) is an entropy-based subspace
clustering algorithm for clustering numerical data. It can find arbitrarily shaped clusters
embedded in the subspaces of the original data space. It follows similar approaches sug-
gested by CLIQUE, but does not make any assumptions about the cluster shapes and hence
is capable of finding arbitrarily shaped clusters embedded in subspaces. The ENCLUS
algorithm searches for subspace clusters based on the fact that a subspace with clusters
typically has lower entropy than a subspace without clusters. In ENCLUS, the entropy of
a data set is defined as

H(X) = −
∑
x∈χ

d(x) log d(x), (15.7)

whereX is a set of variables, χ is the set of all units in the space formed byX, and d(x) is the
density of a unit x in terms of the percentage of data points contained in unit x. ENCLUS
makes use of the relationship between an entropy and a clustering criterion to identify
the subspaces with good clustering, and then applies methods developed in CLIQUE or
other algorithms to identify all clusters in the subspaces identified. Entropy and clustering
criteria are related. For example, the entropy decreases as the density of the dense units
increases, and we also have the following correspondence between entropy and dimension
correlations:

H(V1, V2, . . . , Vi) =
i∑

j=1

H(Vj ) (15.8)

if and only if V1, V2, . . . , Vi are independent;

H(V1, . . . , Vi, Y ) = H(V1, V2, . . . , Vi)

if and only if Y is a function of V1, V2, . . . , Vi .
To discover the subspaces with good clusters, the algorithm uses the fact of downward

closure, i.e., if an l-dimensional subspaceV1, V2, . . . , Vl has good clustering, so do all (l−1)-
dimensional projections of this space. To discover the correlations between variables, the
algorithm uses the fact of upward closure, i.e., if a set of dimensions S is correlated, so is
every superset of S. Upward closure allows us to find the minimally correlated subspaces.
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A set of variables V1, V2, . . . , Vi are correlated if equation (15.8) is not satisfied.
Define the interest of a set of variables by

interest ({V1, V2, . . . , Vi}) =
i∑

j=1

H(Vj )−H(V1, V2, . . . , Vi). (15.9)

Let Sl be the set of l-dimensional significant subspaces and NSl be the set of l-dimensional
subspaces with good clustering but not minimal correlation. The procedure for mining
significant subspaces is described in Algorithm 15.6. In this procedure, one first builds
grids in the subspace c and calculates the density of each cell. Then the entropy for this
subspace is computed based on the density information using the formula in (15.7). The
candidate set Cl+1 is generated as follows: select p, q ∈ NSl that satisfy p.dimi = q.dimi

for i = 1, 2, . . . , l − 1 and p.diml < q.diml and then insert p and q.diml into Cl+1.

Algorithm 15.6. ENCLUS procedure for mining significant subspaces.

Require: D-Data set, ω-Entropy threshold, ε-Interest threshold;
1: Let l ⇐ 1 and C1 be one-dimensional subspaces;
2: while Cl �= ? do
3: for all c ∈ Cl do
4: Calculate the density fc(·);
5: Calculate the entropy H(c) from fc(·);
6: if H(c) < ω then
7: if interest (c) > ε then
8: Sl ⇐ Sl ∪ c;
9: else

10: NSl ⇐ NSl ∪ c;
11: end if
12: end if
13: end for
14: Generate Cl+1 from NSl ;
15: l ⇐ l + 1;
16: end while
17: Output

⋃
l Sl as significant subspaces.

Since the mining of high-dimensional clusters is often avoided by the above proce-
dure, another procedure used to mine interesting subspaces has been proposed. Define the
interest_gain of a set of variables by

interest_gain({V1, V2, . . . , Vi})
= interest ({V1, V2, . . . , Vi})− max

1≤l≤i
{interest ({V1, V2, . . . , Vi}\{Vl})},

where interest (·) is defined in (15.9). The procedure for mining interesting subspaces is
similar to the one for mining significant subspaces. The modified procedure for mining
interesting subspaces is described in Algorithm 15.7. The procedure for mining interesting
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subspaces has more candidates and a longer running time than the one for mining significant
subspaces.

Algorithm 15.7. ENCLUS procedure for mining interesting subspaces.

Require: D-Data set, ω-Entropy threshold, ε′-Interest threshold;
1: Let l ⇐ 1 and C1 be one-dimensional subspaces;
2: while Cl �= ? do
3: for all c ∈ Cl do
4: Calculate the density fc(·);
5: Calculate the entropy H(c) from fc(·);
6: if H(c) < ω then
7: if interest_gain(c) > ε′ then
8: Il ⇐ Il ∪ c;
9: else

10: NIl ⇐ NIl ∪ c;
11: end if
12: end if
13: end for
14: Generate Cl+1 from Il ∪NIl ;
15: l ⇐ l + 1;
16: end while
17: Output

⋃
l Sl as interesting subspaces.

15.5 FINDIT
FINDIT(a Fast and INtelligent subspace clustering algorithm using DImension voTing) (Woo
and Lee, 2002) is a subspace clustering algorithm that uses a dimension-oriented distance
measure and a dimension voting policy to determine the correlated dimensions for each
cluster.

The dimension-oriented distance dod in FINDIT is defined as

dodε(x, y) = max{dodε(x → y), dodε(y → x)}, (15.10)

where dodε(x → y) is the directed dod defined as

dodε(x → y) = |Qx| − |{j : |xj − yj | ≤ ε, j ∈ Qx ∩Qy}|, (15.11)

where Qx is the subspace dimension in which the dimensional values of the data point x
are meaningful.

The FINDIT algorithm consists of three phases: the sampling phase, the cluster-
forming phase, and the data-assigning phase. In the sampling phase, two samples S and
M are made for the original data set by Chernoff bounds (Motwani and Raghavan, 1995;
Guha et al., 1998) according to the data set size and a parameter Cminsize. Let Cb(k, n) be
the minimum size of sample S such that every cluster has more than ξ data points in the
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sample with probability 1− δ. Then the Cb(k, n) can be computed from the formula (Woo
and Lee, 2002; Guha et al., 1998)

Cb(k, n) = ξkρ + kρ log

(
1

δ

)
+ kρ

√(
2ξ + log

1

δ

)
log

1

δ
, (15.12)

where k is the number of clusters, ρ is a value satisfying the equation

ρ = n

k · |Cmin| ,

and Cmin is the smallest cluster in the partition. FINDIT takes ξ = 30, δ = 0.01, and
Cmin = Cminsize in (15.12) for the sample S, and ξ = 1, δ = 0.01, and Cmin = Cminsize for
the sample M .

In the cluster-forming phase, the subspace dimensions of each cluster are determined
by a method called dimension voting and the best medoid cluster set is formed in order to be
used in the following data assignment phase. In order to find an appropriate ε, the cluster-
forming phase is iterated several times with increasing ε value in [ 1

100R, 25
100R], where R is

the normalized value range. For a fixed ε, the V nearest neighbors are sequentially searched
from S for each medoid in M in order to determine the correlated dimensions of the medoid.
The distance between a point x ∈ S and a medoid z ∈ M is measured as

dodε(z, x) = d − |{j : |zj − yj | ≤ ε, j ∈ Q}|,
whereQ = {1, 2, . . . , d} and d is the number of dimensions, since no correlated dimensions
have been selected for both points yet, i.e., Qx = Qz = Q. After selecting the V nearest
neighbors, the algorithm calculates the number of selected neighbors that vote “yes” for
each dimension, i.e., the number of selected neighbors from z is less than or equal to ε for
each dimension, i.e.,

Vj = |{j : |xj − zj | ≤ ε, j ∈ Q}|, j = 1, 2, . . . , d.

If Vj ≥ Vs , then a certain correlation exists in the j th dimension, where Vs is the decision
threshold. For example, if V = 20, then we could take Vs = 12.

Algorithm 15.8. The FINDIT algorithm.

Require: D-The Data set, Cminsize-Minimum size of clusters, Dmindist -Minimum differ-
ence between two resultant clusters;

1: Draw two samples S and M from the data set according to the Chernoff bounds {sam-
pling phase};

2: Let εi ⇐ i
100R for i = 1, 2, . . . , 25;

3: Let MCi be the set of medoid clusters for εi ;
4: Set the optimal ε ⇐ 0, MC ⇐ ?;
5: for i = 1 to 25 do
6: Determine correlated dimensions for every medoid in M;
7: Assign every point in S to the nearest medoid in M;
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8: Merge similar medoids in M to make medoid cluster set MCi ;
9: Refine medoid clusters in MCi {cluster-forming phase};

10: end for
11: Let i0 be the subscript such that Soundness(MCi0) = max1≤i≤25 Soundness(MCi),

and then set ε ⇐ εi0 , MC ⇐ MCi0 ;
12: Set min_dod ⇐ d , nearest_mc ⇐ ?;
13: for all x ∈ D do
14: for all A ∈ MCi0 do
15: for all z ∈ A do
16: if dodεi0 (z → x) = 0 and dodεi0 (z, x) < min_dod then
17: min_dod ⇐ dodεi0 (z, x), nearest_mc ⇐ A;
18: end if
19: end for
20: end for
21: if nearest_mc �= ? then
22: Assign x to nearest_mc;
23: else
24: Assign x to outlier cluster;
25: end if
26: end for

A point x in S is assigned to the nearest z in M satisfying

dodε(z → x) = |Qz| − |{j : |zj − xj | ≤ ε, j ∈ Q}| = 0,

where Qz is the set of correlated dimensions of z. If there is more than one such medoid,
the point x will be assigned to the medoid which has the largest number of correlated
dimensions.

In FINDIT, a hierarchical clustering algorithm is employed to cluster the medoids.
The distance between two medoid clusters A and B is defined to be the weighted average
between the medoids belonging to them, i.e.,

dodε(A,B) =

∑
zi∈A,zj∈B

|zi | · |zj | · dodε(zi , zj )(∑
zi∈A

|zi |
)
·
( ∑

zj∈B
|zj |
) ,

where |zi | is the number of points assigned to zi , |zj | is defined similarly, dodε(zi , zj ) is
defined as

dodε(zi , zj ) = max{|Qzi |, |Qzj |} − |{l : |zil − zj l| ≤ ε, l ∈ Qzi ∩Qzj }|,
and zil and zj l are the values of the lth dimension of zi and zj , respectively.

To evaluate a medoid clustering, a criterion called soundness is defined for each MCi ,
the set of medoid clusters for εi , by the formula

Soundness(MCi) =
∑

A∈MCi

|A| · |KDA|,
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where KDA is the set of key dimensions or correlated dimensions of the medoid cluster A,
which is defined by

KDA =

j :

∑
z∈A

δj (z) · |z|∑
z∈A

|z| > δ0


 ,

where δ0 is a threshold that could be taken from 0.9 to 1, |z| is the number of points assigned
to the medoid z, and δj (z) = 1 if j is a correlated dimension of z; otherwise it is 0.

In the data-assigning phase, the data points in the original data set are assigned to the
nearest medoid cluster in the optimal medoid clustering found in the cluster-forming phase
or put into the outlier cluster. The FINDIT algorithm is sketched in Algorithm 15.8.

15.6 MAFIA
MAFIA (Merging of Adaptive Finite Intervals) (Nagesh et al., 2000; Goil et al., 1999) is
a parallel subspace clustering algorithm using adaptive computation of the finite intervals
in each dimension that are merged to explore clusters embedded in subspaces of a high-
dimensional data set. It is also a density- and grid-based clustering algorithm.

The MAFIA algorithm uses adaptive grids to partition the data space into small units
and then merges the dense units to form clusters. To compute the adaptive grids, it first
constructs a histogram by partitioning the data space into a number of nonoverlapping
regions and mapping the data points to each cell. The procedure of computing adaptive
grids is listed in Algorithm 15.9.

Algorithm 15.9. Procedure of adaptive grids computation in MAFIA the algorithm.

Require: Di – Domain of ith attribute; N – Total number of data points in the data set; a
– Size of the generic interval;

1: for i = 1 to d do
2: Divide Di into intervals of some small size x;
3: Compute the histogram for each interval in the ith dimension, and set the value of

the window to the maximum in the window;
4: From left to right, merge two adjacent intervals if they are within a threshold β;
5: if number of bins == 1 then
6: Divide the ith dimension into a fixed number of equal intervals and set a threshold

β ′ for it;
7: end if
8: end for

MAFIA is a parallel clustering algorithm. In its implementation, MAFIA introduces
both data parallelism and task parallelism. The main properties of this algorithm are listed
in Table 15.2.
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Table 15.2. Description of the MAFIA algorithm, where c is a constant, k is the
highest dimensionality of any dense cells in the data set, p is the number of processors, N
is the number of data points in the data set, B is the number of records in the memory buffer
on each processor, and γ is the I/O access time for a block of B records from the local disk.

Clustering Data Type Numerical data
Cluster Shape Centered cluster

Time Complexity O(ck + N
pB

kγ + αSpk)

Algorithm Type Parallel, hierarchical

15.7 DOC
DOC (Density-based Optimal projective Clustering) (Procopiuc et al., 2002) is a Monte
Carlo–based algorithm that computes a good approximation of an optimal projective cluster.
The DOC algorithm can identify arbitrarily shaped clusters from the data sets, for example,
image data.

In the DOC algorithm, a projective cluster of width ω is defined as a pair (C, P ),
where C is a subset of data points of the original data set, and P is a subset of dimensions
associated with C such that

1. C is α-dense, i.e., |C| ≥ α|S|, where α ∈ [0, 1] and S is the original data set;

2. ∀j ∈ P , maxx∈C xj −miny∈C yj ≤ ω, where ω ≥ 0;

3. ∀j ∈ P c = {1, 2, . . . , d}\P , maxx∈C xj −miny∈C yj > ω, where ω ≥ 0.

Let µ : R × R → R be a function such that µ(0, 0) = 0 and µ is monotonically
increasing in each argument. Then the quality of a projective cluster (C, P ) is defined to
be µ(|C|, |P |). For any 0 ≤ β < 1, the function µ is said to be β-balanced if µ(x, y) =
µ(βx, y + 1) for all x > 0, y ≥ 0. One choice of such a function is µ(x, y) = x( 1

β
)y(0 <

β < 1).
A projective cluster (C, P ) is said to be µ-optimal if it maximizes µ over Pα , where

Pα is the set of all α-dense projective clusters of width at most ω from D. Monotonicity
is required since we want the projective cluster (C, P ) so that C and P are maximal. The
β-balanced condition is used to specify the tradeoff between the number of data points and
the number of dimensions in a cluster.

Algorithm 15.10. The DOC algorithm for approximating an optimal projective clus-
ter.

Require: D-Data set; α, β, and ω;
1: Let r ⇐ log(2d)

− log(2β) , m⇐ (
2
α

)r
ln 4;

2: for i = 1 to 2
α

do
3: Choose x ∈ D uniformly at random;
4: for j = 1 to m do
5: Choose X ⊆ D of size r uniformly at random;
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6: P ⇐ {j : |yj − xj | ≤ ω,∀y ∈ X};
7: C ⇐ D ∩ Bx,P ;
8: if |C| < α|D| then
9: (C, P )⇐ (?,?);

10: end if
11: end for
12: end for
13: Return cluster (C0, P0) that maximizes µ(|C|, |P |) over all computed clusters (C, P ).

Let (C, P ) be a projective cluster. An intuitive geometric objective is an axis-
paralleled box given as

BC,P = [l1, h1] × [l2, h2] × · · · × [ld , hd ],
where lj and hj (j = 1, 2, . . . , d) are defined as

lj =
{ −∞ if j �∈ P ,

min
x∈C xj if j ∈ P ,

hj =
{ ∞ if j �∈ P ,

max
x∈C xj if j ∈ P .

From the definition of BC,P , a point x ∈ C if and only if x is contained in BC,P . Let x be a
data point and let Bx,P be defined as

Bx,P = [l1, h1] × [l2, h2] × · · · × [ld , hd ],
where lj and hj (j = 1, 2, . . . , d) are defined as

lj =
{ −∞ if j �∈ P ,

xj − ω if j ∈ P ,

hj =
{ ∞ if j �∈ P ,

xj + ω if j ∈ P .

Then for any x ∈ C, we have BC,P ⊆ Bx,P . The Monte Carlo algorithm for approximating
a projective cluster is described in Algorithm 15.10. It has been shown that the Monte Carlo
algorithm works correctly (Procopiuc et al., 2002). The total running time of the Monte
Carlo algorithm described above is O(ndc), where c = log α−log 2

log(2β) .
There are three parameters in the DOC algorithm, i.e., α, β, and ω. In most experi-

ments reported in (Procopiuc et al., 2002), these parameters are set as α = 0.1, β = 0.25,
and ω = 15. Since the parameter ω controls the width of the box, it is hard to choose the
right value for ω if we do not have much information about the data set. In order to choose
a good value for ω, a heuristic method has been proposed in (Procopiuc et al., 2002) as
follows. For a data point xi , let yi be its nearest neighbor. Then let ω be defined as

ω = r

n∑
i=1

wi

n
,
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where r is a small constant, and wi (i = 1, 2, . . . , n) are given by

wi =
d∑

j=1

|xij − yij |
d

.

15.8 CLTree
CLTree (CLustering based on decision Trees) (Liu et al., 2000) is a clustering algorithm for
numerical data based on a supervised learning technique called decision tree construction.
The CLTree algorithm is able to find clusters in the full dimension space as well as in
subspaces. The resulting clusters found by CLTree are described in terms of hyperrectangle
regions. The CLTree algorithm is able to separate outliers from real clusters effectively,
since it naturally identifies sparse and dense regions.

The basic idea behind CLTree is to regard each data point in the original data set as
having a class Y and to assume that the data space is uniformly distributed with another
type of points given class N . The main goal of CLTree is to partition the data space into
data (dense) regions and empty (sparse) regions. The CLTree algorithm consists of two
steps. The first step is to construct a cluster tree using a modified decision tree algorithm;
the second step is to prune the cluster tree interactively. The final clusters are described as
a list of hyperrectangle regions.

Decision tree construction is a technique for classification. A decision tree has two
types of nodes: decision nodes, which specify some test on a single attribute, and leaf nodes,
which indicate the class. Since the CLTree algorithm is designed for numerical data, the
tree algorithm performs a binary split, i.e., the current space is cut into two parts. For details
about the decision tree construction algorithm and its improvements, readers are referred
to (Quinlan, 1993), (Shafer et al., 1996), (Gehrke et al., 1998), and (Gehrke et al., 1999).

During the decision tree construction, a different number of N points is added to each
node, but not physically. In order to separate cluster regions and noncluster regions, the
number of N points is added according to some rules. That is, if the number of N points
inherited from the parent node ofE is less than the number of Y points inE, then the number
of N points for E is increased to the number of Y points in E; otherwise, the number of
inherited N points is used for E.

In the CLTree algorithm, the decision tree algorithm is modified, since the N points
are not physically added to the data. The first modification is to compute the number of N
points in each region based on the area of the region when a cut is made, since the N points
are assumed to be distributed uniformly in the current space. For example, a node E has
25 Y points and 25 N points and a cut P cuts E into two regions E1 and E2 in the ratio
2:3, i.e., the area of E1 is 40% of the area of E and the area of E2 is 60% of the area of E.
Then the number of N points in E1 is 0.4 × 25 = 10 and the number of N points in E2 is
25− 10 = 15. The second modification is to evaluate on both sides of data points in order
to find the best cuts.

Also, a new criterion is used in order to find the best cuts, since the gain criterion has
problems in clustering, such as the cut with best information gain tends to cut into clusters.
To do this, the relative density of a region is defined. Let E be a region. Then the relative
density of E is E.Y

E.N
, where E.Y is the number of Y points in E and E.N is defined similarly.
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The basic idea of the new criterion is described as follows. For each dimension j of a node
E, let dj_cut1 be the first cut found by the gain criterion, and let the two regions separated
by dj_cut1 along dimension j be denoted by Lj and Hj , where Lj has a lower relative
density than Hj ; then we have E = Lj ∪Hj . Let dj_cut2 be the cut of Lj found using the
gain criterion. Suppose the region Lj is cut into L1

j and H 1
j by dj_cut2, where L1

j has a
lower relative density than H 1

j ; then we have Lj = L1
j ∪H 1

j . If H 1
j is the region between

dj_cut1 and dj_cut2, then we stop and choose dj_cut2 as a best cut for dimension j of
E. If the region between dj_cut1 and dj_cut2 is L1

j , then we let dj_cut3 be the cut of L1
j

found using the gain criterion and choose dj_cut3 as the best cut for dimension j of E.
After the decision tree has been constructed, it is pruned in order to produce meaningful

clusters. CLTree provides two pruning methods: browsing and user-oriented pruning. In
the browsing method, a user interface is built in order to let the user simply explore the tree
to find meaningful clusters. In the user-oriented pruning method, the decision tree is pruned
using two user-specified parameters min_y and min_rd: min_y is the percentage of the
total number of data points in the data set that a region must contain, and min_rd specifies
whether an N region (node) E should join an adjacent region F to form a bigger cluster
region.

15.9 PART
PART (ProjectiveAdaptive Resonance Theory) (Cao and Wu, 2002) is a new neural network
architecture that was proposed to find projected clusters for data sets in high-dimensional
spaces. The neural network architecture in PART is based on the well knownART (Adaptive
Resonance Theory) developed by Carpenter and Grossberg (1987b,a, 1990). In PART, a
so-called selective output signaling mechanism is provided in order to deal with the inherent
sparsity in the full space of the high-dimensional data points. Under this selective output
signaling mechanism, signals generated in a neural node in the input layer can be transmitted
to a neural node in the clustering layer only when the signal is similar to the top-down weight
between the two neural nodes; hence, with this selective output signaling mechanism, PART
is able to find dimensions where subspace clusters can be found.

The basic PART architecture consists of three components: the input layer (compar-
ison layer) F1, the clustering layer F2, and a reset mechanism (Cao and Wu, 2002). Let
the nodes in the F1 layer be denoted by vi, i = 1, 2, . . . , m; the nodes in the F2 layer be
denoted by vj , j = m + 1, . . . , m + n; the activation of an F1 node vi be denoted by xi ;
and the activation of an F2 node vj be denoted by xj . Let the bottom-up weight from vi to
vj be denoted by zij and the top-down weight from vj to vi be denoted by zji . In PART,
the selective output signal of an F1 node vi to a committed F2 node vj is defined by

hij = h(xi, zij , zji) = hσ (f1(xi), zji)l(zij ), (15.13)

where f1 is a signal function; hσ (·, ·) is defined as

hσ (a, b) =
{

1 if d(a, b) ≤ σ ,
0 if d(a, b) > σ ,

(15.14)
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with d(a, b) being a quasi-distance function; and l(·) is defined as

l(zij ) =
{

1 if zij > θ ,
0 if zij ≤ θ ,

(15.15)

with θ being 0 or a small number to be specified as a threshold; σ is a distance parameter.
An F1 node vi is said to be active to vj if hij = 1 and inactive to vj if hij = 0.
In PART, an F2 node vj is said to be a winner either if � �= φ and Tj = max� or if

� = φ and node vj is the next noncommitted node in the F2 layer, where � is a set defined
as � = {Tk : F2 node vk is committed and has not been reset on the current trial}, with Tk
defined as

Tk =
∑
vi∈F1

zikhik =
∑
vi∈F1

zikh(xi, zik, zki). (15.16)

A winning F2 node will become active and all other F2 nodes will become inactive,
since the F2 layer makes a choice by a winner-take-all paradigm:

f2(xj ) =
{

1 if node vj is a winner,
0 otherwise.

(15.17)

For the vigilance and reset mechanism of PART, if a winning (active) F2 node vj does
not satisfy some vigilance conditions, it will be reset so that the node vj will always be
inactive during the rest of the current trial. The vigilance conditions in PART also control
the degree of similarity of patterns grouped in the same cluster. A winning F2 node vj will
be reset if and only if

rj < ρ, (15.18)

where ρ ∈ {1, 2, . . . , m} is a vigilance parameter and rj is defined as

rj =
∑
i

hij . (15.19)

Therefore, the vigilance parameter ρ controls the size of the subspace dimensions, and the
distance parameter σ controls the degree of similarity in the specific dimension involved.
For real-world data, it is a challenge to choose the distance parameter σ .

In PART, the learning is determined by the following formula. For a committed F2

node vj that has passed the vigilance test, the new bottom-up weight is defined as

znewij =
{

L
L−1+|X| if F1 node vi is active to vj ,
0 if F1 node vi is inactive to vj ,

(15.20)

where L is a constant and |X| denotes the number of elements in the set X = {i : hij = 1},
and the new top-down weight is defined as

znewji = (1− α)zoldji + αIi, (15.21)

where 0 ≤ α ≤ 1 is the learning rate.
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For a noncommitted winner vj , and for every F1 node vi , the new weights are defined
as

znewij = L

L− 1+m
, (15.22)

znewji = Ii . (15.23)

In PART, each committed F2 node vj represents a subspace cluster Cj . Let Dj be the
set of subspace dimensions associated with Cj . Then i ∈ Dj if and only if l(zij ) = 1, i.e.,
the set Dj is determined by l(zij ).

PART is very effective at finding the subspaces in which clusters are embedded, but
the difficulty of choosing some of its parameters restricts its application. For example, it
is very difficult for users to choose an appropriate value for the distance parameter σ . If
we choose a relatively small value the algorithm may not capture the similarities of two
similar data points; however, if we choose a relatively large value, the algorithm may not
differentiate two dissimilar data points.

15.10 SUBCAD
All the subspace clustering algorithms mentioned before are designed for clustering numer-
ical data. SUBCAD (SUBspace clustering for high-dimensional CAtegorical Data) (Gan
and Wu, 2004; Gan, 2003) is a subspace clustering algorithm designed for clustering high-
dimensional categorical data. In the SUBCAD algorithm, the clustering process is treated
as an optimization problem. An objective function is defined in SUBCAD to measure the
quality of the clustering. The main goal of SUBCAD is to find an approximation of the
optimal solution based on the objective function.

Given a data set D, let Q be the set of dimensions of D, i.e., Q = {1, 2, . . . , d}, where
d is the number of dimensions of D, and let Span(Q) denote the full space of the data set.
Then by a subspace cluster we mean a cluster C associated with a set of dimensions P such
that

1. the data points in C are “similar” to each other in the subspace Span(P ) of Span(Q)

(i.e., the data points in C are compact in this subspace);

2. the data points in C are sparse in the subspace Span(R), where R = Q\P (i.e., the
data points in C are spread in this subspace).

In SUBCAD, a subspace cluster is denoted by a pair (C, P ) (P �= ?), where P is the
nonempty set of dimensions associated with C. In particular, if P = Q, then this cluster is
formed in the whole space of the data set. Therefore, if C is a cluster with the associated
set of dimensions P , then C is also a cluster in every subspace of Span(P ). Hence, a good
subspace clustering algorithm should be able to find clusters and the maximum associated
set of dimensions. Consider, for example, the data set with five six-dimensional data points
given in Table 2.1. In this data set, it is obvious that C = {x1, x2, x3} is a cluster and
the maximum set of dimensions should be P = {1, 2, 3, 4}. A good subspace clustering
algorithm should be able to find this cluster and the maximum set of associated dimensions
P .
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The objective function is defined in terms of the compactness and separation of each
subspace cluster. Let (C, P ) be a subspace cluster. Then the compactness Cp(C, P ) and
the separation Sp(C,R) of cluster (C, P ) are defined as

Cp(C, P ) =
2
∑

x,y∈C
‖x − y‖2

P

|P ||C|2 , (15.24)

Sp(C, P ) =



2
∑

x,y∈C
‖x−y‖2

R

|R||C|2 if R �= ?,
1 if R = ?,

(15.25)

where |P | and |R| denote the number of elements in the setsP andR, respectively; ‖x−y‖P
denotes the distance between x and y in the subspace spanned by the dimensions in P ; and
‖x − y‖R denotes the distance in the subspace spanned by the dimensions in R.

Let C1, C2, . . . , Ck be a partition of the data set, where k is the number of clusters.
Let Pj be the set of dimensions associated with cluster Cj . The objective function is defined
as

Fobj =
k∑

j=1

(Cp(Cj , Pj )+ 1− Sp(Cj , Rj )). (15.26)

Given the number of clusters k, the goal of SUBCAD is to partition the data set into
k nonoverlapping groups such that the objective function Fobj defined in equation (15.26)
is minimized. The algorithm finds an approximation of the optimal partition.

Let C be a cluster associated with the set P of dimensions and Tf (C) be its frequency
table (cf. Section 2.1). Since the square of the simple matching distance is equal to itself,
we have

∑
x,y∈C

‖x − y‖2
P =

∑
x,y∈C

∑
j∈P

δ(xj , yj )2

=
∑
j∈P

∑
x,y∈C

δ(xj , yj )

=
∑
j∈P

∑
1≤r<s≤nj

fjr (C) · fjs(C)

=
∑
j∈P

1

2


( nj∑

r=1

fjr(C)

)2

−
nj∑
r=1

f 2
jr (C)




= 1

2
|P | · |C|2 − 1

2

∑
j∈P

nj∑
r=1

f 2
jr (C)

= 1

2
|P | · |C|2 − 1

2

∑
j∈P

‖fj (C)‖2, (15.27)

where δ(·, ·) is the simple matching distance, and fj (C) is defined in equation (2.3).
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Thus from equation (15.27), we obtain the following simplified formulas of compact-
ness and separation:

Cp(C, P ) = 1−
∑
j∈P

‖fj (C)‖2

|P ||C|2 , (15.28)

Sp(C,R) =

 1−

∑
j∈R

‖fj (C)‖2

|R||C|2 if R �= ?,
1 if R = ?.

(15.29)

The SUBCAD algorithm consists of two phases: the initialization phase and the
optimization phase. In the initialization phase, an initial partition is made. Good initial
partition leads to fast convergence of the algorithm, while bad initial partition may make
the algorithm converge very slowly. Some initialization methods have been proposed in the
literature of clustering, such as the cluster-based method (Bradley and Fayyad, 1998) and
the kd-tree–based method (Pelleg and Moore, 1999). A sketch of the algorithm is described
in Algorithm 15.11.

Algorithm 15.11. The SUBCAD algorithm.

Require: D - Data Set, k - Number of Clusters;
Ensure: 2 ≤ k ≤ |D|;

1: if D is a large data set then
2: Draw a sample from D;
3: end if
4: Compute the proximity matrix from the whole data set or the sample;
5: Pick k most dissimilar data points as seeds;
6: Assign the remaining data points to the nearest seed;
7: repeat
8: for i = 1 to |D| do
9: Let (Cl, Pl) be the subspace cluster that contains xi ;

10: for m = 1,m �= l to k do
11: if inequality (15.35) is true then
12: Move x from Cl to Cm;
13: Update subspaces Pl and Pm;
14: end if
15: end for
16: end for
17: until No further change in the cluster memberships;
18: Output results.

Initialization

In the initialization phase, the k most dissimilar data points are picked as seeds, where k

is the number of clusters, and then the remaining data points are assigned to the nearest
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seed. Let D be a data set and k be a positive integer such that k ≤ |D|. We say that
x1, x2, . . . , xk ∈ D are the k most dissimilar data points of the data set D if the following
condition is satisfied:

min
1≤r<s≤k

‖xr − xs‖ = max
E∈F

min
x,y∈E ‖x − y‖, (15.30)

where F is the class that contains all subsets E of D such that |E| = k, i.e.,

F = {E : E ⊆ D, |E| = k},
and ‖x − y‖ is the distance between x and y.

Let X(k,D) (k ≤ |D|) denote the set of the k most dissimilar data points of the

data set D. Since there is a total of
(

n

k

)
elements in F , when n is large, it is impractical

to enumerate all sets in F to find the set of the k most dissimilar data points. Thus an
approximation algorithm is employed to find a set of k data points that is near the set of
the k most dissimilar data points. The basic idea is to choose k initial data points and
then continuously replace the bad data points with good ones until no further changes are
necessary.

More specifically, let D = {x1, x2, . . . , xn} be a data set or a sample from a data set.
First, let X(k,D) be {x1, x2, . . . , xk}, and let xr and xs (1 ≤ r < s ≤ k) be such that

‖xr − xs‖ = min
x,y∈X(k,D)

‖x − y‖. (15.31)

Secondly, for each of the data points x ∈ D\X(k,D), let

Sr = min
y∈(X(k,D)\{xs })

‖x − y‖, (15.32)

Ss = min
y∈(X(k,D)\{xr })

‖x − y‖. (15.33)

Then if Sr > ‖xr − xs‖, we let X(k,D)∪ {x}\{xs} replace X(k,D); if Ss > ‖xr − xs‖, we
let X(k,D) ∪ {x}\{xr} replace X(k,D).

Optimization

In the optimization phase, the data points are reassigned in order to minimize the objective
function (15.26) and update the subspaces associated with those clusters whose membership
has changed. Let (C1, P1), (C2, P2), . . . , (Ck, Pk) be a partition of the data set D, and let x
be a data point in the subspace cluster (Cl, Pl). To achieve the membership changing rules,
the “exact assignment test” (Wishart, 2002) technique is used in the optimization phase. x
will be moved from subspace cluster (Cl, Pl) to another subspace cluster (Cm, Pm) (m �= l)
if the resulting cost function decreases, i.e., if the following inequality is true:

k∑
i=1

(Cp(Ci)+ 1− Sp(Ci)) >

k∑
i=1,i �=l,m

Cp(Ci)

+ Cp(Cl − x)+ 1− Sp(Cl − x)+ Cp(Cm + x)

+ 1− Sp(Cm + x), (15.34)
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where Cl − x means Cl\{x} Cm + x means Cm ∪ {x}.
The inequality (15.34) is equivalent to

Cp(Cl)− Cp(Cl − x)− Sp(Cl)+ Sp(Cl − x)

> −Cp(Cm)+ Cp(Cm + x)+ Sp(Cm)− Sp(Cm + x). (15.35)

Determining Subspace Dimensions

During the optimization phase of the algorithm, if a data point is moved from its current
cluster to another one, then the subspace dimensions associated with the two clusters should
be updated. In the SUBCAD algorithm, the set of subspace dimensions associated with
each cluster is determined by an objective function.

Let (C,E) be a subspace cluster of a d-dimensional data set D. In order to determine
the set P of subspace dimensions associated with C, an objective function whose domain
is all the subsets of Q = {1, 2, . . . , d} is defined as

F(C,E) = Cp(C,E)+ 1− Sp(C,Q\E), ? �= E ⊆ Q, (15.36)

where Cp(C,E) and Sp(C,Q\E) are the compactness and separation of cluster C under
the subspace dimensions set E.

Our general idea to determine the set P associated with the cluster C is to find a
P such that the objective function defined in equation (15.36) is minimized. Also, from
equation (15.27), if P �= ? or P �= Q, the objective function in equation (15.36) can be
written as

F(C,E) = 1−
∑
j∈E

‖fj (C)‖2

|E||C|2 +
∑

j∈Q\E
‖fj (C)‖2

|Q\E||C|2 , E ⊆ Q, (15.37)

where R = Q\P .
The objective function defined in (15.37) has the following properties.

Theorem 15.1 (Condition of constancy). The objective function defined in equation (15.36)
is constant for any subset E of Q if and only if

‖f1(C)‖ = ‖f2(C)‖ = · · · = ‖fd(C)‖. (15.38)

In addition, if the objective function is a constant, then it is equal to 1.

From the definition of the objective function F(C,E), the proof of the above theorem
is straightforward and is thus omitted. Thus, from Theorem 15.1, if the objective function is
constant, then it is minimized at any subset ofQ. In this case, the set of subspace dimensions
associated with C is defined to be Q. If the objective function is not constant, then the set
of subspace dimensions associated with C is defined to be the set P ⊆ Q that minimizes
the objective function. In fact, it can be shown that such a set P is unique if the objective is
not constant (Gan, 2003). Hence, the following definition of subspace associated with each
cluster is well defined.
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Definition 15.2. Let C be a cluster. Then the set P of subspace dimensions associated with
C is defined as follows:

1. If the objective function F(C,E) is constant for any E ⊆ Q, then let P = Q.

2. If the objective function F(C,E) is not constant, then P is defined as

P = arg max
E∈E

|E|, (15.39)

where E is defined as

E = {O : F(C,O) = min
E∈ℵ F(C,E),O ∈ ℵ} (15.40)

and is defined as
ℵ = {E : E ⊂ Q,E �= ?,E �= Q}. (15.41)

From Definition 15.2, the set P defined in equation (15.39) is nonempty. Moreover,
if the objective function F(C,E) is not constant, then the set P is a true subset of Q, i.e.,
P � Q. The objective function in (15.37) has many good properties, which will be given
as theorems or corollaries as follows. Readers may refer to Gan (2003) for detailed proofs.

Theorem 15.3. Let (C, P ) be a subspace cluster of a d-dimensional data set D (d > 2),
and let P be defined in equation (15.39). Then we have the following:

1. Let r ∈ P . If there exists an s (1 ≤ s ≤ d) such that ‖fs(C)‖ > ‖fr (C)‖, then s ∈ P .

2. Let r ∈ R. If there exists an s (1 ≤ s ≤ d) such that ‖fs(C)‖ < ‖fr (C)‖, then s ∈ R,
where R = Q\P .

Corollary 15.4 (Monotonicity). Let (C, P ) be a subspace cluster of D, where P is the set
of subspace dimensions defined in equation (15.39) and let Tf (C) be the frequency table of
C. Then for any r ∈ P and s ∈ R(R = Q\P), we have

‖fr (C)‖ ≥ ‖fs(C)‖. (15.42)

Theorem 15.5. Let (C, P ) be a subspace cluster of a d-dimensional data set D (d > 2),
where P is defined in equation (15.39). Let Tf (C) be the frequency table and let r, s (1 ≤
r, s ≤ d) be given so that ‖fs(C)‖ = ‖fr (C)‖. Then either r, s ∈ P or r, s ∈ R, i.e., r, s
must be in the same set P or R, where R = Q\P .

Corollary 15.6. Let (C, P ) be a subspace cluster of D, where P is the set of subspace
dimensions defined in equation (15.39), and let Tf (C) be the frequency table of C. If the
objective function F(C,E) is not constant, then for any r ∈ P and s ∈ R (R = Q\P), we
have

‖fr (C)‖ > ‖fs(C)‖. (15.43)
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Theorem 15.7 (Uniqueness of subspace). Let F(C,E) be the objective function defined in
equation (15.36) and let P be the set defined in equation (15.39). If the objective function
F(C,E) is not constant, then the set P is unique.

Theorem 15.8 (Contiguity). Let (C, P ) be a subspace cluster of D, where P is the set of
subspace dimensions defined in equation (15.39). Let Tf (C) be the frequency table of C,
and let i1, i2, . . . , id be a combination of 1, 2, . . . , d such that

‖fi1(C)‖ ≥ ‖fi2(C)‖ ≥ · · · ≥ ‖fid (C)‖.
Finally, let be the set of subscripts defined as

Gs =
{
t : ‖fit (C)‖ �= ‖fit+1(C)‖, 1 ≤ t ≤ d − 1

}
. (15.44)

If the objective function defined in equation (15.36) is not constant, then the set of subspace
dimensions P defined in equation (15.39) must be one of the Pk’s (k = 1, 2, . . . , |Gs |)
defined as

Pk = {it : t = 1, 2, . . . , gk}, k = 1, 2, . . . , |Gs |, (15.45)

where g1 < g2 < · · · < g|Gs | are elements of Gs .

Based on Theorem 15.8, the set of subspace dimensions P for a cluster C can be
found very quickly. There are 2d − 1 nonempty subsets of Q, so it is impractical to find an
optimal P by enumerating these 2d − 1 subsets. Based on Theorem 15.8, a fast algorithm
is possible for determining the set of subspace dimensions.

15.11 Fuzzy Subspace Clustering
In fuzzy clustering algorithms, each object has a fuzzy membership associated with each
cluster indicating the degree of association of the object to the cluster. In this section
we present a fuzzy subspace clustering (FSC) algorithm (Gan et al., 2006; Gan, 2006) for
clustering high-dimensional data sets. In FSC each dimension has a fuzzy membership
associated with each cluster indicating the degree of importance of the dimension to the
cluster (see Definition 15.9). Using fuzzy techniques for subspace clustering, FSC avoids the
difficulty of choosing appropriate subspace dimensions for each cluster during the iterations.

Definition 15.9 (Fuzzy dimension weight matrix). A k × d matrix W = (wjh) is said to
be a fuzzy dimension weight matrix if W satisfies the following conditions:

wjh ∈ [0, 1], 1 ≤ j ≤ k, 1 ≤ h ≤ d, (15.46a)

d∑
h=1

wjh = 1, 1 ≤ j ≤ k. (15.46b)

The set of all such fuzzy dimension weight matrices is denoted by Mfk , i.e.,

Mfk = {W ∈ Rkd |W satisfies equation (15.46)}. (15.47)
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The main idea behind the FSC algorithm is to impose weights on the distance measure
of the k-means algorithm (Hartigan, 1975; Hartigan and Wong, 1979) in order to capture
appropriate subspace information. To describe FSC, we first briefly describe the k-means
algorithm. Let the set of k centers be denoted by Z = {z1, z2, . . . , zk}. Then the objective
function of the k-means algorithm is

E =
k∑

j=1

∑
x∈Cj

‖x − zj‖2, (15.48)

where ‖ · ‖ is the Euclidean norm and Cj is the j th cluster. Alternatively, the objective
function of k-means in equation (15.48) can be formulated as

E =
k∑

j=1

n∑
i=1

uji‖x − zj‖2,

where U = (uji) is a hard k-partition (see Subsection 1.2.4) of D.
Like locally adapative clustering (LAC) (Domeniconi et al., 2004), FSC associates

with each cluster a weight vector in order to capture the subspace information of that cluster.
For example, the hth dimension is associated with the j th cluster to a degree of wjh or the
j th cluster has fuzzy dimension weights specified by wj = (wj1, wj2, . . . , wjd)

T . The
fuzzy dimension weights of the k clusters are represented by a fuzzy dimension weight
matrix W = (w1,w2, . . . ,wk)

T .
Mathematically, the objective function of the algorithm is formated by imposing

weights on the distance measure in equation (15.48) as

Eα,ε(W,Z,U) =
k∑

j=1

n∑
i=1

uji

d∑
h=1

wα
jh(xih − zjh)

2 + ε

k∑
j=1

d∑
h=1

wα
jh, (15.49)

where W , Z, and U are the fuzzy dimension weight matrix, the centers, and the hard k-
partition of D, respectively; α ∈ (1,∞) is a weight component or fuzzifier; and ε is a very
small positive real number. Note that any one of W , Z, and U can be determined from the
other two. The following three theorems (Theorems 15.10 –15.12) show how to estimate
one of W , Z, and U from the other two such that the objective function Eα,ε(W,Z,U) is
minimized.

From the definition of the objective function in equation (15.49), we see that there
is a term ε

∑k
j=1

∑d
h=1 w

α
jh. As you will see while analyzing the FSC algorithm, this term

is introduced in the objective function in order to avoid the divide-by-zero error when
calculating W given the estimates of Z and U . The parameter ε is specified to be a very
small positive real number so that the term has very little impact on the objective function.

The following theorem is used to find a hard k-partition U given the estimates of
W and Z such that the objective function Eα,ε(W,Z,U) defined in equation (15.49) is
minimized.

Theorem 15.10. Given an estimate W ∗ of W and an estimate Z∗ of Z, then a hard k-
partition U = (uji) minimizes the objective function Eα,ε(W

∗, Z∗, U) if it satisfies the
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condition

uji = 1 implies j ∈
{
r ∈ {1, 2, . . . , k}|r = arg min

1≤l≤k
dli

}
, (15.50)

where dli =∑d
h=1(w

∗
lh)

α(xih− z∗lh)2. The corresponding clusters Cj (j = 1, 2, . . . , k) are
formulated as

Cj =
{
xi ∈ D|uij = 1, 1 ≤ i ≤ n

}
. (15.51)

Proof. We rearrange the objective function Eα,ε(W
∗, Z∗, U) as

Eα,ε(W
∗, Z∗, U) =

n∑
i=1

k∑
j=1

uji

d∑
h=1

(w∗
jh)

α(xih − z∗jh)
2 + ε

k∑
j=1

d∑
h=1

(w∗
jh)

α

=
n∑

i=1

k∑
j=1

ujidji + ε

k∑
j=1

d∑
h=1

(w∗
jh)

α,

where dji = ∑d
h=1(w

∗
jh)

α(xih − z∗jh)2. Since
∑k

j=1 ujidji (i = 1, 2, . . . , n) are mutually

uncorrelated and ε
∑k

j=1

∑d
h=1(w

∗
jh)

α is fixed, Eα,ε(W
∗, Z∗, U) is minimized if each term∑k

j=1 ujidji is minimized for i = 1, 2, . . . , n. Note that only one of u1i , u2i , . . . , uki is 1

and all others are zero. From this it follows immediately that
∑k

j=1 ujidji is minimized if
uji satisfies equation (15.50).

Equation (15.51) follows from the fact that every point is assigned to its nearest center
in terms of the weighted distance. This proves the theorem.

From Theorem 15.10, we see that the objective function Eα,ε(W,Z,U) of the FSC
algorithm can be formulated as

Eα,ε(W,Z,U)

=
n∑

i=1

min

{
d∑

h=1

wα
jh(xih − zjh)

2|j = 1, 2, . . . , k

}
+ ε

k∑
j=1

d∑
h=1

wα
jh, (15.52)

since only one of u1i , u2i , . . . , uki is equal to 1 and the others are equal to zero.
Note that the hard k-partition U calculated from equation (15.50) is not unique, since

a data point can be assigned to any center to which it has the nearest distance. A particular
choice of U must be made when implementing the FSC algorithm.

The following theorem is used to find the cluster centers Z given the estimates of
W and U such that the objective function Eα,ε(W,Z,U) defined in equation (15.49) is
minimized.

Theorem 15.11. Given an estimate W ∗ of W and an estimate U ∗ of U , then the objective
function Eα,ε(W

∗, Z,U ∗) is minimized if Z = (zjh) is calculated as

zjh =

n∑
i=1

u∗jixih

n∑
i=1

u∗ji
, 1 ≤ j ≤ k, 1 ≤ h ≤ d. (15.53)
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Proof. To prove this theorem, we take partial derivatives of Eα,ε(W
∗, Z,U ∗) with respect

to zjhs, set them to zero, and solve the resulting system. That is,

∂Eα,ε(W
∗, Z,U ∗)

∂zjh
=

n∑
i=1

−2u∗ji(w
∗
jh)

α(xih − zjh) = 0, 1 ≤ j ≤ k, 1 ≤ h ≤ d.

This gives

zjh =

n∑
i=1

u∗ji(w
∗
jh)

αxih

n∑
i=1

uji(w
∗
jh)

α

=

n∑
i=1

u∗jixih

n∑
i=1

u∗ji
, 1 ≤ j ≤ k, 1 ≤ h ≤ d. (15.54)

This proves the theorem.

The following theorem is used to find the fuzzy dimension weight matrix W given
the estimates of Z and U such that the objective function Eα,ε(W,Z,U) is minimized.

Theorem 15.12. Given an estimate Z∗ of Z and an estimate U ∗ of U , then the objective
function Eα,ε(W,Z∗, U ∗) is minimized if W = (wjh) is calculated as

wjh = 1

d∑
l=1




n∑
i=1

u∗ji (xih−z∗jh)2+ε
n∑

i=1
u∗ji (xil−z∗j l )2+ε




1
α−1

, 1 ≤ j ≤ k, 1 ≤ h ≤ d. (15.55)

Proof. To prove this theorem, we use the method of Lagrange multipliers. To do this, let
us first write the Lagrangian function as

F(W,Z∗, U ∗,=) = Eα,ε(W,Z∗, U ∗)−
k∑

j=1

λj

(
d∑

h=1

wjh − 1

)
.

By taking partial derivatives with respect to Wjh, we have

∂F (W,Z∗, U ∗,=)

∂wjh

=
n∑

i=1

αu∗jiw
α−1
jh (xih − z∗jh)

2 + εαwα−1
jh − λj

= αwα−1
jh

(
n∑

i=1

u∗ji(xih − z∗jh)
2 + ε

)
− λj

= 0 (15.56)

for 1 ≤ j ≤ k, 1 ≤ h ≤ d and
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∂F (W,Z∗, U ∗,=)

∂λj
=

d∑
h=1

wjh − 1 = 0 (15.57)

for 1 ≤ j ≤ k.
From equation (15.56), we have

wjh =


 λj

α

(
n∑

i=1
u∗ji(xih − z∗jh)2 + ε

)



1
α−1

, 1 ≤ j ≤ k, 1 ≤ h ≤ d. (15.58)

Combining equation (15.57) and equation (15.58) gives

d∑
h=1


 λj

α

(
n∑

i=1
u∗ji(xih − z∗jh)2 + ε

)



1
α−1

= 1, 1 ≤ j ≤ k,

or

λ
1

α−1
j = 1

d∑
h=1


 1

α

(
n∑

i=1
u∗ji (xih−z∗jh)2+ε

)



1
α−1

, 1 ≤ j ≤ k. (15.59)

Plugging λj from equation (15.59) into equation (15.58), we have

wjh = 1

d∑
l=1




n∑
i=1

u∗ji (xih−z∗jh)2+ε
n∑

i=1
u∗ji (xil−z∗j l )2+ε




1
α−1

, 1 ≤ j ≤ k, 1 ≤ h ≤ d.

This proves the theorem.

Algorithm 15.12. The pseudocode of the FSC algorithm.

Require: D - the data set, k - the number of clusters, and α - the fuzzifier;
1: Initialize Z by choosing k points from D randomly;
2: Initialize W with wjh = 1

d
(1 ≤ j ≤ k, 1 ≤ h ≤ d);

3: Estimate U from initial values of W and Z according to equation (15.50);
4: Let error = 1 and Obj = Eα,ε(W,Z);
5: while error > 0 do
6: Update Z according to Theorem 15.11;
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7: Update W according to Theorem 15.12;
8: Update U according to Theorem 15.10;
9: Calculate NewObj = Eα,ε(W,Z);

10: Let error = |NewObj −Obj |, and then Obj ⇐ NewObj ;
11: end while
12: Output W , Z, and U .

We see from equation (15.53) and equation (15.55) that FSC is very similar to the
fuzzy k-means algorithm (Huang and Ng, 1999) in terms of the way they update centers and
fuzzy memberships. Like the fuzzy k-means algorithm, FSC is implemented recursively
(see Algorithm 15.12). FSC starts with initial estimates of Z, W , and the partition U

calculated from Z and W , and then repeats estimating the centers Z given the estimates of
W and U , estimating the fuzzy dimension weight matrix W given the estimates of Z and
U , and estimating the partition U given the estimates of W and Z, until it converges.

15.12 Mean Shift for Subspace Clustering
This section presents a novel approach, the mean shift for subspace clustering (MSSC)
algorithm (Gan, 2006), to identifying subspace clusters. First, we introduce the relation-
ship among several clustering algorithms: the mean shift algorithm, the maximum-entropy
clustering (MEC) algorithm, the FSC algorithm, the k-means algorithm, and the MSSC al-
gorithm. Then we briefly introduce the MSSC algorithm. Finally, we examine some special
cases of the MSSC algorithm and compute the critical value for β, a key parameter required
by the algorithm, when the first phase transition occurs.

Figure 15.1 shows the relationship between the mean shift algorithm and its deriva-
tives. The k-means algorithm is a limit case of the MEC algorithm (Rose et al., 1990) which,
in turn, is a special case of the mean shift algorithm (Cheng, 1995). The MSSC algorithm
is an extension of the MEC algorithm for subspace clustering.

The main idea behind the MSSC algorithm is to impose weights on the distance
measure of the MEC algorithm (Rose et al., 1990) in order to capture appropriate subspace
information. Readers are referred to Section 9.7 for a brief review of the MEC algorithm.
Given a data set D = {x1, x2, . . . , xn} and a set of centers Z = {z1, z2, . . . , zk}, recall that
the free energy defined in the MEC algorithm is defined as

F = − 1

β

∑
x∈D

ln


 k∑

j=1

e−β‖x−zj ‖2


 ,

where β is a parameter called the Lagrange multiplier.
Like the FSC algorithm (see Section 15.11), the MSSC algorithm associates with

each cluster a weight vector in order to capture the subspace information of that clus-
ter.In particular, the hth dimension is associated with the j th cluster Cj to a degree of wjh
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The k-means algorithm

The MEC algorithm

The FSC algorithm

The MSSC algorithm

The mean shift algorithm

W

W

β → ∞ β → ∞

Figure 15.1. The relationship between the mean shift algorithm and its derivatives.

or the j th cluster has fuzzy dimension weights specified by wj = (wj1, wj2, . . . , wjd)
T .

Mathematically, the objective function of the MSSC algorithm is formulated by imposing
weights on the distance measure in the free energy as

Fα,β,ε(W,Z)

= − 1

β

n∑
i=1

ln


 k∑

j=1

exp

(
−β

d∑
h=1

wα
jh(xih − zjh)

2

)+ ε

k∑
j=1

d∑
h=1

wα
jh

= − 1

β

n∑
i=1

ln


 k∑

j=1

e−βdji (W,Z)


+ ε

k∑
j=1

d∑
h=1

wα
jh, (15.60)

where α ∈ (1,∞) is the fuzzifier controlling the fuzzy dimension weights; β is a parameter
ranging from zero to infinity, i.e., β ∈ (0,∞); ε is a very small positive number; W =
(w1,w2, . . . ,wk)

T is the fuzzy dimension weight matrix; Z = {z1, z2, . . . , zk} is the set of
centers; and dji(W,Z) is defined as

dji(W,Z) =
d∑

h=1

wα
jh(xih − zjh)

2, 1 ≤ i ≤ n, 1 ≤ j ≤ k. (15.61)

The following theorem is used to find the set of centers Z given the estimate of W
such that the objective function Fα,β,ε(W,Z) is minimized.
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Theorem 15.13. Let γ : Rkd → R be defined as

γ (Z) = Fα,β,ε(W,Z), (15.62)

where W ∈ Mfk is fixed. Assume wjh > 0 for all 1 ≤ j ≤ k and 1 ≤ h ≤ d. Then the set
of centers Z∗ optimizes the function γ if Z∗ satisfies the implicit equation

z∗jh =

n∑
i=1

xihP (xi ∈ Cj)

n∑
i=1

P(xi ∈ Cj)

, 1 ≤ j ≤ k, 1 ≤ h ≤ d, (15.63a)

or

z∗j =

n∑
i=1

xiP (xi ∈ Cj)

n∑
i=1

P(xi ∈ Cj)

=

n∑
i=1

xiuji

n∑
i=1

uji

, 1 ≤ j ≤ k, (15.63b)

where P(xi ∈ Cj) = uji is the fuzzy membership of xi associated with cluster Cj and is
defined as

P(xi ∈ Cj) = uji = e−βdji (W,Z∗)

k∑
l=1

e−βdli (W,Z∗)

, 1 ≤ i ≤ n, 1 ≤ j ≤ k, (15.64)

with dji(·, ·) defined as in equation (15.61). In addition, for β = 0, the set of centers Z∗
satisfying equation (15.63) is the global minimum for Fα,0,ε .

Proof. Since minimization of γ over Rkd is an unconstrained problem, the necessity of
equation (15.63) follows by requiring ∇Zγ to vanish. Equivalently, the directional deriva-
tive ∂γ (Z∗+tZ)

∂Z
vanishes at Z∗ in arbitrary directions Z ∈ Rkd , Z �= 0. Let t ∈ R and

define

h(t) = γ (Z∗ + tZ) = − 1

β

n∑
i=1

ln


 k∑

j=1

e−βdji (W,Z∗+tZ)

+ ε

k∑
j=1

d∑
h=1

wα
jh,

where dji(·, ·) is defined in equation (15.61). Rearranging the terms in dji in the above
equation leads to

h(t) = − 1

β

n∑
i=1

ln


 k∑

j=1

e−β(aji t
2+bji t+cji )


+ ε

k∑
j=1

d∑
h=1

wα
jh,



278 Chapter 15. Subspace Clustering

where aji, bji , and cji are defined as

aji =
d∑

h=1

wα
jhz

2
jh,

bji = −2
d∑

h=1

wα
jh(xih − z∗jh)zjh,

cji =
d∑

h=1

wα
jh(xih − z∗jh)

2.

Taking the derivative of h(t), we have

h′(t) = dh(t)

dt
=

n∑
i=1

k∑
j=1

(2aji t + bji)e
−β(aji t2+bji t+cji )

k∑
j=1

e−β(aji t2+bji t+cji )
, (15.65)

and

h′(0) =
n∑

i=1

k∑
j=1

bjie
−βcji

k∑
j=1

e−βcji
= −2

n∑
i=1

k∑
j=1

d∑
h=1

wα
jh(xih − z∗jh)zjhe−βcji

k∑
j=1

e−βcji

= −2
k∑

j=1

d∑
h=1

wα
jhzjh

n∑
i=1

(xih − z∗jh)e−βcji
k∑

l=1
e−βcli

= 0.

Since h′(0) = 0 holds for arbitrary directions Z = (zjh), noting that wjh > 0 for all j, h, it
is necessary for every j, h that

n∑
i=1

(xih − z∗jh)e−βcji
k∑

l=1
e−βcli

= 0,

from which equation (15.63) follows and the necessity is established.
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To prove that Z∗ is the global minimum of Fα,β,ε for β = 0, we examine the kd × kd

Hessian matrix Hγ (Z
∗) of γ evaluated at Z∗. In fact, from equation (15.65), we have

h′′(t) =
n∑

i=1

k∑
j=1

[
2aji − β(2aji t + bji)

2
]
e−β(aji t2+bji t+cji )

k∑
j=1

e−β(aji t2+bji t+cji )

(
k∑

j=1
e−β(aji t2+bji t+cji )

)2

−
n∑

i=1

−β
(

k∑
j=1

(2aji t + bji)e
−β(aji t2+bji t+cji )

)2

(
k∑

j=1
e−β(aji t2+bji t+cji )

)2 .

Thus, at t = 0, noting that β = 0 we have

h′′(0)
= (z11, z12, . . . , zkd)Hγ (Z

∗)(z11, z12, . . . , zkd)
T

=
n∑

i=1

k∑
j=1

[
2aji − βb2

ji

]
e−βcji

k∑
j=1

e−βcji + β

(
k∑

j=1
bjie

−βcji
)2

(
k∑

l=1
e−βcli

)2

=
n∑

i=1

k∑
j=1

2ajie−βcji
k∑

j=1
e−βcji + β


( k∑

j=1
bjie

−βcji
)2

−
k∑

j=1
b2
jie

−βcji
k∑

j=1
e−βcji




(
k∑

l=1
e−βcli

)2

= 2

k

n∑
i=1

k∑
j=1

aji

> 0.

Hence, the Hessian matrix is positive definite, so Z∗ is the global minimum of Fα,0,ε . This
proves the theorem.

From Theorem 15.13 we see that at β = 0 there is only one cluster, since uji = 1
k

for
all j, i and zj , j = 1, 2, . . . , k, are identical to the center of the data set. At higher β, the
objective function Fα,β,ε may have many local minima and the cluster will split into smaller
clusters. Once we obtain a new set of centers, we need to update the fuzzy dimension weight
for the clusters. The following theorem tells how to do this.

Theorem 15.14. Let η : Mfk → R be defined as

η(W) = Fα,β,ε(W,Z), (15.66)
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where Z ∈ Rkd is fixed. Then the fuzzy dimension weight W ∗ optimizes the function η if W ∗
satisfies the implicit function

w∗
jh =

1

d∑
l=1




n∑
i=1

uji (xih−zjh)2+ε
n∑

i=1
uji (xil−zjl )2+ε




1
α−1

, 1 ≤ j ≤ k, 1 ≤ h ≤ d, (15.67)

where the fuzzy membership uji is defined as

uji =
exp

(
−β

d∑
h=1

(w∗
jh)

α(xih − zjh)
2

)
k∑

l=1
exp

(
−β

d∑
h=1

(w∗
lh)

α(xih − zlh)2

) , 1 ≤ j ≤ k, 1 ≤ i ≤ n. (15.68)

Proof. Minimization of η over Mfk is a Kuhn-Tucker problem carrying the kd inequality
constraints (15.46a) and k equality constraints (15.46b) (Bezdek, 1980). This can be done
via the method of Lagrange multipliers. Let = = (λ1, λ2, . . . , λk) be the multipliers and
�(W,=) be the Lagrangian

�(W,=) = − 1

β

n∑
i=1

ln


 k∑

j=1

e−βdji (W,Z)


+ ε

k∑
j=1

d∑
h=1

wα
jh −

k∑
j=1

λj

(
d∑

h=1

wjh − 1

)
.

If (W ∗,=∗) is to minimize �, its gradient in both sets of variables must vanish, i.e.,

∂�(W ∗,=∗)
∂wjh

=
n∑

i=1

α(w∗
jh)

α−1(xih − zjh)
2e−βdji (W ∗,Z∗)

k∑
j=1

e−βdji (W ∗,Z∗)
+ εα(w∗

jh)
α−1 − λj

= α(w∗
jh)

α−1

(
n∑

i=1

uji(xih − zjh)
2 + ε

)
− λj

= 0, 1 ≤ j ≤ k, 1 ≤ h ≤ d, (15.69a)

where uji is defined in Equation (15.68), and

∂�(W ∗,=∗)
∂λj

=
d∑

h=1

w∗
jh − 1 = 0, 1 ≤ j ≤ k. (15.69b)

Equation (15.67) following immediately by solving the k(d + 1) equations in (15.69a) and
(15.69b). This proves the theorem.

From equation (15.68), we see that uji > 0 for all 1 ≤ j ≤ k and 1 ≤ i ≤ n.
If the data set D is such that for each dimension h there exist two distinct values, then∑n

i=1 uli(xih−zlh)
2 > 0 for all 1 ≤ l ≤ k and 1 ≤ h ≤ d. In this case, we set the parameter
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ε = 0, since the purpose of ε is to avoid divide-by-zero errors when implementing the
MSSC algorithm. In all analysis below, we assume ε = 0.

The FSC algorithm presented in Section 15.11 is a limit case of the MSSC algorithm
presented above when β → ∞ (see Figure 15.1). In fact, letting β approach infinity, we
have

lim
β→∞Fα,β,ε(W,Z)

= lim
β→∞

1

−1

n∑
i=1

k∑
j=1

−dji(W,Z)e−βdji (W,Z)

k∑
j=1

e−βdji (W,Z)

+ ε

k∑
j=1

d∑
h=1

wα
jh

=
n∑

i=1

min
{
dji(W,Z)|j = 1, 2, . . . , k

}+ ε

k∑
j=1

d∑
h=1

wα
jh

=
n∑

i=1

min

{
d∑

h=1

wα
jh(xih − zjh)

2|j = 1, 2, . . . , k

}
+ ε

k∑
j=1

d∑
h=1

wα
jh,

which is exactly the objective function of the FSC algorithm defined in equation (15.52).
Clearly equation (15.63b) is an implicit equation in zj through equation (15.64). It is

natural to propose the following iterative algorithm.

Definition 15.15 (The MSSC algorithm). Let D = {x1, x2, . . . , xn} be a finite data set.
Let Gβ

α(x,w) be the Gaussian kernel defined as

Gβ
α(x,w) = e

−β
d∑

h=1
wα

hx
2
h

. (15.70)

Let v : D → (0,∞) be a weight function defined as

v(x) = 1
k∑

j=1
G

β
α(x − zj ,wj )

. (15.71)

The sample mean with the kernel Gβ
α at zj ∈ D is defined as

m(zj ) =
∑
x∈D

Gβ
α(x − zj ,wj )v(x)x∑

x∈D
G

β
α(x − zj ,wj )v(x)

. (15.72)

Let Z = {z1, z2, . . . , zk} ⊂ D be a finite set of cluster centers. The evolution of Z in the
form of iterations

Z(r) =
{

z(r)j = m(z(r−1)
j )|j = 1, 2, . . . , k

}
, r = 1, 2, . . . , (15.73)
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is called the MSSC algorithm, where z(0)j = zj , j = 1, 2, . . . , k. The weights v(x) and
the fuzzy memberships U = (uji) are reevaluated after each iteration. The sequence
z,m(z),m2(z), . . . is called a trajectory of z.

From Definition 9.5, we know that the above fixed-point iteration is the mean shift
process with v(x) being the weight of the point x. If we choose Z = D, then this algorithm
is also called a blurring process (Cheng, 1995).

Algorithm 15.13. The pseudocode of the MSSC algorithm.

Require: D - the data set, k - the number of starting points, α - the fuzzifier, and β - the
Lagrange multiplier;

1: Initialize Z = {z1, z2, . . . , zk} by choosing k points from D randomly;
2: Initialize W = {w1,w2, . . . ,wk} with wjh = 1

d
(1 ≤ j ≤ k, 1 ≤ h ≤ d);

3: Calculate fuzzy memberships U according to equation (15.64) or (15.68);
4: Znew ⇐ m(Z) = {m(z1),m(z2), . . . , m(zk)} according to equation (15.63);
5: Update W according to equation (15.67);
6: while ‖Znew − Z‖ > 0 do
7: Z ⇐ Znew;
8: Znew ⇐ m(Z) according to equation (15.63);
9: Update W according to equation (15.67);

10: Calculate fuzzy memberships U according to Equation (15.64) or (15.68);
11: end while
12: Output W , Z, and U .

Let Z = {z1, z2, . . . , zk} be an initial set of centers. Then the procedure defined in
equation (15.73) determines a set of equilibrium points Z∗ = {z∗1, z∗2, . . . , z∗k} for fixed β,
α, and ε, where z∗j = limr→∞mr(zj ). In principle, changing k will modify the resulting
set of equilibrium points. However, there exists some kc such that for all k > kc, one gets
only kc distinct limit points for the simple reason that some points converge to the same
equilibrium point.

The pseudocode of the MSSC algorithm is described in Algorithm 15.13. Once
we obtain the fuzzy dimension weight matrix W , the equilibrium set Z, and the fuzzy
memberships U , we can use the procedure in Algorithm 15.14 to get the final subspace
clusters.

Algorithm 15.14. The postprocessing procedure to get the final subspace clusters.

Require: η, W , Z, and U ;
1: Let Q = {1, 2, . . . , k};
2: for j = 2 to k do
3: for i = 1 to j − 1 do
4: if ‖zj − zi‖∞ < η and i ∈ Q then
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5: Q = Q− {j} {zj is identical to zi};
6: Break;
7: end if
8: end for
9: end for

10: Let Q = {j1, j2, . . . , jkc} {kc is the number of distinct equilibrium points};
11: for i = 1 to n do
12: if l0 = arg max

1≤l≤kc
ujl i then

13: The point xi is assigned to the l0th cluster Cl0 ;
14: end if
15: end for
16: Get set of cluster dimensions Ql for Cl by applying k-means to wjl ;
17: Output Cl and Ql for l = 1, 2, . . . , kc.

If β = 0, each data point is uniformly associated with all clusters, and thus all the
centers z1, z2, . . . , zk are identical (Gan, 2006). Let kc be the number of distinct centers in
Z = {z1, z2, . . . , zk}. Then, at β = 0 we have kc = 1, but at some positive β we shall have
kc > 1. In other words, the single cluster will split into smaller clusters. The new clusters
will split at higher β. At β = ∞, kc = k, i.e., we shall get k clusters, where k (< n) is the
number of initial centers.

Clearly, when k = 1 the objective function is

Fα,β,0(W,Z) = − 1

β

n∑
i=1

ln
(
e−βd1i (W,Z)

) = n∑
i=1

d1i (W,Z)

=
n∑

i=1

d∑
h=1

wα
1h(xih − z1h)

2,

which has a single minimum or the global minimum; when k ≥ 2 and β = 0 the objective
function is

Fα,0,0(W,Z) = − 1

β

n∑
i=1

ln(k) = −∞.

Thus, at β = 0 the objective function has a single minimum or the global minimum. At
higher β, the objective function may have many local minima.

Since the objective function has only one minimum when k = 1, to derive the critical
value βα at which the first phase transition occurs, we assume that k > 1 in the following
discussion. We know that at β = βα there is one cluster centered at the mean of the data
set. Without loss of generality, we move the data set such that the mean of the new data set
is located at the origin. Then the first phase transition occurs when the objective function
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has nonzero minimum, i.e., nonzero solution to the equations

∂Fα,β,0(W,Z)

∂zjh
= − 1

β

n∑
i=1

2βwα
jh(xih − zjh)e

−βdji (W,Z)

k∑
l=1

e−βdli (W,Z)

= −2wα
jh

n∑
i=1

(xih − zjh)e
−βdji (W,Z)

k∑
l=1

e−βdli (W,Z)

= 0, 1 ≤ j ≤ k, 1 ≤ h ≤ d,

and
n∑

i=1

(xi − zj )e−βdji (W,Z)

k∑
l=1

e−βdli (W,Z)

= 0, 1 ≤ j ≤ k, (15.74)

where 0 is the zero vector and dji(W,Z) is defined as

dji(W,Z) =
d∑

h=1

wα
jh(xih − zjh)

2, 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Note that in a small neighborhood of the origin, we have

wjh = wh ≈ 1

d∑
l=1




n∑
i=1

x2
ih

n∑
i=1

x2
il




1
α−1

, 1 ≤ j ≤ k, 1 ≤ h ≤ d,

and
zjh = zh ≈ 0, 1 ≤ j ≤ k, 1 ≤ h ≤ d.

Now expanding equation (15.74) on a small neighborhood of the origin by Taylor’s series
in zj = (zj1, zj2, . . . , zjd)

T and ignoring higher-order terms of zjh, we have

0 =
n∑

i=1

(xi − zj )e−βdji (W,Z)

k∑
l=1

e−βdli (W,Z)

≈
n∑

i=1

(xi − zj ) exp

(
−β

d∑
t=1

wα
t (xit − zjt )

2

)

k exp

(
−β

d∑
t=1

wα
t x

2
it

)

≈ 1

k

n∑
i=1

(xi − zj ) exp

(
2β

d∑
t=1

wα
t xit zjt − β

d∑
t=1

wα
t z

2
j t

)

≈ 1

k

n∑
i=1

(xi − zj )

(
1+ 2β

d∑
t=1

wα
t xit zjt

)
. (15.75)
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Since
∑n

i=1 xi = 0, rearranging equation (15.75) and ignoring higher-order terms of zjhs
give

n∑
i=1

(
xi · 2β

d∑
t=1

wα
t xit zjt − zj

)
= 0,

or

n∑
i=1


2β




wα
1 x

2
i1 wα

2 xi1xi2 · · · wα
d xi1xid

wα
1 xi2xi1 wα

2 x
2
i2 · · · wα

d xi2xid
...

...
. . .

...

wα
1 xidxi1 wα

2 xidxi2 · · · wα
d x

2
id






zj1

zj2
...

zjd


−




zj1

zj2
...

zjd




 = 0.

(15.76)
Let vj = (x1j , x2j , . . . , xnj ) for j = 1, 2, . . . , k, and let the variance and covariance

be defined as

var(vj ) = 1

n

n∑
i=1

(xij − µj)
2 = 1

n

n∑
i=1

x2
ij ,

Cor(vj , vl) = 1

n

n∑
i=1

(xij − µj)(xil − µl),

where

µj = 1

n

n∑
i=1

xij , 1 ≤ j ≤ k.

From equation (15.76), we have

(I − 2βCα)zj = 0, (15.77)

where I is the d × d identity matrix and Cα is the d × d matrix defined as

Cα =




wα
1 var(v1) wα

2 Cor(v1, v2) · · · wα
d Cor(v1, vd)

wα
1 Cor(v2, v1) wα

2 var(v2) · · · wα
d Cor(v2, vd)

...
...

. . .
...

wα
1 Cor(vd , v1) wα

2 Cor(vd , v2) · · · wα
d var(vd)


 .

Thus the critical value for β is

βα = 1

2λmax

, (15.78)

where λmax is the largest eigenvalue of Cα . Moreover, the center of the new cluster is the
eigenvector of Cα .

15.13 Summary
The subspace clustering introduced in this chapter is an extension of traditional clustering. In
general, subspace clustering algorithms can be classified into two major categories (Parsons
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et al., 2004b): top-down algorithms and bottom-up algorithms. A top-down algorithm finds
an initial clustering in the full set of the dimensions and evaluates the subspaces of each
cluster, whereas a bottom-up algorithm finds dense regions in low-dimensional spaces and
then combines them to form clusters. CLIQUE, ENCLUS, MAFIA, CLTree, DOC, and CBF
(Cell-Based Clustering method) (Chang and Jin, 2002) are examples of bottom-up subspace
clustering algorithms, PART, PROCLUS, ORCLUS, FINDIT, and δ-cluster (Yang et al.,
2002a) are examples of top-down subspace clustering algorithms. A comparison of these
subspace clustering algorithms can be found in Parsons et al. (2004a). Other discussions
related to subspace clustering can be found in Aggarwal and Yu (2002), Amir et al. (2003),
Agarwal and Mustafa (2004), Domeniconi et al. (2004), Har-Peled and Varadarajan (2002),
Ke and Kanade (2004), Krishnapuram and Freg (1991), Kroeger et al. (2004), Sarafis et al.
(2003), Wang et al. (2004), and Narahashi and Suzuki (2002).
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Chapter 16

Miscellaneous Algorithms

This chapter introduces some miscellaneous clustering algorithms, including algorithms for
clustering time series data, data streams, and transaction data.

16.1 Time Series Clustering Algorithms
As an independent exploratory technique or a subroutine in more complex data mining algo-
rithms such as indexing (Hetland, 2004; Keogh et al., 2001; Li et al., 1998), rule discovery
(Das et al., 1998; Tsumoto, 1999; Caraça-Valente and López-Chavarrías, 2000; Chiu et al.,
2003), and classification (Cotofrei and Stoffel, 2002), time series clustering has attracted
much attention. In general, the time series data to be clustered can be classified into two
categories: many individual time series and a single time series. This leads to two categories
of clusterings: whole clustering and subsequence clustering (Keogh et al., 2003).

The notion of whole clustering is similar to the conventional clustering discussed
in previous chapters. Precisely, given a set of individual time series, the objective is to
group these time series into clusters such that time series from the same cluster are more
similar to each other than time series from different clusters. Subsequence clustering means
clustering a single time series. Given a single time series, subsequences are extracted with a
sliding window and then subsequence clustering is performed on the extracted subsequences.
Subsequence clustering is commonly used as a subroutine in algorithms such as indexing,
rule discovery, prediction, anomaly detection, and classification (Keogh et al., 2003).

Keogh et al. (2003) and Lin et al. (2003) showed that subsequence clustering of time
series is meaningless, where “meaningless” means that the clustering output is independent
of the input. This invalidates the contributions of dozens of previously published papers
that use subsequence clustering. The authors also gave several conditions that must be
satisfied for subsequence clustering to be meaningful. Assume that a time series contains
k approximately or exactly repeated patterns of length w with k and w known in advance.
Then necessary conditions for a clustering algorithm to discover the k patterns are as follows:

287
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1. The weighted mean of patterns must sum to a horizontal line.

2. The k patterns must have approximately equal numbers of trivial matches (Lin et al.,
2003).

Since the chances of both conditions being met is essentially zero, subsequence clustering
is meaningless.

In terms of models, time series clustering algorithms can be categorized as model
based or model free (Bagnall and Janacek, 2004). Model-based algorithms, also called gen-
erative algorithms, assume some form of the underlying generating process, estimate the
model from each data point, and then cluster based on similarity measures between model
parameters. Examples of the most commonly assumed models are polynomial mixture mod-
els (Bagnall et al., 2003; Bar-Joseph et al., 2002), autoregressive moving average (ARMA)
model (Kalpakis et al., 2001; Bagnall and Janacek, 2004; Xiong and Yeung, 2002), Markov
chain models (MCs) (Ramoni et al., 2002), and hidden Markov chain models (HMMs)
(Oates et al., 2001; Zhong and Ghosh, 2003a).

Model-free clustering algorithms use a specific distance measure on the transformed
data or the original data. Some measures for time series are presented in Section 6.6. In
what follows, we focus on whole clustering of time series. For subsequence clustering,
readers are referred to (Keogh et al., 2003) and (Lin et al., 2003) and the references therein.

We now introduce an algorithm based on the ARMA model, which is a commonly
assumed model for time series. An ARMA(p, q) model has the form (Bagnall and Janacek,
2004; Maharaj, 2000)

X(t) =
p∑

i=1

φi ·X(t − i)+ ε(t)+
q∑

i=1

θi · ε(t − i),

where ε(t) are N(0, σ ), i.e., normally distributed with variance σ 2 and mean 0, and
σ, p, q, φi , and θi are constants in the model. Autocorrelations can be employed to es-
timate the parameters of an ARMA model (Bagnall and Janacek, 2004).

Bagnall and Janacek (2004) proposed a clustering algorithm for data derived from
ARMA models using the k-means and k-medoids algorithms with Euclidean distance be-
tween estimated model parameters. In this algorithm, real-valued time series are first trans-
formed into binary sequences through a process called clipping or hard limiting. Much of
the underlying structure that characterizes the original time series is retained in the clipped
series. For example, given a real-valued time series Y and letting µ be the population mean
of series Y , then the corresponding binary series C is obtained as

C(t) =
{

1 if Y (t) > µ,
0 otherwise.

In addition, the algorithm proposed by Bagnall and Janacek (2004) assumes that the
series in each true underlying cluster are generated by an ARMA model. A model for cluster
i without outliers, for example, has the form

Xi(t) =
p∑

j=1

φj ·Xi(t − j)+ εi(t)+
q∑

j=1

θj · εi(t − j),
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where εi(t) are N(0, σ ), i.e., normally distributed with variance σ 2 and mean 0, and
σ, p, q, φj , and θj are constants for the model. To model the effect of outliers, a further
term is added to Xi(t) as

Yi(t) = Xi(t)+ s · a · b,
where s is a constant and a ∈ {0, 1} and b ∈ {−1, 1} are observations of independent
variables A and B with density functions f (a) = pa(1−p)1−a and f (b) = 1

2 , respectively.
p is the probability that a random shock effect occurs.

Since any invertible ARMA model can be represented as an infinite autoregressive
(AR) model,

ε(t) =
∞∑
i=1

πiX(t − i).

The ARMA model parameters are estimated via estimating the AR model for each series
by using a standard three-stage procedure (Bagnall and Janacek, 2004). With the fitted
parameters, the k-means and k-medoids algorithms are used to cluster the parameters using
the Euclidean distance.

Clustering ARMA or autoregressive integrated moving average (ARIMA) time series
has also been discussed by Maharaj (2000), Xiong and Yeung (2002), and Kalpakis et al.
(2001). Maharaj (2000) proposed a test of a hypothesis to compare two stationary time
series. The test of the hypothesis is performed for every pair of time series in a data set to
determine the p-values associated with the data set, and then an agglomerative algorithm is
used to cluster the p-values hierarchically.

Xiong and Yeung (2002) proposed a clustering algorithm using mixtures of ARMA
models. An expectation-maximization (EM) algorithm for learning the mixing coefficients
and the parameters of the component models is derived.

16.2 Streaming Algorithms
Data streams (Guha et al., 2003; Barbará, 2002; Gaber et al., 2005; Lu and Huang, 2005),
such as customer click streams, multimedia data, and financial transactions, refer to ordered
sequences of points that must be accessed in order and that can be read only once or a small
number of times. Each reading of such a sequence is called a linear scan or a pass. Stream
models (Henzinger et al., 1998) were motivated to deal with massive data sets that are far
too large to fit in main memory and are typically stored in secondary devices. For such
massive data sets, random accesses are extremely expensive and thus impractical, so linear
scans are the only cost-effective access method.

A major feature of a data stream clustering algorithm is that it only stores a summary
of the data scanned in the past, leaving enough memory space for the processing of future
data. This is necessary because the size of massive data stream sets far exceeds the amount
of main memory available to an algorithm and thus it is not possible for the algorithm to
remember too much of the scanned data. In other words, a data stream algorithm makes
decisions before all the data are available. Therefore, besides the running time and the
memory usage, the number of linear scans is also a criterion to measure the performance of
a data stream algorithm.
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The data stream model has attracted many researchers’ attention recently for its appli-
cability to various types of data, such as click streams, financial transactions, and telephone
records. In general, stream algorithms can be classified into the following six categories
(Guha et al., 2003):

(a) frequency estimation approaches (Haas et al., 1995; Charikar et al., 2000);

(b) norm estimation approaches (Alon et al., 1996; Feigenbaum et al., 1999; Indyk, 2000);

(c) order statistics approaches (Gilbert et al., 2002b; Greenwald and Khanna, 2001;
Manku et al., 1998, 1999; Munro and Paterson, 1980);

(d) synopsis structure approaches (Gibbons and Matias, 1999);

(e) time-indexed approaches (Babcock et al., 2002; Datar et al., 2002; Ganti et al., 2000,
2001; Guha and Koudas, 2002);

(f) signal reconstruction approaches (Achlioptas and McSherry, 2001; Drineas et al.,
1999; Frieze et al., 1998, 2004; Gilbert et al., 2002a; Guha et al., 2001; Thaper et al.,
2002).

16.2.1 LSEARCH

The LSEARCH algorithm is proposed by Guha et al. (2003, 2001), where computation
takes place within a bounded space and data can only be accessed via linear scans. The
LSEARCH algorithm solves the k-median problem (see Definition 16.1) in the stream
context and guarantees theoretical performance. In fact, LSEARCH requires only O(nε)

space and its running time is Õ(nk), where ε < 1 is a constant and Õ(x) = O(x log2 x).

Definition 16.1 (The k-median problem). Given an instance (D, k) of k-median, where k
is an integer and D is a data set containing n points, the k-median cost or cost of a set of
medians z1, z2, . . . , zk is

f (D, z1, z2, . . . , zk) =
∑
x∈D

min
1≤i≤k

d(x, zi ),

where d(·, ·) is a distance function. cost(D,Q) is the smallest possible cost if the medians
are required to belong in the set Q. In the discrete case, the optimization problem is to find
cost(D,D); in the Euclidean case, the optimization problem is to find cost(D,Rd), where
d is the dimensionality of the Euclidean space.

LSEARCH starts with an initial solution and then refines it by making local im-
provements. To speed up local search, LSEARCH reflexes the number of clusters in the
intermediate steps and achieves exactly k clusters in the final step (see the facility location
problem in Definition 16.2). In the intermediate steps, LSEARCH uses at least k but not
too many medians since the best solution with k− 1 medians can be much more expensive
than the best solution with k medians, and too many medians cost space. The algorithm to
obtain a good initial solution is described in Algorithm 16.1.

Definition 16.2 (The facility location problem). Given a set D of n data points in a
metric space, a distance function d : D×D → R+, and a parameter λ, then for any choice
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of Z = {z1, z2, . . . , zk} ⊂ D of k cluster centers, we define a partition of D into k clusters
C1, C2, . . . , Ck such that Ci (1 ≤ i ≤ k) contains all data points in D that are closer to
zi than to any other center. The optimization problem is to select a value of k and a set of
centers Z such that the facility clustering cost function

FC(D,Z) = z|Z| +
k∑

i=1

∑
x∈Ci

d(x, zi ) (16.1)

is minimized, where z denotes the facility cost.

The facility location problem given in Definition 16.2 is the Lagrangian relaxation
(Borodin et al., 1999; Feder and Greene, 1988; Guha et al., 2000a; Indyk, 1999; Mettu and
Plaxton, 2004; Thorup, 2001) of the k-median problem. In the facility location problem, the
number of centers is unrestricted, but each center included in the solution has an additional
cost (see the facility cost defined in equation (16.1)).

Algorithm 16.1. The InitialSolution algorithm.

Require: D - the data set, z - the facility cost;
1: Reorder the data points in D randomly;
2: Create a cluster center at the first point;
3: for every point after the first do
4: Let d be the distance from the current point to the nearest existing cluster center;
5: Create a new cluster center at the current point with probability d

z
; otherwise, add

the current point to the best current cluster;
6: end for

The pseudocode of the LSEARCH algorithm is described in Algorithm 16.2. The
function FL(D, d(·, ·), ε, (F, g)) called by the LSEARCH algorithm is described in Algo-
rithm 16.2. The LSEARCH algorithm constructs a hierarchical clustering but operates at
the same time on all layers of the dendrogram tree and maintains a front.

Algorithm 16.2. The LSEARCH algorithm.

Require: D - the data set, d(·, ·) - the distance function, k - the number of clusters, ε, ε′, ε′′
- parameters;

1: zmin ⇐ 0;
2: zmax ⇐ ∑

x∈D
d(x, x0), where x0 is an arbitrary point in D;

3: z⇐ zmin+zmax

2 ;
4: (I, a) ⇐ InitialSolution(D, z){I ⊆ D is a set of facilities and a : D → I is an

assignment function};

5: PickT
(

log k
p

)
points randomly as feasible medians {f (x) isT(h(x)) iff (x) isO(h(x))

and h(x) is O(f (x))};
6: while the number of medians �= k and zmin < (1− ε′′)zmax do
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7: Let (F, g) be the current solution;
8: (F ′, g′)⇐ FL(D, d(·, ·), ε, (F, g));
9: if k ≤ |F ′| ≤ 2k then

10: Break;
11: else if |F ′| > 2k then
12: zmin ⇐ z;
13: z⇐ zmin+zmax

2 ;
14: else if |F ′| < k then
15: zmax ⇐ z;
16: z⇐ zmin+zmax

2 ;
17: end if
18: end while
19: Output solution (F ′, g′).

For the FL(D, d(·, ·), z, ε, (I, a)) function, an algorithm proposed by Charikar and
Guha (1999) is modified to solve the facility location problem to get a new solution. For
every x ∈ D, the gain of x is defined to be the cost saved or expended if a facility at x
were to be opened and all advantageous reassignments and facility closings were performed
subject to the following constraints:

(a) Points cannot be reassigned except to x.

(b) A facility can be closed only if its members are first reassigned to x.

Algorithm 16.3. The FL(D, d(·, ·), z, ε, (I, a)) function.

Require: D - the data set, d(·, ·) - the distance function, z - the facility cost, ε - the parameter,
(I, a) - a solution;

1: Begin with (I, a) as the current solution;
2: Let C be the cost of the current solution;
3: Obtain a new solution (I ′, a′) by performing all advantageous closures and reassign-

ments;
4: Let C ′ be the cost of the new solution;
5: if C ′ ≤ (1− ε)C then
6: Return to step 2.
7: end if

Like the CURE algorithm (see Subsection 7.4.5), the LSEARCH algorithm applies
a partitioning approach and clusters the data set bottom up. The difference between
LSEARCH and CURE is that LSEARCH is designed to produce provably good cluster-
ing while CURE is designed to produce robust and arbitrarily shaped clustering.

The performance of LSEARCH is compared to that of k-means and BIRCH (see Sub-
section 7.4.4) in terms of the sum of squared distances (SSD) measure. It seems that k-means
is more sensitive than LSEARCH to dimensionality (Guha et al., 2003), but LSEARCH runs
approximately three times as long as k-means. Babcock et al. (2003) used an exponential
histogram (EH) data structure to improve the LSEARCH algorithm. Charikar et al. (2003)
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proposed another k-median algorithm to overcome the problem of increasing approximation
factors in LSEARCH with the increase in the number of levels.

16.2.2 Other Streaming Algorithms

The STREAM algorithm was proposed by O’Callaghan et al. (2002) to produce high-quality
data stream clustering. The STREAM algorithm first determines the size of the sample and
then applies the LSEARCH algorithm if the sample size is larger than a prespecified one.
This process is repeated for each data chunk and the LSEARCH algorithm is applied to the
cluster centers generated in the previous iterations. The STREAM algorithm is two or three
times better than BIRCH in terms of the SSD measure (Guha et al., 2003) but runs two or
three times slower than BIRCH.

The CluStream algorithm was proposed by Aggarwal et al. (2003) as a framework
to cluster data streams. The CluStream algorithm divides the clustering process into two
components: the online component and the offline component. The online component
stores the summarized statistics of the data streams while the offline component clusters the
summarized data according to user preferences such as the number of clusters.

The HPStream algorithm was proposed by Aggarwal et al. (2004) to cluster high-
dimensional data streams. The HPStream algorithm introduces the concept of projected
clustering or subspace clustering to data streams and achieves consistently high clustering
quality for such projected clustering. The fading cluster structure (a data-structure designed
to capture key statistical characteristics of the clusters generated during the course of a data
stream) and the projection-based clustering methodology (a technique determines clusters
for a specific subset of dimensions) are used in the HPStream algorithm.

Ordonez (2003) proposed a variant of the k-means algorithm, the incremental k-means
algorithm, to cluster binary data streams. The proposed incremental k-means algorithm is
faster than the scalable k-means algorithm (Bradley et al., 1998) and produces clusterings
of comparable quality. The proposed incremental k-means algorithm also outperforms
the online k-means algorithm (Zhang et al., 1996). The algorithm uses a mean-based
initialization and incremental learning to obtain clusterings of high quality and achieves
speedup through a simplified set of sufficient statistics and operations with sparse matrices.

16.3 Transaction Data Clustering Algorithms
Transaction data are also referred to as market basket data, which have been studied exten-
sively in mining association rules (Hipp et al., 2000) for discovering the set of items that
are frequently purchased (Yun et al., 2002). In this section, we introduce three algorithms,
LargeItem, CLOPE, and OAK, to deal with transaction data from the perspective of cluster
analysis. Other discussions related to transaction data clustering can be found in (Xu et al.,
2003).

Transaction clustering refers to partitioning a set of transactions (see Section 2.3) into
clusters such that similar transactions are in the same cluster and dissimilar transactions are in
different clusters. Transaction clustering plays an important role in the recent developments
of information retrieval (IR), Web technologies (Broder et al., 1997), and data mining.
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Also, transaction clustering has many potential applications in e-commerce intelligence,
retail industry, and Web applications.

Some algorithms targeted specifically to cluster transaction data have been proposed
and studied, such as LargeItem (Wang et al., 1999a), OAK (Xiao and Dunham, 2001), and
CLOPE (Yang et al., 2002b).

16.3.1 LargeItem

LargeItem (Wang et al., 1999a) is an optimization algorithm designed for clustering trans-
action data based on a criterion function. The LargeItem algorithm consists of two phases:
the allocation phase and the refinement phase.

Given a user-specified minimum support θ (0 < θ ≤ 1), an item i is large in a cluster
C if its support in C is at least θ |C|, i.e., |{t : i ∈ t, t ∈ C}| ≥ θ |C|. Otherwise, item i is
small in C. The objective function or cost function is defined in terms of the intracluster
cost and the intercluster cost.

Given a clustering C = {C1, C2, . . . , Ck}, the intracluster cost is measured by the total
number of small items, i.e.,

Intra(C) =
∣∣∣∣∣

k⋃
i=1

Smalli

∣∣∣∣∣ ,
where Smalli is the set of small items in Ci .

The intercluster cost is defined in terms of the overlapping of large items of each
cluster, i.e.,

Inter(C) =
k∑

i=1

|Largei | −
∣∣∣∣∣

k⋃
i=1

Largei

∣∣∣∣∣ ,
where Largei is the set of large items in Ci .

Then the overall cost function is defined as

Cost (C) = w · Intra(C)+ Inter(C), (16.2)

wherew > 0 is a weight that balances between the intracluster similarity and the intercluster
dissimilarity.

The best solution is the one that minimizes the criterion function (16.2). Since to find
the exact best solution is not feasible, the goal of this algorithm is to find an approximate
solution that is sufficient for practical applications. Unlike the k-means algorithm, the
LargeItem algorithm allows k to vary, i.e., k is not required to be predetermined.

To avoid scanning all transactions in a cluster during clustering, some cluster features,
such as |Largei |, |⋃k

i=1 Smalli |, and |⋃k
i=1 Largei |, are maintained after each allocation

or move of a transaction. There are two cases of movement: moving a transaction to a
cluster and moving a transaction out of a cluster. In either of the two cases, small items may
become large and large items may become small.

The LargeItem algorithm takes advantage of some standard indexing techniques such
as hash tables and B-tree in the maintenance and updating of the cluster features for each
cluster.
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16.3.2 CLOPE

CLOPE (Clustering with sLOPE) (Yang et al., 2002b) is an algorithm designed for clustering
categorical data, especially transaction data. Like most partitional clustering approaches,
CLOPE has a criterion function that will guide the algorithm to approximate the best partition
by iteratively scanning the database.

For categorical data, the criterion function can be defined locally or globally. Locally,
the criterion function is defined in terms of pairwise similarity between objects, such as
Jaccard’s coefficient. Globally, no pairwise similarity measures between individual objects
are required. The global approach is very effective for clustering large categorical data sets.
CLOPE uses a global criterion function.

Let D = {t1, t2, . . . , tn} be a transaction data set with n transactions, and let m be the
number of items and k be the number of clusters. Given a cluster C, let D(C) be the set of
distinct items occurring in C, and let O(i, C) be the number of occurrences of item i in C,
i.e.,

D(C) =
∣∣∣∣∣
⋃
t∈C

t

∣∣∣∣∣ ,
O(i, C) = |{t : i ∈ t, t ∈ C}|.

The size S(C) and width W(C) of a cluster C are defined as

S(C) =
∑

i∈D(C)

O(i, C) =
∑
t∈C

|t |,

W(C) = |D(C)|.
Then the height of C is defined as H(C) = S(C)

W(C)
, and the gradient of C is defined as

G(C) = H(C)

W(C)
= S(C)

W(C)2 .
Let C = {C1, C2, . . . , Ck} be a partition of D. Then the criterion function is defined

as

F(C) =

k∑
i=1

G(Ci)|Ci |
k∑

i=1
|Ci |

=

k∑
i=1

S(Ci)|Ci |
W(Ci)2

|D| . (16.3)

The criterion function (16.3) can also be generalized to

Fr(C) =

k∑
i=1

S(Ci)|Ci |
W(Ci)r

|D| , (16.4)

where r is a positive real number called the repulsion. Adding a transaction t to a cluster
C, the increase in the criterion function is proportional to

@(C, t, r) = (S(C)+ |t |)(|C| + 1)

W(C ∪ {t})r − S(C)|C|
W(C)r

, (16.5)
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which can be computed straightforwardly using cluster features, i.e., the number of trans-
actions |C|, the number of distinct items W(C), O(i, C) for each item i, and the size S(C).
It can be shown that Fr is maximized by putting t to Ci if @(Ci, t, r) is the maximum.

Algorithm 16.4. The CLOPE algorithm.

Require: A data set D, number of clusters k;
1: while not end of database file do
2: Read the next transaction t ;
3: Put t to an existing cluster or a new cluster Ci that maximizes the criterion function;
4: Write 〈t, i〉 back to the database;
5: end while
6: repeat
7: Rewind the database file;
8: moved ⇐ f alse;
9: while Not end of the database file do

10: Read 〈t, i〉;
11: Move t to an existing cluster or a new cluster Cj that maximizes the criterion

function;
12: if i �= j then
13: Write 〈t, j〉 and set moved ⇐ true;
14: end if
15: end while
16: until No further movements.

The pseudocode of the algorithm CLOPE is described in Algorithm 16.4. The time
complexity for one iteration is O(nkl), where n is the number of transactions, k is the
number of clusters, and l is the average length of a transaction.

16.3.3 OAK

OAK (OnlineAdaptive Klustering) (Xiao and Dunham, 2001) is another algorithm designed
for clustering transaction data. It is also an interactive, incremental, and scalable clustering
algorithm.

OAK combines hierarchical and partitional clustering. The dendrogram created by
OAK may not have one leaf node per point. It uses a representative for an individual
point or a set of similar points. The dendrogram is maintained upon the representatives.
For different clusters, the number of representatives may be different. The dendrogram is
updated by using other incremental agglomerative hierarchical algorithms, such as SLINK
(Sibson, 1973) and CLINK (Defays, 1977).

OAK always condenses the most similar points or subclusters such that the dendro-
gram can fit into main memory regardless of the memory size. The dendrogram is repre-
sented by the pointer representation (Sibson, 1973), which is defined by two vectors. To de-
scribe the algorithm, let us define some data structures used in OAK. LetD = {t1, t2, . . . , tn}
be a set of n transactions, k the number of clusters, and M the number of representatives:
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rep[1, . . . ,M] vectors of representatives;
λ[1, . . . ,M] dissimilarity at each level of the dendrogram;
π [1, . . . ,M] the pair to be merged at each level of the dendrogram;
dmin threshold for condensation;
prof ile[1, . . . ,M] cluster profile for each cluster.

Algorithm 16.5. A sketch of the OAK algorithm.

Require: D-A transaction data set; k-Number of clusters; M-Number of representatives
(may be determined by memory size);

1: numRep ⇐ 1, rep[1] ⇐ t1, π [1] ⇐ 1, λ[1] ⇐ ∞;
2: for i = 2 to n do
3: Read ti ;
4: if i ≤ M then
5: Update λ and π incrementally by SLINK;
6: numRep ++, rep[numRep] ⇐ ti ;
7: dmin ⇐ min{λ[j ] : j = 1, 2, . . . , numRep};
8: Update cluster profile;
9: else

10: Condense dendrogram;
11: end if
12: if Interrupted by user then
13: Update k from user;
14: end if
15: end for

The OAK algorithm is described in Algorithm 16.5. The total time complexity of
OAK is O(Mn), where M is the number of representatives and n is the number of objects
in the data set. OAK provides two approaches for interactive clustering: ad hoc interaction
and browsing interaction. In ad hoc interaction, users can indicate a new independent value
for k, while in browsing interaction, users can change k to k + 1 or k − 1.

16.4 Summary
Time series clustering has become an important topic; various similarity measures, clustering
and classification algorithms, and data-mining tools have been developed. In this chapter,
we focused on clustering algorithms for time series from the perspective of databases. Due
to a huge volume of literature in this field, we were forced to present a very brief summary of
some commonly used methods. As an example of clustering time series, we also presented
a clustering algorithm designed to cluster time series generated by a certain ARMA model.
There are many published works related to time series clustering; interested readers may
find the references at the end of this book helpful.

Streaming clustering algorithms, which are designed to cluster massive data sets
such as network data, temperatures, and satellite imagery data, were also introduced in
this chapter. Streaming clustering algorithms are required to process new data and identify
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changes in evolving clustering models in a fast and incremental manner. More requirements
for streaming algorithms are discussed by Barbará (2002).

Transaction data are also referred to as market basket data, which have been studied
extensively in mining association rules (Hipp et al., 2000) for discovering the set of items that
are frequently purchased (Yun et al., 2002). In this chapter, we introduced three algorithms,
LargeItem, CLOPE, and OAK, to deal with transaction data from the perspective of cluster
analysis. Other discussions related to transaction data clustering can be found in Xu et al.
(2003).
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Chapter 17

Evaluation of Clustering
Algorithms

In the literature of data clustering, a lot of algorithms have been proposed for different
applications and different sizes of data. But clustering a data set is an unsupervised process;
there are no predefined classes and no examples that can show that the clusters found by
the clustering algorithms are valid (Halkidi et al., 2002a). To compare the clustering results
of different clustering algorithms, it is necessary to develop some validity criteria. Also,
if the number of clusters is not given in the clustering algorithms, it is a highly nontrivial
task to find the optimal number of clusters in the data set. To do this, we need some cluster
validity methods. In this chapter, we will present various kinds of cluster validity methods
appearing in the literature.

17.1 Introduction
In general, there are three fundamental criteria to investigate the cluster validity: exter-
nal criteria, internal criteria, and relative criteria (Jain and Dubes, 1988; Theodoridis and
Koutroubas, 1999; Halkidi et al., 2002a). Some validity index criteria work well when the
clusters are compact but do not work sufficiently (Halkidi et al., 2002a) if the clusters have
arbitrary shape (applications in spatial data, biology data, etc.).

Figure 17.1 summarizes some popular criteria. The first two approaches involve
statistical testing, which is computationally expensive. The third, i.e., relative criteria, does
not involve statistical testing.

299
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17.1.1 Hypothesis Testing

In the general approach of cluster validity, the basic idea is to test whether the data points
in the data set are randomly structured or not (Halkidi et al., 2002a). The test is based on
the null hypothesis, H0, which is the hypothesis of random structure of the data set. If we
accept the null hypothesis, then the data in the data set are randomly distributed.

Jain and Dubes (1988) suggested three forms of randomness hypotheses:

(a) The random graph hypothesis, i.e., H0: All n × n random order proximity matrices
are equally likely.

(b) The random label hypothesis, i.e., H0: All permutations of the labels on n objects are
equally likely.

(c) The random position hypothesis, i.e., H0: All sets of n locations in some region of a
d-dimensional space are equally likely.

The population for the random graph hypothesis is the set of all ordinal proximity
matrices on n objects. There are n(n−1)

2 entries in an n × n ordinal proximity matrix, and
these entries can be taken to be integers from 1 to n(n−1)

2 . Since under the random graph
hypothesis all ordinal proximity matrices are equally likely, each distinct ordinal proximity
matrix is assigned probability ( n(n−1)

2 !)−1.
The population for the random label hypothesis is the set of n! permutations of the

labels on the n objects. Since all the permutations are equally likely, each permutation is
assigned probability 1

n! . This hypothesis can be applied with all data types (Jain and Dubes,
1988).

The random position hypothesis is appropriate for ratio data, and it can be expressed in
different ways. For example, each of the n points is inserted randomly into the region; the n
points are samples of a Poisson process conditioned on the number of points. There are two
major differences between the random graph hypothesis and the random position hypothesis.
The first is that the former is for ordinal proximities and the latter is for proximities on a
ratio scale, and the second is dimensionality (Jain and Dubes, 1988).

Hypothesis tests in cluster validity have been discussed in (Jain and Dubes, 1988).
Monte Carlo and bootstrapping (Jain and Dubes, 1988) are two computer simulation tools
used in statistical testing of hypotheses. The algorithm of using the Monte Carlo method to
compute the probability density function of the indices is listed in Algorithm 17.1.

Algorithm 17.1. The Monte Carlo technique for computing the probability density
function of the indices.

Require: n-number of data points, r-number of values of the index q;
1: for i = 1 to r do
2: Generate a data set Xi with n data points of the same dimension as the data point in

X using the normal distribution {generate phase};
3: Assign each data point yj,i ∈ Xi to the cluster of partitionP to which xj ∈ X belongs;
4: Run the same clustering algorithm used to produce the cluster structure C for data

set Xi and get the cluster structure Ci ;
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5: Compute the defined index value qi = q(Ci) for P and Ci {various indices will be
defined in Section 17.1.2};

6: end for
7: Create the scatter plot of the r validity index values, i.e., plot the approximation of the

probability density function of the defined validity index.

17.1.2 External Criteria

In an external criteria approach, we evaluate the results of a clustering algorithm based on
a prespecified structure which is imposed on a data set and reflects the intuitive structure of
the data set. Based on the external criteria, there are two different approaches:

• Comparing the resulting clustering structure C to an independent partition of the data
P , which was built to people’s intuition about the clustering structure of the data set.

• Comparing the proximity matrix Q to the partition P .

Both approaches are computationally expensive; the Monte Carlo technique is em-
ployed to solve the problems in Halkidi et al. (2002a).

First Approach

To begin the first approach, i.e., comparing the resulting clustering structure C = {C1, . . . ,

Cm} to the partition P = {P1, . . . , Ps}, we need to define a, b, c, and d as follows. a is the
number of pairs of data points which are in the same cluster of C and in the same cluster of
P , b is the number of pairs of data points which are in the same cluster of C but in different
clusters of P , c is the number of pairs of data points which are in different clusters of C but
in the same cluster of P , and d is the number of pairs of data points which are in different
clusters of C and in different clusters of P . Let M be the total number of pairs of data points
in the data set. Then we have

M = a + b + c + d = n(n− 1)

2
,

where n is the number of data points in the data set.
Some common indices to measure the degree of similarity betweenC andP are shown

in Table 17.1.
The range for the first three indices is [0, 1], i.e., R, J, FM ∈ [0, 1]. High values

of these indices indicate great similarity between C and P . High values of the Hubert’s �
statistic index indicate a strong similarity between X and Y ; its range is also [0, 1]. The
range of the normalized � statistic index �̂ is [−1, 1].

Second Approach

The second approach compares the proximity matrixQ to the partitioningP . The� statistic
(or normalized � statistic) index can be computed using the proximity matrix Q and the
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Table 17.1. Some indices that measure the degree of similarity between C and
P based on the external criteria, where Xij , Yij are the (i, j) elements of matrices X, Y ,
respectively, and µx, µy, σxσy are the means and variances of X, Y , respectively.

Index Name Formula

Rand statistic R = a+d
M

Jaccard coefficient J = a
a+b+c

Folkes and Mallows index FM =
√

a
a+b · a

a+c

Hubert’s � statistic � = 1
M

n−1∑
i=1

n∑
j=i+1

XijYij

Normalized � statistic �̂ =
n−1∑
i=1

n∑
j=i+1

(Xij−µx)(Yij−µy)

Mσxσy

matrix Y , where Y is defined as

Yij =
{

1 if g(xi) �= g(xj ),
0 otherwise

for i, j = 1, 2, . . . , n,

with g being a mapping introduced by the partition P , i.e.,

g : X → {1, 2, . . . , nc},
where nc is the number of clusters in the partition P .

In both approaches, the Monte Carlo method (see Algorithm 17.1) is employed to
compute the probability density function. See P43 in Halkidi et al. (2002a) for a specific
example.

In the Monte Carlo analysis, a computer experiment needs to be set up to simulate the
generation of data under some hypothesis, such as randomness. For situations when such
experiments cannot easily be arranged, bootstrap techniques (Efron, 1979; Efron and Gong,
1983; Jain and Dubes, 1988) are used instead of Monte Carlo analysis.

17.1.3 Internal Criteria

The goal of internal criteria is to evaluate the clustering structure produced by an algorithm
using only quantities and features inherited from the data set. To apply the internal crite-
ria, there are two situations: (a) hierarchy of clustering schemes (such as the hierarchical
clustering algorithm) and (b) single clustering scheme (such as the partitional algorithm).

The idea to validate the hierarchy of clustering schemes is to use the so-called cophe-
netic matrix Pc and then to use the cophenetic correlation coefficient to measure the degree
of similarity between Pc and the proximity matrix P . The cophenetic matrix Pc is defined
in such a way that the element Pc(i, j) represents the proximity level at which the two data
points xi and xj are found in the same cluster for the first time (note the difference between
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agglomerative hierarchy and divisive hierarchy). The cophenetic correlation coefficient
index is defined as

CPCC =
1
M

n−1∑
i=1

n∑
j=i+1

dij cij − µPµC√√√√( 1
M

n−1∑
i=1

n∑
j=i+1

d2
ij − µ2

P

)(
1
M

n−1∑
i=1

n∑
j=i+1

c2
ij − µ2

C

) , (17.1)

where M = n(n−1)
2 and µP ,µC are defined as

µP = 1

M

n−1∑
i=1

n∑
j=i+1

dij ,

µC = 1

M

n−1∑
i=1

n∑
j=i+1

cij ,

where dij and cij are the (i, j) elements of matrices P and Pc, respectively.
The range of CPCC is [−1, 1]; the high value indicates great similarity between P

and Pc.
The idea to validate a single clustering scheme is to use Hubert’s � statistic (or the

normalized � statistic) index to measure the degree of similarity between a given clustering
scheme C and the proximity matrix P . Another matrix in the � statistic index is defined as

Yij =
{

1 if xi and xj are in different clusters,
0 otherwise.

Since statistical testing approaches have a drawback that they demand high compu-
tation, it is necessary to seek other cluster validity criteria, which are described in the next
subsection.

17.1.4 Relative Criteria

The basic idea of relative criteria is to choose the best clustering result out of a set of defined
schemes according to a predefined criterion (Halkidi et al., 2002b). Let Palg be the set of
parameters of a specific clustering algorithm. Then the set of defined schemes is produced
by this clustering algorithm using different parameters in Palg . According to whether the
parameter nc (number of clusters) is in Palg or not, we can divide the problem into two
cases.

• nc /∈ Palg: In this case, to choose the optimal parameter values, the clustering algo-
rithm runs for a wide range of the parameter values and identifies the largest range
for which nc remains constant. Then the values that correspond to the middle of this
range are picked as optimal parameter values.

• nc ∈ Palg: In this case, to choose the best clustering scheme, the following procedure
is performed:
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1: for nc = ncmin to ncmax do
2: for i = 1 to r do
3: Run the clustering algorithm using parameters which are different from in

the previous running;
4: Compute the value qi of the validity index (selected before);
5: end for
6: Choose the best validity index in {q1, . . . , qr};
7: end for

In the following sections, various validity indices are presented. According to whether
a data point can belong to two or more clusters, clustering algorithms are divided into two
classes: hard clustering (or crisp clustering) and fuzzy clustering. In hard clustering, a data
point can only belong to one cluster, while in fuzzy clustering, a data point can belong to
two or more clusters.

17.2 Evaluation of Partitional Clustering
In this section, we will present a review of cluster validity indices for hard clustering. Some
of the validity indices are defined in the same way as the validity indices that use statistical
testing, although we do not need statistical testing but the method specified above.

17.2.1 Modified Hubert’s � Statistic

We have defined the Hubert� statistic before. Here the modified Hubert� statistic (Theodor-
idis and Koutroubas, 1999; Halkidi et al., 2002b) is defined as

� = 1

M

n−1∑
i=1

n∑
j=i+1

PijQij ,

where n is the number of data points in the data set, M = n(n−1)
2 , P is the proximity matrix

of the data set, and Q is a matrix defined by

Qij = d(µci , µcj ), 1 ≤ i, j ≤ n,

with d(·, ·) being a distance function (cf. Section 6.2), and µci , µcj are the representative
points of the clusters that data points i, j belong to.

The normalized Hubert � statistic �̂ can be defined in the same way (Halkidi et al.,
2002b). From the definition of the modified Hubert � statistic, we can see that a high value
of � or �̂ indicates that there exist compact clusters. Also note that the validity index � or
�̂ is not defined when the number of clusters is equal to 1 or n.

17.2.2 The Davies-Bouldin Index

The Davies-Bouldin (DB) index (Davies and Bouldin, 1979; Halkidi et al., 2002b) is a
validity index that does not depend on the number of clusters and the clustering algorithms.
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To define the DB index, we need to define the dispersion measure and the cluster similarity
measure.

The dispersion measure S of a cluster C is defined in such a way that the following
properties are satisfied:

1. S ≥ 0;

2. S = 0 if and only if x = y ∀x, y ∈ C.

For example, we can define the dispersion measure of cluster Ci as

Si =

 1

|Ci |
∑
x∈Ci

dp(x, ci)




1
p

, p > 0, (17.2)

where |Ci | is the number of data points in cluster Ci , ci is the center (or representative data
point) of cluster Ci , and d(x, ci) is the distance between x and ci .

The cluster similarity measure Rij between clusters Ci and Cj is defined based on the
dispersion measures of clusters Ci and Cj and satisfies the following conditions:

1. Rij ≥ 0;

2. Rij = Rji ;

3. Rij = 0 if and only if Si = Sj ;

4. if Sj = Sk and Dij < Dik , then Rij > Rik;

5. if Sj > Sk and Dij = Dik , then Rij > Rik .

Here, Si, Sj , Sk are the dispersion measures of clusters Ci, Cj , Ck , respectively, and Dij

is the distance (dissimilarity measure) between the two clusters Ci and Cj , which can be
defined as the distance between the centroids of the two clusters (Pal and Biswas, 1997),
i.e.,

Dij =
(

d∑
l=1

|vil − vj l|t
) 1

t

, (17.3)

where vi , vj are the centroids of clusters Ci and Cj , respectively, and t > 1.
A very simple choice for Rij is (Davies and Bouldin, 1979)

Rij = Si + Sj

Dij

.

Then the DB index is defined as

VDB = 1

k

k∑
i=1

Ri,

where k is the number of clusters and Ri is defined as

Ri = max
j �=i Rij .

Note that p in equation (17.2) and t in equation (17.3) can be selected independently
of each other (Pal and Biswas, 1997).
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17.2.3 Dunn’s Index

The Dunn family of indices proposed in Dunn (1974a,b) was designed to find compact and
well-separated (CWS) clusters (Halkidi et al., 2002b). The Dunn index is defined as

VD = min
1≤i≤k


 min

i+1≤j≤k


 D(Ci, Cj )

max
1≤l≤k

diam(Cl)




 ,

where k is the number of clusters, D(Ci, Cj ) is the distance between clusters Ci and Cj , and
diam(Cl) is the diameter of the cluster Cl . Here we can define D(Ci, Cj ) and diam(Cl) as

D(Ci, Cj ) = min
x∈Ci,y∈Cj

d(x, y),

diam(Cl) = max
x,y∈Cl

d(x, y).

From the definition of the Dunn index, we can conclude that a high value of the index
indicates the existence of CWS clusters. If we plot Dunn’s index against the number of
clusters, the number of clusters that corresponds to the maximum value of the plot is the
optimal number of clusters that fits the data set.

Dunn also proposed a second validity index for CWS clusters as (Dunn, 1977)

V ′
D = min

1≤i≤k


 min

1≤j≤k,j �=i


D(Ci, conv(Cj ))

max
1≤l≤k

diam(Cl)




 ,

where conv(C) is the convex hull (Barber et al., 1996) of the cluster C. This index is not
used generally, because conv(C) involves high computation.

There are some disadvantages of Dunn’s index, such as it is very sensitive to the
presence of noise and it is also time-consuming.

17.2.4 The SD Validity Index

The SD validity index (Halkidi et al., 2000, 2002b) is defined based on average scattering
of clusters (i.e., intracluster distance) and total separation between clusters (i.e., intercluster
distance). The SD validity index is defined as

SD = αSa + St ,

where α is a weighting factor, Sa is the average scattering of clusters, and St is the total
separation between clusters.

The average scattering Sa of clusters is defined as

Sa = 1

k

k∑
i=1

‖σ(vi)‖
‖σ(X)‖ ,

where k is the number of clusters.
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The total separation between clusters St is defined as

St = Dmax

Dmin

k∑
i=1


 k∑

j=1

‖vi − vj‖


−1

,

where k is the number of clusters,Dmax = max1≤i,j≤k ‖vi−vj‖, andDmin = min1≤i,j≤k ‖vi−
vj‖.

From the definition of the SD validity index, we can see that the number k that
minimizes the SD validity index is the optimal number of clusters that fits the data set.

17.2.5 The S_Dbw Validity Index

Similarly to the SD validity index, the definition of the S_Dbw validity index (Halkidi and
Vazirgiannis, 2001) is also based on compactness and separation, i.e., intradistance and
interdistance of clusters.

To define the S_Dbw validity index, we need to define the intercluster density and the
intracluster variance (Halkidi and Vazirgiannis, 2001). The intercluster density is defined
as

Dens_bw(k) = 1

k(k − 1)

k∑
i=1


 k∑

j=1,j �=i

density(Ci ∪ Cj)

max{density(Ci), density(Cj )}


 ,

where k is the number of clusters; the function density(C) is defined as

density(C) =
|C|∑
i=1

f (xi, µ),

where µ is the center of cluster C; |C| is the number of data points in cluster C; and the
function f (x, u) is defined as

f (x, u) =
{

0 if d(x, u) > stdev,
1 otherwise.

Here stdev is the average standard deviation of clusters:

stdev = 1

k

√√√√ k∑
i=1

‖σ(Ci)‖.

If C = Ci ∪ Cj , we can take µ as the middle point of the line segment defined by µi

and µj , which are the centers of clusters Ci and Cj , respectively.
The intracluster variance measures the average scattering for clusters. It is defined as

Scat (k) = 1

k

k∑
i=1

‖σ(Ci)‖
‖σ(D)‖ ,
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where σ(S) is the variance of a data set D, its pth dimension is defined as

σ(S)p = 1

n

n∑
i=1


xip −

n∑
j=1

xjp

n




2

, p = 1, 2, . . . , d,

where n is the number of data points in D, i.e., D = {x1, . . . , xn}, and d is the dimension
of the data points.

Similarly, σ(Ci) is the variance of cluster Ci , i.e.,

σ(Ci)p = 1

|Ci |
∑
y∈Ci

(yp − µip)
2, p = 1, 2, . . . , d,

where µip is the pth dimension of the center of cluster Ci and yp is the pth dimension of
data point y in cluster Ci .

The S_Dbw validity index is defined as

S_Dbw(k) = Scat (k)+Dens_bw(k).

The number k that minimizes the S_Dbw validity index is the optimal number of
clusters that fits the data set.

17.2.6 The RMSSTD Index

The root-mean-square standard deviation (RMSSTD) index is used to determine the number
of clusters existing in a data set. It measures the homogeneity of the resulting clusters. To
define the RMSSTD index, we need to define some notation first.

Let D = {x1, x2, . . . , xn} be a data set in a d-dimensional space. Then the sum of
squares of the data set D is defined as

SS =
n∑

i=1

(xi − ȳ)2 =
n∑

i=1

d∑
j=1

(xij − ȳj )
2, (17.4)

where ȳ is the mean of the points in D.
Let C = {C1, C2, . . . , Ck} be a partition of the data set D, and let SSw, SSb, SSt be

defined as follows:
SSw: The sum of squares within a group.
SSb: The sum of squares between groups.
SSt : The total sum of squares of the whole data set.

Then the RMSSTD index is defined as (Sharma, 1996; Halkidi et al., 2001a)

VRMSSTD =
(

SSw

d(n− k)

) 1
2

=




k∑
i=1

∑
x∈Ci

d∑
j=1

(xj − µij )
2

d(n− k)




1
2

, (17.5)
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where µij is the j th component of µi which is the mean of points in Ci , i.e.,

µi = 1

|Ci |
∑
x∈Ci

x.

The RMSSTD index defined in (17.5) is a simplified version, in which each attribute
is assumed to have the same number of values in the data set. A general RMSSTD index is
presented in (Halkidi et al., 2002b).

To validate a nonhierarchical clustering such as k-means, let the algorithm run a
number of times for a different number of clusters each time and then plot the RMSSTD
validity indices. The optimal number of clusters is the number of clusters at which the
“knee” is observed.

To validate a hierarchical clustering, the RMSSTD index has to be used with other
indices simultaneously to determine the number of clusters inherent to the data set. The
indices to be used with the RMSSTD index are semipartial R-squared (SPR), R-squared
(RS), and distance between two clusters (CD)(Sharma, 1996; Halkidi et al., 2002b).

17.2.7 The RS Index

The RS index is defined to be the ratio of SSb over SSt , where SSb and SSt are defined as
in the RMSSTD index.

Let C = {C1, C2, . . . , Ck} be a partition of a data set D with n data points. Then the
RS index is defined as (Sharma, 1996; Halkidi et al., 2002b)

VRS = SSb

SSt

= SSt − SSw

SSt

=
∑
x∈D

d∑
j=1

(xj − ȳj )
2 −

k∑
i=1

∑
x∈Ci

d∑
j=1

(xj − µij )
2

n∑
i=1

d∑
j=1

(xij − ȳj )2

, (17.6)

where ȳ is the mean of all the data points in D and µij is the j th component of µi which is
the mean of the data points in Ci .

The RS index defined in (17.6) is also a simplified version of the general RS index
which is presented in Halkidi et al. (2002b).

Since SSt = SSb + SSw, the greater the differences between groups are, the more
homogeneous each group is, and vice versa. Hence, the RS index can be considered as a
measure of dissimilarity between clusters.

17.2.8 The Calinski-Harabasz Index

The Calinski-Harabasz (CH) index Calinski and Harabasz (1974) is a validity index defined
in terms of the traces of the between-clusters and within-cluster scatter matrices. This index
is also discussed in Maulik and Bandyopadhyay (2002).
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Let n be the number of data points in the data set and k be the number of clusters.
Then the CH index is defined as

VCH = (n− k)Tr(B)

(k − 1)Tr(W)
, (17.7)

where Tr(B) and Tr(W) are the traces of matrices B and W , respectively, and B and W are
the between-clusters and within-cluster scatter matrices (cf. Section 6.1).

The traces of B and W can be written as

Tr(B) =
k∑

i=1

|Ci |(zi − z)T (zi − z),

Tr(W) =
k∑

i=1

∑
x∈Ci

(x − zi )T (x − zi ),

where z, zi are the means of the entire data set and cluster Ci , respectively.

17.2.9 Rand’s Index

Rand (1971) suggests an objective criterion for comparing two arbitrary clusterings based on
how pairs of data points are clustered. Given two clusterings, then for any two data points,
there are two cases: the first case is that the two points are placed together in a cluster in
each of the two clusterings or they are assigned to different clusters in both clusterings; the
second case is that the two points are placed together in a cluster in one clustering and they
are assigned to different clusters in the other. Based on this, Rand’s index is defined as
follows.

Given a data set D with n data points x1, x2, . . . , xn, let P = {C1, C2, . . . , Ck1} and
P ′ = {C ′

1, C
′
2, . . . , C

′
k2
} be two clusterings of D. Then Rand’s index is defined as

c(P,P ′) = 1(
n

2

) ∑
1≤i<j≤n

γij , (17.8)

where

γij =



1 if ∃l, l′ s.t. xi ∈ Cl ∩ C ′
l′ and xj ∈ Cl ∩ C ′

l′ ,
1 if ∃l, l′ s.t. xi ∈ Cl ∩ C ′

l′ and xj /∈ Cl ∪ C ′
l′ ,

0 otherwise.
(17.9)

Let nij be the number of points simultaneously in the ith cluster of P and the j th
cluster of P ′, i.e.,

nij = |Ci ∩ C ′
j |.
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Then c(P,P ′) is simplified to be

c(P,P ′) = 1+ 1(
n

2

) k1∑
i=1

k2∑
j=1

n2
ij

− 1

2

(
n

2

)

 k1∑

i=1


 k2∑

j=1

nij




2

+
k2∑
j=1

(
k1∑
i=1

nij

)2

 . (17.10)

We can see that c(P,P ′) is a measure of similarity, ranging from 0 to 1. When
c(P,P ′) = 0, the two clusterings have no similarities; when c(P,P ′) = 1, the two clus-
terings are identical.

17.2.10 Average of Compactness

Zait and Messatfa (1997) proposed a measure of the quality of a clustering result based on
the compactness of all clusters, i.e., the average of compactness.

Given a data set D = {x1, x2, . . . , xn} with n records, each of which is described by
d attributes, let C1, C2, . . . , Ck be the found clusters. Then the average of compactness is
defined as

cave =
k∑

i=1

Diam(Ci)
|Ci |
n

, (17.11)

where

Diam(Ci) =
∑

x,y∈Ci

d∑
j=1

d(xj , yj )2

|Ci |(|Ci | − 1)
,

and d(·, ·) is a general distance defined as

d(xj , yj ) =
{

xj−yj
Rj

if the j th attribute is continuous,

δ(xj , yj ) if the j th attribute is categorical,

with δ(·, ·) being defined in (6.22), and Rj the range for the j th attribute if it is continuous,
i.e.,

Rj = max
1≤i≤n

xij − min
1≤i≤n

xij .

The “best” clustering result is the one that minimizes the average of compactness cave.
According to this property, the optimal clustering result is that each cluster has exactly one
record. Thus to compare two clustering methods, the number of clusters in both clustering
methods should be set equal.

17.2.11 Distances between Partitions

Mántaras (1991) proposed two distances between partitions based on information theory.
The distances were originally designed to select attributes. It turns out, however, that they
can be used to calculate the distances between two partitions (Fujikawa and Ho, 2002).
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Let D be a data set and PA and PB be two partitions of D. Let the partition PA

have k1 clusters A1, A2, . . . , Ak1 and the partition PB have k2 clusters B1, B2, . . . , Bk2 . Let
Pi, Pj , Pij , and Pj/i be the probabilities defined as

Pi = P(Ai) = |D ∩ Ai |
|D| ,

Pj = P(Bj ) = |D ∩ Bj |
|D| ,

Pij = P(Ai ∩ Bj) = |D ∩ Ai ∩ Bj |
|D| ,

Pj |i = P(Bj |Ai) = P(Bj ∩ Ai)

P (Ai)
= Pij

Pi

,

Pi|j = P(Ai |Bj) = P(Ai ∩ Bj)

P (Bj )
= Pij

Pj

for i = 1, 2, . . . , k1 and j = 1, 2, . . . , k2.
The average information of the partition PA, which measures the randomness of the

distribution of objects of D over the k1 clusters of PA, is defined to be

I (PA) = −
k1∑
i=1

Pi log2 Pi. (17.12)

Similarly, the average information of the partition PB is defined as

I (PB) = −
k2∑
j=1

Pj log2 Pj . (17.13)

The mutual average information of the intersection of the two partitions PA ∩PB is defined
as

I (PA ∩ PB) = −
k1∑
i=1

k2∑
j=1

Pij log2 Pij , (17.14)

and the conditional information of PB given PA is defined as

I (PB |PA) = I (PB ∩ PA)− I (PA)

= −
k1∑
i=1

k2∑
j=1

Pij log2
Pij

Pi

= −
k1∑
i=1

Pi

k2∑
j=1

Pj |i log2 Pj |i . (17.15)

Let D(PA, PB) be defined as

D(PA, PB) = I (PB |PA)+ I (PA|PB). (17.16)
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Mántaras (1991) has shown that the distance defined in equation (17.16) is a metric
distance measure. Mántaras (1991) also proposed a normalized distance defined as

DN(PA, PB) = D(PA, PB)

I (PA ∩ PB)
, (17.17)

which is in [0, 1].

17.3 Evaluation of Hierarchical Clustering
Given a data set, there may exist more than one clustering algorithm that can be used to
analyze the data, and as such it is always difficult to choose appropriate clustering algorithms.
One way is to evaluate the results of applying the clustering algorithms to the data set. Also,
by evaluating the clustering results, one can establish whether they are a valid summary
of the data or whether unwarranted or inappropriate structure is being imposed on the data
set. Gordon (1996) presented four different types of evaluation for hierarchical clustering
algorithms: tests for the absence of structure, and procedures for validating hierarchies,
partitions, and individual clusters.

Validation of partitions and individual clusters was discussed in the previous sections
of this chapter on evaluation of hard clustering, so it will not be discussed in this section.
The other two types of evaluation will be presented in this section.

17.3.1 Testing Absence of Structure

If data do not possess any cluster structure, then analyzing the data by any clustering
algorithm is meaningless. Therefore, it is useful to develop tests for the absence of structure
in data. Two main classes of null models involving randomness of the pattern matrix and
randomness of the dissimilarity matrix have been discussed by Sneath (1967), Bock (1985),
Jain and Dubes (1988), and Gordon (1996). One null model for a pattern matrix is that the
points are randomly distributed in some region of space; another one is that there is a single
group in the data. The former can be referred to as the Poisson model, while the latter can
be referred to as the unimodal model (Gordon, 1996).

The Poisson model assumes that the data points under consideration are uniformly
distributed in some region A of a d-dimensional space. This assumption is also known as
the uniformity hypothesis and the random position hypothesis (Gordon, 1999). The region
A can be chosen to be either the unit d-dimensional hypercube or hypersphere (Zeng and
Dubes, 1985; Hartigan and Mohanty, 1992) or the convex hull of the points in the data set
(Bock, 1985).

Unlike the Poisson model, the unimodal model assumes that the data points under
consideration are distributed near a center. There are many possible unimodal distribu-
tions, but multivariate normal distributions with identity covariance matrix are usually used
(Gordon, 1999). In addition to the Poisson model and the unimodal model, the random
permutation model, the random dissimilarity matrix model, and the random labels model
are also discussed in Gordon (1999).

Comprehensive reviews of tests of the absence of cluster structure are provided by
Bock (1996) and Gordon (1998).
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17.3.2 Testing Hierarchical Structures

The methods for testing hierarchical structures of a data set can be classified into three
categories: the so-called stability methods, in which the original clusterings are compared
with clusterings of modified versions of the data; the analysis of the reduced data set, which
is obtained by deleting one or more data points from the original data set via assessing
the influence of the deleted objects; and modifications of the set of variables used in the
clustering.

In the stability method, modified data can be obtained by adding random errors to each
element of a pattern matrix or perturbing the elements of the dissimilarity matrix. Large
differences between the clusterings indicate inaccuracy of the clustering results (Gordon,
1996).

As an example of the analysis of a reduced data set, Lanyon (1985) suggested a method
in which n separate hierarchical clusterings are obtained by deleting a single, different data
point each time from a data set and then synthesizing these results to obtain a single consensus
clustering, where n is the number of data points in the data set. In this kind of method, one
can also divide a data set into two and compare the clustering of a subset with the clustering
of the relevant part of the entire data set.

Some methods involving modifications of the set of variables were motivated by
phylogenetic concerns. For example, Felsenstein (1985) used the bootstrap procedure to
obtain new data sets by resampling from the set of variables, and synthesized the hierarchical
clusterings of these resulting data sets into a majority rule consensus tree from which a final
clustering is identified.

17.4 Validity Indices for Fuzzy Clustering
Unlike hard clustering, fuzzy clustering allows each data point to belong to every cluster
with a different degree of membership. As with the hard clustering case, we can define a
validity index for fuzzy clustering. The objective is to seek clustering schemes where most
of the data points in the data set exhibit a high degree of membership in one cluster.

Generally, there are two categories of fuzzy validity index: the category involving
only the membership values and the category involving both the membership values and
the data values (Halkidi et al., 2001b). In what follows, various fuzzy validity indices are
defined and discussed.

17.4.1 The Partition Coefficient Index

Let U = (uli) (1 ≤ l ≤ c, 1 ≤ i ≤ n) be the membership matrix of a fuzzy c-partition of a
data set D with n records, i.e., U satisfies the following conditions:

• uli ∈ [0, 1] for 1 ≤ l ≤ c, 1 ≤ i ≤ n;

•
∑c

l=1 uli = 1, 1 ≤ i ≤ n;

•
∑n

i=1 uli > 0, 1 ≤ l ≤ c.
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Based on the membership matrix, the partition coefficient (PC) index is defined as
(Bezdek, 1981; Trauwaert, 1988)

VPC = 1

n

c∑
l=1

n∑
i=1

u2
li . (17.18)

From the definition of VPC in (17.18), we see that the values of the PC index range
in [ 1

c
, 1]. The closer the value of VPC to 1

c
, the fuzzier the clustering is. The lower value of

VPC is obtained when uli = 1
c

for all l, i.
Since the PC index involves only the membership values, it has some drawbacks. For

example, it is sensitive to the fuzzifier (Halkidi et al., 2001b). As the fuzzifier tends to 1,
the index gives the same values for all values of c, while as the fuzzifier tends to ∞, the
index exhibits a significant knee at c = 2 if one plots VPC(c) against c. Another drawback
is the lack of direct connection to the geometry of the data set (Dave, 1996).

If we allow c to vary from 2 to n− 1, then an optimal number of clusters is a c∗ that
maximizes VPC(c) over c (Yang and Wu, 2001), i.e.,

VPC(c
∗) = max

2≤c≤n−1
VPC(c).

17.4.2 The Partition Entropy Index

The partition entropy (PE) index is another fuzzy validity index that involves only the
membership values. It is defined as (Bezdek, 1974a, 1981)

VPE = −1

n

c∑
l=1

n∑
i=1

uli loga(uli), (17.19)

where a is the base of the logarithm and U = (uli) is the membership matrix of a fuzzy
c-partition.

The values of the PE index VPE range in [0, loga c]. The closer the value of VPE

to 0, the harder the clustering is. The values of VPE close to the upper bound indicate the
absence of any clustering structure inherent in the data set or the inability of the algorithm
to extract it. The PE index has the same drawbacks as the PC index.

Also, if we let c vary from 2 to n− 1, then the optimal number of clusters is a c∗ that
minimizes VPE(c) over c (Yang and Wu, 2001), i.e.,

VPE(c
∗) = min

2≤c≤n−1
VPE(c).

17.4.3 The Fukuyama-Sugeno Index

Fukuyama and Sugeno (1989) proposed a fuzzy validity index based on both the membership
values and the data values. Let D = {x1, x2, . . . , xn} be a data set and U = (uli) be the
membership matrix of a fuzzy c-partition of D. Then the Fukuyama-Sugeno (FS) index is
defined as

VFS =
n∑

i=1

c∑
l=1

umli
(‖xi − zl‖2 − ‖zl − z‖2

)
, (17.20)
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where m is a fuzzifier and z and zl are the mean of the entire data set and the mean of cluster
Cl , respectively.

From the definition of the FS index, we see that small values of VFS indicate that
CWS clusters are embedded in the data set.

17.4.4 Validity Based on Fuzzy Similarity

Pei and Yang (2000) proposed a clustering validity index based on fuzzy similarity. Let
U be a fuzzy c-partition of a data set D = {x1, x2, . . . , xn} containing n objects and let
A1, A2, . . . , AC represent the pattern prototype of the c-partition. The fuzzy set of the ith
pattern is denoted as

Ãi =
n∑

i=1

uli/xi , l = 1, 2, . . . , C,

where uli is the degree of object xi belonging to Ãl .
The degree to which Ãl is a subset of Ãp is defined as

S(Ãl, Ãp) = M(Ãl ∩ Ãp)

M(Ãl)
,

where M(Ãj ) is defined as

M(Ãj ) =
n∑

i=1

uji .

Based on the fuzzy subsethood degreeS(Ãl, Ãp), the following three fuzzy similarities
are well defined:

N1(Ãl, Ãp) = S(Ãl, Ãp)+ S(Ãp, Ãl)

2
, (17.21a)

N2(Ãl, Ãp) = min
(
S(Ãl, Ãp), S(Ãp, Ãl)

)
, (17.21b)

N3(Ãl, Ãp) = S(Ãl ∪ Ãp, Ãp ∩ Ãl). (17.21c)

Then clustering validity based on fuzzy similarity can be defined as

Nv(U ; c) = max
1≤l≤C

max
1≤p≤C,p �=l

N(Ãl, Ãp), (17.22)

where the fuzzy similarity N(Ãl, Ãp) can be chosen as any one of equations (17.21).
A better fuzzy c-partition is a partition that minimizes the fuzzy similarity of fuzzy

subsets Ãi, i = 1, 2, . . . , C. The best clustering minimizes Nv(U ; c) in equation (17.22),
i.e.,

N∗
v (U ; c∗) = min

1≤k≤kC
Nv(U ; k).
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17.4.5 A Compact and Separate Fuzzy Validity Criterion

Xie and Beni (1991) introduced a fuzzy validity criterion based on a validity function that
identifies an overall compact and separate fuzzy c-partition without assumptions as to the
number of substructures inherent in the data. The validity function depends on the data
set, geometric distance measure, distance between cluster centroids, and fuzzy partition
generated by any fuzzy clustering algorithms.

Consider a fuzzy c-partition of a data set D = {x1, x2, . . . , xn}. Let Vi (i =
1, 2, . . . , c) be the centroid of each cluster and µij (i = 1, 2, . . . , c, j = 1, 2, . . . , n)
be the fuzzy membership of object xj belonging to class i. Now the total variation of data
set D with respect to the fuzzy c-partition is defined to be the summation of the variations
of all classes, i.e.,

σ =
c∑

i=1

σi =
c∑

i=1

n∑
j=1

d2
ij ,

where σi (i = 1, 2, . . . , c) is the variation of class i and dij is the fuzzy deviation of xj

from class i, i.e.,

dij = µij‖xj − Vi‖,
where ‖ · ‖ is the usual Euclidean norm.

Then the compactness of the fuzzy c-partition, π , is defined to be the ratio of the total
variation to the size of the data set, i.e.,

π = σ

n
. (17.23)

The separation of the fuzzy c-partition, s, is defined to be the square of the minimum
distance between cluster centroids, i.e.,

s = d2
min =

(
min

1≤i<j≤c
‖Vi − Vj‖

)2

= min
1≤i<j≤c

‖Vi − Vj‖2. (17.24)

The compactness and separation validity criterion S is defined as the ratio of the
compactness π to the separation s, i.e.,

S = π

s
=

c∑
i=1

n∑
j=1

‖Vi − xj‖2

n min
1≤i<j≤c

‖Vi − Vj‖2
. (17.25)

From the definition of the validity criterion in equation (17.25), one can see that
smaller S indicates a more compact and separate c-partition. For each c = 2, 3, . . . , n− 1,
let Zc denote the optimality candidates at c. The most valid fuzzy clustering of the data set
D is thus the solution of

min
2≤c≤n−1

(
min
Zc

S

)
.
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17.4.6 A Partition Separation Index

Yang and Wu (2001) proposed a validity index for fuzzy clustering called a partition sepa-
ration (PS) index, which is based on a normalized partition coefficient and an exponential
separation measure.

LetD = {x1, x2, . . . , xn}be a data set in Rd andµij (i = 1, 2, . . . , c, j = 1, 2, . . . , n)
be the fuzzy membership of object xj belonging to class i. Then the PS index for class i is
defined as

PSi =
n∑

j=1

µ2
ij

µM

− exp

(
−minl �=i ‖Vi − Vl‖2

βT

)
,

where Vi (i = 1, 2, . . . , c) is the centroid of cluster i and µM and βT are defined as

µM = max
1≤i≤c

n∑
j=1

µ2
ij ,

βT = 1

c

c∑
i=1

‖Vi − V̄ ‖2,

where V̄ is the arithmetic average of the centroids V1, V2, . . . , Vc, i.e., V̄ = 1
c

∑c
i=1 Vi .

The PS validity index is defined as

PS(c) =
c∑

i=1

PSi.

The PS validity index can detect each cluster with two measures of a normalized
partition coefficient and an exponential separation. A large PSi value indicates that the
cluster is compact inside the cluster and separate between the other c − 1 clusters. An
optimal clustering of the data set is

PS(c∗) = max
2≤c≤n

PS(c).

17.4.7 An Index Based on the Mini-max Filter Concept and Fuzzy
Theory

Rhee and Oh (1996) introduced a measure G of the quality of clustering that is based on the
mini-max filter concept and the fuzzy theory. It measures the overall average compactness
and separation of a fuzzy c-partition. Based on this measure, a more suitable measure
IG is introduced to compare the clustering results of one fuzzy c1-partition with another
c2-partition of a data set.

Let D = {x1, x2, . . . , xn} be a data set and µij (i = 1, 2, . . . , c, j = 1, 2, . . . , n) be
the membership of a fuzzy c-partition. Then the overall average intraclass distance, which
is defined as the distance between the data points inside a cluster i, is defined as

C = 2

n(n− 1)

n−1∑
j1=1

n∑
j2=j1+1

c∑
i=1

d2(xj1 , xj2)ωj1j2 ,
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where d(·, ·) is the Euclidean distance and ωj1j2 = min{µij1 , µij2}.
The overall average interclass distance, which is defined as the distance between the

objects in cluster i1 and in cluster i2 (i2 �= i1), is defined as

D = 1

n2

n∑
j1=1

n∑
j2=1

d2(xj1 , xj2)ξj1j2 ,

where ξj1j2 = min{maxi1 µi1j1 ,maxi2 �=i1 µi2j2}.
The compactness and separation validity function G is defined to be the ratio of the

separation index D to the compactness index C, i.e.,

G = D

C
. (17.26)

The measurement P which measures the similarity of the population in each cluster
is defined as

P = 1− σ

σmax

, (17.27)

where σmax is the standard deviation of N̄ = (n, 0, . . . , 0) (c − 1 zeros); σ is the standard
deviation of the fuzzy number vectorN = (n1, n2, . . . , nc); and the fuzzy number of objects
belonging to cluster i, ni (i = 1, 2, . . . , c), is defined as

ni =
n∑

j=1

µij .

From this definition, P is proportional to the similarity of the population in each
cluster. Particularly, P = 1 means that all clusters have equal population, while P = 0
means that all objects belong to just one cluster.

Based on G and P , the compactness and separation validity measure, denoted by IG,
is defined as

IG = G

P
,

where G and P are defined in equations (17.26) and (17.27), respectively.
The validity measure IG defined above can be used in selecting the optimal number

of clusters. The clustering with the largest IG is the optimal clustering of the data set.

17.5 Summary
Many clustering algorithms have been designed, and thus it is important to decide how to
choose a good clustering algorithm for a given data set and how to evaluate a clustering
method. The validity indices introduced in this chapter may help with these aspects. Some
other validity indices are also introduced for specific purposes, such as the significance test
on external variables sugguested by Barbará et al. (2002), the category utility (CU) function
sugguested by Gluck and Corter (1985) and Barbará et al. (2002), and the purity used by
Gibson et al. (2000) and Zhang et al. (2000b). Further discussion of evaluation of clustering
methods can be found in Sneath (1969), Bock (1996), and Cunningham and Ogilvie (1972).
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Chapter 18

Clustering Gene Expression
Data

This chapter introduces the application of clustering to gene expression data. First, we
introduce some background information on gene expression data. Then we introduce some
applications of gene expression data clustering and two types of gene expression data clus-
tering (gene-based and sample-based). Some guidelines for choosing clustering algorithms
and similarity measures to cluster gene expression data are also presented in this chapter.
Finally, we present a case study by clustering a real gene expression data set.

18.1 Background
In this section we briefly describe cDNA microarrays and oligonucleotide (oligo) microar-
rays that generate gene expression data. For more information about microarray technolo-
gies and applications, readers are referred to Marshall and Hodgson (1998), Ramsay (1998),
and Eisen and Brown (1999).

In genomic research, unlike in the traditional approach which has focused on the local
examination and collection of data on single genes, microarray technologies have focused on
monitoring the expression levels for a large number of genes in parallel (Jiang et al., 2004).
cDNA microarrays (Schena et al., 1995) and oligo microarrays (Lockhart et al., 1996) are
two major types of microarray experiments which involve four common basic procedures
(Jiang et al., 2004): chip manufacture, target preparation, labeling and hybridization, and
the scanning process.

cDNA microarrays that contain large sets of cDNA sequences immobilized on a solid
substrate are produced by spotting polymerose chain reaction (PCR) products representing
specific genes onto a matrix. In oligo microarrays, each spot on the array contains a short
synthetic oligo. In general, both cDNA microarrays and oligo microarrays measure the
expression level for each DNA sequence or gene by the ratio of fluorescent intensities
between the test sample and the control sample. The measurements collected by both
technologies are called gene expression data.

In a microarray experiment, a large number of DNA sequences such as genes, cDNA
clones, and expressed sequence tags (ESTs) are assessed under multiple conditions. Cur-
rently, the number of genes involved in a typical microarray experiment is about 1,000 to
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10,000 and is expected to reach 1,000,000, while the number of samples involved in a typi-
cal microarray experiment is usually less than 100 (Jiang et al., 2004). For convenience, we
refer to DNA sequences as genes and experimental conditions as samples if no confusion
will be caused. A gene expression data set can be represented by a real-valued expression
matrix E = (eij ) (1 ≤ i ≤ n; 1 ≤ j ≤ d) as

E =




e11 e12 · · · e1d

e21 e22 · · · e2d
...

...
. . .

...

en1 en2 · · · end


 , (18.1)

where n is the number of genes and d is the number of samples. In the expression matrix E,
the rows gi = (ei1, ei2, . . . , eid)(i = 1, 2, . . . , n) form the expression patterns of genes, the
columns sj = (e1s , e2s , . . . , ens)

T (s = 1, 2, . . . , d) form the expression profiles of samples,
and the component eij represents the measured expression level of the ith gene in the j th
sample.

Since the original gene expression matrix obtained via a scanning process contains
noises, missing values, and systematic variations, data preprocessing is necessary before
any cluster analysis can be performed. In general, there are five preprocessing procedures
(Herrero et al., 2003): scale transformation (e.g., logtransformation), replicate handling,
missing value handling (Kim et al., 2005; Troyanskaya et al., 2001), flat pattern filtering, and
pattern standardization (Schuchhardt et al., 2000; Hill et al., 2001). These data preprocessing
procedures are not addressed in this book.

18.2 Applications of Gene Expression Data Clustering
DNA microarray technologies have made it possible to monitor the expression levels of
a large number of genes simultaneously. However, the large number of genes and the
complexity of biological networks have made it difficult to understand and interpret the
huge amount of gene expression data. Cluster analysis, which seeks to partition a given
set of data points into homogeneous groups based on specified features so that the data
points within a group are more similar to each other than to the data points in different
groups, has proven to be very useful in understanding gene function and regulation, cellular
processes, and subtypes of cells (Jiang et al., 2004). Coexpressed genes, i.e., genes with
similar expression patterns, can be clustered together and manifest similar cellular functions
(Jiang et al., 2004).

In general, as a powerful tool for studying functional relationships of genes in a
biological process, gene expression data clustering has the following applications (Jiang
et al., 2004):

• Gene expression data clustering is helpful to understand the functions of genes whose
information has not been previously available (Tavazoie et al., 1999; Eisen et al.,
1998).

• Gene expression data clustering is likely to identify genes that involve the same
cellular processes.
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• Gene expression data clustering is helpful to propose cis-regulatory elements (Tava-
zoie et al., 1999; Brazma and Vilo, 2000).

• Gene expression data clustering helps to formulate hypotheses about the mechanism
of the transcriptional regulatory network.

• Subcell types, which are difficult to identify by traditional morphology-based ap-
proaches, can be revealed by clustering different samples based on their corresponding
expression profiles (Golub et al., 1999).

18.3 Types of Gene Expression Data Clustering
In gene expression data clustering, it is meaningful to cluster both genes and samples (Jiang
et al., 2004). Therefore, there are two types of gene expression data clustering: gene-
based clustering and sample-based clustering. In gene-based clustering, genes are treated
as objects while samples are treated as features. In other words, in gene-based clustering,
genes are partitioned into homogeneous groups. Conversely, in sample-based clustering,
samples are treated as objects while genes are treated as features. In such sample-based
clustering, samples are partitioned into homogeneous groups.

In gene-based clustering, the goal is to identify coexpressed genes that indicate co-
function and coregulation. Gene-based clustering faces the following challenges:

• Determination of the true number of clusters in the data set.
• Capability of handling a high level of background noises arising from the complex

procedures of microarray experiments.
• Capability of handling overlapped clusters.
• Representation of cluster structures.

In sample-based clustering, the goal is to identify the phenotype structures or sub-
structures of the samples. In sample-based clustering, some genes whose expression levels
strongly correlate with the cluster distinction are referred to as informative genes, while
other genes are treated as irrelevant genes or noises in the data set. In sample-based clus-
tering, the signal-to-noise ratio, i.e., the ratio of the number of informative genes over the
number of irrelevant genes, is usually smaller than 1

10 and thus may seriously degrade the
quality and reliability of the clustering results. Supervised analysis and unsupervised anal-
ysis are two major methods of selecting informative genes to cluster samples (Jiang et al.,
2004).

18.4 Some Guidelines for Gene Expression Clustering
Many clustering algorithms have been developed and most of them can be applied to gene
expression data. In order to obtain good clustering results, D’haeseleer (2005) summarized
the following general guidelines for choosing clustering algorithms for gene expression
data.

• Single-linkage clustering performs very badly on most real-world data, including gene
expression data (Handl et al., 2005; Gibbons and Roth, 2002; Costa et al., 2004).
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• Complete linkage seems to outperform average linkage (Gibbons and Roth, 2002).
• k-means and self organizing map (SOM) outperform hierarchical clustering (Gibbons

and Roth, 2002; Costa et al., 2004).
• SOM may outperform k-means, especially for larger numbers of clusters (Gibbons

and Roth, 2002).
• Both Euclidean distance and Pearson’s correlation coefficient seem to work well as

distance measures (Gibbons and Roth, 2002; Costa et al., 2004). In addition, Euclidean
distance may be more appropriate for log ratio data, while Pearson’s correlation co-
efficient may be better for absolute-valued data (Gibbons and Roth, 2002).

Cluster analysis for gene expression data is performed after the original gene expres-
sion data is preprocessed. Therefore, the clustering results may be affected by preprocess-
ing procedures such as standardization, missing value handling, and flat pattern filtering
(D’haeseleer, 2005). The best way to cluster gene expression data is to use more than one
clustering algorithm and compare the results with those on randomized data. Clustering
algorithms that may give different results based on different initial conditions should be run
several times to find the best solution.

18.5 Similarity Measures for Gene Expression Data
We have presented various similarity and dissimilarity measures in Chapter 6. In this
section, we introduce some similarity measures for gene expression data. Some measures
in this section were already presented in Chapter 6. To describe the similarity measures
for gene expression data, we start with some notation. Let x = (x1, x2, . . . , xp)

T and
y = (y1, y2, . . . , yp)

T be two numerical vectors that denote two gene expression data
objects, where the objects can be either genes or samples and p is the number of features.

18.5.1 Euclidean Distance

Euclidean distance is a commonly used method to measure the dissimilarity or distance
between two gene expression data objects. In particular, the Euclidean distance between x
and y is calculated as

deuc(x, y) =

 p∑

j=1

(xj − yj )
2




1
2

. (18.2)

Since Euclidean distance does not score well for shifting or scaled patterns (Wang
et al., 2002), each object vector is standardized with zero mean and one variance before
Euclidean distance is calculated (Sharan and Shamir, 2000; De Smet et al., 2002).

18.5.2 Pearson’s Correlation Coefficient

Pearson’s correlation coefficient (Jiang et al., 2003; Tang et al., 2001; Yang et al., 2002a;
Tang and Zhang, 2002; D’haeseleer, 2005) is another commonly used tool to measure the
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similarity between two gene expression data objects. Mathematically, Pearson’s correlation
coefficient between x and y is defined as

rpea(x, y) =

p∑
j=1

(xj − x̄)(yj − ȳ)

√
p∑

j=1
(xj − x̄)2

√
p∑

j=1
(yj − ȳ)2

, (18.3)

where x̄ and ȳ are defined as

x̄ = 1

p

p∑
j=1

xj ,

ȳ = 1

p

p∑
j=1

yj .

The corresponding distance measure of Pearson’s correlation coefficient can be defined as
(D’haeseleer, 2005)

dpea(x, y) = 1− rpea(x, y)

or
dpea(x, y) = 1− |rpea(x, y)|

or
dpea(x, y) = 1− r2

pea(x, y).

One drawback of Pearson’s correlation coefficient is that it is not robust with respect
to outliers (Heyer et al., 1999). For example, it may yield false positives and thus assign
a high similarity score to a pair of dissimilar objects (Jiang et al., 2004). In addition, if
two objects have a common peak or valley at a single feature, then the correlation will be
dominated by this feature no matter how dissimilar the objects are at the remaining features.
To deal with this problem, a so-called jackknife correlation (Heyer et al., 1999; Efron, 1982;
Wu, 1986) has been proposed. The jackknife correlation between two objects x and y is
defined as

rjac(x, y) = min
{
rpea(x(j), y(j)) : j = 1, 2, . . . , p

}
, (18.4)

where rpea(·, ·) is defined in Equation (18.3), and x(j) and y(j) are defined as

x(j) = (x1, . . . , xj−1, xj+1, . . . , xp)
T ,

y(j) = (y1, . . . , yj−1, yj+1, . . . , yp)
T

for j = 1, 2, . . . , p.
Another drawback of Pearson’s correlation coefficient is that it assumes the object

features are approximately Gaussian distributed and thus may not be robust for objects
that are not Gaussian distributed (D’haeseleer et al., 1998). To deal with this problem,
Spearman’s rank-order correlation coefficient has been proposed as the similarity measure
(Jiang et al., 2004). This rank-order correlation coefficient does not assume object features
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are approximately Gaussian distributed but replaces the numerical expression levels by their
corresponding ranks among all conditions. As a result, a significant amount of information
is lost. On average, Spearman’s rank-order correlation coefficient does not perform as well
as Pearson’s correlation coefficient (Jiang et al., 2004).

18.6 A Case Study
In this section, we apply the fuzzy subspace clustering (FSC) algorithm (see Section 15.11)
to the gene expression data set gathered by Cho et al. (1998). The data set can be obtained
from the website

http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html.

The data set contains 6,600 records, each of which is described by 17 attributes. We saved
the data set in a comma-delimited file (i.e., a .csv file) with quotation marks (“) and (”) in
the gene name being removed. These gene expression data were also studied and discussed
in (Tavazoie et al., 1999), (De Smet et al., 2002), (Eisen et al., 1998), and (Reymond et al.,
2000).

18.6.1 C++ Code

The pseudocode of the FSC algorithm is described in Algorithm 15.12. Here we discuss
some implementation issues of the FSC algorithm for clustering the expression data. The
complete code is given in Appendix D.2.

The first thing to cluster a data set is to load the data into memory. We save a data set
into a .csv file. The first row and the first column of a typical data file represent the attribute
names and record names. An example .csv data file is shown in Example 18.1, where EOF
denotes the end of file. Note that there are no commas at the end of any lines.

Example 18.1 The content of an example .csv data file.

Gene name, v1, v2, v3, v4
G1, 1, 2, 3, 4
G2, 4, 3, 2, 1
EOF

The C++ code given in Example 18.3 shows how to read such a .csv data file. How
to use this code is shown in the program in Appendix D.2. The function ReadData
requires four parameters: filename, svLabel, svAtt, and dmData. The parameter
filename contains the name of the data file and its path. (If the data file is located in
the same folder as the program file, the path can be ignored.) The parameter svLabel
contains the record names, such as gene names. The third parameter, svAtt, contains
attribute names, i.e., feature names. The last parameter, dmData, will contain the data
matrix after the function is executed. The function needs two global or static variables n
and d, which denote the number of records and the number of attributes, respectively.
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Example 18.2 The content of an example .csv data file.

Gene name, v1, v2, v3, v4
G1, 1, 2, 3, 4
G2, 4, 3, 2, 1
EOF

The function given in Example 18.3 first counts the number of attributes and the
number of records in the data file. It is very easy to get the wrong number of records in this
part. For example, if the function is used to read the .csv file in Example 18.1, the number
of records is 2, while if the function is used to read the .csv file in Example 18.2, the number
of records will be 1.

After getting the size of the data set, the function then opens the data file again and
reads the attribute names, record names, and data. Here we assume the data are numerical.
This function can be easily modified to read other types of data such as categorical data.

Note that a .csv data file cannot contain quotation marks (“) and (”) when the function
is used to read the .csv data file. For example, if the record names or attribute names contain
quotation marks, then the function will give wrong results. It is better to check whether
quotation marks are present in a data file before reading the data.

Example 18.3 C++ code for reading data from a file.

1 i n t ReadData (
2 c o n s t char ∗ f i l e n a m e ,
3 sVe c t o r &svLabe l ,
4 sVe c t o r &s vAt t ,
5 dMat r ix &dmData
6 ) {
7 i n t i , j ;
8 i f s t r e a m i f s F i l e ;
9 char b u f f [MAX_FIELD_BUFFER ] ;

10

11 t ry {
12 i f s F i l e . open ( f i l e n a m e ) ;
13 / / c o u n t t h e number o f a t t r i b u t e s ;
14 i = 1 ;
15 do{
16 i f ( i f s F i l e . peek ( ) == ’ , ’ )
17 i ++;
18 } whi le ( i f s F i l e . g e t ( ) != ’ \ n ’ ) ;
19 d = i −1; / / t h e f i r s t column i s r e c o r d name
20

21 / / now c o u n t t h e number o f r e c o r d s
22 i = 0 ;
23 do{
24 i f s F i l e . i g n o r e (MAX_LINE_BUFFER , ’ \ n ’ ) ;
25 i ++;
26 } whi le ( ! i f s F i l e . e o f ( ) ) ;
27 n = i −1; / / one r e t u r n a t t h e end o f t h e l a s t l i n e o f t h e f i l e
28 / / NO r e t u r n a f t e r t h e l a s t l i n e o f t h e f i l e
29 i f s F i l e . c l o s e ( ) ;
30

31 / / open t h e f i l e aga in
32 i f s F i l e . open ( f i l e n a m e ) ;
33

34 s vAt t = sVe c t o r ( d , " v " ) ;
35 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
36 f o r ( i =0 ; i <d ; i ++){
37 i f ( i == d−1){
38 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ \ n ’ ) ;
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39 / / remove ’\ n ’
40 f o r ( j =0 ; j < s i z e o f ( b u f f ) ; j ++){
41 i f ( b u f f [ j ] == ’ \ n ’ ) {
42 b u f f [ j ] = ’ ’ ;
43 }
44 }
45 s vAt t [ i ] = b u f f ;
46 } e l s e {
47 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
48 s vAt t [ i ] = b u f f ;
49 }
50 }
51

52 dmData = dMat r ix ( n ) ;
53 i = 0 ;
54 whi le ( ! i f s F i l e . e o f ( ) && i <n ) {
55 / / g e t t h e r e c o r d name
56 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
57 s v La b e l . push_back ( b u f f ) ;
58 f o r ( j =0 ; j <d ; j ++){
59 i f ( j == d−1){ / / d e n o t e s t h e end o f t h e l i n e
60 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ \ n ’ ) ;
61 dmData [ i ] . push_back ( a t o f ( b u f f ) ) ;
62 } e l s e {
63 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
64 dmData [ i ] . push_back ( a t o f ( b u f f ) ) ;
65 }
66 }
67 i ++;
68 }
69

70 i f s F i l e . c l o s e ( ) ;
71 re turn 0 ;
72 }
73 catch ( \ l d o t s ) {
74 cout <<" r e a d i n g d a t a e r r o r "<< e n d l ;
75 re turn −1;
76 }
77 } / / ReadData ( )

The code given in Example 18.4 is the main clustering function of the FSC algorithm.
The function FuzzySub requires four parameters: dmData, dmW, dmZ, and nvShip.
The first parameter dmData contains the data matrix that will be clustered. The second
parameter dmW and the third parameter dmZwill contain the fuzzy dimension weight matrix
and the cluster centers, respectively, after the function is executed. The last parameter will
contain the membership information of the clustering after the function is executed.

The function FuzzySub calls five other functions: Initialization, GetShip,
CalObj, EstZ, and EstW. The function FuzzySub first initializes the fuzzy dimension
weight matrix and the cluster centers and estimates the membership for all records. The
function then repeats estimating the cluster centers, estimating the fuzzy dimension weight
matrix, and estimating the membership until two consecutive objective function values are
equal.

Example 18.4 The function FuzzySub.

1 double FuzzySub (
2 dMat r ix &dmData ,
3 dMat r ix &dmW,
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4 dMat r ix &dmZ ,
5 nVe c t o r &nvShip
6 ) {
7 i n t i , j ;
8 double dObj , dNewObj , d E r r o r ;
9

10 I n i t i a l i z a t i o n (dmZ ,dmW, dmData ) ;
11 Ge tSh ip ( dmData ,dmW, dmZ , nvShip ) ;
12 dObj = CalObj ( dmData ,dmW, dmZ , nvShip ) ;
13

14 d E r r o r = 1 . 0 ;
15 whi le ( dEr ro r >0){
16 EstZ ( dmData , dmZ , nvShip ) ;
17 EstW ( dmData , dmZ ,dmW, nvShip ) ;
18 Ge tSh ip ( dmData ,dmW, dmZ , nvShip ) ;
19 dNewObj = CalObj ( dmData ,dmW, dmZ , nvShip ) ;
20 d E r r o r = f a b s ( dNewObj−dObj ) ;
21 dObj = dNewObj ;
22 }
23

24 re turn dObj ;
25 } / / FuzzySub ( )

The function Initialization (see Example 18.5) initializes the fuzzy dimension
weight matrix and the cluster centers. Cluster centers are randomly selected from the original
data set and the fuzzy dimension weights for each cluster are initialized to be equal.

Example 18.5 The function for initializing the fuzzy dimension weight matrix and the
cluster centers.

1 i n t I n i t i a l i z a t i o n (
2 dMat r ix &dmZ ,
3 dMat r ix &dmW,
4 dMat r ix &dmData
5 ) {
6 i n t i , j , n Index ;
7

8 f o r ( i =0 ; i <k ; i ++){
9 nIndex = ( i n t ) ( n∗ r and ( ) / ( RAND_MAX+ 1 . 0 ) ) ;

10 f o r ( j =0 ; j <d ; j ++){
11 dmZ[ i ] [ j ] = dmData [ n Index ] [ j ] ;
12 dmW[ i ] [ j ] = 1 . 0 / d ;
13 }
14 }
15

16 re turn 0 ;
17 } / / I n i t i a l i z a t i o n ( )

The function GetShip (see Example 18.6) returns the membership of each record
based on the fuzzy dimension weight matrix and the cluster centers. In this function, each
record is assigned to the cluster whose center is nearest to the record in terms of the weighted
distance. The function QuickSort (see Example 20.5) is called here.

Example 18.6 The function for estimating the membership of each record.

1 i n t GetShip (
2 dMat r ix &dmData ,
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3 dMat r ix &dmW,
4 dMat r ix &dmZ ,
5 nVe c t o r &nvShip
6 ) {
7 i n t i , j ;
8 double dTemp ;
9 dVe c t o r d v D i s t ;

10 nVe c t o r nvIndex ;
11

12 d v D i s t = dVe c t o r ( k , 0 . 0 ) ;
13 nvIndex = nVe c t o r ( k , 0 ) ;
14

15 f o r ( i =0 ; i <n ; i ++){
16 f o r ( j =0 ; j <k ; j ++){
17 d v D i s t [ j ] = D i s t a n c e (dmW[ j ] , dmZ[ j ] , dmData [ i ] ) ;
18 nvIndex [ j ] = j ;
19 }
20 dTemp = d v D i s t [ nvShip [ i ] ] ;
21 Q u i c k S o r t ( dvDis t , nvIndex ) ;
22 i f ( dTemp > d v D i s t [ 0 ] )
23 nvShip [ i ] = nvIndex [ 0 ] ;
24 }
25 re turn 0 ;
26 } / / Ge tSh ip ( )

The function CalObj (see Example 18.7) calculates the objective function value.
The objective function value is just the sum of the weighted distances between each record
and its nearest center.

Example 18.7 The function for calculating the objective function value.

1 double CalObj (
2 dMat r ix &dmData ,
3 dMat r ix &dmW,
4 dMat r ix &dmZ ,
5 nVe c t o r &nvShip
6 ) {
7 i n t i , j ;
8 double dTemp ;
9

10 dTemp = 0 . 0 ;
11 f o r ( i =0 ; i <n ; i ++){
12 dTemp += D i s t a n c e (dmW[ nvShip [ i ] ] , dmZ[ nvShip [ i ] ] , dmData [ i ] ) ;
13 }
14

15 re turn dTemp ;
16 } / / CalObj ( )

The function EstZ (see Example 18.8) estimates the cluster center based on the old
centers and the old membership. Since the estimation of new centers does not depend on
the fuzzy dimension weight matrix, the fuzzy dimension weight matrix is not required for
this function. In fact, the new center of a cluster is just the mean of the cluster.

Example 18.8 The function for estimating the cluster centers.

1 i n t EstZ (
2 dMat r ix &dmData ,
3 dMat r ix &dmZ ,
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4 nVe c t o r &nvShip
5 ) {
6 i n t i , j , h ;
7 double dTemp ;
8 nVe c t o r n v S i z e ;
9

10 n v S i z e = nVe c t o r ( k , 0 ) ;
11 f o r ( j =0 ; j <k ; j ++){
12 f o r ( h =0; h<d ; h ++){
13 dmZ[ j ] [ h ] = 0 . 0 ;
14 }
15 }
16 f o r ( i =0 ; i <n ; i ++){
17 n v S i z e [ nvShip [ i ] ] + + ;
18 f o r ( h =0; h<d ; h ++)
19 dmZ[ nvShip [ i ] ] [ h ] += dmData [ i ] [ h ] ;
20 }
21 f o r ( j =0 ; j <k ; j ++){
22 f o r ( h =0; h<d ; h ++){
23 dmZ[ j ] [ h ] /= n v S i z e [ j ] ;
24 }
25 }
26

27 re turn 0 ;
28 } / / Es tZ ( )

The function EstW given in Example 18.9 estimates the fuzzy dimension weight
matrix based on the cluster centers and the old fuzzy dimension weight matrix. The formula
for estimating the fuzzy dimension weight matrix is presented in Section 15.11.

Example 18.9 The function for estimating the fuzzy dimension weight matrix.

1 i n t EstW (
2 dMat r ix &dmData ,
3 dMat r ix &dmZ ,
4 dMat r ix &dmW,
5 nVe c t o r &nvShip
6 ) {
7 i n t j , h ;
8 double dTemp ;
9 dVe c t o r dvVar ;

10

11 dvVar = dVe c t o r ( d , 0 . 0 ) ;
12 f o r ( j =0 ; j <k ; j ++){
13 dTemp = 0 . 0 ;
14 f o r ( h =0; h<d ; h ++){
15 dvVar [ h ] = Va r i a n c e ( j , h , dmData , dmZ , nvShip )+ e p s i l o n ;
16 dTemp += pow ( 1 / dvVar [ h ] , 1 / ( a lpha −1 ) ) ;
17 }
18 f o r ( h =0; h<d ; h ++)
19 dmW[ j ] [ h ] = pow ( 1 / dvVar [ h ] , 1 / ( a lpha −1 ) ) / dTemp ;
20 }
21 re turn 0 ;
22 } / / EstW ( )

Note that except for the parameters in the function ReadData, which are not initial-
ized, the parameters in all other functions are initialized before these function are called. For
example, the parameters dmW, dmZ, and nvShip in the function FuzzySub are initialized
before the function FuzzySub is called.
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18.6.2 Results

The program given inAppendix D.2 is complied by g++with option -O on a Sun Unix work-
station, and the resulting executable program works properly. It seems that the executable
program produced by Bloodshed Dev-C++ Version 4.9.9.2 cannot work correctly.

We first run the program with 10 clusters. The resulting 10 clusters are depicted
in Figures 18.1, 18.2, 18.3, 18.4, and 18.5. These figures are produced by the MATLAB
program given in Example 18.10.

Example 18.10 MATLAB code for plotting clusters.

1 f u n c t i o n P l o t R e s u l t
2

3 c l e a r a l l
4 c l o s e a l l
5 p r o f i l e on
6

7 % Read da ta from f i l e
8 dmData= csvread ( ’ D a t a R e s u l t . c sv ’ ) ;
9

10 % Get t h e membership from t h e f i r s t column
11 nvShip = dmData ( : , 1 ) ;
12 dmData ( : , 1 ) = [ ] ;
13 nvX = 1 : 1 7 ;
14

15 f o r i =1:10
16 nvIndex = f i n d ( nvShip == i ) ;
17 f i g u r e ( i ) , c l f , hold on
18 s T i t l e = ’ C l u s t e r ID : ’ ;
19 s T i t l e = [ s T i t l e i n t 2 s t r ( i ) ’ ; ’ ] ;
20 t i t l e ( [ s T i t l e ’Number o f genes : ’ i n t 2 s t r ( l e n g t h ( nvIndex ) ) ] ) ;
21 p l o t ( nvX , dmData ( nvIndex , : ) , ’k ’ ) ;
22 hold o f f
23 f i l e n a m e = [ ’ C l u s t e r ’ i n t 2 s t r ( i ) ] ;
24 fname = [ ’−f ’ i n t 2 s t r ( i ) ] ;
25 p r i n t ( fname , ’−depsc ’ , f i l e n a m e ) ;
26 c l o s e ;
27 end

Cluster 1 and cluster 2 are plotted in Figure 18.1. We can see from Figure 18.1 that
all genes in cluster 2 are similar to each other. From Figures 18.1, 18.2, 18.3, and 18.4, we
see that clusters 2, 4, 6, and 8 are similar.

The main purpose of this case study is to show how to implement a clustering algorithm
and apply it to cluster a data set. Therefore, the program just outputs the membership of
each record. Interested readers may modify the program given in Appendix D.2 to include
many other functions such as calculation of the variance for each cluster.

18.7 Summary
In this chapter we introduced gene expression data clustering. Gene expression data cluster-
ing is a powerful tool for arranging genes according to similarity in their expression patterns.
Cluster analysis is also the first step in analyzing gene expression data. Many traditional
clustering algorithms such as k-means (see Section 9.1) and SOM (Kohonen, 1989) can be
used to cluster gene expression data. For more details, readers are referred to a survey on
gene expression data clustering by Jiang et al. (2004) and references therein.
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In addition to the background on gene expression clustering, we introduced briefly
how to use the FSC algorithm (see Section 15.11) to cluster a gene expression data set.
The C++ code of the FSC algorithm is presented. Readers may try other gene expression
clustering algorithms such asAdap_Cluster athttp://homes.esat.kuleuven.be/
˜thijs/Work/Clustering.html.
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Figure 18.1. Cluster 1 and cluster 2.
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Figure 18.2. Cluster 3 and cluster 4.
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Figure 18.3. Cluster 5 and cluster 6.
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Chapter 19

Data Clustering in
MATLAB

Clustering is a primary tool in data mining. It has been implemented as packages in much
software, such SAS, S-PLUS, MATLAB, and other data analysis software. In this chapter,
we will focus on clustering in MATLAB. Readers are referred to (SAS Institute Inc., 1983),
(Struyf et al., 1996), and (Struyf et al., 1997) for clustering in SAS and S-PLUS.

MATLAB (MATrix LABoratory) is an integrated environment that provides mathe-
matical computing, visualization, and a powerful technical language. It was introduced by
The MathWorks.

Using MATLAB to implement a clustering algorithm is convenient and easy. The
MATLAB environment enables researchers to plot clustering results on the fly. Some
clustering-related toolboxes for MATLAB have been developed, such as the SOM tool-
box (Vesanto et al., 2000; Vesanto, 2000; Vesanto et al., 1999a,b), and the Netlab toolbox
(Nabney, 2002).

In this chapter, we will introduce some basic MATLAB commands that will be com-
monly used in implementing a clustering algorithm. Also, we will give a complete exam-
ple to illustrate how to implement a clustering algorithm in the MATLAB environment.
Throughout this chapter, we assume that the reader has basic knowledge of the MATLAB
environment. For introductory programming in MATLAB, we refer to (Herniter, 2001).

19.1 Read and Write Data Files
Usually, the data for testing a clustering algorithm are stored in a file or several files. It is not
a good idea to input data from the keyboard when the data set is large. The functionalities
of reading and writing data files in MATLAB give us many advantages. For example, the
test data may be prepared by another program, such as Microsoft Excel, but we can still
read the data in MATLAB. Also, we could create test data using MATLAB and write the
data to a file that can be used by another program. This allows us to exchange data with
others. Table 19.1 gives some commands commonly used in file operations.

Whenever we are reading or writing a file, the first thing we have to do is open the
file. The command in MATLAB is fopen. The fopen command takes two parameters:
filename and permission. The syntax for fopen is

343
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Table 19.1. Some MATLAB commands related to reading and writing files.

Command Description

fopen Open a file for reading or writing

fclose Close a file opened by fopen

fprintf Write formatted text to the device

fscanf Read formatted text from the device

fwrite Write binary data to the device

fread Read binary data from the device

csvwrite Write a comma- separated value file

csvread Read a comma- separated value file

dlmwrite Write a matrix to an ASCII-delimited file

dlmread Read an ASCII-delimited file into a matrix

textread Read formatted data from a text file

fid = fopen(filename, permission)

The first parameter, filename, is a text string that contains the file name, while the second
parameter, permission, is a code that specifies how the file is opened. Variable fid is a
code that identifies the file just opened. Note that each file you open will be identified by a
unique fid code. The fid codes returned by the fopen function start at 3, since−1 through
2 are reserved in MATLAB. Code −1 indicates an error in opening the file. For example,
MATLAB will return a code of −1 if you try to open a nonexisting file. Code 0 stands
for standard input, code 1 stands for standard output, and code 2 stands for standard error.
Some permission codes available in MATLAB are described in Table 19.2.

When you are done with a file, you should always close the file before quitting
MATLAB. The command in MATLAB is fclose. fclose takes one parameter: fid.
The syntax of this command is

status = fclose(fid)

The parameter fid contains the code of the file to be closed. The code given in Example
19.1 illustrates how to open and close a file in MATLAB.

Example 19.1 File operation in MATLAB.

1 >> f i d = fopen ( ’ d a t a . t e s t ’ , ’ r ’ )
2 f i d =
3 3
4 >> f c l o s e ( f i d )
5 ans =
6 0
7 >> pwd
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Table 19.2. Permission codes for opening a file in MATLAB.

Permission code Action

r Open the file for reading (default).

r+ Open the file for reading and writing.

w
Delete the contents of an existing file or create a new
file, and open it for writing.

w+
Delete the contents of an existing file or create a new
file, and open it for reading and writing.

a
Create and open a new file or open an existing file for
writing, appending to the end of the file.

a+
Create and open a new file or open an existing file for
reading and writing, appending to the end of the file.

8 ans =
9 / home / g r a d s / g j g a n / d a t a

10 >> f i d 2 = fopen ( ’ / home / g r a d s / g j g a n / Mat lab / d a t a . c sv ’ , ’ r ’ )
11 f i d 2 =
12 3
13 >> f c l o s e ( f i d 2 )
14 ans =
15 0

MATLAB provides two commands for writing and reading formatted text to files:
fprintf and fscanf. The usage of the two functions is the same as in the C language.
We will not go into detail about the two commands here. The fprintf command puts
human-readable text in a file whose type is also called an ASCII text file. The disadvantage
of this function is that it uses a lot of disk space. If we need to write a large data file that
will only be read by the computer, we can use functions for reading and writing binary files.

The functions for writing and reading binary files in MATLAB are fwrite and
fread. fwrite takes three parameters: fid, d, and precision. The syntax of fwrite is

count = fwrite(fid, d, precision)

The first parameter, fid, is the identifier of the file to which the data will be written. The
second parameter, d, contains the data to be written. The third parameter, precision, is a text
string that tells how you want to store the data. The variable count contains the number of
elements successfully written to the file. Some values of precision for the fwrite function
are given in Table 19.3. For a comprehensive description of this parameter, readers may
refer to the MATLAB manual by typing the following command in MATLAB:

help fread

The fread command is used to retrieve the data stored in a binary file. It also takes
three parameters: fid, size, and precision. The syntax of fread is
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Table 19.3. Some values of precision for the fwrite function in MATLAB.

Precision Description

’char’ 8-bit signed or unsigned character

’short’ 16-bit integer

’int’ 32-bit integer

’long’ 32- or 64-bit integer

’float’ 32-bit floating point

’double’ 64-bit floating point

[data, count] = fread(fid, size, precision)

The parameter fid is the identifier of the file from which we want to read data. The parameter
size contains the dimensions of the array we want to read. The last parameter precision is
the same as that in the fwrite function. Note that in order to read data correctly, you need
to know exactly how it was written. The variable data contains the data retrieved from the
file, and the variable count contains how many elements were read successfully. The code
given in Example 19.2 illustrates how the two functions fwrite and fread work.

Example 19.2 Write and read files in MATLAB.

1 >> f i d 3 = fopen ( ’ t e s t . d a t ’ , ’w ’ )
2 f i d 3 =
3 3
4 >> B = rand ( 2 , 2 )
5 B =
6 0 .9501 0 .6068
7 0 .2311 0 .4860
8 >> f w r i t e ( f i d 3 , B , ’ d o u b l e ’ )
9 ans =

10 4
11 >> f c l o s e ( f i d 3 )
12 ans =
13 0
14 >> f i d 4 = fopen ( ’ t e s t . d a t ’ , ’ r ’ )
15 f i d 4 =
16 3
17 >> [A, c o u n t ] = f read ( f i d 4 , [ 2 , 2 ] , ’ d o u b l e ’ )
18 A =
19 0 .9501 0 .6068
20 0 .2311 0 .4860
21 c o u n t =
22 4
23 >> f c l o s e ( f i d 4 )
24 ans =
25 0

In many clustering applications, the data are stored in a text file that separates the data
fields by commas. The comma is not part of the data. It is only used to separate the various
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data fields. A character used in this manner is called a delimiter since it “delimits” the data.
The only requirement of a character to be a delimiter is that the character is not used in the
data. Some common characters used for delimiters are commas, spaces, semicolons, and
tabs.

MATLAB provides two functions for writing and reading numerical data to .csv
files. The two functions are csvwrite and csvread. The two functions are only used
for writing and reading numerical data. The csvwrite function takes two parameters:
filename and m. The syntax of csvwrite is

csvwrite(filename, m)

The parameter filename is the name of the file to which you want to write the matrix. The
parameter m is the matrix to be written.

Thecsvread function is used to read .csv files. It takes only one parameter: filename.
The syntax of the csvread function is

m = csvread(filename)

The parameter filename is the name of the file from which you want to read data. The
variable m contains the matrix read from the file. Use of the two functions is shown in
Example 19.3.

Example 19.3 Write and read a .csv file in MATLAB.

1 >> B = rand ( 2 , 2 )
2 B =
3 0 .8913 0 .4565
4 0 .7621 0 .0185
5 >> c s v w r i t e ( ’ t e s t . c sv ’ ,B)
6 >> A = csvread ( ’ t e s t . c sv ’ )
7 A =
8 0 .8913 0 .4565
9 0 .7621 0 .0185

19.2 Handle Categorical Data
MATLAB deals best with purely numerical data. This means that when you have nonnu-
merical categorical data it is best to convert these data into numerical codes. One way to
do this is to replace the categorical symbols by corresponding integers in software such as
Microsoft Excel. This is feasible when the data set is not large. When the data set under
consideration is very large, one can write a small program to convert the data into numerical
codes before clustering in MATLAB. For example, the program in Example 19.4 can be
used to convert a categorical data set to a data set of integers and preserve the inherent
structures.

Example 19.4 Conversion of categorical values.

1 i n t C a t 2 I n t (
2 s M a t r i x &smData , / / I n p u t c a t e g o r i c a l da ta m a t r i x
3 nMat r ix &nmData / / Ou tpu t i n t e g e r m a t r i x
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4 ) {
5 i n t n , d , i , j , s , nTemp ;
6 s M a t r i x smSymbol ;
7 s L i s t slTemp ;
8 s l I t e r s l iTemp ;
9

10 / / Get t h e d i m e n s i o n o f t h e d a t a m a t r i x
11 n = smData . s i z e ( ) ;
12 d = smData [ 0 ] . s i z e ( ) ;
13

14 / / Count d i s t i n c t a t t r i b u t e v a l u e s f o r each a t t r i b u t e
15 smSymbol = s M a t r i x ( d ) ;
16 f o r ( j =0 ; j <d ; j ++){
17 f o r ( i =0 ; i <n ; i ++){
18 slTemp . push_back ( smData [ i ] [ j ] ) ;
19 }
20 slTemp . s o r t ( ) ;
21 slTemp . u n i q u e ( ) ;
22

23 s l iTemp = slTemp . b e g i n ( ) ;
24 whi le ( s l iTemp != slTemp . end ( ) ) {
25 smSymbol [ j ] . push_back (∗ s l iTemp ) ;
26 s l iTemp ++;
27 }
28 slTemp . c l e a r ( ) ;
29 }
30

31 / / Conver t c a t e g o r i c a l v a l u e s t o i n t e g e r s
32 nmData = nMat r ix ( n ) ;
33 f o r ( i =0 ; i <n ; i ++)
34 nmData [ i ] = nVe c t o r ( d , 0 ) ;
35 f o r ( j =0 ; j <d ; j ++){
36 nTemp = smSymbol [ j ] . s i z e ( ) ;
37 f o r ( i =0 ; i <n ; i ++){
38 f o r ( s =0 ; s <nTemp ; s ++){
39 i f ( smSymbol [ j ] [ s ] == smData [ i ] [ j ] ) {
40 nmData [ i ] [ j ] = s +1;
41 break ;
42 }
43 }
44 }
45 }
46

47 re turn 0 ;
48 } / / C a t 2 I n t

Example 19.5 A categorical data set.

Name, v1, v2, v3
R1, A, B, C
R2, B, B, A
R3, A, C, C
R4, B, B, C
R5, C, A, A

A complete program for converting categorical data sets is given in Appendix D.1. In
particular, if one uses the program to convert the data set in Example 19.5, one will get the
data set shown in Example 19.6. In this program, the attribute names and record names are
not exported to the converted data.
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Example 19.6 A converted data set.

1,2,2
2,2,1
1,3,2
2,2,2
3,1,1

19.3 M-files, MEX-files, and MAT-files
M-files, MAT-files, and MEX-files are three special files that one deals with in MATLAB. It
is helpful to get to know what these files are and how they work in MATLAB programming.

19.3.1 M-files

M-files are ordinary text (ASCII) files to which one can save MATLAB commands. You
can create M-files using any of your favorite text editors such as emacs, pico, vi, etc.
from the UNIX shell. All M-files have the extension “.m.” Comments can be inserted with
“%.” Only the output from the commands gets displayed when an M-file is run. One can
type echo on at the MATLAB prompt before running an M-file script to see the input
commands and comments as the script M-file is run. By typing what at the MATLAB
prompt, one can see what M-files and MAT-files are available in the current directory.

M-files can be further classified into two categories: script M-files and function M-
files. A script M-file consists of just a collection of MATLAB commands or scripts. For
example, if you collect a sequence of commands that you input during an interactive session
with MATLAB and save them in a file with extension “.m,” then that file becomes a script
M-file. You could run a script M-file by just typing its name without the extension “.m” at
the MATLAB command prompt.

Example 19.7 An example M-file.

1 f u n c t i o n e g m f i l e 1
2 % e g m f i l e 1 .m
3 % An example s c r i p t M− f i l e
4

5 % D e f i n e a m a t r i x
6 A = [ 1 , 2 ; 3 , 4 ]
7

8 % C a l c u l a t e t h e d e t e r m i n a n t o f m a t r i x A
9 det (A)

Example 19.7 gives a script M-file. If you save this file to your current directory, and
then type what and the file name egmfile1 at the MATLAB command prompt, you will
see the results as follows.

1 >> what
2 M− f i l e s i n t h e c u r r e n t d i r e c t o r y / home / g r a d s / g j g a n / Mat lab
3 d i s t a n c e e g m f i l e 1 kmodes
4 >> e g m f i l e 1
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5 A =
6 1 2
7 3 4
8 ans =
9 −2

Function M-files are M-files that accept input arguments and give out output values
after they are called. The internal variables in a function M-file are local to the function and
invisible to the main MATLAB workspace. The function definition line in a function M-file
consists of four parts: keyword, output arguments, function name, and input arguments.
The function line can be described as follows:

function [o1,o2,…] = fname(i1,i2…)

where function is the keyword, o1,o2,… are output arguments, fname is the name of
the function, and i1,i2,… are input arguments. Usually, the name of the function M-file
is chosen as the name of the function. One can type help fname at the MATLAB prompt
to get the comments in the function M-file “fname.m.”

Example 19.8 An example function M-file for computing the distance between two points.

1 f u n c t i o n d= d i s t a n c e (A, B , f )
2 % f u n c t i o n d= d i s t a n c e (A , B , f )− Th i s f u n c t i o n c a l c u l a t e s t h e
3 % d i s t a n c e be tween two r e c o r d s A and B . f i s a parame te r
4 % which i n d i c a t e s which d i s t a n c e measure w i l l be used .
5 %
6 % d = d i s t a n c e be tween A and B , i f A , B , f are v a l i d i n p u t s
7 % d = −1 i f A and B are o f d i f f e r e n t d i m e n s i o n s
8 % d = −2 i f f i s n o t a v a l i d parame te r
9 %

10 % f = 1 E u c l i d e a n d i s t a n c e
11 % f = 2 squared E u c l i d e a n d i s t a n c e
12

13 dimA = s i z e (A ) ;
14 dimB = s i z e (B ) ;
15

16 i f ( dimA ( 2 ) ~= dimB ( 2 ) )
17 d = −1;
18 re turn ;
19 end
20

21 d = 0 . 0 ;
22 s w i t c h f
23 c a s e 1
24 f o r j =1 : dimA ( 2 )
25 d = d + (A( j )−B( j ) ) ∗ (A( j )−B( j ) ) ;
26 end
27 d = s q r t ( d ) ;
28 c a s e 2
29 f o r j =1 : dimA ( 2 )
30 d = d + (A( j )−B( j ) ) ∗ (A( j )−B( j ) ) ;
31 end
32 o t h e r w i s e
33 f p r i n t f ( ’ I n v a l i d f p a r a m e t e r . \ n ’ ) ;
34 d = −2;
35 end

The M-file given in Example 19.8 is a function M-file. The function distance has
three input arguments and one output argument. If you type the sequence of commands
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help distance, x=[1,2,3];, y=[3,2,1];, distance(x,y,1), distance
(x,y,2), and distance(x,y,3) at the MATLAB command prompt, you will see the
following results.

1 >> help d i s t a n c e
2

3 f u n c t i o n d= d i s t a n c e (A, B , f )− Th i s f u n c t i o n c a l c u l a t e s t h e
4 d i s t a n c e between two r e c o r d s A and B . f i s a p a r a m e t e r
5 which i n d i c a t e s which d i s t a n c e measure w i l l be used .
6

7 d = d i s t a n c e between A and B , i f A, B , f a r e v a l i d i n p u t s
8 d = −1 i f A and B a r e o f d i f f e r e n t d i m e n s i o n s
9 d = −2 i f f i s n o t a v a l i d p a r a m e t e r

10

11 f = 1 E u c l i d e a n d i s t a n c e
12 f = 2 s q u a r e d E u c l i d e a n d i s t a n c e
13

14 >> x = [ 1 , 2 , 3 ] ;
15 >> y = [ 3 , 2 , 1 ] ;
16 >> d i s t a n c e ( x , y , 1 )
17 ans =
18 2 .8284
19 >> d i s t a n c e ( x , y , 2 )
20 ans =
21 8
22 >> d i s t a n c e ( x , y , 3 )
23 I n v a l i d f p a r a m e t e r .
24 ans =
25 −2

It is your responsibility to handle all possible invalid input arguments in a function.
If you try distance(x,y,1) for x=[1,2] and y=[1,2,3], you will get output −1.

19.3.2 MEX-files

MATLAB scripts are very slow when it comes to loops. Sometimes, however, the loops
can be avoided by vectorizing the code. In the cases where one has to use loops (such as
when a computation is not vectorizable) and speed is important, it is possible to rewrite the
MATLAB script in C language through a MEX-file (MATLAB EXecutable file). MEX-
files enable the programmer to write efficient code in C without losing the flexibility of
the interpreted language. Everything you can do from an M-file, you can also do from a
MEX-file. You can also write MEX-files in C++ and FORTRAN, which is very similar.

MEX-files have some disadvantages. One limitation of MEX-files is that they are
operating system dependent (Kuncicky, 2004). Another limitation is that data structure
conversions from MATLAB to C require an understanding of MATLAB data storage meth-
ods. For a different platform, the extensions for the MEX- files are different. Table 19.4
gives some MEX-file extensions for different platforms.

Example 19.9 A simple example MEX-file hello.c written in C.

1 /∗ A s i m p l e MEX− f i l e : h e l l o . c ∗ /
2

3 # i n c l u d e "mex . h "
4

5 void mexFunct ion ( i n t n lhs , mxArray ∗ p l h s [ ] ,
6 i n t nrhs , c o n s t mxArray ∗ p r h s [ ] ) {
7 m e x Pr i n t f ( " Hel lo , MEX− f i l e s ! \ n " ) ;
8 }
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Table 19.4. MEX-file extensions for various platforms.

Platform MEX-file Extension

Alpha mexaxp

HP, Version 10.20 mexhp7

HP, Version 11.x mexhpux

IBM RS/6000 mexrs6

Linux mexglx

SGI, SGI64 mexsg

Solaris mexsol

Windows dll

Each MEX-file must have a function called mexFunction with a predefined set of
parameters. The code given in Example 19.9 is a very simple MEX-file. ThemexFunction
has four parameters: nlhs, the number of left-hand side parameters; plhs[], the array of left-
hand side parameters; nrhs, the number of right-hand side parameters; and prhs[], the array
of right-hand side parameters. plhs[] and prhs[] are arrays of pointers to mxArray struc-
tures that encapsulate MATLAB arrays. Readers may refer to the “MATLAB Application
Program Interface Reference,” which lists many functions to deal with the mxArray. To
compile the MEX-file hello.c given in Example 19.9, type

mex hello.c

at the MATLAB command prompt. This will create a MEX-file called hello with an appro-
priate extension that depends on the platform. The MEX-file can be executed in the same
way you would execute an M-file. To execute the MEX-file hello.c, type hello at the
MATLAB command prompt, and you will get “Hello, MEX-files!” displayed.

Example 19.10 An example function M-file and its corresponding MEX-file.

1 f u n c t i o n s = msum( n )
2 % F u n c t i o n s=msum ( n ) − Th i s f u n c t i o n c a l c u l a t e s t h e
3 % sum o f 1 , 2 , \ l d o t s , n .
4 % The argument n must be a p o s i t i v e i n t e g e r .
5 %
6 % s = −1 i f n i s an i n v a l i d i n p u t
7 % s = n∗n ∗ ( n +1)∗ ( n +1) /4 i f n i s v a l i d
8 %
9

10 i f n<= 0
11 s = −1;
12 re turn ;
13 end
14

15 i f n~= f l o o r ( n )
16 s = −1;
17 re turn ;
18 end
19

20 s = 0 ;
21 f o r i =1 : n
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22 f o r j =1 : n
23 s = s+ i ∗ j ;
24 end
25 end

1 /∗
2 ∗ mxsum . c
3 ∗ /
4

5 # i n c l u d e "mex . h "
6

7 vo id mexFunction ( i n t n lh s , mxArray ∗ p l h s [ ] ,
8 i n t n rhs , c o n s t mxArray ∗ p r h s [ ]
9 ) {

10 d o u b l e s =0;
11 d o u b l e ∗y ;
12 i n t n , i , j ;
13 /∗ Check f o r p r o p e r number o f input and o u t p u t a rgumen t s ∗ /
14 i f ( n r h s ! = 1 ) {
15 mexErrMsgTxt ( " One input argument i s r e q u i r e d . " ) ;
16 }
17 i f ( n lh s >1){
18 mexErrMsgTxt ( " Too many o u t p u t a rgumen t s . " ) ;
19 }
20

21 n = ∗mxGetPr ( p r h s [ 0 ] ) ;
22 f o r ( i =1 ; i <n +1; i ++){
23 f o r ( j =1 ; j <n +1; j ++){
24 s += i ∗ j ;
25 }
26 }
27

28 /∗ C r e a t e an o u t p u t m a t r i x and p u t t h e r e s u l t i n i t ∗ /
29 p l h s [ 0 ] = mxCrea teDoubleMat r ix ( 1 , 1 , mxREAL ) ;
30 y = mxGetPr ( p l h s [ 0 ] ) ;
31 ∗y = s ;
32 }

The greatest advantage of MEX-files is that they run much faster than the correspond-
ing M-files. Example 19.10 gives an example to compare the running time of a function
written in an M-file and the running times of the same function written in a MEX-file. To
compare the running times of the M-file and the MEX-file given in Example 19.10, one can
use the following script:

tic
s1 = msum(500)
t1 = toc
tic
s2 = mxsum(500)
t2 = toc

Execution of the above MATLAB code gives the following results (the results are dependent
on the computer on which you run MATLAB):

>>testmmex
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s1 =
1.5688e+10

t1 =
11.9972

s2 =
1.5688e+10

t2 =
0.1534

The time complexity of the function computed in the M-file and the MEX-file isO(n2),
where n is the input parameter. The M-file uses 11.9972 seconds, while the corresponding
MEX-file uses only 0.1534 second.

19.3.3 MAT-files

MAT-files are machine-dependent binary data files that MATLAB uses for saving data and
workspace to disk. A sort of machine independence is achieved with MAT-files, since
they can be ported to different architectures, as MATLAB can identify the architecture
information from the MAT-files.

To save the MATLAB workspace to disk, one can just type save at the MATLAB
command prompt. Then the workspace is saved to “matlab.mat” by default. To save the
workspace with a different name, one can use save filename. To load the workspace
into MATLAB, one can use the MATLAB function load.

19.4 Speed up MATLAB
Since MATLAB is an interpreted language instead of a compiled language (such as C, C++,
or FORTRAN), its speed will almost always lag behind that of a custom program written
in a compiled language like C, especially for loops. However, this speed loss is made up
for by the ease of code development. In this section, we introduce some ways to speed up
MATLAB.

The speed of MATLAB can be increased significantly by careful construction of the
scripts. One basic rule to follow when writing a MATLAB script is that one should try to
avoid the use of loops in MATLAB. If loops cannot be avoided, one can vectorize the loop
or write part of the code as a MEX function (see Section 19.3).

Let us consider an example of calculating the simple matching distance between two
categorical objects x and y. It is natural to construct the following code using the for loop
in MATLAB:

s=0;
for i=1:d

if (x(i)!=y(i))
s = s+1;

end
end



19.5. Some Clustering Functions 355

Table 19.5. Some MATLAB clustering functions.

Function Description

clusterdata Construct clusters from data

pdist Pairwise distance between observations

linkage Create hierarchical cluster tree

cluster Construct clusters from linkage output

dendrogram Plot dendrogram graphs

kmeans k-means clustering

silhouette Silhouette plot for clustered data

inconsistent Calculate the inconsistency coefficient of a cluster tree

For d = 100,000, the above code takes about 0.48 second to execute. A vectorized
approach is to use the MATLAB function find:

s = length(find(abs(x-y)>0));

This code takes about 0.02 second to execute. Therefore, the vectorized approach is
approximately 24 times faster than the natural approach.

If loops in a clustering algorithm cannot be avoided and cannot be vectorized, then
one can write the loops in a MEX function. We assume that one uses MATLAB as an
assistant while developing an algorithm. After the algorithm is developed, one may write
the whole algorithm in a compiled language such as C or C++ to test its performance.

19.5 Some Clustering Functions
MATLAB has some built-in functions for the purpose of clustering. In particular, hierarchi-
cal clustering and k-means are implemented in the Statistics Toolbox of MATLAB. Some
clustering functions are listed in Table 19.5. This section introduces some functions and
clustering examples in MATLAB.

19.5.1 Hierarchical Clustering

In MATLAB, hierarchical clustering of a data set consists of three steps:

(a) Calculate pairwise distances of objects in the data set. The Statistics Toolbox function
pdist is used for this purpose.

(b) Construct a binary, hierarchical cluster tree. The function linkage is used to group
objects into such a cluster tree based on the pairwise distances calculated in the
previous step.

(c) Cut the hierarchical tree into clusters. In this step, the function cluster can be used
to create clusters.
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Example 19.11 illustrates how to calculate pairwise distances of objects in a data set
using the function pdist. The function squareform transforms a vector of pairwise
distances to matrix form. The many options of the function pdist are described in Table
19.6. In addition to calculating distances using the options in Table 19.6, the functionpdist
can calculate distances using a user-defined distance function. Example 19.12 illustrates
how to customize the distance function to calculate pairwise distances.

Example 19.11 Calculate pairwise distance using pdist.

1 >> D=[1 1 ; 2 2 ; 2 1 ]
2

3 D =
4

5 1 1
6 2 2
7 2 1
8

9 >> Y = p d i s t (D)
10

11 Y =
12

13 1 .4142 1 .0000 1 .0000
14

15 >> s q u a r e f o r m (Y)
16

17 ans =
18

19 0 1 .4142 1 .0000
20 1 .4142 0 1 .0000
21 1 .0000 1 .0000 0
22

23 >> Y = p d i s t (D, ’ m a h a l a n o b i s ’ )
24

25 Y =
26

27 2 .0000 2 .0000 2 .0000
28

29 >> s q u a r e f o r m (Y)
30

31 ans =
32

33 0 2 .0000 2 .0000
34 2 .0000 0 2 .0000
35 2 .0000 2 .0000 0
36

37 >> Y = p d i s t (D, ’ minkowski ’ , 2 )
38

39 Y =
40

41 1 .4142 1 .0000 1 .0000

Example 19.12 A user-defined distance function.

1 f u n c t i o n d = d i s t f u n c t i o n ( v ,U)
2 %
3 % F i l e name : d i s t f u n c t i o n .m
4 % User−d e f i n e d d i s t a n c e f u n c t i o n
5 % Here we use E u c l i d e a n d i s t a n c e
6 %
7

8 % Check whe ther d i m e n s i o n s match
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Table 19.6. Options of the function pdist.

Option Description

euclidean Euclidean distance (default)

seuclidean Standardized Euclidean distance

mahalanobis Mahalanobis distance

cityblock City block metric

minkowski Minkowski metric

cosine One minus the cosine of the included angle between points

correlation One minus the sample correlation between points

spearman One minus the sample Spearman’s rank correlation

hamming Hamming distance

jaccard One minus the Jaccard coefficient

chebychev Chebychev distance

9 i f s i z e ( v , 2 ) ~ = s i z e (U, 2 )
10 f p r i n t f ( ’ Dimens ions o f i n p u t p a r a m e t e r s do n o t match ! \ n ’ ) ;
11 end
12

13 [ nObj nDim ] = s i z e (U ) ;
14 d = z e ro s ( nObj , 1 ) ;
15

16 % C a l c u l a t e d i s t a n c e s
17 f o r i =1 : nObj
18 d ( i ) = s q r t ( sum ( ( v−U( i , : ) ) . ^ 2 ) ) ;
19 end

If we save the above MATLAB code to an M-file named distfunction.m, we can call this
distance function in the function pdist as follows.

1 >> D=[1 1 ; 2 2 ; 1 2 ]
2

3 D =
4

5 1 1
6 2 2
7 1 2
8

9 >> Y = p d i s t (D, @ d i s t f u n c t i o n )
10 Warning : The input a rgumen t s f o r c a l l e r −d e f i n e d d i s t a n c e f u n c t i o n s have
11 changed b e g i n n i n g i n R14 . See t h e help f o r d e t a i l s .
12 > In p d i s t a t 302
13

14 Y =
15

16 1 .4142 1 .0000 1 .0000

The function linkage creates a hierarchical tree and its input parameter is a distance
vector of length n(n−1)

2 , where n is the number of objects in the data set. The options to create
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Table 19.7. Options of the function linkage.

single Shortest distance (default)

complete Farthest distance

average Unweighted average distance (UPGMA)

weighted Weighted average distance (WPGMA)

centroid Centroid distance (UPGMC)

median Weighted center of mass distance (WPGMC)

ward Inner squared distance (minimum variance algorithm)

a hierarchical tree are described in Table 19.7. These hierarchical methods are discussed in
Chapter 7. Example 19.13 shows how to use the function linkage.

Example 19.13 Create a hierarchical tree using the function linkage.

1 >> D=[1 1 ; 2 2 ; 4 4 ; 2 1 ; 3 4 ; 4 3 ] ;
2 >> Y = p d i s t (D ) ;
3 >> Z = l i n k a g e (Y)
4

5 Z =
6

7 3 .0000 6 .0000 1 .0000
8 5 .0000 7 .0000 1 .0000
9 1 .0000 4 .0000 1 .0000

10 2 .0000 9 .0000 1 .0000
11 8 .0000 10 .0000 2 .2361
12

13 >> Z = l i n k a g e (Y, ’ median ’ )
14

15 Z =
16

17 3 .0000 6 .0000 1 .0000
18 2 .0000 4 .0000 1 .0000
19 5 .0000 7 .0000 1 .1180
20 1 .0000 8 .0000 1 .1180
21 9 .0000 10 .0000 3 .2016

Once a hierarchical tree is created by the function linkage, a dendrogram can
be obtained by the command dendrogram. For example, let Z be the hierarchical
tree in Example 19.13. Then the corresponding dendrogram can be obtained by typing
dendrogram(Z) in the MATLAB command prompt. The resulting dendrogram is shown
in Figure 19.1.

The function cluster forms clusters by cutting a hierarchical tree created by the
function linkage. Example 19.14 illustrates how to construct clusters using the function
cluster. The result of the function cluster is an n × 1 vector whose ith component
represents the index of the cluster to which the ith object belongs, where n is the number of
objects. In fact, a data set can be clustered by a single function, i.e., clusterdata. Ex-
ample 19.15 shows how to cluster a data set in one step using the function clusterdata.
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Figure 19.1. A dendrogram created by the function dendrogram.

Example 19.14 Construct clusters using the function cluster.

1 >> D=[1 1 ; 2 2 ; 4 4 ; 2 1 ; 3 4 ; 4 3 ] ;
2 >> Y = p d i s t (D ) ;
3 >> Z = l i n k a g e (Y, ’ median ’ ) ;
4 >> c l u s t e r ( Z , ’ maxclus ’ , 2 )
5

6 ans =
7

8 2
9 2

10 1
11 2
12 1
13 1

Example 19.15 Construct clusters using the function clusterdata.

1 >> D=[1 1 ; 2 2 ; 4 4 ; 2 1 ; 3 4 ; 4 3 ] ;
2 >> c l u s t e r d a t a (D, ’ maxclus ’ , 2 )
3

4 ans =
5

6 2
7 2
8 1
9 2

10 1
11 1

19.5.2 k-means Clustering

k-means clustering in MATLAB can be done by the function kmeans. In MATLAB,
kmeans uses a two-phase iterative algorithm to minimize the sum of point-to-centroid
distances:
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Table 19.8. Values of the parameter distance in the function kmeans.

Value Description

sqEuclidean Squared Euclidean distance (default)

cityblock Sum of absolute differences

cosine One minus the cosine of the included angle between points

correlation One minus the sample correlation between points

Hamming Percentage of bits that differ (only for binary data)

Table 19.9. Values of the parameter start in the function kmeans.

Value Description

sample Select k objects from D at random (default)

uniform Select k points uniformly at random from the range of D

cluster Perform a preliminary clustering phase on
a random 10% subsample of D

Matrix Form the k × d matrix of starting centers

(a) In the first phase, points are reassigned to their nearest cluster centroid in each iteration
and then cluster centroids are recalculated all at once. This phase provides a fast but
potentially only approximate solution that is used as a starting point for the second
phase.

(b) In the second phase, points are individually reassigned if the reassignment will reduce
the sum of distances, and cluster centroids are recalculated after each reassignment.
In this phase, each iteration consists of one pass though all the points.

The function kmeans can be called in the following ways:

(a) A = kmeans(D, k);

(b) [A,B] = kmeans(D,k);

(c) [A,B,C] = kmeans(D,k);

(d) [A,B,C,Y] = kmeans(D,k);

(e) […] = kmeans(…,’param1’,val1,’param2’,val2,…),

where D is an input (say n× d) data matrix, k is the input number of clusters, A is an n× 1
vector containing clustering indices of each point, B is an output k × d matrix containing
the k cluster centers, C is an output 1× k vector containing the within-cluster sum of point-
to-center distances, and Y is an output n × k matrix containing distances from each point
to every center.

The function kmeans can take the following parameters:

(a) distance, the distance measure used in kmeans, where the values that this pa-
rameter can take are described in Table 19.8;



19.5. Some Clustering Functions 361

Table 19.10. Values of the parameter emptyaction in the function kmeans.

Value Description

error Treat an empty cluster as an error (default)

drop Remove any empty clusters

singleton Create a new cluster consisting of the one point
farthest from its center

Table 19.11. Values of the parameter display in the function kmeans.

Value Description

notify Display only warning and error messages (default)

off Display no output

iter Display information about each iteration

final Display a summary of each run

(b) start, the cluster centers’ initialization in kmeans, where the available methods
of initialization are described in Table 19.9;

(c) replicates, the number of runs of the k-means algorithm;

(d) maxiter, the maximum number of iterations, where the default value is 100;

(e) emptyaction, actions to deal with empty clusters, where the available methods to
do so are described in Table 19.10;

(f) display, ways to display output, where the available options of this parameter are
described in Table 19.11.

Example 19.16 illustrates how to use the function kmeans. In this example, the initial
centers are supplied to the function kmeans. The algorithm converges in two iterations for
this data set.

Example 19.16 k-means clustering using the function kmeans.

1 >> D=[1 1 ; 2 2 ; 4 4 ; 2 1 ; 3 4 ; 4 3 ] ;
2 >> I n i t C e n t e r =[0 1 ; 5 3 ] ;
3 >> [A, B , C ,Y] = kmeans (D, 2 , ’ d i s t a n c e ’ , ’ c i t y b l o c k ’ , ’ s t a r t ’ , I n i t C e n t e r )
4 2 i t e r a t i o n s , t o t a l sum of d i s t a n c e s = 4
5

6 A =
7

8 1
9 1

10 2
11 1
12 2
13 2
14

15

16 B =
17

18 2 1
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19 4 4
20

21

22 C =
23

24 2
25 2
26

27

28 Y =
29

30 1 6
31 1 4
32 5 0
33 0 5
34 4 1
35 4 1

19.6 Summary
Some popular clustering algorithms have been implemented as built-in functions in MAT-
LAB. Some of these functions are introduced in this chapter with examples. For detailed
descriptions of these functions, readers are referred to the help manuals accompanying
the MATLAB software or on The MathWorks website. Some clustering-related MAT-
LAB toolboxes and codes can be found at http://www.fmt.vein.hu/softcomp/
fclusttoolbox/.
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Chapter 20

Clustering in C/C++

The C programming language is widely used in both industry and academics. The C++
programming language is an extension of the C language for object-oriented programming.
We shall of course focus on cluster analysis in this chapter rather than the programming
languages.

This chapter introduces clustering using C/C++. First, we introduce SGI’s Standard
Template Library (STL) and some classes, including vector and list. Then we introduce
how to compile a C++ program. Finally, we introduce some fundamental elements of
implementing clustering algorithms in C/C++. We assume that readers have some basic
knowledge of the C/C++ programming languages.

20.1 The STL
The STL is a C++ library of container classes, algorithms, and iterators, which provides
many of the basic algorithms and data structures of computer science. The STL includes the
classes vector, list, deque, set, multiset, map, multimap, hash_set, hash_multiset, hash_map,
and hash_multimap. Each of these classes is a template and can be instantiated to contain
any type of object. For more information, readers are referred to the site http://www.
sgi.com/tech/stl/.

For the clustering algorithms in this chapter, only two STL classes are used: the vector
class and the list class.

20.1.1 The vector Class

The vector class is the simplest class of the STL. It supports random access to elements,
constant time insertion, and removal of elements at the end and linear time insertion and
removal of elements at the beginning and in the middle. The number of elements in a vector
may vary dynamically and the memory management is automatic.

To use the vector class, one first needs to add the line

#include <vector>

363



364 Chapter 20. Clustering in C/C++

to the header of the program, and then instantiate the class to contain the desired type of
object. For instance, one can use the code

typedef vector<int> nVector;

to instantiate the class to contain integers.

Example 20.1 The STL vector class.

1 /∗
2 ∗ u s e v e c . cpp
3 ∗ /
4

5 # i n c l u d e < s t d i o . h>
6 # i n c l u d e < s t d l i b . h>
7 # i n c l u d e < v e c t o r >
8

9 us ing namespace s t d ;
10

11 / / v e c t o r s
12 t y p e d e f v e c t o r < i n t > nVe c t o r ;
13

14 i n t main ( i n t argc , char ∗ a rgv [ ] ) {
15 i n t i , n S i z e ;
16 nVe c t o r nvExa ;
17

18 n S i z e = 1 0 0 ;
19 nvExa = nVe c t o r ( nSize , 0 ) ;
20 f o r ( i =0 ; i < n S i z e ; i ++)
21 nvExa [ i ] = i +1 ;
22 p r i n t f ( "%d \ n " , nvExa . s i z e ( ) ) ;
23

24 f o r ( i =0 ; i < n S i z e ; i ++)
25 nvExa . pop_back ( ) ;
26 p r i n t f ( "%d \ n " , nvExa . s i z e ( ) ) ;
27

28 f o r ( i =0 ; i < n S i z e ; i ++)
29 nvExa . push_back ( i + 1 ) ;
30 p r i n t f ( "%d \ n " , nvExa . s i z e ( ) ) ;
31

32 re turn 0 ;
33 }

Compiling and running the code given in Example 20.1 will give the following results:

100
0
100

Example 20.1 illustrates how to use the STL vector class. In this example, four
members of the vector class are tested. Table 20.1 gives a list of some frequently used
members of the vector class. A complete list of members of this class can be found at
http://www.sgi.com/tech/stl/Vector.html.

20.1.2 The list Class

The STL list class supports both forward and backward traversal and constant time insertion
and removal of elements at the beginning or the end or in the middle of the sequence. The
important feature of the list class is that it can sort and remove its duplicate elements.
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Table 20.1. Some members of the vector class.

Member Description

size() Returns the size of the vector
vector() Creates an empty vector
vector(n, & t) Creates a vector with n copies of t
push_back(const T&) Inserts a new element at the end
pop_back() Removes the last element

To use the list class, one first needs to add the line

#include <list>

to the header of the program, and then instantiate the class to contain the desired type of
object. For instance, one can use the code

typedef list<int> nList;

to instantiate the class to contain integers.

Example 20.2 The STL list class.

1 /∗
2 ∗ u s e l s t . cpp
3 ∗ /
4

5 # i n c l u d e < s t d i o . h>
6 # i n c l u d e < s t d l i b . h>
7 # i n c l u d e < l i s t >
8

9 us ing namespace s t d ;
10

11 / / v e c t o r s
12 t y p e d e f l i s t < i n t > n L i s t ;
13 t y p e d e f n L i s t : : i t e r a t o r n l I t e r ;
14

15 i n t main ( i n t argc , char ∗ a rgv [ ] ) {
16 i n t i , n S i z e ;
17 n L i s t n lExa ;
18 n l I t e r i lTemp ;
19

20 n S i z e = 5 ;
21

22 i lTemp = nlExa . b e g i n ( ) ;
23 f o r ( i =0 ; i < n S i z e ; i ++){
24 n lExa . push_back (5− i ) ;
25 n lExa . push_back (1+ i ) ;
26 }
27 f o r ( i lTemp = nlExa . b e g i n ( ) ; i lTemp != nlExa . end ( ) ; i lTemp ++)
28 p r i n t f ( "%d " , ∗ i lTemp ) ;
29 p r i n t f ( " \ n " ) ;
30

31 n lExa . s o r t ( ) ;
32 f o r ( i lTemp = nlExa . b e g i n ( ) ; i lTemp != nlExa . end ( ) ; i lTemp ++)
33 p r i n t f ( "%d " , ∗ i lTemp ) ;
34 p r i n t f ( " \ n " ) ;
35

36 n lExa . u n i q u e ( ) ;
37 f o r ( i lTemp = nlExa . b e g i n ( ) ; i lTemp != nlExa . end ( ) ; i lTemp ++)
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Table 20.2. Some members of the list class.

Member Description

size() Returns the size of the list
list() Creates an empty list
list(n, & t) Creates a list with n copies of t
push_front(const T&) Inserts a new element at the beginning
push_back(const T&) Inserts a new element at the end
pop_front() Removes the first element
pop_back() Removes the last element
sort() Sorts according to operator <
unique() Removes all but the first element

in every consecutive group of equal elements

38 p r i n t f ( "%d " , ∗ i lTemp ) ;
39 p r i n t f ( " \ n " ) ;
40

41 re turn 0 ;
42 }

Compiling and running the code given in Example 20.2 will give the following results:

5 1 4 2 3 3 2 4 1 5
1 1 2 2 3 3 4 4 5 5
1 2 3 4 5

An example of how to use the STL list class is given in Example 20.2. In this small
program, several members of the list class are tested. Table 20.2 gives a list of some
commonly used members of the list class. A complete list of members of the list class can
be found at http://www.sgi.com/tech/stl/List.html.

20.2 C/C++ Program Compilation
In this section, we go through the basic processes of compiling a C/C++ program. To create
a program, one can use any text editor to create a file containing the complete program, such
as the program in Example 20.1 or Example 20.2. The next step is to compile the program
using a C++ compiler.

There are many C++ compilers, such as CC and g++ in the UNIX system. Suppose
the program in Example 20.1 is saved in a file named usevec.cpp. Then under the UNIX
system, one can type the command

g++ usevec.cpp

to compile the program.
To compile the program under the Windows system, one can use Bloodshed Dev-

C++, which is a full-featured integrated development environment (IDE) for the C/C++
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programming language. Bloodshed Dev-C++ can be downloaded from http://www.
bloodshed.net/.

20.3 Data Structure and Implementation
This section introduces some basic data structures encountered in implementing a clustering
algorithm. To implement a clustering algorithm based on neural networks in the C++
programming language, readers are referred to (Blum, 1992), (Rao and Rao, 1995), and
(Pandya and Macy, 1996).

20.3.1 Data Matrices and Centers

The data matrix is the basic element of a clustering algorithm. In C++ programs, it is
convenient to use the STL vector class to store the data matrix. Suppose the objects in a
d-dimensional data set with n objects are arranged in an n× d matrix such that the first row
contains the first object, the second row contains the second object, and so on, i.e.,

D =




x11 x12 · · · x1d

x21 x22 · · · x2d
...

...
. . .

...

xn1 xn2 · · · xnd


 ,

where D is the data matrix and xi = (xi1, xi2, . . . , xid)
T is the ith object.

To represent the matrix D, we use a vector of vectors using the STL vector class. If
the data set under consideration is numerical, we use the double type. If the data set under
consideration is categorical, we first represent categorical values by integers and then use
the int type.

Example 20.3 (Numerical data matrices). In the following code, the data matrix is ini-
tialized to a zero matrix of double type.

typedef vector<double> dVector;
typedef vector<dVector> dMatrix;

int i;
dMatrix dmData;
dmData=dMatrix(n);

for(i=0;i<n;i+)+
dmData[i]=dVector(d,0.0);
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Example 20.4 (Categorical data matrices). In the following code, the data matrix is ini-
tialized to a zero matrix of int type.

typedef vector<int> nVector;
typedef vector<nVector> nMatrix;

int i;
nMatrix nmData;
nmData=nMatrix(n);

for(i=0;i<n;i+)+
nmData[i]=nVector(d,0);

Example 20.3 and Example 20.4 give the code for initializing the data matrix. Af-
ter initialization, one can access the data matrix by indices. For example, to get the j th
component of the ith object, one can use dmData[i][j].

Centers of clusters can be represented in the same way. Consider a set of k centers of
a numerical data set. We can use a k× d matrix to represent the k centers such that the first
row of the matrix contains the first center, the second row of the matrix contains the second
center, and so on. Mathematically,

Z =




z11 z12 · · · z1d

z21 z22 · · · z2d
...

...
. . .

...

zk1 zk2 · · · zkd


 ,

where Z is the center matrix and zi = (zi1, zi2, . . . , zid)
T is the ith center.

20.3.2 Clustering Results

The clustering result of a clustering algorithm can be represented by a matrix, such as a fuzzy
k-partition (Huang and Ng, 1999). To represent the clustering result of a hard clustering
algorithm, an economic way is to use the string-of-group-members encoding (Jones and
Beltramo, 1991). Precisely, the string-of-group-members encoding represents the hard k-
partition of a set of n objects by a vector of length n with the ith component being the index
of the cluster to which the ith object belongs. Mathematically,

v =




v1

v2
...

vn


 ,

where vi is the index of the cluster to which the ith object belongs. For convenience, we
use 0, 1, 2, . . . , k − 1 to represent the k clusters.
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20.3.3 The Quick Sort Algorithm

The quick sort algorithm (Hoare, 1961; Sedgewick, 1978) is very useful in implementing
clustering algorithms. In some cases, we need to sort a sequence of real numbers and at the
same time keep the positions of these values. To find the maximum element of a sequence
of real numbers, for example, one can first sort the sequence in ascending order, and then
the last element of the sorted sequence is the maximum element.

Example 20.5 (The quick sort program). The following algorithm is modified from the
quick sort algorithm athttp://linux.wku.edu/˜lamonml/algor/sort/quick.
html.

1 /∗
2 ∗ h t t p : / / l i n u x . wku . edu / ~ lamonml / a l g o r / s o r t / q u i c k . h tm l
3 ∗ s o r t e d s e q u e n c e a_1<=a_2 <=... <= a_n
4 ∗ /
5 i n t Q u i c k S o r t ( dVe c t o r &dvData , nVe c t o r &nvIndex )
6 {
7 double l _ h o l d , r _ h o l d , dTemp ;
8 i n t l e f t , r i g h t , nS ize , nTemp , nIndex ;
9 n S i z e = ( i n t ) dvData . s i z e ( ) ;

10 f o r ( l e f t =0 ; l e f t < nSize −1; l e f t ++){
11 l _ h o l d = dvData [ l e f t ] ;
12 r _ h o l d = nvIndex [ l e f t ] ;
13 n Index = l e f t ;
14 f o r ( r i g h t = l e f t +1 ; r i g h t < n S i z e ; r i g h t ++){
15 i f ( dvData [ r i g h t ] < l _ h o l d ) {
16 l _ h o l d = dvData [ r i g h t ] ;
17 r _ h o l d = nvIndex [ r i g h t ] ;
18 n Index = r i g h t ;
19 }
20 }
21

22 i f ( l e f t != nIndex ) {
23 dTemp = dvData [ l e f t ] ;
24 dvData [ l e f t ] = l _ h o l d ;
25 dvData [ n Index ] = dTemp ;
26

27 nTemp = nvIndex [ l e f t ] ;
28 nvIndex [ l e f t ] = nvIndex [ nIndex ] ;
29 nvIndex [ nIndex ] = nTemp ;
30 }
31 }
32 re turn 0 ;
33 } / / Q u i c k S o r t ( )

Example 20.5 gives a program for quick sorting a sequence and at the same time keep-
ing the original positions of the real numbers. The sequence of real numbers is represented
by a vector.

20.4 Summary
As a general-purpose programming language, C++ is commonly used in cluster analysis.
This chapter introduces some basic elements related to implementing a clustering algorithm
in C++. Unlike MATLAB programs, C++ programs are hard to debug. For neural networks
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and fuzzy logic in C++, readers are referred to (Pandya and Macy, 1996), (Rao and Rao,
1995), and (Blum, 1992).
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Appendix A

Some Clustering
Algorithms

In the following table, some clustering algorithms and their reference locations in the book
are presented. The algorithms are listed in alphabetic order.

Algorithm Reference
A dynamic system–based algorithm Section 11.3 (p. 205)

Al-Sultan’s method Section 10.4 (p. 187)

BIRCH Subsection 7.4.4 (p. 144)

BRIDGE Section 13.2 (p. 221)

CACTUS Section 11.2 (p. 204)

Chameleon Section 11.1 (p. 203)

CLIQUE Section 15.1 (p. 244)

CLOPE Subsection 16.3.2 (p. 295)

CLTree Section 15.8 (p. 261)

c-means Section 8.5 (p. 158)

COOLCAT Section 14.6 (p. 240)

CUBN Section 13.5 (p. 225)

CURE Subsection 7.4.5 (p. 144)

DBCLASD Section 13.3 (p. 222)

DBSCAN Section 13.1 (p. 219)

DENCLUE Section 13.4 (p. 223)

DIANA Subsection 7.4.6 (p. 145)

DISMEA Subsection 7.4.7 (p. 147)

DOC Section 15.7 (p. 259)
Continued on next page
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Continued from previous page
Algorithm Reference

Edwards and Cavalli-Sforza’s method Subsection 7.4.8 (p. 147)

EM Section 14.4 (p. 235)

ENCLUS Section 15.4 (p. 253)

FINDIT Section 15.5 (p. 255)

Fuzzy k-means Section 8.3 (p. 154)

Fuzzy k-modes Section 8.4 (p. 156)

Fuzzy subspace clustering Section 15.11 (p. 270)

Gaussian clustering models Section 14.2 (p. 230)

GDILC Section 12.4 (p. 214)

Genetic k-means Section 10.7 (p. 192)

Global k-means Section 10.8 (p. 195)

GRIDCLUS Section 12.3 (p. 212)

J -means Section 10.6 (p. 190)

k-harmonic means Section 9.5 (p. 171)

k-means Section 9.1 (p. 161)

k-modes (Chaturvedi et al.) Section 9.9 (p. 178)

k-modes (Huang) Section 9.8 (p. 176)

k-probabilities Section 9.10 (p. 179)

k-prototypes Section 9.11 (p. 181)

LargeItem Subsection 16.3.1 (p. 294)

LSEARCH Subsection 16.2.1 (p. 290)

Maximum entropy clustering Section 9.7 (p. 175)

Mean shift Section 9.6 (p. 173)

Mean shift for subspace clustering Section 15.12 (p. 275)

OAK Subsection 16.3.3 (p. 296)

OptiGrid Section 12.2 (p. 210)

ORCLUS Section 15.3 (p. 249)

PART Section 15.9 (p. 262)

PROCLUS Section 15.2 (p. 246)

ROCK Section 11.4 (p. 207)

SARS Section 10.11 (p. 200)

SLINK Subsection 7.4.1 (p. 138)

SLINK based on minimum spanning trees Subsection 7.4.2 (p. 140)
Continued on next page
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Continued from previous page
Algorithm Reference

STING Section 12.1 (p. 209)

STUCCO Section 14.7 (p. 241)

SUBCAD Section 15.10 (p. 264)

Tabu search–based algorithms Section 10.5 (p. 189)

WaveCluster Section 12.5 (p. 216)

x-Means Section 9.4 (p. 170)
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Appendix B

The kd-tree Data Structure

A kd-tree is a data structure for storing a finite set of points from a finite-dimensional
space (Bentley, 1975, 1980; Preparata and Shamos, 1985). A kd-tree is a binary tree that
recursively splits the whole data set into partitions, in a manner similar to a decision tree
acting on numerical data sets. Details about kd-trees are given in (Moore, 1990) and (Deng
and Moore, 1995).

In a kd-tree, each node represents a partition of the data space and the children of
this node denote the subsets of the partition. Hence the root node of the kd-tree is the
whole data space, while the leaves are the smallest possible partitions of the data space.
Usually, a kd-tree is built based on the local density of a data space and represents a recursive
subdivision of the whole data space by means of (d − 1)-dimensional hyperplanes which
are iso- oriented and alternate among d possibilities. Each splitting hyperplane contains at
least one data point which is used for its representation in the tree.

A typical kd-tree of a d-dimensional data set has the following properties (Pelleg and
Moore, 1999):

1. It is a binary tree.

2. Each node of the tree contains information about all data points contained in a hy-
perrectangle h, such as the number of points in h, the center of mass, and the sum of
the Euclidean norms of all points contained in h. The hyperrectangle can be stored in
the node as two d-dimensional vectors hmax and hmin. Children of the node represent
hyperrectangles contained in h.

3. Each interior (nonleaf) node has a “split dimension” j0 and a “split value” x0 such
that all the data points in hl (its left child) have their j0-dimensional value smaller
than x0 and all the data points in hr (its right child) have their j0-dimensional value
at least x0.

4. The root node of the tree represents the hyperrectangle that contains all the data points
in the data set.

5. Leaf nodes store the actual data points.
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The kd-tree has some disadvantages. One disadvantage is that the structure is sensitive
to the order in which the data points are inserted. Another disadvantage is that the data points
are scattered all over the tree (Gaede and Günther, 1998). As a result, the adaptive kd-tree
(Bentley and Friedman, 1979) was proposed. There is a common disadvantage for all
kd-trees, that is, no hyperplane can be found that splits the data points evenly for certain
distributions (Gaede and Günther, 1998). Other partitioning schemes, such as theBSP -tree,
the BD-tree, and the Quadtree, which can avoid this common disadvantage, are presented
in (Gaede and Günther, 1998).

There are some operations associated with kd-trees. Searching and insertion of new
data points are straightforward operations, but deletion of an existing data point is somewhat
more complicated and may cause a reorganization of the subtree below the data point.
Algorithms for carrying out these operations are discussed and presented in (Bentley, 1975).

Akd-tree can be built inO(n log n) time andO(n) storage. http://www.rolemaker.
dk/nonRoleMaker/uni/algogem/kdtree.htm.

The kd-tree data structure has been applied to cluster analysis successfully. Examples
are using the kd-tree in the expectation-maximization (EM) algorithm (Moore, 1999) and
accelerating the k-means algorithm with the kd-tree (Pelleg and Moore, 1999).
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Appendix C

MATLAB Codes

This appendix presents the MATLAB code for generating subspace clusters, the MATLAB
code for the k-modes algorithm (see Section 9.8 and Section 9.9), and the MATLAB code
for the MSSC algorithm (see Section 15.12).

C.1 The MATLAB Code for Generating Subspace Clusters
The data generation method introduced by Aggarwal et al. (1999) uses the so-called anchor
points to generate clusters embedded in subspaces of a high-dimensional space. To generate
k clusters embedded in different subspaces of different dimensions, the method proceeds
by first generating k uniformly distributed anchor points c1, c2, . . . , ck in the d-dimensional
space. The method then generates the number of dimensions and the number of points
associated with each cluster. Finally, it generates points for each cluster and outliers.

The number of dimensions associated with a cluster is generated by a Poisson process
with mean µ, with the additional restriction that this number is in [2, d]. The dimensions for
the first cluster are chosen randomly. Once the dimensions for the (i− 1)th cluster are cho-
sen, the dimensions for the ith cluster are generated inductively by choosing min{di−1,

di
2 }

dimensions from the (i − 1)th cluster and generating other dimensions randomly, where di
is the number of dimensions for the ith cluster. Given the percentage of outliers Foutlier

and the size of the data set n, the number of points in the ith cluster is Nc · ri/∑k
j=1 rj ,

where r1, r2, . . . , rk are generated randomly from an exponential distribution with mean 1,
and Nc = n(1− Foutlier ).

In the final step, points in each cluster and outliers are generated as follows. For the
ith cluster, the coordinates of the points in noncluster dimensions are generated uniformly
at random from [0, 100], while the coordinates of the points in a cluster dimension j are
generated by a normal distribution with mean at the respective coordinate of the anchor
point and variance (sij r)

2, where sij is a scale factor generated uniformly at random from
[1, s] and r is a fixed spread parameter. Outliers are generated uniformly at random from
the entire space [0, 100]d . The MATLAB implementation of this data generation method is
presented below.
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1 f u n c t i o n GenData
2 %
3 % GeneData .m
4 % Genera t e subspace c l u s t e r s
5 %
6

7 % I n i t i a l i z e p a r a m e t e r s
8 n = 10000 ;
9 k = 5 ;

10 d = 100 ;
11 F o u t l i e r = 0 ;
12 mu = 1 6 ;
13 r = 2 ;
14 s = 2 ;
15

16 Anchor = rand ( k , d )∗1 0 0 ;
17 NumDim = random ( ’ p o i s s ’ ,mu , 1 , k ) ;
18 Dim = z e ro s ( k , d ) ;
19 i n d e x =GenRand (NumDim ( 1 ) , d ) ;
20 Dim ( 1 , f i n d ( i n d e x = = 1 ) ) = 1 ;
21 f o r i =2 : k
22 dp rev = min (NumDim( i −1) , f l o o r (NumDim( i ) / 2 ) ) ;
23 down = NumDim( i ) − dprev ;
24 d p r e v i n d e x = f i n d ( GenRand ( dprev , NumDim( i −1) )==1) ;
25 dprevdim = f i n d ( Dim ( i −1 , : ) = = 1 ) ;
26 Dim ( i , dprevdim ( d p r e v i n d e x ) ) = 1 ;
27 d o t h e r d i m = f i n d ( Dim ( i , : ) = = 0 ) ;
28 ddim = f i n d ( GenRand ( down , d−dprev ) = = 1 ) ;
29 Dim ( i , d o t h e r d i m ( ddim ) ) = 1 ;
30 end
31

32 NumPoints = z e ro s ( 1 , k ) ;
33 Nc = f l o o r ( n∗(1− F o u t l i e r ) ) ;
34 nvR = random ( ’ exp ’ , 1 , 1 , k ) ;
35 f o r i =1 : k−1
36 NumPoints ( i ) = f l o o r ( Nc∗nvR ( i ) / sum ( nvR ) ) ;
37 end
38 NumPoints ( k ) = Nc−sum ( NumPoints ) ;
39

40 d a t a = z e ro s ( n , d + 1 ) ;
41 nTemp = 0 ;
42 f o r i =1 : k
43 i n d e x = ( nTemp + 1 ) : ( nTemp+NumPoints ( i ) ) ;
44 d a t a ( index , 1 ) = i ;
45 f o r j =1 : d
46 i f Dim ( i , j )==0
47 d a t a ( index , j +1) = rand ( NumPoints ( i ) , 1 )∗ 1 0 0 ;
48 e l s e
49 s i j = rand ∗ ( s −1)+1;
50 vRec = random ( ’norm ’ , Anchor ( i , j ) , s i j ∗ r , NumPoints ( i ) , 1 ) ;
51 d a t a ( index , j +1) = vRec ;
52 end
53 end
54 nTemp = nTemp + NumPoints ( i ) ;
55 end
56 d a t a ( ( nTemp + 1 ) : n , 1 ) = k +1;
57 d a t a ( ( nTemp + 1 ) : n , 2 : ( d +1) )= rand ( n−Nc , d )∗1 0 0 ;
58

59 d a t a = d a t a ( randperm ( n ) , : ) ;
60

61 % P r i n t t h e da ta s e t i n f o r m a t i o n t o a t e x t f i l e
62 fp = fopen ( ’10000 d a t a 1 0 0 c . t x t ’ , ’w ’ ) ;
63 f p r i n t f ( fp , ’Number o f p o i n t s %d , o u t l i e r s %d ’ , n , n−Nc ) ;
64 f o r i =1 : k
65 f p r i n t f ( fp , ’ \ n C l u s t e r %d (%d ) \ n ’ , i , NumPoints ( i ) ) ;
66 f p r i n t f ( fp , ’ Dimens ions : ’ ) ;
67 f o r j =1 : d
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68 i f Dim ( i , j )==1
69 f p r i n t f ( fp , ’%d , ’ , j ) ;
70 end
71 end
72 end
73 f c l o s e ( fp ) ;
74

75 % Save t h e da ta s e t t o a . c s v f i l e
76 c s v w r i t e ( ’10000 d a t a 1 0 0 c . csv ’ , d a t a ) ;
77

78 %
79 % Genera te nNum n o n r e p e a t i n g i n t e g e r s from 1 , 2 , \ l d o t s , nLen
80 %
81 f u n c t i o n Out=GenRand (nNum , nLen )
82 s e l e c t = z e ro s ( 1 , nLen ) ;
83 s e l e c t ( f l o o r ( rand∗nLen + 1 ) ) = 1 ;
84 f o r i =2 :nNum
85 n o n s e l e c t = f i n d ( s e l e c t = = 0 ) ;
86 nTag = n o n s e l e c t ( f l o o r ( rand ∗ ( nLen−i + 1 ) + 1 ) ) ;
87 s e l e c t ( nTag ) = 1 ;
88 end
89 Out = s e l e c t ;

C.2 The MATLAB Code for the k-modes Algorithm
There are two versions of the k-modes algorithm, one proposed by Huang (1998) and
the other independently proposed by Chaturvedi et al. (2001). The following code is the
implementation of the k-modes algorithm proposed by Chaturvedi et al. (2001) in MAT-
LAB. The k-modes algorithm proposed by Chaturvedi et al. (2001) is briefly reviewed in
Section 9.9.

1 f u n c t i o n f l a g =kmodes ( da t a , k )
2 %
3 % Matlab code f o r k−Modes a l g o r i t h m
4 % R e f e r e n c e : C h a t u r v e d i e t a l . K−Modes C l u s t e r i n g ,
5 % J o u r n a l o f C l a s s i f i c a t i o n ,
6 % 18:35−55(2001)
7 %
8 % data − i n p u t da ta m a t r i x
9 % k − i n p u t number o f c l u s t e r s

10 %
11

12 % g e t t h e d i m e n s i o n o f t h e d a t a m a t r i x
13 dim = s i z e ( d a t a ) ;
14 n=dim ( 1 ) ;
15 d=dim ( 2 ) ;
16

17 %D e c l a r a t i o n s
18 %Memberships , v S h i p [ i ]= j means x _ i i s i n t h e j t h c l u s t e r
19 vShip = z e ro s ( 1 , n ) ;
20 mModes= z e ro s ( k , d ) ; %Mode o f each c l u s t e r
21 Lprev =0; L=0;%Loss f u n c t i o n v a l u e s
22

23 %I n i t i a l i z e modes
24 v rand = z e ro s ( 1 , k ) ;
25 v rand ( 1 ) = f l o o r ( n∗rand + 1 ) ;
26 mModes ( 1 , : ) = d a t a ( v rand ( 1 ) , : ) ;
27

28 f o r i =2 : k
29 bTag = 0 ;
30 whi le bTag==0
31 bTag = 1 ;
32 j = f l o o r ( n∗rand + 1 ) ;
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33 f o r s = 1 : ( i −1)
34 i f j == vrand ( s )
35 bTag =0;
36 end
37 end
38 end
39 v rand ( i ) = j ;
40 mModes ( i , : ) = d a t a ( v rand ( i ) , : ) ;
41 end
42 c l e a r vrand ;
43

44 %E s t i m a t e v S h i p g i v e n t h e i n i t i a l mModes
45 f o r i =1 : n
46 f p r e v = l e n g t h ( f i n d ( abs ( d a t a ( i , : ) −mModes ( 1 , : ) ) > 0 ) ) ;
47 vShip ( i ) = 1 ;
48 f o r s =2: k
49 f = l e n g t h ( f i n d ( abs ( d a t a ( i , : ) −mModes ( s , : ) ) > 0 ) ) ;
50 i f f p r e v > f
51 f p r e v = f ;
52 vShip ( i )= s ;
53 end
54 end
55 L = L+ f p r e v ;
56 end
57

58 %I t e r a t i o n phase , e s t i m a t e vShip , e s t i m a t e mModes
59 Lprev =n∗d ;
60 whi le abs ( Lprev−L) >0
61 Lprev =L ;
62 L=0;
63 %E s t i m a t e mModes g i v e n t h e r e v i s e d v S h i p
64 f o r s =1: k
65 i n d e x = f i n d ( vShip == s ) ;
66 f o r j =1 : d
67 A= s o r t ( d a t a ( index , j ) ) ;
68 [ b ,m, nn ]= u n i q u e (A ) ;
69 nL = l e n g t h (m) ;
70 nMax = m( 1 ) ;
71 mModes ( s , j )= b ( 1 ) ;
72 f o r i =2 : nL
73 i f (m( i )−m( i −1)) >nMax
74 nMax=m( i )−m( i −1);
75 mModes ( s , j )= b ( i ) ;
76 end
77 end
78 end
79 end
80 %E s t i m a t e v S h i p g i v e n t h e e s t i m a t e o f mModes
81 f o r i =1 : n
82 f p r e v = l e n g t h ( f i n d ( abs ( d a t a ( i , : ) −mModes ( 1 , : ) ) > 0 ) ) ;
83 vShip ( i ) = 1 ;
84 f o r s =2: k
85 f = l e n g t h ( f i n d ( abs ( d a t a ( i , : ) −mModes ( s , : ) ) > 0 ) ) ;
86 i f f p r e v > f
87 f p r e v = f ;
88 vShip ( i )= s ;
89 end
90 end
91 L = L+ f p r e v ;
92 end
93 Lprev
94 L
95 end
96 f l a g = vShip ;
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C.3 The MATLAB Code for the MSSC Algorithm
The mean shift for subspace clustering (MSSC) algorithm is proposed by Gan (2006). This
MATLAB program is used to demonstrate the MSSC algorithm graphically. This code is
tested in MATLAB 7 (R14).

1 f u n c t i o n mssc
2 %
3 % mssc .m
4 % The mean s h i f t f o r s u b s p a c e c l u s t e r i n g (MSSC) a l g o r i t h m
5 %
6 c l e a r a l l
7 c l o s e a l l
8 p r o f i l e on
9

10 % Genera te a two−d i m e n s i o n a l da ta s e t
11 n = 100 ;
12 d a t a = z e ro s (3∗n , 3 ) ;
13 f o r i =1 : n
14 d a t a ( i , 3 ) = 1 + 4∗ i / n ;
15 d a t a ( i , 2 ) = 3 + rand ;
16 d a t a ( i , 1 ) = 1 ;
17 d a t a ( n+ i , 1 ) = 2 ;
18 d a t a ( n+ i , 2 ) = 3 + rand ;
19 d a t a ( n+ i , 3 ) = 8 + 4∗ i / n ;
20 d a t a (2∗ n+ i , 1 ) = 3 ;
21 d a t a (2∗ n+ i , 2 ) = 6 + rand ;
22 d a t a (2∗ n+ i , 3 ) = 1 + 11∗ i / n ;
23 end
24 i n d e x =randperm (3∗ n ) ;
25 d a t a = d a t a ( index ’ , : ) ;
26

27 l a b e l = d a t a ( : , 1 ) ’ ;
28 d a t a ( : , 1 ) = [ ] ;
29 [ n , d ] = s i z e ( d a t a ) ;
30

31 a l p h a = 2 . 1 ;
32 beta = 0 . 4 ;
33 k = 8 ;
34 covMat = cov ( d a t a ) ;
35 varMat = diag ( covMat ) ’. ^ ( − 1 / ( a lpha −1 ) ) ;
36 v In i tW = varMat / sum ( varMat ) ;
37 b e t a c = 1 / ( 2∗max ( e i g ( r epmat ( v In i tW . ^ a lpha , d , 1 ) . ∗ covMat ) ) )
38

39 [W, Z , vShip , vUni ] = MSSC( da ta , a lpha , beta , k , 1 ) ;
40

41 % M i s c l a s s i f i c a t i o n m a t r i x
42 n l a b e l = l e n g t h ( u n i q u e ( l a b e l ) ) ;
43 kc = l e n g t h ( vUni ) ;
44 m i s m a t r i x = z e ro s ( n l a b e l , kc ) ;
45 f o r i =1 : n l a b e l
46 f o r j =1 : kc
47 m i s m a t r i x ( i , j )= l e n g t h ( i n t e r s e c t ( f i n d ( l a b e l == i ) , f i n d ( vShip == j ) ) ) ;
48 end
49 end
50 m i s m a t r i x
51

52 c l o s e a l l ;
53 f i g u r e ( 1 ) , c l f , hold on
54 cVec = ’ bgrcmykbgrcmykbgrcmykbgrcmyk ’ ;
55 sVec = ’o∗ s . + hdpsx ’ ;
56 MEC = ’ MarkerEdgeColor ’ ;
57 MFC = ’ MarkerFaceColo r ’ ;
58 i f d==2
59 f o r j = 1 : min ( kc , l e n g t h ( cVec ) )
60 myMembers = f i n d ( vShip == j ) ;
61 CC = Z ( vUni ( j ) , : ) ;
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62 p l o t ( d a t a ( myMembers , 1 ) ’ , d a t a ( myMembers , 2 ) ’ , [ cVec ( j ) sVec ( j ) ] )
63 p l o t (CC( 1 ) ,CC( 2 ) , ’p ’ ,MEC, ’k ’ ,MFC, cVec ( j ) , ’ Marke rS ize ’ , 1 4 )
64 end
65 s T i t l e = [ ’k= ’ i n t 2 s t r ( k ) ’ , k_c= ’ i n t 2 s t r ( kc ) ] ;
66 s T i t l e = [ s T i t l e ’ , \ a l p h a = ’ num2str ( a l p h a ) ’ , \ b e t a = ’ num2str ( beta ) ] ;
67 t i t l e ( s T i t l e )
68 end
69

70 f u n c t i o n [W, Z , vShip , vUni ] = MSSC( da ta , a lpha , beta , k , p l o t F l a g ) ;
71 % −−−INPUT−−−
72 % data − t h e i n p u t da ta m a t r i x ( n x d )
73 % alpha − t h e f u z z i f i e r
74 % b e t a − t h e Lagrange m u l t i p l i e r
75 % k − t h e number o f s t a r t i n g p o i n t s
76 % −−−OUTPUT−−−
77 % W − t h e f u z z y d i m e n s i o n w e i g h t m a t r i x ( k x d )
78 % Z − t h e s e t o f c e n t e r s ( k x d )
79 % v S h i p − f o r e v e r y p o i n t which c l u s t e r i t b e l o n g s t o ( 1 x n )
80

81 %I n i t i a l i z a t i o n
82 cVec = ’ bgrcmykbgrcmykbgrcmykbgrcmyk ’ ;
83 sVec = ’o∗xh + . sdp ’ ;
84 MEC = ’ MarkerEdgeColor ’ ;
85 MFC = ’ MarkerFaceColo r ’ ;
86 [ n , d ] = s i z e ( d a t a ) ;
87 vRand = f l o o r ( n∗rand ( k , 1 ) + 1 ) ;
88 Z = d a t a ( vRand , : ) ;
89 W = ones ( k , d ) / d ;
90 U = z e ro s ( k , n ) ;
91 s t o p T h r e s h = 1e−5;
92

93 U = UpdateU (W, Z , da t a , a lpha , beta , k , n ) ;
94 newZ = UpdateZ ( da t a , U, k , n , d ) ;
95 W = UpdateW ( da ta , U, newZ , a lpha , k , n , d ) ;
96

97 n I t e r = 1 ;
98 whi le max ( max ( abs ( newZ−Z ) ) ) > s t o p T h r e s h
99 i f p l o t F l a g >0

100 i f d == 2
101 f i g u r e ( 1 2 3 4 5 ) , c l f , hold on
102 t i t l e ( [ ’k= ’ i n t 2 s t r ( k ) ] ) ;
103 p l o t ( d a t a ( : , 1 ) ’ , d a t a ( : , 2 ) ’ , ’ . ’ , ’ Marke rS ize ’ , 8 )
104 p l o t ( Z ( : , 1 ) ’ , Z ( : , 2 ) ’ , ’o ’ ,MEC, ’g ’ , ’ Marke rS ize ’ , 1 2 )
105 p l o t ( newZ ( : , 1 ) ’ , newZ ( : , 2 ) ’ , ’d ’ ,MEC, ’ r ’ , ’ Marke rS ize ’ , 1 1 )
106 pause
107 end
108 end
109 Z = newZ ;
110 U = UpdateU (W, Z , da ta , a lpha , beta , k , n ) ;
111 newZ = UpdateZ ( da t a , U, k , n , d ) ;
112 W = UpdateW ( da ta , U, newZ , a lpha , k , n , d ) ;
113 end
114

115 % Get d i s t i n c t c e n t e r s
116 bCent = ones ( 1 , k ) ;
117 f o r j =2 : k
118 f o r i = 1 : ( j −1)
119 i f bCent ( i ) == 1
120 i f max ( max ( abs ( Z ( j , : ) −Z ( i , : ) ) ) ) < 0 . 0 5
121 bCent ( j ) = 0 ;
122 break ;
123 end
124 end
125 end
126 end
127 vUni = f i n d ( bCent = = 1 ) ;
128

129 % Get hard c l u s t e r membership
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130 i f l e n g t h ( vUni )==1
131 vShip = ones ( 1 , n ) ;
132 e l s e
133 [vFM vShip ]=max (U( vUni , : ) ) ;
134 end
135

136 f u n c t i o n outU = UpdateU (W, Z , da t a , a lpha , beta , k , n )
137 outU = z e ro s ( k , n ) ;
138 f o r i =1 : n
139 f o r j =1 : k
140 temp = (W( j , : ) . ^ a l p h a ) ∗ ( ( d a t a ( i , : ) −Z ( j , : ) ) . ^ 2 ) ’ ;
141 outU ( j , i )= exp(−beta∗sum ( temp ) ) ;
142 end
143 dTemp = sum ( outU ( : , i ) ) ;
144 f o r j =1 : k
145 outU ( j , i ) = outU ( j , i ) / dTemp ;
146 end
147 end
148

149 f u n c t i o n outZ = UpdateZ ( da t a , U, k , n , d )
150 outZ = z e ro s ( k , d ) ;
151 f o r j =1 : k
152 outZ ( j , : ) = sum ( d a t a .∗ r epmat (U( j , : ) ’ , 1 , d ) ) . / sum ( r epmat (U( j , : ) ’ , 1 , d ) ) ;
153 end
154

155 f u n c t i o n outW = UpdateW ( da ta , U, Z , a lpha , k , n , d )
156 outW = z e ro s ( k , d ) ;
157 f o r j =1 : k
158 f o r h =1: d
159 temp = U( j , : ) ∗ ( ( d a t a ( : , h)− r epmat ( Z ( j , h ) , n , 1 ) ) . ^ 2 ) ;
160 outW ( j , h ) = temp ^(−1/ ( a lpha −1 ) ) ;
161 end
162 dTemp = sum ( outW ( j , : ) ) ;
163 f o r h =1: d
164 outW ( j , h ) = outW ( j , h ) / dTemp ;
165 end
166 end
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Appendix D

C++ Codes

This appendix gives two C++ codes mentioned in this book. The first code is used to convert
categorical values to integers (see Section 19.2), and the second code is the program of the
FSC algorithm (see Section 15.11).

D.1 The C++ Code for Converting Categorical Values to
Integers

This section gives the full code of the small program which converts categorical values in
a data set to integers.

1 /∗
2 ∗ Conver t c a t e g o r i c a l v a l u e s i n a da ta s e t t o i n t e g e r s
3 ∗ /
4

5 # i n c l u d e < s t d i o . h>
6 # i n c l u d e < s t d l i b . h>
7 # i n c l u d e < i o s t r e a m >
8 # i n c l u d e < f s t r e a m >
9 # i n c l u d e < v e c t o r >

10 # i n c l u d e < s t r i n g >
11 # i n c l u d e < l i s t >
12

13 us ing namespace s t d ;
14

15 / / v e c t o r s
16 t y p e d e f v e c t o r < i n t > nVe c t o r ;
17 t y p e d e f v e c t o r < s t r i n g > sVe c t o r ;
18 t y p e d e f v e c t o r <double > dVe c t o r ;
19

20 t y p e d e f v e c t o r < sVe c t o r > s M a t r i x ;
21 t y p e d e f v e c t o r < nVec to r > nMat r ix ;
22

23 / / i t e r a t o r s
24 t y p e d e f nVe c t o r : : i t e r a t o r n I t e r ;
25 t y p e d e f sVe c t o r : : i t e r a t o r s I t e r ;
26 t y p e d e f dVe c t o r : : i t e r a t o r d I t e r ;
27

28 / / l i s t
29 t y p e d e f l i s t < i n t > n L i s t ;
30 t y p e d e f l i s t <double > d L i s t ;

385
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31 t y p e d e f l i s t < s t r i n g > s L i s t ;
32

33 t y p e d e f s L i s t : : i t e r a t o r s l I t e r ;
34 t y p e d e f n L i s t : : i t e r a t o r n l I t e r ;
35 t y p e d e f d L i s t : : i t e r a t o r d l I t e r ;
36

37 t y p e d e f v e c t o r < s Li s t > s l V e c t o r ;
38

39 # i f ! d e f i n e d ( LIMITS )
40 # d e f i n e LIMITS
41 / / max c h a r s i n a f i e l d
42 # d e f i n e MAX_FIELD_BUFFER 1024
43 / / max c h a r s i n one l i n e
44 # d e f i n e MAX_LINE_BUFFER 0x00FFFFFF
45 # e n d i f
46

47 i n t ReadData (
48 c o n s t char ∗ f i l e n a m e ,
49 sVe c t o r &svLabe l ,
50 sVe c t o r &s vAt t ,
51 s M a t r i x &smData
52 ) {
53 i n t i , j , n , d ;
54 i f s t r e a m i f s F i l e ;
55 char b u f f [MAX_FIELD_BUFFER ] ;
56

57 t ry {
58 i f s F i l e . open ( f i l e n a m e ) ;
59 / / c o u n t t h e number o f a t t r i b u t e s ;
60 i = 1 ;
61 do{
62 i f ( i f s F i l e . peek ( ) == ’ , ’ )
63 i ++;
64 } whi le ( i f s F i l e . g e t ( ) != ’ \ n ’ ) ;
65 d = i −1; / / t h e f i r s t column i s r e c o r d name
66

67 / / now c o u n t t h e number o f r e c o r d s
68 i = 0 ;
69 do{
70 i f s F i l e . i g n o r e (MAX_LINE_BUFFER , ’ \ n ’ ) ;
71 i ++;
72 } whi le ( ! i f s F i l e . e o f ( ) ) ;
73 n = i −1; / / one r e t u r n a t t h e end o f t h e l a s t l i n e o f t h e f i l e
74 / / NO r e t u r n a f t e r t h e l a s t l i n e o f t h e f i l e
75 i f s F i l e . c l o s e ( ) ;
76

77 / / open t h e f i l e aga in
78 i f s F i l e . open ( f i l e n a m e ) ;
79

80 s vAt t = sVe c t o r ( d , " v " ) ;
81 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
82 f o r ( i =0 ; i <d ; i ++){
83 i f ( i == d−1){
84 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ \ n ’ ) ;
85 / / remove ’\ n ’
86 f o r ( j =0 ; j < s i z e o f ( b u f f ) ; j ++){
87 i f ( b u f f [ j ] == ’ \ n ’ ) {
88 b u f f [ j ] = ’ ’ ;
89 }
90 }
91 s vAt t [ i ] = b u f f ;
92 } e l s e {
93 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
94 s vAt t [ i ] = b u f f ;
95 }
96 }
97

98 smData = s M a t r i x ( n ) ;
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99 i = 0 ;
100 whi le ( ! i f s F i l e . e o f ( ) && i <n ) {
101 / / g e t t h e r e c o r d name
102 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
103 s v La b e l . push_back ( b u f f ) ;
104 f o r ( j =0 ; j <d ; j ++){
105 i f ( j == d−1){ / / d e n o t e s t h e end o f t h e l i n e
106 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ \ n ’ ) ;
107 / / remove ’\ n ’
108 f o r ( j =0 ; j < s i z e o f ( b u f f ) ; j ++){
109 i f ( b u f f [ j ] == ’ \ n ’ ) {
110 b u f f [ j ] = ’ ’ ;
111 }
112 }
113 smData [ i ] . push_back ( b u f f ) ;
114 } e l s e {
115 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
116 smData [ i ] . push_back ( b u f f ) ;
117 }
118 }
119 i ++;
120 }
121

122 i f s F i l e . c l o s e ( ) ;
123 re turn 0 ;
124 }
125 catch ( \ l d o t s ) {
126 cout <<" r e a d i n g d a t a e r r o r "<< e n d l ;
127 re turn −1;
128 }
129 } / / ReadData ( )
130

131 i n t C a t 2 I n t (
132 s M a t r i x &smData , / / I n p u t c a t e g o r i c a l da ta m a t r i x
133 nMat r ix &nmData / / Ou tpu t I n t e g e r m a t r i x
134 ) {
135 i n t n , d , i , j , s , nTemp ;
136 s M a t r i x smSymbol ;
137 s L i s t slTemp ;
138 s l I t e r s l iTemp ;
139

140 / / Get t h e d i m e n s i o n o f t h e d a t a m a t r i x
141 n = smData . s i z e ( ) ;
142 d = smData [ 0 ] . s i z e ( ) ;
143

144 / / Count d i s t i n c t a t t r i b u t e v a l u e s f o r each a t t r i b u t e
145 smSymbol = s M a t r i x ( d ) ;
146 f o r ( j =0 ; j <d ; j ++){
147 f o r ( i =0 ; i <n ; i ++){
148 slTemp . push_back ( smData [ i ] [ j ] ) ;
149 }
150 slTemp . s o r t ( ) ;
151 slTemp . u n i q u e ( ) ;
152

153 s l iTemp = slTemp . b e g i n ( ) ;
154 whi le ( s l iTemp != slTemp . end ( ) ) {
155 smSymbol [ j ] . push_back (∗ s l iTemp ) ;
156 s l iTemp ++;
157 }
158 slTemp . c l e a r ( ) ;
159 }
160

161 / / Conver t c a t e g o r i c a l v a l u e s t o i n t e g e r s
162 nmData = nMat r ix ( n ) ;
163 f o r ( i =0 ; i <n ; i ++)
164 nmData [ i ] = nVe c t o r ( d , 0 ) ;
165 f o r ( j =0 ; j <d ; j ++){
166 nTemp = smSymbol [ j ] . s i z e ( ) ;
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167 f o r ( i =0 ; i <n ; i ++){
168 f o r ( s =0 ; s <nTemp ; s ++){
169 i f ( smSymbol [ j ] [ s ] == smData [ i ] [ j ] ) {
170 nmData [ i ] [ j ] = s +1;
171 break ;
172 }
173 }
174 }
175 }
176

177 re turn 0 ;
178 } / / C a t 2 I n t
179

180 i n t main ( i n t argc , char ∗ a rgv [ ] )
181 {
182 i n t i , j , n , d ;
183 s M a t r i x smData ;
184 sVe c t o r svLabe l , s vAt t ;
185 nMat r ix nmData ;
186 o f s t r e a m o f s F i l e ;
187

188 / / Data s e t f i l e name
189 char fname [ ] = " c a t d a t a . c sv " ;
190

191 / / Read da ta from f i l e
192 ReadData ( fname , svLabe l , s vAt t , smData ) ;
193

194 / / Conver t c a t e g o r i c a l v a l u e s t o i n t e g e r s
195 C a t 2 I n t ( smData , nmData ) ;
196

197 / / Ou tpu t c o n v e r t e d da ta t o a . c s v f i l e
198 o f s F i l e . open ( " i n t d a t a . c sv " ) ;
199 n = nmData . s i z e ( ) ;
200 d = nmData [ 0 ] . s i z e ( ) ;
201 f o r ( i =0 ; i <n ; i ++){
202 f o r ( j =0 ; j <d−1; j ++){
203 o f s F i l e <<nmData [ i ] [ j ]<< " , " ;
204 }
205 o f s F i l e <<nmData [ i ] [ d−1]<< e n d l ;
206 }
207 o f s F i l e . c l o s e ( ) ;
208

209 sys tem ( "PAUSE" ) ;
210 re turn 0 ;
211 }

D.2 The C++ Code for the FSC Algorithm
This appendix gives the complete C++ code of the fuzzy subspace clustering (FSC) algorithm
for clustering the gene expression data gathered by (Cho et al., 1998). The clustering results
are presented in Section 18.6.

1 /∗
2 ∗ Fuzzy s u b s p a c e c l u s t e r i n g a l g o r i t h m
3 ∗ /
4

5 # i n c l u d e < s t d i o . h>
6 # i n c l u d e < s t d l i b . h>
7 # i n c l u d e < t ime . h>
8 # i n c l u d e < i o s t r e a m >
9 # i n c l u d e < f s t r e a m >

10 # i n c l u d e < v e c t o r >
11 # i n c l u d e < s t r i n g >
12 # i n c l u d e < l i s t >



D.2. The C++ Code for the FSC Algorithm 389

13 # i n c l u d e <math . h>
14

15 us ing namespace s t d ;
16

17 / / v e c t o r s
18 t y p e d e f v e c t o r < i n t > nVe c t o r ;
19 t y p e d e f v e c t o r < s t r i n g > sVe c t o r ;
20 t y p e d e f v e c t o r <double > dVe c t o r ;
21

22 t y p e d e f v e c t o r < dVec to r > dMat r ix ;
23 t y p e d e f v e c t o r < nVec to r > nMat r ix ;
24

25 / / i t e r a t o r s
26 t y p e d e f nVe c t o r : : i t e r a t o r n I t e r ;
27 t y p e d e f sVe c t o r : : i t e r a t o r s I t e r ;
28 t y p e d e f dVe c t o r : : i t e r a t o r d I t e r ;
29

30 / / l i s t
31 t y p e d e f l i s t < i n t > n L i s t ;
32 t y p e d e f l i s t <double > d L i s t ;
33 t y p e d e f l i s t < s t r i n g > s L i s t ;
34

35 t y p e d e f s L i s t : : i t e r a t o r s l I t e r ;
36 t y p e d e f n L i s t : : i t e r a t o r n l I t e r ;
37 t y p e d e f d L i s t : : i t e r a t o r d l I t e r ;
38

39 t y p e d e f v e c t o r < s Li s t > s l V e c t o r ;
40

41 # i f ! d e f i n e d ( LIMITS )
42 # d e f i n e LIMITS
43 / / max c h a r s i n a f i e l d
44 # d e f i n e MAX_FIELD_BUFFER 1024
45 / / max c h a r s i n 1 l i n e
46 # d e f i n e MAX_LINE_BUFFER 0x00FFFFFF
47 # e n d i f
48

49 / / D e c l a r a t i o n s o f g l o b a l v a r i a b l e s
50 s t a t i c i n t n =0; / / t h e number o f r e c o r d s
51 s t a t i c i n t k =0; / / t h e number o f c l u s t e r s
52 s t a t i c i n t d =0; / / t h e number o f a t t r i b u t e s
53 s t a t i c double a l p h a = 2 . 1 ; / / t h e f u z z i e r
54 s t a t i c double e p s i l o n = 0 ;
55

56 /∗
57 ∗ h t t p : / / l i n u x . wku . edu / ~ lamonml / a l g o r / s o r t / q u i c k . h tm l
58 ∗ s o r t e d s e q u e n c e a_1<a_2 <\ l d o t s <a_m
59 ∗ /
60 i n t Q u i c k S o r t (
61 dVe c t o r &dvData ,
62 nVe c t o r &nvIndex
63 ) {
64 double l _ h o l d , r _ h o l d , dTemp ;
65 i n t l e f t , r i g h t , nS ize , nTemp , nIndex ;
66

67 n S i z e = ( i n t ) dvData . s i z e ( ) ;
68 f o r ( l e f t =0 ; l e f t < nSize −1; l e f t ++){
69 l _ h o l d = dvData [ l e f t ] ;
70 r _ h o l d = nvIndex [ l e f t ] ;
71 n Index = l e f t ;
72 f o r ( r i g h t = l e f t +1 ; r i g h t < n S i z e ; r i g h t ++){
73 i f ( dvData [ r i g h t ] < l _ h o l d ) {
74 l _ h o l d = dvData [ r i g h t ] ;
75 r _ h o l d = nvIndex [ r i g h t ] ;
76 n Index = r i g h t ;
77 }
78 }
79

80 i f ( l e f t != nIndex ) {
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81 dTemp = dvData [ l e f t ] ;
82 dvData [ l e f t ] = l _ h o l d ;
83 dvData [ n Index ] = dTemp ;
84

85 nTemp = nvIndex [ l e f t ] ;
86 nvIndex [ l e f t ] = nvIndex [ nIndex ] ;
87 nvIndex [ nIndex ] = nTemp ;
88 }
89 }
90

91 re turn 0 ;
92 } / / Q u i c k S o r t ( )
93

94 i n t I n i t i a l i z a t i o n (
95 dMat r ix &dmZ ,
96 dMat r ix &dmW,
97 dMat r ix &dmData
98 ) {
99 i n t i , j , n Index ;

100

101 f o r ( i =0 ; i <k ; i ++){
102 n Index = ( i n t ) ( n∗ r and ( ) / ( RAND_MAX+ 1 . 0 ) ) ;
103 f o r ( j =0 ; j <d ; j ++){
104 dmZ[ i ] [ j ] = dmData [ n Index ] [ j ] ;
105 dmW[ i ] [ j ] = 1 . 0 / d ;
106 }
107 }
108

109 re turn 0 ;
110 } / / I n i t i a l i z a t i o n ( )
111

112 /∗
113 ∗ dvW − weigh t , dvZ − c e n t e r , dvX − da ta p o i n t
114 ∗ /
115 double D i s t a n c e (
116 dVe c t o r &dvW,
117 dVe c t o r &dvZ ,
118 dVe c t o r &dvX
119 ) {
120 i n t h ;
121 double dTemp ;
122

123 dTemp = 0 . 0 ;
124 f o r ( h =0; h<d ; h ++){
125 dTemp += pow (dvW[ h ] , a l p h a )∗pow ( dvX [ h]−dvZ [ h ] , 2 ) ;
126 }
127

128 re turn dTemp ;
129 } / / D i s t a n c e ( )
130

131 i n t GetShip (
132 dMat r ix &dmData ,
133 dMat r ix &dmW,
134 dMat r ix &dmZ ,
135 nVe c t o r &nvShip
136 ) {
137 i n t i , j ;
138 double dTemp ;
139 dVe c t o r d v D i s t ;
140 nVe c t o r nvIndex ;
141

142 d v D i s t = dVe c t o r ( k , 0 . 0 ) ;
143 nvIndex = nVe c t o r ( k , 0 ) ;
144

145 f o r ( i =0 ; i <n ; i ++){
146 f o r ( j =0 ; j <k ; j ++){
147 d v D i s t [ j ] = D i s t a n c e (dmW[ j ] , dmZ[ j ] , dmData [ i ] ) ;
148 nvIndex [ j ] = j ;
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149 }
150 dTemp = d v D i s t [ nvShip [ i ] ] ;
151 Q u i c k S o r t ( dvDis t , nvIndex ) ;
152 i f ( dTemp > d v D i s t [ 0 ] )
153 nvShip [ i ] = nvIndex [ 0 ] ;
154 }
155 re turn 0 ;
156 } / / Ge tSh ip ( )
157

158 /∗
159 ∗ Get s u b s p a c e d i m e n s i o n from f u z z y s u b s p a c e memberships
160 ∗ /
161 i n t GetDim (
162 dMat r ix &dmW,
163 nMat r ix &nmDim
164 ) {
165 dVe c t o r dvW;
166 nVe c t o r nvIndex ;
167 i n t i , j , nCut ;
168 double dSum1 , dSum , dTemp , dTemp1 ;
169

170 dvW = dVe c t o r ( d , 0 . 0 ) ;
171 nvIndex = nVe c t o r ( d , 0 ) ;
172 f o r ( i =0 ; i <k ; i ++){
173 dSum = 0 . 0 ;
174 f o r ( j =0 ; j <d ; j ++){
175 dvW[ j ] = dmW[ i ] [ j ] ;
176 nvIndex [ j ] = j ;
177 dSum += dvW[ j ] ;
178 }
179 Q u i c k S o r t (dvW, nvIndex ) ;
180 dSum1 = dvW [ 0 ] ;
181 nCut = 0 ;
182 dTemp = pow ( dSum1 , 2 ) + pow ( dSum−dSum1 , 2 ) / ( d−1);
183 f o r ( j =1 ; j <d−1; j ++){
184 dSum1 += dvW[ j ] ;
185 dTemp1 = pow ( dSum1 , 2 ) / ( j +1) + pow ( dSum−dSum1 , 2 ) / ( d−j −1);
186 i f ( dTemp1 > dTemp ) {
187 dTemp = dTemp1 ;
188 nCut = j ;
189 }
190 }
191 f o r ( j =nCut +1; j <d ; j ++)
192 nmDim[ i ] . push_back ( nvIndex [ j ] + 1 ) ;
193 }
194

195 re turn 0 ;
196 } / / GetDim ( )
197

198 double CalObj (
199 dMat r ix &dmData ,
200 dMat r ix &dmW,
201 dMat r ix &dmZ ,
202 nVe c t o r &nvShip
203 ) {
204 i n t i , j ;
205 double dTemp ;
206

207 dTemp = 0 . 0 ;
208 f o r ( i =0 ; i <n ; i ++){
209 dTemp += D i s t a n c e (dmW[ nvShip [ i ] ] , dmZ[ nvShip [ i ] ] , dmData [ i ] ) ;
210 }
211

212 re turn dTemp ;
213 } / / CalObj ( )
214

215 double Va r i a n c e (
216 i n t j ,
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217 i n t h ,
218 dMat r ix &dmData ,
219 dMat r ix &dmZ ,
220 nVe c t o r &nvShip
221 ) {
222 i n t i ;
223 double dTemp ;
224

225 dTemp = 0 . 0 ;
226 f o r ( i =0 ; i <n ; i ++){
227 i f ( nvShip [ i ]== j )
228 dTemp += pow ( dmData [ i ] [ h ] − dmZ[ j ] [ h ] , 2 ) ;
229 }
230

231 re turn dTemp ;
232 } / / Va r i a n c e ( )
233

234 i n t EstW (
235 dMat r ix &dmData ,
236 dMat r ix &dmZ ,
237 dMat r ix &dmW,
238 nVe c t o r &nvShip
239 ) {
240 i n t j , h ;
241 double dTemp ;
242 dVe c t o r dvVar ;
243

244 dvVar = dVe c t o r ( d , 0 . 0 ) ;
245 f o r ( j =0 ; j <k ; j ++){
246 dTemp = 0 . 0 ;
247 f o r ( h =0; h<d ; h ++){
248 dvVar [ h ] = Va r i a n c e ( j , h , dmData , dmZ , nvShip )+ e p s i l o n ;
249 dTemp += pow ( 1 / dvVar [ h ] , 1 / ( a lpha −1 ) ) ;
250 }
251 f o r ( h =0; h<d ; h ++)
252 dmW[ j ] [ h ] = pow ( 1 / dvVar [ h ] , 1 / ( a lpha −1 ) ) / dTemp ;
253 }
254 re turn 0 ;
255 } / / EstW ( )
256

257 i n t EstZ (
258 dMat r ix &dmData ,
259 dMat r ix &dmZ ,
260 nVe c t o r &nvShip
261 ) {
262 i n t i , j , h ;
263 double dTemp ;
264 nVe c t o r n v S i z e ;
265

266 n v S i z e = nVe c t o r ( k , 0 ) ;
267 f o r ( j =0 ; j <k ; j ++){
268 f o r ( h =0; h<d ; h ++){
269 dmZ[ j ] [ h ] = 0 . 0 ;
270 }
271 }
272 f o r ( i =0 ; i <n ; i ++){
273 n v S i z e [ nvShip [ i ] ] + + ;
274 f o r ( h =0; h<d ; h ++)
275 dmZ[ nvShip [ i ] ] [ h ] += dmData [ i ] [ h ] ;
276 }
277 f o r ( j =0 ; j <k ; j ++){
278 f o r ( h =0; h<d ; h ++){
279 dmZ[ j ] [ h ] /= n v S i z e [ j ] ;
280 }
281 }
282

283 re turn 0 ;
284 } / / Es tZ ( )
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285

286 double FuzzySub (
287 dMat r ix &dmData ,
288 dMat r ix &dmW,
289 dMat r ix &dmZ ,
290 nVe c t o r &nvShip
291 ) {
292 i n t i , j ;
293 double dObj , dNewObj , d E r r o r ;
294

295 I n i t i a l i z a t i o n (dmZ ,dmW, dmData ) ;
296 GetSh ip ( dmData ,dmW, dmZ , nvShip ) ;
297 dObj = CalObj ( dmData ,dmW, dmZ , nvShip ) ;
298

299 d E r r o r = 1 . 0 ;
300 whi le ( dEr ro r >0){
301 EstZ ( dmData , dmZ , nvShip ) ;
302 EstW ( dmData , dmZ ,dmW, nvShip ) ;
303 GetSh ip ( dmData ,dmW, dmZ , nvShip ) ;
304 dNewObj = CalObj ( dmData ,dmW, dmZ , nvShip ) ;
305 d E r r o r = f a b s ( dNewObj−dObj ) ;
306 dObj = dNewObj ;
307 }
308

309 re turn dObj ;
310 } / / FuzzySub ( )
311

312 i n t ReadData (
313 c o n s t char ∗ f i l e n a m e ,
314 sVe c t o r &svLabe l ,
315 sVe c t o r &s vAt t ,
316 dMat r ix &dmData
317 ) {
318 i n t i , j ;
319 i f s t r e a m i f s F i l e ;
320 char b u f f [MAX_FIELD_BUFFER ] ;
321

322 t ry {
323 i f s F i l e . open ( f i l e n a m e ) ;
324 / / c o u n t t h e number o f a t t r i b u t e s ;
325 i = 1 ;
326 do{
327 i f ( i f s F i l e . peek ( ) == ’ , ’ )
328 i ++;
329 } whi le ( i f s F i l e . g e t ( ) != ’ \ n ’ ) ;
330 d = i −1; / / t h e f i r s t column i s r e c o r d name
331

332 / / now c o u n t t h e number o f r e c o r d s
333 i = 0 ;
334 do{
335 i f s F i l e . i g n o r e (MAX_LINE_BUFFER , ’ \ n ’ ) ;
336 i ++;
337 } whi le ( ! i f s F i l e . e o f ( ) ) ;
338 n = i −1; / / one r e t u r n a t t h e end o f t h e l a s t l i n e o f t h e f i l e
339 / / NO r e t u r n a f t e r t h e l a s t l i n e o f t h e f i l e
340 i f s F i l e . c l o s e ( ) ;
341

342 / / open t h e f i l e aga in
343 i f s F i l e . open ( f i l e n a m e ) ;
344

345 s vAt t = sVe c t o r ( d , " v " ) ;
346 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
347 f o r ( i =0 ; i <d ; i ++){
348 i f ( i == d−1){
349 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ \ n ’ ) ;
350 / / remove ’\ n ’
351 f o r ( j =0 ; j < s i z e o f ( b u f f ) ; j ++){
352 i f ( b u f f [ j ] == ’ \ n ’ ) {
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353 b u f f [ j ] = ’ ’ ;
354 }
355 }
356 s vAt t [ i ] = b u f f ;
357 } e l s e {
358 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
359 s vAt t [ i ] = b u f f ;
360 }
361 }
362

363 dmData = dMat r ix ( n ) ;
364 i = 0 ;
365 whi le ( ! i f s F i l e . e o f ( ) && i <n ) {
366 / / g e t t h e r e c o r d name
367 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
368 s v La b e l . push_back ( b u f f ) ;
369 f o r ( j =0 ; j <d ; j ++){
370 i f ( j == d−1){ / / d e n o t e s t h e end o f t h e l i n e
371 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ \ n ’ ) ;
372 dmData [ i ] . push_back ( a t o f ( b u f f ) ) ;
373 } e l s e {
374 i f s F i l e . g e t l i n e ( bu f f , MAX_FIELD_BUFFER , ’ , ’ ) ;
375 dmData [ i ] . push_back ( a t o f ( b u f f ) ) ;
376 }
377 }
378 i ++;
379 }
380

381 i f s F i l e . c l o s e ( ) ;
382 re turn 0 ;
383 }
384 catch ( \ l d o t s ) {
385 cout <<" r e a d i n g d a t a e r r o r "<< e n d l ;
386 re turn −1;
387 }
388 } / / ReadData ( )
389

390 i n t main ( i n t argc , char ∗ a rgv [ ] )
391 {
392 dMat r ix dmData , dmZ ,dmW, dmBestW , dmBestZ ;
393 nMat r ix nmDim ;
394 nVe c t o r nvShip ;
395 sVe c t o r svLabe l , s vAt t ;
396 double dObj , dBestObj , dAvg ;
397 i n t i , j , j j , t ag , nRun ;
398 o f s t r e a m o f s F i l e ;
399

400 / / I n i t i a l i z e random g e n e r a t o r
401 s r a n d ( t ime (NULL) ) ;
402

403 / / Read da ta from f i l e
404 ReadData ( " Data . c sv " , svLabe l , s vAt t , dmData ) ;
405

406 / / Get t h e number o f c l u s t e r s
407 cou t <<" p l e a s e i n p u t t h e number o f c l u s t e r s : \ n " ;
408 c in >>k ;
409

410 cou t <<n<< endl <<d<< endl <<k<< e n d l ;
411

412 / / I n i t i a l i z e n e c e s s a r y p a r a m e t e r s
413 nmDim = nMat r ix ( k ) ;
414 nvShip = nVe c t o r ( n , 0 ) ;
415 dmZ = dMat r ix ( k ) ;
416 dmBestZ = dMat r ix ( k ) ;
417 dmW = dMat r ix ( k ) ;
418 dmBestW = dMat r ix ( k ) ;
419 f o r ( i =0 ; i <k ; i ++){
420 dmZ[ i ] = dVe c t o r ( d , 0 . 0 ) ;
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421 dmBestZ [ i ] = dVe c t o r ( d , 0 . 0 ) ;
422 dmW[ i ] = dVe c t o r ( d , 1 . 0 ) ;
423 dmBestW [ i ] = dVe c t o r ( d , 1 . 0 ) ;
424 }
425

426 / / S p e c i f y t h e number o f runs
427 nRun = 5 ;
428

429 cou t <<" Run 1 "<< e n d l ;
430 dBes tObj = FuzzySub ( dmData , dmBestW , dmBestZ , nvShip ) ;
431 dAvg = dBes tObj ;
432 f o r ( i =1 ; i <nRun ; i ++){
433 cout <<" Run "<< i +1<< e n d l ;
434 dObj = FuzzySub ( dmData ,dmW, dmZ , nvShip ) ;
435 dAvg += dObj ;
436 i f ( dObj < dBes tObj ) {
437 dBes tObj = dObj ;
438 f o r ( j =0 ; j <k ; j ++){
439 f o r ( j j =0 ; j j <d ; j j ++){
440 dmBestW [ j ] [ j j ] = dmW[ j ] [ j j ] ;
441 dmBestZ [ j ] [ j j ] = dmZ[ j ] [ j j ] ;
442 }
443 }
444 }
445 }
446

447 / / C a l c u l a t e t h e s u b s p a c e d i m e n s i o n s f o r each c l u s t e r
448 GetDim ( dmBestW , nmDim ) ;
449

450 / / P r i n t r e c o r d name and r e c o r d membership t o a f i l e
451 o f s F i l e . open ( " DataMembership . csv " ) ;
452 f o r ( i =0 ; i <n ; i ++){
453 o f s F i l e << s v La b e l [ i ]<< " , "<<nvShip [ i ]+1<< e n d l ;
454 }
455 o f s F i l e . c l o s e ( ) ;
456

457 / / P r i n t r e c o r d membership and r e c o r d s t o a f i l e so t h a t
458 / / t h e c l u s t e r s can be p l o t t e d i n MATLAB
459 o f s F i l e . open ( " D a t a R e s u l t . c sv " ) ;
460 f o r ( i =0 ; i <n ; i ++){
461 o f s F i l e << nvShip [ i ]+1<< " , " ;
462 f o r ( j =0 ; j <d−1; j ++)
463 o f s F i l e <<dmData [ i ] [ j ]<< " , " ;
464 o f s F i l e <<dmData [ i ] [ d−1]<< e n d l ;
465 }
466 o f s F i l e . c l o s e ( ) ;
467

468 sys tem ( "PAUSE" ) ;
469 re turn 0 ;
470 }
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geodesic, 74
index of association, 75
interclass, 59
intercluster, 37, 96, 307
intraclass, 319
intracluster, 37, 307
Mahalanobis, 72
Manhattan, 71
Manhattan segmental, 72, 248
maximum, 72
mean character difference, 75
measure, 271
Minkowski, 72, 84
nearest neighbor, 95, 118
point symmetry, 169
projected, 250
simple matching, 76, 177, 265
squared, 180
statistical, 96
sum of squared (SSD), 33, 147

Divide-by-zero error, 271
Divisive hierarchical, 9

monothetic, 138
dlmread, 344
dlmwrite, 344
DNA sequence, 323
DNF expression, 244
DOC, 244, 259, 371
Domain, 94
Dot-product, 250
Dunn family of indices, 307
DWT, see Discrete wavelet

transformation
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piecewise, 88
programming, 34
system, 205
time warping, 87

ECF, see Extended cluster feature
Edit distance, 89
Eigenvalue, 47, 252, 285
Eigenvector, 47, 51, 252, 285
EM, see Expectation-Maximization

algorithm
Empirical distribution, 26
ENCLUS, 244, 253
Entropy, 65, 175, 240, 253
Equilibrium point, 282
Erosion operation, 225
Error function, 161
Error sum-of-squares (ESS), 132
ESS, see error sum-of-squares
EST, see Expressed sequence tag
Estimate

Andrew’s wave, 44
Huber’s, 44
Tukey’s biweight, 44

euclidean, 357
Euclidean

distance, 326
norm, 175, 271
space, 144
sum of squares, 180

Excited neuron, see Neuron
Expectation, 39
Expectation-maximization (EM)

algorithm, 235
Exponential histogram, 292
Exponential-family, 236
Expressed sequence tag (EST), 323
Expression

level, 323, 324
matrix, 324
pattern, 324
profile, 324, 325

Extended cluster feature (ECF), 249
External criteria, 299

Facility
clustering, 291
location problem, 290

FastMap, 65
fclose, 344
FCLUST, 65
Feature, 5, 325

extended, 249
selection, 243
space, 50, 55
tree structured, 81
vector, 78

FINDIT, 244, 255
Fisher’s suboptimization lemma, 34
Fit, 227
Flat pattern, 324
FLOC, 244
Fluorescent intensity, 323
Folkes and Mallows index, 303
fopen, 343
fprintf, 344
fread, 344
Free energy, 175
Frequency, 76

estimation, 290
table, 20, 265

FSC, see Fuzzy subspace clustering
fscanf, 344
FTS, see Fuzzy tabu search
Function

density, 223
Gaussian, 57
Gaussian influence, 223
indicator, 153
local density, 224
square wave influence, 223

Function M-file, see M-file
Fuzzifier, 271, 316
Fuzzy

c-means, 183
c-partition, 315
k-means, 183
k-partition, 8
clustering, see Clustering, 183,

270, 305
deviation, 318
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dimension weight, 271
dimension weight matrix, 270, 271
ISODATA, 183
membership, 270
number, 320
relation, 142
set, 152, 154
subspace clustering (FSC), 270
tabu search (FTS), see Tabu search

fwrite, 344

Gain criterion, 261
Gap statistic, 39
Gaussian

distribution, 227, 327
kernel, 281
mixture model, 230

GDBSCAN, 221
GDILC, 214
Gene

coexpressed, 324
expression data, 3
function, 324
informative, 325
irrelevant, 325
regulation, 324

Gene-based clustering, see Clustering
General similarity coefficient, see

Coefficient
Generalized Mahalanobis distance, see

Distance
Generative algorithm, 288
Genetic k-modes, see k-modes
Geodesic distance, see Distance
Gibbs distribution, 175
Global standardization, see

Standardization
Goodness measure, 207
GPP, see Graph partition problem
Gradient, 224, 295

vector, 55
Graph, 140, 203

k-nearest neighbor, 203
directed, 69
directed acyclic, 89
partition problem (GPP), 200

partitioning, 204
proximity, 69
similarity, 204
sparse, 203
undirected, 69
weighted, 69

Graphical representation, 60
Greedy technique, 247
Grid, 209, 212
GRIDCLUS, 212

H-BLOB, 65
H -means, 192
hamming, 357
Hard c-partition, 151
Hard clustering, see Clustering
Hard k-partition, 8, 271
Hard limiting, 288
Harmonic

average, 171
mean, 171

Hash table, 294
Height, 97, 111
Hessian matrix, see Matrix
Heuristic, 185
Hidden Markov model, 288
Hierarchical, 9

agglomerative, 109, 137
divisive, 109, 137

Hierarchy of clustering schemes, 303
Hill climbing, 185
Histogram, 258
Hk-means, 192
HPStream, 293
Hubert’s � statistic, 303, 305
Hybridization, 323
Hypercube, 224
Hypergraph, 203, 205
Hypersphere, 74
Hypothesis, 238, 301

random, 301
random graph, 301
random label, 301
random position, 301
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Icicle plot, 115
Incomplete data, 235
Incremental, 240, 293, 296
Index

Calinski-Harabasz (CH), 310
CD, 310
CH, see Calinski-Horabasz
cutting, 35
Davies-Bouldin, 305
Dunn’s, 307
Fukuyama-Sugeno, 316
fuzzy validity, 315
partition coefficient, 316
partition entropy, 316
R-squared, 310
Rand’s, 311
RMSSDT, 309
S_Dbw validity, 308
SD validity, 307
semipartial R-squared, 310

Indexing, 83
Information

retrieval (IR), 293
theory, 312

Informative gene, see Gene
Inherent sparsity, 243
Initialization, 293
Inner product, 57, 93
Input layer, 56
Integrated likelihood, 238
Interactive, 296
Interactive hierarchical display, 61
Interclass distance, see Distance
Interclass scatter matrix, see Matrix
Intercluster density, 308
Internal criteria, 299
Interval scale, see Scale
Intracluster variance, 308
IR, see Information retrieval
Irrelevant gene, see Gene
Item, 5

J -means, 190, 192
jaccard, 357
Jackknife correlation, 327
Joint probability, 240

k-modes
genetic, 195

Karhunen-Loève transformation, see
Transformation

kd-tree, 167, 375
adaptive, 376

Kernel, 173
kmeans, 359
k-means, 147, 271, 275, 326

genetic, 192
global, 195
greedy, 195
parallel, 169
trimmed, 169

k-median, 290
Kohonen layer, 56
k-plane, 182
Kuhn-Tucker problem, 280

Lagrange multiplier, 47, 175, 275
Lance-Williams formula, 96, 117
Landmark

model, 91
similarity, 91

LargeItem, 294
Lateral distance, 57
LCS, see Longest common subsequence
Leaf node, 261
Learning rate, 56
Least squares, 32, 34
Level, 138
Likelihood, 90
Linear

scan, 289
trend, 86

Link, 207
Link-based similarity measure, 93
linkage, 355
Location measure, 44
Log ratio data, 326
Loglikelihood, 91, 237
Logtransformation, 324
Longest common subsequence (LCS),

88
Loop plot, 115
LSEARCH, 290
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M-file, 349
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script, 349

MAFIA, 244, 258
mahalanobis, 357
Main memory, 289
Manhattan distance, see Distance
Mapping

error, 54
nonprojective, 60
Sammon’s, 53

Market basket data, 93
Market segmentation, 4
Markov chain, 201, 288
MAT-file, 349
Matching criterion, 57
Matching distance, 88
MATLAB, 343
Matrix

between-clusters scatter, 70, 96
binary indicator, 178
covariance, 47, 70, 252
dissimilarity, 118
distance, 69
fuzzy, 183
fuzzy covariance, 155
Hessian, 55
interclass scatter, 59
proximity, 68
relation, 154
sample covariance, 47, 71
scatter, 69
semidefinite, 59
similarity, 69
sparse, 293
sum of squares, 69
unitary, 48
within-cluster scatter, 70

Maximum likelihood, 230
Maximum-entropy clustering (MEC),

175
MDL, see Minimal description length
MDS, see Multidimensional scaling
Mean, 44, 81, 161, 181
Mean shift, 173, 275

Mean standardization, see
Standardization

Mean-based initialization, see
Initialization

Mean-square contingency, 102
Measurement, 24
MEC, see Maximum-entropy clustering
Median, 44, 97, 290

method, 116
standardization, see

Standardization
median, 358
Medoid, 247, 256
Membership function, 152
Memory space, 9
Metric, 67, 68
Metric space, 290
MEX-file, 349, 351
Microarray

experiment, 323
technology, 323

Mini-max filter, 319
Minimal description length (MDL), 245
Minimal ultrametric relations (MUR),

142
Minimum distance/percentage principle,

91
Minimum method, 118
Minimum spanning tree (MST), 65
Minimum sum of squares clustering

(MSSC), 190, 275
minkowski, 357
Minkowski distance, see Distance
Misclassification, 27
Missing value, 10, 324
Mixture likelihood, 227
Mode, 6, 176, 181
Model, 227

Autoregressive (AR), 289
polynomial mixture, 288
variable, see Variable

Model-based clustering, see Clustering
Monothetic, 138
Monotonic hierarchy, 117
Monotonicity, see Divisive hierarchical
Monte Carlo, 39, 259, 301, 302
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Moving average, 86
MSSC, see Minimum sum of squares

clustering
MST, see Minimum spanning tree
Multidimensional scaling (MDS), 54, 65

metric, 55
nonmetric, 55

Multivariate normal mixture, 229
MUR, see Minimal ultrametric relations

n-tree, 110
NCC, see Criterion
Nearest neighbor, 116, 118
Netlab toolbox, 343
Neural projection, 59
Neuron, 56, 57
Noise, 144, 223, 324
Nominal, 80

attribute, 19
scale, see Scale

Nonhierarchical, 161
Nonprojective mapping, see Mapping
Norm estimation, 290
Normalization, 19, 43, 206
Normalized � statistic, 303
Normalized point, 74
NP-hard, 138, 201
Null hypothesis, 301
Null model, 314

OAK, 296
Object, 5, 325, 326

first-order, 23
function, 180
second-order, 23

Objective
evaluation, 92
function, 38, 271, 294

Observation, 5
Offset transformation, see

Transformation
Oligo, see Oligonucleotide microarray
Oligonucleotide microarray (Oligo), 323
OptiGrid, 210
Optimization, 162
ORCLUS, 244, 249, 372

Order statistics, 290
Ordinal scale, see Scale
Orthonormal

basis, 59
transformation, see Transformation
vector, 250

Packed representation, 113, 114
Parallel coordinates, 60
PART, 244, 262
Partition function, 175
Partitional, 9, 161
Pattern, 5

recognition, 4
standardization, 324

PCA, see Principle component analysis
PCR product, 323
pdist, 355
Peak, 327
Pearson’s correlation coefficient, 326
Performance function, 171
Phenotype structure, 325
Pointer representation, 112, 138, 142,

296
Poisson

model, 314
process, 301

Polythetic, 138
Posterior probability, 238
Principal component, 46
Principal component analysis (PCA), 46,

243
Prior probability, 238
Probability

density function, 301
density-based, 230
model, 43, 227

PROCLUS, 244, 246, 372
Profile, 173
Projected cluster, 243, 249, 252, 262
Projection, 174

class-preserving, 59
Prototype, 165, 181
Proximal point, 236
Proximity, 19

index, 68
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matrix, 302, 305
relation, 54

p-values, 289

Quadtree, 376
Quantitative, 79
Quantization, 19
Quasi-Newton method, 236
Query sequence, 90
Quick sort, 32, 369

Radius, 174
Rand statistic, 303
Random position hypothesis, 314
Range, 44
Range standardization, see

Standardization
Rank, 46
Ratio scale, see Scale
Raw data, 43
Record name, 328
Reference variable, see Variable
Reflexivity, 67
Regularity condition, 238
Relation, 153
Relative

closeness, 203
criteria, 299, 304
density, 261
distance plane, 65
interconnectivity, 203

Relevance feedback, 85
Replicate, 324
Repulsion, 295
ROCK, 207

Sammon’s mapping, see Mapping
Sample mean, 281
Sample space, 235
Sample-based clustering, see Clustering
SARS, see Simulated annealing using

random sampling
Scale, 19, 25

conversion, 25
interval, 25

measure, 44
nominal, 25
ordinal, 25
qualitative, 19
quantitative, 19
ratio, 25
transformation, 324

Scaled pattern, 326
Scanning process, 323
Scatter plot, 302
Schwarz criterion, see Criterion
Script M-file, see M-file
Segmentation analysis, 3
Self-organizing map (SOM), 56, 230,

326
architecture, 56
toolbox, 343

Semidefinite, 51
Separation, 265

of the fuzzy c-partition, 318
Set-valued variable, see Variable
seuclidean, 357
Shifting pattern, 326
Signal reconstruction, 290
Signal-to-noise ratio, 325
Silhouette plots, 115
Similarity, 5, 6

coefficient, 5, 67
dichotomy, 68
function, 68
measure, 5, 67, 326
trichotomy, 68

Simulated annealing, 183, 201, 202
using random sampling (SARS),

201
single, 358
Single clustering scheme, 303
Single link, 97, 116, 138, 325
Singleton cluster, 233
Singular value decomposition (SVD),

47, 48
Skyline plot, 115
SLINK, 138, 141, 296, 372
Soft clustering, see Clustering
Solution space, 183
SOM, see Self-organizing map



Subject Index 453

Soundness, 257
Sparse matrix, see Matrix
spearman, 357
Spearman’s rank correlation, 28
Spearman’s rank-order correlation, 28,

327
Spectral clustering, 208
Spot, 323
SSC, see Sum of squares criterion
SSD, see Sum of squared distance
Standard deviation, 44
Standard Template Library (STL), 363
Standard variance, 81
Standardization, 43

global, 43
mean, 44
median, 44
range, 44
std, 44
within-cluster, 43

Star coordinates, 61
State, 20, 180
Statistic

chi-square, 101
Statistical scatter, 69
Statistics Toolbox, 355
std standardization, see Standardization
Steepest descent procedure, 53
STING, 209
STL, see Standard Template Library
STREAM, 293
Stream model, 289
STUCCO, 241
SUBCAD, 264, 373
Subcell type, 325
Subclusters, 204
Subjective evaluation, 92
Subspace

clustering, 243, 264
information, 271

Substitution, 26
Substructure, 325
Subtree, 61
Subtype, 324
Sum of squared distance (SSD), 33
Sum of squares, 147, 309

Sum of squares criterion (SSC), see
Criterion

Summary, 204
Supervised

analysis, 325
learning, 261
training, 59

Support, 94, 294
SVD, see Singular value decomposition
Symbol table, 20
Symbolic data, 23
Synopsis structure, 290
Systematic variation, 324

Tabu, 185, 186
Tabu search, 183, 185, 186
Task parallelism, 258
Taxonomy analysis, 3
Temporal data, 24
textread, 344
Time, 24
Time indexed, 290
Topological neighborhood, 57
Total separation, 307
Trace, 59, 69
Transaction, 23
Transformation, 43, 46

amplitude, 85
data, 46
Karhunen-Loève, 49
offset, 85
orthonormal, 50

Translation, 174
Tree, 140

binary, 110
dichotomous, 110
map, 61
minimum spanning (MST), 140
nonranked, 110
spanning, 140
valued, 110

Trend, 24, 86
Triangle inequality, 67, 165
Tuple, 5
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Unimodal

function, 57
model, 314

Unsupervised
analysis, 325
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processing, 299

UPGMA, 122

Validity
criteria, 299
criterion, see criterion
index, 8, 37

Valley, 327
Variable, 5

asymmetric binary, 21
categorical, 30
modal, 23
neighborhood search (VNS), 186
nominal, 180
numerical, 30
reference, 30
set-valued, 23
symmetric binary, 21

Variance, 285
of a data set, 309
intracluster, 308

Vector
feature, 50
field, 65

Visualization, 60
categorical data, 62

VNS, see Variable neighborhood search

ward, 358
Ward’s method, 27, 97, 116
Warping

cost, 87
path, 87
window, 87

WaveCluster, 216
Wavelet transform, 216
Weight, 140, 206, 262, 271

vector, 57
weighted, 358
Weighted distance, 331
WGSS, see Within-group sum of squares
Winner-takes-all neuron, see Neuron
Within-clusters standardization, see

Standardization
Within-group sum of squares (WGSS),
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z-score, 44
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